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Abstract 

Metaldehyde is a molluscicide that is used to prevent crop damage by slugs and snails. It is frequently 

found in drinking water sources at concentrations above the legal maximum, and causes >90% of 

water quality failures in England. There is currently no economical, widely used treatment to remove 

metaldehyde pollution from water. Prior to the work presented here, it was known that metaldehyde 

is degraded biotically in soil, but the nature and identity of organisms responsible was unknown. Two 

novel metaldehyde degrading bacterial strains were isolated from domestic soil that can utilise 

metaldehyde as a sole carbon and energy source; Acinetobacter calcoaceticus E1 and Variovorax E3. 

Evidence that acetaldehyde is the primary metabolite of metaldehyde is presented: the metaldehyde 

dependent expression of an aldehyde dehydrogenase in A. calcoaceticus E1 was found, and the 

maximum metabolic flux of acetaldehyde was found to be greater than that of metaldehyde in cells 

grown using metaldehyde. The genomes of the isolated organisms were acquired. Comparative 

genomics of the two isolates showed that their novel catalytic ability was not dependent on genes 

shared between them, despite being isolated from the same soil sample. Comparison of the A. 

calcoaceticus E1 genome against other Acinetobacter that cannot utilise metaldehyde yielded a 

strong candidate for the primary metaldehyde degrading enzyme that has characteristics consistent 

with an enzyme that catalysed ether hydrolysis of isochorismate in its ancestral form and has evolved 

to hydrolyse ether bonds in metaldehyde.  
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Chapter 1:   General Introduction 

1.1 The molecular diversity of soil microorganisms 

Soils are formed from weathered rock and decomposed or decomposing organic material. The 

properties of a soil depend on: (i) its composition (the organic and inorganic constituents); (ii) the 

nature of the inorganic constituent, which affects its physical structure and chemical properties; (iii) 

the physical environment, for example temperature and rainfall; and (iv) the activities of organisms 

that live in and above it, which are intimately involved in the input, removal and transformation of 

compounds in the soil. Soils are vertically stratified with greater organic content and nutrient 

availability at the surface (Elsas et al., 2006). The horizontal variability of the soil environment, in 

terms of, for example, species present, nutrient availability, and chemistry, can vary on scales of 

hundreds of metres; if, for example, a carbon gradient results from cultivation practices (Fromm et 

al., 1993) or a pH gradient is produced by the underlying geology. Soils provide a habitat for 

microorganisms, and these types of variations impact the types and identities of microorganisms that 

inhabit the substrate (Rousk et al., 2010). On a smaller scale, across tens of centimetres, physical 

parameters such as nitrogen availability, moisture content and the respiration rate of 

microorganisms present in soil can vary by one or two-fold (Stoyan et al., 2000). On the micro scale 

at which microorganisms operate (Raynaud & Nunan, 2014) there is also great heterogeneity in soils, 

and bacterial populations are found to be partitioned by ecological variation (Cordero & Polz, 2014). 

This can lead to differences in metabolic capacities of microbial populations across millimetre and 

centimetre distances (Gonod et al., 2003). 

Microbes are numerous; the available surface area for bacterial habitats on soil particles is immense, 

and the population density has been given as between 4 × 107 and 2 × 109 cells per gram for different 

soils (Whitman et al., 1998). Microbial populations are inherently capable of generating greater 

genomic and phenotypic diversity than Metazoa, even discounting their number. Their short 

generation times, large number of reproductive units, and haploid genomes lead to the frequent 

generation of the novel phenotypes upon which natural selection acts. These properties, combined 

with a highly heterogeneous environment, lead to significant genetic diversity. The genetics of 

prokaryotes, the manner of their reproduction and propensity for horizontal gene transfer, make the 

definition of species in this domain difficult and controversial. In practice, in recent decades, 

operational taxonomic units (OTUs) are defined, using set values for genomically derived statistics to 

assign isolates to OTUs. Values such as <97% ribosomal 16S subunit ribonucleic acid (16S rRNA) 

sequence identity (Stackebrandt & Goebel, 1994) or <95% average nucleotide identity (Rodriguez-R 



18 

& Konstantinidis, 2014) are used to distinguish isolates at the species level. Estimates for the number 

of bacterial species are constantly evolving as more data become available; a recent meta-analysis 

using many sources of environmental 16S rRNA data estimates that there are between 1011 and 1012 

bacterial species on the Earth (Locey & Lennon, 2016). Within individual species there is significant 

genomic diversity. Ozer et al. (2014) show that 6.9-18.0% of the genomes of 12 Pseudomonas 

aeruginosa strains are not conserved among all the strains. Tettelin et al. (2002) found that 18% of 

the genome in a reference strain of Streptococcus agalactiae was not present in at least one of 19 

other strains. Estimating the frequency with which new genes will be discovered in a bacterial 

species as different strains of that species are sequenced can be done using an application of Heap’s 

law (Tettelin et al., 2008). This will sometimes lead to the prediction of an “open pan-genome”; new 

genes would be expected with some frequency in every new strain sequenced. In a study of 3 

Aeromonas species; within 6, 11 and 16 genomes; 6884, 7214 and 9181 genes were identified in total 

with 3344, 3380 and 3508 genes being core, respectively (Ghatak et al., 2016). All Aeromonas species 

studied were predicted to have open pan-genomes. 

This genomic diversity, supplied by the very nature of bacterial genetics and sustained by the 

pressures of a heterogeneous environment, is a source of evolvability (Cordero & Polz, 2014). 

Bacteria can evolve new metabolic activities, such as the ability to catabolise synthetic compounds 

that are not found in nature (xenobiotics), through the molecular evolution of enzymes (O’Brien & 

Herschlag, 1999). 

1.2 The anthropogenic influence on soil ecology 

Human beings have shaped the earth to suit our needs. Human selection of the plant and animal 

species present in an area – directly, by planting in, or paving over the soil; and indirectly by the 

environments we create – is a major determinant of the ecology in that area (Ellis, 2015). The above 

ground environment will impact the soil environment, and agricultural soil is often intensively 

managed. In the United Kingdom (UK), in 2010, 15.3 million hectares (Mha) of a total land area of 

24.3 Mha (62.9%) were used for agriculture. Agricultural practice in the UK typically involves 

intensive management of the land, with frequent tilling and the application of fertilisers and 

pesticides. Crops receive around 140 kg/ha of nitrogen, 29 kg/ha of phosphate and 39 kg/ha of 

potash per year as fertiliser (Department for Environment, Food & Rural Affairs, 2016). Crops also 

receive multiple applications of xenobiotic fungicides, herbicides, insecticides, molluscicides and 

growth regulators – often multiple formulations of each (Garthwaite et al., 2015). Many of these 

compounds will interact with the soil microbiome and be a source of selective pressure on the 

evolution of organisms; as potential food sources or by causing the inhibition of growth. 
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1.3 Metaldehyde is a widely used molluscicide 

  

Figure 1-1. Skeletal structure (left) and 3-dimensional rendering (right) of metaldehyde. 3D 
rendering based on structural redetermination by Barnett et al. (2005), following Pauling & 
Carpenter (1936). 

Metaldehyde is a cyclic tetramer of acetaldehyde with the formula (CH₃CHO)₄. Its structure was 

determined first by Pauling & Carpenter (1936), using X-ray crystallography (Figure 1-1). It has a 

molecular mass of 176.2 and is stable in water at around neutral pH. Sublimation of metaldehyde, by 

depolymerisation to acetaldehyde, begins at 80°C and is catalysed by the presence of acids such as 

dilute H2SO4 or H3PO4 (Eckert et al., 2000). Its melting point in a closed capillary is 246.2°C. It is 

soluble in water to 222 mg/L and soluble in methanol to 1730 mg/L. It has a log Kow of 0.12 (National 

Center for Biotechnology Information, n.d.). 

Metaldehyde is not found in nature and is synthesised by the polymerisation of acetaldehyde at 

temperatures below 0°C in the presence of an acidic catalyst (Kekulé & Zincke, 1872). Metaldehyde 

crystallises and precipitates from the reaction giving yields of 7-15% (w/w). The majority product of 

the process is paraldehyde, a cyclic trimer of acetaldehyde. Aliphatic ethers are used to inhibit the 

precipitation of paraldehyde (Wilder, 1947) so that the solid metaldehyde can be removed and the 

remaining liquid paraldehyde recycled by being depolymerised to acetaldehyde.  The preferential 

formation of paraldehyde suggests it is more thermodynamically favourable than metaldehyde. 

Metaldehyde initially found use as a firelighter sold as “Meta-Fuel” (Miller, 1928); its sublimation to 

flammable acetaldehyde gas gave it this function. The application of metaldehyde in controlling slugs 

has been known about since as early as 1934 (Gimingham, 1940) and it is now widely used in both 

agricultural fields and domestic gardens. It is typically applied as a pelleted bran bait that inhibits slug 

feeding and causing death after exposure (Wedgwood & Bailey, 1988), on a cellular level the effects 
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include the distention and disintegration of the Golgi apparatus and endoplasmic reticulum in the 

mucus cells of slugs (Triebskorn et al., 1998).  

At the time of writing, the latest report on pesticide usage in the United Kingdom available from 

Department for Environment Food & Rural Affairs covers 2014. In that year metaldehyde accounted 

for 87% of all recorded molluscicide applications on agricultural fields, by application area. 112 

tonnes were applied over 920 thousand hectares (21% of all surveyed arable land used to grow 

crops), primarily on wheat, oilseed rape and potato crops (Garthwaite et al., 2015). The number of 

hectares to which the pesticide was applied to particular crops is given in Table 1-1. 

Wheat Winter 
barley 

Spring 
barley 

Oats Rye Oilseed 
rape 

Linseed Potato Beans Sugar 
beet 

All 
crops 

366,618 16,228 4,725 772 1,402 460,375 1283 64,810 976 3,128 920,317 

Table 1-1. Hectares of crops that received metaldehyde treatments in the UK in 2014 – adapted 
from (Garthwaite et al., 2015) 

The quantity used varies and is heavily influenced by the weather, with more frequent applications 

required to replace that which is washed away by rain (Wilson et al., 2014). For example, in 2008, 

466 tonnes were applied over 1.5 million hectares (Garthwaite et al., 2010). Metaldehyde pellets 

applied to fields are broken up by weathering, and dissolved metaldehyde is washed into 

watercourses that contain wildlife and may be used for drinking water abstraction. The transfer from 

field to watercourse can peak at 1-4 days after rainfall (Lazartigues et al., 2012). 

1.4 The toxicity of metaldehyde 

The lethal effect of metaldehyde on slugs and snails is due to a specific mode of action that damages 

the mucus cells of the organisms (Triebskorn et al., 1998). The substance is also acutely toxic to 

vertebrates, but to a lesser degree. The dose required for 50% mortality (LD50) in some terrestrial 

mammals is 227-690 mg/kg (metaldehyde/body mass) for rats, 290-1250 mg/kg for rabbits, 100-1000 

mg/kg for dogs and 181 mg/kg for the Japanese quail. For rainbow trout, the 50% lethal 

concentration in water was 69 mg/L (Jones & Charlton, 1999; United States Environmental Protection 

Agency, 2006). In dogs the signs of metaldehyde poisoning indicate that it affects the central nervous 

system (Bates et al., 2012). Metaldehyde may be expected to depolymerise to acetaldehyde in the 

acidic environment of a vertebrate gut, and so the toxicity of metaldehyde could be a result of 

acetaldehyde poisoning. However, the LD50 values of acetaldehyde in rats are greater than those of 

metaldehyde, being reported as 634-687 mg/kg (Sprince et al., 1974) or 1620-2240 mg/kg (Smyth et 

al., 1951), compared to the value of 227-690 mg/kg given for metaldehyde above. Additionally, 

metaldehyde was found to be significantly more toxic to dogs than the equivalent dose of 

acetaldehyde (Booze & Oehme, 1986). Metaldehyde is therefore toxic to mammals in its own right.  
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Surprisingly little research has been published into the effect of metaldehyde exposure on aquatic 

invertebrates. Metaldehyde was not found to be toxic to water fleas (United States Environmental 

Protection Agency, 2006). Some evidence for harm has been suggested in the case of the Pacific 

oyster. Oysters from two families (i.e. oysters originating from two pairs of parents) that were 

exposed to 0.1 µg/L metaldehyde for 24 hours showed significant differences in 4 reported 

attributes. One family showed increased rate of haemocyte mortality measured at 48 and 72 hours 

and the other showed significant differences in cell size & complexity, non-specific esterase activities, 

and phagocytic activity (Moreau et al., 2014). However, the significance of these differences appears 

to have been determined by the repeated application of Wilcoxon-Mann Whitney test, and the 

differences were not consistent between the two families discussed. This latter observation may be, 

as the authors suggest, due to genetic differences between the two families, or it may be that the 

observed differences have stochastic origins. It is not clear if the lack of published studies, beyond 

those discussed above, on the effect of metaldehyde on aquatic organisms results from insufficient 

attention being paid to this pesticide thus far, or as a result of the bias against the publishing of 

“negative” results that do not show an effect (Jennions & Møller, 2002; Young et al., 2008). 

Metaldehyde is a common cause of poisoning in domestic pets, with 772 cases reported to the 

Veterinary Poisons Information Service between 1985 and 2010 (Bates et al., 2012). In Northern Italy, 

17.2% of suspected or confirmed cases of animal poisoning (mostly dogs, cats, birds and foxes) were 

thought to be due to metaldehyde (Bille et al., 2016). 

1.5 Pollution of drinking water caused by metaldehyde 

Each year approximately 11.5 billion m3 of water is abstracted for domestic and commercial uses in 

the UK (Water UK, 2015; Kowalski et al., 2013). Water for domestic use must be ensured to be 

potable before use. Treatment for drinking water typically involves flocculation of the water by the 

addition of coagulant and allowing the particles to settle out, followed by passing the water through 

a single sand filter, or a series of sand filters. 

The Drinking Water Directive (European Union Council Directive 98/83/EC) sets the maximum 

permitted concentration in water for human consumption at 0.1 µg/L for any one pesticide, or 0.5 

µg/L total pesticides, and sets a legal requirement for sufficient monitoring to detect failures. 

Metaldehyde was first identified by water companies in the UK as being present in drinking water 

above the legal limit in 2008, and so monitoring of metaldehyde levels in reservoirs, water courses 

and tap water began in 2009, with hundreds of thousands of tests being conducted each year (Chief 

Inspector of Drinking Water, 2009). Since then, the majority of failures due to pesticides have been 
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the result of metaldehyde pollution (Figure 1-2).  In 2013, 110 of 2269 raw water abstraction points 

were confirmed to have actual risk of metaldehyde contamination (Colbourne, 2013).  

 

Figure 1-2. Frequency of water quality failures per year due to metaldehyde or all other 
pesticides. Compiled from the Drinking Water Inspectorate annual regional reports, available 
from http://www.dwi.gov.uk/about/annual-report. 

A survey of 9 water treatment works and various water channels in the catchment area of the river 

Ouse showed that metaldehyde was frequently present in concentrations greater than the legal limit 

and that water treatment works did not measurably decrease its concentration (Figure 1-3; Kay & 

Grayson, 2014). Figure 1-3 also shows the seasonal variation in metaldehyde pollution. 

 
Figure 1-3. Metaldehyde concentration at the inlet and outlet of water treatment works. Taken 
from (Kay & Grayson, 2014). 

0

50

100

150

200

250

300

350

400

2009 2010 2011 2012 2013 2014 2015

Fr
eq

u
en

cy

Metaldehyde Other pesticides

http://www.dwi.gov.uk/about/annual-report


23 

The pesticide-manufacturer backed Metaldehyde Stewardship Group was formed in 2009 to 

publicise the problem and offer best practice advice to farmers to reduce the amount of the 

substance being transported to water courses. In 2010 a maximum legal application rate of 700 

g/ha/year was brought into force by the Chemicals Regulation Directorate. In response to legally 

binding agreements with the Drinking Water Inspectorate (DWI), water companies have been 

pursuing a variety of strategies to tackle the problem. These include surveys of the water catchment 

areas to establish which fields are likely to leach the compound into water courses, communication 

with farmers to make them aware of the problem, funding the calibration of metaldehyde 

application equipment, awarding money to farmers if the levels of metaldehyde in water courses of a 

catchment are reduced below set levels, and paying for farmers to use more expensive alternative 

molluscicides such as methiocarb or ferric phosphate (Chief Inspector of Drinking Water, 2016). The 

DWI has instructed that a report on the effectiveness of these measures should be made in 2018, 

and the DWI has stated that if the problem still exists in 2020 it will assume that “more robust 

operational measures are required." (Purcell, 2014).  

1.5.1 Metaldehyde use in other EU countries 

A search of the literature did not retrieve any publications discussing metaldehyde pollution of 

drinking water sources in other EU countries. A reference to a Swedish water treatment works 

trialling metaldehyde degrading technologies was made by Tang et al. (2016), indicating that the 

problem exists there. Studies described above include one on the subject of poisoning by 

metaldehyde in Northern Italy (Bille et al., 2016) and metaldehyde in French fish ponds (Lazartigues 

et al., 2012), which show that the compound must be used in those countries. 

The quantity of molluscicides, including metaldehyde, sold in 10 EU countries is given in Figure 1-4. 

The quantity of metaldehyde sold or used in other EU countries may not deviate too far, 

proportionally, from the amount seen in the UK of 87% of all molluscicides applied. If this is the case, 

then it is likely that the problem of metaldehyde pollution of drinking water sources exists in other 

countries covered by the Drinking Water Directive. 
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Figure 1-4. Tons of molluscicide sold in 2014 in the 10 European Union countries with highest 
sales (Eurostat, 2016). 

1.6 Chemical and physical methods of removing metaldehyde 

pollution 

The strategies of ameliorating metaldehyde pollution of drinking water sources discussed above all 

concern the prevention of metaldehyde from entering water courses in the first place. Metaldehyde 

has been found to be hydrolytically and photolytically stable. Hydrolysis was assessed at 25°C in 

buffers at pH 5, 7 and 9 over 32 days (Carpenter, 1989a). Photolysis was assessed using dissolved 

metaldehyde irradiated by a xenon arc lamp at pH 7 and 25°C for 30 days, with and without the 

addition of acetone (a photolysis sensitiser) (Carpenter, 1989b). No degradation of metaldehyde was 

observed in either study. Its hydrolytic half-life has been given as 16.8 years (Kegley et al., 2016). 

Currently no economical method exists to degrade or remove metaldehyde from water. Water 

companies try to avoid abstracting contaminated water, and when this fails must mix contaminated 

water with uncontaminated to avoid exceeding the legal limit (Allison, 2015). However, the only 

methods of quantifying metaldehyde with sufficient sensitivity is solid phase extraction followed by 

gas chromatography (Environment Agency, 2009), or liquid-chromatography mass-spectrometry 

(Schumacher et al., 2016) which is expensive and cannot be done in situ, leading to delays in the 

cessation of abstraction.  

Researchers are pursuing methods to remove or degrade metaldehyde with the aim that these 

methods be used in water treatment. Advanced oxidation processes, that use ultraviolet light 

(UV)/H2O2
 to produce hydroxyl radicals, could be used to degrade metaldehyde, but dissolved 

organic matter strongly inhibits the process by scavenging hydroxyl radicals and the method may be 
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uneconomical (Autin et al., 2013a). Autin et al. (2013b) predicted that the improvement of UV-light 

emitting diodes may make the process economical by 2020. The legal requirement for new water 

treatment plants to be effective meant that, despite the above discussed problems, Anglian Water 

installed a UV/H2O2 system with amalgam lamps at the Hall water treatment works in Newton-on-

Trent in 2014, with the explicit aim of removing metaldehyde (Waste Water Treatment Online, 

2014).  

Alternative adsorption materials to activated carbon, which is commonly used in the treatment of 

drinking water, have been investigated. A graphite intercalating material called Nyrex can adsorb 

metaldehyde with sufficient affinity to reduce its concentration < 0.1 µg/L and can be regenerated by 

passing an electrical current through it, converting the metaldehyde to carbon dioxide (Nabeerasool 

et al., 2015). Phenolic carbon was found to have significantly higher affinity and adsorption capacity 

for metaldehyde than activated carbon and it was demonstrated to be capable of reducing 

metaldehyde concentration to < 0.1 µg/L (Busquets et al., 2014), though the possibility of phenolic 

compounds being released from the material may lessen its desirability as a treatment solution. Tao 

& Fletcher (2013) demonstrated a commercially available ion-exchange resin, S947 (Purolite, UK), is 

capable of adsorbing significant quantities of metaldehyde.  

Doria et al. (2013) have shown that nano-sized zinc oxide/laponite composites could catalyse the 

photolysis of metaldehyde with UV treatment down to 350 µg/L. The use of tetraamidomacrocyclic 

ligands as catalysts for the reaction of peroxide with metaldehyde without UV irradiation results in 

up to 31% reduction of metaldehyde, with initial concentrations of 56 mg/L. Acetic acid and 

acetaldehyde are produced in a 3:1 ratio, in a process that is efficient in the use of materials but very 

slow (Tang et al., 2016). A resin that contains sulfonic acid functional groups (SA-SBA-15) has been 

found to adsorb and cause the depolymerisation of metaldehyde to acetaldehyde (Tao & Fletcher, 

2014). Dissolved metaldehyde treated with SA-SBA-15 results in only acetaldehyde and residual 

metaldehyde. Tao & Fletcher (2014) therefore propose a mechanism whereby the protonation of an 

oxygen results in the sequential reduction of the ring’s bonds, causing the release of acetaldehyde 

(Figure 1-5). 
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Figure 1-5. Proposed mechanism of sequential depolymerisation of metaldehyde following lysis 
of a single bond by a sulphone residue. Protonation of an ethyl oxygen results in the scission of 
the C-O bond and recruitment of an electron from a lone pair from the next oxygen. This 
process repeats, releasing acetaldehyde. Taken from Tao & Fletcher (2014). 

The problem of metaldehyde pollution is attracting a lot of interest from researchers and water 

companies looking for a solution. It is not clear that an optimal solution has yet been achieved as the 

effective solutions involve high energy inputs or specialised materials that may be expensive to 

fabricate and have limited life spans. 

1.7 The biotic degradation of metaldehyde 

Metaldehyde is degraded by soil microorganisms. Most of the available studies that deal with 

metaldehyde degradation are part of the European Union Draft Assessment Report on metaldehyde 

(European Food Safety Authority, 2006, Vol. 3, B8). The studies discussed in the report were 

conducted by the corporation Lonza (Basel, Switzerland) to satisfy regulatory demands. 

Cranor (1990a) treated agricultural soil in a microcosm with 10 mg of 14C-labeled metaldehyde per kg 

of soil and incubated it for a year at 25°C. Acetaldehyde, paraldehyde (0.4 % applied radioactivity at 

59 days only) and CO2 were the identified products of metaldehyde degradation in this study (Figure 

1-6). The time taken for 50% degradation of the compound (DT50) was calculated to be 67.2 days, 

assuming first order kinetics. 
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Figure 1-6. Amount of 14C recovered as different compounds, as a percentage of applied 
radiation, when a soil microcosm was treated with radio labelled metaldehyde. Produced using 
data from Cranor (1990a). 

A second experiment was conducted as described above, but the chamber was flooded with 

degassed water after 30 days to produce anaerobic conditions (Cranor, 1990b). The degradation of 

metaldehyde was reported to cease and acetaldehyde accumulates after anaerobic conditions were 

induced at 30 days (Figure 1-7), compared to the degradation seen in Figure 1-6. The cessation of 

metaldehyde degradation is not clear in this shorter experiment. The accumulation of labelled 

acetaldehyde suggests that some metaldehyde was depolymerised after anaerobic conditions were 

induced. 
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Figure 1-7. Amount of 14C recovered as different compounds, as a percentage of applied 
radiation, when a soil microcosm was treated with radio labelled metaldehyde and flooded 
with degassed water at 30 days (flooding indicated by a dashed line). Produced using data 
from Cranor (1990a). 

Möllerfeld et al. (1993) took samples from creeks in the German agricultural areas of Bickenbach and 

Unter-Widdensheim, which are approximately 100 km apart.  Sediment and water samples were 

treated with 117 µg/cm3 14C-labelled metaldehyde and incubated in the dark at 20°C (Figure 1-8). 

Extraction of metabolites from sediment used dichloromethane and methanol. Acetaldehyde and 

CO2 were the detected metabolites. The DT50 was calculated as 12.4 and 11.9 days for the Bickenbach 

and Unter-Widdensheim systems respectively. 
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Figure 1-8. Percentage of applied radioactivity that could be extracted from samples, does not 
show unextractable applied radiation that remained in the sediment. Chart A shows 
microcosms originating from Bickenbach and B shows those from Unter-Widdensheim. 
Produced using data from (Möllerfeld et al., 1993) 

Two field studies are available. These were not part of the European Union regulatory process and 

were published in peer reviewed journals. Granules containing 6% metaldehyde were applied to a 

tobacco field that had a history of metaldehyde treatment. The study was conducted twice in 

subsequent years. The initial concentrations of metaldehyde were approximately 2 and 1 mg/kg of 

soil for each year, and the DT50 values obtained were 3.5 and 3.9 days (Zhang & Dai, 2006). 

Metaldehyde powder was sprayed onto 3 different cabbage plots in Beijing, Zhejiang and Hubei 

resulting in initial concentrations in soil samples of 1.5-6 mg/kg. The determined DT50 values were 

0.75 – 1.02 days (Zhang et al., 2011a). However, in both of these studies metaldehyde may have 

been lost due to dissipation into deeper soil or elsewhere, though there was little rain in the 2011 
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study. One site experienced no rain for the first 10 days of the study, during which time >90% of 

metaldehyde dissipated. 

The biotic degradation of metaldehyde in treated substrates (soil or river sediment) proceeds at very 

different rates in different experiments; with DT50 values of between 67 and <1 days (or a minimum 

of 12 days if only microcosm studies are considered). Similar results were seen when similar, but 

geographically separated substrates were tested using the same methods. The substrates will vary in 

their physical properties, but the most significant determining factor is likely to be the ability of the 

microbial biomass in the samples to degrade metaldehyde. The abundance of microbes capable of a 

metabolic activity and the efficiency of the pathway by which they perform that activity will depend 

on the microbial population’s history of exposure to the substrate (Krutz et al., 2010). The rapidity of 

biotic degradation compared to abiotic recalcitrance suggests the existence of a specifically evolved 

degradation pathway for this xenobiotic that is present in soil organisms. 

1.8 Bioremediation and biosensors 

Uncovering the molecular basis for the biotic degradation of metaldehyde could enable the 

development of technologies and techniques that would aid in the treatment and quantification of 

metaldehyde in water sources.  

The expression of enzymes with the ability to degrade a problematic compound can be used to 

remediate that compound. For example, purified horseradish peroxidases may be used to treat 

water or industrial effluent that is contaminated with phenolic compounds (Klibanov et al., 1983), or 

anthraquinonic dyes (Šekuljica et al., 2015). The cloning and expression of cyanuric acid hydrolases in 

Escherichia coli, followed by the encapsulation of non-viable cells in porous silica beads, produces a 

material that can be used to remove cyanuric pollution from water, without purifying the enzymes 

from the other cellular material (Yeom et al., 2015). Enzymes can be improved, in terms of stability, 

turnover (kcat), and affinity (KM) for the substrate, by rational mutation of the amino acid sequence of 

the enzyme. This was performed by Scott et al. (2009) on the atrazine hydroxylase AtzA, yielding an 

enzyme with a 3-fold reduction in KM and a 10-fold increase in kcat compared to the wild-type 

enzyme.  

Alternatively, live cells can be used for bioremediation. Organisms capable of the desired 

metabolism, either naturally or by genetic manipulation, can be introduced to remediate a 

contaminated substrate (Cordova-Rosa et al., 2009). Alternatively, the population of microorganisms 

in a substrate can be shifted towards degraders by incubating a sample of it with the compound of 

interest, possibly combined with the introduction of degrading organisms to the sample (Gentry et 

al., 2004). Such methods could be used in water treatment works, reservoirs, or at field edges which 
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have high risk levels of cause metaldehyde pollution in nearby watercourses. The potential for such 

treatments would depend on the nature of any enzyme discovered; a requirement for co-factors 

such as adenosine triphosphate to be available for a reaction to occur would limit the enzyme’s 

usefulness in remediation, as would properties such as a short half-life or a narrow set of physical 

conditions in which the enzyme will function.  

To monitor metaldehyde concentrations, most analyses are done following the Environment Agency 

(2009) methods that require concentration of a sample by solid phase extraction before mass 

spectrometry. As previously stated, this creates delays between the acquisition of a sample and 

determination of its metaldehyde content, hindering efforts to prevent metaldehyde contaminated 

water from entering reservoirs, as well as being a financial burden. Enzymes can be used to construct 

biosensors that can be used to perform a quantification in real-time and on-site.  

Biosensors can utilise changes in an electrical current to produce a measurement of an analyte. 

Where the catalysed transformation of a target compound releases electrons, enzymes embedded in 

a conductive material can produce a current when the target compound is oxidised by the embedded 

enzymes (Wallace et al., 1999; Rather et al., 2012). The oxidation or reduction of an analyte that is 

coupled with the complementary change in oxidation of a nicotinamide adenine dinucleotide 

cofactor (β-NAD+) can be applied in a biosensor. The β-NAD+ can be attached to the conductive 

material and the change in current generated, as it is regenerated to its initial oxidation state, can be 

recorded to quantify the analyte (Rahman et al., 2009). Calorimetric biosensors can be used where 

the chemical transformation of an analyte results in sufficient change in enthalpy to be measured. 

Such devices have been miniaturised sufficiently to fit on a chip that requires only 200 nl reaction 

volumes (Davaji et al., 2014). As with the potential for the development of remediation technologies 

based on an understanding of the molecular basis for metaldehyde degradation, the potential for the 

development of biosensors for the compound, and the nature of any biosensor, would depend on 

the nature of the reactions that degrade it. 

1.9 Aims of the project 

A biotechnological approach utilising organisms or enzymes that have evolved the specific ability to 

degrade metaldehyde could provide the basis for a reliable and low cost solution to the detection of 

metaldehyde pollution and its mitigation. In parallel to the applied outcome, identifying the novel 

molecules responsible for the transformation of a xenobiotic would increase our understanding of 

how these capacities evolve in microorganisms.  

These outcomes require the isolation of metaldehyde degrading organisms and the identification of 

the molecular actors that perform the degradation, and therefore the primary aims of the work 
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described in this thesis are the identification and characterisation of these. For this work to be 

performed a reliable method of quantifying metaldehyde was required, and so the improvement of 

an existing quantification method was undertaken. Hypotheses (in italics) and approaches are given: 

• The sensitivity and precision of a liquid chromatography-mass spectrometry method can be 

improved by optimising the ionisation conditions of the analyte. Different ionisation voltage 

and temperatures were used in the quantification of metaldehyde; the strength and 

consistency of the recorded response were analysed to determine the best conditions 

(Chapter 2). 

• Organisms that are able to utilise metaldehyde as the sole carbon and energy source are 

present in soil and other substrates that have been in contact with metaldehyde. Minimal 

media containing only metaldehyde as the carbon source were used to culture any such 

organisms under laboratory conditions (Chapter 3). 

• The molecular basis of metaldehyde degradation in the isolated organisms exists in their 

genetic material. The genomic sequencing of isolated organisms was undertaken (Chapter 3). 

• Enzymes involved in the catabolism of metaldehyde are more highly expressed when cells are 

grown with metaldehyde. Protein gels were used to look for more highly expressed proteins 

in metaldehyde grown cells (Chapter 4). 

• The kinetic nature of enzymes in the metaldehyde degrading pathway can be determined by 

quantifying the rate of substrate removal in vivo. The kinetics of the pathway were 

investigated using direct quantification of metaldehyde, and oxygen utilisation. Step-wise 

models were employed in an attempt to determine the kinetics of individual enzymes in the 

pathway (Chapter 4). 

• The presence of metaldehyde catabolism in isolated organisms results from the acquisition of 

foreign DNA; this DNA can be identified by comparative genomics. Candidates for the primary 

metaldehyde degrading enzyme were identified by comparing the sequences of predicted 

proteins in two isolates and closely related strains that do not degrade metaldehyde 

(Chapter 5). 
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Chapter 2:  Optimisation of a liquid-chromatography 

mass-spectrometry method for quantifying metaldehyde 

2.1 Introduction 

Chromatography is used to separate complex mixtures of compounds in a sample. Compounds are 

separated by their retention time along a pathway. This retention time is dependent on the 

compounds’ differing affinity to a mobile phase, that carries the sample along the path, and to a 

stationary phase, that retards this progress. Reverse-phase liquid chromatography (LC) is the 

predominant type discussed in this chapter. This uses a mostly aqueous mobile phase that flows 

through a column packed with a solid, hydrophobic, stationary phase. The retention time of 

compounds will therefore be dependent on their overall hydrophobicity and hydrophilicity. The 

separated mixture that flows from an LC column can then be analysed by a variety of methods to 

identify and quantify compounds in the mixture. 

Metaldehyde may be quantified by mass-spectrometry (MS) following LC. MS, of the type discussed 

here, records the charge produced by ions striking a detector. The method of producing a stream of 

ions that is used in this chapter is electrospray ionisation (ESI). The sample solution passes through a 

positively or negatively electrically charged capillary tube, exiting the tube as a fine spray of charged 

droplets. The mobile phase liquid is caused to evaporate by a flow of heated inert gas, concentrating 

the charge in the remaining droplet and causing the ejection of ions from the droplet due to their 

mutual repulsion. Uncharged analytes can be given a charge by forming an adduct with ions in the 

mobile phase.  

Mass selection can be used to filter the ion stream for a particular mass-charge ratio (m/z) allowing 

quantification of a specific compound with known m/z ratio against a standard of known 

concentration. Mass selection is achieved by altering the velocity of the ions using an electric field, 

the degree of deflection of an ion is dependent on its m/z, meaning that the strength of the electric 

field can determine which ions reach the detector. Tandem MS can be used to positively identify the 

compound being quantified. After the initial mass selection, the ion stream is directed through a 

collision chamber where the compounds are fragmented by collision with inert gas in the chamber. 

One or more fragments generated thusly are then mass selected and quantified. Different 

compounds that have similar masses will most likely have different fragmentation profiles, allowing 

them to be distinguished by this second step. 

Several methods have been employed to quantify metaldehyde. Brown et al. (1996) describe heating 

a sample to depolymerise the metaldehyde to acetaldehyde, which is then reacted with 1,3-

cyclohexanedione and forms a fluorescent product that can be quantified by UV excitation following 
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LC. The direct quantification of metaldehyde, without first derivatising it, requires chromatography 

followed by MS. Gas chromatography has been used to quantify metaldehyde, for example by Saito 

et al. (2008). Gas chromatography also depolymerises metaldehyde. Liquid chromatography-tandem 

mass spectrometry (LCMS) following solid phase extraction (SPE) to concentrate a water sample 

allows for detection of metaldehyde at 3 ng/L and a limit of quantification (LOQ) down to 10 ng/L (Li 

et al., 2010).  

For the purposes of this project it was important to be able to distinguish between metaldehyde and 

the acetaldehyde that may be produced as a metabolic intermediate. It was also desirable that the 

method involves as little pre-processing as possible. An LCMS method that does not require SPE or 

derivatisation had been developed at the Food and Environment Research Agency (FERA). It was 

reported by FERA staff that the method being used there suffered from high levels of multiplicative 

noise leading to high relative standard deviation of quantifications compared to the analysis of other 

compounds, and a decreasing response over time leading to problems where the known standards 

give different responses at different parts of the run and insufficient sensitivity later in the run. In an 

attempt to ameliorate these problems, method development was undertaken in collaboration with 

FERA, with the aim that the method be used in further experiments that make up this thesis.  
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2.2 Materials and methods 

2.2.1 LC and MS protocols 

2.2.1.1 LC columns 

In most experiments LC was performed using the Kinetex XB-C18 50 × 2.1mm column (Phenomenex, 

Macclesfield, UK) with 2.6 µm particles. Where specified, the Atlantis T3 2.1 mm × 100 mm, 3 µm C18 

particles (Waters UK, Elstree, UK) was used.  

Unless otherwise specified, LC was performed with a flow rate of 0.5 ml/min using a mixture of 1 mM 

ammonium acetate prepared with ultrapure water, and methanol (J. T. Baker brand; VWR, Leicester, 

UK) using a gradient flow (Figure 2-1 and Table 2-1). Metaldehyde has a much greater affinity for 

methanol than water and so increasing methanol concentration reduces the amount of time it takes 

to be eluted from the column. Prepared samples were stored at 10°C prior to injection and injected 

onto the LC column by an autosampler. 

 

Figure 2-1. The proportion of methanol (% B) present in the LC mobile phase when quantifying 
metaldehyde. Times shown here are only accurate when flow rate is 0.5 ml/min. 

 

 Gradient step time (minutes) when flow rate is: 

% methanol 0.6 ml/min 0.5 ml/min 0.4 ml/min 

0.3 ml/min 
or double  
length 

10 0 0 0 0 

90 2.5 3 3.75 5 

90 3.5 4.2 5.25 7 

10 3.6 4.32 5.4 7.2 

10 5 6 7.5 10 

Table 2-1. Proportion of methanol in the mobile phase time gradient at all flow rates used 
when quantifying metaldehyde. 
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2.2.1.2 Default MS conditions 

The default method developed by FERA staff used a flow rate of 0.6 ml/min, ESI capillary voltage of 

5500 V and desolvation temperature of 500°C. During chromatography, metaldehyde is given a 

charge via an NH4
+ adduct encountered in the mobile phase and so the precursor ion is selected at 

the mass of metaldehyde + ammonium: m/z = 194.1. Fragmentation is achieved using a collision 

energy of 12 eV. The product ions are observed at m/z = 106 and m/z = 62 using multiple reaction 

monitoring with a dwell time of 160 ms. These product ions were determined empirically, prior to 

the work described here, by scanning the post-collision mass spectrum for the strongest responses. 

Fragments with formulae C4H8O2 and C2H4O with ammonium ion adducts have molecular masses of 

106 and 62 respectively. A possible scheme for these ion transitions are shown in Figure 2-2. 

 

Figure 2-2. Possible ion transitions for metaldehyde following fragmentation during tandem-
MS that would give m/z values of 106 and 62. Blue lines show the portions of metaldehyde that 
could form the fragments indicated by arrows. 

2.2.1.3 Preparation of standards 

To quantify metaldehyde from culture samples it was decided, after consultation with FERA staff, 

that no more than the equivalent of 0.1 µl of filtered culture should be injected for each 

measurement to avoid putting too much salt into the MS, which can damage it. Matrix matched 

standards were prepared using filtered cultures diluted with DI water with the proportion of culture 

filtrate depending on the injection volume used in the particular experiment to match the 0.1 µl 

maximum. For example, a 50-fold dilution of culture would be required for a 5 µl injection. A. 

calcoaceticus E1 cultures were grown in standard conditions with 5.9 mM methanol as the carbon 

sources. The cultures were filtered through polyethersulfone membranes with 0.22 µm pore size 

(Millipore, Billerica, USA) and the filtrate mixed with different proportions of 100 mg/L metaldehyde 

(Acros Organics, New Jersey, USA) and DI water to make the standards. 

C4H8O2 + NH4 
m = 106 

C2H4O + NH4 
m = 62 
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Prepared standards and samples were stored in amber vials with 8 mm screw caps with silicone/ 

polytetrafluoroethylene septa (Thermo Fisher Scientific, Waltham, USA) 

2.2.1.4 Conditioning injections 

When specified, to stabilise response prior to measurements being made, 100 µl injections of high 

metaldehyde standards (typically 100 µg/L) were made onto the LC column. Typically, 8-10 injections 

would be made. 

2.2.1.5 Data analysis 

Data were recorded using Analyst V1.5.2 (SCIEX, Warrington, UK). Data were smoothed across 5 

points. Integration of the peaks was done by the software using the IntelliQuan Automatic IQA II 

method. Peaks were reviewed manually and where the analyte peak was not properly integrated, it 

was integrated manually. Calibration curves using known standards used linear regression with 1/x 

weighting. 

2.2.1.6 Kolmogorov-Smirnov tests 

Kolmogorov-Smirnov (KS) tests are used to determine if differences seen in the relative standard 

deviation (RSD; standard deviation/mean expressed as a percentage) of measurements made with 

different assay conditions are significant. The KS test determines if two distributions are significantly 

different. Individual values from an ordered set of observations are charted against the cumulative 

fraction of observations charted. Two sets of observations are charted and the maximum deviation 

on the y-axis between the two lines is determined, to give the statistic D. This statistic, along with the 

degrees of freedom in the dataset, is then used to obtain the probability (p) that the two sets of 

observations come from the same distribution. An example KS chart is shown in Figure 2-3. 
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Figure 2-3. A KS chart showing two randomly generated sets of observations (n = 100) with 
different standard deviations. Each generated value (Xn) is plotted in order along the x-axis 
with the y-axis giving the fraction of X values that are less than or equal to Xn. The red line 
indicates the largest vertical deviation between the two sets, and therefore the D statistic. The 
D statistic and the degrees of freedom in the data are used to calculate the likelihood that the 
two sets of data are from the same distribution. Figure generated using 
http://www.physics.csbsju.edu/stats/KS-test.html (Kirkman, 1996). 

So that the variance of the sets of measurements with different means could be tested, the sets were 

normalised by dividing each observation by the mean for those measurements. This is so that only 

the variance from the mean is tested. Both product ions are included in a single distribution, after 

normalisation, in order to increase the power of the test. The assumption is that the two product 

ions represent separate measurements of the same primary ion. They are derived from the same 

stream of ions produced by previous steps in the analysis, and while they will have their own 

separate sources of noise, any difference in noise resulting from changes to the conditions will affect 

both equally.  
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2.3 Results 

2.3.1 Decreasing response during, at least, the first 40 injections when 

analysing metaldehyde 

A preliminary run was conducted using default conditions (Section 2.2.1.2). 50 µl injections were 

made using 10 µg/L metaldehyde, 0.2% culture matrix standard aliquoted into several vials. The peak 

areas of the two product ions are shown in Figure 2-4. 

 

Figure 2-4. Paired bars showing peak areas of product ions from repeated 50 µl injection of 10 
µg/L metaldehyde standards. The line of best fit shows the results of an exponential decay 
equation. 

There is a decrease in response with each subsequent injection. Fitting the data to an exponential 

decay equation (below) resulted in the fitted parameters; A = 18257±435, K = -0.036±0.019, C = 

877±502. 

𝑦 = 𝐴𝑒−𝐾𝑥 + 𝐶 

Based on this observation it was decided that when testing different LCMS conditions, 20 repeated 

injections using a single condition would be used to condition the column so that response 

decreasing in this way would be clearly visible in a set of injections and be distinguishable from 

differences in quantification arising from experimentally altered conditions. 
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2.3.2 No obvious sources of noise in parts of default protocol that take 

place before MS when analysing metaldehyde 

2.3.2.1 Injection volume test using default method conditions 

To achieve the LOQ of 0.1 µg/L required for regulatory work carried out by FERA, injections of up to 

100 µl were sometimes required – larger than the usual 1-5 µl injections used for other applications. 

A hypothesised reason for the unreliability of metaldehyde quantification was inconsistent injection 

volumes by the injection system at these unusually large volumes. An experiment testing the impact 

of different injection volumes was conducted. 500 pg of metaldehyde was injected each time, using 

metaldehyde concentrations given in Table 2-2. Standards were injected in sets of 20 for each, in 

order of increasing volume, and then 20 times in decreasing volume. This palindromic pattern allows 

detection of long term changes in response by direct comparison of sets of the same standard at 

different parts of the run. The first and second sets of 20 are referred to as sets A and B in the results 

below. 

Standard 
conc. 
(µg/L) 

Injection 
vol. (µl) 

100 5 

50 10 

25 20 

10 50 

Table 2-2. Metaldehyde concentrations of standards and injection volumes used in this set of 
experiments. 

Mean retention time was 1.59±0.01 min. Figure 2-5 shows the peak area of each product ion for each 

injection. The first 40 injections appear to show a drop in response similar to that seen in Figure 2-4. 

Beyond this no other general trends are visible. The peak areas are smaller with 10 µl injections than 

other injection volumes, shown by the mean values in Figure 2-6. This is also seen in all subsequent 

experiments in this section. As the main objective of this experiment was to identify quantification 

errors resulting from imprecise injection volumes, all injections at a particular volume were made 

using a single standard preparation. It is possible but unlikely that the injection system is consistently 

inaccurate in this way, but more likely that the 50 µg/L standard used in the 10 µl injections has a 

concentration lower than intended. The means and standard deviations of peak areas of the first two 

sets (5 µl and 10 µl) can be seen to be affected by decreasing response with increasing injection 

number in Figure 2-5 and Figure 2-6, and so only set B of both standards was considered when 

evaluating the precision of different injection volumes. 
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Figure 2-5. Peak areas resulting from the measurement of 500 pg injections of metaldehyde 
using LCMS with default ionisation conditions. Injection volumes and product ions are indicated 
by colour and shade respectively. 
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Figure 2-6. Mean response and standard deviation of peak areas of sets of 500 pg of 
metaldehyde measured by LCMS using default ionisation conditions (n = 20 per set). 

The RSD of the different sets are given in Table 2-3. The high RSD of 20 µl, set B, m/z = 62 is largely a 

result of injection number 81 (Figure 2-5) which has a large peak area of 12066. This is an outlier as 

defined by Tukey (1977, pp.43–44). The interquartile distance (IQD) is the difference between the 

first and third quartiles (Q1 and Q3). A value that is greater than Q3, or less than Q1, by >1.5 times 

the IQD is defined as an outlier. The peak area of the 81st injection in Figure 2-5 is 2.25 times the IQD 

from Q3. This measurement does not appear to be part of a general trend of significantly decreased 

precision at higher volumes. 
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  RSD (%) 

µl Set 
m/z = 

62 
m/z = 
106 

5 A 9.8% 11.5% 

5 B 7.8% 7.6% 

5 Both 8.8% 9.6% 

10 A 12.9% 9.5% 

10 B 8.5% 10.1% 

10 Both 10.7% 9.8% 

20 A 8.6% 9.9% 

20 B 13.3% 11.2% 

20 Both 11.0% 10.5% 

50 N/A 8.9% 12.7% 

 
Table 2-3. RSD of peak areas of sets of 500 pg injections of metaldehyde measured by LCMS 
using default ionisation conditions (n = 20 per set). The redness of each cell is proportional to 
the value of the cell. 

To determine the significance of the differences in RSD, KS tests were employed to assess each 

distribution all others. Set A of the 5 and 10 µl standards was excluded due to the instability of 

response in the first 40 injections. The different distributions are not significantly different (Table 

2-4). 

µl/µl 5 10 20 

10 D  0.1    

p  0.98    

20 D  0.17   0.12   

p  0.35   0.77   

50 D  0.12   0.1   0.07  

p  0.89   0.98   0.99  

 
Table 2-4. Results of Kolmogorov-Smirnov tests of pairs of normalised distributions of peak 
areas from 500 pg injections of metaldehyde using default conditions. The statistic D is the 
greatest difference in the cumulative fraction in the distributions, p is the probability of this 
difference being present by chance given the degrees of freedom present in the data.  

The same series of injections were repeated in subsequent experiments investigating LC conditions. 

It was not thought that there would be any interaction between injection volume and the other 

parameters of the chromatography but this allowed comparison to the default conditions without an 

additional run using a single injection volume. 



44 

2.3.2.2  Standards assayed with Atlantis T3 column 

As a comparison the same sets of standards described in the previous section were quantified as 

described in methods using the Atlantis T3 column with a flow rate of 0.3 ml/min and double length 

gradient (Table 2-1). This column and protocol was previously used by FERA but was abandoned as 

the Kinetex column requires a third of the run time per sample. Peak areas for each injection and 

means for sets of standards are shown in Figure 2-7 and Figure 2-8. Mean retention time was 

4.09±0.02 min. The Atlantis took 40 injections for response to stabilise. The most likely explanation 

for the increasing response is analyte being carried over (not eluting fully) between injections. 

 

Figure 2-7. Peak areas of both product ions resulting from the measurement by LCMS of 500 pg 
injections of metaldehyde, of different volumes. An Atlantis T3 column was used. 
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Figure 2-8. Mean and standard deviation (n = 20) of peak areas of both product ions resulting 
from the measurement by LCMS of 500 pg injections of metaldehyde, of different volumes. An 
Atlantis T3 column was used to perform the chromatography.  

  RSD (%) 

µl Set m/z = 
62 

m/z = 
106 

5 A 13.3% 13.7% 
5 B 8.2% 9.0% 
5 Both 10.8% 11.3% 

10 A 9.6% 6.5% 
10 B 7.8% 8.5% 
10 Both 8.7% 7.5% 

20 A 6.7% 6.7% 
20 B 6.5% 7.8% 
20 Both 6.6% 7.2% 

50 N/A 5.4% 6.9% 
 
Table 2-5. RSD (n = 20) of peak areas of both product ions resulting from the measurement by 
LCMS of 500 pg injections of metaldehyde, of different volumes. An Atlantis T3 column was 
used to perform the chromatography. The redness of each cell is proportional to the value of 
the cell. 

A general trend of decreasing variance with increasing injection volume was observed  

Table 2-5), however paired KS tests for the normalised values of each standard combination 
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(excluding set A for 5 and 10 µl standards) do not show significant differences between them (Table 

2-6).  

µl/µl 5 10 20 

10 D  0.15    

p  0.72    

20 D  0.1   0.1   

p  0.94   0.94   

50 D  0.15   0.15   0.12  

p  0.72   0.72   0.77  

 
Table 2-6. Results of Kolmogorov-Smirnov tests of pairs of normalised distributions of peak 
areas resulting from the measurement by LCMS of 500 pg injections of metaldehyde, of 
different volumes. An Atlantis T3 column was used to perform the chromatography. 

The overall RSD of peak areas normalised to the mean for that standard is 10.0% for standards run on 

the Kinetex column and 7.5% for those run on the Atlantis column, though the difference in 

distributions is not significant (KS test; D = 0.09, p = 0.3766). 

2.3.2.3  Reduced flow rate 

Though the difference in variance between the Atlantis and Kinetex columns was not significant, a 

variant of the default Kinetex protocol, using a double length gradient (Table 2-1), was tested using 

the Kinetex column. Other aspects of the analysis used the default conditions. Results are shown 

below in Figure 2-9, Figure 2-10 and Table 2-7.  
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Figure 2-9. Peak areas of both product ions resulting from the measurement by LCMS of 500 pg 
injections of metaldehyde, of different volumes. A double length time gradient was used during 
the chromatography. 

 
Figure 2-10. Mean and standard deviation (n = 20) of peak areas of both product ions resulting 
from the measurement by LCMS of 500 pg injections of metaldehyde, of different volumes. A 
double length time gradient was used during the chromatography. 
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  RSD (%) 

µl Set m/z = 
62 

m/z = 
106 

5 A 19.8% 17.9% 

5 B 17.3% 13.6% 

5 Both 18.6% 15.8% 

10 A 17.5% 15.9% 

10 B 15.9% 15.1% 

10 Both 16.7% 15.5% 

20 A 14.1% 14.5% 

20 B 20.3% 18.2% 

20 Both 17.2% 16.3% 

50 N/A 11.9% 14.3% 

 
Table 2-7. RSD of the peak areas of both product ions resulting from the measurement by LCMS 
of 500 pg injections of metaldehyde, of different volumes. A double length time gradient was 
used during the chromatography. The redness of each cell is proportional to the value of the 
cell. 

No overall trends are visible in the peak areas (Figure 2-9). This experiment was conducted using a 

column that had been used to analyse metaldehyde samples immediately prior and so had already 

stabilised in response. The mean peak areas shown in Figure 2-10 are lower than those shown for the 

default conditions in Figure 2-6 and the RSD (Table 2-7) are significantly greater than those shown in 

Table 2-3 (KS test of the distribution of peak areas normalised to standards’ means: D = 0.25; p = 1.1 

X 10-6).  

The mean retention time was 1.79±0.01 min. This is only 6 seconds longer than the default 

conditions, meaning the elution of metaldehyde occurs at a different point in the gradient curve of 

aqueous:methanol.  

2.3.2.4  0.5 mM ammonium acetate 

In the development of the method at FERA no lower concentrations than 1 mM ammonium acetate 

in the mobile phase had been attempted (though higher concentrations had) and so a run using the 

default conditions and standards previously described was used replacing 1 mM with 0.5 mM 

ammonium acetate as the aqueous solvent in the mobile phase. Mean retention time in this 

experiment was 1.59±0.01 min  

Figure 2-11, Figure 2-12 and Table 2-8 show the peak areas of each injection, the mean and standard 

deviation of sets of these injections, and the RSD of sets. The alteration of aqueous buffer resulted in 

a large increase in RSD when compared to default conditions where the median RSD was 9.35% 

(Table 2-3). 
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Figure 2-11. Peak areas of both product ions resulting from the measurement by LCMS of 500 
pg injections of metaldehyde, of different volumes. The mobile phase used for chromatography 
was 0.5 mM ammonium acetate. 
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Figure 2-12 Mean and standard deviation (n = 20) of peak areas of both product ions resulting 
from the measurement by LCMS of 500 pg injections of metaldehyde, of different volumes. The 
mobile phase used for chromatography was 0.5 mM ammonium acetate. 

  RSD (%) 

µl Set m/z = 
62 

m/z = 
106 

5 A 29.1% 31.2% 

5 B 30.7% 31.4% 

5 Both 29.9% 31.3% 

10 A 18.9% 25.3% 

10 B 27.0% 29.4% 

10 Both 23.0% 27.4% 

20 A 23.2% 21.7% 

20 B 28.8% 27.5% 

20 Both 26.0% 24.6% 

50 N/A 26.9% 30.1% 

 
Table 2-8. RSD of the peak areas of both product ions resulting from the measurement by LCMS 
of 500 pg injections of metaldehyde, of different volumes. The mobile phase used for 
chromatography was 0.5 mM ammonium acetate. The redness of each cell is proportional to 
the value of the cell. 
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2.3.3 The desolvation temperature significantly affects response and 

capillary voltage affects precision during the quantification of metaldehyde  

A good candidate for the stage at which noise is produced during MS is the ionisation of the sample. 

For this reason, assays of the ESI capillary voltage and desolvation temperature were conducted. A 

range of voltages between 4.0 kV and 6.0 kV were tested. Lower temperatures were investigated as 

it was hypothesised that heat induced decomposition of metaldehyde may affect the measurement.  

The first two experiments described here used the repeated quantification of 50 µl injections of 10 

µg/L metaldehyde standards. Conditioning injections were used prior to experimental injections to 

stabilise the signal before measurement began. In the first experiment a range of capillary voltages 

were tested at 500°C, followed by some voltages at lower desolvation temperatures (Figure 2-13A). It 

was clear that lower ionisation temperatures resulted in higher peak areas and so, in the second 

experiment, a similar range of voltages was tested at 425°C (Figure 2-13B).  
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Figure 2-13. Peak areas of both product ions resulting from the measurement by LCMS of 500 
pg injections of metaldehyde, using different capillary voltage and temperatures. Black lines 
indicate where the desolvation temperature was changed to that given on the labels. Different 
experimental runs are shown in A and B. 

Ionisation condition 5.5 kV and 425°C was used in both experimental runs shown in Figure 2-13. The 

mean peak area for this condition in the second run was 0.4% higher for m/z = 62 and 1.4% higher for 

m/z = 106. This similarity gives confidence that the data produced in both experiments can be 

directly compared, and so the mean peak areas from both experiments are shown in Figure 2-14. 

Mean retention time was 1.58±0.01 min for both experiments. The number of measurements made 

at each condition was limited by equipment availability in the second experiment. The number of 

A 

B 
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observations for different conditions vary; n = 20 where ionisation temperature is 450°C or 400°C, n = 

14 where temperature is 425°C with the exception of 5.5 kV and 425°C where n = 34, n = 10 where 

temperature is 400°C. 

 
Figure 2-14. Means and standard deviations of peak areas for both product ions resulting from 
repeated assays of 500 pg of metaldehyde by LCMS, using different capillary voltages and 
temperatures. Groups of bars separated by white space give measurements made at the 
voltage indicated on the X-axis. The number of measurements for each condition are given in 
the text. 

The RSD of different voltage and temperature combinations is given in Table 2-9. 
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  RSD (%) 
Temp. 
(°C) 

Voltage 
(kV) 

m/z = 
62 

m/z = 
106 

400 5.0 6.2% 8.8% 

  5.5 6.4% 7.3% 

  6.0 10.6% 6.2% 

425 4.5 10.8% 8.3% 

  5.0 7.9% 6.6% 

  5.25 6.8% 6.2% 

  5.5 5.3% 6.7% 

  5.75 10.5% 9.0% 

  6.0 9.9% 8.1% 

450 5.0 7.6% 7.8% 

  5.5 5.5% 5.8% 

  6.0 12.4% 13.9% 

500 4.0 10.40% 11.10% 

  4.5 6.5% 6.1% 

  5.0 9.4% 7.4% 

  5.5 15.2% 18.5% 

  6.0 7.8% 8.7% 

Table 2-9. RSD of peak areas resulting from the repeated measurement of 500 pg of 
metaldehyde by LCMS, using different ionisation temperature and voltage combinations. 
Redder shades of pink indicate higher RSD. The number of measurements for each condition 
are given in the text. 

2.3.3.1 Interaction of temperature and voltage 

There may be an interaction between ionisation temperature and voltage. The interaction plot 

(Figure 2-15) shows the change in response at different voltages does not appear to be entirely 

consistent at different temperatures. The nature of this possible interaction was not investigated 

further. The effect of each parameter is discussed individually in the following sections, taking into 

consideration the possibility of an interaction between them. 
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Figure 2-15. Interaction plot showing the mean peak areas observed for the m/z = 62 product 
ion, when quantifying 500 pg of metaldehyde by LCMS using different combinations of capillary 
voltage and temperature. 

 

2.3.3.2 Effect of voltage 

The RSD resulting from default conditions in this experiment (Table 2-9; 500°C and 5.5 kV) is 15.2% 

and 18.5% for m/z = 62 and m/z = 106. This is higher than was seen in in earlier tests using the same 

conditions, where the highest RSD from a set of 20 measurements was 13.3% and the mean RSD in a 

set was 9.97% and 10.36% for m/z = 62 and m/z = 106 (Table 2-3). There are no outliers in the 

measurements. The peak area of these injections (Figure 2-13A; 161-180), as well as the following set 

of injections (161-180), tend to decrease with each injection. Gradually decreasing response also 

occurs following changes to the capillary voltage (Figure 2-13B; injections 43-84). Whether these 

trends have some underlying cause related to changing the ionisation parameters, or are stochastic, 

cannot be determined from these data.  

Considering all measurements made at a specified temperature across a range of capillary voltages, 

one-way analysis of variance (ANOVA) tests show there are significant differences in mean response 
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in assays done at all temperatures (data not shown). To establish which voltages produced 

significantly different responses, Tukey’s honestly significant difference (HSD) test was conducted. 

The tests were done for all voltage pairs at each temperature and for each product ion and for 

family-wise error rates (FWER) ranging between 0.5 and 0.001. Table 2-10 gives the lowest FWER 

that could be obtained for each pair of conditions.  

1st kV 2nd kV 

400°C 425°C 450°C 500°C 

m/z = 
62 

m/z = 
106 

m/z = 
62 

m/z = 
106 

m/z = 
62 

m/z = 
106 

m/z = 
62 

m/z = 
106 

4.0 4.5             >0.5 0.245 

4.0 5.0       0.001 0.001 

4.0 5.5       0.001 0.001 

4.0 6.0             0.005 0.105 

4.5 5.5     >0.5 >0.5     0.001 0.001 

4.5 5.75     0.18 0.335         

4.5 6.0     0.001 0.001     0.16 >0.5 

5.0 5.5 >0.5 >0.5 >0.5 >0.5 0.001 0.001 0.005 0.07 

5.0 5.75     0.01 0.31         

5.0 6.0 0.39 0.08 0.001 0.115 0.001 0.001 >0.5 0.185 

5.25 5.75     0.005 0.001         

5.25 6.0     0.001 0.3         

5.5 5.75     0.025 0.11         

5.5 6.0 0.085 0.015 0.001 0.001 0.005 0.015  0.001 0.001 

5.75 6.0     0.33 0.005         

Table 2-10. Lowest FWER for pairs of capillary voltages obtained by Tukey’s HSD tests, using 
data obtained by the measurement of 500 pg of metaldehyde by LCMS using different capillary 
voltages and ionisation temperatures. FWER between 0.5 and 0.001 were tested for. Sets of 
peaks areas from assaying 500 pg of metaldehyde at different temperatures were tested. 
FWER below 0.05 are in bold. Voltage pairs not shown did not result in FWER < 0.5 at any 
temperature tested. These pairs are; 4.00, 5.25; 4.50, 5.25; 5.00, 5.25; and 5.25, 5.50 kV.  

At 400°C the only significant difference is of product ion m/z = 106, 5.5 versus 6.0 kV. At 425°C all 

voltage combinations of product ion m/z = 62 involving 5.75 and 6.0 kV – excepting 4.5 versus 5.75 

kV – show the higher voltages have significantly lower peak areas. All of the significant differences for 

the m/z = 106 ion also include the same voltages but with many more exceptions. At 450°C the peak 

areas decrease significantly with increasing voltage at the three voltages tested. At 500°C the high 

response at 5.5 kV and low response at 4.0 kV are shown to be significantly different in most cases. 

2.3.3.3 Effect of ionisation temperature 

The differences in RSD given in Table 2-9 for measurements made using the same voltage at different 

temperatures are not large enough for KS tests to be able to show significant differences with the 
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exception of comparisons against condition 5.5 kV, 500°C. This distribution is significantly different to 

distributions produced using the same voltage at 425°C (D = 0.31, p = 0.001) and 450°C (D = 0.35, p = 

0.002), but not 400°C (D = 0.31, p = 0.07). 

Peak areas of measurements made using <500°C are higher at all voltages tested. Determining the 

conditions that give the highest response is part of the purpose of these experiments and so Welch’s 

T-tests were used to determine if 425°C produces a significantly higher response to 400°C at 5 kV and 

5.5 kV, as well as 450°C at 5.5 kV (Table 2-11). The majority of tests (4 of 6) confirm that 425°C gives 

significantly greater response, though the result p = 0.06 given in Table 2-11 is not strongly indicative 

given the number of tests done here. At 5.5 kV 425°C is significantly higher for product ion m/z = 62, 

the means of the product ions m/z =106 do not differ substantially (Figure 2-14). 

Voltage (mV) Temp. 1 (°C) Temp. 2 (°C) m/z = 62 m/z = 106 

5.0 425 400 T = 4.16 
p = 4.1E-04  

T = 2.02 
p = 0.060 

5.0 425 450 T = 4.27 
p = 2.4E-04 

T = 5.59 
p = 5.3E-06 

5.5 425 400 T = 2.79 
p = 0.015 

T = 0.26 
p = 0.80 

Table 2-11. Results of Welch’s T-tests comparing the repeated measurement of 500 pg of 
metaldehyde by LCMS using the given ionisation conditions. 

2.3.3.4 Reduced flow rate improves response at lower ionisation temperatures 

An issue with lower ionisation temperatures is that it can lead to insufficient evaporation of the 

mobile phase solvent. Lowering the mobile phase flow rate can improve evaporation. Ionisation 

temperatures of 400°C, 350°C and 300°C and flow rates of 0.6, 0.5 and 0.4 ml/min were investigated. 

To avoid possible issues of gradually diminishing response after changing ionisation conditions, 

discussed in Section 2.3.3.2, each ionisation temperature was tested in multiple pairs of injections, 

rather than all measurements at particular conditions being made in a single set of injections. 50 µl 

injections of 5 µg/L metaldehyde were used and conditioning injections were applied before 

quantification took place. Peak areas for each injection and means for each condition are given in 

Figure 2-16 and Figure 2-17. Injection number 31 was excluded from all statistical analysis. 
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Figure 2-16. Peak areas for both product ions resulting from the repeated measurement of 250 
pg of metaldehyde by LCMS, at different ionisation temperatures and flow rates. 

 

Figure 2-17. Means and standard deviations of repeated assays of 250 pg of metaldehyde by 
LCMS, at different ionisation temperatures and mobile phase flow rates (flow rates given below 
the x-axis). n = 10, with the exception of 0.5 ml/min 400°C where n = 9. 
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One way ANOVAs showed there were significant differences between the 9 groups shown in Figure 

2-17 (F = 3.5, p = 0.0015), the different flow rates (F = 6.8, p = 0.0019) and the different temperature 

groups (F = 6.1, p = 0.0033). The application of Tukey’s HSD test, using a family wide error rate of 

0.05, shows that desolvation temperatures of 300°C and 350°C result in significantly higher response 

compared to 400°C, and that a flow rate of 0.4 ml/min results in significantly higher response than 

0.5 or 0.6 ml/min. 

    RSD (%) 

Flow 
(ml/min) 

Temp. 
(°C) 

m/z = 
62 

m/z = 
106 

0.6ml 400 16.4 10.5 

  350 22.6 8.6 

  300 13.4 9.0 

All temp. 19.4 9.9 

0.5ml 400 8.6 11.2 

  350 10.0 7.7 

  300 8.4 6.6 

All temp. 11.5 9.3 

0.4ml 400 22.4 17.8 

  350 19.7 7.9 

  300 15.9 10.1 

All temp. 20.3 13.0 

 
Table 2-12. RSD of peak areas from the repeated measurement of 250 pg of metaldehyde by 
LCMS, using different solvent flow rates and desolvation temperatures. Redder shades of pink 
indicate higher RSD. 

The RSD of quantification when using 0.5 ml/min solvent flow rate is notably lower for the m/z = 62 

ion, but this is not shown to be significant by KS tests. 

2.3.4 Quantification of metaldehyde shows good precision across a range 

of concentrations but assessment of accuracy was weakened by standard 

preparations 

Previous experiments in this chapter showed that higher responses were achieved by using a flow 

rate of 0.4 ml/min, ionisation temperatures 300-350°C, and voltages 5.0-5.5 kV. A flow rate of 0.4 

ml/min added too much time to the length of a sample’s acquisition to be practical and so the values 

of 0.5 ml/min for flow rate, 325°C and 5.25 kV for ionisation temperature and voltage were used in 

the quantification of a range of metaldehyde concentrations. All other aspects of the quantification 

were as described in the methods and conditioning injections were performed. The assessment 

mimicked the method of quantifying samples of unknown concentration with “calibration brackets”; 

50 µl injections of known standards containing 100, 50, 5, 1 and 0.5 µg/L metaldehyde that were 



60 

made between sets of 15 samples. In this experiment the “samples” were also standards of known 

concentration, including the given concentrations of the calibrants, as well as 0.25, 0.125 µg/L 

metaldehyde and a blank standard using only 0.1% culture matrix. Each standard was prepared once 

and aliquoted to multiple vials. The standards treated as samples were quantified in sets of 15 

injections; 2 sets of the full range of standards, then a set of high (only 50 and 100 µg/L) 

concentration standards, low (0-1 µg/L) standards, blank standards and high concentration 

standards. The number of measurements made for each standard is given in Table 2-13. 

MA 
(µg/L) 

100 50 5 2.5 1 0.5 0.25 1.25 

n 29 23 11 5 16 13 5 2 

 
Table 2-13. Total number of measurements made of each metaldehyde standard at the given 
concentrations. 

Normalised response (peak area/expected metaldehyde concentration) for each injection are given 

in Figure 2-18. Higher responses are seen in the first 4 injections. No other anomalous trends are 

apparent. The mean retention time was 1.91±0.01 min. 

 

Figure 2-18. Normalised response (peak area/standard concentration) for both product ions 
resulting from the measurement of standards containing different concentrations of 
metaldehyde by LCMS. Product ion m/z = 62 are lighter shades, m/z = 106 are darker shades. 

The mean normalised response for each standard, including those used as calibrants and those 

treated as samples, is shown in Figure 2-19.  
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Figure 2-19. Mean normalised response (peak area/standard concentration) for the repeated 
measurement of metaldehyde standards of different concentrations by LCMS. Error bars give 
one standard deviation. Left and right charts give the results for the indicated product ion. 
Number of measurements for each standard are given in Table 2-13. 

The RSD (Table 2-14) for all standards >1 µg/L are similar. Higher RSD are seen at lower 

concentrations as the signal:noise ratio becomes lower.  

 

 

 RSD (%) 

Metaldehyde 
(µg/L) 

m/z = 
62 

m/z = 
106 

100 6.4 6.4 

50 6.5 6.1 

5 6.3 8.0 

2.5 6.2 6.0 

1 15.3 10.8 

0.5 12.2 15.8 

0.25 11.7 18.9 

0.125 38.3 19.9 

 
Table 2-14. RSD of peak areas obtained for the repeated measurement, by LCMS, of 
metaldehyde standards of different concentrations. Number of measurements for each 
standard are given in Table 2-13. Redder shades indicate greater RSD. 
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Quantification of metaldehyde was achieved using weighted (1/X) least-squares linear regression of 

m/z = 62 calibrant peak areas (Figure 2-20). The regression yields the following equation with a 

coefficient of determination of 0.974:   

[peak area units] = -56.64 + 1434*[standard µg/L] 

 

Figure 2-20. Calibration curve of metaldehyde concentration plotted against peak areas 
observed for the m/z = 62 product ion, produced by LCMS. Blue line represents a linear 
regression of the points. 

The regression was used to calculate the concentration of the standard injections treated as samples. 

The mean calculated concentrations of these are presented as percentages of known concentrations 

in Figure 2-21. The 2 0.125 µg/L injections were below the limit of detection. 
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Figure 2-21. Mean calculated metaldehyde concentration of samples quantified using LCMS, as 
a percentage of their expected concentrations. Error bars show 1 SD. 

All but one of the samples were calculated to be less than their expected value on average. The mean 

calculated concentrations of standard injections used in the calibration are shown in Figure 2-22. The 

calibrants are calculated to be around 100% as expected, which shows that the inaccuracy seen in 

Figure 2-21 results from the measurements, rather than the calibration being performed incorrectly. 

 

Figure 2-22. Mean calculated metaldehyde concentration of calibrant injections, quantified by 
LCMS, as a percentage of their expected concentrations. Error bars show 1 SD. 

Given the larger RSD of calibrants 1 and 0.5 µg/L (mean RSD 13.7% versus 6.35% for calibrants > 1 

µg/L) excluding them from the calibration was trialled, starting with 0.5 µg/L. The equation derived 

from the regression is shown below. The R2 was 0.964. 
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[peak area units] = 297.4 + 1318*[standard µg/L] 

Using the results of the second regression the concentration of all standards was repeated. The mean 

recalculated concentration of standard injections that were used as calibrants is shown in  Figure 

2-23 and those used as samples in Figure 2-24.  

 

Figure 2-23. Mean calculated metaldehyde concentration of calibrants, quantified by LCMS, as 
a percentage of their expected concentrations. Calculation derived from calibration that 
excluded standards with 0.5 µg/L metaldehyde. Error bars show 1 SD. 

 

Figure 2-24. Mean calculated metaldehyde concentration of samples, quantified by LCMS, as a 
percentage of their expected concentrations. Calculation derived from calibration that excluded 
standards with 0.5 µg/L metaldehyde. Error bars show 1 SD. 
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The larger value for 50 µg/L standards across all figures in this section are best explained as an 

inaccuracy in the preparation of that standard.  Inaccuracies in the preparation of other standards is 

likely the cause of mean values that deviate from the expected concentration. Decreased response 

caused by non-linearity of the quantification at high analyte concentrations also cannot be ruled out 

as affecting the quantification of the higher concentration standards. These inaccuracies affect the 

ability of the calibration curve to be able to calculate the metaldehyde concentration of unknown 

samples. 

2.3.5 Comparison of precision of default protocol to optimised protocol 

To compare the original, default, LCMS protocol to the optimised one, data from assays of 500 pg of 

metaldehyde using the default protocol, presented in Section 2.3.2.1, and assays of standards with a 

metaldehyde concentration ≥ 2.5 µg/L (125+ pg) or more from Section 2.3.4 were used. 

The RSD of peak areas normalised to the mean value for each standard used in both sets of data, 

including both product ions, were 10.0% (n = 200) for the default protocol and 6.47% (n = 136) for 

the optimised protocol. A KS test comparing these distributions found them to be significantly 

different (D = 0.17, p = 0.017). Comparing peak areas of the product ion used in quantification, m/z = 

62, in the same way does not show a significant difference (D = 0.19, p = 0.10). 
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2.4 Discussion 

Alterations were made to an already established LCMS method for the quantification of metaldehyde 

in an attempt to; (i) increase precision of measurements at all concentrations, (ii) reliably quantify 

metaldehyde at low concentrations, and (iii) eliminate declining response seen at the beginning of an 

experimental run. An optimised protocol that uses 0.5 ml/min flow rate, 5.25 kV capillary voltage and 

325°C solvation temperature (compared to the original values of 0.6 ml/min, 5.5 kV and 500°C) was 

developed that has greater response and improved precision. Conditioning injections were added to 

the protocol to ameliorate the worst of the declining response and allow more accurate 

quantification. 

A comparison of the default and optimised protocol was performed (Section 2.3.5). By normalising 

the peak areas obtained to the mean for each standard used it was possible to compare RSD, and 

significantly greater precision in the optimised protocol was found when quantifying 125 pg of 

metaldehyde or more. A direct comparison, using the same standards, was not performed and so 

changes in precision at lower metaldehyde masses could not be assessed. 

Kolmogorov-Smirnov tests were used to assess changes to the precision of measurements. While this 

method can result in p-values < 0.05 it is insensitive to differences in standard deviation between 

sets of measurements with the same mean where the number of measurements is low. A better test 

for precision was not found. 

The vaporisation conditions in the ionisation chamber were found to have a significant effect on the 

response. High temperatures are required to produce the ion stream for MS. High temperatures also 

cause the depolymerisation of metaldehyde. An ionisation temperature of 425°C gave the highest 

response at 0.6 ml/min flow rate. Reducing the flow rate to 0.5 ml/min improved the response at 

lower temperatures with the highest responses seen at 350°C and 300°C. A value halfway between 

those two temperatures, 325°C, was chosen as the ionisation temperature for all subsequent 

analyses, replacing 500°C used in the default protocol. Using this lower temperature would be 

expected to improve the quantification of low levels of metaldehyde by increasing the signal seen 

above the baseline noise. 

Evident in experiments presented was decreasing response with each subsequent injection which 

gradually stabilised. This may result from compounds in the sample annealing to the matrix of the LC 

column reducing the overall retaining surface area inside the column and therefore reducing the 

mass of analyte retained, though this is not demonstrated in the data shown here – no specific cause 

was determined in these experiments. A method to avoid the quantification problems caused by this 
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was adopted. Conditioning the column with injections of high concentration samples or standards 

causes the response to drop, and be more stable level before quantification begins.  

The mobile phase ammonium acetate concentration of 1 mM, and capillary voltage of 5.5 kV used in 

the default protocol were found to be approximately optimal. It was shown that reducing the 

ammonium acetate concentration to 0.5 mM significantly reduced accuracy and response. At 

voltages less than 5 kV and greater than 5.5 kV accuracy and response appears to be diminished and 

so 5.25 kV was adopted as the voltage for subsequent investigations.  

Injection volume did not impact quantification in any respect. 

The poor results seen using a reduced flow rate of 0.3 ml/min may be the result of changes to the 

chromatography, or from increasing the negative impact of the high ionisation chamber 

temperature, or both. 

The analysis of different concentrations of metaldehyde using the ionisation conditions of 5.25 kV 

and 325°C with a flow rate of 0.5 ml/min was complicated by standard concentrations that varied 

from the intended concentration. The accuracy of samples quantified using bracketed calibration sets 

was low, giving values between 89.5-75.4% of those expected. Removing the lowest concentration 

standard from the calibration increased the accuracy of samples >1 µg/L but raised the effective limit 

of quantification to 2.5 µg/L. The updated method was shown to be more precise in a comparison of 

the >1 µg/L standards quantified using it. The increased response would be expected to improve the 

precision of lower concentration standards by a greater degree, but this was not tested in the data 

presented here. 

2.4.1 Comparison to other published methods 

The published method by Li et al. (2010) uses an isocratic flow of 20 mM ammonium acetate and 

methanol in 15:85 at 0.2 mL min-1 using a column with the same dimensions as the Kinetex column 

used in this work. This results in a retention time of 0.89 min, less than the 1.5 min seen in the 

default protocol, likely due to the high methanol content of the mobile phase. Typically the 

advantage in using a gradient elution is that it can reduce the retention time of analytes (Kromidas, 

2008, p.93). Optimisation of retention time was not among the objectives in this set of experiments 

and so isocratic flows were not investigated.  

The MS conditions used by Li et al. (2010) were similar to the default protocol. The capillary voltage 

used there is 3 kV, lower than was investigated in this chapter. A general trend of greater noise away 

from an optimum value of ~5.25 kV was observed in the experiments described here, and so values 

further from this were not investigated. The difference in signal response and precision between 
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measurements made with 4-6 kV was not large so it may be that this parameter would not affect the 

quantification significantly if lowered to 3 kV, or it may yield a significant improvement. They use 

500°C as the desolvation temperature along with a 0.2 ml/min flow rate. Based on the results 

described in this chapter it would be expected that reducing this temperature would improve 

sensitivity in the quantification of metaldehyde. The sensitivity of the method described by Li et al. 

cannot be directly compared as samples were pre-processed by solid phase extraction in their work. 

Schumacher et al. (2016) have developed a method that significantly improves upon the sensitivity of 

the previously published method, with a LOQ of 4 ng/L in tap water. The significant innovation 

described in their work is the use of methylamine as the mobile phase additive. This has a relatively 

high affinity for metaldehyde, which suppresses the formation of other, unquantifiable, metaldehyde 

adducts, and requires a lower collision energy to obtain the methylamine-acetaldehyde adduct which 

is quantified. The method uses online enrichment and a 5-minute gradient. This degree of sensitivity 

is not required for the purposes of this project, but the use of methylamine as the mobile phase 

additive without online enrichment and some optimisation of the gradient to improve throughput 

could improve on the method developed in this chapter. The capillary voltage used is 3 kV 

(Schumacher et al., 2016), the same as Li et al (2010). It may be that Schumacher et al. based their 

protocol on Li et al. and capillary voltage is unimportant. It would be of interest to compare 3 kV to 

the 5.25 kV used in this chapter. The desolvation gas temperature used by Schumacher et al. is 

300°C, close to the 325°C used in our optimised protocol. 

2.4.2 Summary 

In the work described here it was found that lowering the desolvation temperature resulted in 

significant increases in the response seen when quantifying metaldehyde by LCMS. This may be 

expected to improve the quantification of metaldehyde at low concentrations. The precision of the 

method may also have been improved. The method was shown to be able to quantify standards to at 

least 1 µg/L. The improved method, using a desolvation gas temperature of 325°C and capillary 

voltage of 5250 V, rather than 500°C and 5500 V, was used to quantify metaldehyde in the work that 

will be described hereafter.  
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Chapter 3:  Enrichment and characterisation of 

metaldehyde degrading organisms 

3.1 Introduction 

3.1.1 The isolation of microorganisms with specific metabolic capabilities 

As discussed in Chapter 1, genes within bacterial genomes are quickly evolving and encode a diverse 

repertoire of proteins, some of which have evolved to catalyse the metabolism of xenobiotics. The 

identification of organisms that metabolise xenobiotics and the enzymes they use can be achieved in 

several ways that take advantage of the catabolism itself. 

The inoculation of a selective media containing the compound of interest as the sole source of an 

essential nutrient with an environmental sample thought to contain microorganisms with catabolic 

activity against the compound of interest, can be used to enrich for and isolate those 

microorganisms. First, inoculation of a liquid media causes the proliferation of catabolising 

organisms, then this culture (that is enriched for with catabolising organisms) can be plated onto a 

selective solid media containing the compound of interest. Organisms that are capable of clonal 

growth under the conditions used can then be easily isolated for further study. As relatively recent 

examples, this general method was used by Snellinx et al. (2003) in the isolation of 2 strains that can 

use 2,4-dinitrotoluene as a sole source of nitrogen, by Dejonghe et al. (2003) in the isolation of a 

linuron degrading organism and by Takenaka et al. (2013) in the isolation of several 4-aminopyridine 

degrading strains. Pure cultures of a single strain that does not grow on solid media can be obtained 

by repeated subculturing of liquid cultures (Sutherland et al., 2002). In the work presented here, the 

enrichment and isolation of metaldehyde catabolising organisms from a variety of substrates is 

described.  

3.1.2 Bacterial phylogeny and the identification of species 

The phylogenetic classification of strains isolated in this study is described in this chapter. The 

classification of bacterial species is fraught with ambiguity, but can aid in the discussion and 

understanding of isolates. As bacteria reproduce by binary fission, and do not share a pool of genes, 

genetic compatibility cannot be used as a defining characteristic of a species. In the past, a range of 

morphological, chemical and physiological traits were assessed to determine the species 

membership of a bacterium, as can be seen in Bergey’s Manual of Determinative Bacteriology (Holt, 

1994), for example.  

It was recognised that a potentially excellent resource for systematics is the genetic information of 

bacterial cells, even before the nature of this information was well understood (Ravin, 1963). Genetic 
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information is passed down to daughter cells and is the primary cause of the phenotypic 

characteristics that have been used for classification. Prior to the development of sequencing 

technologies, quantification of the degree of DNA-DNA hybridisation (DDH) was used to assign 

strains to “genospecies”. The standard method for this involved immobilising fragmented genomic 

DNA from one strain to a nitrocellulose membrane, and probing the membrane with radioactively 

labelled DNA from another strain (Gillespie & Spiegelman, 1965). As a guideline, a minimum DDH 

value of 70% was adopted as the cut-off for assignation of two strains to the same genospecies. This 

was based on observed DDH values for groups of related strains declared to be of the same species 

or not by other methods (Tindall et al., 2010).  

The advent of nucleotide sequencing technologies has contributed greatly to the understanding of 

bacterial systematics. The primary sequence of the 16S ribosomal RNA (rRNA) was recognised as a 

particularly useful sequence for higher order classification of bacteria due to its low rate of mutation 

and universality (Fox et al., 1977; Woese & Fox, 1977). However, the low rate of mutation and limited 

depth of information available from the 16S sequence limits its usefulness in making finer 

phylogenetic distinctions. As the mass of genomic information that is available has increased, thanks 

to increasingly inexpensive sequencing techniques – bacterial genome sequencing can be purchased 

for £70 (MicrobesNG, Birmingham; non-commercial rate, at time of writing) – there has been a shift 

over to the use of genomic data to assign a species name to an isolate. Average nucleotide identity 

(ANI) is a method that attempts to quantify the overall degree of similarity between the homologous 

regions of two genomes. The genomes of interest are fragmented in silico, the basic local alignment 

search tool (BLAST) algorithm is used to identify fragments with a minimum level of homology, and 

the average nucleotide identity of these homologous fragments is calculated to give the final statistic 

(Konstantinidis & Tiedje, 2005). The vast majority of named species can be distinguished by having 

ANI values of < 95% (Konstantinidis & Tiedje, 2005; Kim et al., 2014; Rodriguez-R & Konstantinidis, 

2014).   

3.1.3 Aims 

Metaldehyde can be quickly degraded in soils (Agriculture & Environment Research Unit, 2012; 

Zhang et al., 2011a) and is oxidised to carbon dioxide under aerobic conditions in unsterilised soils 

(European Food Safety Authority, 2006), in comparison to its long half-life in sterile conditions. This 

strongly suggests the involvement of microbial life in its degradation. The aim of the work described 

here was to isolate and identify those organisms capable of degrading metaldehyde. The genus of, 

and identity of species closely related to, the isolated organisms was established first using 16S rRNA 

gene sequences. This information is easily obtained and was used to guide which whole genome 
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comparisons should be made, limiting the number of comparisons that were required. ANI was used 

to assign species names to the sequenced isolates.  



72 

3.2 Materials and methods 

3.2.1 Minimal media 

Minimal salts media (MSM) were prepared using the concentration of salts given in Table 3-1 

dissolved in ultrapure water. The salts solution was autoclaved. For solid plates, 1.5 g agarose would 

be added to 200 ml MSM prior to autoclaving. Agarose was used in place of agar to eliminate 

carbohydrates from the plates that could be used for growth by organisms. 2 ml of a trace elements 

solution (Vishniac & Santer, 1957 Table 3-2) was added for each 1 litre of salts solution.  

 Concentration (mM) 

Na2HPO4 55 

KH2PO4 11 

NH4Cl 6 

MgSO4 0.4 

 
Table 3-1. Salts concentrations for minimal media. All purchased from Sigma-Aldrich (Dorset, 
UK) 

 Concentration (mM) 

Na2EDTA 140 

ZnSO4 7.6 

CaCl2 37 

MnCl2 25 

FeSO4 18 

(NH4)Mo7O24 0.9 

CuSO4 6.4 

CoCl2 6.7 

 
Table 3-2. Concentration of compounds in trace elements solution. EDTA is 
ethylenediaminetetraacetic acid. 

Up to 150 mg/l (0.851 mM) metaldehyde was added to liquid media in powder form and dissolved 

overnight on a magnetic stirrer. When used in solid media molten MSM-agarose would be cooled in a 

water bath to 50°C and 100 mg metaldehyde would be added to 200 ml molten agarose to form a 

suspension. Agarose plates with metaldehyde added will be referred to as “metaldehyde plates” 

those with no added carbon substrate will be referred to as “no-carbon plates”. 

Sodium acetate, when used, was dissolved in deionised water at 1 M concentration, filter sterilised 

(0.2 um pore size; Merck Millipore, Darmstadt, Germany), and added to MSM to achieve the desired 

concentration, typically 10 mM. 
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3.2.2 Enrichments and isolations of metaldehyde degrading organisms 

In general, enrichments were performed using solid and liquid minimal media containing 

metaldehyde. Environmental substrates were added to liquid media cultures in flasks, which were 

then incubated at 30°C. Samples of enrichment cultures, or environmental samples, were spread 

across plates which were incubated at 30°C. The specifics of enrichments for the different samples 

are given below. 

3.2.2.1 Domestic soils 

Samples of domestic soils were obtained from two gardens in York. One from a large plant pot that 

had been treated with slug pellets that contained metaldehyde as the active ingredient for at least 2 

years. The other from a flower bed in a separate garden that had not been treated with 

metaldehyde. 

Enrichment cultures for metaldehyde degrading organisms from two domestic soil samples were 

made using 100 ml MSM with either 100 µl of SlugClear (SlugClear, UK; contains 228 g/l metaldehyde 

as the active ingredient), or no additional carbon, and 1 g of soil. 250 ml flasks containing the 

enrichment mixtures were shaken on an orbital shaker at 150 rpm, 500 ml culture flasks were not 

shaken. Cultures were incubated at 30°C. 

After 3 days of incubation, 1 ml of each culture was used to inoculate equivalent 100 ml cultures 

which were incubated in the same way as the source culture. 

The optical density at 600 nm (OD600) of cultures was taken periodically.  

Dilutions of cultures were made and spread onto metaldehyde and no-carbon plates and incubated 

at 30°C. 

3.2.2.2 Agricultural soils 

Agricultural soils were collected from farms by Paul Harrington of FERA, with the permission of the 

land owners. These were from fields that are used to grow oil seed rape, which is often treated with 

metaldehyde. Collected soils were stored in plastic bags at 4°C for approximately 2 weeks. Before the 

enrichment began the soils were incubated at 30°C for 4 days. The 3 soils used in enrichment 

experiments were from 2 fields in Coleby Hall Farm, Scunthorpe and 1 field from Grange Farm, 

Thorney. 

One gram of each soil was transferred to 100 ml of MSM containing 100 mg/L, 10 mg/L or 0 mg/L 

metaldehyde in duplicate flasks, all were incubated at 30°C. One of each duplicate flask was shaken 

at 150 rpm in an orbital shaker, the other not shaken. Fresh liquid media was inoculated with 1 ml of 
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the first generation of culture after 7 days. Samples of the liquid cultures of volumes 100, 10 and 1 µl 

were used to inoculate metaldehyde and no-carbon plates using 2 and 10 day old cultures of both 

generations. Plates were incubated at 30°C for up to 2 weeks. OD600 measurements of the second 

generation liquid were made at least every 2 days.  

3.2.2.3 Slow sand filter 

Samples from two lab scale experimental slow sand filters were supplied by C. A. Rolph (Cranfield 

University, personal communication). One had been exposed to raw water spiked with metaldehyde 

at 50 µg/l for some unspecified time, the other had been exposed to raw water only (Rolph et al., 

2014). Sand and water from a slow sand filter at Ravensthorpe Water Treatment Works, 

Northamptonshire was also supplied by C. A. Rolph. Five grams of each sand sample and 

approximately 10 ml of water that was present in the samples were used to inoculate 100 ml of three 

culture media; MSM + 50 mg/l metaldehyde, a ten-fold dilution of MSM containing 100 µg/l 

metaldehyde (final concentration) and MSM only. Controls of uninoculated media containing 50 mg/l 

and 100 µg/l metaldehyde were also made. Cultures and controls were incubated at 30°C without 

shaking for 2 weeks. OD600 was taken at least every 2 days. Two spread plates for each volume were 

made using 100, 10 and 1 µl of enrichment cultures after 2 and 5 days of incubation. Spread plates 

were incubated at 30°C for at least 7 days. Spread plates were also made using LB agar and 0.1 µl of 

the original slow sand filter water, incubated for 2 days at 30°C. 

3.2.3 Substrate utilisation assays 

To determine if an isolated bacterial strain could grow on substrates as sole carbon and energy 

source, 1 M stocks of those substrates were made and added to MSM to achieve the final 

concentration used. Triplicate 10 ml cultures in sterile sample bottles (Sterilin) were inoculated by 

pipette tip transference of colony material. The following substrates were tested in this manner, 

their final concentration given in brackets: sodium acetate (6 mM; Sigma-Aldrich), L-malic acid (3 

mM; Sigma-Aldrich), glucose (2 mM; Fisher Scientific), fructose (2 mM; Sigma-Aldrich), arabinose (2.5 

mM; Sigma-Aldrich) and acetaldehyde (1 and 2 mM; Fluka brand, Sigma-Aldrich). In addition, 4 µl/10 

ml glycerol/MSM cultures were made. Growth was assessed by OD600 daily for up to 6 days. 

Utilisation of ethanol was tested by supplementation of 6 mM sodium acetate MSM with 0, 0.1, 0.2 

and 1.0% (V/V) ethanol (≥ 99.8%; Sigma-Aldrich). The effect on growth of acetaldehyde was assayed 

using 10 mM sodium acetate and 1 mM acetaldehyde. 
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3.2.4 Extraction of genomic DNA 

Isolated bacterial strains were cultured using 10 ml MSM with 150 mg/l metaldehyde. Cells were 

harvested when they reached OD600 of ~0.2 and ~0.16 for the Acinetobacter and Variovorax 

respectively. Cells were harvested by centrifugation at 4000 × g for 10 minutes. Genomic DNA was 

extracted using a Genomic DNA 20/G kit, with proteinase K (Qiagen) and a fresh preparation of 

lysozyme (Affymetrix, CA, USA), following the manufacturer’s instructions, with the following 

exceptions. Lysis of cells was done using double volumes of all reagents. Lysed solutions were split 

and loaded onto 2 Genomic DNA 20/G columns each. Ethanol precipitation was used to recover the 

DNA as described in the manufacturer’s instructions and 2 DNA extractions per strain were 

resuspended in 200 µl of 9 mM tris(hydroxymethyl)aminomethane, 0.1 mM EDTA (TE) 8.0 pH buffer. 

3.2.5 16S polymerase chain reaction (PCR) and Sanger sequencing 

PCR of ribosomal 16S sequences was performed using universal primers 8F and U785R or U1492R. 

8F  AGA GTT TGA TCC TGG CTC AG 
785R   GGA TTA GAT ACC CTG GTA GTC C 
U1492R  GGT TAC CTT GTT ACG ACT T 
 
Template material was added to PCR mixtures (Appendix 7.1.3) from colonies on streaked 

metaldehyde plates using a sterile tip. Thermocycler program: 98°C, 30 s; 30 × (98°C, 10 s; 50°C, 30 s; 

72°C, 60 s), 72°C, 10 min; held at 10°C. PCR products were purified using the QiaPrep Spin Miniprep 

kit following manufacturer’s instructions and resuspended in ultrapure water.  

For RFLP analysis, 1 microgram of purified DNA from successful PCR was digested for 1 or 3 hours at 

37°C using restriction enzyme HhaI. 

Sanger sequencing of purified PCR products was performed by University of York Technology Facility 

staff using a 3130xl Genetic Analyzer (Applied Biosystems, Foster City). The peaks recorded by the 

Genetic Analyzer were interpreted using Applied Biosystems Sequence Scanner Software V1.0. Peaks 

were manually reviewed to find anomalies in general but specifically for evidence of multiple 

sequences present, and the DNA sequence determined using the software’s default settings. 

3.2.6 Genomic sequencing 

Genomic sequencing was performed by the University of York Technology Facility using the Ion 

Torrent PGM system (ThermoFisher). Assembly of the short reads was performed using Newbler by 

Technology Facility staff. The reads in ACE format and assembled contigs in FastA format were 

provided. 
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Genomic sequencing was also provided by MicrobesNG (http://www.microbesng.uk) using MiSeq 

technology (Illumina) and assembled using their bioinformatics pipeline. Reads were also provided in 

ACE format along with contigs. 

3.2.7 BLAST based method used to identify gnomically sequenced bacterial 

strains close to a strain isolated in this study 

Predicted amino acid sequences of isolated and sequenced Acinetobacter strain E1 were obtained by 

the in silico translation of open reading frames of 100 bp or greater in length using Artemis V15.0.0 

software (Rutherford et al., 2000). BLAST searches of predicted protein sequences against the NCBI 

non-redundant database were performed with default settings. The results were downloaded and a 

custom python script was used to count the frequency of occurrence of Acinetobacter strains as the 

top scoring hit. Where the top hit was a sequence present in multiple Acinetobacter strains, each 

strain would be counted once. 

3.2.8 Average nucleotide identity (ANI) 

Average nucleotide identity (Goris et al., 2007) between genomes was determined using a calculation 

server (http://enve-omics.ce.gatech.edu/ani/). The ANI calculation is performed by this server as 

follows: the query and subject genomes are fragmented in silico every 200 bp into overlapping 1000 

bp fragments. Locally collinear blocks (LCB) between the genomes are determined by the BLAST 

algorithm using a gap drop-off value of 150 (this is the maximum score penalty that is allowed by the 

introduction of a gap before alignments containing that gap are no longer explored by the algorithm; 

default value is 0), nucleotide mismatch penalty of -1 (default is -3) and low complexity filtering 

enabled. Other BLAST parameters are default. The highest scoring LCB for each query fragment that 

have >70% identity and >=700 bp length are used to calculate ANI. Percentage identity is recalculated 

across the whole of matching fragments and the mean percentage identity across all matching blocks 

is reported as ANI. ANI values >95% are used to assign a species name to a particular strain 

(Rodriguez-R & Konstantinidis, 2014).  

  

http://www.microbesng.uk/
http://enve-omics.ce.gatech.edu/ani/
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3.3 Results 

3.3.1 Acinetobacter strain E1 and Variovorax strain E3 were isolated in 

enrichments for metaldehyde catabolism 

Metaldehyde enrichment cultures were made with two domestic soils as described in the methods. 

OD600 were taken after allowing the cultures that contained soil particles to settle for 2 hours (Table 

3-3). 

 MA 
 history 

 MA 
added 

Day 

Label Shaken 0 2 3 4 5 6 

A + + + 0.165 0.071 0.074 0.056 0.042 0.044 

B - + + 0.173 0.003 0.041 0.003 0.032 0.013 

C + - + 0.09 0.131 0.121 0.058 0.027 0.033 

D - - + 0.108 0.181 0.043 0.026 0.032 0.031 

E + + - 0.009 -0.008 0.021 -0.003 -0.005 0.01 

F - + - 0.022 0.022 0.036 0.01 0.036 0.031 

G + - - 0.004 -0.012 0.02 0.015 0.019 0.017 

H - - - 0 -0.002 0.003 0.014 0.03 0.021 

 
Table 3-3. OD600 of 100 ml liquid enrichment cultures of domestic soil. MA history indicates 
whether the soil inoculum had been treated with metaldehyde in the past, shaken flasks were 
shaken at 150 rpm, and metaldehyde was added as 100 µl of SlugClear to those cultures 
indicated. Darker green shades indicate higher OD600. 

The metaldehyde substrate used in enrichment cultures A-H contained substances that clouded the 

cultures and did not settle, interfering with the optical density of cultures A, C and D. After day zero 

the contents of culture B aggregated, leaving the medium clear after settling. 

Metaldehyde and no-carbon plates were inoculated with spreads of 100 µl of 100-fold and 1000-fold 

dilutions of cultures A-H at 3 days after inoculation. Plates were incubated at 30°C for 2 days. 

Minimal growth was seen on no-carbon plates. Metaldehyde plates inoculated with 100 µl of 1000-

fold dilutions of cultures A, C, D contained 50-200 colonies. The cultures used to inoculate these 

plates all contained metaldehyde. The morphology of all the colonies was white, round and glossy.  
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Suspensions of the 2 soils were made – 1 g soil in 10 ml DI water shaken vigorously for 30 seconds 

and used for inoculation immediately. Ten and 100 µl of these suspensions were used to inoculate 2 

metaldehyde and 2 no-carbon plates, which were incubated for 2 days. Colonies were observed on 

metaldehyde plates, some with different morphology from those described previously. These were 

less thickly growing, patches of white growth. 

One colony from each metaldehyde plate inoculated with culture A, C, D and 8 colonies from soil 

suspension plates were picked and streaked onto metaldehyde and no-carbon plates and incubated 

at 30°C for 2 days. Streaks from a no-metaldehyde-history-soil suspension plate grew equally well on 

both metaldehyde and no-carbon plates and during visual inspection of the colonies it was observed 

that they had sunk into the plate. It was surmised that this isolate was utilising agarose as a carbon 

and energy source. All colonies picked from culture inoculated plates grew on metaldehyde plates 

only. Four of the 8 colonies picked from soil suspension plates grew on metaldehyde plates only. Two 

originated from soil without metaldehyde history and had the appearance of colonies originating 

from the enrichment cultures and two originated from soil with metaldehyde history, and exhibited 

the second, less thickly growing, morphology.  

7 subcultures in total were analysed further, their identities are given in Table 3-4 along with their 

isolation method (enrichment culture or soil suspension). A letter indicating the soil of origin is 

combined with a number to give a label for each isolate. 

Label MA 
history 

Enrichment 
culture 

E1 + A 

E2 + C 

E3 + None 

E4 + None 

M1 - D 

M2 - None 

M3 - None 

Table 3-4. Identifying labels given to metaldehyde catabolising isolates from 2 soils (E and M); 
with and without a history of metaldehyde treatment. Culture name refers to cultures in Table 
3-3, or none when direct plating of soils suspensions was used. 

Amplification of ribosomal 16S subunit genes of the 7 isolates given in Table 3-4 were amplified using 

16S primers U8F and U785R. The PCR was successful for isolates E1, E2, M1, M2 and M3. Half of the 

reactions were loaded onto a 1.2% (w/v) agarose gel which was run for one hour at 100V (Figure 

3-1).  
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Figure 3-1. Gel electrophoresis of 16S amplicons of different isolates digested by HhaI. Lane 1, 
Ladder (Q-step 4; York Bioscience, York); 2, E1; 3, E2; 4, M1; 5, M2; 6, M3; 7, E1 undigested. 

The shortest 3 bands add up to approximately 650bp and are consistent with completely digested 

fragments of the PCR product. The larger bands are most likely incompletely digested PCR product. 

The same pattern of bands can be seen in lanes 2, 3, 5 and 6. Lane 4 has a greater number of more 

indistinct partially digested bands which may indicate multiple 16S sequences were amplified by the 

PCR. 

As many of the PCR failed in the previous experiment, colony PCR of the same isolates was 

performed using primers U8F and U1492R, rather than U785R, to give more distinct RFLP patterns. 

Two colonies were used of isolate E4 as there were 2 morphologies present on the streak plate, 

some colonies appearing to spread more. A PCR was also attempted using liquid culture samples to 

provide templates. A small pipette tip was dipped into liquid enrichment cultures that had been 

inoculated from cultures I and L and then transferred to the PCR tube. All PCR were successful and 

sufficiently pure DNA was obtained using a clean-up kit. One microgram of amplicons from isolates 

E1, E3, E4 (a and b), M1 and the enrichment cultures were digested using restriction enzyme HhaI. 

The reactions were incubated for 3 hours at 37°C. Gel electrophoresis using 1.2% (w/v) agarose was 

performed at 100V for 1 hour. 
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Figure 3-2. Gel electrophoresis of 16S amplicons of different isolates digested by HhaI. Lane 1, 
NEB 100 bp ladder; 2, E1; 3, E3; 4, E4a; 5, E4b; 6, M1; 7, enrichment culture first inoculated 
with soil with metaldehyde history; 8, enrichment culture of no-metaldehyde history soil.  

Isolates E1 and M1 were included in both RFLP analyses. In the second gel the fragment pattern of 

M1 (Figure 3-2, lane 6) is different to what was seen for the same isolate in the first gel (Figure 3-1, 

lane 4). The second gel appears to show the digest of a single sequence and is taken to represent the 

ribotype of M1. The inclusion of E1 in both analyses allows us to conclude that the ribotype of E1 is 

the same as E2, M1, M2, M3, and the predominant ribotype seen from samples of the enrichment 

cultures. A second, distinct ribotype is seen from isolates E3, E4a. E4b has an additional band ~350 

bp, but this most likely results from star activity by the restriction enzyme.  

Sanger sequencing was used to obtain the nucleotide sequences of the U8F-U1492R amplicons of E1, 

M1, E3 and E4 – two examples of each ribotype – using the U8F primer. Sequences of length 958, 

964, 958 and 407 bp were obtained for each of the isolates respectively. The sequence of E1 was 

identical to that of M1, and the sequence of E3 was identical to E4.  

The sequences of E1 and E3 were used as BLAST queries against the NCBI non-redundant nucleotide 

database using default settings. Thirteen sequences in the database had 100% identity and coverage 

to the E1 query sequence. Where species names were available they were given as Acinetobacter 

calcoaceticus. The vast majority of named species in the top 100 scoring alignments were A. 

calcoaceticus with some named as A. rhizosphaerae. The top scoring alignments for the E3 sequence 

were from Variovorax paradoxus strain BS064 and Variovorax sp. LZA10. These sequences were 

identical and the alignments contained one gap out of 958 identities. The top 100 hits were all 

Variovorax or an unspecified genus and the majority of named species were V. paradoxus with a 
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minority of V. boronicumulans. These data were taken as sufficient to assign genera to the isolates; 

they will be referred to as Acinetobacter E1 and Variovorax E3. 

3.3.2 Metaldehyde degrading organisms could not be isolated from 

agricultural soils or slow sand filter samples 

The enrichment and isolation of metaldehyde degrading bacteria from three agricultural soils was 

attempted as described in the methods. No changes in OD600 were observed in liquid media cultures 

over the 9 days they were monitored for. Bacterial growth on both metaldehyde and no-carbon 

plates was light and did not visibly increase after one day of incubation. Four to six colonies were 

picked from each metaldehyde plate after 2 days of incubation. In total 89 colonies were picked and 

streaked onto both metaldehyde and no-carbon plates. No streaked colony showed greater growth 

on metaldehyde plates. 

Enrichment and isolation of metaldehyde degrading organisms was also attempted using samples of 

slow sand filter (SSF) sands and water from 2 experimental SSF (one that had been treated with 

metaldehyde and one that had not) and Raventhorpe commercial SSF, as described in the methods. 

No changes in the OD600 of enrichment cultures were seen over the course of the experiment. As in 

previous experiments spread plates of enrichment cultures contained small, thin colonies which 

ceased to grow after one day. A total of 30 colonies were picked from spread plates of enrichment 

cultures and streaked onto metaldehyde and no-carbon plates. None of these colonies showed 

greater growth on metaldehyde plates. 

Spread plates of 0.1 µl of the SSF water samples onto LBA plates and incubated at 30°C. The growth 

after 26 and 53 hours is shown in Figure 3-3. A range of morphologies can be seen on all plates. The 

plates inoculated with water from the Raventhorpe SSF and the SSF treated with metaldehyde spiked 

water contain more colonies than the experimental SSF not exposed to metaldehyde. 
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Figure 3-3. Plates of LBA that had been inoculated with 0.1 µl of water from SSF samples and 
incubated at 30°C for 26 or 53 hours. Inoculum came from experimental SSF water that was not 
treated with metaldehyde (A), experimental SSF that had been treated with metaldehyde (B) 
and from Raventhorpe water treatment SSF (C). 

3.3.3 The disappearance of metaldehyde from minimal media is 

proportional to the growth of Acinetobacter E1 and Variovorax E3 in pure 

cultures  

Three each of 2 L flasks containing 300 ml MSM with 100 mg/l metaldehyde were inoculated with a 

picked colony of Acinetobacter E1 or Variovorax E3 from overnight metaldehyde spread plates. An 

additional 3 flasks of media were not inoculated. Periodic samples were taken from each, OD600 was 

measured. At the same time 1.5 ml was centrifuged at 13 krpm and 1 ml of the supernatant 

transferred to a clean 1.5 ml tube avoiding the cell pellet. These samples were stored at -20°C for 

later analysis by LCMS. 

Growth curves are shown in Figure 3-4. Log2 plots of the growth phase of each species are shown in 

Figure 3-5. 
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Figure 3-4. Mean (n=3) OD600 of cultures of MSM + 100 mg/l metaldehyde inoculated with 
single colonies of A. calcoaceticus E1, Variovorax E3, or not inoculated. Error bars give SD of 
biological replicates. 
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Figure 3-5. Log plots of mean (n = 3) OD600 of cultures of MSM + 100 mg/l metaldehyde 
inoculated with single colonies of the indicated strains, or not inoculated. Error bars give SD. 

Doubling time was calculated for the species by taking the log2 of OD measurements during 

exponential growth (24.5 to 49 hours for the Acinetobacter and 97.5 to 122.25 hours for the 

Variovorax) and performing a linear regression of these data. Table 3-5 shows growth statistics for 

the two isolates. The Variovorax catabolises metaldehyde less efficiently; it has a longer lag time, 

greater doubling time and higher final concentration of remaining metaldehyde. It also peaks at 

lower optical density. The ratio of OD600 to dry cellular mass is not necessarily the same across 

A – Ac. E1 

B – Variovorax E3 
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different bacterial species and the proportion of carbon being utilised for mass rather than being 

oxidised for energy may be different. Variovorax are motile and so may expend energy in this way. 

 Acinetobacter  
E1 

Variovorax 
E3 

Doubling time (hrs.) 10.9 18.7 

Lag time (hrs.) < 24 90 

Length of growth phase (hrs.) 41.5 48 

MA conc. at start of  
stationary phase (mg/l) 

< 0.1 7.08±1.41 

Peak OD600 0.21±0.023 0.14±0.0069 

Table 3-5. Growth statistics of metaldehyde catabolising isolates grown in minimal media with 
150 mg/l metaldehyde.  

Metaldehyde concentration of samples taken at time points were quantified by LCMS. Samples were 

diluted 1000-fold with ultrapure water. Standard brackets were made up of 150, 50, 5, 1 and 0.5 µg/l 

metaldehyde standards measured between every 15 samples. The 0.5 µg/l standards had an RSD of 

40% and were excluded from the calibration giving an LOQ of 1 µg/l for the experiment.  

 

Figure 3-6. Mean (n = 3) metaldehyde in samples of cultures of MSM + 100 mg/l metaldehyde 
inoculated with single colonies of the indicated strains, or not inoculated. Error bars give SD. 

The disappearance of metaldehyde from the cultures was correlated with the growth of the isolates 

(Figure 3-7). As the sole carbon and energy source present in the culture medium it can be concluded 

that the strains were catabolising metaldehyde for growth. 
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Figure 3-7. Metaldehyde concentration and optical density of samples taken from cultures of 
(A) Acinetobacter and (B) Variovorax grown in minimal media containing metaldehyde as the 
sole carbon source. The lines show unweighted linear regressions of the data using the least-
squares method. The R2 value of the regression is given on the charts. 

3.3.4 Genomic sequence of isolates 

The genomes of Acinetobacter E1 and Variovorax E3 were sequenced de novo. This was done to 

allow the identification of any proteins extracted from the isolates, for comparative genomic work 

and to further characterise the isolates  

The genome of isolate Variovorax E3 was sequenced and assembled using Ion Torrent as described in 

the methods. Isolate Acinetobacter E1 was initially sequenced using the same method, in a separate 

reaction, but the assembled sequence was found to contain frequent errors and so, after attempts to 
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fix these errors failed (see Section 3.3.4.1, below), the isolate was resequenced by MicrobesNG. 

Statistics for the Ion Torrent Variovorax E3 and MicrobesNG Acinetobacter E1 assemblies are given in 

Table 3-6. Genes were predicted by GeneMarkS using default settings for bacteria (Besemer et al., 

2001). The lengths of the draft genomes are larger than those of sequenced related species. The 

NCBI genome database records Acinetobacter calcoaceticus genomes in the range of 3.8 - 4.1 Mbp 

and Variovorax paradoxus genomes range between 6.6 – 9.7 Mbp.  

Acinetobacter E1 Acinetobacter 
E1 

Variovorax 
E3 

Number of contigs >100 bp 362 459 

Mean contig length (bp) 12,139 18,060 

Median contig length (bp) 4559.5 8348 

Mean read depth 23.38 55.31 

Total length (bp) 4,394,323 8,289,841 

GC content (%) 38.8% 67.4% 

Predicted genes 4395 9193 

 
Table 3-6. Assembly statistics from the sequencing of Acinetobacter E1 and Variovorax E3. 
Read depth was calculated using data obtained by the software package Tablet V1.15.09.01 
(Milne et al., 2013). 

3.3.4.1 Sequencing errors 

It was discovered that the Acinetobacter E1 sequence contained numerous errors as part of a protein 

mass fingerprinting experiment that will be described fully in Chapter 5. Briefly, this experiment used 

amino acid sequences inferred from the sequenced genome to identify proteins from a trypsinised 

protein extracted from Acinetobacter E1 cell lysate. The 3 most abundant predicted amino acid 

sequences were from non-overlapping open reading frames (ORF) that were within 1500 bp of each 

other (Figure 3-8; ORFs labelled 2, 4 and 6). A BLAST search of the largest of the 3 predicted amino 

acid sequences (260 amino acids in length) against the NCBI non-redundant database returned an 

aldehyde dehydrogenase from Acinetobacter baumannii 1451147, GenBank identifier KCX52113.1, as 

the top hit. Manual alignment of this sequence to translated amino acid sequences in the 

Acinetobacter E1 genome lead to the construction of a sequence that is mostly identical to 

KCX52113.1 with some single amino acid substitutions. The arrangement of the reconstructed 

sequence on the Acinetobacter E1 genome is shown in Figure 3-8. Reanalysis of the protein mass 

fingerprinting data resulted in a stronger signal for the presence of the entire reconstructed protein, 

compared to the fragments initially identified, confirming this to be a sequencing problem.   
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Figure 3-8. The genomic region of the putative aldehyde dehydrogenase gene in A. 
calcoaceticus E1 visualised using Artemis (Rutherford et al., 2000). The scale gives nucleotide 
positions. The three forward reading frames are grey horizontal bars. Blue horizontal bars 
indicate the coding sequence for ALDH. Black vertical lines indicating stop codons. 

Examination of the of the NA sequence at the 5 apparent frame shifts showed that in each case it 

could be explained by an under-read of the length of homopolymeric bases; so that, for example, the 

sequence ATGGGCT was read as ATGGCT. 

To determine the extent of these under-reads, manual alignment of housekeeping gene sequences; 

denylate kinase (adk), shikimate dehydrogenase (aroE) and glucose-6-phosphate dehydrogenase 

(gdh) from A. calcoaceticus PHEA-2 was performed all of which were found on separate contigs in the 

Acinetobacter E1 genome. Adk contained no homopolymer under-reads, aroE contained one, and 

gdh contained two. The same method was applied to the Variovorax E3 genome; no errors were 

found. 

Examination of the assembly using Tablet (Milne et al., 2013) showed that the majority of reads at 

the locus of an error were under-reads, Figure 3-9 shows an example. Thirteen of the reads in the 

column denoted by the star have trimer-thymine and 7 have 4mer-thymine. This was erroneously 

decided to be the former in the final assembled sequence. Variation in the homopolymer lengths 

between 1 and 4 adenosines can also be seen in Figure 3-9. 
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Figure 3-9. A portion of the A. calcoaceticus E1 assembly visualised in Tablet. Individual reads 
are orientated horizontally and aligned. A star indicates an incorrectly called homopolymer run. 

As many of the reads did give the correct homopolymer lengths, reassembly using a different 

program – MIRA rather than Newbler – was attempted. It was thought that the reads selected for the 

final assembly may vary between the programs and that this may fix the problem. The MIRA 

assembly increased the overall length of ORF in the genome (Figure 3-10) which is consistent with 

fewer frame-shifting errors, but examination of the same genes as were previously examined in the 

Newbler assembly showed that 4 of the 8 previously identified errors still existed in the MIRA 

assembly. 

 

Figure 3-10. Histogram showing size of ORF in two different assemblies of A. calcoaceticus E1 
sequencing data. Mean ORF length and number of ORF are given at the top of the figure. 

Homopolymer length errors are the most frequent type produced by Ion Torrent, however errors 

typically include both under- and over-reads (Bragg et al., 2013). The consistent under-reads seen 
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here could result from an error in the sequencing reaction mixture resulting in smaller than expected 

pH changes when multiple bases were sequenced at once.  

The genome was resequenced by MicrobesNG. The returned sequence did not contain any read-

length errors resulting in frameshifts in ALDH, adk, aroE or gdh in the final assembly. 

3.3.5 Identification of A. calcoaceticus RUH2202 as a strain closely related 

to Acinetobacter E1 that does not degrade metaldehyde  

For future work it was desirable to identify a strain closely related to Acinetobacter E1 for which 

living samples could be obtained. BLAST of 6622 amino acid sequences from open reading frames 

>100 bp in Acinetobacter. The sum of all strain frequencies counted was 9715 due to multiple strains 

having the same sequence. The results were reviewed to correct for inconsistently formatted strain 

names, for example in the use of spaces. The top ten most frequently occurring strains and species 

are given in Table 3-7. 

Acinetobacter strain or species Frequency 

calcoaceticus [strain not specified] 3464 

calcoaceticus ANC 3680 1261 

calcoaceticus RUH 2202 1074 

calcoaceticus NIPH 13 1043 

baumannii [strain not specified] 900 

oleivorans DR1 720 

sp. NIPH 542 562 

sp. NIPH 817 374 

calcoaceticus ANC 3811 308 

calcoaceticus PHEA-2 205 

 
Table 3-7. Frequency of Acinetobacter species and strains returned as the top scoring hit in a 
BLAST search of predicted amino acid sequences from Acinetobacter E1 against the NCBI non-
redundant database. 

Acinetobacter calcoaceticus RUH 2202 was found to be available in a culture collection, and a freeze-

dried sample was purchased from the Belgium Coordinated Collection of Microorganisms. The 

sample was revived by being resuspended in LB, streaked onto an LB agar plate and incubated at 

30°C for 24 hours. Glycerol stocks of the strain were prepared.  

The lack of metaldehyde degrading capability of the strain was ascertained by streaking colonies 

from an LB plate onto a metaldehyde plate and the inoculation of liquid media containing 150 mg/l 

metaldehyde. There were no signs of growth in either media after 4 days’ incubation at 30°C. 
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3.3.6 Phylogeny of isolates E1 and E3 

The DNA sequence of the 16S ribosomal RNA genes in Acinetobacter E1 and Variovorax E3 were 

obtained by Sanger sequencing of purified PCR products using primers U8F and U1492R for both the 

PCR and the sequencing. The 2 sequences produced by the 2 primers were combined. 16S gene 

sequences for the type strains for species of the genera Acinetobacter and Variovorax were obtained 

from The List of Prokaryotic Names with Standing in Nomenclature (Parte, 2014) excepting A. 

grimontii, which has since been shown to be a synonym of A. junii (Vaneechoutte et al., 2008). 

Phylogeny for each isolate was determined separately using the type strains from its genus. Multiple 

alignments were performed using a MUSCLE server (Edgar, 2004) hosted by the European 

Bioinformatics Institute (Li et al., 2015). Preliminary alignments of all type strain and isolate 16S 

sequences in each genus were used to determine the common sequence regions for all species in 

that genus and sequences were trimmed so that only these portions were used for phylogeny. 

Trimmed sequences for Acinetobacter E1 and Variovorax E3 were 1261 and 1394 bp respectively. 

Multiple alignments were performed on the trimmed sequences, as before, and the results of this 

alignment used to construct a phylogenetic tree using bootstrapped Randomized Axelerated 

Maximum Likelihood algorithm (Stamatakis, 2006; Stamatakis et al., 2008). As outgroups, to root the 

trees, species were chosen from the same family as the isolates; Polaromonas vacuolata, a 

Comamonadaceae, for the Variovorax tree and Pseudomonas putida, a Pseudomonadales, for the 

Acinetobacter tree. Trees shown in Figure 3-11 visualised using Tree View, part of the software 

package ETE Toolkit (Huerta-Cepas et al., 2016). 
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Figure 3-11. Maximum likelihood 
trees produced using alignments of 
16S sequences of Acinetobacter (top) 
and Variovorax (bottom) type strains 
and isolates. Numbers at branches 
give the bootstrap percentage values 
and scales give average number of 
substitutions per base. A star has 
been used to highlight the isolates 
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Selected genomes of species that have closely related 16S sequences to the isolates had their ANI 

calculated against that isolate. When available, two strains for each species were selected that had at 

least a draft quality genome. No genome was available for V. guangxiens or V. ginsengisoli. A. 

baumannii and A. seifertii are included as genomic analysis of Acinetobacter by Touchon et al. (2014) 

demonstrates they form a clade with A. nosocomialis.  A. oleivorans DR1 was also included in the 

analysis as it was the most frequently occurring Acinetobacter strain after A. calcoaceticus in the 

analysis of top scoring BLAST hits of Acinetobacter E1 open reading frames (Table 3-7). Results are 

summarised in Table 3-8. 

 

Species 
Genetic similarity  

between strains (%) 
Strain 

Mean 
ANI (%) 

Median 
 ANI (%) 

Acinetobacter 

A. calcoaceticus 87 
ANC 3680 96.0 96.5 

RUH 2202 95.8 96.4 

A. oleivorans N/A DR1 91.4 91.6 

A. pittii 84 
PHEA-2 89.2 89.3 

ANC 3678 89.2 89.2 

A. seifertii N/A NIPH 973 86.8 86.8 

A. nosocomialis 85 
6411 86.1 86.2 

NIPH 2119 86.0 86.1 

A. baumannii 89 
ACICU 86.1 86.3 

AB031 86.1 86.3 

Variovorax 

V. boronicumulans N/A NBRC 103145 87.7 88.2 

V. paradoxus 58 
EPS 87.1 87.5 

S110 86.9 87.2 

V. soli N/A NBRC 10624 82.1 82.3 

 
Table 3-8. ANI of strains to metaldehyde degrading isolate of the same genus. Mean and 
median ANI values between listed strains and Acinetobacter E1 or Variovorax E3. Genetic 
similarity gives the percentage similarity, as determined by genomic BLAST and reported by the 
NCBI, between the two strains of the same species used for the ANI comparison. 
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The species identity of A. calcoaceticus can be assigned to isolate Acinetobacter E1 based on >95% 

ANI to other strains of this species (henceforth abbreviated to A. calcoaceticus E1). No species can be 

assigned to Variovorax E3 based on these data. 

3.3.7 Carbon sources utilised by A. calcoaceticus E1 

A. calcoaceticus E1 was found to be unable to utilise sodium acetate, glucose, fructose arabinose, 

ethanol, acetaldehyde and glycerol as sole carbon and energy sources. It was found to grow using 

sodium acetate and L-malic acid with peak OD600 of 0.35 and 0.13 respectively, observed after 19 

hours of incubation. It is also capable of growth on MSM agarose plates containing 200 µl/L phenol, 

forming small colonies. A. calcoaceticus RUH 2202 could not utilise phenol under the same 

conditions. 

Ninety-one per cent of A. calcoaceticus strains are able to utilise ethanol as a carbon and energy 

source (Nemec et al., 2011) and so the ability of A. calcoaceticus strains E1 and RUH 2202 to utilise 

ethanol was further investigated by supplementing 6 mM acetate with ethanol and inoculating the 

media with either strain E1 or RUH 2202. The peak OD600 after 20 hours (Figure 3-12) shows that no 

additional growth occurs when A. calcoaceticus E1 cultures are supplemented with ethanol, and it 

therefore cannot utilise ethanol for growth.  

 

Figure 3-12. OD600 of 10 ml cultures containing acetate and the given volume of ethanol 
inoculated with one of two strains of A. calcoaceticus, n = 3 for Ac. E1 and n = 1 for Ac. RUH 
2202. Error bars represent biological repeats. All samples were diluted by half before 
measurements were made, the given OD values are double the observed values. 

As acetaldehyde is a likely product of metaldehyde degradation, 10 mM sodium acetate was 

supplemented with 1 mM acetaldehyde to observe the effect on A. calcoaceticus E1 growth (Figure 
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3-13). Concentrations of acetaldehyde that would produce measurable growth are inhibitory to the 

organism. 

 

Figure 3-13. Mean OD600 of 3 biological replicate A. calcoaceticus E1 cultures with 10 mM 
sodium acetate as the carbon source with or without 1 mM acetaldehyde supplement. 
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3.4 Discussion 

3.4.1 Enrichments 

Prior to this work no metaldehyde degrading bacteria have been identified. In this study 

metaldehyde catabolising bacteria were isolated from domestic soils that were able to grow as 

colonies on metaldehyde plates. Amplified and digested 16S rRNA genes showed the existence of 

two ribotypes among the isolates. The sequence of 16S rRNA genes was obtained for 2 examples of 

each ribotype which were found to be identical for the ribotypes. One isolate of each ribotype from 

soil that had metaldehyde history were used for further experiments. Their genomes were 

sequenced and their species identity was investigated using average nucleotide identity. One was 

shown to have >95% ANI to Acinetobacter calcoaceticus strains and was assigned the strain name of 

E1. The other, a Variovorax with <95% ANI to known species, was assigned the strain name E3. 

Ribotypes consistent with A. calcoaceticus strains were present in both domestic soils tested, 

whereas Variovorax were only found in soil that had a history of metaldehyde treatment. Variovorax 

was not isolated from enrichment cultures, probably due to be being outcompeted by the faster 

growing A. calcoaceticus. The isolates were shown to be able to grow utilising metaldehyde as a sole 

source of carbon and energy. Similar enrichments and attempts at isolations did not isolate 

metaldehyde catabolising bacteria from agricultural soils believed to have been treated with 

metaldehyde in the previous 5 years, or from experimental and commercial SSF samples. 

The method of isolation used could only be successful in identifying organisms that were capable of 

visible growth, on agarose plates or in liquid media, at 30°C using a particular minimal salts media 

with metaldehyde as the sole carbon and energy source. The vast majority of microorganisms do not 

typically grow under such conditions, even ignoring the requirement for metaldehyde catabolism 

(Rappé & Giovannoni, 2003). This was not considered a problem as the purpose of the isolations was 

to acquire strains that would be amenable for use in further experiments to identify the molecular 

basis for metaldehyde degradation, but it does mean that absence of cultivatable organisms from 

most of the enrichments is not indicative of an absence of metaldehyde catabolism. Indeed, the slow 

sand filters were shown in a separate experiment to degrade metaldehyde, particularly after being 

exposed to higher concentrations of metaldehyde for some time (Rolph et al., 2014).  

A greater diversity of organisms may have been cultivated under different conditions. Pesticides 

would not be expected to be present at high concentrations in soils for significant lengths of time, 

and most bacteria would not be adept at growing in high concentrations.  (Gözdereliler et al., 2013) 

found that different populations of bacteria were produced by liquid enrichment cultures using 25 

mg/l or 0.1 mg/l of the herbicide 2-methyl-4-chlorophenoxyacetic acid. The use of gellan gum as a 
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solidifying agent for media improves the number of colony forming units seen when isolating 

bacteria as many organisms appear to be inhibited by agar (Kamagata & Tamaki, 2005). When 

cultivating organisms from soil, the use of a standard nutrient broth diluted to 1/100 of its usual 

concentration, solidified with gellan, enabled Janssen et al. (2002) to isolate 7.5% of viable cells in 

the sample after 12 weeks’ incubation at 25°C. It is not clear to what extent the diversity of isolates 

cultivated is improved by this method, though several of the 30 isolates that had their 16S genes 

sequenced were members of subclasses or other subdivisions previously detected only in 

metagenomic studies. Cultivation methods using media that mimics soil, by the addition of 

supernatant of soil treated with a NaOH solution (Hamaki et al., 2005) or humic acids to the media 

(Stevenson et al., 2004) were successful in isolating novel bacteria. An issue with the application of 

the methods described above to the identification of metaldehyde degrading organisms is that they 

do not select for a particular catabolism. The addition of other potential carbon sources such as 

humic acids would cause obvious problems, and at low concentrations of substrate, organisms that 

are more efficient at scavenging other carbon substrates would also be enriched. Some aspects of 

the methods discussed, such as the use of gellan rather than agarose, along with lower incubation 

temperatures and longer incubation times could be easily implemented and may have revealed more 

culturable organisms. The first enrichment conducted was successful in isolating A. calcoaceticus E1 

which seemed a very amenable organism for further studies, and so the possibility of isolating other, 

slow growing and fastidious organisms was not a priority. Had the inexpensive genome sequencing 

offered by MicrobesNG – approximately 1/10 of the price paid for sequencing of the Variovorax E3 

genome – been available at the earlier stages of this work, then the acquisition of more metaldehyde 

degrading isolates that could be used for comparative genomic studies may have been more 

vigorously pursued. 

Other methods were considered and dismissed due to difficulty and expense. Ashida et al. (2010) 

describes the utilisation of a micromanipulator to sort cells that are elongating in the presence of a 

substrate. Their elongation is made visible to a detector by their successful staining with 5-

carboxyfluorescein diacetate acetoxymethyl ester which binds to esterases present in cells during 

elongation. Stable isotope probing is a method that can be employed to identify the genomic 

material of cells that catabolise, directly or indirectly, a 13C labelled substrate (Radajewski et al., 

2000). An environmental sample is treated with the labelled substrate for some time. Cells that 

utilise the substrate for growth will have daughter cells that contain DNA made of the labelled 

carbon. Genomic material is then extracted from the sample and the denser, 13C labelled DNA can be 

separated by ultracentrifugation. 
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Metaldehyde degrading organisms that were not cultured in this study could be investigated using 

culture independent methods. Where enrichment methods fail to isolate individual strains that can 

grow clonally on the substrate of interest then functional metagenomic approaches may be used 

(Ferrer et al., 2005). Extraction of a bacterial population’s genomic information directly from a 

substrate and its transformation into, for example, a lab strain of E. coli, allows for interrogation of 

this genomic information without the need for cultivating environmental strains in minimal media. 

Enrichment of xylanase degrading bacteria using rice straw, extraction of DNA from the culture, 

cloning and expression of this DNA into E. coli which was then assayed for xylanase activity was used 

to identify xylanase genes by Mo et al. (2010).  

3.4.2 Isolated bacteria 

3.4.2.1 Phylogenetics 

In this work, ANI was used to assign taxonomic names to the isolates. Variovorax E3 could not be 

assigned a species name based on ANI. The isolate was only compared to strains with a defined 

species, and may be similar to other Variovorax isolates that do not have a species. 

A different approach can be employed to determine phylogenetic relationships among a group of 

related organisms that uses the inferred proteome of an organism. The general method is to take the 

predicted amino acid sequences from a genome, determine those which are orthologous in the 

group, concatenate the orthologous protein sequences into one long sequence for each strain, 

perform multiple sequence alignment on the orthologous sequences and construct a phylogenetic 

tree based on evolutionarily plausible sequences of mutations. Many different algorithms and 

software packages can be used to perform the different steps of such an analysis. Two recent 

examples of the construction of phylogenetic trees of Acinetobacter strains are given by (Fanelli et 

al., 2015; Fondi et al., 2016). Using concatenated amino acid sequences allows each organism’s 

proteome to be treated as a single sequence. However, each protein has its own evolutionary history 

subject to different selection pressures on the proteins and by horizontal gene transfer. For these 

and other reasons, the evolutionary history revealed by phylogenetic analysis of concatenated 

orthologous proteins is often not congruent with the analysis of individual proteins. This casts doubt 

on the interpretation of aligned concatenated sequences, especially at deeper phylogenetic levels 

(Thiergart et al., 2014).  

Due to the nature of bacterial genetics in particular, there is no definitive way to determine the 

taxonomy of an isolate. The purpose of assigning taxonomic names here is to aid in the discussion 

and research of the isolates. For this, ANI is sufficiently robust. 
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3.4.2.2 General description of Acinetobacter and Variovorax from the 

literature 

The genus Acinetobacter (Brisou & Prévot, 1954) are gram-negative γ-proteobacteria of the order 

Pseudomonadales. They are described as rod-shaped, obligately aerobic, non-motile (the latin 

acinetus means non-moving), though twitching motility has been observed in at least 3 species 

including A. calcoaceticus. (Gohl et al., 2006; Henrichsen, 1975; Skiebe et al., 2012). Acinetobacter 

calcoaceticus was designated the type species for Acinetobacter by Baumann et al. (1968) when 

reclassifying oxidase negative, catalase positive Moraxella strains based on their utilisation of a wide 

range of carbon substrates. 

The genus Variovorax was defined by Willems et al. (1991). Its latin meaning is given as “devouring a 

variety [of substrates]”. It is described as oxidase positive, catalase positive, aerobic and motile, with 

yellow colonies. Chemoorganotrophy is the primary trophic classification, but Variovorax strains are 

also capable of lithoautotrophy utilising hydrogen as an energy source, leading Willems et al. to 

assign the name V. paradoxus to the type strain for the genus. Motility on agarose plates and yellow 

colour in liquid cultures using a clear medium were observed for Variovorax E3 (data not shown). 

3.4.2.3 Other Variovorax isolations 

The species most closely related to Variovorax E3 with a sequenced genome is V. boronicumulans 

(highest observed mean ANI of 87.7%) which was first isolated from soil and identified in a screen as 

having the ability to accumulate boric acid to a higher concentration that closely related species 

(Miwa et al., 2008). The second most closely related species V. paradoxus (highest observed mean 

ANI of 87.1%).  

Both species are frequently isolated in enrichments using synthetic compounds as the substrate. 

Linuron (a pesticide) mineralising Variovorax strains have been isolated in at least 4 separate studies.  

Enrichments using Belgian agricultural soil with 10 years’ history of linuron application and linuron as 

the sole carbon, nitrogen and energy lead to the isolation of 5 strains on solid media. Only Variovorax 

strain WDL1 could grow in pure culture (Dejonghe et al., 2003). A study using Danish agricultural soil 

as inoculum found two strains that could mineralise linuron, one of which was Variovorax strain 

SRS16 which had a 16S rRNA sequence 99% identical to Variovorax WDL1 and grew more quickly on 

linuron in pure culture (Sørensen et al., 2005). Breugelmans et al. (2007) repeated the work of 

Sørensen et al. using a sample from the same field with the addition of samples from two other 

Belgian fields, one of which had no history of linuron treatment. From the replicated field a 

Variovorax with a 99% identical 16S sequence to Variovorax SRS16 was found as the only linuron 

degrader; from the other field with linuron usage history 2 strains with 99% and 98% 16S sequence 
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identity to Variovorax WDL1 were isolated, along with 2 non-Variovorax strains; from the field with 

no linuron history, enrichment cultures did not produce a linuron degrading consortium.  Satsuma 

(2010) isolated linuron degrading bacteria from Japanese river sediment using microcosms. Four 

unique 16S sequences were found in 8 isolates tested, which had least 98.6% identity. In these 4 

studies, Variovorax strains have been repeatedly isolated as the primary degraders of the pesticide 

linuron. Only one environmental sample was seen to contain cultivatable primary linuron degraders 

that were not Variovorax. A culture independent study has shown the involvement of other taxa that 

have not been isolated by enrichments (Dealtry et al., 2016). 

A V. boronicumulans strain able to utilise ibuprofen as sole carbon and energy source has been 

described (Murdoch & Hay, 2015). Reference is made, by Murdoch and Hay, to the (unpublished) 

isolation of V. paradoxus able to degrade polybutylene sebacate (a new generation plastic) and the 

aromatic herbicide bromoxynil octanoate. From soil that showed a high level of degradation of the 

neonicotinoid pesticide thiacloprid, a V. boronicumulans strain was identified as catalysing the first 

reaction in its degradation (Zhang et al., 2012).  

The industrially useful chemical intermediate mercaptosuccinate was found to be degraded by 15 

isolates present in water or soil samples near to a chemical plant that produced the compound. One 

isolate was found to be a V. paradoxus and given the strain name B4, and 14 belonged to two genera 

that were found to be potential opportunistic human pathogens and so were not studied further 

(Carbajal-Rodríguez et al., 2011). 

Enrichment of soil from an industrial area lead to the isolation of 3 bacterial strains, 2 of which were 

V. paradoxus (strains TBEA6 and SWFT), that could utilise the antioxidant thioester 3,3’-

thiodipropionic acid as sole carbon source  (Bruland et al., 2009). 

From deep sea sediment, V. paradoxus T4 was isolated by enrichment cultures and shown to 

mineralise dimethyl terephthalate in minimal media (Wang & Gu, 2006). 

Of two 2,4-dinitrotoluene (DNT; a precursor to the explosive 2,4,6-trinitrotoluene) degrading 

consortia enriched from soil and water samples from near a former ammunition production site, one 

consortium contained a strain of V. paradoxus that catalysed the first steps of DNT degradation but 

required the other two members of the consortium for sustained growth (Snellinx et al., 2003). 

Three isolates were obtained from enrichment cultures using sulfolane, a xenobiotic used to remove 

hydrogen sulphides from natural gas, as the sole carbon and sulphur source. The isolate determined 

to have the highest sulfolane to sulphate turnover rate was Variovorax WP1. (Greene et al., 2000) 
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The biopolymer, poly(3-hydroxybutyrate) was found to be utilised as sole carbon and energy by 9 

bacterial and 10 fungal species in microcosms. Variovorax paradoxus strains were enriched from 4 of 

the 5 soils tested at 28°C (Mergaert et al., 1993) 

In these enrichments and isolations, it is seen that strains related to Variovorax E3 are either isolated 

alone, are the primary degrader or are the only isolated strain capable of full mineralisation of a 

substrate. Typically, the enrichments are from soils, but also from a river bed and deep-sea sediment. 

Variovorax are metabolically diverse, widely distributed and amenable to cultivation under typical 

enrichment conditions, the enrichment of a Variovorax strain from soil using a xenobiotic substrate is 

not a surprise. 

3.4.2.4 Other A. calcoaceticus isolations 

Acinetobacter calcoaceticus strains are able to utilise a wide range of carbon sources as growth 

substrates, but few carbohydrates (Fewson, 1967). A review of the literature shows that A. 

calcoaceticus strains have been isolated from environmental samples in enrichments and shown to 

be able to utilise as a substrate for growth; the herbicide atrazine (Mirgain et al., 1993), nylon 

precursor caprolactam (Rajoo et al., 2013), crude oil (Reisfeld et al., 1972), diesel (Singh & Lin, 2008), 

ethanol (Abbott et al., 1973), malonate (Kim & Kim, 1985), oxhratoxin A (Hwanga & Draughon, 1994), 

palm oil (Koh et al., 1985), phenol (Yuquan et al., 1999), swainsonine (a plant produced toxin; Zhao et 

al., 2008), and volatile fatty acids from “swine wastes” (Jolicoeur & Morin, 1987). In many of these 

isolations only A. calcoaceticus strains were identified. Atrazine and caprolactam are, in common 

with metaldehyde, xenobiotic compounds, but it does not appear that any further work with the 

isolates produced in those studies has been conducted. Though A. calcoaceticus strains seem to be 

less metabolically versatile then Variovorax strains, it is also a species that can easily be enriched 

using a variety of carbon substrates. 
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Chapter 4:  Dynamics and constitution of the MA 

degrading pathway in A. calcoaceticus E1 

 

4.1 Introduction 

From the perspective of a bacterium, regulation of the expression of proteins is desirable to prevent 

resources being wasted on the production of unnecessary proteins, to avoid a protein performing an 

action that has a negative effect, and to ensure the production of appropriate proteins in response to 

a constantly changing environment. Regulation can be achieved by control exercised over any stage 

in the production of a mature protein; transcription, post-transcriptional modification of ribonucleic 

acid (RNA), translation and post-translational modification of the polypeptide. Typically, a recently 

evolved catabolic process will be constitutively active at a low level. Basic regulation of its expression 

will, over time, be superimposed at the transcriptional level by the opportunistic recruitment of 

transcriptional regulators that happen to have some small degree of influence over the gene or 

operon (Cases & Lorenzo, 2001).  

Quantification of protein and gene expression is possible. Differences in the quantity of expressed 

proteins can be determined by the separation of the expressed proteome by polyacrylamide gel 

electrophoresis of proteins denatured by sodium dodecyl sulphate (SDS-PAGE) and visualisation of 

the protein bands produced. A protein visualised on a gel can then be extracted, treated with the 

proteolytic enzyme trypsin – which fragments the polypeptide in a specific and predictable way – and 

its mass spectrum obtained. This mass spectrum can be compared to the predicted mass spectra for 

predicted proteins trypsinised in silico, and the identity of the extracted protein determined. This 

process is known as protein mass-fingerprinting. The quantification of specific transcribed RNA is 

possible using quantitative polymerase chain reactions (qPCR), and total transcribed RNA can be 

quantified by whole transcriptome RNA sequencing. Where a gene is induced in a specific way by a 

substrate, the application of these methods can lead to the identification of that gene. 

Reconstitution of a metabolic activity of interest ex vivo can lead to the identification of the enzyme 

responsible following the fractionation of the proteome and testing those fractions for activity. For 

example, Wang et al. (2015) identified the enzyme complex responsible for degrading the herbicide 

acetochlor (2-chloro-N-(ethoxymethyl)-N-(2-ethyl-6-methylphenyl)-acetamide) from the lysate of a 

Rhodococcus species, fractionating its proteome first using ammonium sulphate precipitation and 

then further separating the active fraction by hydrophobic interaction chromatography, identifying 

the peptides present in the final active fraction by protein mass fingerprinting.  
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The metabolism of a substrate by a bacterium proceeds through a series of chemical transformations 

catalysed by enzymes. The product of one reaction becomes the substrate for the next. The non-

fermentative oxidation of a substrate for the ultimate production of adenosine triphosphate (ATP) 

results in the reduction of oxygen to water, and the oxidation of the carbon source to carbon dioxide. 

Some quantity of the carbon can also be diverted to anabolic processes or stored in some form to 

satisfy future anabolic or energetic requirements. Exploration of the kinetics of metaldehyde 

degradation were hindered by the lack of a real-time assay that could be repeated in a reasonable 

time-frame. The number of samples that could be quantified by LCMS was limited by the time 

available on the equipment. For these reasons, an assay that uses real-time measurements of oxygen 

utilisation in washed cell suspensions treated with metaldehyde and other carbon substrates was 

developed and a novel step-wise metabolic model was employed in an attempt to gain insights into 

the kinetics of the metabolism of metaldehyde.  

Experiments described below were undertaken to determine if genes in the metaldehyde degrading 

pathway were induced by the presence of metaldehyde, and the expressed proteome was examined 

to identify those involved in metaldehyde metabolism. Attempts were made to reconstitute 

metaldehyde degradation using cell lysates. The kinetics of metaldehyde metabolism were 

investigated by quantifying metaldehyde degradation in washed cells directly and several approaches 

were attempted to infer information about the pathway from observations of the oxygen utilisation 

of cells treated with various carbon sources. 
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4.2 Materials methods 

4.2.1 Transposon library generation and validation 

To induce genetic lesions in the genome of A. calcoaceticus E1, plasmids with transposable selective 

markers were transferred by mating with E. coli hosting the plasmid.  

4.2.1.1 E. coli SM10 λ pir-pGCS62  

The transposon-containing plasmid used was pGCS62 (Cornells et al., 1991). It features the 

transposon Tn5 containing tetracycline resistance gene Tc1 (Tn5-Tc1), a β-lactamase gene and the 

R6K origin of replication. The host strain is SM10 λ pir that produces the pir protein required by the 

R6K origin of replication (Simon et al., 1983). 

4.2.1.2 Mating 

Rifampicin resistant Ac. E1 and E. coli SM10 were grown overnight in LB with 50 µg/ml rifampicin and 

20 µg/ml tetracycline, respectively. Aliquots of the cultures were span down at 13 krpm and washed 

twice with LB before being resuspended in 1/5 volume of LB. Typically 100 µl of each culture were 

mixed in a sterile tube (negative control Acinetobacter were placed in a sterile tube and mixed with 

sterile water) and dispensed onto a sterile nitrocellulose membrane placed on an LBA plate with no 

antibiotic. The plate with membrane was then incubated at 30°C or 37°C for 1-24 hours to allow 

mating to occur. The membrane was placed in a petri dish, the cells washed off and spread onto LBA 

plates with 50 µg/ml rifampicin and 20 µg/ml tetracycline before being incubated overnight at 30°C. 

Colonies growing on the plates could then be assayed for loss of metaldehyde metabolism. 

4.2.1.3 Polymerase chain reaction (PCR) assay to determine plasmid 

maintenance 

As low-level innate resistance to ampicillin in A. calcoaceticus E1 meant that acquired ampicillin 

resistance could not be used, primers (Table 4-1) were designed to determine if the plasmids 

transferred by mating were being maintained in the strain.  To give an amplicon (1029bp) from the 

IS50R insertion sequence of Tn5 (Auerswald et al., 1981) and an amplicon (708bp) of part of the 

vector pGCS62 (specifically a fragment of pGP704 used in its construction; sequence from Christie-

Oleza et al. (2013)). Colonies to be assayed were streaked onto fresh plates and incubated overnight 

at 30°C to avoid plasmid contamination from E. coli on the transformant plate. Colony PCR was 

performed using the following concentrations of reagents: 1X GoTaq Green buffer, 200 µM dNTPs, 

200 µM primers, 0.5 U GoTaq DNA polymerase (Promega) in 20 µl total volume. The following 

thermocycle was used: 2m 95°C, 30 * (60s 95°C, 45s 60°C, 65s 72°C), 5m 72°C. Amplicons were 

separated by electrophoresis 1.2% agarose gel and visualised with SYBR safe. 
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Primer name Oligo sequence 

Tn5 IS50R F  CCA TTG AGG ACA CCA CCT CT 
Tn5 IS50R R  CCA TAA AAC CGC CCA GTC TA 
pGP704 F  CCT TCC AGA CGA ACG AAG AG 
pGP704 R  CGA TAT GGA TGT GCA GGT TG 

Table 4-1. Sequences of primers for colony PCR used to amplify regions of the plasmid pGCS62 
to determine if it is present in the colony. 

4.2.2 Washing and concentration of cells for in vivo assays, and the 

preparation of cell lysate for in vitro assays 

Oxygen and metaldehyde utilisation assays were performed with washed live cells or cell lysate. The 

process to obtain washed cells is described here. 

 A colony of A. calcoaceticus E1 grown on a metaldehyde plate, or A. calcoaceticus RUH 2202 grown 

on LBA with 50 µg/L rifampicin, was used to inoculate a 5 ml LB starter culture with 50 µg/L 

rifampicin and incubated for 17 hours at 30°C. From the starter culture a flask of minimal media was 

inoculated from the starter culture; 500 ml minimal media containing 0.85 mM metaldehyde was 

inoculated with 500 µl A. calcoaceticus E1 starter culture, and 150 ml minimal media containing 20 

mM sodium acetate was inoculated with cultures of A. calcoaceticus E1 or RUH 2202. Cultures were 

then incubated for 20 hours at 30°C and shaking at 140 rpm. Cells grown with 0.85 mM metaldehyde 

were harvested when their OD600 reached 0.18 and cells grown on 20 mM sodium acetate were 

harvested at OD600 of 0.80. 

Sodium acetate cultures were diluted to 500 ml using pH 7.0 100 mM phosphate buffer (PB). Cultures 

were centrifuged at 5000 × g and 4°C for 15 minutes (Sorvall Evolution RC with SLC-6000 rotor, 

Thermo Fisher Scientific), the supernatant removed and the cell pellet resuspended in 500 ml 100 

mM PB, and this step repeated with the pellet resuspended in 100 ml 100 mM PB. This was split 

between two 50 ml tubes and centrifuged again at 4000 × g (Allegra X-22R; Beckman Coulter, Brea, 

USA) and 4°C for 15 minutes.  The supernatant was removed, and the cells were resuspended in the 

final buffer to be used, or ultrapure water. 

Where in vivo oxygen assays alone were to be performed, the cell pellets were resuspended to OD600 

1.0 ± 0.1 in PB or 20 mM phosphate buffer (pH 7.0). Cell suspensions were kept on ice for 1 hour 

before being used in experiments.  

Where cells were lysed they were resuspended in PB or (where other buffers were being used) in 

ultrapure water and lysed by sonication using 3 minutes of total process time with 1.5 seconds on 

and 7.0 seconds off, and sonication energy set to give a maximum reading of 50 watts. Samples were 
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kept on ice to prevent the build-up of heat. Lysate in ultrapure water was mixed with buffers at twice 

the desired final concentration in 1:1 ratios.  

4.2.3 Oxygen utilisation in live cells or lysate 

4.2.3.1 Oxygen electrode 

The quantification of oxygen was achieved using a Clark electrode. This instrument measures the 

current at an electrode that results from the following reaction taking place in the saturated 

potassium chloride medium through which the current passes: O2 + 2H2O + 4e− → 4OH−. Oxygen 

from the sample chamber passes through an oxygen permeable membrane at a rate proportional to 

the oxygen concentration in the chamber, and so changes in the concentration of oxygen in the 

sample result in changes in the current produced. 

Perspex Dissolved Oxygen Electrodes (Rank Brothers, Bottisham, UK) controlled using a Dual Digital 

Model 20 controller (Rank Brothers) were used here. The electrodes were prepared with a reservoir 

of saturated potassium chloride next to the electrode, separated from the sample chamber with a 13 

µm thick polytetrafluoroethylene sheet. The electrode was set to -0.61 polarising volts. Analogue 

electrical signals produced by the oxygen electrode were converted to digital by a PicoLog High 

Resolution Data Logger ADC 20 (Pico Technology, St Neots, UK) attached to a personal computer 

running PicoLog Recorder V5.24.8. PicoLog was set to record at a voltage range ±1250 mV and 

conversion time 180 ms.  

4.2.3.2 Experimental runs 

From cell suspensions or lysate on ice, 3.5 ml would be taken and transferred to a 15 ml tube 

immersed in room temperature water for at least 10 minutes to equilibrate the sample’s 

temperature. The temperature of the sample would be taken and incubation would continue until it 

was at most 2°C below room temperature. 3 ml of cells or lysate were transferred to the oxygen 

electrode chamber and the oxygen level monitored for at least 2 minutes to ensure it was stable 

before proceeding. Injections of substrates were made into the oxygen electrode using gel loading 

tips (Alpha Laboratories, Eastleigh, UK). The apparatus includes magnetic stirrers to maintain 

homogenous oxygen concentration in the sample chamber, these were set to 5.5 units, greater 

speeds were not used to avoid lysing the cells. 

4.2.3.3 Quantification of data 

The voltage generated by oxygen-equilibrated deionised water was determined each day for each 

electrode before any experiments were run. This was taken to represent 290, 287 or 278.75 µM 

dissolved O2 for room temperatures of 19°C, 20°C or 21°C respectively (U. S. Geological Survey, 
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2011). Voltage readings taken during experiments were converted to µM O2 assuming linear 

proportionality between observed voltage and dissolved oxygen. 

4.2.4 Oxidation of acetaldehyde by Saccharomyces cerevisiae aldehyde 

dehydrogenase 

Aldehyde dehydrogenase (ALDH) from S. cerevisiae (Sigma-Aldrich) catalyses the reaction 

acetaldehyde + β-NAD+ + H2O → acetate + β-NADH + H+. The lyophilised enzyme was dissolved into 

the buffer being tested plus 0.02% (w/v) bovine serum albumin, at a concentration of 0.3 mg/ml 

(0.24 U/ml). The enzyme preparations were portioned into 1 ml single use aliquots and stored at -

20°C. β-NAD+ was prepared in deionised water made to pH 4 with HCl at concentrations of 5 mM and 

stored in single use aliquots at -80°C. Dithiothreitol (DTT; PlusOne) stocks were prepared at 100 mM, 

stored at -20°C and defrosted a maximum of 3 times before being disposed of. Assays used final 

concentrations of 200 µM DTT, 20 mM KCl and 200-400 µM β-NAD+. Different buffers, reaction 

conditions and substrates were used, as described in the results. 

Real time assays of the reduction of β-NAD+ to β-NADH + H+ was performed using a UV-1601 

spectrophotometer running UV Probe v1.01 (Shimadzu, Kyoto, Japan). 

4.2.5 Approximate steady state kinetics for carbon substrate utilisation 

The fastest rates of oxygen reduction were determined from oxygen utilisation data by performing 

multiple linear regressions of 30 second regions, excluding the first 30 seconds where the treatment 

injection sometimes caused a transient peak. Regressions were done over 30 seconds to balance the 

effect of noise and the fact that most treatments do not result in a steady rate. Values for KM and Vmax 

were calculated by fitting the parameters of the Michaelis-Menten equation, shown below, to 

observed fastest oxygen utilisation rates (v) and the initial metaldehyde treatment concentration (S). 

𝑣 =  
𝑉𝑚𝑎𝑥 𝑆

𝐾𝑀 + 𝑆
 

Michaelis-Menten equation 

 

4.2.6 Simulation of the metaldehyde oxidation pathway  

Step-wise models of metabolic pathways were constructed using the Python programing language. 

The general model used to construct curves fitted to oxygen utilisation data is described here. With 

each tick of the model, the concentration of 4 simulated substrates changes according to the 

equations shown below, starting with the transformation of Substrate 1 (S1) to Substrate 2 (S2) as a 

function of Reaction A (Rxn A): 
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[𝑆1]𝑛 = [𝑆1]𝑛−1 − [𝑅𝑥𝑛 𝐴]([𝑆1]𝑛−1) 

[𝑆2]𝑛 = [𝑆2]𝑛−1 − [𝑅𝑥𝑛 𝐵]([𝑆2]𝑛−1) + [𝑆𝑡𝑜𝑖𝑐ℎ] ∗ ([𝑆1]𝑛 − [𝑆1]𝑛−1) 

[𝑆3]𝑛 = [𝑆2]𝑛−1 − [𝑆2]𝑛 

[𝑂𝑥𝑦]𝑛 =  [𝑂𝑥𝑦]𝑛−1 − [𝑆3]𝑛 ∗ 𝑂𝑥𝑦𝐹 

 

The stoichiometry of S1 to S2 (Stoich) is 4 when the experimental data being fitted resulted from 

metaldehyde treatment, representing the 4 acetaldehydes or equivalent yielded from metaldehyde. 

The final equation depletes oxygen proportional to the product of Rxn B (i.e. S3) multiplied by the 

oxidation factor (OxyF). Note that S3 does not accumulate. Reactions A and B behave according to 

Michaelis-Menten kinetics or convert substrate at a rate linearly proportional to its concentration: 

 

𝑀𝑀 𝑘𝑖𝑛𝑒𝑡𝑖𝑐𝑠 =
[𝑆] ∗ 𝑉𝑚𝑎𝑥

[𝑆] + 𝐾𝑀

 

𝐿𝑖𝑛𝑒𝑎𝑟 𝑘𝑖𝑛𝑒𝑡𝑖𝑐𝑠 = [𝑆] ∗ 𝑅𝑎𝑡𝑒 

 

Values fitted to experimental data for OxyF, Rate or the KM and Vmax for each modelled reaction were 

obtained using the Levenberg–Marquardt damped least-squares algorithm, using the Python package 

Lmfit v0.9.5 (http://lmfit.github.io/lmfit-py).  

Other simulated pathways are discussed that are constructed from chains of these reactions. 

 

  

http://lmfit.github.io/lmfit-py
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4.3 Results 

4.3.1 Transformation of A. calcoaceticus E1 with pGCS62 

To successfully transform A. calcoaceticus E1 by mating with E. coli SM10 different incubation times 

and temperatures were investigated. The key condition was found to be temperature. Incubation of 

the membrane with mixed cells at 37°C produced transformants while incubation at 30°C did not. 

Incubation times of 6 hours or more lead to visible growth of the bacteria on the membrane and so 3 

hours incubation was used. Colonies that grew on the rifampicin and tetracycline plates were mostly 

A. calcoaceticus E1 transformants. E. coli SM10 that had gained rifampicin resistance could be 

distinguished by morphology, E. coli colonies are darker than A. calcoaceticus E1 when growing on 

LBA.  

4.3.1.1 Assay of plasmid maintenance 

 Colony PCR of transformants produced amplicons of the correct size for the vector (Figure 4-1) 

showing that the vector was maintained in all tested colonies. This result means tetracycline 

resistance could not be used to isolate transposon mutants and the method was abandoned.  

 

Figure 4-1. Agarose (1.2% w/v) gel electrophoresis of the products of colony PCR using primers 
specific for the Tn5 or pGP704 regions of pGCS62. E. coli SM10-pGCS62 untransformed A. 
calcoaceticus E1 and E1 that acquired tetracycline resistance after mating with the SM10 were 
used to provide template DNA in the reactions. 

 

4.3.2 Metaldehyde-dependent oxygen utilization is induced by 

metaldehyde 

To determine the feasibility of isolating enzymes in the metaldehyde degrading pathway by analysis 

of the proteome, it was important to establish whether or not enzymes involved in the pathway were 

induced by the presence of metaldehyde. Measurements of the metaldehyde-dependent oxygen 

E. coli SM10 Ac. E1 Ac. E1 mated 
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utilisation of cell suspensions of A. calcoaceticus E1 grown on different substrates were made to 

determine if oxidation pathway was induced by metaldehyde.  

The assays were performed on A. calcoaceticus E1 cells that had been grown using a 10-fold dilution 

of LB, or MSM with 10 mM acetate or 0.85 mM metaldehyde as the carbon source that had been 

concentrated to OD600 0.25 suspended in 100 mM PB. The cells were treated with 85 µM 

metaldehyde. Figure 4-2 shows that oxygen was utilised at a faster rate when the cells were grown 

with metaldehyde, and the pathway is therefore induced by metaldehyde.  

 

Figure 4-2. Oxygen utilisation of A. calcoaceticus E1 grown using minimal media with acetate 
or metaldehyde as the carbon source, or 10X dilute LB media. Each line represents a single 
assay. 

4.3.3 Metaldehyde degradation by A. calcoaceticus E1 treated with 

metaldehyde is not dependent on culture substrate 

4.3.3.1 Oxygen utilisation and metaldehyde degradation of A. calcoaceticus E1 

cells grown with metaldehyde or acetate 

To determine if the degradation of metaldehyde (not only the utilisation of oxygen) was induced by 

growth on metaldehyde, washed cells grown on different substrates were treated with metaldehyde. 

Cultures of A. calcoaceticus E1 grown in minimal media with 0.85 mM metaldehyde or 20 mM 

sodium acetate, and A. calcoaceticus RUH 2202 grown with 20 mM acetate were harvested in the 

late growth phase. The cells were washed and concentrated to OD600 1.0 in PB. The oxygen and 

metaldehyde utilisation of cell samples treated with 53 µM metaldehyde was measured in cell 

suspensions (Figure 4-3). Cells that were used to assay metaldehyde directly were placed into oxygen 



111 

electrodes without the stopper being affixed and stirred at the same rate as the oxygen assayed 

suspensions. Samples were taken for LCMS analysis and filtered before being stored at -20°C. 

Biological triplicates were used in each case. The data files for the oxygen utilisation of the third A. 

calcoaceticus E1 and RUH 2202 grown using acetate (Figure 4-3D) were corrupted and could not be 

recovered, so only two of each are shown.  
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Figure 4-3. Oxygen and metaldehyde utilisation in samples of washed cells at OD600 1.0 treated 
with 53 µM metaldehyde. The X-axis gives minutes after treatment. Straight lines show the 
results of linear regressions. Charts A and B show results from A. calcoaceticus E1 grown with 
metaldehyde. Charts C and D show A. calcoaceticus E1 and RUH 2202 grown with acetate. 

Linear regressions were performed of the data shown in Figure 4-3. Oxygen measurements between 

3-5 minutes were used to determine the rate of oxygen utilisation, while all metaldehyde 

measurements were used in regressions (Table 4-2).  

Growth  
substrate 

O2  
(µM/min) 

O2 R2 MA  
(µM/min) 

MA R2 

Metaldehyde 
-27.8 
-20.8 
-16.9 

>0.99  
for all -3.38 0.904 

Acetate 
-4.11 
-2.49 

0.925 
0.907 

-1.49 0.645 

 
Table 4-2. Linear regressions of metaldehyde and oxygen utilisation data from A. calcoaceticus 
E1 cells grown in either acetate or metaldehyde and treated with metaldehyde. Oxygen 
regressions were performed on measurements made between 3-5 minutes after the cells were 
treated with metaldehyde. 

A B 

D C 
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The mean rate of oxygen utilisation by cells that had been grown on metaldehyde was 6.6-fold 

greater than cells grown with acetate, while the observed metaldehyde utilisation rate was 2.3-fold 

greater. These data show that the metaldehyde degrading step itself is less tightly regulated than 

subsequent steps which are required for the oxygen dependent catabolism of metaldehyde. 

To obtain a more precise picture of the kinetics of metaldehyde degradation, the direct 

quantification of metaldehyde was repeated with some refinements. More frequent samples were 

taken from each biological repeat and the cells were suspended in 20 mM PB (rather than 100 mM) 

so that the samples taken need only be diluted 2-fold prior to LCMS analysis. This produced larger 

absolute readings less affected by background noise. This method required larger initial starting 

volumes, and so 100 ml of cell suspension was added to a 1 L beaker, treated with metaldehyde and 

manually shaken for 10 seconds before the first sample was taken and briefly after each sample. The 

R2 for the calibration was 0.988 and an LOQ of 0.057 µM. The resulting metaldehyde quantification 

data were sufficiently noise free that individual curves for each culture were distinct (Figure 4-4). 

Oxygen utilisation by cells treated with metaldehyde (Figure 4-5) was not obtained under the same 

conditions as the metaldehyde data, and so is not directly compared.  
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Figure 4-4. Degradation of 53 µM metaldehyde by washed A. calcoaceticus E1 cell suspensions 
cultured with metaldehyde as the substrate. The same data are shown in both charts with 
linear (top) and logarithmic (bottom) scales. 
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Figure 4-5. Oxygen utilisation of washed A. calcoaceticus E1 cell suspensions cultured with 
metaldehyde as the substrate treated with 53 µM metaldehyde. 

The earliest metaldehyde measurements (< 3 minutes) deviate from the expected values of 53 µM, 

especially in cultures B and C, possibly due to insufficient mixing, but after this the curves look 

smooth.  

Values for Michaelis-Menten kinetics for this process were obtained by fitting the metaldehyde 

utilisation data shown in Figure 4-4. The first measurement for culture A, and the first 3 

measurements of cultures B and C were excluded from the fits.  

The velocity between each measurement was calculated using the following equations: 

𝑣𝑛 =  
𝑆𝑛 − 𝑆𝑛+1

𝑡𝑛+1 − 𝑡𝑛
 

These values were fitted to the Michaelis-Menten equation using 𝑆𝑛 + (𝑆𝑛 − 𝑆𝑛+1)/2 as the value 

for S. The weight for 𝑣𝑛 used when calculating the fit was determined by the length of its interval 

(𝑡𝑛+1 − 𝑡𝑛). The observed velocities and fitted lines are shown in Figure 4-6; fitted values for KM and 

Vmax are given in Table 4-3. 
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Figure 4-6. Calculated velocities versus substrate concentration from metaldehyde degradation 
data. Dashed lines show fitted Michaelis-Menten kinetics. 

Culture KM ± SE (µM) Vmax ± SE 
(µM/min) 

KM / Vmax  

A 4.05e+8 ± inf 1.41e+8 ± inf 2.87 

B 30.1 ± 39.1 10.6 ± 9.65 0.768 

C 44.5 ± 14.5 17.0 ± 3.41 2.62 
Table 4-3. Fitted values for KM and Vmax from metaldehyde degradation data transformed into 
velocity versus substrate concentration. 

The value for KM for culture A exceeds the concentrations used in the experiment by 107-fold. This 

results in an effectively straight line at the concentrations seen, and as many solutions to the 

Michaelis-Menten equation result in a straight line the error of the fit is infinite.  

4.3.4 Acetaldehyde is the primary product of metaldehyde degradation 

4.3.4.1 An aldehyde dehydrogenase is highly expressed in A. calcoaceticus E1 

grown with metaldehyde 

As the metaldehyde degrading pathway in A. calcoaceticus E1 was shown to be regulated to some 

degree, an examination of its proteome was undertaken. Acinetobacter calcoaceticus E1 was 
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cultured in MSM using 0.85 mM metaldehyde or 10 mM sodium acetate as the carbon source. An 

SDS-PAGE was performed.  Two gels are shown in Figure 4-7. An additional band is visible in the gels 

at around 55 kDa only in lysate from cells grown using metaldehyde. The location of the band or its 

absence is indicated by arrows in Figure 4-7A. 

 

 
                      +Met      55 kDa  
 +Ace 

Figure 4-7. Images of 2 SDS-PAGE protein gels (12% acrylamide) of denatured cell lysate of A. 
calcoaceticus E1 cultured using metaldehyde (+Met) or sodium acetate (+Ace) as the carbon 
source. Image A shows lysate from 6 cultures, arrows indicate the location of an additional 
band only seen in lysate from metaldehyde grown cells. Image B shows a zoomed in section of 
a different gel where the additional band is clearly visible in the +Met lane. 

A 

B 
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The additional band present in the gel shown in Figure 4-7, and the equivalent region from the +Ace 

lane were excised and the identity and abundance of proteins present in the excised sections were 

determined. One protein with a calculated mass of 55.3 kDa was found to be enriched from 1.0% to 

33.7% of the total molar mass of proteins in the sections. The next largest enrichment was from 0.9% 

to 3.1%. InterPro (Hunter et al., 2012) was used to detect signatures of protein family or domains in 

the amino acid sequence (Table 4-4).  

Database Detected signature Database reference 

SUPERFAMILY Aldehyde dehydrogenase-like superfamily (Gough et al., 2001) 

CATH Aldehyde Dehydrogenase; Chain A, domain 1 
(3.40.605.10) & Aldehyde Dehydrogenase; Chain A, 
domain 2 (3.40.309.10) 

(Sillitoe et al., 2015) 

PFAM Aldehyde dehydrogenase family (PF00171) (Finn et al., 2016) 

Prosite Aldehyde dehydrogenase glutamic acid and cysteine 
active site residues conserved 

(Sigrist et al., 2013) 

 
Table 4-4. Functional classification of a protein expressed in A. calcoaceticus E1 grown using 
metaldehyde as a carbon source. InterProScan was used to query multiple databases and the 
results from each database are shown here. 

The enriched protein was predicted to be an aldehyde dehydrogenase (ALDH). The predicted gene 

ontology term was GO:0016620, “oxidoreductase activity, acting on the aldehyde or oxo group of 

donors, β-NAD or β-NADP as acceptor”. Such proteins can have a wide range of aldehyde substrates 

(Riveros-Rosas et al., 2013). The two active site residues (Joernvall & Persson, 2006) were found to 

be conserved. Three amino acids (Met124, Cys301 and Cys303; numbering as human ALDH2) shown 

to be involved in aldehyde binding (Riveros-Rosas et al., 2013) were found to be conserved in the 

induced ALDH based on the examination of an alignment of the induced protein with the human 

ALDH2.  

The oxidation of aldehydes by ALDH occurs when the aldehyde enters a catalytic tunnel, indicated in 

Figure 4-8 by a white ring. Catalytic residues are located on the peptide loop inside the ring in Figure 

4-8; it does not seem feasible that metaldehyde, given its “puckered crown” structure, could enter 

the catalytic tunnel to be oxidised. Given this, and the fact that an enzyme identical to the A. 

calcoaceticus E1 ALDH is present in A. calcoaceticus RUH 2202 (as determined by a BLAST search of 

the sequence against the A. calcoaceticus RUH 2202 predicted proteome), it is very unlikely that 

metaldehyde could be acted on directly by this enzyme and so it is theorised that metaldehyde is 

depolymerised by an unknown enzyme to acetaldehyde which is then oxidised by the ALDH. 
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Figure 4-8. Structure of one subunit of the homo-tetramer human mitochondrial ALDH2 (Larson et al., 
2007); Protein Database ID 2ONP). The catalytic tunnel where aldehydes are oxidised is indicated by a 
translucent white ring. Secondary structures are indicated in red and yellow, a molecule of 
nicotinamide-adenine-dinucleotide is shown in pink and bound sodium ions are shown in blue. 

4.3.4.2 Acetaldehyde is oxidised by cells grown on metaldehyde more quickly 

than acetate or metaldehyde 

Oxygen assays were performed using A. calcoaceticus E1 cultured using metaldehyde as the carbon 

source. The washed cells were treated with metaldehyde, acetaldehyde or sodium acetate. The 

different treatments contained similar concentrations of carbon; the carbon concentration of the 

metaldehyde treatment used was 94.0% of the acetaldehyde and 92.5% of the acetate treatment. 

The results of the assays are shown in Figure 4-9. 
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Figure 4-9. Oxygen utilisation of A. calcoaceticus E1 cells grown with metaldehyde treated with 
the acetaldehyde, metaldehyde or acetate at 0 minutes. Upper charts show every assay; lower 
charts show mean readings. Left charts show absolute oxygen measurements, and right charts 
show oxygen deviation from the start of the treatment. 

Metaldehyde and acetaldehyde are oxidised at similar rates in A. calcoaceticus E1 grown with 

metaldehyde, supporting the notion that the two substrates share some of the same oxidisation 

pathway. The maximum rate of acetate oxidisation is less than that of acetaldehyde or metaldehyde, 

demonstrating that acetate cannot be the majority metabolite of metaldehyde, though acetate could 

be produced by, for example, the oxidation of one acetaldehyde monomer of the cyclic tetramer that 

is metaldehyde. 
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4.3.5 Kinetics of the metaldehyde degrading pathway in vivo 

4.3.5.1 Oxygen utilisation of A. calcoaceticus E1 treated with different 

substrates 

Oxygen assays of A. calcoaceticus E1 treated with different concentrations of metaldehyde, 

acetaldehyde or acetate were performed. The results are shown in the following pages. 
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Oxygen utilisation of A. calcoaceticus E1 treated with 5 concentrations of 

metaldehyde 

 

 

Figure 4-10. Measured oxygen levels of washed samples of A. calcoaceticus E1 grown in 
minimal media using metaldehyde treated with different concentrations of metaldehyde. 
Upper charts show every assay; lower charts show mean readings. Left charts show absolute 
oxygen measurements, and right charts show oxygen change from the start of the treatment. 
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Oxygen utilisation of A. calcoaceticus E1 treated with 3 concentrations of 

metaldehyde 

 

 

Figure 4-11. Measured oxygen levels of washed samples of A. calcoaceticus E1 grown in 
minimal media using metaldehyde treated with different concentrations of metaldehyde. 
Upper charts show every assay; lower charts show mean readings. Left charts show absolute 
oxygen measurements, and right charts show oxygen change from the start of the treatment. 
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Oxygen utilisation of A. calcoaceticus E1 treated with 4 concentrations of 

metaldehyde 

 

 

Figure 4-12. Measured oxygen levels of washed samples of A. calcoaceticus E1 grown in 
minimal media using metaldehyde treated with different concentrations of metaldehyde. 
Upper charts show every assay; lower charts show mean readings. Left charts show absolute 
oxygen measurements, and right charts show oxygen change from the start of the treatment. 
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Oxygen utilisation of A. calcoaceticus E1 treated with 4 concentrations of 

acetaldehyde or 27.5 µM metaldehyde 

 

 

Figure 4-13. Measured oxygen levels of washed samples of A. calcoaceticus E1 grown in 
minimal media using metaldehyde treated with different concentrations of acetaldehyde, and 
one concentration of metaldehyde. Upper charts show every assay; lower charts show mean 
readings. Left charts show absolute oxygen measurements, and right charts show oxygen 
change from the start of the treatment. 
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Oxygen utilisation of A. calcoaceticus E1 treated with 5 concentrations of 

acetate or 27.4 µM metaldehyde 

 

 

Figure 4-14. Measured oxygen levels of washed samples of A. calcoaceticus E1 grown in 
minimal media using metaldehyde treated with different concentrations of acetate. Upper 
charts show every assay; lower charts show mean readings. Left charts show absolute oxygen 
measurements, and right charts show oxygen change from the start of the treatment. 
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In all the assays presented above, a general pattern of oxygen utilisation can be seen where the rate 

of oxygen consumption increases with time, sometimes reaching a steady state, and then can be 

seen to decrease where measurements were continued for sufficient time. This can be explained as 

resulting from the fact that oxygen reduction is preceded by several metabolic processes, its rate is 

dependent on the concentration of its substrates, which each take time to accumulate.  

The acetaldehyde data (Figure 4-13) appears to show some substrate inhibition. In the region of 1.5 

minutes the rate of oxygen utilisation is at its peak in the cells treated with 54.4 µM acetaldehyde 

and exceeds the rate seen in cells treated with 107.6 µM acetaldehyde. The higher acetaldehyde 

treatment does not reach peak oxygen utilisation until after 3 minutes. This could be explained as the 

result of inhibition caused by acetaldehyde that diminishes as the acetaldehyde is removed from the 

reaction. Acetaldehyde at 107 µM was oxidised faster than the equivalent metaldehyde treatment of 

27.5 µM despite the apparent inhibition. This is a different result than was seen in Figure 4-9 where 

14 µM metaldehyde and 60 µM acetaldehyde produced similar rates of oxygen utilisation in the cells. 

4.3.5.2 Apparent KM of oxygen utilisation 

The peak oxygen utilisation values over 30 second periods were determined for the assays shown in 

Section 4.3.5.1. The treatment concentration and rates of oxygen utilisation were plotted against 

each other for each experiment and Michaelis–Menten kinetics were determined by fitting the 

equation to the oxygen utilisation data (Figure 4-15). The velocities were corrected to take into 

account the diluting effect of the substrate treatment. This was particularly important for the higher 

concentrations of metaldehyde; to achieve 213 µM, 1 ml of 150 mg/L metaldehyde was added to a 3 

ml cell sample. The derived apparent KM and Vmax values are given in Table 4-5. 
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Figure 4-15. Mean maximum oxygen utilisation vs initial substrate concentration (given on the 
x-axis) of cell samples treated with different concentrations of the substrates metaldehyde, 
acetaldehyde or sodium acetate. Error bars give one standard deviation from the mean. Solid 
curves are plotted using the fitted parameters of the Michaelis-Menten equation. 

Substrate Vmax  
(µM/min) 

Apparent 
KM (µM) 

Metaldehyde 1  
(Figure 4-10) 

38.3 ± 4.52 45.4 ± 
8.69 

Metaldehyde 2 
(Figure 4-11) 

40.0 ± 9.69 21.8 ± 
10.5 

Metaldehyde 3 
(Figure 4-12) 

76.9 ± 4.52 45.4± 
8.69 

Acetaldehyde 
(Figure 4-13) 

39.9 ± 5.82 35.3 ± 
12.8 

Acetate 
(Figure 4-14) 

15.1 ± 0.746 11.0 ± 
2.78 

 
Table 4-5. Derived Vmax and apparent-KM of the reduction of oxygen utilisation resulting from 
the oxidation of different substrates by A. calcoaceticus E1.  



129 

The response of the cells to metaldehyde treatment is not very consistent. Care was taken to be 

consistent in the treatment of the cells but minor variations in the culture conditions and in the 

washing procedure could result in changes to the activity and relative quantity of the different 

enzymes and cofactors involved in the oxidation of metaldehyde.  

There are several caveats to the interpretation of the results presented above. Scanning a noisy line 

for the steepest slope using many regressions will most likely result in the selection of a region that 

has a higher than average steepness by chance. In the other direction, taking rates from a dynamic 

process will underestimate the fastest rate as some sub-fastest velocity will be included in the 

regression. The most significant caveat is that Michaelis-Menten kinetics describe a very simple case 

of enzyme catalysed reactions, while what is being measured here is the end result of a large 

pathway. 

4.3.5.3 The apparent KM of a simulated pathway made of multiple reactions 

To investigate how measuring the end product of multiple reactions can affect apparent KM and Vmax, 

a simulated pathway was constructed using versions of the general step-wise model described in the 

methods. The fastest rate of product formation was calculated across a 100 time-unit region using 

linear regression for simulated pathways containing up to 5 reactions. All the simulated reactions had 

the same KM and Vmax values of 20 and 0.1 and the apparent KM and Vmax values of the pathways was 

calculated in the same way as was done using the data obtained in vivo (Figure 4-15). The number of 

reactions in each simulated pathway was varied. The maximum velocity of final product formation 

was determined for initial substrate values of 500, 100, 50, 20 and 10. The results are shown in 

Figure 4-16 and Table 4-2.  
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Figure 4-16. The results of simulated pathways containing the number of reactions given at the 
top of each vertical pair of charts. The quantity of final product formed over time for each 
starting concentration of substrate is shown in the top row of charts, and starting substrate 
versus fastest rate of final product formation is shown in the bottom row. A line fitted to the 
data using the Michaelis-Menten equation is shown on each lower graph along with the 
derived KM and Vmax parameters. Colours of lines and circles match for identical starting 
substrate values of 500 (purple), 100 (teal), 50 (red), 20 (green) and 10 (blue).  

 

No. of reactions 1 2 3 5 

Derived KM 23.1 53.3 69.0 88.8 

Derived Vmax 0.101 0.0899 0.0867 0.0820 

 
Table 4-6. KM and Vmax derived by fitting the fastest rate of final product formation from a 
series of modelled reactions, each with a KM and Vmax of 20 and 0.1, to the Michaelis-Menten 
equation. 

The calculated KM increases and Vmax decreases with each additional reaction. These data 

demonstrate that analysis of the rate of final product formation cannot be interpreted to give details 

of individual components of a pathway without understanding the other components in that 

pathway. 
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4.3.5.4  Step-wise metabolic models fit to oxygen utilisation data 

It was hoped that more information about the individual components involved in the oxidation of 

metaldehyde could be determined by fitting the observed oxygen utilisation curves of A. 

calcoaceticus E1 treated with metaldehyde to a model that simulates multiple reactions. To explore 

the idea, models with two reactions were fitted to some oxygen utilisation data. The two reactions 

had a stoichiometry of 1:4 to represent the hypothesised depolymerisation of metaldehyde to 

acetaldehyde and values for the parameters KM and Vmax were derived for each reaction. Preliminary 

experiments demonstrated that the ratio of initial substrate concentration to oxygen reduced should 

be included as a parameter in the fit; this allows for the fact that metaldehyde was not completely 

oxidised and also allows the model to correct for errors in the treatment concentration. This is 

referred to as the oxidation factor or “OxyF”. The models discussed in this section are described in 

Table 4-7. 

Model Reaction A Reaction B Reaction C 

A MM MM OxyF 

B MM Linear OxyF 

C Linear MM OxyF 

Table 4-7. Structure of models fit to oxygen utilisation data. Reactions are described in the 
methods. 

Oxygen utilisation data of A. calcoaceticus E1 cells treated with metaldehyde, shown in Section 

4.3.5.1 (page 121), was fitted using Model A (all fits are shown in Appendix 7.2). It was observed that 

most fits resulted in very high derived KM and Vmax values with high standard deviations for one of the 

reactions, usually reaction B (as can be seen in Figure 4-17D). As observed above, values of KM far 

above the substrate concentration results in a linear relationship between substrate concentration 

and reaction velocity. For this reason, the data were fitted to Models B & C that use linear reaction 

kinetics (Figure 4-17) 
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Model A 

 
Model B 

 
Model C 

 

 

Figure 4-17. Oxygen utilisation data (black curves), curves fitted to the oxygen data (green) and 
residuals of the fit (red) are shown for selected oxygen utilisation curves first shown in Figure 
4-11. 

The exemplar fits shown in Figure 4-17 demonstrate that Models A & B are able to produce a curve 

that fit the data. Model C performed much worse, curves could not be constructed for most data. 

This supports the notion that the oxygen utilisation curves seen result from the accumulation of 

intermediates in the metabolic pathway. With a linear first reaction, the flux through the first 
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reaction drops more quickly at the beginning of the process, meaning that less of the substrate for 

the second reaction can accumulate. 

To investigate to what degree, if at all, the parameters fitted to the data directly reflect the 

properties of particular reactions in the real pathway. To investigate this question, models with 

between 2-4 reactions that follow Michaelis-Menten kinetics (KM = 10, Vmax = 0.2) were used to 

generate data. These data were fitted using Model B (Figure 4-18). As the number of simulated 

reactions increases, the poorer the fit becomes, showing that the reduction of oxygen in response to 

metaldehyde treatment is not the result of a process similar to a series of Michaelis-Menten 

reactions. 

 

Figure 4-18. Simulated final substrate accumulation produced using series of Michaelis-Menten 
reactions with KM of 10 and Vmax of 0.2 (black curves), fitted curves using Model B (green), 
residuals of the fit (red). The number of simulated reactions for each panel: A = 2, B = 3, C = 4 
and D = 5. 

4.3.6 Metaldehyde degradation could not be reconstructed in vitro 

The reconstitution of metaldehyde degradation in lysate from A. calcoaceticus E1 grown with 

metaldehyde was attempted using various buffers and cofactors. 

Spectrophotometric assays of the reduction of β-NAD+ by S. cerevisiae ALDH in 100 mM Tris-HCl 

buffer (pH 8.0), are shown in Figure 4-19. Reaction mixtures were treated with acetaldehyde or 

metaldehyde, with or without the addition of lysate from A. calcoaceticus E1 grown with 

metaldehyde and concentrated to OD600 1.02 in 100 mM PB. Oxygen assays showed that the live cells 

were capable of metaldehyde dependent oxygen utilisation before being lysed (data not shown). 
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Figure 4-19. Absorbance at 340 nm measured over time in reactions mixtures containing S. 
cerevisiae ALDH and treated with acetaldehyde or metaldehyde, with or without the addition 
metaldehyde grown A. calcoaceticus E1 cell lysate. 

No quantifiable yield of β-NADH was produced when metaldehyde was added to the reaction 

mixture. β-NAD+ was reduced upon the addition of acetaldehyde to reaction mixtures. The addition 

of lysate reversed the reduction of β-NAD+. It was possible that metaldehyde was being 

depolymerised and acetaldehyde being oxidised at a rate insufficient to produce a measurable signal 

as the β-NADH was being reoxidised or destroyed by the lysate, and so the direct quantification of 

metaldehyde degradation by lysate was undertaken. 

Triplicate cultures of A. calcoaceticus E1 were grown using MSM with 0.85 mM metaldehyde as the 

carbon source. The cells were washed and concentrated to OD600 1.99 in PB. An aliquot from each 

was tested for metaldehyde dependent oxygen utilisation, each was found to be positive (data not 

shown).  The cells were lysed and split into two aliquots. Half were treated with 56.7 µM 

metaldehyde, 200 µM each β-NADH and β-NAD+ only. Half were additionally treated with of 200 µM 

coenzyme A. Samples were taken at 2, 7, 15, 40, 120 and 260 minutes after metaldehyde addition 

and diluted 10-fold with 80% (v/v) chilled ethanol, to inhibit further enzymatic reactions, and stored 

at -20°C. Untreated samples of the lysates were also taken and stored at -20°C. The relative 

metaldehyde concentration of all samples were determined by LCMS (Figure 4-20). No degradation 

of metaldehyde was observed in any of the samples. 
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Figure 4-20. Change in measured metaldehyde concentration over time in cell lysate of A. 
calcoaceticus E1 in 100 mM PB pH 7.0, treated with 85 µM metaldehyde. Chart A shows the 
addition of 200 µM each β-NAD+ and β-NADH, chart B shows 200 µM CoA along with the 200 
µM β-NAD(P)+. Error bars show standard deviation from the mean of biological replicates. 

It was hypothesised that acetaldehyde was being produced by the depolymerisation of metaldehyde 

and inhibiting the progress of the reaction. To test this Saccharomyces cerevisiae aldehyde 

dehydrogenase and cofactors required for the oxidation of acetaldehyde were included in some 

experiments. The effect of the composition of buffers on the in vitro degradation of metaldehyde 

was also tested. The buffers used were 100 mM phosphate (Na2HPO4-NaH2PO4) at pH 6, 7 and 8; 100 

mM citric acid-trisodium citrate at pH 5 and 6; and 100 Tris-HCl at pH 8.  
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Buffered lysates were prepared from a culture of A. calcoaceticus E1 grown with metaldehyde 

concentrated to OD600 0.82. Duplicate samples for each condition were treated with 85 µM 

metaldehyde or 400 µM β-NAD+ only or S. cerevisiae ALDH, with required cofactors given in the 

methods, as well as 85 µM metaldehyde. The treated buffered lysates were incubated at 30°C. 

Samples were taken from the treated lysate immediately after metaldehyde treatment, 30 minutes 

later and the following day. Samples were immediately diluted 10-fold with 80% ethanol. 

Metaldehyde in each sample was quantified using LCMS and the relative metaldehyde concentration 

of each sample is shown in Figure 4-21. Metaldehyde was not found to be degraded by the lysate.  

 

Figure 4-21. Change in metaldehyde concentration in A. calcoaceticus E1 lysate samples in the 
given buffers, treated with 85 µM metaldehyde. Solid lines and circular markers show 
experiments using metaldehyde and 400 µM β-NAD+ alone, dashed lines and triangular 
markers show experiments using 85 µM metaldehyde and S. cerevisiae ALDH with required 
cofactors. 
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4.4 Discussion 

4.4.1 Genetic screens 

The ability of A. calcoaceticus E1 to maintain suicide plasmids meant that a practical method of 

producing random genetic lesions was not available for this strain. The production of a genetic library 

using genomic material from the isolates expressed in E. coli was begun, but concern regarding the 

likelihood of success using this method meant that it was not completed to a sufficient degree to 

present here. Such a method may have been successful if attempted. 

4.4.2 Acetaldehyde is a product of metaldehyde degradation 

Evidence that acetaldehyde is an intermediate in the metabolism of metaldehyde was given in the 

work presented here. Acetaldehyde is oxidised more rapidly than metaldehyde in cells grown using 

metaldehyde. Significant enrichment of an aldehyde dehydrogenase was observed. Together these 

facts show that the capacity to quickly oxidise aldehydes is specifically induced by metaldehyde. The 

most labile type of bond in the metaldehyde molecule would be expected to be the carbon-oxygen 

bonds. Breaking any of these bonds would result in unstable linear polymers of acetaldehyde. 

Acetaldehyde is generally toxic, forming adducts on proteins. The elevated production of ALDH to 

minimise the concentration of acetaldehyde present in the cells would explain why there is a larger 

capacity for acetaldehyde flux than could be produced by the depolymerisation of metaldehyde.  

The first step may still involve the oxidation of an acetaldehyde monomer, producing an acetate, or 

some other reaction. The predicted function of the ALDH is the production of acetate, rather than 

the acetylation of coenzyme-A. However, if the relatively slow oxidation of acetate by A. 

calcoaceticus E1 grown on metaldehyde results from a bottleneck in the maximum flux of acetate 

that can be oxidised then this demonstrates that acetate cannot be a major intermediate in the 

oxidation of metaldehyde. The hypothesised intermediates, and their relationships are shown in 

Figure 4-22. 
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Figure 4-22. Primary intermediates in the proposed pathway for the metabolism of 
metaldehyde. 

4.4.3 Regulation of primary metaldehyde degrading enzyme(s) compared 

to the rest of the metaldehyde oxidising pathway 

Cell suspensions of A. calcoaceticus E1 grown with metaldehyde were found to utilise oxygen at a 

6.6-fold increased rate and remove metaldehyde at 2.3-fold increased rate compared to cells grown 

using acetate and treated with metaldehyde. The cells for these assays were grown on different 

substrates, using metaldehyde or acetate as the carbon source. The cells grow more quickly using 

acetate and so higher concentrations of it were used to ensure the cells did not reach the stationary 

phase when grown over night. However, it may be the case that the acetate grown cell suspensions 

contained a greater proportion of cells that were stationary and therefore metabolically inactive, 

partially explaining the reduced rates of oxygen and metaldehyde utilisation. Proportionally, the rate 

of metaldehyde degradation was less affected by growth substrate than oxygen utilisation, and there 

was a 34-fold increase in the quantity of ALDH present in cells grown on metaldehyde. These facts 

suggest that the metaldehyde specific part of the pathway is either constitutive or only partly down-

regulated in the absence of metaldehyde, while the enzymes that oxidise acetaldehyde are more 

tightly regulated. These scenarios are consistent with the evolution of regulatory control of a recently 

evolved metabolic activity. 

4.4.4 Reconstitution of metaldehyde degradation in vitro 

Attempts to reconstitute metaldehyde degradation in vitro using cell lysate failed. Buffers with 

different pH and constituents were tested. The cofactors β-NAD+ and CoA may be required for 

catabolism of released acetaldehyde, depending on the nature of the ALDH produced by the 

organism, and so these cofactors were included in some experiments. β-NADH was included in the 

reaction mixture in one experiment as it is a potential cofactor. The S. cerevisiae ALDH and required 

cofactors for the oxidation of acetaldehyde to acetate were also included in some experiments to 

avoid product inhibition. It may be that the primary enzyme in metaldehyde degradation requires 

some other cofactor, or that it does not survive the lysing process. 
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4.4.5 Models of oxygen utilisation 

A general model, one that involves the accumulation of intermediate substrates in a pathway, for the 

utilisation of oxygen in response to metaldehyde treatment was suggested by the shape of the 

oxygen utilisation curve. A specific model with two reactions, the first using Michaelis-Menten 

kinetics and the second using linear kinetics, could be fit to the oxygen utilisation data. This model 

could not be fit to data from simulated pathways made up of a series of Michealis-Menten reactions. 

In the cells of A. calcoaceticus E1 treated with metaldehyde, the reduction of oxygen is the final step 

in a complex series of reactions involving the citric acid cycle and the electron transport chain. The 

final oxygen curve seen in the experimental data will be dependent on all the nature of all these 

reactions, and how they interact. The success of this model in fitting real data may yield some insight 

into the pathway – the cumulative behaviour of a large part of this pathway may be represented by 

first order linear kinetics. It is, however, hard to establish that the values of parameters fit to the data 

directly represent real processes. To find out what the parametrised values of the model actually 

represent would require a more detailed understanding of the events that occur between the 

addition of metaldehyde to the oxygen chamber and the eventual reduction of oxygen. 
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Chapter 5:  Identification of enzymes for primary 

metaldehyde catabolism by comparative genomics 

5.1 Introduction 

As has previously been discussed (Chapter 3), two isolates that are capable of degrading 

metaldehyde have been isolated, both from the same soil sample: Acinetobacter calcoaceticus E1 

and Variovorax E3. Their genomes were de novo sequenced. Species related to the isolates have 

been found to degrade a wide range of synthetic and naturally occurring compounds. While it is 

possible that both strains independently evolved the ability to catabolise metaldehyde it is more 

likely that they acquired the ability by horizontal gene transfer.  

This chapter is concerned with the use of genomic sequence information to identify candidates for 

the primary metaldehyde degrading protein (MDP). 

5.1.1 Horizontal gene transfer (HGT) 

There are several mechanisms by which HGT can occur. Canonically these are plasmid transfer by 

conjugation, transduction of genomic material by bacterial viruses (phages) and transformation by 

DNA acquired from the environment. 

Plasmids are autonomously replicating circular DNA molecules that carry genes promoting the 

conjugation of the host to other bacterial cells, allowing the transfer of the plasmid from cell to cell. 

Plasmids frequently carry genes that may be beneficial to the host in certain environments; genes 

such as those for antibiotic resistance, heavy metal resistance (Silver & Misra, 1988) and the 

metabolism of xenobiotics (Sayler et al., 1990; Dunon et al., 2013) . Bacteria related to the A. 

calcoaceticus E1 and Variovorax E3 have been identified that acquired metabolic abilities through 

plasmids. Acinetobacter strains have acquired oxygenases that allow the catabolism of diesel 

(Mengoni et al., 2007) and aniline (Fujii et al., 1997), and a Variovorax paradoxus strain acquired the 

ability to degrade the xenobiotic pesticide 2,4-dichlorophenoxyacetic acid through the acquisition of 

a plasmid (Vallaeys et al., 1998). Some plasmids contain toxin-antitoxin systems. These produce a 

toxin, and a more short lived antidote to that toxin, so that daughter cells that do not inherit the 

plasmid are inhibited by the longer lasting toxin (Melderen & Bast, 2009). 

Transposons are mobile genetic elements that can be associated with plasmids. These can carry 

genetic information that is located between specific inverted repeats. The excision or duplication of 

the genetic material that lies between the inverted repeats is performed by transposases, the genes 

for which are typically within the transposon – though not always (De Palmenaer et al., 2004). This 

translocation of genetic information can result in the transfer of genes to or from a plasmid – some 
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transposases preferentially transfer DNA to plasmids (Finn et al., 2007) – ultimately enabling the 

transfer of genomic material from one bacterial cell to another. 

The inactivated genomes of phages (prophages) can be found in the sequenced genomes of bacteria 

(Canchaya et al., 2003). The activity of phages can result in the transduction of genomic material 

when some becomes packaged in a viral particle instead of the phage genome. This can result in the 

transfer of metabolic activities, shown experimentally in the transduction of a lactose degrading 

phenotype between E. coli and Shigella dysenteriae strains (Luria et al., 1960) and inferred in the 

case of experimentally mated A. baumannii, where the donor strain lacked any plasmids or secretion 

system, but a transposon containing an antibiotic resistance gene was found to have been 

translocated into the recipient strain’s genome (Krahn et al., 2016). In an exceptional case, it has 

been observed ex vitro that cyanobacterial photosynthesis genes have become part of the functional 

genome of a phage that infects them, resulting in the back and forth translocation of these genes 

(Lindell et al., 2004).  

Some bacteria produce gene transfer agents: phage like particles that contain random genetic 

material from the host’s genome. These are released upon lysis of the cell (though they do not 

induce the death of the cell) and are capable of transferring DNA to a wide range of recipient species 

(Lang et al., 2012).  

Transformation occurs when bacteria take up free DNA from the environment through specialised 

transporters for this purpose, as a source of potentially valuable genetic material (Chen et al., 2005; 

Takeuchi et al., 2014). The genetic material can then be integrated into the genome by DNA repair 

mechanisms. Acinetobacter calcoaceticus has been identified as being a very naturally competent 

species (Juni & Janik, 1969) and natural transformation of the species has been demonstrated to 

occur in soil microcosms (Nemec et al., 2011). 

5.1.2 Evolution of protein function 

Enzymes function by direct interaction with compounds. The final shape of a protein and the relative 

location in space of the different chemical moieties that form it determines the mode of interaction 

that the enzyme has with other molecules it encounters. This structure is itself determined by the 

linear chain of amino acids that makes up the protein, encoded by an organism’s genome. The 

genome of an organism is subject to many sources of mutation; for example point mutations caused 

by chemical modification of the bases (Stolarski et al., 1987)  or ionising radiation; and inversions, 

deletions, duplications or translocations caused by the action of DNA replication machinery or mobile 

genetic elements (Darmon & Leach, 2014). These mutations have the potential to alter an enzyme’s 
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function, or change the way in which expression of the enzyme is regulated by altering regulatory 

sequences. 

New functions for an enzyme can occur as a result of mutations to DNA that alter its amino acid 

sequence and hence structure. Enzymes may be capable of catalysing reactions using substrates 

chemically similar to their primary substrate, with lesser efficiency. Duplication of the responsible 

gene can then allow a divergence in function of the duplicated genes; with one gene evolving greater 

efficiency and specificity for a different substrate (O’Brien & Herschlag, 1999). 

5.1.3 The possible nature of enzymes ancestral to MDP  

Acetaldehyde is the primary product of metaldehyde degradation by A. calcoaceticus E1 (Section 

4.4.2). The production of acetaldehyde from metaldehyde is most likely to be the result of the 

molecule depolymerising following the disruption of an ether bond. Enzymes that have the ability to 

lyse ether bonds, either by hydrolysis or by other means may evolve the ability act in the degradation 

of metaldehyde. This depends entirely on the mechanism by which the enzyme functions, however. 

For example, based only on the reaction catalysed, one might expect an isochorismate-pyruvate 

lyase to be a good candidate for a proto-MDP. However, the initial step of the reaction catalysed by 

these enzymes involves a pericyclic transition state, where a hydrogen bound to C2 (Figure 5-1) is 

abstracted to form a methyl (C9), causing the formation of a conjugated pi system and scission of the 

ethyl bond. This mechanism would not be supported by the structure of metaldehyde. 

 

Figure 5-1. The proposed reaction mechanism of isochorismate-pyruvate lyase, catalysed by 
Pseudomonas aeruginosa PchB. Taken from Luo et al. (2009). 

There are some chemical similarities between an ether and an amine that is made up of an NH 

moiety bound to 2 carbons (C-NH-C). Both are polar, having greater electronegativity at the O or N. 

The nitrogen in such an amine has a single lone pair of electrons that could be used in hydrogen 

bonding or other interactions with an enzyme, while the ethereal oxygen has two lone pairs. It is 

plausible that an enzyme could evolve from acting only on an amine bond, to acting on an ether 

bond. 
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5.1.4 Function prediction of uncharacterised proteins 

In the work presented here, the nature of reactions predicted to be catalysed by proteins are 

evaluated to identify candidates for MDP. The function of uncharacterised proteins can be predicted 

based on the similarity of their amino acid sequence to proteins of known function. A tool used for 

this purpose in the work presented here is InterPro (Hunter et al., 2012). This service integrates 

multiple databases that look for signatures present in a given amino acid sequence that are indicative 

of enzyme function (such as the conservation of residues directly involved in a catalysis), regulatory 

domains, intermembrane domains, and others.  

The structure of proteins is more conserved than the primary amino acid sequence. (Arnold et al., 

2006). SWISS-MODEL is a tool for structure prediction that uses solved structures as templates. The 

amino acid sequence is aligned to sequences of proteins for which structural determinations have 

been performed. A model is computed using the template, attempting to align the predicted 

protein’s backbone to the template where there is homology between the two. Low homology loops 

are predicted de novo or, failing this, the database is searched for homologous loops to use as a 

template. The probable conformation of side chains is calculated and the structure adjusted to 

minimise its energy (Schwede et al., 2003). The final model is evaluated (Benkert et al., 2009).  

Genes that function in the same metabolic pathway are often collocated in the genome and may be 

co-transcribed together as an operon (Yan & Moult, 2006). The predicted function of genes close to 

those of interest may also be considered when evaluating the function of a gene. 

5.1.5 The molecular basis for the biotic degradation of atrazine 

The herbicide atrazine is an example of a xenobiotic compound that is degraded by a specifically 

evolved pathway, the molecular and genetic basis for which is well studied. It is presented here as a 

case study for how pathway can evolve and spread. Many of the concepts discussed above are 

demonstrated in this case study. 

Field studies that took place between 1969 and 1985 examined by (Krutz et al., 2010) showed that 

the half-life of atrazine was between 28 and 178 days. Studies since 1993 show a half-life between 1 

and 12 days, with the primary first step being the dechlorination of the compound. Pre-1993 studies 

showed that dealkylation of branches from the S-triazine were the main first step. This change in the 

fate of atrazine has occurred due to the evolution and spread of genes that catalyse the de-

halogenation and de-alkylation of the compound.  
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Figure 5-2. The biotic mineralisation pathway of atrazine and the proteins identified as 
catalysing each step. Adapted from (Shapir et al., 2007). 

The genes involved in the mineralisation pathway for atrazine (Figure 5-2) are found spread among 

various organisms. It is common to see organisms that do not appear to have some of the genes 

required for complete mineralisation. Smith et al. (2005) enriched samples from soil that had been 

treated with atrazine for 15 years using a liquid media spiked with atrazine or one of the metabolic 

intermediates found in the pathway. They isolated 8 bacterial species and assayed them for known 

atrazine catabolising genes using PCR with primers for atzA, -B, -C, -D, -E, -F, trzD and -N the results of 

which are shown in Table 5-1. AtzA, -E or -F were not found in their study. 

 

 

Table 5-1. Atrazine catabolising genes found in bacterial species from enrichment cultures by 
Smith et al. (2005). The numbers represent the sequence similarity of the amplified gene to 
reference genes. 

Only Nocardia sp. was able to dechlorinate atrazine. This species was also able to remove the alkyl-

amine ((CH3)2CHNH2) from hydroxyatrazine using an unknown enzyme. An earlier enrichment culture 

study of a sample from the same soil found Clavibacter michiganense ATZ1 that contained atzA and 

Pseudomonas sp. CN1 that contained atzB and atzC (de Souza et al., 1998).  
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Pseudomonas sp. ADP was the first organism found capable of fully mineralising atrazine 

(Mandelbaum et al., 1995). It is able to do so due to the plasmid pADP-1 that contains all the atz 

genes (A-F). This plasmid was sequenced by Martinez et al. (2001). A map is shown in Figure 5-3. 

 

Figure 5-3. The plasmid pADP-1 found in Pseudomonas sp. ADP. Taken from Martinez et al. 
(2001). 

AtzA, -B and -C are individually flanked by transposases suggesting they were recruited to the 

plasmid in separate events (Martinez et al., 2001). In a study of 17 atrazine degraders from 3 

different sites, Devers et al. (2007) found that it was common for atzA to be on a separate plasmid 

from other genes in the pathway, and 3 of the 17 strains isolated had an additional copy of atzC on 

another plasmid. 

Expression of atzA, -B and C is unregulated (Govantes et al., 2009). 

Genes for the mineralisation of atrazine are not always found in the same organism, meaning that 

organism does not fully benefit from the catabolism of the compound. Genes in sequential steps of 

atrazine hydroxylation to cyanuric acid are found on separate plasmids and only on plasmids. Their 

expression is unregulated – unlike the expression of AtzD, -E and -F that are tightly regulated  by the 

presence of cyanuric acid and the availability of other nitrogen sources (Govantes et al., 2009). All 

this is best explained as being due to atrazine specific genes only recently having evolved these 

activities, AtzA having evolved from a melamine deaminase (Seffernick et al., 2001), whereas 

cyanuric acid is a naturally occurring compound (Seffernick & Wackett, 2016). Consolidation, as has 

occurred in the case of pADP-1, and appropriate regulation can only be selected for after the 

individual genes are extant and functioning to the benefit of their host organism. It is worth noting 
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that the full diversity of atrazine catabolising genes is unlikely to have been described and most 

studies rely on testing for known genes without looking for new genes. 

Practically, this means that when searching for genes that degrade a synthetic compound one cannot 

rely on complete operons being available for transformation as a functional unit into a host, 

complicating functional genomics approaches using gene libraries. The fact that the evolution of a 

new function for an enzyme precedes the evolution of its regulation is illustrated in the case of AtzA. 

Expression of MDP is also apparently unregulated, meaning that functional genomics approaches 

that rely on substrate induced expression (Uchiyama & Watanabe, 2008) would not succeed in 

identifying it. Another thing to take away from the biotic degradation of atrazine is that once a useful 

metabolic pathway exists, it will spread from species to species and place to place much more quickly 

than similar metabolic activities can evolve in those places – a point also made by Janssen et al. 

(2005) discussing dehalogenases.  

5.1.6 Rationale 

If we postulate that (i) MDP has evolved from an enzyme with a similar function and (ii) A. 

calcoaceticus E1 and Variovorax E3 acquired MDP by horizontal gene transfer, then the identification 

of horizontally transferred genes and the examination of their predicted function could lead to the 

identification of MDP. 

Two HGT scenarios are possible: (i) The same enzyme is responsible metaldehyde degradation in 

both A. calcoaceticus E1 or Variovorax E3 (being acquired from the other isolate, or independently 

from another source), or (ii) different horizontally transferred sequences are responsible for the 

degradation. In the first case it can be hypothesised that sequences that are more similar in the 

degrading strains than in related strains known to lack metaldehyde catabolism are shared 

horizontally transferred sequences, and therefore candidates for MDP. In the second case it can be 

hypothesised that enzymes similar to those present in strains that lack metaldehyde catabolism can 

be ruled out as candidates for MDP, and so the comparison of a degrading strain’s proteome with 

non-degrading strains’ may reveal good candidates for MDP. 

An argument for preferring the first scenario is that both strains were found to have the same 

capacity and exist in the same soil; as previously stated it is easier for a metabolic ability to be shared 

between bacteria than it is to evolve multiple times. An argument for preferring the second scenario, 

where metaldehyde degrading proteins evolved multiple times, is that fact that the two strains show 

different affinities for metaldehyde. 

Comparative genomics methods were applied here, using amino acid similarity scores, that tested for 

both of the HGT scenarios described. 
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5.2 Methods 

5.2.1 BLAST score ratio  

This method is based on that described by Rasko et al. (2005). 

BLAST score ratios (BSR) of amino acid sequences were obtained for a subject sequence using the 

following method. All BLASTp searches were performed with default settings. 

A reference score for each subject sequence was obtained by performing a BLASTp search using the 

sequence as both the query and the subject. BLASTp searches were then performed using each 

sequence in a query strain’s predicted proteome against the subject sequence. The value of the 

highest scoring alignment was divided by the reference score for the subject sequence yielding the 

BSR. 

In the work described here, predicted amino acid sequences of A. calcoaceticus E1 were the subject 

sequences. BSR were obtained using various query proteomes. 

5.2.2 InterPro 

Amino acid sequences were submitted to the InterPro v5 service (Hunter et al., 2012). A submitted 

amino acid sequence is queried using multiple databases and algorithms. Signatures of the functional 

domains, protein family membership and other features identified by these other databases have 

been manually integrated and described by the developers of InterPro. An example of an integrated 

InterPro record is shown in Figure 5-4. The contributing signatures box on the right of Figure 5-4 

indicates which external database signatures are associated with this record. 
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Figure 5-4. An example of an integrated InterPro record. This record can be accessed using the 
URL https://www.ebi.ac.uk/interpro/entry/IPR000845 

The domain and protein family classifications were extracted from the XML files returned. InterPro 

accession numbers, in the format “IPR######”, will be given for the classifications, these can be 

retrieved using the URL https://www.ebi.ac.uk/interpro/entry/IPR###### with the appropriate 

InterPro accession number as the last part of the URL. 

5.2.3 SWISS-MODEL 

Computationally predicted structures for amino acid sequences were produced using SWISS-MODEL 

workspace (Arnold et al., 2006) in automated mode. A QMEAN4 value is reported for models 

presented in this work. This score is based on 4 parameters: Distance dependent interaction 

potential of Cβ atoms and all atoms, desolvation potential and torsion over 3 residues. Scores are 

normalised by solved structures; the mean score for solved structures of a particular size is used as 

zero, and the QMEAN4 score for computed structures are relative to this. 

 Additional alignments were sometimes selected manually, but the models produced from these 

selections never had QMEAN4 scores higher than the automatically constructed models. 

https://www.ebi.ac.uk/interpro/entry/IPR000845
https://www.ebi.ac.uk/interpro/entry/IPR000000
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5.2.4 Operon detection 

Genes that are encoded in the same direction on the genome and are 25 or fewer base pairs 

separated are believed to form an operon (Yan & Moult, 2006). This was evaluated manually using 

Artemis to visualise the location of the genes (Rutherford et al., 2000). 

5.2.5 Identification and evaluation of MDP candidates 

The above described methods are applied to identify and evaluate candidates for MDP, using the de 

novo sequenced genomes of A. calcoaceticus E1 and Variovorax E3 (Section 3.2.6) and other 

genomes acquired from the NCBI database. 

To identify MDP candidates assuming that MDP is a recently acquired gene shared between A. 

calcoaceticus E1 and Variovorax E3 (the first scenario described in the Rationale for this chapter, 

Section 5.1.6), predicted proteins from the A. calcoaceticus E1 genome that were more homologous 

(had greater BSR) to predicted proteins in the Variovorax E3 genome than in the A. calcoaceticus 

RUH 2202 genome were identified. A minimum BSR of 0.5 to Variovorax E3 was used as a safe cut-

off. Any recently horizontally transferred enzyme would be expected to have a BSR much higher than 

this. Deviations from the mean guanine-cytosine content (GC%) found in either organisms’ genome 

in the coding sequence for homologous genes will be considered evidence for the recent horizontal 

transfer of the genes. The mean A. calcoaceticus E1 GC% is 38.8%, and Variovorax E3 GC% is 67.4%. 

Enzymes that have these properties were examined in more detail. 

The identification of MDP candidates assuming separate origins for the capacity in A. calcoaceticus E1 

and Variovorax E3 was performed for A. calcoaceticus E1 only. As this strain has higher affinity for 

metaldehyde, it is the more interesting hypothetical MDP of the two for future applications. Other 

Acinetobacter strains that lack metaldehyde catabolism were acquired. The predicted proteome of A. 

calcoaceticus E1 was compared to the proteomes of all the other Acinetobacter and any predicted 

protein in A. calcoaceticus E1 that did not have a BSR > 0.4 to any other strain was described as being 

unique to that strain and examined in more detail. 

The starting point for examining a protein in more detail was the InterPro records of detected 

domains and family signatures (e.g. Figure 5-4). If the reactions associated with the signatures 

included the scission of carbon-oxygen or carbon-nitrogen bonds, then the plausibility of the protein 

as a candidate for MDP was evaluated. This evaluation may include structure prediction by SWISS-

MODEL, examination of the genomic context of the gene, or a review of relevant literature.  
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5.2.6 Expression vectors for MDP candidate protein 

Two plasmids for heterologous expression of a protein identified as being a good candidate for MDP 

were purchased from GenScript (Piscataway, USA). The gene was synthesised de novo and used to 

construct the plasmids described here. The first was intended for transformation into a strain of 

Acinetobacter and used the vector pMAL-c4X (Figure 5-5). This vector was chosen as the tac 

promoter is expected to be compatible with Acinetobacter strains. The native gene sequence for the 

candidate (i.e. found in A. calcoaceticus E1) was ligated between restriction sites NdeI and EcoRI, 

excising the maltose binding protein (MBP) which was not required in this experiment. The second 

plasmid was constructed from pET22b(+) (Figure 5-5) and contained a gene sequence for the 

candidate protein optimised for expression in E. coli, ligated into the HindIII restriction site. This 

plasmid utilises the T7 promoter which requires the T7 polymerase to be expressed by the host. Both 

constructs contain the lac operon for controlled expression of the gene using induction by isopropyl 

β-D-1-thiogalactopyranoside (IPTG) and an ampicillin resistance gene for selection of transformed 

clones.  

 

Figure 5-5. Maps of expression vectors used in the 
work described here. Maps supplied by GenScript. 
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5.2.7 Natural transformation 

Natural transformation of naturally competent Acinetobacter baylyli strains can be achieved by 

growing them in liquid culture to the stationary phase, adding DNA and additional nutrients and 

incubating them for an hour or more, the switch from stationary phase to growth induces the uptake 

of DNA (Metzgar et al., 2004; Vaneechoutte et al., 2006). This method was used to transform 

overnight cultures of A. baylyi 107474T grown with sodium acetate by the addition of plasmid DNA 

and more sodium acetate. 

5.3 Results 

5.3.1 Identification of enzymes that have greater homology between 

Variovorax E3 and A. calcoaceticus E1, and their evaluation as MDP 

candidates 

5.3.1.1 The BSR of A. calcoaceticus RUH 2202 and Variovorax E3 proteomes to 

A. calcoaceticus E1 

Utilising predicted protein sequences from each strain, BSR were obtained of Variovorax E3 and A. 

calcoaceticus RUH 2202 proteomic query sequences versus the A. calcoaceticus E1 proteome. The 

query BSRs obtained for each A. calcoaceticus E1 subject sequence are given in Figure 5-6. As would 

be expected the majority of sequences scored highly (BSR > 0.8) in the intraspecies comparison. The 

group of sequences with BSR < 0.4 for both strains that cluster around the line is interesting; it may 

be hypothesised that these are proteins with highly conserved domains that are part of otherwise 

unconserved proteins. The sequences with BSR to Variovorax E3 that are greater than 0.5 and 

greater than the BSR of A. calcoaceticus RUH 2202 sequences (shown in blue in Figure 5-6) were 

investigated further. 
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Figure 5-6. BSR values for two query proteomes versus the A. calcoaceticus E1 proteome. Each 
circle represents an A. calcoaceticus E1 predicted protein. The circle’s position on an axis gives 
the highest BSR obtained from that strain’s proteome. The diagonal line shows where the two 
BSR are equal. Circles below the line therefore show A. calcoaceticus E1 sequences that are 
more similar to a Variovorax E3 sequence than any A. calcoaceticus RUH 2202 sequence. Blue 
circles show sequences with Variovorax E3 BSR > 0.5 and Variovorax E3 BSR > A. calcoaceticus 
RUH 2202 BSR. 

For the purposes of comparison, the process was repeated using the same A. calcoaceticus 

proteomes but with other Variovorax genomes: V. boronicumulans, V. paradoxus B4, V. paradoxus 

EPS and V. paradoxus S110. A chart showing BSR for the V. boronicumulans and A. calcoaceticus RUH 

2202 proteomes are shown in Figure 5-7. The highest BSR to one of these Variovorax proteomes, 

that was higher than equivalent A. calcoaceticus RUH 2202 BSR, was 0.804.  
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Figure 5-7. BSR values for two query proteomes versus the A. calcoaceticus E1 proteome. Each 
circle represents an A. calcoaceticus E1 predicted protein. The circle’s position on the axes gives 
the highest BSR obtained from that strain’s proteome. The diagonal line shows where the two 
BSR are equal. Circles below the line therefore show A. calcoaceticus E1 sequences that are 
more similar to a V. boronicumulans E3 sequence than any A. calcoaceticus RUH 2202 
sequence. The blue circles show sequences that have a BSR > 0.5 in V. boronicumulans that are 
also below the line. 

5.3.1.2 Characterisation of genes with higher homology to Variovorax E3  

A. calcoaceticus E1 genes with greater homology to Variovorax E3 than A. calcoaceticus RUH 2202 

and BSR > 0.5 are discussed here. Where these genes are closely collocated in the genome, they will 

be discussed together.  
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Mercury resistance operon 

 

Figure 5-8. Relative position of mercury resistance genes in A. calcoaceticus E1 genome. Genes 
with greater homology and BSR > 0.5 between the metaldehyde degrading strains shown in 
blue. Light grey lanes represent the 6 reading frames; vertical black lines indicate stop codons.  

 Predicted family BSR  
rank 

V. E3  
BSR 

Ac. E1 
BSR 

MerC  Mercury resistance protein (IPR004891) 1 1.00 0.08 
MerA Mercury(II) reductase (IPR021179) 2 0.92 0.15 
Hg(II) TR Hg(II) Responsive transcriptional regulator (IPR011794) 3 0.85 0.20 
MerD Mercuric resistance transcriptional repressor protein 

(IPR011797) 
4 0.81 0.15 

Table 5-2. Genes with greater homology and BSR > 0.5 between the metaldehyde degrading 
that are part of a mercury resistance operon. The BSR rank is the rank order of potentially 
horizontally transferred genes (shown in blue in Figure 5-6), from the highest Variovorax E3 
BSR to the lowest. 

The 4 genes with greatest homology between A. calcoaceticus E1 and Variovorax E3 are part of a 

mercury resistance operon. MerC transports Hg2+. Genes 4238 and 4239 have no predicted domains 

or families and no significant homologues in the Variovorax E3 predicted proteome. A BLAST search 

of the A. calcoaceticus E1 contig containing these genes, using the megablast algorithm, against the 

Variovorax E3 genome identifies a syntenic locally collinear block that spans the MerC-MerA-MerD 

genes shown in Figure 5-8 and has 91.4% nucleotide identity with the Variovorax E3 block. The GC 

content for the A. calcoaceticus E1 contig is shown in Figure 5-9, with the region shown in Figure 5-8 

highlighted. 
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Figure 5-9. Mean GC content (%) of a 11.2 kbp contig using a 250 bp sliding window. The 
shaded region indicates the region inclusively spanning from HG(II) TR to MerD (Figure 5-8). 
The mean GC content for A. calcoaceticus E1, 38.8%, is indicated by the dashed line. 

A transposase is located shortly upstream of MerD. This contig may be part of a plasmid, or part of 

the genome. It is certain that MerC-MerA-MerD are horizontally transferred in A. calcoaceticus E1 

and likely that this sequence has a recent shared origin with the Variovorax E3 genomic region. 

MerA acts on mercury, and the other proteins are not similar to enzymes. These proteins are not 

good candidates for MDP. 

 Other annotated genes on the same contig are: a heavy metal resistance gene, a transposase and a 

HigB toxin gene.  

MerA acts on mercury, and the other proteins are not similar to enzymes. These proteins are not 

good candidates for MDP. 

The Rut pathway 

Signatures for proteins in the Rut pathway, a pyrimidine degradative pathway, was found in proteins 

with greater homology between the metaldehyde degrading strains. The location of these genes in 

the A. calcoaceticus E1 genome are shown in Figure 5-10. Predicted family memberships and BSR are 

given in Table 5-3. 
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Figure 5-10. Position of putative Rut pathway genes in A. calcoaceticus E1 genome. Genes with 
greater homology and BSR > 0.5 between the metaldehyde degrading strains shown in blue.. 
Lanes representing the 3 reading frames proceed from right to left, along which vertical black 
lines indicate stop codons. The scale bar units are numbers of base pairs. 

Abbr. Predicted family V. E3  
BSR 
rank 

V. 
E3  
BSR 

Ac. RUH  
2202 
BSR 

RutC Aminoacrylate peracid reductase (IPR019898) 6 0.76 0.26 
RutA Pyrimidine monooxygenase (IPR019914) 7 0.74 0.15 
RutE NADH dehydrogenase/NAD(P)H nitroreductase, putative 

(IPR023936) 
13 0.61 0.10 

RutB Isochorismatase, amidohydrolase, RutB (IPR019916) 21 0.55 0.08 
PyNP Thymidine|pyrimidine-nucleoside phosphorylase 

(IPR000053) 
29 0.54 0.22 

RutG Pyrimidine permease, putative (IPR019918) - 0.25 0.55 
RutD Pyrimidine utilisation protein (IPR019913) - 0.41 0.64 
HIBADH 3-hydroxyisobutyrate dehydrogenase-related (IPR015815) - 0.12 0.11 

 
Table 5-3. Predicted protein family membership and BSR of genes shown in Figure 5-10.  

The Rut operon enables the catabolism of pyrimidines (Loh et al., 2006). The functions of proteins 

RutA and RutB were demonstrated in vitro and other proteins in the pathway had their functions 

predicted based on sequence similarity to proteins of known function (Kim et al., 2010). The pathway 

proposed by Kim et al. (2010) is shown in Figure 5-11. 



157 

 

Figure 5-11. The proposed Rut pathway for uracil catabolism. Figure taken from Kim et al. 
(2010)  

For the purposes of this study, the pyrimidine monooxygenase, RutA, and the amidohydrolase, RutB, 

are most interesting. Both cleave amines bound to 2 carbons (Figure 5-11). The results of an InterPro 

search using the Variovorax E3 sequence results in the same predicted function for the proteins. The 

GC% of the Variovorax E3 and A. calcoaceticus E1 genes found to be homologous are 64% and 43% 

respectively, which does not support the hypothesis that they were recently horizontally transferred. 

Phenol degradation pathway 

Figure 5-12 and Table 5-4 give details of genes found to be more similar in Variovorax E3. These are 

predicted to be part of a phenol degradation pathway. 

 

Figure 5-12. Position of putative phenol degradation pathway genes in A. calcoaceticus E1 
genome. Genes with greater homology and BSR > 0.5 between the metaldehyde degrading 
strains shown in blue. Lanes representing 3 reading frames proceed from left to right, along 
which vertical black lines indicate stop codons. The scale bar gives number of base pairs. 
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Predicted family  BSR  
rank 

V. E3  
BSR 

Ac. RUH  
2202 BSR 

Methane|phenol|toluene hydroxylase (PHOα; IPR003430) 10 0.65 0.02 
Phenol hydroxylase reductase (IPR001221) 22 0.54 0.22 
MOC (Monooxygenase component MmoB/DmpM; IPR003454) - 0.48 0.11 
Methane|phenol monooxygenase, hydroxylase component 
(IPR012078) - 0.44 0.04 
Phenol hydroxylase (IPR006756) - 0.36 0.09 
Phenol hydroxylase subunit (IPR010353) - 0.31 0.10 
MetA-pathway of phenol degradation, putative (IPR025737) - 0.032 0.12 

 
Table 5-4. Predicted protein family membership and BSR of genes shown in Figure 5-12 

A. calcoaceticus E1, but not strain RUH 2202, was found to be able to utilise phenol (Section 3.3.7), 

confirming a possible function for the genes shown above. The ability of Variovorax E3 to catabolise 

phenol is currently undetermined. Other genes predicted to be involved in phenol degradation are 

present in the A. calcoaceticus E1 genome, but are not co-located. The oxidation of phenol requires a 

3 component enzyme, made up of an oxidase, a hydroxylase and a reductase (Divari et al., 2003). The 

gene labelled methane|phenol|toluene hydroxylase has 93% amino acid identity to the phenol 

hydroxylase oxygenase alpha component (PHOα) identified by Divari et al. (2003). This subunit 

contains the active site for the 3 component enzyme complex. The Variovorax E3 gene with most 

homology to this was also annotated as a methane|phenol|toluene hydroxylase and has 66% 

identity to the A. radioresistorans PHOα.  

Despite the evidence linking these genes to phenol oxidation, they were still considered to be of 

interest as a candidate for MDP due to the substrate promiscuity observed in enzymes of this family 

(Tinberg & Lippard, 2010).  

Aldolase and ALDH 

Three genes that are more similar in Variovorax E3 and appear to form an operon are presented here 

in a genomic context in Figure 5-13, and with BSR in Table 5-5. 

 

Figure 5-13. Position of genes in a putative operon in the A. calcoaceticus E1 genome. Genes 
with greater homology and BSR > 0.5 between the metaldehyde degrading strains shown in 
blue.. Lanes representing 3 reading frames proceed from right to left, along which vertical 
black lines indicate stop codons. The scale bar units are numbers of base pairs 
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Abbr. Predicted family BSR  
rank 

V. E3  
BSR 

Ac. RUH  
2202 BSR 

ALDH Acetaldehyde dehydrogenase (IPR003361) 5 0.79 0.04 
4H2O aldolase 4-hydroxy-2-oxovalerate aldolase (IPR017629) 8 0.72 0.08 
FAH Fumarylacetoacetase (IPR005959) - 0.42 0.04 
Table 5-5. Predicted protein family membership and BSR of genes shown in Figure 5-13. 

  
 4-hydroxy-2-oxovalerate   Acetoacetate 

 
 
 

   
   Fumeric acid   
 Fumarylacetoacetate 
 

Figure 5-14. Compounds that may be products or substrates of the enzymes given in Table 5-5. 

The ALDH identified here is not the same one identified to be expressed by A. calcoaceticus E1 when 

growing on metaldehyde (see Section 4.3.4.1). If the hypothesis that this operon is responsible for 

the degradation of metaldehyde were correct, then this ALDH would also be expressed as it appears 

to be in an operon with the other two genes. However, this does not impact on the likelihood of the 

hypothesis, as the depolymerisation of 1 mole of metaldehyde would produce 3 or 4 moles of 

acetaldehyde, which could lead to an excess that induced the expression of an ALDH that was 

directly induced by acetaldehyde. 

4H2O aldolases catalyse the lysis of 4-hydroxy-2-oxovalerate (Figure 5-14) to pyruvate and 

acetaldehyde (Platt et al., 1995). An ALDH is typically found associated with this gene. The carbon-

carbon bond lysed by this type of enzyme is not similar to bonds in the metaldehyde ring and 

therefore the aldolase was not considered to be a good candidate for MDP. 
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The action of fumarylacetoacetases is to catalyse the hydrolysis of fumarylacetoacetate to fumarate 

and acetoacetate. It is possible that the FAH predicated here produces acetoacetate which is 

catabolised by the product of the predicted aldolase, plausible due to the structural similarity of 

acetoacetate to 4H2O (Figure 5-14).  

The homologous predicted fumarylacetoacetase gene found in Variovorax E3 is not collocated with a 

4H2O aldolase/ALDH pair. The GC content of the homologous regions are typical for each strains. 

These genes do not appear to be horizontally transferred between the species and the predicted 

reactions are not similar to those likely to occur in the primary steps of the degradation of 

metaldehyde. 

Other enzymes with greater homology in Variovorax E3 

The examination of the genomic context of the aldolase, discussed in the previous section, indicated 

that its function is likely not conserved between A. calcoaceticus E1 and Variovorax E3 based on the 

differences in genes present in the operons. With the exception of the mercury resistance operon, no 

genes discussed so far appear to have been recently horizontally transferred between the two 

strains. The classification of proteins with BSR > 0.5 were examined to determine if the reaction 

associated with the classification, or the substrate they act on indicated they may be candidates for 

MDP. A more detailed examination of them is not presented here.  

The predicted enzymes given in Table 5-6 were rejected as candidates for MDP due to the nature of 

the reactions they catalyse, and substrates they act on. Proteins listed in Table 5-7 were identified as 

transporters and were therefore not considered as candidates. Proteins listed in Table 5-8 were 

predicted to be regulatory proteins or had no function predicted.  
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Predicted family  BSR  
rank 

V. E3  
BSR 

Ac. RUH  
2202 BSR 

Coenzyme A transferase family I (IPR004165) 9 0.65 0.47 
Aspartate 4-decarboxylase (IPR022518) 11 0.62 0.05 
Glucose/ribitol dehydrogenase (IPR006003) 14 0.61 0.29 
Kynureninase (IPR010111) 17 0.58 0.05 
Haloacid dehydrogenase like domain (IPR023214) 20 0.55 0.03 
FMN reductase (NADH) RutF (IPR019917) 23 0.54 0.09 
None (tRNA nucleotidyltransferase domain, IPR015329) 27 0.53 0.03 
Thymidine/pyrimidine-nucleoside  
phosphorylase (IPR000053) 

29 0.53 0.42 

Acrylyl-CoA reductase (IPR014188) 30 0.52 0.10 
Glucose/ribitol dehydrogenase (IPR006003) 33 0.51 0.32 
Lon protease, bacterial (IPR027543) 34 0.50 0.30 

 
Table 5-6. Predicted protein family membership and BSR of genes for enzymes found in A. 
calcoaceticus E1 that have BSR values to the Variovorax E3 that are greater than 0.5 and 
greater than the A. calcoaceticus RUH 2202 BSR. 

Predicted family or domain BSR  
rank 

V. E3  
BSR 

Ac. RUH  
2202 BSR 

Aldo/keto reductase/potassium channel subunit beta (IPR001395) 12 0.62 0.19 
ABC-2 transporter (IPR025699) 18 0.57 0.07 
ABC transporter ATPase like domain (CATH family 1.20.1580.10) 19 0.56 0.38 
Aspartate-alanine antiporter (IPR022457) 24 0.54 0.02 
ATPase/ABC transporter domain (IPR019195) 25 0.54 0.20 
ABC transporter, permease (IPR001851) 26 0.53 0.04 
ATPase domain of an ABC transporter (IPR027417) 31 0.52 0.25 

 
Table 5-7. Predicted protein family membership and BSR of genes for transporters found in A. 
calcoaceticus E1 that have BSR values to the Variovorax E3 that are greater than 0.5 and 
greater than the A. calcoaceticus RUH 2202 BSR. 

Predicted family or domain BSR  
rank 

V. E3  
BSR 

Ac. RUH  
2202 BSR 

(None predicted) 15 0.60 0.05 
Transcriptional regulatory protein PcoR, heavy metal response 
(IPR006291) 

16 0.59 0.50 

(None predicted) 28 0.53 0.20 
DNA-binding HTH domain, TetR-type (IPR001647) 32 0.51 0.11 
 
Table 5-8. Predicted protein family membership and BSR of genes found in A. calcoaceticus E1 
that have BSR values that have BSR values to the Variovorax E3 that are greater than 0.5 and 
greater than the A. calcoaceticus RUH 2202 BSR. 
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5.3.1.3 Candidates for MDP identified by homology between A. calcoaceticus 

E1 and Variovorax E3  

Of the enzymes discussed above three stood out as having some potential for metaldehyde 

degrading activity. They were annotated as RutA, RutB and a phenol hydroxylating enzyme. None of 

these pathways appeared to be directly transferred between the two species, contradicting the 

hypothesis that MDP is shared between the two metaldehyde degrading isolates, but the reactions 

predicted to be performed by these enzymes made them interesting. A BLASTp search against the 

NCBI non-redundant database showed that proteins with high similarity to the A. calcoaceticus E1 

PHOα and the Rut pathway proteins were present in other Acinetobacter. 

5.3.1.4 Identification of Acinetobacter strains with RutA and phenol 

hydroxylase genes  

Acinetobacter strains were identified that had, or were lacking, genes homologous to the genes 

annotated as encoding RutA, RutB and PHOα. This would allow a test of the hypothesis that one of 

these genes was responsible for metaldehyde degradation. 

Strain names were extracted from the results of BLAST searches using the protein sequences for 

RutA, RutB and PHOα. A survey of culture collections from which Acinetobacter strains identified 

could be purchased was conducted. Several strains with genes homologous (amino acid identity ≥ 

97.6%) to those for RutA, RutB and PHOα were found to be available from The Collection of Institut 

Pasteur (CIP; France). Strains were purchased, the details of which are given in Table 5-9. These 

strains were tested for metaldehyde catabolism using liquid cultures and solid media containing 

metaldehyde as the sole carbon source. None showed any signs of growth, indicating that these 

genes are not responsible for metaldehyde degradation. 
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Strain CIP 
number  

Other 
CC no. 

AA identity to Ac. E1 Isolation details Genome reference 

RutA RutB PHOα 

A. pittii 70.29  97.9% 97.6% 99.6% Cerebrospinal fluid  
(Seifert et al., 1994) 

NCBI bioproject 
183266 

A. calcoaceticus 110488  ANC 3680 98.7% 98.4% 3.0% Beech forest soil, Czech Republic, 2008 Nemec et al. (2011) 

A. pittii 110468  ANC 3678 98.4% 97.6% 99.8% Pond, Czech Republic, 2008 Nemec et al. (2011) 

A. calcoaceticus 110439 NIPH 13 25.0% 18.8% 3.0% Burn, Czech Republic, 1991.  Nemec et al. (1999) 

A. baylyi 107474T DSM 14961 84.1% 78.8% 3.0% Activated sludge, Australia (Carr et al., 2003) NCBI bioproject 
183290 

Table 5-9. Strains purchased form CIP. Where the strain is primarily known by another culture collection number in the literature, this is given as Other 
CC no. The highest amino acid identities found in each strain for 3 A. calcoaceticus E1 protein sequences are given. The location and date of the initial 
isolation of the strain is given, along with a literature reference where available. Where the publication of the strain’s genome is associated with a 
paper, this reference is given as the genome reference. Otherwise, the NCBI bioproject number is given; the project details can be retrieved by entering 
the number into the search field at www.ncbi.nlm.nih.gov/bioproject  

 

  

http://www.ncbi.nlm.nih.gov/bioproject
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5.3.2 Identification and evaluation of MDP candidates by intrageneric 

comparison of Acinetobacter genomes 

Intrageneric comparative genomics was performed using A. calcoaceticus E1, RUH 2202 and the 

strains given in Table 5-9. A survey of the genome A. calcoaceticus E1 was conducted to find proteins 

that were unique to the strain, a “unique” protein being defined as having BSR ≤ 0.4 when compared 

to any of the strains confirmed to lack metaldehyde catabolism. 

A histogram of the distribution of BSR for each other strain compared to A. calcoaceticus E1 is shown 

in Figure 5-15. The A. calcoaceticus have the highest frequency of sequences with BSR ≥ 0.9, as would 

be expected. The predicted proteome of A. baylyi is not very similar to that of A. calcoaceticus E1. 

 

Figure 5-15. Frequency of BSR values of A. calcoaceticus E1 putative gene sequences to 
different Acinetobacter strains.  

The detected protein family membership and domain signatures were retrieved for putative proteins 

from the A. calcoaceticus E1 genome that had BSR ≤ 0.4 against all Acinetobacter tested. Those with 

some annotation were manually reviewed, and those with a catabolic activity predicted were 

examined in more detail.  

Table 5-10 gives the number of genes remaining at each stage of this process. 
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Gene filter Remaining 

All genes 4395 100.0% 

Unique 669 15.2% 

Any annotation 273 6.2% 

Catabolic activity 29 0.7% 

 
Table 5-10. Number and percentage of total A. calcoaceticus E1 genes remaining that are 
unique (have BSR ≤ 0.4 against tested Acinetobacter strains), had any annotation (domain or 
family signatures detected by InterPro) and had annotation that indicated some kind of 
catabolic activity.  

The 273 genes with some annotation were categorised based on their classification by InterPro scan 

(Figure 5-16). The second most common category was of phage related genes. This group only 

includes those explicitly annotated as being phage proteins; many of the DNA processing and 

genes/domains of unknown function may also originate from phages. A plasmid mobilisation gene 

and 5 toxin/antitoxin genes were observed. These observations are consistent with the hypothesis 

that the genes more unique in a bacterial genome are more likely to have been horizontally 

transferred. 

 

Figure 5-16. Percentage of annotated unique genes that were assigned to different groups. The 
group of unknown genes is made up of those that were annotated as having an unknown 
function. 

5.3.2.1 Characterisation of A. calcoaceticus E1 proteins with low intrageneric 

homology 

The 29 unique genes predicted to have a catabolic function are discussed here. 

25% 21% 16% 13% 11% 6% 6% 2%

Metabolism Phage related Unknown DNA processing

DNA binding or TF Transport Misc Plasmid related
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Protein 1137 – Isochorismatase-like  

The A. calcoaceticus E1 predicted protein 1137 contains a isochorismatase-like domain (IPR000868). 

The isochorismate-like family of proteins is large and includes enzymes that act on substrates other 

than isochorismate such as RutB, discussed above. The reaction typically catalysed by enzymes with 

this domain signature is shown in Figure 5-17. This is the hydrolysis of an ether, making it of interest 

as a candidate for MDP. 

 

Figure 5-17. The reaction catalysed by isochorismatase. Isochorismate is hydrolysed to 
pyruvate and (2S,3S)-2,3-Dihydro-2,3-dihydroxybenzoate. Image is of R03037 taken from the 
KEGG website (Kanehisa et al., 2004) 

To obtain more information on the likely substrate of, and reaction catalysed by, protein 1137, its 

structure was predicted using SWISS-MODEL. The computed structure with the highest QMEAN4 

used the structure listed in the Protein Data Bank (PDB; Berman et al., 2000) as 4H17.1.b. This 

protein was isolated from Pseudomonas putida, and the computed structure had a QMEAN4 score of 

-3.75. Unfortunately, this protein had no published literature associated with it. The second best 

result was for the PDB structure 3LQY (Goral et al., 2012). The initial alignment resulted in 44% amino 

acid identity and the final structure had a QMEAN4 score of -4.12. This structure was of a protein 

from the Antarctic γ-proteobacterium Oleispira antarctica, a putative isochorismate hydrolase, 

referred to as OaIHL (Goral et al., 2012). Goral et al. performed in silico docking of OaIHL with 

isochorismate. In Figure 5-18 an image of the docking is presented (A) along with a ribbon model of 

the published structure for OaIHL (B), and the computed structure of protein-1137 (C). 
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Figure 5-18. A, Surface rendering of OaIHL with in silico docked isochorismate, taken from 
Goral et al. (2012). B, ribbon structure of OaIHL (3LQY). C, computed structure of protein 1137. 
The colours B and C indicate the degree of similarity between the two structures, blue is high 
and orange is low. 

The portion of the structures shown in orange in Figure 5-17B and C are not structurally conserved 

between the proteins. This unconserved region includes residues believed to interact with 

isochorismate in OaIHL and be involved in substrate selection (Goral et al., 2012). 

A catalytic triad of Asp-Lys-Cys were identified to be involved in the hydrolysis of the ether in OaIHL, 

based on their conservation in the family of enzymes and the in silico docking they performed (Goral 

et al., 2012). The structure of OaIHL and protein 1137 were superimposed over one another and 

these residues visualised (Figure 5-19).  

A 

B C 
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Figure 5-19. Ribbon structure of OaIHL (pink) and computed structure of protein 1137 (green).  
Residues of the catalytic triad of OaIHL, and residues that match these of protein 1137, are 
shown as sticks. 

It can be seen that the positions of the catalytic residues are predicted to have conserved positions 

between the two enzymes (Figure 5-19), consistent with the possibility that the two enzymes 

perform the same reaction on the same chemical group. The lysine is predicted to coordinate the 

ethereal oxygen (Goral et al., 2012). The cysteine in 3LQY has been modified to a sulfino-alanine 

(CSD125). Protein 1137 C118 aligns in space with the unmodified portion of CSD125. 

The initial step of the proposed reaction mechanism for OaIHL is protonation of the ethylene C3’ in 

the pyruvyl sidechain leading to water binding to the pyruvyl C2’ (Goral et al., 2012). For illustrative 

purposes a similar mechanism (though catalysed by a dissimilar protein) is shown for the hydrolysis 

of chorismate in Figure 5-20. Metaldehyde does not have an ethylene, but protonation of an ethereal 

oxygen could cause the depolymerisation of the molecule. 
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Figure 5-20. Reaction mechanism of chorismatase FkbO. Taken from Juneja et al. (2014). 

Examination of the genomic region of protein 1137 reveals it to be plasmid borne. The contig 

containing this protein is shown in Figure 5-21. On this contig are proteins predicted to be an initiator 

of plasmid replication (labelled as Rep); a complete and a partial plasmid mobilisation protein 

(MobA_MobL and Mob (partial)); and toxin-antitoxin proteins, YafQ and RelB/DinJ.  

A BLAST search of the protein 1137 amino acid sequence against the NCBI non-redundant database 

identifies the closest homologues as having 93% identity and 97% positive amino acids. The closest 

homologue in Variovorax E3 has 27.0% amino acid identity and 44.9% positives. 

Protein 1137 is a horizontally transferred protein, the catalytic core of which is structurally similar to 

enzymes known to perform ether hydrolysis. The portion of the enzyme that is involved with 

substrate binding and selection is not conserved indicating that the substrate is something other 

than isochorismate. These properties make it a good candidate for MDP. 
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Figure 5-21. The full contig that contains protein 1137 in the A. calcoaceticus E1 genome. Protein 1137 is shown in green. Genes identified by 
GeneMarkS are shown as boxes. 6 lanes show the 6 reading frames with vertical lines indicating stop codons. The scale gives base pairs.
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Proteins 1228, 2135 and 4392 – Esterases 

Proteins 1228, 2135 and 4392 have SGNH hydrolase-type esterase (IPR013830) domain signatures, 

detected by InterPro. The same segment of protein 1228 is also identified as a GDSL lipase/esterase 

domain (IPR001087). These domains were identified in the C-terminal portion of proteins 1228 and 

2135 (Figure 5-22). Only the N-terminal region of protein 4392 was available as it is truncated by the 

contig end. 

Protein 1228 

 
 

Protein 2135 

 
 Protein 4392 

 
Figure 5-22. The location of domains detected by InterProScan in three proteins, shown as bars. 
The scale gives amino acid residues. 

Esterases may hydrolyse an oxygen that is bound to two carbons, though the ester group is not found 

in metaldehyde. The catalytic residues of SGNH esterases are found in a groove in the protein (Wang 

et al., 2011; Baker et al., 2014; Wang et al., 2016) that may be accommodating to metaldehyde in 

overall shape (Figure 5-23). Related esterases have different patterns of electrostatic potential with 

similarly shaped catalytic cavities (Baker et al., 2014). 
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Figure 5-23. A rendering of the surface of the Pseudomonas putida SGNH esterase AlgJ. The 
dashed lines indicate the substrate binding area. The surface is coloured red where the 
electrostatic potential is negative and blue where it is positive. Taken from Baker et al. (2014). 

Automated structure prediction using SWISS-MODEL did not result in a reliable prediction for any 

protein. The best QMEAN4 for computed structures were -12.07 for protein 1228 and -10.71 for 

protein 2135. As the sequence of protein 4392 is truncated by the contig end no model was 

attempted. 

The gene for protein 1228 is found on a contig 74 kbp in length, in an apparent operon with 6 other 

genes, 5 of which are phage related. The genomic context of protein 2135 is similar; it is in an operon 

with 2 other genes, one of which is phage related. Genes immediately up and downstream of both 

1228 and 2135 are also phage related. The contig containing gene 4392 is only 2.5 kbp long and 

contains 4 other genes, all phage related. 

The probable function of these proteins is hard to predict. Most of the sequences are unannotated 

and the esterase domain predicted in protein 1228 is smaller than the smallest SGNH ester hydrolase 

domain in CathDB (Sillitoe et al., 2015), weakening the reliability of the prediction. Their structures 

are not very similar to any protein for which the structure is known. The fact that 3 proteins with 

similarly annotated domains occur in operons with several phage genes suggests that they are 

probably viral proteins of unknown function and not good candidates for MDP. 
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Protein 449 – Protease 

Predicted families Predicted domain 

Clp protease proteolytic subunit /Translocation-enhancing 
protein TepA (IPR023562) 

ClpP/crotonase-like domain 
(IPR029045) 

ATP-dependent Clp protease proteolytic subunit (IPR001907)   

 
Table 5-11. Predicted domain and family membership of protein 449. 

The sequence of protein 449 was classified as an endo peptidase (Table 5-11). As this would involve 

the lysis of a carbon-nitrogen bond, this enzyme was investigated further. Structure prediction using 

SWISS-MODEL selected PDB structure 1TG6 (Kang et al., 2004) as the template a structure was 

computed (Figure 5-24). 
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Figure 5-24. Computed structure of protein 449, as a heptamer. The colours show the degree of 
similarity between the computed structure and the template, blue is high and orange is low. 

The protein for which 1TG6 is the structure is a human mitochondrial serine protease, ClpP. An 

ATPase domain forms a similar ring to that shown in Figure 5-24 and the two rings together form a 

barrel. The ATPase domain is responsible for unfolding a protein and feeding the polypeptide into the 

barrel, and proteolysis is catalysed by residues in the middle of the ring shown in Figure 5-24 (Kang et 

al., 2004). 

The contig upon which protein 449 resides is 33 kbp long and exclusively contains phage genes, DNA 

manipulating genes and genes with no annotation. Serine proteases are known to be expressed by 

phages (Cheng et al., 2004). 

The mechanism by which ClpP-like proteases operate, a linear peptide delivered to the catalytic 

region by a protein unfolding domain, seems an unlikely origin for a metaldehyde degrading enzyme. 
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This, and the fact that protein 449 appears to be a phage protein, make it an unlikely candidate for 

MDP. 

Proteins 763, 3060 and 3973 – Cupins 

Signatures associated with cupin domains were detected in 3 proteins (Table 5-12). No family 

membership was detected for these proteins. 

Protein Predicted domains 

763 NAD(P)-binding domain (IPR016040) 

  RmlC-like cupin domain (IPR011051) 

  RmlC-like jelly roll fold (IPR014710) 

  
NAD-dependent epimerase/dehydratase, N-terminal domain 
(IPR001509) 

3060 RmlC-like cupin domain (IPR011051) 

  RmlC-like jelly roll fold (IPR014710) 

3973 Cupin 2, conserved barrel (IPR013096) 

  RmlC-like cupin domain (IPR011051) 

  RmlC-like jelly roll fold (IPR014710) 

 
Table 5-12. Predicted domains of some putative proteins from the A. calcoaceticus E1 genome. 

Cupin domains are named after their barrel structure, which is formed from a series of β-sheets. The 

catalytic area of enzymes that have this domain is inside the cavity formed, and contains a metal ion. 

There is a great deal of structural and catalytic diversity in cupin enzymes, though most are 

dioxygenases that act on carbon-carbon bonds (Dunwell et al., 2004). Other reactions catalysed by 

cupins include the oxidation of various C-H groups, demethylation (Loenarz & Schofield, 2011), thiol 

dioxygenation (Stipanuk et al., 2011) and the lysing of a thioether (Todd et al., 2011). No cupin 

oxygen etherases were found in a review of the literature, but the domains are capable of a diverse 

set of reactions, and so proteins 763, 3060 and 3973 were examined in more detail. 

The structures of the proteins were computed using SWISS-MODEL. The best QMEAN4 achieved for 

each protein is shown in Table 5-13 and the computed structures are shown in Figure 5-25. 

Protein QMEAN4 AA ident. Template 

3060 -6.03 0.28 1YHF.1.A 

3973 -4.68 0.29 1YFX.1.A 

764 -3.88 0.42 2ZKL.1.A 

 
Table 5-13. QMEAN4 of computed structures for the numbered putative proteins from the A. 
calcoaceticus E1 genome, using the specified templates. The amino acid identity (AA ident.) is 
given of the protein aligned to the template. 
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Figure 5-25. Computed ribbon models of the numbered putative proteins from the A. 
calcoaceticus E1 genome. The colours indicate the degree of similarity between the two 
structures, blue is high and orange is low. 

The similarity of proteins 3060 and 3973 to their templates does not support a functional comparison 

to the template. Protein 3060 is located in an operon with 2 viral proteins. Protein 3973 is in an 

operon with two genes with no predicted function. 

The template for protein 763 is Staphylococcus aureus CapF, which is involved in the biosynthesis of 

capsular polysaccharides (Miyafusa et al., 2012). The cupin domain of the S. aureus protein is an 

epimerase and the other domain acts as a reductase, catalysing the reactions shown in Figure 5-26.  
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Figure 5-26. Reactions catalysed by the protein CapF. Adapted from Miyafusa et al. (2012). 

The gene for protein 763 is in an operon with genes with classifications that are consistent with the 

biosynthesis of polysaccharides (Table 5-14).  

Given the structural similarity of protein 763 (Figure 5-25C) to a protein of known function, the 

substrate of which is dissimilar to metaldehyde, and the gene’s position in an operon, it is possible to 

rule out protein 763 as a good candidate for MDP. Proteins 3060 and 3973 are more difficult to 

judge, there is no particular reason to expect these proteins to act as metaldehyde degrading 

enzymes, but they also cannot be ruled out.   
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Gene 
No. 

Predicted domains Predicted family membership 

758 Pyridoxal phosphate-dependent transferase, major 
region, subdomain 2 

DegT/DnrJ/EryC1/StrS 
aminotransferase 

 Pyridoxal phosphate-dependent transferase   

 Pyridoxal phosphate-dependent transferase, major 
region, subdomain 1 

  

759 Pre-ATP-grasp domain Sialic acid O-acyltransferase NeuD-
like  

Trimeric LpxA-like   

760 Bacterial sugar transferase   

761 Glycosyltransferase subfamily 4-like, N-terminal 
domain 

  

 
Glycosyl transferase, family 1   

762 UDP-N-acetylglucosamine 2-epimerase domain UDP-N-acetylglucosamine 2-
epimerase WecB-like 

763 RmlC-like jelly roll fold   

 RmlC-like cupin domain   

 NAD-dependent epimerase/dehydratase, N-
terminal domain 

  

 NAD(P)-binding domain   

764 Polysaccharide biosynthesis protein, CapD-like 
domain 

  

 NAD(P)-binding domain   

 

UDP-glucose 4-epimerase CapD, C-terminal domain   

Table 5-14. Predicted domains and protein family of genes in the same operon as gene 763. 
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Protein 3185 – Patatin/phospholipase 

Protein 213 has a domain that was annotated as patatin/phospholipase A2-related (IPR016035) and 

acyl transferase/acyl hydrolase/lysophospholipase (IPR002641). Proteins with the IPR016035 domain 

includes lysophospholipases that act on ester bonds, but the substrate binding surface of these 

enzymes is large and the portion of the substrate bound is unlike metaldehyde (Figure 5-27). For this 

reason, protein 3185 was not judged a good candidate for MDP. 

 

 

Figure 5-27. The phospholipase A2 shown as sticks with a phospholipid substrate shown as a 
space filling model in the active site. Taken from Burke & Dennis (2009). 

Protein 3581 – leucyl aminopeptidase 

The domain signature detected in protein 3581 was a “Peptidase M17, leucyl aminopeptidase, N-

terminal” (IPR008283). Proteins with this domain typically cleave the N-terminal amino acid from 

polypeptides (Burley et al., 1990) but can also act on amino acid methyl esters (Arima et al., 2005). 

The best scoring SWISS-MODEL produced had a QMEAN4 of -5.69 using PDB 3H8G.1.A (Kale et al., 

2010) as the template. The template protein was 497 amino acids long, and putative protein 3581 is 

204 residues. Comparison of the computed structure to the template structure revealed that the 

portion of the enzyme that coordinates Zn+ ions, that are required for catalysis (Burley et al., 1990), 

were not present in protein 3581. The protein was not studied further. 

Others proteins 

A series of unique genes that are present in the A. calcoaceticus E1 genome are presented in Table 

5-15. These genes were not considered likely candidates for MDP based on their predicted substrates 
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and/or the type of reactions they catalysed. However, these putative proteins have not been 

examined in detail and have not been ruled out as candidates for MDP.    
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No. Domain   Family 

244 Xylose isomerase-like, TIM barrel domain   

371 Domain of unknown function DUF4325   

  Histidine kinase-like ATPase, C-terminal 
domain 

  

648 FAD/NAD(P)-binding domain   

718 Fatty acid desaturase domain   

762 UDP-N-acetylglucosamine 2-epimerase domain UDP-N-acetylglucosamine 2-epimerase 
WecB-like 

861 Peptidase S24/S26A/S26B   

  Peptidase S24/S26A/S26B/S26C   

  Peptidase S24/S26, beta-ribbon domain   

2904 Reductase, C-terminal   

  Pyridine nucleotide-disulphide oxidoreductase, 
dimerisation domain 

  

  FAD/NAD(P)-binding domain   

  FAD/NAD-linked reductase, dimerisation 
domain 

  

2905 Extradiol ring-cleavage dioxygenase, class III 
enzyme, subunit B 

  

2906 Rieske [2Fe-2S] iron-sulphur domain   

2908 NTF2-like domain Ring-hydroxylating dioxygenase beta 
subunit 

2909 Rieske [2Fe-2S] iron-sulphur domain   

  Aromatic-ring-hydroxylating dioxygenase, 
alpha subunit 

  

  Aromatic-ring-hydroxylating dioxygenase, 
alpha subunit, C-terminal domain 

  

2911 Alpha/beta hydrolase fold-1   

  Alpha/Beta hydrolase fold   

2913 Pyruvate carboxyltransferase 4-hydroxy-2-oxovalerate aldolase 

  Aldolase-type TIM barrel   

  DmpG-like communication   

2915 Fumarylacetoacetase, C-terminal-related   

3908 Luciferase-like domain   

3911 FAD/NAD(P)-binding domain   

  FAD-binding domain   

3976 NAD(P)-binding domain Acrylyl-CoA reductase AcuI 

  GroES-like 141 180 226 Alcohol dehydrogenase superfamily, 
zinc-type 

  Polyketide synthase, enoylreductase domain   

  Alcohol dehydrogenase, N-terminal   

  Alcohol dehydrogenase, C-terminal   

4193 Cell wall hydrolase, SleB   

4288 Nucleoside phosphorylase domain Nucleoside phosphorylase 

Table 5-15. Unique genes in the A. calcoaceticus E1 genome not examined in detail. 
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The nearly sequential numbering of genes 2904-2915 is due to their proximity in the A. calcoaceticus 

E1 genome. The nucleotide sequence of the genomic region containing genes 2904-2915 was queried 

against the against the NCBI non-redundant database. The top results are shown in Table 5-16.  

 

Table 5-16. Highest scoring BLAST hits from the querying of A. calcoaceticus E1 genomic region 
containing genes 2904-2915 against the NCBI non-redundant database. 

The top results are essentially the same strain of A. baumannii; strain R2091 is the result of 

experimental mating of CIP 70.10 with another A. baumannii (Krahn et al., 2016).  The last hit in 

Table 5-16 (to E. coli PCN033) is homologous to the region containing gene 2909 in A. calcoaceticus 

E1. This region was found in at least 40 other E. coli strains. This whole region is 12196 bp long and 

appears to have been horizontally transferred between several Acinetobacter species. 

5.3.3 Transformation of A. baylyi 107474T with a plasmid containing gene 

1137 

Natural transformation was performed using two 1 ml cultures of A. baylyi grown overnight in MSM 

+ 10 mM sodium acetate. Their OD600 was monitored over 2 hours to determine growth had stopped. 

Final OD600 values were between 0.42 and 0.46. 100 ng of plasmid DNA (pMAL-c4X + gene 1137) was 

added to one culture and the concentration of sodium acetate was increased by 10 mM in both 

cultures. The cultures were incubated for 3 hours at 30°C, OD600 of the plasmid treated culture had 

increased to 0.56 indicating growth had resumed. 100 µl from the both cultures were used to 
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inoculate LBA+100 µg/L ampicillin plates. These were incubated overnight at 30°C. Seven large 

colonies were present on the plate inoculated with plasmid treated culture along with ~200 barely 

visible colonies. No colonies were visible on the plasmid free plate. Both plates were incubated again 

overnight at 30°C. No colonies appeared on the plasmid free plate. All colonies continued to grow on 

the plasmid treated plates. The smaller colonies were uniformly distributed over the plate, and did 

not appear to be satellite colonies. Three of the large colonies were streaked onto LBA+amp plates 

and incubated overnight, then one colony from each of these streak plates was used to inoculate 1 

ml MSM + 150 mg/L metaldehyde and MSMA+metaldehyde plates both with 100 µg/L ampicillin and 

1 mM IPTG. No growth was seen on metaldehyde media. Three 1 ml MSM + metaldehyde + 100 µg/L 

ampicillin with 0, 0.5, 1 or 2 mM IPTG cultures were inoculated with an A. baylyi transformant 

colony. The cultures were incubated overnight at 30°C, and lysate in 1× SDS loading buffer was 

produced as described in the methods (Appendix 7.1.6). 10 µl samples of lysate from each culture 

was run on a 15% acrylamide SDS-PAGE gel and protein bands visualised using Coomassie stain 

(Figure 5-28). The predicted mass of protein 1137 is 19.5 kDa. No additional band of this mass is 

apparent in Figure 5-28 in the cultures treated with IPTG indicating that the protein is not being 

expressed. 

 

Figure 5-28 . 15% acrylamide SDS-PAGE gel of lysate of transformants grown with different 
concentrations of IPTG to induce the expression of protein 1137. 
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5.4 Discussion 

In this chapter the genomes of the two metaldehyde degrading isolates, A. calcoaceticus E1 and 

Variovorax E3, were compared with each other and with Acinetobacter strains shown to not degrade 

metaldehyde in order to identify putative proteins that are good candidates for the primary 

metaldehyde degrading protein. Two experiments were conducted.  

5.4.1 Detecting MDP candidates by intrageneric homology between the 

isolates 

The first HGT scenario tested here was that the two isolates recently acquired the genetic material 

that enables growth on metaldehyde from the same source, or from one another. No candidate for 

MDP fit this scenario. Only the mercury resistance pathway presented in Section 5.3.1.2 appears to 

been recently shared between the two isolates. Other proteins and pathways discussed may 

represent homologous sequences that have a shared origin, however this shared origin may be far in 

the past and not the result of a recent shared environment.  

It is not obvious how low a BSR can be and still be informative of a catabolic activity that is shared 

between the two proteins. The substitution of a single residue can result in a loss of function, a fact 

utilised in many protein mutagenesis experiments to identify catalytic residues, while residues that 

are not crucial to the protein’s structure or directly involved in the interaction of the protein with 

other molecules may be more free to change.  

Based on the reactions predicted to be catalysed by them, three enzymes (RutA, RutB and phenol 

hydroxylase) were thought to have some potential as candidates for MDP. Acinetobacter strains 

containing close homologues to these genes were not able to utilise metaldehyde as sole carbon 

source. This was not a definitive test for the A. calcoaceticus E1 proteins’ hypothetical role as MDP as 

the equivalent genes may not be constitutive. 

5.4.2 Detecting MDP candidates by lack of intrageneric homology in 

Acinetobacter strains 

The second analysis (Section 5.3.2) tested the scenario that metaldehyde catabolism was performed 

by different enzymes in the two strains. This scenario is supported by the difference in affinity for 

metaldehyde between the two strains and the failure of the previous analysis to identify recently 

shared genes that are good candidates for MDP. Amino acid sequences that were unique to A. 

calcoaceticus E1 and were not found (BSR ≤ 0.4) in other Acinetobacter strains, incapable of 

metaldehyde catabolism, were examined. This successfully identified horizontally transferred 

material in the form of plasmid borne sequences, prophages and a genomically borne pathway that 
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has 93% nucleotide similarity to A. baumannii strain CIP 70.10, isolated in France, in 1970 (Bonnin et 

al., 2012).  

A plasmid borne protein with a predicted function consistent with MDP was identified, the 

isochorismate hydrolase-like protein 1137. This protein is not present in Variovorax E3. The 

expression of the protein in A. baylyi CIP 10747T was attempted but does not appear to have been 

successful. Unfortunately, identifying the reason for this, or trying other hosts such as A. 

calcoaceticus CIP 110488, CIP 110439 or E. coli using the pET vector described in Section 5.2.6 was 

not possible in the time available. Natural transformation of A. calcoaceticus RUH 2202 was 

attempted, but it was found to not be a suitable host due to a low level of ampicillin resistance (data 

not shown). 

When defining unique genes, the BSR value of ≤ 0.4 was chosen arbitrarily, following Rasko et al. 

(2005) who chose this value as the cut-off for conserved versus not conserved genes in their analysis. 

There is no a priori reason for assuming that horizontally transferred genes with novel functions 

would not have a BSR higher than this. The number of A. calcoaceticus E1 genes that have BSR less 

than different cut-off BSR values to all of the Acinetobacter strains given in Table 5-9 is shown in 

Figure 5-29. F. Horizontally transferred genes are likely to be found at higher BSR cut-off values. 

 

Figure 5-29. Frequency of predicted protein sequences in the A. calcoaceticus E1 genome that 
have BSR ≤ a range of cut-off values to all other Acinetobacter tested. 
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It is possible that the true MDP is undetectable by these methods. Should the reaction be catalysed 

by a domain that has not been investigated and does not have a signature in any protein database; if 

the protein does not contain domains recognised as catalysing a reaction similar to that which would 

be expected to degrade metaldehyde; or if MDP is very similar to proteins in strains that don’t 

degrade metaldehyde (the ability in A. calcoaceticus E1 is the result in a change of enzyme 

regulation, for example) then MDP could never be identified by the methods used here. 

As the cost of obtaining a bacterial genome continues to decrease, the library of prokaryotic 

genomes increases, and the number and diversity of characterised proteins increases the greater the 

potential this method has for detecting candidates for a metabolic activity of interest. Some enzymes 

would never be detected this way, but an automated pipeline could make the genomic comparison 

trivial to perform where the genomes are available.  
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Chapter 6:  Final discussion 

Prior to the start of this work it was known that metaldehyde is metabolised by soil microorganisms, 

producing acetaldehyde as an intermediate and carbon dioxide as the final product. Nothing was 

known about the identity or nature of the organisms performing the metabolism. In the work 

presented here, two domestic soils yielded bacterial isolates capable of utilising metaldehyde for 

growth. Acinetobacter calcoaceticus were isolated from both soils, while Variovorax was isolated 

from only the soil that had a history of metaldehyde treatment. Two isolated colonies (A. 

calcoaceticus E1 and Variovorax E3) were cultured from the soil with metaldehyde history. 

To confirm that metaldehyde was being utilised for growth, and to quantify the degree to which the 

organisms could degrade metaldehyde required the application of liquid chromatography-mass 

spectrometry (LCMS). An improvement to the LCMS method used by the Food and Environment 

Research Agency to quantify metaldehyde was developed here. The alterations to solvation 

temperature and capillary voltage recommended in this work were adopted in their commercial and 

regulatory work. The lowered solvation temperature is likely to be an improvement over most 

previously published LCMS methods (Li et al., 2010; Zhang et al., 2011b).  

Characterisation of the metabolic pathway by which metaldehyde is degraded was conducted in A. 

calcoaceticus E1. It showed the most promise for future work due to its faster growth rate, 

propensity to form distinct colonies (a convenient trait when performing genetic manipulations), and 

greater affinity for metaldehyde. Quantification by the improved LCMS method showed that the 

isolate is able to degrade metaldehyde to below the legal maximum concentration in drinking water 

of 0.1 µg/L. Evidence was also found that acetaldehyde is a metabolic intermediate in A. 

calcoaceticus E1; the metaldehyde dependent expression of an aldehyde dehydrogenase and 

consequent high maximum flux observed when oxidising acetaldehyde. This is in alignment with 

what was seen in microcosms using radioactively labelled metaldehyde. The acetaldehyde 

dependent reduction of β-NAD+ by an acetaldehyde dehydrogenase is a possible method by which a 

metaldehyde detecting biosensor could operate, and so confirmation that this intermediate is 

produced is a confirmation of the potential future utility of the isolated A. calcoaceticus E1. 

Exploitation of the metaldehyde degrading capacity of A. calcoaceticus E1 depends upon the 

identification of the primary metaldehyde degrading protein (MDP). Traditional genetics methods 

were attempted, but failed. Comparative genomics methods were developed based on hypotheses 

involving horizontal gene transfer. Initially these methods used absolute differences in the BLAST 

scores to identify genes more similar in the degrading strains. The BLAST score ratio (BSR) method 

was adopted after discovery of the paper describing it (Rasko et al., 2005). It was found that the two 
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metaldehyde degrading isolates do not appear to share any genetic material that could plausibly 

thought to degrade metaldehyde, indicating a separate origin for this ability in the isolates. One good 

candidate for MDP was found by characterising enzymes not found in Acinetobacter outside of A. 

calcoaceticus E1. Protein 1137 is predicted to have the conserved features of an ether hydrolysis, but 

a different substrate than similar proteins that have been previously studied. BSR has been used to 

identify genes associated with the development of pathogenicity in A. baumannii, but does not 

appear to have been used to identify genes with novel functions before. Should the isochorismatase-

like Protein 1137 be found to be the primary metaldehyde degrading enzyme, then this would 

demonstrate this novel method has the potential to identify interesting candidate genes.  

Investigations of bioremediation could be conducted using A. calcoaceticus E1 as is, perhaps with 

some artificial selection to improve its ability to remediate. Beyond this, the primary focus of any 

future work should be the identification of the primary enzyme that acts to depolymerise 

metaldehyde. To do this, it would be best to develop methods of genetic manipulation in A. 

calcoaceticus E1. The genetic plasticity of the Acinetobacter genus could be utilised to achieve this. 

The organism contains genes that are predicted to act as DNA transporters, and likely can be 

transformed by linear DNA. Constructs with homologous sequence to the gene of interest, 

interrupted by an antibiotic resistance gene, would be expected to cause the targeted disruption of 

genes by homologous recombination when transformed into the strain. This method could then be 

used to test the candidate genes identified by comparative genomics. Should this targeted method 

fail, the construction of a random knock-out library could be performed, as described by Metzgar et 

al. (2004). Once identified, the characterisation of the enzyme and development in a remediation 

technology, or in a biosensor could begin.  
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Appendix 

7.1 General materials and methods 

7.1.1 Media 

7.1.1.1 Minimal media 

Minimal salts media (MSM) were prepared using the concentration of salts given in Table 3-1 

dissolved in ultrapure water. The salts solution was autoclaved. For solid plates 1.5 g agarose would 

be added to 200 ml MSM prior to autoclaving. Agarose was used in place of agar to eliminate 

carbohydrates from the plates that could be used for growth by organisms. 2 ml of a trace elements 

solution (Vishniac & Santer, 1957; Table 7-2) (Vishniac & Santer, 1957 Table 7-2) was added for each 

1 litre of salts solution.  

 Concentration (mM) 

Na2HPO4 55 

KH2PO4 11 

NH4Cl 6 

MgSO4 0.4 

 
Table 7-1. Salts concentrations for minimal media. All manufactured by Fisher Scientific. 

 

 Concentration (mM) 

Na2EDTA 140 

ZnSO4 7.6 

CaCl2 37 

MnCl2 25 

FeSO4 18 

(NH4)Mo7O24 0.9 

CuSO4 6.4 

CoCl2 6.7 

 
Table 7-2. Concentration of compounds in trace elements solution. 

Up to 150 mg/l (0.851 mM) metaldehyde was added to liquid media in powder form and dissolved 

overnight on a magnetic stirrer. When used in solid media molten MSM-agarose would be cooled in a 

water bath to 50°C and 100 mg metaldehyde would be added to 200 ml molten agarose. Agarose 

plates with metaldehyde added will be referred to as “metaldehyde plates” those with no added 

carbon substrate will be referred to as “no-carbon plates”. 
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Sodium acetate, when used, was dissolved in DI water at 1 M concentration, filter sterilised, and 

added to MSM to achieve the desired concentration, typically 10 mM. 

7.1.1.2 Lysogeny broth (LB) and LB agar 

This medium was made using 5 g yeast extract (Formedium, Hunstanton, UK), 10 g granulated 

triptone (Melford), and 10 g sodium chloride (Sigma-Aldrich) per 1 litre of deionised water. For solid 

media 3 g of granulated agar (bacteriological grade; Formedium) was added to 200 ml LB in 250 ml 

flasks and autoclaved. Molten agar may be cooled to 50°C before the addition of antibiotics, or used 

without antibiotics, and poured into 20 cm plates and allowed to set and dry in a laminar flow hood 

for 15 minutes. 

7.1.2 Glycerol stocks 

A single colony was streaked onto a media plate and incubated with antibiotics and media 

appropriate for the strain. Growth from the streak plate was collected using a sterile loop and 

suspended in 1 ml of filter sterilised 1:1 LB:glycerol (Sigma-Aldrich) mixture in a 1.5 ml tube. The 

mixture was flash frozen in liquid nitrogen and stored at -80°C. Stocks would be tested several days 

later by using a heated metal loop to melt some of the stock and streak it onto the appropriate solid 

medium. Plate stocks were made using the same heated loop method. 

7.1.3 Polymerase chain reaction 

The polymerase chain reaction (PCR) was used for amplifying specific sections of DNA from template 

DNA. A Px2 Thermal Cycler (Thermo Electron, MA, USA) was used. Two general PCR preparations 

were used, a GoTaq (Promega) preparation for low fidelity reactions and a Phusion High-Fidelity 

(Thermo Scientific) preparation was used when proofreading was necessary. GoTaq reactions were 

made up of reagents given in Error! Reference source not found. and Phusion reactions reagents are 

given in Error! Reference source not found.. Total reaction volumes were 20 or 50 µl. 

Reagent Final concentration 

5X GoTaq Green Buffer 1X 

dNTPs 0.2 mM each 

Forward and reverse primers 0.5 µM each 

GoTaq DNA polymerase 0.025 U/µl  

 
Table 7-3. Final concentrations of reagents used in GoTaq PCR reactions.  

 

Reagent Final concentration 

5X Phusion HF Buffer 1X 

dNTPs 0.2 mM each 
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Forward and reverse primers 0.5 µM each 

Phusion DNA polymerase 0.02 U/µl  

 
Table 7-4. Final concentrations of reagents used in Phusion PCR reactions. 

Specific thermocycle programs used in specific experiments are given in the text.  

Where colony PCR was performed, template DNA was delivered to the reaction mixture by lightly 

inserting a small sterile pipette tip into a colony and immersing the tip into the reaction mixture.  

7.1.3.1 Primers used for 16S amplicons 

8F  AGA GTT TGA TCC TGG CTC AG 
785R   GGA TTA GAT ACC CTG GTA GTC C 
U1492R  GGT TAC CTT GTT ACG ACT T 
 
Oligos purchased from Sigma-Aldrich, suspended to 100 mM in ultrapure water, 10 mM working 

stocks prepared by dilution with ultrapure water. 

7.1.4 Gel electrophoresis of DNA 

A stock of 10 × TBE buffer was prepared using 110 g tris(hydroxymethyl)aminomethane (Ultrapure 

Tris; Invitrogen), 55 g boric acid (Fisher), 12 g ethylenediaminetetraacetic acid (EDTA; Fisher) per litre 

of deionised water. 1 × working solution prepared by dilution with deionised water. 

Agarose gels for electrophoresis of DNA were typically produced using 40 ml 1 × TBE buffer with 1.2% 

(w/v) agarose (Melford) was added. The mixture was brought to boiling in a microwave to dissolve 

the agarose and then cooled at room temperature for 15 minutes. 4 µl SYBRsafe (Invitrogen) DNA 

stain was added and mixed by manual rotation. The mixture was left to set in a mould, including well 

moulds, for 1 hour. Gels were submerged in 1 × TBE in the electrophoresis chamber. If required 

samples to be analysed were treated with 6 × loading dye (NEB). Typically, 5-20 µl of samples were 

added and the gel run at 100 V for 1 hour before being imaged using a GeneGenius Bio Imaging 

System (Syngene). Alterations to the overall brightness, contrast and gamma of the image were 

sometimes made using GeneSnap V6.00.19. 

7.1.5 Restriction digests 

Restriction digests were performed using New England Biolabs (NEB) buffers and enzyme 

preparations following the manufacturer’s instructions unless otherwise stated in the results. 
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7.1.6 sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-

PAGE) 

Resolving gel mixtures were prepared with 2.4 ml dH2O, 2.4 ml Tris pH 8.8, 0.1 ml 10% (w/v) SDS, 5 

ml acrylamide (stock 30% acrylamide, 0.8% bis-acrylamide (w/v); Protogel, National Diagnostics – 

Atlanta, USA), 50 µl 10% (w/v) ammonium persulphate (APS; Sigma-Aldrich) and 8 µl 

tetramethylethylenediamine (TEMED). Stacking gel mixtures were prepared with 3.2 ml dH2O, 1.25 

ml 0.5 M Tris pH 6.8, 50 µl 10% SDS, 25 µl 10% APS and 8 µl TEMED.  

2x Loading sample buffer was prepared using 100 mM Tris-Cl (pH 6.8), 4% (w/v) SDS, 0.2% (w/v) 

bromophenol blue (Sigma-Aldrich), 20% (v/v) glycerol and 200 mM β-mercaptoethanol (Sigma-

Aldrich). 

Cell lysate was prepared by dilution 1:1 with 2X sample loading buffer, followed by 10 minutes 

heating at 98°C on a heating block (Grant, Shepreth, UK). 

7.1.7 Basic Local Search Alignment Tool (BLAST) methods 

BLAST (Camacho et al., 2009) hosted by National Center for Biotechnology Information (NCBI) which 

is accessed using the URL http://blast.ncbi.nlm.nih.gov/Blast.cgi, was used to find homology with 

DNA and protein sequences in NCBI databases. Protein and DNA sequences were uploaded to query 

the non-redundant protein sequences database using blastp and the nucleotide collection database  

using megablast respectively, both using default settings unless otherwise stated. 

Locally run BLAST searches of specific subject sequences (e.g. a FastA file containing genomic contigs) 

used BLAST+ V2.2.28 installed on a local personal computer. 

BLAST results were typically saved or downloaded in XML format and parsed using Biopython v1.62 

or higher. 

  

http://blast.ncbi.nlm.nih.gov/Blast.cgi
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7.2 Fits of oxygen utilisation data 

Oxygen utilisation curves produced by A. calcoaceticus E1 cells grown with metaldehyde, washed and 

resuspended to OD600 1.0 in 100 mM pH 7 phosphate buffer that have been treated with 

metaldehyde or acetaldehyde. Curves have been constructed by fitting Model B – a 3 reaction model, 

the first has Michaelis-Menten kinetics, the second linear kinetics and the 3rd is the oxidation factor; 

see Section 4.2.6. 



194 

 

Figure 7-1. (Continued next page) 
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Figure 7-1. Oxygen utilisation data, first presented in Figure 4-10, of A. calcoaceticus E1 treated 
with metaldehyde (black curves); curves constructed by fitting Model B (green); residuals 
shown in red. Fitted parameter values are shown to the right of each chart with calculated 
standard deviations expressed as a percentage. 
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Figure 7-2. (Continued next page) 



197 

 

Figure 7-2. Oxygen utilisation data, first presented in Figure 4-11, of A. calcoaceticus E1 treated 
with metaldehyde (black curves); curves constructed by fitting Model B (green); residuals 
shown in red. Fitted parameter values are shown to the right of each chart with calculated 
standard deviations expressed as a percentage. 
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Figure 7-3. (Continued next page). 
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Figure 7-3. Oxygen utilisation data, first presented in Figure 4-12, of A. calcoaceticus E1 treated 
with metaldehyde (black curves); curves constructed by fitting Model B (green); residuals 
shown in red. Fitted parameter values are shown to the right of each chart with calculated 
standard deviations expressed as a percentage. 
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Figure 7-4. (Continued next page) 
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Figure 7-4. Oxygen utilisation data, first presented in Figure 4-14, of A. calcoaceticus E1 treated 
with metaldehyde (black curves); curves constructed by fitting Model B (green); residuals 
shown in red. Fitted parameter values are shown to the right of each chart with calculated 
standard deviations expressed as a percentage. 
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Abbreviations 

AA Amino acid 
Abbr. Abbreviation 
Ace. Acetate 
ALDH Aldehyde dehydrogenase 
ANI Average nucleotide identity 
ANOVA Analysis of variance 
APS Ammonium per sulfphate 
ATP Adenosine triphosphate 
BLAST Basic local alignment search tool 
BSR BLAST score ratio 
CC Culture collection 
CIP  Collection of the Institut Pasteur 
CSD Sulphino alanine 
DNA Deoxyribose nucleic acid 
DDH DNA-DNA hybridisation 
DNT 2,4-dinitrotoluene 
DT Degradation time 
DTT Dithiothreitol 
DWI  Drinking Water Inspectorate 
EDTA Ethylenediaminetetraacetic acid 
ESI Electro-spray ionisation 
FERA Food and Environment Research Agency 
FWER Family-wise error rate 
GC Guanine-cytosine 
HGT Horizontal gene transfer 
HSD Honestly significant difference 
Inf Infinity 
IPR InterPro 
IPTG Isopropyl β-D-1-thiogalactopyranoside 
IQD Interquartile distance 
KS  Kolmogorov-Smirnov 
KM Michaelis-Menten constant 
LB Lysogeny broth 
LC Liquid chromatography 
LCB Locally colinear block 
LCMS Liquid chromatography-mass spectrometry 
LD Lethal dose 
LOQ Limit of quantification 
m/z Mass-charge ratio 
MA Metaldehyde 
MBP maltose binding protein 
MDP Metaldehyde degrading protein 
Met. Metaldehyde 
Min. Minute 
MS Mass spectrometry 
MSM Minimal salts media 
NADH Nicotinamide adenine dinucleotide 
NCBI National Center for Biotechnology Information 
NEB New England BioLabs 
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OD Optical density 
ORF Open reading frame 
OTU Operational taxonomic unit 
PB Phosphate buffer 
PCR Polymerase chain reaction 
PDB Protein Database 
PHO Phenol hydroxylase 
RNA Ribose nucleic acid 
RSD Relative standard deviation 
SDS-PAGE sodium dodecyl sulfate polyacrylamide gel electrophoresis 
SE Standard error 
SPE Solid phase extraction 
SSF Slow sand filter 
TE Tris-EDTA 
TEMED Tetramethylethylenediamine 
Temp. Temperature 
UK United Kingdom 
UV Ultraviolet 
Vmax Maximum velocity of a reactio
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