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Abstract 
Background and purpose 

Exendin-4 (EX4) has the same physiological properties as glucagon-like 

peptide-1 (7-36)amide (GLP-1). EX4 has 50% identity with GLP-1, with an extra 

nine amino acids at its C-terminus.  The two peptides mediate their functions 

through coupling to the glucagon like peptide-1 receptor (GLP-1R) with similar 

affinity and potency. Unlike N-terminally truncated GLP-1, (GLP-1(15-36)amide), 

the equivalently truncated EX4(9-39) binds GLP-1R without significant loss of 

affinity; furthermore, GLP-1(15-36) is a partial agonist  while EX4(9-39) is an 

antagonist. Previous binding analysis of either N or C-terminally truncated EX4 at 

rGLP-1R suggested that the residues responsible for its extra affinity are at its C-

terminus, EX4 residues 31-39. Crystal structures supported by mutagenesis 

showed similar interactions of both GLP-1 and EX4 at the isolated N-terminal 

domain of human GLP-1R (hGLP-1R-NTD) apart from a subtle hydrogen bond 

between Ser32 in EX4 and Glu68 in hGLP-1R-NTD. 

Experimental approach 
The affinities and activities of GLP-1, EX4 and various analogues were 

measured at human and rat GLP-1R (hGLP-1R and rGLP-1R, respectively) and 

various receptor variants. Computer models, molecular dynamics coupled with in 

silico mutagenesis, were used to model and interpret the data. 

Key results 
The membrane-tethered NTDs of hGLP-1R displayed similar affinity for 

GLP-1 and EX4 in contrast to previous studies using the soluble isolated domain. 

The selective high affinity at rGLP-1R and the rGLP-1R-like mutant hGLP-1R-

Glu68Asp for EX4(9–39) over EX4(9–30) was due to Ser32 in the ligand. This 

selectivity was not observed with hGLP-1R and the hGLP-1R-like mutant rGLP-

1R-Asp68Glu. Gly16-EX4(9–30) was an agonist for rGLP-1R and hGLP-1R-
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Glu68Asp but was an antagonist for hGLP-1R and rGLP-1R-Asp68Glu. Glu22-

GLP-1(15-36) was a partial agonist for all tested receptors. Insertion of 

(EEEAVRL) of EX4 instead of their equivalent sequence in GLP-1(15-36) 

prevented its activity and did not enhance its affinity. Substitution of Ser32 in EX4 

by similar hydrogen bond donor amino acids did not enhance EX4 affinity or 

potency. 

Conclusions and implications 
GLP-1 and EX4 bind to the NTD of hGLP-1R with similar affinity. A 

hydrogen bond between Ser32 of EX4 and Asp68 of rGLP-1R is responsible for 

the improved affinity of EX4 and can play a role in the antagonist/agonist switch of 

Gly16-EX4(9–30) at the rat receptor. The discovery of the novel antagonist/agonist 

switch suggests a new mechanism of activation by GLP-1 which does not require 

its extreme N-terminal residues. 
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1 -  General introduction 

1.1 Non-insulin-dependent diabetes mellitus (NIDDM) 

Diabetes mellitus (DM) is a world wide socio-economic wasting 

syndrome that leads to severe and chronic morbidity such as cardiovascular 

disease or loss of function such as renal failure, blindness and limb amputation 

(Hogan et al., 2003). Although huge advances have been achieved in diabetic 

care, DM is still out of complete control and prevalence of the disease is 

expected to be doubled (Saydah et al., 2004), which reveals a high demand for 

discovering new therapies.  

In the healthy body, the basal glucose level is maintained within a narrow 

range (4 to 8 mmol/l) by a continuous low level of insulin supply through the 

portal circulation, which controls the rate of the hepatic glucogenesis during the 

inter-meal periods: while, in the postprandial stage, the blood glucose is 

determined by the difference between the amount of glucose entering the 

circulation after rapid absorption through the intestine and the amount of 

glucose leaving the blood by tissue uptake (Cherrington, 1999). Therefore, 

insulin secretion increases in response to high levels of blood glucose, which 

up-regulates glucose uptake by liver, muscle and kidney, as well as down-

regulates hepatic and renal gluconeogenesis (Meyer et al., 2004).  

The physiological response of pancreatic β-cells, the unique insulin 

producers, to elevated blood glucose is biphasic; the first phase is insulin 

release (10-15 min) which is the main control of postprandial glucose level and 

the second phase is longer lasting (30-60 min) (Hermans et al., 1995). The loss 

of the first phase is the main characteristic of NIDDM and impaired glucose 

tolerance. Even well dietary-controlled diabetic patients have impaired insulin 
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secretion in the first half hour after a meal with consequent hyperglycemia 

(Pfeifer et al., 1981, Rendell et al., 1981).  

The consequent hyperglycemia not only leads to fatigue of -cells but 

also leads to progressive oxidative stress on -cells (Brownlee, 2003, Poitout 

and Robertson, 2002) accompanied by inadequate insulin secretion and 

gradual depletion of insulin stores. The low insulin production results from the 

negative effect of hyperglycemia on insulin gene expression by -cells and their 

apoptosis as well, a condition known as glucotoxicity (Jovanovic and Gondos, 

1999, Kaiser et al., 2003). 

Although insulin secretion increases in response to blood glucose, the 

blood glucose is not the only stimulant of insulin secretion, a fact that has been 

demonstrated by recording higher insulin secretion just after the ingestion of a 

glucose rich meal than in response to i.v. glucose infusion, which is defined by 

the ‘incretin’ concept (Yalow et al., 1988, Creutzfeldt, 1979). 

1.1.1 Incretin concept 

 Bayliss and Starling, (1902) predicted that a pancreatic stimulant might 

be produced by gut in response to nutrient ingestion and affect metabolism of 

carbohydrates. Later, Moore, (1906) assumed that the duodenum releases 

‘chemical excitant’ for pancreatic secretion and tried to treat diabetes by 

injection of gut extracts. By the same manner, Zunz and Labarre, (1929) used 

secretin-free gut extract that succeeded in curing hypoglycemia in dogs. La 

Barre and Still, (1930) used the term ‘incretin’ to define the phenomenon.  

 Unger and Eisentraut, (1969) described the relationship between the 

intestine and the pancreatic islets 'enteroinsular axis'.  This axis was suggested 

to include nutrient, neural and hormonal signals from the intestine to the cells 

secreting insulin, glucagon and somatostatin (Creutzfeldt, 1979). In addition, 
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the hormonal part, incretin, should fulfil two criteria: 1) it must be released by 

nutrients, particularly carbohydrates, and 2) it should have an glucose 

dependent insulinotropic effect (Creutzfeldt, 1979). 

At that time, only one hormone had been found to fit those requirements, 

which was glucose-dependent insulinotropic polypeptide (GIP). GIP is produced 

by K-cells that mainly present in the midzone of the duodenal villi and, to a 

lesser extent, in the jejunum (Polak and Bloom, 1982). Interestingly, GIP was 

firstly isolated as ‘enterogastrone’, which inhibits gastric secretion in response 

to presence of fat or its digestive products in the intestinal lumen. Later, high 

levels of GIP were detected shortly after ingestion of a meal containing either 

fat or carbohydrate (Brown, 1974, Cleator and Gourlay, 1975, Ross and Dupre, 

1978). 

However, immuno-neutralization of endogenous GIP indicated that 

intestinal hormone rather than GIP could fulfill the incretin description (Ebert et 

al., 1979, Ebert and Creutzfeldt, 1982).  These observations were supported by 

reported insulinotropic activity remained in gut extract after removal of GIP by 

immuno-adsorption (Ebert et al., 1983). Moreover, a big contribution to the 

incretin effect from the lower intestine was reported in studies of patients with 

varying degrees of resection of the small intestine. Despite equal increase in 

plasma GIP, patients with preserved ileal residues had higher incretin effects 

than patients without ileal residues (Lauritsen et al., 1980). Taken together, 

another incretin hormone should be present that works along with GIP. Later, 

the second incretin hormone was isolated and named as glucagon-like peptide-

1 (GLP-1).   
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1.2 Glucagon-like peptide-1 (GLP-1) 

1.2.1 Discovery 

The missing incretin hormone remained undiscovered until the late 

1970s when the era of recombinant DNA technology started providing the tools 

essential for its identification. In the early 1980s, the cloning of cDNA encoding 

preproglucagon from the pancreas of the anglerfish was completed. The gene 

was found to encode glucagon and glucagon related peptide (GRP) (Lund et 

al., 1982, Lund et al., 1983). The presence of GRP proximal to the sequence of 

glucagon, with high homology to the sequence of GIP, led to the suggestion 

that GRP would be an incretin hormone (Lund et al., 1982). Shortly after that, 

similar mammalian (including human) cDNAs were cloned (Heinrich et al., 1984, 

Bell et al., 1984, Bell et al., 1983, Lopez et al., 1983). In the same manner, 

mRNAs were cloned (Lund et al., 1981, Drucker and Brubaker, 1989) and it has 

became clear that GRP-1 is a homologue of GLP-1 and it was proven to be an 

insulinotropic incretin. However, the bioactive form of GLP-1 is debatable and 

will be reviewed below (section 1.2.2) 

1.2.2 Structure function relationship 

GLP-1 results from a post-translational cleavage of the product of the 

glucagon gene by the prohormone convertase PC1/3 (Dhanvantari et al., 2001). 

The cleavage site for PC requires two adjacent amino acids: arginine and 

lysine. Accordingly, GLP-1 would be 36 or 37 amino acids in length. 

Consequently, synthetic GLP-1 (1-36) and GLP-1 (1-37) were tested for 

biological activity (Ghiglione et al., 1984). The reported results were frustrating 

with none of the previously reported biological observations being repeatable, 

even when a hyper dose (25 nM) of GLP-1 was used; therefore, a big question 

was addressed 'How glucagon-like is glucagon-like peptide?' (Ghiglione et al., 
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1984). Later, it was suggested that the bioactive GLP-1 could be N-terminally 

truncated. The prediction was based on the alignment of the sequence of GLP-

1 with the other members of the glucagon family when the best alignment was 

with the histidine at position 7, and not position 1 of GLP-1 (Schmidt et al., 

1985). This prediction became real when it was discovered that GLP-1 was 

actually further N-terminally truncated by post-translational processing in the 

intestinal L-cells (Drucker et al., 1986, Mojsov et al., 1986). Furthermore, the 

discovered truncated GLP-1(7-37) and GLP-1(7-36)amide were found to be 

potent insulinotropic hormones in the isolated perfused pancreas of rats 

(Mojsov et al., 1987), pigs (Holst et al., 1987), and in humans (Kreymann et al., 

1987).  

 Accordingly, bioactive GLP-1(7-36) became a member of the glucagon 

superfamily of peptide hormones. Classification of this family is based on their 

considerable sequence homology, having anywhere from 21% to 48% amino 

acid identity with glucagon. The family includes GLP-1(7-37) and GLP-1(7-

36)amide, GIP, exendin-3 and -4, secretin, peptide histidine-methionine amide 

(PHM), GLP-2, helospectin-1 and -2, helodermin, pituitary adenyl cyclase-

activating polypeptides (PACAP)-38, and -27, PACAP-related peptide (PRP), 

GH-releasing factor (GRF), and vasoactive intestinal peptide (VIP). In addition 

to the sequence homology, many of the peptides share other characteristics 

like being produced from the gut; most of them are agonists and/or 

neurotransmitters. Furthermore, most of them are co-encoded within the same 

precursor, such as the peptide hormones derived from the cleavage of 

preproglucagon. However, some members differ significantly in the 

physiological processes that they regulate. For example, the major function of 

glucagon is to maintain blood glucose levels during fasting, whereas GLP-1 
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functions primarily during feeding to stimulate insulin release and to lower blood 

glucose levels. In total, the common characteristics of the family could help as 

study of one member could be applied to other members. 

 Focusing on GLP-1, in this text, GLP-1 is written instead of GLP-1(7-

36)amide and each amino acid in its sequence is marked by (*) next to it, for 

example His7*, in order to clearly distinguish it from the receptor numbers. The 

sequence of GLP-1 is highly conserved in all animal species. The conservation 

of GLP-1 reflects both its physiological importance and the fact that the entire 

amino acid sequence of GLP-1 is required for full biological activity. Removal of 

the N-terminal histidine (to yield GLP-1 (8-37)) results in a 90% loss of receptor 

binding and insulinotropic activity (Suzuki et al., 1989, Gefel et al., 1990, 

Ohneda et al., 1991, Mojsov, 1992). The positive charge of the imidazole side 

chain of the histidine residue appears to be crucial for GLP-1 actions (Hareter 

et al., 1997). However, histidine substitution by tyrosine, as in GIP and GRF, 

has a lesser effect suggesting the importance of an aromatic ring at that 

position (Parker et al., 1998). An N-terminal truncation of GLP-1 by two 

residues reduces binding affinity to approximately 1% that of full-length peptide 

(Montrose-Rafizadeh et al., 1997, Knudsen and Pridal, 1996). Furthermore, 60-

fold reduction in GLP-1 binding activity has been observed by a further N-

terminal truncation of GLP-1 of eight residues (Lopez de Maturana and 

Donnelly, 2002). Also, addition of an amino acid to the N-terminus of GLP-1(6-

37) reduces its biological activity by 90% (Suzuki et al., 1989, Ohneda et al., 

1991). Truncation at the C-terminus also reduced the biological activity of GLP-

1 considerably (Suzuki et al., 1989, Gefel et al., 1990, Mojsov, 1992, Knudsen 

and Pridal, 1996). Substitution in the N-terminal part of the GLP-1 molecule, 

with the corresponding glucagon residues, reduced the affinity for the GLP-1R 
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only moderately whereas exchanges in the C-terminal portion of GLP-1 

reduced the affinity for the GLP-1R more than 100-fold (Hjorth et al., 1994). In 

contrast, the binding affinity of GLP-1 to its receptor is more sensitive to GIP-

like changes in the N-terminal region than to changes in the C-terminal region 

(Gallwitz et al., 1994). Unfortunately, attempts to generate smaller active 

fragments of GLP-1 that retain potent insulinotropic activity have failed (Ohneda 

et al., 1991, Watanabe et al., 1994, Gallwitz et al., 1990).                                                           

By another approach using peptide analogues in which individual amino 

acids are substituted, the studies reported that the residues in positions His7, 

Gly10*, Phe12*, Thr13*, Asp15*, Phe28*, and Ile29* are important for the 

binding affinity and biological activity of GLP-1 (Adelhorst et al., 1994, Gallwitz 

et al., 1994, Watanabe et al., 1994). Replacement of these amino acids with 

alanine increased IC50 of native GLP-1 (0.27nM) to 59, 36, 36, 11, 35 and 25 

nM respectively. Likewise, these substitutions increased the EC50 from 2.6 nM 

to >104, 33, 65, >104, 2600 and 70 nM respectively (Adelhorst et al., 1994). 

Two-dimensional nuclear magnetic resonance (NMR) spectroscopy of 

GLP-1 in a membrane-like environment (a dodecylphosphocholine micelle) 

revealed that GLP-1 consists of an N-terminal random coil segment (residues 1-

7), two helical segments (7-14 and 18-29), and a linker region (15-17)  a 

structure similar to that observed for glucagon (Thornton and Gorenstein, 

1994). However, in the receptor-peptide interaction, the N-terminal segment 

formed a helix. This observation points out that the receptor-bound 

conformation of GLP-1 can be different from its conformation in solution 

(Murage et al., 2008).   
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The importance of the central kink or the linker region, particularly Gly22* 

of GLP-1 in its receptor interaction is controversial. It was reported that the 

presence of a flexible, helix-destabilizing, Gly22* in GLP-1 has an important 

role for membrane and receptor binding because of high flexibility of the peptide 

(Thornton and Gorenstein, 1994, Murage et al., 2008). Gly22* removal reduced 

GLP-1 binding affinity (Parker et al., 1998). In contrast, a Gly22Ala substitution 

has no detectable effect on either GLP-1 binding affinity or biological activity 

(Gallwitz et al., 1994).  Furthermore, it was proposed that the linker region 

weakens GLP-1 binding affinity compared to EX4 as Gly22* destabilizes the 

helix of GLP-1 (Neidigh et al., 2001, Runge et al., 2007).  

1.2.3 GLP-1 Secretion, metabolism and clearance 

GLP-1 is produced by certain types of cell located in the distal jejunum 

and ileum of the small intestine (Mojsov et al., 1990, Orskov et al., 1994). 

These cells are known as L-cells, which are clearly different from pancreatic 

glucagon producing cells (Grimelius et al., 1976). L-cells are flask shaped open 

type cells with microvilli that reach the intestinal lumen to be in direct contact 

with the digested nutrients. Also, L-cells have a domain rich in endocrine 

granules located near the basal lamina along with its blood supply (Eissele et 

al., 1992). Hence, L-cells have an ideal morphology and position to contact their 

nutrient stimulant and deliver its response. Although L-cells are well known as a 

main source of circulating GLP-1, a small amount of locally produced 

immunoreactive GLP-1 could be detected as in the pancreas (Orskov et al., 

1994) and different regions of nervous tissue (Dorn et al., 1983, Larsen et al., 

1997). 
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GLP-1 is secreted mainly in response to ingestion of carbohydrate rich 

meal (Brubaker, 2006). As introduced before, oral, but not intravenous glucose 

administration is a GLP-1 stimulant in humans (Unger et al., 1968, Hermans et 

al., 1995). However, GLP-1 can be secreted in response to a mixed meal of 

sugars, fat, protein and fibers (Takahashi et al., 1991, Elliott et al., 1993). In 

fact, after a meal, GLP-1 is released into the blood in a biphasic pattern: an 

early relatively short first phase (within 10 -15 min) then followed by a longer 

(30 - 60 min) second phase (Hermans et al., 1995).  

Obviously, it is likely that the first phase can not be stimulated by direct 

contact with the nutrients in the intestinal lumen because the main populations 

of L-cells are located in the distal part of the intestine. Nevertheless, the first 

phase can be stimulated by direct contact between nutrients and small 

populations of L-cells, which are scattered in the more proximal parts of the 

small intestine (Theodorakis et al., 2006). Alternatively, this phase could be 

controlled by other stimuli that include the autonomic nervous system (Rocca 

and Brubaker, 1999, Balks et al., 1997), the neurotransmitter acetylcholine 

(Anini et al., 2002, Anini and Brubaker, 2003), gastrin-releasing peptide (GRP) 

(McDonald et al., 1983) and the calcitonin gene related peptide (Herrmann-

Rinke et al., 2000). GIP stimulated GLP-1 release has been reported in canines 

and rodents but not in humans (Nuck et al., 1993).  

Unlike the first phase, it is clear that the second or later phase of GLP-1 

secretion is stimulated by direct contact between the digested nutrients and 

intestinal L-cells (Roberge and Brubaker, 1991). At the molecular level, GLP-1 

secretion is stimulated via glucose metabolism by a group of intracellular 

signals, such as PKA, PKC, calcium and MAPK (Reimann and Gribble, 2002). 

Compared to factors contributing to GLP-1 stimulation, few studies have been 
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carried out to investigate the inhibition of GLP-1 secretion. These studies 

reported that insulin, somatostatin (Wider et al., 1976), and the neuropeptide 

galanin (Saifia et al., 1998) can inhibit GLP-1 secretion.  

Once the bioactive form of GLP-1 is released into the blood stream it 

survives for less than two minutes.  This short half-life is due to rapid 

inactivation by a widely distributed proteolytic enzyme called dipeptidyl 

peptidase-IV (DPP-IV) (Deacon et al., 1995). DPP-IV, also known as CD26, is a 

serine protease that specifically cleaves dipeptides from the amino terminus of 

oligopeptides or proteins if they contain alanine or proline residue in position 

two. Accordingly, bioactive GLP-1 (7-36) is a typical substrate, to be rapidly 

broken down by DPP-IV cleavage to the poorly active or inactive product GLP-

1(9-37) or GLP-1(9-36)NH2 (Kieffer et al., 1995).  Intriguingly, DPP-IV can be 

found wherever GLP-1 is; DPP-IV is expressed in the endothelial cells lining 

blood vessels that drain the intestinal mucosa including GLP-1 secretory cells 

(Hansen et al., 1999). Moreover, DPP-IV is detected as a soluble protein in the 

circulation (Mentlein, 1999). Consequently, more than half of synthesized GLP-

1 enters circulation as an inactive form (Marguet et al., 2000). In addition, 

neutral endopeptidase 24.11 (NEP-24.11), a membrane–bound zinc 

metallopeptidase, has been reported to have activity on GLP-1 with up to half of 

the circulating GLP-1 undergoing C-terminal cleavage by NEP-24.11 

(Plamboeck et al., 2005). The half-life of GLP-1 metabolites is 5 min, which is 

controlled by renal clearance and hence the kidney is the major route for 

elimination of GLP-1 through both glomerular filtration and tubular uptake.  The 

kidney involvement is indicated by the high levels of GLP-1 metabolites in 

patients with renal insufficiency, while the level of intact GLP-1 remains as 

normal (Meier et al., 2004). 
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Between release by L-cells and clearance by the kidney, fasting plasma 

levels of bioactive GLP-1 are maintained at 5 -10 pmol/L in humans with a 2-3 

fold increase after a meal depending on the size and composition of the meal 

(Elliott et al., 1993). Interestingly, postprandial levels of bioactive GLP-1 are 

reduced in NIDDM patients (Vaag et al., 1996). Since the breakdown and 

clearance rate of GLP-1 is similar in healthy, NIDDM and obese persons, the 

reduction in postprandial GLP-1 in obese and NIDDM patients could be due to 

reduction in GLP-1 secretion (Vilsboll et al., 2003). While the reason for  GLP-1 

reduction is not known in NIDDM individuals, the cause in obese people could 

be related to leptin resistance (Anini and Brubaker, 2003). 

1.2.4 Physiological action of GLP-1 

 GLP-1 has a non-redundant glucose homeostatic effect mediated by 

controlling several interactive functions in more than one organ (Figure 1-1). In 

the pancreas, GLP-1 works with glucose to stimulate insulin synthesis by 

pancreatic β-cells (Kreymann et al., 1987, Mojsov et al., 1987) in different 

synergistic ways, including increasing cyclic adenosine monophosphate (cAMP) 

with its downstream action, replenishing β-cells insulin stores by promoting 

insulin gene transcription (Drucker et al., 1987), as well as by restoring glucose 

sensitivity in glucose resistant β-cells (Holz et al., 1993). Also, GLP-1 increases 

β-cell mass by stimulating β-cell proliferation and by inhibiting β-cell apoptosis 

(Buteau et al., 2004, Farilla et al., 2003, Yusta et al., 2006). In addition, GLP-1 

up-regulates somatostatin secretion by pancreatic δ-cells (Fehmann and 

Habener, 1991).  In contrast, GLP-1 inhibits glucagon secretion by pancreatic 

α-cells (Heller et al., 1997). It is worth noting that GLP-1’s physiological action 

on the pancreas is mediated through a glucose-dependant mechanism, which 

will be described in detail by introducing the GLP-1 signaling cascade. 
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 The systemic action of GLP-1 contributes to the normalization of blood 

glucose by delaying the movement of food from the stomach to the intestine.  

Deceleration of gastric emptying antagonizes the meal-related increase in 

postprandial blood glucose levels (Willms et al., 1996). Surprisingly, although 

the reduction in postprandial glucose level in diabetic patients has been found 

to be accompanied by a reduction in insulin secretion (Nauck et al., 1997), it 

has been reported that the delay in food emptying is better for normalizing 

blood glucose than the GLP-1 incretin effect (Meier and Nauck, 2005).  

 

Figure  1-1:  Physiological actions of GLP-1. 

GLP-1 mediates glucoregulatory effect through acting directly on the endocrine 
pancreas, heart, stomach, and brain, whereas actions on liver and muscle are indirect. 
GLP-1 actions include upregulation of some functions (blue arrows) and down 
regulation of others (red arrows)  (Drucker, 2006). 

 

  Moreover, GLP-1 works peripherally and/or centrally on the nervous 

tissues mediating gluco-regulatory action. GLP-1R has been detected in the 

areas that regulate feeding behaviour (Turton et al., 1996) and gastric motility 

(Nagell et al., 2006). Animal studies revealed that central or peripheral 

administration of GLP-1R agonists reduced food and water intake with a 
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consequent loss in body weight (Turton et al., 1996). The rapid inactivation of 

more than 50% of secreted GLP-1 locally by DPP-IV and the availability of only 

low levels of bioactive GLP-1 result in the proposal of a neural mechanism to 

mediate GLP-1R agonist- dependent insulin secretion (Deacon et al., 1996, 

Balkan and Li, 2000). In experimentally hyperglycaemic mice, GLP-1 stimulated 

neural pathways that inhibit muscle glucose uptake, increase insulin secretion 

and inhibit hepatic glycolysis (Knauf et al., 2005). GLP-1 not only recruits 

neuronal cells but also protects them from apoptosis, as well as improving their 

memory and learning functions (During et al., 2003). 

The beneficial effect of GLP-1 extends to include the cardiovascular 

system. Three days treatment with GLP-1 in patients with acute myocardial 

infarction and angioplasty improved regional and global left ventricular function 

and was accompanied by a reduced death rate and short duration of 

hospitalization (Nikolaidis et al., 2004). However, it is not known whether GLP-1 

has a direct positive effect on the cardiac tissue in humans or whether its 

effects are due to improving metabolism and related blood parameters 

(Nikolaidis et al., 2004). However, it has been reported that GLP-1 has a direct 

protective effect on isolated heart preparation (Zhao et al., 2006). Additionally, 

GLP-1 action has been related to improved endothelial function in NIDDM 

patients (Nystrom et al., 2004). Furthermore, the improved endothelial function 

was associated with a protective role of GLP-1 in the kidneys, as well as 

increased water and salt excretion (Yu et al., 2003, Gutzwiller et al., 2004).   

GLP-1 has been suggested to increase hepatic glucose disposal and to inhibit 

hepatic glucose production (Prigeon et al., 2003). Also, GLP-1 promotes 

lypolysis in both human and rat adipocytes (Ruiz-Grande et al., 1992, 

Villanueva-Penacarrillo et al., 2001).  
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1.2.5 GLP-1 intracellular signal transduction pathways 

G protein-coupled receptors (GPCRs) have been found to be involved in 

the mechanism by which L-cells can sense and respond to the nutrient 

composition in the lumen of the gut (Fredriksson et al., 2003).  L-cells are 

present in the distal ileum and colon with their apical side in contact with the gut 

lumen, which can detect free fatty acids (FFAs), glucose and carbohydrates.  

FFAs have been shown to stimulate G protein-coupled receptor 120 (GPR120), 

which is present in L-cells and provides strong evidence for its role in GLP-1 

release (Hirasawa et al., 2005). Glucose stimulates secretion of GLP-1 by ATP 

closure of ATP-sensitive potassium channels (KATP) (Reimann and Gribble, 

2002) while other non-metabolizable sugars enhance GLP-1 secretion through 

a sodium–glucose cotransporter-dependent mechanism (Gribble et al., 2003).  

As a result of these stimuli, L-cells release GLP-1 by exocytosis into the blood 

stream.  

In fact, the most relevant action is the promotion of glucose stimulated 

insulin secretion from β-cells.  When the intact GLP-1 reaches the pancreatic β-

cells in the islets of Langerhans, it binds to the GLP-1R present on the cell 

surface and activates this receptor (Goke and Conlon, 1988).  Once GLP-1R is 

in an active conformation it can couple with heterotrimeric G-proteins 

(demonstrated in Figure 1-2), of the stimulatory G protein (Gs) type, on the 

intracellular face of the receptor. Consequently, Gs in turn activates the enzyme 

adenylyl cyclase, which raises intracellular levels of the second messenger 

cAMP (Hoosein and Gurd, 1984).  However, the subunits are also believed to 

activate phospholipase Cβ (PLC-β) pathways (Kristiansen, 2004). 
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Figure  1-2: The GTPase cycle. 

The binding of a ligand (L) to the GPCR-G-protein complex triggers the release of GDP 
from Gα.  The empty state of Gα has low affinity to the ligand-bound GPCR and permits 
the binding of GTP.  GTP-bound Gα subsequently dissociates from Gβγ and both 
components stimulate various effectors.  Intrinsic GTP hydrolysis, which can be 
accelerated by the binding of a regulator of G protein signalling (RGS), eventually turns 
off the Gα via release of a phosphate (Pi).  Finally the GDP-bound Gα combines with 
the Gβ and the ligand-free GPCR returns to its resting phase. Taken from (Ho and 
Wong, 2002). 
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The fact that insulin secretion from β-cells takes place in the absence of 

GLP-1 signalling (Dupre and Beck, 1966) makes the exact mechanism by 

which the GLP-1 signalling cascade leads to increased insulin secretion difficult 

to fully understood. However, it has been suggested that GLP-1 reduces KATP 

channel activity by elevating the sensitivity of KATP channels to ATP, along with 

supporting calcium-dependent exocytosis leading to exocytosis of insulin via 

membrane depolarisation (Figure 1-3) (Suga et al., 2000, Gromada et al., 

1998). 

 Pancreatic β-cells sense the levels of circulating glucose in the blood by 

glucose uptake via the GLUT2 glucose transporter present in the cell 

membrane.  GLUT2 has low affinity for glucose and, accordingly, the rate of 

glucose transport changes with fluctuations in blood glucose concentration 

(Saltiel, 2001). Once inside the cell, glucose is phosphorylated to glucose-6-

phosphate by glucokinase. The Michaelis constant (KM) of glucokinase for 

glucose is 100 times higher than that of other hexokinases; therefore, 

glukokinase has a lower affinity for glucose than other hexokinases. This lower 

affinity makes glukokinase a rate-limiting enzyme that acts as the ‘glucose 

sensor’ linking extra-cellular glucose concentrations to insulin secretion 

(Matschinsky, 2002).  Intracellular ATP levels increase as a result of the 

breakdown of glucose-6-phosphate by glycolysis, which yields increased levels 

of intracellular cAMP (Saltiel, 2001).   

Hence, GLP-1 leads to the inhibition of KATP through increasing its 

sensitivity to ATP.  KATP channel inhibition depolarizes the membrane and 

causes the opening of voltage-dependant calcium channels, leading to an influx 

of calcium ions (Ca2+) into the β-cell.  The increase in the intracellular Ca2+ 

concentration is the trigger for secretion by exocytosis of insulin stored              
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in vesicles, but only in the presence of the amplifying messenger          

molecules diacylglycerol (DAG), non-esterified arachidonic acid and              

1S-hydroxyeicosatetraenoic acid (12-S-HETE) (Turk et al., 1993).  Insulin 

secretion leads to the excess glucose present in the bloodstream being 

sequestered and stored in various forms for later use and balances the 

opposing actions of glucagon, which causes the release of glucose stored in 

liver and muscle (Saltiel, 2001).  

Additionally, GLP-1 sustains β-cell insulin stores through stimulation of 

proinsulin gene expression (Drucker et al., 1987). GLP-1 increases proinsulin 

gene transcription and mRNA stability through cyclic AMP-dependent PKA-

independent mechanisms (Wang et al., 2005). Additionaly, GLP-1 increases the 

expression of pancreatic and duodenal homeobox-1 (Pdx-1), by increasing 

Pdx-1 gene transcription and by enhancing Pdx-1 binding to the insulin gene 

promoter (Figure 1.3) (Wang et al., 1999, Wang et al., 2005).  

Moreover, increased Pdx-1 gene expression is associated with 

increased β-cell mass (Stoffers et al., 2000). Also, GLP-1 supports survival and 

proliferation of β-cells via inhibition of apoptotic pathways. GLP-1 does this by 

reducing caspase-3 expression (Wang and Brubaker, 2002), as well as up-

regulating Bcl-2 and down-regulating Bax expression (Farilla et al., 2003). 

Furthermore, GLP-1 extends β-cell mass by promoting β-cell proliferation 

through both transactivation of the epidermal growth factor receptor (EGFR) 

and down-regulation of the transcriptional regulator Foxo1 via phosphorylation- 

dependent nuclear exclusion in an EGFR-dependent  manner (Buteau et al., 

2003). GLP-1 also enhances the proliferation of β-cells by reducing the 

expression of two negative intracellular regulators CREMα, an inhibitor of the 

cAMP/PKA/CREB pathway, and DUSP14, an inhibitor of the MAPK/ERK1/2 



Chapter 1: Introduction 

 

18 

pathway (Klinger et al., 2008).  In conclusion, it could be said that GLP-1 

comprehensively directs all β-cell processes toward optimum insulin production.   

 

Figure  1-3: GLP-1 signal transduction pathways in the pancreatic β-cell.  

GLP-1 receptor interaction not only leads to insulin depletion by exocytosis but also 
stimulates insulin repletion via enhancement of some intracellular and extracellular 
mechanisms (blue arrows) and inhibition of others (red arrows) (Drucker, 2006).  

1.2.6 GLP-1 as potential anti-diabetic therapy 

  The continuous increase in the number of diabetic patients, particularly 

those with NIDDM, raises the need for the discovery of new antidiabetic drugs. 

The most commonly used sulfonylurea-derived oral hypoglycaemic agents act 

by binding to the sulfonylurea receptor subunit of the KATP channel of pancreatic 

β-cells leading to insulin exocytosis (Babenko et al., 1998). However, the same 

channels are present in cardiac and vascular smooth muscle (Yokoshiki et al., 

1998). As a result, closure of the KATP channel by sulfonylureas interferes with 

ischemic preconditioning, which could contribute to cardiac ischemia and 

infarction (Brady and Terzic, 1998). Furthermore, the effects of sulfonylurea 
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insulin secretgogues are not glucose-dependent giving rise to an additional 

potential side effect, hypoglycaemia (Veneman et al., 1998). While 

sulphonylureas enhance insulin secretion they do not replenish the evacuated 

insulin stores. 

 In contrast, GLP-1 stimulates insulin synthesis and secretion in 

interactive processes that sustain a convenient insulin supply. Additionally, 

GLP-1 mediates other interactive physiological functions that support 

normalized glucose homeostasis. The failure of sulfonylureas and the success 

of GLP-1 suggested that GLP-1 might be a good candidate to enhance β-cell 

function in diabetic patients, without increasing the risk of hypoglycemia that 

accompanies sulfonylurea treatment. However, the suggestion is challenged by 

the short half life of GLP-1 due to rapid breakdown by DPP-IV and rapid renal 

clearance.  Consequently, several alternate strategies for utilizing the beneficial 

effect of GLP-1 for diabetes therapy are under investigation. 

 The strategies include modifying different positions within the N-terminus 

of GLP-1 in order to resist breakdown by DPP-IV. The most successful 

analogues have D-amino acid substitutions at position 2 of GLP-1, with at least 

ten-fold increases in DPP-IV resistance, as well as maintaining most of the 

biological activity of native GLP-1 (Siegel et al., 1999). Likewise, other 

modifications have been created, including, N-terminal modification at His1* 

and Ala2* and chimeric derivatives created by replacing the N-terminus of GLP-

1 with the corresponding region of its related peptides (e.g., glucagon, GIP, 

PACAP, secretin, VIP) (Xiao et al., 2001). 

 Another strategy was applied to produce long acting GLP-1 by acylation 

at its C-terminus, which protects GLP-1 from enzymatic break down and delays 

its renal excretion. The analogue has been known as Liraglutide and was 
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approved as a commercial drug in the EU in 2009 (Vilsboll, 2009). Liraglutide 

retains the physiological properties of GLP-1 (Kendall, 2005, Garber et al., 

2009). Another long acting GLP-1 is being developed by conjugating GLP-1 

with albumin derivatives which could increase GLP-1 plasma half-life (Baggio et 

al., 2008). 

 To maintain naturally-produced intact GLP-1, an alternate strategy was 

adopted to develop orally available DPP-IV inhibitors such as sitagliptin and 

vildagliptin.  These inhibitors showed 80%-90% inhibition of DPP-IV and an 

approximately two-fold increase in circulating bioactive GLP-1 in humans 

(Herman et al., 2006, He et al., 2007). However, the inhibition of DPP-IV 

affected the level of many other substrates of DPP-IV, including chemokines, 

hormones and neuropeptides (Drucker, 2007). 

 The ease of oral administration of DPP-IV inhibitors prompted research 

to develop non-peptide, orally available GLP-1R agonists (Su et al., 2008) or 

pulmonary delivery of GLP-1R agonists (Qian et al., 2009). Another promising 

approach has been targeting enhancement of L-cells via stimulation of their 

GPCRs. For example, oral treatment with G protein-coupled receptor 119 

(GPR119) agonists enhanced GLP-1 secretion in WT rats (Shah, 2009). 

   Overall, it would be the best if a naturally modified GLP-1 was 

discovered, and indeed this was the case with the discovery of EX4, a peptide 

derived from lizard venom. The natural substitution of Ala for Gly at position two 

protects EX4 from rapid degradation by DPP-IV, while it nevertheless retains all 

the normal physiological functions of GLP-1 (Eng et al., 1992). The synthetic 

form of EX4, exenatide (Byetta®) is the first GLP-1 mimetic to receive FDA 

approval in 2005 (Gedulin et al., 2005).  
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1.3 Exendins 

1.3.1 Discovery of exendins 

Exendins (EXs) are a family of peptides originally isolated from saliva of 

the Gila monster lizard Heloderma suspectum that includes helospectin (EX1), 

helodermin (EX2), EX3 and EX4. Although EXs  are not found in mammals, 

exogenous EXs have endocrine function in regulation of the mammalian 

pancreatic secretion, the first example of an exocrine secretion that has an 

endocrine function (Eng et al., 1990, Eng et al., 1992). In the Gila monster, EXs 

are released to the circulation directly after a prey ingestion without any certain 

role in the energy homeostasis of the lizard i.e EXs are not the GLP-1 

equivalent in the lizard (Young, 2002). Initial purification and characterization 

studies of EXs reported that they had an amino-terminal histidine (His1) 

revealing close relationship with the peptides of the glucagon superfamily, 

especially GLP-1 (Eng et al., 1990). Furthermore, functional investigation of the 

exendins showed that they are pancreatic secretagogue peptides that stimulate 

amylase production through activation of VIP receptors, the exceptions to this 

being EX3 and EX4, which interact exclusively with GLP-1R receptor to 

enhance pancreatic acinar cAMP levels (Eng et al., 1992, Raufman et al., 

1991). This exception has caused EX3 and EX4 to receive special attention as 

a research subject over the other EXs as the presence of a mammalian 

analogue would be expected. Consistent with the title of this thesis, this work is 

focusing primarily upon EX4 and each amino acid of its sequence is marked by 

(**) for example His1**.  
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1.3.2 Physiological action 

Based on laboratory and clinical studies, EX4 mediates similar 

physiological properties in glucose homeostasis to the native GLP-1 such as  

the delay of gastric emptying (Kolterman et al., 2003) and the reduction of food 

intake (Szayna et al., 2000). In addition, EX4 stimulates glucose-dependent 

insulin secretion (Egan et al., 2002, Parkes et al., 2001) and supports -cell 

function and proliferation, as well as islet neogenesis from the precursor cells 

both in vitro and in vivo (Tourrel et al., 2002, Xu et al., 1999). EX4 not only 

shares GLP-1’s gluco-regulatory action but also mediates its actions through 

coupling to GLP-1R as a more potent agonist than GLP-1  (Thorens et al., 

1993, Goke et al., 1993).  

1.3.3 Structure function relationship 

All the above appears consistent with the high identity in primary 

structure between EX4 and GLP-1. EX4 is a 39 amino acid peptide with 53% 

identity with GLP-1, and an overall 80% identity in the N-terminus (Figure 1-4), 

which highlights the importance of this region in GLP-1R activation (Kieffer and 

Habener, 1999). The most prominent variation in the N-terminus (surrounded 

by a rectangle in Figure 1-4) between EX4 and GLP-1 is the substitution of 

Ala8* in GLP-1 by Gly2** in EX4 (Figure 1-4), the feature that protects EX4 

from rapid degradation in plasma by DPP-IV (Goke et al., 1993). As a result, 

unlike GLP-1, EX4 has a long half-life with a consequent potent action. 

Moreover, while GLP-1 affinity is highly sensitive to N-terminal cleavage, EX4 

can be truncated by up to eight residues without a significant loss of affinity but 

with a change to antagonistic function (Thorens et al., 1993).  
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Furthermore, Montrose-Rafizadeh et al., 1997 investigated the 

successive removal of residues from the N-terminus of EX4 and assessed the 

receptor interaction for each truncated form. Removal of the first amino acid 

attenuates EX4 agonistic activity while the successive removal of amino acids 

(from 2nd to 9th) leads to the loss of the receptor activation with an antagonistic 

effect. The deletion of these amino acids does not significantly affect the affinity 

of the truncated EX4 for the receptor.  

The central region of EX4, residues 10-30 (displayed as ‘H’ in Figure 1-

4), shares eight identical residues with equivalent region of GLP-1 (Figure 1-4) 

and has been shown by NMR analysis to be a highly stabilized helical structure 

(Neidigh et al., 2001). The eight identical amino acids in both EX4 and GLP-1 

would lie on the same face of an ideal -helix of their sequence (Figure 1-5), 

indicating the face of the helix that is likely to mediate the critical contact with 

the receptor (Lopez de Maturana and Donnelly, 2002). Binding analysis of 

truncated EX4 (9 – 30) and its equivalent GLP-1(15-36) that exclude the effect 

of the N-termini of both ligands and the C-terminus of EX4, showed that EX4(9-

30) had slightly higher affinity than GLP-1(15-36)  (pIC50 (–log of half maximal 

inhibitory concentration)  are 6.7 and 6.4 respectively) for rGLP-1R. Therefore, 

the retention of receptor affinity by truncated EX4 suggests that, relative to 

GLP-1, both the central region and C-terminus of EX4 play a vital role in 

receptor binding, which is termed ‘N-independent affinity’ (Al-Sabah and 

Donnelly, 2003a). 
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Figure  1-4: The sequence of both GLP-1 and EX4, and schematic diagram of EX4. 
The conserved amino acids are in red colour. The N-termini are underlined and 
surrounded by a rectangle. The characteristic extra C-terminal 9 amino acids of EX4 
are also surrounded by a rectangle. The proposed structure is demonstrated by a 
schematic diagram of EX4 showing its three interactions: N, H, and EX.     

 

 

 

 

 

 

 

 

Figure  1-5: The helical wheel representation of EX4. 

 Residues that are conserved with GLP-1 are showed in red. Other EX4 residues are 
shown in green. 
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 Despite the above, the higher helicity of the central part of EX4 over the 

corresponding area of GLP-1 cannot be overlooked. NMR spectroscopy of EX4 

and GLP-1 has revealed that the helix in EX4 is more regular than that in GLP-1 

(Neidigh et al., 2001), perhaps due to the presence of a helix-stabilising 

Glu16**: Arg20** interaction in EX4 compared with a helix destabilising Gly22* 

in GLP-1. However, for that reason, comparison of the binding data for EX4(9–

30) and Gly16-EX4(9–30) demonstrated that the disruption of the putative 

helical structure did not result in a loss of affinity since pIC50 values for EX4(9–

30) and Gly16-EX4(9–30) are not significantly different (P>1) (Al-Sabah and 

Donnelly, 2003a) 

Replacement of the destabilising segment in GLP-1 (EGQAAKE) with its 

counterpart in EX4 (EEEAVRL) did not change GLP-1(15-36) affinity (Al-Sabah 

and Donnelly, 2003a). This suggests that the small difference in affinity 

between GLP-1(15–36) and EX4(9–30) is due to some other factors. However, 

a later study using both biophysical and pharmacological analysis of EX4 and 

its truncated analogues bound to isolated hGLP-1R-NTD suggested that the 

superaffinity of EX4 is due to its stable helical structure (Runge et al., 2007).  

Collectively, (Lopez de Maturana et al., 2003) proposed two defined 

interactions, common to EX4 or GLP-1, according to their contribution to 

receptor-ligand interaction (Figure 1-6). These regions are firstly ‘N’ for the 

interaction between N-terminus of the peptide and GLP-1R core domain and 

secondly is ‘H’ for the interaction between the central helical regions of the 

peptide, particularly the face of the helix composed of the conserved residues, 

and rGLP-1R-NTD. In addition to ‘N’ and ‘H’, it was proposed that EX4 has an 

‘EX’ interaction unique to EX4 and its N-terminally truncated analogue EX4(9-
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39), which enables its N-independent affinity by enhancing its affinity to the 

rGLP-1R- NTD.  

A complementary study by the same laboratory proposed that the ‘EX’ 

interaction is formed between the NTD of the receptor and the extended C-

terminal region  of EX4 (Al-Sabah and Donnelly, 2003a). Despite establishing a 

guidance model for the ligand receptor interaction based on the percentage of 

binding energy with either EX4 or GLP-1, the investigation did not characterize 

the exact residues of the receptor NTD involved in this interaction. However, 

the result of the study appears consistent with models for peptide-receptor 

binding at other Family B GPCRs (Bergwitz et al., 1996, Runge et al., 2003).  

Taken together, while the N-termini in both EX4 and GLP-1 have nearly 

the same amino acid sequence, as well as similar ‘H’ interaction, EX4 has 9 

amino acids more in its C-terminus. The additional 9 residues have been 

shown, by NMR, to form a ‘trp cage’ in hydrophobic conditions, such as 

trifluoroethanol (TFE) (Neidigh et al., 2001). Creating a chimera between this 

region and the less stable form of GLP-1, GLP-1 Gly8 EX4(31-39), improved its 

biological stability and receptor affinity (Doyle et al., 2003). Interestingly, 

truncated EX4(9-39) retains a high affinity for the isolated rGLP-1R-NTD (Lopez 

de Maturana et al., 2003), which confirms the independence of this affinity from 

both the N-terminus of EX4 (Montrose-Rafizadeh et al., 1997) and the loop 

regions of the receptors (Lopez de Maturana and Donnelly, 2002). Like the N-

terminus of EX4, deletion of the characteristic nine amino acid C-terminus of 

EX4(9-39) reduced affinity for rGLP-1R (Al-Sabah and Donnelly, 2003a) 

suggesting that C-terminus of EX4 could confer its superaffinity for rGLP-1R- 

NTD.  
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Figure  1-6 : Three dimensional cartoons of the receptor peptide complex of 
either GLP-1 or EX4.   
Top: GLP-1 (left) or EX4 (right), GLP-1 has ‘H’ and ‘N’ interactions only while EX4 has 
‘H’ and ‘N’, as well as ‘EX’ interactions. Bottom: Energy of binding, the proportional 
energy contributed to each region is shown during the binding of the peptides, either 
GLP-1 or EX4, with rGLP-1R. The energy of binding was calculated using the equation 
ΔG= -RTInK (where R is the universal gas constant, T is the temperature of the binding 
assay in degrees Kelvin and K is the affinity constant approximated by IC50) for each 
truncated peptide as a percentage of its full-length counterpart, giving the relative 
contribution to binding of each region (adapted from Al-Sabah and Donnelly, 2003a). 
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1.3.4 EX4 metabolism and clearance 

EX4 has a half-life of 26 min in humans’ blood (Edwards et al., 2001). EX4 

is not degraded significantly by DPP-IV (Thum et al., 2002) and it is a poor 

substrate for other enzymes like NEP-24.11 (Hupe-Sodmann et al., 1995). EX4 

is cleared exclusively by the kidneys (Simonsen et al., 2006). 

1.4 The superfamily of G protein-coupled receptors  

1.4.1 Definition and classification 

GPCRs include receptors for diverse endogenous ligands such as 

amines, peptides, amino acids, glycoproteins, prostanoids, phospholipids, fatty 

acids, nucleosides, nucleotides, Ca2+ ions, and sensory receptors for various 

exogenous ligands such as odorants, bitter and sweet tastants, pheromones, 

and photons of light. Moreover, about 80% of known hormones and neuro-

transmitters activate cellular signal transduction mechanisms by activating 

GPCRs (Birnbaumer et al., 1990). Accordingly, dysfunctions of GPCRs cause 

human diseases. Therefore, GPCRs are targets for 30 - 45% of current drugs 

under development (Drews, 2000, Hopkins et al., 2000) and, due to their 

excellent potential for drug design, GPCR targets represent up to 30% of the 

portfolio of many pharmaceutical companies (Klabunde and Hessler, 2002). 

The availability of advanced biological techniques such as protein 

engineering, molecular modelling, and genetic approaches to study GPCRs has 

provided a huge amount of information about their structure and function. In 

general, GPCRs are a group of receptors that share a common membrane 

topology of seven trans-membrane (7TM) helices connected by alternative 

ECLs and ICLs, with an extra-cellular N-terminus and a cytoplasmic C-terminus 

(Ballesteros and Weinstein, 1992). Furthermore, GPCRs mediate most of their 

intracellular actions through coupling and activation of G proteins, the pathway 
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from which the receptors derive their name (Gether et al., 2002). G-proteins 

transmit the signal to an effector protein, such as an enzymes or ion channel, 

resulting in rapid changes in the concentration of the intracellular signalling 

molecules such as cAMP or inositol phosphates (Cabrera-Vera et al., 2003).  

However, not all receptors that activate G-proteins are members of 

GPCRs; other receptors such as the receptor for epidermal growth factor g can 

activate G-proteins (Iismaa, 1995) and interestingly some GPCRs may use both 

heterotrimeric G proteins and other cytoplasmic non-G protein transducers. 

Therefore, alternative names like 7TM receptors or serpentine-like receptors 

are preferred by some authors (Pierce et al., 2002). On the other hand, other 

heptahelical receptors or serpentine-like receptors like bacteriorhodopsin are 

not related to GPCRs in function or evolution. 

In order to overcome that confusion,  members of the superfamily of 

GPCRs have been identified and classified by their native ligands, by 

phylogenetic analysis of their amino acid sequences, by analysis of clustering 

of genes in the human genome, and by analysis of globular domains and motifs 

in the N-terminus (Fredriksson et al., 2003).  (Fredriksson et al., 2003) classified 

GPCRs into five main families that they termed glutamate (G, with 15 

members), rhodopsin (R, 701), adhesion (A, 24), frizzled/taste2 (F, 24) and 

secretin (S, 15), to which they applied the acronym GRAFS (Figure 1- 7). 

However, the A-F system is the most commonly used (Attwood and Findlay, 

1994, Kolakowski, 1994). According to the A-F system GPCRs include the 

receptors related to the ‘light receptor’ rhodopsin and the β2-adrenergic receptor 

(family A), the receptors related to the secretin receptor (family B), and the 

receptors related to the metabotropic neurotransmitter receptors (family C), 

STE2 receptors (family D), and STE3 receptors (family E). The principal 
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differences between the GRAFS system and A-F system are the division of 

Family B GPCRs into secretin and adhesion families and the incorporation of 

the recently discovered Frizzled and Taste2 receptors.  The common structural 

elements of the major families according to A-C system are shown in Figure 1-8 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 Figure  1-7:  Phylogenetic tree of the GPCRs.  
GRAFS classified GPCRs based on the human genome into five main families that 
termed glutamate (G, with 15 members), rhodopsin (R, 701), adhesion (A, 24), 
frizzled/taste2 (F, 24) and secretin (S, 15). The big letters A, B and C refer to the 
position of this families in the A-C system. These branches of rhodopsin family were 
removed from figure and replaced by an arrow toward the rhodopsin family for 
simplification  (Fredriksson et al., 2003).  
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Figure  1-8: Common structural elements of the three major subfamilies GPCRs.  

In general, the three major subfamilies GPCRs are characterized by a series of highly 
conserved key residues (black letter in white circles) and a disulphide bridge 
connecting ECL2 and ECL3 (white letters in black circles). A: Family A receptors are 
specifically characterized by DRY motif at the bottom of TM 3 and a palmitoylated 
cysteine in thecarboxy-terminal tail causing formation of a putative fourth intracellular 
loop. B: Family B receptors are specifically characterized by a long NTD containing 
several cysteines forming disulphide bridges. Unlike the A receptors, the palmitoylation 
site and DRY motif are missing. Moreover, the conserved prolines are different. C: 
Family C receptors are specifically characterized by a unique, very short and highly 
conserved third intracellular loop. The NTD is very long (about 600 amino acids) and 
thought to contain the ligand-binding site. The C receptors do not have any of the key 
features characterizing A and B receptors. (Adapted from (Gether, 2000). 
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1.4.2 Structure 

The pharmacological importance of GPCRs has raised the interest in 

investigating their structure to understand how they bind their ligands and 

transduce their signals. At first, crystallization of membrane protein was difficult 

resulting from difficulties in preparing samples suitable for crystallographic 

studies. At that time, the bacteriorhodopsin structure was determined by using 

electron cryo-microscopy (Henderson et al., 1990). Although bacteriorhodopsin 

does not activate G proteins it was considered a bacterial homologue of 

mammalian rhodopsin because of its trans-membrane structure and similar 

chromophore. 

 One decade later, the crystal structure of rhodopsin was determined at 

2.8 Å resolution (Palczewski et al., 2000). The structure displayed seven 

helices that are arranged counter-clockwise when viewed from the intra-discal 

side, with helices 1, 2, 3 and 5 tilted and helices 5 and 7 distorted at Pro 

residues.  Helix 2 also has a kink due to the flexibility of the Gly-Gly sequence 

in the middle of the helix. The helices are connected by a network of hydrogen 

bonds and hydrophobic interactions that constrain the receptor in an inactive 

conformation (Figures 1-9 and 1-10; Palcewski et al., 2000). 

Although the individual families within the GPCR superfamily have no 

detectable sequence identity, the entire receptors share the characteristic 

structure of 7TM helices connected by alternating ICLs and ECLs. The N-

terminus is extra-cellular and variable in length.  The binding domains vary 

depending on the family of receptor, type of ligand (small molecule or peptide; 

agonist or antagonist; Figure 1-11). In general, small ligands are thought to bind 

in the central cavity formed by the TM helices, while larger and peptide ligands 

interact with the extra-cellular regions of the receptors.  The C-terminus is 
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located in the cytoplasm and, along with the ICLs, interacts with an intracellular 

heterotrimeric G protein to initiate signal transduction and mediate its effect. 

These cytoplasmic domains are targets of post-translational modifications such 

as phosphorylation, dephosphorylation, palmitoylation and ubiquitination.    

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
Figure  1-9: The crystal structure of rhodopsin.  
Left: ribbon drawing of the crystal structure of rhodopsin. The figure is shown as 
parallel to the plane of the membrane. The transmembrane helices are numbered in 
latin numbers while antiparallel β sheets are numbered in Arabic numbers (from 
Paleczewski et al., 2000). Right: cartoon representation, the intradiscal surface are 
toward the bottom and cytoplasmic surface is toward the top of the figure (modified 
from (Marin et al., 2000)   
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Figure  1-10: The predicted structure of rhodopsin-like GPCRs. 

 A: Diagram of a rhodopsin-like GPCR as seen from the extra-cellular side with each 
helix represented by a cylinder. The helices are organized in a counter clockwise 
pattern. B: ‘Helical wheel’ diagram of helices showed in A. The conserved fingerprint 
residues are shown in yellow. Based on the Schwartz numbering scheme, the number 
is given according to its predicted relative position in the helix (Schwartz et al., 1995). 
For example, ProV.16 indicates residue number 16 in TM 5. In the Ballesteros-
Weinstein numbering scheme the most conserved residue in each helix has been 
given the number 50 (Baldwin et al., 1997). The residues are indicated according to the 
Schwartz scheme followed by the Ballesteros-Weinstein number in superscript 
(Gether, 2000).  
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Figure  1-11: Schematic models of ligand- GPCRs complexes.  
The binding sites are located in different regions of the receptor according to the type 
of the ligand. The binding sites for all small molecule ligands in Family A receptors are 
embedded deeply between the 7 TM helices. Competitive antagonists and agonists 
interact with partially overlapping binding sites in biogenic amine receptors. in 
muscarinic receptors, the binding sites for allosteric antagonists have been identified 
localized extra-cellular of primary binding sites. In many peptide receptors (e.g., NPY, 
angiotensin II, and GnRH receptors), the binding sites for the native peptides include 
residues from both extracellular domain (NTD and ECLs) and core domain. The 
binding sites for substance P in the NK1 neurokinin receptor involve only extracellular 
domains. Leucine-rich repeat (LRR) region in the N-termini and ECLs include the 
binding sites of the receptors interacting with glycoprotein hormones (LH, TSH, and 
FSH) and relaxin peptides. Thrombin and serine proteases activate PAR1–4 by 
cleavage of the N-terminus. Thereafter, the remained part activates the receptor as a 
tethered agonist by interacting with ECL2 (except PAR3). PAR3 is probably activated 
by a tethered agonist from another membrane protein. The binding sites of Family C 
involve a large Venus flytrap module (VFM). The closed state conformation of the VFM 
is started by binding and trapping of the agonist, whereas the open state conformation 
is maintained by a competitive antagonist. In mGlu receptors, the binding sites for non-
competitive antagonists are buried between the 7 TM helices. In Frizzled receptors, the 
binding sites involve N-terminal cysteine-rich domain (CRD) (Kristiansen, 2004). 
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1.4.3  Family B GPCRs  

It was in 1991 when the receptor for the gut hormone secretin was 

cloned (Ishihara et al., 1991) and classified as a GPCR, which is different from 

those in the rhodopsin family and later referred to as Family B. Family B 

GPCRs have the superfamily characteristic 7TM topology with their specific 

characteristic conserved amino acid sequence and the ability to regulate 

intracellular cAMP and its downstream system (Kolakowski, 1994).  

Family B GPCRs are characterised by their amino terminal signal 

peptide, as well as a long NTD, which is essential for ligand binding (Figure 

1.8). This NTD contains six conserved cysteine residues, as well as two 

conserved tryptophans and an aspartate, which could support the importance of 

this domain in the hormone receptors (Harmar, 2001). In addition, Family B 

GPCRs have conserved cysteine residues within the extra-cellular loops ECL1 

and ECL2 which may form a disulphide bridge analogous to that in Family A 

GPCRs (Mann et al., 2010a). 

Investigation of the trans-membrane helices and associated loops 

revealed that they may be important for specific ligand interaction (Harmar, 

2001). ICL3 contains the major determinants required for a specific G protein-

coupling, a splice variation in this region can give rise to receptors that vary in 

their ability to couple to different G-proteins (Pisegna and Wank, 1996). 

Furthermore, the alternative splicing in ICL1 of the CRF1 (Nabhan et al., 1995) 

and calcitonin receptors (Nussenzveig et al., 1994) exhibited an effect on G-

protein-coupling. In the alternative GPCRs classification system (GRAFS), 

Family B is called ‘the secretin, S, receptors’.  Subfamily Secretin ‘S’ group 

basically corresponds to Family B of the A-F system and its name is related to 

the fact that the secretin receptor was the first one to be cloned in this family 
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(Fredriksson et al., 2003). Subfamily ‘S’ in the GRAFS system (Figure 1-7) 

includes the classical hormone receptors that have ligands that are polypeptide 

hormones of length 27-141 amino acid residues. The receptors, and sometimes 

their ligands, are homologous to each other which has led to their classification 

into one group. The members of the group are named after their ligand such as 

receptors for glucagon, glucagon-like peptide-1 and glucagon-like peptide-2 

(Harmar, 2001). 

1.4.3.1 N-terminal domain (NTD) of Family B GPCRs  

In general, Family B GPCRs share 30-50% amino acid identity; however 

they do not have any significant homolgy with other GPCRs families. Family B 

GPCRs have a family characteristic long extra-cellular domain, or ‘NTD’, of 100-

150 amino acids (Segre and Goldring, 1993), and an integral membrane ‘core 

domain’, or ‘J domain’, consisting of the 7TM helices with their interconnecting 

loops either intracellular or extra-cellular. The NTD has six conserved cysteine 

residues connected by the disulphide bonds, which are vital for the correct 

folding of the domain (Grauschopf et al., 2000, Bazarsuren et al., 2002). 

Initially, a 3D NMR structure of most of the mouse corticotropin-releasing 

factor receptor 2β NTD (CRFR2β-NTD) was determined (Grace et al., 2004). 

The structure showed that the NTD represents an example of a short 

consensus repeat (scr) fold (or Sushi domain) and the most essential features 

stabilising this fold are conserved across the entire Family B GPCR (e.g. three 

disulphide bonds supported two anti-parallel β-sheets regions surrounding a 

central core of a buried salt bridge between Asp65 and Arg101 flanked by two 

buried aromatic rings of Trp71 and Trp109) (Figure 1-12). 
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The disulphide bonds are the highly conserved post-transtional 

modification in Family B as they have been described in isolated N-terminal 

fragments of both GLP-1R and PTH-1R (Lee et al., 1994, Gaudin et al., 1995, 

Wilmen et al., 1996, Knudsen et al., 2000, Vilardaga et al., 1997, Grauschopf et 

al., 2000).  Mutation of any of these six cysteines in the full receptors of GLP-1, 

secretin, Vasoactive intestinal polypeptide receptor (VPAC), and Parathyroid 

hormone 1 receptor (PTH1R) disabled binding function of those receptors. 

Grace’s et al, published a second structure with ligand bound (Grace et al., 

2007) which showed two disordered loops: loop 1 seems to be flexible and 

contains high sequence variability within CRFR family. Loop 2 appeared to 

contain some highly conserved residues and become structured upon 

antagonist (astressin) binding.   

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure  1-12: Common structural elements of Family B GPCR NTDs. 

Family B GPCR NTDs have a common stracture characters that include an N-terminal 
α-helix (red), two β-sheets composed of strands β1 to β4 (green), with loop regions L1 
to L5 (grey). The domains are stabilized by three conserved disulphide bridges (yellow 
sticks) (Parthier et al., 2009). 
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The role of a disulphide bond between ECL1 and ECL2 in Family B 

receptors is controversial.  Studies of the human VIP receptor have shown a 

disulphide bond is present between two conserved cysteines at positions 215 

and 285 in the ECLs, which are critical for binding and activation (Knudsen et 

al., 2000).  An investigation into the role of the cysteine residues 281, ECL1, 

and 351, ECL2, in the PTH receptor showed a marked decrease in receptor 

function and expression following their mutation to serine.  However, the double 

mutation of both slightly improved ligand binding affinity (Lee et al., 1994).  In 

contrast, in the human VIP 1 receptor, mutation of either Cys208 or Cyc215 in 

ECL1 to glycine had affinity comparable to wild type (WT). However, when this 

mutation was applied to Cys288 in ECL2, no binding of VIP could be detected. 

Additionally, although the Cys208 and Cys215 double mutant bound VIP, it had 

a 10 times higher dissociation constant than the WT receptor (Gaudin et al., 

1995). Similarly, in secretin receptors, the mutation of either Cys193 in ECL1 or 

Cys263 in ECL2 to serine, as well as their double mutation to serine, resulted in 

non-detectable ligand binding, although these receptors could still be activated 

(Vilardaga et al., 1997). In rGLP-1R, mutation of Cys226 in ECL1 to alanine 

reduced GLP-1 potency as a result of presence of a free thiol group on the 

other Cys296 in ECL2 that interferes with the optimum activation by GLP-1. 

Consequently, the GLP-1 potency was restored by a double alanine mutation of 

both Cys226 in ECL1 and  Cys296 in ECL2 that indicates a disulphide bond 

(Mann et al., 2010a). 

Following the first NMR structure of a family B NTD, nine representative 

NTDs have been solved by X-ray crystallography or NMR spectroscopy in 

complex with bound ligands: murine CRFR2β-NTD bound to the synthetic 

antagonist astressin (Grace et al., 2007), PACAP receptor type 1(PAC1R) in 
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complex with the antagonist PACAP(6–38) (Sun et al., 2007), GIPR-NTD bound 

to its natural peptide hormone GIP(1–42) (Parthier et al., 2007), hGLP-1R-NTD 

in complex with the antagonist EX4(9–39) (Runge et al., 2008),  PTH1R-NTD 

bound to the truncated ligand PTH(15–34) (Pioszak and Xu, 2008), two  

structures of CRFR1 in complex with the truncated ligands CRF(22–41) and 

CRF(27–41) (Pioszak et al., 2008), hGLP-1R-NTD in complex with GLP-1 

(Underwood et al., 2010),  CRFR1-NTD in complex with its high affinity agonist 

αhcCRF (Grace et al.), Calcitonin receptor-like receptor (CLR) and the receptor 

activity modifying protein 1 (RAMP1), CLR/RAMP1-NTD (ter Haar et al., 2010). 

Collectively, the structures provide a common picture for the interaction of 

Family B GPCRs with their cognate peptide hormones and first indications of 

the origins of ligand selectivity. Although no experimentally determined full-

length Family B receptor structure has been determined to date, the structure 

elucidation of individual Family B GPCR NTDs with their respective ligands 

represents a considerable step towards a molecular understanding of their 

action.  

 Although the NTDs share the ‘secretin recognition fold’ (Parthier et al., 

2007), individual loops (in particular loops 1 and 4) deviate significantly, a 

finding that is evident from both the NMR structure ensembles and the high B-

factors in the crystal structures. The exceptionally long loop1 of PTH1R-NTD is 

disordered in the crystals (Pioszak and Xu, 2008), whereas the conformation of 

loop 4 of CRFR1-NTD and CRFR2β-NTD seems to adapt to ligand binding 

(Grace et al., 2007, Pioszak et al., 2008). Intriguingly, the solution structure of 

PAC1R-NTD in complex with PACAP(6–38) (Sun et al., 2007) exhibits an 

apparent difference in loop 4 topology (Figure 1-13). Although the overall 

structure of PAC1R-NTD is similar to the other NTDs, loop 4 proceeds to β-
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The GIPR- NTD 
(Light green 

and grey). 

PAC1Rs-NTD 

(Pink and lilac) 

Disulphide bridge 
in GIPR-NTD (yellow) Disulphide bridge 

in PAC1Rs- NTD 
(red) 

strand 4 ‘above’ the terminal disulphide bond; in all other NTD structures, this 

loop proceeds ‘below’ this disulphide, resulting in an inverse direction of loop 4 

compared with the other NTDs. The same exceptional topology was also 

present in the CRFR2β-NTD NMR structure ensemble (Grace et al., 2004) but, 

later, was revised in a refined structure of the domain (Grace et al., 2007).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure  1-13: The odd topology of loop 4 in PAC1Rs-NTD.  

The direction of the main chain of loop 4 (indicated by arrows) in PAC1Rs-NTD (pink 
and lilac) is opposite to that in GIPR- NTD (light green and grey) and the other Family 
B NTDs. The position of the disulphide bridge , which in PAC1Rs-NTD (red) lies 
‘below’ the loop, whereas in GIPR-NTD (yellow) it is ‘above’ the loop (look at the 
maximized view in the bottom of the figure) (Parthier et al., 2009). 
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Glycosylation is important for correct receptor function of many Family A 

GPCRs, enhancing folding, intracellular trafficking, ligand binding and signal 

transduction (Zhang et al., 1995, Davis et al., 1995, Russo et al., 1991). 

Incontrast, glycosylation has an indefinite role in Family B GPCRs, although all 

member of the Family B have N-linked glycosylation sites within the NTD. 

Studies on the secretin receptor showed that glycosylation is important for 

ligand binding but not for receptor trafficking (Pang et al., 1999).  On the other 

hand, glycosylation appeared unnecessary for PTH1R (Zhou et al., 2000). 

Likewise, mutation of glycosylation sites of the CRLR did not affect function 

except for Asn123 where glycosylation of which would be essential for a 

functional adrenomedullin receptor, perhaps due to changes in the tertiary 

structure of the domain (Kamitani and Sakata, 2001).   

1.4.3.2 Two domain model of Family B GPCRs-ligand interaction 

The NTD contributes to the majority of the ligand binding determinants. 

This contribution could be clearly proved by binding the isolated NTD of the 

PTH1R (Grauschopf et al., 2000) and GLP-1R (Bazarsuren et al., 2002, Lopez 

de Maturana et al., 2003) to their respective ligands, albeit with lower affinity 

than with the native receptor. However, studies of chimeric full-length receptor 

constructs with their native ligands revealed the same conclusion. For example: 

PTH1R and calcitonin hybrid ligands (N-CT/PTH-C and N-PTH/CT-C) which 

could not activate WT receptors, could nevertheless activate chimeric CT/PTH 

and PTH/CT receptors respectively (Bergwitz et al., 1996). Likewise, the similar 

results were recorded for GIPR and GLP-1R (Gelling et al., 1997), 

calcitonin/glucagon receptors (Stroop et al., 1995) and VIP/secretin receptors 

(Holtmann et al., 1995).    
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  Furthermore, using truncated and full-length ligands with their relevant 

receptors confirmed the hypothesis (Al-Sabah and Donnelly, 2003a). 

Additionally, a C-terminal fragment PTH (14-34) binds to PTH1R but does not 

activate it (Caulfield et al., 1990), while in contrast, an N-terminal fragment of 

the same peptide PTH(1-14) can induce a weak cAMP response, albeit with low  

affinity (Luck et al., 1999). 

The two domain model for Family B ligand-receptor interaction could be 

summarized in the tethering of the C-terminal end of the ligand by the NTD 

leaving the ligand N-terminus  to interact with the ‘J domain’ of the receptor,i.e. 

the ECLs and trans-membrane α-helices (Hoare, 2005). In each structure, the 

ligand adopts an α-helical conformation sandwiched between the two β-sheets 

of the NTD with the ligand C-terminus fixed by intermolecular hydrogen bonds 

to NTD side chains (Figure 1-14 and15). Residues of the ligand interacting with 

the NTD form an amphipathic α-helix, with at least three hydrophobic residues 

occupying a complementary ligand binding groove on the surface of the NTD.  

In return, the ligand binding groove is lined by hydrophobic residues from loop 2 

and loop 4 and from the NTD C-terminus (Figure 1-15 A and B). In the mean 

time, the involvement of those hydrophobic residues was confirmed by 

mutagenic analysis (Grace et al., 2007, Parthier et al., 2007, Sun et al., 2007, 

Pioszak et al., 2008).  

 

 

 

 

 

 

 

 



Chapter 1: Introduction 

 

44 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure  1-14: Structures of Family B GPCR ligands bound to the NTDs.  

A: Superposition of the NTD-ligand complexes. NTD is shown as grey cartoon with 
surface representation. The bound ligands are keyed and labelled in the figure. The 
binding mode of NTD-bound PACAP6–38 is aberrant to those of the other ligands (N 
and C-termini are labelled in pink letters). B: View rotated about a horizontal axis by 
90°. All peptides exhibit an α-helical conformation with only their C-termini while their 
N-termini are free to interact other parts of the receptors. N-terminal residues of GIP, 
exendin and CRF do not contact the NTD (Parthier et al., 2009). 
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Despite high similarity between members of Family B, some differences 

and exceptions were observed. The conformations of loops 2, 4 and part of 

loops of CFR1-NTD and CRFR2β-NTD differ in the ligand-free and ligand-

bound states (Grace et al., 2007, Pioszak et al., 2008, Grace et al.) (Figure 1-

16c). Exceptionally, PACAP C-terminus interacts with the NTD binding groove 

while the peptide wraps around the NTD where the PACAP N-terminus 

interacts via the outer face of β-strands β3 and β4 with a kink in the centre of 

the ligand orientated towards the ligand-binding groove (Figure 1-14). The kink 

seems to divide PACAP into two α-helical segments (Sun et al., 2007). 

 Differences in ligand binding modes have also ben noticed. These 

differences would suggest sub-classification of Family B NTD into CRF-like and 

glucagon-like. The CRF ligand group that includes CRF(22-41) and astressin 

showed much longer N-terminal ends, which could be related to the much 

shorter N-terminal helices of CFR1R-NTD and CRFR2β-NTD (Figures 1-14 and 

1-15b). Other restrictions are due to additional glycine residue in the loop 2 of 

CRF receptors. In contrast, the glucagon ligand group (GIP, EX4, GLP-1 and 

PTH) has a shorter N-terminus because of extensive hydrophobic interactions 

with the longer N-terminal helices of their respective receptors NTDs as shown 

in Figures 1-14 and1-15a  (Parthier et al., 2009).       
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Figure  1-15: Binding of Family B GPCR ligands to the NTDs.  

(a) The binding mode of GIP (shown as Cα trace, red and blue) to GIPR-NTD (grey). 
Hydrophobic residues in the NTD core from loop 2, loop 4 and the C-terminus 
(magenta) and from the N-terminal helix (cyan) interact with corresponding residues 
(orange sticks) from the C-terminal region of the ligand (Cα trace, red). The C-terminal 
end of the ligand is stabilized by an intermolecular hydrogen bond (black dots, see 
boxed panels for close up views) between the ligand backbone and a polar NTD 
residue in loop 5 (yellow sticks). N-terminal residues of the ligand not in contact with 
the NTD are depicted as a blue Cα trace. (b) CRF(22–41)/CRFR1-NTD complex 
(same colour code  of GIP/ GIPR-NTD complex). Hydrophobic interactions between 
the NTD and the ligand are similar, but they lack contributions from the residual N-
terminal α-helix of the NTD. The CRF C-terminal amide group is involved in two 
intermolecular hydrogen bonds to the NTD. (c) The CRFR1-NTD undergoes a 
conformational change upon ligand binding (Pioszak et al., 2008). Backbone 
superposition of ligand-free (red) and ligand-bound (green) CRFR1-NTD (for simplicity, 
the ligand, CRF(22–41), is not shown). Disulphide bonds are shown as yellow sticks. 
Structural differences are observed in loop  2 (L2), loop  4 (L4) and at the end of loop 5 
(L5) (Parthier et al., 2009). 
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1.4.3.3 GLP-1 Receptor 

1.4.3.3.1 Discovery and genetics 

The advent of the discovery GLP-1 with its challengers to the field of 

diabetes control has raised interest in the receptor through which GLP-1 

mediates its biological function. High-affinity binding sites (51 nM) for GLP-1 

and activation of cAMP signal transduction in insulinoma cell lines were found, 

suggesting that the hormone acts through specific receptors located on the 

surface of pancreatic β-cells that are coupled to the stimulatory G protein (Gs) 

(Drucker et al., 1987, Goke and Conlon, 1988). Further studies identified the 

receptor in rodent insulinoma cell lines, rat and human pancreatic β-cells and 

somatostatin secreting cells (Fehmann and Habener, 1991, Gros et al., 1992).  

A cDNA for the rGLP-1R was eventually isolated by transient expression 

of a rat pancreatic islet cDNA library in COS cells which was then screened by 

binding of radiolabeled GLP-1 (Thorens, 1992). Subsequently, a pancreatic 

hGLP-1R that shares approximately 90% sequence identity with the rGLP-1R 

was cloned (Dillon et al., 1993, Thorens et al., 1993, Graziano et al., 1993). The 

gene for the hGLP-1R is localized to chromosome 6p21 while the rat gene is 

localized to chromosome 20p12 (Stoffel et al., 1993) 

http://www.ncbi.nlm.nih.gov/gene?term=rat%20glp-1r).  GLP-1R is a 64-kDa 

protein (Widmann et al., 1995) and although alternate splicing results in 2 

different transcripts for both the rat and the human GLP-1R, there has been 

only one functionally distinct GLP-1R described (Thorens, 1992, Dillon et al., 

1993). Although various polymorphisms have been associated with the hGLP-

1R human gene locus (Stoffel et al., 1993), linkage analysis eliminates an 

association with the majority of NIDDM cases based on the populations studied 

(Tanizawa et al., 1994, Zhang et al., 1994, Yagi et al., 1996, Tokuyama et al., 

http://www.ncbi.nlm.nih.gov/gene?term=rat%20glp-1r
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2004). One patient diagnosed with NIDDM from a Japanese study (Tokuyama 

et al., 2004) demonstrated impairment of insulin secretion, insulin sensitivity, 

and glucose tolerance and had a missense mutation resulting in substitution of 

threonine 149 with methionine (T149M). The similar mutated receptor showed a 

reduced affinity in vitro for GLP-1 and EX4 (Beinborn et al., 2005).  

1.4.3.3.2 Structure/function studies 

As introduced above, the identified receptor is a member of the 7TM 

family B GPCRs including receptors for glucagon, VIP, secretin, GIP, PACAP, 

GHF, calcitonin, and PTH. The identity of the amino acid sequence between 

these receptor proteins ranges between 27% and 49%, while the sequence 

identity to receptors of other subfamilies of GPCRs is less than 10%. The GLP-

1R consists of 463 amino acids containing eight hydrophobic segments. The N-

terminal hydrophobic segment is probably a signal sequence, whereas the 

others are trans-membrane-spanning hydrophobic motifs.  

As mentioned above, rat and human GLP-1R are 90% identical 

(Thorens, 1992, Thorens et al., 1993), differing at 42 amino acid positions 

(Tibaduiza et al., 2001). Accordingly, the difference between the two types 

rarely took the attention of research groups. However, a previous study has 

found that the non-peptidic antagonist T-0632 binds with almost 100-fold 

greater affinity to the hGLP-1R than to the rat receptor homolog and the 

species selectivity of T-0632 is reversed by exchange of a single NTD residue 

(Trp33Ser) between the human and rat GLP-1R respectively (Tibaduiza et al., 

2001).  
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The crystal structure of hGLP-1R-NTD in complex with EX4(9-39) has 

been solved (Runge et al., 2008). The structure revealed that the core structure 

of hGLP-1R-NTD is similar to those of other published structures of Family B 

members (introduced above as SCR) showing the six conserved cysteine 

residues with their disulphide bonds, two regions of anti-parallel β-sheets (β-

strands 1–5), and centrally positioned conserved residues Asp67, Trp72, 

Pro86, Arg102, Gly108, and Trp110 of GLP-1R-NTD (Figure 1-16, A and B). In 

more specific detail, hGLP-1R-NTD contains an α-helix and the tertiary 

structure is stabilized by the disulphide bonds and by multiple intra-molecular 

interactions between the secondary structure elements. The α-helix is defined 

by residues Leu32-Glu52 and includes Cys46, which forms a disulphide bridge 

with Cys71 on the β2 sheet. The α-helix is terminated by three successive Pro 

residues (Pro54-Pro56, in rat type Pro54, Leu55 and Leu56) positioned at the 

beginning of loop1 (Pro54-Phe61) (Runge et al., 2008).  

The residues Cys62-Asp67 (β1 sheet) and Ala70-Gly75 (β2 sheet) 

constitute the first anti-parallel β-sheet. β1 and β2 are separated by a short turn 

(turn 1, Glu68 and Tyr69). The side chain of Arg64 of β1 interacts with the 

dipole of the α-helix through hydrogen bonds with the backbone of Leu50 and 

Asp53. The positioning of the Arg64 side chain is further guided by a hydrogen 

bond with the backbone carbonyl of Pro54 of loop1 and by an ionic interaction 

with Asp74 of β2. The residues Gly78-Ser84 (β3), His99-Thr105 (β4), Leu109-

Leu111 (β5), and Asp122 (β-bridge with β4) form the second region of anti-

parallel β-sheets. β3 and β4 are separated by a long well-defined loop (loop 2, 

Pro86-Gly98) that is important for ligand binding as previously introduced. The 

disulphide bridge between Cys62 and Cys104 connects the beginning of β1 

and the end of β4. Cys85 is positioned at the end of β3 and forms a disulphide 
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bridge with Cys126 in the C-terminal part of GLP-1R-NTD. The segment from 

Leu109-Asp122 resembles a β-strand with an insertion of a flexible loop (loop 

3, Gln112-Leu118) (Runge et al., 2008).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure  1-16: The structure of hGLP-1R-NTD in complex with EX4(9 –39).  
A: Ribbon diagram illustrating the structure of hGLP-1R-NTD with EX4(9 –39) shown 
in blue. The disulphide bridges and the residues Asp67, Trp72, Arg102, Trp110, and 
Arg121 are shown in sticks coloured by atoms. B: the same set of residues of hGLP-
1R-NTD and the coordinated water molecule. C: surface representation of hGLP-1R-
NTD in gray, highlighting the carboxyl group of Glu68, Glu127, and Glu128 in red, the 
Guanidine group of Arg121 in blue, and the hydrophobic binding surface in magenta. 
The secondary structure representation of EX4(9–39) is coloured according to B-
factors (blue=20–25 and green-yellow=45–60). The interacting amino acids of  EX4(9 –
39) are marked by (**) and are shown by sticks (Runge et al., 2008). 
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 Residues Arg24-Gln27 and Gly132-Tyr145 were not resolved in the 

crystal structure. The conserved Asp67 of hGLP-1R-NTD is centrally 

positioned, forming intra-molecular interactions, as also observed for CRFR2β-

NTD, PAC1R-NTD, and GIPR-NTD.  The side chain of Asp67 interacts 

indirectly through a water molecule with the side chain of Arg102 and directly 

via hydrogen bonds with the side chain of Trp72 and Arg121 (Figure 1-16B). In 

addition, the side chain and backbone of Asp67 interact with Tyr69 and Ala70, 

stabilizing the turn between β1 and β2. Gly108 has a structural function 

stabilizing the turn after β4 that allows the positioning of the Trp110 side chain 

below the Cys62-Cys104 disulphide bridge and above Arg102. Arg102 is 

thereby sandwiched between the side chains of Trp72 and Trp110 in a manner 

similar to CRFR2β-NTD. Pro86 at the beginning of loop 2 plays a structurally 

important role for the formation of the ligand binding site. The side chain of 

Pro86 fills out a hydrophobic cavity formed by Tyr42 of the α-helix, Tyr69 of turn 

1, Ala70 of β2, Val83 of β3, Val100 of β4, the Cys85-Cys126 disulphide bridge, 

and two residues of loop 2 itself, Tyr88 and Leu89 (Runge et al., 2008). 

Regarding ligand Interactions with hGLP-1R-NTD, the structure exhibited 

by EX4(9–39) is a well defined α-helix from Leu10** to Asn28**, and the 

residues that interact with hGLP-1R-NTD lie between Glu15** and Ser32** 

(Figure 1-16C). Glu15** is conserved in EX4 and GLP-1, and it interacts with 

the dipole of the α-helix of hGLP-1R-NTD by a hydrogen bond with the 

backbone amide of Leu32, the first residue in the α-helix of hGLP-1R-NTD 

(Runge et al., 2008).  
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The amphipathic nature of the Glu16**-Lys27** segment (see Figure 1-

15) enables hydrophobic interactions with hGLP-1R-NTD through one face of 

the α-helix and hydrophilic interactions with the other face. The hydrophilic face 

is constituted by Glu16**, Glu17**, Arg20**, Glu24**, and Lys27**, of which only 

Arg20** and Lys27** interact directly with hGLP-1R-NTD (Figure 1-16A). The 

side chain of Arg20** binds to the side chain of Glu128 of hGLP-1R-NTD. Also, 

Arg20** is positioned by Glu16** and Glu17** in an arrangement that could 

stabilize the α-helical conformation of EX4(9–39) itself. In a similar 

arrangement, the side chain of Lys27** appears to interact with both the side 

chain of Glu127 of hGLP-1R-NTD and the side chain of Glu24**. In addition, the 

backbone carbonyl of Lys27** at the end of the α-helix forms a hydrogen bond 

with the side chain of Arg121 in hGLP-1R-NTD (Runge et al., 2008).  

The hydrophobic face of EX4(9–39) is constituted by residues Ala18**, 

Val19**, Phe22**, Ile23**, Trp25**, Leu26**, and Pro31** (Figure 1-17B). Of 

these, Val19**, Phe22**, Ile23**, and Leu26** are buried by the hydrophobic 

interaction with hGLP-1R-NTD. Phe22** is uniquely conserved in the glucagon 

subfamily and it interacts directly with Leu32, Thr35, Val36, and Trp39 on the α-

helix of hGLP-1R-NTD.  Surprisingly, the structure displayed a minor effect of 

residues EX4(31-39) of EX4 on the interaction with hGLP-1R-NTD represented 

by a suggested hydrogen bond between EX4 Ser32** and Glu68 with a 

potential weak effect on the affinity of EX4 (Runge et al., 2008). 
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Figure  1-17: Hydrophilic and hydrophobic interactions between EX4(9–39) and 
hGLP-1R-NTD.  
The colour code system of Figure 1-17 is applied. A: The hydrophilic interactions, the 
EX4(9-39) residues Glu16**, Glu17**, Arg20**, Glu24**, and Lys27** are illustrated as 
sticks, and the electron density is shown in blue. The residues Arg121, Glu127, and 
Glu128 of NTD are illustrated with the same colour code B: The hydrophobic 
interactions, the side chains of Glu15**, Ala18**, Val19**, Phe22**, Ile23**, Trp25**, 
Leu26**, Pro31**, and Ser32** are illustrated as sticks. The electron density is shown 
of Glu15** in blue and of Val19**, Phe22**, and Leu26** in grey. The surface of the 
hydrophobic binding cavity of NTD is illustrated in magenta. The surface of Glu68 and 
Arg121 is illustrated in red and blue, respectively. C: all the residues of NTD directly 
involved in binding of EX4(9 –39) are illustrated as sticks with electron density. The 
hydrophobic residues are highlighted by a magenta surface representation. Leu32, 
T35, Val36, and Trp39 belong to the α-helix and Tyr88, Leu89, Pro90, and Trp91 
belong to loop 2. The β-strands are labelled β1-β5 (Runge et al., 2008).  

 

 More recently, the crystal structure of hGLP-1R-NTD in complex with 

GLP-1 was solved in the same laboratory (Figure 1-18) (Underwood et al., 

2010). The GLP-1-bound structure (resolution 2.1Å) revealed nearly the same 

main features of the former EX4(9-39)-bound structure (resolution 2.2Å) with 

little differences specific for GLP-1. However, the authors’ suggest that, unlike 

EX4 Lys27**, in GLP-1, the equivalent Val33* is unable to interact with Glu127 

causing Glu127 to change rotamer conformation and point its side chain away 

from GLP-1. The side chain of Leu123 is flipped towards Arg121, which again is 
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flipped towards Pro119, closing the water accessible cavity observed in the 

EX4(9-39)-bound structure (Figure1-19A).  

  

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 Figure  1-18: Structure of the GLP-1-bound to hGLP-1R-NTD. 
GLP-1 (blue helix) bound to hGLP-1R-NTD (α-helix in black, β-strands in red and loops 
in gray and disulphide bridges are shown as orange sticks) (reproduced from 
Underwood et al., 2010). 
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The apparent GLP-1-specific conformations affect the conserved core of 

the NTD by rotating the guanidine group of Arg102 and by decreasing the 

distance between Asp67 and Arg102 compared to the EX4(9-39)-bound 

structure, without affecting the relative position and conformation of Trp72 and 

Trp110 (Figure 1-19B). This enables a direct interaction through a hydrogen 

bond between Asp67 and Arg102 unlike what was observed in the EX4(9-39)-

bound structure, where a water molecule mediated the interaction between 

Asp67 and Arg102 (Figure 1-19B).  

 

 

 

 

 

 

 

 Figure  1-19: Differences between the GLP-1- and EX4(9-39)-bound structure of 
hGLP-1R-NTD.  

Ribbon diagrams showing significant differences in side chain conformations between 
the GLP-1- bound structure in blue and the EX4(9-39)-bound structure in orange of 
hGLP-1R- NTD. Water molecules in orange are present only in the EX4(9-39)-bound 
structure. A: One diverging residue, Val33* of GLP-1 and Lys27** of EX4(9-39), 
causes a shift in the conformations of four residues namely Glu127, Leu123, Arg121 
and Pro119 (note the directions of the black arrows) B: The GLP-1 specific 
conformations affect the conserved core of the NTD by rotating the guanidine group of 
Arg102 and by decreasing the distance between Asp67 and Arg102 compared to the 
EX4(9-39)-bound structure without affecting the relative position of Trp72 and Trp110 
reflected by absence of arrows around them (taken from Underwood et al., 2010). 
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The GLP-1-bound structure described GLP-1 as two regular α-helical 

segments separated by a kink around Gly22*. The structure of His7*-Gly10* 

was not resolved probably due to the inherent flexibility in this part of GLP-1 

and other peptide ligands for Family B receptors (Neidigh et al., 2001). The first 

α-helix segment Thr13*-Glu21* does not interact with hGLP-1R-NTD. The C-

terminal segment (Ala24*-Val33*) interacts with NTD.  

The interacting segment (Ala24*-Val33*) has an amphiphilic nature that 

enables hydrophilic and hydrophobic interactions through opposite faces of the 

α-helix (Figures 1-14 and 1-15). The hydrophilic face is mapped by residues 

Gln23*, Lys26*, Glu27* and Lys34*. Lys26* is the only residue which may 

interact directly with the NTD (Figure 1-20A). The hydrophobic face of GLP-1, 

which interacts with the NTD is defined by Ala24*, Ala25*, Phe28*, Ile29*, 

Leu32* and Val33* (Figure 1-20B). The importance of Phe28*, Ile29* and 

Leu32* in GLP-1 binding has previously been demonstrated by Ala-scanning of 

GLP-1 (Adelhorst et al., 1994).   However, the functional consequences of the 

ligand-specific conformational differences are not known (Underwood et al., 

2010). 
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Figure  1-20: Interactions between GLP-1 and hGLP-1R-NTD. 
Ribbon diagram of GLP-1 in marine with hGLP-1R-NTD, Residues of GLP-1 and NTD 
are illustrated as sticks. The surfaces of the binding cavities of NTD are illustrated in 
gray A: The hydrophilic interactions, GLP- residues Gln23*, Lys26*, Glu27*, Trp31* 
and Val33* are illustrated as sticks, and NTD receptor residues Arg121, Leu123, 
Glu127 and Glu128. B: The hydrophobic interactions, GLP-1 residues Ala24*, Glu27*, 
Phe28*, Trp31* and Leu32* and NTD residues Leu32, Trp39, Asp67 and Arg121. C: A 
common motif found in the hGLP-1R-NTD and in the GIPR-NTD. The side chain of 
Arg121 interacts with the backbone carbonyls of Asp67 and Leu32* through a water 
molecule (Taken from Underwood et al., 2010). 
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Ligand-binding analyses of the recombinant receptors expressed on the 

surface of β-cells or heterologous cells showed that the affinity for the binding of 

GLP-1 is approximately 1 nM. All of the other peptides of the glucagon 

superfamily bind poorly or not at all, with the exception of glucagon, which is a 

weak, full agonist with a binding affinity 100- to 1,000-fold lower than that of 

GLP-1 (Fehmann et al., 1994, Kieffer et al., 1996). EX4 is a potent agonist 

displaying a similar binding affinity to the GLP-1 receptor while the amino 

terminally truncated form EX4(9-39) is a potent antagonist of GLP-1, inhibiting 

GLP-1 binding and the resultant cAMP formation (Goke et al., 1993, Thorens et 

al., 1993). 

Before publication of the crystal structure, several structure/function 

studies had determined which regions of the GLP-1 receptor were critical for 

binding specificity, signal transduction and receptor regulation/desensitization. 

One approach was the generation of chimeric receptors in which the 

substitution of as few as four residues (Thr29 to Leu32 of GLP-1R-NTD was 

changed to the Ala29 to Met32 of the glucagon receptor) resulting in a 50-fold 

decrease in selectivity of this receptor for GLP-1 over glucagon (Graziano et al., 

1996). Similarly, chimeric GLP-1R/GIPR indicated that the GIPR-NTD receptor 

acts as a ligand-specific binding domain (Gelling et al., 1997) which is 

confirmed by binding the isolated, solubilized GLP-1R-NTD to GLP-1 (Wilmen 

et al., 1997).  

Another approach for identifying binding residues has been via a number 

of site-directed mutagenesis analyses of GLP-1R. However, due to the large 

size of the NTD, targeted mutagenesis strategies of the whole region were not 

considered practical. The majority of these studies were carried on the rGLP-1R 

and Figure 1-21 highlights the mutated residues in the various regions of this 
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receptor. These studies have defined a picture of what regions of GLP-1R are 

important for binding and agonist recognition.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure  1-21: Amino acid sequence of the rGLP-1R.  

The diagram is showing the predicted domains, the NTD, the 7TM helices (TM1–TM7), 
the 3 ECLs (ECL1, ECL2, ECL3) and the 3 intracellular loops (ICL1, ICL2, ICL3). Every 
group of relevant amino acids is marked by one colour as keyed and labeled in the 
bottom left corner of the diagram. All residues were shown with the same situation in 
other Family B GPCRs except red and brown ones were shown important for GLP-1 
exclusively (modified from (Doyle and Egan, 2007). 

 

● Residues important for binding 
● Conserved Cysteins  
● Glycosylation sites 
● Residues important for internalization 

● Residues important for binding and/or activation of cAMP  
● Region important for selectivity of GLP-1 
● Residues are exclusively important for GLP-1 stimulation 
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Mutagenesis of single tryptophan residues at positions 39, 72, 91, 110, 

and 120 of rGLP-1R all prevented GLP-1 binding but this may simply be due to 

indirect structural effects caused by removing these large groups (Wilmen et al., 

1997).  Likewise, mutation of Lys38 and Arg40 has been shown to adversely 

affect GLP-1 binding in the GLP-1R (Wilmen et al., 1997, Van Eyll et al., 1996).  

Asp67 is highly conserved across Family B and investigations of this site in the 

glucagon, secretin and VPAC receptors have shown this residue is important 

(Carruthers et al., 1994, Couvineau et al., 1995, Di Paolo et al., 1999). A single 

nucleotide polymorphism in mice in which Asp60 changes to Gly in the growth 

hormone releasing hormone (GHRH) receptor causes the condition called ‘little 

mouse’ syndrome (Lin et al., 1993). NMR analysis (Grace et al., 2004) of the 

CRFR-NTD has shown this residue to be involved in a salt bridge with a 

conserved Arg/Lys residue elsewhere in the N-domain (Arg102 in GLP-1R). 

              Denaturation of the isolated N-terminal receptor fragment of the rat 

(Wilmen et al., 1996) or human (Bazarsuren et al., 2002) receptor results in 

complete loss of affinity for the native peptide. Deletion of portions of the rGLP-

1R-NTD indicates that the negative charge at position Asp198 is not essential 

for affinity (Lopez de Maturana and Donnelly, 2002). In contrast, substitution 

with alanine at 198 results in a significant reduction in binding to GLP-1 (Xiao et 

al., 2000, Lopez de Maturana and Donnelly, 2002). However, N-terminally 

truncated EX4(9-39) and GLP-1(15-36) maintained their affinity for the receptor 

with the alanine mutation at 198, demonstrating that the Asp198 residue is 

probably important for association of rGLP-1R to the N-terminus of GLP-1 

(Lopez de Maturana and Donnelly, 2002).  
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His180 (Heller et al., 1996) and Arg176 (Mathi et al., 1997) in ICL1/TM2 

region of the rGLP-1R have been found to be of importance in cAMP 

production. Further charged residues concentrated at the distal TM2/ECL1 

region (Lys197, Lys202, Asp215, and Arg227) have been identified as binding 

determinants for GLP-1 (Xiao et al., 2000). Double alanine mutation of 

204Met/Tyr205 resulted in an almost 90-fold reduction in GLP-1 affinity and a 

complete loss of cAMP production. Further mutagenesis studies on these two 

residues revealed that the loss of function was due to a loss in hydrophobicity in 

this region (Lopez de Maturana et al., 2004). 

 In the TM4 of the rGLP-1R, while exchange of Lys288 with Ala or Leu 

greatly reduces affinity for GLP-1, substitution with Arg has very little effect, 

indicating that a positive charge is indispensable at this position for biological 

function (Al-Sabah and Donnelly, 2003). As stated above, the T149M mutation 

in the hGLP-1R is important in the biological activity of GLP-1 exhibiting both a 

reduced affinity for GLP-1 and a reduced cAMP production (Beinborn et al., 

2005).  

Similar to the Family A members, the ICL3 region of the Family B GPCR 

contains the major determinants required for specific G protein coupling. 

Mutation of the Lys334-Leu335-Lys336 portion in ICL3 led to significant 

reduction in cAMP production while still maintaining affinity for GLP-1 

comparable to the WT receptor (Takhar et al., 1996). Further specific Ala point 

mutations of this region suggested that Lys334 was principally responsible for 

the attenuation in cAMP response (Takhar et al., 1996). Point mutations of 

residues Val327, Ile328, and Val339 in the N-terminal region of ICL3 proximal 

to the TM5 revealed the importance of them in cAMP stimulation (Mathi et al., 

1997). Based on a comparison with a corresponding region (ICL3/TM5 junction) 
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in the M5 muscarinic receptor, β-cells that expressing GLP-1R that lacks either 

the Val331-Ala333 region of the TM5 domain or the Lys334-Leu335-         

Lys336 of the ICL3 domain showed an absence of GLP-1-induced increases in 

insulin secretion, cAMP production, and Ca2+ channel activation in the β-cells 

expressing the mutated receptor (Salapatek et al., 1999). This specified these 

regions as being essential for coupling to adenylyl cyclase.  

1.4.3.3.3 Receptor desensitization, internalization and resensitization  

  The short-term and long-term attenuation or loss of cellular response to 

agonist over time is a common feature of signaling through GPCRs and other 

cell surface receptors, a phenomenon referred to as desensitization (reviewed 

in (Ferguson, 2001, Claing et al., 2002). Desensitization is based on an 

activation of a GPCR that leads to (1) activation and inhibition of specific 

signaling pathways in the cell, (2) short-term desensitization mediated by 

phosphorylation of GPCRs by G protein-coupled receptor kinases (GRKs) 

followed by β-arrestin binding to GPCRs that uncouple the receptor at the 

plasma membrane from the G-protein, and (3) endocytosis of the receptor 

followed by postendocytic sorting of the receptor either back (4) to the plasma 

membrane (receptor recycling) or (5) to lysosomes for degradation (Figure 1-

22). Short-term desensitization may also involve phosphorylation of GPCRs by 

second messenger-dependent protein kinases, which uncouple GPCRs at the 

plasma membrane from G proteins. Some of the effector proteins that are 

activated by many GPCRs, including GRKs and second messenger-activated 

protein kinases, take part in feedback regulation of GPCR signaling. 
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Heterologous desensitization does not require agonist activation but  is 

mediated by second messenger-dependent kinases that phosphorylate a 

variety of proteins, leading to generalized receptor hypo-responsiveness 

(Ferguson, 2001). In contrast, homologous desensitization requires agonist 

activation, which leads to GRK-mediated phosphorylation of the receptors 

(Claing et al., 2002).  

 

Figure  1-22: Pathways involved in desensitization and resensitization of GPCR 
signaling.  

Activation of a GPCR leads to (1) activation and inhibition of specific signaling 
pathways in the cell, (2) short-term desensitization, GPCR is phosphorylated by GRKs 
then it binds to β-arrestin, which exhibits high affinity for agonist-occupied, 
phosphorylated receptors. β-Arrestin inhibits G protein coupling, thereby terminating 
the G protein activation. (3) endocytosis of the receptor, these interactions direct the 
phosphorylated receptor to punctate clathrincoated pits in the cell membrane, which 
are internalized by action of the GTPase dynamin or may also target the receptor to 
clathrin-coated pits3. Upon internalization,receptors can either be (4) recycled back to 
the plasma membrane or (5) degraded in lysosomes  (Kristiansen, 2004). 
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 GLP-1R internalization has a complex regulation, possibly involving both 

clathrin-coated pit and caveolin-dependent mechanisms.  Endocytosis of GLP-

1R  is shown to be mediated via primarily a clathrin coated pit-dependent 

mechanism and, in the presence of agonist, the receptor cycles between the 

plasma membrane and endosomal compartments (Widmann et al., 1995). The 

recognition sequence for the clathrin-coated pit is located in the cytoplasmic C-

terminus of the receptor and C-terminally truncated mutants showed aberrant 

internalization rates (Widmann et al., 1997, Vazquez et al., 2005a). Substitution 

of three residues (Glu408-Gln410) located proximal to TM7 with alanine led to 

much faster internalization (Vazquez et al., 2005a). Deletion of the last 33 

amino acids in one study prevented GLP-1R internalization (Widmann et al., 

1997) whereas in another study, the same  deletion slowed internalization of 

the modified receptors by 78% (Vazquez et al., 2005a). In contrast, when the 

44 C-terminal amino acids were deleted, receptor internalization was only 47% 

slower with the mutant versus the WT GLP-1R (Vazquez et al., 2005a). These 

studies indicate that the neighbouring trans-membrane domain of the carboxyl-

terminal tail of the GLP-1R contains sequence elements that regulate agonist-

dependent internalisation and transmembrane signalling.  

Trafficking of GLP-1R to and from the cell membrane may also be 

caveolin-1-dependent. In one study, GLP-1 binding and activity was inhibited by 

over-expression of a dominant negative form of caveolin-1 (P132L-cav1). 

Added to that, a classical caveolin-1 binding motif has been found in the ICL2 

region (247-EGVYLYTLLAFSVF-260). Consequently, Glu247Ala substitution 

reduced association with caveolin-1 while membranes expressing Glu247Ala 

and membranes expressing Tyr250/252Ala showed reduced binding affinity to 

GLP-1 (Syme et al., 2006).  
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A large GTPase, dynamin, is critical for both clathrin and caveolae 

mediated GPCR internalization. Expression of a dominant negative form of 

dynamin (Lys44Ala-dynamin) inhibited internalization of GLP-1R which was 

reflected by a 2.5-fold increase in the amount of GLP-1R at the cell membrane 

(Syme et al., 2006).  

  Desensitization is a common feature of GPCRs which is represented by 

loss of receptor sensitivity and an attenuation of signaling that occur despite the 

continued presence of a ligand. Desensitization has been divided into two 

forms: Homologous desensitization is a process whereby only the activated 

GPCRs are desensitized, whereas heterologous desensitization is a processe 

whereby the activation of one GPCR can result in the inhibition of another, 

heterologous GPCR to signal. Accordingly, removal of phosphorylation sites at 

3 serine doublets located at positions 441/442, 444/445, and 451/452 led to a 

complete suppression of GLP-1R internalization. Phosphorylation of these sites 

also is linked with homologous desensitization of the GLP-1R expressed in cells 

(Widmann et al., 1996b, Widmann et al., 1996a, Widmann et al., 1997). 

Furthermore, heterologous desensitization occurs upon treatment with phorbol 

12-myristate 13-acetate (PMA) which results in phosphorylation by protein 

kinase C (PKC) of four serine doublets (431/432, 441/442, 444/445, and 

451/452) (Widmann et al., 1996b). An in vitro observations showed that EX-4 is 

more potent than native GLP-1 in producing GLP-1R desensitization, though  

chronic exposure to EX-4 in normal or transgenic mice is not associated with 

significant downregulation of GLP-1 receptor-dependent responses coupled to 

glucose homeostasis in vivo (Baggio et al., 2004).  
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Three N-linked glycosylation sites have been identified in the GLP-1R-

NTD. The importance of glycosylation of the GLP-1R in RINm5F cells was 

studied using the antibiotic tunicamycin (Goke et al., 1994). Treatment resulted 

in reduced binding affinity and cAMP response to GLP-1 although mRNA levels 

of GLP-1R in treated cells did not differ, indicating that glycosylation of GLP-1R 

is necessary for correct insertion into the cell membrane (Goke et al., 1994). 

Tunicamycin inhibited glycosylation by preventing the transfer of the first N-

acetylglucosamine residue to dolichol phosphate, one of the first intermediates 

in the synthesis of asparagine-linked glycosylation (Lehle and Schwarz, 1976). 

However, the significance of this effect in vivo has not yet been determined 

(Doyle and Egan, 2007).   

The GLP-1R is also palmitoylated and replacing Cys438 with alanine 

blocked 3H palmitate incorporation into GLP-1R and reduced cAMP production 

3-fold but without any effect on expression of GLP-1R in the cell (Vazquez et 

al., 2005b). The loss GLP-1R function was partially regained by replacement of 

both Ser431 and Ser432 by Ala (Figure 1-21). Therefore, palmitoylation of 

Cys438 could regulate phosphorylation of these serine residues and could 

consequently regulate GLP-1R function (Vazquez et al., 2005b).  
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1.5 Aims and strategy 

The overall aim of this study was to further understand the mechanism 

that underlies the binding and activation of GLP-1R by EX4, particularly its C-

terminus, based on conclusions obtained from the previous work in Donnelly's 

laboratory.  

  Lopez de Maturana reported a higher affinity of EX4 over GLP-1 at the 

isolated rGLP-1R-NTD expressed in E.coli  and proposed a model for the 

ligand-receptor interaction, suggesting two common interactions for GLP-1 and 

EX4, ‘N’ and ‘H’ (Figure 1-6) (Lopez de Maturana et al., 2003). Additionally, the 

model proposed an ‘EX’ interaction which was shown by Al-Sabah & Donnelly 

to be specific for the C-terminus of EX4 at rGLP-1R-NTD (Al-Sabah & Donnelly, 

2003a). However, the specific individual amino acids responsible for the EX 

interaction, in either EX4 or rGLP-1R-NTD, remained to be determined and this 

therefore formed the basis of this PhD study.  

Shortly before the start of this study (when there were no known 

structures for any Family B NTDs),  (Kalliomaa, 2005) finished a bioinformatic 

study yielding computer-built models for EX4 docked in rGLP-1R-NTD. The 

models suggested some residues in rGLP-1R-NTD that might be involved in an 

interaction with the C-terminus of EX4. Therefore, the initial plan of the study 

started with the mutation and pharmacological analysis of 19 of the residues 

suggested by Kalliomaa's models. The strategy revolved around the idea that, if 

a residue contributed to an ‘EX’ interaction, it would affect EX4 binding but not 

that of GLP-1, since GLP-1 does not have an equivalent C-terminal sequence. 

However, this initial study failed to identify the ‘EX’ interaction but nevertheless 

resulted in the mapping of some residues that were important for EX4 and GLP-

1 binding and activity which was consistent with the  later publications of crystal 
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structures of the hGLP-1R-NTD bound to EX4(9-39) and GLP-1 respectively 

(Runge et al., 2008, Underwood et al., 2010). 

The study then turned to mutagenesis of the receptor residues that were 

suggested by the new crystal structures to be involved in the interaction with 

non-identical or divergent amino acids in the helical region (‘H’ interaction) of 

EX4 and GLP-1 in order to determine whether they were responsible for the 

differential affinity of these peptides for GLP-1R. The strategy behind the 

selection of each individual residues is introduced before the relevant results in 

later sections.  

Interestingly, Runge’s crystal structure identified an interaction between 

Glu68 of hGLP-1R and Ser32** of EX4 (Runge et al., 2008). While this was a 

possible candidate for the EX interaction, the authors stated that it is a subtle 

interaction and would not contribute to the superior affinity of EX4. 

Nevertheless, this interaction was targeted in this PhD study for a more detailed 

analysis using truncated and full-length forms of rat and human GLP-1R, as 

well as full-length, truncated and modified ligands. As will be described in more 

detail, this phase of the study identified the EX interaction in the rGLP_1R as 

being derived from a hydrogen bond between Asp-68 and Ser-32**. 

  The final phase of the study involved the investigation of the mechanism 

underlying the ability of peptides to activate GLP-1R.  While truncated EX4(9-

30) retained no agonist properties, the equivalent GLP-1 peptide GLP-1(15-36) 

displayed agonism, despite both peptides having  similar binding affinity. 

Therefore, the sequence differences between these peptides, as well as the 

observed structural differences, were used as a basis to explore the critical 

determinants of peptide efficacy. 
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2 -  Materials and methods 

2.1 Polymerase chain reaction 

2.1.1 PCR primer design for plasmid constructs 

The original cDNA for the rat GLP-1 receptor (NCBI accession number 

M97797) was a gift from Professor Bernard Thorens of the Institute of 

Pharmacology and Toxicology at the University of Lausanne, Switzerland and was 

supplied cloned as a construct in the pcDNA1 vector (Invitrogen) (Thorens, 1992).  

Previous members of the Donnelly laboratory sub-cloned the GLP-1R DNA 

sequence into the pcDNA3 vector (Invitrogen) (Lopez de Maturana and Donnelly, 

2002) to create the pcDNA3-GLP-1R construct. Later, Dr Abidi added a C-terminal 

myc-tag (as used in Sinfield, 2005).  The full-length myc-tagged receptor was used 

as the basis for mutagenesis studies in this thesis. Figure 2-1 shows a 

diagrammatic layout of plasmid pcDNA3 with myc-tagged rGLP-1R protein. 

 

 

 

 

 

 

 

 

 

Figure  2-1: Plasmid construct of pcDNA3 with the myc-tagged rGLP-1R cDNA.  

The figure displays diagrammatic representation of the plasmid construct containing the 
pcDNA3 vector and DNA coding sequence for the entire GLP-1 receptor including the 
addition of a myc tag.  The important features of this construct are shown and labelled in 
the figure key (Sinfield, 2005). 
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2.1.2 QuikChange Mutagenesis 

Quikchange primers were designed using the freely available software 

PrimerX (http://bioinformatics.org/primerx/Appendix.htm), the instructions were 

followed and the results page displayed a list of primers designed for introducing 

the mutation of choice.  The primer pairs selected from the list were the shortest 

primers with the fewest base changes introduced (appendix 16). 

DNA primers were designed to introduce the desired mutation into the DNA 

of interest as described previously.  The rest of the procedure was carried out 

using the Quikchange® Site-Directed Mutagenesis kit (Stratagene catalog 

#200518) following the instruction manual of the manufacturer. 

2.1.3 Agarose Gel Electrophoresis 

 Electrophoresis quality agarose 0.8 g was weighed and was made up to 

100 ml (w/v), with 1X Tris-Acetate-EDTA (TAE) (appendix 7), then was heated, 

with swirling, until it was homogenous and all the agarose had been disolved. 

Once cooled, 10 l of 1% w/v ethidium bromide was added to the solution, which 

was then poured into the plastic casting tray containing the comb and left to set for 

approximately 30min.  Once set, the comb was removed revealing the wells in the 

gel for DNA sample loading. The casting tray was transferred to the 

electrophoresis cell. Sufficient 1X TAE (appendix 7) electrophoresis buffer was 

added to the cell to cover the gel.  DNA samples, as well as a DNA marker ladder 

containing fragments of known quantities, were diluted with 6X gel-loading buffer 

to a final concentration of 1X and loaded into the wells to run in parallel. The 

electrophoresis cell was connected to a power supply and the gel resolved at 60 V 

(constant voltage) for 40 minutes. Once finished, the gel was removed from the 

tank and visualised by UV light with Uvidoc system. The quantity of DNA in the 
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sample could be roughly estimated by eye comparing the brightness of the band to 

be quantified with the band of the closest size in the DNA marker ladder. 

2.1.4 Quantification of DNA using ultra-violet spectrophotometry 

The cuvette was placed in the spectrophotometer, 980 μl dH2O added to it 

and the baseline set.  To this, 20 μl DNA were added producing a dilution factor of 

fifty.  The absorbance was measured at 260 nm (A260) and 280 nm (A280) and 

the results were printed out.  The purity of the DNA sample was assessed by 

dividing A260 by A280 to give a ratio where any value above 1.8 was a sample of 

high purity.  The quantity of DNA was calculated using the formula: 

A260 x Dilution Factor x 50 g   =   Concentration of DNA (g/ml)  

2.1.5 Confirmation of mutations by DNA sequencing 

The evaluated DNA was sequenced by dye terminator sequencing using 

0.4 µg DNA and T7P primer in the Department of Biochemistry, Oxford University. 

The sequence received was aligned against WT rGLP-1R gene sequence (NCBI 

accession number M97797) using BLAST to confirm mutation.    

2.2 Bacterial transformation 

2.2.1 Production of agar plates for E. coli growth 

The required volume of Luria-Bertani (LB) agar medium (appendix 1) was 

calculated on the basis that each 90 mm by 15 mm Petri dish needs 25 ml of LB 

agar medium. The bottle, with the lid loosened, was sterilised by autoclaving and 

allowed to cool until it could be held comfortably in a bare hand.  Ampicillin 

100 µg/ml was added to media, if required, and 25 ml of molten media poured into 

each Petri dish, their lids were slid to one-third open and left under the flame to set 

for 20 to 30 min. Once set the lids were replaced, the side of each Petri dish was 

labelled with the type of media, antibiotic and date, sealed with a strip of parafilm 

around the opening and the entire stack wrapped in cling film for immediate use or 
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stored for up to a month at 2-8°C due to the shelf life of the antibiotic they 

contained. 

2.2.2 Making transformation quality E. coli of high competency 

A sterile Petri dish containing solid LB agar media (appendix 1) without 

antibiotic was pre-warmed to 37°C for 30 min. Some frozen untransformed cells 

were scraped from a frozen stock. Using a metal inoculating loop, the cells were 

gently wiped in a zigzag motion along each side of an incomplete imaginary 

pentagon in the plate.  The plate was incubated in a 37°C incubator overnight.  

The following morning a single bacterial colony was picked and placed in a sterile 

250 ml flask containing 50 ml LB medium (Appendix 2) without antibiotic and 

incubated at 37°C/250 rpm for approximately 4 to 5 h in a heated orbital shaker.  

The optical density (OD) of the flask was measured every 30 to 45 min until 

reaching an OD600 of 0.25.  The flask was immediately removed and placed in an 

ice-bath for 10 min, then centrifuged at 4000 rpm (2500 xg), 4°C for 10 min. The 

supernatant was discarded and the tube inverted on an absorbent paper towel and 

left inverted for 2 min. It was then placed back on the ice and the cell pellet was re-

suspended in 80 ml ice-cold TFB1 buffer (appendix 13). After that, the cells were 

collected by spinning again at 4000 rpm (2500 xg) at 4°C for 5 min. The cell pellet 

was re-suspended in 4 ml ice-cold TFB2 buffer (Appendix 14). 500 µl aliquots 

were prepared in sterile microfuge tubes, frozen by snap freezing in liquid nitrogen 

and stored at -80˚C.  

2.2.3 Transformation of competent E. coli 

  The aliquots of competent cells was removed from the -80°C freezer 

and placed on ice to thaw for 30 min.  Once thawed the 40 µl of competent cells 

plus 3 µl DNA solution were pipetted into a microfuge tube and placed on ice for 

30 min. After that, the incubated tube was placed in a 42°C water bath for exactly 
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45 s following which it was quickly returned back on ice for a further 2 min.  After 

that, 900 μl of 2X YT media (Appendix 4) without antibiotic were added. The tube 

was then incubated for 1hr at 37°C with shaking followed by centrifugation at 4000 

rpm (2500 xg) for 2 min, the supernatant discarded and the cell pellet gently re-

suspended in 100 μl of a pre-warmed 2X YT media. The cell suspension was 

spread over the surface of the Petri dish of LB agar media containing ampicillin 

(appendix 1 and 3) as a selective antibiotic and incubated in a 37°C incubator 

overnight. Next morning, the plate was checked,  wrapped in cling film and stored 

at 2-8°C in the fridge until the colonies were to be used, for up to a maximum of 

two weeks. 

2.3 Mini-preparation of DNA Using E. coli by alkaline lysis 

A single bacterial colony of the transformed cells from an agar plate was 

picked up and ejected into a universal tube containing LB media with ampicillin 

(appendix 2 and 3) then incubated in a heated orbital shaker at 37°C/250 rpm 

overnight. 1.5 ml of the bacterial growth was poured into a 1.5 ml microfuge tube, 

and centrifuged at 6000 rpm (4000 xg) for 2 min. The supernatant was discarded 

and the tube inverted for 2 min to remove any remaining supernatant.  The pellet 

was resuspended in 200 μl of an ice-cold lysis buffer (Appendix 5) by vortexing 

and incubated at the room temperature for 5min. Then 400 μl of a room 

temperature 0.2 M NaOH and 1% SDS solution were added (appendix 6), the 

tubes gently inverted 5 times in the rack to mix, and then incubated for exactly 5 

min at the room temperature.  After that, 300 μl of an ice-cold 7.5M ammonium 

acetate (pH 7.8) (appendix 8) containing RNaseA (125 μg/ml) were added to the 

tube, inverted 5 times in the rack and incubated on ice for 10 min.  Then the tube 

was centrifuged at 13,000 rpm (13,780 xg) for 15 min.  After centrifugation the 

clear supernatant was poured into the duplicate tube containing 600 μl 100% 
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isopropanol, inverted twice and left at the room temperature for 10 min then was 

centrifuged at 13,000 rpm (13,780 xg) for 15 min. The supernatant was discarded, 

the tube inverted on a paper towel for 2 min.  After that, 200 μl 70% ethanol was 

added to the tube without disturbing the small translucent or invisible DNA pellet. 

The tube was centrifuged at 13,000 rpm (13,780 xg) for 3 min. The supernatant 

was removed and the tube was incubated opened at 37°C for up to 30 min or until 

the odour of ethanol could not be detected. Finally, 40 μl deionised water were 

added and the DNA pellet dissolved by pipetting.  An aliquot of the DNA solution 

was assessed for purity and quantity by the agarose gel electrophoresis and UV 

spectrophotometry and stored at -20°C. 

2.4 Midi-Preps of DNA 

A single bacterial colony of transformed E. coli XL2-Blue cells from an agar 

plate and ejected into the conical flask containing 50 ml LB media with ampicillin 

(appendix 2 and 3) and incubated overnight at 37°C/250 rpm in a heated orbital 

shaker. The next morning, the cell suspension was poured into a 50 ml falcon tube 

and spun at 4,000 rpm (2,325 xg) at 4°C for 30 min.  The supernatant was 

discarded and the tubes left inverted on a paper towel for 2 min.  The plasmid 

DNA was extracted using GenEluteTMHP plasmid mediprep kit (Sigma, NA0200) 

following the instruction manual of the manufacturer.   

2.5  Cell culture 

2.5.1 General maintenance of HEK-293 cell-lines 

HEK-239 cells were grown on Nunclon treated plastics in Dulbeccos 

Modified Eagle’s Medium (DMEM) supplemented with 10% foetal bovine serum 

and antibiotic to form CM-10 media (appendix 9), under conditions of 37°C, 5% 

CO2 and 90-95% humidity.  HEK-293 cells were grown to 70-75% confluence in a 

25 cm2 flask and passaged by discarding the growth media.  Then 5 ml of 
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phosphate buffered saline (PBS) without Ca2+ or Mg2+ (Sigma) were used to rinse 

the flask and discarded. A further 5 ml of PBS without Mg2+ and Ca2+ were added 

and left for 5 minutes at room temperature to detach the cells. Once all the cells 

were detached, as indicated by giving the flask a gentle tip, 5 ml of CM-10 was 

added and the homogenous mixture was transferred to a universal tube and 

centrifuged at 2000 rpm (617 xg) for 2 min.  The supernatant was discarded, the 

cells re-suspended in 5 ml of fresh CM-10, and a proportion of cell suspension 

transferred to a 25 cm2 flask containing fresh CM-10 media to a final volume of 10 

ml. The flask was placed in the incubator and left to grow.  The health and growth 

of the cells were monitored daily under the microscope. 

2.5.2 Freezing and storage of HEK-293 cell-line in liquid nitrogen 

   The HEK-293 cells to be frozen were passaged from a 70-75% 

confluent flask and then transferred into a universal tube and centifuged at 2000 

rpm (617 xg) for 2 min. The supernatant was discarded and the pellet was re-

suspended in 1 ml cryo-preservation media (appendix 10).  The cryovial was 

placed in an isopropanol box at room temperature, which should ensure when 

sealed the contents freeze at a rate of 1°C per minute when placed in a -80°C 

freezer overnight. The next day the cryovials were transferred into a cryovial 

storage box in a rack in the liquid nitrogen vessel stored in the gase phase of a 

liquid nitrogen store.  

2.5.3 Reviving frozen HEK-293 cell-lines 

   The desired vial was removed from the liquid nitrogen and placed in 

a container of water at 37°C to thaw. The contents of the vial were removed to a 

25 cm2 flask containing 9 ml of prewarmed CM-10 media (appendix 9). The flask 

was incubated for three hours when the healthy cells should have adhered to the 

plastic and the media should be changed to remove the residual toxic DMSO 
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carried over from the freezing media. The media was changed the next day and 

the cells were allowed to grow normally as described above.   

2.5.4 Stable transfection of the HEK-293 cell-line 

Untransfected HEK-293 cells with a low a passage number were grown to 

40-60% confluency. The pcDNA3 vector construct (5 μg) containing full-length 

rGLP-1Rmyc DNA were diluted into a total volume of 150 µl with  prewarmed 

DMEM plus 20 µl of SuperFect® transfection reagent (Qiagen, catalogue number 

301305) were used following the instruction manual of the manufacturer. The 

selective antibiotic Geneticin® (G418) was added to the growing CM-10 medium to 

a final concentration of 800 μg/ml.  Every three days the media was changed. 

Under these selective conditions, the untransfected cells should have died and 

only cells successfully transfected with the Geneticin® (G418) resistance gene 

should have grown normally. A third of the cells from the 70-75% confluent flask 

were passaged into a 2 ml cryovial and frozen, as described above, as the master 

vial of this transfection. The cells were maintained normally without selective 

antibiotic.  

2.5.5 Production of crude membrane preparations 

Two 175 cm2 flasks were seeded with the HEK-293 cell line expressing the 

desired receptor and grown to 70-75% confluence.  Once ready, five 140 cm2  

Petri dishes were placed in the tissue culture hood and coated with a sterile 

0.0125% solution (0.125 mg/ml) of poly-D-lysine (>300,000 MW) and left to dry 

without lids for 10 min.  Once dried, 5 ml of cold PBS containing Mg2+ and Ca2+ 

were added to each dish, washed and discarded to remove excess poly-D-lysine.  

The dishes were covered and 35 ml of pre-warmed CM-10 growth media 

(appendix 9) was added to each dish.  The cells were detached from the plastics 

as described above and the resulting cell pellet was resuspended in 20 ml of 
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growth media and 4 ml added to each dish. The dishes were grown for three days 

until they were confluent then the growth media was aspirated and discarded. For 

each dish, 5 ml of ice cold sterile MilliQ water were added and left for 5 min then 

aspirated and discarded, and 5 ml of an ice cold PBS were added, agitated gently 

then discarded.  After that, the remains of the cells were scraped from the dishes 

using a sterile disposable cell scraper and transferred to a labelled 1.5 ml 

microfuge tube which was immediately placed on ice followed by centrifugation at 

13,000 rpm (13,780 xg) for 30 min in a microfuge at room temperature.  The 

supernatant was discarded and the tubes tapped on tissue paper to remove any 

remaining supernatant.  The pellet from each dish was resuspended in 200 µl 

HEPES binding buffer (HBB) (appendix 11) and passed through a microneedle 

using a 1 ml syringe ten times and combined into one microfuge tube, from which 

the crude cell membrane solution was aliquoted in 100 µl volumes and stored in a 

-80°C freezer. 

2.6 Competitive radiolabelled binding assay 

2.6.1 Peptides 

EX4, EX4(9–39) and GLP-1  were from Bachem (Saffron Walden,U.K.). All 

other truncated peptide ligandswere custom synthesised by Genosphere 

Biotechnologies (Paris, France). 125I-EX-4(9–39), labelled via Bolton–Hunter 

reagent at Lys-12, was purchased from NEN-Perkin-Elmer (Boston, MA, U.S.A.). 

125I-GLP-1(7-36), labelled via lactoperoxidase metod and was a gift from Novo 

Nordisk A/S (Novo Allé, Denmark).  All the peptide sequence used in this study 

are aligned in appendix 16. An alignment of each group of peptides will be 

mentioned when needed prior to the relevant chapter. 
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2.6.2 Ligand binding assay for crude membrane preparations 

Each ligand to be investigated for binding affinity was tested in a binding 

competition assay consisting of 8 concentration data points, in triplicate, to enable 

a binding curve to be plotted.  The standard ligand concentrations were tested 

over a log scale consisting of 1 M, 100 nM, 10 nM, 1 nM, 100 pM, 10 pM, 1 pM 

and vehicle (HBB) only. The amount of non-specific binding of the iodinated ligand 

was determined as the amount of binding still present when the highest 

concentration of the competing ligand (1 M) was used.  100 ml 1 % milk powder 

in 1X PBS solution was made and stirred at room temperature for 30 min, then 

filtered.  Bacitracin was added to HBB (appendix 11) to give a final concentration 

of 50 μg/ml and stored on ice.  The calculated amount of HBB was pipetted to a 

universal tube for the addition of the radioligand and kept on ice.  The unlabelled 

ligand to be tested for binding affinity was made to the required concentrations in 

HBB on ice.  Each 100 μl aliquot of membrane preparation was passed through a 

needle, using a 1 ml syringe, 10 times to give a homogenous mixture, which was 

then diluted in HBB to the desired protein concentration. In a 96-well 

polypropylene plate, 125I-GLP-1 was diluted to 200 pM as calculated according to 

the decay factor of that day and 50 μl added to each well. A 50 µl aliquot of each 

unlabelled ligand to be tested was pipetted into each well, except for the total 

count wells where it was substituted with HBB. Universal tubes containing the 

membrane suspension were mixed by shaking and 100 μl was added to each well.  

The resulting reaction mixture in each binding well had a volume of 200 μl and a 

final 125I-labelled ligand concentration of 50 pM.  The plate was incubated for 1 hr 

at room temperature. From prepared 125I-GLP-1, five tubes containing 50 µl were 

placed in a counting tray and counted in the gamma counter for 1min to check the 

125I-GLP-1 was close to the correct 59,532 counts per minute (predicted from 
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50pM radio-ligand). Meanwhile, 200 ul of milk solution was added to each well of 

the Multiscreen® HTS filtered plate fitted firmly on a Millipore vacuum pump and 

passed through its filter. The contents of each well of the polypropylene plate was 

transferred to its corresponding position in the filter plate and filtered. After that the 

filter plate was washed 3 times with washing buffer (appendix 12) to remove any 

unbound 125I-GLP-1 from the filter leaving only the non-specifically bound 125I-

GLP-1. The filter bottom of each well was punched out to a counting tube.  The 

tubes containing filters were transferred in order to the counting trays of the 

gamma counter and counted in sequence for 1 min and the data print out 

collected.  The data in counts per minute (CPM) obtained from the gamma counter 

was analyzed using GraphPad prism 5.0 software (San Diego, CA, U.S.A.).  

2.7  The LANCETM cAMP accumulation assay 

The LANCETM cAMP accumulation assay (Perkin Elmer) is a homogenous 

time-resolved fluorescence resonance energy transfer (TR-FRET) immunoassay 

designed to measure cAMP produced upon modulation of adenyl cyclase activity 

by GPCRs. LANCETM is based on the competition between a europium-labeled 

cAMP tracer complex and sample cAMP for binding sites on cAMP-specific 

antibodies labeled with the dye Alexa Fluor® 647. The europium-labeled cAMP 

tracer complex is formed by the interaction between Biotin-cAMP (bcAMP) and 

streptavidin labeled with Europium-W8044 chelate (Eu-SA). When the labelled 

antibodies are bound to the Eu-SA/b-cAMP tracer, a light pulse at 340 nm excites 

the Eu-chelate molecules of the tracer. The energy emitted by the Eu-chelate is 

transferred to an Alexa molecule on the antibodies, which in turn emits light at 665 

nm. The fluorescence intensity measured at 665 nm will decrease in the presence 
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of cAMP from test samples and resulting signals will be inversely proportional to 

the cAMP concentration of a sample (Figure2-2) 

Figure  2-2 LANCE cAMP Assay Principle (taken from Perkin Elmer user’s guide of 
LANCE™ cAMP 384 Kit).  

 

Cell based protocol of the assay was carried out using cells expressing the 

receptor of interest, which were harvested and washed with stimulation buffer 

(Appendix 15). The cells were re-suspended in stimulation buffer at the optimised 

concentration. Cell numbers and 3-isobutyl-1-methylxanthine (IBMX) concentration 

were set based upon optimization experiments in order that raw fluorescence data 

fell within the linear range determined by a standard cAMP concentration curve. 

IBMX is competitive non-selective phosphodiesterase (PDE) inhibitor  which 

protects the produced cAMP from breakdown by PDE.  IBMX and the Alexa Fluor® 

647 labelled antibodies were added to the cell suspension at a final concentration 

of 500 μM and 0.005 % (v/v) respectively. The standard ligand was tested at 

concentrations over a log scale consisting of 1 M, 100 nM, 10 nM, 1 nM, 100 pM, 

10 pM, 1 pM and vehicle (stimulation buffer) only. Triplicates of 6 μl/well of each 

http://en.wikipedia.org/wiki/Phosphodiesterase_inhibitor
http://en.wikipedia.org/wiki/Cyclic_adenosine_monophosphate
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ligand concentration were transferred to a white 384-well low volume OptiPlate 

(Greiner). 6 μl of the prepared cell suspension were added to each well and the 

contents of the plate were mixed by gentle tip then sealed and left for stimulation 

for 30 min at room temperature. Meanwhile, the detection mix was prepared in a 

separate tube by diluting the Eu-W8044 labelled streptavidin 2250-fold in 

Detection buffer supplied in the kit. The Biotin-cAMP was then added to give it 

750-fold dilution. This mixture was incubated for at least 15min at room 

temperature to allow streptavidin-biotin complex formation to occur. Once the 

stimulation time was finished, 12 μl of Detection mix was added to each well and 

incubated at room temperature for 1 hr. The acceptor fluorescence signal was 

then read at 665 nm using VictorTM X4 2030 Multilabel Reader (Perkin Elmer).  

The signal is inversely proportional to the ammount of cAMP synthesized by the 

tested concentration of the agonist. The data output was analysed and graphed 

using GraphPad PRISM 5.0 software (San Diego, CA, U.S.A.) 

2.8 Statistical analysis 

The recorded data were analyzed and graphed into curves and tables. 

Dose-response curves and competition binding curves were fitted using Prism 

(GraphPad Software Inc., San Diego, CA, U.S.A.). The curves represent one of at 

least three independent experiments for which each point is the mean of triplicate 

values, with SEM displayed as error bars. Counts and LANCETM signals were 

normalised to the maximal specific binding, or maximal response, within each 

dataset unless otherwise stated. pIC50 and pEC50 values were derived 

from curve fitting using non-linear regression analysis. In tables, pIC50 and pEC50 

values represent the mean ± SEM of three or more independent experiments 

performed in triplicates.The pEC50 or pIC50 values are compared to corresponding 
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values for the control receptor or ligand using the unpaired t-test. Significance was 

considered when P < 0.05 and marked by (*), whereas high significance was 

considered when P < 0.01. Fold difference is shown as (d) and calculated from the 

averaged pIC50 and pEC50 values for the control WT receptor or ligand and the 

tested mutant or ligand.  
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3 -  Determining of ‘EX’ interaction using protein model- 
based mutants 

3.1 Introduction  

Using a series of full-length and truncated analogues of both GLP-1 and 

EX4 (as well as either mutated or truncated rGLP-1R), a receptor-peptide 

interaction model has been proposed (Lopez de Maturana et al., 2003). Two 

common interactions were proposed for both EX4 and GLP-1R-NTD: ‘N’ 

describing interaction between the N-terminus of the peptide and the rGLP-1R 

core domain; and ‘H’ describing the interaction between the central helical region 

of the peptide and rGLP-1R-NTD. A third interaction was also proposed: ‘EX’ 

describes the interaction unique to EX4 and its N-terminally truncated analogues, 

which is responsible for its N-independent affinity. Al-Sabah and Donnelly, (2003a) 

later proposed that the ‘EX’ interaction is formed between the rGLP-1R-NTD and 

the C-terminal region of EX4 and speculated that this may be via the ‘Trp cage’ 

formed by this region of EX4. However, the residues in rGLP-1R-NTD involved in 

the ‘EX’ interaction have not been determined and therefore the aim of this work 

was to identify the source of the ‘EX’ interaction.   

Having a long sequence (153 amino acids), it would be too time consuming 

to scan the entire rGLP-1R- NTD residue by residue via mutagenesis. Therefore, a 

method to target potential sites of the ‘EX’ interaction had to be found. At this 

stage of the project there were no available crystal structure for any Family B 

GPCR; however, the availability of NMR structures for CRFR2β-NTD (Grace et al., 

2004), a Family B GPCR member, facilitated a protein structure modelling 

strategy.  
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Kalliomaa (2005) carried out computer modelling for EX4 interacting with 

rGLP-1-NTD and assigned the residues of the receptor that could interact with C 

terminus of EX4, the potential source of the ‘EX’ interaction. Kallioma’s work was 

accomplished through four main stages: building homology models for rGLP-1R-

NTD, finding a representative structure for EX4, prediction of the binding site and 

finally docking of EX4 and rGLP-1R-NTD. 

3.1.1 Homology modelling 

Homology modelling is based on the idea that most sequences sharing at 

least 25% identity over an alignment of at least 80 residues also share the same 

basic structure (Westhead et al., 2002). Accordingly, one or more known protein 

structures can be used as templates to build a model for a chosen target protein 

as well as the prediction accuracy increases with the target-template identity 

(Eswar et al., 2003). Homology modelling is usually acompolished through four 

main steps: fold assignment, alignment of sequences, modelling and model 

evaluation (Eswar et al., 2003).  

Kalliomaa, (2005) carried out the first step by assignment of the NMR 

structure of CRFR2β-NTD (Grace et al., 2004), which is known to be a potential 

template for modelling. Kallioma, (2005) searched sequence similarity against 

protein data bank (PDB) database by using Basic Local Alignment Search Tool  

(BLAST) program (Altschul et al., 1997) to confirm that there is no any other 

potential template structures exist. Furthermore, only residues 39 to 120 of 

CRFR2β-NTD structre were accepted because residues before this range was a 

cloning artefact and last 13 residues showed a very disordered structure 

(Kalliomaa, 2005). 
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In the second step, the sequences of CRFR2β-NTD (39-120) and GLP-1R 

(40-128) were aligned with ClustalW (Thompson et al., 1994) and manually 

checked. The results revealed fairly low identity (26%). Improvement of the 

alignment was very difficult because it could lead to losing the alignment of 

important structures like the six conserved cysteins (Kalliomaa, 2005).  JPRED 

(Cuff et al., 1998) was used for secondary structure prediction of rGLP-1R-NTD so 

that the alignment of secondary structure elements could also be checked 

because the NMR structure of CRFR2β-NTD (Grace et al., 2004) contained 20 

models with well-defined core and variable loop regions (Figure 3-1B). 

Additionally, the results demonstrated that the best representative models of 

CRFR2β-NTD were 13 and 18; However, further clustering results divided one of 

the two models to give final three models 13, 15 and 18 ( heads of table in Figure 

3-3) (Kalliomaa, 2005). Kalliomaa (2005) investigated the selected models with 

RasMol viewer (Sayle and Milner-White, 1995) and showed a great difference on 

the second variable loop. This loop turns over 180 degrees with models 18 and 15 

being the most divergent and model 13 in between. This structure difference could 

affect potential binding sites within this region. Accordingly, the author decided to 

use the three models separately in the further modelling work.   
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Figure  3-1: The 3D structure of CRFR2β-NTD. 

A: A ribbon diagram of the CRFR2β-NTD highlighting the β-sheets in blue and the 
disulphide bonds in yellow. B: Superposition of 20 conformers representing the 3D NMR 
structure. Only amino acid residues 44–119 are shown (as a black core). The bundle is 
obtained by superimposing the backbone Cα carbons of residues 58–83 and 99–113. 
Green colour represents disordered loops (residues 39-58 and 84-98)  (Grace et al., 
2004). 

 

 The output results were utilized for crossing to the third step, building the 

structure model of rGLP-1R-NT using MODELLER program (Sali and Blundell, 

1993).  MODELLER builds models from protein sequence by using spatial 

restraints like restraints on distances and dihedral angles based on the structural 

alignment of the target (rGLP-1R-NTD) and template (CRFR2β-NTD) as well as 

stereochemical restraints and statistical preferences for non-bonded interatomic 

distances and dihedral angles derived from known protein structures (Eswar et al., 

2003). MODELLER produced, in each run, ten 3D models of rGLP-1R-NTD for 

each of the three structures. These were named as 13A_X, 15A_X, and 18A_X 

where A represents the first round of model building, while X identifies which of the 

10 models produced by MODELLER is being represented. MODELLER specifies 
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each model with molecular probability density function (pdf), which is inversely 

proportional to the quality of the model. Hence, the models could be ranked based 

on their pdf.  

The large number of models for rGLP-1R-NTD released by MODELLER 

raised the need for the final step, evaluation of the models. Kalliomaa, (2005) used 

PROCHECK program (Laskowski et al., 1993) to select the highest quality model 

based on the stereochemical quality of the protein structure. PROCHECK 

produces a summary report of Ramachandran plot statistics that define phi-psi 

torsion angles for all residues in the target structure. The high quality model were 

selected for each of the three representative structures (13A_6, 15A_4, and 

18A_1) 

Kalliomaa, (2005) then used the chosen model in a second homology 

procedure as the template structure plus the CRFR2β-NTD structure to see if it 

would improve the model quality. The output models were called B (13B_X, 

15B_X, and 18B_X) and were evaluated in the same way as the A models. Finally, 

six high quality submodels for each of the three main structures, three from A 

models and three from B models were subjected to further refinement by energy 

minimisation. 

Energy minimisation optimises structures into the lowest energy 

conformation (Sali and Blundell, 1993). Energy minimisation improves the initial 

structure without change via the adjustment the bond lengths and angles to values 

near their local minimum (McCammon and Harvey, 1987). Energy minimisation 

was carried out with TINKER (Ponder and Richard, 1987) and AMBER7 

(Pearlman et al., 1995). The best energy minimised model for each three 

structures were selected to represent GLP-1R. The final three homology models 

were named GLP-1R_13, GLP-1R_15 and GLP-1R_18 
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3.1.2 EX4 structure 

Kalliomaa, (2005) used an NMR EX4 exprimental structure (Pdb id:JRJ) 

that has 36 models. The structures showed well defined helical structure with 

much variability between models in the N-terminus. However, the disordered N-

terminus is not important in the modelling of docking because N-terminus of EX4, 

based on previous laboratory studies (Al-Sabah and Donnelly, 2003a), does not 

bind to rGLP-1R. EX4 models were aligned and clustered by using OLDERADO 

(Kelley and Sutcliffe, 1997). OLDERADO is an internet server combining two 

programs: NMRCORE for maping core residues and NMRCLUST for structural 

alignments of the core domains and clustering of the aligned structures. By 

uploading the ensemble of structures to that server, the output describes 

conformationally related subfamilies and the most representative structure for 

each family. The most representative structure of EX4 was revealed as model 21 

(Kalliomaa, 2005).   

3.1.3 Prediction of the Binding site 

Kalliomaa, (2005) used protein-protein interface prediction program (PPI-

PRED) (Bradford and Westhead, 2005) to detect the potential binding interface 

patches. Given a Pdb file, PPI-PRED analyses protein surfaces patches based on 

hydrophobicity, electrostatic potential conservation, shape and solvent 

accessibility. The program was guided by multiple sequence alignment (MSA) of 

CRFR family and glucagon family GPCRs then between the members of each 

subfamily using the sequence retrival system (SRS, http://srs.ebi.ac.uk) along with 

identification of the conserved residues using ClustalW (Thompson et al., 1994). 

The available binding data was also used as an assessment of the computational 

work. The results defined two patches of rGLP-1R-NTD binding sites: one was 

defined around 27-33 residues and another patch was predicted in the core 
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structure and extends to the beginning of the 2nd loop (residues 46-65). The two 

patches of residues were used in the docking procedure to select only complexes 

which had these regions in the binding interface. After that, NACCESS (Hubbard 

and Thornton, 1993) was used to analyse the pdb file to ientify core and solvent 

accessible residues. In the same way, the conserved residues of EX4 were 

predicted by alignment with other peptides interacting with the other member of 

Family B GPCRs (Kalliomaa, 2005).  

3.1.4 Docking EX4 and rGLP-1R 

In this step, Kalliomaa, (2005) applied what is known as protein-protein 

docking modelling. Protein-protein dockingis a two-stage process: first a set of 3D 

complexes is created and second they are scored to identify the most favourable 

conformations.  Although protein conformational changes upon binding are well 

known, identification of of specific binding sites should be carried out before 

performing that computionally (Chen et al, 2003). Alternatively, Kalliomaa, (2005) 

used rigid body docking via Fast Fourier Transfer (FFT) methods (Russel et al., 

2004) by using ZDOCK program (Chen et al, 2003). FFT keeps the protein 

structures unchanged and search for shape and chemical complementry between 

structures to rank the created protein-protein complexes. In Kalliomaa’s work, 

ZDOCK returned 2000 top scoring complexes of EX4 (NMR model 21) and rGLP-

1R-NTD (homology models 13, 15 and 18). However, this large number was 

reduced to less than 100 by introducing residues restraints from the previously 

predicted patches (27-33, 46-65) together with the peptide interface residues. After 

that, the complexes were cheked to confirm that the peptide binding interface was 

correct and the EX4 Trp-cage (C-terminus) could make some contacts with rGLP-

1R-NTD particularly with chemical shift residues and conserved residues based on 

the previously reported results about the evident contact between Trp-cage of EX4 
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and rGLP-1R-NTD(Al-Sabah and Donnelly, 2003a). Kalliomaa’s work is 

summarised in Figure 3-2. 

 

 

Figure  3-2 : An outline of Kalliomaa, (2005) computer based study 

The steps are in descending order with crossing from one to another by downward arrow. 
Dotted arrows are for building the B models (taken from Kalliomaa, 2005).  
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3.2 Strategy 

Each model suggested different residues involved in the binding of the C-

terminus of EX4. A number of those models were expected to be accurate enough 

to determine the amino residues of rGLP-1R that would contribute to the ‘EX’ 

interaction. Consequently, site directed mutagenesis was used to modify the target 

residues as well as ligand binding assay was used to assess which model was 

correct. 

Based upon this study, 19 amino acids of the GLP-1R-NTD, suggested 

contributing to the ‘EX’ interaction by Kalliomaa’s models, were targeted as 

potential ‘EX’ interaction sites. Since conserved residues across species have 

been considered important for receptor-ligand interactions, the selected residues 

were checked by sequence alignment to ensure they were conserved between rat, 

human and mouse types of receptors. If any of the selected 19 residues was 

involved in the ‘EX’ interaction, mutation of it would be expected to affect EX4 

binding but would not be expected to affect GLP-1 binding as GLP-1 does not 

have residues equivalent to EX4(31-39).    
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Figure  3-3: Residue-residue interactions based Kalliomaa’s models of EX4 docked 
in rGLP-1R-NTD.  

The three NTD models are shown on the top with different colors (blue=18_x, pink=13_x, 
green=15_x).  EX4 is drawn as coiled ribbon with long curved thick tube at its C-terminus 
end and another short one representing its N-terminus. The matched colour in the table 
shows the receptor’s residues involved in the peptide binding. The red colour is for 
residues suggested to be contributing to trp-cage receptor interaction in each complex. 
Numbers on the right side identify residues in  the rGLP-1R  sequence (Kalliomaa, 2005). 

 GLP-1R residues involved in peptide binding. 
Residues in close proximity with EX-4 Trp-cage are highlighted in red. 

            

ResNo 18_1 18_14 18_21 13_5 13_11 13_14 15_5 15_8 15_14 15_33 SP no 

1 R R R R R R R R R R 40 

2 E E E E E E E E E E 41 

3 Y Y Y Y Y Y Y Y Y Y 42 

4 R R R R R R R R R R 43 

5 H H H H H H H H H H 44 

6 Q Q Q Q Q Q Q Q Q Q 45 

7 C C C C C C C C C C 46 

8 Q Q Q Q Q Q Q Q Q Q 47 

9 R R R R R R R R R R 48 

10 F F F F F F F F F F 49 

11 L L L L L L L L L L 50 

12 T T T T T T T T T T 51 

13 E E E E E E E E E E 52 

14 A A A A A A A A A A 53 

15 P P P P P P P P P P 54 

16 L L L L L L L L L L 55 

17 L L L L L L L L L L 56 

18 A A A A A A A A A A 57 

19 T T T T T T T T T T 58 

20 G G G G G G G G G G 59 

21 L L L L L L L L L L 60 

22 F F F F F F F F F F 61 

23 C C C C C C C C C C 62 

24 N N N N N N N N N N 63 

25 R R R R R R R R R R 64 

26 T T T T T T T T T T 65 

27 F F F F F F F F F F 66 

28 D D D D D D D D D D 67 

29 D D D D D D D D D D 68 

30 Y Y Y Y Y Y Y Y Y Y 69 

31 A A A A A A A A A A 70 

32 C C C C C C C C C C 71 

33 W W W W W W W W W W 72 

34 P P P P P P P P P P 73 

35 D D D D D D D D D D 74 

36 G G G G G G G G G G 75 

37 P P P P P P P P P P 76 

38 P P P P P P P P P P 77 

39 G G G G G G G G G G 78 

40 S S S S S S S S S S 79 

41 F F F F F F F F F F 80 

42 V V V V V V V V V V 81 

43 N N N N N N N N N N 82 

44 V V V V V V V V V V 83 

45 S S S S S S S S S S 84 

 

rGLP-1R-NTD 

EX4 

N 

C 
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3.3 Methodological considerations 

3.3.1 Preparation of mutant receptor 

Two pairs of primers were designed for each desired mutation and used to 

generate site-directed mutations of rGLP-1R (see methods section 2.1). All the 

rGLP-1R mutants were expressed with a Myc tag to facilitate the detection of the 

receptor, by either immuno-histochemistry or western blotting, in case of 

undetectable binding affinity and/or activity. 

Each mutant DNA product was sent for sequencing to confirm the mutation 

of the residue of interest. The generated sequences for mutated constructs were 

aligned with the GenBank accession M97797 using the Blast 2 alignment program 

(Tatusova and Madden, 1999) (http://www.ncbi.nlm.nih.gov/blast/bl2seq/bl2.html).  

All sequences were correct and were in the proper open reading frame.  Once the 

DNA constructs were confirmed, they were amplified and purified by midiprep from 

transformed bacteria producing optimum DNA quality and concentration for 

transfection. 

3.3.2 Creation of stable cell lines  

Flasks (25 cm2) of HEK-293 cells were seeded as required and were 

transfected individually using each mutant DNA. The successfully transfected cells 

were selected by growing cells on media containing antibiotic Geneticin® (G418) to 

produce a mixed population of stable cell lines from the surviving cells. Although it 

took a long time to select stable cells by this method compared to transient 

transfection, the stable cell lines saved time in the long run by providing  an easy 

and consistent source on request of both live cells and/or their membrane 

preparation for each planned experiment, as well as a liquid nitrogen frozen stock 

of those cells. 
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3.3.3 Competitive heterologous radioligand binding assay 

The stable cells were used to generate crude membrane preparations required 

for competitive binding analysis using radio-labelled 125I- GLP-1 (Chapter 2.6). In 

the beginning, three dilutions of original stock of each membrane fraction were 

prepared. Then each dilution was subjected to a total and non-specific competitive 

binding assay using radio-labelled 125I-GLP-1 against unlabelled EX4. The result of 

this screening provided a quick idea about binding and non-binding mutants in 

general and about the most suitable membrane protein concentration dilution of 

each binding mutant that would be used to generate a full competitive binding 

curve. The mutated receptors showing binding activities were subjected to a full 

curve competition binding assay using a fixed concentration of 125I-GLP-1 (50 pM) 

against various different log concentrations of EX4 (1M, 100nM, 10nM, 1nM, 

100pM, 10pM, 1pM) .   

3.3.4 LANCETM cAMP assay  

The assay protocol was carried out as described in Chapter 2 but with the 

number of cells being 4000/well, and using higher concentrations of agonists (up 

to 100 μM), GLP-1 and EX4. The same conditions were applied to mutated and 

non-mutated rGLP-1R.   
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3.4 Results 

3.4.1 Preparation of mutant receptors 

Figure 3-4 shows an annotated section of the sequences of the pcDNA3 

constructs that were used to confirm correctly made mutants. 

 

Figure  3-4: Sections of the nucleotide sequence of rGLP-1Rmyc single alanine 

mutated receptors. Mutated codons are squared by pink squares.    
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Figure  3-4 continued...    
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Figure  3-4continued...    
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3.4.2 Radiolabeled ligand binding analysis 

The data obtained from the binding analyses were graphed and interpreted by 

Graph Pad Prism (Figure 3-4). Binding curves in the figures represent one of at 

least three independent experiments for which each point is the mean of triplicate 

values, with s.e.m. displayed as error bars. Counts were normalised to the 

maximal specific binding within each dataset. As seen in Figure 3-5, compared to 

the non-mutated receptor, the competitive binding assay revealed binding for only 

fifteen mutants, while the other three mutants (rGLP-1R-Phe66Ala, rGLP-1R-

Tyr42Ala and rGLP-1R-Val95Ala) failed to show any detectable binding. Further 

statistical analysis (see 2.8) of the receptors showing binding (Table 3-1) revealed 

that there were non-significant effects on the affinity for EX4 compared with WT 

rGLP-1Rmyc (p>0. 5). 

 

Table  3-1: pIC50 values of Ala mutation of rGLP-1R at potential positions to interact 
with C-terminus of EX4. Overview of pIC50 values for each mutant tested by 
heterologous 125I-GLP-1 against unlabelled EX4. d refers to fold difference, which is 
calculated using pIC50 value of wild rGLP-1Rmyc. ND means no detectable binding. 

  

Receptor pIC50 d Receptor pIC50 d 

rGLP-1Rmyc 9.60 ± 0.13  rGLP-1R-Gly98Ala 10.41± 0.25 0.13 

rGLP-1R-Arg40Ala 10.03 ± 0.02 0.30 rGLP-1R-Glu107Ala 9.73 ± 0.09 0.60 
rGLP-1R-Tyr42Ala ND  rGLP-1R-Ile109Ala 9.23 ± 0.04 1.92 
rGLP-1R-His44Ala 9.83 ± 0.17 0.47 rGLP-1R-Leu111Ala 10.10 ± 0.12 0.26 
rGLP-1R-Phe66Ala ND  rGLP-1R-His112Ala 9.80 ± 0.10 0.51 
rGLP-1R-Asp68Ala 9.57 ± 0.17 0.86 rGLP-1R-Lys113Ala 9.98 ± 0.13 0.34 
rGLP-1R-Ser94Ala 9.56 ± 0.13 0.88 rGLP-1R-Asp114Ala 9.57 ± 0.13 0.86 
rGLP-1R-Val95Ala ND  rGLP-1R-Asn115Ala 9.71 ± 0.16 0.64 
rGLP-1R-Leu96Ala 9.20 ± 0.15 2.03 rGLP-1R-Ser116Ala 9.35 ± 0.06 1.44 
rGLP-1R-Gln97Ala 9.85 ± 0.08 0.46    
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Figure  3-5: Competition-binding curves of Ala replacement mutants of rGLP-1R. 

Competitive heterologous radiolabelled ligand binding assays of the fifteen rGLP-1Rmyc 
alanine mutants. Three subfigures A, B and C, binding in each part (A-C), five mutants are 
keyed and labelled and were compared with non-mutated rGLP-1Rmyc. All curves show no 
significant (P> 0.1) affinity change in any of the mutants. 
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3.4.3 LANCETM cAMP assay for non-binding mutants 

The mutated receptors rGLP-1R-Phe66Ala, rGLP-1R-Tyr42Ala and rGLP-

1R-Val95Ala that did not show binding activity, were subjected to further 

investigation via LANCE cAMP assay after stimulation by either EX4 or GLP-1. 

One mutant, Phe66Ala responded to stimulation by both ligands but with highly 

reduced potency, reflected by right shifted dose-response curves as shown in 

Figure 3-6 and with >225-fold difference in EC50 (Table 3-2).  

 

 

 

 

 

 

Figure  3-6: Dose response curves of rGLP-1R-Phe66Ala.  

HEK-293 stably expressing rGLP-1Rmyc and rGLP-1R-Phe66Ala mutant were stimulated 
by either (A) GLP-1 or (B) EX4. The curve for the rGLP-1R-Phe66Ala (■) is widely shifted 
to right of rGLP-1Rmyc (●) indicating great reduction in potency of both GLP-1 and EX4. 
Values for pEC50 are given in Table 3-2. 

 
 
Table  3-2: pEC50 values for the rGLP-1R-Phe66Ala stimulated by either GLP-1 or 

EX4.  

 GLP-1 EX4 

 pEC50 d pEC50 d 

rGLP-1Rmyc 9.60 ± 0.06  10.74 ± 0.08  

rGLP-1R-Phe66Ala 7.43 ± 0.13** 226.29 8.37 ± 0.15** 224.04 

 
d is the fold difference between the pEC50 values of the mutant compared with WT rGLP-
1Rmyc. ** P<0.0001.  

 

 

 

 

 

0

50

100

-12 -11 -10 -9 -8 -7 -6 -5

rGLP-1Rmyc

rGLP-1R-Phe66Ala

A

0

Log [GLP-1] (M)

%
 M

a
x
 c

A
M

P
 R

e
s
p

o
n

s
e

0

50

100

-12 -11 -10 -9 -8 -7 -6 -5

rGLP-1Rmyc

rGLP-1R-Phe66Ala

B

0

Log [EX4] (M)

%
 M

a
x
 c

A
M

P
 R

e
s
p

o
n

s
e



Chapter 3: The ‘EX’ interaction and Protein models 

 

101 

The mutated receptors rGLP-1R-Tyr42 and rGLP-1R-Val95 did not respond 

to stimulation by either GLP-1 or EX4, as shown in Figure 3-7. 

 

 

 

 

 

 

 

 

Figure  3-7: Dose response curves of rGLP-1R-Val95Ala and rGLP-1R-Tyr42Ala 
versus WT rGLP-1Rmyc.  

HEK-293 stably expressing rGLP-1Rmyc (●) , rGLP-1R-Val95Ala (▲) rGLP-1R-Tyr42Ala 
(▼) were stimulated by either (A) GLP-1 or (B) EX4. Both of the mutants show flat dose 
response curves compared to rGLP-1Rmyc demonstrating a negligible response to either 
GLP-1 or EX4.  

 

          The rGLP-1R-Tyr42Ala and rGLP-1R-Val95Ala either have faulty expression 

or else the mutated residues are highly important for the affinity and/or activity of 

the receptors.  
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3.5  Discussion 

(Kalliomaa, 2005) provided a number of different models proposing possible 

sites of interactions between the rGLP-1R-NTD and EX4 with particular attention 

to the C-terminal region of EX$, assumed at that time for form a Trp-cage. Based 

upon those models, 19 residues that were suggested to contribute to the Trp-cage 

interaction in at least one model (as well as being conserved between rat, human 

and mice subtypes of GLP-1R) were selected for testing. Each residue was 

mutated to alanine in order to assess the role of each side chain in EX4 binding.  

Most of the mutated receptors displayed binding characteristics not 

significantly different from the WT receptor, without any significant effect on the 

affinity of EX4 (P>0.5) (Table 3-1, Figure 3-5). However, three of these mutants; 

rGLP-1R-Tyr42Ala, rGLP-1R-Phe66Ala and rGLP-1R-Val95Ala failed to bind the 

radio-labelled agonist. This failure could mean either the mutants affect GLP-1 

binding or that expression of the desired receptors is defective. Further 

investigations to explore the reason were carried out. Cell lines expressing the 

three mutants were subjected to cAMP accumulation assay, as cAMP is the 

second messenger produced in response of agonist activation.  

The concentration of the agonist used in the the LANCETM cAMP assay was 

much higher than that of the radiolabelled ligand used in the binding assay (1µM 

rather than 50 pM) and hence any reduction in the affinity due to the mutation 

would be detected as a reduction in potency. However, compared to the control 

WT cell line, rGLP-1R-Phe66Ala responded with 224-fold lower potency (Figure 3-

5, Table 3-2) while the others, rGLP-1R-Tyr42Ala and rGLP-1R-Val95Ala, failed to 

produce any cAMP in response compared to the WT receptor activation by the 

same concentration of GLP-1 (Figure 3-7).  
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Kalliomaa built the models based upon a CRFR2β-NTD structure with a 

very low level of sequence conservation with GLP-1R (26%) which makes the 

accurate alignment between the target and template very difficult and needs high 

manual intervention. However, it was acceptable, taking into consideration the 

availability of this unique template for a Family B GPCR at that time, along with 

other features that supported the template selection such as localization of 

common conserved groups within the aligned area, common phylogenetic origin of 

the two receptors and the binding mechanism of their relevant ligands. However, 

the NMR structure of CRFR2β-NTD has a missing area at the distal N-terminal 

region, which is known to affect the affinity of ligand binding in GLP-1 (Runge et 

al., 2008, Underwood et al., 2010)  

At the time of planning this work, the CRFR2β-NTD NMR structure was the 

only available template for a Family B GPCR NTD, and the work had to use 

Kalliomaa’s models. Later, a new model  based on an NMR structure (Tan et al., 

2006, Sun et al., 2007) of Family B members were published. Sun et al., (2007) 

generated an NMR structure for the PAC1-R-NTD with the ligand PACAP bound. 

This structure not only displayed the conserved ‘scr’ structure of Family B GPCR-

NTDs seen in the original version of CRFR2β-NTD but also had a more extended 

α-helical N-terminus. Later, (Grace et al., 2007) generated a new NMR structure 

for CRFR2β-NTD bound to its antagonist, astressin, providing a clearer idea about 

the binding pattern of this complex.  

Thereafter, (Parthier et al., 2007) reported the 1.9 Å resolution crystal 

structure of the complex of human GIPR-NTD (residues 24–138) with its agonist, 

the incretin hormone GIP(1–42). This complex closelt resembles GLP-1R and its 

agonist GLP-1. The structure supports the existence of an ‘H’ interaction between 

the helix of the peptide, as well as its C-terminus (residues 15-30) and the NTD of 
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the receptors. However, the N-terminus of the GIP (1–42) peptide is free to 

interact with the remaining trans-membrane structure of the receptor. More 

recently, a GLP-1R crystal structure in complex with EX4(9-39) was released 

(Runge et al., 2008). 

The crystal structures describe in detail the residues that contribute to the 

receptor/peptide interaction, which in GLP-1R are Val30, Leu32, T35, Val36, 

Lys38, Trp39, Tyr69, Tyr88, Leu89, Pro90, Trp91, Arg102, Gly108 and Trp110 

(Figure 3-7). Based upon this description, the mutated residues described in this 

chapter lie far away from the residues that were later reported to contribute to the 

ligand interaction. This now explains why most of their mutants described in this 

chapter did not interfere with the ligand binding. The structure also explains why 

the rGLP-1R-Phe66Ala and rGLP-1R-Tyr42Ala mutations prevented binding. 

According to Runge’s structure, rGLP-1R-Phe66 is located in the first β strand of 

the receptor and, along with rGLP-1R-Tyr42, rGLP-1R-Pro90 and rGLP-1R-Trp91 

are exclusively conserved in what the authors identified as the ‘glucagon receptor 

branch’. Glucagon receptor branch includes Tyr42, Phe66, Pro90 and Trp91 of 

GLP-1R-NTD, which are exclusively conserved in the Family B GPCR-NTDs and 

likely to define specificity for the ligands of the glucagon peptide subfamily (Runge 

et al., 2008).  

 Accordingly, it could be said that mutation of these residues is more likely 

to disturb the receptor structure. Also, rGLP-1R-Tyr42 is a part of the hydrophobic 

cavity formed by Tyr42 of the α-helix, Tyr69 of turn 1, Ala70 of β-strand 2, Val83 of 

ß-strand 3, Val100 of β-strand 4, the Cys85-Cys126 disulphide bridge and two 

residues of loop 2 itself (Tyr88 and Leu89). This hydrophobic cavity is filled by the 

side chain of Pro86 at the beginning of loop 2, which plays a structurally important 
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role for the formation of the ligand binding site of GLP-1R-NTD (Figure 3-8) 

(Runge et al., 2008). 

A molecular mechanism has been proposed for the activation of the 

secretin receptor, whereby natural agonist ligand binding to the receptor amino-

terminal domain induces a conformational change in that domain, which exposes 

an endogenous agonist sequence that is totally distinct from the hormonal agonist 

(Ding et al., 2006). Surprisingly, a peptide sequence based upon GLP-1R residues 

63-70 (NRTFD), has been reported as the endogenous agonist (Dong et al., 

2008). In contrast, the results observed for the rGLP-1R-Phe66Ala mutant 

revealed the maintained activity of the receptor unless the other residues 

compensate the job of rGLP-1R-Phe66 in case of its mutation.  

 

 

 

 

 
 
  
 

 

 

 
 
 

 
 
Figure  3-8: A diagram of the residues of the rGLP-1R-NTD.  
According to the crystal structure, the equivalent residues contribute to the binding 
interface (in magenta). Model-based mutated residues bind normally as WT (green). 
Model based mutated residues interfered with binding of the ligand, which are also shown 
to be involved in the ligand binding by crystalization (yellow). The conserved cysteine 
residues are connected by disulphide bonds (red).  
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Figure  3-9: The hydrophobic binding cavity as shown by crystal structure of GLP-
1R-NTD bound to EX4(9-39). 

This hydrophobic cavity is formed by Tyr42 of the α-helix, Tyr69 of turn 1, Ala70 of β-
strand 2, Val83 of β-strand 3, Val100 of β-strand 4, the Cys85-Cys126 disulphide bridge 
and two residues of loop 2 itself; Tyr88 and Leu89. This cavity is filled by the side chain of 
Pro86 at the beginning of loop 2 which plays a structurally important role for the formation 
of the ligand binding site of GLP-1R-NTD (Runge et al., 2008). 

 

In short, although rGLP-1R-Phe66 and rGLP-1R-Tyr42 are not directly 

involved in the ligand binding, they could alternatively modulate the binding site of 

the NTD by intramolecular interactions, based upon their incorporation in the 

glucagon receptor branch and hydrophobic binding cavity, in order to 

accommodate specifically the glucagon peptide subfamily. Likewise, rGLP-1R-

Val95 is located within GLP-1R loop 2 that connects between β3 and β4. Loop 2 is 

also important for ligand binding (Figure 3-8) (Runge et al., 2008).    

After all, Kalliomaa’s work was a first trial for building a rGLP-1R-

NTD/peptide binding model but the limited information at that time lowered the 

quality of the models. It has now become clear that Kalliomaa’s models are 

unreliable in determining EX4 binding sites in rGLP-1R-NTD, and so alternative 

approaches to locate the ‘EX’ interaction were attempted. 
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4 -  Determining of ‘EX’ interaction using crystal 
structure-based mutants 

4.1 Introduction and strategy 

The mutant receptors that were built based on Kalliomaa’s models failed to 

show differential binding between GLP-1 and EX4. After completion of that phase 

of work, (Parthier et al., 2007) released the 1st crystal structure of a Family B 

GPCR-NTD. This was the structure of the GIPR-NTD bound to GIP. Based on an 

alignment between GIPR and rGLP-1R on the one hand (Figure 4-1A) and 

between GIP, GLP-1 and EX4 on the other hand (Figure 4-1B), the residues 

assigned in GIPR as determinants for GIP binding were suggested to play the 

same role in rGLP-1R and should hence should reflect residues in either GLP-1 or 

EX4 that bind to GLP-1R, as described in Figure 4-2.  

It was clear that Kalliomaa’s models were inaccurate and this explained the 

inability to identify the basis for the ‘EX’ interaction in Chapter 3. Indeed, in 2008 

Runge et al. published the structure of hGLP-1R-NTD bound to EX4(9-39) which 

confirmed the similarity to GLP-1R. Interestingly, all the residues contributing to 

NTD binding in either GLP-1 or EX4 were included in the helical region i.e forming 

the ‘H’ interaction in the previously proposed model (Lopez de Maturana et al., 

2003). Interestingly, a combination of pharmacological and biophysical 

approaches revealed that the removal of the EX4 C-terminal region had no effect 

upon binding to the hGLP-1R (Runge et al., 2007). Furthermore, the crystal 

structure of hGLP-1R-NTD bound to EX4(9-39), showed minimal interaction with 

the C-terminal region of the ligand except for a hydrogen bond between EX4 

Ser32** and  hGLP-1R-Glu68 (Runge et al., 2008).  
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More recently, a crystal structure of hGLP-1R-NTD bound to GLP-1 has been 

published (Underwood et al., 2010), which also showed that the interacting ligand 

residues involved in receptor interaction were limited to its helical region. Hence, 

both of the structures located the residues in NTD that interact with ‘H’ of the 

ligand, but not all the residues contributing to the ‘H’ interaction for EX4 and GLP-1 

were identical. Therefore, the non-identical amino acids could be contributing to 

the ‘EX’ interaction via a selective interaction with EX4 rather than GLP-1 with 

GLP-1R.  

Accordingly, as an initial approach, the residues of rGLP-1R potentially 

contributing to the differential binding of EX4 were selected as following; Val30, 

Thr35, Val36, Trp39, Tyr69, Tyr88, Trp91, Glu127 and Glu128 (Figure 4-2). Each 

residue was subjected to mutation followed by pharmacological characterization.  

The rationale behind the selection of each residue will be introduced separately 

with the relevant results. 

4.2 Methodological considerations 

The general methods described in Chapter 2 were applied. The peptides 

used for binding analysis have been expanded to include GLP-1, EX4 and EX4(9-

39). Each mutant receptor underwent both binding and activity analysis as 

described in Chapters 2 and 3.  

 



Chapter 4: Crystal structure based mutagenesis     

 

109 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure  4-1: Sequence alignment of the NTDs Family B GPCRs and their relevant 
ligands. 
A: Hormone receptor NTDs with numbering according to GIPR; The names of the 
glucagon receptor family members are in bold. Residues missing from the construct of 
CRFR2β used for structure determination (Grace et al., 2007) are in gray. B: Sequence 
alignment of human peptide hormones with numbering according to GIP; the names of the 
ligands are in bold. PACAP residues forming α helix when bound to its receptor are 
underlined (Inooka et al., 2001). CRFR2β; f denotes DPhe12, m indicates norleucine 
residues 21 and 38, and underlined residues Glu30 and Lys33 are chemically linked 
through a lactam bridge. Residues not observed in the NMR structure are in gray (Parthier 
et al., 2007). 

 in ‘fold’ line for stabilizing residues  
 in ‘binding’ line for residues involved in hydrophobic interaction 
---- Additional residues that are not shown 
‘ss’ The secondary structure  
 Absolutely conserved residues 
 Less conserved residues (Basic) of receptors or ptential N-terminal helix-capping          

residues are marked in green, 
  Less conserved residues (Hydrophobic) 
 Conserved cysteins 
U  Underlined letters are amino acids of the predicted α helix of the receptor  
 
 



Chapter 4: Crystal structure based mutagenesis     

 

110 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

Figure  4-2: Cartoon model of the residues of the rGLP-1R-NTD that interact with GLP-1 and EX4.  

The model shows the EX4 sequence in a red box, in which each amino acid is connected to the suggested interacting residue of the receptor 
by a colour matching line. GLP-1 is squared by a blue box; interacting residues that are different from corresponding ones in EX4 are 
underlined.  Each mutated residue of the NTD is highlighted by coloured circles.  
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Figure  4-3: Cartoon model of the investigated mutants of the rGLP-1R-NTD with GLP-1 and EX4.  

The figure is a repeated version of Figure 4-2 with the addition of the substituted amino acids for each residue. Each mutated residue of the 
NTD is highlighted by different coloured circles and connected to its same coloured and shaped substitutes by colour matching lines.  
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4.3 Results 

4.3.1 Preparation of the mutants  

The mutants were prepared using the same laboratory techniques 

mentioned under 2.1 and they were confirmed by sequencing and alignment. 

Figures 4-4 and 4-5 show the relevent sections of this sequencing 

  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure  4-4: Sections of the nucleotide sequence of rGLP-1Rmyc single mutated 
receptors. Mutated codons are highlighted by pink squares.    
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Figure  4-5: Sections of the nucleotide sequence of rGLP-1Rmyc single mutated 
receptors. Mutated codons are highlighted by pink squares.    
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4.3.2 Affinity and activity characterization 

Stable cell lines were prepared as described in section 2.3 for each mutant 

receptor and then crude membrane preparations were prepared from these cells 

and subjected to both homologus radiolabelled competitive binding assays  (using 

125I-GLP-1 against cold GLP-1) and heterologous competitive binding assays  

(using 125I-GLP-1 against either EX4 or EX4(9-39)). In addition, LANCE cAMP 

assays were carried out using live cells expressing each mutant receptor. WT 

rGLP-1Rmyc membrane preparations and live cells were used as a control for each 

assay respectively. Although displayed in different tables below for reasons of 

clarity, the binding and cAMP data were generated over the same period for all 

mutants and therefore the same control WT data appears in all the tables. The 

work aimed to detect the impact of mutating these residue targets upon the 

differential GLP-1 and EX4 affinity and/or subsequent activity.  

4.3.2.1 Effect of mutations at rGLP-1R-Val30 

Valine is a branched, non-polar, neutral and hydrophobic amino acid. 

Interestingly, rGLP-1R-Val30 is located one residue from the beginning of the 

helical part of GLP-1R-NTD (Runge et al., 2008; Underwood et al., 2010). The 

GLP-1R-NTD crystal structure suggests that rGLP-1R-Val30 could interact with 

GLP-1 Ser12* and Glu15* and EX4 Lys12** and Glu15** respectively (Figure 4-2). 

Therefore, rGLP-1R-Val30 could play a role in the differential interaction of GLP-1 

and EX4 and the receptor and its mutation may affect binding one or both of them. 

Hence, rGLP-1R-Val30 was mutated to the smaller Ala; similar volume, but neutral 

and polar, Thr; as well as the larger Leu.  The affinity of each mutant was tested 

initially by radio-ligand competitive binding assays with full-length ligands GLP-1 

and EX4, then with truncated EX4(9-39) to check its contribution to EX4 N-

independent affinity. Interestingly, the mutants rGLP-1R-Val30Ala, rGLP-1R-
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Val30Thr and rGLP-1R-Val30Leu reduced the affinity for GLP-1 by the same 

significant magnitude (Table 4-1, d= 9-13 fold, P < 0.01; Figure 4-6, A), while for 

rGLP-1R-Val30Ala and rGLP-1R-Val30Thr the changes to the affinity of EX4 were 

undetectable (Table 4-1, d< 5 fold and p>0.5) (Figure 4-5, B). However, rGLP-1R-

Val30Leu showed a statistically significant reduction in EX4 affinity (d= 4.9 fold, 

p=0.005). In terms of fold difference, the affinity of EX4(9-39) was not affected by 

rGLP-1R-Val30Ala or rGLP-1R-Val30Leu mutations (Table 4-1, d< 5 folds and 

p>0.2) (Figure 4-6, C) but rGLP-1R-Val30Thr showed a slight but statistically 

significant reduction in its affinity (p<0.05) . Similarly, the mutants rGLP-1R-

Val30Ala, rGLP-1R-Val30Thr and rGLP-1R-Val30Leu were also subjected to 

activity characterization by LANCE cAMP assay but showed activity similar to 

rGLP-1Rmyc (Figure 4-7, Table 4-2). 
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Figure  4-6: Competition-binding curves of GLP-1, EX4 and EX4(9-39) with receptors 

mutants of rGLP-1R-Val30. 

125I-GLP-1 competition-binding assays for rGLP-1Rmyc (●) and mutants rGLP-1R-Val30Ala 
(■), rGLP-1R-Val30Leu (▲) and rGLP-1R-Val30Thr (▼) with (A) GLP-1, (B) EX4 and (C) 
EX4(9-39). Mean pIC50 values are given in Table 4-1. 

 

  

Table  4-1: pIC50 values for 125I-GLP-1 competition binding with GLP-1, EX4 and 

EX4(9-39) of rGLP-1R-Val30.  

 GLP-1 EX4  EX4(9-39) 

 pIC50 d pIC50 d pIC50 d 

rGLP-1Rmyc 9.60 ± 0.13  9.54 ± 0.05  8.46 ± 0.06  

rGLP-1R-Val30Ala 8.47 ± 0.14** 13.61 9.33 ± 0.17 1.60 8.43 ± 0.21 1.06 

rGLP-1R-Val30Leu 8.63 ± 0.14** 9.20 8.85 ± 0.11** 4.92 8.26 ± 0.14 1.59 

rGLP-1R-Val30Thr 8.64 ± 0.11** 9.06 9.39 ± 0.16 1.41 8.12 ± 0.10* 2.21 

The data shows a reduction in GLP-1 affinity (about 10-fold) for the three ligands. A slight 
reduction, but nevertheless statistically significant, reduction was recorded for EX4 affinity 
at rGLP-1R-Val30Leu only. Similarly, a slight, but statistically significant, reduction was 
recorded in EX4 affinity for rGLP-1R-Val30Thr only. 
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Figure  4-7: Dose response curves of rGLP-1R-Val30 mutants.  

Dose response curves of rGLP-1Rmyc (●) mutants rGLP-1R-Val30Ala (■), rGLP-1R-
Val30Leu (▲) and rGLP-1R-Val30Thr (▼) with (A) GLP-1 or (B) EX4. Mean pEC50 
values are given in Table 4-2. 

 

Table  4-2: pEC50 values for rGLP-1R-Val30 mutants stimulated by either GLP-1 or 
EX4. 

 GLP-1 EX4 

 pEC50 d pEC50 d 

rGLP-1Rmyc 9.60 ± 0.06  10.74 ± 0.08   

rGLP-1R-Val30Ala 9.45 ± 0.07 1.43 10.38 ± 0.21 2.27 

rGLP-1R-Val30Leu 9.38 ± 0.04 1.65 10.31 ± 0.18 2.67 

rGLP-1R-Val30Thr 9.25 ± 0.12* 2. 24 10.09 ± 0.17* 4.42 

 

The fold differences highlight the absence of any significant effect of these mutations on 
AC activation by either GLP-1 or EX4. 
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4.3.2.2 Effect of mutations at rGLP-1R-Thr35 

Threonine is a polar and neutral amino acid. rGLP-1R-Thr35 is located 

within the helical part of the NTD of GLP-1R (Runge et al., 2008; Underwood et 

al., 2010) where it interacts with GLP-1 Ala25* and the highly conserved Phe28*, 

which correspond to EX4 Val19** and EX4 Phe22** respectively (Figures 4-2). So, 

rGLP-1R-Thr35 could have a differential interaction between GLP-1 and EX4 and, 

if so, its mutation should affect one of them. Consequently, rGLP-1R-Thr35 was 

mutated to the smaller Ala; similar volume, but non-polar, Val; as well as the 

bigger Leu.  The binding affinity of each mutant was tested initially by radioligand 

competitive binding assay with full-length ligands GLP-1 and EX4, and  with 

truncated EX4(9-39). No change in affinity for GLP-1, EX4 or EX4(9-39) was 

detected for rGLP-1R-Thr35Ala and rGLP-1R-Thr35Leu (d < 5 fold). However, a 

statistically significant reduction in affinity was recorded for rGLP-1R-Thr35Val 

using GLP-1 and EX4 (Figure 4-8, Table 4-3). In the same way, the cAMP 

produced in response to either GLP-1 or EX4, by HEK-293 cells stably expressing 

the rGLP-1R-Thr35 mutants, were assessed using the LANCETM cAMP assay, the 

data recorded revealed a statistically significant reduction (p<0.001, d > 5 fold) in 

the potency of GLP-1 at rGLP-1R-Thr35Leu and a slight reduction by rGLP-1R-

Thr35Ala (p<0.05) while the others showed no significant changes (d >  3-fold) 

compared to rGLP-1Rmyc (Figure 4-9, Table 4-4). 
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Figure  4-8: Competition-binding curves of GLP-1, EX4 and EX4(9-39) at the receptor 
mutants of rGLP-1R-Thr35.  

125I-GLP-1 competition-binding assays for rGLP-1Rmyc (●) and mutants rGLP-1- Thr35Ala 
(■), Thr35Leu (▲) and Thr35Val (▼) with (A) GLP-1, (B) EX4 and (C) EX4(9-39). 
Mean pIC50 values are given in Table 4-3. 

 

 

Table  4-3: pIC50 values for 125I-GLP-1 competition binding with GLP-1, EX4 and 
EX4(9-39) of rGLP-1R-Thr35 mutants. 

 GLP-1 EX4  EX4(9-39) 

 pIC50 d pIC50 d pIC50 d 

rGLP-1Rmyc 9.60 ± 0.13  9.54 ± 0.05  8.46 ± 0.06  

rGLP-1R-Thr35Ala 9.38 ± 0.12 1.66 9.55 ± 0.09 0.97 7.89 ± 0.13 3.72 

rGLP-1R-Thr35Leu 9.36 ± 0.19 1.74 9.32 ± 0.13 1.65 8.54 ± 0.19 0.83 

rGLP-1R-Thr35Val 8.99 ± 0.08* 4.06 8.78 ± 0.04* 6.64 8.21 ± 0.09 1.77 

 

The data shows no change in affinity GLP-1, EX4 or EX4(9-39) due to mutations at rGLP-
1R-Thr35Ala and rGLP-1R-Thr35Leu. Statistically reduction was recorded in affinity with 
rGLP-1R-Thr35Val for GLP-1 and EX4 only.  
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Figure  4-9: Dose response curves of the rGLP-1R-Thr35 mutants. 

Dose response curves for rGLP-1Rmyc (●), mutants rGLP-1R-Thr35Ala (■), rGLP-1R-
Thr35Leu (▲) and rGLP-1R-Thr35Val (▼) with (A) GLP-1, (B) EX4. Mean pEC50 
values are given in Table 4-4. 

 

 

 

 

 

Table  4-4: pEC50 values for the rGLP-1R-Thr35 mutants stimulated by either GLP-1 
or EX4. 

 GLP-1 EX4 

 pEC50 d pEC50 d 

rGLP-1Rmyc 9.60 ± 0.06  10.74 ± 0.08   

rGLP-1R-Thr35Ala 9.39 ± 0.02* 1.63 10.62 ± 0.21 1.33 

rGLP-1R-Thr35Leu 8.91 ± 0.06** 4.85 10.22 ± 0.19 3.28 

rGLP-1R-Thr35Val 9.27 ± 0.12 2.12 10.70 ± 0.11 1.10 

 
The data shows a statistically significant reduction (p=0.001, d > 5 fold) in the potency of 
GLP-1 at rGLP-1R-Thr35Leu and a slight but significant reduction at rGLP-1R-Thr35Ala 
(p<0.05). The others show no significant changes (< 3-fold) compared to rGLP-1Rmyc. 
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4.3.2.3 Effect of mutations at rGLP-1R-Val36 

Like rGLP-1R-Val30, rGLP-1R-Val36 is included in the receptor helical 

region and found to have hydrophobic interaction with the highly conserved GLP-1 

Phe22* and EX4 Phe22**. rGLP-1R-Val36 was selected along with rGLP-1R-

Trp39, rGLP-1R-Tyr88 and rGLP-1R-Trp91, although they interact with identical 

residues in both GLP-1 and EX4 (Figures 4-1 and 2), to make sure that the 

orientation of the ‘H’ region of the two ligands was similar. As a result, the data for 

affinity and activation properties indicated non-selective binding of GLP-1 and EX4 

with wild-type-like activity (Figures 4-10 and 4-11). In contrast, reduced affinity was 

observed with EX4(9-39) (with about 10-fold decrease in affinity, Figure 4-10, 

Table 4-5,  p=0.003). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure  4-10: Competition-binding curves of GLP-1, EX4 and EX4(9-39) with the 

rGLP-1R-Val36. 

 125I-GLP-1 competition-binding assays for rGLP-1Rmyc (●) and mutant rGLP-1R-Val36Ala 

(■) with (A) GLP-1, (B) EX4 and (C) EX4(9-39). Mean pIC50 values are given in Table 4-5. 
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Table  4-5: pIC50 values for 125I-GLP-1 competition-binding with GLP-1, EX4 and 

EX4(9-39) of rGLP-1R-Val36Ala.  

 

 GLP-1 EX4  EX4(9-39) 

 pIC50 d pIC50 d pIC50 d 

rGLP-1Rmyc 9.60 ± 0.13  9.54 ± 0.05  8.46 ± 0.06  

rGLP-1R-Val36Ala 9.53 ± 0.11 1.17 9.52 ± 0.05 1.04 7.46 ± 0.06** 9.94 

 

 The data show there was no change in GLP-1or EX4 binding affinity but a reduction in 
affinity for EX4(9-39), P<0.0001, due to mutation at position rGLP-1R-Val36Ala.  

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure  4-11: Dose response curves of rGLP-1R-Val36Ala. 

Dose response curves for rGLP-1Rmyc (●) and mutant rGLP-1R-Val36Ala (■) stimulated 

by (A) GLP-1 or (B) EX4. Mean pEC50 values are given in Table 4-6. 

 

 

Table  4-6: pEC50 values for the rGLP-1R-Val36Ala stimulated by either GLP-1 
or EX4. 

 

 GLP-1 EX4 

 pEC50 d pEC50 d 

rGLP-1Rmyc 
9.60 ± 0.06  10.74 ± 0.08   

rGLP-1R-Val36Ala 9.19 ± 0.20 2.57 10.56 ± 0.06 1.53 

 

The fold differences highlight WT rGLP-1R like activity (d< 3-fold). 
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4.3.2.4 Effect of mutations at rGLP-1R-Trp39 

 rGLP-1R-Trp39 is located within the helix of NTD and is responsible, 

alongside Tyr42 and Phe66, as well as  the adjacent  disulphide bond (Cys-46–

Cys-70), for holding the orientation of the N-terminal helix of NTD toward the core 

region of the NTD (Parthier et al., 2007). rGLP-1R-Trp39 is one of the residues 

that forms the hydrophobic binding cavity of EX4(9-39) (Figure 3-8) (Runge et al., 

2008). Furthermore, a previous study reported that GLP-1 could not bind and 

activate receptors with mutations rGLP-1R-Trp39Ala or rGLP-1R-Trp39Phe (Van 

Eyll et al., 1996). So, rGLP-1R-Trp39Ala and rGLP-1R-Trp39Phe were tested here 

to investigate whether their mutation would affect EX4 in the same way. 

Radioligand competitive binding assays showed that the rGLP-1R-Trp39Ala and 

rGLP-1R-Trp39Phe mutants were unable to bind detectable levels of 125I-GLP-1 

(Figure 4-12). Surprisingly, rGLP-1R-Trp39Ala responded to activation by both of 

GLP-1 and EX4 (Figure 4-13) but with a significant reduction in potency (d= 18.94 

and 18.07 for GLP-1 and EX4 respectively, p<0.0004). Flat activation curves in 

Figure 4-12 indicated that neither GLP-1 nor EX4 was able to activate rGLP-1R-

Trp39 mutant receptor 

 
 
 
 
 
 
 
 
 
 
 

Figure  4-12: Homologous 125I-GLP-1 ligand binding assay at mutants of rGLP-1R-

Trp39.  

‘Total’ refers to total binding using 50pM 125I-GLP-1 alone while ‘non-specific’ refers to 
non-specific binding using 1μM GLP-1 versus 50 pM 125I-GLP-1.The histogram reveals 
undetectable binding for the two mutants of rGLP-1R-Trp39.  
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Figure  4-13: Dose response curves of the rGLP-1R-Trp39. 

Dose response curves for rGLP-1Rmyc (●) versus mutants rGLP-1R-Trp39Ala (■) and 
rGLP-1R-Trp39Phe (▲). Mean pEC50 values are given in Table 4-7.  

 

 
Table  4-7: pEC50 values for the rGLP-1R-Trp39 stimulated by either GLP-1 or EX4. 

 

 GLP-1 EX4 

 pEC50 d pEC50 d 

rGLP-1Rmyc 
9.60 ± 0.06  10.74 ± 0.08   

rGLP-1R-Trp39Ala 8.32 ± 0.07 18.94** 9.48 ± 0.06 18.07** 

 

The fold differences highlight significant, p<0.0004, reductions at the rGLP-1R-Trp39Ala 
mutant on both GLP-1 and EX4 potency. 
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4.3.2.5 Effect of mutations at rGLP-1R-Tyr69 

rGLP-1R-Tyr69 is part of the hydrophobic ligand binding groove (Figure 3-

8) (Runge et al., 2008; Underwood et al., 2010). The rGLP-1R-Tyr69 should 

interact with GLP-1 Val33* and EX4 Lys27**. Mutation of rGLP-1R-Tyr69 could 

therefore have differential effects on the binding GLP-1 and EX4. To test this 

hypothesis, rGLP-1R-Tyr69 was mutated to the smaller non-polar amino acid Ala 

and the hydrophobic amino acid Leu. The data gained after radioligand binding 

assay showed that both of the mutants were unable to bind 50 pM 125I-GLP-1 

(Figure 4-14) and consequently EX4 affinity could not be tested. Likewise, live 

cells expressing rGLP-1R-Tyr69Ala did not respond to activation by either GLP-1 

or EX4. In contrast, the rGLP-1R-Tyr69Leu mutant was able to reach the maximal 

response, albeit with much lower potency compared to rGLP-1Rmyc, as  

demonstrated by widely right-shifted curves in Figure 4-15 and pEC50 in Table 4-8  

(d = 58.79 and 117.49 for GLP-1 and EX4 respectively). 

 

 

 

 

 

 

 

 

 

 

 

 

Figure  4-14: Homologous 125I-GLP-1 ligand binding assay of mutants of rGLP-1R-

Tyr69.  

‘Total’ refers to total binding using 50pM 125I-GLP-1 alone while ‘non-specific’ refers to 
non-specific binding using 1μM GLP-1 versus 50 pM 125I-GLP-1.The histogram reveals 
undetectable binding for the two mutants of rGLP-1R-Tyr69.  
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Figure  4-15: Dose response curves of the rGLP-1R-Tyr69 mutants. 

Dose response curves for rGLP-1R (●) and mutant rGLP-1R-Tyr69Leu (■), rGLP-1R-
Tyr69Ala (▲). Mean pEC50 values are given in Table 4-8.  

 

 

 
Table  4-8: pEC50 values for the rGLP-1R-Tyr69L stimulated by either GLP-1 or EX4. 

 

 GLP-1 EX4 

 pEC50 d pEC50 d 

rGLP-1Rmyc 9.60 ± 0.06  10.74 ± 0.08   

rGLP-1R-Tyr69L 7.83 ± 0.19** 58.79 8.67 ± 0.17** 117.49 

 

The data shows a significant reduction, p<0.0006, in GLP-1 and EX4 potency due to 
rGLP-1R-Tyr69Leu mutation.  

0

50

100

-12 -11 -10 -9 -8 -7 -6 -5

rGLP-1Rmyc

rGLP-1R-Tyr69Leu

A

rGLP-1R-Tyr69Ala

0

Log [GLP-1] (M)

%
 M

a
x
 c

A
M

P
 r

e
s
p

o
n

s
e

0

50

100

-12 -11 -10 -9 -8 -7 -6 -5

rGLP-1Rmyc

rGLP-1R-Tyr69Leu

B

rGLP-1R-Tyr69Ala

0

Log [EX4] (M)

%
 M

a
x
 c

A
M

P
 R

e
s
p

o
n

s
e



Chapter 4: Crystal structure based mutagenesis     

 

127 

4.3.2.6 Effect of mutations at rGLP-1R-Tyr88 

Tyr88 is located within loop 2 of the hGLP-1R-NTD, where it shares in 

building the hydrophobic binding groove (Figure 1-17 and 3-8) (Runge et al., 2008; 

Underwood et al., 2010).  According to the hGLP-1R-NTD crystal structure, rGLP-

1R-Tyr88, like rGLP-1R-Trp39, interacts with Leu32* and Leu 26** in GLP-1 and 

EX4 respectively. Similar to rGLP-1R-Trp39, the rGLP-1R-Tyr88 mutation could 

interfere with ligand binding and/or activation. Similar effects on binding of either 

ligand confirm that the ‘H’ interaction of the two ligands is equivalent. To 

investigate this prediction, rGLP-1R-Tyr88 was mutated to give rGLP-1R-Tyr88Ala 

and rGLP-1R-Tyr88Leu. Both mutant receptors failed to bind 50 pM 125I-GLP-1 

and consequently EX4 binding affinity could not be tested (Figure 4-16). 

Furthermore, neither rGLP-1R-Tyr88Ala nor rGLP-1R-Tyr88Leu could be 

stimulated for cAMP production, failing to respond to either GLP-1 or EX4 (Figure 

4-17).  

 

 

 

 

 

 

 

 

Figure  4-16: Homologous 125I-GLP-1 ligand binding assay of mutants of rGLP-1R-

Tyr88.  

‘Total’ refers to total binding using 50 pM 125I-GLP-1 alone while ‘non-specific’ refers to 
non-specific binding using 1μM GLP-1 versus 50 pM 125I-GLP-1.The histogram reveals 
undetectable binding for the two mutants of rGLP-1R-Tyr88.  
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Figure  4-17: Dose response curves of rGLP-1R-Tyr88. 

 Dose response curves for rGLP-1Rmyc (●) and mutant rGLP-1R-Tyr88Ala (■) and rGLP-
1R-Tyr88Leu (▲). Flat curves indicate undetectable activity of the mutant receptors.  

 

4.3.2.7 Effect of mutations at rGLP-1R-Trp91 

Trp91 is located adjacent to rGLP-1R-Tyr88 (Figure 1-17) (Runge et al., 

2008, Underwood et al., 2010). It interacts with another conserved residue of the 

ligands, which is Ile 29* and 23** in GLP-1 and EX4 respectively. Accordingly, if 

there is no selective interaction with GLP-1 or EX4 it would be a further indication 

about the similarity of their ‘H’ interaction, already supported by the effect of 

mutations to Trp39, Tyr69 and Tyr88. To test this proposal, rGLP-1R-Trp91 was 

mutated to rGLP-1R-Trp91Ala and rGLP-1R-Trp91Phe and the mutant receptors 

subjected to radioligand binding analysis using 125I-GLP-1 versus GLP-1; however, 

the two mutants failed to bind detectable levels of 50 pM 125I-GLP-1 (Figure 4-18). 

Meanwhile, living cells expressing the rGLP-1R-Trp91Ala and rGLP-1R-Trp91Phe 

receptors were stimulated by either GLP-1 or EX4. Surprisingly, the potency of 

either GLP-1 or EX4 was only slightly lower at the rGLP-1R-Trp91Phe mutant 

compared with rGLP-1Rmyc (d= 5.31 and 3.96 for GLP-1 and EX4 respectively, P < 

0.05, Table 4-9). Additionally, the rGLP-1R-Trp91Ala AC response reached the 

maximal value, although its potency was greatly reduced compared to rGLP-1Rmyc   

(Figure 4-19, Table 4-9). 
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Figure  4-18: Homologous 125I-GLP-1 ligand binding of mutations of the rGLP-1R-
Trp91.  

‘Total’ refers to total binding using 50 pM 125I-GLP-1 alone while ‘non-specific’ refers to 
non-specific binding using 1μM GLP-1 versus 50 pM 125I-GLP-1.The histogram reveals 
undetectable binding for the two mutants of rGLP-1R-Trp91.  

 

 

 

 

 

 

 

 

 

 

Figure  4-19: Dose response curves of mutants of the rGLP-1R-Trp91.  

Dose response curves for rGLP-1Rmyc (●) and mutant rGLP-1R-Trp91Ala (■) and rGLP-1R-

Trp91Phe (▲). Mean pEC50 values are given in Table 4-9.  

 
Table  4-9: pEC50 values for the rGLP-1R-Trp91 mutants stimulated by either GLP-1 

or EX4.  

 GLP-1 EX-4 

 pEC50 d pEC50 d 

rGLP-1Rmyc 9.60 ± 0.06  10.74 ± 0.08   

rGLP-1R-Trp91Ala 7.49 ± 0.10** 129.42 9.27 ± 0.06** 29.81 

rGLP-1R-Trp91Phe 8.88 ± 0.14* 5.31 10.14 ± 0.19* 3.96 

The fold differences highlight big reduction made by the effect of rGLP-1R-Trp91Ala 
mutation on either GLP-1 or EX4 potency. 
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4.3.2.8 Effect of mutations at rGLP-1R-Glu127 

Underwood’s crystal structure (Underwood et al., 2010) suggested that 

rGLP-1R-Glu127 interacts with EX4 Lys27** (Figure 1-17) but not with its 

corresponding GLP-1 residue Val33*. This distinction suggested a possible source 

of the ‘EX’ interaction. Accordingly, rGLP-1R-Glu127 was mutated to the smaller 

amino acid Ala, a negative side chain residue Asp and a neutral polar Gln. 

Membranes of the mutants were subjected to binding analysis using GLP-1, EX4 

and EX4(9-39) versus 125I-GLP-1. The data represented in Figure 4-20 and Table 

4-10 show a slight reduction in the affinity of GLP-1 for both of the mutants (d < 5 

fold, p<0.05). However, the rGLP-1R-Glu127Ala and rGLP-1R-Glu127Asp mutants 

displayed EX4 affinity not significantly different from that of rGLP-1Rmyc. The 

affinity of rGLP-1R-Glu127Gln for EX4 was slightly reduced (d=3.5 fold p>0.1) 

while a great reduction in affinity was recorded for EX4(9-39) at rGLP-1R-

Glu127Gln mutant (d= 18.95 fold, p < 0.01). The activity properties of the rGLP-

1R-Glu127 mutant receptors were also analyzed by stimulation of the cells 

expressing them with either GLP-1 or EX4. According to the data represented by 

Figure 4-21 and Table 4-11, the rGLP-1R-Glu127 mutants showed similar 

responses to both EX4 and GLP-1 as the WT rGLP-1R.    
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Figure  4-20: Competition-binding curves of GLP-1, EX4 and EX4(9-39) with 
receptors mutants of the rGLP-1R-Glu127.  

125I-GLP-1 competition binding assays for rGLP-1Rmyc (●) and mutants rGLP-1R-
Glu127Ala (■), rGLP-1R-Glu127Asp (▲) and rGLP-1R-Glu127Gln (▼) with (A) GLP-1, (B) 
EX4 and (C) EX4(9-39). Mean pIC50 values are given in Table 4-10. 

 

Table  4-10: pIC50 values for 125I-GLP-1 competition binding with GLP-1, EX4 and 
EX4(9-39) of rGLP-1R-Glu127.  

 GLP-1 EX4 EX4(9-39) 

 pIC50 d pIC50 d pIC50 d 

rGLP-1Rmyc 9.60 ± 0.13  9.54 ± 0.05  8.46 ± 0.06  

rGLP-1R-Glu127Ala 8.91 ± 0.10* 4.12 9.06 ± 0.19 3.05 7.80 ± 0.19 4.56 

rGLP-1R-Glu127Asp 8.99 ± 0.09* 4.94 9.68 ± 0.03 0.73 7.90 ± 0.20 3.67 

rGLP-1R-Glu127Gln 8.88 ± 0.07* 4.03 9.00 ± 0.13* 3.50 7.18 ± 0.15** 18.95 

 

The data show there is a slight but statistically significant change in affinity for GLP-1 by 
both of the three mutants (d< 5 fold) while the same degree by rGLP-1R-Glu127Ala and 
rGLP-1R-Glu127Gln on affinity for  EX4 (d< 4 fold). rGLP-1R-Glu127Gln showed a highly 
significant reduction, p<0.001,  in affinity for EX4(9-39). 

 

 

 

-12 -11 -10 -9 -8 -7 -6

0

50

100

rGLP-1R myc
rGLP-1R-Glu127Ala
rGLP-1R-Glu127Asp
rGLP-1R-Glu127Gln

A

Log [GLP-1] (M)

%
 s

p
e
c
if

ic
 1

2
5
I-

G
L

P
-1

 b
in

d
in

g

-12 -11 -10 -9 -8 -7 -6

0

50

100

rGLP-1R myc
rGLP-1R-Glu127Ala
rGLP-1R-Glu127Asp
rGLP-1R-Glu127Gln

B

Log [EX4] (M)

%
 s

p
e
c
if

ic
 1

2
5
I-

G
L

P
-1

 b
in

d
in

g

-12 -11 -10 -9 -8 -7 -6

0

50

100

rGLP-1Rmyc
rGLP-1R-Glu127Ala
rGLP-1R-Glu127Asp
rGLP-1R-Glu127Gln

C

Log [EX4( 9-39)] (M)

%
 s

p
e
c
if

ic
 1

2
5
I-

G
L

P
-1

 b
in

d
in

g



Chapter 4: Crystal structure based mutagenesis     

 

132 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure  4-21: Dose response curves of the rGLP-1R-Glu127 mutants.  

Dose response curves are for rGLP-1Rmyc (●) and mutants rGLP-1R-Glu127Ala (■), rGLP-

1R-Glu127Asp (▲) and rGLP-1R-Glu127Gln (▼) with (A) GLP-1, (B) EX4. Mean pEC50 
values are given in Table 4-11.  

 

 

Table  4-11: pEC50 values for the rGLP-1R-Glu127 mutants stimulated by GLP-1 or 
EX4. 

 

 GLP-1 EX-4 

 pEC50 d pEC50 d 

rGLP-1Rmyc 9.60 ± 0.06  10.74 ± 0.08   

rGLP-1R-Glu127Ala 9.55 ± 0.10 1.12 10.62 ± 0.15 1.33 

rGLP-1R-Glu127Asp 9.39 ± 0.05 1.61 10.41 ± 0.04 2.14 

rGLP-1R-Glu127Gln 9.67 ± 0.28 0.86 10.61 ± 0.06 1.34 

 

The data show WT rGLP-1R-like response 
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4.3.2.9 Effect of mutations at rGLP-1R-Glu128 

rGLP-1R-Glu128 was selected and mutated according the same rationale 

as rGLP-1R-Glu127, since rGLP-1R-Glu128 was also suggested to interact with 

two non-identical amino acids Arg20** and Lys26* at comparable positions in EX4 

and GLP-1 respectively (Figure 1-17). Hence, membranes derived from cells 

expressing rGLP-1R-Glu128 mutants were used to explore their binding with GLP-

1, EX4 and EX4(9-39).  According to data represented by Table 4-12 and Figure 

4-22, the affinity of GLP-1 was slightly reduced by the rGLP-1R-Glu128Ala and 

rGLP-1R-Glu128Asp mutations (d= 5 fold, p< 0.01) but not by the rGLP-1R-

Glu128Gln  change (d=1.28, p>0.1). Affinity for EX4 was affected by almost the 

same degree, while none of the mutations could greatly affect the affinity for 

EX4(9-39). Meanwhile, HEK-293 cells expressing the rGLP-1R-Glu128 mutants 

were stimulated by either EX4 or GLP-1 to test the effect of mutations on the 

potency of the ligands but again none of the mutants showed changes greater 

than their effect on the affinity (Figure 4-22, Table 4-13). pEC50 values are not 

significantly different from those for WT rGLP-1R with either ligand. 
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Figure  4-22: Competition-binding curves of GLP-1, EX4 and EX4(9-39) with 
receptors mutants of the rGLP-1R-Glu128.  

 125I-GLP-1 competition-binding assays for rGLP-1R (●) and mutants rGLP-1R-Glu128Ala 
(■), rGLP-1R-Glu128Asp (▲) and rGLP-1R-Glu128Gln (▼) with (A) GLP-1, (B) EX4 and 
(C) EX4(9-39). Mean pIC50 values are given in Table 4-12. 

 

 

 

Table  4-12: pIC50 values for 125I-GLP-1 competition binding with GLP-1, EX4 and 
EX4(9-39) of rGLP-1R-Glu128.  

 GLP-1 EX4 EX4(9-39) 

 pIC50 d pIC50 d pIC50 d 

rGLP-1Rmyc 9.60 ± 0.13  9.54 ± 0.05  8.46 ± 0.06  

rGLP-1R-Glu128Ala 8.88 ± 0.17* 5.24 8.95 ± 0.12* 3.86 8.34 ± 0.25 1.33 

rGLP-1R-Glu128Asp 8.90 ± 0.21* 5.04 8.65 ± 0.14** 7.75 7.94 ± 0.06* 3.32 

rGLP-1R-Glu128Gln 9.49 ± 0.25 1.28 9.40 ± 0.03 1.39 8.27 ± 0.11 1.57 

 

The data show nearly equal change in the affinity of GLP-1 or EX4 by rGLP-1R-Glu128Ala 
and rGLP-1R-Glu128Asp (d=5-7 fold) while slight but statistically significant in affinity of 
EX4 was recorded. There was no change in affinity of the three ligands due to mutations 
at position rGLP-1R-Glu128Gln.  
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Figure  4-23: Dose response curves of the rGLP-1R-Glu128 mutants. 

Dose response curves for rGLP-1Rmyc (●), mutants rGLP-1R-Glu128Ala (■), rGLP-1R-

Glu128Asp (▲) and rGLP-1R-Glu128Gln (▼) with (A) GLP-1, (B) EX4. Mean pEC50 

values are given in Table 4-13.  

 

 

 

 

Table  4-13: pEC50 values for the rGLP-1R-Glu127 mutants stimulated by GLP-1 or 
EX4. 

 GLP-1 EX4 

 pEC50 d pEC50 d 

rGLP-1Rmyc 9.60 ± 0.06  10.74 ± 0.08   

rGLP-1R-Glu128Ala 9.84 ± 0.19 0.57 10.37 ± 0.20 2.36 

rGLP-1R-Glu128Asp 9.36 ± 0.10 1.73 9.96 ± 0.19* 5.98 

rGLP-1R-Glu128Gln 9.08 ± 0.20 3.29 10.01 ± 0.21* 5.37 

 

The values highlight the absence of any effect on GLP-1 by rGLP-1R-Glu128Ala and Asp 
but a slight reduction by rGLP-1R-Glu128Gln, while rGLP-1R-Glu128Asp and Gln reduced 
EX4 potency significantly (p < 0.05).  
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4.4 Discussion  

The failure of protein modelling to provide a reliable model with which to 

understand EX4's superior affinity directed this study toward other available 

sources of information. The crystal structure of the GIPR-NTD in complex with GIP 

became available in 2007 (Parthier et al., 2007), which allowed the planning of a 

mutagenesis study to characterise the ‘EX’ interaction.  The crystal structures of 

hGLP-1R-NTD bound to EX4 (9-39) in one study, and to GLP-1 in another, were 

published after this mutagenesis project has been started (Runge et al., 2008, 

Underwood et al., 2010). In general, the two hGLP-1R structures showed a 

common binding mode for EX4 and GLP-1. Hence, the selected group of residues 

that were mutated, could still be used to identify the ‘EX’ interaction.  

The crystal structure of the hGLP-1R-NTD showed that only segment Glu15**-

Asn28** of EX4 is in contact with the NTD, although the ligand forms an α-helix 

from residues Leu10**-Asn28** (Runge et al., 2008). Similarly, the later crystal 

structure of GLP-1 bound to the hGLP-1R-NTD showed that GLP-1 forms an α-

helix from Thr13*-Val33* with only Ala24*-Val33* contacting the NTD (Underwood 

et al., 2010).  

Accordingly, Val30 should interact with Glu15** and Glu16** of EX4 and not 

GLP-1 and would be responsible for the differential affinity of EX4.  However, the 

recorded results showed that mutation of this residue reduced GLP-1 affinity but 

had no effect on affinity of EX4 or EX4(9-39) suggesting that rGLP-1R-Val30 does 

not participate in the ‘EX’ interaction. Mutants with changes to rGLP-1R-Thr35 

showed no reduction in affinity for either GLP-1 or EX4, although this position 

(according to Runge’s crystal structure) should be part of the hydrophobic binding 

cavity and interact with the important Phe residue, which is conserved in         

GLP-1(Phe28*) and EX4 (Phe22**) respectively. Likewise, a mutant receptor 
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containing a substitution of rGLP-1R-Thr35 for Ala showed no discrimination 

between GLP-1 and EX4 (Underwood et al., 2010) 

The results recorded for receptor with mutations at rGLP-1R-Val36, as well as 

rGLP-1R-Trp39, rGLP-1R-Tyr88 and rGLP-1R-Trp91, emphasised the identical 

interactions made by conserved residues in both EX4 and GLP-1 with the NTD, in 

an agreement with other reported observations (Underwood et al., 2010). 

Nevertheless, the observations enabled a ranking of the importance of each 

residue in that group. The unchanged ligand binding and activation characteristics 

at the rGLP-1R-Val36Ala compared to non-mutated rGLP-1Rmyc, indicated a non-

essential interaction formed by this residue with either GLP-1 or EX4. The 

ineffective mutation of rGLP-1R-Val36 seemes consistent with mutagenesis work 

that accompanied the crystallization of the hGLP-1R-NTD bound to GLP-1 

(Underwood et al., 2010).   In contrast to rGLP-1R-Val36, rGLP-1R-Trp39 and 

rGLP-1R-Trp91 were important for ligand binding as their mutation strongly 

interfered with binding of GLP-1. The binding results are in agreement with 

previously published studies about the importance of tryptophans in the GLP-1R-

NTD for GLP-1 binding (Van Eyll et al., 1996, Wilmen et al., 1997). The reduced 

activity recorded for some mutated receptors (rGLP-1R-Trp39Ala, rGLP-1R-

Trp91Ala, and rGLP-1R-Trp91Phe mutants) could indicate normal expression of 

the mutated receptors but with an impaired function that is not ligand selective. 

 The same observations of undetectable binding and reduced activation 

were made with rGLP-1R-Tyr88, consistent with the description of EX4/NTD 

crystal structure in which rGLP-1R-Tyr88, rGLP-1R-Trp91 and rGLP-1R-Trp39 

were included in the hydrophobic binding cavity with the ligand  (Figures 1-17 and 

3-8) (Runge et al., 2008).   
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Binding and activity analysis of rGLP-1R-Tyr69 mutants reinforced the view of 

a common ‘H’ interaction in EX4 and GLP-1. Moreover, despite binding to non- 

conserved GLP-1 Val33* and EX4 Lys27**, rGLP-1R-Tyr69 makes similar 

interactions with both, in addition to rGLP-1R-Leu123 (Runge et al., 2008). rGLP-

1R-Tyr69 is involved in the structure of the hydrophobic binding cavity with the 

ligand  (Figures 1-17 and 3-8) (Runge et al., 2008). Disruption of the hydrophic 

cavity by introduction of the mutations rGLP-1R-Tyr69Ala and rGLP-1R-Tyr69Leu 

would explain failure to bind either EX4 or GLP-1. Also, the absence of binding 

could be a consequence of disturbed receptor structure because rGLP-1R-Tyr69 

interacts with the side chain and backbone of the absolutely conserved Asp67, 

stabilizing the turn between β1 and β2 (Runge et al., 2008). The observed failure 

to be selective for a particular ligand by rGLP-1R-Tyr69Leu could be due to 

increased hydrophobicity by Leu over Ala that was sufficient for detection of ligand 

activity but not for binding.  Alternatively, the ligand affinity for the rGLP-1R-

Tyr69Leu and rGLP-1R-Tyr69Ala is too weak to be detected by the applied 

method. 

The crystal structure for the hGLP-1R-NTD (Runge et al., 2008) has disclosed 

more ligand interaction between the side chains of rGLP-1R-Glu127 and EX4 

Lys27**. In contrast, this interaction is not possible for GLP-1 because the 

corresponding residue Val33* is unable to interact with rGLP-1R-Glu127, leading 

to loss of the water molecule observed with EX4 (Underwood et al., 2010). 

Consequently, rGLP-1R-Glu127 mutation should strongly contribute to differential 

binding of EX4 or GLP-1. Apart from significantly reduced affinity for EX4(9-39) by 

the rGLP-1R-Glu127Gln mutant, the other binding data appeared similar to WT 

controls for the tested ligands, limiting the importance of the rGLP-1R-Glu127 

interaction to the short version of EX4. Likewise, none of the mutants influenced 
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the activity of either EX4 or GLP-1 similar to the observations of other workers 

(Underwood et al., 2010).  

Although rGLP-1R-Glu128 should interact with two different residues GLP-1 

Lys26* and EX4 Arg20**, rGLP-1R-Glu128 did not show discriminatory affinity 

between the three tested ligands. Furthermore, the non-selective decrease in 

binding to rGLP-1R-Glu128Ala and rGLP-1R-Glu128Asp, as well as negligible 

decrease for the rGLP-1R-Glu128Gln mutant, revealed the importance of the 

residue volume over its negative charge. In addition, the absence of differential 

affinity for GLP-1 or EX4 could be due to equal positive charge of GLP-1 Lys26* 

and EX4 Arg20** (Underwood et al., 2010). Consequently, the three mutants of 

rGLP-1R-Glu128 demonstrated a neutral effect upon either GLP-1 or EX4 

stimulation, not significantly different from WT receptor with either ligand. 

The data seem in agreement with other published studies, particularly 

regarding the non-binding mutants (Van Eyll et al., 1996, Wilmen et al., 1997). It 

could therefore be predicted that the orientation of the ‘H’ interaction for both EX4 

and GLP-1 would be similar, since mutations of their non-conserved residues did 

not display highly differential affinity with the NTD of the target receptor.        

In fact, even the decrease in affinity for EX4(9-39) shown by some mutants did 

not take affinity down to the level recorded for the  C-terminal nine residues 

deficient EX4(9-30) or its equivalent length GLP-1(15-36) (pIC50 6.3 and 6.8) (Al-

Sabah and Donnelly, 2003a). Consequently, attention focused on the C-terminus 

of EX4. Since species differences of rGLP-1R have been excluded by focusing on 

conserved residues, it could also be useful if the species-different residues were 

investigated. 
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5 -  Determining of ‘EX’ interaction based on hydrogen 
bond from Ser32**-EX4. 

5.1 Introduction and strategy 

   As previously introduced, EX4 has an extra nine residues (31-39) that form 

its C-terminal extension, with no equivalent in GLP-1 (Figure 4-1) (Al-Sabah and 

Donnelly, 2003a). A previous binding analysis carried out by Donnelly’s group 

using the rGLP-1R showed that the deletion of residues 31-39 of EX4 resulted in a 

25-fold reduction in binding affinity to the rGLP-1R-NTD (Al-Sabah and Donnelly, 

2003a). EX4 has a superior affinity over GLP-1 and can maintain high affinity  with 

the expressed NTD even after deletion of up to 8 residues from its N-terminus 

(Lopez de Maturana et al., 2003). Al-Sabah and Donnelly proposed a model for 

the super-affinity of EX4 whereby it formed an ‘EX’ interaction between its C-

terminal extension and the NTD. 

  In a hydrophobic environment, the C-terminus of EX4 has been shown to form 

part of a compact folding unit called a ‘Trp-cage’ (Neidigh et al., 2001). It was 

therefore speculated that the involvement of residues EX4(31-39) in forming the 

‘EX’ interaction may be mediated via such a Trp-cage motif. However, more recent 

work has suggested that, although present in artificial mini-proteins designed from 

EX4 (Barua et al., 2008), the Trp-cage is unlikely to form in receptor-bound EX4 

itself (Runge et al., 2008).  

 Furthermore, the involvement of residues EX4(31-39) in forming the ‘EX’ 

interaction has been questioned since a subsequent combination of 

pharmacological and biophysical approaches demonstrated that the removal of 

this C-terminal region had no effect upon binding to the hGLP-1R (Runge et al., 

2007).  
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 Taken together, the aim of the work described here was to investigate the 

reason for these apparent contradictions in the literature regarding the role of the 

C- terminal extension of EX4 in receptor binding. In doing so, the aim was to 

understand the peptide-receptor interaction further, such that the design of higher 

affinity analogues can be envisaged. Firstly it was hypothesised, and then was 

demonstrated, that the apparent contradictions were rooted in the species 

variability between receptors (rat and human GLP-1R cDNA were used in previous 

studies). The crystal structure of EX4(9-39) bound to the hGLP-1R-NTD was then 

used to locate potential species-specific interactions between GLP-1R and the C-

terminal extension of EX4(9-39). In this way, an interaction between Glu68 in 

hGLP-1R (Asp in rGLP-1R) and Ser32** in EX4(9-39) was identified and further 

investigated via receptor mutagenesis and ligand modification, coupled with 

pharmacological characterisation. This work was carried out in parallel to some 

related work carried out by Dr Ros Mann in the lab of Dr Dan Donnelly at Leeds. 

All the cell lines expressing mutant hGLP-1Rs were made by Dr. Mann, as were 

those for rNT-TM1 and hNT-TM1. In addition, with the exception of the data shown 

in this chapter, all the competitive radioactive binding analysis using 125I-EX4(9-39) 

were carried out by Dr. Mann. On the other hand, I made all the mutants of rGLP-

1R and carried out all of the competitive radioactive binding assays using 125I-

GLP-1. While the 125I-GLP-1 and 125I-EX4(9-39) binding assays led to the same 

conclusions, only the latter were used in our publication (Mann et al., 2010b) in 

order to maintain consistency, since only 125I-EX4(9-39) binds to rNT-TM1 and 

hNT-TM1. Additionally, Dr E. Paci kindly carried out the molecular dynamics 

simulation. Hence, while I was donated the cell lines for rNT-TM1, hNT-TM1, 

hGLP-1R and its mutants, I made all the rGLP-1R mutants and cell lines and I 

carried out all the cell culture and the binding assays. 
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5.2 Methodological considerations 

5.2.1 Peptides 

 In order to perform a comparative study, a group of normal, modified, full-length 

and truncated EX4 and GLP-1 analogues have been used as shown in Figure 5-1.  

GLP-1            HAEGTFTSDVSSYLEGQAAKEFIAWLVKGR 

EX4(9-30)                DLSKQMEEEAVRLFIEWLKNGG 
EX4(9-39)                DLSKQMEEEAVRLFIEWLKNGGPSSGAPPPS 
Ala32-EX4(9-39)          DLSKQMEEEAVRLFIEWLKNGGPASGAPPPS 

EX4              HGEGTFTSDLSKQMEEEAVRLFIEWLKNGGPSSGAPPPS 

Figure  5-1: Alignment of the used peptides.  

The exchanged amino acids are underlined.  

5.2.2 Radiolabelled tracer 

An alternative to 125I-GLP-1, 125I-EX4(9-39) was used as a tracer at the rat or 

human NTD anchored in the membrane by trans-membrane helix 1 (rNT-TM1 and 

hNT-TM1)  because rNT-TM1 and hNT-TM1 have too low affinity for GLP-1 to be 

used as a tracer.  

5.3 Results 

5.3.1 Preparation of mutant receptor 

The rGLP-1R-Asp68Glu mutant was prepared as stated in section 3.1 and 

was stably expressed in HEK-239 cells then their crude membrane preparations 

and live cells were used in affinity and AC activity assays respectively.  

 

 

 

 

 

Figure  5-2: Sections of the nucleotide sequence of rGLP-1R-Asp68Glu mutant 
receptor cDNA.  

The mutated codon is highlighted by a pink square.   
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5.3.2 Ligand binding analysis 

5.3.2.1 Assessment of GLP-1 binding mutant receptors  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure  5-3: Competition radioligand binding assay with GLP-1 as a natural ligand 
for rat/human GLP-1R and Asp68/Glu68 mutant recceptors  

Membranes prepared from HEK-293 cells expressing individually all receptors to be used 
for investigation were tested by radioactive competitive binding assay using natural ligand 
GLP-1 versus 125I-GLP-1. Both WTs and their mutants showed normal binding function as 
reflected by normal ranges of pIC50 showed in Table 5-1.  

 

Table  5-1: pIC50 values for 125I-GLP-1 competition binding with GLP-1 as a 
naturalligand for rat/human GLP-1R and Asp68/Glu68 mutant recceptors  

 

 rGLP-1Rmyc rGLP-1R- 
Asp68Glu 

rGLP-1R- 
Asp68Ala 

hGLP-1R hGLP1R- 
Glu68Asp 

GLP-1 pIC50 9.51 ± 0.10 10.59 ± 0.03 10.22 ± 0.25 9.06 ± 0.12 8.92 ± 0.10 

 

5.3.2.2 Species preference owing to single amino acid exchange rGLP-
1RAsp68Glu 

The importance of nine amino acid extension in EX4(9-39) and its 

involvement in ligand affinity discrimination by the rat and human rGLP-1R was 

tested by using 125I-GLP-1 as a tracer to compete with either EX4(9-39), EX4(9-

30) or Ala32-EX4(9-39) in membrane preparations of HEK-293 cells expressing 

either rat or human WT of receptors . Likewise, the two homologous mutants 
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hGLP-1RGlu68Asp and rGLP-1R-Asp68Glu were tested. The data obtained are 

represented in Figure 5-4 and Table 5-2. The WT rGLP-1R showed significantly 

reduced affinity for EX4(9-30) and Ala32-EX4(9-39) (11.67 and 9.21 fold 

respectively, p<0.05) compared to EX4(9-39). Crucially, the hGLP1R-Glu68Asp 

that ‘mimicks’ the rGLP-1R showed a similar decrease in affinity for EX4(9-30) and 

Ala32-EX4(9-39) (Tabl 5-2) 

On the other hand, the three analogues of exendins looked to have the 

same affinity for hGLP-1R and for the ‘human receptor mimicks’ rGLP-1R-

Asp68Glu (0.96 and 1.59 fold respectively P>0.1) (Table 5-2). Consistent with 

these observations, rGLP-1R-Asp68Ala showed no significant difference in affinity 

(d> 5 fold, p> 0.1) for the three-exendin forms (Figure 5-5). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure  5-4: Competition binding curves showing species selectivity of EX4(9-39).  

125I-GLP-1 competition-binding assays were assessed in membrane preparation of HEK-
293 cells expressing WT or mutated receptors with either deletion of 31-39 from EX4(9-
39) (▼) as EX4(9-30) (♦) or substitution of Ser32 by Ala(◊).  pIC50 values are given in 
Table 5-2. 
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Figure  5-5: Competition binding curves of GLP-1, EX4 and EX4(9-39) with receptors 
mutants of the rGLP-1R-Asp68Ala.  

 125I-GLP-1 competition-binding assays were assessed in membrane preparation of HEK-
293 cells expressing rGLP-1R- Asp68Ala.  

    

 

Table  5-2: pIC50 values for 125I-GLP-1 competition binding with EX4(9-39), EX4(9-30) 
and Ala32-EX4(9-39)  of rGLP-1R, rGLP-1R-Asp68Glu, rGLP-1R-Asp68Ala, 
hGLP-1R and hGLP1R-Glu68Asp .  

 pIC50 

 EX4(9-39) EX4(9-30) Ala32-EX4(9-39) d1 d2 

rGLP-1R 8.54 ± 0.14 7.47 ± 0.23* 7.58 ± 0.14* 11.76 9.21 
rGLP-1R-Asp68Glu 7.99 ± 0.03 7.99 ± 0.04 7.90 ± 0.16 1.0 1.23 

rGLP-1R-Asp68Ala 8.44 ± 0.19 7.99 ± 0.12 8.11 ± 0.05 2.82 2.15 

hGLP-1R 8.01 ± 0.06 8.03 ± 0.13 7.81 ± 0 .21 0.96 1.59 

hGLP1R-Glu68Asp 8.41 ± 0.18 7.57 ± 0.05* 7.41 ± 0.09* 6.37 13.75 

 

Values represent mean pIC50 values ± s.e. for three independent competition binding 
assays using EX4(9-39), EX4(9-30) and Ala32-EX4(9-39) as the unlabelled ligands with 
125I-GLP-1 as the tracer. d1 refers to the fold-change in mean pIC50 values of EX4(9-30) 
relative to EX4(9-39), and d2 refers to the fold-change in mean pIC50 values of Ala32-
EX4(9-39) relative to EX4(9-39). * P < 0.05, ** P < 0.01. 
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5.3.2.3 The rat or human receptor NTD anchored in the membrane with 
trans-membrane helix 1 (rNT-TM1 and hNT-TM1) 

 Receptors consisting of the NTD of either the rat or human receptor that were 

anchored in the membrane with trans-membrane helix 1 (rNT-TM1 and hNT-TM1) 

were also tested for sensitivity of their ligand binding to the removal of the C-

terminal extension of EX4 (Figure 5-6 and Table 5-3). The data demonstrated the 

same effects observed with the full- length receptors (1.43 fold reduction in affinity 

at hNT-TM1 and 9.33 fold at rNT-TM1, p<0.004) indicating that residues 31-39 of 

EX4 interact with the rGLP-1R-NTD. Similarly, a slight difference between affinities 

for EX4 and EX4(1-32), as well as 7.9-fold (p<0.004) decrease by substituting 

Ser32Ala, revealed that Ser32 is also involved in this interaction. An alternative to 

125I-GLP-1, 125I-EX4(9-39) was used as a tracer because those two receptors 

structures have too low affinity for GLP-1 for this to be used as a tracer. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure  5-6: Competition binding curves of rNT-TM1, hNT-TM1.  
Competitive radioligand binding experiments using 125I-EX4(9-39) as a tracer and either 
EX4, EX4(1-32) with (A) rNT-TM1, (B) hNT-TM1. The receptors derived from rat are 
highly sensitive to the removal of the C-terminal extension of EX4 while those from human 
are not. 
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Table  5-3: pIC50 values for 125I-EX4(9-39) competition-binding with rNT-TM1 and hNT-
TM1 for EX4, EX4(1-32), Ala32-EX4(9-39) and EX4(1-30). 

 rNT-TM1 hNT-TM1 

 pIC50 d pIC50 d 

EX4  7.57 ± 0.13  7.31 ± 0.05  

EX4(1-32) 7.42 ± 0.10 1.42 ND  

Ala32-EX4(9-39) 6.67 ± 0.08** 7.94 ND  

EX4(1-30) 6.60 ± 0.13** 9.33 7.02 ± 0.10 1.93 

 

d refers to the fold-change in mean pIC50 values of EX4(1-32), Ala32-EX4(9-39) and 
EX4(1-30)  relative to EX4. * P < 0.05, ** P < 0.01 

 

5.3.2.4 Contribution of another rat-human homolog rGLP-1R-Ser33Trp 

 The residue hGLP-1R-Trp33 has been reported before as a main determinant in 

the interaction between hGLP-1R and its non-peptide antagonist T-0632 

(Tibaduiza et al., 2001). Furthermore, the same study demonstrated that mutation 

of hGLP-1R-Trp33 to its rat homolog rGLP-1R-Ser33 (hGLP-1R-Trp33Ser) could 

prevent species selection by T-0632. Mutation of rGLP-1R-Ser33 to Trp was 

carried out to explore whether this change could prevent species preference for 

the EX4 C-terminus. Firstly, the molecular biology work was carried out as in 

section 3.1 and confirmation of the mutation sequence is shown in Figure 5-7.  

 

  

 

 

 
 
 
 
Figure  5-7: Nucleotide sequence of rGLP-1R-Ser33Trp mutant cDNA 
Mutated codon is highlighted by pink rectangle.    
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Membranes prepared from HEK-293 expressing rGLP-1R-Ser33Trp were tested 

by competitive radioactive binding assay using GLP-1, EX4 and EX4(9-39) versus 

125I-GLP-1. The data are shown in Figure 5-8 and Table 5-4. In general the 

mutation caused some small but statistically significant decreas in affinity for all 

ligands (<5 fold) (Table 5-4). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

Figure  5-8: Competition-binding curves for GLP-1, EX4 and EX4(9-39) with the rGLP-
1R-Ser33Trp. 

 125I-GLP-1 competition-binding assays for rGLP-1R and mutant rGLP-1R-Ser33Trp with 
(A) GLP-1, (B) EX4 and (C) EX4(9-39). The curves represent pIC50 values from Table 5-4. 

 

Table  5-4: pIC50 values for 125I-GLP-1 competition binding with GLP-1, EX4 and 
EX4(9-39) for the rGLP-1R-Ser33Trp.  

 GLP-1 EX4 EX4(9-39) 

 pIC50 d pIC50 d pIC50 d 

rGLP-1Rmyc 
9.60 ± 0.13  9.54 ± 0.05  8.46 ± 0.06  

rGLP-1R-Ser33Trp 8.98 ± 0.09** 4.21 9.05 ± 0.05** 3.12 7.91 ± 0.11* 3.59 

 

The data shows reduction in affinity with GLP-1, EX4 or EX4(9-39) due to mutations at 
position rGLP-1R-Ser33Trp. * P < 0.05, ** P < 0.01. 
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In addition, the activity of the rGLP-1R-Ser33Trp mutant was tested by 

LANCETM assay. The effect of the mutation on AC was similar to its effect on 

affinity; the mutation maintains its neutral effect similar to WT rGLP-1R (Figure 5-9 

and Table 5-5).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure  5-9:  Dose response curves of the rGLP-1R-Ser33Trp.  

Dose response curves for activation of rGLP-1Rmyc(●) and its mutant at position rGLP-1R-
Ser33Trp(■) by (A) GLP-1, (B) EX4. The curves represent pEC50 values from Table 5-5.  

 

 
 

 

Table  5-5: pEC50 values for the rGLP-1R-Ser33Trp stimulated by GLP-1 or EX4. 

 GLP-1 EX4 

 pEC50 d pEC50 d 

rGLP-1Rmyc 9.60 ± 0.06  10.74 ± 0.08   

rGLP-1R-Ser33Trp 9.36 ± 0.07 1.72 10.58 ± 0.15 1.45 

 

The fold differences highlight negligible reduction made by the effect of mutation on either 
GLP-1 or EX4 potency. 
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5.4 Discussion 

As mentioned above, hGLP-1R-Trp33 has been reported before as a main 

determinant of species selection by T-0632  since hGLP-1R-Trp33Ser mutation 

eliminated this selection (Tibaduiza et al., 2001).  In the same way, the reverse 

mutant, rGLP-1R-Ser33Trp was tested to explore whether rGLP-1R-Ser33 is 

involved in the species related difference in affinity for the EX4 C-terminus. The 

data described in this chapter showed that the rGLP-1R-Ser33Trp mutation led to 

slight but statistically significant decrease in the affinity for both ligands (d> 5 fold, 

p<0.01), which abrogates any role of rGLP-1R-Ser33 in species selective binding 

of the EX4 C-terminus residues. It is worth mentioning that hGLP-1R-Trp33Ser 

was tested for the same target in Donnelly’s lab but the data showed WT values 

for rGLP-1R withr espct to affinity and activity.  The crystal structure of hGLP-1-

NTD bound to EX4(9-39) (Runge et al., 2008) revealed that hGLP-1R-Trp33 is in 

the opposite site of Trp39 and a short distance from the hydrophobic interaction 

with EX4(9-39) but is not involved either directly or indirectly in the ligand 

interaction. Consequently, rGLP-1R-Ser33Trp could slightly disturb the receptor 

structure that sub-optimizes the binding site of the ligand.  Furthermore, T-0632 

was found to reduce the potency of GLP-1 via a non-competitive mechanism 

(Tibaduiza et al., 2001). Accordingly, rGLP-1R-Ser33Trp had a neutral effect on 

the potency of both EX4 and GLP-1.  

The work described in chapter 4 has revealed that the ‘H’ interaction by 

both EX4 and GLP-1 is similar. The mutagenesis approach based upon the crystal 

structure failed to determine the particular interaction that accounts for 

discriminatory binding of GLP-1 and EX4. Indeed, the data also abrogated the 

hypothesis that the enhanced affinity of EX4 at the isolated NTD is mainly due to 

the higher helical propensity of EX4 compared to GLP-1 (Runge et al., 2007).  
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However, the crystal structure showed just one interaction with the C-

terminus of EX4, represented by a hydrogen bond between hGLP-1R-Glu68 and 

EX4 Ser32** (Runge et al., 2008). Interestingly, the only significant methodological 

difference between Donnelly’s work and Runge’s was that Donnelly’s lab used 

rGLP-1R while Runge’s used hGLP-1R. Surprisingly, in the previous part of the 

present study, all the mutated residues in the NTD were identical in both human 

and rat receptors. In contrast, hGLP-1R-Glu68 is the only residue different in the 

two receptor types described in the crystal structure as it is involved in binding 

Ser32**-EX4. It is noteworthy that position 68 in rGLP-1R is occupied by Asp 

instead of Glu. 

Although the two amino acids are similar, the observations recorded by 

using different analogues of EX4 raise the possibility that different mechanism may 

underlie the binding of EX4 to either rGLP-1R or hGLP-1R. This study 

demonstrates that the N-independent affinity of EX4 for rGLP-1R-NTD is in large 

part dependent on a single residue within the NTD, which plays the primary role in 

ligand binding (Wilmen et al., 1997). Furthermore, the observations recorded for 

rNT-TM1 versus hNT-TM1 supported this hypothesis (Figure 5-6, Table 5-3) since 

the removal of Ser32** reduced significantly the affinity of rNT-TM1 for EX4(1-30) 

compared to EX4 but displayed no significant difference in affinity with hNT-TM1   . 

The Ala32-EX4(9-39) peptide showed reduced affinity for rGLP-1R by a 

magnitude equal to the effect of deleting EX4 residues 31-39 (Table 5-2). The 

considerable selectivity of Ala32-EX4(9-39) for rGLP-1R versus hGLP-1R (despite 

the high degree of sequence identity between these two proteins (91%)) 

suggested according to crystal structure (Runge et al., 2008) that the contribution 

of selection by Ala32-EX4(9-39) could be restricted to the different residue at 68th 

position between the two receptor species in the binding site of EX4 C-terminus.  
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Although the crystal structure shows that Glu68 forms a hydrogen bond with 

Ser32** of the ligand, (Runge et al., 2008) implied that this assignment was 

tentative due to the increasing B-factors for the C-terminal end of the ligand. 

Indeed, molecular dynamic simulations demonstrated that this interaction was 

transient and unlikely to generate affinity (Figure 5-10 A-C) (Mann et al., 2010b). 

The present study confirmed this experimentally by the disruption of this 

interaction via the replacement of Ser32** with Ala in EX4(9–39), which had no 

effect on the affinity of the peptide at hGLP-1R (Table 5-2; Figure 5-5). On the 

other hand, the molecular dynamic simulations using the hGLP-1R mutant 

Glu68Asp bound with EX4(9–39) (Mann et al., 2010b) predicted a much more 

stable interaction via a hydrogen bond between the Asp68 side chain and the 

hydroxyl group of Ser32**. It would therefore be expected that the removal of the 

hydroxyl by mutation of Ser32** would manifest as a reduction in binding affinity 

and, once again, this was confirmed experimentally (Table 5-2; Figure 5-4). In fact, 

despite the subtle change at only one side chain, the Glu68Asp mutation at hGLP-

1R conferred pharmacological selectivity that closely resembled that observed at 

rGLP-1R, presumably by enabling the ‘EX’ interaction to form. 
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Figure  5-10: Molecular dynamics simulations. 

 Ribbon diagrams illustrating snapshots of the structure of EX4(9–39) bound to hGLP-1R 
taken from different points during molecular dynamics simulations. EX4(9–39) is shown in 
green, GLP-1R is shown in orange and the atoms of Ser32* of EX4(9–39) and Glu/Asp 
from GLP-1R are shown as ball and sticks coloured by atom type. Hydrogen bond 
formation between these groups is indicated (see boxed panels for close-up views). In the 
WT hGLP-1R, Ser32** and Glu spend a relatively short amount of time at a hydrogen 
bonding distance, [for example, (A)] while, instead, the majority of time is spent over 4 Å 
apart, [for example, (B)], a distance too great to allow a hydrogen bond. In hGLP-1R-
Glu68Asp, Ser32** and Asp have a high probability of forming a distance ideal for 
hydrogen bond formation, for example (C) (Mann et al., 2010b). 

 

 

 

 

 

 

 

 

 

Figure  5-11: Histogram of molecular dynamics simulations. 

 Histogram chart showing calculations from molecular dynamics simulations. Histogram is 
showing the probability (normalized so that the integral between 0 and infinity is 1) that the 
side chain oxygen of Ser32** of EX4(9–39) and the closest side chain oxygen of Asp/Glu 
of GLP-1R are at a given distance. A peak at 3 Å indicates the atoms are at an ideal 
distance for hydrogen bond formation to occur. Upper panel: probabilities of distances 
between atoms of Ser32** in EX4(9–39) and Glu in GLP-1R. Lower panel: probabilities of 
distances between atoms of Ser32** in EX4(9–39) and Asp in GLP-1R (Mann et al., 
2010b). 
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Taken together, it looked feasible to explore the importance of the residue 

underlying the species selectivity of EX4 C-terminus. To confirm the importance of 

the Asp68Ser32** interaction between rGLP-1R and EX4(9–39), this residue was 

mutated to either Glu or Ala. The Asp68Ala mutation would result in a side chain 

that cannot form hydrogen bond with Ser32**, and indeed this mutant receptor 

was insensitive to the removal of the serine hydroxyl of EX4(9–39) or the removal 

of residues 31–39 of EX4 (Table 5-2; Figure 5-4). Moreover, despite its theoretical 

ability to form an interaction resembling Asp68, the sensitivity of the Asp68Glu 

mutant to the removal of the Ser32** hydroxyl closely resembled that of the 

Asp68Ala mutant, indicating that no stable interaction between Glu and Ser32** 

was formed.  

While the mutations at Asp68 abolished the selectivity between EX4(9–39) 

and Ala32–EX4(9–39), both mutants bound the peptides with higher affinity than 

expected, suggesting the possibility that conformational changes in the protein 

structure may enhance interactions with other regions of the peptide. While 

mutations often result in such unexpected observations, it has been found 

previously that the difference in the affinities of two very similar ligands at the 

same receptor is highly diagnostic for identifying ligand–receptor interactions 

(Mann et al., 2007, Pioszak et al., 2009). Taken with the data from the 

pharmacological assays and molecular dynamic simulation of hGLP-1R, it can be 

concluded that a glutamic acid side chain at residue 68 of hGLP-1R cannot form a 

stable hydrogen bond with Ser32** of the peptide ligand, and therefore does not 

contribute to the affinity of the peptide. 

As the C-terminal extension of EX4 has been shown to form part of a Trp-

cage motif in some environments (Neidigh et al., 2001), it is feasible that this 

structure could play a role in enhancing the affinity of the peptide at rGLP-1R. Trp-
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cage formation is dependent upon a number of sequence-dependent features, one 

of which is the presence of the hydroxyl side chain of Ser33** which forms an 

intra-molecular hydrogen bond (Barua et al., 2008). In order to examine the 

putative role of the Trp-cage in enhancing the affinity of EX4(9–39), EX4 Ser33** 

was substituted with Ala, preventing the intra-molecular hydrogen bond and hence 

disrupting Trp-cage formation. However, this substitution had no effect upon the 

peptide’s affinity for rGLP-1R (Mann et al., 2010b). Hence, it is clear that Donnelly 

and co-workers previous speculation was wrong, since neither the putative Trp 

cage motif nor the hydroxyl side chain of Ser33** is responsible for the observed 

affinity enhancement mediated by residues EX4(31–39). These data were 

supported by the molecular dynamics simulations where the Trp-cage motif 

included in the starting conformation was observed to unfold early in the simulation 

(Mann et al., 2010b). 

Overall, the present study along with published work from the Donnelly’s lab 

demonstrates a surprising observation showing that the large difference in affinity 

between GLP-1 and EX4 observed with the isolated hGLP-1R-NTD (Mann et al., 

2010b) was almost absent when the membrane-tethered hNT-TM1 ( Table 5-3, 

Figure 5-6). This similarity in binding affinity is in agreement with the binding data 

resulting from the mutagenic analysis of Runge’s lab, which noted that EX4 makes 

only minor additional interactions with the hGLP-1R-NTD relative to GLP-1 

(Underwood et al., 2010). However, the data appear to conflict with the binding 

data at the purified NTD, and therefore, in order to explain these apparently 

conflicting observations, an alternative modified peptide/receptor binding model 

has been proposed (Figure 5-12) (Mann et al., 2010b). 
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Figure  5-12: A model for the binding of EX4 and GLP-1.  

Binding of EX4 (left panels, A–C) and GLP-1 (right panels, D–F) to either the fully 
isolated/soluble GLP-1R-NTD expressed in Escherichia coli (A, D), the isolated NTD 
tethered to the membrane, expressed in HEK-293 cells (NT-TM1, B and E) or the full-
length receptor expressed in HEK-293 cells (C, F). The helical structure of the peptide 
ligands is critical for their high-affinity interaction with the NTD via the ‘H’ interaction. (A) A 
cartoon representation of the binding of EX4 (helix) with the isolated GLP-1R-NTD based 
on the crystal structure. The C-terminal half of the peptide interacts with the NTD, while 
the high helical propensity of EX4 enables its helical structure to remain intact, despite the 
absence of interactions with the N-terminal region of the ligand. However, the binding of 
GLP-1 with the isolated GLP-1R-NTD occurs with much lower affinity because the lower 
helical propensity of GLP-1, coupled with the absence of interactions with the N-terminal 
region of the ligand, results in the more frequent unwinding of the helix, loss of the ‘H’ 
interaction and consequent dissociation of the ligand (D). Hence, there is a large affinity 
difference between EX4 and GLP-1 at the isolated NTD (200- to 400-fold), which reflects 
the difference in helical propensity rather than the relative strength of the ‘H’ interaction. 
However, the two ligands bind with much more similar affinity to the isolated NTD tethered 
to the plasma membrane (B, E). It is speculated that this is due to the close proximity of 
the membrane, which stabilizes the N-terminal region of GLP-1, eliminating the difference 
in helical propensity, and thus enabling the C-terminal helix to remain intact and interact 
with the NTD. The addition of the core domain of the receptor (C, F) results in additional 
interactions with the N-terminal region of the ligands, the ‘N’ interaction, which is stronger 
for GLP-1 than for EX4. A third interaction, termed ‘EX’ (white asterisk), represents a 
specific interaction between Ser32** in the C-terminal region of EX4 and the GLP-1R-NTD 
(Mann et al., 2010b). 

 
 

 

EX4 GLP-1 



Chapter 5: ‘'EX’ interaction and Ser32 of EX4     

 

157 

While the 200-fold difference in affinity between GLP-1 and EX4 at rGLP-

1R is substantially reduced at rNT-TM1 (25-fold), there nevertheless still remained 

a significant difference between the affinities of the two peptides (Mann et al., 

2010b). This observation has been described previously and has been explained 

by defining an extra ‘EX’ interaction between EX4 and the rGLP-1R-NTD, which 

was localized to the C-terminal extension of EX4 (asterisk in Figure 5-12; (Al-

Sabah and Donnelly, 2003a). This ‘EX’ interaction also accounts for the ~30-fold 

difference between the affinities of EX4(9–39) and EX4(9–30) observed with both 

the isolated rNTD and rNT-TM1 (Table 2 in (Al-Sabah and Donnelly, 2003a).The 

modest affinity enhancement that EX4 attains over GLP-1 as a result of the ‘EX’ 

interaction with rGLP-1R is physiologically relevant and should not be confused 

with the larger affinity difference observed at the isolated NTD, which results from 

the low helical propensity of GLP-1 in this artificial receptor-binding environment. 
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6 -  'EX' interaction and truncated peptides 

6.1 Introduction 

6.1.1 Antagonist-agonist switching of peptide ligands at the GLP-1R   

As previously introduced, the NTD of GLP-1R is critical for high ligand 

affinity, whereas the receptor core domain is essential for the activation of the 

receptor (Al-Sabah and Donnelly, 2003a, Lopez de Maturana et al., 2003). The 

proposed model for agonist-induced activation of Family B GPCRs, including GLP-

1R, is a two-step mechanism in which the C-terminal half of the peptide hormone’s 

α-helix binds to the NTD, while a second interaction between the N-terminal 

residues of the ligand and the core domain of the receptor leads to receptor 

activation (e.g. (Mann et al., 2010b). While the details of the first interaction are 

well understood via X-ray crystallography of the NTD (Underwood et al., 2010, 

Runge et al., 2008), the paucity of structural data for the core domain means that 

the understanding of the second interaction remains poor. 

The X-ray structure of the isolated NTD of GLP-1R with EX4(9-39) showed 

that the N-terminal region of the peptide from Asp9** to Met14** does not interact 

with the NTD (Runge et al., 2008). Nevertheless, residues Leu10** to Met14** 

form part of a well-defined α-helix that continues to Asn28**, with the region 

between Glu15** and Asn28** interacting with a shallow binding site on the NTD. 

The C-terminal half of GLP-1 bound to GLP-1R also forms an α-helix from Ala24* 

to Val33*, which interacts with the isolated NTD in a manner that closely 

resembles that of EX4(9-39) (Underwood et al., 2010). However, while residues 

Thr13* to Glu21* adopt an α-helical conformation protruding from the NTD, the 

orientation of this N-terminal half of GLP-1 differs from that of the regular helix of 

EX4(9-39) since the helix in GLP-1 is kinked at Gly22 (Underwood et al., 2010). 
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Figure  6-1: The kink at Gly22 of GLP-1. 

Superposition of GLP-1R-NTD bound GLP-1 (blue) and EX4(9-39) (cyan). GLP-1 residue 
Gly22* denotes a kink in the α-helix, which is situated in close proximity to Leu32 of the 
NTD (Underwood et al., 2010). 

 

The aim of the work described in this section was to explore the nature of 

the agonist/antagonist properties of truncated GLP-1 and EX4. While GLP-1 is 

rapidly cleaved in vivo after Ala2* to yield the low potency agonist GLP-1(9-

36)amide (Elahi et al., 2008), EX4 is resistant to such degradation due to the 

substitution of residue 2 by Gly (Figure 1-4). Nevertheless, when the equivalent 

truncated version of EX4 was synthesised, it was found that EX4(3-39) acted as a 

high affinity antagonist (Montrose-Rafizadeh et al., 1997), suggesting the 

possibility that the two analogous peptides interact differently with the activation 

pocket in the receptor’s core domain. Therefore, we set out to compare and 

contrast the properties of truncated GLP-1 and EX4 in order to understand the 

mechanisms that underlie their different efficacy and, in doing so, to understand 

further the nature of the receptor activation mechanism. 
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6.1.2 ‘EX’ interaction and helical propensity of EX4 and GLP-1 

Previous studies referred to the superior affinity of EX4 as being due to its 

stabilized helix (Runge et al., 2007), since EX4 has a strong helical area 

(EEEAVRL) in contrast to the corresponding kinked segment in GLP-

1(EGQAAKE) (Montrose-Rafizadeh et al., 1997), which looks less helical due to 

the presence of Gly22* (Figure  6-2). The crystal structure of EX4/hGLP-1R-NTD 

suggested that, in addition to Arg20**/Glu128 interaction, the interaction of Arg20** 

with Glu16** and Glu17**, could stabilize the α-helical structure of EX4(9-39) 

(Runge et al., 2008). On the other hand, the kink of the α-helix around Gly22* 

suggested that the opposite charges of residues in the corresponding positions in 

GLP-1 interfere with the stabilization similar to EX4 (Underwood et al., 2010). 

Actually, this was just a theoretical prediction without supporting experimental 

data. Consequently, the aim of work in this section is to explore the exchange of 

residues of interest between GLP-1 and EX4. Accordingly, a modified version 

GLP-1(15-36) with the mid-section EGQAAKE of GLP-1 swapped with EEEAVRL 

of EX4 was made to give the peptide EX2G13. The modified EX2G13 is equivalent 

in length to GLP-1(15-36) but, if the hypotheses are correct, it should have a 

higher affinity than normal GLP-1(15-36). In the same way, Gly22* in GLP-1(15-

36) was replaced by the corresponding residue in EX4, Glu16. The ligands were 

used for binding and activation assays with both rGLP-1R and hGLP-1R. 

6.1.3 Possibility of improvement of EX4 pharmacological properties 

In fact, based on the recorded affinity and activity data, attention has been 

given to what could improve the pharmacological properties of EX4. Connecting all 

the points together, the work above revealed that the main factor in maintaining 

EX4 N-independent affinity at rGLP-1R is the interaction between EX4 Ser32** 

and rGLP-1R-Asp68 via a hydrogen bond. Accordingly, the work was directed to 
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examine five synthetic EX4 peptides with Ser32** substituted by other hydrogen 

donor amino acids (Lys32-EX4, Arg32-EX4, His32-EX4, Asn32-EX4 and Gln32-

EX4). All peptides were subjected to binding and activity analysis with either rGLP-

1Rmyc or hGLP-1R to investigate whether any of them could show improved EX4 

characters or species selection. 

6.2 Methodological considerations 

General methods were applied during molecular biology work and cell 

culturing as in Chapter 2. Competitive radioligand binding assays were carried out 

using 125I-GLP-1 as a tracer and the various unlabelled ligands showed in Figure 

6-2 as competitors. In LANCE cAMP assay, the number of stimulated cells was 

optimized at 4000 cells/well stimulated for 30 min at room temperature before the 

detection mix was added to each well and incubated at room temperature for 1hr. 

 

GLP-1(7-36)||||||HAEGTFTSDVSSYLEGQAAKEFIAWLVKGR 

GLP-1(15-36) ||||||||||||DVSSYLEGQAAKEFIAWLVKGR 

EX2G13                   DVSSYLEEEAVRLFIAWLVKGR 

Glu22-GLP-1(15-36)       DVSSYLEEQAAKEFIAWLVKGR 

Gly16-Ex4(9-30) |||||||||DLSKQMEGEAVRLFIEWLKNGG 

Ex4(9-30)||||||||||||||||DLSKQMEEEAVRLFIEWLKNGG 

Gly16-Ex4(9-39)||||||||||DLSKQMEGEAVRLFIEWLKNGGPSSGAPPPS 

Ex4(9-39)        ||||||||DLSKQMEEEAVRLFIEWLKNGGPSSGAPPPS 

Gly16-Ex4        HGEGTFTSDLSKQMEGEAVRLFIEWLKNGGPSSGAPPPS 

Ex4              HGEGTFTSDLSKQMEEEAVRLFIEWLKNGGPSSGAPPPS 

                 |||||||||||||||||||||||||||||||||||||||                                

                 1|||||||9||||||||||||||||||||30|||||||39 

Figure  6-3: Alignment of the synthetic ligands peptides.  

The exchanged amino acids are underlined.  
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6.3 Results 

6.3.1 Antagonist-agonist switching of peptide ligands at the GLP-1R   

 As expected from previous studies, the removal of the first eight residues 

from the N-terminus of GLP-1, to yield GLP-1(15-36), resulted in a substantial 

reduction in affinity at both rat GLP-1R (Figure 6-3, Table 6-1) (rGLP-1R; 1445-

fold, P<0.0005) and human GLP-1R (hGLP-1R; 1318-fold, P<0.0005). The 

removal of the equivalent region of EX4, to yield EX4(9-39), resulted in a more 

modest reduction in affinity (83-fold at rGLP-1R, P<0.0005 and 46-fold at hGLP-

1R, P<0.0003). Further truncation of EX4(9-39) at the C-terminus to yield EX4(9-

30), the direct equivalent of GLP-1(15-36), resulted in a further 9-fold reduction in 

affinity at rGLP-1R  (P<0.002) but no significant reduction at hGLP-1R (P<0.1) 

(Figure 6-3, Table 6-1).  

The removal of the first eight N-terminal residues from GLP-1 also resulted 

in a large decrease in agonist potency with the EC50 for GLP-1(15-36) being 

>5000-fold at rGLP-1R and >12,000-fold higher at hGLP-1R compared with GLP-1 

itself. Nevertheless, the truncated peptide was a partial agonist with an intrinsic 

maximal activity of 82.3 ± 3.9% (n=3) relative to GLP-1. In contrast, the first eight 

N-terminal residues of EX4 were essential for efficacy since both EX4(9-39) and 

EX4(9-30) displayed no intrinsic activity at either rGLP-1R or hGLP-1R (table 6-1; 

Figure 6-3). 

Both NMR and X-ray crystallography have demonstrated that, relative to the 

regular α-helix observed for EX4, the α-helical region of GLP-1 is kinked due to 

presence of Gly at the 16th position of GLP-1 (Gly22*) which is Glu16** in EX4 

(Neidigh et al., 2001, Underwood et al., 2010). In order to examine whether the 

efficacy of GLP-1(15-36) relative to its inactive analogue EX(9-30) was due to this 

kinked helix, Glu16** of EX4(9-30) was replaced with Gly. Gly16-EX4(9-30) was 
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indistinguishable from EX4(9-30) at hGLP-1R, displaying similar affinity and no 

detectable activity in the LANCETM cAMP assays at concentrations up to 100 µM 

(Table 6-1; Figure 6-3B). However, despite only a modest reduction in affinity at 

rGLP-1R (4-fold, P > 0.02), Gly16-EX4(9-30) was a partial agonist with intrinsic 

activity and potency very similar to that of GLP-1(15-36) (Table 6-1; Figure 6-3A).  

Surprisingly, the equivalent Glu16-Gly substitution in EX4(9-39), to yield 

Gly16-EX4(9-39), did not result in any detectable agonist activity at rGLP-1R, even 

with 100 µM of peptide. Since the nine residue C-terminal extension of EX4 

interacts with the N-terminal domain of the receptor (Al-Sabah and Donnelly, 

2003a, Runge et al., 2008, Mann et al., 2010b), it has been predicted that the NTD 

would be the source of the different functional properties observed between Gly16-

EX(9-30) and Gly16-EX4(9-39) at rGLP-1R.  Furthermore, the ability of Gly16-

EX4(9-30) to activate rGLP-1R, but not hGLP-1R (Table 6-1) suggested that a 

difference within the primary structure of rGLP-1R and hGLP-1R may be 

responsible. Limiting the search to only those residues that interact with the C-

terminal region of EX4(9-39), residue 68 (Asp68 in rGLP-1R; Glu-68 in hGLP1R) 

was identified as a candidate responsible for the different properties of rGLP-1R 

and hGLP-1R. Therefore, stable cell lines expressing the Asp/Glu substitutions in 

the receptors from both species (rGLP-1R-Asp68-Glu and hGLP-1R-Glu68-Asp) 

were used to assess the efficacy of the truncated GLP-1 and EX4 peptides. As 

shown in Table 6-2 and Figure 6-4, the side chain substitution at residue 68 had 

no effect upon the agonist properties of GLP-1(15-36). However, unlike WT rGLP-

1R, the mutant rGLP-1R-Asp68-Glu receptor was no longer activated by Gly16-

EX4(9-30) while, conversely, hGLP-1R-Glu68-Asp was activated by Gly16-EX4(9-

30) which was inactive at WT hGLP-1R. 
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Figure  6-4: Pharmacological profile of Glu16Gly modified Exendins and with the 
rGLP-1Rmyc and the hGLP-1R.  

A: Dose response curves of normal and modified exendins with the rGLP-1Rmyc. As can 
be seen species selection still controls the effect of deletion of last 9 amino acids of 
exendin. Gly16-EX4(9-30)(♦) is converted to agonist. Although Gly16-EX4(9-30)(♦)  has 
greatly reduced potency relative to EX4(■) and Gly16-EX4(●)(d1 is 48666) it was able to 
stimulate rGLP-1Rmyc unlike other short normal exendins EX4(9-39)(▼) and EX4(9-30)(♦), 
which were as usual antagonists. Moreover, Gly16-EX4(9-39)(▲) is surprisingly 
antagonist as well. Glu16Gly in Gly16-EX4(●)  slightly reduced its potency (d1 is 3.95) B: 
at hGLP-1R,  all ligands appeared with the same potency pattern as with rGLP-1Rmyc but 
maybe with different numbers except Gly16-EX4(9-30)(♦) was an antagonist indicating 
Gly16-EX4(9-30)(♦) has a species selective agonism toward rGLP-1Rmyc. C: competition-
binding curves show the reduced affinity of the C-terminal truncated exendins at rGLP-1R 
regardless Glu16Gly substitution relative to EX4(9-39)(▼) and Gly16-EX4(9-39)(▲). D: at 
hGLP-1R: the curves showed that four truncated exendins has nearly equally reduced 
affinity relative to EX4(■). pIC50 and pEC50 values are given in Table 6-1. 
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Table  6-1: pEC50 and pIC50 of the rGLP-1R and the hGLP-1R with extchanged 16th 
position EX4.  

 rGLP-1Rmyc hGLP-1R 

 pEC50 pIC50 pEC50 pIC50 

GLP-1 9.98 ± 0.19 9.20 ± 0.03 10.65 ± 0.08 9.33 ± 0.16 

GLP-1(15-36) 6.28 ± 0.09** 6.04 ± 0.28** 6.56 ± 0.11** 6.21 ± 0.23** 

Gly16-EX4(9-30) 6.27 ± 0.12 6.54 ± 0.15 ND 7.85 ± 0.15 

EX4(9-30) ND 7.14 ± 0.08** ND 7.77 ± 0.01 

Gly16-EX4(9-39) ND 7.21 ± 0.05 ND 7.34 ± 0.09 

EX4(9-39) ND 8.10 ± 0.11** ND 8.04 ± 0.13** 

Gly16-EX4  10.33 ± 0.06 8.84 ± 0.16 10.72 ± 0.03 8.89 ± 0.02 

EX4 10.93 ± 0.12 10.02 ± 0.14 11.56 ± 0.11 9.70 ± 0.02 

 

Note pEC50 values of Gly16-EX4(9-30), ND means not determined. 

 

  

 

  

Table  6-2: pEC50 and pIC50 of the hGLP-1R-like rGLP-1R-Asp68Glu and the rGLP-1R-
like hGLP-1R Glu68Asp with extchanged 16th position EX4.  

 rGLP-1R-Asp68Glu hGLP-1R-Glu68Asp 

 pEC50 pIC50 pEC50 pIC50 

Gly16-EX4(9-30) ND 6.96 ± 0.09** 6.38 ± 0.13 6.38 ± 0.09** 

EX4(9-30) ND 7.57 ± 0.05 ND 7.49 ± 0.15** 

Gly16-EX4(9-39) ND 6.67 ± 0.04** ND 7.57 ± 0.03** 

EX4(9-39) ND 7.80 ± 0.07 ND 8.66 ± 0.08 

GLP-1(15-36) 6.23 ± 0.16 6.85 ± 0.17 6.45 ± 0.14 6.70 ± 0.19 

 

Note pEC50 values of Gly16-EX4(9-30) compared to values in table 6-1. 
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Figure  6-5: Dose response curves and competition binding curves of Glu16Gly- 
modified EX4 and GLP-1 with the hGLP-1R-like rGLP-1R-Asp68Glu and the rGLP-
1R-like hGLP-1R Glu68Asp. 

A: Dose response curves of normal and modified EX4 and GLP-1 with rGLP-1R-
Asp68Glu, Gly16-EX4(9-30)(♦)  lost its potency like other short normal exendins EX4(9-
39)(▼) and EX4(9-30)(♦), as well as Gly16-EX4(9-39)(▲). B: at hGLP-1R-Glu68Asp, 
Gly16-EX4(9-30)(♦) regained its agonism while other exendins stayed with the same 
response. C: rGLP-1R-Asp68Glu showed lower affinity to less helical exendins as Gly16-
EX4(9-30)(♦) and Gly16-EX4(9-39)(▲) with low helical stability looked have the same 
affinity and curves of both of them are shifted to right of curves of both EX4(9-39)(▼) and 
EX4(9-30)(♦). D: hGLP-1R-Glu68Asp regained the species selection based affinity of the 
Ex4 C-terminus as the affinity depended on the length of the ligand and not on its helical 
structure. Gly16-EX4(9-39)(▲) has higher affinity than Gly16-EX4(9-30)(♦) as well as 
EX4(9-39)(▼) has higher affinity than EX4(9-30)(♦). pIC50 and pEC50 values are given in 
Table 6-2.  
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6.3.2 ‘EX’ interaction and helical propensity of EX4 

As showed in the previous section, the removal of the first eight residues 

from the N-terminus of GLP-1, to yield GLP-1(15-36), resulted in a substantial 

reduction in affinity at both rat and human GLP-1R. Surprisingly, the insertion of 

the stabilizing residues of EX4 to yield EX2G13 failed to improve its affinity and 

showed typical affinity of normal GLP-1(15-36) (less than 4-fold change at both 

types of receptors, p> 0.1). On the other hand, compared to GLP-1(15-36), 

replacement of Gly22 only by Glu to yield Glu22-GLP-1(15-36) showed             

non-significant improvement in affinity at rGLP-1R (3.8 <fold, P>0.1) but a slightly 

significant improvement at hGLP-1R (9.65 fold, P<0.01) (Figure 6-6, Table 6-3).  

Interestingly, EX2G12 was inactive at both types of receptors though 

Glu22-GLP-1(15-36) was active at both rat and human GLP-1R (Figure 6-6, Table 

6-3) with high significant improved potency compared to GLP-1(15-36) (rGLP-1R: 

14 fold, p<0.0003; hGLP-1R: 17 fold, p<0.003).  
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Figure  6-6: Dose response curves and competition-binding curves of EX2G13, E22-
GLP-1(15-36) with the rGLP-1R and the hGLP-1R. 

A and B show competition-binding assays were assessed using 125I-GLP-1 versus Three 
equal length ligands GLP-1(15-36) (◊), Glu22-GLP-1(15-36) (◊) and EX2G13 (□) at 
membrane preparation of HEK-293 cells expressing WT receptors. C and D show the 
potency of the same ligand stimulated the HEK-293 live cells expressing the same 
receptors. pIC50 and pEC50 values are given in Table 6-3.  

 

 

 

Table  6-3: pEC50 and pIC50 of EX2G13, E22-GLP-1(15-36) and with GLP-1(15-36) the 
rGLP-1R and the hGLP-1R. 

 rGLP-1Rmyc hGLP-1R  

 pEC50 pIC50 pEC50 pIC50 

EX2G13 ND 6.24±0.22 ND 6.76±0.18 

GLP-1(15-36) 6.28 ± 0.09** 6.04±0.28 6.56 ± 0.11** 6.21±0.23* 

Glu22-GLP-1(15-36) 7.52 ± 0.06 6.60±0.09 7.72 ± 0.14 7.19±0.07 

 

* P < 0.05, ** P < 0.01 compared to E22-GLP-1(15-36). 
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6.3.3 Possibility of improvement of EX4 pharmacological properties 

Indeed, none of the modified EX4 peptides showed improved affinity or 

activity with either species receptors, as shown in Tables 6-4 and 6-5. 

Furthermore, mutations His32-EX4, Asn32-EX4 and Gln32-EX4 showed adverse 

effect reflected by statistically significant reductions in affinity at receptors of both 

types  compared to normal EX4 (≈ 5-10 fold, P<0.01). The potency of the peptides 

was slightly better than their affinity but still lower than normal EX4 (d< 5 fold) 

 

  

 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

Figure  6-7: Dose response curves and competition-binding curves of Ser32-
modified analogues of EX4 with the rGLP-1R and the hGLP-1R.  

A and B, competition-binding curves of 125I-GLP-1 and Ser32-modified analogues of EX4 
with rGLP-1R or hGLP-1R. C and D show the potency of the same ligands stimulated the 
HEK-293 live cells expressing the same receptors. pIC50 and pEC50 values are given in 
Tables 6-4 and 6-5.  
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Table  6-4: pIC50 values of Ser32 modified analogues of EX4 with the rGLP-1R or the 
hGLP-1R. 

 rGLP-1Rmyc hGLP-1R  

 pIC50 d pIC50 d 

EX4 9.34 ± 0.18  9.26 ± 0.10  
Lys32-EX4 8.78 ± 0.15 3.68 8.66 ± 0.08** 3.98 
Arg32-EX4 8.78 ± 0.12 3.72 8.99 ± 0.18 1.85 
His32-EX4 8.35 ± 0.05** 10.00 8.74 ± 0.13* 3.34 
Asn32-EX4 8.44 ± 0.07** 8.15 8.70 ± 0.16* 3.63 
Gln32-EX4 8.32 ± 0.10** 10.75 8.53 ± 0.06** 5.37 

 

 d is Fold difference was calculated compared to normal EX4. * P < 0.05, ** P < 0.01. 

 

 

 

 

 

Table  6-5: pEC50 values of Ser32 modified analogues of EX4 with the rGLP-1R or the 
hGLP-1R.  

 rGLP-1Rmyc hGLP-1R  

 pEC50 d1 pEC50 d1 

EX4 10.80 ± 0.09  10.94 ± 0.03  
Lys32-EX4 10.47 ± 0.08 2.15 10.42 ± 0.10** 3.29 

Arg32-EX4 10.63 ± 0.28 1.48 10.55 ± 0.24 2.44 

His32-EX4 10.20 ± 0.06** 3.98** 10.15 ± 0.10** 6.17 
Asn32-EX4 10.51 ± 0.13 1.93 10.48 ± 0.14* 2.91 

Gln32-EX4 10.45 ± 0.08* 2.26* 10.39 ± 0.05** 3.52 

 

d is Fold difference was calculated compared to normal EX4. * P < 0.05, ** P < 0.01 
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6.4 Discussion 

6.4.1 Antagonist-agonist switching 

The details of the 'H' interactions have been resolved by X-ray 

crystallography via the solving of the structure of the isolated hGLP-1R-NTD 

complexed with EX4 and GLP-1 (Runge et al., 2008, Underwood et al., 2010). 

However, although it is accepted that the N-terminal region of GLP-1 binds to the 

core domain of the receptor, the details of the 'N' interaction remain to be resolved. 

Some progress has been made; for example, several residues have been 

previously identified in the core domain (Lopez de Maturana and Donnelly, 2002, 

Al-Sabah and Donnelly, 2003b, Lopez de Maturana et al., 2004) which are 

required for maintaining the high affinity of full-length GLP-1 but not GLP-1(15-36), 

suggesting that they interact with the first eight residues of the peptide. 

Furthermore, this approach has recently been validated via a photo-cross-linking 

study which demonstrated a direct interaction between the extreme N-terminus of 

GLP-1 and Tyr-205 in the first extracellular loop (Chen et al., 2010).  

While the 'H' interactions of EX4 and GLP-1 are largely equivalent (Mann et 

al., 2010b) their 'N' interactions are likely to differ since both X-ray crystallography 

and NMR analysis have shown that, while the helix of EX4 is regular, the helix of 

GLP-1 is kinked at Gly22* (Neidigh et al., 2001, Underwood et al., 2010). The 

result of the kink is that the N-terminal half of the helix is orientated differently with 

respect to its C-terminus, which is likely to result in a different interaction with the 

receptor’s core domain and consequential differences in the nature of the 'N' 

interaction. Indeed, while the first eight residues of both GLP-1 and EX4 are critical 

for their efficacy at GLP-1R, the interaction between this region of EX4 and the 

core domain of the receptor comprises a substantially lower proportion of the 

peptide’s affinity compared with GLP-1 (Table 1 in Al-Sabah and Donnelly, 2003a). 
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However, since both peptides are able to fully activate the receptor, this difference 

in the 'N' interaction only results in different contributions to affinity, suggesting that 

the efficacy-generating component of the peptides’ interaction with the core 

domain is independent from the affinity-generating component. To account for this 

in the current work, the 'N' interaction is defined to account only for the affinity 

generated between the N-terminal region of the peptide and the core domain, 

while now defining an independent interaction, 'A', to describe the efficacy-

generating interaction. Indeed, previous disruption of the affinity-generating 

component of the 'N' interaction in the core domain, via mutagenesis of Asp198 to 

Ala, did not result in loss of efficacy, suggesting that the 'A' interaction was not 

disrupted and therefore independent from 'N' (Lopez de Maturana and Donnelly, 

2002). A pictorial description of the interactions between the agonists and GLP-1R 

is provided by Figure 6-8 which indicates equivalent H and ‘A’ interactions for both 

peptides but a reduced N interaction for EX4. 

The N-terminal region of GLP-1 is critical for its high potency at both rGLP-

1R and hGLP-1R since the removal of the first eight residues substantially reduces 

both its affinity (>1,300-fold) and potency (>5,000-fold) (Table 6-1). However, the 

observation that GLP-1(15-36) acts as a low-potency partial agonist demonstrated 

that much of the efficacy-generating properties still reside in the truncated peptide, 

further substantiating the independence of the 'N' and 'A' interactions. The 

observation that EX4(2-39) acts as an agonist while Glu9-EX4(2-39) acts as an 

antagonist (Montrose-Rafizadeh et al., 1997) may suggest that it is the Asp at the 

first position of GLP-1(15-36) that is critical for efficacy. Furthermore, the 

substitution of Asp-9 of GLP-1 with Ala resulted in 40-fold reduction in affinity but 

an almost complete loss of efficacy (Adelhorst et al., 1994). While GLP-1(15-36) 

could activate GLP-1R, its analogue EX4(9-30) displayed no detectable efficacy, 
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even at 100 µM. Therefore, despite the slightly higher affinity of EX4(9-30) 

compared with GLP-1(15-36), it appears that only GLP-1(15-36) is able to form the 

A interaction in the core domain (Figure 6-8).  

Given this surprising observation, it was fascinating to discover that a single 

Glu to Gly residue substitution at position 16 of EX4(9-30) was able to confer 

agonist properties, such that Gly16-EX4(9-30) acted as a partial agonist at rGLP-

1R with properties similar to GLP-1(15-36).  While it is possible that Glu16 to Gly 

substitution results in a direct alteration between the interaction of this residue’s 

side chain and the receptor’s activation pocket, it is proposed that the Glu-16 to 

Gly substitution in EX4(9-30) enables the helix to bend in a similar manner to that 

observed in GLP-1, allowing its extreme N-terminus to interact with the activation 

pocket in the core domain and to form the 'A' interaction (Figure 6-8C (i)). 

Despite the ability of Gly16-EX4(9-30) to activate rGLP-1R, this receptor 

could not be activated by Gly16-EX4(9-39). it has been shown previously that the 

nine residue C-terminal extension of EX4(9-39) interacts with the N-domain of 

rGLP-1 via a hydrogen bond between Asp68 of the receptor and Ser32** of the 

ligand (previous chapter). Therefore, the observation that this C-terminal extension 

prevented receptor activation was surprising since it would be expected to be 

distant from the activation pocket in the core domain. A second surprising 

observation was the absence of agonist activity for Gly16-EX4(9-30) at hGLP-1R, 

despite being a partial agonist at rGLP-1R. This suggested that a side chain within 

the human receptor was preventing the peptide from acting as an agonist. 

Although it was initially suspected that such a human-rat residue difference may 

be in close to the activation pocket within the receptor’s core domain, the ability of 

the C-terminal extension of Gly16-EX4(9-39) to prevent activation of rGLP-1R 

suggested that a site on the NTD could be responsible. Hence the study targeted 
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residue 68 of GLP-1R, since this was the only residue which interacted with the C-

terminal extension of EX4(9-39) and which also differed in the human and rat 

receptor sequences. The exchange of Asp68 for Glu in rGLP-1R abolished the 

agonist induced activity of Gly16-EX(9-30) but had no effect upon GLP-1(15-36). 

Furthermore, the exchange of Glu-68 for Asp in hGLP-1R enabled Gly16-EX(9-30) 

to act as a partial agonist with similar properties to GLP-1(15-36).  

It was therefore clear that either (1) the presence of the C-terminal 

extension in the peptide, or (2) the presence of Glu at position 68 of the receptor, 

was sufficient to prevent Gly16-EX4(9-30) from acting as an agonist. The surprise 

was that the location of the ligand-receptor interaction that resulted in this 

disruption of activity involved the C-terminus of the ligand and the NTD of the 

receptor, a site that would be distant from the activation pocket in the receptor. It is 

proposed that the source of this disruption to agonist activity is an interaction 

between the C-terminal region of the peptide and the NTD which limits the mobility 

of the peptide within the binding site on the NTD and therefore prevents its N-

terminus from interacting with the activation pocket on the core domain (Figure 6-

8C (ii) and (iii)). Analysis of the X-ray structure of EX4(9-39) complexed with the 

isolated N-domain of hGLP-1R suggests that the longer side chain of Glu68 can 

interact with the extreme C-terminus of Gly16-EX4(9-30), whereas the shorter side 

chain of Asp68 cannot. 
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Figure  6-8:  Cartoon representations of peptide-receptor interactions.  

The two domains of the receptor are depicted as two dotted ovals, with the NTD on top of 
the core domain. The ligand is depicted by the solid line that includes a helix, with 
particular residue types displayed as their single-letter code and residue number. The 
helix of EX4 is shown as regular while that of GLP-1 is shown with a kink at Gly22: 
substitution of Glu-16 of truncated EX4 peptides with Gly is depicted with a kinked helix 
analogous to that of GLP-1. The three interactions between the ligand and receptor are 
shown by three arrows labelled either H (grey), N (black) or A (white). The 'H' interaction 
generates affinity between the NTD and the C-terminal half of the ligand; the 'N' 
interaction generates affinity between the N-terminal 8 residues of the peptide and the 
core domain of the receptor; the 'A' interaction generates receptor activity/efficacy via an 
interaction between the N-terminal region of the receptor and the core domain. EX4 
makes all three interactions with the receptor (Ai) although its 'N' interaction is weaker 
than that of GLP-1, which also makes all three interactions (Aii). EX4(9-30) is only able to 
make the H interaction and therefore has lower affinity than EX4 and also possesses no 
efficacy (Bi). On the other hand, GLP-1(15-36) is able to activate the receptor since its 
bent helix can form the A interaction. However, the absence of the N interaction results in 
low affinity and potency for GLP-1(15-36). Gly-16-EX(9-30) acts as an agonist in a similar 
manner to GLP-1(15-36) (Ci). However, for Gly-16-EX4(9-39) (Cii), the presence of the C-
terminal extension results in an interaction (black chevron) at the C-terminus which 
restricts the ability of the N-terminus to form the 'A' interaction. Likewise, an interaction 
(black chevron) between Glu-68 and the C-terminus of Gly-16-EX4(9-30) (Ciii) also 
restricts the ability of the N-terminus to form the 'A' interaction. The curved arrows in Ci 
indicate the increased mobility of the peptide within the binding site, enabled by the 
absence of a restrictive interaction at the C-terminus of Gly-16-EX(9-30). 

EX4 GLP-1 
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Such an interaction could restrict the mobility of the C-terminal helix of the 

ligand within the binding site on the N-domain (Figure 6-8C (iii)). While the mobility 

of Gly16-EX(9-30) would be enabled by the absence of an interaction with the 

shorter side chain of Asp-68, the C-terminal extension of Gly16-EX(9-39) would 

result in a hydrogen bond between Asp-68 and the side chain of Ser32 on the 

ligand ((Mann et al., 2010b); Figure 6-8C(ii)). Therefore, agonist activity is 

prevented by the presence of either Glu68 in the receptor or the C-terminal 

extension in the ligand. 

6.4.2 ‘EX’ interaction and helical propensity of EX4 

Consistent with previous observations, it was interesting to explore the 

exchange of the kinked helix region in GLP-1 with the corresponding highly helical 

segment of EX4. The sequence EEEAVRL of EX4 has been assumed to support 

the higher helicity of EX4 over the corresponding area of GLP-1 (EGQAAKE) 

which is interrupted and weakened by a kink at Gly22* (Montrose-Rafizadeh et al., 

1997). Consequently, that observation has been taken as a support for the 

hypothesis that high helicity of EX4 is the main reason for its superior affinity 

(Runge et al., 2007). EX2G13, GLP-1(15-36) and Glu22-GLP-1(15-36) were used 

in binding assays to eliminate any effect of other parts (the N and C-termini) of the 

two ligands on the tested affinity or activation.  EX2G13 and GLP-1(15-36) showed 

the same affinity without any species preference, emphasising the contribution of 

EX4 C-terminus over its helical propensity, discussed in Chapter 5. 

However, Glu22-GLP-1(15-36) showed slightly enhanced affinity compared 

with the GLP-1(15-36) (Table 6-3; Figure 6-5). This observation would suggest 

that the effect, mediated via the helix occurs as a result of the Gly22Glu 

substitution alone. The introduced negative charge of Glu would together with 

Gln23*, support optimal positioning of Lys26*, the residue at the equivalent 
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position to (and with equivalent charge as Arg20**) in EX4, forming similar 

stabilising interaction of EX4 (Runge et al., 2008). However, the closer affinities of 

EX4(9-30), Gly16-EX4(9-30) and GLP-1(15-36) as well as Gly22-GLP-1(15-36) 

reduce the correlation of this interaction with the superior affinity of EX4. 

Alternatively, this stabilization would elongate the segment of GLP-1 that interacts 

with the helix of NTD, increasing the peptide affinity. The enhanced potency of 

Gly22-GLP-1(15-36) over GLP-1(15-36) could be explained by increased 

stabilization of the peptide helix that could optimize its position relative to the 

activation pocket of the receptors. 

Unlike Gly22-GLP-1(15-36), EX2G13 induced no activity with either 

receptor form reflected by absence of cAMP production. The reasons may be 

related to the degree of peptide flexibility around this group of introduced EX4 

residues. These observations raised the interest in these amino acids as an 

agonist/antagonist switching factor. Moreover, the important residue for the 

peptide activation, the 'A' interaction, might be hidden within this area.   

6.4.3 The improvement of peptide affinity and activity at GLP-1R 

The improvement of peptide affinity and activity at GLP-1R by the 

modification of the C-terminal end of the ligand has been observed in other 

studies. (Knudsen et al., 2000) have shown that the addition of a o-

carboxyundecanoyl or o-carboxypentadecanoyl group at the C-terminus of a GLP-

1 analogue can enhance activity 10-fold. (Hjorth et al., 1994) have also 

demonstrated that the replacement of the final three residues of glucagon (a 29-

residue peptide) with the final four residues of GLP-1 results in a 169-fold 

improvement in affinity at GLP-1R. Furthermore, the 41000-fold selectivity of GLP-

1R for GLP-1 over glucagon (Hjorth et al., 1994) is reduced to only a 50-fold 

difference when glucagon is extended by eight residues to give oxyntomodulin 
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(Dakin et al., 2001). Conversely, the replacement of the final four residues of GLP-

1 with the final three residues of glucagon reduces affinity at GLP-1R by 475-fold 

(Hjorth et al., 1994). Hence, the interaction of the C-terminal region of the peptide 

ligand with the receptor is clearly important for affinity, and could be exploited in 

the design of modified ligands with increased activity. Since this study showed that 

rGLP-1R does interact with Ser32** while hGLP-1R does not; consequently, the 

work was encouraged to yield ‘super EX4’ with highest affinity and/or activity for 

either rGLP-1R or hGLP-1R by exchanging Ser32** into another hydrogen donor 

amino acid. These replacements led to affinity and activation properties similar to 

values with wild type receptor, or lower, indicating the indispensability Asp/Ser32** 

interaction. 
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7 -  Summarising discussion and conclusion 

7.1 Introduction 

GLP-1 is an incretin hormone secreted by enteroendocrine L-cells in the 

intestinal mucosa in response to food intake. GLP-1 plays an important role          

in controling blood glucose homeostasis via a specific 7TM receptor that is 

expressed in peripheral tissues, as well as in the nervous system. The GLP-1R is 

a prototypical member of a Family B within the GPCR superfamily. Like other 

Family B receptors, the GLP-1R stimulates cAMP production as a second 

messenger of intracellular signalling cascades. 

In vivo, stimulation of the GLP-1R by endogenous GLP-1 induces multiple 

interactive mechanisms, which together result in normalization of blood glucose 

levels. These mechanisms include receptor-mediated enhancement of glucose-

induced insulin secretion from pancreatic β-cells, deceleration of gastric emptying 

with a delay in the gastrointestinal absorption of nutrients, inhibition of glucagon 

secretion, and inhibition of food intake. 

Consistent with these physiological functions, it has been reported that an 

administration of exogenous GLP-1 provides an effective approach for the 

treatment of type two diabetes mellitus. However, this therapeutic strategy is 

hampered by serious challenges, such as the susceptibility of GLP-1 to rapid 

enzymatic inactivation and the need for frequent painful parenteral drug 

administration. To overcome these limitations, drug investigators have focused on 

the identification of alternative long acting GLP-1R agonists, potential drugs that 

would mimic the activity of the endogenous hormone.  
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EX4 is an agonist of GLP-1R with the same physiological similarities and 

differences of GLP-1.  Consequently, synthetic EX4 has been licensed as a drug, 

exenatide (Byetta®) for the treatment of type 2 diabetes mellitus. EX4 has 

significantly greater affinity at the isolated GLP-1R-NTD, relative to GLP-1, but the 

mechanism underlying this property has been controversial.  

Initial studies of the interaction between EX4 and rGLP-1R in Donnelly's 

group correlated this superior affinity with the extra nine amino acids at the C-

terminus of EX4. The approach taken, therefore, was to determine a receptor 

contact for any of these amino acids and to investigate how this interaction 

mediates the receptor binding discrimination. 

7.2 Computer based models 

At the time of starting this work, there was only CRFR2β-NTD as an 

available NMR structure of a Family B GPCR-NTD, so other methods have to be 

recruited to explore the biomolecular interaction between ligand and receptor. 

Computer built models for EX4/NTD of the rGLP-1R complex have been designed 

in Donnelly’s lab. These models identified a set of residues of the receptors that 

are suggested to be involved in the interaction with the C-terminus of EX4. The 

first part of this project was a practical work based on those models. Eventually, 

none of the models revealed a realistic description of the actual interaction. 

However, both binding and activity analysis indicated the importance of some of 

the selected residues for the interaction between ligand and receptor. This 

importance was elucidated in the light of latterly released Family B GPCR crystal 

structures. 
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7.3 ‘EX’ interaction based on crystal structure 

Later, the first crystal structure of Family B GPCR was published for GIPR 

in complex with GIP (Parthier et al., 2007). Shortly afterwords, the crystal structure   

of hGLP-1R-NTD bound to EX4(9-39) was published (Runge et al., 2008) followed 

by a GLP-1 bound one (Underwood et al., 2010). Other studies at the hGLP-1R 

disputed our group’s conclusions and related EX4 superior affinity to the greater 

stability of the helical region of EX4 in relations to its counter part in GLP-1 (Runge 

et al., 2007). The crystal structure for hGLP-1R-NTD bound to EX4(9-39) 

supported by mutagenic analysis suggested only one subtle interaction of the C-

terminus of EX4 with the NTD (Runge et al., 2008). Both of the crystal structures 

seemed consistent with the data recorded in the current study about the ‘H’ 

interaction of the ligand with the GLP-1R. Furthermore, the data appeared as a 

detailed scene of the equal affinity reported before in our group for the amino acids 

at positions (9-30) or the 'H' region in either EX4 or GLP-1. Accordingly, the 

interaction behind the superaffinity of EX4 would be beyond its ‘H’ interaction and 

is still to be allocated. 

7.4 Determining of ‘EX’ interaction using crystal structure 
Ser32/Asp68 interaction 

The crystal structure of the isolated hGLP-1R-NTD identified only one 

residue difference between rat and hGLP-1R, Glu68 in hGLP-1R while Asp68 in 

rGLP-1R that interacts with the C-terminal region of EX4 (via Ser32**). The data of 

the current study demonstrates that the reversely mutated receptor of both species 

binds the natural ligands, GLP-1 and EX4, with a similar affinity compared to the 

WT GLP-1R, suggesting that residue 68 does not affect either the N or H 

interaction of the ligand with the receptor, which is in agreement with our group’s 

previous study (Al-Sabah and Donnelly, 2003a).  
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Two truncated forms of EX4, EX4(9-39) and EX4(9-30), were used so that 

any difference in affinity between EX4(9-39) and EX4(9-30) could be related to the 

interaction of the receptor with the extra 9 amino acids in the C-terminus of EX4(9-

30). As demonstrated by previous studies with rGLP-1R (Al-Sabah and Donnelly, 

2003a), the C-terminally truncated peptide displayed lower affinity. Since the 

human receptor has been reported to be unaffected by the same ligand truncation, 

Asp68 was selected as a potential target as it was (a) different in the human 

receptors, being Glu and (b) suggested to be in contact with Ser32** in the nine-

residue C-terminal extension of EX4 (Runge et al., 2008).  

While the binding analysis demonstrated superior affinity of EX4 (9-39) over 

EX4(9-30) to WT rGLP-1R, when Asp68 was mutated to glutamic acid (Asp68Glu) 

the difference in affinity disappeared. This strongly supports the notion that Asp68 

is capable of enhancing EX4 affinity by interacting with the C-terminal extension of 

EX4. In order to demonstrate that the affinity-enhancing interaction between 

residue 68 and the C-terminal extension of EX4 occurs via the side chain of 

Ser32**, a peptide analogue of EX4(9-39) was synthesized with Ser-32 replaced 

by Ala. The binding properties of this peptide mimicked those of the fully truncated 

EX4(9-30) peptide, confirming Ser32** as the interaction site for Asp68.  

7.5 Antagonist-agonist switching 

  The study demonstrated that GLP-1(15-36) acts as a partial agonist while 

the equivalent analogue EX4(9-30) shows no activity. However, the substitution of 

Glu16** for Gly in EX4(9-30) resulted in a peptide with agonist properties at rGLP-

1R that are similar to those of GLP-1(15-36). The study proposed that Gly16** 

enables the helix of the ligand to kink in a similar manner to that observed in GLP-

1, and that this enables its N-terminus to interact with the activation pocket in the 

core domain of the receptor. The activity of Gly16-EX4(9-30) at rGLP-1R is lost 
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when Asp-68 in the N-domain of the receptor is substituted by Glu, the equivalent 

residues in hGLP-1R. Indeed, Gly16-EX4(9-30) shows no activity at hGLP-1R but 

becomes a partial agonist when Glu68 is replaced by Asp, the equivalent residue 

in rGLP-1R. The study proposed that Glu-68, but not Asp68, is able to interact with 

the C-terminus of Gly16-EX4(9-30) by virtue of its longer side chain, with the result 

that the ligand’s movement is restricted such that its N-terminus cannot interact 

with the activation pocket. Furthermore, Gly16-EX4(9-39) shows no activity at 

either rGLP-1R or hGLP-1R. The study proposed that the interaction between the 

C-terminal extension of Gly16-EX4(9-39) and the N-domain, restricts the mobility 

of the peptide and prevents the N-terminus from interacting with the activation 

pocket in the core domain. The work demonstrated the independence of the 'N' 

and 'A' interactions in the receptor core domain and also shows that interactions 

between the C-terminal helix and the NTD in Family B GPCRs can influence the 

efficacy-generating interactions between the ligand and the core domain. 

Modified Gly16-EX4(9-39) and Gly16-EX4(9-30) underwent binding analysis 

by the same way. Interestingly, if the ligands were tested with rGLP-1R and its 

homolog hGLP-1R-Glu68Asp the C- terminus of the modified Gly16-EX4(9-39) 

could enhance its affinity over its truncated analogue Gly16-EX4(9-30). In contrast, 

if they tested with hGLP-1R and its homolog hGLP-1R-Asp68Glu the two ligands 

had equal affinity which is lower than that of normal EX4(9-39) and EX4(9-30) 

implying the dominance of the C-terminus interaction with rGLP-1R albeit the 

interrupted helix of EX4. 
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7.6 'EX' interaction and helical propensity of EX4 and GLP-1 

To examine the reverse modification in Gly16-EX4(9-30) , initially both GLP-

1(15-36), Glu22-GLP-1(15-36) and EX1G23 were subjected to binding analysis 

with the two species receptors.  While GLP-1(15-36) and EX1G23 had non- 

selective equal affinities Glu22-GLP-1(15-36) showed enhanced affinity which is 

non-selective too. Gly16-EX4(9-30) at rGLP-1R, GLP-1(15-36) and Glu22-GLP-

1(15-36) at human and rat GLP-1R were partial agonists in contrast to EX2G13 

which was antagonist at both types of receptors indicating the importance of the 

middle sequence in both EX4 and GLP-1 agonist /antagonist switching but this 

sequence does not contribute to 'EX' interaction. 

7.7 'Super' exendins 

Understanding the mechanism underlying EX4 species selective interaction 

may lead research to design a higher affinity analogue of EX4 at the human 

receptor. Although it appears that Ser32** can only interact with rGLP-1R- Asp68 

and not hGLP-1R-Glu68, it may yet be possible to make further analogues of EX4 

with alternative substitutions at residue 32nd  with enhanced affinity and potency at 

the hGLP-1R. Accordingly, a number of EX4 analogues were synthesized with 

replacement of Ser32** by hydrogen donors amino acids Arg, Lys, His, Asn and 

Gln. Results obtained via binding and activity analysis of those analogues were 

disappointing since all of the analogues showed equal or even lower affinity and 

potency. However, it could indicate that it is not just a direct interaction between 

Ser32** and Asp68 but could be extended to control further interactive 

interactions.     
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7.8 Conclusion 

The present project employed more than one strategy in order to reveal the 

structural determinants of the ligand binding and functional activation of receptors. 

The approaches included the use of protein models, site directed mutagenesis and 

construction of chimeric and/or modified synthetic peptides as well as collaboration 

with another research group to carry out the molecular dynamics simulations. The 

work reports that EX4 and its modified analogues have specific pharmacological 

properties at rGLP-1R. Understanding the mechanisms underlying these 

characterisations provides a new insight into how peptide molecules can interact 

with Family B GPCRs.  

7.9 Future work 

The study showed a new separate interaction, ‘A’ interaction is necessary 

for potency of the peptide. Three peptides GLP-1 (15-36), Glu22-GLP-1(15-36) 

and Gly16-EX4(9-30) were partial agonists though they lack their N-termini. The 

observations indicated that the activation of the receptor is not an exclusive 

function of the N-terminus of the peptide. Furthermore, the activation of rGLP-1R 

rather than hGLP-1R by Gly16-EX4(9-30) was very interesting since this activity 

was controlled by a residue rGLP-1R-Asp68 in the NTD abrogating the former 

hypothesis that NTD is highly important for ligand binding. Thereby, the ‘A’ 

interaction has an independent mechanism that remains to be uncovered.  

A future strategy could be planned for solving the ‘A’ interaction by adopting 

relevant modification of the target residues of GLP-1 and EX4 either by 

exchanging the equivalent positions or replacement with alanine. Comprehensive 

assignment of the receptor activity controlling interactions should have a crucial 

impact on the development of the affinity and activity properties of GLP-1 and EX4. 
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Moreover, understanding the mechanism behind the ‘A’ interaction would be the 

base for the design and discovery of new agonists for GLP-1R.    
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8 -  Appendix 

1. Luria-Bertani (LB) agar media  

Tryptone: (Oxoid) (1%) 16 g 
Yeast extract: (Oxoid) (0.5%) 10 g 
NaCl: (BDH) (1%) 5 g 
Agar: (Oxoid) (1.5%) 15 g 
Deionized water: add to 1000 ml. Autoclaved and kept sealed until using 
. 

2. Luria-Bertani (LB) media  

Tryptone: (Oxoid) (1%) 16 g 
Yeast extract: (Oxoid) (0.5%) 10 g 
NaCl: (BDH) (1%) 5 g 

Deionized water: add to 1000 ml. Autoclaved and kept sealed until using 

3. Ampicillin:  

Stock solution: 50 mg/ml water 
Working solution: 100 µg/ml media (1/500) 

4. 2X YT media (Components per liter) 

Tryptone: (Oxoid) (1.6%) 16 g 
Yeast extract: (Oxoid) (1%) 10 g 
NaCl: (BDH) (0.5%) 5 g 
Deionized water: add to 1000ml 

5. Lysis buffer  

Glucose (Sigma , FW:180.2 ) (50 mM)  

Tris-HCl (pH 8.0) (Sigma) (25 mM)  

EDTA (Sigma , FW:372.2 ) (10 mM)  

Deionized water: as required   

6. 0.2 M NaOH / 1% SDS 

NaOH (Sigma) (0.2M) 
SDS (Malford laboratories, FW:288.4) (10%)  

Deionized water: as required   

7. TAE    (50x Stock solution components per liter) 

Tris base (Malford laboratories, FW:121.1) 242 g 
EDTA (0.5 M)  
Glacial acetic 
acid 

57.1 ml 

8. Ammonium Acetate  

ammonium acetate (Sigma , FW:77.08 ) 7.5 M 57.81 g 
Deionized water Up to 100 ml (pH 7.8) 
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9. CM-10 

DMEM (Sigma) 500 ml  
FBS Lonza 10%  
Penicillin 
streptomycin (invitrogen) 

1 U/ml  
0.1 μg/ml  

 

L-Glutamine 2 mM  
Stored at 2-8°C and pre-warmed to 37°C before use.  

10. Cryo-preservation media  

DMEM 45%  (pre-warmed to 37°C before use) 
FBS 45% (pre-warmed to 37°C before use) 
DMSO 10% 

11. HEPES binding buffer  

HEPES (Sigma) 50mM 11.9155 g 
CaCl2 (Sigma) 1mM 147m g 
MgCl2 (Sigma) 5mM 1.0166 g 
BSA (Sigma) 0.2%  
Deionized water: 1000ml, then filtered and stored at 4°C 

12. HEPES washing buffer  

HEPES (Sigma) 50 mM 11.9155 g 
NaCl (Sigma) 500 mM 28 g 
BSA (Sigma) 0.1%  
Deionized water: 1000 ml, then filtered and stored at 4°C 

13. TFB1 buffer (Components per litre of deionized water) 

RbCl (100 mM) 12.1 g 
MnCl2 (50 mM) (MnCl2·4H2O) 9.9 g 
CH3COOK (30 mM) 2.9 g 
CaCl2 10 mM 1.1 g 
Glycerol 15% 15 ml 
Deionized water: 1000 ml. Adjust pH to 5.8 then sterilized by filtration and 

Stored at 2-8°C 

14. TFB2  

MOPS 10 mM  2.1 g 
RbCl 10 mM  1.2 g 
CaCl2 75 mM 8.3 g 
Glycerol Glycerol 15% 15 ml 
Deionized water: 1000 ml  
Adjust pH to 6.8 with KOH then aliquot to 1 ml aliquots and stored at -20°C  

15. Stimulation buffer 

HBSS   500 ml 
HEPES (Sigma) 5 mM 0.6 g 
pH to 7.4  then take 50 ml and add 0.1% BSA, valid for one week when stored at 
4°C but discarded any time if it becomes turbid  
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16. Peptides 

EX4, EX4(9–39) and GLP-1  were from Bachem (Saffron Walden,U.K.), while all 
other truncated peptide ligandswere custom synthesised by Genosphere 
Biotechnologies(Paris, France). 125I-EX-4(9–39), labelled via Bolton–Hunter 
reagent at Lys-12, was purchased from NEN-Perkin-Elmer (Boston, MA, U.S.A.). 
125I-GLP-1(7-36), labelled via lactoperoxidase metod and was a gift from Norvo 
Nordisk A/S (Novo Allé, Denmark). 
 
 
 
GLP-1(7-36)||||||HAEGTFTSDVSSYLEGQAAKEFIAWLVKGR 

GLP-1(15-36) ||||||||||||DVSSYLEGQAAKEFIAWLVKGR 

EX2G13                   DVSSYLEEEAVRLFIAWLVKGR 

Glu22-GLP-1(15-36)       DVSSYLEEQAAKEFIAWLVKGR 

Gly16-Ex4(9-30) |||||||||DLSKQMEGEAVRLFIEWLKNGG 

Ex4(9-30)||||||||||||||||DLSKQMEEEAVRLFIEWLKNGG 

Gly16-Ex4(9-39)||||||||||DLSKQMEGEAVRLFIEWLKNGGPSSGAPPPS 

Ex4(9-39)        ||||||||DLSKQMEEEAVRLFIEWLKNGGPSSGAPPPS 

Gly16-Ex4        HGEGTFTSDLSKQMEGEAVRLFIEWLKNGGPSSGAPPPS 

Ex4              HGEGTFTSDLSKQMEEEAVRLFIEWLKNGGPSSGAPPPS 

                 |||||||||||||||||||||||||||||||||||||||                                

                 1|||||||9||||||||||||||||||||30|||||||39 
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17. Sequences of primers used in PCR work used in site directed mutagenesis:  

 
Primer Name Sequence Description 

rGLP-1R-Val30Ala-For 5’CCAGGGTGCCACGGCGTCCCTCTCAGAG3’ Start at position Val30 

rGLP-1R-Val30Ala-Rev 5’CTCTGAGAGGGACGCCGTGGCACCCTGG3’ Terminate at position Val30 

rGLP-1R-Val30Leu-For 5’CCCCAGGGTGCCACGCTGTCCCTCTCAGAG3’ Start at position Val30 

rGLP-1R-Val30Leu-Rev 5’CTCTGAGAGGGACAGCGTGGCACCCTGGGG3’ Terminate at position Val30 

rGLP-1R-Val30Thr-For 5’CCCCAGGGTGCCACGACGTCCCTCTCAGAGAC3’ Start at position Val30 

rGLP-1R-Val30Thr-Rev 5’GTCTCTGAGAGGGACGTCGTGGCACCCTGGGG3’ Terminate at position Val30 

rGLP-1R-Ser33Trp-For 5'GGTGCCACGGTGTCCCTCTGGGAGACAGTGCAGAAATGG3' Start at position Ser33 

rGLP-1R-Ser33Trp-Rev 5'CCATTTCTGCACTGTCTCCCAGAGGGACACCGTGGCACC3' Terminate at position Ser33 

rGLP-1R-Thr35Ala-For 5’CGGTGTCCCTCTCAGAGGCAGTGCAGAAATGGAG3’ Start at position Thr35 

rGLP-1R-Thr35Ala-Rev 5’CTCCATTTCTGCACTGCCTCTGAGAGGGACACCG3’ Terminate at position Thr35 

rGLP-1R-Thr35Ile-For 5’GGTGTCCCTCTCAGAGATAGTGCAGAAATGGAGAG3’ Start at position Thr35 

rGLP-1R-Thr35 Leu-Rev 5’CTCTCCATTTCTGCACTAGCTCTGAGAGGGACACC3’ Terminate at position Thr35 

rGLP-1R-Thr35Val-For 5’CGGTGTCCCTCTCAGAGGTAGTGCAGAAATGGAGAG3’ Start at position Thr35 

rGLP-1R-Thr35Val-Rev 5’CTCTCCATTTCTGCACTACCTCTGAGAGGGACACCG3’ Terminate at position Thr35 

rGLP-1R-Val36Ala-For 5’GTGTCCCTCTCAGAGACAGCGCAGAAATGGAGAGAGTATC3’ Start at position Val36 

rGLP-1R-Val36Ala-Rev 5’GATACTCTCTCCATTTCTGCGCTGTCTCTGAGAGGGACAC3’ Terminate at position Val36 
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Primer Name Sequence Description 

rGLP-1R-Trp39Ala-For 5’CAGAGACAGTGCAGAAAGCGAGAGAGTATCGGCACC3’ Start at positionTrp39 

rGLP-1RR-Trp39Ala-Rev 5’GGTGCCGATACTCTCTCGCTTTCTGCACTGTCTCTG3’ Terminate at positionTrp39 

rGLP-1R-Trp39Phe-For 5’CTCAGAGACAGTGCAGAAATTTAGAGAGTATCGGCACCAGTGC3’ Start at positionTrp39 

rGLP-1R-Trp39Phe-Rev 5’GCACTGGTGCCGATACTCTCTAAATTTCTGCACTGTCTCTGAG3’ Terminate at positionTrp39 

rGLP-1R-Arg40Ala-For 5'CAGTGCAGAAATGGGCAGAGTATCGGCACC 3' Start at position Arg40 

rGLP-1R-Arg40Ala-Rev 5' GGTGCCGATACTCTGCCCATTTCTGCACTG 3' Terminate at position Arg40 

rGLP-1R-Y42Ala-For 5'GCAGAAATGGAGAGAGGCTCGGCACCAGTGCCAAC 3' Start at position Tyr42 

rGLP-1R-Tyr42Ala-Rev 5'GTTGGCACTGGTGCCGAGCCTCTCTCCATTTCTGC 3' Terminate at position Tyr42 

rGLP-1R-His44Ala-For 5'GGAGAGAGTATCGGGCGCAGTGCCAACGTTTC 3' Start at position His44 

rGLP-1R-His44Ala-Rev 5'GAAACGTTGGCACTGCGCCCGATACTCTCTCC 3' Terminate at position His44 

rGLP-1R-Phe66Ala-For 5'CTTCTGCAACCGAACCGCTGATGACTACGCCTG 3' Start at position Phe66 

rGLP-1R-Phe66Ala-Rev 5'CAGGCGTAGTCATCAGCGGTTCGGTTGCAGAAG 3' Terminate at position Phe66 

rGLP-1R-Asp68Ala-For 5'CGAACCTTTGATGCCTACGCCTGCTGG3' Start at position Asp68 

rGLP-1R-Asp68Ala-Rev 5'CCAGCAGGCGTAGGCATCAAAGGTTCG3' Terminate at position Asp68 

rGLP-1R-Asp68Glu-For 5'CAACCGAACCTTTGATGAGTACGCCTGCTGGCCAGATG3’ Start at position Asp68 

rGLP-1R-Asp68Glu-Rev 5'CATCTGGCCAGCAGGCGTACTCATCAAAGGTTCGGTTG3' Terminate at position Asp68 
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Primer Name Sequence Description 

rGLP-1R-Tyr69Ala-For 5’CCGAACCTTTGATGACGCCGCCTGCTGGCCAGATG3’ Start at position Tyr69 

rGLP-1R-Tyr69Ala-Rev 5’CATCTGGCCAGCAGGCGGCGTCATCAAAGGTTCGG3’ Terminate at position Tyr69 

rGLP-1R-Tyr69Leu-For 5’CAACCGAACCTTTGATGACCTCGCCTGCTGGCCAGATGG3’ Start at position Tyr69 

rGLP-1R-Tyr69Leu-Rev 5’CCATCTGGCCAGCAGGCGAGGTCATCAAAGGTTCGGTTG3’ Terminate at position Tyr69 

rGLP-1R-Tyr88Ala-For 5’CAGTTGCCCCTGGGCCCTGCCGTGGGCC3’ Start at position Y88 

rGLP-1R-Tyr88Ala-Rev 5’GGCCCACGGCAGGGCCCAGGGGCAACTG3’ Terminate at position Tyr88 

rGLP-1R-Tyr88Leu-For 5’GTCAGTTGCCCCTGGCTCCTGCCGTGGGCCAG3’ Start at position Tyr88 

rGLP-1R-Tyr88Leu-Rev 5’CTGGCCCACGGCAGGAGCCAGGGGCAACTGAC3’ Terminate at position Tyr88 

rGLP-1R-Trp91Ala-For 5’CCCTGGTACCTGCCGGCGGCCAGTAGTGTGC3’ Start at positionTrp91 

rGLP-1R-Trp91Ala-Rev 5’GCACACTACTGGCCGCCGGCAGGTACCAGGG3’ Terminate at positionTrp91 

rGLP-1R-Trp91Phe-For 5’CCCTGGTACCTGCCGTTTGCCAGTAGTGTGCTCC3’ Start at positionTrp91 

rGLP-1R-Trp91Phe-Rev 5’GGAGCACACTACTGGCAAACGGCAGGTACCAGGG3’ Terminate at positionTrp91 

rGLP-1R-Ser94Ala-For 5'GTACCTGCCGTGGGCCAGTGCAGTGCTCCAAGGGCATGTG 3' Start at position Ser94 

rGLP-1R-Ser94Ala-Rev 5'ACATGCCCTTGGAGCACTGCACTGGCCCACGGCAGGTAC3' Terminate at position Ser94 

rGLP-1R-Val95Ala-For 5'GTGGGCCAGTAGTGCCCTCCAAGGGCATGTG3' Start at position Val95 

rGLP-1R-Val95Ala-Rev 5'CACATGCCCTTGGAGGGCACTACTGGCCCAC3' Terminate at position Val95  

rGLP-1R-Leu96Ala-For 5'GTGGGCCAGTAGTGTGGCACAAGGGCATGTGTACC3' Start at position Leu96    

rGLP-1R-Leu96Ala-Rev 5'GGTACACATGCCCTTGTGCCACACTACTGGCCCAC3' Terminate at position Leu96 
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Primer Name Sequence Description 

rGLP-1R-Gln97Ala-For 5'CCAGTAGTGTGCTCGCAGGGCATGTGTACC3' Start at position Gln97 

rGLP-1R-Gln97Ala-Rev 5'GGTACACATGCCCTGCGAGCACACTACTGG3' Terminate at position Gln97 

rGLP-1R-Gly98Ala-For 5'GTAGTGTGCTCCAAGCGCATGTGTACCGGTTC3' Start at position Gly98 

rGLP-1R-Gly98Ala-Rev 5'GAACCGGTACACATGCGCTTGGAGCACACTAC3' Terminate at position Gly98 

rGLP-1R-Glu107Ala-For 5'CCGGTTCTGCACGGCCGCAGGTATCTGGCTGCATAAG3' Start at position Glu107 

rGLP-1R- Glu 107Ala-Rev 5'CTTATGCAGCCAGATACCTGCGGCCGTGCAGAACCGG3' Terminate at position Glu107 

rGLP-1R-Ile109Ala-For 5'GTTCTGCACGGCCGAGGGTGCATGGCTGCATAAGGACAAC3' Start at position Ile109 

rGLP-1R-Ile109Ala-Rev 5'GTTGTCCTTATGCAGCCATGCACCCTCGGCCGTGCAGAAC3' Terminate at position Ile109 

rGLP-1R-Leu111Ala-For 5'GCCGAGGGTATCTGGGCGCATAAGGACAACTC3' Start at position Leu111 

rGLP-1R-Leu111Ala-Rev 5'GAGTTGTCCTTATGCGCCCAGATACCCTCGGC3' Terminate at position Leu111 

rGLP-1R-His112Ala-For 5'CGAGGGTATCTGGCTGGCTAAGGACAACTCCAG3' Start at position His112 

rGLP-1R-His112Ala-Rev 5'CTGGAGTTGTCCTTAGCCAGCCAGATACCCTCG3' Terminate at position His112 

rGLP-1R-Lys113Ala-For 5'GTATCTGGCTGCATGCGGACAACTCCAGCC3' Start at position Lys113 

rGLP-1R-Lys113Ala-Rev 5'GGCTGGAGTTGTCCGCATGCAGCCAGATAC3' Terminate at position Lys113 

rGLP-1R-Asp114Ala-For 5'CTGGCTGCATAAGGCAAACTCCAGCCTGCC3' Start at position Asp114 

rGLP-1R-Asp114Ala-Rev 5'GGCAGGCTGGAGTTTGCCTTATGCAGCCAG3' Terminate at position Asp114 

rGLP-1R-Asn115Ala-For 5'CTGGCTGCATAAGGACGCATCCAGCCTGCCCTGG3' Start at position Asn115 

rGLP-1R-Asn115Ala-Rev 5'CCAGGGCAGGCTGGATGCGTCCTTATGCAGCCAG3' Terminate at position Asn115 
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Primer Name Sequence Description 

rGLP-1R-Glu127Ala-For 5’GACCTGTCGGAGTGCGCAGAGTCCAAGCAAGGAG3’ Start at position Glu127 

rGLP-1R-Glu127Ala-Rev 5’CTCCTTGCTTGGACTCTGCGCACTCCGACAGGTC3’ Terminate at position Glu127 

rGLP-1R-Glu127Asp-For 5’CCTGTCGGAGTGCGACGAGTCCAAGCAAGG3’ Start at position Glu127 

rGLP-1R-Glu127Asp-Rev 5’CCTTGCTTGGACTCGTCGCACTCCGACAGG3’ Terminate at position Glu127 

rGLP-1R-Glu127Gln-For 5’GGACCTGTCGGAGTGCCAAGAGTCCAAGCAAG3’ Start at position Glu127 

rGLP-1R-Glu127Gln-Rev 5’CTTGCTTGGACTCTTGGCACTCCGACAGGTCC3’ Terminate at position Glu127 

rGLP-1R-Glu128Ala-For 5’CTGTCGGAGTGCGAAGCGTCCAAGCAAGGAGAG3’ Start at position Glu128 

rGLP-1R-Glu128Ala-Rev 5’CTCTCCTTGCTTGGACGCTTCGCACTCCGACAG3’ Terminate at position Glu128 

rGLP-1R-Glu128Asp-For 5’CCTGTCGGAGTGCGAAGACTCCAAGCAAGGAGAGAG3’ Start at position Glu128 

rGLP-1R-Glu128Asp-Rev 5’CTCTCTCCTTGCTTGGAGTCTTCGCACTCCGACAGG3’ Terminate at position Glu128 

rGLP-1R-Glu128Gln-For 5’CCTGTCGGAGTGCGAACAGTCCAAGCAAGGAG3’ Start at position Glu128 

rGLP-1R-Glu128Gln-Rev 5’CTCCTTGCTTGGACTGTTCGCACTCCGACAGG3’ Terminate at position Glu128 
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18. List of suppliers 

                                                             

SUPPLIER ADDRESS 
Amersham-Biosciences UK Ltd. Little Chalfont, Buckinghamshire, England 
Bachem Ltd. Saffron Walden, Essex,England 

Beckman instruments, Inc. Palo Alto, CA, USA 
Becton Dickinson UK Ltd. Oxford, England 

Bio-Rad Laboratories Ltd. Hemel Hempstead, Hertfordshire, England 

Calbiochem Nottingham, England 

Fisher Scientific Loughborough, Leistershire, England 

Gibco-Invitrogen Ltd. Paisley, Scotland 

GraphPad Software Inc.  San Diego, CA, USA 

Helena Biosciences Ltd. Gateshead, Tyne& Wear, England 

Invitrogen BV Groningen, The Netherland 

Jencons Scientific Leighton Buzzard, Bedfordshire, England 

MBI Fermentas Sunderland, Tyne& Wear, England 

Melford Laboratories Ltd. Ipswich, Suffolk, England 

New Brunswick Scientific Edison, NJ, USA 

New England Biolabs Inc. (NEB) Hitchin, Hertfordshire, England  
Oxoid Ltd. Cambridge, England 

Packard Instrument Co., Inc.  Pang Bourne, England 

Perkin Elmer Life science Inc. Boston, MA, USA 

Qiagen Ltd. Crawley, West Sussex, England 

Sartorious AG Goettingen, Germany. 
Sigma-Aldrich Co. LTD Poole, Dorset, England 

Stratagene Europe Amsterdam Zuidoost, The Netherland 

VWR International LTD Lutternworth, Leistershire, England 

Wolf Laboratories LTD. Oxford, England 
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