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Abstract 

Macroalgae represent a diverse and abundant resource, containing an array 

of unique chemicals with useful properties. These chemicals include: alginate, 

a long chain carbohydrate with gelling properties; laminarin, a carbohydrate 

consisting of glucose residues, which is readily fermented; mannitol a sugar 

alcohol that can be used as an artificial sweetener and fucoidan, a sulphated 

polysaccharide famed for its biomedical properties. Their current use in 

industry is minor, with the main focus being as a food source and for alginate 

extraction. However, there is great potential for this feedstock in chemical and 

fuel production, especially for biorefinery development, which makes use of 

the whole resource by providing multiple products from one feedstock. Brown 

macroalgae offer the most promising option in Northern Europe, being the 

largest and most fast growing of the seaweed species, as well as being 

plentiful around the coast of the UK with the potential for cultivation alongside 

harvesting from wild stock.  

A potential barrier to the use of seaweed in industry is their seasonal variation 

in chemical content. In order to fully understand this, a study detailing the 

variations in carbohydrates, protein and ash, as well as a detailed study into 

the variation in composition and structure of fucoidan, identified as the most 

valuable of the potential extraction products due to its interest in the 

pharmaceuticals market, have been conducted. Three species of brown 

macroalgae, Fucus serratus (FS), Fucus vesiculosus (FV) and Ascophyllum 

nodosum (AN), have been analysed over a 12 month period. The results 

indicate that mannitol, laminarin and fucoidan are all highest at the end of the 

growing season in late summer and that ash, alginate and protein are highest 
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during the winter months. The composition and structure of fucoidan is also 

seen to vary over the year, with FS having the highest sulphate content and 

results indicating a consistently more branched structure than was seen for 

FV and AN. 

In order to make the best use of the macroalgal feedstock, a three step 

hydrothermal microwave assisted biorefinery is proposed, with utilisation of 

the waste as a feedstock for fuel production or as a fertiliser being considered. 

For this, a sample of FS, identified in the seasonal variation study to have the 

best potential for chemical extraction, has been used. A low temperature step 

at 50°C in water firstly removes mannitol and a portion of the salts, followed 

by processing at 120°C in water to extract fucoidan and alginate. Alginate is 

precipitated from the extract with calcium carbonate and fucoidan with 

ethanol. The final step is processed at 120°C with sodium chloride to extract 

the remaining alginate from the residue. A mass balance of the proposed  

biorefinery shows that 90% of mannitol, 79% of fucoidan and 79% of alginate 

have been extracted during processing. A study into the quality of the fucoidan 

extracted by microwave heating is comparable to that extracted from the raw 

biomass by conventional means. A comparison of microwave and 

conventional heating shows the benefits in using microwaves, with decreased 

extraction temperature and a full energy balance of the system significant 

energy reductions associated with microwave heating on a laboratory scale. 
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Introduction 

It is widely accepted that anthropogenic greenhouse gas (GHG) emissions are a 

significant factor causing change in climate conditions, with levels of carbon 

dioxide (CO2) already reaching 391 ppm, more than 100ppm higher than pre 

industrial levels [1]. In an attempt to curb further emissions and changes in 

climate, the UK government introduced the Climate Change Act [2], which 

legislates that the UK must reduce its GHG emissions by 80%, from a 1990 

baseline, by 2050. In order to meet these targets, utilisation of sustainable 

feedstocks, such as biomass, for the production of green chemicals and fuel is 

important, replacing fossil fuel derived alternatives. To date, there are 4 main 

classifications of biofuel feedstock, which also largely correspond to green 

chemical production, classified on the type of biomass being utilised. They are: 

first generation biofuels, derived from simple materials (such as mono-

/disaccharides, starch etc…) found in traditional food crops, including corn, wheat 

and sugar cane [3]; second generation biofuels, derived from lignocellulosic, non-

food crops such as wood, organic waste, food crop waste and grasses [4]; third 

generation biofuels, derived from higher yielding biomass which have the 

capacity to produce more fuel from a smaller area such as micro- and macroalgae 

, and finally, fourth generation biofuels which utilises carbon capture and storage 

(CCS) along with any of the above feedstocks to create an overall carbon 

negative process (e.g. BECCS). 

The initial inspiration for this thesis was to extract a high value chemical from 

seaweed prior to biofuel production, in order to improve the economics and 

produce a competitively priced alternative to conventional fossil based fuels or to 

first and second generation biofuels, from terrestrial crops. A significant portion 

of GHG emissions come from the transport sector: in 2011, 21.5% of the UK’s 
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total GHG emissions are attributed to transport [5], this is an important area for 

reductions in terms of meeting government targets. One way in which to achieve 

this is through the replacement, either in part or fully, of fossil based fuels with 

those derived from organic matter, otherwise known as biofuels. Current UK 

policy mandates the blend of 4.75% biofuel with both petrol and diesel under the 

Renewable Transport Fuel Obligation (RTFO) [6]. This policy applies to suppliers 

producing more than 450,000 litres of fuel per year and uses a complicated 

certificate and buyout scheme to regulate it. Current engine technology allows a 

5% v/v blend of bioethanol with petrol without any engine modification and up to 

an 85% v/v blend in flex-fuel engines [7]. While heat and electricity can be 

produced by a range of renewable sources (such as wind, solar etc…), the need 

for high energy density, low volume energy storage required by the transport 

sector make biomass derived fuels likely to be the only viable alternative to 

traditional fossil based fuels under the current transport infrastructure [4]. There 

are many benefits to using biofuels over the obvious reduction in GHG emissions. 

These include: improved air quality; waste reduction; vehicle performance and 

additional agriculture markets [8].   Currently, the majority of this mandate in the 

UK is fulfilled with imported, food crop based fuels, such as corn or sugarcane, 

which in some cases have a questionable carbon footprint [9]. Through a shift to 

UK based feedstocks for biofuel production, greater GHG savings could be 

achieved, while also making use of an plentiful resource. 

Seaweed is a third generation feedstock and common around the coast of the 

UK and offers a good alternative to land-based biomass for these applications, 

being an abundant resource, accounting for  30-50 million tonnes of biomass 

around the coast of Scotland alone [10]. Considering only around 25 million 

tonnes per year worldwide [11], is used currently for industrial purposes there is 
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clearly room for considerable expansion of the seaweed industries. Table 0.1 

gives a breakdown of the recent and total potential harvest from regions around 

the world for brown macroalgae, and highlights the disparity between current 

usage and total production worldwide. Furthermore, seaweed, being a water-

based plant, doesn’t compete with food crops for land space, thereby overcoming 

the “food vs fuel” issue of terrestrial plants and are able to grow in three 

dimensions, meaning that more biomass is produced per unit area than terrestrial 

plants. Coupled with their fast growth rate, approximately two times higher than 

the productivity of sugarcane and five times higher than corn [12], high 

photosynthetic efficiency, reportedly 6 to 8% compared to 1.8 to 2.2% for 

terrestrial sources [13] and wide range of unique chemicals and applications, 

seaweed makes a very attractive feedstock for chemical and fuel production. 

These chemicals include the storage carbohydrates laminarin and mannitol, both 

of which have been shown to be possible feedstocks for bioethanol production 

[14], but could also be used as a building block chemicals for other green 

chemicals. Alginate, a carbohydrate composed of uronic acids, is already widely 

extracted from seaweed for use as a thickener in the food industry, due to its 

gelling properties [15]. Finally, fucoidan, a sulphated polysaccharide, is of interest 

due to its biomedical properties, including anti-cancer [16] and anti-viral 

behaviour [17]. The specific properties it displays are largely dependent on its 

structure, which vary with species, season, harvest location and plant maturity 

[18]. 
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Table 0.1: Total harvest and potential output of brown seaweed from different 
locations around the world. (Adapted from [19]) 

Area Brown Algae (in ‘000 metric tonnes) 

Recent Harvests Potential Output 

Arctic - - 

Northwest Atlantic 6 500 

Northeast Atlantic 223 2 000 

West Central Atlantic 1 1 000 

East Central Atlantic 1 150 

Mediterranean and Black Sea 1 50 

Southwest Atlantic 75 2 000 

Southeast Atlantic 13 100 

West Indian Ocean 5 150 

East Indian Ocean 10 500 

Northwest Pacific 825 1 500 

Northeast Pacific - 1 500 

West Central Pacific 1 50 

East Central Pacific 153 3 500 

Southwest Pacific 1 100 

Southeast Pacific 1 1 500 

Antarctic - - 

Total (approx.) 1 315 14 600 

The shift towards the development of biorefineries, defined by the IEA as “the 

sustainable processing of biomass into a spectrum of marketable products and 

energy” [20], as a means to increase production while minimising feedstock and 

energy requirements is becoming more prevalent as a means to reducing GHG 

emissions. In order to make full use of macroalgae as a feedstock, the 

development of a biorefinery is important. There are many schematics possible, 

depending on the desired end product, but the ability to extract useful and high 

value chemicals and use the remaining “waste” biomass for fertiliser or fuel 

production ensures the resource is used to its full potential, gaining maximum 

value for minimum cost. Furthermore, by integrating several extraction processes 
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together, it is possible to incur further energy savings by heat integration and 

solvent recycling; an activity which is not possible if different chemicals are 

extracted in different places. Although there is a lot of literature instilling the need 

for macroalgal biorefineries, there is currently little research into actual 

schematics, extraction efficiencies and the best set-up for chemicals of interest. 

Furthermore, of the work so far presented, none attempt to further reduce the 

energy requirements by considering the impact of chemical use and alternative 

heating sources for extraction. The ability to reduce or eliminate chemicals, while 

still gaining good extraction yields is important for a low carbon process, as there 

are processing and energy requirements to produce those chemicals. Being able 

to process in water alone would significantly reduce the environmental impact of 

a process, as well as reducing operating costs. Furthermore, the use of 

alternative heating sources, such as microwaves, would also reduce energy 

requirements, both reducing costs and environmental impact. Microwaves are 

famed for their reduced energy requirements, due to the way in which the 

biomass is heated evenly throughout as the microwaves penetrate to the centre 

of the material and heat via the friction of rotating polar molecules, rather than 

from the outside in as is the case in conventional, convection heating. 

Furthermore, they are reported to give more even heating, higher reproducibility, 

fast and selective heating, ease of automation and increased safety. 

Furthermore, the high levels of polar salts present in seaweed make it an ideal 

candidate for microwave heating, which uses these polar molecules to heat and 

will, therefore, require less energy for the same heating with increasing polarity 

of the material. 

The chemical content of seaweed is known to vary seasonally, with harvest 

location, weather conditions and plant maturity [21]. These differences in the 
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chemical content would have a marked impact on an industrial process, where 

consistent production is key and, therefore, detailed documentation of these 

variations is important. Currently, there is little published research documenting 

the seasonal variation of brown seaweeds common the UK coastline, the majority 

of which dates from the 1950’s [21-24]. Of these studies, only one focuses on 

Fucoids, a class of brown macroalgae common to the UK coastline and is of 

interest due to their high fucoidan and relatively low ash content [25]. With 

fucoidan being a high value chemical in seaweed and likely to be of interest in a 

biorefinery setting, making use of these high fucoidan species appears to be an 

advantageous option. With advances in analytical techniques as well as potential 

variation in seaweed biomass due to climate change and increased ocean 

acidification [26], up to date studies into the seasonal variation of brown 

macroalgae is important. Furthermore, the biomedical properties of fucoidan 

have been shown to vary with structure , which has also been reported to vary 

seasonally [18], although there appears to be very little literature to support this 

at present. Therefore, a detailed study into the seasonal variation of both the 

quantity and quality of fucoidan from Fucoids would provide important information 

for industry about both the best harvest times and possible bioactivity of the 

extracted carbohydrate. 

This thesis aims to address the research gaps highlighted here by developing a 

low energy, low solvent macroalgal biorefinery using microwave heating. The 

main chemicals of interest are extracted sequentially in water at varying 

temperatures, with consideration of the waste biomass as a fuel or fertiliser. This 

gives a final schematic which makes full use of the biomass resource to produce 

a range of bulk and high value chemicals, as well as the potential for fuel. In order 

to appreciate fully how seasonal variation of seaweed impacts an industrial 
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process, the seasonal variation of components, including alginate, mannitol, 

laminarin, fucoidan, ash and protein, of three species of Fucoid, Fucus serratus, 

Fucus vesiculosus and Ascophyllum nodosum. The trends throughout the year 

will be highlighted, as well as the potential impact these have on industrial 

applications, including the effect on the microwave biorefinery developed in this 

thesis. The seasonal variation of fucoidan from these three species will be studied 

in more detail, due to its high value potential for use in the pharmaceutical 

industry. The fucose and sulphate content have been analysed, as well as 

attempting to gain some more in depth insight into the structural variations via the 

use of size exclusion chromatography and liquid chromatography-mass 

spectrometry.  
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Nomenclature 

Abbreviation Full 

AN Ascophyllum nodosum 

BMP Bo-methane potential 

d.a.f. Dry ash free 

DDGS Distillers dried grain with solubles 

FS Fucus serratus 

FV Fucus vesiculosus 

GHG Greenhouse gas 

HPLC High performance liquid chromatography 

HTC Hydrothermal carbonisation 

LC-MS Liquid chromatography mass spectrometry 

MAE Microwave assisted extraction 

MW Molecular weight 

NMR Nuclear magnetic resonance 

PDA Photo diode array 

RDA Recommended daily allowance 

RFS Renewable fuel standard 

RUI Relative unit of intensity 

S:S Seaweed to solvent ratio 

SEC Size exclusion chromatography 

TGA Thermogravimetric analysis 
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Aims and Objectives 

The general aim of this PhD research is to assess the potential of macroalgae as 

a feedstock for an algal biorefinery, extracting high value chemicals followed by 

utilising the remaining biomass for bioenergy applications, such as bioethanol 

production. In order to realise this fully, the seasonal variation in chemical content 

needs to be analysed and taken into account. In order to achieve this, the main 

aims are: 

1. Identify the best seaweed species for a biorefinery, taking into account 

their chemical content and abundance around the UK 

2. Assess the seasonal variation in the chemical content of these species, 

including carbohydrates, protein and metals. 

3. Undertake detailed analysis of the seasonal variation of the main high 

value carbohydrate, fucoidan. 

4. Assess the potential for a macroalgal biorefinery using microwaves from 

the species which presents the best option from the details seasonal 

analysis and compare this to a conventional heating equivalent. 

5. Fully develop a microwave biorefinery based on sequential extraction of 

chemicals. 

6. Explore the possibilities for upgrading of the residue to a fuel or fertiliser 

and assess the need for waste management. 

In more detail, these will include: 

1. An literature review on the chemical content of macroalgal species 

common to the UK coastline, taking into account the abundance of key 

chemicals, such as fucoidan and carbohydrate content. Drawbacks to a 

particular species, such as high ash content, which can lead to processing 
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problems, also needs to be taken into account. Finally, the abundance of 

the species, leading to the potential for upscaling of the final process, 

needs to be considered. 

2. The seasonal variation in the chemical content has the potential to cause 

a undesirable impact on industrial processes, meaning its quantification 

and trends need to be thoroughly understood in order to make the full use 

of the biomass. This includes the impact on harvest time on the potential 

applications of the seaweed and also the variation in which year round 

harvesting could have on the outputs from an industrial process. 

3. Fucoidan, a carbohydrate unique to seaweed which displays a range on 

biomedical properties, is a particularly important chemical in terms of 

extraction. This is due to its potentially high value to the pharmaceutical 

market. As the structure and chemical make-up of this polysaccharide is 

known to vary over the year, it is important that a detailed understanding 

of this is completed. This includes both the chemical make-up and some 

insight into how it’s structure varies over the course of the year. The 

difference in structure could have an impact on its functionality, and 

knowledge of this is important for harvest time. 

An initial feasibility study into a microwave assisted macroalgal biorefinery 

needs to be undertaken, varying the temperature, seaweed to solvent ratio 

and microwave residence time of the microwave and assessing the 

chemical content of the extract and residue. Comparison to the equivalent 

extractions using conventional heating should be assessed, in order to 

ascertain the differences between the two heating methods, and whether 

there are benefits to microwave heating over the reduced energy savings 
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they present. Furthermore, reduction in the use of chemicals will be 

achieved by processing in water alone. 

4. Using the data from the feasibility study, fully develop a microwave 

macroalgal biorefinery using a stepwise extraction of chemicals based on 

temperature, including assessing the optimum extraction time, solvent to 

seaweed ratio and temperature. This data will then be used to create a full 

mass and energy balance for the process, based on the laboratory scale 

process. The potential seasonal variation of the process, based on the 

ratio of chemicals extracted and the seasonal variation data collected, will 

be calculated in order to evaluate its impact on the process and what this 

means for industrial applications. 

5. Finally, the utilisation of the process wastes will be considered, calculating 

the potential yields if it were to be used for bioethanol or anaerobic 

digestion and gauging its potential for use as a fertiliser by assessing 

nitrogen, phosphorus and potassium content. Again, the seasonal 

variation of these factors will be calculated and assessed from an industrial 

viewpoint. The need to waste management, such as the removal of metals 

from waste water, will also be considered. 
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Thesis Plan 

Chapter 1 includes a literature review, covering the background information on 

seaweeds, including their classification, habitat and economic status. The 

chemical content of brown macroalgae common to the coast of the UK has been 

reviewed, including the structure and functionality of the main carbohydrates 

present. The literature on their seasonal variation has also be reviewed and 

appraised and speculation on how the chemical content and its variations may 

be affected by a changing climate have also been assessed. In light of the 

development of a macroalgal biorefinery, literature presented on this topic has 

been reviewed, as well as literature pertaining to different methods of chemical 

extraction and biofuel production. The use of microwaves for chemical extraction 

has also been reviewed, as well as background into microwave theory and why 

they are useful for a low energy, sustainable biorefinery. 

Chapter 2 details the methods used in the chemical analysis of seaweed samples 

in order to determine their chemical content. Conventional and microwave 

heating methods used as a comparison for the development of a macroalgal 

biorefinery are detailed, alongside the methods used to analyse the extracts and 

residues obtained from these processes.  

Chapter 3 details the seasonal variation in chemical content of three species of 

brown macroalgae; the fucoids Fucus serratus, Fucus vesiculosus and 

Ascophyllum nodosum over a year period. Monthly samples have been analysed 

for the four main carbohydrates laminarin, mannitol, alginate and fucoidan, as 

well as protein, ash and the proximate and ultimate content. In all cases, the 

impact of the trends seen on industry are evaluated, suggesting the best harvest 

months for different uses of the macroalgae, including for biofuel, fucoidan 

extraction and as a food source for either animals or humans. 
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Chapter 4 contains the seasonal variation of fucoidan for the same three species 

of Fucoid, including its fucose and sulphate content, as well as the amount in the 

raw biomass, has been evaluated. Furthermore, liquid chromatography has been 

used in order to gain some insight into the variation in structure of the 

polysaccharide over the year. From this and the results in chapter 3, the species 

with the most potential for a macroalgal biorefinery have been found. The 

development of a rapid determination of fucoidan content using a 

spectrophotometric method, with a comparison between the results from 

conventional extraction for validation has also been undertaken. 

Chapter 5 contains the initial steps and feasibility towards the development of a 

seaweed biorefinery using microwave heating, based on sequential extraction of 

chemicals at increasing processing temperature. Fucus serratus was chosen to 

be the best species, based on the results in chapters 3 and 4, so this was carried 

forward for biorefinery development. Comparison of the chemical extraction of 

raw biomass by conventional and microwave heating is assessed. Three 

parameters: temperature, seaweed to solvent ratio and residence time, have 

been varied to fully appreciate the differences between the two heating methods. 

The extracts have been analysed for their polysaccharide content by SEC and 

for their monomeric sugar content, in order to perceive any carbohydrate 

breakdown. 

Chapter 6 contains the full development of a sequential extraction of chemicals 

using microwave heating. The final schematic includes a three step process, 

sequentially extracting mannitol, fucoidan and alginate. A full mass and energy 

balance for the process has been calculated, with a comparison of energy use 

between microwave and conventional heating highlighting the energy savings 

offered by microwave extraction. The residue from the process is characterised 
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and assessed for its potential use as a feedstock for fermentation of bioethanol, 

anaerobic digestion to bio-methane and for use as a fertiliser. Using the seasonal 

variation data in chapters 3 and 4, the impact of this on the process year round, 

including the potential use of the residues is calculated, giving some 

understanding into how this phenomenon may affect an industrial process. 

Finally, waste water treatment for the high heavy metal content is considered, 

appraising the literature and giving suggestions for the best methods for clean-

up of the waste water. 
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1 Literature Review 

1.1 Macroalgae 

Macroalgae are photosynthetic organisms which vary widely in size, the smallest 

being only a few centimetres and the largest reaching as much as 60m in length 

[27]. Generally they are found growing on rocky ground, forming established, 

multi-layered, perennial vegetation [14]. They require a stable seabed in order to 

be able to anchor themselves, while still being close enough to the surface to 

absorb sufficient light. They are, therefore, most commonly found on the 

continental sea shelf [27], forming dense forests, under which almost no light 

penetrates [28]. On the whole, macroalgae tends to grow zoned by species, with 

little integration, meaning that different areas of the seabed will be dominated by 

one species.  

The distribution around the UK coast of the three species of fucus in this study, 

Fucus serratus (FS), Fucus vesiculosus (FV) and Ascophyllum nodosum (AN) 

are given in Figure 1.1. All three species are widely distributed, covering a large 

area of coastline. The species are more prevalent on the west coasts of the UK 

and Ireland, although they can still be found on east coast locations. 

 

Figure 1.1: Distribution of (a) Fucus serratus, (b) Fucus vesiculosus and (c) 
Ascophyllum nodosum around the coast of the UK [29]. 

(a) (b) (c) 
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1.1.1 Classification 

There are estimated to be around 20,000 different species of algae worldwide. 

On the whole, they fall under three main categories: green; red and brown, 

colours which derive from natural pigments and chlorophylls [30]. For the most 

part, algae consist of a holdfast, which attaches to the seabed and holds the algae 

in place; a stipe, which is similar to a terrestrial plant’s stem and a frond or blade, 

not dissimilar to a leaf [31]. An example seaweed structure and how it 

corresponds to a terrestrial plant is given in Figure 1.2. Some also contain air 

bubbles or “bladders” to help them to float, allowing them to be able to capture 

more sunlight. 

 

Figure 1.2: Diagram of a typical seaweed structure and how it relates to terrestrial 
plants [32]. 

Green algae or Chlorophyta are found in both fresh and seawater habitats, 

although freshwater species are more prevalent (around 85%) [33]. Within this 

classification, there are currently 4,548 known species, although it is thought 

there are many more than this as yet undiscovered [34]. They also show similar 

evolutionary and biochemical traits with higher, terrestrial plants [35]. This 

includes a very similar chemical make-up, with the presence of cellulose and 

chlorophyll [36]. Due to their need for abundant amounts of sunlight for 
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photosynthesis, they are most commonly found in shallow waters, such as bays, 

estuaries or intertidal pools [33].  

Red algae or Rhodophyta mainly prefer to grow in deeper water, away from tidal 

fluctuations (>10m deep) [37]. There are known to be at least 6,131 species of 

red algae, predominantly found in the marine environment [34]. Generally they 

consist of cellulose, glucan and galactan, with the cell wall containing agar and 

carrageenan, both of which have gel-forming abilities [33]. 

Brown algae or Pharophyta includes over 1,792 known species, which habit both 

marine- and freshwater environments [34]. They are predominately found below 

the tide level, at depths of between 10 and 20m [37]. They can grow to as large 

as 100m in length at rates up to 50cm/day [33]. They generally contain up to 55% 

dry weight of carbohydrates, including laminarin and mannitol [33]. Brown 

macroalgae are the most abundant group found around the shores of the UK, as 

well as the majority of the rest of Northern Europe, and have the best potential 

for cultivation. As a consequence, the use of this classification will be the primary 

focus of the presented studies and literature review. On the whole, brown algae 

have the highest photosynthetic rate of the seaweeds, although it is dependent 

on species, and are reported to be between 124 and 561 µmol CO2/ hr g dry 

biomass, compared to 30 to 468 µmol CO2/ hr g dry biomass for green 

macroalgae and 21 to 174 µmol CO2/ hr g dry biomass for red [38]. 

1.1.2 Cultivation and Harvesting 

Under the present production requirements, harvesting seaweed from natural 

stocks is a very viable option. Indeed, some sources state that cultivation in 

Western Europe many not even be necessary [39]. There are vast areas of algal 

growth which remain untapped, with only 1% of available seaweed currently 
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being utilised [40]. As long as harvesting is carried out with ecological impact in 

mind, it could be a very sustainable and cheap source of biomass. However, as 

this reserve would not be sufficient to meet world demand and with current 

restrictions on harvesting natural resources in the UK [39], cultivation is an 

important factor, which needs to be explored. At present, the majority of 

harvesting from these natural stocks is carried out by hand, a method that, while 

very environmentally friendly, is not viable for the high volume production which 

would be required for industrial usage. The use of mechanical means, however, 

is strictly regulated through most of Europe due to the adverse effect it can have 

on the marine environment [39], although there is evidence to suggest it could be 

undertaken sustainably, as long as the correct regulation is in place and the 

process is closely monitored. 

Of the approximate 200 species of seaweed harvested for use worldwide, 

currently around 10 of them are cultivated intensively [39], mainly in Eastern Asia. 

The majority of current production, however, is harvested from wild sources or 

from cultivation techniques based on traditional methods [41]. While this is 

effective at the scale of the current market, it has some significant problems and 

short fallings. If large scale chemical extraction from seaweed sources is going 

to be a viable option, more research in mass cultivation and harvesting 

techniques will be required. There are a wide range of options being proposed, 

including cultivation in tanks; on ropes, which could be suspended between 

posts/wind turbines or grids of rope suspended from buoys and integration with 

fish farming. 

From the sea-based methods, the rope configuration, more commonly referred 

to as “long line”, appears to be the most promising. It consists of a 16-18mm thick 

rope anchored by concrete blocks, suspended between wind turbines or bound 
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into ring or grid shapes and can be deployed both in- and offshore. The ropes are 

seeded with seaweed spores and supply an anchor to which they attach 

themselves to grow [42]. Harvest form this type of configuration is achievable with 

small boats, although optimisation of the process has yet to be performed. 

Wegeberg and Felby [42] report that, for a ring structure, 300kg (wet weight) of 

seaweed was successfully cultivated on 84m of rope in one growing season. 

1.1.3 Current Economic Status of the Seaweed Industry 

Currently, seaweeds are farmed for use as a food source, fertiliser, stabilising 

agents and for high value, low volume products such as amino acids [43]. Table 

1.1 gives an overview of the main products currently being manufactured and the 

relative production quantities and value of the markets. While not insignificant, 

seaweed production is a relatively small industry, clearly with room to expand. 

Jung et al. [30] estimate that total macroalgae production is around 15.7 million 

wet metric tonnes per year, which equates to roughly 2% of current corn 

production, adding further weight to this point. Taking biofuel production as an 

example industry for seaweed production to expand into: under the Renewable 

Fuel Standard (RFS) in the US, 36 billion gallons of renewable fuel is required 

per year to be blended with transport fuel by 2022 [44]. Using the optimum 

bioethanol production of 19,000l/ha/year quoted by Wargacki et al [45], to meet 

this target purely from macroalgae would require 87,000 km2 in production. While 

this is clearly not going to be achieved in time to meet this target, considering the 

US has an Exclusive Economic Zone (an area of costal water a certain distance 

from the shore, over which a country can claim exclusive rights to economic 

activities) of 11.66 million km2 [35], the area required for seaweed cultivation to 

meet this target is an insignificant portion, less than 1% of available US waters, 

and clearly plausible at some point in the future.  
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An addition to use as biofuels, there is an abundance of research being carried 

out into the uses of chemicals, unique to seaweed, which have a high value and 

beneficial properties. Carrageenan (currently used in toothpaste production), 

fucoidan and phycarine are just a few of such chemicals which have been found 

to have a range of medicinal properties, including anti-fungal and anti-cancer [43]. 

If these chemicals could be extracted simultaneously with the production of 

biofuels, it could offer a significant benefit to the economic feasibility of seaweed 

as a potential for mass biofuel production. 

Table 1.1: Commercial market value and production quantities of some seaweed 
products (adapted from [40]).  

Industry Market Value/$ Quantity/tonnes 

Food (human) 6 billion 6.4 million 

Hydrocolloids (inc. 

medical uses) 

0.702 billion ~0.9 million 

Agar 255.6 million 55,650 

Alginate 158.4 million 126,500 

Carrageenan 288 million 33,000 

Feed (animal) 6 million 50,000 

Fertiliser 6 million 10,000 

Total 6.6-7.2 billion 7.5-8 million 

1.1.4 Chemical Content 

Seaweeds contain an abundance of different chemicals, many of which are 

unique to the marine plant environment. Table 1.2 outlines the main 

polysaccharides of the 3 classifications (red, brown and green), as well as those 

found in lignocellulosic biomass for comparison. It is interesting to note that green 

macroalgae most closely corresponds to the lignocellulosic biomass, whereas the 
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brown and red macroalgae have very little in common. Furthermore, brown and 

green macroalgae contain no lignin, as this is used for support in terrestrial plants 

and is not required in seaweed, which gets support from the surrounding water 

[36]. This is advantageous when considering their conversion to fuel, as the 

removal of lignin is a complex and expensive process and one of the main 

drawbacks/challenges in the use of lignocellulosic biomass as a fuel feedstock 

source. 

Table 1.2: Carbohydrates found in red, green and brown macroalgae compared 
with lignocellulosic biomass (adapted from [36]). 

Green Red Brown Lignocellulosic 

Polysaccharide 

Mannan 

Ulvan 

Starch 

Cellulose 

Carrageenan 

Agar 

Cellulose 

Lignin 

Laminarin 

Mannitol 

Alginate 

Fucoidan 

Cellulose 

Cellulose 

Hemicellulose 

Lignin 

As the main focus of this study is brown macroalgae, the following sections will 

describe, in more detail, the structures and properties of the main chemicals 

found within this classification. 

1.1.4.1 Laminarin 

Laminarin typically makes up 0-30% of the dry weight of brown macroalgae, with 

the concentration being dependent on the season [7] and is the main storage 

carbohydrate. It is a carbohydrate which is typically made up of β-1,3-linked 

glucose residues with small amounts of β-1,6-linkages and has a polymer chain 

of around 25 units [7], the basic structure for which is given in Figure 1.3. Its 

molecular weight is approximately 500 Da, although varies depending on the 
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degree of polymerisation and also seems to be dependent on the month in which 

the sample is collected [46, 47]. It takes two different forms, which are: M chains, 

ending in a mannitol residue and G chains, ending in a glucose residue [46]. Its 

solubility in water is dependent on the amount of branching and commonly both 

soluble and insoluble forms can be found within brown macroalgae, with 

quantities of each depending on the species [48]. The structure of laminarin is 

noted to differ, including the M:G ratio, the degree of branching, the number of 

sugar residues per chain and the ratio of (1→3)- and (1→6)- glycosidic bonds 

[49]. Laminarin isolated from Laminaria digitata by Read et al. [50] has been 

shown to contain a small amount of G-laminarin, containing 22-28 glucosyl 

residues and a more abundant fraction of M-laminarin, containing 20-30 glucosyl 

residues. Chizhov et al. [49] have shown a variation in laminarin between species, 

with varying M:G ratio and also variation in peak chain length, with Laminaria 

cichorioides and Laminaria hyperborea having peak chain length of 26 residues, 

Cystoseira crinita of 23 residues and Cystoseira filium only 12 residues. This 

clearly shows the variation in laminarin structure between species. 

 

Figure 1.3: Monomer structure of Laminarin 

1.1.4.2 Mannitol 

Mannitol is a sugar alcohol [7] which typically makes up 4-25% [51] of the dry 

weight of brown macroalgae, again depending on the season. Its structure can 
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be seen in Figure 1.4. Mannitol has significant commercial viability as a product, 

as it is a commonly used low calorie sweetener. Current interest in mannitol in 

the literature mainly corresponds to its potential for conversion to bioethanol [52-

54]. Due to its linear structure, traditional yeasts are unable to ferment mannitol 

directly, so either an enzymatic process to convert it to a fermentable sugar or 

direct conversion to ethanol via a novel yeast or bacterium needs to be carried 

out. Other conversion routes for mannitol have also been described, including 

that of Xia et al [55], who proposed its conversion to hydrogen via the use of a 

mix of anaerobic fermentative bacteria. They report good yields, dominated by 

hydrogen (17%), butyric acid (38%) and ethanol (34%), all of which are useful 

fuels and building block chemicals. Aside from fuel uses, mannitol has also been 

shown to be a possible feedstock for the production of ridged polyurethane foams 

[56] and converted into intermediates for the production of detergents, polymers, 

fuel additives and plasticisers [57].  

 

Figure 1.4: Structure of Mannitol 

1.1.4.3 Alginate 

Alginate is a linear block copolymer consisting of 2 uronic acids, β—D-

mannuronate (M) and α-L-guluronate (G), arranged in varying sequences [46], 

the structures of which are shown in Figure 1.5. These units are arranged in a 

non-regular, block wise order along the chain. Gels of alginate are formed by ionic 

interactions between guluronic acid resides of 2 or more alginate chains [58]. The 

gelling ability of the alginate, therefore, is dependent on the ratio of G:M, a low 
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ratio accounting for weak gelling properties [15]. Functional and physical 

properties such as mechanical strength, porosity and gel uniformity also depend 

on the G:M ratio [58]. Alginate can account for up to 40% of the dry weight of the 

macroalgae, again depending on the season [36]. They are generally soluble in 

water, although their solubility depends on the pH, concentration, ions in solution 

and the presence of divalent ions and ionic force [45]. Alginate is associated with 

a cation, rendering both soluble and insoluble forms, depending on whether it is 

associated with a Ca (insoluble) or a Na (soluble) ion [59]. This is an important 

consideration for the extraction of alginate, where two different techniques or an 

initial pretreatment step to convert all alginate to the same form may be necessary 

to remove both the soluble and insoluble polymers. The extraction of alginate 

from macroalgae is already widely performed in industry, with alginic acid being 

commonly used in the food and pharmaceutical industries as a thickener, in textile 

printing, paper coating [15], and in cosmetics such as shampoos and lotions [60]. 

They have also been investigated for use as a low-cost sorbent [61] and have 

been shown to have metal binding capabilities for a range of heavy metals 

proportional to the total carboxyl group content [62]. 

 

Figure 1.5: Monomer structure of Alginate 
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1.1.4.4 Fucoidan 

Fucoidan typically makes up 5-20% of the algal dry weight [63-65]. It is a 

sulphated polysaccharide, supported by a sugar backbone, which mainly consists 

of α-1,3 and α-1,4 linked units of fucose [66] as well as small quantities uronic 

acids, galactose, xylose and other sugars [48]. A simplified structure, showing the 

linkages between the backbone residues, is given in Figure 1.6. However, the 

overall structure of fucoidan is dependent on many different factors, including the 

species of seaweed, the season and location from which it is harvested and the 

maturity of the specimen [18].  

 

Figure 1.6: Monomer structure of fucoidan backbone 

Full structures of fucoidan have been determined by Bilan et al., notably Fucus 

distichus [67], Fucus serratus [68] and Fucus evanescens [69], all collected 

during the Summer months. The fucose: sulphate: acetate ratio is 1:1.21:0.8, 

2:1:0.1 and 1:1.23:0.36 for F. distichus, F. serratus and F. evanescens 

respectively, highlighting the difference in chemical make-up between species for 

fucoidan harvested at the same time of year. Furthermore, the studies highlighted 

structural differences between the fucoidans, analysed via nuclear magnetic 

resonance (NMR). F. distichus was noted to have a regular structure consisting 

of repeating disaccharide units, with F. evanescens having a similar linear 
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backbone, but with additional sulphate groups. F. serratus was shown to have a 

branched structure, while also containing small amounts of xylose and galactose. 

In a study by Mak et al. [18], the sulphate content was shown to more than double 

between July and September for the same species of macroalgae and it is well 

known that the chemical composition of macroalgae varies with season [70]. 

Additionally, it’s reported molecular weight ranges between 43 and 1600 kDa [46, 

48]. This makes the specific determination of fucoidan from a particular species 

difficult and general analytical methods, such as colourimetric tests, size 

exclusion chromatography and methylene blue staining are employed in order to 

confirm its presence [66].  

The extraction of fucoidan is of particular interest to researchers due to its many 

and varied biomedical properties. These include anti-tumour [16], anticoagulant 

[71], antivirus [17] and antioxidant activities [72] among others. The differences 

in bioactivity depend upon several factors, which include its molecular weight, 

monosaccharide composition, sulphate content and the position of the sulphate 

ester groups within the ring structure [66]. The effect of the degree of sulphation 

on the biomedical properties of fucoidan has been assessed by Haroun-Bouhedja 

et al [73], who showed that a sulphate content below 20% leads to a complete 

loss of two biomedical properties studied: anti-proliferative and anticoagulant 

activity, and that an increase in sulphate leads to an increase in the effect. Due 

to this, it is key to the extraction procedure that the structure of the fucoidan isn’t 

compromised and thus techniques employing mild conditions are favoured. 

1.1.4.5 Protein 

Protein is also an important constituent of seaweed, having a wide range of 

functional food, nutraceutical and cosmetic applications [74]. Seaweeds contain 
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a wide range of proteins, which are reported to contain all the amino acids and 

have levels of essential amino acids comparable to those required for dietary 

proteins [74]. The proteins present in brown seaweed tend to include higher levels 

of acidic amino acids compared to their red and green counterparts [75]. The 

protein content of FV has been reported to be between 3 and 14 dry wt%, with 

other fucoid species lying within this range [76]. Algal proteins are currently of 

interest in the literature due to their inclusion of bioactive peptides [77], including 

antioxidant and antihypertensive properties [78], making them an attractive 

extract. 

1.1.4.6 Ash and Alkali Metals 

The ash content of seaweeds is also typically high, between 14 and 30% [76] for 

Fucoids and up to 50% in Kelps [21], due to the high salt level in seawaters. It 

has been shown that the ash content is dominated by the alkali metals sodium 

and potassium, as well as high levels of calcium and magnesium [79]. These 

levels are commonly between 0.5-11 dry wt%, compared to 1-1.5% for terrestrial 

biomass [80].  

A high ash content is an important consideration for industrial use of seaweed, 

due to the associated slagging, fouling and corrosion of equipment in its presence 

[81]. Furthermore, it can also lead to interference in any chemical reactions 

required for processing. Ross et al. [82] noted the effect these higher levels have 

on combustion and flash pyrolysis. It is concluded that thorough washing of the 

biomass is beneficial for maintaining equipment components and recommends 

processes which are tolerant of the high ash and metal content found in 

seaweeds.  



- 28 - 

In contrast to this, the food industry views the high ash content of seaweeds as a 

benefit, as they contain all the essential minerals and trace elements needed for 

human health [83]. For example, the levels of iron in 8g of dried seaweed is 

equivalent to that of 100g of steak [84] and contains up to 3% dry weight of 

calcium, an essential mineral for bone health, especially important to expectant 

mother, adolescents and the elderly [83]. However, the high heavy metal content 

must be kept in mind when considering seaweed use for food purposes. 

Cadmium, lead, mercury,  copper, zinc and arsenic are all reported to be high in 

seaweeds [85] and high intake of these metals can lead to health problems. A 

study by Besada et al [86] into the heavy metal content of 11 species of 

macroalgae showed that, on the whole, the level of these metals falls within EU 

limits, with only cadmium persistently exceeding maximum levels. However, the 

levels are still high when compared to other foods for all heavy metals, meaning 

eating large quantities is not advisable. 

1.1.4.7 Others 

As well as the most abundant chemicals previously discussed, there are many 

others, present in small amounts. These include: lipids and host of metabolites, 

such as phlorotannins, diterpenes and fucoxanthin [87]. The function of most of 

these metabolites remains speculative, but includes defensive compounds 

designed to deter consumption and antimicrobial compounds. Pigments and 

vitamins are also an important part of the chemical make-up of seaweeds. In the 

case of brown seaweeds, pigments include the carotenoids β-catotene, 

fucoxanthin, violaxanthin and zeaxanthin, chlorophylls and tetrapyrrotes, as well 

as water soluble vitamins B1, B2, B12 and C and the fat soluble vitamins A, E, D 

and K [83]. Commercially, pigments are used as food colourants and in nutritional 

supplements, but have been shown to have a host of other health benefits, 
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including antioxidant and anti-cancer [83]. Research into the use of these 

pigments is beginning to become more prevalent, with Calogero et al. [88] 

extracting chlorophyll based dyes from seaweed to use as an alternative to 

pyridil-based Ru complexes for dye sensitised solar cells. 

1.1.5 Seasonal Variation 

The seasonal variation in the chemical content of macroalgae is a well-known 

phenomenon. The chemical content of seaweed was first analysed over 150 

years ago, with mannitol being identified by Stenhouse in 1844 [89]; the beginning 

of extensive chemical analysis spanning the next 75 years. Despite the relatively 

large size of the seaweed industry at the time, it largely focussed on alkali 

production for potash and the first seasonal variation studies of seaweed were 

not carried out until 1919 by Lapicque [90]. After this point, many studies were 

undertaken, most notably by Black [21], who fully developed the methods of 

extracting and quantifying the main chemical components in seaweed and 

created the foundation for future seasonal variation studies. He characterised the 

seasonal variation in a wide range of species common to the coastline of the UK, 

including: Ascophyllum nodosum [22]; Laminaria cloustoni [23]; Fucus serratus, 

Fucus vesiculosus, Fucus spiralis Pelvetia canaliculata [24] and Laminaria 

digitata and Saccharina latissima [21]. His studies included changes in laminarin, 

alginates, mannitol and ash and in the 1940’s, he completed the only other study 

the authors could find detailing the seasonal variation of fucoids [22, 24].  Over a 

two year period, Black studied the variation of FS, FV [24] and AN [22] and found 

that, in general, mannitol and laminarin peak in late summer/early autumn and 

are lowest in Feb/March. Ash, protein and alginate peak in the early part of the 

year (March/April) and are lowest in July/August, although it was noted that these 

maximums and minimums could vary by up to two months, depending on the 
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weather for the particular year. Figure 1.7 details the maximum and minimum 

levels of each of the biochemical components for Fucoids and Kelps and clearly 

shows the two distinct regions of high and low values in January to April and June 

to November in both cases. 

Recent reports of seasonal variation include those of Adams et al. and Schiener 

et al. [79, 81], who focus on Laminaria digitata and 4 species of kelp respectively. 

While their overall findings echo those of Blacks earlier studies into the same 

species, additional information, such as polyphenol content and characterisation 

of the ash has been included. A study by Rosell and Srivastave [91] into the 

variation in ash content of the brown algae, Macrocystis intergrifolia and 

Nereocycstis luetkeana harvested from the coast of Canada, found the variation 

is largely due to changes in potassium and phosphate, which are high in the 

winter and low in the summer. All other metal constituents remained relatively 

constant over the year. Other than these studies, there is little recent literature on 

the seasonal variation of macroalgae. Due to advances in analytical techniques 

since the 1950’s, as well as anthropogenic changes to the marine environment, 

including ocean acidification and sea temperatures, updated studies on seasonal 

variation are key for the industrial utilisation of macroalgae. 
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Figure 1.7: High and low values and the month in which they occur for the main 
chemicals found in (a) Fucoids and (b) kelps. Values taken from [21-24, 79, 
81].  Solid border denotes high values and dashed boarder low values. 

1.1.5.1 The Seasonal Variation of Fucoidan 

The seasonal variation of fucoidan is often mentioned in the literature, although 

there is very little published data on the subject at present and the few references 

cover only a few months of the year. Rioux et al. [92] have investigated the 

bioactive polysaccharides of 4 samples of Saccharina longicruris, from March, 

    Jan       Feb     Mar     Apr     May     Jun     Jul     Aug     Sep     Oct     Nov     Dec 

    Jan       Feb     Mar     Apr     May     Jun     Jul     Aug     Sep     Oct     Nov     Dec 
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April, November 2005 and June 2006. The galactofucans (a type of fucoidan 

containing roughly equal proportions of fucose and galactose) extracted were 

seen to have an increase in sulphate content of 1.6% between March and 

November 2005, while decreasing by 7.2% between November 2005 and June 

2006. A similar study by Mak et al [93] investigated the variation in fucoidan 

between July and October for Undaria pinnatifida. They found that the fucoidan 

content almost quadrupled between July and September (3.6-13.7 wt%) and only 

dropped slightly in October. A similar trend was observed in the sulphate content 

of the fucoidan. The fucose content decreased significantly between July and 

September. Again, the need for detailed seasonal variation, including the 

chemical make-up and changes in structure throughout the year is important for 

industrial extraction, as well as for guaranteeing the bioactivity of the 

polysaccharide. 

1.1.6 The Effect of Climate Change on Seaweeds 

Climate change is having an appreciable impact on the levels of CO2 present in 

our oceans, as well as increased sea and sea surface temperatures. The effect 

this could have on our seaweed abundance, as well as the ecosystems they form, 

is an important factor for consideration for a viable, large scale seaweed industry 

in the UK. While it has been noted that the UK may have some tolerance to 

climate change in terms of species zonation, due to being in the centre of the NE 

Atlantic distribution for the majority of large brown species [94], there have been 

several reports noting the loss of species [95], depleted genetic diversity [96] and 

the increase in abundance of some species [97] in various locations. The effect 

of climate change on the abundance and location of seaweed species has been 

explored by Yesson et al [98], who show that, on the whole, there is a decrease 

in abundance for kelps in the South of the UK, while Central and Northern regions 
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see an increase in both wracks and kelps. The variation in abundance has also 

been shown to correlate with summer and winter sea surface temperatures, 

indicating changes in temperature due to climate change are having an effect on 

the abundance and distribution of seaweed around the UK coastline. 

Ocean acidification, caused by increased CO2 levels in sea water, is also likely 

to have an effect on seaweed growth and abundance. Oceans absorb over 25 

million tonnes of CO2 produced by humans every day, causing detrimental effects 

to ocean chemistry [99]. Clements et al. [26] hypothesise that an increased CO2 

level in seawater will have a positive effect on seaweed growth and species will 

be more competitive in a high CO2 environment, although a negative impact may 

be seen on germination for some species, which require a certain pH for growth. 

The effect of ocean acidification on FV has been explored by Gutow et al. [100] 

and, surprisingly, has been shown to negatively affect the growth rate and C:N 

ratio of the seaweed; an opposition to the expected result. The nutritional value, 

however, was shown to remain unchanged. A study by Porzio et al [99] also 

shows a decrease in algal growth: on average 5% for ocean acidity levels 

predicted for 2100. Although their data forecasts that many species will be 

tolerant of long-term  increases in ocean CO2 levels, they predict that macroalgal 

habitats will be significantly altered. 

1.1.7 Biofuel production from Macroalgae 

The way in which biofuels are made and their feedstock’s has evolved over time 

and there are now regarded to be 4 classifications. First generation biofuels are 

derived from simple materials (such as mono-/disaccharides, starch etc.…) found 

in traditional food crops, including corn, wheat and sugar cane [3]. Second 

generation biofuels are derived from lignocellulosic, non-food crops such as 

wood, organic waste, food crop waste and grasses [4]. Third generation biofuels 
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from higher energy yielding feedstocks, such as micro- and macroalgae, which 

have the capacity to produce more fuel from a smaller area. Finally, fourth 

generation utilises carbon capture and storage (CCS) along with any of the above 

feed stocks to create an overall carbon negative process. Although the ability to 

ferment first generation feed stocks is well known and relatively simple, as they 

use what are traditionally food crops, there is debate over “food versus fuel”, and 

whether the required amounts of biofuels can be generated without conflict with 

world food supplies [101]. In addition, even if conflicting food supplies were not 

an issue, if all US corn and soybean production was converted to fuel, it would 

only meet 12% of petrol and 6% of diesel demand [102].  

While second generation feed stocks offer advantages over first generation: a 

better energy balance [101]; non-food crops and the ability to utilise non-arable 

land, there are still drawbacks in their use. Changes in land use, biodiversity and 

the use of water and fertilisers all call into question the energy and carbon 

balances of the system [39]. Additionally, ethanol production from cellulose costs 

twice as much as from corn starch [103].  

Due to these short fallings, there is increased interest in algal based biofuel 

solutions. This falls into two categories: microalgae, eukaryotic organisms 

including phytoplankton and blue-green algae [104]; and macroalgae, larger 

marine plants such as seaweed and kelp. Their energy balance is reported to be 

greater than for their first generation counterparts: approximately two times 

higher than the productivity from sugarcane and five times higher than corn [45]. 

Microalgae offer significant research potential, with high energy gains over a 

small area [105]. They are the fastest growing plants in the world and can survive 

a wide range of conditions and habitats [106]. In addition, over the last 30 years 

the amount of naturally occurring biomass has increased due to eutrophication 
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caused by increasing CO2 levels [107]. Their main drawback is their cost of 

production, especially when considered on a large scale [108]. Macroalgae also 

offer a promising alternative, having a photosynthetic efficiency of around 6 to 

8%, compared to 1.8 to 2.2% for terrestrial sources [13] and their lack of lignin 

makes enzymatic hydrolysis of algal cellulose much simpler [106]. 

There are many possible conversion routes for macroalgae, depending on the 

end product being created. Many involve the use of heat and/or pressure to break 

open the cell wall, releasing the chemicals found inside before some other 

process, such as fermentation, is performed to convert the compounds found into 

usable fuel. Figure 1.8 provides an overview of all the possible fuels from algae 

and their conversion routes. However, as bioethanol and bio-methane are the 

most viable fuel sources from a biorefinery perspective, they will be the focus of 

the literature review in this section. 

 

Figure 1.8: Possible fuels from alga. Adapted from [109]. 

1.1.7.1 Bioethanol Production 

Ethanol from macroalgae is produced via a fermentation process, similar to that 

used in beer or wine making. The main steps of the process for first generation 
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feedstocks is outlined in Figure 1.9. While the process for macroalgae will be 

largely the same, there are likely to be more pretreatments steps to release the 

hydrolysable carbohydrates and the enzymes and fermentation yeast/bacteria 

are likely to be different, due to the unusual carbohydrates found in seaweed 

biomass. The feedstock is first milled to break down the outer casing of the 

feedstock and release carbohydrate. The saccharification process involves 

adding water and enzymes to breakdown carbohydrates into their monomer 

sugar units, required for fermentation. Traditional fermentations uses the yeast 

strain Saccharomyces cerevisiae to convert the sugars into ethanol and CO2. 

Distillation then separates the solid and liquid fraction. The liquid fraction, 

containing the ethanol, is further purified to its azeotrope at 95% in a distillation 

column, before the rectifier purifies the mixture further to remove dissolved ions. 

Finally a dehydration step takes the purity up to 99.7vol% ethanol. The solids are 

dried and pelleted to produces distiller's dried grains with solubles (DDGS), which 

is pelleted for use as an animal feed [110].  

 

Figure 1.9: Steps involved in the fermentation and purifying of carbohydrate 
based feedstocks to high purity bioethanol 

Researchers are particularly interested in bioethanol production from macroalgae 

due to their abundant hydrolysable carbohydrate content [111]. Mannitol and 

laminarin are the main carbohydrates which can be utilised in a fermentation 

process [14]. They are found  in fairly large quantities, with Adams et al. [112] 

reporting up to 55% of the dry weight being made up of laminarin and mannitol, 



- 37 - 

meaning it is possible to achieve relative high concentrations of ethanol within the 

final products (up to 15%). Although laminarin is readily broken down into glucose 

via enzyme hydrolysis using β-1-3-glucanases [113], mannitol is not so readily 

utilised. In order for mannitol to be fermented, it first has to be oxidised to fructose 

using the enzyme mannitol dehydrogenase, a reaction which produces NADH. 

Regeneration of NAD+ requires either oxygen or transhydrogenase [106]. 

Therefore most microorganisms cannot ferment mannitol anaerobically. Red 

algae are reported to produce the most energy of any biomass source [14], 

although, as shown in Table 1.3, macroalgae as a whole have the potential to 

produce significantly larger volumes of ethanol per unit area than any of their 

terrestrial counterparts. 

Table 1.3: A comparison between the major bioethanol crops and macroalgae 
(adapted from [112]). 

Feed stock Wheat Maize Sugar 

beet 

Sugar 

cane 

Macroalgae 

Average world 

yield (kg/hr yr) 

2,800 4,815 47,070 68,260 730,000 

Hydrolysable 

carbohydrates 

(kg/ha yr dry) 

1,560 3,100 8,825 11,600 40,150 

Potential volume 

of ethanol (L/ha yr) 

1,010 2,010 5,150 6,756 23,400 

Due to the unique nature of carbohydrates present in macroalgae, achieving 

sufficient yields of ethanol can be a challenge and considerable research is being 

conducted to try to overcome this. Although laminarin can be readily broken down 

to glucose by a wide range of already commercially available microorganisms, as 

discussed before, mannitol is less readily utilised. For the fermentation of 

laminarin, Saccharomyces cervisiae, a strain of yeast, is most commonly used 

[30, 112, 114]. It is the most widely used, commercially available yeast strain [30] 
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and is already widely applied to baking, wine-making and brewing applications. 

Its kinetics, optimum fermentation conditions and general practise for use are 

very well known and understood by industry. Although this would make an 

excellent and cheap source for bioethanol production from seaweeds, as it is only 

able to utilise the laminarin present, ethanol yields are low, which means the 

economics of the process are unfavourable [112].  

To overcome this, research into microorganisms which can ferment mannitol is 

being undertaken. Horn et al. [115] have shown that bacteria Zymobacter palmae 

will readily convert mannitol to ethanol and, although laminarin could not be used 

directly, it was capable of converting glucose, showing that, if pretreatment was 

carried out to break down the laminarin, this bacteria could be a useful route to 

ethanol production from seaweed. However, as discussed earlier, the way in 

which mannitol is broken down requires oxygen and it was shown that mannitol 

is not utilised by Z. palmae unless the mixture is oxygenated.  

In another paper, Horn et al. [113] explore fermentation of seaweed using 4 

different microorganisms: P. angophorae; Kluyvermyces marxianus and 

Pacchysolen tannophilus, all yeast strains and the bacteria Z. Palmae. As 

described before, Z. Palmae was able to utilise mannitol, but had no effect on the 

total sugars concentration (which in this experiment is mostly made up of 

laminarin). P. tannophilus and K. marxianus were both able to utilise the sugars, 

but not the mannitol. However, what is most interesting from this experiment is 

that P. angophorae was able to ferment both mannitol and sugars, making it a 

viable candidate for effective bioethanol production from seaweeds.  
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1.1.7.2 Bio-methane Production 

Anaerobic digestion (AD) is the process by which organic matter is decomposed 

by microbes in the absence of oxygen to produce biogas [116]. This involves 4 

main process steps, detailed in Figure 1.10, which occur simultaneously in the 

same space [117] and can convert carbohydrates, fats and protein to bio-

methane. The first step, hydrolysis, uses enzymes, excreted by hydrolytic 

microorganisms, to decompose carbohydrates, proteins and fats into their 

monomer units. Acidogenesis, the second step, uses fermentative bacteria to 

produce volatile fatty acids (VFA’s), alcohols, hydrogen, CO2 and ammonia. The 

VFA’s and alcohols are converted into acetic acid, CO2 and hydrogen, which, in 

turn, are converted into methane and CO2 by methanogenic bacteria. Depending 

on the feedstock being used, there are three possible options for AD, which differ 

in their process temperature and retention time: psychrophilic has the longest 

retention time at 70-80 days and lowest temperature of less than 20°C; 

mesophilic is in the middle, with temperatures between 30 and 42°C and retention 

times of 30-40 days and finally thermophilic, having the highest temperature at 

43 to 55°C and shortest retention time of 15-20 days. The main benefit of this 

process is its ability to utilise many of the component parts in the feedstock and 

not only the carbohydrates, which is the case in fermentation. This means a waste 

product, such as that from a biorefinery process, would be able to be more fully 

utilised to form a fuel than if fermentation were to be used, where a portion of the 

carbohydrates will have been extracted prior to AD. 
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Figure 1.10: Main process steps in anaerobic digestion. 

The quantity of bio-methane produced, termed its biochemical methane potential 

(BMP), is very dependent on the particular feedstock being used.  Allen at al. 

[118] analysed 84 different feedstocks from first, second and third generation 

sources, available in Ireland, for their theoretical and actual BMP. A summary of 

their results are given in Table 1.4. The average methane produced from the BMP 

assays shows that first and second generation feedstocks give very similar 

production, while third generation is significantly lower at 213 L CH4/kg VS 

compared to 350 CH4/kg VS, despite their theoretical BMP being relatively similar 

to first and second generation. This is likely due to the low C:N value, which is 

optimum at between 25:1 and 30:1 [117] and with a low ratio being quoted to 

have the potential for inhibition due to the formation of high levels of ammonia 

[119]. The theoretical seaweed BMP, especially for the fucoid species, is 

relatively high, at 532 L CH4/kg VS for F. serratus and 488 L CH4/kg VS for A. 

nodosum. This indicates that either blending with another feedstock or pre-

extraction of protein to reduce the protein content would improve the actual yields 

of bio-methane on processing. The needs for pretreatment of biomass is 

advantageous for a biorefinery system, where prior extraction of high value 

chemicals will likely improve the C:N ratio of the biomass, improving the possible 

bio-methane yield. 
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Table 1.4: Average bio-methane production for first, second and third generation 
biofuels and data for brown seaweeds. Adapted from [118].  

Substrate  C:N 

Theoretical BMP  

L CH4 kg−1VS 

BMP assay  

L CH4 kg−1VS 

All average ± S.D. 

First Generation 44 ± 22 496 ± 118 353 ± 89 

Second Generation 17 ± 9 571 ± 137 350 ± 166 

Third Generation 25 ± 17 453 ± 89 213 ± 64 

Brown Seaweeds 

H. elongate 22 334 261 

L. digitata 23 479 218 

F. spiralis 17 540 235 

S. latissima 24 422 341 

A. nodosum 25 488 167 

F. serratus 16 532 102 

F. vesiculous 17 249 126 

S. polyschides 23 386 263 

A. esculenta 16 474 226 

Other studies into the AD of seaweed include that of Edward et al. [120] who note 

a BMP of 141 L CH4/kg VS and 113.3 L CH4/kg VS for dried Laminaria digitata 

and Laminaria hyperborea respectively. They noted that pre-treating the biomass 

by washing and drying and pre-incubation of the inoculum both increased the 

biogas yield and aided in the faster degradation of the biomass. Tabassum et al 

[121] have investigated blending Laminaria digitata and Saccharina latissima with 

dairy slurry. The results indicate that mixing these two feedstocks together 

decreases the total biogas produced, with the reported values for 100% and 

33.3% Lamininaria digitata being 288 L CH4/kg VS and 166 L CH4/kg VS 

respectively and slightly negatively effecting the comparison of theoretical and 
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actual values compared to digestion of the feedstocks alone. While bending with 

a different feedstock still may lead to a higher conversion rate, it is clear that there 

is no synergistic effects to the co-digestion of seaweed and dairy slurry. 

The seasonal variation in the bio-methane production from seaweed has been 

investigated by several authors. Tabassum et al [122] detail the seasonal 

variation of Laminaria digitata harvested off the coast of Southern Ireland. Their 

findings show a lowest BMP of 203 L CH4/kg VS in April and a highest BMP of 

327 L CH4/kg VS in August, corresponding to between 44 and 72% conversion 

when compared to the theoretical yields. These high values are accredited to the 

high C:N ratio and low ash: volatiles (A:V) ratios present in the biomass 

harvested. The effect of high salinity was noted to adversely affect the AD 

process, so high ash containing seaweeds are likely to produce a lower biogas 

yield when compared to their theoretical yields. Similar results were seen in a 

study by Adams et al [51] for samples of Laminaria digitata collected off the West 

coast of Wales. Lowest BMP yields were recorded in March at 196 L CH4/kg VS, 

with highest in July at 254 L CH4/kg VS, accounting for between 55 and 61% of 

the theoretical yield. A study into the potential for AD from Ascophyllum nodosum 

has also been conducted by Tabassum et al [123]. Despite having higher 

theoretical yields than for the kelp species: averaging 567 L CH4/kg VS compared 

to 456 L CH4/kg VS and 381 L CH4/kg VS respectively for the preceding two 

studies, the actual BMP yields are lower, with a highest value of 215 L CH4/kg 

VS in October and lowest of 95 L CH4/kg VS in December. This significantly lower 

conversion, between 16 and 46% of the theoretical values, has been shown to 

correlate with the polyphenol content, with a higher polyphenol content 

corresponding to a lower conversion. They therefore conclude that polyphenols 

play an inhibitory part in the AD process. 
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1.1.8 Macroalgal Biorefineries 

The concept behind a biorefinery is to integrate biomass conversion processes 

and equipment to produce a sequence of products, which can include fuel, 

chemicals and electricity [102]. This approach is advantageous, as it allows for 

the integration of heat and power across a system, giving the lowest possible 

energy usage while creating the most value out of the feedstock by using as much 

of the biomass as possible and, therefore, maximising profits. At present, most 

chemicals produced from biomass sources are made in singular and any residues 

from the process, which often contain useful and extractable chemicals, are either 

wasted or processed at a different site [4]. An example of this is in the alginate 

industry, where they extract acid soluble chemicals, such as mannitol, laminarin 

and fucans, with dilute sulphuric acid, which is then treated for disposal [124]. 

The general set up of a biorefinery is envisioned to produce a small number of 

high-value, low-volume chemicals and a low-value, high-volume transport fuel, 

with the hope that there will be enough heat and power produced on site to meet 

the needs of the process [102]. If this were the case, then the whole process 

could be seen as carbon neutral, especially if transportation of feedstock and 

energy demands were run by the biofuel the plant produces.  

There are many possible routes for a macroalgal biorefinery, depending on the 

desired end products. These have been thoroughly discussed in review papers, 

including those of Trivedi et al [125], Jung et al [38] and Suganya et al [126], but 

there appear to be few fully researched and valorised in the literature. Included 

in the work the author could find is the results of Kumar et al [127], who present 

a possible biorefinery approach for macroalgae through the use the red algae, 

Gracilaria verrucosa to produce agar and ethanol via enzyme hydrolysis followed 

by fermentation. They report that from 1000kg of biomass, 280kg of agar and 
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38kg of ethanol could be made. While the yield of agar seems reasonable, the 

ethanol yield is very low and could certainly be improved upon by utilisation of 

better fermentation techniques. There are also other components, such as lipids 

and proteins, which remain unused and further value could be added if these 

were extracted in the process.  

Marinho et al [128] detail a biorefinery for the brown seaweed Saccharina 

latissima. The schematic first involves enzyme hydrolysis of the seaweed 

biomass to release fermentable sugars. The hydrolysate is fermented with a 

strain of A. succinogenes to produce succinic acid to a maximum concentration 

of 36.8g/L. The solid residue from enzyme hydrolysis is then used for phenol 

extraction and fertiliser production.  

A dark fermentation of seaweed to biohydrogen is suggested as a possible option 

by Sambusiti et al [129]. This process involves the production of hydrogen using 

a mixture of bacteria in the absence of light, with the solid residue being 

suggested to be used as a feedstock for anaerobic digestion (AD), gasification or 

pyrolysis. 

Overall, a biorefinery concept looks to be a very good way of producing 

sustainable fuel and chemicals, making the most out of the biomass feedstock 

and reducing costs through lower energy and transportation requirements. 

Additionally, by producing high value products alongside fuels, it is possible that 

the cost of biofuels could compete with fossil fuel equivalents. Although a lot of 

work will still need to be carried out in refining both the individual processes and 

their integration, it seems that this type of approach could be the future of both 

fuel and chemical production.  



- 45 - 

1.2 Extraction of Chemicals 

There are many methods for the extraction of chemicals from macroalgae, 

including solvent, temperature and enzymatic methods. The choice of method 

depends on the chemical of interest and its various properties, as well as its 

position within the cell. However, in general, it  is beneficial in the case of 

macroalgae to choose a method which utilises wet biomass, such as 

hydrothermal processing [130], as the harvested water content of the biomass is 

high, up to 80%, and the associated energy costs of drying significantly increase 

processing costs.  

1.2.1 Conventional Chemical Extraction 

For macroalgae, the traditional means of extracting desirable compounds is via 

chemical extraction. In general it relies on the different ways in which cell 

components interact in varying solvents and under varying conditions (for 

example, increased temperature). This commonly takes the form of dilute acid 

hydrolysis, using either H2SO4 or HCl at elevated temperatures to extract the 

carbohydrates [131] 

The use of dilute acid to extract chemicals from macroalgae was first noted by 

Black et al., [132-134] who published a series of papers detailing the extraction 

of mannitol, laminarin and fucoidan from brown macroalgae. In each case, the 

seaweed sample was stirred with dilute HCl ranging in concentration from 0.09-

0.17M depending on the desired chemical. Mannitol and laminarin were found to 

be readily extracted at room temperature and are separated by the addition of 

ethanol, which causes the laminarin to be precipitated from the mixture, leaving 

behind the mannitol. Fucoidan, however, requires 2 sequential extractions, 

heating to 70°C for 1 hour, to achieve good levels of extraction, which has also 
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been noted by other authors [135]. The sequential extraction of chemicals in 

seaweed has been conducted by Rioux et al [136], who separates the biomass 

into 3 different fractions. After a pretreatment with 85% ethanol, laminarin and 

fucoidan is extracted with 2% CaCl2 at 70°C, after which fucoidan, which is noted 

to have a different structure from that of the first fraction, is extracted with 0.01M 

HCl at 70°C. Finally, alginate is extracted with 3% NaCO3, also at 70°C.  

1.2.1.1 Conventional extraction of Fucoidan 

Fucoidan is extracted from macroalgae in order to determine quantity and is 

performed via a lengthy extraction and purification process, resulting in dry 

fucoidan. In general this consists of four main steps: an initial purification to 

remove pigments and lipids, often using an alcohol; an extraction step, often 

repeated several times to ensure full extraction of fucoidan and most commonly 

using calcium chloride, dilute hydrochloric acid or water; further purification of the 

extract to remove alginate and other impurities before fucoidan is finally 

precipitated using ethanol [137-142]. One of the most prevalent of these was 

adapted from a method developed by Whyte [143] for the extraction of lipids from 

fish and involves the use of CaCl2(aq) to extract the fucoidan [18, 66, 69, 144] after 

pretreatment with a MeOH:CHCl3:H2O mix. While effective, this technique is time 

and resource and time consuming, with some authors reporting 6 sequential, 

stirred extractions with CaCl2 solution at 85°C for 24 hours [144]. The fucoidan is 

then precipitated out using a decyltrimethylammonium bromide solution. After 

this, a fairly lengthy purifying procedure is undertaken, which can involve 

fractionation using ion exchange chromatography [69] or dialysing against 

distilled water for several days [144].  
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A comparison of the three extraction solvents: distilled water, HCl and CaCl2, was 

carried out by Ponce et al. [145]. The results indicated that distilled water and HCl 

extraction gave the highest and comparable yields of 10.8 and 9.6 wt% 

respectively, with the structure of each extract being very similar. Zhang and Row 

[146] further this, similarly comparing extraction solvents, but also identifying the 

best conditions for fucoidan extraction from Laminaria japonica. Their findings 

suggest an extraction time of 4 hours at 80°C and 0.1M HCl yields the best 

results, giving 17wt% fucoidan, although no analysis of the quality of the fucoidan 

has been made, so the results are based on the best yield alone. Overall, all of 

the methods described require long extraction and purification times in order to 

obtain a pure product and determine the accurate fucoidan content, taking up to 

5 days depending on the number of extractions performed. Due to this lengthy 

procedure, novel extraction techniques are being proposed, which include 

enzyme-assisted [147], microwave-assisted [148] and ultrasound-assisted 

extraction [66] in order to reduce the process step and extraction time. 

1.2.2 Microwave Assisted Extraction 

Microwaves were first invented in World War II with the development of radar 

technology and were first used in a domestic setting in the 1950’s [149]. They 

were first used in a laboratory setting in the 1970’s for acid digestions for metal 

analysis [150]. It wasn’t until the 1980’s that they were applied to chemical 

extractions, with Ganzler et al [151] first using them for chemical extraction in 

preparation for analysis by liquid chromatography. Nowadays, microwaves hold 

a variety of uses throughout industry already, including in the food, plastics, 

animal feed and paper industries [152] and there is increased interest in their use 

within the biofuels industry. Applications such as pyrolysis [153] and 

transesterification [154] for the production of bio-oil are being investigated, but 
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probably the application which has the most potential for seaweed is microwave-

assisted extraction (MAE) and is defined by Eskilsson and Bjorklund [155] as a 

“process to heat solvents in contact with a sample in order to partition analytes 

from the sample matrix into the solvent”. Its ability to reduce extraction times and 

the amount of solvent required [155] make it a potential low cost alternative to 

traditional pretreatment techniques and it has also been proved that, in most 

cases, reproducibility and recovery of the species of interest is improved over 

conventional methods. In addition it is considered to be a more environmentally 

friendly process, requiring less energy and producing less waste [148]. 

Microwaves are being researched for a wide variety of extraction purposes. Early 

work using microwaves for chemical extraction, starting in the 1980’s and 

included the use of cotton and lupine seeds and other plant matter to efficiently 

remove chemicals of interest [149]. The trend for the use of microwaves to 

replace conventional heating for chemical extraction has continued since then, 

with more recent reports for their use relating to polysaccharide extraction from 

guava fruits [156] and tamarillo fruits [157]. A general trend in the literature 

suggests that the use of microwaves offers a more rapid alternative to 

conventional heating, while retaining polysaccharide structure and functionality.  

1.2.2.1 Microwave Theory 

Microwaves are electromagnetic waves with a frequency range of between 

300MHz and 30GHz [158] however most research, medical and domestic 

equipment operates at a frequency of 2.45GHz so as not to interfere with other 

wave frequencies, such as radio waves [149]. They comprise of electric and 

magnetic components and therefore create electromagnetic energy [152]. The 

general principle behind microwave heating is via the rotating of dipoles, either 
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permanent or induced, within a material. When a microwave field is applied, the 

dipoles arrange themselves in the direction of this field. The field is then removed 

and the dipoles return to their previous, disordered state, which causes heat to 

be emitted due to friction [152]. This means that microwaves heat the material 

evenly throughout the volume, unlike in conventional heating, where the material 

is heated from the outside, from where it travels via convection to the centre. 

Figure 1.11 shows a pictorial representation of this difference. There are several 

advantages to the use microwave heating of traditional methods, which include: 

non-contact; the transfer over microwave energy instead of heat; rapid, selective 

heating; the ability for high levels of automation and high levels of safety [159]. 

Microwaves present a safer alternative to conventional heating, as, rather than 

needing to heat an element, which in turn heats the medium of interest, the 

microwaves directly heats the medium via friction caused by the rotation of 

intermolecular forces, reducing the quantity of heated material. Microwaves are 

also usually applied in sealed vessels made of material “transparent” to 

microwave heating. This means that the heat is sealed within the vessel and any 

potential runaway reactions are well contained. Another potential advantage to 

this phenomenon is that, due to varying amounts and frequency at which dipoles 

are excited, materials are heated differently at different microwave powers. This 

gives the opportunity for sequential extraction based on the nature of dipoles 

present in the chemical [158].  
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Figure 1.11: Differences between conventional and microwave heating. 

Chan et al. [160] present a model for the cell rupture of plants during microwave 

heating. Their findings show that the microwaves interact with the moisture inside 

a cell, expanding as it is heated, stretching the cell wall and increasing the 

pressure inside the cell. As the pressure increases, the cell wall ruptures, 

releasing its compounds into the surrounding solvent. The time with which it takes 

for the cell to rupture is dependent on the tensile strength of the cell wall. As the 

moisture inside the cell can be heated directly, without the need to wait for 

convention from the outside in, as with conventional heating, the time it takes for 

cell walls to rupture is significantly reduced and, therefore, shorter processing 

times are required. 

1.2.2.2 MAE for the Extraction of Macroalgae 

Chhatbar et al. [161] detail the use of microwaves for the hydrolysis of sodium 

alginate. Conventionally, this requires sodium alginate to be subjected to strong 

acidic conditions for a long time, in the order of several hours. However, the use 

of microwave, mild conditions (0.15-0.25M) and short time frames (1-5 minutes) 

were able to give the same results with good reliability. This is of interest with 

regards to biofuels production as alginate is a major component in seaweeds and 
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if this could be hydrolysed easily, then its possible conversion to ethanol may be 

facilitated. 

The use of MAE has also be detailed by Rodriguez-Jasso et al. [148] for the 

extraction of fucoidan from the brown seaweed Fucus vesiculosus. These are 

traditionally extracted using large volumes of solvent and long extraction times, 

but optimum conditions using microwaves are reported to be 1g alga/25ml water 

for 1 minute: a significant saving in both costly use solvent and time. Yuan and 

Duncan [162] have designed microwave assisted algal biorefinery based on the 

conventional extraction method for fucoidan, described in section 1.2.1.1, 

creating a reduction in the extraction time required. The study, along with its 

associated study, detailing the quality of the fucoidan extracted in the process 

[163] gain good extraction of fucoidan and alginate, extracting 96% and 79% 

respectively of the total present in the biomass. This, however, seems to be 

achieved at the expense of quality of fucoidan, as it appears the quantity of 

sulphate and the MW of the polymer are reduced at the temperature required for 

optimum extraction, while the lower temperature required to keep the polymer 

intact significantly effects the amount extracted. This is likely due to the 

interaction of HCl with fucoidan, used for extraction, which has been shown in 

previous studies to have a degradative effect on fucoidan at elevated 

temperatures [164].  

1.3 Conclusion 

Overall, seaweed is clearly an important and underutilised resource which 

contains a range of both high value chemicals and potential precursors for fuel 

production. This includes a range of unique carbohydrates that have interesting 

applications for pharmaceutical development, ingredients for the food and 
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cosmetics industry and building block molecules for use in fuel and bulk chemical 

production. 

In order to make the most out of the resource, the development of a seaweed 

biorefinery, sequentially extracting high value chemicals while using the “waste” 

to produce fuel, offers an economical and sustainable option for fuel production. 

Furthermore, being able to process the seaweed in as energy efficient manner 

as possible is important for a world in which climate change is an important 

consideration. The use of microwaves offers a low energy alternative to traditional 

heating methods, with the potential to reduce both the temperature and time 

required for extraction. While microwaves are common place in the food industry, 

there is little literature to support their use in a biorefinery setting. More research 

into their application to seaweed extraction and their benefits over conventional 

heating is required. 

An important consideration when considering seaweed as a feedstock for an 

industrial process is its seasonal variation. To avoid difficult and costly 

drying/storing of the biomass, year-round harvest would be preferred. However, 

the composition of the seaweed, as well as the structure of the high value 

carbohydrate, fucoidan, vary throughout the year. The literature is missing recent, 

in depth studies into the seasonal variation of three species of fucoid common to 

the coast of the UK; Fucus serratus, Fucus vesiculosus and Ascophyllum 

nodosum. These are good potential feedstocks to biorefinery due to their high 

fucoidan and carbohydrate content, coupled with a relatively low ash content. 

Furthermore, there is currently no literature detailing the structural variation of 

fucoidan. This is especially important for year-round harvest considerations, as 

the structure has a large effect on is bioactivity and, therefore, medical properties.  
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This thesis aims to cover these gaps in the literature, first detailing the seasonal 

variation in chemical content of Fucus serratus, Fucus vesiculosus and 

Ascophyllum nodosum. This will include caborhydrate content (fucoidan, 

mannitol, laminarin and alginate), as well as protein, ash and proximate and 

ultimate analysis. A detailed study into fucoidan is also presented, analysing its 

variation in molecular weight, fucose and sulphate content and structure. The 

information from these studies are then used to predict the best species and 

harvest month to take forward into the development of a microwave seaweed 

biorefinery. 

The biorefinery development involves the sequential extraction of carbohydrates 

at increasing temperatures. Temperature, microwave residence time and 

seaweed to solvent ratio are varied to identify the optimum conditions for the 

extraction of each chemical. The residual “waste” biomass is assessed for its 

potential use for fuel production. Finally, the impact of seasonal variation on the 

final, proposed biorefinery schematic is assessed. 
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2 Methodology 

2.1 Materials and Sample collection and preparation 

All seaweed samples have been collected from Aberystwyth shore (Latitude: 

52.41°N, Longitude: -4.08°W) at low tide. Seasonal variation samples of Fucus 

serratus (FS), Fucus vesiculosus (FV) and Ascophyllum nodosum (AN) were 

collected monthly between April 2010 – March 2011, freeze dried, ground and 

sieved to 500μm. Microwave extraction samples of FS were collected in June 

2015, were air dried for 48 hours followed by oven drying at 50°C for 24 hours, 

ground and sieved to 500μm. All samples were dried within 24 hours of collection. 

All chemicals and reagents have been supplied by Sigma Aldrich, VWR or Fluka 

and are of analytical grade. 

2.2 CHNS 

CHNS is used for the rapid determination of carbon, hydrogen, nitrogen and 

sulphur. The basic principle behind it involves 3 main steps: combustion, clean-

up and detection. For the first stage, the samples, enclosed in tin capsules in the 

case of solids, are introduced into a high temperature (around 1000°C), oxygen 

rich combustion chamber, where the 4 elements of interest are converted into 

gasses [165]: 

Carbon → Carbon Dioxide 

Hydrogen → Water 

Nitrogen → Nitrogen gas/nitrogen oxides 

Sulphur → Sulphur dioxide 
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After combustion, the gasses go through a “clean-up” process. This involves, 

firstly, being passed over hot (around 600°C) high purity copper, which removes 

the oxygen that has not been consumed, as well as converting any nitrogen 

oxides to nitrogen gas. This is followed by a series of absorbent “traps” which 

collect a variety of unwanted products from combustion, such as HCl if chlorine 

is present [165]. This leaves only carbon dioxide, water, nitrogen gas and sulphur 

dioxide in the gas stream. Finally, these gasses are separated by gas 

chromatography, followed by quantification using thermal conductivity detection. 

This quantification requires calibration through the use of standards [165]. 

The carbon, nitrogen, hydrogen, oxygen and sulphur content of the biomass and 

extracted fucoidan has been analysed using a CHNS analyser (CE instruments 

flash EA 1112 series). 2.5±0.5mg of sample is weighed into a tin capsule, to which 

approximately 5mg of vanadium pentoxide is added as a combustion aid. This is 

required in order to achieve full combustion of sulphur compounds, giving a 

reliable sulphur reading. Capsules are loaded into the analyser, which is run at 

900°C for 20 minutes. CHNS values are quoted, where possible, on a dry, ash 

free basis, meaning the oxygen value can be calculated by difference. 

2.3 Thermogravimetric Analysis (TGA) 

Thermogravimetric analysis (TGA) studies the change in mass of a sample as 

the temperature is varied [166]. Samples of known weight are placed on a 

sensitive balance in a heat proof crucible and subjected to controlled increases 

in temperature, over which the mass loss is monitored and recorded [166]. By 

controlling the atmosphere in which the sample is heated, it is possible to promote 

certain reactions over others. For example, it is possible to evolve the volatile 
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components in a sample, without interference from combustion, if the sample is 

heated in an inert gas such as nitrogen [166]. 

In this case, proximate analysis of samples has be carried out via TGA. The 

program consists of ramp to 105°C at 10°C/min in nitrogen and held at this 

temperature for 10 minutes, giving the moisture fraction. The temperature is them 

ramped at 25°C/min to 900°C, where it is held for a further 10 minutes, driving off 

volatiles. Finally, the gas is switched to air, the temperature ramped to 815°C at 

20°C/min and the temperature held at 815°C for 10 minutes, burning off any fixed 

carbon. Ash is then calculated by difference from these figures. Figure 2.1 gives 

an example TGA for FS and details each of these steps. 

 

Figure 2.1: Example TGA curve, indicating each of the steps involved. 

2.4 Sugar and Organic Acid Analysis 

Sugar analysis is achieved via a two-step process: firstly, the samples are 

digested in acid, in order to hydrolyse the carbohydrates into their monomer units, 

followed by separation and detection of these monomers by HPLC. This method 
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follows that of the NREL method of the determination of structural carbohydrates 

and lignin in biomass [167]. For acid digestion, 150±5mg of sample is weighed 

into a 50ml Pyrex tube, to which 1.5ml of 72% H2SO4 is added. A clean, PTFE 

stirring rod is added to each tube and mixed thoroughly. The tubes are then 

placed in a water bath at 30°C for 1 hours, stirring regularly throughout. The tubes 

are removed from the water bath and the concentration of H2SO4 diluted to 4% 

with water (approximately 42ml). The lids are screwed on tightly, inverted several 

times to mix and loosened by a quarter turn in order to prevent pressure build up 

in the autoclave. The tubes are sealed in an autoclave set to 121°C and held at 

that temperature for 1 hour. Once the tubes have cooled and the solid biomass 

has settled, a 5ml portion of the liquid is pipetted into a clean 50ml centrifuge 

tube. Calcium carbonate is added in small portions, swirling between additions, 

until the pH is 5-6. The tubes are centrifuged and the supernatant removed with 

a 2ml syringe. This is filtered through 0.2μm syringe filters into HPLC vials ready 

for analysis. See section 2.5 for details on HPLC set-up. 

For this analysis, it is important that the ash content is below 10 wt%, to prevent 

interference by salts on the acid concentration, inhibiting hydrolysis. As 

seaweeds typically have a high ash content, well over 10wt%, this was overcome 

by washing the samples with ethanol prior to hydrolysis. 0.5±0.005g of biomass 

was mixed with 2x 20ml of 98% ethanol to remove surface salts, centrifuged, the 

ethanol poured off and the residue allowed to dry to a constant weight at room 

temperature. Ethanol is used as the carbohydrates present in seaweed are 

soluble in water, meaning an alternative solvent must be used. Although only a 

small amount of salts present in seaweed dissolve in ethanol [168], none of the 

carbohydrates dissolve and, with the high solvent to biomass ratio used here, 
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enough of the lipids and salts are removed to stop their interference with the acid 

concentration for hydrolysis. 

2.5 Liquid Chromatography 

 High-performance liquid chromatography (HPLC) and size 

exclusion chromatography (SEC) 

High-performance liquid chromatography (HPLC) and size exclusion 

chromatography (SEC) both use high pressure to force eluent, carrying the 

sample with it, through a packed column containing small particles designed to 

specifically separate chemicals of interest [169]. Analytical scale equipment uses 

small columns, with diameters between 1 and 5mm and 5 to 30cm in length. 

Generally flow rates of 0.5-5ml/min with pressures between 50 and 400 bar [169]. 

Compounds within the sample are separated by the difference in affinities 

between stationary and mobile phase, which could be based on adsorption, size 

or charge [166]. SEC is primarily used to separate and identify large molecules, 

in this case carbohydrates, extracted from seaweed samples, which are 

separated based on size. HPLC has been used to determine sugars and organic 

acids, with the columns used for this separating based on the charge and number 

of bonding sites on the various sugars and acids.  

Liquid samples for SEC or HPLC are prepared by filtering through a 0.2 μm 

syringe filter (VWR, 25mm) into glass HPLC vials sealed with pre-slit lids. The 

instrument used is a Dionex Ultimate 3000 fitted with a Shodex RI-101 refractive 

index detector or Ultimate 300 photodiode array (PDA) detector, depending on 

analysis. For sugar analysis, a de-ashing column (Micro-Guard De-Ashing 

cartridges and column, Bio-Rad Laboratories) has been added to the set-up, to 

remove any salts from the sample and the interference caused by these. SEC 
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samples have been treated with an ion exchange resin (Dowex Marathon MR-3, 

Sigma) to similarly remove the interference in the chromatogram caused by the 

presence of salts. Samples are loaded into the racks and the analyser set with 

the appropriate program. The conditions and column type for each program used 

are detailed in Table 2.1. Each column is calibrated with the relevant standards. 

Figure 2.2 gives example standard calibrations for each HPLC set-up. SEC has 

been calibrated with a set of polyethylene glycol/polyethylene glycol standards 

(MW 200 to 1,015,000Da) (Fluka). All other standards have been purchased from 

Sigma.  

Table 2.1: Key parameters for HPLC/SEC analysis 

Parameter SEC Sugars Organic Acids 

Column Type Ultrahydrogel 

500 (Waters) 

Pb 6% (Supelco) C610H (Supelco) 

Mobile Phase Deionised water Deionised water 0.1% phosphoric 

acid 

Oven Temp (°C) 30 80 35 

Run time (min) 30 45 30 

Flow rate (ml/min) 0.5 0.5 0.5 

Injection volume 

(μl) 

10 10 10 
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Figure 2.2: HPLC calibration chromatograms for (a) sugars, (b) organic acids and 
(c) SEC. 
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 Liquid Chromatography-Mass Spectrometry (LC-MS) 

LC-MS has been performed using an Aligent 1200 series HPLC and Brucker 

HCTultra MS. The samples have been run through the Waters Ultrahydrogel 500 

used for SEC with the same conditions as in Table 2.1. The MS was operated in 

negative ion mode with a mass scan between 100 and 1300m/z. All samples 

have been filtered through 0.2μm syringe filters prior to running through the LC-

MS. 

2.6 Fucoidan Extraction 

Fucoidan is extracted via a dilute acid method, as optimised by Zhang and Row 

[146]. An flowchart detailing an overview of the method is given in Figure 2.3. 0.5 

± 0.01g of sample is weighed into a 50ml centrifuge tube, to which 10ml of 85% 

ethanol is added and stirred for 4 hours at room temperature. The tubes are 

centrifuged for 5 minutes at 3500 rpm and the liquid decanted off. The solids are 

washed with 5ml of acetone before being allowed to dry to a constant weight at 

room temperature. 0.3g of the resulting biomass is weighed into a clean tube, to 

which 7.5ml 0.1M hydrochloric acid is added and stirred at 80°C for 4 hours. This 

is allowed to cool, centrifuged and the supernatant decanted into a clean tube. 

The residue is freeze dried. 1 volume (~6ml) of 1% CaCl2 is added and left for at 

least 4 hours at 4°C to precipitate alginate. The tubes are centrifuged and the 

supernatant decanted to another clean tube to which ethanol is added to give a 

final concentration of 40% v/v to precipitate laminarin, left for at least 4 hours at 

4°C, centrifuged and the supernatant decanted to a clean tube. Lastly, ethanol is 

added to give a final concentration of 70% v/v to precipitate fucoidan. This is left 

for at least 4 hours at 4°C to precipitate fucoidan, before being centrifuged and 

the supernatant is removed. The fucoidan fraction is washed with a small quantity 
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of acetone and allowed to dry to a constant weight at room temperature, along 

with the laminarin fraction. 

  

Figure 2.3: Schematic of the steps involved in fucoidan extraction 

2.7 Spectrophotometric Fucoidan/Fucose Analysis 

Fucose/fucoidan content is determined colourmetrically, via a method originally 

proposed by Dische and Shettles [135]. For fucoidan analysis from solid seaweed 

biomass, a full account of the development of this method is given in 4.2, 

including relevant calibration curves, so only an overview is given here. The 

method involves two main steps: extraction of fucoidan using dilute hydrochloric 

acid followed by hydrolysis of fucoidan with concentrated sulphuric acid. For 

fucose analysis, fucoidan, extracted as in section 2.6, is diluted to 1.25wt% and 

only the second, acid hydrolysis step is completed. A schematic for the two 

methods is given in Figure 2.4. 
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Figure 2.4: Schematic of the method for spectrophotometric determination of 
fucose and fucoidan 

For acid extraction of fucoidan from solid seaweed, 150±5mg of sample is 

weighed into a 50ml centrifuge tube, to which 25ml of 0.2M HCl is added. This is 

stirred at 70°C for 1 hour, centrifuged and the supernatant decanted into another 

centrifuge tube. A further 25ml 0.2M HCl is added and the process repeated. The 

extracts are combined and the tube inverted several times to mix. 

Concentrated acid hydrolysis is achieved in the following way: a set of aqueous 

fucose standards between 30 - 150mg l-1, and relevant blanks are prepared. 1ml 

aliquots of sample, either diluted fucoidan extract for fucose analysis or acid 

extracted fucoidan (as above) for fucoidan analysis, standards and blank are 

pipetted into 15ml Pyrex tubes to which 4.5ml of 6:1 v/v H2SO4 is added. The 
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tubes are capped, inverted several times to mix, left for approximately 5 minutes 

at room temperature and placed in a boiling water bath for 10 minutes to 

hydrolyse the fucoidan into fucose. The tubes are cooled under running water. 

0.1ml of 3% aqueous L-cysteine hydrochloride is added to each tube, and 

inverted to mix. The reaction is left for 30 minutes, before the absorbance’s at 

396 and 427nm are recorded. The concentration of fucose (Cf), in mg/ml, is then 

calculate using Equation 1, where A396 and A427 are the absorbance readings at 

396 and 427nm respectively, B is the blank reading and x is the slope of the 

calibration curve for fucose, derived experimentally: 

 
𝐶𝑓 =

(𝐴396 −𝐴427)−𝐵

𝑥
 

Equation 1 

For fucoidan analysis via this method, correction factors for alginate and laminarin 

are required, the equation for which is given in  Equation 2, where Fadj is the 

adjusted fucoidan, Fint is initial fucoidan and A is alginate, all in wt%. The method 

used to determine this adjustment factor is given in section 4.2. 

 
𝐹𝑎𝑑𝑗 =

𝐹𝑖𝑛𝑡
1.2 + (0.007𝐴 − 0.09)

 
Equation 2 

 

2.8 Sulphate Analysis 

Sulphate analysis have been achieved via a kit supplied by Hach-Lange 

(LCK353). 1.25wt% solutions of extracted fucoidan are used. The method used 

in this kit is based on that originally described by Tabatabaia [170] and involves 

the reaction of barium chloride with weakly acidified samples to form barium 

sulphate. This is only sparingly soluble and the turbidity can be measured 

photometrically to give the concentration of sulphate in the original solution. 2ml 

of fucoidan solution is pipetted into the analysis vial, to which a measured portion 
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(one scoop using the provided measure in the kit) of barium chloride is added. 

This is inverted for 1 minute to mix, followed by 30 seconds standing at room 

temperature. The vial is then inserted into the Hach-lange UV-vis, which is fitted 

with a barcode reader to determine the wavelength and calibration required for 

analysis. 

2.9 Metal Analysis 

 Acid digestion 

0.2±0.05g of sample is digested in 10ml of concentrated nitric acid using either 

microwave (Aston Parr, USA) enhanced digestion or on a hot plate. Samples are 

digested for approximately 1 hour at 200°C, after which the temperature is 

increased to 250°C and the samples evaporated to dryness. A further 5ml of 

concentrated nitric acid is added and warmed to dissolve the metals and samples 

are diluted to x500 for analysis. The metals in the digests have then been 

measured using ICP-MS (Perkin Elmer, USA). A schematic for hot plate digestion 

set-up is shown in Figure 2.5. 

 

Figure 2.5: Schematic for the apparatus set-up for hot plate acid digestion for 
metal analysis. 



- 66 - 

 Phosphorus Analysis 

Acid digested samples have been reacted with an ammonium molybdavanadate 

solution to determine their phosphorus content. Ammonium molybdavanadate is 

made by adding 200ml of 0.313% solution of ammonium matavandate in 1:1 nitric 

acid to 200ml 12.5% solution of ammonium molybdate and making up to 500ml. 

In each case, a sample and sample blank are required, due to the interference of 

iron with the UV reading. These are prepared by pipetting 1ml of sample into 2ml 

Eppendorf tubes for both the sample and the sample blank. To the sample tubes, 

0.4ml of ammonium molybdavanadate and 0.6ml of deionised water is added. 

1ml of deionised water is added to the sample blanks. The colour reaction is left 

to develop for 1 hour, before the measurement in a spectrophotometer (Thermo 

Scientific, USA) at 430nm. For this, 250μl of each sample is pipetted into a 96-

well plate compatible with the machine. A calibration curve between 5-25ppm is 

made in the same way with phosphate standard, with a sample and sample blank 

for each. The calibration curve used is given in Figure 2.6. 

 

Figure 2.6: Calibration for phosphorus analysis 
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2.10 Hydrothermal Microwave Extraction of Seaweed 

An overview of the process for hydrothermal microwave extraction of chemicals 

from seaweed is given in Figure 2.7. 1±0.01g of seaweed is weighed into a 

microwave reactor tube, to which 10 or 15ml of distilled water is added. The tube 

is sealed in a reactor tube and placed in the microwave (Milestone Start Synth 

Microwave Synthesis Labstation, with a reactor volume of 42L , using the Q20 

closed vessel system, with a vessel volume of 45ml) in either the single or 

carousel configurations, as shown in Figure 2.8. On the whole, the single tube 

set-up was used, as this gives the best temperature control and reading, but, 

when a large volume of sample was required, the carousel was used. The 

microwave is then set to the desired program, which includes a ramp time of 5 

minutes up to the desired temperature: between 50 and 200°C, and then held at 

that temperature for between 5 and 10 minutes, and is then cooled by a fan until 

the temperature is below 50°C. The tube is then removed from the microwave 

and the contents poured into a 50ml centrifuge tube. The microwave tube is 

rinsed thoroughly with distilled water, which is added to the centrifuge tube. This 

is centrifuged at 3500rpm for 5 minutes and the supernatant decanted into a clean 

tube. The residue is washed with ~10ml distilled water, centrifuged a second time 

and the supernatant combined with the previous. The supernatant is made up to 

50ml and the residue and a portion of the supernatant are freeze dried for 

analysis. 

 

Figure 2.7: Schematic for hydrothermal microwave extraction of chemicals from 
seaweed. 
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Figure 2.8: Microwave reactor set-up for single and carousel configurations. 

2.11 Conventional Hydrothermal Extraction of Seaweed 

Conventional hydrothermal extraction of seaweed is carried out in the same way 

as hydrothermal microwave extraction, with the microwave being replaced with a 

sand bath set at the desired temperature: between 50 and 200°C. A schematic 

of the main steps is given in Figure 2.9 and the reactor vessel shown in Figure 

2.10, which has a volume of approximately 30ml. 1±0.01g of seaweed is added 

to a reactor tube, to which 10-15ml of distilled water is added and the reactor is 

tightly sealed. The reactor is placed in the sand bath and the timer started for the 

desired time when the contents of the reactor is up to temperature: this took 

around 5 minutes in each case. Once the desired time has been reached, the 

reactor is removed from the sand bath and plunged into cold water to cool. The 

contents of the reactor are treated in the same way as hydrothermal microwave 

extraction, with the supernatant being made to 50ml and the residue and portion 

of the supernatant being freeze dried. 

 

Figure 2.9: Schematic of conventional hydrothermal extraction of seaweed. 
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Figure 2.10: CHE reactor set-up. 

2.12 Experimental Replication and Statistical Treatment 

All analyses have been performed in a minimum of duplicate; it is indicated in the 

text were more than 2 samples have been analysed. The average values are 

reported along with the standard error in all tables and figures. For colourimetric 

analysis, such as fucose and phosphorus analysis, absorbance readings for each 

sample are taken in duplicate, of which the average is taken forward for further 

calculation to ensure a representative sample has been analysed.  
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3 Seasonal Variation of Three Species of Fucoid 

3.1 Introduction 

The seasonal variation in the chemical content of macroalgae is an important 

phenomenon for industrial consideration. Ensuring a consistent product and 

knowing the quantity of a chemical you are likely to extract is central for industry 

applications, where reliability is a key factor. Furthermore, different industry 

applications may wish to harvest at a different time of year, based on the 

chemicals in which they are interested. For example: the food industry may prefer 

a high protein content, whereas harvest for bioethanol production would benefit 

from a high carbohydrate content. In this chapter, the seasonal variation of three 

species of macroalgae: Fucus serratus (FS), Fucus vesiculosus (FV) and 

Ascophyllum nodosum (AN) harvested monthly off the coast of Aberystwyth has 

been explored. These seaweeds were chosen for their abundance around the UK 

coastline and their relatively high fucoidan and carbohydrate content, coupled 

with a comparatively lower ash content. Little research has been carried out on 

the seasonal variation of Fucoids, with the last published work found dating from 

the 1950’s. Changes in water temperature and acidity due to climate change, 

levels of contamination due to industrial and anthropogenic activity and increased 

levels of eutrophication from farming activity are likely to affect seaweed 

composition. Recent interest in the extraction of high value, bioactive 

components from seaweeds is also growing and, along with the advancements 

in analysis equipment and techniques, support the necessity for an extensive, up 

to date survey of the seasonal variation of Fucoids found in the UK. 
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3.2 Selection of Species 

The selection of a species for a macroalgal biorefinery is important to ensure 

good yields of the desired chemicals, as well as minimising any potential damage 

to equipment caused by high ash levels and be abundant around the coast of the 

UK for wild harvest or have good potential for cultivation as a farmed seaweed. 

The key points for the selection, based on the production of chemicals and fuel, 

are: 

 A high fucoidan content, for extraction as a high value chemical. 

 A high laminarin and/or mannitol content, which can be converted to fuel. 

 Low ash and metal content, which can cause corrosion and slagging and 

fouling in equipment. 

 An species which is abundant and fast growing around the coast of the 

UK. 

Brown macroalgae are generally the largest in size and are also the most fast 

growing [33], so would be an ideal candidate for a macroalgal biorefinery in the 

UK. Most of the brown seaweeds fall into two main categories: kelps and wracks. 

Table 3.1 gives an overview of some common brown seaweed species and their 

chemical content, based on literature. All the species chosen for inclusion in this 

table are abundant around the coast of the UK, have fast growth times and have 

the possibility for offshore cultivation. Although data for fucoidan could not be 

found for all species, it is clear that there it is present in higher quantities in the 

wracks than in the kelps by a significant margin, with it accounting for up to 20 

wt% in FV, when compared to a maximum of 4 wt% in L. digitata. Ash content of 

the wracks is also lower, with a range of 15-30 wt% across the species listed, 

compared to 15-45 wt% for the kelps. Although the laminarin content of the 
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wracks is lower, with a highest value of 10 wt% reported compared to 29 wt% for 

the kelps, the mannitol and alginate content is fairly similar between both.  

Table 3.1: Chemical content of seaweed species common to the UK coast [21-
24, 64, 79, 81, 84, 136, 171-173].  

Species Laminarin Mannitol Alginate Fucoidan Ash 

Wracks 

Fucus 

serratus 

2-10 5-20 17-22 7 20-30 

Fucus 

vesiculosus 

2-5 8-16 14-17 4-20 15-20 

Ascophyllum 

nodosum 

2-7 7-11 25-28 3-12 15-25 

Fucus Spiralis 2-10 6-12 13-17 - 15-25 

Kelps 

Saccharina 

latissima 

1-26 8-22 18-27 2.2 21-40 

Laminaria 

digitata 

0-25 5-32 13-31 2-4 14-42 

Laminaria 

hyperborea 

2-15 9-25 16-30 - 19-45 

Laminaria 

cloustoni 

0-29 4-18 14-25 - 22-43 

Taking these factors into account, its seems the wracks offer the best option, with 

a low ash content coupled with a high fucoidan content. While the quantity of 

laminarin and mannitol is lower than in the kelps, the levels are still high enough 

to present a good option for fuel production. Furthermore, early seasonal variation 

data by Black [22, 24] suggests that the wrack species show less prominent 

seasonal variation in carbohydrates and ash than the kelps, which is also 

promising for industry, where a consistent product is important.  
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Once it was clear that wracks presented the best option for the desired application 

in this study, the three species presented  in this study; FS, FV and AN were 

chosen primarily for their abundance at the harvest site in Aberystwyth, although 

they also present a good cross section Fucoid species and present desirable 

chemical contents. 

3.3 Results and Discussion 

The total chemical content of FS, FV and AN are given in Figure 3.1, with the 

error bar representing the cumulative standard error for all the constituents of the 

biomass (full numerical data for this is given in the Appendix in Figure A.1). In all 

cases, when taking into account the error bars, analysed components add up to 

around 100 wt%, giving a measure of validity to the accuracy of the results. As 

not all chemical components have been quantified: for example lipids and 

pigments, the components do not add up to 100% in all cases. From these 

graphs, some overall trends can be picked out: FV contains a smaller quantity of 

alginate throughout the year when compared to FS and FN, averaging 27.3 wt% 

compared to 34.9 wt% and 34.2 wt% respectively on a dry basis. Laminarin and 

Mannitol are generally higher in the Fucus species compared to AN. The ash 

content over all three species is relatively similar, averaging 14.2 wt%, 16.6 wt% 

and 16.1 wt% respectively for FS, FV and AN on a dry basis. FV has the highest 

fucoidan content, averaging 10.8 wt%, followed by AN with 8.4 wt% and FS has 

the lowest, with an average on 6.3 wt%.  
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Figure 3.1: Total chemical content of (a) FS, (b) FV and (c) AN 

These overall trends paint a picture of the seasonal variation of the all the 

components in seaweed, with the composition across all the months being 

different. This highlights the difficulties which occur in their industrial use, where 
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yearly trends in the variation have been shown to vary depending on the weather 

conditions and temperature in a particular year [21] and can vary by up to two 

months, an in depth understanding of seasonal variation is clearly key to the 

utilisation of this feedstock. Seaweed represents the world’s largest biomass 

resource [19], with only a small proportion of it being utilised, industrially or 

otherwise, currently. Alongside this, there is a large area of open sea in which it 

could be cultivated and harvested, adding to its potential market. It represents a 

wealth of useful chemicals, such as mannitol, an low-calorie sweetener and 

alginate, which has a wide range of uses, including as an thickener in the food 

industry and coating for tablets in the pharmaceutical industry [174] and also 

offers the opportunity for the production of building-block chemicals, such as 

succinic acid [128] and 5-hydroxymethylfurfural (HMF) [175]. Furthermore, with 

the advancement of seaweed fermentation [7, 51, 106, 176] and anaerobic 

digestion [118, 119, 122, 123], their use to produce fuels is also gaining interest. 

With all this in mind, understanding the seasonal variation of seaweeds and the 

challenges it presents is key to the full and effective use of this resource. 

 Proximate and Ultimate analysis 

The proximate analysis, given in Figure 3.2, reveals a slight dip in the fixed carbon 

content in the summer months, but otherwise remain fairly constant, with average 

values of 10.5±1.4 wt%, 9.1±1.2 wt% and 10.9±0.9 wt% for FS, FV and AN 

respectively. Volatiles content also remain fairly constant throughout the year, 

with average values for FS, FV and AN of 69.4±2.2 wt%, 68.6±2.2 wt% and 67.0 

±1.6 wt% respectively. While the average volatile content is fairly similar for the 

three species, FS and FV show more variation over the year, while AN has a 

more constant value. The ash content has a clearer seasonal variation trend: 

decreasing through spring to a minimum at the end of summer, rising again over 
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the winter months. The high ash content for these samples is due to the high 

metal content associated with sea water and is in line with previous studies into 

fucoid composition [22, 24]. The ash content in fucoids appears to be lower than 

for kelps, which have been reported to contain up to 45 wt% ash [79]. High ash 

is associated with increased slagging and fouling in industrial equipment during 

processing [81], so the lower ash content in fucoids makes them a more desirable 

macroalgal feedstock for processing. FS has a slightly lower ash content than the 

other two species, averaging 13.2±2 wt% compared to 15.4±2.2 wt% and 

14.9±1.4 wt% on an as received basis for FS and AN respectively. However, the 

difference is not so great that it would be a deciding factor if other components 

are more favourable in a different species for the desired application. 
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Figure 3.2: Proximate analysis for the seasonal variation of (a) FS, (b) FV and (c) 
AN 

An overview from literature for ash content in Fucoids is given in Table 3.2. Ash 

values for FV and AN fall within those seen in previous literature. FS, however, 

is seen to have a significantly lower value: around half of that found in the 
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literature. It is possible this is due to the natural and anthropogenic variation in 

metal content of seawater, depending on harvest location. 

Table 3.2: A literature review of the typical chemical content of Fucoids. 

Ref Year Species Ash Alginate Mannitol Laminarin Protein 

[177] 1968 A. nodosum  17-20% 20-26% 5-8% 2-5% 5-10% 

[22] 1948 A. nodosum 17-24% 25-28% 7-11% 2-7% 5-10% 

[24] 1949 F. serratus 20-31% 17-22% 6-17% 2-10% 6-15% 

[24] 1949 F. vesiculosus 14-21% 14-17% 8-16% 2-5% 6-11% 

The ultimate analysis of the 3 species of seaweed, given in Table 3.3, shows 

relatively constant quantities of C, H, S and O throughout the year; C and H show 

a slight increase in the summer months and S and O show a slight decrease. N 

shows an obvious decrease over the summer, rising again in the autumn, which 

relates to the protein content. Overall, FV contains more C than the other two 

species, with the average being 53.8 wt% compared to 42.4 and 44.2 wt% for FS 

and AN respectively on a dry ash free basis. All other elements are relatively 

similar, with the average being 2.6 wt%, 6.1 wt% and 2.1 wt% respectively for S, 

H and N. The reasonably high S content is indicates the presence of fucoidan in 

the samples, due to its sulphated fucose structure.  

Comparing these results to published literature for the seasonal variation of kelps, 

it is clear that the C value is significantly lower in the kelps, with the average value 

presented by Adams et al. [81] for L. digitata of 31.3 wt% and by Sheiner et al. 

[79] for L. digitata, L. hyperborea and S. latissima of 29.2 wt%, 28.9 wt% and 26.6 

wt% respectively. The N value is also significantly lower for kelps, averaging 1.0, 

1.5 and 1.0 wt% for L. digitata, L. hyperborea and S. latissima respectively [79]. 

The sulphur value presented by Adams et al [81] is also significantly lower for L. 

digitata: 0.8 wt% compared to 1.8 wt%, 3.5 wt% and 2.6 wt% respectively for FS, 
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FV and AN in this study. This indicates a lower quantity of fucoidan in the kelp 

species when compared to fucoids. 

Table 3.3: Seasonal variation in the ultimate analysis 

Species Month C H N S O 
F

. 
s
e
rr

a
tu

s
 

Apr 40.1±0.3 4.7±0.1 3.4±0.0 1.7±0.1 50.1±0.4 

May 43.6±1.9 5.3±0.1 2.9±0.1 1.5±0.0 46.6±2.1 

Jun 41.1±0.3 5.4±0.0 1.9±0.1 1.8±0.1 49.8±0.5 

Jul 44.2±0.3 6.1±0.0 1.4±0.1 1.6±0.0 46.8±0.4 

Aug 43.6±0.5 5.8±0.1 1.5±0.0 1.8±0.1 47.3±0.6 

Sep 42.3±0.0 5.6±0.0 1.3±0.0 1.8±0.0 49.0±0.1 

Oct 44.4±2.0 5.8±0.2 1.6±0.1 1.9±0.0 46.2±2.3 

Nov 42.3±0.8 5.6±0.1 1.8±0.0 1.8±0.1 48.4±0.1 

Dec 43.3±1.0 5.7±0.2 2.1±0.0 1.7±0.0 47.2±1.2 

Jan 42.5±0.0 5.5±0.0 2.6±0.1 1.8±0.1 47.5±0.1 

Feb 42.0±1.0 4.9±0.1 2.7±0.1 1.7±0.1 48.6±1.2 

Mar 39.2±2.5 5.2±0.4 3.2±0.0 1.9±0.1 50.5±2.9 

F
. 

v
e

s
ic

u
lo

s
u
s
 

Apr 56.6±2.7 7.6±1.4 4.8±0.9 3.4±0.5 27.6±0.9 

May 50.5±3.4 6.8±0.5 2.9±0.4 2.8±0.1 37.0±1.8 

Jun 47.8±1.1 6.0±1.2 1.6±0.4 3.3±0.8 41.3±1.7 

Jul 56.7±3.8 7.6±0.9 2.2±0.0 4.6±0.4 28.9±2.1 

Aug 52.1±1.4 6.7±0.8 1.6±0.1 3.3±0.5 36.3±1.9 

Sep 51.9±0.5 6.7±1.5 1.3±0.2 2.8±0.5 37.3±2.7 

Oct 56.9±2.8 7.0±2.1 1.7±0.5 3.2±1.0 31.1±0.3 

Nov 52.9±2.3 6.7±0.9 1.7±0.3 3.3±0.3 35.3±3.7 

Dec 43.9±0.5 5.8±0.1 2.1±0.1 2.4±0.1 45.8±0.6 

Jan 50.2±2.2 6.3±0.3 2.8±0.0 3.8±0.3 36.8±2.6 

Feb 58.6±0.5 7.5±1.1 3.6±0.3 3.1±0.5 27.3±0.5 

Mar 57.3±1.6 9.0±1.1 5.1±0.3 5.5±0.5 23.1±1.8 
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A
.n

o
d

o
s
u

m
 

Apr 42.6±2.4 5.1±0.5 1.6±0.1 2.9±0.3 47.8±3.3 

May 39.1±0.8 5.3±0.0 1.6±0.1 3.0±0.0 51.0±0.8 

Jun 45.7±0.1 6.3±0.0 1.5±0.1 2.6±0.1 44.0±0.1 

Jul 45.7±0.1 6.0±0.0 1.2±00 2.2±0.0 44.9±0.1 

Aug 45.9±0.4 6.3±0.1 1.1±0.0 2.1±0.1 44.7±0.3 

Sep 45.1±0.6 6.1±0.0 1.2±0.0 2.5±0.0 45.2±0.6 

Oct 45.3±0.1 6.0±0.0 1.0±0.0 2.4±0.1 45.3±0.3 

Nov 45.3±0.8 5.9±0.1 1.2±0.0 2.5±0.0 45.0±0.9 

Dec 44.8±0.5 5.8±0.1 1.5±0.1 2.7±0.1 45.1±0.6 

Jan 45.9±0.0 6.0±0.0 1.8±0.0 3.0±0.0 43.3±0.0 

Feb 44.9±0.3 5.6±0.0 1.9±0.1 2.9±0.0 44.6±0.2 

Mar 39.7±2.8 5.4±0.3 2.7±0.2 2.5±0.1 49.7±2.8 

The atomic ratios, calculated from CHNS values, are given in Figure 3.3. For all 

three species, the C:H ratio remains relatively constant throughout the year. The 

O:H values for FS and AN are, overall, lower in the autumn months and higher 

during the spring, while for FV they show more variation and little seasonal 

variation trends. Again, FV shows a more erratically variable variation for C:O, 

while FS and AN show an increase in the autumn months and decrease in the 

spring, although the variation is very small. These results suggest that, while 

seasonal variation in the carbohydrate, protein and other macro-components is 

seen, there is little variation in elemental ratios within these polymers. This trend 

was also seen for atomic ratios calculated by Adams et al [81] in their seasonal 

variation study of L. digitata. 
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Figure 3.3: Atomic ratios calculated from CHNS on a d.a.f. basis analysis for (a) 
FS, (b) FV and (c) AN. 

 Carbohydrate Analysis 

The seasonal variation of the 3 main carbohydrates; laminarin, mannitol and 

alginate, are given in Figure 3.4 As seen for previous studies, laminarin and 

mannitol are generally high during the summer and low in the winter, while 

(c) 

(b) 

(a) 
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alginate shows the reverse trend. FV shows the biggest variation in laminarin, 

with a difference between high and low values of 15.7wt%. This is followed by FS 

with 15.4 wt% and AN with 6.6 wt%. For all three species, the variation in mannitol 

is relatively similar, with the difference between high and low being 8.7, 8.3 and 

7.8 wt% for FV, FS and AN respectively. Although alginate is generally higher in 

the winter, the seasonal trend seems to be less prominent and, unlike mannitol 

and laminarin where the quantity is seen to drop dramatically during the winter, 

remains at a fairly high value throughout the year. Minimum values for FS, FV 

and AN respectively are 29.5, 22.0 and 29.6 wt%. As alginate is a key structural 

component of the cell walls in macroalgae, it is likely that its level needs to remain 

relatively high throughout the year, to maintain the stability of the plant. Mannitol 

and Laminarin, however, increase over the spring and summer, when nutrients 

are abundant and there is more sunlight for photosynthesis. These are then seen 

to flatten off and begin to reduce in autumn as these storage carbohydrates are 

used up over winter through respiration [21]. 

Typical carbohydrate values for the main storage carbohydrates have been 

reported by several authors, which are shown in Table 3.2. In all three cases, the 

laminarin content of the analysed samples is higher than those values found in 

the literature. While the alginate content for AN is similar to the literature values, 

FS and FV also show higher values here too. This could be due to a differing 

harvest location, where the increase in storage carbohydrates is promoted due 

to environmental factors. The literature sited is also from a number of years ago, 

and anthropogenic factors, such as increased sea temperature and CO2 

concentration in seawater could be having an effect on the chemical composition 

of seaweeds. The values reported in this study for mannitol, however, fall within 

the values seen in previous literature. 



- 83 - 

 

Figure 3.4: Seasonal variation of (a) laminarin, (b) mannitol and (c) alginate 

 Protein Analysis 

The protein content of the 3 species shows a similar trend, with a clear seasonal 

variation pattern, shown in Figure 3.5. Protein is at a maximum in March/April, 

dropping over the summer to a minimum in September, before increasing again 

over the winter. The variation is quite wide, with the largest difference between 

(a) 

(b) 

(c) 
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the highest and lowest values being 19.3 wt% for FV. Although the trend is still 

evident, the difference in the variation is much less pronounced for AN, with the 

difference being only 8.5wt% and 11.8wt% for FS. These trends are comparable 

with previous literature for different species of brown macroalgae [178]. Proteins 

increase over the winter months as laminarin and mannitol, created over the 

summer via photosynthesis, are used to create amino acids in preparation for 

new growth in the spring, after which there is seen a rapid drop in protein content. 

In comparison with other reported literature for protein content, the amounts 

quantified here are relatively high for brown macroalgal species, which are 

reported to generally reach 14 wt% [179]. Makkar et al [179] report values of 

around 8 wt% for Ascophyllum species and 10 wt% for kelp species. However, 

the harvest month for these is not reported and the variation seen here includes 

months where these values are typical. Baardseth [177] quotes are variation of 

5-10 wt% for protein for AN, for which the majority of values found in this study 

fall within. Peinado et al. [180], however, give the protein content of August 

harvest samples of FV and AN respectively to be 5.9 and 5.2 wt% respectively, 

which is in line with the protein quantity found in this study. Some other literature 

values for FS and FV are given in Table 3.2 and, again, the some values in this 

study are seen to be higher. It is important to note that it has been reported that 

the protein factor used here of 6.25 should be viewed with some caution, due to 

the levels of free nitrates present in brown seaweeds [181]. It may, therefore, be 

the case that the protein content is lower than reported here. Despite this, the 

seasonal variation trend shown will be the same, regardless of the protein factor 

used in calculation. 
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Figure 3.5: Seasonal variation of protein 

 Metal Analysis 

The macro-metal content for the three species is given in Figure 3.6 (full 

numerical data is given in the Appendix as Figure A.2) and the micro-metal 

content in  3.7. The macro-metal content of the 3 species tended to be higher in 

May and June, although overall remained fairly constant throughout the year.  

The composition primarily consists of Na, K, Cl, Ca and Mg, which combined, 

make up 91.4%, 90.2% and 88.2% of FS, FV and AN respectively of the total 

metal content, with the remaining 10% consisting of mostly Ti, P and I. The high 

quantities of Cl, Na, Mg, Ca and K are due to their abundance in seawater; on 

average, salts account for 34 to 37 parts per thousand in seawater, of which over 

90% can be accounted for by these 5 metals alone [182]. Previous studies have 

attributed the majority of the seasonal variation of the metals to potassium and 

phosphate, which are high in winter and low in summer. Sodium, calcium and 

magnesium were shown to remain relatively stable throughout the year [91]. A 

similar trend was seen in this study, with higher levels of potassium and 

phosphorus detected during the winter months. Unlike in Rosell and Srivastava’s 

study, Ca was also seen to vary seasonally in the same way. All other metal 
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components studied remain relatively stable over the year, with no 

distinguishable seasonal variation pattern.  

On the whole, the quantity of each macro-metal is fairly similar over the three 

species, with the notable exception of Cl. This is much higher in FS than the other 

two seaweeds, with the average for FS being approximately 29,000 mg/kg, for 

FV approximately 15,000 mg/kg and for AN 9,000 mg/kg. It is likely, therefore, 

that FS accumulates Cl more readily than FV or AN. The metals present in June 

for FV, however, don’t appear to align with the trend seen over the present of the 

months and species. There are several possible explanations for this: firstly, the 

quantity of metals present in a sample is largely dependant on the age of the 

plant at harvest. As seaweeds accumulate metals over their lifetime, older plants 

contain more than younger. As the age of plants at harvesting wasn’t noted, it is 

possible that the June sample for FV was made up of more younger plants than 

the other samples. A second explanation for this decrease in metals is that the 

samples are unwashed, meaning that metals present in the seawater will have 

been dried into the sample. As the harvest locations is by a busy harbour, it is 

possible that fluctuations in the water due to harbour usage could account for 

some of the variation in metal content seen here. 
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Figure 3.6: Seasonal variation of the macro-metals in the ash of (a) FS, (b) FV 
and (c) AN 

The micro-metal content, shown in Figure 3.7 (for which full numerical data is 

given in the Appendix as Figure A.2), is also seen to be fairly constant over the 

year, with a similar variation pattern as seen for the macro-metals. The small 

“other” group in this case is mostly made up of As, Mn, Cu, Ni, Rb and Cr, all of 

which are present in quantities of less than 100 mg/kg. While some of these 

(c) 

(b) 

(a) 
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metals are known to be toxic to humans, the quantities present are so small as 

not to be a concern. On the whole, AN contains a lot less Ti and more Br and I. 

This suggests that Fucus species have more of an affinity to bio-accumulate Ti 

and AN to accumulate halides. As was also found by Adams et al. [81] in their 

seasonal variation study of L. digitata, Sr was found to be present in relatively 

high levels for all species: averaging 1560 mg/kg, 1450 mg/kg and 980 mg/kg 

respectively for FS, FV and AN. 
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Figure 3.7: Seasonal variation of the micro-metals in in the ash for (a) FS, (b) FV 
and (c) AN 

When analysing the metal content of seaweeds and their seasonal variation, it is 

important to note that they are unable to regulate their uptake of metals, meaning 

that their concentration will be dependant of that in the surrounding water [183, 

184]. In fact, from the late 1970’s, the trace metal content of brown seaweeds, 

particularly FS, FV and AN, have been used to determine the water quality in a 

(c) 

(b) 

(a) 
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particular area [85, 183, 185-187] and have been shown by Giusti [85] to vary 

significantly along a relatively short stretch of coastline. While this may have little 

impact on the seasonal variation pattern for the metal content of fucoids, it will 

have an impact on the total content throughout the year. High quantities of metals 

can be a problem for industrial applications, as they are associated with slagging 

and fouling in pipework, especially in an industrial setting, so consideration of the 

water pollution levels at a particular harvesting site may be an important 

consideration. However, although the metal content in all seaweeds is relatively 

high, the advantage of using fucoids over kelps is their apparent lower metal 

content. In this study, metal content has been shown to vary between 12 and 22 

wt%. When compared to literature on the metal content in kelps, which range 

from 20-50 wt% [21, 23, 79, 81], it is clear that metals in fucoids are lower than 

for kelps. It has been shown in a study by Peinado et al. [180] that the NaCl 

content of FS and AN is roughly half that as compared to L. digitata, a kelp 

species, harvested in the same place at the same time. This indicated the kelps 

ability to accumulate more macro-metals when compared to fucoids. 

Metals in these seaweed species make then a good source of minerals for both 

human and animal diets, especially the high levels and Ca and Fe, both of which 

are significantly higher than in other food sources [84]. Table 3.4 gives the 

recommended daily allowance (RDA) of metals for human consumption as part 

of a healthy diet and the amount of this which is fulfilled by 10g of FS, FV and 

AN, as an average over the year. 10g of seaweed provides 76%, 69% and 61% 

of the RDA of iron for FS, FV and AN respectively, and is significantly higher than 

most other food sources. For example, an equivalent weight of dark chocolate 

provides 5.5% of the RDA and an equivalent amount of beef only 1.5%, both of 

which are known for their high iron content [188]. Zinc also represents a high 
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proportion of its RDA, giving 44%, 36% and 39% respectively for FS, FV and AN 

and offers a good vegetarian option for the mineral, which is otherwise commonly 

acquired from seafood and meat [189]. Other nutrients, such as copper, calcium, 

sodium and magnesium also give a high proportion of their RDA in 10g of 

seaweed, all well above 20%.  

Table 3.4: RDA of metals for human consumption compared to the amount 
present in the three species. 

Metal 
RDA 

 [190, 191] 

FS FV AN 

Average across the year (% of RDA in 10g) 

Iron 14.8 mg 75.5 68.9 60.7 

Zinc 9.5 mg 43.5 35.5 38.6 

Calcium 800 mg 24.9 21.8 23.6 

Phosphorus 800 mg 5.7 5.0 4.4 

Magnesium 300 mg 34.5 34.9 37.7 

Iodine 150 µg 11.1 8.8 21.1 

Chromium 35 µg 0.6 0.5 0.4 

Copper 900 µg 47.6 45.7 48.5 

Potassium 4700 mg 11.8 9.6 8.7 

Sodium 1500 mg 33.6 34.7 34.5 

From an industrial processing viewpoint, high levels of metals and ash is 

undesirable, as they lead to corrosion and slagging and fouling of equipment [51], 

especially when high temperatures are involved and also presents a challenge 

for waste water treatment, where quantities of metals, especially heavy metals, 

allowed to be released are strictly regulated [192]. This point is discussed in detail 

in section 6.5.5. When considering the processing side, washing or other 

pretreatment to remove a portion of the metals would be reduce the impact they 
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have of the rest of the process. Furthermore, reducing the severity of operating 

conditions, which is also conducive to chemical extraction without breaking down 

the carbohydrates, should also prolong the life of the equipment and reduce 

maintenance time and costs. 

3.4 Discussion of Seasonal Variation and Conclusions 

Overall, it is clear that there are seasonal trends in the chemical composition of 

the three species of fucoid studied here. It is likely that these changes are due to 

both external environmental factors, such as hours of sunlight and sea 

temperature, as well as due to the growth phases of the seaweed. Seasonal 

variation is an important consideration for industrial uses of seaweed, as harvest 

at the correct time for maximum yield of the desired product is key to making the 

most of the resource. For example, for the bioethanol industry, high carbohydrate 

content, in this case laminarin and mannitol, is desirable. To achieve this, 

harvesting in August/September would gain the best yield. However, if the 

seaweed is destined for the food market, for which all three species have been 

authorised for human consumption in the EU [171], high protein content may be 

more desirable, in which case harvest in March/April would be preferred. 

Seaweed destined for fucoidan extraction would also be best harvested in 

September. Seaweeds are also often used in the cosmetic industry, with 

extraction of “active ingredients” often being the aim [193]. Again fucoidan or 

polyphenols may be the desired product and, as the polyphenol content has been 

shown to be relatively stable over the year, a September harvest time may be 

appropriate. 

Current EU legislation limits the harvesting of wild stock seaweed and the use of 

mechanical means is strictly regulated through most of Europe due to the adverse 
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effect is can have on the marine environment [39] and wild stock harvesting in 

the UK requires a permit to be procured. This means that for a large scale 

seaweed industry for fucoids in the UK to become viable, open-sea cultivation on 

lines would be necessary to overcome the harvesting legislation. While the 

feasibility of these technique has been proven [194], the authors could find no 

literature comparing the difference in chemical composition and impact on 

seasonal variation open-sea cultivation has on fucoid species. Furthermore, other 

than the early studies completed by Black [21-24], which mainly focus on kelps, 

there is also little published data on the long term seasonal changes in seaweed 

composition. Black [21] noted that the maximum and minimum values for a 

particular component can vary by up to 2 months, but the author could find no 

published data which correlates this to weather conditions, sea temperature or 

other meta data. With a changing climate and increase in ocean acidification 

[195], being able to predict the best harvest time based on weather conditions is 

an important consideration for the industrial usage of macroalgae and ensuring 

the best harvest time is achieved. 

3.5 Conclusion 

In this study, the seasonal variation of carbohydrates, ash, metals, protein and 

polyphenols have been studied. The general trends for these components show 

the storage carbohydrates, mannitol, laminarin and fucoidan are highest in the 

late summer/early autumn, relating to higher photosynthesis due to increased 

sunlight. Ash, protein and alginate are highest in winter, as respiration dominates, 

due to decreased sunlight, and the plant makes and stores protein in preparation 

for new growth in the spring.   



- 94 - 

4 Seasonal Variation of the Chemical Composition of 

Fucoidan 

4.1 The seasonal variation of fucoidan and its structure in three 

species of fucoid. 

 Introduction 

The seasonal variation of fucoidan is a phenomenon widely stated in the 

literature, but of which there is little published experimental data. Differences in 

both quantity and composition of fucoidan have implications for industrial 

extraction, where a consistent product is key. By documenting the seasonal 

variation, optimum extraction times can be predicted, based on yield and desired 

chemical composition. This is important, as fucoidan functionality has been 

shown to be dependent on degree of sulphation, sulphation pattern and 

branching [196, 197]. Fucoidan composition is also dependent on harvest 

location, species and maturity [18], so it is important that these factors are taken 

into account when interpreting and analysing data. 

This study attempts to review the seasonal variation in the quantity of fucoidan 

present in three species of macroalgae over a 12 month period between April 

2010 and March 2011. Extracted fucoidan has been analysed for its fucose and 

sulphate content, as well as an attempt to gain insight into the structural 

differences through SEC and LC-MS. 

 Results and Discussion 

4.1.2.1 Extraction of Fucoidan 

The extraction of fucoidan is a five step process, described in section 2.6, 

extracting different components with each step to produce a relatively pure 
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fucoidan product, an image of which is given in Figure 4.1. Figure 4.2 details the 

weights of the extracts and residues at each step, giving an overview of the total 

content seaweed and the extraction process (for which numeric data is given in 

the Appendix in Figure A.3). The step which shows the greatest variation over 

the year is defatting, which also includes the removal of pigments, and is 

achieved by mixing the raw, dried seaweed with ethanol. On the whole, this step 

extracted more matter in the summer than the winter months and indicates an 

increase in lipids and pigments during this time. There is also a marked variation 

in the 40% ethanol precipitate, which will be predominantly composed of 

laminarin. This is to be expected, due to the seasonal variation in laminarin 

content, which has been discussed in section 3.3.2. Interestingly, while soluble in 

0.1M HCl, this fraction is only partly soluble in pure water once precipitated and 

dried. This is an indication that both the soluble and insoluble forms of laminarin 

have been extracted from the biomass. The residue weight remains relatively 

constant over the year, but there is a clear variation in the “remaining” quantities 

(which is calculated by difference). This is likely due to a variation in mannitol, 

protein and other constituents which are likely extracted into the liquid phase, but 

aren’t precipitated by the addition of ethanol and, therefore, are not accounted for 

in any of the other stages. Extracted fucoidan is pale yellow in colour, as shown 

in the image in Figure 4.1 and appears to form long strands when freeze dried, 

indicating its long-chain polymer structure. 
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Figure 4.1: Fucoidan which has been extracted via the conventional method and 
freeze dried for analysis. 
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Figure 4.2: Extraction of fucoidan from monthly samples of (a) FS, (b) FV and (c) 
AN 

4.1.2.2 Fucoidan Content 

The fucoidan content of the 3 species varies throughout the year, as shown in 

Figure 4.3. In all three cases, the trend suggests lower fucoidan content in spring, 

rising to its maximum in early winter, before decreasing over the remaining winter 
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months. FV has the highest content throughout the year, reaching a maximum of 

12.2wt% in December. This is followed by AN, with a maximum of 8.9wt% in 

October, with FS reaching a high of 7.5wt% in November. Corresponding minima 

are 8.1wt% in February, 6.5wt% in February and 4.2wt% in April for FV, AN and 

FS respectively. This would suggest that the best time to harvest for maximum 

fucoidan content would be late autumn/early winter. However, the difference from 

maximum to minimum is 5.7wt%, 2.4wt% and 3.3wt% respectively for FV, AN 

and FS; a relatively small fluctuation suggesting a good yield could be obtained 

at any time of the year. This is particularly advantageous for industrial 

applications, removing the potential need for drying and/or storage. Fresh 

seaweed typically have a water content of approximately 80 wt% [79] and will 

decompose rapidly in a short period of time. If seaweed were only collected once 

a year, drying would be necessary in order to store and produce the pure 

fucoidan. Assuming functionality is prevalent throughout the year, the seaweeds 

could be harvested as needed and processed wet, reducing the energy 

consumption associated with drying.   

 

Figure 4.3: Seasonal variation of fucoidan 
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Table 4.1 gives an overview of the quantity of fucoidan extracted from the three 

species of interest in this study and found in the literature. From this, it is clear 

that there is a wide variation in fucoidan content, both between species as well 

as between harvest locations. On the whole, however, the results found in this 

study are in line with that shown in previous literature. The literature values for 

FS show the lowest fucoidan content, followed by AN, with FV having the most. 

Although there are no comparative seasonal variation studies from which to 

compare the data as a whole, the correlation between the single literature data 

points and the results found in this study give validity to these results. 

Table 4.1: Literature review of fucoidan content in FS, FV and AN compared to 
the results of this study 

Ref Species Fucoidan (wt%) 

This study 
Fucus serratus 

4.2-7.5 

[68] 0.42-7.16 

This study 

Fucus vesiculosus 

8.1-12.2 

[136] 4 

[198] 16-20 

[199] 3.4 

This Study 

Ascophyllum nodosum 

6.5-8.9 

[177] 10 

[136] 3.3 

[84] 11.6 

[171] 4-10 

[200] 1.75 
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4.1.2.3 Fucus and Sulphate content in Fucoidan 

Fucus and sulphate content in fucoidan, shown in Figure 4.4, is seen to vary 

within all three species. Although there is no clear trend between the species, the 

fucose and sulphate levels vary proportionally to each other and inversely 

proportional to the total fucoidan content. The fucose content for FS, FV and AN 

range between 18–28 wt%, 26-39 wt% and 35-46 wt% respectively, while the 

sulphate content varies between 30-40 wt%, 9-35 wt% and 6-22 wt% 

respectively. Within each species there are distinguishable trend lines for fucose 

and sulphate: FS decreases in May and June, but is fairly constant over the rest 

of the year; FV increases throughout the year from a low point in April, reaching 

a maximum in November, before decreasing again and AN is low in September 

to October, but is again fairly constant over the rest of the year. Another notable 

point is that in FS, the fucose is lower than the sulphate content, however in FV 

and AN the reverse is true, with the sulphate content being higher. This indicates 

a higher degree of sulphation for each fucose residue in FS than for FV and AN. 

The variation in the sulphate content is especially important, as it has been 

reported that less than a 20% sulphate content leads to a complete loss of anti-

proliferative and anticoagulant activity [73]. As the sulphate in FV and AN fall 

below this quantity during the summer months, it is an important consideration 

when harvesting these species for fucoidan extraction. 

Previous studies have shown FS to have a sulphate to fucose ratio of between 

0.9 and 1.5 [68] [201], while the average for this study is 0.73, which is 

comparable. The average ratios for FV and AN respectively are 2.0 and 2.7; 

significantly higher than for FS, but is comparable with literature values of 1.1 to 

2.5 [201, 202] and 1.1 to 2.7 [201] [203] for FV and AN respectively. 
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Figure 4.4: Seasonal variation of (a) fucose and (b) sulphate in fucoidan 

Table 4.2 lists the fucose and sulphate content reported in the literature for 

extracted fucoidan from the Fucoids studied in this investigation. The quoted 

fucose and sulphate content of extracted fucoidan samples varies dramatically, 

with AN showing the widest quoted range; between 25 and 52.1 wt% for fucose 

content. The results presented in this paper correspond well with the range of 

values quoted previously in other research papers, with an average fucose ± one 

standard deviation of 24 ±3 .1%, 35 ± 4.4% and 40 ± 3.7% and average sulphate 

of 34 ± 3.7%, 19 ± 7.7% and 15 ± 4.5% for FS, FV and AN respectively.  
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The range of literature values quoted, as well as the variation in the presented 

results, shows clearly the need for a thorough understanding of the way in which 

fucoidan content varies in order to be able to make full use of the resource. It is 

important to note that the molecular weights shown in Table 4.2 have been 

measured in a similar way to the current study, with separation using SEC 

followed by detection with an RI detector., meaning comparisons can be drawn. 

As many papers have shown, the potential uses for fucoidan in pharmaceuticals 

are vast [16, 17, 71, 72]; however, each of these properties will be associated 

with a particular fucoidan, harvested in a particular place at a particular time of 

year. Without clear knowledge of all of these facts, the likelihood of being able to 

replicate the extracted fucoidan is reduced. This is also important from an 

industrial extraction standpoint, where economic viability will be based on being 

able to produce a sufficient quantity of an identical product with the desired 

properties.  
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Table 4.2: Review of analysis of extracted fucoidan found in the literature 

Paper Species Month MW Fucose Sulphate 

current F. serratus Year average 1608kDa 24±3.1% 34±3.7% 

[68] F. serratus1 Aug - 46.6% 31.8%2 

[201] F. serratus - - 24.8% 29.2%2 

current F. vesiculosus Year average 1364kDa 35±4.4% 19±7.7% 

[204] F. vesiculosus1 Sept - 48.1% 25.4% 

[205] F. vesiculosus Commercial - 33.3% 23.0% 

[201] F. vesiculosus - - 26.1% 23.6%2 

[202] F. vesiculosus Commercial  13.8% 34.6% 

current A. nodosum Year average 1374kDa 40±3.7% 15±4.5% 

[204] A. nodosum1 Sept - 33.0% 20.9% 

[201] A. nodosum - - 26.6% 24.4%2 

[203] A. nodosum Sept 420/47kDa 52.1% 19.0% 

[206] A. nodosum Commercial 6.2kDa 25.0% 21.7% 

[207] A. nodosum - - 66mol% 31mol% 

1 Values from the most abundant fucoidan fraction stated, 2 Sulphate content quoted as NaSO3. 

4.1.2.4 Ultimate analysis of Extracted Fucoidan 

Ultimate analysis of the fucoidan extract is displayed in Table 4.3. The average 

atomic ratio of C: H: S: O are very similar for the three species, being 1: 2.2: 0.1: 

2.0; 1: 2.2: 0.2: 2.0 and 1: 2.3: 0.1: 2.0 for FS, FV and AN respectively. The 

nitrogen values are negligible and below the range for accurate detection by the 

instument. While the variation in the C: H values remain fairly constant over the 

year, the C: S values show a negative parabolic trend for all species. The 

variation of C is very similar for all species, with a minimum in April, rising to a 

maximum in September, decreasing again through the autumn and winter 
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months. This same trend is seen for H, and the reverse is seen for S and Others, 

which are at a maximum in the winter months and low in the summer. These 

trends suggest that the extracted fucoidan contains a higher proportion of 

sulphate in the winter compared to the summer. As functionality is dependent on 

the degree of sulphation [196, 197], it is likely that the functionality of fucoidan 

varies over the year.  

The large “other” value in the CHNS results, average 64.8, 62.9 and 62.9wt% 

respectively for FS, FV and AN, suggests a high oxygen content in the extracted 

fucoidan fraction. As the extraction process ensures a relatively pure product, 

many of the other possible contaminants such as salts will have been removed. 

Furthermore, high oxygen content would be expected due to the high sulphate 

content, where 4 oxygen atoms are associated with each sulphur atom and the 

high fucose content, which contains up to 5 oxygen atoms per monomer unit, 

depending on the degree of sulphation, which replace hydroxyl groups in the 

structure. 

Table 4.3: Ultimate analysis of fucoidan extracts. 

  Ultimate Analysis Atomic ratio 

Species Month C H S Other C:H C:S 

 Apr 21.8±1.0 4.0±0.0 6.9±0.2 66.8±0.8 2.2 1.15 

F
u
c
u

s
 s

e
rr

a
tu

s
 

May 23.6±1.1 4.3±0.0 6.0±0.4 65.8±0.8 2.2 1.04 

Jun 24.2±0.6 4.3±0.1 5.7±0.3 65.5±0.6 2.1 1.01 

Jul 24.8±0.1 4.3±0.1 5.4±0.1 65.3±0.4 2.1 0.99 

Aug 25.5±0.3 4.5±0.4 5.7±0.6 64.1±1.3 2.1 0.94 

Sep 26.2±0.3 4.4±0.3 5.3±0.6 64.1±0.7 2.0 0.92 

Oct 23.4±0.5 4.2±0.3 6.7±0.3 65.6±1.0 2.1 1.05 

Nov 26.0±1.6 4.8±0.3 6.1±0.6 63.2±1.2 2.2 0.91 
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Dec 24.2±0.1 4.6±0.1 7.4±0.5 63.7±0.5 2.3 0.99 

Jan 23.4±0.7 4.6±0.2 7.2±1.2 64.6±0.3 2.4 1.03 

Feb 23.5±0.4 4.3±0.3 6.6±0.1 65.2±0.6 2.2 1.04 

Mar 27.1±1.8 4.9±0.3 6.6±0.3 61.0±2.4 2.2 0.84 
 Apr 25.4±3.1 4.7±0.7 9.1±0.2 60.2±3.7 2.2 0.89 

F
. 

v
e

s
ic

u
lo

s
u
s
 

May 22.4±0.9 4.2±0.1 9.7±0.0 63.6±1.0 2.2 1.06 

Jun 24.0±0.0 4.3±0.0 10.1±0.1 61.5±0.1 2.1 0.96 

Jul 23.9±0.5 4.5±0.1 9. ±0.39 61.4±0.2 2.2 0.96 

Aug 25.0±1.2 4.5±0.3 8.1±0.1 62.2±1.4 2.2 0.93 

Sep 27.9±1.6 5.2±0.4 6.4±0.5 60.2±1.5 2.2 0.81 

Oct 23.6±0.9 4.2±0.1 9.4±0.4 62.4±0.7 2.1 0.99 

Nov 22.9±0.8 4.3±0.1 8.4±0.1 64.2±0.7 2.3 1.05 

Dec 26.6±1.0 4.8±0.0 7.7±0.1 60.7±1.0 2.2 0.86 

Jan 23.0±0.4 4.2±0.1 9.4±0.2 63.2±0.7 2.2 1.03 

Feb 24.4±0.2 4.4±0.1 10.1±0.1 60.9±0.4 2.2 0.93 

Mar 22.7±0.5 4.3±0.0 9.9±0.6 62.9±0.0 2.3 1.04 

A
. 

n
o
d

o
s
u

m
 

Apr 20.3±0.2 4.2±0.0 12.1±0.2 63.1±0.4 2.5 1.16 

May 22.9±1.1 4.2±0.1 10.00.1 62.7±1.3 2.2 1.03 

Jun 25.5±0.5 4.7±0.0 7.6±0.5 61.8±0.2 2.2 0.91 

Jul 22.5±1.1 4.3±0.3 8.8±0.0 64.3±1.5 2.3 1.07 

Aug 23.8±0.1 4.6±0.0 8.7±0.1 62.7±0.1 2.3 0.99 

Sep 27.2±0.5 4.9±0.2 6.8±0.2 61.0±0.5 2.1 0.84 

Oct 23.2±.2 4.4±0.0 8.9±0.3 63.3±0.0 2.3 1.02 

Nov 24.0±0.4 4.6±0.1 8.2±0.1 63.0±0.4 2.3 0.98 

Dec 22.7±0.1 4.4±0.1 9.2±0.3 63.5±0.1 2.4 1.05 

Jan 22.2±1.2 4.2±0.3 9.5±0.6 63.8±2.0 2.3 1.08 

Feb 22.5±0.0 4.3±0.0 10.4±0.0 62.5±0.0 2.3 1.04 

Mar 23.7±0.2 4.6±0.0 9.9±0.3 61.5±0.4 2.4 0.97 
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4.1.2.5 Structural Analysis 

The SEC curves of extracted fucoidan show differences between harvesting time 

and species. For comparison, chromatograms from extracted fucoidan harvested 

in April, July, October and January have been shown in Figure 4.5, representing 

samples from spring, summer, autumn and winter. The peaks for FS have a 

double peaks, which become less pronounced during the summer months. There 

is also some evidence of this for both FV and AN in spring, although it is much 

less distinct. The FV samples show similar peaks to that of the standard which is 

expected due to standard also being extracted from FV. AN shows increasingly 

broader peaks through the spring, reaching a maximum in summer and begin to 

narrow in autumn.  The most significant differences between the three extracts 

are the two smaller, secondary peaks after the main fucoidan peak (retention time 

14-16 minutes) which vary in size and width between species. For FS, these are 

broader and further apart, while for FV they are sharper and closer together. AN 

has a broad first peak, with a second sharp peak.  

The main, double tipped peaks seen in the SEC chromatograms, especially 

evident in the FS samples, could be a sign of a more complex fucoidan structure. 

It is well known that FV gives the most simple form of fucoidan, with a linear chain 

of fucose [164]; this has also been shown for AN. FS, however, has been shown 

to have a more complex, branched structure [68]. The differences in the peaks 

shape and width suggests this more complex structure and variation in the chain 

length over the year period; a broad peak denotes high variation in MW of the 

macromolecule, while a double tipped peak indicates an increased abundance of 

two MW’s. Although the MW ranges found for the extracted fucoidan are quite 

high, they are in line with others in the literature for similar, crude extracts [46]. 
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Figure 4.5: SEC chromatograms for fucoidan extracted from each season from 
(a) FS, (b) FV and (c) AN. 

The MW of the main and secondary peaks of fucoidan is seen to vary over the 

year, as shown in Figure 4.6. The average MW for FS, FV and AN respectively 

are 1608, 1364 and 1374 kDa. The trend for the main peak shows a peak in MW 

in spring, around April/May, which gradually decreases over the year for FS and 

FV. AN shows a more steady MW over the year, with a difference between 

highest and lowest values of 178 kDa for AN, compared to 389 kDa and 357 kDa 

respectively for FS and FV. This implies less variation in its structure when 

compared to the Fucus species.  

Other than for FS, where the MW of the secondary peaks appears to be higher 

in the September/October and lower in March/April, there doesn’t appear to be a 

clear seasonal variation pattern. This may be due to their presence being caused 

by the extraction process, rather than the structure of fucoidan itself. This could 

explain the more pronounced variation in FS, which is known to contain side 

chains which would be likely to more readily break off from the main body of the 

(c) (b) (a) 
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molecule and could vary in length throughout the year. FV and AN are known to 

have a simpler, linear structure, devoid of branching, which could explain the 

more erratic variation pattern seen. These peaks represent an average MW of 

282/112 kDa, 347/187 kDa and 309/175 kDa for the first/second secondary peak 

for FS, FV and AN respectively. It is likely, as the LC-MS data presented in Figure 

4.12 shows, that these secondary peaks are much smaller molecules than this 

but have been “pulled through” the column due to their association with the larger 

fucoidan macromolecule. 
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Figure 4.6: Variation in the MW of (a) the main peak, (b) the first secondary peak 
and (c) the second secondary peak of fucoidan extracts. 

LC-MS analysis on the fucoidan extracts was undertaken in order to gain more 

understanding of the structural differences between the fucoidan samples and 

the secondary peaks identified in the SEC chromatogram. A comparison of the 

MS chromatogram for the main peaks of the three species and standard is shown 
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in Figure 4.7. The overall shape of the peaks differ between species, indicating a 

difference in the structure of the polymer.  FS has a roughly normally distributed 

curve, coming to a peak at around 500 Da and spread between ~200 to 800 Da, 

with a tail of high MW peaks above this. FV and AN have a somewhat negatively 

skewed distribution, with more higher MW fragments. There are also some 

notable differences between the most abundant peaks. The peak at 228 Da, 

denoting a fucose monomer with 1 sulphate group (see Figure 4.15), is 

significantly larger for FV and AN than for FS, while the peaks at 451 Da (a dimer 

with a sulphate group removed) is larger for FS and FV than for AN. The 

proportion of these two peaks is correlated to the amount of sulphate in each 

species. As shown in Figure 4.15, 228 Da is likely to be a monomer with 1 

sulphate group and 293 Da is a monomer with 2 sulphate groups. The higher 

quantity of sulphate to fucose seen in FS is shown by a high quantity of 293 Da, 

which is more sulphate rich and a smaller quantity 228 Da, which is less sulphate 

rich. For FV and AN, where the sulphate content is less than fucose, the 228 Da 

peak, with only one associated sulphate per fucose monomer, is significantly 

more abundant that the 293 Da monomer. The biggest peaks for larger fragments 

differ in MW between species; another indicator for differing structures. Main 

peaks for a 4-chain of sulphated fucose (which would be expected at 1083 Da for 

an “ideal” structure), occur at 1064 Da, 1086 Da and 1088 Da for FS, FV and AN 

respectively, while a 3 chain, expected at 777/857 Da dependant on sulphation, 

show at 777/908 Da, 759/867 Da and 764/927 Da respectively. It is hypothesised 

that peak at 534 Da, representing a dimer chain containing 3 sulphate groups, 

relates to a side chain. This is due to its relative abundance in FS when compared 

to FV and AN, which has been shown to contain a higher degree of branching 



- 111 - 

when compared to FV and AN, who have a more linear structure. Furthermore, 

the side chain proposed by Ale et al [164] is of this dimer structure. 

LC-MS of standard fucoidan, shown in Figure 4.7(d) shows the same somewhat 

negative skewed distribution between ~200 and 800 Da as seen for FV and AN. 

However, there are a few more pronounced peaks than seen for any of the 

extracted samples. These occur at 228 Da, 293 Da, 371 Da, 451Da and 534 Da; 

fragments which are common and often giving the highest peaks across all 

samples. Differences between these fragments can be accounted for by a 

combination of a loss of hydroxide, methyl, sulphate or monomer units. Due to 

the structural information given by Ale et al [164], it is hypothesised that the peak 

at 534 Da is due to a branched-side chain. This is likely to readily fragment from 

the main body of the chain due and has also been shown to be more abundant 

in FS than the other two species, who have been shown previously to have a 

more linear structure [119].  
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Figure 4.7: LC-MS data for the main peak of fucoidan for (a) FS, (b) FV, (c) AN, 
from representative samples from May, June and May respectively, and (d) 
standard fucoidan 

Figure 4.8 shows chromatograms for fucoidan extracted from three samples of 

FS throughout the year. In all cases, the ratio of 228 Da to 293 Da monomer 

seems to remain fairly constant, although there is a slight increase in 293 Da in 

(b) 

(c) 

(d) 

(a) 
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September, when compared to the other months. The proportion of 451 Da and 

534 Da fragments are higher in May and September than for December. The 

variation in 534 Da fragments suggests a change in the quantity of branching 

throughout the year, which is likely to have an effect on the functionality of the 

molecule. Higher molecular weight fragments (above ~800 Da) also differ 

between the months. This is likely due to differing levels of sulphate, monomer 

configuration and also differences in the additional sugars, other than fucose, 

present in the fucoidan structure. 

 

Figure 4.8: Comparison of LC-MS chromatograms of extracted fucoidan from FS 
for (a) May, (b) September and (c) December. 

(b) 

(a) 

(c) 
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The seasonal variation in the LC-MS results for FV are shown in Figure 4.9. As 

noted previously, the 228 Da monomer for FV, shown in Figure 4.9, is significantly 

higher than for FS, shown in Figure 4.8, which is most likely due to the lower 

sulphate content in FV. The spread of fragments over the year appears to differ. 

The September and January chromatograms are more normally distributed, 

which the sample from June having a negatively skewed distribution. The 

abundance of the “main” fragments also differ, with 534 Da being significantly 

higher in January and 451 Da higher in June and September. This is likely due to 

a differing backbone structure, which creates different fragments on breakdown 

in the MS and could also be evidence of branching. Furthermore, FV also appears 

to have a higher proportion of larger (>800 Da) fragments when compared to FS 

and AN. 
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Figure 4.9: Comparison of LC-MS chromatograms of extracted fucoidan from FV 
for (a) June, (b) September and (c) January. 

Comparison of three LC-MS chromatograms from May, August and September 

for fucoidan extracted from AN is shown in Figure 4.10. Again, the quantity of 228 

Da monomer is significantly higher than for FS, due to a lower sulphate content. 

The spread of fragments below ~800 Da is relatively similar for May and August, 

showing a normal distribution, but is more negatively skewed in December. The 

quantities of these fragments, however, is significantly less across the year when 

compared to FS and FV. The quantity of 534 Da remains relatively low and similar 
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throughout the samples analysed, indicating that AN sees little or no branching 

throughout the year with little variation in this. 

 

Figure 4.10: Comparison of LC-MS chromatograms for extracted fucoidan from 
AN for (a) May, (b) August and (c) December. 

The variation in the ratio of the two monomer units which make up the fucose 

backbone of fucoidan, of molecular weight 228 Da and 293 Da are given for the 

main fucoidan peak in Figure 4.11.The trend shows an increase in less sulphated, 

228 Da monomer in the summer and a higher proportion of the, more sulphated, 

293 Da monomer in the winter. This variation also appears to correspond well 

(c) 

(b) 

(a) 



- 117 - 

with the variation in sulphate content. As expected, FS has the lowest 228:293 

Da ratio, as it contains a higher proportion of the 293 Da monomer.  

 

Figure 4.11: Ratio of 228:293 monomer units, calculated from LC-MS data. 

Figure 4.12 shows the comparison LC-MS chromatograms for FS of the main and 

secondary peaks, where the most common mass fragments across all the 

species have been noted and for which possible structures have been given in 

Figure 4.15. In fact, these mass fragments were found to be common to all the 

samples analysed by LC-MS, for both the main and secondary peaks, indicating 

they are key building blocks in the structure of fucoidan in all species. In general, 

the difference between fragments can be attributed to the loss of a hydroxide, 

methyl or sulphate group, a monomer unit or a combination of these, although, in 

some cases, partial ring structures are required to form the mass indicated by 

LC-MS. For all main and secondary peak comparisons, the chromatogram has 

been shown only up to 800 Da, as there are no mass fragments for the secondary 

peaks above this value. It is likely, therefore, that they are fragments, which may 

have been produced during the extraction and purification process, or are simply 

naturally occurring, low mass fucoidan, which have been “pulled through” the 

column by interactions with the large molecular weight fucoidan. 
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The mass fragments seen observed for the secondary peaks appear to be in 

similar quantities throughout the year, with 228 Da monomer having the greatest 

quantity, followed by 293 Da, with 410 Da and 534 Da being present in the 

smallest, but relatively equal quantities. In comparison to the main peak, the 

proportion of 228 Da is significantly higher in the secondary peaks. This indicates 

a lower sulphate content in this fraction. It is possible that these four, large peaks 

correspond to branching on the fucoidan molecule, which are likely to be more 

readily broken off during extraction. The abundance of these peaks in the main 

fucoidan fraction, as was noted previously, also eludes to that fact that they are 

branches, which have been fractionated in the mass spectrometer. While other 

mass fraction peaks are still visible, they are small in comparison. 
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Figure 4.12: LC-MS chromatograms comparing (1) secondary peaks and (2) main 
peak fragments from extracted fucoidan of FS, where (a) is May, (b) is 
September and (c) is December. 

The comparison of main and secondary peaks for FV are shown in Figure 4.13. 

In this case, the secondary peaks are seen to contain much more variation in the 

MW of the mass fragments. While the main four mass fragments, which have 

been noted on the figure, are still present, there are larger peaks at 275 Da, 451 

Da and 592 Da, which are common to all the secondary peaks in FV, but aren’t 

present in the FS samples. It is possible that this could be due to one of two 

different things: firstly, it could be down to a larger quantity of naturally occurring, 

(c.2) 

(c.1) 

(b.2) 

(b.1) 

(a.2) 

(a.1) 
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low molecular weight fragments present in the seaweed, or secondly, due to an 

increased amount of breakdown during extraction. 

 

Figure 4.13: LC-MS chromatograms for FV, comparing (1) the secondary and (2) 
the main peaks in fucoidan extracted from (a) June, (b) September and (c) 
January samples. 

Figure 4.14 shows the comparison of main and secondary peaks for AN. Again, 

the four common mass fragments are seen for all months, with most other peaks 

being relatively small in comparison. Notable additional peaks occur at 315 Da 

and 451 Da, which are present in all three months studied. While the quantity of 

different mass fragments is still greater than seen for FS, they are less than seen 
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for FV. Interestingly, in May and August, the proportion of 228 Da, the less 

sulphated monomer, is less than 293 Da, containing two sulphate residues, for 

the secondary peaks, which is the opposite for what is seen in for the main peak. 

 

Figure 4.14: LC-MS chromatograms for AN, comparing (1) the secondary and (2) 
the main peaks in fucoidan extracted from (a) May, (b) August and (c) 
December samples. 

In general, comparing the LC-MS chromatogram for the main and secondary 

peaks, it is obvious that the main peak contains a far wider range of fragments 

and with a wider ranges of masses. The maximum Da possible with this 

(c.2) 

(c.1) 

(b.2) 

(b.1) (a.1) 

(a.2) 
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instrument is 1300 Da, but it is likely that there are fragments significantly larger 

than this, as indicated by the MW of fucoidan found by SEC. The two smaller 

peaks appear to either be fragments which have been created during the 

extraction process or oligomers, which have been pulled through the column by 

association with the larger fucoidan macromolecules. For either case, the 

presence of the fragments in both the main and secondary peaks infers they are 

from the same group of compounds and also associated with each other. The 

largest of these is 729 Da for FS, corresponding to a 3-fucose chain. For FV, the 

largest fraction in the secondary peaks is 1245; a 5-fucose chain and for AN, 829 

Da; a 4-fucose chain. Possible structures for the most common fragments are 

given in Figure 4.15. These clearly show the loss of hydroxyl, methyl and sulphate 

groups due to fragmentation in the mass spectrometer.  
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Figure 4.15: Potential molecular structures for fragments found in LC-MS 

 Discussion of the Implications of the Seasonal Variation of 

Fucoidan 

The sulphate content of fucoidan is a key parameter in assessing its potential for 

biomedical properties. This was first shown by Nishino et al [208], who 

demonstrated that increased sulphation on fucoidan extracts from the brown 

seaweed Ecklonia kurome increased their ability to inhibit  thrombin-fibrinogen 

reaction and amidolytic activity of thrombin. Later work conducted by Haroun-

Bouhedja et al [73], also investigating the inhibition of thrombin using a low 

molecular weight fraction of fucoidan extracted from A. nodosum, demonstrated 

that fractions with less than 20% sulphate had little to no inhibitory effect. 

Comparing these results to those found in this seasonal variation study, it is clear 

that there are some months in which the sulphate content of the crude fucoidan 

falls beneath this minimum value, meaning the extracted fucoidan will have little 

to no bioactivity. By interpreting the data in Figure 4.4 and correlating it with the 
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total quantity of extracted fucoidan each month, given in Figure 4.3, it is possible 

to predict both the best month for harvest in terms of maximum yield, but also in 

terms of the best potential for bioactivity. Figure 4.16 shows the fucoidan content 

plotted against the sulphate content, in order to determine the optimum harvest 

time for each species, where the dashed line at 20% sulphate shows the values 

below which will exhibit little bioactivity. This graph clearly shows that all FS 

samples fall above 20 wt% sulphate, so harvest throughout the year will yield 

good bioactivity. Optimum harvest time will then be dependent on the month in 

which the greatest fucoidan content occurs, which, in this case, is November. For 

FV and AN, only fucoidan extracted in a few months show a sulphate content 

above 20%. For FV, these occur in November, December and January. 

Incidentally, this peak in sulphate levels also corresponds to a peak in fucoidan 

quantity, with December having the greatest amount. This means that a 

December harvest of FV would yield both the highest quantity of fucoidan along 

with a good sulphate content. June and March samples of AN show sulphate 

contents over 20%, although there are several months whose error bars put them 

within the data range, including April and November samples. Again, higher 

sulphate content appears to correspond to a higher fucoidan content in most 

cases and a June harvest, having the second highest overall fucoidan content, 

will give the best balance between bioactivity and fucoidan extraction. The trend 

for increased sulphate content with higher yield of fucoidan was also noted by 

Mak et al. [93] in their study of Undaria pinnatifida, in which they investigated the 

fucoidan content and composition over 4 months. 
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Figure 4.16: Fucoidan content in dry biomass against sulphate content of 
fucoidan. 

Although optimum harvest months for the three species studied here can be 

chosen, for industrial extraction purposes, harvest throughout the year would be 

beneficial. This is due to the high energy costs associated with drying and storing 

seaweed biomass, which can contain up to 80% water at harvest weight. While 

the processing of wet biomass for fucoidan production has not been conducted 

in this study, nor by any other study the author could find, the ability to harvest 

and process wet would be very beneficial to industrial processes, and the ability 

to do so seems possible, if chemicals are added so their dilutions are achieved 

by the water present in seaweed. If this were the case, then FS would make the 

best feedstock for extraction, due to its high sulphate content year round. 

As with the seasonal variation study of the chemical content of seaweed (Chapter 

3), no long term studies on the effect of: anthropogenic changes, such as ocean 

acidification and climate change; weather conditions, including hours of sunlight 

or sea temperature; or locational variations in factors such as sea metal content 

have been conducted. It is likely that all these factors will have an effect on the 
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quantity and composition of fucoidan and therefore a thorough review of these 

factors would be essential for the industrial extraction of fucoidan. 

4.2 Development of Colourimetric Determination of Fucoidan and 

Comparison with Conventional Extraction 

 Introduction 

Fucoidan is extracted from macroalgae in order to determine quantity and is 

performed via a lengthy extraction and purification process, resulting in dry 

fucoidan. In general this consists of four main steps: an initial purification to 

remove pigments and lipids, often using an alcohol; an extraction step, often 

repeated several times to ensure full extraction of fucoidan and most commonly 

using calcium chloride, dilute hydrochloric acid or water; further purification of the 

extract to remove alginate and other impurities before fucoidan is finally 

precipitated using ethanol [137-142] and is the method used the fucoidan 

seasonal variation study presented in section 4.1. A comparison of the three 

extraction solvents was carried out by Ponce et al. (2003) [145]. The results 

indicated that distilled water and HCl extraction gave the highest and comparable 

yields of 10.8 and 9.6 wt% respectively, with the structure of each extract being 

very similar. Zhang and Row (2015) further this, similarly comparing extraction 

solvents, but also identifying the best conditions for fucoidan extraction from 

Laminaria japonica [146]. Their findings suggest an extraction time of 4 hours at 

80°C and 0.1M HCl yielding the best results, giving 17wt% fucoidan. Overall, all 

of the methods described require long extraction and purification times in order 

to obtain a pure product and determine the accurate fucoidan content, taking up 

to 5 days depending on the number of extractions performed. 
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An alternative option is spectrophotometric determination, using an acid 

hydrolysis of fucoidan into its monomer units, including fucose, followed by the 

reaction of the fucose with cysteine hydrochloride to produce a measurable colour 

based on concentration. This method was first described by Dische and Shettles 

[135], although has not been fully explored in more recent literature. Fucoidan is 

inferred, assuming fucose accounts for 50% of the fucoidan total mass, so the 

mass reading is doubled in order to obtain the total fucoidan.  

A comparison of the two methods is examined in this section, to investigate 

whether the spectrophotometric technique is a viable, faster and less solvent 

intensive alternative to the traditional extraction of fucoidan for total quantity 

analysis. The spectrophotometric method has been fully developed in order to 

reduce errors and erroneously high results due to the presence of other sugar 

monomers in the extract. The possible benefits of this rapid method for industry 

has been assessed. 

 Development of the Spectrophotometric Method 

The calibrations for the fucose and fucoidan standards are displayed in Figure 

4.17. In each case, a clear linear trend line is observed, which passes through 

the origin. For this particular fucoidan standard, which is extracted from Fucus 

vesiculosus (Sigma Aldrich), the fucose content is 41.5%. This is in good 

agreement with previous reports using a similar standard fucoidan, where a 

fucose content of 44% was quoted [209]. It is worth noting that, due to the 

variation in fucoidan between species, the fucoidan calibration is only correct for 

Fucus vesiculosus. Calibrations for other species would need to be conducted to 

gain an accurate result. The original paper by Dische and Shettles [135] suggests 

that, on average, 50% of fucoidan is fucose, so the result based on the fucose 

calibration should be multiplied by 2 to give the fucoidan content. The initial 
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results are based on this assumption, as, without full extraction and analysis of 

fucose content in the fucoidan, the actual value is unknown, which would be the 

case in an initial testing setting. 

 

Figure 4.17: Calibration curve for fucose and fucoidan standards 

It was noticed that a change in development time gave significant differences in 

readings while creating the fucose calibration. In order to understand this fully, 

the influence of reaction time was investigated and a set of fucose calibration 

standards were measured every 30 minutes over a 2 1/2 hour period, the results 

of which are given in Figure 4.18. Although a linear trend line is still evident for all 

development times, there is a doubling in the absorbance reading between 30 

and 180 minutes for the highest concentration. A similar experiment was carried 

out for the fucoidan standard, although in this case the phenomenon was not 

observed (Figure 4.18). It is thought this is due to the difference between the L-

fucose standard and sulphate fucose present in fucoidan.  
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Figure 4.18: Calibration curve for fucose and fucoidan under differing colour 
development times 

As shown in Figure 4.19, L-cysteine hydrochloride reacts with the OH group on 

the fucose, creating a colour change. While the standard has 4 possible bonding 

sites, sulphated fucose has less, commonly two, due to sulphate groups replace 

OH groups. This means that each l-fucose could create a colour change twice as 

intense as each sulphate fucose. However, after the first L-cysteine hydrochloride 

has bonded, each subsequent bond will be increasingly difficult to form, therefore 

giving the colour change over time seen for the L-fucose. Fucoidan, however, 

having less OH groups to bond with, achieves its full colour change in 30 minutes, 

after which there are no remaining OH groups for the L-cysteine hydrochloride to 

bond with. The number of OH groups for sulphated fucose could also be reduced 

by incomplete hydrolysis to monomers, as the fucose chain in fucoidan is linked 

by O-glycosidic bonds, which break into an OH group on each monomer. In order 

to achieve a consistent colour change for the standard, a 30 minute development 

time was strictly adhered to, which was also followed through subsequent 

experiments to eliminate any discrepancies which could be caused by this. 
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Another possible reaction to give the colour change seen is the N on the L-

cysteine hydrochloride attacks the C to give an imine. However, as there is no 

literature available on the specific reaction, more studies would need to be 

undertaken to assess the details of this reaction. 

 

 

Figure 4.19: Reaction between L-cysteine hydrochloride and (a) L-fucose and (b) 
sulphated fucose. Remaining bonding sites are circled in red. 

The method for hydrolysing the fucoidan, using concentrated sulphuric acid, is 

similar to the NREL method for the determination of sugars from biomass [210]. 

Although the method presented here calls for two absorbances to be measured, 

to eliminate colour interference caused by glucose present, it is unlikely that this 

alone will fully compensate for the other sugars present. This is due to there being 

several types of monomer unit present, resulting from the breakdown of different 

carbohydrates. Alginate, for example, will have been hydrolysed into guluronic 

and mannuronic acid [46], which will adsorb at a  wavelength to glucose, for which 

the method is corrected. 

In order to explore the method fully, the effect of glucose (the main constituent in 

laminarin) and alginate were determined. This was achieved by making solutions 

(b) 

(a) 
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containing different concentrations of standard glucose and alginate, all 

containing the same amount of fucoidan standard; 0.3mg in the 1ml used for 

testing, which is equivalent to a sample containing 10wt% fucoidan. As the same 

fucoidan standard was used, in this case, the fucoidan calibration curve was used 

in calculation, with the intention that this would give the most accurate result. The 

results, presented in Figure 4.20, show that addition of glucose results in 

measurements 20% higher than the expected fucose concentration of 150mg/ml. 

Although alginate gives the expected fucose concentration at 300 mg/l, there is 

an increase of 27% over the expected reading for 150mg/l at 1600mg/l alginate 

concentration. As the trend lines are linear, it is possible to apply a correction 

factor to account for these inaccuracies, given as Equation 3, where Fadj is the 

adjusted fucoidan, Fint is initial fucoidan and A is alginate, all in wt%. Although 

this means measuring the alginate content of the sample, the method is relatively 

quick to determine by colourimetry [211] or by HPLC and the total analysis time 

is still far less than for the full extraction method.  

 
𝐹𝑎𝑑𝑗 =

𝐹𝑖𝑛𝑡
1.2 + (0.007𝐴 − 0.09)

 
Equation 3 
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Figure 4.20: The effect of glucose and alginate on spectrophotometric 
determination of fucoidan 

 Comparison between Conventional and Spectrophotometric 

Extraction Methods 

Nine samples from three species of macroalgae, one spring, one summer and 

one winter for each, have been tested using the spectrophotometric technique 

and compared to the results from conventional extraction. The results, shown in 

Figure 4.21, show little correlation between the conventional method and the un-

adjusted spectrophotometric data for all three species. Once Equation 3 has been 

applied to the data, accounting for interference by laminarin and alginate, there 

is good agreement for FV, with all samples being within ±5% of the conventional 

method values.  

FS and AN, however, still show little agreement. This is likely due to differing 

fucose content in fucoidan. Studies into fucoidan structure have shown that FV 

has the simplest form and regular structure, with a linear backbone of fucose, 

making the 50% fucose content assumption more or less accurate [164]. 

However, FS and AN have been shown to have different structures, including 

0

20

40

60

80

100

120

140

160

180

200

0 400 800 1200 1600

Fu
co

se
 c

o
n

ce
n

tr
at

io
n

 (
m

g/
l)

Concentration (mg/l)

Glucose

Alginate



- 133 - 

fucose side chains and differing quantities of sulphate, rendering the 50% 

assumption inaccurate [164]. By calculating the fucoidan content for FS and AN 

using a fucose content of 70 and 80% respectively gives much better agreement, 

as shown in Figure 4.21c. This is equivalent to multiplying the fucose value by 

1.4, 2 and 1.25 respectively for FS, FV and AN. It is likely that these adjustments 

are required both for the differing fucose and sulphate content of the sample, and 

not solely on the fucose content alone. In this case, all values for all 3 species 

are within ±5% of the conventional method, with an R2 of 0.93 and the slope of 

the trend line approaching 1. The good agreement between the three samples 

from each species suggests that, assuming the adjustment factor is applied, 

these fucose ratios could be applied to other samples with confidence, without 

the need to undertake the lengthy conventional extraction 

It is likely that the intensity of the colour reaction, and therefore the initial 

spectrophotometric reading, will be dependent on both the differing fucose 

content between species, as well as the degree of sulphation in the fucoidan, due 

to the reaction shown in Figure 4.19. While the quantity of sulphate in fucoidan 

does vary throughout the year, the range of values is relatively small (see section 

4.2.2), and an average value of 34, 19 and 15% was found for FS, FV and AN 

respectively.  
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Figure 4.21: Correlation of the conventional method and (a) unadjusted 
spectrophotometric results, (b) adjusted photometric results based on 50% 
fucose in fucoidan and (c) adjusted photometric based on varying fucose 
content dependent on species. Ideal correlation of x=y is shown by the 
dashed line. 

Overall, as long as calibration for the specific seaweed being analysed has been 

performed and compared with the conventional extraction method, the 

spectrophotometric determination of fucoidan presents a significantly faster 

method. From an industrial stand point, this method offers a good approximation 

of the fucoidan present in a sample, which, considering the variation in content 

throughout the year, would be important for an extraction process so ensure that 

sufficient product is made to fulfil requirements. 

4.3 Conclusions 

The seasonal variation of fucoidan and the variations in its chemical composition 

has been explored. Clear differences between the different species, as well as 

between months, has been seen. FS has been shown to be more abundant in 

fucoidan in the autumn months, with its highest value in November. It is also 

likely, form the SEC and LC-MS results, that FS has a higher degree of branching 

Conventional method (wt% fucoidan) 

(c) (b) (a) 
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and a higher variation in MW than the other two species. FS also have the highest 

sulphate content, an important factor for bioactivity. FV has been shown to have 

its highest concentration of fucoidan in December. It’s MW has been shown to 

vary less than FS and also contains a lower sulphate content. AN has been 

shown to contain its maximum fucoidan content in October. The MW across the 

year is lower than that for FS, but slightly higher that for FV. Overall, AN has the 

lowest sulphate content of the three species. 

The use of a spectrophotometric method for the determination of fucoidan in 

macroalgae samples is viable, as long as a correction factor for the laminarin and 

alginate content is applied. Although the correction factor for laminarin is 

constant, the method does require alginate content to be determined in order to 

gain an accurate result. However, the presented method for alginate content is 

sufficiently short that the time required is still less than for the full extraction 

method. While the original assumption of fucoidan containing 50% fucose only 

gave comparable results to the conventional method for FV, adjusting the 

assumed fucose content in fucoidan and multiplying the spectrophotometrically 

determined value by 1.4 for FS and 1.25 for AN gave good agreement to the 

conventional method. With this adjustment, all nine samples tested from the three 

species were within ±5% of the conventional value. The spectrophotometric 

method, if applied in an industrial setting, would prove useful as an initial testing 

for macroalgal feedstock for the extraction of fucoidan. This is due to its content 

varying due to a range of factors, affecting the quantity of fucoidan able to be 

extracted. 

The overarching conclusion to this study is the need for a clear and thorough 

understanding of the seasonal variation of fucoidan and the impacts external 

factors play in its structure, including season, weather variation and 
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anthropogenic influences. With so many factors playing a role in this, it is of great 

importance that these are thoroughly understood and quantified for the extraction 

of fucoidan to be viable at an industrial scale and for achieving a consistent, 

bioactive product. While this study has laid the ground works for this to be 

achieved, there is still a lot of work to be done in the area in order to fore fill the 

requirements.  
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5 Microwave extraction of Carbohydrates 

5.1 Introduction 

Microwaves have been used in the past for chemical extraction [149, 156, 157], 

with some references to their use with regards to seaweeds [162, 163] and are 

now widely used in industry for food production. Microwaves have been shown 

to have a lower heating requirement, higher controllability, more even heating 

and better repeatability than conventional heating [148], which makes them an 

ideal candidate for the extraction of chemicals from seaweed with a view to 

reducing the overall environmental impact of the system. The use of microwaves 

potentially offers more flexibility to operate more economically on a small scale. 

This is beneficial to the seaweed industry, as cultivation locations are often 

remote and seaweed decomposes rapidly after harvest [212]. Being able to 

harvest and process in close proximity to each other would negate the problem 

of transport of the biomass. 

In this chapter, a comparison of extraction between microwave and conventional 

heating has been performed as an initial feasibility study for the development of 

a macroalgal biorefinery using microwaves. Size exclusion chromatography 

(SEC) has been used to determine the composition of various extracts, the 

standards for which, along with their average retention times, are given in Figure 

5.1 for reference. It is worth noting that all standards have been analysed in the 

same concentration in this figure and the intensity of the signal varies depending 

on the compound which is being analysed. For example, mannitol and fucoidan 

give a much stronger signal when compared to laminarin. Sugar, organic acid 

and metal analysis has also been performed on both residues and extracts, in 
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order to gain a full and quantified analysis of the composition of each fraction at 

each stage. 

 

Figure 5.1: SEC chromatograms of standards of the main compounds found in 
seaweed with table of peak and range of retention times for each. 

5.2 Characterisation of Feedstock 

A sample of FS was collected from the coast of Aberystwyth on 16th June 2015. 

The seaweed was dried in an oven at 50°C for 24 hours, before being ground 

and sieved to 500μm for analysis. FS was chosen for this study as it was shown 

in the seasonal variation experiments to have the lowest ash content, which 

would minimise corrosion in an industrial setting [79], while maintaining high 

quantities of carbohydrates of interest, such as fucoidan, laminarin and alginate. 

In addition, while having a slightly lower fucoidan content, the composition of the 

fucoidan was shown to have a higher sulphate quantity, which relates to its 

bioactivity. A sulphate content of more than 20% is required for good bio-active 

properties [164] of which FS was the only seaweed studied to maintain 

throughout the year. Harvest in June was chosen also due to the high 

carbohydrate content and low ash content. The seasonal variation study in 
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chapter 3 shows laminarin, mannitol and fucoidan to be higher in the summer, 

correlating to an equivalent low in the ash content. 

Figure 5.2 shows the chemical composition of FS collected. Alginate is seen to 

make up the largest fraction of the biomass, accounting for 32.5±2.7wt% on a dry 

basis. The “other” fraction is likely to be made up of polyphenols, lipids and small 

quantities other metabolites and pigments, as shown in chapter 3. Comparison 

with this data from the June sample from the seasonal variation study (Chapter 

3), shows that the alginate, protein, ash and fucoidan content are relatively 

similar. Laminarin and mannitol, however, are both significantly lower in the 2015 

sample when compared to 2010: 6.1±0.4 wt% vs 17.0±2.5 wt% and 8.7±0.6 wt% 

vs 12.8±0.6 wt% respectively. However, as was noted by Black [21], that the 

seasonal pattern can vary by up to two months, dependant on the weather of the 

particular year. Here, the June 2015 sample of FS is more closely related to the 

April/May samples from 2010, where laminarin and mannitol were approximately 

9 and 8 wt% respectively. 
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Figure 5.2: Chemical composition of FS on a dry basis 

The composition of the ash from FS has been analysed, with the results shown 

in Figure 5.3. The majority of the metals are accounted for by sodium, potassium, 

calcium, magnesium and chlorine, who, combined, account for 97.1% of the total 

metals. As is common with brown seaweeds, FS contains a relatively high 

quantity of heavy metals, such as As and Zn. This is due to the bioaccumulation 

of heavy metals which they absorb from the seawater [213]. The small “other” bar 

in Figure 5.3(b) is mostly accounted for by iodine, boron, barium and manganese, 

with small quantities of rubidium, titanium and nickel present, all below 50 mg/kg. 

As was seen with the seasonal variation samples in chapter 3, there is a relatively 

high quantity of strontium. 
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Figure 5.3: Metal content of FS on a dry basis, where (a) shoes the macro and 
(b) the micro metals. 

5.3 Conventional vs Microwave: A comparison of Heating Methods 

and Effect of Temperature on Extraction 

The effect of temperature on extraction of the whole seaweed biomass has been 

assessed, comparing conventional and microwave heating. Figure 5.4 shows the 

temperature profiles for conventional and microwave heating over the range of 

temperatures investigated. For microwave heating, the ramp rate was set to 5 

minutes up to the desired temperature, which was then held for either 5 or 10 

minutes. The long ramp rate was used in order to ensure good control of the 

heating: the microwave is calibrated to heat water [214], which is significantly less 

polar than the seaweed slurry used here. As the infra-red temperature sensor 

used has a relatively slow response time, shorter ramp rates were seen to give 

an overshoot in temperature. While it is not possible to calibrate the lab-scale 

microwave used in this study, it may be possible in an industry setting to reduce 

the ramp rate through a better temperature control system, using fibre-optic 

temperature sensors inside the reactor, which are transparent to microwave 

 (a) 
(b) 
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heating and calibrating the microwave energy input to correspond with the 

heating profile of the seaweed slurry. 

In conventional heating, achieved by placing a metal reactor into a sand bath set 

to the desired temperature, the contents of the reactor was allowed to come to 

the desired temperature, measured using a thermocouple, before being left for 

the desired residence time. The ramp rate was found to be approximately 5 

minutes in all cases, which gave a good comparison for its microwave heating 

equivalent. It is important to note that the thermocouple is placed in the centre of 

the reactor, meaning the slurry closest to the walls is likely to have reached the 

desired temperature before 5 minutes required to heat the centre. 

The main difference in the temperature profiles, which can be seen between the 

two methods, is the oscillation in temperature seen for microwave heating, 

compared to the steady temperature seen for conventional heating. The 

microwave controls the temperature to within ±5% of the set temperature by 

applying energy only when the temperature has dipped below the lower value 

and heating to the higher [214]. For conventional heating, the aim is to get the 

reactor and contents in equilibrium with its surrounding temperature, this 

oscillation does not occur. 
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Figure 5.4: Temperature profiles for (a) microwave heating and (b) conventional 
heating for a 0 minute residence time. 

Four scenarios for S:S ratio and residence time have been evaluated over a 

range of temperatures between 50 and 200°C, which are given in Table 5.1. The 

aim of varying these parameters is to ascertain if there is any significant 

difference seen for increased S:S and residence time, thereby fully optimising the 

process for best extraction. Each permutation of S:S and residence time have 

been performed over the full range of temperatures. S:S ratios of 1g:10ml and 

1g:15ml and residence times of 5 and 10 minutes have been trialled. For both 

(b) 

(a) 
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conventional and microwave heating, a ramp rate of 5 minutes up to the desired 

temperature was applied. 

Table 5.1: Different scenarios for S:S ratio, residence time and temperature for 
conventional and microwave heating comparisons for the extraction of 
seaweed. 

Scenario S:S ratio (g:ml) Residence time (min) Temperature (°C) 

5-10 1:10 5 50-200°C  

5-15 1:15 5 50-200°C 

10-10 1:10 10 50-200°C 

10-15 1:10 10 50-200°C 

The colour of the microwave extracts varies with temperature, as seen in Figure 

5.5, with low temperature extractions for both microwave and conventional 

heating being very pale in colour, which increases in intensity with increasing 

temperature. This is likely due to both the extraction of pigments at higher 

temperatures, but also the beginnings of carbonisation, as sugars are “burnt” at 

higher temperatures. Although the viscosity was not measured, observation of 

the liquid extract showed a decrease in viscosity with increasing temperature, 

presumably due to the breakdown of long chain alginate into smaller units. 

Alginate is known to be a gelling agent [15], so its breakdown would decrease 

the viscosity of the extract. This phenomenon was also noted by Saravana et al. 

[215], who undertook conventional high-pressure water extraction of the brown 

seaweed, Saccharina japonica at 180-420°C. They noted both a decrease in 

viscosity and an increase pH with increasing temperature. 
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Figure 5.5: Images of liquid extracts from hydrothermal microwave extraction for 
5-10 for (a) microwave and (b) conventional heating 

The residues from conventional and microwave hydrothermal extraction also 

showed a distinct colour change with increasing temperature, which can be seen 

in Figure 5.6. 50°C extracts for both conventional and microwave heating are dark 

green in colour, which becomes paler up to 150°C, presumably due to the 

extraction of pigments which give seaweed its colour. At 200°C, the residue 

biomass becomes significantly darker and brown in colour. As was noted for the 

liquid extracts, this is likely due to the beginnings of carbonisation. The texture of 

the residues were also noted to change with increasing temperature, with higher 

temperatures having a denser, more granular feel when compared to the low 

temperature residues, which were more flake-like in texture. 
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Figure 5.6: Images of 5-10 residues from hydrothermal microwave extraction for 
(a) microwave and (b) conventional heating 

Figure 5.7 shows the weight of chemicals extracted from 1g of biomass for 

various temperatures, seaweed to solvent ratios (S:S) and residence times. The 

general trend in all cases is an increase in temperature leading to an increase in 

material extracted. From these figures, it is clear that there is little difference in 

extraction quantity between conventional and microwave heating, with the 

standard error between conventional and microwave heating at each point being 

less than 0.077 for all scenarios. Furthermore, there appears to be little difference 

between the various permutations of S:S and residence times across the four 

scenarios, with the standard error for each temperature being less than 0.025 

across the four S:S and residence time scenarios.  

(b) 

(a) 
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Figure 5.7: Extracted weight of microwave and conventional heating processing 
of FS for (a) 10ml water for 5 mins, (b) 10ml water for 15mins, (c) 15ml water 
for 10mins and (d) 15ml of water for 15mins.  

While the quantity of material extracted is relatively similar for all conditions, 

differences occur in the MW profile and, therefore, the chemical constituents of 

the extract. Figure 5.8 compares the SEC chromatograms for each temperature 

for a residence time of 5 minutes and a S:S ratio of 1g:10ml, with the 

chromatogram for the fucoidan standard given for reference. Mannitol, whose 

peak elutes at 22.8 minutes, appears to be relatively consistent in height and 

therefore quantity at each temperature. The same is seen for laminarin, which 

elutes at 20.5 minutes, although it is relatively small. This is due to the lower 

quantity of laminarin present in the sample, only roughly 6 wt%, as well as the 

low intensity of the peak for laminarin by RI detection. The peak for fucoidan, at 

12.2 minutes, shows the greatest variation with temperature and between the two 

heating methods. For microwave heating, only a small quantity of fucoidan is 

extracted at 100°C and below, while the MW profile at 150°C and above is 

significantly more spread out when compared to the standard, with extra peaks 

evident between 12 and 20 minutes, suggesting the breakdown of fucoidan and 

(d) 

(b) 

(c) 

(a) 
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also alginate, which elutes at 13.3 minutes. For conventional heating, the trend 

at 100°C and below is similar, with only a small quantity of fucoidan being 

extracted. At 150°C, however, there is a large peak for fucoidan, which is of a 

similar width and shape of that for standard fucoidan, suggesting that fucoidan is 

extracted well at this temperature and is not being degraded. The chromatogram 

for conventional heating at 200°C, however, shows a much wider spread of MW 

fragments, particularly between 12 and 20 minutes similar to that seen for 

microwave heating, indicating the beginnings of breakdown for fucoidan at 

150/200°C.  
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Figure 5.8: Comparison of SEC chromatograms from (a) microwave heating and 
(b) conventional heating extraction at 5 minutes residence time and S:S of 
1g:10ml 

In order to determine the optimum extraction temperature for fucoidan in the 

microwave, runs were have been conducted at 120°C and 140°C, the SEC 

chromatograms for which are shown in Figure 5.9 alongside the fucoidan 

standard for comparison. The results indicate good extraction of fucoidan at 

120°C, which shows a similar shape and width of peak to the fucoidan standard. 

The peak for fucoidan at 140°C, however, is wider than for the standard, 

indicating an increase in the spread of MW fragments for fucoidan. This suggests 

that fucoidan is beginning to be degraded at this temperature. Extraction of 

(b) 

(a) 
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laminarin and mannitol appears to be similar to the other temperatures 

investigated in this study, with an RUI of approximately 5.  

 

Figure 5.9: SEC chromatogram for microwave heating at 120°C and 140°C. 

The variation in abundance of MW bands in the extracted seaweed has been 

calculated from the SEC chromatograms using standards, the results of which 

are given in Figure 5.10. Above 2500 kDa represents alginate, 2500 to 1000 kDa 

represent the main peak for fucoidan with 1000 to 5000 kDa representing both 

the secondary fucoidan peaks and any broadening in MW of the fucoidan main 

peak due to degradation. Less than 6.5 kDa represents laminarin and mannitol, 

as well as any small fragments or sugars created by the heating process and 

between 300 and 6.5 kDa represents only breakdown fragments made, as none 

of the standards are within this MW range. For microwave heating, shown in 

Figure 5.10(a), there is a clear increase in the 2500 to 1000 kDa range up to 

120°C, after which it reduces. Components above 2500 kDa are also seen to 

reduce in MW with increasing temperature. The reduction in these high MW 

components correspond to an increase in lower MW fragments, with peaks 

between 500 and 6.5 kDa increasing significantly at temperatures of 140°C and 

above. There is also a distinct increase in material below 6.5 kDa, indicating an 
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increase in small MW fragments and sugar monomer units. A very similar trend 

is seen for the conventional heating extracts in Figure 5.10(b), with increasing 

processing temperature leading to an increase in low MW material and a 

decrease in high MW material, however the shift is seen to occur at higher 

temperatures, with relatively similar amounts of low MW material below 150°C, 

only increasing above this temperature. The quantity and ratio of 2500 to 1000 

kDa and 1000 to 500 kDa, for microwave heating at 120°C and conventional 

heating at 150°C are seen to be very similar, with approximately 3:5 rel. units for 

each. These have been shown in Figure 5.8 and Figure 5.9 to give SEC 

chromatograms closest to the standard and, therefore, give the best extraction of 

fucoidan. The similarities between the MW distribution of these two samples 

further confirms this analysis. 



- 152 - 

 

Figure 5.10:Breakdown of the products from extraction by MW in (a) microwave 
and (b) conventional heating. 

Figure 5.11 compares microwave and conventional heating at 50°C for the four 

scenarios of S:S and residence time. The peak between 15 and 20 minutes is 

due to salts, which have not been fully removed from the extract before 

processing. Although this is an issue with SEC for analysis of the extracts, a 

method was later developed using a ion-trap column in the HPLC set-up and the 

salt peak doesn’t obscure any of the peaks of interest, meaning analysis of the 

chromatograms is still possible. The quantity of mannitol and laminarin extracted 

in each case appears to be relatively similar, although this is explored in more 

detail later. The apparently low quantity of fucoidan and alginate extracted, 
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coupled with the high extraction of mannitol means that 50°C would be a good 

temperature choice for pretreatment of the seaweed biomass for fucoidan and 

alginate extraction. It is also clear from these chromatograms that there is little 

difference between the different permutations of S:S and residence time at 50°C 

and also little difference between conventional and microwave heating. This 

means that the lower S:S of 1g in 10ml of water and a short residence time of 5 

minutes could be used to gain full extraction, beneficial for reducing water and 

energy requirements of the system. 
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Figure 5.11: Comparison of different permutations of residence time and S:S ratio 
at 50°C for (a) Microwave and (b) conventional heating 

Chromatograms comparing the four scenarios for S:S and residence time at 

100°C are displayed in Figure 5.12. As with 50°C, there is only a small quantity 

of fucoidan and alginate extracted, with mannitol and laminarin extraction 

remaining similar throughout. There is also little variation between the different 

S:S and residence time scenarios.  

(a) 

(b) 
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Figure 5.12: Comparison of different permutations of residence time and S:S ratio 
at 100°C for (a) microwave and (b) conventional heating 

Figure 5.13 shows the comparison of conventional and microwave heating at 

150°C for the 4 scenarios of S:S and residence time. The chromatograms for the 

four scenarios for conventional heating at this temperature appear to be relatively 

similar, with 5 minutes residence time having a slightly better extraction than 10 

minutes, although S:S doesn’t seem to have an effect. This is likely due to an 

increase in residence time at this higher temperature causing fucoidan 

degradation to begin to occur. 

(a) 

(b) 
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In contrast to the 50°C and 100°C, the microwave heating chromatograms for 

150°C do not closely match those of conventional heating. The peaks denoting 

fucoidan are significantly boarder and shorter for microwave heating, indicating 

an increase in the variation of MW and, therefore, breakdown of fucoidan. This is 

also seen to correspond with an increase in residence time and S:S ratio, with 

shorter, broader peaks occurring with an increase in these parameters. It is likely 

that this is due to the increase in microwave energy required to heat the extra 

solvent and hold at the temperature for longer causing more movement in the 

bonds in fucoidan and therefore more bond breakage. This variation in fucoidan 

peaks indicates that 150°C is the critical temperature for the assumed breakdown 

of fucoidan for microwave heating, while 150°C seems to be the optimum 

temperature for the extraction of fucoidan via conventional heating. To investigate 

the optimum extraction temperature for fucoidan extraction via microwave 

heating further, microwave heating runs at 120°C and 140°C have been carried 

out for all 4 scenarios. 
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Figure 5.13: Comparison of different permutations of residence time and S:S ratio 
at 150°C for (a) microwave and (b) conventional heating 

At 200°C, it is clear from the data in Figure 5.14 that there is a significant shift in 

MW of the extracted components. It is likely that this is due to breakdown of the 

carbohydrates into fragments and monomer units. This is explored further in 

section 5.3.2. However, the fucoidan peak seen at lower temperatures (at 12.2 

minutes for the standard) is clearly missing for microwave heating and is 

significantly smaller for conventional heating. There is also extra peaks above 

this temperature, which are not present in the lower temperature extracts. These 

notably occur at 14, 18, 19 and 25 minutes and are likely to be accounted for by 

(a) 

(b) 



- 158 - 

fucoidan and alginate fragments and monomer units. Temperatures above 200°C 

were not able to be performed, due to the limitations of the microwave vessels 

and their limit on pressure. However, it is likely that increasing the temperature 

would lead to an increase in hydrolysis of the long chain carbohydrates into their 

monomer units, resulting in an increase in low MW material and decrease in high 

MW material.  

  

 

Figure 5.14: Comparison of different permutations of residence time and S:S ratio 
at 200°C for (a) microwave and (b) conventional heating 

In order to determine the optimum extraction temperature for fucoidan from the 

raw biomass and to confirm the viability for good extraction of fucoidan from 

(a) 

(b) 



- 159 - 

seaweed using microwave heating, further runs were performed at 120°C and 

140°C. The results of these are shown in Figure 5.15. At 120°C (Figure 5.15(a)), 

there appears to be good extraction of fucoidan, giving a peak of similar width to 

the standard. In this case, a higher S:S ratio seems to give better extraction, with 

residence time seeming to have little effect on the quantity of fucoidan extracted. 

In all cases, mannitol and laminarin are seen to be sufficiently extracted and in a 

similar quantity consistent with that seen at other temperatures. As was seen with 

microwave extraction at 150°C (Figure 5.13(a)), there appears to be a broadening 

of the fucoidan peak, which increases with increasing residence time and S:S 

ratio at 140°C (Figure 5.15(b)). At 5 minutes residence time, both S:S ratios give 

relatively good extraction of fucoidan, with little broadening of the peak. However, 

an increase to 10 minutes residence time sees the beginning of the peak 

broadening, with 10 minutes residence time and 1g:15ml S:S ratio showing a 

significant broadening. This indicates that 140°C is the tipping point for 

breakdown of fucoidan for this sample of seaweed.  

As the variation seems to depend more on 10 and 15ml of water, rather than 

residence time, so it was decided that this should be varied in continued 

experiments for the sequential extraction of seaweed, to ensure the best 

extraction yield is achieved. 
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Figure 5.15: Comparison of different permutations of residence time and S:S for 
microwave heating at (a) 120 °C and (b) 140°C 

 Carbohydrate Analysis of the Microwave Extracts 

The amount of fucoidan extracted for each scenario and temperature has been 

calculated from calibration of standards in SEC and the results are given in Figure 

5.16. The overall trend for both microwave and conventional heating is an 

increase in the quantity extracted, up to a peak at 140°C and 150°C respectively, 

before dropping to zero at 200°C. As was seen in earlier figures, this drop at 

200°C is likely due to fucoidan breakdown. The values above 100% are most 

likely due to the breakdown of fucoidan, causing a broader peak due to the wider 

(a) 

(b) 
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range of MW. The distorted peaks do not match the shape of that for the standard 

and, as RI detectors detect the refracted light caused by the compound being 

eluted, more, smaller fractions of fucoidan will refract the light more than samples 

of lower polydispersity, causing an increase in the fucoidan detected, although 

the same mass is present. With this in mind and considering the results in this 

figure, it is likely that there is some breakdown of fucoidan at 150°C in 

conventional extraction, indicating that a slightly lower temperature may give 

better extraction of “whole” fucoidan. 
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Figure 5.16: Amount of fucoidan extracted given as a percentage of the total 
fucoidan present in the sample. Where (a) is microwave heating and (b) 
conventional heating. 

The quantity of laminarin extracted has also been calculated from the SEC 

chromatograms, with the results being shown in Figure 5.17. The general trend 

is for high extraction of laminarin at lower temperatures, which reduces with 

increasing temperature. Both conventional and microwave heating see similar 

trends and quantity of laminarin extracted at each temperature, although there 

appears to be more variation in the extraction quantity for microwave heating. As 

with fucoidan, the quantity of laminarin is seen to drop to almost zero at 200°C. 

(b) 

(a) 
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Again, this is likely to be due to the breakdown of laminarin, which would show a 

peak at a different MW, shifting the MW distribution. 

Only a portion of the total laminarin is extracted, with a maximum of 6.9 wt% of 

total laminarin at 50°C for microwave heating and 6.4 wt% at 50°C for 

conventional heating across all temperatures. It has been shown previously [216] 

that laminarin is present in two forms in seaweed: soluble and insoluble. These 

results suggest that the insoluble form is responsible for a greater proportion of 

the total laminarin than the soluble form, which seems to be almost fully extracted 

at 50°C. It is likely that further extraction in water would not yield any further 

extraction of laminarin.  
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Figure 5.17: Amount of laminarin extracted in (a) microwave and (b) conventional 
heating over a range of temperatures, S:S ratios and residence times. 

 Sugar Analysis of the Microwave Extracts 

The results for mannitol are shown in Figure 5.18 as a wt% of total mannitol. The 

extraction of mannitol is relatively consistent over the temperatures, residence 

times and S:S ratios performed, with the exception of 50°C for microwave 

heating. Under these conditions, it seems that 1g:15ml of water gives better 

extraction than the lower S:S ratio. 

(b) 

(a) 
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Figure 5.18: Amount of mannitol extracted in (a) microwave and (b) conventional 
heating for a range of temperatures S:S ratios and residence times 

Figure 5.19 shows the glucose content in each of the extracts. For microwave 

heating, the quantity of glucose increases to a peak a 150°C, before dropping to 

zero at 200°C. for conventional heating the quantity of glucose increases 

throughout for 10 minutes residence time, but reaches a peak at 150°C and 

begins to reduce at 200°C for 5 minutes residence time. The small quantity of 

glucose present in the 50°C extracts for both conventional and microwave 

heating is most likely due to free glucose present in the seaweed. The increase 

is likely due to the breakdown of laminarin into its monomer units, and 

(a) 

(b) 



- 166 - 

corresponds to the drop in laminarin extracted with temperature seen in Figure 

5.16. The decrease after 150°C is likely to be due to the carbonisation of glucose, 

as higher temperatures “burn” the sugar, meaning it is no longer identifiable as 

glucose on the HPLC.  

 

Figure 5.19: Amount of glucose in extracts from (a) microwave and (b) 
conventional heating for permutations of temperature, S:S ratio and 
residence time. 

The difference between microwave and conventional heating is likely due to 

microwaves having more of an effect on the glycosidic bonds present in 

laminarin, meaning that breakdown occurs at a lower temperature, as more 

(b) 

(a) 
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microwave energy is inputted. Where conventional heating adds energy to the 

system from an external source as a whole via convection, microwaves heat by 

direct action on the polar elements of the system, aligning and rotating charges 

as the waves are applied. As oxygen is strongly electronegative, it pulls 

electrons from the surrounding elements towards it, creating a slightly negative 

charge, as shown in Figure 5.20. As the microwaves act on polar regions, 

stress is directly applied to the bonds between glucose residues in laminarin, 

meaning they are likely to break at a lower temperature under microwave 

heating as opposed to conventional heating. For microwave heating, the tipping 

point for laminarin breakdown is between 150 and 200°C, whereas for 

conventional heating, the results presented here seem to suggest that the 

tipping point is 200°C. 

 

Figure 5.20: Structure of laminarin showing the charges associated with the 
glyosidic bonds. 

The fucose content in the microwave samples is zero below 120°C, above which 

it increased up to a maximum at 150°C, before falling to zero again at 200°C, as 

seen in Figure 5.21(a). For conventional heating, fucose is zero up to 150°C for 

5 minutes residence time, after which it increases up to 200°C. For 10 minutes 

residence time, fucose is zero up to 100°C, rising to a maximum at 150°C before 
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falling to zero again at 200°C, as shown in Figure 5.21(b). These trends follow 

the fucoidan extraction pattern seen in Figure 5.16. This is likely due to fucoidan 

being broken down at higher temperatures: above 120°C for microwave and 

above 100/150°C for conventional heating, in part into its monomer units. It 

seems, as was seen with laminarin, that fucoidan begins to break down at a lower 

temperature in the microwave than for conventional heating. In both cases, an 

increase in residence time and S:S ratio appears to increase the degradation of 

fucoidan, with the highest S:S ratio coupled with the longest residence time giving 

the greatest amount of fucose in microwave heating, at 5wt% of the total fucoidan 

at 150°C. It is hypothesised that a greater quantity of fucose would be seen if 

processing were to be performed at temperatures between 150 and 200°C for 

microwave heating, at temperatures above 200°C for 5 minute residence time for 

conventional heating and between 150 and 200°C for 10 minutes residence time 

and conventional heating. As with laminarin, it is likely that the quantity of fucose 

drops to zero about 200°C due to the sugars being “burnt” in the reactor and, 

therefore, no longer react with the HPLC column in the same way and are eluted 

at a different time. 

There is a relatively small amount of fucose in the extracts: a maximum of 

approximately 6wt% of the total fucose in the raw biomass in each case. It is likely 

that the majority of fucoidan degrades into fragments of lower MW, rather than 

into the monomer units, and is evidenced by the spread of molecular weight 

fragment peaks, which can be seen for the 200°C samples in Figure 5.14. 

Although the break down to monomer units is small, the trend seen is likely to be 

similar for the low molecular weight fractions and also is measureable evidence 

of the breakdown of fucoidan. 
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Figure 5.21: Amount of fucose in extracts from (a) microwave and (b) 
conventional heating for permutations of temperature, S:S ratio and 
residence time. 

The quantity of uronic acids, which in this study is used as the term to denote 

guluronic and manuronic acids, the monomer units which makeup alginate, are 

seen increase at temperatures above 150°C for both microwave and 

conventional heating. However, the quantity is much higher at 200°C for the 

former: a maximum of 21.3wt% of the total alginate compared to 7.7wt% for 

conventional heating. This indicated significant breakdown of alginate above 

150°C. As before, the more pronounced increase in uronic acids for microwave 

(b) 

(a) 
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heating indicates that this method promotes hydrolysis of alginate at a lower 

temperature when compared to conventional heating.  

 

Figure 5.22: Amount of uronic acid in extracts from (a) microwave and (b) 
conventional heating for permutations of temperature, S:S ratio and 
residence time 

5.4 Conclusion 

From this study, it seems that extraction at 120°C for 5 minutes and 1g:15ml of 

water gives the best extraction of fucoidan for microwave heating, while for 

conventional heating, 150°C for 5 minutes and 1g:15ml of water are the optimum 

conditions. This shift in optimum temperature is likely to be due to the difference 

(a) 

(b) 
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in how microwaves heat the biomass, as conventional heating uses convection 

from an external heat source to heat from the outside in, while the changing 

electromagnetic field created by microwaves aligns and then switches the dipoles 

in polar molecules present in the biomass, causing friction and, therefore, heat. 

Furthermore, as the sample of FS used contains a high quantity of salts, which 

have a high polarity, less energy is required to heat the sample. The result of this 

is that a lower temperature and less energy is required to extract the same 

quantity of fucoidan for microwave heating when compared to conventional.  

Due to the reduction of salts in the pre-extraction step, the optimum temperature 

for extraction in a sequential extraction setting is likely to change, especially in 

the microwave, due to the high salt content of the sample. The quantity of salts 

extracted in the pretreatment steps and the effect this has on continued extraction 

is explored further in section 5.4, but, due to the likelihood that the second 

microwave step will require a different temperature to achieve the same 

extraction due to reduced salts, experiments to determine this temperature have 

been undertaken. 

This study has also shown that the optimum conditions for pretreatment of 

seaweed for a biorefinery would be 50°C for 5 minutes with 1g:15ml of water. 

This gives a high extraction of mannitol and laminarin, while minimising the 

amount of fucoidan and alginate extracted.  
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6 Development of  Sequential Extraction of Compounds on 

Seaweeds 

6.1 Introduction 

The use of macroalgal biomass as a feedstock for biofuel production has been 

widely cited in the literature, with bioethanol, bio-methane and bio-butanol among 

the end products that can be produced [120] [176]. However, for seaweed 

biomass be to a viable option for fuel production, which is a relatively low value 

product, co-extraction of high value chemicals within a biorefinery-type setting 

would be necessary. As well as improving the economics of the process, 

biorefineries also minimise waste and make use of the whole biomass resource, 

gaining maximum potential products from the cultivation area required. Extraction 

of several chemicals/products from one resource also reduces total GHG 

emissions, when compared to extracting only one product from the biomass. The 

use of microwaves has also been reported to reduce the energy and solvent 

requirements, further improving the environmental impact of the process. While 

a seaweed biorefinery is not a new concept [38, 125, 126, 129] and the use of 

microwaves in this setting has been cited once before in the literature [162], this 

is the first study with a view to minimising solvents, extraction times and liquid 

loading in the reactors to reduce the environmental and energy costs of the 

process. Moreover, the study presented by Yuan et al [162] uses HCl as an 

extraction solvent. This has been shown in previous studies to have a degradative 

effect on fucoidan, reducing its degree of sulphation and hydrolysing the polymer 

into smaller chained fragments [164]. This means that both the quality and the 

potential quantity of fucoidan extracted will be reduced, as lower extraction 

temperatures will be required to maintain the quality of the product. However, the 

lower temperature will potentially reduce the quantity of fucoidan which is able to 
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be extracted. This has been shown to be the case in their connected study, which 

shows the quality of fucoidan is compromised under the extraction conditions 

optimum for full extraction [163]. 

The study in this chapter builds on the feasibility and comparison of microwave 

and conventional heating presented in chapter 5, developing biorefinery using 

microwave heating. The method proposed in this study attempts to utilise the 

seaweed biomass, specifically Fucus serratus (FS), to its full potential by 

extracting fucoidan and alginate as relatively pure products and explores the 

possibility of using the waste as a feedstock for bioethanol and anaerobic 

digestion (AD) production and for direct use as a fertiliser. As far as possible, the 

use of solvents and extraction chemicals has been minimised, with water being 

used for extraction as much as possible and the recycling of solvents required 

considered, when water was not found to be suitable. This would reduce both the 

cost of the process, but also the environmental impact associated with production 

of these chemicals. Furthermore, it is hoped that by using water as the extraction 

medium, the quality of the fucoidan can be maintained while extracting under the 

optimum conditions to give the best yield. 

A sequential extraction of chemicals, based on the solubility of components with 

increasing microwave temperature, has been developed for a June sample of FS. 

Furthermore, the quality of the fucoidan extracted has been evaluated and 

compared to that extracted by the conventional method. Mass and energy 

balances for the system have been completed, comparing the results for if 

microwave or conventional heating were to be used to determine potential energy 

savings. Finally, utilisation of the waste has been considered, exploring its 

potential for bioethanol or bio-methane production and its use as a fertiliser.  
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6.2 Biorefinery Schematic 

The feasibility of sequential extraction of seaweed using microwaves has been 

proven in Chapter 5, with optimum extraction conditions for raw seaweed 

biomass being assessed. In this Chapter, the full biorefinery schematic has been 

developed, building on the initial feasibility study of the previous section. For 

reference, Figure 6.1 gives an overview of the three main steps of the final 

biorefinery process, highlighting each stage and the conditions required for 

extraction. In brief, the process is composed of a pretreatment step at 50°C in 

water, removing mannitol, soluble laminarin and roughly half the metals. The 

second step, to extract fucoidan, is performed at 120°C with water as a solvent. 

The resulting extract contains both fucoidan and alginate, the latter of which is 

precipitated by the addition of CaCl2 before the former is precipitated via the 

addition of ethanol, giving crude fucoidan in solid form. In the third step, the 

residue from the second step is treated further with NaCl at 120°C in the 

microwave. The addition of sodium ions turns insoluble Ca-alginate to its soluble, 

Na form, thereby dissolving it to form a relatively pure extract. The residue left 

from the third step combined with the first step extract is then considered for 

bioethanol and bio-methane production and for use as a fertiliser. The 

development and results leading to these steps are given in the following 

sections. 
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Figure 6.1: Proposed biorefinery schematic for the sequential, microwave 
extraction of chemicals from seaweed 

 First step – Pretreatment of the Seaweed Biomass 

For the first step, the raw seaweed biomass is pre-treated, using the results from 

Chapter 5. 1g of seaweed is mixed with 15ml of distilled water and processed in 

the microwave at 50°C for 5 minutes. The SEC chromatogram for this step is 

shown in Figure 6.2. This clearly shows only a small peak for fucoidan at 12.2 

minutes, while the mannitol and laminarin peaks show good extraction, with 90 

wt% and 30 wt% of the total mannitol and laminarin present respectively being 

extracted in this initial step. It is likely that this represents the total extraction of 

the soluble form of laminarin present in the sample, as this is readily soluble at 

room temperature. The remaining laminarin is, therefore, likely to be mostly 

comprised of the soluble form.  
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The results from 50°C extraction have been compared to a room temperature 

extraction under the same conditions, in order to ascertain if the elevated 

temperature aided in extraction. As Figure 6.2 shows, a similar quantity of 

fucoidan, alginate and laminarin is extracted, but significantly less mannitol is 

removed. As the aim of this step is to remove both mannitol and metals, it is clear 

that processing at 50°C gives better pretreatment results that processing at room 

temperature.  

 

Figure 6.2: SEC chromatogram of the first step extraction at 50°C, 5 minutes 
residence time and S:S ratio of 1:15 compared with room temperature 
extraction. 

The quantity of mannitol extracted under the 4 scenarios of S:S ratio and 

residence time used in Chapter 5 are given in Figure 6.3. As the main aim of this 

step is to remove mannitol and salts, 5 minutes residence time and a S:S ratio of 

1g:15ml of water has been chosen, as this gives the best extraction at 80% of the 

total mannitol in the raw biomass. 1g:10ml results in a significantly reduced 

extraction of mannitol and, while giving a similar result to the chosen conditions, 

10 minutes residence time and 1g:15ml S:S ratio was not chosen due to the 

higher energy requirements needed for longer processing time. 
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Figure 6.3: Mannitol extracted in the four scenarios of S:S and residence time for 
50°C 

The metal composition of the residue and extract has been assessed and the 

results are shown in Figure 6.4 (full numerical data is given in the Appendix in 

Figure A.4). Roughly half of all metals are extracted in this step, which are 

dominated by Na, K, Ca and Mg. Roughly half of Na and K are extracted into the 

liquid phase, with roughly two thirds of Ca, Mg, Cl and P from the feedstock 

remaining in the residue in each case. A significantly smaller portion of the “other” 

micro-metals, predominantly Sr, Br Fe and Al, are extracted into the liquid phase. 

Metals make up 21.8 wt% of the extract and 11.5 wt% of the residue. This means 

that, although a significant portion of the metals have been removed, their ratio 

in the residue for further processing is relatively similar to that of the raw seaweed 

feedstock, which contains 13.2 wt% metals. It is likely, therefore, that there will 

not be a large difference made in the processing temperature of the microwave 

in the second step processing, as the effect of metals on the heating will be 

similar. However, there may still be differences in the heating due to the 

difference in the composition of the biomass, as the carbohydrates and other 

compounds present contain polar elements. 
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Figure 6.4: Metal composition of extract and residue from first step, 50°C 
microwave extraction. 

Once the best conditions for pretreatment of the seaweed biomass had been 

found, a large volume was generated using the carousel in the microwave. This 

was tested fully for composition (see results in section 6.3.1) and was carried 

forward to the second step experiments. 

 Second step – Extraction of Fucoidan 

The second extraction step is intended to remove fucoidan, although, based on 

the results in Chapter 5, it seems likely that alginate will also be extracted in this 

step. Conditions for water based extraction have been optimised, with further 

trials using CaCl2 as a solvent, to ascertain if it would be possible to render 

soluble Na-alginate into its insoluble Ca form in the same step as extracting 

fucoidan, thereby eliminating the need to remove alginate from the extract. Figure 

6.5 shows the composition of the feedstock for this step, which is the residue from 

first step processing at 50°C. Approximately 6 wt% of the feedstock to this step 

is laminarin, while 25 wt% is alginate. Very little of the “others” portion is extracted 

in the first step, meaning that there are still a large quantity of protein, pigments 

and lipids in the feedstock for this step. 
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Figure 6.5: Composition of first step residue, processed at 50°C. 

6.2.2.1 Microwave extraction with water 

The extraction of fucoidan from the first step residue was performed first using 

water. A residence time of 5 minutes was used for all samples, as it was shown 

in Chapter 5 that longer residence times made little difference to extraction, and 

minimising residence time means less energy required. Temperatures between 

60°C and 160°C were used and the S:S ratios of 1g:10ml and 1g:15ml were also 

tried. These temperatures were chosen to give a full overview of the extraction 

now a large portion of the salts and other compounds have been removed. The 

two S:S ratios were chosen as it was shown in Chapter 5 that differing the S:S 

ratio had an effect on the extraction of fucoidan, especially at critical 

temperatures, so in order to rule out any better extraction at lower temperature 

with a higher S:S ratio, both have been used in these experiments. 

Images of the extracts and freeze dried residues from second step microwave 

processing with water are shown in Figure 6.6. As with the extracts and residues 

from processing of raw seaweed biomass in Chapter 5, there is in an appreciable 

colour change with varying processing temperature. For the extracts, increase in 
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temperature leads to a darkening in colour, from pale yellow to dark brown, up to 

140°C, after which the colour pales slightly to a pale brown. As was seen in the 

raw biomass extracts, the viscosity of the second step extracts was observed to 

decrease with increasing temperature. Residues, which start at a mid-green at 

60°C, become progressively darker and more brown with increasing temperature. 

This is likely due to both the removal of pigments and also the beginnings of 

carbonisation occurring at the highest temperature of 160°C. 

 

Figure 6.6: Images of (a) extracts and (b) residues from second step microwave 
extraction for S:S of 1g:10ml 

(b) 

(a) 
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The results for the comparison of SEC chromatograms of S:S 1g:10ml and 

1g:15ml for 60°C, 80°C, 100°C and 160°C are shown in Figure 6.7. For these 

four temperatures, there is little difference between the two S:S ratios. Between 

60 and 100°C, the quantity of fucoidan extracted increases with increasing 

temperature, with processing at 160°C showing a significant shift in the MW 

profile, suggesting the breakdown of fucoidan and/or alginate is occurring. These 

results follow a similar trend to those seen previously in Chapter 5.  
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Figure 6.7: Comparison of microwave processing extracts by SEC of 1g seaweed 
in 10 and 15ml water for second step extraction for (a) 60°C, (b) 80°C, (c) 
100°C and (d) 160°C 

SEC chromatograms of the extracts processed at 120°C and 140°C are shown 

in Figure 6.8, along with the standard fucoidan chromatogram in each case for 

comparison. At 120°C, both 1g:10ml and 1g:15ml give a similar extraction of 

fucoidan, with 1g:10ml giving a slightly higher quantity. The shape of the curve 

for both closely resembles that of the standard, indicating that good extraction of 

the macro-polymer in its native form has been achieved. While the SEC 

chromatogram suggests more fucoidan has been extracted at 140°C (see Figure 

6.8(b)), based on the area under the curve, the difference in peak shape from the 

(a) (c) 

(b) (d) 
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standard shows significant broadening and therefore variation in MW. This 

indicates that the fucoidan is beginning to be broken down at this temperature. 

This broadening of the peak is more distinct for 1g:15ml than 1g:10ml, indicating 

the increase in S:S ratio enhances breakdown. This is in line with what was seen 

in the feasibility study in Chapter 5 and is likely due to the effect on bonds due to 

the increase in microwave energy associated with heating a higher volume of 

water. 

From these figures, it is clear that processing at 120°C for 5 minutes with a S:S 

ratio of 1g:10ml of water gives the best result, with 95.1 wt% of the fucoidan from 

the input to this step being extracted. However, both fucoidan from 120°C and 

140°C processing have been precipitated from the extract in order to fully 

evaluate the quality of the fucoidan present and to ascertain the effect microwave 

processing has on the chemical make-up and structure of the polymer, the results 

of which are presented in Section 6.4. 140°C was considered to gain some insight 

into the breakdown mechanics that processing at higher temperatures has on the 

fucoidan. 
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Figure 6.8: Comparison of microwave processing extracts by SEC of 1g seaweed 
in 10 and 15ml water for second step extraction for (a) 120°C and (b) 140°C.  

The total quantity of fucoidan extracted, given as wt% of the fucoidan in the 

feedstock, is shown in Figure 6.9. The quantity of fucoidan extracted increases 

up to a peak at 140°C, before dropping dramatically at 160°C. However, 

processing at 140°C takes the total quantity over 100% and, as shown in Figure 

6.8(b), there is evidence of the breakdown of fucoidan occurring. The over-

estimation of the quantity of fucoidan, as mentioned previously, is likely due to 

the way in which the refractive index detector used for analysis “counts” the 

fucoidan molecules. The beginnings of breakdown are likely to be comprised of 

(a) 

(b) 
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fucoidan polymers of shorter chain length, leading to a wider spread of molecular 

weight fragments, which was seen in Figure 6.8(b). The fragments will each get 

“counted” as their own molecule by the detector, thereby giving a falsely high 

fucoidan reading. 

 

Figure 6.9: Fucoidan extracted at varying temperatures and S:S ratios from 
microwave extraction. 

The MW distribution of the second step microwave extracts have been calculated 

from the SEC chromatograms, the results of which are given in Figure 6.9. 

Overall, the results for 1g: 10ml and 1g: 15ml S:S ratio are very similar, with only 

minimal changes in the amount between corresponding samples. Above 2500 

kDa, the abundance of material is seen to decrease with increasing temperature. 

Between 2500 and 1000 kDa, the abundance of material is seen to increase up 

to 120°C, above which there is a decrease, with a similar trend for 1000 to 500 

kDa, where the increase occurs up to 140°C, above which there is a decrease. 

These values correspond to the quantity and MW variation in fucoidan, with the 

primary peak falling between 2500 and 1000 kDa and the secondary peaks 

between 1000 and 500 kDa. The shift in ratio between 2500 to 1000 kDa and 

1000 to 500 kDa of 1:0.7 to 1:2.7 for S:S of 1g: 10ml and 1:1.1 and 1:2.6 for 1g: 
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15ml for 120°C and 140°C respectively indicates a lowering in MW of fucoidan, 

as the smaller MW range becomes more abundant. This confirms the shift in MW 

seen between 120°C and 140°C  in Figure 6.7 and Figure 6.8.  

The lower MW material all shows a similar trend; below 500 kDa there is very 

little extracted material up to 140°C, with 160°C showing a distinct increase for 

all bands of MW. This indicates the breakdown of higher MW material into smaller 

fragments. The reduction in high MW material at this temperature also indicates 

this. 

 

Figure 6.10: MW distribution for second step microwave extracts across a range 
of temperatures for a S:S ratio of (a) 1:10 and (b) 1:15. 
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The supposed breakdown of fucoidan is also evidenced by sugar analysis of the 

extracts, the results of which are given in Figure 6.11. Fucose, the predominate 

monomer unit of fucoidan, is seen to be zero up to 120°C, after which it begins to 

increase with increasing temperature. A similar trend is seen for glucose, the 

monomer unit in laminarin and uronic acids, which here are guluronic and 

manuronic acid, the monomer units from alginate. As with fucoidan, laminarin 

appears to begin to degrade at 140°C, with a small and constant amount of free 

glucose being extracted before this temperature. Alginate, on the other hand, 

seems to be more temperature stable than the other two carbohydrates, with 

evidence of degradation not occurring until 160°C. The quantity of uronic acids, 

however, is significantly more than for fucoidan and laminarin, with almost 40 wt% 

present in the extract. This suggests that alginate does not degrade into shorter 

polymer chains, as is suspected for laminarin and fucoidan, but, instead, largely 

breaks down to its monomer units at 160°C. 

 

Figure 6.11: Amount of glucose, fucose and uronic acids in second step extracts 

The sugars and organic acid content of the residue has been evaluated, achieved 

by the acid hydrolysis of the residues, the results of which are given in Figure 

6.12. In this case, appreciable amounts of xylose and galactose has been 
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identified below 120°C, which are likely to be associated with the structure of 

fucoidan. Fucose, xylose and galactose follow an opposite trend than for glucose 

in Figure 6.11 and total fucoidan extracted in Figure 6.9, with the quantity 

decreasing up to 120°C, above with temperature the amount remaining in the 

residue is close to zero. Alginate show a similar pattern, with a decrease in the 

quantity of uronic acids in the residue with increasing temperature. There is a 

more dramatic decrease between 140°C and 160°C, which corresponds to the 

increase in uronic acids between these temperatures see in the extract in Figure 

6.11, as alginate begins to he hydrolysed into its monomer units. Laminarin, on 

the other hand, is seen to be relatively stable in quantity up until 120°C, after 

which the quantity of glucose in the hydrolysate is seen to increase. In reality, the 

weight of laminarin in the residue remains relatively constant across all 

temperatures at 11.9±0.5 mg. The increase is due to this weight accounting for a 

larger wt% of the residue, as more of the components are extracted into the liquid 

phase. 

 

Figure 6.12: Sugars and uronic acids content in second step residues, 
determined via sugar analysis digestions. 
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The metal content and composition of each of the residues are given in Figure 

6.13 (full numerical data is given in the Appendix in Figure A.4). The quantity of 

metals in the residue decreases with increasing temperature, with the result that 

roughly half of the total metals in the feedstock are extracted in each case. The 

quantity of metals extracted between 1g:10ml and 1g:15ml  are relatively similar, 

indicating an increase in S:S ratio has little impact on the extraction of metals. In 

all cases, the predominant metals are Ca, Na, K, Mg and Cl, which are the main 

metals found in seawater [182]. There also significant quantities of P and Sr. 
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Figure 6.13: Metal analysis of the second step microwave residues for (a) 1g: 
10ml S:S ratio and (b) 1g: 15ml S:S ratio. 

6.2.2.2 Microwave extraction with CaCl2 

In order to ascertain if fucoidan extraction could be achieved alongside rendering 

soluble sodium alginate into insoluble calcium alginate in one step, microwave 

process with CaCl2 was investigated. This was performed at 100°C and 120°C, 

as this is around the temperature fucoidan is extracted from previous 

investigations. The lower, 100°C was tried as salts increase the heating from 

(b) 

(a) 
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microwaves, as explained previously. The results, given in Figure 6.14, indicate 

that processing in CaCl2 inhibits the extraction of fucoidan. As there is a 

broadening of the fucoidan peak at 120°C, suggesting the beginnings of fucoidan 

degradation. From results in previous sections highlighting optimum extraction 

occurs at around 20°C below the point at which breakdown begins to occur, it is 

assumed that 100°C gives the best extraction under these conditions. This is also 

in line with optimum extraction temperatures seen for the other two salt 

concentrations  from the first and second step. Although no literature could be 

found to explain why this occurs, it is possible that it is due to Ca ions attaching 

to the sulphate groups associated with fucoidan at elevated temperatures, also 

rendering it insoluble, as with the alginate.  
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Figure 6.14: Comparison of second step microwave extracts by SEC for samples 
processed with and without CaCl2. 

The organic acid and sugar content of the residue, determined via acid hydrolysis 

before HPLC analysis, have been analysed and are shown in Figure 6.15. 

Extraction at both 100°C and 120°C give very similar results. The results show a 

high quantity of uronic acids, indicating alginate, which are similar in amount to 

that of alginate in the feedstock. The quantity of fucose in the hydrolysate, 

indicating fucoidan, is also very similar to that in the feedstock, which contains 

6.3 wt%, at both temperatures. This confirms that fucoidan is not being extracted 

at all, rather than being extracted and then broken down and hence the lack of 

fucoidan in Figure 6.14. Overall, extraction with CaCl2 was discounted as a 

possible method for the macroalgal biorefinery, due to low fucoidan extraction 

yields. 
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Figure 6.15: Organic acid and sugar analysis of the residue from CaCl2 
processing 

In order to ascertain if the metals extracted had an influence on the extraction 

mechanism with CaCl2, metal analysis of the residues from the CaCl2 extractions 

were undertaken. The results of this are shown in Figure 6.16 (full numerical data 

is given in the Appendix in Figure A.4), along with the metal analysis of microwave 

processing at 120°C in water for comparison. The metal composition of both 

100°C and 120°C processing with CaCl2 is almost identical. When comparing the 

water and CaCl2 processed samples, the most obvious differences are seen in 

the quantity of Ca, Na and K. The amount of Ca in the CaCl2 extracts is roughly 

a third more than in its water counterpart. While this is expected, due to the 

addition of calcium to the process, it does indicate that precipitation of alginate 

into the residue has been successful, as it is likely that the majority of the Ca ions 

would remain in aqueous form if this were not the case. The reduction of Na and 

K is likely due to their replacement by Ca as the ion associated with alginate, and 

therefore they are associated with the liquid phase, as aqueous ions, rather than 

the solid. The quantity of all other metals, including those which make up the 

“other” portion, such as Sr, Zn and Br, all remain very similar, with negligible 
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difference in their extraction between the water and CaCl2 processing. While 

confirming alginate has been precipitated in its insoluble, Ca form into the 

residue, the lack of differences in other metals and explanations for the 

differences in Ca, Na and K related to alginate, it is difficult to draw any 

conclusions from this data about the effect metals are having in this case on the 

extraction of fucoidan. 

 

Figure 6.16: Metal analysis of CaCl2 extracts compared with the water extract at 
120°C 

 Third step – Extraction of Alginate 

As there is still a relatively large quantity of alginate left in the second step 

residue, a third step, extracting with NaCl, was performed in order to attempt to 

extract alginate in its soluble, sodium form. Extraction was performed at 120°C, 

as alginate has been shown to begin to breakdown at 160°C, and it is possible 

that the increase in ions from adding NaCl would decrease the temperature at 

which breakdown occurs. Processing occurred at a S:S ratio of 1g:10ml and a 

residence time of 10 minutes. 1.5% NaCl used as this is 1.5x the number of Na 

required to replace all the Ca associated with alginate in the residue; a 

reasonable and fairly standard excess to ensure complete conversion. A mass 
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balance for the extraction of alginate obtained is given in Figure 6.17. In 1g of 

second step residue there is 0.244g of alginate, of which 79% is extracted into 

the liquid phase. Although this extraction step has not been optimised at this 

point, the test shows the feasibility of this method as a way of extracting relatively 

pure alginate from the residue. The exact conditions need to be investigated to 

optimise this step. This would include: temperature, hold time in the microwave, 

residue to solvent ratio and the concentration of the NaCl solution. It may also be 

beneficial to test different sodium salts to see if better results can be obtained. 

 

Figure 6.17: Mass balance for the extraction of alginate from the second step 
residue using NaCl at 120°C. 

The residue was hydrolysed with concentrated acid in order to analyse the sugars 

and organic acids, the results of which are shown in Figure 6.18. The quantity of 

uronic acid corresponds with the amount of alginate observed in the extract, 

giving a good mass balance. Similarly, the quantities of glucose, fucose and 

mannitol correspond with the expected amounts at 9.9 wt%, 1.2 wt% and 0.4 wt% 

respectively. 
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Figure 6.18: Organic acid and sugar analysis of third step residue, processed at 
120°C with NaCl 

The metal analysis of the third step extract and residue are given in Figure 6.19 

(full numerical data is given in the Appendix in Figure A.4). The feedstock for this 

contains a very low amount of metals; 0.2 g/kg, while the extract and residue 

contain 5.4 and 1.6 g/kg respectively. The increase in metal content is due to the 

addition of NaCl as an extraction solvent. From Figure 6.19 it is clear that the 

majority of the Na are liquid phase in aqueous form, which is expected as they 

have displaced the Ca ions associated with alginate, rendering it soluble. The 

relatively large amount of Ca remaining in the residue indicates that Ca-alginate 

has not been fully extracted, which was also noted in the organic acid analysis in 

Figure 6.18. As stated before, it may be possible to extract more of this by 

increasing the concentration of NaCl, increasing the S:S ratio or processing for 

longer: all of which need to be explored further. The relatively large amounts of 

Ca and Mg are likely due to impurities in the NaCl used, which is quoted by the 

manufacturer to be only of 95% purity. The low metal content of the final residue 

from the biorefinery process is advantageous for use as a fertiliser, where 

regulations closely monitor the quantity of certain metals allowed to be applied to 
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soil [217], but also for use as a feedstock for bioethanol or bio-methane 

production, where metals may inhibit microbes. 

 

Figure 6.19: Metal analysis of third step NaCl extract and residue 

6.3 Mass and Energy Balances for  Microwave Assisted Sequential 

Extraction of Seaweed 

The final biorefinery schematic, along with the mass balance for each step, based 

on 100g input, is given in Figure 6.20.  As developed and discussed in Chapter 

5, the extraction conditions for each step of the process are given in Table 6.1. 

There is seen to be a good recovery of fucoidan from the initial biomass, with 

79.2% being extracted and purified in the second step. Depending on the 

commercial value of fucoidan, it would be possible to recover a further 17.0% of 

fucoidan, which has been extracted in the first step. Recovery of alginate at the 

first and second steps step via precipitation with CaCl2, combined with the 

insoluble fraction recovered in the third step, would lead to a maximum of 93.2% 

recovery of alginate. Combination of the mannitol and laminarin from the first step 

extract and third step residue leads to a 90.8% and 63.9% recovery, respectively, 

from the initial biomass, which could be used for fermentation to bioethanol or 
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anaerobic digestion (AD) to bio-methane. Overall, this process gives good 

chemical recovery of all components, while minimising the solvent required. 

Minimal solvents reduces the environmental impact of the process, as well as 

lowering the production costs, as additional chemicals are not required. 

Table 6.1: Microwave conditions for each step of the microwave biorefinery 

Step First Second Third 

Purpose Remove 

mannitol, water 

soluble free 

alginate and 

metals 

Extraction of 

fucoidan, soluble 

laminarin and 

soluble alginate 

Extract water 

insoluble alginate 

Conditions 50°C 

microwave 

120°C 

 microwave 

120°C 

 microwave 

Residence time 5 minutes 5 minutes 5 minutes 

Solvent Water Water 1.5% (w/v) NaCl 

Seaweed : 

Solvent 

15ml/1g dry 

seaweed 

10ml/1g dry 

seaweed 

10ml/1g dry 

seaweed 
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Figure 6.20: Proposed microwave biorefinery for the sequential extraction of 
chemicals from seaweed. Values given are based on 100g input of seaweed 
feedstock.  
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The overall metal balance of the biorefinery is shown in Figure 6.21 (full numerical 

data is given in the Appendix in Figure A.4). Metals account for 11.5 wt% of the 

raw biomass, which is relatively low for brown macroalgae. The majority of this is 

accounted for by sodium, potassium, calcium and magnesium. In each case, the 

small “others” bar in Figure 6.21(a) mostly consists of strontium, zinc, bromine, 

iron and aluminium. A more details account of these metals is given in Figure 

6.21(b). In the first step, 46.6% of the total metals are extracted, with all metals 

being extracted roughly in proportion to this. The second step sees almost all of 

the remaining metals being extracted, with only 4.3% of the inputted metals 

remaining in the residue. The increase in metals in the third step is due to the 

addition of NaCl as an extraction aid. Potassium, calcium and magnesium are 

also increased in the third step. Calcium is due to the exchange of sodium ions 

for calcium in the extraction of alginate and it is likely that the small increase in 

potassium and magnesium are due to impurities in the NaCl used. The large 

amount of sodium remaining in both the third step extract and residue is an 

indication that a large excess of NaCl was added and that a similar extraction 

yield could be achieved with a lower concentration of NaCl. This is a point which 

should be investigated further for process optimisation. 

It is hypothesised that the metals extracted in the first step are surface metals, 

which are easily washed from the surface at a relatively low extraction 

temperature. The second step, at 120°C, begins to break open the cells in the 

seaweed, meaning that any metals held inside are released to be extracted.  
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Figure 6.21: Metal balance from sequential microwave extraction of (a) macro-
metals and (b) micro-metals, based on 100g input 

 Step 1 – 50°C Extraction 

The first step of the biorefinery process is a washing step, removing any free, 

soluble metal ions, 89.7% of the total mannitol as well as water soluble alginate 

and laminarin. It is likely that the long chain carbohydrates, alginate and 

laminarin, removed in this step have been freed from their bonds within the cell 

wall during the drying and grinding processes. Furthermore, laminarin is 

commonly found in seaweed biomass in two distinct forms: one of which is 

(b) 

(a) 
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soluble in water and the other insoluble in water [136]. It is likely, therefore, that 

the laminarin extracted in this first step is the soluble form, with the remainder 

remaining insoluble throughout the rest of the process. Figure 6.22 shows the 

mass balance for this step. The “other” section in each case will be primarily 

composed of protein, lipids, polyphenols and small amounts of other compounds 

such as pigments. As the majority of these components are not water soluble at 

low temperatures, in this step they have remained in the residue. Approximately 

half of the metals contained within the initial biomass are also removed during 

this step. The residue from this step is taken forward for further processing, while 

the extract could be treated in a number of ways. It could be fed directly into a 

bioethanol or AD system as it is, or alginate and/or fucoidan could be extracted 

using CaCl2 and ethanol respectively, before the remainder being used for 

bioethanol or AD. The viability of each of these options would be dependent on 

the demand and market value of the chemicals. Furthermore, with the 

advancement in fermentation of seaweed [106, 113, 115], it may be possible to 

ferment alginate. In this case, the best option may be to produce a higher quantity 

of bioethanol, rather than extract the alginate. 
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Figure 6.22: Mass balance for step 1 of the microwave biorefinery process, based 
on 100g input  

 Step 2 – 120°C Extraction 

The residue from the first step is processed a second time at 120°C with water, 

in order to extract fucoidan, and a mass balance showing the composition of the 

extract and residue is shown in Figure 6.23. The fucoidan extracted is not 

degraded in any significant amount by this process, experimentation for which is 

given in section 6.4, which is contrary to what was found in a microwave study of 

fucoidan extraction by Yuan et al. [163] who processed with HCl. 79.2% of the 

total fucoidan present in the raw biomass has been extracted in this step, which 

is precipitated from the extract with ethanol, after alginate is removed with CaCl2. 

Very little fucoidan is left in the remaining biomass after this extraction. Small 

quantities of laminarin, mannitol and alginate are also extracted in this step.  

While the purification steps are relatively solvent intensive, it is possible that the 

solvents could be recycled. If bioethanol is produced as part of the biorefinery, it 

would be possible to purify the ethanol required for fucoidan precipitation using 

the equipment, such as distillation columns, required in bioethanol production. 

Furthermore, any additional ethanol required could be generated via this process. 
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With regards to CaCl2, this is being produced in the third step, where NaCl is used 

to convert insoluble Ca-alginate into its soluble, Na-alginate form for extraction. 

Vice versa, NaCl is being produced in this step, where alginate is being 

precipitated in its insoluble form. Therefore, with some purification in between, it 

seems possible to cycle these two chemicals between the two steps.  

The relatively large “other” portion being inputted into this step is only partly 

extracted at 120°C. Polyphenols and lipids, which make up a portion of this 

grouping, are typically insoluble in water, even at increased temperatures, so 

these are likely to remain in the residue. The portion of “other” in the extract is 

likely to be mostly comprised of protein. Proteins are intolerant to heat, degrading 

easily at the temperature used in this step, with the fragments likely to be water 

soluble [218]. 

 

Figure 6.23: Mass balance for step 2 of the microwave biorefinery, based on 100g 
input 

 Step 3 – 120°C Extraction with NaCl 

In the final step of the biorefinery process, insoluble Ca-alginate is converted into 

its soluble, Na-alginate form by processing at 120°C for 5 minutes in the presence 

of 1.5 w/v% NaCl. The mass balance for this step is shown in Figure 6.24. 
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Although, in theory, it would be possible to use any Na-salt for this process, NaCl 

was chosen for the potential to cycle NaCl and CaCl2 through the biorefinery, as 

described in section 5.5.2. 79.0% of the alginate remaining in the biomass after 

the second step has been removed, although this may be able to be optimised 

further with different operating conditions, such as: temperature, residence time 

and solvent concentration. The residue at this point can be used for fermentation 

to bioethanol or for AN to bio-methane, while the extract contains almost solely 

alginate, with only small quantities of mannitol and laminarin. 

The large “other” portion of the feedstock is seen to be split roughly equally 

between the extract and residue in this case. Polyphenols have been shown to 

be extracted with NaCl [219], so it is likely that this is the case here, with the 

“other” portion of the extract comprising mainly of polyphenols and the “other” 

portion of the residue being mostly lipids.  

 

Figure 6.24: Mass balance for step 3 of the microwave biorefinery, based on 100g 
input 

 Energy Balance 

The energy balance of the sequential extraction is an important consideration for 

industrial scale up, so a comparison of conventional (CH) and microwave (MH) 
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heating has been calculated for the laboratory scale systems used throughout 

this study, in order to assess the potential energy saving via the use of 

microwaves. Although the laboratory scale equipment will, in all likelihood, incur 

different energy requirements and losses to industrial scale equipment, the 

results give a good indication of the potential and prove the feasibility and energy 

savings achieved as a result of converting to a microwave-based biorefinery 

system.  

Figure 6.25 gives a comparison of the energy used to heat and hold a seaweed 

slurry of two different ratios: 1g: 10ml and 1g: 15ml of seaweed: water at 

residence times of 5 and 10 minutes over a range of temperatures between 50°C 

and 200°C. As the conventional heating value is based on the energy required to 

heat the sand bath, which is used to transfer heat to the slurry, and there was no 

significant difference seen for the temperature profiles through heating for 10 and 

15ml of water, the energy requirements for this parameter have been assumed 

to be the same.  In both cases, it is clear that there is a significant energy saving 

for microwave heating when compared to conventional heating. At 50°C, there is 

an average 2.5-fold increase in energy required for conventional heating over 

microwave heating. This drops to 1.9-fold increase at 200°C.  Although industrial 

heating and loss profiles are likely to be different than on a lab scale, the large 

difference seen between the two heating mechanisms shows microwave heating 

can offer a large energy saving when compared to conventional heating. 
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Figure 6.25: Energy use for conventional and microwave heating for residence 
times of (a) 5 minutes and (b) 10 minutes based on 1g of seaweed. 

The energy required for each step of the sequential extraction biorefinery has 

been calculated and the results are shown in Figure 6.26. For the overall process, 

there is a 1.65-fold increase in the energy required for conventional heating over 

microwave heating, with a total for conventional heating of 2.24 Wh compared to 

1.35 Wh for microwave heating. Over the energy savings shown here, microwave 

heating also has the advantage of heating the whole biomass evenly, rather than 

from the outside in. This should ensure a more reliable and even extraction of 

chemicals. Time at the desired temperature should be the same for all the 

material in microwave heating, whereas a gradient of temperature during the 

(b) 

(a) 
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heating process will be evident for conventional heating. This will become more 

pronounced at a larger scale, where larger reactors/piping causes greater heating 

gradients from the wall to the centre of the pipe for conventional heating. For the 

extraction of fucoidan, which has been shown to breakdown at temperatures of 

around 140°C for both microwave heating and conventional heating, it is very 

important that there is even and reliable heating of the whole biomass to ensure 

a consistent product. 

 

Figure 6.26: Comparison of energy used for sequential extraction in a microwave 
and conventional heating system based on 100g input 

 Potential Impact of Seasonal Variation 

As noted in Chapter 3, the effect of seasonal variation is likely to have a big effect 

on the composition of the extracts from the process, owing to a change in the 

composition of the feedstock biomass. This will have a knock on impact for 

industry, where changes in the quantity of solvents required and the quantity of 

product produced will change over a year period. In an attempt to understand 

how this impact may affect the hydrothermal microwave biorefinery discussed in 

this study, the possible seasonal variation of the extracts from the process has 

been calculated, based on the values for FS found in Chapter 3 and the mass 
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balance of the process, discussed in this section. While further study into the 

actual extract quantities would need to be completed through a microwave 

processing study, these results give an insight into the possible variation and 

highlight the potential challenges. 

The potential seasonal variation in extraction for the first step extract is given in 

Figure 6.27. The sample of FS collected in 2015 for this study has a low laminarin 

and mannitol content compared to its counterpart collected in 2010, which has a 

large impact on the comparative composition of extracts. Thus, there is a much 

greater quantity of both of these components in the stream. There is a clear 

seasonal variation trend in these components, being higher in the summer 

months and lower in the winter. The quantity of alginate is relatively similar and, 

while having a slight increase in the winter months, is otherwise relatively stable 

over the year. The same is true for fucoidan, with only a very small quantity being 

extracted, that remains stable over the year. While this pretreatment step doesn’t 

have direct impact on the amount of fucoidan extracted, the additional storage 

carbohydrates in the summer make it a more attractive feedstock for bioethanol 

production than during the winter. This is explored further in section 6.5. If there 

were demand for the product, it would be possible to extract the alginate from this 

step via precipitation with CaCl2. 
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Figure 6.27: Potential seasonal variation in the composition of the first step 
extract, based on percentage extraction in this study. 

There is a more noticeable difference in the composition of the second step 

extract, which is shown in Figure 6.29. While the mannitol content is low and 

relatively stable over the year, due to the majority being extracted in the first step, 

there is a marked increase in laminarin extracted over the 2015 sample. Again, 

this is due to the low carbohydrate content of the raw sample, but highlights the 

difficulties variation in a feedstock can represent. It is possible to precipitate the 

laminarin with ethanol at 40% v/v, with the new schematic shown in Figure 6.28. 

In the current schematic, shown in Figure 6.20, this step was excluded due to the 

low laminarin content in the extract, making it unnecessary. However, increased 

laminarin in the summer months will necessitate its removal to ensure the purity 

of fucoidan. This leads to the added benefit that relatively pure laminarin has been 

produced, which could be sold as a product in its own right, or could be added to 

the first step extract and used to increase the bioethanol yields in a fermentation 

process.  
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Figure 6.28: New schematic proposal for the extraction of laminarin from the 
second step extract 

The quantity of alginate and fucoidan remain relatively similar over the year, with 

fucoidan showing only a slight increase in the autumn/winter months and alginate 

showing a slight increase in the winter months. This is good from an industrial 

viewpoint, as a consistent quantity of these chemicals will be extracted. Despite 

the increase in laminarin, as the volume of water it is extracted into will remain 

the same, the quantity of ethanol required will remain unchanged, even including 

the extra step. This is due to it being required on a volume basis, rather than 

being dependent on the quantity of the carbohydrates present in the extract. Any 

variation in alginate, however, will require an adjustment in the amount of CaCl2 

required to displace the Na ions and render it insoluble. However, as using a 

1.5% excess is fairly standard, the variation seen in Figure 6.29 could be 

accounted for within this excess. 
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Figure 6.29: Potential seasonal variation in the composition of the 2st step 
extract, based on percentage extraction in this study. 

By the third step of the process, almost all the fucoidan, laminarin and mannitol 

have been extracted, leaving only Ca-alginate remaining from the carbohydrates 

being studied. The results for seasonal variation can be seen in Figure 6.30. This 

clearly shows the very low values for mannitol and laminarin, with fucoidan being 

close to zero across the year, so has not been shown for clarity of the laminarin 

and mannitol values. Again, alginate shows the slight increase in extraction 

quantity in the winter months, but is otherwise fairly stable across the year, 

averaging 8.3g/100g input to the system. As with the second step, an excess of 

NaCl added to the process would cover these variations, allowing the inputs to 

the system to remain constant throughout the year. 
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Figure 6.30: Potential seasonal variation in the composition of the third step 
extract, based on percentage extraction in this study. 

6.4 Effect of Microwaves on the Structure of Fucoidan 

While the feasibility of extracting fucoidan via sequential microwave processing 

has been validated, it is important that the quality of the fucoidan is assessed. 

This includes evaluating the purity of the crude product and the quantity of 

potential contaminants such as alginate, protein, laminarin and salts, as well as 

its  fucose and sulphate content. Sulphate is of particular import, being reported 

to hold the key to the bioactivity of the carbohydrate [164]. As previous studies 

have shown processing at higher temperatures in HCl to reduce the sulphate 

content of the extracted fucoidan [163], assessing the sulphate content of the 

extracts is key. In order to achieve this, SEC, CHNS, LCMS and fucose and 

sulphate analysis has been carried out, in line with the study into the seasonal 

variation of fucoidan in Chapter 3. This gives a full picture into the quality of the 

fucoidan extracted and to gain some insight into the structure of the fucoidan from 

the unprocessed biomass, as well as any structural changes which have been 

caused by the microwave method. Although 120°C second step extract was 

shown to contain fucoidan closer in MW to that of the standard in section 6, the 
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140°C second step fucoidan was also analysed. It is important to understand how 

the fucoidan is degraded with microwave processing for industrial applications 

and to ensure the quality of product is maintained within variations in the process. 

Fucoidan from each step of the sequential microwave biorefinery process has 

been extracted: from the untreated biomass and the first step residue via the long, 

conventional extraction procedure and from for the 120°C and 140°C extracts 

from the second step, fucoidan has been purified from the liquid phase using 

ethanol precipitation, before which alginate was removed with CaCl2. The solid 

precipitates have been diluted to 2.5mg/ml for analysis.  

The SEC chromatograms of the extracted fucoidan are shown in Figure 6.31. The 

fucoidan from the raw biomass, first step residue and 120°C extract give similar 

shaped main peaks, with little variation in the width, indicating minimal change in 

MW of the polymer. These peaks also have good agreement with the standard. 

Fucoidan form 140°C processing shows a distinct broadening of the main peak, 

indicating a change in the MW.  

With regards to the secondary peaks, they show an increase in size and length 

with increased processing and temperature, which could indicate breakdown of 

fucoidan or perhaps a loss of sulphate groups. These will be associated with the 

fucoidan molecule, so will be “dragged through” the column, despite their smaller 

size. It is also possible that there are some salts remaining in the fucoidan 

extracts, which display similar shaped and sized peaks in SEC chromatograms, 

typically creating peaks with a long, shallow incline on the left, with a sudden drop 

to zero, spanning from around 15 to 20 minutes.  

While fucoidan from first step processing has small amounts of laminarin, eluting 

at 20.2 minutes, and mannitol, eluting at 22.8 minutes, there are little impurities 

obvious from the SEC chromatogram for either of the second step extracts. This 
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indicates that the extraction and purification process used here gives a relatively 

pure form of crude fucoidan. Depending on the intended final use of the extract, 

it is possible for further purification to be conducted, such as dialysis to remove 

remaining salts, in order to obtain a very high purity product. 

 

Figure 6.31: SEC chromatograms of fucoidan extracted from each step of 
sequential extraction. 

The MW distributions of the SEC chromatograms in Figure 6.31 have been 

calculated, with the results shown in Figure 6.32. As expected, the abundance of 

each MW band for the fucoidan extracted from the untreated seaweed, from the 

first step residue and from the second step extract at 120°C are all similar, with 

only small variations between samples. The most notable of these are the bands 

below 250 kDa, although this is likely due to impurities in the samples such as 

laminarin and mannitol. For the sample from second step extract at 140°C, there 

is a marked decrease in the quantity of material between 2500 and 1000 kDa and 

a marked increase of material at 1000 to 500 kDa. This shift in MW is likely due 

to the beginnings of breakdown of fucoidan in to smaller MW fragments. This is 
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in line with the broader fucoidan peak seen in the SEC chromatogram in Figure 

6.31. 

 

Figure 6.32: Molecular weight distribution of fucoidan extracted from raw 
seaweed and from the first step and second step of microwave processing. 

The fucose and sulphate content of the fucoidans have been assessed, the 

results of which are given in Figure 5.51. The fucose content after 50°C and 

120°C extraction are relatively close to that of the untreated fucoidan extract, 

while at 140°C, the amount is significantly reduced, presumably due to the 

breakdown of fucoidan. The sulphate content, arguably the more important of the 

two parameters due to its influence on bioactivity, shows some slight variation, 

with the first step extract containing 88% of the sulphate in the untreated sample 

and second step 120°C containing 86%. Second step 140°C contains only 55%; 

a significant reduction and is in line with the beginnings of break down seen in 

the SEC chromatograms in Figure 6.31. Untreated, 50°C and 120°C all contain 

more than 20% fucose, at 29.4 wt%, 26.0 wt% and 25.3 wt% respectively, which 

are all above the 20% stated by Ale et al. [164] for bioactivity in fucoidan. The 

140°C processed sample, however, falls below this value, with only 16.1 wt% 

sulphate. 
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In a study conducted by Yuan et al. [163] into the quality of fucoidan extracted 

with microwaves with HCl as the extraction solvent, it was seen that the sulphate 

content and MW of the fucoidan extracted at the optimum yield was significantly 

lower than that of the conventionally extracted fucoidan: 14.7 wt% compared to 

29.3 wt% for sulphate content and 40.2 kDa compared to 9.0 kDa for MW at the 

optimum temperature of 120°C compared to the conventionally extracted sample. 

While the molecular weight may have little effect on the bioactivity of fucoidan, 

the reduction to below 20wt% sulphate is likely to have a considerable effect, as 

shown by Ale et al. [164]. Extraction with water, presented here, proves to be a 

better extraction medium than HCl, maintaining a high level of sulphate and MW 

at the higher temperatures needed for good extraction. 

 

Figure 6.33: Fucose and sulphate content in fucoidan at each step of sequential 
extraction 

Ultimate analysis of the fucoidans, shown in Figure 6.34, shows a similar trend in 

sulphur content as seen for sulphate in Figure 6.33, with sulphur decreasing 

slightly for first step 50°C and second step 120°C and a much more dramatic 

reduction for second step 140°C when compared to the untreated sample. The 

loss of sulphur is similar to that seen in sulphate, with 90, 85 and 60% of the total 
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sulphur in the untreated sample being seen for first step, second step 120°C and 

second step 140°C respectively. The carbon in all samples is relatively similar, 

with its proportion increasing slightly as the quantity of sulphur decreases. 

Hydrogen and nitrogen are also constant across the four samples. The low 

nitrogen value, below 0.7 wt% in all cases, indicates low contamination from 

protein in the fucoidans.  

 

Figure 6.34: CHNS of fucoidan extracted from each step of sequential extraction. 

In order to gain some insight into the structural changes in the fucoidan due to 

microwave processing, LC-MS analysis has been conducted, shown in Figure 

6.35, with some suggested structures for the most abundant fragments given in 

Figure 6.36. The untreated and first step 50°C chromatograms appear to be 

relatively similar, with untreated having slightly more 535 Da and 50°C having 

slightly more 721 Da. The overall shape and distribution of the peaks are similar. 

Second step 120°C shows in increase in 493 Da and a slight decrease in 535 Da 

over the untreated fucoidan. This indicates structural fragments are being lost at 

increased temperature, and the difference between these two fragments can be 

accounted for by the loss of 2 methyl groups and a hydroxyl group. With the 

exception of the peak at 535 Da, there is little difference between the 
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chromatograms for untreated, first step 50°C and second step 120°C. The overall 

shape and spread of MW fragments remains similar, with the dominant peaks in 

the smaller fragments at 174 Da, 228 Da, 294 Da and 373 Da remaining the very 

similar. With regard to the chromatogram for second step 140°C, there is clearly 

a shift in the fragments, suggesting the structure at this temperature has been 

altered. Peaks at 373 Da, 454 Da and 493 Da are significantly decreased, while 

there appears to be a higher degree of higher MW fragments. This could be due 

to the lower MW fragments which will be readily removed from the polymer being 

lost in the microwave extraction and have not been precipitated out into the 

fucoidan fraction due to their small size. This would mean the fragmentation in 

the MS is skewed toward the higher MW fragments, and hence the change in the 

overall shape of the chromatogram observed here. 
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Figure 6.35: LC-MS chromatograms of fucoidan extracted from (a) FS untreated, 
(b) first step 50°C, (c) second step 120°C and (d) second step 140°C. 

While little literature could be found on analysis of fucoidan by LC-MS,  the 

fragments observed here are similar to those found by Thinh et al [220] from the 

brown seaweed Sargassum mcclurei, with the loss of sulphate, methyl and 

(d) 

(c) 

(b) 

(a) 
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hydroxyl groups making up the majority of the differences between fragments. 

They also noted that, in some cases, the ring structure is broken during the 

fragmentation process, which is also likely to be the case for some of the 

fragments seen in this study. 

 

Figure 6.36: Suggested structures for the most common peaks from LC-MS 
analysis of fucoidan 

6.5 Treatment of Residues 

 Introduction 

The treatment of waste and environmental considerations are important for 

industrial processes, where strict limitations are applied to the quality of waste 

water leaving the plant and other waste chemicals must be paid for to be disposed 

of. In the case of this macroalgal microwave biorefinery, over the extraction of 
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fucoidan and alginate for sale as high value chemicals, there are several 

possibilities for the utilisation of the remaining biomass in the first step extract 

and third step residue and for the purpose of this section, they will be referred to 

as the “waste” from the process. Figure 6.37 shows the composition of this 

stream, where the “other” section is likely to be primarily composed of lipids and 

proteins. Potential uses and upgrades to the biomass are considered, including 

phosphorus and nitrogen content for fertiliser, fermentation to bioethanol and AD 

to bio-methane. Links to the seasonal variation and potential yield of each of 

these components, based of year round harvest to supply the process, are also 

shown. This data allows good evaluation of the best harvest times for particular 

applications.  

 

Figure 6.37: Composition of the "waste" stream, based on 100g input into the 
biorefinery  

 Bioethanol production from the “Waste” Stream 

The bioethanol yield from FS 2015, analysed in this study and, assuming a similar 

extraction ratio in each step, for seasonal variation of FS, based on data in 

Chapter 3, has been calculated and is shown in Figure 6.38. These results are 

based on yield data from microwave extraction of 36.1% and 90.8% of the total 
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input of laminarin and mannitol respectively in the combined 50°C extract and 

120°C NaCl residue. From the 2010 samples, the best harvest time for maximum 

bioethanol yield would be July, with the minimum yield obtained between January 

and April. However, FS 2015 shows a lower value. As discussed before this is 

probably due to variation in chemical content for the time of year due to weather 

conditions. Presumably 2010 had a warmer spring, while 2015 a colder one. 

Further laminarin could be recovered from the fucoidan extraction in second step, 

which would increase the ethanol yield. As this needs to be removed for fucoidan 

purification, it would require little extra process steps to include this in the 

fermentation. In order to validate these results, samples from throughout the year 

would need to be processed to assess the extraction yields at different steps. 

 

Figure 6.38: Theoretical maximum values of ethanol from fermentation of 
mannitol and laminarin in microwave residues from seasonal variation samples 
and FS 2015. 

In a review conducted by Jiang et al [176], ethanol yields from unprocessed 

brown macroalgae are quoted to range between 0.3 and 2.9 g ethanol/ g 

biomass. While the theoretical ethanol yields in this study are shown to be 

significantly less than this, it is to be expected due to the extraction of some of 

the fermentable carbohydrates throughout the rest of the biorefinery process. 
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Furthermore, previous studies have focused on kelp species, which are known to 

have a higher mannitol and laminarin content that Fucoids. While fermentation of 

the “waste” streams would be possible, the low ethanol yields means that it is 

likely that a different use would be more favourable, both in terms of maximising 

profit from the biomass, but also for minimising waste as only a small portion of 

the material in the “waste” steam is utilised by fermentation. 

An advantage of producing ethanol from the “waste” is the ease at which ethanol 

could be recovered from fucoidan precipitation in the second step, as the 

equipment needed, including distillation and some sort of de-watering equipment, 

such as molecular sieves, would also be required for the purification of the 

ethanol produced via fermentation. Similarly, the ethanol required for the 

production of fucoidan could be produced on site. Even is ethanol is not produced 

on site and the “waste” used for a different purpose, it would still be advantageous 

to recover the ethanol used in fucoidan precipitation, in order to decrease solvent 

usage and associated costs. 

 Bio-Methane Production from the “Waste” Stream 

The theoretical methane (CH4) and CO2 yields from the “waste” stream have been 

calculated for FS 2015 and for the seasonal variation data, the results of which 

are displayed in Figure 6.39. These calculations are based on those detailed by 

Buswell [221] and Boyle [222]. Both the CH4 and CO2 values are relatively 

constant over the year, with an average value of 262.9 L/kg TS and 191.3 L/kg 

TS respectively. The values calculated for FS 2015 are significantly lower than 

those seen for the seasonal variation samples collected in 2010. This is due to 

the lower carbon content of the biomass due to the presences of less mannitol 

and laminarin present in the initial biomass.  
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Figure 6.39: Theoretical maximum yield of methane and CO2 calculate using 
Buswell Boyle equation. TS = total solids  

Allen et al [118] note that the C:N ratio is very important in gaining the best yield 

of CH4 from AN feedstocks, with a low ratio leading to inhibition of CH4 production 

by ammonia. They quote the optimum values to be between 25:1 and 30:1. Figure 

6.40 shows the C:N value of the “waste” stream for June 2015 and the seasonal 

variation in this value expected from the 2010 samples. The C:N value for 

untreated FS 2015 is 17.7:1, so there is a significant improvement in the “waste” 

C:N value of 26.5:1 compared to the untreated, putting it within the range of the 

optimum values. The seasonal variation shows an inverse trend for that seen for 

the nitrogen content (see Chapter 3 for data), with lowest values in March/April 

and peaking in the summer. From this, the optimum months for bioethanol 

production, according to Allen et al [118] would be June and between November 

and December. However, their data shows that higher C:N ratios also give a good 

CH4 yield. According to the literature, on the whole, untreated seaweed performs 

poorly in AD, despite a good theoretical yield, due to a low C:N ratio [118, 119]. 

Using the “waste” from the proposed biorefinery appears to significantly improve 

this ratio and should, theoretically, improve the conversion to CH4 seen in real 
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life. Further experimentation would need to be undertaken to confirm this, but 

these initial calculations indicate a good possibility for this technology to be 

applied in this setting. 

 

Figure 6.40: C:N ratio of the "waste" for FS for 2010 seasonal variation and June 
2015 

Tabassum et al [122] have studied the seasonal variation in bio-methane 

production from Laminaria digitata. They have found an average theoretical 

methane yield of 323.1 L/kg TS, utilising the whole biomass, which was found to 

be roughly halved to 191.9 L/kg TS when tested under laboratory conditions. 

They also found the seasonal variation in the CH4 production to be strongly 

correlated with the total carbohydrate content, as expected.  A review of AD of 

seaweed conducted by McKennedy and Sherlock [223] quotes the CH4 

production from a variety of seaweed and seaweed industry waste products to be 

between 80 and 425 L/kg TS. The theoretical CH4 production from the seaweed 

“waste” seen here falls well within these boundaries and seems to be a good 

option for the biorefinery process. Furthermore, AD can also make use of the 

alginate, lipids and protien present in the remaining biomass, which bioethanol 

production currently is unable to do. This would mean that a greater proportion of 
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the “waste” biomass could be converted into a useful fuel, increasing potential 

value. 

 Potential for use of “Waste” as a Fertiliser 

Fertiliser requires a high quantities of N, P and K in order to feed plants with the 

nutrients they require for growth. The phosphorus balance, shown in Figure 6.41, 

shows only a small quantity in the initial biomass; an average of 0.37wt%. This 

figure is roughly halved with each step, with the final residue after the third step 

containing only 9.2wt% of the initial quantity. Combining the phosphorus in the 

residue and the first step extraction, which are the two “waste” streams from the 

extraction process, leads to a recovery of 52.3wt% of the initial phosphorus. The 

phosphorus value found by Ross et al [224] for FS is much higher than that seen 

here: 1.4wt% as compared to 0.37wt% in this study. This could be due to a 

differing harvest location (Cornish coast as opposed to Aberystwyth) and, 

therefore, quantity of phosphorus in the water. Furthermore, samples collected 

by Ross et. al were washed before analysis, which could leach some of the water 

soluble chemicals out, making the P account for a higher wt% overall. Samples 

were also collected in February, as opposed to June in this study, which could 

have an effect on the quantity of phosphorus present, as the total ash content is 

known to vary throughout the year and is generally higher in the winter months 

compared to the summer. 
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Figure 6.41: Phosphorus balance for sequential extraction, based on 100g input 
of FS. 

To illustrate the variation in phosphorus, the potential quantity in the “waste” 

stream has been evaluated using the seasonal variation data presented in 

Chapter 3. The results of this are shown in Figure 6.42. Phosphorus is shown to 

remain fairly constant over the year, with a high of 2.7 g/kg of “waste” in the April 

and low of 1.7 g/kg of “waste” in October. The comparison between the June 

2010 and June 2015 samples shows a relatively similar quantity of phosphorus. 

 

Figure 6.42: Seasonal variation of phosphorus in combined first step extract and 
third step residue 
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The nitrogen content of the biomass at each step has been analysed and the 

results are shown in Figure 6.43. There is a relatively small amount of nitrogen in 

the initial biomass, averaging 1.8wt%. 30.9wt% of this is extracted in the first 

microwave step, with no further extraction seen in the second step at 120°C. The 

greatest extraction of nitrogen is seen in the third step, where NaCl has been 

added. Here, 60.6wt% of the initial nitrogen is extracted. The combined total of 

the “waste” accounts for 57.6wt% of the total in the raw biomass. 

 

Figure 6.43: Nitrogen balance for sequential extraction, based on 100g input of 
FS. 

The potential nitrogen variation in the “waste” stream over the year has been 

calculated and the results are shown in Figure 6.44. Nitrogen has a distinct 

seasonal variation pattern, so there is significantly less nitrogen remaining in the 

waste between June and November than the rest of the year. This could have 

potential impacts on the quality of fertiliser which could be produced at different 

times throughout the year from this process. If fertiliser was seen to be the best 

option for the “waste” stream, however, it would be possible to upgrade the 

fertiliser by adding nitrogen from a different source to ensure a consistent product. 

A comparison of the June 2015 and June 2010 samples shows similar quantities. 
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Figure 6.44 Seasonal variation of nitrogen in combined first step extract and third 
step residue 

The potassium balance from the microwave macroalgal biorefinery is displayed 

in Figure 6.45. The initial potassium in the biomass is relatively high, averaging 

3.7 wt%. Roughly half of this is removed in the initial step, with the majority of the 

remaining potassium in the first step residue being extracted in the second step. 

The increase in potassium in the third step is likely to be due to impurities in the 

NaCl added for processing. 

 

Figure 6.45: Potassium balance for sequential extraction, based on 100g input. 
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The potassium in the “waste” stream accounts for roughly 30% of that in the initial 

biomass. The potential seasonal variation of potassium, calculated based on this 

figure from the samples of FS collected in 2010, has been calculated and the 

results are shown in Figure 6.46. There appears to be little seasonal variation in 

the potassium content, which is advantageous for fertiliser production from the 

biorefinery “waste”, as year round harvest would lead to a relatively consistent 

product. Again, the comparative June samples from 2010 and 2015 are similar in 

potassium content. 

 

Figure 6.46: Seasonal variation of potassium in combined first step extract and 
third step residue 

The NPK value of the “waste” biomass is 10.5:1.9:10.7 (2.31) from FS 2015, 

where the number in brackets represents the percent of the total biomass which 

is comprised of these nutrients and the values of N, P and K are ratio of these 

nutrients within that percent [225]. While the potassium value is low, depending 

on the application, the NPK ratio is relatively good. However, the quantity of these 

nutrients within the biomass is low, as typically fertilisers contain a high 

concentration of these nutrients. However, the high carbon content could make it 

a good “soil improver”, more like a compost or manure, rather than a fertiliser. It 
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also has the added bonus of containing other nutrients necessary for plant 

growth, such as magnesium and calcium. 

While potassium and phosphorus has been shown in this study to remain fairly 

constant over the year, meaning a relatively consistent fertiliser composition, 

nitrogen shows a clear seasonal variation trend, with greatest quantities in 

March/April and lowest in August/September. The lower nitrogen content in the 

summer months would have a negative effect on the quality of the biomass, as it 

will contain less nutrients. If year round harvest and processing of seaweed 

biomass, with the “waste” to be used as a fertiliser is to be used, a nitrogen rich 

improver will need to be added “waste” during the summer months in order to 

create a consistent product year round. This could be achieved via the addition 

of a nitrogen rich biomass source or by adding ammonia. 

The heavy metal content of fertilisers is regulated by the EU [217] and is, 

therefore, an important consideration for the use of seaweed “waste” from the 

biorefinery process as a fertiliser. Heavy metals in seaweeds are typically high 

[213], as they bio-accumulate them throughout their lifetime from seawater. 

Figure 6.47 shows the heavy metal content of the “waste”, alongside the EU 

regulation limit (Cr and Cd are shown in µg/kg for clarity, all other metals are 

shown in mg/kg). Aside from As and Zn, all metals fall within the limits set for 

fertiliser use, although Cu is only a couple of mg less and variation in this metal 

could put it outside of the regulated value. This means that the seaweed “waste” 

would not be able to be applied as a fertiliser directly to crops and would instead 

either need to be further treated to reduce the Zn and As content or blended with 

another biomass source low in these metals, to reduce their overall concentration. 
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Figure 6.47: Regulated heavy metal content on combined first step extract and 
third step residue. 

 Other Potential Uses for the “Waste” Stream 

Over bioethanol or bio-methane production of for direct use as a fertiliser, there 

are some other possible uses for the “waste” stream from the proposed 

biorefinery process. Smith et al [226] have used hydrothermal carbonisation 

(HTC) to produce bio-coal, bio-methane and fertiliser from seaweed and the 

process described may be a good option for utilisation of “waste” seaweed as 

well. The CHNS composition of the “waste” is similar to that of the three kelps, L. 

digitata, L. hyperborea and A. esculenta, presented in their study and the 

comparison of the two is presented in Figure 6.48 and they also have a similar 

ash content. Although further work would need to be carried out in order to 

confirm this, it is likely that similar results would be seen for the “waste” stream 

as were described by Smith et al [226], with a significant upgrade in the energy 

density of the residue. They quoted this to be from 10 MJ/kg to 25 MJ/kg in their 

study, a value similar to that of low grade coal, alongside the process water being 

a potential feedstock for bio-methane production. 
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Figure 6.48: Comparison of CHNS values adapted from Smith et al [226] and the 
"waste" from the microwave biorefinery process. 

It is possible to create a range of other building block chemicals from seaweed: 

succinic acid [128],  5-hydroxymethylfurfural (HMF) [175] and hydrogen and 

butyric acid [55] via fermentation; the use of sugars as a feedstock for polymer 

production [56, 227] and production of intermediates for detergents, fuel additives 

and plasticisers [57] are among the many possibilities for chemicals which could 

be produced. Based on product demand, the mechanisms and processes 

involved in creating these chemicals would require further research and 

development, but the idea offers a wealth of possibilities for a biorefinery, allowing 

adaptability to the process to fit requirements. 

 Waste Water Treatment 

Waste water treatment is an important consideration for any industrial process, 

with strict limits on the quality of water released from the system which must be 

implemented. These limits are significant for environmental reasons, limiting the 

effects of eutrophication from a high nutrient content and damage to wildlife from 

heavy metals. In the case of seaweeds, the release of metals is the main concern, 

as seaweeds are famed for their accumulation of heavy metals and their high ash 
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content [21-24, 51, 81]. Table 6.2 details heavy metal limits laid out in the EU 

directive on industrial emissions for waste water [192], alongside the total metals 

from the biomass in the waste water from the biorefinery process. On the whole, 

the amount present falls within the limits set out, with the exception of Al, Cu and 

Ni, highlighted in red. In these cases, the amount is clearly well above the limit, 

with Ni exceeding by over 28 times. The metals laid out in the EU directive are 

among the most hazardous, due to their increased solubility in aquatic 

environments, their ready adsorption by living organisms, their accumulation in 

living bodies and the serious health issues they can cause [228]. 

Table 6.2: EU limit on heavy metals in industrial waste water compared to the 
quantity in the waste water from the biorefinery process. 

Metal Limit (mg/l) [192] 
Amount in waste water 

(mg/l) 

Hg 0.03 0.00±0.0 

Cd 0.05 0.01±0.0 

Tl 0.05 0.00±0.0 

Al 0.15 4.42±0.3 

Pb 0.2 0.07±0.0 

Cr 0.5 0.01±0.0 

Cu 0.5 3.04±0.8 

Ni 0.5 14.13±0.3 

Zn 1.5 0.10±0.0 

There are several options for the removal of heavy metals, a summary of which, 

including advantages, disadvantages and environmental considerations are laid 

out in Table 6.3. From this summary, it is clear that there are a lot of options, with 

the best one being dependent on the size and scale of the process. From an 

environmental point of view, the use of photocatalysis, which removes unwanted 



- 236 - 

metal ions via a semiconductor charged by UV rays from the sun [228], presents 

the lowest energy option. However, with intermittent weather in the UK, this may 

not prove to be the most reliable option. The three most common options currently 

used in industry are chemical precipitation, electrochemical removal and 

adsorption [229]. While having the benefit of being well known to industry, they 

do not offer the best separation of heavy metals, especially at low concentrations. 

With the regulations on wastewater quality likely to only get stricter with time, it 

would be prudent to choose a technology which could withstand more stringent 

regulations without the need for modification. Thus, in this case, membrane 

filtration most likely represents the most promising option. Over the relatively 

simple technology, easy operation and compact, space saving design ideal for 

small plants [229], it is possible the set up sequential membranes to remove 

organic matter and heavy metals in one step. This means less equipment is 

required to treat the wastewater and, therefore, a reduction in energy demand 

[228]. 

Table 6.3: Options for the removal of heavy metals from waste water and their 
advantages and disadvantages. 

Technology Description Advantages Disadvantages Environmental 

considerations 

Chemical 

precipitation 

Metal ions are 

removed via 

conversion to 

an insoluble 

form, often via 

the addition of 

hydroxides, 

before removal 

by filtration or 

sedimentation. 
3 

 Most widely 

used2 

 Simple and 

inexpensive2 

 Incomplete 

removal1 

 High energy 

requirements1 

 Production of 

toxic sludge1 

 Requires the 

use of 

solvents.  

 Difficult to 

get good 

removal of 

metals due 

to mixed 

ions 

present.3 

Electrochemical 

removal 

The application 

of electricity 

can be used to, 

 Scalable4 

 Simple and 

compact4 

 Incomplete 

removal1 

 High 

electricity 

requirement 
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depending on 

the voltage 

applied, 

convert 

dissolved ions 

into their solid 

form 5 

 Widely used 

in industry4 

 High energy 

requirements1 

 Production of 

toxic sludge1 

 

Adsorption Metal ions are 

adsorbed onto 

a highly porous 

structure such 

as activated 

carbon, which 

is added to the 

waste water.6 

 Flexibility in 

design and 

operation2 

 High quality 

treated 

effluent2 

 Adsorbents 

can be 

regenerated2 

 Requires 

expensive 

adsorbents7 

 

 Adsorbent 

regeneration 

can be 

energy 

intensive.7 

Membrane 

filtration 

Membranes 

are used to 

either filter out 

larger ions or 

via a difference 

in hydrostatic 

pressure by 

reverse 

osmosis.2 

 Easy 

operation2 

 Space 

saving2 

 Removes 

heavy metals 

and larges 

organic 

matter1 

 Possibility of 

membrane 

fouling 

requiring 

cleaning8 

 

 May require 

less steps, 

meaning 

less energy 

usage1 

Electrodialysis The separation 

of ions over a 

membrane 

using an 

electric field as 

the driving 

force2 

 Very good 

separation of 

ions2 

 Resistant to 

scaling and 

fouling: good 

for brackish 

water9 

 Currently 

application 

specific due 

to interactions 

associated 

with various 

water 

chemistries9 

 Energy 

intensive 

due to 

electricity 

demands9 

Photocatalysis Uses the UV 

rays from the 

sun to separate 

metal ions with 

a 

semiconductor. 

The UV rays 

charge the 

semiconductor, 

drawing the 

metal ions to it.1 

 Fast and 

efficient1 

 Low energy 

requirements1 

 Requires 

expensive 

semi-

conductors as 

catalysts, 

such as 

titanium 

dioxide1 

 Uses solar 

energy to 

power so 

low energy 

demand1 

1[228], 2[229], 3[230], 4[231], 5[232], 6[233], 7[234], 8[235], 9[236] 
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6.6 Conclusions 

During this study, the viability of FS in a hydrothermal microwave biorefinery has 

been proven. The sequential extraction of chemicals has been developed in a 

three stage process, with the waste biomass being assessed for its potential in 

bioethanol or bio-methane production or as a fertiliser. The microwave process 

involves first a low temperature pretreatment step, where raw, dried biomass is 

processed at 50°C to remove mannitol, metals and free, water soluble laminarin 

and alginate. The residue from this step is further processed in water at 120°C, 

extracting fucoidan, along with some soluble alginate and laminarin. The fucoidan 

is purified by precipitating the alginate with CaCl2 and the laminarin with ethanol 

before fucoidan is also precipitated with ethanol, gaining a relatively pure, crude 

fucoidan fraction. In the third step, insoluble Ca-alginate is extracted by 

processing with NaCl at 120°C.  

The process waste, namely the first step extract and third step residue, have been 

assessed for their potential for further usage. While fermentation would be viable, 

the yields are low due to the relatively low carbohydrates remaining after 

extraction and the lack of suitable organisms to ferment alginate. Use as a 

fertiliser or soil improver also appears to be a viable option, due to the high P, K 

and N content in the biomass, alongside other useful minerals. However, the high 

heavy metal content means it is unsuitable for direct application to soil, as Cr, Cd, 

Ni and Cu exceed the maximum EU limit for fertilisers.  

The most promising use for the waste biomass, therefore, is anaerobic digestion 

to produce bio-methane. The theoretical yields is in line with those from the 

literature for untreated seaweed biomass, with the added benefit of an improved 

C:N ratio due to the removal of carbohydrates during the microwave extraction 

process. Furthermore, the flexibility of the AD process would allow mixed 
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feedstocks, potentially including waste from other sources to be added to the 

mixture. 

The results for the detailed study for the microwave extraction of chemicals in FS 

2015 has been used to calculate the possible seasonal variation in the process, 

using the data gathered in chapter 3 and the ratio of components extracted in this 

study. While an in depth study would need to be conducted to confirm the results, 

they offer an insight into the potential problems the seasonal variation in seaweed 

would cause to a year-round process. The biggest variation is seen in the 

mannitol and laminarin content. The former, mostly extracted In the first step, only 

has major implications for the use of the waste. As AD is a fairly flexible process, 

the biomass can still be utilised for bio-methane production. While the variation 

in laminarin means extra purification of the fucoidan, its presence doesn’t alter 

the quantity of ethanol needed for purification and extraction, as the precipitation 

is based on volume ratios of water to ethanol and not the quantity of either 

laminarin or fucoidan present in solution. This is beneficial for industry, as solvent 

requirement will remain the same despite fluctuations in product quantity. The 

amount of fucoidan generated, however, will remain fairly constant, as will the 

amount of alginate from the third step. Again, although there are slight 

fluctuations in the quantity produced, the excess if NaCl used for extraction 

covers the variation in quantity, meaning no changes to the process over the year 

are necessary. 

The quality of the fucoidan extracted in the second step has been assessed and 

compared to that of the raw biomass and that present in the first step residue. 

Processing in water at 120°C appears to have little detrimental effect on the 

fucoidan, with only a slight decrease in sulphate content and no discernible effect 

on the fucose content. Comparison with the fucoidan extracted at 140°C shows 
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a significant decrease in the sulphate content, indicating the degradation of the 

fucoidan at this temperature. LC-MS and SEC chromatograms back-up these 

findings, indicating comparable fucoidan between raw, 50°C and 120°C 

extractions and the beginnings of degradation at 140°C. While further studies to 

confirm its bioactivity would need to be conducted to give credibility to this method 

as a fucoidan extraction technique, the initial results and comparisons with 

literature are promising. 

Finally, the treatment of the waste water has been considered. Due to the high 

ash content of seaweed, the need to remove heavy metals before release to the 

environment is important, with Al, Cu and Ni concentrations significantly 

exceeding EU limits. In this case, it is concluded that membrane filtration, with its 

simple, compact design would offer the best option, allowing for sequential 

membranes to remove both organic matter and metals in sequence. As small 

plants operated near the coastline would be beneficial to overcome harvest and 

storage issues, a simple, space saving design which can remove multiple 

contaminants in one system would offer the most economical solution.  
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7 Conclusions and Future Work 

7.1 Conclusions 

Macroalgae offers a novel feedstock for a biorefinery, being an underutilised 

biomass with huge potential for industrial use. It is an abundant resource with a 

wealth of room for expansion in cultivation. It also benefits over terrestrial 

biomass as there is little to no competition with food sources. The seaweed food 

market is already at saturation with plenty of unused seaweed available, while 

land space is growing more valuable as more food crops are required for a 

growing population. Brown seaweeds contain a range of unique chemicals, 

including laminarin, mannitol, alginate and fucoidan, the focus of this thesis. While 

mannitol and laminarin are potential feedstocks for fuel production and alginate 

already being extracted for used as a thickener in the food industry, fucoidan 

offers the most promising economic potential, due to its range of biomedical 

properties and potential in the pharmaceutical industry. In terms of a seaweed 

biorefinery, microwaves offer a good alternative to conventional heating due to 

their even heating of the biomass, reduces processing times, more targeted 

heating and reduced energy consumption. The milder operating conditions also 

offer benefits for carbohydrate extraction, helping to ensure the extraction of the 

whole, unmodified polysaccharide: especially important when trying to retain the 

functionality of fucoidan. The drawback to the use of seaweed in an industrial 

setting is its seasonal variation in chemical content, which impacts harvesting 

times and extraction yields. However, with a clear understanding on this 

phenomenon, the impact to industry should be minimal. 

In this thesis, the seasonal variation of three species of Fucoid have been 

investigated. They were chosen for their high fucoidan content and relatively low 

ash content, when compared to kelps. Previous studies carried out in the 1950’s 
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have also shown them to have less variation in their chemical content, although 

it is still prominent. With increased knowledge and technology in analytical 

techniques and in a changing climate, an updated seasonal variation study was 

deemed necessary for the industrial use of Fucoids. In general for the three 

species, the storage carbohydrates mannitol, laminarin and fucoidan were found 

to be highest in later summer/early autumn, with corresponding lows in winter. 

The reverse is seen for ash, protein and alginate, where highest values were 

found in the winter months, corresponding to lowest values in the summer. These 

results impact the optimum harvest time for different industrial applications. For 

example, a high carbohydrate content is best for bioethanol production, so 

harvest in August/September would give the best yields. This corresponds with 

the highest fucoidan content, which is beneficial for a biorefinery focused on these 

two products. For a food application, however, when a high protein content may 

be desired, harvest in March/April would be more advantageous. The results from 

this study are important for being about to tailor an industrial process to the 

desired application and also for understanding the challenges seasonal variation 

poses to the use of seaweeds in an in industrial setting, if year round harvest 

were to be employed. 

With the extraction of fucoidan being an important part of the proposed biorefinery 

and with the knowledge that fucoidan make-up and structure varies with season, 

harvest location and maturity, a detailed seasonal variation study, including its 

composition and structure, is important. Furthermore, although the literature 

alludes to this phenomenon, there is very little published data to support this fact. 

The three species of Fucoid were used in this study, with fucoidan being extracted 

and purified for analysis. FS was shown to have the highest sulphate content 

throughout the year, with AN having the lowest. SEC and LC-MS suggests that 
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fucoidan from FS has more branching than the other two species, who have more 

linear structures. The MW variation is also lower for FV than the other two 

species, indicating less variation in structure throughout the year. Overall, due to 

the higher sulphate content, indicating the greatest functionality, FS was deemed 

the best option for a macroalgal biorefinery. 

A colourimetric method for the rapid determination of fucoidan in a seaweed 

sample has been developed and validated. The method relies on a reaction 

between fucose, the monomer unit in fucoidan, and L-cysteine hydrochloride, 

with the colour reaction seen measured in a UV-vis. In order to obtain accurate 

results, correction for glucose and alginate is required and the fucose ratio needs 

to be calibrated for each species. However, when this has been done, an 

accuracy of ±5% was achieved. This rapid fucoidan determination requiring 

minimal equipment offers a good alternative to the conventional fucoidan 

quantification method, which lengthy and full extraction and purification and also 

adds benefits for industry, where a fast estimate of fucoidan in a batch of 

seaweed would be required to ensure complete extraction in the process and 

solvent requirements may differ depending the chemical composition of the 

algae. 

A feasibility study for a macroalgal biorefinery based on sequential extraction of 

chemicals has been conducted, comparing microwave and conventional heating. 

Overall, the results indicated that sequential chemical extraction based on 

temperature is possible, with increased extraction yields with increasing 

temperature. Furthermore, the comparison of microwave and conventional 

heating indicated a lower processing temperature for microwave heating for the 

same extraction yield of fucoidan: 120°C compared to 150°C. While reducing 

energy requirements, lower operating temperatures are also important for 
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retaining the structure and functionality of the polysaccharide. SEC 

chromatograms and sugar analysis of the extracts indicates breakdown of 

carbohydrates at higher temperatures. This initial study has been used as a basis 

for the development of a three step biorefinery process using microwaves. In the 

first step, pretreatment at 50°C removes mannitol and a large portion of the 

metals. The second step extracts fucoidan and some alginate at 120°C. After 

precipitation of the alginate with CaCl2, fucoidan is precipitated with ethanol to 

give a relatively pure, crude fucoidan. The third step extracts the remaining 

alginate from the residue using NaCl at 120°C. This leaves a residue which 

mainly consists of laminarin, protein, lipids and ash. The impact of microwave 

processing on the quality of the fucoidan has been considered, and it was shown 

that the conditions used for extraction had little effect on its chemical content or 

structure. The energy balance from this process has been calculated and 

compared to the that for conventional heating. This shows a significant energy 

saving for microwave processing when calculated for the laboratory scale 

process, indicating a promising saving for an industrial scale process. 

The impact of seasonal variation on the process has been assessed, using the 

data collected in the study in Chapter 3. The results indicate that there will be 

minimal impact to the process, as the variation falls within the excess of solvents 

used in the process. Similar seasonal variation effects have been evaluated for 

the utilisation of the “waste”, which has been defined as the combination of the 

residue from the third step and extract from the first step. Theoretical yields of 

bioethanol and bio-methane have been calculated, indicating the potential as a 

feedstock for fermentation and AD. Its direct use as a fertiliser has also been 

assessed. AD appears to offer the best option, with good yields of bio-methane 

which are fairly stable across the year. This is due to the ability of the process to 
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use any carbohydrate or proteins present in the biomass, and not only laminarin 

and mannitol, which is the case for fermentation. Furthermore, the C:N value of 

the “waste” is more favourable than that of the raw, untreated seaweed. This 

should lead to a better actual bio-methane yield compared to the theoretical. 

While direct application of the “waste” to terrestrial crops would be beneficial, due 

to its high organic matter and mineral content, the levels of N, P and K are not 

high enough not high enough for it to be considered a “fertiliser” and instead 

should be classed as a “soil improver”. 

Overall, the biorefinery processed developed shows good potential for the 

extraction of fucoidan and alginate coupled with the manufacture of a feedstock 

for energy production and microwaves have been shown to be an effective 

heating method, with considerable energy savings over conventional heating. 

The seasonal variation studies have highlighted the potential problems with using 

a macroalgal feedstock for industrial uses. While there are still barriers to the use 

of seaweed commercially, such as harvesting restrictions in Europe, advances in 

cultivation and harvesting technologies mean that seaweed is a very promising 

resource for the future. 

7.2 Future Work 

The work presented in this thesis has led to increased understanding of the 

seasonal variation of Fucoids and how this impacts on the industrial use of them 

as a feedstock. The development of a macroalgal biorefinery using microwaves 

has also been achieved, showing the feasibility and potential of the technology 

and the process. However, the work could be continued further, with 

improvements being made and more in depth knowledge being achieved. 
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While the seasonal variation studies carried out in Chapters 3 and 4 gives a good 

start to understanding how differences in the chemical components of seaweed 

would affect its use in industry, there are still some difficulties highlighted which 

would need to be overcome. These include: differences in composition of the 

same species harvested from the same location in different years, which is 

presumably due to changes in weather conditions such as water temperature, 

hours of sunlight and chemical composition of the sea water (eg quantity of salts 

and CO2); differences between the same species in different harvest locations 

and the variation between species. To overcome these issues, in depth chemical 

analysis of different species of interest over a number of years, harvested from a 

number of locations would be required.  

A long time period for data collection is required to gain full understanding as to 

how the weather affects seaweed composition. Weather data, such as ambient 

and sea temperature, seawater salinity and the amount of sunlight reaching the 

sea surface would all be beneficial data for assessing how chemical composition 

correlates to the external weather conditions and would aid in predictions of 

chemical content without the need for analysis. Furthermore, analysis of 

individual plants from the same location would give an indication of the variation 

within the seaweed community and would allow for differences in maturity to be 

accounted for. For this to be achieved, analysis of 3 or more individual plants 

from each species would be required. On this line, a study detailing the 

differences between wild harvest and cultivated seaweed would also be 

beneficial. This is due to all plants in cultivated harvest being of the same age, 

while wild harvest stock will include a mixture of plants of varying age. 

The microwave assisted algal biorefinery, has been proven to have potential, 

extracting fucoidan and alginate with the remaining biomass being used for fuel 
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production or as a fertiliser. There is, however, some further research which could 

be undertaken to improve the overall process. Firstly, it would be interesting to 

ascertain if it is possible to extract fucoidan using a Ca salt, in an attempt to 

extract a more purified form without alginate. Soluble Na-alginate would be 

rendered insoluble in its Ca-alginate form. By doing so, the next step of 

precipitating out Na-alginate would be obsolete, while maintaining the same 

solvent requirement. While this study has shown that CaCl2 is an unsuitable salt 

for this purpose, it is possible that the Cl ions are interfering with fucoidan 

extraction. Therefore, a different Ca- salt may give a more positive result. In order 

to study this more fully, a full range of different Ca-salt should be tested, as well 

as varying the extraction temperature and time, in order to see if this has any 

effect on the results. 

In the third step, successful trials for the extraction of alginate with NaCl were 

achieved, confirming the validity of this step. However, there was no optimisation 

done. To achieve this, variation in the temperature, salt concentration, seaweed 

to solvent (S:S) ratio and which Na- salt is used would all need to be investigated 

to determine the best possible conditions. 

As was done in a macroalgal biorefinery study by Yuan et al [162], a fourth step 

to convert carbohydrates to monomer sugars, to aid in fermentation or AD, may 

be beneficial. While this study showed that partial hydrolysis was occurring at 

200°C, higher temperatures would be needed to achieve full hydrolysis to 

monomer sugars. Unfortunately, the equipment available would not allow for 

higher processing temperatures, due to the limits pressure relief system, so this 

step was not able to be performed. However, if a different microwave system, 

capable of withstanding higher pressure were to be used, this could be achieved 

and would offer an interesting addition to the process. 
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A study using wet biomass would be advantageous. Due to the high levels of 

water present in seaweed biomass on harvesting, processing the biomass wet 

would significantly reduce the energy requirements of the process by negating 

the need for drying. Studies to discern if the microwaves conditions change due 

to processing wet would need to be undertaken. This is most likely to include 

changes to the S:S ratio, as the large volume of water may reduce the amount 

required to be added. In a changing climate, water is becoming a more valuable 

resource. Being able to reduce water consumption in a process is very 

advantageous. Pretreatment of the biomass, for example grinding or chopping, 

would also need to be investigated to find the differences this gives. Wet seaweed 

biomass is cartilaginous in texture and difficult to cut, so a suitable technique to 

break the biomass in to process-suitable sized pieces is important. 

Finally, a continuous microwave system is important for an industrial setting. 

Further work in this area would include setting up a small scale extraction rig, 

such as the one described in Figure 7.1. Temperature and residence time 

experiments will need to be conducted to check that the conditions for continuous 

extraction are the same as for batch samples. For this system, the seaweed slurry 

would need to be of a pump-able viscosity to allow for it to be moved around the 

system. For wet biomass to be suitable for this system, again the pretreatment in 

terms of chopping the biomass is important, as large pieces would be difficult to 

pump and likely to clog the equipment. 
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Figure 7.1: Proposed set-up for a small-scale continuous microwave reactor. 
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A. Appendix 

Month Laminarin Mannitol Alginate Moisture Ash Protein Fucoidan Polyphenol 

  wt% 

Fucus serratus 

Apr 8.21 6.76 40.45 9.49 10.14 17.08 4.16 2.57 

May 9.69 10.86 30.17 7.56 11.09 14.87 4.90 8.08 

Jun 15.81 11.90 29.81 7.05 12.48 9.56 6.18 7.17 

Jul 21.69 14.60 30.67 6.11 12.01 7.05 5.49 7.54 

Aug 15.15 14.00 30.58 6.72 14.17 7.32 6.64 9.37 

Sep 14.31 14.61 31.49 7.32 13.53 6.59 6.69 5.35 

Oct 12.89 10.88 27.25 7.48 14.03 7.95 7.05 3.79 

Nov 16.86 10.58 34.14 6.33 13.09 9.26 7.51 5.32 

Dec 10.62 9.91 41.68 6.49 14.54 10.40 5.82 6.99 

Jan 10.17 6.52 32.90 6.73 13.40 13.08 5.66 8.14 

Feb 10.44 6.97 35.62 6.69 15.24 13.03 5.51 6.31 

Mar 10.71 7.42 24.12 6.40 14.20 15.94 4.45 5.12 

Fucus vesiculosus 

Apr 9.48 8.30 25.07 6.38 16.51 22.89 10.00 4.20 

May 6.31 6.52 24.34 5.03 18.04 14.17 9.04 5.80 

Jun 10.23 10.17 25.20 7.32 14.75 7.81 8.84 6.51 

Jul 12.24 10.00 25.11 6.48 18.44 10.35 10.17 9.09 

Aug 13.27 10.32 20.60 6.54 15.61 7.90 10.27 9.07 

Sep 20.85 11.30 30.39 6.59 13.70 6.59 11.93 7.17 

Oct 18.82 12.59 26.29 9.40 11.00 8.60 9.73 10.07 

Nov 16.24 10.76 26.54 7.71 12.79 8.66 10.01 8.87 

Dec 11.59 8.04 27.08 6.28 15.41 10.46 12.15 9.18 

Jan 12.04 7.98 27.62 7.56 14.92 13.57 11.10 10.16 

Feb 12.04 4.90 28.08 6.55 17.64 16.83 8.07 8.90 

Mar 8.74 6.21 18.27 6.65 16.46 24.57 9.70 7.39 

Ascophyllum nodosum 

Apr 7.23 4.35 28.36 8.13 15.10 7.64 7.13 9.18 

May 8.98 4.81 27.66 6.57 17.00 7.69 8.65 5.65 

Jun 10.49 8.54 31.18 6.49 13.62 7.46 8.75 13.79 

Jul 8.84 9.64 32.56 7.48 13.58 6.00 7.87 16.45 

Aug 9.63 11.67 32.88 6.63 13.95 5.28 7.90 14.07 

Sep 11.41 8.71 29.88 6.68 13.27 5.93 7.27 14.93 

Oct 9.08 8.18 39.77 7.23 15.34 5.07 8.87 12.83 

Nov 13.35 8.24 32.89 7.55 13.36 6.13 7.92 16.38 

Dec 10.62 5.84 36.49 7.11 17.06 7.27 7.62 14.19 

Jan 10.24 5.50 34.87 7.60 16.25 8.60 8.37 13.63 

Feb 9.86 5.17 33.24 7.99 14.94 9.35 6.49 14.50 

Mar 7.52 5.11 20.76 6.69 15.86 12.99 7.10 12.09 

Figure A.1: Numerical data for the seasonal variation in chemical content of three 
brown macroalgae 
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Figure A.2: Metal analysis for seasonal variation samples. 
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Month Residue Defatting 40% ppt 70% ppt Remaining 

Fucus serratus 

Apr 50.7 2.3 8.8 4.2 34.0 

May 47.2 12.0 8.8 4.9 27.0 

Jun 43.1 17.3 11.5 6.2 22.0 

Jul 42.8 19.3 8.1 5.5 24.3 

Aug 43.5 15.6 8.1 6.6 26.3 

Sep 47.1 17.7 9.6 6.7 18.9 

Oct 49.0 6.9 13.1 7.1 23.9 

Nov 44.8 8.1 10.7 7.5 29.0 

Dec 46.7 9.4 10.3 5.8 27.7 

Jan 40.1 11.2 6.0 5.7 37.0 

Feb 50.0 8.0 4.3 5.5 32.2 

Mar 51.5 20.0 5.3 4.4 18.8 

Fucus vesiculosus 

Apr 42.4 19.0 1.1 13.5 24.0 

May 43.6 20.1 4.8 9.0 22.4 

Jun 43.0 16.4 4.7 8.8 27.1 

Jul 42.1 21.3 4.7 10.2 21.6 

Aug 45.2 16.8 3.2 10.3 24.5 

Sep 40.1 21.9 4.6 11.9 21.5 

Oct 45.7 15.6 5.1 9.7 23.9 

Nov 45.3 11.8 5.1 10.0 27.8 

Dec 45.7 14.8 5.5 12.2 21.9 

Jan 46.2 12.0 5.8 11.1 24.9 

Feb 50.4 12.5 5.4 8.1 23.6 

Mar 45.5 14.0 3.9 9.7 26.9 

Ascophyllum nodosum 

Apr 49.7 8.0 8.9 7.1 26.3 

May 41.0 17.7 7.1 8.7 25.6 

Jun 40.5 13.0 7.1 8.8 30.7 

Jul 45.8 15.5 8.0 7.9 22.9 

Aug 47.5 10.4 8.5 7.9 25.7 

Sep 49.5 4.8 9.2 6.3 30.3 

Oct 47.8 13.8 8.0 8.9 21.6 

Nov 46.1 12.4 8.5 7.9 25.1 

Dec 51.5 10.1 9.1 7.6 21.6 

Jan 44.3 11.4 8.1 8.4 27.9 

Feb 45.7 10.8 8.2 6.5 28.9 

Mar 47.7 9.4 8.5 7.1 27.3 

Figure A.3: Numeric data from the steps involved in conventional fucoidan 
extraction 
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Figure A.4: Metal analysis for microwave processed samples  

Temp Na K Ca Mg Cl P Sr Zn Br Fe

oC mg mg mg mg mg mg mg mg mg mg

Untreated - 36257 36898 24518 8983 4621 1226 811 371 242 229

1st step ext 50 21538 22710 8134 4015 1880 532 59 172 80 40

1st step res 50 19283 19030 18251 5620 3230 768 748 242 227 205

10-60 60 21592 20083 31381 8272 4900 2947 1448 327 208 367

10-80 80 21184 19441 34158 8367 5209 2052 1562 366 195 453

10-100 100 21147 18979 31635 7981 4825 2232 1543 416 254 411

10-120 120 18337 15898 31368 7010 4818 2190 1689 495 231 385

10-140 140 15565 12343 35838 6796 5127 2016 2129 660 214 617

10-160 160 11040 6786 32368 5293 5220 1454 2190 766 187 731

15-60 60 20166 18732 30635 8012 4545 2507 1477 328 199 351

15-80 80 20255 18591 30440 7885 4616 2247 1515 348 211 366

15-100 100 19301 16974 31177 7581 4626 2070 1549 410 207 378

15-120 120 18932 16289 32157 7448 4770 2075 1679 488 221 383

15-140 140 13355 9826 34597 5999 4819 1543 2186 688 228 546

15-160 160 11540 6540 33174 5483 5509 819 2045 740 224 753

CaCl2 100 10345 6765 50630 5429 4324 1025 1196 359 181 427

CaCl2 120 10282 6706 49411 5261 4380 984 1188 395 189 427

3rd step ext 120 32963 7759 8230 2418 2166 272 58 39 75 44

3rd step res 120 5583 1268 6480 1225 991 177 373 110 35 77

Temp Al Cu As I B Ba Mn Rb Ti Ni

oC mg mg mg mg mg mg mg mg mg mg

Untreated - 116 80 60 46 34 29 20 13 8 3

1st step ext 50 18 32 34 9 30 9 8 8 4 1

1st step res 50 100 53 33 68 30 22 13 7 7 2

10-60 60 216 97 35 142 25 39 18 8 12 3

10-80 80 251 103 31 146 22 41 19 8 16 3

10-100 100 231 92 36 141 27 39 19 8 10 3

10-120 120 215 95 36 135 24 42 18 7 12 3

10-140 140 332 106 41 156 21 49 20 6 13 3

10-160 160 374 111 40 119 15 54 19 4 12 4

15-60 60 186 88 30 132 20 37 18 8 11 3

15-80 80 169 89 30 106 21 39 18 8 11 2

15-100 100 200 91 32 97 19 39 18 7 13 3

15-120 120 210 93 35 109 20 43 19 7 10 3

15-140 140 303 111 39 105 21 49 18 5 11 3

15-160 160 386 115 37 91 16 54 20 4 16 4

CaCl2 100 203 81 25 79 14 36 13 3 19 3

CaCl2 120 163 82 26 88 13 35 13 3 13 3

3rd step ext 120 16 35 8 12 10 10 3 3 5 1

3rd step res 120 34 19 6 16 2 9 3 1 2 0

Second Step Residues

Second Step Residues


