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Abstract

The ability to make ultra-precise measurements is fundamentally important to sci-

ence as it allows theories to be tested and refined. Interferometers offer unrivalled

measurement precision and therefore form the basis of many metrology schemes.

Research has shown that by using quantum states as inputs to interferometers, pre-

cisions better than anything possible classically can be achieved. Nevertheless, these

states are difficult to produce and fragile to particle losses. Consequently, classical

inputs, which are extremely robust, are used in experiments. Here, however, we pro-

pose experimentally accessible schemes to make quantum-limited measurements, in

particular rotation measurements using Bose-Einstein condensates, that are robust

to losses.

We begin by describing how, by loading a Bose-Einstein condensate into an

optical ring lattice, multiport beam splitters are created through a simple raising

and lowering of potential barriers between sites. We then use these ‘splitters’ to

create an atomic gyroscope. We demonstrate how to create several quantum states

in the gyroscope, all capable of making rotation measurements. Whilst NOON

states afford best precision in idealised set-ups, we find they are outperformed by

‘bat’ states for modest loss rates.

However, bat states are not ideal as they are outperformed by classical states

for large losses. A second gyroscope scheme is therefore developed. Using multiple

momentum modes, rather than just two, we show quantum-limited precisions can

be reached using states that have similar robustness to classical states.

The final section focuses on the precision of linear interferometers. Recent work

iii



[1, 2] has calculated the theoretical optimum initial states for two-mode lossy inter-

ferometers. Here we present an experimental way to produce initial states that afford

similar precisions to this optimum. We also consider lossy multimode interferometry

and demonstrate a potential advantage over two-mode systems. It is thought with

further investigation other advantages will be found.
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Chapter 1

Introduction

1.1 The classical and quantum worlds

Ever since quantum mechanics was first conceived differences between the quantum

and classical world have been evident. Perhaps one of the greatest differences is the

existence of superpositions in the quantum world and lack thereof in the classical

world. This difference was emphasised by Schrödinger in 1935 in his famous thought

experiment [3] where, in an attempt to highlight the bizarreness of quantum me-

chanics, he demonstrated how quantum theory allows a cat to be in a superposition

of being dead and alive at the same time, something that we never observe in the

everyday classical world.

The thought experiment is as follows: a cat is put into a box with a radioactive

atom. Over the course of an hour the atom may decay, but also, with equal prob-

ability, it may not. If it does decay, some form of radiation is emitted that can be

detected. Detection of such radiation triggers a vial of poison to be smashed and

the cat dies. However, if the atom does not decay the vial remains intact and the

cat survives. If the box is left for an hour the radioactive atom, which is a quan-

tum object, will be in an equal superposition of decayed and not decayed. The cat,

whose state depends on the state of the radioactive atom, is therefore said to be

in a superposition of being alive and dead. We never actually see cats that are in

1



Chapter 1. Introduction

such a superposition, nevertheless this scenario is allowed by quantum mechanics.

The experiment, therefore, clearly highlights just one of many differences between

classical and quantum physics.

Another nice demonstration of a difference between the quantum and classical

world is given by the double slit experiment in which a beam of electrons is fired

at a screen containing two slits [4, 5]. A second screen that contains detectors

which can record when an electron strikes a given point is placed behind the first

screen. Classically an electron is considered a localised particle and therefore each

one can pass through only one slit. The resulting intensity of electrons detected

on the second screen will therefore be the sum of the intensity of electrons passing

through each individual slit. In experiments, however, this is not what is found.

Instead an interference pattern is observed which can only be explained by treating

the electrons as waves. However, on detection every electron exhibits purely particle

like properties as each electron is localised at a particular detector. And so, in just

one experiment, both the particle and wave like properties of the electrons have

been observed. The fact that all matter exhibits both wave and particle properties

is central to quantum physics. It is very different from our classical interpretation

of an electron existing as a localised particle.

We note the same interference pattern has also been shown to exist when single

electrons are passed through the slits one at a time [6]. This confirms that the inter-

ference is due to the interaction of the electron and the slits, not due to interactions

between different electrons. We also note that closing one of the slits destroys the

interference pattern leading us to conclude that the electron must be in a superposi-

tion of having passed through both slits when interference is observed. The results

of this experiment are impossible to explain using the laws of classical physics and

lead to Feynman’s famous quote that the single electron double slit experiment "has

in it the heart of quantum mechanics, In reality, it contains the only mystery".

The aim of the field of quantum information research is to exploit the differences

between quantum and classical physics to, for example, speed up certain computa-

2



1.1. The classical and quantum worlds

tions [7], teleport information between spatial locations [8] and ensure the secure

transmission of information [9]. Another consequence of these differences is the po-

tential to use quantum physics to improve the precision of measurements beyond

what is possible classically. This field of research is known as quantum metrology

and will be the focus of this thesis. A detailed introduction to the field will be given

in Chapter 3. For now we provide a quick overview but first we must introduce

another peculiarity of the quantum world, the uncertainty principle.

1.1.1 The uncertainty principle

The Heisenberg uncertainty principle, formulated by W. Heisenberg in 1927 [10],

is one of the most well known ideas of quantum physics. It states that certain

pairs of physical properties of a system, such as position and momentum, cannot

be simultaneously known to arbitrarily high precision. For the particular case of a

particle’s position, x, and momentum, p, the uncertainty relation takes the form

∆x∆p ≥ ~
2

(1.1)

from which it is clear that reducing the uncertainty in the position (momentum) of

a particle leads to an increase in the uncertainty of its momentum (position).

Heisenberg demonstrated this relation through a simple thought experiment in

which one attempts to measure the position of a particle as precisely as possible

by illuminating it with light of wavelength λ and observing the image through a

microscope. Using classical optics the microscope can resolve the position of the

particle to a precision of

∆x =
λ

sin θm
(1.2)

where θm is the angular aperture of the microscope. Consequently, we see that the

uncertainty in the position measurement can be reduced by using light of a shorter

wavelength. However, in order to make the measurement we know that at least

one photon must scatter from the particle into the microscope. This scattering

3



Chapter 1. Introduction

imparts a recoil momentum to the particle which is proportional to the momentum

of the photon. But this recoil momentum cannot be determined exactly since the

direction of the scattered photon can only be determined to within an angle θm.

The momentum of the particle can therefore be determined to a precision of

∆px ' p sin θm =
h

λ
sin θm. (1.3)

From these equations we see ∆x∆px ' ~ and so whilst using light of shorter wave-

length leads to a reduction in the uncertainty in the position measurement, this is

accompanied by an increase in the uncertainty of the momentum measurement.

Similar uncertainty relations exist for other pairs of variables. In fact it can be

shown that for any two Hermitian operators Q and R

∆q∆r ≥ 1
2
|〈[Q,R]〉| . (1.4)

The uncertainties ∆q and ∆r are not experimental errors but instead refer to the

average spread of a set of repeated measurements of q and r, that is, they are the best

predictions we can make about the outcome of an experiment. As will be discussed

here (and in more detail in Chapter 3) this has very important consequences in

quantum metrology.

1.2 Quantum metrology

Metrology, the science of measurement, is central to our everyday lives as we are

constantly making measurements of our surroundings through observations. In fact

most of us are obsessed with measurements - we ‘need’ to know the time, the speed

of our internet connection, the temperature, the list goes on. Science allows us to

make these measurements and, over time, advances in science have enabled these

measurements to become more and more precise. The ability to make precise mea-

surements is of considerable importance to a huge variety of people. A pilot, for

example, must know the precise position of their aircraft in order to prevent mid-air
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collisions. Advances in science have led to the development of ultra-precise gyro-

scopes and accelerometers thereby rendering this possible.

It is easy to see why as scientific methods improve more precise measurements

can be made. The converse, however, is also true. That is, as measurements be-

come more precise improvements are made to science as, for example, the ability to

make more precise measurements allows scientific theories to be proved/disproved.

Indeed, many scientific theories have failed to stand up to the results of precise mea-

surements. The existence of the ‘ether’, for example, was famously disproved when

Michelson and Morely made precise interferometric measurements. Consequently

finding ways to improve measurement precision is of fundamental importance to all

areas of science. With this in mind a great deal of research has been, and continues

to be, concentrated on precisely this.

As we have said, advances in science tend to lead to improvements in measure-

ment precision. The relatively recent advent of quantum physics is proving to be

no exception to this rule as theory predicts quantum systems should allow physical

quantities to be measured with much greater precision than is possible classically.

Indeed, proof of principal experiments have already been performed demonstrating

the potential of quantum physics to improve measurement precision [11]. Neverthe-

less the true potential of quantum systems for making ultra-precise measurements,

as predicted by the theory, remains unseen in experiments as of yet. This is largely

due to the difficulties associated with producing the required quantum set-up and

will be discussed later in the thesis. For now we give an intuitive feel as to why

quantum physics allows for such vast improvements in measurement precision.

Measurement is a physical process and as such the precision of a measurement

is governed by the laws of physics. Since we know that the classical and quantum

laws of physics differ considerably this immediately suggests that the precision of

classical measurements will be different to the precision of quantum measurements.

To understand the precision capabilities of measurements governed by the laws

of classical physics we consider a simple statistical experiment in which a fair coin

5



Chapter 1. Introduction

is tossed N times and the result of the toss (head or tails) is recorded. After the

coin has been tossed a great many number of times we would expect the number

of heads and tails that are recorded to differ by a small percentage. If, however,

N is small there may be a significantly disproportionate number of heads or tails.

Therefore if we repeat the N tosses several times we would expect the results to

fluctuate a lot between each run for small values of N . And so we see that the larger

N the more reproducible, or the more precise, our results become. It can be, and

will be (in Chapter 3), shown that the precision in fact scales as 1/
√
N . This same

scaling is found for all independent events and is due to the discrete nature of the

measurement outcomes. It presents a limit to the precision attainable given a fixed

number of resources. This limit is called the standard quantum limit and represents

the best precision that can be achieved in a classical system. Nevertheless there is

a way to improve measurement precision beyond this limit by exploiting quantum

systems.

Quantum systems are governed by the laws of quantum physics and as such it

is Heisenberg’s uncertainty relation that places a limit on the precision to which

measurements can be made in these systems. So if, for example, we know the

position of a particle to a precision of ∆x the uncertainty in its momentum can be

no less than ~/(2∆x). It can be shown that for a system consisting of N objects

fluctuations in the observable that is to be measured can be made to scale as 1/N

in a quantum system and that this is the ultimate precision allowed by quantum

physics [12]. This is a 1/
√
N improvement in precision over the classically equivalent

system and is due to the fact that in a quantum system objects can be made to

have correlations that are not possible classically. So instead of having discrete

measurement outcomes where each coin, for example, acts independently of the

other N − 1 coins, in a quantum system the coins ‘share’ information with one

another. Nevertheless, achieving this scaling experimentally remains challenging

due to the high degree of control and isolation of the system from the environment

that is required. As such most precision measurement experiments to date rely on
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classical physics.

This thesis focusses on the precision of interferometric measurements as interfer-

ometers offer unrivalled precision for the measurement of phase shifts. These devices

also allow for an easy way to see the potential of quantum physics to improve mea-

surement precision from the 1/
√
N scaling to the 1/N scaling and are discussed at

length in Chapter 3. We now give a detailed thesis aim and overview.

1.3 Thesis aim

The primary aim of this thesis is to determine ways quantum states can be used

to improve the precision of interferometric phase measurements, in particular those

corresponding to rotation rates. We restrict our investigation to ways to improve

precision solely by optimising the initial quantum state of the interferometer (read-

out methods are beyond the scope of this thesis and will be only briefly mentioned).

Particular attention will be paid to the effects of particle loss on interferometric pre-

cision. Ultimately we aim to find initial states that allow for precise measurements

even when particle losses are accounted for. We also wish to determine ways to

create such states in an experimentally realistic set-up.

We focus our attention on creating quantum states with Bose-Einstein conden-

sates as, when loaded into an optical lattice, a high degree of control of the system

variables is experimentally feasible. Using atoms, rather than light, will prove par-

ticularly advantageous when we wish to measure rates of rotation.

1.4 Thesis overview

The structure of the thesis is as follows. Chapter 2 introduces the theory of Bose-

Einstein condensates necessary to understand the thesis, in particular, the theory of

a Bose-Einstein condensate confined to an optical lattice. Such a system is described

by the Bose-Hubbard model [13] which is discussed in detail in this chapter. Central

to the thesis is the effect of rotations on a Bose-Einstein condensate in a ring lattice.
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The corresponding rotating Bose-Hubbard model is introduced towards the end of

the chapter.

Chapter 3 is the second of three introductory theory chapters. It looks at the

Mach-Zehnder interferometer and how it can be used to make precise phase measure-

ments. A way to quantify the precision of these phase measurements is introduced

and the precision capabilities of several different quantum states are determined.

Finally the effects of particle loss on the precision of phase measurements are con-

sidered. We introduce a simple way to model particle losses and demonstrate the

extreme fragility of certain quantum states.

In Chapter 4 we demonstrate how linear interferometers can be implemented

in ring geometries to make precise measurements of rotation rates. We focus on

the Sagnac geometry [14] and demonstrate how different quantum states achieve

different precisions in this setting. Here we provide motivation for our use of atoms

rather than light to make our rotation measurements in the proceeding work. The

remaining chapters (excluding ‘conclusion and future work’) present original work

completed during the course of my PhD.

Chapter 5 presents work completed with Jacob Dunningham and David Hallwood

published in Journal of Physics B [15]. We show how, by loading a Bose-Einstein

condensate into an optical ring lattice of S sites, multiport beam splitting operations

can be performed on the condensate simply by changing the intensity of the trapping

laser light. The scheme is theoretically simple and, as we demonstrate, is within

reach of current experimental techniques. This work was largely motivated by its

potential to create entangled states in a ring geometry, making it an ideal resource

for ultra-precise atomic gyroscope schemes. Indeed, the three port beam splitter

described here is central to the atomic gyroscope in the next chapter.

The first of two atomic gyroscope schemes is introduced in Chapter 6. Once

again we consider a Bose-Einstein condensate loaded into an optical ring lattice.

This time, however, we consider a ring of just three lattice sites (the minimum num-

ber of sites required to create a ring). We demonstrate how, using simple beam
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splitting operations, the atoms can be made to be in a superposition of flowing in

opposite directions around the ring. We show how this then allows us to measure

some external rotation rate. Ways to create different rotating superpositions are

considered and the precision afforded by each initial superposition is determined

both in the presence of and absence of particle loss. We find that whilst quantum

limited precisions can be achieved, the states that afford these precisions are ex-

tremely fragile to the effects of particle loss. This work was completed with Jacob

Dunningham and David Hallwood and is published in Physical Review A [16].

The work presented in Chapter 7 is the result of a visit to Massey University and

was completed with David Hallwood and Joachim Brand [17]. Within this chapter

a second atomic gyroscope scheme is presented. As before we load a Bose-Einstein

condensate into an optical potential. This time, however, we use a continuous optical

ring potential with a single barrier rather than a ring of lattice sites. We show how,

through the use of multiple momentum modes, rather than just two as for the

gyroscope scheme of Chapter 6, quantum limited precision rotation measurements

can be made that demonstrate unprecedented robustness to particle loss.

In Chapter 8 we turn our attention solely to ways to improve the precision of lossy

interferometry. In particular, we focus on the recent work of references [1, 2] which

determined a theoretical optimum initial state for two-mode lossy interferometry, i.e.

a state that is both precise and robust. We propose an experimentally accessible

scheme that can measure general phase shifts with precisions close to that of this

theoretical optimum initial state. Motivated by the results of the Chapter 7, we

also begin to look at the potentials of multimode interferometry for making precise

and robust phase measurements. This is still a work in progress but nevertheless

we demonstrate one way multimode interferometers can be made to increase the

precision of phase measurements in lossy environments. We expect to find other

advantages of these multimode devices as this work progresses. The results presented

in this chapter form the basis of a paper recently submitted to New Journal of

Physics.
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Concluding remarks are given in Chapter 9 along with other ideas for future

work.
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Chapter 2

Bose-Einstein condensates

In 1995 a new state of matter was produced by cooling a gas of weakly interacting

bosons to a temperature close to absolute zero. At such cold temperatures a large

fraction of the particles in the gas occupy the same quantum state, thereby producing

a macroscopic quantum object called a Bose-Einstein condensate. Bose-Einstein

condensates have uses in many different branches of physics, not least in the quantum

world where it is hoped they will prove useful in the creation of macroscopic quantum

superpositions, precision measurements and quantum information processing.

In this thesis we shall focus on their potential for making ultra-precise mea-

surements, in particular rotation rate measurements. We introduce the theory of

Bose-Einstein condensates necessary to understand how they can be used to achieve

this in this chapter. We begin by giving an overview of the steps leading up to the

first experimental demonstration of a Bose-Einstein condensate in a weakly inter-

acting gas. We then introduce the theory of these condensates in ideal gases, briefly

discuss the methods used to create them, introduce the Bose-Hubbard model which

is used to describe the motion of bosons in an optical lattice and finally consider the

effects of rotations of the optical lattice on the condensate.
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2.1 History

The theory of Bose-Einstein condensates (BEC) began in 1924 when Bose intro-

duced a new statistical description of photons [18]. Instead of treating these mass-

less bosons as distinguishable particles he found that by treating them as identical

particles, and thereby introducing identical particle statistics, he was able to derive

Planck’s law of radiation. The following year Einstein extended this statistical de-

scription of identical particles to gases of non-interacting massive bosons [19]. He

showed that, below a certain temperature, a large fraction of the particles in the gas

would occupy the lowest-energy single particle state. The resulting state of matter

is known as a BEC after its two discoverers.

The next major step in the field of BECs came in 1937 when it was shown

that cooling 4He to below 2.17K results in a new type of fluid, called a superfluid

[20, 21]. It was shown shortly after that the properties of this superfluid were

due to partial Bose-Einstein condensation of the helium [22, 23]. However, the large

interactions that exist between helium atoms meant there were difficulties describing

the superfluid using BEC theory. As a result research began to focus on ways to

produce BECs in weakly interacting gases.

The first suggested candidate was spin-polarised hydrogen. However, initial ex-

perimental attempts to form an atomic hydrogen condensate proved unsuccessful

due to problems associated with cooling the gas. It was not until 1998, three years

after the first experimental demonstration of a BEC in a weakly interacting gas,

that Bose-Einstein condensation of atomic hydrogen was achieved [24]. Neverthe-

less it was cooling techniques developed during these early attempts that ultimately

allowed for the first creation of a BEC in a weakly interacting gas in 1995 at JILA

[25]. Here Eric Cornell and Carl Wieman created a BEC of approximately 2000

87Rb atoms at a temperature near 170nK. This was shortly followed by the creation

of sodium condensate at MIT [26] by Wolfgang Ketterle and a lithium condensate

at Rice University [27]. Following the success of their experiments Cornell, Wieman

and Ketterle were all awarded the 2001 Nobel Prize in Physics.
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2.2. Bose-Einstein condensation in an ideal gas

2.2 Bose-Einstein condensation in an ideal gas

In this section we introduce the theory of an ideal, non-interacting Bose gas. In

reality of course some small interactions will always exist between the particles,

however this mathematical model is both elegant and useful for the realisation of a

BEC.

In 1924 Bose discovered that quantum particles do not obey the laws of classical

statistics. He realised that instead of acting as individual, distinguishable particles

they act as identical, indistinguishable particles. This means that exchanging two

quantum particles in a many body system must leave all the observables of that

system unchanged. Consequently, the only possible change to the system’s wave-

function after the exchange of two particles is the introduction of a global phase

factor. However, since reversing the exchange must return the original wavefunc-

tion, the global phase factor is limited to +1 or -1. Particles for which the phase

factor is +1 are called bosons and those for which the phase factor is -1 are called

fermions. The wavefunction of a boson is symmetric whilst that of a fermion is

anti-symmetric which means that fermions cannot occupy the same quantum state

whilst bosons can. In fact, it is the accumulation of many bosons in the same single

particle state that leads to the formation of a BEC and we will now show what

conditions are required to achieve this.

It is well known that for a non-interacting Bose gas in thermal equilibrium the

expected number of particles in any particular energy state i is given by

N(εi, T ) =
1

e(εi−µ)/kBT − 1
(2.1)

where εi is the energy of state i, kB the Boltzmann constant, T the temperature of

the gas and µ the chemical potential which physically corresponds to the amount

of energy required to add a particle to the system whilst keeping the entropy and

volume fixed. From this equation we can see that µ must be less than ε0 to prevent

negative values of N(ε0, T ) which are clearly unphysical. Here we set ε0 = 0 meaning
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the chemical potential must always be negative. We determine µ by the condition

that the total number of particles is equal to the sum of the occupancies of each of

the individual levels

N =
∑

εi

1
e(εi−µ)/kBT − 1

. (2.2)

Replacing the sum in equation 2.2 with an integral is commonplace in thermody-

namic calculations involving gases since, for systems with large volumes, the spacing

between energy levels is small and the distribution varies slowly between these levels.

However, for the ground state this approximation fails so we treat it separately from

the integral. This gives,

N = N0 +
∫
dεD(ε)N(εi, T ) (2.3)

where N0 = 1/(e−µ/kBT −1) is the number of particles in the ground state and D(ε)

is the density of states which for free particles in three dimensions is

D(ε) =
V

4π2

(
2m
~2

)3/2

ε1/2. (2.4)

Evaluation of the above integral gives the number of particles in all the excited states

Nex.

The population of each energy level increases with µ and T and therefore, so

as to keep the total number of particles in the system constant, any decrease in

temperature must be accompanied by an increase in µ. However, since µ must

always be negative its largest possible value is 0 which means the maximum number

of particles that can be in the excited states is

Nmax
ex = V ζ(3/2)

(
mkBT

2π~2

)3/2

(2.5)

where ζ(3/2) ≈ 2.612. The critical temperature, Tc, is found by setting Nmax
ex = N .

This gives

Tc =
2π~2

mkB

(
N

ζ(3/2)V

)2/3

. (2.6)
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Below this temperature the atoms have no choice but to populate the ground state

leading to a macroscopic build up of atoms in this mode, the condensate mode.

Using equations 2.5 and 2.6 we can see that, for T < Tc, the proportion of atoms in

the condensate is given by
N0

N
= 1−

(
T

Tc

)3/2

(2.7)

and that at T = 0 all N atoms are in the ground state.

This relation is most often expressed in terms of the length scales of the system,

namely the inter-particle spacing, (N/V )1/3, and the thermal de Broglie wavelength

which is defined as

λdB =
(

2π~2

mkBT

)1/2

. (2.8)

Substituting this into equation 2.6 we can rewrite T < Tc as,

λ3
dB

N

V
> 2.612 (2.9)

which shows that BECs form when λdB of the atoms is similar to their separation.

This is equivalent to the commonly quoted criteria that the wavefunctions of the

atoms must overlap. In experiments the densities tend to range from 1013−1015cm−3

which corresponds to transition temperatures of order 100nK. In the next section we

discuss ways to cool atoms to these extremely low temperatures but first we note the

results presented above are for a homogenous condensate. However, experimentally

it most likely that the condensate will be trapped in an approximate harmonic

potential and so will have a non-uniform density. In this case equation 2.6 becomes,

Tc =
~ωT
mkB

(
N

ζ(3)

)
(2.10)

where ωT is the angular frequency of the trap and ζ(3) ≈ 1.202 and for T < Tc the

proportion of atoms in the condensate is,

N0

N
= 1−

(
T

Tc

)3

. (2.11)
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2.3 Creating a Bose-Einstein condensate

As previously discussed, extremely low temperatures are required to produce a BEC

in a weakly interacting bose gas. For many years experimental realisation of these

temperatures eluded experimentalists. It was not until 1995, 70 years after Ein-

stein first developed his theory, that cooling techniques advanced enough to achieve

Bose-Einstein condensation. The first successful experiments cooled atoms using a

combination of laser cooling and evaporative cooling which we briefly describe here.

For a good review see [28].

2.3.1 Laser cooling

The atoms are initially cooled by using light beams to reduce their thermal motion.

This process is known as laser cooling and its origin can be traced back to 1933 when

Frisch deflected a beam of sodium atoms using resonance radiation from a lamp [29].

However, the intensity of the lamp was too low to manipulate the atoms in a useful

way. It was not until the advent of the laser that the ability to control the thermal

motion of atoms with light proved experimentally feasible. Between 1970 and 1975

a number of schemes were proposed to slow atoms with laser beams [30, 31]. These

schemes relied on the well known fact that when a photon is absorbed by an atom

there is a momentum transfer in a particular direction. A photon is then emitted

in a random direction which also transfers momentum but over many cycles this

particular momentum transfer will average to zero. So by bombarding an atom

with a laser beam that opposes its motion its velocity is reduced. Since atoms in a

gas move in all directions three orthogonal pairs of counter-propagating laser beams

that are red-detuned from atomic resonance are typically used to slow the atoms.

Due to the Doppler effect each atom is most likely to absorb a photon from a laser

that opposes its motion. So, regardless of its initial direction each atom feels a force

that acts to slow it down. This was first demonstrated in 1985 when a cloud of 105

sodium atoms were cooled to about 240µK [32].

Laser cooling comes to a halt when, because their velocities have changed, the
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atoms are no longer in resonance with the laser. Nevertheless this problem can be

overcome by tuning the atomic transition frequency using magnetic fields in a process

known as Zeeman slowing. Here a magnetic field is created using a solenoid whose

diameter gradually decreases along the atom’s path thus leading to an increase in

magnetic field strength. The variation in field strength enables the atom to remain

on resonance with the laser for longer and consequently colder temperatures are

achieved when the Zeeman slowing technique is employed.

2.3.2 Evaporative cooling

The temperatures achieved by laser cooling are extremely low, typically of the order

of a few micokelvin, however they are not cooled enough to achieve Bose-Einstein

condensation in gases. To reach the required nanokelvin temperatures an additional

cooling technique must be performed. The technique that proved most successful is

called evaporative cooling and was first developed in the context of a gas in a trap

by Hess in 1986 [33]. It relies on the fact that if particles escaping from a system

have more energy than the average energy of particles in the system, the remaining

particles will rethermalise at a lower temperature.

In order to employ this technique the gas is trapped in a magnetic field at the

end of the laser cooling period. A ‘hole’, from which atoms can escape, is then made

high up the side of the trap. In order for an atom to escape its energy must be at

least equal to the energy of the trap at the hole ensuring only the most energetic

atoms escape. After the loss of these high energy atoms the remaining ones undergo

elastic collisions and the temperature of the gas is therefore decreased. By gradually

lowering the hole the temperature is reduced further still.

It was the combination of these two cooling techniques that ultimately lead to the

formation of the first BEC in 1995. Since then the techniques have been employed

in numerous experiments to produce condensates of many different atomic species.
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2.4 The Bose-Hubbard model

Since the first realisation of a BEC in a dilute weakly interacting gas there has been

much talk of their potential uses in fields such as quantum information processing,

metrology and quantum state engineering. Some of the properties that sparked this

interest include the long condensate life times (of the order of several seconds) that

have been experimentally observed, the ability to image and move the condensate

without immediately destroying it and its strong interaction with laser light. Perhaps

the most promising BEC experiments for future applications in these fields are those

in which the BEC is loaded into an optical lattice (a periodic array of mircotraps

generated by standing wave laser light fields) 1. The greatest appeal of this set-up

is the high degree of control of the condensate that is achieved simply by varying

the laser parameters and configurations. Another important feature is, because of

the high particle densities associated with the condensate, interactions exist between

particles on the same lattice site. These interactions can be controlled and exploited,

again, simply by altering the intensity of the laser light. Together these features

make BECs in optical lattices ideal candidates for many experimental schemes in

quantum information processing and metrology. The focus of this thesis, however,

is their potential applications in quantum metrology.

In this section we first discuss how atoms are trapped by laser light in an optical

potential, we then show how periodic potentials (optical lattices) are created using

counter-propagating lasers, derive the Bose-Hubbard model (BHM) that describes

the dynamics of the condensate in the lattice and finally show how this model can

be modified to account for rotations of the optical lattice.

2.4.1 Optical potentials

When an atom is subjected to an electric field, such as that of a laser, it acquires

an electric dipole moment and its energy levels are shifted. BEC experiments often

exploit this shift in energy levels to trap atoms at a particular spatial location. Here

1For a good review see [34].
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we briefly describe this process in a system where we assume spontaneous emissions

can be neglected. This assumption is valid because laser light is usually tuned far

away from the atomic resonance frequency.

For simplicity we consider a single two-level atom with Hamiltonian

HA = ~ω0|e〉〈e| (2.12)

where |e〉 denotes the excited state which has energy ~ω0 and the ground, |g〉, has

zero energy. The atom is subjected to the electric field of a laser of the form,

E(x, t) = E0(x)e−iωLt + E∗0(x)eiωLt where ωL is the angular frequency of the laser

and E0(x) is the amplitude of the field at position x. The action of the laser on

the atom produces a dipole in the atom of the form d = deg|e〉〈g|+ d∗eg|g〉〈e| where

deg = 〈e|d|g〉. Using the dipole approximation, which assumes the electric field

varies slowly compared to the size of the atom, the interaction between the atom

and the laser is described by

HI = −d ·E = −
(
deg|e〉〈g|+ d∗eg|g〉〈e|)(E0(x)e−iωLt + E∗0(x)eiωLt

)
. (2.13)

At this point we use the rotating wave approximation to simplify the above

equation. In the rotating wave approximation high frequency terms are ignored

since, on any considerable time scale, the interactions of these quickly oscillating

terms will soon average to zero. This is valid here because δ = ωL − ω0 � ωL + ω0.

Applying this approximation gives

HI =
~
2

Ωe−iωLt|e〉〈g|+ ~
2

Ω∗eiωLt|g〉〈e| (2.14)

where Ω = −2degE0(x)/~ is the Rabi frequency which drives transitions between

the ground and excited state.

If |δ| � Ω the interaction between the light and the atom is weak and as such

the shift in atomic energy levels can be calculated using second order perturbation
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theory,

∆Eg,e = ±|〈g|HI |e〉|2

~δ
= ±~

|Ω|2

4δ
(2.15)

where the sign refers to the ground and excited states respectively. This shift in the

energy levels can be regarded as an effective potential, Vdip, felt by the atom which

acts to trap it since F(x) = −∇Vdip(x).

Crucial to the form of the potential is the sign of the detuning as when δ > 0 (blue

detuning) the atoms will feel a repulsive force and so will move towards regions of

low field strength, whilst when δ < 0 (red detuning) the atoms will feel an attractive

force and so will be attracted to regions of high field strength.

2.4.2 Optical lattices

An optical lattice is a periodic arrangement of the above optical potentials (see

reference [35] for a nice review). They are most easily created by superimposing two

counter-propagating laser beams with electric fields of the form E(x, t) = E0e
ikx

and E(x, t) = E0e
−ikx where E0 is the field amplitude and k = 2π/λ is the wave

number of the laser light. The interference between the two laser beams results in

an optical standing wave with period λ/2. The resulting potential has the form

V (x) = V0 cos2(kx) where V0 is the lattice potential depth which is most often

given in units of recoil energy ER = ~2k2/(2m) where m is the mass of an atom.

This set-up is easily extended to three dimensions by introducing two further pairs of

counter-propagating laser beams placed orthogonal to both one another and the first

laser pair. This results in a trapping potential of the form V (x) = V0,x cos2(kx) +

V0,y cos2(ky) + V0,z cos2(kz).

These optical lattices can be easily controlled by the experimenter. The depth of

the potential, for example, can be dynamically altered during an experiment simply

by changing the intensity of the trapping light. In fact the depth in each dimension

can be controlled individually by tuning the intensity of the corresponding pair of

lasers. By increasing the intensity of the trapping light in a particular dimension

the energy levels in that dimension become so widely spaced that the atoms are
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restricted to the lowest energy level. Motion in this dimension is therefore frozen

resulting in an effectively two dimensional system. Similarly increasing the laser

intensity in two spatial dimensions, so that it is significantly larger than in the third

dimension, particle movement can be made to occur in just one dimension.

It is also possible to create a variety of trapping geometries simply by changing

the laser configurations. Central to this thesis will be developing ways to precisely

measure rotations with BECs. This is most easily achieved using the traditional ring

geometry and as such we require an optical ring lattice. These ring lattice potentials

have already been experimentally demonstrated [36, 37].

2.4.3 Single particle system

So far we have shown how atoms can be trapped in an optical lattice using the dipole

force. We now wish to demonstrate how these atoms can propagate through the

lattice. The basic physics of the system is very similar to that of an electron moving

through a solid and as such the mathematical techniques used will be similar. For

simplicity we consider a single particle moving in a one dimensional lattice potential

with period X which implies V (x) = V (x + X).

The single particle wavefunction, Ψ(x), of a particle in a one dimensional poten-

tial obeys the following Schrödinger equation

[
−~2

2m
∇2 + V (x)

]
Ψ(x) = EΨ(x) (2.16)

where m is the mass of the particle. It is well known, from solid state physics, that

the solution to this equation is given by the Bloch function

Ψ(x)(n)
q = eiqxu(n)

q (x) (2.17)

where u(n)
q (x) has the same period as the lattice meaning u(n)

q (x) = u
(n)
q (x+X), eiqx

is a plane wavefunction and n is the band index. The parameter q plays a similar
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Chapter 2. Bose-Einstein condensates

role to momentum in free space and for this reason it is called quasi-momentum 2.

It is confined to the first Brillouin zone, −π/X < q ≤ π/X.

As the potential depth increases the wavefunction becomes more localised on

each lattice site and it becomes convenient to use Wannier functions to describe the

trapped particles. In this set-up Wannier functions prove particularly useful as they

allow a mean position to be attributed to the particles and allow interactions between

particles on the same lattice site to be easily accounted for. Wannier functions are

unitary transformations of Bloch functions and are given by

w(n)(x− xj) =
1√
S

∑

q

e−iqxjΨ(n)
q (x) (2.18)

where xj is the position of the jth particle, S is the number of lattice sites and the

sum is over the first Brillouin zone. This is the wavefunction of a single particle in

a periodic optical lattice when the barriers are high enough to consider the atoms

as well localised particles.

2.4.4 Derivation of the Bose-Hubbard Model

The BHM for a weakly interacting Bose gas was first suggested by Jaksch et al. in

1998 [13]. It describes the dynamics of interacting BEC atoms in an optical lattice.

Starting from the full many body Hamiltonian we follow reference [38] to give a

naïve derivation of the Bose-Hubbard Hamiltonian.

The Hamiltonian of a weakly interacting Bose gas in an optical lattice is

HMB =
∫
d3xΨ̂†(x)

(
−~2

2m
∇2 + V (x)

)
Ψ̂(x) +

g

2

∫
d3xΨ̂†(x)Ψ̂†(x)Ψ̂(x)Ψ̂(x)

(2.19)

where Ψ̂(x) and Ψ̂†(x) are the bosonic field operators for atoms in a given internal

state that annihilate and create an atom at position x respectively. They obey the

2Although strictly speaking the quasi-momentum is ~q.
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2.4. The Bose-Hubbard model

commutation relations,

[Ψ̂(x′), Ψ̂(x)] = [Ψ̂†(x′), Ψ̂†(x)] = 0 (2.20)

[Ψ̂†(x′), Ψ̂(x)] = δ(x′ − x). (2.21)

and are normalised so that

〈∫
d3xΨ̂†(x)Ψ̂(x)

〉
= N. (2.22)

The parameter V (x) is the optical lattice potential and g is the interaction strength

between two atoms. If the atoms only interact via s-wave scattering g = 4πas~2/m

where as is the s-wave scattering length. We assume that the system is cold

enough to consider only the lowest band of the optical lattice and the barriers are

high enough to expand the field operators in terms of Wannier functions, Ψ̂(x) =
∑

j ajw
(0)(x− xj) where aj (a

†
j) is the annihilation (creation) operator for an atom

at site xj . These operators obey the following commutation relations

[aj , ak] = [a†j , a
†
k] = 0 (2.23)

and

[aj , a
†
k] = δj,k. (2.24)

Substituting the Wannier functions into equation 2.19 and only considering one

dimension gives

HMB = −
∑

j,k

Jjka
†
jak +

1
2

∑

j,k,l,m

Ujklma
†
ja
†
kalam (2.25)

where

Jjk = −
∫
dxw(0)(x− xj)

(
p2

2m
+ V (x)

)
w(0)(x− xk), (2.26)
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and

Ujklm = g

∫
dxw(0)(x− xj)w(0)(x− xk)w(0)(x− xl)w(0)(x− xm). (2.27)

The Jjk term describes the tunnelling between lattice sites whilst Ujklm gives the

inter-particle interactions. Tunnelling between sites other than nearest neighbours

and the off-site interactions are small compared to tunnelling between nearest neigh-

bours and onsite interactions meaning the only terms we need to consider are

Ujjjj = U and Jj,j+1 = J . Using these approximations gives the Bose-Hubbard

Hamiltonian

HBH = −J
S−1∑

j=0

(
a†jaj+1 + a†j+1aj

)
+
U

2

S−1∑

j=0

a†ja
†
jajaj . (2.28)

In the literature this Hamiltonian often contains an extra term of the form
∑

j εja
†
jaj .

This term arises due to the presence of an additional trapping potential, VT (x),

which varies slowly compared to V (x). It is created using an additional two lasers

propagating at small angles θε and π − θε with respect to the x-axis and results in

an energy offset εj of lattice site xj . The Bose-Hubbard Hamiltonian is therefore,

more completely,

HBH = −J
S−1∑

j=0

(
a†jaj+1 + a†j+1aj

)
+
U

2

S−1∑

j=0

a†ja
†
jajaj +

S−1∑

j=0

εja
†
jaj (2.29)

however throughout the thesis we take all εj = 0 unless otherwise stated. We now

describe each of the terms in the Hamiltonian in more detail, discussing how they

each effect the system dynamics.

Tunnelling strength, J

The parameter J describes the amount of tunnelling between adjacent lattice sites.

When J � U the wavefunction is delocalised over the whole system and the BEC

forms a superfluid |ψsf〉 ∝ (
∑

j a
†
j)
N |vac〉.
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2.5. Rotating the system

Onsite interaction, U

The onsite interaction strength is given by the U term in HBH and is divided by two

to account for double counting of the two particle interactions. Note
∑

j a
†
ja
†
jajaj =

∑
j nj(nj − 1) which shows that, as usual, the two particle interaction energy in-

creases with the square of the particle density and the -1 term ensures that a single

particle does not gain any interaction energy. When U � J a quantum phase transi-

tion takes place and the system becomes a Mott insulator. In this regime the atoms

become localised to single lattice sites and for commensurate filling of one particle

per lattice site |ψMI〉 ∝
∏
j a
†
j |vac〉.

The ratio U/J is directly related to the depth of the lattice sites, which is in turn

controlled by the laser intensities. As the depth of the lattice potentials are adiabat-

ically increased the atomic wavefunction becomes increasingly localised. This leads

to a decrease in the tunnelling strength and an increase in the onsite interaction.

Energy off-set, ε

For most of the work in this thesis all εj = 0 which is simply achieved by not

introducing the additional potential VT (x). However, in Chapter 6 an energy off-set

will be applied to one lattice site. This is achieved using an additional pair of lasers

as briefly described earlier.

2.5 Rotating the system

A considerable portion of this thesis will be devoted to schemes designed to measure

rotation rates. These schemes follow the traditional Sagnac geometry where a single

beam of particles is split into two beams which are then made to flow in opposite

directions around a ring [14] 3. These two beams are later recombined and an

interference pattern is observed. If the ring is allowed to rotate at some angular

velocity ω the resulting interference pattern is shifted and the size of this shift is

3Sagnac gyroscopes are discussed in more detail in Chapter 4.
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directly proportional to the angular velocity of the ring. Therefore, by measuring

the shift of the interference pattern ω can be determined.

2.5.1 Flow states

In order to implement such a rotation measurement using a BEC we first require

our BEC to be in a ring potential. We use an optical ring lattice which is simply

a set of S lattice sites that form a ring geometry. These lattice rings have already

been experimentally demonstrated [36, 37] for different numbers of sites. Loading a

BEC into such a ring results in a system that is described by the one dimensional

BHM. This can be seen from figure 2.1 which shows a ring of three lattice sites.

The system can be effectively described by the single variable x = Rϕ where site

0 is at x = 0, 0 ≤ ϕ < 2π and R is the radius of the ring which is fixed. Using

x as the system variable it is easy to show that the 1D Bose-Hubbard Hamiltonian

previously derived can be used to describe a BEC in a ring of lattice sites. 4

Figure 2.1: An optical ring lattice of three sites. The tunnelling between adjacent
sites is shown by the red arrows. The strength of this tunnelling is J . Every point
around the ring is uniquely defined by x = Rϕ where R is the radius of ring and
0 ≤ ϕ < 2π.

The second requirement to implement a Sagnac measurement is the ability to

split our BEC so we have atoms flowing in opposite directions around the ring. We

propose a scheme to do this in Chapter 6 however, we must first introduce the flow
4For a ring of S sites aj = aj+S due to the ring geometry.
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2.5. Rotating the system

basis. This will allow us to represent the state of the system in terms of the angular

momentum of the atoms rather than their position. First we must highlight some

important points about this set-up.

The wavefunction of a BEC is given by ψ(x) = ψ0e
iΦ(x), where ψ0 is the den-

sity of the condensate which is taken to be the same for all x and Φ(x) is the

phase of the condensate. Due to the requirement that the wavefunction at every

point in space must be uniquely defined the phase around the ring must always be

an integer multiple of 2π. This condition is known as the phase matching condi-

tion and assuming that the phase varies linearly around the ring we can therefore

write ψ(x) = ψ0e
i2πnx/L where L = 2πR is the circumference of the ring and n is

an integer. Applying the velocity operator, −i(~/m)∇, to this wavefunction gives

v = ~2πn/(mL). From this we see that the phase matching condition leads to the

quantisation of velocity, and hence angular momentum and flow, of the atoms in the

ring.

The ability to describe a system consisting of a BEC in a ring lattice potential

in terms of its angular momentum, or flow, rather than in terms of the number of

atoms on a particular site will prove extremely valuable later in the thesis. The

transformation from the site basis to the flow basis is easily achieved using the

discrete Fourier transform

αk =
1√
S

S−1∑

j=0

aj exp
(
i
2πjk
S

)
(2.30)

where αk (α†k) annihilates (creates) a particle with angular momentum k~, or equiv-

alently, a particle with k quanta of flow. These operators obey the commutation

relations

[αk, αl] = [α†k, α
†
l ] = 0 (2.31)

and

[αk, α
†
l ] = δk,l. (2.32)

The number of different flow states allowed around a ring is equal to the number
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of sites that ring contains. For example, for a ring with three sites there are three

allowed flow states,

α0 = (a0 + a1 + a2)/
√

3 (2.33)

α1 = (a0 + ei2π/3a1 + ei4π/3a2)/
√

3

α2 = (a0 + e−i2π/3a1 + e−i4π/3a2)/
√

3.

The restriction to three flow states can be clearly seen by inputting other values of

k into equation 2.30 as any other value will result in a flow state equivalent to one

of the three given above. For example when k = −1 we find α−1 = (a0 +e−i2π/3a1 +

e−i4π/3a2)/
√

3 = α2.

The angular momentum, Lm, of each of these flow states is found by considering

the wavefunction of the BEC, ψ(x) = ψ0e
i2πnx/L. The integer n corresponds to the

particular flow state the system is in, that is k = n. So, for example, for a system

with k = 1 the total phase around the ring is 2π whilst for a system with k = 0 the

total phase is 0 and for k = −1 the total phase is −2π. The angular momentum of

a system with k quanta of flow is,

Lm = 〈ψ(x) |Rp|ψ(x)〉 = −i~
∫ L

0
ψ∗(x)∇ψ(x)dx (2.34)

= ~k

where p is the momentum operator.

The Hamiltonian, HBH (see equation 2.28), can be rewritten in the flow basis

with its exact form depending on how many sites the ring contains. For a ring with

three sites HBH becomes

HBH = −J(2α†0α0 − α†1α1 − α†2α2) +
U

6
((α†0)2(α0)2 + (α†1)2(α1)2 + (α†2)2(α2)2

+ 4(α†0α0α
†
1α1 + α†0α0α

†
2α2 + α†1α1α

†
2α2) + 2((α0)2α†1α

†
2

+ (α1)2α†0α
†
2 + (α2)2α†0α

†
1 + h.c.)) (2.35)
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in the flow basis. Immediately we see that in this basis the J terms are diagonal

and that the interactions couple states with different flows.

2.5.2 Rotations

To measure a rotation rate we let the ring of lattice sites move under the influence

of that rotation, ω, thereby changing the angular velocity of the ring from zero to

ω. In the laboratory frame the flow states described above remain unchanged and

the phase matching condition is always satisfied. In the frame of the rotating ring,

however, the αk are altered. The α0 flow state for example, no longer appears to be

stationary. In this rotating frame αk is

αkRot =
1√
S

S−1∑

j=0

ei2πjk/S−iθj/Saj (2.36)

meaning

ajRot =
1√
S

S−1∑

k=0

e−i2πjk/S+iθj/Sαk (2.37)

where θ is a phase established around the ring due to the rotation ω. To understand

the origin of θ consider the wavefunction of a condensate at point XL in the lab-

oratory, ψ(XL(0)) = ψ0e
iΦ(XL). Initially point XL corresponds to point XR(0) on

the ring and ψ(XL(0)) = ψ(XR(0)). If the condensate flows around the ring after

some time, t, it will return to its original position in the laboratory i.e. point XL.

Due to the phase matching condition we know ψ(XL(t)) = ψ(XL(0)). However, if

the ring is left rotate during this time, by the time the condensate returns to its

original position in the laboratory this will no longer coincide with its original po-

sition on the ring. This means ψ(XR(t)) = ψ0e
iΦ(XL)+iθ(XL−XR(t))/L (assuming the

ring moves at a constant angular velocity). Note that θ does not have to satisfy the

phase matching condition as it refers to the phase of the ring, not the condensate.

Recognising that, for a general XL, the effect of ω is to alter the wavefunction of

the BEC by an amount ψ0e
iθx/L a relationship between θ and ω can be determined
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as follows,

ω =
〈
ψ(x)

∣∣∣ p
mR

∣∣∣ψ(x)
〉

= −i ~
mR

∫
ψ∗(x)∇ψ(x)dx

=
~θ
mLR

=
hθ

mL2
. (2.38)

From equation 2.37 we can see that in the rotating frame of reference the Bose-

Hubbard Hamiltonian becomes [39]

HBHθ = −J
S−1∑

j=0

(
a†jaj+1e

iθ/S + a†j+1aje
−iθ/S

)
+
U

2

S−1∑

j=0

a†ja
†
jajaj . (2.39)

Note the rotation has no effect on the interaction term since interactions only depend

on the number of atoms on a particular site.

Figure 2.2: Applying a rotation ω to the lattice ring induces a phase θ around the
ring. If the phase is linearly varying the phase difference between the three sites
above is θ/3.

As in the previous subsection it is possible, and often convenient, to convertHBHθ

into the flow basis. Again, the exact form of the resulting Hamiltonian depends on

the number of lattice sites in the ring. Here we give the Hamiltonian for a ring of
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three sites,

HBHθ = −2J
(
α†0α0 cos

(
θ

3

)
+ α†1α1 cos

(
θ − 2π

3

)
+ α†2α2 cos

(
θ + 2π

3

))

+
U

6
((α†0)2(α0)2 + (α†1)2(α1)2 + (α†2)2(α2)2 + 4(α†0α0α

†
1α1

+ α†0α0α
†
2α2 + α†1α1α

†
2α2) + 2((α0)2α†1α

†
2 + (α1)2α†0α

†
2

+ (α2)2α†0α
†
1 + h.c.)). (2.40)

This three site example will prove valuable in Chapter 6 where an atomic gyroscope

scheme is described. It precisely measures small changes in rotations using an optical

ring of three lattice sites into which a BEC has been loaded and is thus fully described

by the above Hamiltonian and flow basis. First, however, we introduce the field of

quantum metrology during which we describe ways to determine the precision of

such a scheme, discuss the precision capabilities of different quantum states and

begin to examine the effects of decoherence on our ability to make ultra-precise

measurements.
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Chapter 3

Interferometry and quantum

metrology

Interferometry is the process by which one estimates an initially unknown param-

eter of a system or detects small changes in a known parameter. The concept is

simple: a probe is allowed to interact with the system and is then measured. In

a classical interferometer the parameter can be determined, providing the physical

mechanism governing the system dynamics is known, by comparing the input and

output state of the probe. Importantly these devices allow for extremely precise pa-

rameter estimation, especially when states with quantum correlations are employed

as the probe. The ability to perform precise measurements is of fundamental im-

portance to all quantitative fields of science as it allows theories to be tested and

refined. As such much research has been, and is currently being, done into ways

to improve measurement precision. It is the idea of using quantum correlations to

improve measurement precision that will form the basis of this chapter. We begin

with a review of Mach-Zehnder interferometry, then discuss a method to quantify

the precision of measurement schemes, assess the precision capabilities of several

different probes, introduce a decoherence model and describe some of the uses of

precision measurement schemes in quantum technologies.
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3.1 Interferometry

Measurement is a physical process and as such it is governed by the laws of physics.

Since the behaviour of small scale systems is determined by the laws of quantum

physics this implies that the measurement of these systems, and the precision of

these measurements, will ultimately be determined by quantum mechanics. We

know, through the Heisenberg uncertainty relation, that in quantum physics it is

not possible to simultaneously measure two non-commuting observables such as po-

sition and momentum with arbitrary precision. This therefore presents a bound to

quantum measurement precision. A second limit to the precision of quantum mea-

surements arises from the measurement scheme itself and the resources employed in

that scheme. For example, to measure the position of a particle one could scatter

light from it and in this case the precision would be limited by diffraction effects (the

measurement scheme) and the wavelength of the light used (the resources employed).

To achieve infinite precision would require photons with infinite energy. The unfea-

sibility of this request highlights this second limit to measurement precision. One

measurement scheme that is extremely effective at making precise measurements

given a fixed number of resources is the Mach-Zehnder interferometer (MZI).

A typical MZI is shown in figure 3.1. It consists of two beam splitters, which

are usually taken to be 50:50 beam splitters, two mirrors and a relative phase shift

which is the parameter we wish to measure. The phase shift could correspond to a

diverse range of physical quantities from a difference in path length to a variation

in field strength.

To begin the interferometry scheme a state is put into the first beam splitter

(BS1). For now we consider the input |ψ0〉 = |1, 0〉0,1 where the terms in the kets

correspond to the number of particles in modes 0 and 1 respectively (other inputs

will be considered later in the chapter). An equivalent way to write |ψ0〉 is in

terms of mode creation and annihilation operators, |ψ0〉 = a†0|0, 0〉0,1 where a†m (am)

corresponds to the creation (annihilation) of a particle in mode m. The action of
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3.1. Interferometry

Figure 3.1: A typical Mach-Zehnder interferometer into which |ψ0〉 is inputted. BS1
and BS2 are both 50:50 beam splitters, the phase shift φ is the quantity to be
measured and D1 and D2 are detectors that fire when a particle hits them. The
two mirrors are simply there to redirect the output modes of BS1 towards BS2.
Their only effect on the state of the system is to introduce an irrelevant global phase
factor. Throughout this thesis |ψin〉 (the initial state) refers to the state of the
system immediately prior to the phase application and |ψ(φ)〉 refers to the state of
the system immediately after the phase application.

the first 50:50 beam splitter is to transform the mode creation operators as




a†0

a†1


 BS1−−−→ 1√

2




i 1

1 i







a†2

a†3


 (3.1)

meaning

a†0|0, 0〉0,1
BS1−−−→ 1√

2
(ia†2 + a†3)|0, 0〉2,3 =

1√
2

(i|1, 0〉2,3 + |0, 1〉2,3). (3.2)

The mirrors then redirect modes 2 and 3 towards a second 50:50 beam splitter

(BS2) which results in the state acquiring a global eiπ/2 phase factor which can be

ignored. However, before the modes are recombined at BS2 the phase shift that is to

be measured is applied through the unitary transformation U(φ) = eiφa
†
2a2 resulting

in
1√
2

(i|1, 0〉2,3 + |0, 1〉2,3)
φ−→ 1√

2
(ieiφ|1, 0〉2,3 + |0, 1〉2,3). (3.3)
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The second beam splitter then transforms the creation operators as




a†2

a†3


 BS2−−−→ 1√

2




i 1

1 i







a†4

a†5


 (3.4)

which results in the output

1√
2

(ieiφ|1, 0〉2,3 + |0, 1〉2,3) BS2−−−→ 1
2

[(1− eiφ)|1, 0〉4,5 + i(1 + eiφ)|0, 1〉4,5]. (3.5)

Detectors D1 and D2 are placed in modes 4 and 5 respectively and, from (3.5),

fire with probability,

PD1 = sin2(φ/2)

PD2 = cos2(φ/2) (3.6)

where PD1 is the probability D1 fires, that is state |1, 0〉4,5 is detected at the output

of BS2, and PD2 is the probability D2 fires which corresponds to a detection of the

state |0, 1〉4,5. Altering φ results in oscillations of these probabilities.

In order to determine a value for φ, this experiment would need to be repeated

many times each time recording which detector fired. Using the observed frequency

of D1 firing it is possible to estimate a value for PD1 . Then, using the known

theoretical probability of this event (see equation 3.6) one can determine an estimate

for φ. However, due to the unavoidable statistical fluctuations associated with a

finite sample the value of φ cannot be determined exactly.

These statistical fluctuations can be understood in the context of a simple ex-

periment in which a fair coin is tossed nR times and the outcome (head or tails)

is recorded. Defining ∆c = |nH − nT | where nH(T ) are the number of heads (tails)

recorded we intuitively expect the fractional difference in the number of heads and

tails recorded, ∆c/nR, to decrease with increasing nR. Repeating the nR tosses ν

times we would therefore expect ∆c/nR to vary considerably between runs when nR

is small and less so as nR increases. The precision of an experiment defines its ability
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to reproduce the same result on each run when the conditions remain unchanged

and so we see that a large sample is needed to improve precision. If on a single toss

of the coin we could somehow measure the outcome as 50% heads and 50% tails we

would immediately know PH and PT and we could thus say, with no uncertainty,

the coin is fair. It is therefore the quantised nature of the outcome that introduces

noise into the system.

This simple coin experiment directly relates to a MZI which uses N copies of

|ψ0〉 = |1, 0〉0,1 to measure φ since we determine φ by measuring the discrete quantity

of a detector firing or not firing. Due to the quantised nature of the outcome we

would not expect the observed frequency of D1 firing to reflect the value of PD1

exactly. However, the larger N , the smaller the error in the estimated value of PD1 .

This can be shown rigorously using statistical averages. First we define the outcome

of the experiment to be r = 1 if D1 fires and r = 0 if D2 fires. The statistical

average outcome of the experiment gives an estimate for PD1 of
∑N

j=1 rj/N . The

error associated with this value of PD1 is [40]

∆PD1 = ∆




N∑

j=1

rj
N


 =

√∑N
j=1(∆rj)2

N
=

∆r√
N
. (3.7)

Importantly ∆r does not depend on N (providing the particles do not interact)

because the events are independent meaning the uncertainty in the measured value of

PD1 scales as 1/
√
N and so we see the more particles we use the better the precision.

We note that inputtingN copies of |ψ0〉 = |1, 0〉0,1 is equivalent to inputting |N, 0〉0,1.

We will now show how the uncertainty in the value of φ can be quantified using

a mathematical resource called quantum Fisher information, FQ.

3.2 Fisher information

Recalling that the precision of an experiment describes its ability to reproduce results

when experimental conditions are unchanged we now introduce a way to calculate

a numerical value for the ultimate precision of any experiment. However we will
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first develop an intuitive feel for possible ways to quantify precision. Consider two

experiments, each with N measurement results. If in one of these experiments each

of the N results are similar whilst in the other experiment there are large differences

in the N results we would intuitively say the first experiment gave the best results,

that is the more precise results. One way to quantify this precision is to use the

standard deviation of the N results which describes their variation from the mean

result.

In the interferometer scheme described in section 3.1 we determined φ by count-

ing the number of times D1 fired. However, because of statistical fluctuations, the

observed frequency of D1 firing is only an approximation to the true value of PD1 and

we demonstrated that the experimenter’s uncertainty of PD1 is ∆PD1 = ∆r/
√
N .

Since φ is determined using the observed frequency of D1 firing the uncertainty as-

sociated with the experimental value of PD1 leads to an uncertainty in the value of

φ. Error propagation theory tells us this uncertainty is

∆φ =
∆PD1

|∂PD1/∂φ|
∝

1√
N

(3.8)

and so we see that, as we would expect, the precision of our phase measurement is

also improved as the number of resources employed in the measurement is increased.1

However it may not always be feasible to increase the number of resources used

in the measurement procedure. Nevertheless the precision can usually be improved

through optimisation of the initial state or the phase read-out method. These op-

timised initial states and phase read-out procedures may not, however, always be

created/performed by a 50:50 beam splitter. As such a more general representation

of a phase measurement scheme is given in figure 3.2.

The focus of this thesis will be ways to improve precision for a given number of

resources solely through optimisation of the initial state. Consequently we would

1The actual value of ∆φ here has a phase dependency, as it does in many measurement schemes,
that is there are phases for which the measurement is more sensitive than others. This does not tend
to be a problem, however, since it is always possible to perform some initial crude measurement
from which a rough value for φ can be determined. The phase can then be modified to coincide
with the region of peak sensitivity.
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3.2. Fisher information

Figure 3.2: A general phase measurement scheme. The initial state |ψin〉 is created
and then acquires a phase resulting in the state |ψ(φ)〉. It is at this point that we
calculate the FQ. The phase is determined via some read-out procedure. In theory it
is always possible to measure φ with the precision given by FQ. In practice, however,
it may not always be experimentally feasible.

like a way to determine the precision capabilities of a given state that is independent

of the phase read-out procedure. Such a measure is given by the FQ.2 We introduce

it by following the derivation given in reference [41]. This requires that we first

give an intuitive derivation of the classical Fisher information bound followed by its

extension to the quantum case.

3.2.1 Classical Fisher information

Generalised measurements are described by a set of non-negative Hermitian opera-

tors X(x) where x is a particular measurement result and

∫
X(x) dx = 1. (3.9)

To determine φ in the interferometer set-up a measurement is performed on ρ(φ) =

|ψ(φ)〉〈ψ(φ)| and the measurement result x is recorded with probability density

p(x|φ) = Tr[X(x)ρ(φ)]. (3.10)

2FQ gives the precision of a system when the read-out method has been optimised and it has
been shown that theoretically the upper bound is always achievable [41]. In reality, of course, the
optimum measurement protocol may not be physically practical and as such it is important to
realise that FQ is purely an upper bound used to compare the potential precision of different initial
states. Read-out procedures will not be discussed in any great detail as it is beyond the scope of
the thesis.
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From this we estimate a value for φ using an estimator function φest = φest(x1, . . . , xN )

which for a particular measurement result x gives an estimated value for φ of φest(x).

We want the uncertainty in this estimated value of the phase to be as small as pos-

sible, i.e. we want to minimise the spread of the results,

(∆φ)2 =
∫
p(x|φ)(φest(x)− φ)2 dx. (3.11)

Optimising the estimators for a given quantum measurement results in a classical

bound on precision whilst further optimisation over all possible quantum measure-

ments yields a quantum bound on precision which is ultimately what we want to

achieve but first we look at the classical bound.

We assume the estimator is unbiased so that

∫
(φest(x)− φ)p(x|φ) dx = 0. (3.12)

Differentiating this identity with respect to φ gives

∫
(φest(x)− φ)p(x|φ)

(
∂lnp(x|φ)

∂φ

)
dx = 1. (3.13)

If we then apply the Cauchy Schwarz inequality it can be shown that

∫
(φest(x)− φ)2p(x|φ) dx

∫
p(x|φ)

(
∂lnp(x|φ)

∂φ

)2

dx ≥ 1 (3.14)

or equivalently,

(∆φ)2 ≥ 1
F

(3.15)

where F is the classical Fisher information which is given by

F =
∫
p(x|φ)

(
∂lnp(x|φ)

∂φ

)2

dx =
∫

1
p(x|φ)

(
∂p(x|φ)
∂φ

)2

dx. (3.16)

Repeating the experiment ν times (i.e. making ν estimates of φ) improves this
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precision to

(∆φ)2 ≥ 1
νF

. (3.17)

We now maximise F over all quantum measurements in order to determine FQ.

3.2.2 Quantum Fisher information

The FQ is, by definition, independent of the measurement procedure and as such we

must remove all X(x) terms from F in order to get an equation for FQ. We do this

here and show that it leads to an upper bound on the classical Fisher information.

First we introduce the symmetric logarithmic derivative, A, which is defined by

∂ρ(φ)
∂φ

=
1
2

(Aρ(φ) + ρ(φ)A). (3.18)

In the eigenbasis of ρ(φ) it is given by,

Aj,k =
2

λj + λk

[
∂ρ(φ)
∂φ

]

j,k

(3.19)

where λj,k are the eigenvalues of ρ(φ). Whenever λj + λk = 0, Aj,k is set to 0. The

only property of A we need to know is that for Hermitian operators ρ′(φ) and B,

Tr[Bρ′(φ)] = Re(Tr[ρ(φ)BA]) (3.20)

where ρ′(φ) = ∂ρ(φ)/∂φ. As shown in equation 3.10 the probability distribution can

be written in quantum form as p(x|φ) = Tr[Xρ(φ)] (where we have shortened X(x)

to X) which upon direct substitution into equation 3.16 gives

Fq =
∫

(Tr[Xρ′(φ)])2

Tr[Xρ(φ)]
dx. (3.21)

Using property 3.20 Fq can be rewritten as

Fq =
∫

(Re(Tr[ρ(φ)XA]))2

Tr[Xρ(φ)]
dx ≤

∫
|Tr[ρ(φ)XA]|2

Tr[Xρ(φ)]
dx = F̃q. (3.22)
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Exploiting the cyclic nature of trace the integral on the far right can be rewritten as

F̃q =
∫ ∣∣∣∣∣Tr

[ √
ρ(φ)
√
X√

Tr[Xρ(φ)]

√
XA

√
ρ(φ)

]∣∣∣∣∣

2

dx. (3.23)

Finally, applying the Schwarz inequality |Tr[G†H]|2 ≤ Tr[G†G]Tr[H†H] gives

F̃q ≤
∫

Tr[XAρ(φ)A] dx = Tr[ρ(φ)A2]. (3.24)

The term on the far right is the quantum Fisher information

FQ = Tr[ρ(φ)A2] (3.25)

which will be used throughout this thesis. We can see that it is independent of the

measurement procedure as it has no dependence on the measurement outcomes x.

It is related to the uncertainty of φ by

(∆φ)2 ≥ 1
νF
≥ 1
νFQ

(3.26)

and determines the best possible precision with which a system can determine a

parameter. It is true for both pure and mixed states, however, it can be simplified

for pure states, |ψ(φ)〉, to

FQ = 4
[
〈ψ′(φ)|ψ′(φ)〉 − |〈ψ′(φ)|ψ(φ)〉|2

]
(3.27)

where |ψ′(φ)〉 = ∂|ψ(φ)〉/∂φ and we have made use of the fact that for pure states

ρ2 = ρ, 〈ψ(φ)|ψ(φ)〉 = 1 and ∂〈ψ(φ)|ψ(φ)〉/∂φ = 0.

Another important property of FQ that will be utilised later is that for two

density matrices ρ1(φ) and ρ2(φ) that are supported on orthogonal subspaces and

do not cease to be orthogonal for small changes in φ,

FQ[pρ1(φ)⊕ (1− p)ρ2(φ)] = pFQ[ρ1(φ)] + (1− p)FQ[ρ2(φ)] (3.28)
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where FQ[·] denotes the FQ of the state in brackets and p is the probability of being

in the state ρ1(φ). We also know that FQ is convex, that is,

FQ[pρ1(φ) + (1− p)ρ2(φ)] ≤ pFQ[ρ1(φ)] + (1− p)FQ[ρ2(φ)]. (3.29)

This section has given a feel for the origin of the FQ that will be used throughout

this thesis to compare the precision of different initial states. We can see from

equation 3.25 that it is independent of the measurement procedure thereby allowing

us to focus solely on determining the best initial states to employ in measurement

schemes.

3.3 Improving precision using entangled initial states

3.3.1 Unentangled initial states

In section 3.1 we discussed how a MZI could be used to measure a phase shift, φ.

It was shown that inputting N copies of |ψ0〉 = |1, 0〉0,1, or equivalently inputting

|N, 0〉0,1, into the interferometer allowed PD1 to be determined with an uncertainty

that scaled as 1/
√
N . Using FQ we can now show that this initial state allows φ

to be determined with a precision that also scales as 1/
√
N . This scaling is called

the standard quantum limit (SQL) and is the best possible precision achievable

when a classical initial state 3 is used to determine φ. At this point we note that

the precision calculations in this section, and throughout the thesis, represent the

precisions attainable on one experimental run. Any repetitions improve the precision

by a factor of 1/
√
ν (where ν is the number of repetitions) regardless of the initial

state and as such we gain nothing, when comparing the precision capabilities of

different initial states, by including this factor.

To calculate FQ we must first determine how |N, 0〉0,1 is transformed by BS1.

3A classical, or unentangled, state is a state which has no quantum correlations between the
particles.
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Writing |N, 0〉0,1 in operator form it is easy to show

(a†0)N√
N !
|0, 0〉0,1

BS1−−−→ 1√
2NN !

(ia†2 + a†3)N |0, 0〉2,3 =
1√
2N

N∑

n=0

(
N

n

)1/2

in|n,N − n〉2,3.

(3.30)

This is the state of the system immediately prior to the phase application, |ψin〉.

Applying the unitary phase operation then gives

|ψ(φ)〉 =
1√
2N

N∑

n=0

(
N

n

)1/2

einφin|n,N − n〉2,3 (3.31)

from which we can determine FQ = N using equation 3.27. From equation 3.26

the uncertainty in the measured value of φ, after one run of the experiment, is

∆φ = 1/
√
N . This is the best possible precision achievable using classical initial

states. It is the same precision scaling that is found when the initial state is created

by inputting a coherent state, with average particle number n̄, and a vacuum state

into the two ports of a 50:50 beam splitter. This is because a coherent state is a

classical state in that there are no quantum correlations between the particles.

From this scaling it is clear that the more particles employed in the scheme, the

better the precision of the phase measurement. However, the gain in precision comes

at the cost of requiring an increase in the number of resources employed. Ideally, we

would increase precision without having to increase the number of resources used,

i.e. we would improve the scaling of the precision with N . It turns out this can be

done by introducing quantum correlations between the particles.

3.3.2 Squeezed states

One of the first proposals to improve the precision scaling of phase measurements

with N came from Caves in 1981 [42]. He proposed ‘squeezing’ the input to a MZI

in order to reduce fluctuations in the phase measurement. We now briefly describe

the idea behind this proposal.

We have shown that classical initial states achieve the SQL and that one such

example of a classical initial state is achieved by inputting |ψ0〉 = |α, 0〉0,1 into a 50:50
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beam splitter. Here |α〉 is a coherent state with mean particle number n̄ = |α|2 and

|0〉 is a vacuum state, or equivalently, a coherent state with zero amplitude. These

states can be described in terms of quadrature operators X1 = (a + a†) and X2 =

−i(a−a†) which satisfy the commutation relation [X1, X2] = 2i and the uncertainty

relation ∆X1∆X2 ≥ 1. They are minimum uncertainty states since ∆X1∆X2 = 1

and they also have equal fluctuations in each quadrature, ∆X1 = ∆X2 = 1. They

can be represented by error circles in phase space, as shown in figure 3.3.

However, there are other minimum uncertainty states for which ∆X1 6= ∆X2,

that is, the uncertainty in one quadrature can be decreased at the expense of in-

creased uncertainty in the second quadrature. These states are called squeezed

coherent states. It should be noted, however, that general squeezed states do not

have to, and usually do not, equalise the uncertainty relation. All that is needed

for a state to be squeezed is ∆X1 6= ∆X2 and ∆X1∆X2 ≥ 1. A squeezed coherent

state is most often represented as |αξ〉 where α is the amplitude and ξ = reiθ is

the squeezing parameter. Here 0 ≤ r < ∞ is the magnitude of the squeezing and

0 ≤ θ ≤ 2π is its direction. These states are far from a theoretical quirk. They were

first produced in a laboratory in 1985 [43] and since then have been demonstrated

in a diverse range of optical and atomic systems.

Figure 3.3: Left: Phase space representation of a vacuum, |0〉, and a coherent state,
|α〉. The centre of each circle is the amplitude of the state and the shaded area is the
region of uncertainty. For simplicity the phase of the states has been set to θ = 0.
Left: The same but for a squeezed vacuum, |0ξ〉, and a squeezed coherent state, |αξ〉.
We see the state is squeezed so that the fluctuations in the X1 quadrature are less
than those of |α〉. This comes at the expense of increasing the uncertainty in the
X2 quadrature.
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Figure 3.3 shows a squeezed vacuum state and a squeezed coherent state with

amplitude α. In both cases the fluctuations in the X1 quadrature are reduced by

increasing the fluctuations in theX2 quadrature. This makes them ideal for precision

measurement schemes as by reducing the noise in one quadrature to much less than

that of a coherent state we should be able to beat the SQL. It was shown that one

way to beat the SQL using squeezed states is to input a coherent state into one input

port of a standard MZI (see figure 3.1) and a squeezed vacuum into the second port

[42]. As usual φ is determined by counting the number of particles detected at each

output. This system allows the phase to be determined with precision

∆φ =

√
n̄ exp(−2r) + sinh2(r)

(n̄− sinh2(r))2
. (3.32)

Immediately it is clear that this MZI system allows for precision scalings better than

the SQL. For example, when sinh2(r)� |α|2 the precision scales as ∆φ ≈ e−r/
√
n̄.

Such precisions have been demonstrated experimentally [44, 45] highlighting the true

potential of squeezed states in measurement schemes.

Nevertheless, it should be noted that increasing r indefinitely does not lead to a

continued increase in precision. This is because the read-out of a MZI measures the

difference in the number of particles at the two output ports. Increasing squeezing

increases the number of particles in the vacuum and thereby reduces the difference

in the number of particles at the two output ports. Consequently the precision is

degraded. It can be shown that in the MZI set-up of figure 3.1 where the read-

out method involves measuring the difference in particle number at the two output

ports the best possible precision for n̄ � 1 is ∆φ ≈ n̄−3/4. Clearly this is an

improvement on the SQL and as such squeezed states are highly valuable to the

metrology community. However precision scalings can be improved further still

by introducing quantum correlations between the particles as was first suggested by

Yurke in 1986 [46]. In fact, by using highly entangled states the precision scaling can

be improved to 1/N . This scaling is called the Heisenberg limit and is the ultimate

precision allowed by any system. Such highly entangled states are discussed in the
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next subsection.

First, however, we note that the precision scaling of ∆φ ≈ n̄−3/4 has not been

calculated using the FQ. Instead it depends on the phase read-out procedure which,

in this case, involved counting the number of particles detected at each output port

of a MZI. In 2008 [47] it was shown that the precision of squeezed states could be

improved to the Heisenberg precision scaling of 1/n̄ when the phase read-out method

employed is optimised. It was found that this scaling could also be attributed to

entanglement created between the two modes of the MZI by BS1.

For the most part of this thesis we will be investigating ways to improve mea-

surement precision using atomic Fock states which, unlike coherent states, cannot

be squeezed in the conventional sense as there are no number fluctuations. However,

in 1986 Yurke showed that by inputting an equal number of particles into each input

port of a MZI in a highly entangled fashion, it was possible to achieve Heisenberg

limited precision [46]. Since then other entangled states have been proposed to im-

prove measurement precision. One such state that provides a theoretically simple

way to reach the Heisenberg limit is the maximally entangled NOON state.

3.3.3 NOON states

The best possible phase precision attainable with N particles is given by the Heisen-

berg limit ∆φ ∼ 1/N , so called due to its likeness to a Heisenberg uncertainty

relation, i.e. ∆φ∆N & 1. 4 Perhaps the simplest example of a measurement scheme

that uses entangled particles to achieve Heisenberg limited precision is given by a

MZI set-up in which the Hong-Ou-Mandel effect is employed [48].

So far we have shown that inputting |ψ0〉 = |2, 0〉0,1 into a MZI allows us to

measure φ with a precision ∆φ = 1/
√

2. We will now show that inputting the same

number of resources in a different fashion improves this precision to 1/2. All we

4As a general rule increasing particle number uncertainty leads to a decrease in phase uncertainty,
∆φ∆N & 1 as discussed earlier. Since the maximum uncertainty in the particle number for a
system with N particles is ∆N = N this implies the minimum phase uncertainty is ∆φ ∼ 1/N .
This, however, is not a true Heisenberg uncertainty relation as there is no (undisputed) Hermitian
phase operator.
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need to do is input our two particles into the two different input modes of the MZI.

This means the input state is given by |ψ0〉 = |1, 1〉0,1 which, using equation 3.1, is

transformed by BS1 to

|1, 1〉0,1
BS1−−−→ 1√

2
(|2, 0〉2,3 + |0, 2〉2,3) (3.33)

where a global phase has been ignored. Immediately it is apparent that there are

correlations between the two particles as we see that they both travel along mode

2 and both along mode 3, they are always ‘stuck’ together. This means that when

the unitary phase operation is applied the relative phase will be twice the size of the

relative phase when |ψ0〉 = |2, 0〉0,1. That is,

1√
2

(|2, 0〉2,3 + |0, 2〉2,3)
φ−→ 1√

2
(ei2φ|2, 0〉2,3 + |0, 2〉2,3). (3.34)

We determine the precision afforded by this state using FQ as described in section

3.2. Since the state of the system after the application of the phase, |ψ(φ)〉, is a

pure state we can calculate its FQ using equation 3.27. We find FQ = 4 which, using

the Cramer-Rao bound, gives a lower bound on the precision of ∆φ = 1/2. This is

the Heisenberg limited precision scaling of 1/N which is the best precision scaling

allowed by quantum mechanics. And so we have shown that for a MZI with two

particles, the precision of the measurement of φ can be improved by a factor of
√

2

by inputting the particles in a different way.

Inputting |1, 1〉0,1 into the MZI resulted in an initial state |ψin〉 = (|2, 0〉2,3 +

|0, 2〉2,3)/
√

2. This is a two particle balanced NOON state. A NOON state is de-

fined as a state of the form (|N, 0〉+|0, N〉)/
√

2 where the terms in the kets represent

the number of particles in two different modes. Applying the unitary phase operator

to aN particle NOON state results in |ψ(φ)〉 = (eiNφ|N, 0〉+|0, N〉)/
√

2 which, using

equations 3.27 and 3.26, can be shown to have precision ∆φ = 1/N . This is Heisen-

berg limited precision and as such balanced NOON states are ideal measurement

tools as their precision cannot be beaten.

48



3.3. Improving precision using entangled initial states

However, there are two major problems when it comes to using NOON states to

make precision measurements. Firstly, they are very difficult to produce. Although

we have shown a simple way to produce a two particle NOON state using only a 50:50

two-mode beam splitter with input |1, 1〉0,1 this idea does not extend to general N .

Inputting |N/2, N/2〉0,1 into a two-mode 50:50 beam splitter populates more than

just the |N, 0〉2,3 and |0, N〉2,3 states for all N > 2. Many different theoretical

schemes have been proposed to produce larger NOON states with both photons

and atoms [49–53] (to mention just a few) and whilst there has been some success

at implementing these schemes in the laboratory this success is limited as NOON

state production for any more than 10 particles continues to elude experimentalists

[54–59].

Yet by far the greatest problem of using NOON states for precision measurements

is their extreme fragility to decoherence effects such as particle loss. The effects of

particle loss on different initial states will be discussed in detail in the latter chapters

of this thesis, for now, however, we give an intuitive feel as to the origin of this

fragility.

When a state interacts with the environment it gives information to the environ-

ment about what state it is in. Indeed it is well known that in Young’s double slit

experiment as soon as there is information about which path the particle took, the

superposition is destroyed and no interference fringes are observed. This happens

regardless of whether or not the path taken is actually known but depends only

on whether it could be known. The NOON state is therefore extremely fragile to

particle loss because as soon as the environment ‘knows’ which mode a particle is in

it also knows which mode the remaining N − 1 particles are in, thereby completely

destroying the superposition. The loss of only a single particle therefore prevents

the readout of any phase information. This is in vast contrast to classical states

where the loss of a single particle only informs the environment to the whereabouts

of that particle and therefore results in the destruction of just one single particle

superposition. The system still has another N−1 single particle superpositions from

49



Chapter 3. Interferometry and quantum metrology

which φ can be determined with precision 1/
√
N − 1.

The main point, however, is that while in idealised, theoretical schemes NOON

states allow for extremely precise parameter estimation, the difficulties associated

with their production and their lack of robustness to decoherence effects means

they are unlikely to ever offer a realistic way to improve the precision of phase

measurements. Nevertheless there are other quantum states that allow for more

precise phase measurements than classical initial states but that are easier to produce

and that are more robust to particle losses than NOON states. One such state is

described in the next section.

3.3.4 Bat states

Bat states, so named because a plot of their amplitudes in the number basis resemble

the ears of a bat (see figure 3.4), do not allow for quite as precise phase measure-

ments as NOON states in an idealised system in which no particles are lost [60, 61].

However, they are easier to produce in a laboratory and, as will be discussed in more

detail later in the thesis, are much more robust to particle losses.

To produce a bat state an equal number of particles are put into each input port

of a 50:50 beam splitter [60, 62]. This results in the output

|N/2, N/2〉0,1
BS−−→ 1√

2N

N/2∑

n=0

√
(2n)!(N − 2n)!
n!(N/2− n)!

|2n,N − 2n〉2,3 (3.35)

from which we can determine the probability of detecting n particles in output mode

2 as shown in figure 3.4. As discussed in the previous section NOON states afford a

Heisenberg limited precision scaling of 1/N since ∆N = N . From figure 3.4 we see

that for the bat state ∆N ∼ N which suggests these states will allow for a similar

precision scaling to the NOON state [60, 62]. In fact using equations 3.27 and 3.35

the FQ of the bat state can be shown to be N(N/2 + 1) which means that for large

N the precision scaling is ∆φ ≈
√

2/N [63] which is only a factor of
√

2 worse than

the NOON state.

It is thought that bat states should prove considerably simpler to produce in a
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Figure 3.4: The probability distribution of a bat state for N = 50. We see that the
particles are output from the beam splitter in pairs and that ∆N ∼ N .

laboratory than NOON states as all that is required is a state with equal numbers

of particles in two modes, |N/2, N/2〉, incident on a 50:50 beam splitter. Producing

the required dual Fock state is likely to prove the most problematic step towards the

experimental demonstration of these states for large N . However, recent work has

demonstrated a scalable route for producing heralded dual photonic Fock states [64]

using parametric down conversion bringing the promised Heisenberg limited scaling

one step closer. In contrast NOON state generation requires the use of complex linear

networks [65] or large nonlinearities [66] making their experimental implementation

difficult for any more than a few photons. Experimental advances have already

been made towards producing the required dual Fock states for atoms too. Indeed

in reference [67] approximate dual Fock states, with N ∼ 1000, were created by

loading a BEC into an optical lattice of two sites. Consequently it is beginning to

look as though it may soon be experimentally possible to achieve Heisenberg limited

precision.

Another major advantage of using bat states to make phase measurements over

NOON states is that they soon outperform the precision capabilities of NOON states

when particle losses are accounted for. This can been seen intuitively by considering

what happens when one particle is lost from the system. As discussed in the previous
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section the loss of only a single particle from a NOON state completely destroys the

superposition thereby preventing the readout of any phase information. This is

because as soon as one knows the location of a single particle they automatically

know the location of the remaining N − 1 particles. However, as can be seen from

figure 3.4, there is a probability of particles being in other states besides |N, 0〉 and

|0, N〉 for the bat state which means that the loss of a particle to the environment

does not automatically inform us of the location of the remaining particles. This

robustness to loss will be shown rigorously in Chapter 6.

The fact that bat states afford approximately Heisenberg limited precision and

that they are more robust to particle losses than NOON states makes them an ideal

candidate for precision measurement schemes. In Chapter 6 we discuss a possible

way to create an atomic bat state capable of precisely measuring small rotations

and, as suggested here, show that it outperforms the precision capabilities of both

classical initial states and NOON initial states in the presence of modest rates of

particle loss. The loss model we use for these calculations will be introduced at the

end of this chapter. First, however, we briefly mention some other techniques that

have been suggested to improve measurement precision to below the SQL.

3.3.5 Multiple pass strategies

Motivated by the difficulties associated with producing NOON states and the ex-

treme fragility of these states to particle losses, researchers, as well as searching

for easier to produce and less fragile states, began to search for ways to reach the

Heisenberg limit without the need for exotic quantum states. Instead they began to

consider ways in which altering the interferometer itself may improve the precision

scaling to 1/N . One of the simplest techniques that resulted from this research is

the multiple pass technique [68] where a classical beam of particles is allowed to

pass through the phase shift q times thereby acquiring a multiple of the phase to be
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3.3. Improving precision using entangled initial states

measured as shown in figure 3.5. The general N particle classical initial state is

|ψin〉 =
1√
2N

N∑

n=0

(
N

n

)1/2

|n,N − n〉 (3.36)

which upon passing through a phase shift q times becomes

|ψ(φ)〉 =
1√
2N

N∑

n=0

(
N

n

)1/2

eiqnφ|n,N − n〉. (3.37)

Using equations 3.27 and 3.26, we determine the smallest possible uncertainty in

our measurement of φ to be

∆φ =
1

q
√
N
. (3.38)

This implies we can achieve arbitrary precision simply by increasing the number of

times the particles pass through the phase shift, thereby, violating the Heisenberg

limit. However, each application of the phase shift is a resource. This is evident

when we consider a sensitive sample (phase shift), such as a biological one, where

the passage of particles through the sample leads to damage. The goal, therefore, is

to make as few passages as possible through the sample and as such every passage

of a particle through the phase shift must be accounted for.

Therefore, if we wish to fix the total number of resources employed in the scheme

to N the intensity of the particles passing through the phase shift on each cycle

must be reduced to N/q. This results in an uncertainty of ∆φ = 1/
√
qN which is

consistent with the Heisenberg limit since q ≤ N otherwise we would be passing less

than one particle through the sample at a time which is obviously unphysical.

Despite the apparent success of this scheme at demonstrating Heisenberg limited

phase measurements [68, 69] the technique is regarded by some as a change to the

rules of precision measurement protocols and as such the Heisenberg limited nature

of the measurements are still debated [70]. Recent work has since shown that the

multiple pass technique performs significantly worse than optimal quantum states

(these states will be discussed later in the thesis) in the presence of particle losses

[70]. We note also that in principal every measurement scheme could employ a
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Chapter 3. Interferometry and quantum metrology

Figure 3.5: A multiple pass interferometer. The black bold lines represent beam
splitters, the bold red lines represent mirrors and the blue shaded area is the phase
shift. After the first beam splitter each particle is in a superposition of being in both
paths. The upper path then acquires a phase shift, qφ, and the paths are recombined
at a final beam splitter. Here q = 6 whilst in a standard MZI q = 1.

multiple pass strategy. In order to compare performances fairly we therefore need

to consider their precision capabilities after just a single pass. As such the focus of

this thesis is finding ways to improve measurement precision using quantum states.

3.3.6 Nonlinearities

The final technique we mention that has been proposed to improve measurement

precision beyond the SQL uses nonlinear couplings between the parameter to be

measured and the probe. Reference [71], for example, developed a parameter esti-

mation scheme, which through the use of two-body interactions was capable of a

precision scaling of 1/N3/2. Other work has demonstrated the potential to achieve

precision scalings of 1/Ny (where y is an integer and y ≥ 0) [72] and 2−N [73]

through the use of nonlinearities. Bose-Einstein condensates with their particle in-

teractions naturally lend themselves to these schemes. The challenge, however, is

finding ways to couple the parameter we wish to measure with the particle interac-

tions. Consequently, in this thesis, we focus on improving measurement precision in

linear systems.
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3.4. Particle loss model

We also note that whilst these scalings appear to violate the Heisenberg limit it

is now thought that these schemes misinterpret the resources required and so the

Heisenberg limit is indeed fundamental [12].

Now that we have introduced ways to improve measurement precision beyond

what is possible classically we begin to consider the effects of particle losses on these

schemes. We introduce the loss model that will be used throughout this thesis below.

3.4 Particle loss model

Particle loss is the most detrimental form of decoherence in precision measurement

schemes and attempting to reduce its effect will form the basis of a large section of

this thesis. The most common way to model the loss of particles to the environment

is to introduce imaginary beam splitters to the system whose transmissivity, η, is

directly related to the rate of loss as shown in figure 3.6. This loss model has been

used in much work that studies the effects of particle loss on the precision of phase

measurements [1, 2, 74, 75] and is the model that will be used throughout this thesis.

3.4.1 Imaginary beam splitter model

Using this model it is easy to determine the effect of losses on any general pure

two-mode initial state |ψin〉 =
∑N

n=0 βn|n,N − n〉 [1, 2]. To do this we begin by

considering how |n,N −n〉 is transformed by the imaginary beam splitters. Writing

this general initial state in terms of creation and annihilations operators

N∑

n=0

βn|n,N − n〉 =
N∑

n=0

βn√
n!(N − n)!

(a†0)n(a†1)N−n|0, 0〉 (3.39)
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Figure 3.6: The first box represents the state creation process and the second box
represents the phase read-out procedure. The bold diagonal lines in the two modes
are imaginary beam splitters with transmissivities η0,1. When η0(1) = 1 no particles
are lost from mode 0(1). However for all η0,1 < 1 particles are lost, with the amount
of loss increasing with decreasing η0,1. The loss of particles to the environment is
shown by the red lines.

we can see that the imaginary beam splitters transform it to

N∑

n=0

βn|n,N − n〉
IBS−−−→

N∑

n=0

βn√
n!(N − n)!

(
√
η0a
†
0 +

√
1− η0a

†
2)n (3.40)

× (
√
η1a
†
1 +

√
1− η1a

†
3)N−n|0, 0〉0,1 ⊗ |0, 0〉2,3

=
N∑

n=0

βn

n∑

l0=0

N−n∑

l1=0

√
Bn
l0l1
|n− l0, N − n− l1〉0,1 ⊗ |l0, l1〉2,3

where l0 and l1 are the number of particles lost from modes 0 and 1 respectively and

Bn
l0l1 =

(
n

l0

)(
N − n
l1

)
ηn0 (η−1

0 − 1)l0ηN−n1 (η−1
1 − 1)l1 . (3.41)

Applying the phase shift, φ, gives

|ψ(φ)l〉 =
N∑

n=0

βn

n∑

l0=0

N−n∑

l1=0

√
Bn
l0l1
ei(n−l0)φ|n− l0, N − n− l1〉0,1 ⊗ |l0, l1〉2,3. (3.42)
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We could equally well have applied the phase shift before, or at the same time as,

the imaginary beam splitter transformations. In all cases the expression we obtain

for the FQ is the same meaning it is irrelevant whether the particles are lost before,

during, or after the phase shift is applied.

When particles are lost from the system to the environment the system loses all

information about them and as such any calculation of FQ should not involve modes

2 and 3. We therefore trace out these modes and find the state of the system before

the read-out procedure is given by

ρ(φ) =
N∑

l0=0

N−l0∑

l1=0

pl0,l1 |ξl0,l1(φ)〉〈ξl0,l1(φ)| (3.43)

where

|ξl0,l1(φ)〉 =
1

√
pl0,l1

N−l1∑

n=l0

βne
inφ
√
Bn
l0,l1
|n− l0, N − n− l1〉0,1. (3.44)

and pl0,l1 is the probability l0 and l1 particles are lost from modes 0 and 1 respectively.

We can then determine the FQ of the system using the relation of equation 3.28 since

states with a different total number of lost photons, l = l0 + l1, are orthogonal. This

gives the total FQ of the system

FQ =
N∑

l=0

FQ




l∑

l0=0

pl0,l−l0 |ξl0,l−l0(φ)〉〈ξl0,l−l0(φ)|


 (3.45)

where FQ[·] is once again the FQ of the state in brackets. Using this result we will

now rigorously demonstrate the extreme fragility of NOON states to particle loss

and we will compare this fragility to that of an unentangled initial state. This is

intended as an introduction to the loss calculations that will appear in several of the

latter chapters of this thesis.

In general calculating FQ from equation 3.45 requires solving a complicated eigen-

value problem which makes analytical determination of FQ difficult. However, for

the specific case of a NOON state the problem can be simplified as we will now
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demonstrate.

As already mentioned in section 3.3 the loss of only a single particle from a

NOON state completely destroys the superposition since the environment ‘knows’

which mode all the particles are occupying. Consequently the only |ξl0,l−l0(φ)〉 that

will contribute to FQ is |ξ0,0(φ)〉 and we can write

FQ = p0,0FQ [|ξ0,0(φ)〉〈ξ0,0(φ)|] . (3.46)

For a NOON initial state,

βn =





1/
√

2 for n = 0, N

0 for n 6= 0, N

meaning

|ξ0,0(φ)〉 =
1√
2p0,0

(eiNφ
√
ηN0 |N, 0〉0,1 +

√
ηN1 |0, N〉0,1). (3.47)

Using equation 3.27

FQ[ξ0,0] = 4

(
1

2p0,0
N2ηN0 −

∣∣∣∣
1

2p0,0
iNηN0

∣∣∣∣
2
)

(3.48)

and the requirement that 〈ξ0,0|ξ0,0〉 = 1 means p0,0 = (ηN0 + ηN1 )/2. Substituting

into equation 3.46 gives,

FQNOON =
2N2ηN0 η

N
1

ηN0 + ηN1
(3.49)

from which it is possible to determine the precision of a system employing a NOON

initial state for any rate of loss on either path. Realising that an unentangled initial

state is equivalent to N single particle NOON states the FQ of a system employing

an unentangled initial state (i.e. the state resulting from inputting N atoms into

one port of a 50:50 beam splitter) follows naturally as

FQU =
2Nη0η1

η0 + η1
. (3.50)
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3.4. Particle loss model

Figure 3.7 shows the precision of the NOON state and the unentangled state for

two different scenarios, the case of loss in just one mode and the case of equal

amounts of loss in both modes for N = 10. In both cases the NOON state offers

the best precision in the idealised case where there is no loss. However, as the

rate of loss increases the unentangled state soon outperforms the NOON state. It

is also important to note that as N increases the NOON state loses its precision

more rapidly as can be seen from equation 3.49. This means that for large numbers

of particles, as are required in precision measurement schemes, the NOON state

outperforms the unentangled state for a smaller range of values of η.
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Figure 3.7: Left: The precision of a NOON initial state (solid line) and an unen-
tangled initial state (dashed line) for loss in just one mode, i.e. η0 = η and η1 = 1
for N = 10. Right: The same but for the case of equal loss in both modes, that is
η0 = η1 = η. In both cases the NOON state offers the most precise measurements
in the idealised case, however it is soon outperformed by the unentangled state.

Consequently there is an ongoing search to find initial states that find a balance

between the need for precision and the need for robustness to particle loss, i.e. a

state that is both precise and robust. Any state that outperforms an unentangled

initial state for experimentally realistic loss rates is of fundamental interest to the

metrology community.
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3.4.2 Master equation approach

At this point we note that particle loss from a two-mode interferometer can equiva-

lently be described by a master equation of the form,

ρ̇ =
Γ0

2

(
2a0ρa

†
0 − ρa

†
0a0 − a†0a0ρ

)
+

Γ1

2

(
2a1ρa

†
1 − ρa

†
1a1 − a†1a1ρ

)
(3.51)

where ρ is the density matrix of the system, ρ̇ = ∂ρ/∂t and Γ0,1 = |lnη0,1|/t. We

prove this equivalence below noting that we need only consider one mode since the

master equation above treats each mode independently.

The interaction of interferometric mode 0 with the environment via a beam

splitter is given by

I = θ0(a†0b+ b†a0) (3.52)

where b (b†) annihilates (creates) a particle in the environment and cos2(θ0) = η0.

We treat the environment as a mixed state and make the assumption that it and the

interferometric mode are initially uncorrelated, that is, the density matrix describing

the path and the environment at time t = 0 is

ρT (0) = ρ(0)⊗ ρe(0) (3.53)

where ρ(0) is the density matrix of the interferometric mode at t = 0 and ρe(0) is

the density matrix describing the environment at the same time. As in the standard

master equation derivation we also assume that the environment is large and is

therefore little changed by this interaction meaning ρT (t) = ρ(t) ⊗ ρe(0). Evolving

the system under the interaction for a short time dt gives

ρT (t+ dt) = eiθ0dt(a
†
0b+b

†a0)ρT (t)e−iθ0dt(a
†
0b+b

†a0). (3.54)

If we then expand the exponentials, retaining terms up to second order in dt only (in

accordance with typical master equation derivations), and trace out the environment
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3.4. Particle loss model

we get

ρ(t+ dt) = ρ(t) + iθ0dt(a
†
0ρ(t)〈b〉+ a0ρ(t)〈b†〉)− iθ0dt(ρ(t)a†0〈b〉+ ρ(t)a0〈b†〉)(3.55)

+θ2
0(dt)2(a†0ρ(t)a†0〈b

2〉+ a†0ρ(t)a0〈b†b〉+ a0ρ(t)a†0〈bb
†〉+ a0ρ(t)a0〈(b†)2〉)

−θ
2
0

2
(dt)2((a†0)2ρ(t)〈b2〉+ a†0a0ρ(t)〈bb†〉+ a0a

†
0ρ(t)〈b†b〉+ a2

0ρ(t)〈(b†)2〉)

−θ
2
0

2
(dt)2(ρ(t)(a†0)2〈b2〉+ ρ(t)a†0a0〈bb†〉+ ρ(t)a0a

†
0〈b
†b〉+ ρ(t)a2

0〈(b†)2〉).

However, since we are treating the environment as a mixed state we have

〈b〉 = 〈b†〉 = 〈b2〉 = 〈(b†)2〉 = 0 (3.56)

and taking the mean number of particles in the environment to be zero means

〈b†b〉 = 0 and 〈bb†〉 = 1. (3.57)

Substituting these values into equation 3.56 gives

ρ(t+ dt) = ρ(t) +
θ2

0

2
(dt)2(2a0ρ(t)a†0 − a

†
0a0ρ(t)− ρ(t)a†0a0) (3.58)

and consequently

ρ̇(t) =
θ2

0

2
dt(2a0ρ(t)a†0 − a

†
0a0ρ(t)− ρ(t)a†0a0). (3.59)

The fraction of the total number of particles left in interferometric mode 0 after a

time dt is given by cos2(θ0dt) which is equivalent to e−Γ0dt where Γ0 is the rate of

damping. Expanding the cosine and the exponential it can be shown that θ2
0dt = Γ0.

Substituting this into equation 3.59 gives

ρ̇ =
Γ0

2

(
2a0ρa

†
0 − ρa

†
0a0 − a†0a0ρ

)
(3.60)

which is the master equation for a damped harmonic oscillator. Similarly loss on the
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second interferometric path can be equivalently described by a master equation as

above or by the imaginary beam splitter approach in the previous subsection. The

master equation loss formula will prove useful in Chapter 7 where it is necessary

to model loss in many different modes which, as we have seen here, can be treated

independently.

3.5 Uses of precision measurements in quantum tech-

nologies

As well as being a fundamental tool in the confirmation of scientific theories ultra-

precise parameter estimation has found uses in more diverse fields. Here we give

an overview of two uses of quantum-enhanced parameter estimation. There are,

however, many other uses of quantum precision measurement protocols and this is

intended merely to provide motivation for the current interest in quantum metrology.

3.5.1 Frequency standards

Precise time or frequency measurements are essential for telecommunications, broad-

casting and navigation as well as in many scientific experiments. To measure time

precisely we usually begin with N cold ions, most commonly caesium, in the ground

state. A carefully chosen electromagnetic pulse is then used to send each ion into

an equally weighted superposition of being in the ground and first excited state,

(|0〉 + |1〉)/
√

2. The system is now left to evolve freely for a time t, thereby in-

troducing a phase factor between the |0〉 and |1〉 states. The acquired phase is

given by φ = ft where f is the frequency of the ground to excited state transi-

tion. Finally a second, identical, electromagnetic pulse is applied to the system

and the number of ions found in the state |0〉 is recorded. This procedure is al-

most equivalent to a MZI with the ground and excited states corresponding to the

two interferometer modes, the only difference is the phase here has a time depen-

dence. Since we know that for a MZI the precision of φ, when the N particles are

unentangled, scales as 1/
√
N the same will be true here meaning ∆f = 1/(

√
Nt).
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We saw in section 3.3 that employing NOON states as the initial state improved

the precision scaling of the MZI to 1/N . Likewise employing a state of the form

(|0, 0 . . . , 0〉0,1,...,N + |1, 1, . . . , 1〉0,1,...,N )/
√

2 in the set-up here gives ∆f = 1/(Nt)

thus allowing for much more precise time or frequency measurements [76, 77].

3.5.2 Lithography

Closely related to precise phase measurements is the field of quantum lithography

and in fact it employs many of the same techniques. Optical lithography is the

process by which light is used to imprint a pattern on a substrate. It is a valuable

tool in the semiconductor industry as it allows circuit images to be transferred onto

chips on a vast scale. However, diffraction effects limit the minimum resolvable

feature size on the chip to the Rayleigh diffraction limit of λ/2 where λ is the

wavelength of the light used. Consequently, as smaller and smaller features are

required it is necessary to use light with a shorter and shorter wavelength. However,

it is not always practical to decrease λ. Fortunately, it has been shown that by

exploiting quantum effects the minimum resolvable feature size can be decreased to

λ/(2N) where N is the number of photons employed in the procedure [78]. This

1/N improvement in resolution is achieved using a NOON state and arises for the

same reasons as discussed in section 3.3. A proof of principal demonstration of this

super-resolution was demonstrated for N = 2 in reference [79] and later for N = 4

in references [56, 57].

3.5.3 Gyroscopes

A further use of precision measurement schemes is in the navigation industry where

ultra-precise gyroscopes are required for inertial navigation systems. These gyro-

scopes measure rates of rotation and at present, due to the difficulties associated

with producing highly entangled quantum states and the extreme fragility of these

states to particle loss, employ classical initial states as their resource. In this thesis

we propose two experimentally realistic schemes that use quantum states to improve
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gyroscopic precision even in the presence of particle loss. We introduce gyroscopes

in the next chapter. We show how a MZI can be modified to measure rates of ro-

tation and, using the techniques developed in this chapter, determine the precision

afforded by different initial states in this modified set-up.
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An introduction to gyroscopes

Gyroscopes are devices that can measure rotations relative to a fixed frame of ref-

erence. They were first invented over 150 years ago and since then have been devel-

oped extensively. They have proved particularly useful in inertial navigation systems

where the current position of an object is determined relative to some fixed starting

point without the use of any external landmarks. This is achieved by continually

monitoring the object’s acceleration and angular orientation using accelerometers

and gyroscopes. Both of these devices must allow for precise measurements as small

measurement errors soon translate to large position errors. Other potential uses of

gyroscopes include detections of fluctuations in the rotation of the earth and in tests

for general relativity.

A considerable portion of this thesis will be devoted to gyroscope schemes that

are designed to precisely measure rates of rotation, ω. Each of these schemes employs

a BEC of N atoms as its resource and relies on the principles of Mach-Zehnder

interferometry to measure the rate of rotation through the detection of a phase shift

that is directly related to ω. Consequently the precisions of these measurements

can be calculated using the quantum Fisher information and, as will be shown later

in the chapter, very much depend on the initial states used. In this chapter we

first discuss the different types of gyroscopes that exist, describe the Sagnac effect,

provide motivation for the use of a BEC as our resource and compare the precision
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capabilities of current gyroscopes.

4.1 Different types of gyroscopes

There are two main types of gyroscope each of which will be described in this section.

The first one we consider is the mechanical gyroscope and the second is the Sagnac

effect gyroscope. The gyroscope schemes described in the latter chapters of this

thesis all rely on the Sagnac effect and as such more emphasis is given to this type

of gyroscope here.

4.1.1 The mechanical gyroscope

A mechanical gyroscope is essentially a mass that spins rapidly around its axis of

symmetry. Due to the conservation of angular momentum the orientation of the

device remains fixed. By mounting the gyroscope on a platform, in a ship for

example, the angular displacement of the ship can be determined by measuring the

angle between the platform and the gyroscope since the platform orientation will

change yet the gyroscope’s orientation will not.

In this thesis, however, we are primarily concerned with measuring rates of ro-

tation and whilst this is possible with a mechanical gyroscope it is most effectively

achieved using a Sagnac effect gyroscope as will now be explained.

4.1.2 The Sagnac effect gyroscope

Devices that employ the Sagnac effect are interferometric gyroscopes that rely on

the same principles as Mach-Zehnder interferometry. In particular, rotation rates

are determined by comparing the interference pattern of the device when there

is no rotation present with the interference pattern when the rate of rotation is

ω. This is analogous to a MZI where a difference in path length, for example,

translates to a phase shift between the two interferometric paths. The size of the

phase shift is determined by recombining the paths at a beam splitter and comparing
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the interference pattern to the same interference pattern when the path lengths are

equal.

A Sagnac gyroscope is therefore essentially achieved by rearranging the paths of

a MZI into a ring geometry (see figure 4.1). We now explain the theory behind the

Sagnac effect by considering a circular ring of radius R, however, the same results

are found for any enclosed area, regardless of its shape. We also note that whilst the

Sagnac effect was originally conceived for light it is equally applicable to massive

particles.

Figure 4.1: In a gyroscope a beam of particles is input to a 50:50 beam splitter
at point B so the particles are put into a superposition of travelling in opposite
directions around the ring. The paths are recombined at a second 50:50 beam
splitter at point C and the resulting interference pattern is recorded. Left: The
non-rotating case. Both paths are the same length and so particles on each path
reach C at the same time, t1 = t2. Right: The gyroscope rotates at angular velocity
ω meaning the particles on the lower path (particles moving in the same direction
as the rotation) must travel further to reach C than in the non-rotating case whilst
the particles on the upper path do not travel as far because C is moving towards
them so t2 > t1.

To begin, particles are input to the gyroscope at point B (see figure 4.1) where

they are split by a device such as a 50:50 beam splitter so that each particle is

now in a superposition of moving in opposite directions around the ring. Particles

exit the gyroscope at a second beam splitter (point C) placed exactly opposite the

first beam splitter. If the gyroscope is not rotating the time required for a particle
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travelling in either direction around the ring to reach point C will be the same due

to symmetry. However, if the gyroscope is rotating with angular velocity ω about

an axis that passes through the center of the ring and that is perpendicular to its

plane, the time taken for the counter-propagating particles to reach point C will no

longer be equal. Instead particles that are travelling in the opposite direction to the

rotation will arrive at C in a shorter time than they did when the gyroscope was

stationary. This is because point C is moving towards them, thereby shortening the

distance they must travel. The time taken for these particles to reach C is

t1 =
πR

v + ωR
(4.1)

where v is the velocity of the particles. For those particles moving in the same

direction as the rotation the time taken to reach C is longer than in the stationary

case since the distance the particles must travel to arrive at C is lengthened. In this

case the time taken to reach point C is given by

t2 =
πR

v − ωR
. (4.2)

This means particles travelling in opposite directions around the ring exit the gyro-

scope at different times. The time difference is

∆t = t2 − t1 =
2ωA

v2 − ω2R2
(4.3)

where A = πR2 is the area enclosed by the ring. Considering small rotation rates

ωR � v and using the relationship between phase and time, φ = fωt (where fω is

the angular frequency of the particles), the phase difference established between the

counter-rotating paths is

φ =
4πωA
λv

(4.4)

where λ is the wavelength of the particles. From this equation we see that by

measuring the size of the phase shift ω can be determined directly. We note that
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for massive particles λdB = h/(mv) (here h is Planck’s constant and m the particle

mass) meaning equation 4.4 is more commonly written as

φ =
2mωA

~
. (4.5)

4.2 Atoms versus light

We now compare the size of the phase shift induced in light-based and atom-based

gyroscopes. To allow a fair comparison we set ω and A to be the same for each

system. The ratio of the two phase shifts is therefore

φa
φl

=
λlc

λava
=
mc2

~fωl
(4.6)

where the subscripts a and l refer to the atomic and light systems respectively and

c is the speed of light. We note also that this comparison is for equal particle

fluxes. Immediately it is clear that, under these assumptions, the phase shift in

the atom-based gyroscope is considerably larger than the phase shift induced in

the light-based gyroscope and is therefore much easier to detect and measure. For

example, the phase shift in a ceasium atom device is 6×1010 greater than the phase

shift in a HeNe laser device [80].

Nevertheless, we note that the apparent advantage of atomic systems is often di-

minished by the much larger areas and particle fluxes that can currently be achieved

in light-based devices. Eventually, however, these problems are likely to be overcome

as experimental advances are made. It is therefore important to start developing

atom-based gyroscopes now.

4.3 Why use a BEC?

For atom-based gyroscopes to be a viable alternative to the usual light-based devices

we require strategies to manipulate the atoms in a similar way to which light is

manipulated in optical gyroscopes, for example, we need to create superpositions of
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particles travelling in opposite directions around an enclosed area. Furthermore, in

order for the precision capabilities of atomic gyroscopes to beat those of their optical

equivalents, we also require relatively large particle fluxes. For these reasons BECs

are a promising candidate for atom gyroscopy. In particular, BECs in an optical

lattice are ideal because, as previously mentioned, the dynamics of the system can

be controlled to a high degree of accuracy simply by altering the intensity of the

trapping light, something that is readily achievable in the laboratory. The high level

of coherence present in BECs will also mean the interference pattern will have a

high level of contrast thereby increasing fringe visibility.

BECs with 108 atoms can be produced in the laboratory and therefore provide

the large particle fluxes required to achieve high levels of sensitivity. Loading the

condensate into an optical lattice can give the required geometry and enclosed area

necessary for the Sagnac effect. The first atomic gyroscope system we develop in

this thesis uses a BEC loaded into an optical ring lattice. We consider the simplest

case of a ring of three sites but the possibility of using more sites is discussed

in the future work section of the thesis. The required superposition of particles

travelling in opposite directions around the ring is created using beam splitting

operations developed in Chapter 5. The interference pattern, from which the phase

shift and hence rotation is determined, is created by recombining the two paths with

inverse beam splitting operations, turning off the trapping potential and imaging the

condensate.

The second scheme we present uses a continuous optical ring potential loaded

with a BEC. In this case the required superposition is created by ‘stirring’ the atoms

with an optical barrier which is produced using a blue detuned laser. This scheme

has the added advantage that the atoms can occupy multiple momentum modes

unlike in the first scheme where the number of momentum modes is limited to three

since there are only three lattice sites. We show the effect of the multiple momentum

modes is to increase the robustness of the system to the effects of particle loss.
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4.4 Units of measurement

Rates of rotation are usually given in units of radians per second, rads−1, yet gy-

roscope sensitivity most often has units of rads−1/
√
Hz. This is the short term

sensitivity of the gyroscope, that is, its ability to detect small rotations over a time

interval of 1 second.

The usual units of rotation are divided by
√
Hz because, as mentioned in Chapter

3, repeating an experiment ν times improves the sensitivity as 1/
√
ν. Since ν ∝ τ ,

where τ is the total integration time, the sensitivity improves by a factor of
√
τ as

τ increases. Dividing by
√
Hz therefore normalises the result to give the sensitivity

of the device in a 1 second integration time. This allows for easy comparison of the

precision of devices that employ different mechanisms.

4.5 Progress to date

Since the Sagnac effect was first proposed to measure rates of rotation in 1913 [14]

much progress has been made. In 1925, for example, Michelson successfully used the

Sagnac effect to measure the rotation of the earth using a large optical interferometer

[81]. Since then the sensitivity of optical gyroscopes has been drastically improved

largely due to the larger enclosed areas that can be achieved using long optical

fibers wound around a spool. These photonic devices are now widely used in inertial

navigation systems on ships and planes.

It was not until 1988, however, that the first atom-based gyroscope was pro-

posed [82] and not until 1991 that the first atomic device was built [83]. Since this

first demonstration of an atom-based gyroscope much theoretical and experimental

research has been undertaken to improve the sensitivity of these devices (for a se-

lection of recent results see [84–87]). Now despite their smaller particle fluxes and

enclosed areas, their sensitivities are comparable to those of their optical equiva-

lents. To date the best recorded short term sensitivity of an atomic gyroscope is

6× 10−10rads−1/
√
Hz [80].
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All these gyroscopic devices, however, employ unentangled initial states as their

resource (they all input particles into just one of the two possible input ports of

the interferometer scheme) and as a result their precisions cannot surpass the SQL.

In the previous chapter we saw how by using quantum correlations between the

particles the precision of a MZI could be dramatically improved. The same is true

for the Sagnac interferometry schemes employed in gyroscopic devices [88]. From

equation 4.5 we can write the uncertainty in the rotation measurement as

∆ω =
~

2mA
∆φ. (4.7)

As shown in Chapter 3 ∆φ = 1/
√
N when the initial state is unentangled thereby

giving an uncertainty in ω of

∆ω =
~

2mA
√
N
. (4.8)

This is the precision scaling achieved by the gyroscope schemes mentioned thus far.

There is, however, the potential to dramatically improve this scaling to

∆ω =
~

2mAN
(4.9)

through the use of entangled initial states such as the NOON state. As in a linear

MZI this is Heisenberg limited and is the ultimate precision that can be achieved by

a Sagnac based gyroscope.

A detailed comparison of light-based and atom-based gyroscopes employing en-

tangled and unentangled initial states has been given in reference [88]. Taking the

typical particle flux of a light-based gyroscope to be 1016 photons/second and that of

an atom-based device to be 1012 atoms/second the precision of the light-based device

can be improved by a factor of 108 using entangled photons and in the same way

that of the atom-based device can be improved by a factor of 106. Importantly using

entangled atoms the precision of current light-based gyroscopes can be improved by
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a factor of 1010.

We see, therefore, that there is real motivation to develop gyroscopes that use

entangled atomic states as their input. Two such schemes are proposed in this thesis,

both of which employ a BEC as their resource. We extend our analysis to include

the effects of particle loss from the gyroscopes.

We have now introduced almost all the tools necessary to develop these gyro-

scope schemes: we have looked at BEC theory and discussed what happens when a

condensate is rotated, discussed the general precision capabilities of different initial

states in a MZI and extended these precision scalings to a Sagnac gyroscope scheme.

We must first, however, introduce one final tool that will be used to create the nec-

essary superposition of BEC atoms flowing in opposite directions around a ring of

lattice sites, that is, a multiport atomic beam splitter.
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Chapter 5

Multiport atomic beam splitters

Beam splitters allow quantum states to be manipulated and, as we have shown, are

a key component of precision measurement schemes such as the MZI and the Sagnac

gyroscope. Their uses, however, extend well beyond precision measurement schemes

as any device that can manipulate the entanglement of quantum states could prove

invaluable in various quantum information processing schemes. Beam splitters are

most often thought of as having two input and two output ports, however, their

multiport equivalents have been studied extensively. Indeed, in recent years, much

progress has been made towards their experimental implementation and now devices

with up to 32 input and output ports are readily available in optical fibre set-ups [50].

The potential of these multiport devices are extensive with the improved precision of

phase measurements proving to be one of their most promising applications [89, 90].

Here we propose an experimentally accessible scheme to create multiport atomic

beam splitters. We use a BEC loaded into an optical ring lattice and each lattice

site corresponds to an input port. Consequently our multiport splitting devices

should prove extremely useful in ultra-precise rotation measurement schemes where

the entangled states need to be in a ring geometry.
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5.1 Introduction

Considerable progress has been made over the past decade towards implementing and

understanding multiport devices. Theoretical work has devised schemes to create

multiport devices with any number of input and output ports [91] and has analysed

some of their useful properties [50, 89, 90, 92–94]. Experimental work using photons

has demonstrated the operation of beam splitters with three inputs and outputs

(‘tritters’) as well as four inputs and outputs (‘quarters’) by clever arrangements of

ordinary two-port beam splitters and phase plates [95]. Similar devices have also

been proposed [50] and implemented [96] in systems of bundled optical fibres.

These devices become more powerful as the number of input and output ports

is increased. However, for larger systems, the experimental configuration required

rapidly becomes labyrinthine. In general, for a device with S inputs and S outputs,

S(S − 1)/2 two-port beam splitters and S(S + 1)/2 phase shifts would be required,

i.e. a total of S2 optical elements [91]. The complexity of implementation is per-

haps even more problematic for atomic systems where beam splitting is a dynamic

process typically involving the raising and lowering of potential barriers. In this

case, a multiport beam splitter would involve a complex sequence of operations and

the experimenter would need to be able to address lattice sites individually – an

issue that has caused considerable problems when trying to use optical lattices for

quantum information processing.

In this chapter, we demonstrate a scheme for implementing atomic multiport

devices that goes someway towards overcoming these problems. In particular, it

requires no additional equipment or steps than a standard two-port atomic beam

splitter. We begin by developing the theoretical scheme for an atomic tritter and

follow with its extension to a device with a general number of ports. An interesting

asymmetry is found in the behaviour of devices with an odd or even number of input

ports. Finally, we take into account various practical considerations and see that

our scheme is likely to be limited to splitters with about five input (and output)

ports.
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5.2 The scheme

The physical system we consider consists of an optical lattice of S sites arranged in

a ‘ring’ configuration with atoms trapped at the potential minima (see figure 5.1).

As shown in Chapter 2 such a system can be described by the Bose-Hubbard model

with Hamiltonian

H

~
=

S−1∑

j=0

εja
†
jaj − J

S−1∑

j=0

(
a†jaj+1 + a†j+1aj

)
+ V

S−1∑

j=0

a†j
2a2
j (5.1)

where aj is the annihilation operator for an atom at site j and the ring geometry

means that aS = a0. The parameters J and V are the tunnelling and interaction

strengths respectively (note here we have used V = U/2), and εj accounts for the

energy off-set of site j. Throughout this chapter we take the zero point energy to

be the same for each site and so can ignore these energy off-set terms. Here we have

divided by ~ to convert the units of J , V and ε into frequencies which will allow for

easy comparison with existing experiments later in the chapter. Each of the lattice

sites corresponds to an input port of our multiport beam splitter.

In order to implement the beam splitting procedure we begin with large potential

barriers between the sites so we can ignore tunnelling. The first step is to rapidly

reduce the potential barriers between the sites in such a way that the sites still

remain separate but are strongly coupled due to tunnelling. We want to do this

rapidly with respect to the tunnelling time, but slowly with respect to the energies

associated with excited states to ensure our system remains in the ground state.

Experiments have already successfully demonstrated this separation of timescales

by ramping the optical intensity on a timescale of about 20ms [97].

The tunnelling between wells now dominates over the interactions and the Hamil-

tonian of equation 5.1 can be written in the simple form,

H

~
= −J

S−1∑

j=0

(
a†jaj+1 + a†j+1aj

)
. (5.2)
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Figure 5.1: Ring configuration of S sites in an optical lattice. The lines denote
tunnelling between sites.

Of course this makes the approximation that the interaction energy will be neg-

ligible compared with the tunnelling energy. In practice, the interactions will not

be strictly zero. However, they can be made very small with respect to J by, for

example, making use of Feshbach resonances to tune the scattering lengths [98]. For

now, it is helpful to consider the case where we can ignore V . We consider the effects

of this assumption in section 5.5.

5.2.1 Example: The Tritter

To introduce the exact workings of the scheme we describe in detail the case of S = 3.

A similar configuration has been achieved experimentally by trapping atomic Bose-

Einstein condensates (BECs) in the optical potential created by the diffraction of

a laser beam by a liquid crystal spatial light modulator [36]. This modulator al-

lows arbitrary three-dimensional trapping potentials to be achieved, which have the

added advantage of being able to be varied smoothly with time. Another promis-
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ing possibility for creating the ring potential, is to interfere a Laguerre-Gaussian

(LG) laser beam with a plane wave co-propagating along the z-direction [99]. By

retro-reflecting this combined beam, a standing wave can be formed that consists

of a stacked array of disk shaped traps along the z-direction. By controlling the

tunnelling between the disks and making it much smaller than the corresponding

tunnelling within each ring, one can implement an array of effective 1D ring lat-

tices. In both these cases, the rate of tunnelling between the sites in a ring can be

controlled simply by adjusting the intensity of the trapping laser light.

The Hamiltonian describing this three site system is

H

~
= −J

(
a†0a1 + a†1a2 + a†2a0

)
+ h.c.. (5.3)

As was shown in Chapter 2 this Hamiltonian is diagonalised in the flow basis




α0

α1

α2




=
1√
3




1 1 1

1 ei2π/3 e−i2π/3

1 e−i2π/3 ei2π/3







a0

a1

a2



≡ U




a0

a1

a2




(5.4)

to give
H

~
= −J

[
2α†0α0 − α†1α1 − α†2α2

]
(5.5)

where α0 destroys an atom with zero flow, α1 destroys an atom with one unit of

clockwise flow and α2 destroys an atom with one unit of anticlockwise flow. If the

system is allowed to evolve for time, t, the α0 mode acquires a phase of −2Jt, while

the α1 and α2 modes each acquire a phase of Jt. If the barriers are then raised on a

similar timescale to their lowering (i.e. quickly with respect to the tunnelling time,

but slowly with respect to the energies associated with excited states), the atoms are

‘frozen’ in the lattice sites a0, a1, and a2. The overall output operators {A0, A1, A2}
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are given by




A0

A1

A2




= U−1




ei2Jt 0 0

0 e−iJt 0

0 0 e−iJt



U




a0

a1

a2




(5.6)

=
1
3




Ω0 Ω1 Ω1

Ω1 Ω0 Ω1

Ω1 Ω1 Ω0







a0

a1

a2



≡ R3




a0

a1

a2




(5.7)

where Ω0 = ei2Jt+2e−iJt, Ω1 = ei2Jt−e−iJt, and for later reference, we have defined

the overall operation as R3. We see that the output modes are identical to the input

modes when t = 0, as we would expect. For a balanced tritter, we need the output

modes to be an equal superposition of the input modes, i.e. |Ω0| = |Ω1|. This occurs

when t = 2π/(9J), for which value we have (ignoring an irrelevant overall phase),

R3 =
1√
3




1 ei2π/3 ei2π/3

ei2π/3 1 ei2π/3

ei2π/3 ei2π/3 1



. (5.8)

To summarise, the steps in implementing a balanced tritter are,

1. Rapidly reduce the potential barriers separating the lattice sites.

2. Allow the system to evolve for time t = 2π/(9J).

3. Rapidly raise the potential barriers.

Each output is an equally-weighted superposition of all the inputs. One may

notice, however, that the phases between terms in these outputs are different from

those commonly quoted for a tritter in the literature (e.g. in [93, 95]). For many

purposes, this does not matter. For example, we can take the output modes of a 50:50

beam splitter to be either {(a0+a1)/
√

2, (a0−a1)
√

2} or {(a0+ia1)/
√

2, (ia0+a1)
√

2}

without fundamentally changing the results. If, however, we do require a particular
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form of the phases for the output modes, this can always be achieved by imprinting

phases on individual lattice sites before and after the lowering and raising of the

barrier. In practice this could be achieved by applying energy off-sets, εj , to the

lattice sites for some fixed time. Indeed, in Chapter 6 the phases of our tritter

operation are modified using this method.

This procedure not only achieves the goal of a multiport beam splitter for atoms,

but is much simpler than schemes that combine phase shifts with a complicated

network of two-port beam splitters. Our scheme only requires a lowering and raising

of the lattice potential and, importantly, requires no more operational effort than an

ordinary two-port beam splitter for atoms [100]. This bodes well for the possibility

of scaling the scheme up to larger systems.

5.3 Larger devices

We now extend this scheme to the general case of a lattice ring with an arbitrary

number of sites (in section 5.5 we will determine up to what values of S this scheme

is valid experimentally). Following the same procedure as for the tritter we lower

the potential barriers so that tunnelling between the wells dominates over the inter-

actions and the Hamiltonian describing the system is given by equation 5.2. As for

the three site case this can be written in the diagonalised basis as

H

~
= −2J

S−1∑

k=0

cos
(

2πk
S

)
α†kαk (5.9)

where

αk =
1√
S

S−1∑

j=0

ei2πjk/Saj . (5.10)

The system is now allowed to evolve for time t during which the S modes each

acquire a phase of −2 cos
(

2πk
S

)
Jt. The potential barriers are then quickly raised
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and the output is given by,




A0

A1

...

AS−1




= U−1




ei2Jt 0 0 . . . 0

0 ei2 cos( 2π
S )Jt 0 . . . 0

...
...

. . .
...

0 0 . . . e
i2 cos

“
2π(S−1)

S

”
Jt



U




a0

a1

...

aS−1




=




Ω0 Ω1 . . . ΩS−1

ΩS−1 Ω0 . . . ΩS−2

...
...

. . .
...

Ω1 Ω2 . . . Ω0







a0

a1

...

aS−1



≡ RS




a0

a1

...

aS−1




(5.11)

where the unitary matrix is given by Ukj = 1√
S
ei2πjk/S and

Ωx = S−1
S−1∑

n=0

exp(i2Jt cos(2πn/S) + i2πnx/S). (5.12)

As before, the condition for a balanced multiport splitter is that each output is

an equally weighted superposition of all the inputs, i.e. |Ω0| = |Ω1| = . . . = |ΩS−1|.

We now wish to see if our procedure can achieve this for a general S ignoring, for

now, factors that may limit its experimental feasibility.

5.3.1 Producing a balanced splitter

We can determine if a balanced splitter can be achieved for a device with S sites by

plotting the elements of RS as a function of Jt and checking whether there are times

for which |Ω0| = |Ω1| = . . . = |ΩS−1|. Figure 5.2 shows these plots for S = 3, 4, 5 and

6 in the time range t = 0 to 2π/J . We see that all the Ω intersect at t = 2π/(9J)

for S = 3 and at t = π/(4J) for S = 4, but there is no exact crossing for S = 5

and 6 in this range (or indeed for larger values of S). However, looking in the time

range t = 0 to 1000/J we find for systems with odd values of S, up to S = 9, there

is an intersection of all the Ω to within an error of 1%. It is convenient to define a
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measure, χ, of how good the intersection is, as

χ =
S−1∑

x=0

(
|Ωx| −

1√
S

)2

. (5.13)

This is simply the sum of the squares of the deviation of each value of |Ω| from its

ideal value (i.e 1/
√
S) – as discussed above, we are not concerned by the phase of

the Ω values. If, on average, each value of |Ω| differs from 1/
√
S by 1%, χ has a

value of 10−4. We will use this value (i.e. χ . 10−4) as a useful criterion for when

a balanced splitter has been achieved.
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Figure 5.2: These plots show how the |Ω| vary with time for multiport devices with
S = 3, 4, 5 and 6 from top left to bottom right respectively. We see that for S = 3
the |Ω| intersect at t = 2π/(9J) and for S = 4 they intersect at t = π/(4J). For
S = 5 and 6 there is no intersection of all the |Ω| in the time range shown here
(t = 0 to 2π/J).

Using this criterion, we find balanced splitters for S = 5, 7 and 9 at evolution

times t ≈ 5.2π/J , 88π/J and 177π/J respectively. The intersection of the Ω values

for S = 5 at t ≈ 5.2π/J is shown in figure 5.3. The time required to achieve a

balanced splitting device increases with increasing S as there are more values of Ω

to match. Interestingly, no intersections for which χ . 10−4 are achieved for even

values of S in this time range. We will discuss possible reasons for this in the next
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section. We should note that while we do not see intersections that satisfy χ . 10−4

for even values of S in the time range used (or for S odd greater than 9), this does

not rule out the possibility at a later time. One exception is S = 6 because all the

values of |Ω| in this case repeat with a period of 2π and, since there is no intersection

during this period, there will never be one. The same may be true for some other,

larger S. However, so long as χ for a given S is not periodic in time, if we wait long

enough the balanced splitting criterion should be able to be achieved. Of course, this

may not always be experimentally expedient and could be longer than the coherence

time of the system.
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Figure 5.3: Using χ . 10−4 as our defining criterion for when a balanced splitter is
achieved we find a five site splitter is produced at t ≈ 5.2π/J . The near intersection
of all the |Ω| at this time can be seen here.

To summarise, devices with even and odd numbers of sites are potentially both

capable of producing balanced multiport devices. However, the even cases usually

require a much longer evolution time than the odd ones. We now investigate the

reasons for this difference in behaviour.
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5.3.2 The difference between S even and S odd

In order to understand the difference in behaviour between systems with odd and

even numbers of lattice sites we compare the Ωx of both systems. It is possible to

show that for the case of even values of S

Ωx = eiπx/2Λ(S, J, t, x) (5.14)

where Λ(S, J, t, x) is some real-valued function that depends on S, J , t and x. A

proof of equation 5.14 is given in Appendix A. We see that the phase difference

between Ωx and Ωx±1 is always ±π/2 which, in turn, means the phase difference

between adjacent sites is always ±π/2. In Chapter 2 we showed that the rate at

which atoms flow is given by v = (~/m)∇θ where ∇θ is the phase gradient. Since

the phase varies by a fixed amount between sites we therefore see that the atoms

must flow at a fixed speed.

In contrast for odd values of S the Ωx cannot be written as in equation 5.14 as

the phase of each Ωx varies continuously with time. The phase difference between

sites, and hence the velocity of flow, are therefore not constrained in the same way as

for even S. The additional constraint imposed by the symmetry of the even case on

the allowed flow rates is one reason why it is more difficult for devices with an even

number of sites to achieve a state where their outputs are in an equal superposition

of their input modes 1.

Another difference between the cases of even and odd numbers of sites is seen

when we look at the number of distinct elements required to compose the operators

RS . Instead of the number of different Ω equalling the number of sites, S, there are

(S+1)/2 different Ωs for odd S and (S+2)/2 different Ωs for even S (see Appendix

A for a proof of this). This is due to the symmetry of the system and it means for

even S there are more values of Ω to match to make a balanced splitter. Again, this

1This argument suggests that it should be difficult to achieve a balanced splitter for S = 4, but
we have seen that this is not the case. This is because the constraint that adjacent sites have a
phase difference of ±π/2 happens to be precisely the phase difference required for the S = 4 case
to work.
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difference supports our observation that it is more difficult for systems with an even

number of sites to produce a balanced splitter.

5.4 Inverse transforms and unbalanced splitters

Now that we have explained the basic operation of multiport beam splitters, we

would like to consider how they can be combined to create useful quantum devices.

One simple, yet important, such device that has, and will be used throughout the

thesis, is an interferometer such as the Mach-Zehnder interferometer introduced in

Chapter 3. In general, an interferometer consists of a beam splitter, a phase shift,

and then an inverse beam splitter. However, for two-path interferometry, the inverse

beam splitter is most often replaced with a normal beam splitter (see figure 3.1).

The reason this works is that a 50:50 beam splitter can be thought of as a
√

NOT

operation. We can see this because a Mach-Zehnder interferometer with no phase

difference between the two paths (i.e. two 50:50 beam splitters in succession) gives

an output state that is the same as the input but with the ports swapped, i.e. a

NOT operation. So two beam splitters in succession will return us to the original

state so long as we make a trivial swap of the labels of the output ports. For

multipath interferometers, however, the same is not true: we cannot simply replace

the inverse splitter with an ordinary splitter and relabel the modes. So, to be able

to implement a multipath interferometer, we need to be able to implement inverse

multiport devices.

It turns out that three successive applications of a tritter, R3
3 is equivalent to the

identity and leaves the original input state unchanged. This can easily be verified

using equation 5.8. This means that the inverse operation of a tritter is simply R2
3 or,

equivalently, a tritter operation where the state is allowed to evolve for twice as long

with the barriers lowered (i.e. t = 4π/(9J) rather than t = 2π/(9J)). The inverse

operation can, therefore, be implemented just as easily as the original transform.

More generally, the inverse operation of a device with S sites is simply R(S−1)
S .
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5.4. Inverse transforms and unbalanced splitters

We have numerically checked this for S = 4, 5, 7, and 9 2 by calculating how close

RSR
(S−1)
S = RSS is to the identity operator. We do this by summing up the modulus

squares of the leading diagonal of RSS and dividing by S as this effectively gives the

fidelity of the output state relative to the input (averaged over all input ports). The

values we found for this measure for S = 4, 5, 7 and 9 were 1, 0.96, 0.91 and 0.75

respectively. We see that the inverse splitter is degraded as S is increased. This

is not surprising because, if our timing does not give an exactly balanced splitter,

when we multiply this time by (S − 1) to give the time of the inverse splitter the

imperfection is multiplied. Of course, there may be earlier times that give a good

approximation to the inverse splitters and this is possible area for future research.

So far, we have only discussed splitters that have balanced outputs and are

therefore the multiport generalisations of 50:50 two-port beam splitters. For many

applications we may not want the outputs to be balanced. For example, we may

want a device that coherently skims off only a small fraction of an input state and

redistributes it between the output modes. Our scheme holds great potential for

producing such devices simply by changing the value of the evolution time. Since

the coherent amplitude in each output mode depends on t, this allows us to obtain

multiport splitters with different ‘reflectivities’. All this can be achieved without

changing the experimental set-up – only the timings of the steps. It is important to

note, however, that not all unbalanced outputs can be achieved by this method as

not all the values of Ω are independent.

Multiport splitters promise a broad range of future applications. One such ap-

plication is in the field of quantum metrology where spreading particles over many

paths rather than just two may prove to allow for more precise and/or more ro-

bust phase measurements. The potential of multipath interferometers for making

ultra-precise measurements is introduced in Chapter 8 and again in the future work

section of the thesis. A further use is demonstrated in Chapter 6 where the tritter

developed in this chapter is used in an atomic gyroscope scheme.

2S = 6 and S = 8 were not considered due to the difficulty in obtaining a splitter in these cases,
as discussed above.
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5.5 Practical limitations to the number of ports

So far in discussing the general scheme for implementing an atomic multiport device

we have neglected a number of important physical processes. This has allowed us

to treat an idealised case and has been useful for understanding its key features.

However, in reality, these processes must be accounted for and will limit the appli-

cability of the scheme. In this section we highlight the key practical limitations to

this scheme and assess their impact.

5.5.1 Intensity fluctuations

Since the time for which the barriers must be lowered depends on the tunnelling rate,

any uncertainty in J will introduce imperfections into the scheme. This may concern

some readers since it is well known that J depends exponentially on the intensity

of the trapping light which is subject to fluctuations. However, just because J

depends exponentially on the intensity does not mean that small fluctuations in

the intensity will result in large fluctuations in the tunnelling rate. Indeed the

exponential function varies only linearly for exponents close to zero, and this is the

regime in which this scheme operates. We can check this using an approximation

for J found in [101],

~J ≈ ER
2

exp

(
−π2

4

√
V0

ER

)

√
V0

ER
+

(√
V0

ER

)3

 (5.15)

where ER is the atomic recoil energy, V0 is the potential depth and ~ = 1 in [101].

To ensure we are in the strong coupling regime we take V0 = 2ER, a configuration

that has been achieved experimentally [102]. For a small fractional fluctuation, δ in

the exponent due, for example, to intensity fluctuations in the trapping laser, this

can be rewritten as

J̃ ≈ 3ER
~
√

2
exp

(
−π2

2
√

2
(1 + δ)

)
= J exp

(
−π2

2
√

2
δ

)
. (5.16)
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Intensity fluctuations can be stabilised to around 0.1% [103], i.e. δ = 0.001, which

gives J̃ ≈ 0.9965J . So the uncertainty in the tunnelling rate due to intensity fluc-

tuations is modest and unlikely to be the major limitation to this scheme.

5.5.2 Condensate lifetime

Another potential limiting factor is how long the system must be allowed to evolve

to produce the balanced splitters since this may be longer than the lifetime of the

condensate. In section 5.3 we showed that the evolution times increased with S as

expected since as S increases there are more different Ω to match. Figure 5.4 shows

the value of Jt required to produce balanced splitters for S = 3, 4, 5, 7 and 9 and

we see that in this range Jt scales as approximately the seventh power of S. This is

quite a prohibitive scaling and in order to determine what values of S are feasible,

we need to compare the evolution time with the lifetime of the condensate.

0.4 0.5 0.6 0.7 0.8 0.9 1
−1

0

1

2

3

4

log10(S)

lo
g 10

(J
t)

Jt ! 1.8x10−4S7.0

Figure 5.4: The crosses represent the Jt required to produce a balanced splitter for
different S. The line is intended to find an approximate scaling of Jt with S. We
find Jt roughly scales with S as 1.8× 10−4S7.0.

Condensate lifetimes of about 10s have been measured [67] and oscillation periods

of 40ms have been observed between wells in bosonic Josephson junctions [104],

giving J ∼ 80s−1. Together these give an estimate of a typical maximum value of

Jt ≈ 800. For S = 3, 4, 5, 7 and 9 the largest value of Jt is 177π which is comfortably
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below 800. Therefore, the times required to produce balanced splitters with up to

nine sites should all be experimentally achievable. Using the scaling of Jt with S

above, for S = 11, Jt > 800 suggesting S = 9 is the maximum number of sites the

evolution times allow.

We note, however, that it is most likely that the splitters will be used in con-

junction with their inverses to form devices such as Mach-Zehnder interferometers.

The total Jt required is therefore S times as long as those shown in figure 5.4. For

S = 3, 4 and 5 the total Jt still lies comfortably below 800. For S = 7 and 9,

however, the total Jt required to produce a device consisting of the splitter and its

inverse exceeds the maximum allowed value of 800. Consequently we find, for most

practical purposes, our splitting devices will be limited to S = 5 sites.

5.5.3 Interactions

Up until now we have neglected the interactions between atoms by setting V = 0.

We shall now consider how non-zero interactions limit our scheme. Taking them

into account the Hamiltonian describing the system is

H

~
= −J

S−1∑

j=0

(
a†jaj+1 + a†j+1aj

)
+ V

S−1∑

j=0

a†2j a
2
j . (5.17)

First, we shall consider the effect of these interactions on our tritter for different

numbers of atoms. We will then determine the effect of interactions for different

values of S.

We measure the effect of interactions on the three site system by comparing the

outputs of an interferometer, composed of a tritter and an inverse tritter, with and

without the interactions taken into account. We chose to include the inverse tritter

because, as previously mentioned, one of the greatest uses of these splitting devices

is in an interferometer set-up which requires the application of a splitter followed

by its inverse. For the purposes of our numerical calculations, we will consider the

specific initial state |N, 0, 0〉 where the terms in the kets correspond to the number of

atoms on sites 0, 1 and 2 respectively. Figure 5.5 shows how the fidelity between the
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output states with and without the interactions varies as a function of interaction

strength for different numbers of particles, N . As we would expect, the fidelity is

unity when there are no interactions regardless of the value of N and the effects of

the interactions become more significant as N is increased.
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Figure 5.5: The fidelity of the output state of a three site interferometer with inter-
actions, calculated from the overlap with the output when there are no interactions,
plotted over the range V N/J = 0 to 1 for different numbers of atoms.

To determine an approximate scaling of the interactions with N we find the value

of V N/J required to give a fidelity of 0.95 for different values of N . From this we

determine the relationship between the number of input atoms and V N/J at this

critical fidelity to be (
V N

J

)

F=0.95

≈ 0.85 N−0.07 (5.18)

which is shown in figure 5.6. This relationship means the effect of the interactions,

V/J , on the system scales with N as 0.85N−1.07. This is an approximately linear

scaling and so the effects of interactions in the system are not too destructive. It

means we require V N/J to be of the order of 0.85 to achieve a fidelity of 0.95. To

determine an experimental order of magnitude for V/J we use the approximations
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of reference [101],

V ≈
2asV

3
4

0 E
1
4
R

~(
√
λD)

(5.19)

J ≈ ER
2~

exp

(
−
(
π2

4

)√
V0

ER

)

√
V0

ER
+

(√
V0

ER

)3

 (5.20)

where as is the scattering length, V0 the barrier height, ER the recoil energy, λ

the wavelength of the lattice light and D the transverse width of the lattice sites.

Feshbach resonances can tune as to values smaller than the Bohr radius for some

BECs [105] and in the high coupling regime barrier heights of order V0 = 2ER have

been demonstrated [102]. Using light of wavelength λ = D = 10µm and 87Rb atoms,

interactions can therefore be tuned to V ∼ 10−3Hz and J ∼ 10Hz in this regime

giving V/J ∼ 10−4. This system is therefore limited to N ∼ 104.

0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5 1.6
−0.2

−0.19

−0.18

−0.17

−0.16

−0.15

−0.14

−0.13

−0.12

log10N

lo
g 10

(V
N

/J
) F=

0.
95

VN/JF=0.95 !0.85N−0.07

Figure 5.6: The correlation between V N/J at a critical fidelity of F = 0.95 and
the number of atoms for a three site interferometer. The crosses are numerically
calculated data points for values of N up to N = 40. The solid curve is a line of
best fit intended to find the scaling. The approximate scaling is, (V N/J)F=0.95 ∼
0.85N−0.07 .

Things are less promising, however, when we consider the effects of interactions in

interferometers with more sites. Determining V/J at the critical fidelity of 0.95 for a

fixed number of atoms (N = 5) for S = 3, 4, 5, 7 and 9 allows us to see how interaction

effects scale in this range of S. The results are shown in figure 5.7. We see that the

V/J that allows us to achieve a fidelity of at least 0.95 decreases rapidly with S.
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For S = 7, we require V/J ∼ 10−4, which is at the limit of what is experimentally

achievable. Interactions therefore appear to limit the current applicability of our

scheme to about five sites.
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Figure 5.7: Plot of V/J at a critical fidelity of 0.95 as a function of S for N = 5.
We see V/J decreases rapidly as S increases. For S = 7 the interaction strength
required to achieve a fidelity of at least 0.95 is V/J ∼ 10−4. Such a value is likely
to be experimentally challenging and so we take S = 5 as the maximum number of
sites allowed when interactions are accounted for.

Since both the condensate lifetime and the atomic interactions have been shown

to limit the experimental feasibility of our multisite interferometer schemes to five

sites, in the remainder of this section we only consider the effects of the practical

limitations on systems with S = 3, 4 and 5.

5.5.4 Timing errors

So far we have made the simplifying assumption that we can exactly measure the

time the barriers are lowered for. We will now investigate how sensitive the scheme

is to inaccuracies in this timing for different numbers of atoms for S = 3, 4 and 5.

We first consider a three site system and as before we determine the effects of errors

on the interferometer set-up, i.e. a tritter followed by its inverse. To determine the

effect of an absolute time error, ε, we calculate the fidelity between the outputs of
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the interferometer when Jt = Sτ and when Jt = Sτ + ε, where τ is the Jt required

to produce the balanced splitter quoted in section 5.3, for the particular input state

|N, 0, 0〉. As with the interactions, we determine how the fidelity scales with N by

measuring ε at a critical fidelity of 0.95 for different values of N . These results are

shown in figure 5.8 and we see that the relationship between ε at the critical fidelity

and the number of atoms is given by,

εF=0.95 ≈ 0.16N−0.50. (5.21)

The maximum time error that still allows us to achieve a fidelity of at least 0.95

decreases relatively slowly as N increases. The same scaling of the absolute time

error with N was also numerically found for S = 4 and 5 and is due to the fact that

the particles behave independently of one another. Indeed this same scaling would

be found for any S because in this system the particles are always independent since

V ≈ 0.
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Figure 5.8: The relationship between the absolute time error at a critical fidelity of
F = 0.95 and the number of atoms, N , for a three site interferometer. The solid
curve is a line of best fit and has the form εF=0.95 ≈ 0.16N−0.50. We see that as the
number of atoms increases, the timing error that can be tolerated decreases.

For N = 5 the maximum absolute error that can be tolerated in Jt is ε ≈ 0.07
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for all S where ε = J∆t and ∆t is the time error in seconds. This means we require

that we can control t to at least a precision given by ∆t = 0.07/J ≈ 1ms. Therefore,

we need a refresh frequency of about a few kilohertz which can be achieved using

a ferroelectric liquid crystal spatial light modulator [106] and so we conclude that

absolute timing errors do not limit the experimental feasibility of our scheme.

We must also consider the fractional time error that can be tolerated as clocks

generate fractional errors. An absolute time error of ε corresponds to a fractional

time error of ε/(Sτ). We know for N = 5 the maximum absolute time error that

can be tolerated for all S is approximately 0.07. For S = 3 this corresponds to

a fractional time error of approximately 0.33 i.e. we can tolerate a fractional time

error of one part in 101. For S = 4 the fractional time error is 0.11 and for S = 5 it is

0.01. Accuracies of one part in 104 are easily achievable with many readily available

pulse pattern generators suggesting the timings required for the scheme are within

reach of current experimental technologies for up to five sites.

5.5.5 Loss of particles

The final limiting factor we consider is spontaneous emission which we show to have

little effect on the system. In fact, when we ignore interactions, the loss of a par-

ticle during the splitting process has no effect on the remaining particles. When

N particles are inputted into a tritter and one particle is lost from a particular

site halfway through the splitting procedure, we have numerically shown that the

fidelity between this output and the output of a tritter into which N−1 particles are

inputted (and none are lost) is 1 when the interactions are ignored (V = 0). Even

when interactions are included the loss of fidelity is very small and so spontaneous

emissions will not be the limiting factor in this scheme. The robustness of the tritter

to particle loss is due to the fact that the particles are independent meaning the loss

of one particle has no affect on the remaining N − 1 particles.

Taking all these practical limitations into account we have found the limit for S
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is five. All that is required to produce these devices is a raising and lowering of the

potential barriers and so far fewer components are used than in optical schemes to

produce devices with the same number of ports.

5.6 Conclusions

We have proposed a straightforward experimentally accessible scheme for imple-

menting atomic beam splitters (and their inverses) with up to five input and output

ports. It requires modulation of the intensity of the optical lattice in which the

atoms are trapped – something that is readily achievable in the laboratory. Impor-

tantly, in this scheme, the multiport devices require no more operational complexity

than an ordinary beam splitter for atoms.

The versatility of these devices means that they are likely to have intriguing

prospects for creating interesting entangled states that have uses in quantum tech-

nologies such as precision measurement schemes. In particular, the ring lattice

means these devices have great potential for use in ultra-precise gyroscopes. With

this in mind we develop a gyroscope scheme that uses this system and the multiport

splitting operations discussed to make Heisenberg limited rotation measurements in

the next chapter.
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Chapter 6

A scheme to implement a

two-mode atomic gyroscope

As was demonstrated in Chapter 4 the precision of rotation measurements can be

improved from the classical scaling of 1/
√
N to the Heisenberg limit of 1/N by using

highly entangled states. However, these states as well as being difficult to produce,

are extremely fragile to particle loss, making unentangled states a more practical

choice. Combined with the development of the laser and fibre optics this means

that, at present, the most widely used gyroscopes in the navigation industry employ

unentangled photons as their probe.

Nevertheless, it has been shown that the precision of gyroscope schemes that

employ unentangled particles can be improved by as much as a factor of 1010 simply

by using atoms rather than light. With this in mind much research has focused

on developing matter-wave gyroscopes [80, 107–109]. However, these schemes all

use unentangled atoms as their resource and therefore cannot surpass the standard

quantum limit. Here we want to develop an atomic scheme to measure rotations

with Heisenberg limited sensitivity thereby allowing for precisions far superior to

those of current optical gyroscopic devices. Whilst this requires the use of entangled

particles that are notoriously fragile we rigorously determine the effects of particle

loss and show that for a certain entangled state the standard quantum limit is beaten
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for most experimentally realistic loss rates.

The system we consider consists of a BEC trapped in a one-dimensional three site

optical ring lattice. We describe ways to produce different initial states, including

both classical and highly entangled states, and show how, using two and three mode

beam splitting operations (as discussed in the previous chapter) the rate of rotation

of the lattice ring can be determined. We find that whilst both the NOON state

and the previously introduced bat state achieve similar precisions in the idealised

setting, the bat state is far more robust to the effects of particle loss, making it the

experimentally preferred state.

6.1 The system

The system consists of a N atom BEC that is trapped by the dipole force in an

optical ring lattice of three sites (see figures 2.1 and 2.2). This set-up was discussed

in the previous chapter where it was shown how, by carefully evolving the trapping

potential, balanced beam splitting operations could be achieved and, in fact, the

measurement scheme described in this chapter uses such splitting procedures. As

previously shown this system is described by the Bose-Hubbard Hamiltonian

H

~
=

2∑

j=0

εja
†
jaj −

2∑

j=0

Jj

(
a†jaj+1 + a†j+1aj

)
+

2∑

j=0

Vja
†
j
2a2
j . (6.1)

Note that until now we have always assumed the tunnelling strength between, and

the interactions on, all sites to be equal. Here, however, we have allowed the tun-

nelling strength between sites to be different which is achieved by having different

barrier heights between sites. Similarly, the onsite interactions can be varied between

sites using Feshbach resonances. The ability to vary tunnelling between, and inter-

actions on, sites will prove useful in the initial state creation procedure. However,

once the initial state has been created we set all Jj and all Vj to be equal.

For the purposes of this work it will be convenient to describe the system in
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terms of the flow basis, which (to recap) is related to the site basis by

αk =
1√
3

2∑

j=0

ei2πjk/3aj , (6.2)

where αk corresponds to the annihilation of an atom with angular momentum ~k.

Due to the fact that we are considering a ring of three sites we are limited to the

three flow states

α0 = (a0 + a1 + a2)/
√

3

α1 = (a0 + ei2π/3a1 + ei4π/3a2)/
√

3

α2 = α−1 = (a0 + e−i2π/3a1 + e−i4π/3a2)/
√

3. (6.3)

When there are no on-site interactions and all Jj are equal (as will be the case once

we have created our initial momentum states) the system is described, in this basis,

by the Hamiltonian

Hk

~
= −2J

1∑

k=−1

cos (θ/3− 2πk/3)α†kαk (6.4)

where θ is a phase induced around the ring due to a rotation δω.

6.2 Scheme 1: Unentangled particles

Here we describe the rotation measurement scheme. This includes a description of

how to create the initial state and, then, how to use this state to make precision

measurements. As previously mentioned we will not concern ourselves too much

with the phase readout procedure as we are primarily interested in ways to improve

precision simply by optimising the initial state. We do, however, briefly suggest

a possible way to readout the phase for each initial state we consider, but all our

precision calculations are independent of this procedure.

For simplicity we begin by considering an unentangled initial state. This is
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intended to introduce the scheme which will be similar to the schemes used for all

the other initial states we consider. It also provides a benchmark to which we can

compare the precision of these other states, as any state that outperforms classical

precision capabilities is of fundamental interest to the metrology community.

To begin with, the potential barriers between the three sites are high and N

atoms are contained within one site, say site zero. The initial state of the system is

therefore |ψU0〉 = |N, 0, 0〉a0,a1,a2 where the terms in the ket represent the number

of atoms in sites zero, one and two respectively.

The first step in the scheme is to apply a balanced two-mode beam splitting

operation to this state. The exact procedure to achieve this for a BEC in an optical

lattice was first described in [51] and is implemented in a very similar manner to

the multimode beam splitting operations introduced in the previous chapter. Here

the potential barrier between just two sites, we choose sites zero and one, is rapidly

reduced in such a way that the two sites remain separate but there is strong coupling

between them. This must be done rapidly with respect to the tunnelling time, but

slowly with respect to the energies associated with excited states in order to ensure

the system remains in the ground state. In this regime the tunnelling between

the two sites is much larger than their on-site interactions and the Hamiltonian

describing the two sites is

H2J

~
= −J(a†0a1 + a†1a0). (6.5)

Importantly, the remaining two barriers are high (V � J) and so prevent tunnelling

between sites one and two and sites two and zero. The system is then left to evolve

for time t = π/(4J) whilst this barrier is low. This is equivalent to applying a two

port 50:50 beam splitter to our initial state and so transforms |ψU0〉 to

|ψU1〉 =
1√

2NN !
(a†0 + ia†1)N |0, 0, 0〉a0,a1,a2 . (6.6)

Each individual atom is now equally likely to be on site zero or one. In other words
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the atoms are unentangled and we have N single-particle superpositions on the two

sites. We now need to convert these site superpositions into superpositions of each

atom flowing in opposite directions around the ring (just like the photons in a Sagnac

gyroscope).

To do this we first apply a tritter to the system as described in Chapter 5.

Essentially all we do is, immediately after t = π/(4J), lower the two remaining

potential barriers, on the same timescale as before, and allow the system to evolve

for a further t = 2π/(9J). This transforms |ψU1〉 to

|ψU2〉 =
1√

2N3NN !

(
(a†0 + ei2π/3a†1 + ei2π/3a†2) +

i(ei2π/3a†0 + a†1 + ei2π/3a†2)
)N
|0, 0, 0〉a0,a1,a2 . (6.7)

At this point we rapidly raise the potential barriers, freezing the atoms in the lattice

sites. Comparing |ψU2〉 with equation 6.3 we see that applying a 2π/3 phase to site

two results in a superposition of the α−1 and α1 flow states. This phase is achieved

by applying an energy offset, ε2, to site two, whilst the barriers are high, for time

tε = 4π/(3ε2). This time assumes J = 0 and V = 0. Of course, this is not the case

when the barriers are high. However, we assess the impact of non-zero values of J

and V on the scheme as a whole in section 6.5.3. We note also that offset application

times of 500ns have been demonstrated experimentally [110] and it is this time we

shall use in section 6.5.3 when we assess the impact of non-zero interactions.

We then immediately lower the barriers again so the atoms can flow around the

loop. The resulting superposition can be written as,

|ψU3〉 =
1√

2NN !
(α†−1 + iα†1)N |0, 0, 0〉α−1,α0,α1 (6.8)

where the terms in the ket now represent the number of atoms in each of the possible

flow states, α−1, α0 and α1 respectively. This is now the N single-particle flow

superposition we required.

At this point the α−1 and α1 states are degenerate, so |ψU3〉 does not evolve.
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However, we now apply the rotation we wish to measure, δω, to the ring which

causes a phase, θ, to be applied around it. The energies of the two flow states now

change according to the Hamiltonian given in equation 6.4.

After a time tω, and ignoring global phases, the state has evolved to

|ψU4〉 =
1√

2NN !

(
ei2Jtω cos(θ/3+2π/3)(α†−1) +

iei2Jtω cos(θ/3−2π/3)(α1)†
)N
|0, 0, 0〉α−1,α0,α1 (6.9)

and so a phase difference of φ = 2
√

3Jtω sin(θ/3) is established between the two

flows.

We can now calculate the precision afforded by this scheme using the relation

∆φ = 1/
√
FQ since we have shown that the FQ of a pure state, |ψ(φ)〉, is given by

FQ = 4
[
〈ψ′(φ)|ψ′(φ)〉 −

∣∣〈ψ′(φ)|ψ(φ)〉
∣∣2
]
. (6.10)

Expanding and simplifying equation 6.9 gives

|ψU4〉 =
1√
2N

N∑

n=0

(
N

n

)1/2

ineinφ|N − n, 0, n〉α−1,α0,α1 (6.11)

from which we find FQ = N and hence ∆φ = 1/
√
N , or equivalently ∆θ =

√
3/(2Jtω cos(θ/3)

√
N). Using the relation δω = hθ/(L2m) first introduced in

Chapter 2 this translates to an uncertainty in δω of

∆(δω) ∼
(

h

L2m

) √
3

2Jtω
√
N

(6.12)

where we have made the approximation that θ/3 � 1. This has the well-known

1/
√
N scaling that is a signature of the standard quantum limit.

We now suggest a possible procedure to read-out a value for φ. It involves

sequentially undoing all the operations performed prior to the phase shift. This

is analogous to standard Mach-Zehnder interferometry where an (inverse) beam
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6.2. Scheme 1: Unentangled particles

splitter is placed after the phase shift to undo the initial beam splitting operation.

The undoing process begins with the application of a −2π/3 phase to site two

giving

|ψU5〉 =
1√

2N3NN !

(
(a†0 + ei2π/3a†1 + ei2π/3a†2) +

ieiφ(ei2π/3a†0 + a†1 + ei2π/3a†2)
)N
|0, 0, 0〉a0,a1,a2 (6.13)

where the terms in the kets now, once again, represent the number of atoms in

sites zero, one and two. Next we undo the tritter by applying an inverse tritter.

The procedure used to create an inverse tritter in this system was discussed in

the previous chapter but is essentially achieved by lowering all three barriers and

allowing the system to evolve for time t = 4π/(9J) (i.e. twice as long as for a tritter)

giving

|ψU6〉 =
1√

2NN !

(
a†0 + ieiφa†1

)N
|0, 0, 0〉a0,a1,a2 (6.14)

which is equivalent to |ψU1〉 but with a phase difference, φ.

Finally we apply an inverse two-port 50:50 beam splitter. This is achieved in

just the same way as the two-port beam splitting operation described above, but

with a hold time of t = 3π/(4J) rather than t = π/(4J). The resulting state is

|ψU7〉 =
1√
N !

(
cos
(
φ

2

)
(a†0)− sin

(
φ

2

)
(a†1)

)N
|0, 0, 0〉a0,a1,a2 (6.15)

meaning the probabilities of detecting each atom at site zero and site one are

P0 = cos2

(
φ

2

)
(6.16)

P1 = sin2

(
φ

2

)
.

Since the atoms are independent the total number detected in the two sites is given

by a binomial distribution. The mean number of atoms detected at site zero is

therefore 〈n0〉 = N cos2(φ/2) and at site one it is 〈n1〉 = N sin2(φ/2). By counting
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the number of atoms detected at each site we can determine φ, and hence δω, just

as in a typical Mach-Zehnder interferometer.

To summarise, we can measure rotations at the standard quantum limit as fol-

lows:

1. Apply a two-port 50:50 beam splitter to the first two modes of |N, 0, 0〉a0,a1,a2 .

2. Then apply a tritter to the resulting state.

3. Apply a 2π/3 phase to site two.

4. Leave the system to evolve for time tω under the rotation, δω.

5. Apply a −2π/3 phase to site two.

6. Perform an inverse tritter operation on the state.

7. Apply an inverse two-port 50:50 beam splitter to the first two modes.

8. Count the number of atoms in each site.

We will now show how two different entangled states can be created in this

system, and how using a similar method to above, a small rotation, δω, can be

measured. We compare the precision of these entangled states with that of the

scheme above.

6.3 Scheme 2: The bat state

The first entangled state we create is the bat state. We begin with N/2 atoms on

site zero and on site one, i.e. |ψB0〉 = |N/2, N/2, 0〉a0,a1,a2 . This number squeezed

state could be achieved by slowly applying a double well trapping potential to a

condensate so that a phase transition occurs to the Mott insulator state. States

with approximately equal numbers of BEC atoms (N ∼ 1000) on two lattice sites

have indeed already been demonstrated in a one-dimensional optical lattice [67].

We assume we begin with |ψB0〉 and that the barriers between the three sites are

high. As in scheme 1, a two-port beam splitter is applied to the first two modes of

|ψB0〉 by lowering the potential barrier between sites zero and one for t = π/(4J).
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6.3. Scheme 2: The bat state

The resulting output is a bat state in the site basis which is given by

|ψB1〉 =
1√

2N (N/2)!

(
(a†0)2 + (a†1)2

)N/2
|0, 0, 0〉a0,a1,a2 (6.17)

where a global phase has been ignored. As in the previous scheme we now need to

convert this into a bat state in the flow basis so as to have a superposition of atoms

flowing in opposite directions around the ring.

This is achieved by applying a tritter followed by a 2π/3 phase to site two as

before. We then let the system evolve under the influence of δω for tω with the

barriers low giving

|ψB4〉 =
1√

2N (N/2)!

(
(α†−1)2 + ei2φ(α†1)2

)N/2
|0, 0, 0〉α−1,α0,α1 (6.18)

where φ is again given by φ = 2
√

3Jtω sin(θ/3). The precision afforded by this

scheme is determined using equation 6.10 and is found to be ∆φ = 1/
√
N(N/2 + 1)

meaning ∆θ =
√

3/(2Jtω cos(θ/3)
√
N(N/2 + 1)). The uncertainty in δω is therefore

∆(δω) =
(

h

L2m

) √
3

2Jtω cos(θ/3)
√
N(N/2 + 1)

∼
(

h

L2m

) √
3√

2JtωN
, (6.19)

where we have made the approximations N � 1 and θ/3 � 1. This has the same

number scaling as the Heisenberg limit showing the bat state is a good candidate

for precision measurements of rotations.

We now suggest a possible way to readout the phase information which, as before,

begins by sequentially undoing all the steps prior to the application of δω, that is,

we first apply a −2π/3 phase to site two followed by an inverse tritter and an inverse

two-port 50:50 beam splitter operation. This results in the state

|ψB7〉 =
1

2N (N/2)!

((
a†0 − ia

†
1

)2
+ ei2φ

(
−ia†0 + a†1

)2
)N/2

|0, 0, 0〉a0,a1,a2 . (6.20)

This scheme is very similar to the scheme described in reference [100], where a bat

state is used to measure a phase difference in a general Mach-Zehnder interferometer
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set-up, and in fact results in the same output. The difference between the schemes

is that ours has been adapted to measure a rotation around a ring of lattice sites

rather than a general phase between two paths.

To determine φ we use the readout scheme described (in detail) in reference

[100]. Essentially, after step 7 the system is left to evolve with the barriers high for

t = π/(16V ) (note in the original paper t = π/(8U) because U = 2V here). The

trapping potentials are then switched off and after some expansion time interference

fringes are recorded. These two steps are the readout steps and are what we shall

refer to as step 8. The scheme is repeated many times and the visibility of the fringes

is calculated as in reference [100]. From these visibility measurements we determine

φ directly.

The final scheme we describe creates and uses a NOON state to measure δω and

also allows for Heisenberg limited precision. We then compare the precision of the

three schemes in the presence of loss so as to see which is the more experimentally

viable.

6.4 Scheme 3: The NOON state

Again this scheme is very similar to scheme 1, the only difference is that the two-

port 50:50 beam splitter (and its inverse) is replaced with a two-port quantum beam

splitter (and an inverse two-port quantum beam splitter). A two-port quantum beam

splitter (QBS) is defined as a device [90] that outputs a NOON state of the form

(|N, 0〉+ eiξ|0, N〉)/
√

2 when |N, 0〉 is inputted.

The scheme, as before, begins with the three potential barriers raised and N

atoms on site zero, |ψN0〉 = |N, 0, 0〉a0,a1,a2 . The first step is to apply the QBS. This

is done using a scheme proposed in reference [51].

The QBS begins with the application of a two-port 50:50 beam splitter between

sites zero and one, as previously described. A π/2 phase is then applied to one of the

two sites using an energy offset as above. At this stage V � J and the interactions

are tuned such that their strength on one site is an integer multiple of the strength
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6.4. Scheme 3: The NOON state

on the second site 1. The system is left to evolve for t = π/(2V ) in this regime after

which a second two-port beam splitter is applied. These steps output

|ψN1〉 =
1√
2N !

(
(a†0)N + eiξ(a†1)N

)
|0, 0, 0〉a0,a1,a2 . (6.21)

where ξ is some relative phase established by the splitting procedure.

Here we have a superposition of all N atoms on site zero and all on site one.

At the equivalent stage in scheme 1 we had N single-particle superpositions (see

equation 6.6). It is this difference that will allow us to achieve Heisenberg limited

precision but in order to measure δω we must convert this site superposition into a

flow superposition. The procedure to achieve this is exactly the same as in schemes

1 and 2. Therefore, after the application of δω for time tω we have

|ψN4〉 =
1√
2N !

(
(α†−1)N + eiξeiNφ(α†1)N

)
|0, 0, 0〉a0,a1,a2 . (6.22)

Using the FQ and the Cramér-Rao lower bound we find the maximum resolution of

this scheme is ∆θ =
√

3/(2Jtω cos(θ/3)N) meaning, for θ/3� 1,

∆(δω) ∼
(

h

L2m

) √
3

2JtωN
. (6.23)

So we see the NOON state offers a slight improvement in resolution over the bat

state as although it has the same number scaling the numerical factor is
√

2 better.

However, as we shall show in chapter 6.5.1 this slight improvement in resolution

comes at a great experimental expense.

First, however, we suggest a possible readout method. It begins with the removal

of the 2π/3 phase followed by the application of an inverse tritter which results in

the state

|ψN6〉 =
1√
2N !

(
(a†0)N + eiξeiNφ(a†1)N

)
|0, 0, 0〉a0,a1,a2 . (6.24)

The final step is to apply an inverse two-port quantum beam splitter to the system.

1This ensures that the required superposition is created independent of the total number of
atoms.
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This is achieved by sequentially undoing all the steps of the QBS. So,

1. Apply an inverse two-port beam splitter.

2. Raise the barriers and tune the interactions as before.

3. Leave the system to evolve for t = π/(2V ).

4. Apply a −π/2 phase to the same site as before.

5. Apply a second inverse two-port beam splitter.

6. Raise the barriers.

This results in all N atoms detected at site zero or all at site one with respective

probabilities,

P0 = cos2

(
Nφ

2

)
(6.25)

P1 = sin2

(
Nφ

2

)
.

By repeating the scheme many times, each time recording the site on which all N

atoms are detected, φ, and hence δω, can be determined.

6.5 Comparisons and practical limitations

Both schemes 2 and 3 allow Heisenberg limited precision measurements of small

rotations with the precision capabilities of scheme 3 being marginally favourable.

Our descriptions thus far, however, have only considered the idealised case and

we have neglected important physical processes that may limit the experimental

feasibility of the schemes. We now reevaluate the schemes when these limitations

are accounted for.

6.5.1 Particle loss

The first unwanted physical process we consider is the loss of atoms to the environ-

ment. It is well known that NOON states undergoing particle loss decohere quickly,

and so soon lose their Heisenberg limited sensitivity. Here we wish to see how resis-

tant the bat state is to particle loss in comparison to the NOON and unentangled
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states by determining the precisions achievable by all three schemes in the presence

of loss.

We investigate the effects of loss using the imaginary beam splitter model in-

troduced in Chapter 3, that is, an imaginary beam splitter with transmissivity ηk

is placed in momentum mode k. In this way the rate of loss can be varied in each

mode by altering the value of ηk. By calculating the precision that can be achieved

by each scheme for different values of ηk we can therefore determine which scheme

affords the best precision for a particular loss rate.

In this model the imaginary beam splitters are placed between the two beam

splitters of a MZI. This is equivalent to placing them in the momentum modes

during time tω in our system. Since losses are equally likely from both modes we

consider equal loss rates from each momentum mode i.e. η1 = η−1 = η. As was

shown in Chapter 3 the FQ of the system can be calculated for different η using the

equation

FQ =
N∑

l=0

FQ




l∑

lα=0

plα1 ,l−lα1
|ξlα1 ,l−lα1

(φ)〉〈ξlα1 ,l−lα1
(φ)|,


 , (6.26)

where FQ[·] denotes the FQ of the state in brackets, lα1 is the number of particles

lost from mode α1, plα1 ,l−lα1
is the probability of each loss event and

|ξlα1 ,l−lα1
(φ)〉 =

1
√
plα1 ,l−lα1

N−(l−lα1 )∑

n=lα1

βne
inφ
√
Bn
lα1 ,l−lα1

|n− lα1 , N − n− (l − lα1)〉.

(6.27)

Here

Bn
lα1 ,l−lα1

=
(
n

lα1

)(
N − n
l − lα1

)
ηN (η−1 − 1)l (6.28)

and βn is

βn =

√
n!
√

(N − n)!
2N/2(n/2)!(N/2− n/2)!

× 1 + (−1)n

2
(6.29)
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for the bat state and

βn =





1/
√

2 for n = 0, N

0 for n 6= 0, N

for the NOON state. FQ is found numerically using

FQ = Tr[ρ(φ)A2] (6.30)

where A is the symmetric logarithmic derivative defined in Chapter 3.

Figure 6.1 shows how ∆φ varies with η for the three schemes when N = 10. As

expected the NOON state achieves the best precision when η = 1 (when there are

no losses). However, as η decreases the bat state soon becomes the favoured scheme.

The lower bound of the shaded area is the Heisenberg limit and the upper bound is

the precision achievable when an unentangled, or classical, initial state is used, as in

scheme 1. We see the classical state soon outperforms the NOON state. However,

the bat state outperforms the classical state for approximately half the loss rates

shown. Since it is unlikely half the atoms would be lost in an experiment, the bat

state, unlike the NOON state, appears to offer an experimentally feasible increase

in precision over classical precision measurement experiments. In the remainder of

the paper we therefore assess the impact of experimental limitations on just scheme

2.

6.5.2 Variations in N between experimental runs

Our scheme requires many repetitions of the gyroscope procedure in order to build

up interference fringes from which φ can be determined. We have assumed thus far

that each run involves exactly N atoms. However, in an experiment N is likely to

fluctuate between runs. The effect of fluctuations of order
√
N on the bat state are

discussed in reference [100]. In that case, an ordinary two-path linear interferometer

is used but the same results apply here. It was shown that while the interference

fringe signal is degraded by these fluctuations, the approximate Heisenberg limited

sensitivity of the scheme is not destroyed. As expected, the larger N , the smaller
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Figure 6.1: The uncertainty of φ for different rates of loss, η, for N = 10. The blue
dashed line shows ∆φ for scheme 2 and the green solid line shows ∆φ for scheme
3. The upper bound of the shaded region is the precision afforded by scheme 1
(the standard quantum limit - black dashed-dotted line) and the lower bound shows
the Heisenberg limit. Scheme 3 soon becomes less favourable than scheme 1, whilst
scheme 2 is much more robust to losses.

the fluctuation effects, which is good since we would ideally work in the limit of

large N since this gives the best improvement in precision.

6.5.3 Interactions

So far we have considered only the idealised system setting V = 0 (apart from in

the detection step, step 8, where we require large interactions to minimise small

tunnelling effects), and J = 0 in the low coupling regime. While interactions can

be tuned to extremely small values using Feshbach resonances it is an unrealistic

assumption to discount them altogether. Likewise it is unrealistic to completely

neglect coupling effects in the low coupling regime. Here we consider the effect of

non-zero interactions and non-zero coupling strengths in the low coupling regime on

scheme 2. As in the previous chapter we determine experimental orders of magnitude

for V and J using the approximations [101] given in equations 5.19 and 5.20. In

the high coupling regime, where V0 = 2ER, we have previously shown V ∼ 10−3Hz

and J ∼ 10Hz. While in the low coupling regime, where V0 = 35ER [97], we find
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V ∼ 10−2Hz and J ∼ 10−2Hz. Note that in the detection process the system evolves

for t = π/(16V ) with high potential barriers. Here we require large interactions to

minimise small coupling effects. Taking as = 9000a0 [98] gives V ∼ 100Hz. Using

these values we assess the impact of non-zero interactions and coupling strengths on

the system as a whole.

As N increases the occupation number per site increases and as such the effect

of non-zero interactions become more pronounced. We would therefore like to de-

termine the maximum number of atoms our system can tolerate before these effects

become too destructive. To do this we measure the fidelity between the output of

the gyroscope in the idealised case in which V = 0 (except in step 8) and J = 0

in the low coupling regime with the same output when V ∼ 10−3 in the high cou-

pling regime (J = 10Hz in this regime), V ∼ 10−2 in the low coupling regime and

J ∼ 10−2 in the low coupling regime. The maximum N that can be tolerated is

taken to be the first N for which this fidelity falls below 0.99. In this simulation we

have taken tω = 1s and θ = π/100. Figure 6.2 shows how the fidelities decrease as N

increases. We see that by our definition the maximum number of atoms the system

can tolerate is approximately 60. Squeezed states with larger numbers of atoms have

been demonstrated experimentally [67] and as such interactions are likely to be the

main factor that limits N in, and hence the precision capabilities of, this scheme.

We note here that this simulation takes into account the effects of non-zero

interactions (and non-zero coupling strengths in the low coupling regime) throughout

the entire scheme. In section 6.2 we discussed how a 2π/3 phase could be applied

to site two using an energy off-set ε2. The required phase was achieved by applying

the off-set for time tε = 4π/(3ε2). This assumed both J = 0 and V = 0 which is

obviously experimentally unrealistic. We have accounted for this in the simulation

by setting V = J =∼ 10−2 since the barriers were high during the application of ε2.
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Figure 6.2: The fidelity between the output of scheme 2 in the idealised case (where
V = 0, and J = 0 in the low coupling regime) with the output in the non-idealised
case (where V ∼ 10−3 in the high coupling regime, V ∼ 10−2 in the low coupling
regime and J ∼ 10−2 in the low coupling regime) for different numbers of input
atoms. Here θ = π/100 and tω = 1s.

6.5.4 Comparison with other schemes

At this point we note that our precision analysis is for the case of a single shot, i.e.

N atoms are loaded into the lattice and a single measurement is made over time tω.

In reality, the results of many runs will be combined to give a measurement of the

rotation. Suppose we repeat the measurement ν times to give a total integration

time of τ = νtω. In this case, we get

∆(δω) ≈
(

h

L2m

) √
3√

2νJtωN
=
(

h

L2m

) √
3√

2tωτJN
=

S√
τ
, (6.31)

where the short-term sensitivity is given by

S =
(

h

L2m

) √
3√

2tωJN
. (6.32)

Substituting in approximate values for our set-up in the strong coupling regime

(i.e. J ≈ 10Hz, N ≈ 60, tω ≈ 1s and L = 2π × 20µm [37]), we get S ≈ 10−3

rads−1/
√

Hz. This compares unfavourably with other atom interferometry schemes
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which can achieve sensitivities better than 10−8 rads−1/
√

Hz [107]. These other

schemes achieve improved sensitivities by having much larger particle fluxes (e.g.

6× 108 atoms/s) and much larger areas enclosed by their interferometer paths (e.g.

22 mm2) [107].

The scheme presented here is therefore unlikely to challenge the overall precision

offered by other techniques, except perhaps in specialised cases where the number

of atoms available is restricted to a small number or the area of the interferometer

must be very small. The main interest of this scheme, however, is that it proposes

a means of creating macroscopic superpositions of flows and that these could show

evidence of Heisenberg scaling of measurement precision. This in itself would be of

fundamental interest. In order to improve its short-term sensitivity, however, it is

likely to be difficult to create entangled states with very large numbers of particles,

so a different configuration would need to be used to greatly enhance the enclosed

area of the interferometer.

6.6 Conclusion

We have presented three schemes to measure small rotations applied to a ring of

lattice sites by creating superpositions of ultra-cold atoms flowing in opposite di-

rections around the ring. Two of these schemes are capable of Heisenberg limited

precision measurements where the precision scales as 1/N . The two schemes use

different entangled states. While the scheme that uses a NOON state gives slightly

better precision in the idealised case, after consideration of experimental limitations

it was shown that the bat state is likely to be the preferred candidate largely due

to its robustness to particle loss. Importantly the bat state outperformed the case

of unentangled particles for modest loss rates. The effects of non-zero interactions

were shown to limit the preferred scheme to approximately 60 atoms and as such this

scheme is not capable of outperforming the precision of existing atomic gyroscopes

at present. However, the interesting result is the Heisenberg scaling of the precision.

All the steps in this scheme should be within reach of current technologies which is
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promising for its experimental implementation.

Whilst the bat state was shown to beat the classical gyroscope for modest loss

rates, for η . 0.5 the unentangled state offered better precision than the bat state.

Ideally we would like to find a state that beats the precision capabilities of the

classical gyroscope for all loss rates. In the next chapter we investigate the precision

that can be attained with a different initial state which uses many momentum modes

rather than just two. We find that using multiple momentum modes the precision

capabilities of the uncorrelated initial state can indeed be beaten for all loss rates.
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Chapter 7

A multimode gyroscope

In the previous chapter we presented a scheme designed to precisely measure rates

of rotation. The precision capabilities of different initial states were investigated,

both in the presence and absence of particle losses with the bat state proving the

most promising overall. All the initial states, however, were two-mode states, that

is, each atom had either +1 or -1 quantum of angular momentum. In this chapter

we show that when the Hilbert space consists of many momentum modes, rather

than just two, rotations can be measured with Heisenberg limited precision and can

be even more robust to the effects of particle loss than the bat state.

7.1 The system

As before, the gyroscope scheme uses a BEC of N atoms. However, we now confine

the atoms to a continuous one-dimensional optical ring potential rather than a ring

of lattice sites. Again, we take the circumference of the ring to be L = 2πR and

describe the position of an atom in the ring by the single variable x = ϕR (see figure

7.1). The potential is intersected by a focused blue-detuned laser beam which acts

as a barrier for the atoms. It is rotated around the circumference of the ring at

angular velocity ω = hθ/(mL2). This set-up is shown in figure 7.1 and is described
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in the co-rotating frame of reference by the Hamiltonian H = HK +HB +HI where,

HK =
∞∑

k=−∞
E0

(
k − θ

2π

)2

a†kak

HB =
b

L

∞∑

k1,k2=−∞
a†k1ak2

HI =
g

2L

∞∑

k1,k2,q=−∞
a†k1a

†
k2
ak1−qak2+q. (7.1)

Here, and throughout this chapter, a†k and ak create and destroy an atom with

angular momentum k~ respectively, m is the mass of an atom, b is the strength of

the barrier, g is the inter-atomic interaction strength and E0 = 2π2~2/(mL2) is the

smallest non-zero kinetic energy of a single atom.

Figure 7.1: Top: A visual representation of the system. The N atoms of a BEC are
trapped in an optical ring potential and are ‘stirred’ by a barrier which moves with
angular velocity ω = hθ/(mL2). The green lines represent the loss of atoms to the
environment which will be discussed later in the chapter. Bottom: An alternative
view of the system. The black box represents the barrier. The position of an atom
is given by x = ϕR where R is the radius of the ring.
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7.2 Creating the initial state

The dynamics of this system, in particular the effects of changing the inter-particle

interaction strength, were investigated in detail in reference [111]. It was shown

in this work that it is possible to put the system into a superposition which has a

total angular momentum difference of N~ whilst spreading the momentum of the

individual atoms over many momentum modes. This state is given by |ψTG〉 =

(|0〉+ |N〉)/
√

2 (the terms in the kets represent the total angular momentum of the

system divided by ~) and shall be referred to as a TG cat state. Its structure is very

different to a NOON state, |ψNOON〉 = (|N, 0〉 + |0, N〉)/
√

2 (here the terms in the

kets represent the number of particles with 0 and ~ angular momentum respectively),

which is also a superposition state that has a total angular momentum difference

of N~. As we shall show, this structural difference has huge consequences on the

TG cat state’s ability to make precise rotation measurements in the presence of

particle loss. Here we briefly describe how to create both the NOON and the TG

cat state following the work of references [111, 112]. The main focus of this chapter,

however, is how this TG cat state can be used to make precise and robust rotation

measurements.

To understand the state creation procedure we begin by considering the dynamics

of a single atom in the system. The Hamiltonian describing this set-up in the co-

rotating frame is

H =
~2

2m

(
−i ∂
∂x
− θ

L

)2

+ bδ(x). (7.2)

Writing the wavefunction as

ψ(x) = u(x)eiθx/L (7.3)

and substituting this into the Schrödinger equation we find

− ~2

2m
∂2

∂x2
u(x) + bδ(x)u(x) = Eu(x) (7.4)
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where the boundary conditions mean u(x) = u(x+L)eiθ. To solve this Schrödinger

equation we begin by integrating over the barrier which gives

∂u(x)
∂x

∣∣∣∣
x=0

− eiθ
∂u(x)
∂x

∣∣∣∣
x=L

=
2mbu(0)

~2
. (7.5)

Notice that the E term has disappeared because the barrier is described by a delta

function and as such does not have a width meaning there is no energy across the

it. Using the ansatz u(x) = ei2πξx/L + A0e
−i2πξx/L and the boundary condition

above it is then easy to show A0 = ei2πξS0 where S0 = sin(πξ+ θ/2)/ sin(πξ− θ/2).

Substituting this equation for u(x) into equation 7.5 we find

4πξ~2

mbL
= cot(πξ + θ/2) + cot(πξ − θ/2) (7.6)

which must be solved for ξ in order to determine ψ(x). The discrete solutions ξµ

(where µ = 0, 1, 2, . . .) correspond to the different energy levels of the system which

are given by Eµ = ξ2
µE0.

When θ = π (i.e. the barrier rotates around the circumference of the ring at

angular velocity ω = hπ/(mL2)) equation 7.6 becomes

2π~2ξµ
mLb

= − tan(πξµ). (7.7)

Here, however, one of the solutions has disappeared (it has been squeezed into the

discontinuity of the tan function) meaning the above equation gives solutions for

odd values of µ only. The lost solution is recovered by realising ψ(x) of these lost

solutions has a node at the barrier (i.e. at x = 0), meaning they are unaffected

by the barrier. It was shown in reference [111] the ground state of the system is

therefore given by ψ(x) = ei2πx/L − 1 which is a sine function meaning we have the

required node at x = 0. The energy of this state is E = E0/4. The general solution

for even values of µ was shown to be ξµ = µ+ 1/2.

The ei2πx/L part of the ground state wavefunction has angular momentum ~
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and the −1 part has angular momentum 0. We wish to create a superposition of

these two momentum modes which means we require some coupling to exist between

them. This coupling is achieved through the barrier. We have previously said states

with nodes at x = 0 do not interact with the barrier. This is because the barrier

is described by a delta function. In reality, however, all barriers have some width.

Consequently the wavefunction will have some (small) amplitude across the barrier

and as such there will be some slight interaction. As can be seen from equation 7.1

the barrier acts to couple states with different angular momentum. At θ = π the

ground state of the system is in either the 0 or ~ angular momentum state and as

such the barrier acts to couple these two momentum modes. So by adiabatically

changing the barrier rotation rate from 0 to hπ/(mL2) a 50:50 superposition of the

two angular momentum states is therefore created.

We also note that in an experiment θ is likely to deviate slightly from π. These

deviations will be small meaning ψ(x) ≈ ei2πx/L − 1. Nevertheless as θ moves away

from π the two parts of the wavefunction will no longer have the same amplitude as

the system begins to favour one momentum mode over the other. This means ψ(x)

will no longer be a sine function and as such it will have amplitude at x = 0 thereby

allowing coupling between the two momentum modes. So whilst the ground state

interacts only slightly with the barrier these interactions are possible both due to

the fact that in reality all barriers have some width and the fact that θ cannot be

exactly π in an experiment.

Whilst we are primarily interested in the ground state of the system we note

that when θ = π the first excited state when b = 0 is given by ψ(x) = ei2πx/L + 1.

This is a cosine function meaning that under these conditions the first excited state

has a peak at x = 0 indicating that it will interact strongly with a small barrier.

The energy of this state is E = E0/4 making it and the ground state degenerate at

θ = π and b = 0. However as b is increased more energy is transferred to the excited

state from the barrier than to the ground state since the excited state has a larger

amplitude across the barrier. The degeneracy of the ground and first excited state
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is therefore removed for b > 0.

So far we have only considered a single particle system. We have shown that in

this experimental set-up the particle can be made to be in a superposition where its

angular momentum is 0 and ~ by rotating a small barrier at ω = hπ/(mL2). For

N > 1, however, things become more complicated as the ground state contains many

different momentum configurations. In fact, it contains all |n,N −n〉 configurations

(where the terms in the ket represent the number of atoms with 0 and ~ angular

momentum respectively and n can take any value between 0 and N) at θ = π. We

will now see how this alters our ability to create superposition states.

Let us first consider how to create a multi-particle NOON state, that is, we

want a superposition of all N atoms having 0 angular momentum and all having ~

angular momentum. In order to ensure the atoms in the ground state all have 0 or

all have ~ angular momentum we must raise the energy of states where particles are

distributed between the two momentum modes. This is achieved using the inter-

particle interactions. From equation 7.1 we see HI can be written as

HI =
g

2L
(n̂0(n̂0 − 1) + n̂1(n̂1 − 1) + 4n̂0n̂1) (7.8)

when only the k = 0 and k = 1 modes are occupied, as is the case in the ground

state at θ ≈ π when coupling to other angular momentum modes is weak i.e. when

g is small (here n̂k = a†kak). The interaction energy of the general |n,N −n〉 state is

therefore given by En,N−n = g(N(N − 1) + 2n(N + n))/(2L) from which it is clear

different values of n result in different energies. In particular, we see the energy

is maximised when n = N/2 and minimised when n = 0 or N . Consequently by

introducing small interactions, the degeneracy of the |N, 0〉 and |0, N〉 states with

states where particles are distributed between the two momentum modes is lifted.

For a certain critical interaction strength it has been shown [111, 112] that the

ground state is in a superposition of the form (|N, 0〉 + |0, N〉)/
√

2 i.e. a NOON

state. This critical interaction strength finds a balance between the need to increase

g so as to lift the degeneracy with the need to keep g small so as to prevent couplings
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to other momentum modes because, as can be seen from equation 7.1, interactions

act to couple states with the same total angular momentum, thereby allowing the

atoms to populate momentum modes other than k = 0 and k = 1. For example, the

|0, N, 0〉−1,0,1 is coupled to the |1, N − 2, 1〉−1,0,1 through the operation a†−1a
†
1a0a0

which is allowed by equation 7.1. Therefore as g is increased the NOON state

structure is lost as states other than |N, 0〉0,1 and |0, N〉0,1 gain amplitude. The

total angular momentum of the system, however, remains constant as interactions

conserve angular momentum.

In the limit of infinite short range repulsive interactions the atoms can no longer

pass one another and a Tonks-Girardeau (TG) gas is formed. In the TG regime it is

said the atoms have undergone fermionisation as their energy spectrum is identical

to that of non-interacting fermions [113]. The atoms can, however, have the same

angular momentum. In a TG gas the single-particle momentum distribution spreads

out over an infinite range [114]. These features of the TG gas have already been

confirmed experimentally [115, 116].

It was shown in reference [111] that in this limit of infinite short range interactions

a superposition of the form |ψTG〉 = (|0〉+ |N〉)/
√

2 is created (where the terms in

the ket represent the total angular momentum of the system divided by ~). This

occurs, as although the momentum of the individual atoms can spread over an

infinite number of momentum modes, the total momentum of the system must be

conserved meaning the superposition of 0 and N~ angular momentum remains from

the NOON state. The structure of the state, however, is drastically altered as every

|K〉 consists of different configurations of states with total angular momentum K~.

For example, |0〉 contains states of the form | . . . , n/2, N − n, n/2, . . .〉−1,0,1 and

| . . . , N, . . .〉0 amongst many others. We therefore write |K〉 =
∑

~nK
C~nK |~nK〉 where

|~nK〉 =
∏
k(a
†
k)
nk/
√
nk!|vac〉 and

∑
k nkk = K. In contrast to the NOON state, the

TG cat state can be created for large N [111, 112] which is promising for its use in

precision measurement schemes.

We also note that, as one would expect, when there are no interactions (g = 0)
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the particles behave completely independently of one another and the state of the

system is therefore |ψU〉 = (a†0 + a†1)N/
√

2N |vac〉, or equivalently,

|ψU〉 =
1√
2N

N∑

n=0

(
N

n

)1/2

|n,N − n〉0,1, (7.9)

where the terms in the ket represent the number of atoms with 0 and ~ angular

momentum respectively. Here each particle is in an individual superposition of

having 0 and ~ angular momentum. As can be seen from the above equation, the

total angular momentum of the system therefore has a binomial distribution.

During the course of this chapter we compare the precision of each of these three

states both in the presence of and the absence of particle losses. We find that whilst

the precision achieved by the NOON and TG cat state is equivalent in the idealised

setting, the precision capabilities of the TG cat state drastically outperform those

of the NOON state when particle losses are accounted for. In fact, the TG cat state

allows for precisions better than the classical initial state for all loss rates. First,

however, we describe how the system can be used to make rotation measurements.

7.3 Measuring the rotation

A schematic of the measurement scheme is given in figure 7.2. It shows the five dif-

ferent stages involved in the measurement procedure each of which we now describe.

Step 1 corresponds to the creation of the initial state (either the TG cat state, the

NOON state or the unentangled state) and has already been described. Immediately

after the creation of the initial state the states of the system are degenerate and

therefore the system will not change until the barrier’s rotation rate is altered as

indicated by step 2. The additional rotation we wish to measure, δω, is then non-

adiabatically applied to the loop (by quickly altering the rate of rotation of the

barrier from πh/(mL2) to (δω + π)h/(mL2)). The momentum states are then no
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longer degenerate and the Hamiltonian describing the system becomes

H ′ =
∞∑

k=−∞
E0

(
k − 1

2
+
δθ

2π

)2

a†kak (7.10)

where for now we have ignored the HI and HB terms since the barrier height is

small and interactions do not couple states of different total angular momentum or

change |K〉 when the rotation rate is changed.1 The additional rotation therefore

changes the energy of different states according to H ′|Ψ〉 = E|Ψ〉 where

E = E0

∞∑

k=−∞

(
k − 1

2
+
δθ

2π

)2

nk (7.11)

and nk is the number of atoms with momentum k~. If we let the system evolve

under the influence of δω for time t the NOON state becomes

|ψ(δθ)NOON〉 =
1√
2

(
|N, 0〉+ e−iE0δθNt/(π~)|0, N〉

)
(7.12)

where a global phase has been ignored. Using the previously introduced equation

FQ = 4[〈ψ′|ψ′〉 − |〈ψ′|ψ〉|2] we find

FQNOON =
(
E0Nt

π~

)2

. (7.13)

Similarly the additional rotation causes the unentangled state to acquire a phase

transforming |ψU〉 to

|ψ(δθ)U〉 =
1√
2N

N∑

n=0

(
N

n

)1/2

eiE0δθnt/(π~)|n,N − n〉 (7.14)

resulting in FQU = (E0t/(π~))2N . And so, as expected, the NOON state has 1/
√
N

better precision than the unentangled state in the idealised system. We now wish

to determine the precision of the TG cat state.

1We have confirmed the final result of this section holds when HI and HB are accounted for
numerically.
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Using the relation H ′|~nK〉 = E~nK |~nK〉 we find

E~nK =
∑

k

E0

(
k − 1

2
+
δθ

2π

)2

nk

= E0

[(
δθ

2π
+
K

N
− 1

2

)2

N + const.

]
(7.15)

where const. =
∑

k nkk
2 − K2/N . This means every |~nK〉 acquires a phase of the

form e−iE~nK t/~ and consequently |ψTG〉 becomes

|ψTG(δθ)〉 =
1√
2

(|0̃〉+ e−iE0Nδθt/(π~)|Ñ〉) (7.16)

where a global phase has been ignored and the tildes account for the constant phase

factors picked up by the |~nK〉 terms. At this point we calculate the FQ and find

FQ =
(
E0Nt

π~

)2

(7.17)

which is exactly the same as for the NOON state. This FQ means the uncertainty

in our measurement of δω is

∆(δω) =
h

mL2

π~
E0Nt

=
1
Nt

(7.18)

and so we see that, through the use of multiple momentum modes, the TG cat state

can achieve the same measurement precision as the two-mode NOON state in the

idealised set-up.

It should be noted that this scheme relies on the application of δω being confined

to time t. This could be achieved by creating the initial state with the system’s

rotation axis perpendicular to the rotation axis we wish to measure. The system

could then be non-adiabatically evolved in such a way that its rotation axis became

parallel to the rotation axis we wish to measure. It would then be left in this

configuration for time t.

Although the primary concern of this thesis is to determine the best initial state
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to make precision measurements and as such we are not generally concerned with

read-out methods it is worth noting that a possible way to read-out the phase dif-

ference here is to non-adiabatically remove δω, leaving the barrier rotating at its

original rate of hπ/(mL2). The rotation rate would then be adiabatically reduced

to a point where the ground and first excited states are |0〉 and |N〉 respectively.

Finally the trapping potential would be removed and the condensate imaged. The

final state of the system, which depends on δω, is then determined from the spread in

the radial distribution of the condensate. By repeating the scheme many times, each

time recording the final angular momentum of the system δω can be determined.

Figure 7.2 summarises the 5 steps of the scheme.

Figure 7.2: A step-by-step representation of the scheme. Step 1 is the state creation
process, step 2 shows that the state of the system then remains unchanged until
the barrier rotation rate is altered, step 3 shows the application of the additional
rotation for time t. Steps 4 and 5 then undo steps 1 and 2 and are analogous to the
second beamsplitter in a MZI.

7.4 Sensitivity

As in the previous chapter we wish to compare the sensitivity of this device with

that of current atomic gyroscopes. Consequently we must take into account the

number of runs, ν required to determine δω. With each run the precision improves

as 1/
√
ν, yet the more runs the longer the total integration time τ = νt. Therefore,
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using equation 7.18, we find

∆(δω) =
1

Nt
√
ν

=
S√
τ

(7.19)

where S, the short term sensitivity, is given by S = 1/(N
√
t). In order to match

the sensitivities of current atomic gyroscopes [107] we therefore require N ∼ 108 for

t = 1s. This is still a relatively large particle flux. The sensitivity could, however, in

theory be improved using superpositions that involve larger total angular momentum

states.

7.5 Precision capabilities in the presence of particle loss

Whilst the NOON and TG cat state allow for the same measurement precision in

the idealised system we will now show that the TG cat state is capable of much

more precise measurements in the presence of particle loss. We consider the case of

equal rates of loss from each momentum mode as there is no reason to presume the

rate of loss from one mode is different from any other. We first describe the effects

of loss on a general system withM modes and then apply the results to our rotating

ring potential system.

As before, particle losses can be modelled by placing an imaginary beam splitter

with transmissivity ηk, in each of the M modes. However, it was shown in Chapter

3 that this is equivalent to using a master equation of the form

ρ̇(t) =
Γ0

2
(2a0ρ(t)a†0 − a

†
0a0ρ(t)− ρ(t)a†0a0)

+
Γ1

2
(2a1ρ(t)a†1 − a

†
1a1ρ(t)− ρ(t)a†1a1) + . . .

+
ΓM−1

2
(2aM−1ρ(t)a†M−1 − a

†
M−1aM−1ρ(t)− ρ(t)a†M−1aM−1) (7.20)

which for equal rates of loss from each mode simplifies to

ρ̇(t) = Γ
∑

k

(akρ(t)a†k − n̂kρ(t)) (7.21)
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where n̂k = a†kak is the number operator of mode k and the sum is over all possible

modes. We now solve this model by separating ρ into N + 1 sections where each

section has the same particle number,

ρ(t) =
N∑

l=0

y(N−l)(t)ρ(N−l). (7.22)

Here ρ(N−l), which is constant in time, is a section of the whole density matrix with

N − l particles (i.e. l particles have been lost to the environment) and y(N−l)(t) is

a time dependent coefficient. We can split the density matrix up in this manner as

each ρ(N−l) is represented in an orthogonal subspace.

Differentiating equation 7.22 we see

N∑

l=0

ẏ(N−l)(t)ρ(N−l) = Γ
∑

k

(akρ(t)a†k − n̂kρ(t))

= Γ
N∑

l=0

(N − l)y(N−l)(t)
(
ρ(N−l−1) − ρ(N−l)

)
(7.23)

where

ρ(N−l−1) =
1

N − l
∑

k

akρ
(N−l)a†k. (7.24)

In the latter of the two equations we have used the fact that Tr(
∑

k akρ
(N−l)a†k) =

∑
k Tr(n̂kρ

(N−l)) = N − l to normalise ρ(N−l−1) to 1. Equating coefficients of ρ(N−l)

we find

ẏ(N−l)(t) = Γ
[
(N − l + 1)y(N−l+1)(t)− (N − l)y(N−l)(t)

]
(7.25)

which has solution

y(N−l)(t) =
(
N

l

)
ηN−l(1− η)l (7.26)

where η = e−Γt. The total density matrix of the system at time t is therefore

ρ(t) =
N∑

l=0

(
N

l

)
ηN−l(1− η)lρ(N−l). (7.27)

As mentioned in Chapter 3, for a system consisting of X orthogonal subspaces
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the total FQ of the system is the sum of the FQ of each of theX individual subspaces.

The total FQ of this system for loss rate η is therefore

FQη =
N∑

l=0

(
N

l

)
ηN−l(1− η)lFN−lQ (7.28)

where FN−lQ is the FQ of ρ(N−l) which is calculated using the relationship FN−lQ =

Tr[ρ(N−l)A2]. So FQη is easily determined for all η providing the N + 1 values of

FN−lQ are known.

For an unentangled initial state we know FNQ ∝ N . The loss of a single particle

has no influence on the remaining N−1 particles and therefore FN−lQ ∝ (N−l). The

total FQ for a given rate of loss is therefore FQη ∝ Nη. In contrast, however, the

loss of a single particle from a NOON state completely destroys the superposition

meaning FN−lQ = 0 for all l except l = 0 giving FQη ∝ N2ηN . The effects of loss on

the TG cat state are numerically compared with the NOON and unentangled initial

states in figure 7.3. All numerical simulations use a truncated angular momentum

basis of 18 modes. In order to account for this the interaction strength was rescaled

as described in reference [111]. Here it was shown that, after rescaling, the error

produced by using a truncated basis was, at worst, 3% which was a factor of 8 times

smaller than without the rescaling.

We see, as expected, the NOON and the TG cat state offer the same precision

when there is no loss, η = 1, and the precision of the unentangled state is much

worse. As demonstrated previously, when η decreases the precision capabilities of

the unentangled state soon outperform those of the NOON state. Importantly,

however, the TG cat state outperforms the unentangled state for all loss rates and

therefore could prove extremely valuable to the metrology community.

Recently there has been much interest in finding a balance between the need for

quantum correlations to make precise measurements with the need for robustness to

particle loss. With this goal in mind references [1, 2] found the theoretical optimal

state for two-mode interferometry in the presence of particle loss, that is, the initial
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Figure 7.3: The uncertainty in δθ for equal rates of loss from all momentum modes
for N = 5. The green solid line shows the precision of the NOON state, the black
dashed line shows the unentangled initial state, the red dashed-dotted line shows
the optimal two-mode state and the solid blue line shows the TG cat state. The TG
plot is for b/L = 0.008E0 (i.e. a small barrier) and g/L = 1085/(2π)E0 (i.e. deep in
the TG regime).

state that affords the best precision for a particular amount of loss. The precision of

the optimal two-mode initial state is shown in figure 7.3 (red dashed-dotted line).2

It is immediately clear that the TG cat state outperforms the precision capabilities

of the two-mode optimal initial state for all loss rates. Not only this, the optimal

two-mode initial state very much depends on the amount of loss as the structure of

the state changes with η thereby making its experimental implementation difficult.

The TG cat state has therefore provided a clear demonstration of how, by spread-

ing particle observables over many modes rather than just two, precise and robust

phase measurements can be made. To our knowledge no state has yet matched the

robustness of unentangled particles and as such unentangled states are the most

practical choice for phase measurements in a laboratory. However, the TG cat state

has demonstrated similar robustness to particle loss as the two-mode unentangled

2Note that the optimal state is calculated using an upper bound to the true FQ and as such
the true optimal two-mode state will have slightly worse precision. However, as discussed in [2]
the difference between the precision of the upper bound optimal initial state and the true optimal
initial state will be small. Also the fact that the optimal two-mode state is determined using an
upper bound only strengthens our argument that the TG cat state far outperforms the two-mode
optimum for all loss rates.
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state whilst achieving Heisenberg limited precision in the idealised set-up. It there-

fore has the potential to alter the way precision measurements are made.

7.6 The effects of using an imperfect TG cat state

So far we have shown that the TG cat state acts as an ideal initial state for precision

measurements. Its production, however, requires large interactions (g) and a small

barrier height (b). We therefore wish to investigate what happens to the precision

of our measurements if g and b are not exactly as required to create the TG cat

state. We do this by determining the FQ for different values of b and g as shown in

figure 7.4. For now we consider only the idealised system in which no particles are

lost, however an interesting avenue for future research would be to investigate the

effects on FQ of varying b and g for different rates of loss. As expected FQ for small

b and large g (TG cat regime) is given by (NE0t/(π~))2. This value holds well for

increasing barrier height and decreasing interaction strength. Eventually, however,

there comes a point after which the barrier is too high and the interactions are too

small to give Heisenberg limited measurements.

This is because as the interaction strength is decreased the quantum correlations

between the atoms are reduced and they behave more independently of one another.

When there are no interactions the atoms behave completely independently and the

precision therefore scales as 1/
√
N . As the barrier height increases the coupling be-

tween states of different total angular momentum is increased therefore preventing

the creation of a TG cat state, again leading to less precise measurements. Impor-

tantly, however, we see that the scheme holds its Heisenberg limited precision well

for moderate interaction strength and barrier height. Therefore, we conclude that

as long as the initial state, |ψ(0)〉, is close in form to that of the TG cat state the

precision of the system is not significantly altered.
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Figure 7.4: FQ for different values of barrier height and interaction strength for
N = 5 (M = 18). The optimum initial state is found when the barrier is small
and the interactions are large. However, for moderate variations in b and g away
from their optimum values, FQ is not significantly altered. This means the system
will hold its precision well in experiments where exact values of b and g cannot be
assured.

7.7 Conclusion

To conclude we have shown how by spreading particle observables over many mo-

mentum modes, rather than just two, rates of rotation can be measured with the

same precision as that achieved using a two-mode NOON state in an idealised set-

up. The multimode TG cat state has been shown, however, to be much more robust

to the effects of particle loss than the NOON state. In fact the TG cat state was

shown to achieve precisions better than an unentangled two-mode state for all loss

rates. Perhaps even more importantly, its precision capabilities outperform the two-

mode theoretical optimum state for all η. This work is of fundamental importance

because it has demonstrated an experimentally feasible way to make highly precise

and robust rotation measurements.
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Chapter 8

Optimising initial states in the

presence of loss: The general

case

The focus of this thesis thus far has been developing ways to improve the preci-

sion of rotation measurements by optimising the initial state of a lossy gyroscope

scheme. In particular, the central theme has been finding states that allow for (close

to) Heisenberg limited precision in an idealised setting yet that are robust to the

effects of particle loss. As previously mentioned there has been a recent flurry of

interest in finding a balance between the need for phase sensitivity and the need for

robustness to loss of general measurement schemes [1, 2, 74, 75, 117, 118] as quan-

tum correlations are required to push the precision of current measurement schemes

any further. One particularly interesting result is the demonstration of a theoretical

optimum initial state for a lossy two-mode general measurement scheme [1, 2] (first

introduced in Chapter 7 - see figure 7.3).

In this chapter we turn our attention to general phase measurement schemes (i.e.

the schemes we consider are no longer specific to rotations) and discuss, in detail, the

origin of the theoretical optimum of references [1, 2]. We describe an experimentally

accessible scheme we have developed that is capable of achieving precisions close
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to that of this optimum state. We also discuss multipath interferometry and show

how multipath devices can be used to improve measurement precision. This is

still very much work in progress. Here we present just one advantage of multipath

interferometers but it is expected that many more interesting advantages will be

found as this work progresses.

8.1 A review of lossy two-mode interferometry

The effects of particle loss on different initial states was discussed in detail in ref-

erences [1, 2]. They considered a general lossy two-mode measurement scheme that

consisted of some state creation process, the application of a relative phase φ between

the two modes (paths 0 and 1) followed by a state detection and readout procedure

(see figure 3.6). Losses were modelled by placing imaginary beam splitters with

transmissivities η0 and η1 on paths 0 and 1 respectively. The FQ of different initial

states for different loss rates (different values of η0,1) was determined and the best

state for a particular loss rate was taken to be the one with the largest FQ since

∆φ ≥ 1/
√
FQ.

We have previously shown that the FQ for the general initial state |ψin〉 =
∑N

n=0 βn|n,N − n〉 and a particular loss rate is given by

FQ =
N∑

l=0

FQ




l∑

l0=0

pl0,l−l0 |ξl0,l−l0(φ)〉〈ξl0,l−l0(φ)|


 (8.1)

where

|ξl0,l−l0〉 =
1

√
pl0,l−l0

N−(l−l0)∑

k=l0

βne
inφ
√
Bn
l0,l−l0 |n− l0, N − n− (l − l0)〉 (8.2)

and

Bn
l0,l−l0 =

(
n

l0

)(
N − n
l − l0

)
ηn0 (η−1

0 − 1)l0ηN−n1 (η−1
1 − 1)l−l0 . (8.3)

When the loss is limited to just one path (i.e. η1 = 1), as is common in experiments

since the phase shifter itself is often the greatest cause of particle loss, this equation
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can be simplified to

FQ = 4




N∑

n=0

n2xn −
N∑

l=0

(∑N
n=l xnnB

n
l0

)2

∑N
n=l xnB

n
l0


 (8.4)

where xn = |βn|2. Here we have made use of the fact, that because the particles are

only lost from one mode, we can write the state of the system after loss as

ρ(φ) =
N∑

l=0

pl,0|ξl,0(φ)〉〈ξl,0(φ)|. (8.5)

Since each of the N + 1 |ξl,0(φ)〉 states contain a different total number of particles

they are orthogonal and the total FQ of the system can therefore be found using the

relation of equation 3.28. This says that the total FQ of a system is the sum of the

FQ of all the orthogonal subsystems the total system is composed of multiplied by

the probability of being in that subsystem. Determining the FQ of each subsystem

using the equation for the FQ of a pure state (equation 3.27) results in equation 8.4.

The same simplification is not, however, possible for the case of loss on both

paths since, for a given l = l0 + l1, the |ξl0,l1(φ)〉 are not necessarily orthogonal. This

is due to the fact that we cannot know how many particles were lost from which

path. Nevertheless for NOON states this does not matter since the loss of only a

single particle automatically destroys the superposition and prevents the readout of

any phase information. Similarly for an unentangled initial state the origin of the

lost particle is irrelevant because as soon as the particle is lost that single-particle

superposition is destroyed.

As was shown in Chapter 3 it is therefore possible to determine a simple rela-

tionship between FQ and η0,1 for a NOON and unentangled initial state. To recap

these relationships are

FQNOON =
2N2ηN0 η

N
1

ηN0 + ηN1
(8.6)

and

FQU =
2Nη0η1

η0 + η1
. (8.7)
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For all other states, however, when particles are lost from both modes, the FQ must

be determined using equation 8.1 which involves solving a complicated eigenvalue

problem that is not feasible analytically. Therefore these calculations must be com-

pleted numerically.

Equations 8.6 and 8.7 are for a balanced NOON state (i.e. (|N, 0〉+ |0, N〉)/
√

2)

and a balanced unentangled state (i.e. the output of a 50:50 beam splitter into

which |N, 0〉 is inputted). However it was shown in reference [2] that the precision

capability of the NOON state can be improved by optimising the coefficients of

|N, 0〉 and |0, N〉, that is, instead of setting both coefficients to 1/
√

2 we instead

have
√
xN |N, 0〉+

√
x0|0, N〉 where x0 and xN change with η0,1 and x0 + xN = 1.

We determine the FQ of this unbalanced NOON state for different values of

η0,1 using the same procedure as used in Chapter 3 to determine the FQ of the

balanced NOON state. That is, since we know that the loss of a single particle

completely destroys the NOON state the only |ξl0,l1(φ)〉 that contributes to FQ is

|ξ0,0(φ)〉 meaning the total FQ of the system is

FQ = p0,0FQ [|ξ0,0(φ)〉〈ξ0,0(φ)|] . (8.8)

For |ψin〉 =
√
xN |N, 0〉+

√
x0|0, N〉 we have

|ξ0,0(φ)〉 =
1
√
p0,0

(
√
xN

√
ηN0 e

iNφ|N, 0〉+
√
x0

√
ηN1 |0, N〉

)
(8.9)

and FQ is therefore

FQ =
4N2x0xNη

N
0 η

N
1

xNηN0 + x0ηN1
. (8.10)

Maximising this equation with respect to x0 and remembering that xN = 1− x0 we

find the optimum value of x0 is

x0 =
η
N/2
0

η
N/2
0 + η

N/2
1

(8.11)
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and consequently the optimum FQ for a given rate of loss is

FQNOON,max =
4N2ηN0 η

N
1

(ηN/20 + η
N/2
1 )2

. (8.12)

We note that for the case of equal loss on both paths (η0 = η1 = η) this gives

x0 = xN = 1/2 independent of the rate of loss and FQ = N2ηN .

Similarly, recognising that an unentangled initial state is simply N copies of a

single-particle NOON state, the coefficients of the unentangled initial state can be

altered depending on the value of η0,1 to increase the FQ to

FQU,max =
4Nη0η1

(
√
η0 +

√
η1)2

. (8.13)

Here the coefficients of the unentangled state are optimised by varying the trans-

missivity, T , of the beam splitter into which |N, 0〉 is inputted according to the rate

of loss, that is, T =
√
η1/(
√
η0 +

√
η1). Using the Cramér-Rao bound we find the

best possible precision that can be achieved using an unentangled initial state in a

lossy measurement scheme is

∆φSIL =
√
η0 +

√
η1

2
√
Nη0η1

. (8.14)

This bound was first introduced in [2] and is called the standard interferometric

limit (SIL). It is the best possible precision that can be achieved using unentangled

particles in a lossy two-mode system.

References [1, 2] then went on to discuss other ways to improve precision in

the presence of particle losses using different initial states. Several strategies were

suggested, for example, using chopped NOON states where instead of having just

one N particle NOON state it is chopped into n smaller NOON states each with

N/n particles. Optimising n it was shown that this strategy beat the SIL for much

higher losses than the traditional N particle NOON state, even with its optimised

amplitudes.

139



Chapter 8. Optimising initial states in the presence of loss: The
general case

Most significantly of all the paper went on to show how by optimising the coef-

ficients, βn, of |ψin〉 =
∑N

n=0 βn|n,N −n〉 it is theoretically possible to beat the SIL

for almost all rates of loss. Two specific situations were considered: the case of loss

on just one path, which physically corresponds to systems where the sample to be

measured is responsible for the loss, and the case of equal loss on both paths. The

SIL, the NOON state precision and the precision of the theoretical optimum initial

state is shown for N = 10 in figure 8.1 for the case of loss on just the phase path

and the case of equal loss on both paths 1. It is clear that when there is no loss the

optimum state affords Heisenberg limited precision and physically corresponds to a

balanced NOON state, that is βn = 1/
√

2 for n = 0, N and βn = 0 otherwise. As

the rate of loss increases the optimum state deviates from a NOON state structure

as coefficients other than β0,N gain amplitude, eventually approaching a classical

state structure where the βn follow a binomial distribution.
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Figure 8.1: Left: Loss on just the phase path for N=10 (η0 = η and η1 = 1).
The solid blue line shows the precision of the theoretical optimum initial state, the
dashed-dotted black line shows the precision of the optimised NOON state and the
red dashed line is the SIL. Right: The same but for the case of equal losses on each
path (η0 = η1 = η).

However, these optimum initial states are theoretical and are likely to prove

1For equal losses on both paths Dorner et al. determined the theoretical optimum using an
upper bound on FQ. However, the theoretical optimum initial state shown in figure 8.1 does not
use this upper bound.
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difficult to produce in a laboratory as their structure changes with η. A proof-

of-principal demonstration of the technical feasibility of producing such states was

given in reference [119] however this was for the specific case of N = 2 and any

multiparticle implementation is likely to prove challenging. We will now demonstrate

a simple way to produce states that allow for phase measurements with precisions

close to that of these theoretical optimum initial states.

8.2 A scheme to improve precision in the presence of

loss

8.2.1 Loss on just one path

We first consider the case of loss on just the phase path (i.e. η0 = η and η1 = 1).

As in references [1, 2] we wish to find a way to improve the precision of the lossy

measurement scheme in figure 3.6 by producing an initial state |ψin〉 that allows for

precise yet robust phase determination. However, we also want to find a simple way

to produce |ψin〉. We find that using a beam splitter of variable transmissivity (as is

required to achieve the SIL) as the state creation device and altering the number of

particles incident on each of its input ports, precisions close to that of the theoretical

optimum can be achieved. We shall refer to this technique as the optimising K and

T method (or the KT method for short) where K refers to the number of particles

incident on port one of the beam splitter and T is its transmissivity.

In the KT method the input to the state creation device is |K,N −K〉. This is

then transformed by the device, which is a two-port beam splitter with transmissivity

T , to

|ψin〉 =
N∑

n=0

f(n)|n,N − n〉 (8.15)
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where

f(n) =
min{K,n}∑

y=max{0,n−N+K}

√
K!(N −K)!n!(N − n)!

y!(K − y)!(n− y)!(N −K − n+ y)!
× (8.16)

√
T
N−K−n+2y√

1− TK+n−2y
(−1)N−K−n+y.

The precision of this |ψin〉 for different loss rates, η, is determined using equation 8.4.

By numerically optimising K and T for each η we find the best possible precision

achievable by this method for different loss rates. The results are shown in figure

8.2 for N=10.

For the case of no loss the optimum K is N/2 and the optimum T is 1/2. This

results in a bat state and achieves a precision scaling of ∆φ = 1/
√
N(N/2 + 1). This

is Heisenberg limited and for large N is approximately only a factor of
√

2 worse

than the NOON state 2. For large amounts of loss, that is η ≈ 0, the optimum K

is N and the optimum T is √η1/(
√

(η0) +
√

(η1)), i.e. the best possible precision

is the SIL. However for the loss rates inbetween it is clear from figure 8.2 that the

KT method allows for precisions better than the SIL and the bat state. In fact we

see that the KT method allows for precisions very close to the theoretical optimum

of references [1, 2].

Figure 8.3 shows how the KT method performs relative to the theoretical opti-

mum for larger numbers of particles (N = 10, 20, 30, 40 and 50). For moderate loss

rates we see that the larger N , the better the performance of theKT method relative

to the theoretical optimum. For extremely high loss rates (i.e. η ≈ 0) the precision

capabilities of the KT method and the theoretical optimum become equivalent for

all N as they both approach the SIL. For some loss rates, however, the FQ of the

KT method relative to the FQ of the theoretical optimum worsens with increasing

N . Nevertheless, this is only for relatively large amounts of loss which suggests that

for most experimentally realistic loss rates the larger N the better the KT method.

We briefly note that the bat state has previously been shown to find a good

2Bat states can only be produced for even N , however for odd N the KT method achieves only
a slightly worse precision than 1/

p
N(N/2 + 1).
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Figure 8.2: The precision of a general two-mode measurement scheme with losses
on just the phase path for the theoretical optimum initial state (blue solid line), the
KT method (green solid line), a bat state (black solid line) and the SIL (red dashed
line). Here N=10.

balance between the need for precision and the need for robustness (see Chapter

6). We therefore wish to compare the precision of a bat state with that of the KT

method for all loss rates. Figure 8.4 shows the FQ of the KT method and that of

the bat state relative to the theoretical optimum for N = 10. When η = 1 the FQ

of the KT method and the bat state are equivalent. However, it is clear from figure

8.4 that as the rate of loss increases the bat state rapidly begins to lose precision in

comparison to the theoretical optimum. The precision of the KT method, however,

steadily improves relative to that of the theoretical optimum as loss increases. Both

the bat state method and the KT method use the same devices and so we see that

simply by changing K and T , the phase precision can be dramatically improved.

8.2.2 Loss on both paths

Equal loss

We now want to investigate whether the KT method also achieves precisions close

to that of the theoretical optimum for the case of equal amounts of loss on both

paths i.e. η0 = η1 = η. As before the best precision achieved by the KT method

is found using equations 8.1 and 8.15 and then numerically optimising K and T for
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Figure 8.3: The FQ of the KT method compared to the FQ of the theoretical
optimum initial state for the case of loss on just the phase path.

every η. The results are shown in figure 8.5. It is immediately clear that under the

condition η0 = η1 the KT method is less advantageous than for the case of loss on

just one path. In fact, the precision of the KT method provides almost no advantage

over using a standard bat state for η > 0.5, i.e. setting K = N/2 and T = 1/2.

This is because the condition that η0 = η1 means the problem is symmetric and

consequently |βn| = |βN−n|. To satisfy this need for symmetry the optimum T is

always 1/2 meaning only K can be varied. The fact that K is a discrete quantity

gives rise to the sharp kink seen in figure 8.5.

Nevertheless in a typical interferometric set-up we would expect the rate of loss

on the phase path to be greater than the rate of loss on the phase free path as the

phase plate itself often induces scattering effects that lead to particles being lost

to the environment. As such the case of loss on just the phase path is the more

experimentally realistic of the two situations considered thus far. However, it is

unrealistic to discount loss on the phase free path altogether. We therefore wish to

determine what happens when there is a fixed, small amount of loss on path 1.
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Figure 8.4: The blue solid line is FQKT/FQOpt for N=10. The red dashed line is
FQBat/FQOpt for the same N . Whilst the precision capabilities of the bat state
and the KT method are equivalent for small amounts of loss it is clear that as loss
increases the KT method provides a significant increase in precision over the bat
state.

Unequal loss

In this section we turn our attention to the experimentally realistic situation where

most loss occurs on the phase path and there is a small amount of loss on the

phase free path. In particular we fix the amount of loss on the phase free path and

determine what happens to the precision of our phase measurements as loss on the

phase path increases.

We would expect the rate of loss on the phase free path to be small, say η1 ≈ 0.9.

Figure 8.6 shows the precision afforded by the KT method, a bat state and an

unentangled initial state in this situation for different rates of loss on the phase path

i.e. different values of η0 = η 3. We see that in this case the precision of the KT

method is, as expected, equivalent to that of the bat state for small rates of loss.

However, unlike the case of equal amounts of loss on the two paths, the precision

of the KT method outperforms that of the bat state for η . 0.6 and that of the

unentangled state for all η & 0.2. The KT method therefore provides a realistic way

to improve the precision of current experimental schemes for η in the range 0.2 to

3Here we have not included the theoretical optimum initial state precision due to the numerical
complexity associated with finding this state.
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Figure 8.5: Here N=10 and η0 = η1 = η. The blue solid line is the precision of
the theoretical optimum initial state, the green solid line is the precision of the KT
method, the black solid line is the precision of the bat state and the red dashed line
is the SIL.

0.6.

Figure 8.6 also shows what happens to the precisions of the various states for

η1 = 0.8 and η1 = 0.7. Experimentally, however, we would not expect the rate of

loss on path 1 to be so high. These plots have been included for completeness and

to allow a rough pattern to be seen, namely, that as the rate of loss on the second

path increases the advantage of the KT method over other states, such as the bat

state, is reduced. This is clearly evident from figure 8.6 as the kink where the KT

method and the SIL meet moves towards larger values of η (smaller loss rates) as

loss on path 1 is increased.

We therefore conclude that the KT method is most advantageous when particle

losses are limited to one path. As the rate of loss on the second path increases the

advantage is gradually lost. However, as figure 8.6 shows, for the experimentally

realistic case of small amounts of loss on the phase free path, the precision achieved

by the KT method is significantly better than that of other states, such as the bat

state which has previously been shown to be a good initial state for making precise

and robust phase measurements. All that the KT method requires is a beam splitter

of variable reflectivity and the ability to control the number of particles incident on
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Figure 8.6: The precision of an unentangled initial state (red dashed line), a bat
state (black solid line) and the KT method (green solid line) for N = 10. Here η is
the loss on the phase path. In the top figure the loss on the phase free path (path 1)
is η1 = 0.9, in the middle figure it is η1 = 0.8 and in the bottom figure it is η1 = 0.7.
It is clear that as the loss on path 1 increases the KT method outperforms the SIL
for fewer loss rates.
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each of its input ports.

8.3 Multipath interferometry

We now begin to discuss the potentials of lossy multipath interferometry for making

ultra-precise and robust phase measurements. This is motivated, in part, by the

fact that in Chapter 7 we saw that spreading particle observables over multiple

momentum modes, rather than just two, allowed for extremely precise measurements

in the presence of particle loss. Here, however, we stick to a typical interferometer

set-up rather than looking at rotation measurements, as with the realisation of

multiport beam splitters [91, 120], there has been a growing interest in the precision

of the multipath interferometers of figure 8.7 [89, 121–123]. D’Ariano and Paris [89],

for example, claimed the precision of these devices increases linearly with the number

of paths M , therefore allowing for arbitrary precision for a given N . However,

they considered interferometers whose phase shift increased by a constant phase, φ,

between paths resulting in a total phase shift of (M − 1)φ. This meant the more

paths the device had, the larger the total phase to be measured, naturally leading to

better precisions for larger devices as was discussed in [123]. The fair comparison,

however, seems to be between devices subjected to the same overall phase and this

is the scenario that will be investigated here.

Firstly we note that, owing to the many possible configurations of a multipath

interferometer, for example, the different ways φ can be applied, it is likely there are

many more advantages to using these devices than the one discussed in this section

and this will form the basis of future work. Here we restrict our discussion to the

multipath interferometer configuration of figure 8.7 where the same phase, φ, has

been applied to q paths. This physically corresponds to a placing of the phase plate

across q paths rather than just one. We show that by varying q the SIL can be

achieved in this multipath set-up without the need for beam splitters with variable

transmissivity.

As previously discussed the SIL is the best possible precision attainable when
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Figure 8.7: a) A two-path interferometer as before. b) A M -path interferometer
with a total phase φ. As before the first device creates the initial state |ψin〉 and
in a classical set-up would be a M -path balanced beam splitter. The second device
would be aM -path balanced inverse beam splitter in the classical set-up. We choose
to apply the phase to q paths.

|ψin〉 is a classical state and is achieved by inputting N particles in one port of a

two-mode beam splitter of variable transmissivity. We now show how the exact same

precision can be achieved using balanced multimode beam splitters. The operation

of a M -mode balanced beam splitter is given by the unitary matrix

Ujk =
1√
M

exp
[
i2π
M

(j − 1)(k − 1)
]

(8.17)

and for a general M -path interferometer the 1 ≤ q ≤ M − 1 paths each acquire a

phase through the unitary transform Uφm = exp(iφa†mam). Exactly as for the two-

path case losses are modelled by placing imaginary beam splitters with transmissivity

ηm on each of the M paths. In an experiment it is likely that most of the particle

losses will occur from the q paths containing a phase shift. As such we expect ηp

to be less than ηf where ηp is the transmissivity of the imaginary beam splitters on

the phase paths and ηf is the transmissivity of the imaginary beam splitters on the

phase free paths. The FQ can then be calculated in a similar way to the two-path

case making use of the fact that a classical state is equivalent to N single-particle

NOON states and that FQUM = Np00...0FQ[ξ00...0(φ)]. Here

|ξ00...0(φ)〉 =
1√

Mp00...0
(
√
ηpe

iφ|1, 0, . . . , 0〉12...M +
√
ηpe

iφ|0, . . . , 1, . . . , 0〉1...q...M

+ . . .+
√
ηf |0, . . . , 1, . . . , 0〉1...q+1...M + . . .+

√
ηf |0, 0, . . . 1〉12...M )(8.18)
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and

p00...0 =
1
M

(qηp + (M − q)ηf ) . (8.19)

Using this model it can be shown that, for a particular ηp and ηf , FQ is given by

FQUM = 4N
(

(1− z) ηpηf
ηp + (z−1 − 1) ηf

)
(8.20)

where z = q/M . We find the FQ is maximised when

zoptU = 1/(1 +
√

Γ) (8.21)

where Γ = ηp/ηf . This tells us the optimum ratio of phase paths to total number of

paths for a given ηp, ηf and N . Intuitively we see that, in general, the more paths

the interferometer has the better as the larger M is the more likely we are able to

reach the optimum q/M ratio. Substituting equation 8.21 into equation 8.20 gives

the SIL (see equation 8.14) where ηp = η0 and ηf = η1.

Here we have presented an alternate way to optimise the precision of classical

interferometry. Unlike the strategy introduced in reference [2] this method does

not require a beam splitter of variable transmissivity. Instead the optimisation is

achieved by varying the number of phase paths and M . However, in both cases the

FQ is improved by as much as a factor of 2 over an interferometer set-up employing

only a two-mode 50:50 beam splitter. In both systems this improvement in precision

is achieved by finding a balance between the need to increase the number of particles

on the lossy path(s) so as to increase the number of superpositions that exist after loss

with the desire to lose as few particles as possible. Whilst multipath interferometers

may prove difficult to implement this is a nice demonstration of just some of their

potential.

Reference [2] also discussed how NOON state precision can be optimised in a

similar way by altering the amplitudes x0 and xN as shown earlier in this chapter.

Again, this same FQ can be achieved using a multipath interferometer. We define a

150



8.4. Conclusion

M -path NOON state as

|ψin〉 =
1√
M

(|N, 0, 0, 0 . . .〉+ |0, N, 0, 0 . . .〉+ . . .+ | . . . 0, 0, 0, N〉) (8.22)

where the terms in the kets represent the number of particles in each path. We find

that for a M -path NOON state with phase φ on q paths

FQMN
= 4N2

(
(1− z) ηNp ηNf

ηNp + (z−1 − 1) ηNf

)
(8.23)

where ηp, ηf and z are as before. Maximising FQMN
gives the optimum ratio of

the number of phase paths to total number of paths as zoptN = 1/(1 +
√

ΓN ).

Substituting zoptN into equation 8.23 gives FQNOON,max (see equation 8.12).

This has been one demonstration of a potential increase in precision offered by

multimode interferometry. With the numerous possible configurations of a multi-

mode interferometer it is expected other gains may also be found and this will be

the subject of future work.

8.4 Conclusion

This work is by no means complete and as such will be discussed again in the future

work section of this thesis. We have, however, demonstrated an experimentally

accessible way to improve the precision of two-mode interferometers to close to that

of the theoretical optimum. All that is required is a two-port beam splitter of

variable transmissivity and the ability to control the number of particles incident

on each of its input ports. A potential use of multimode interferometers has also

been introduced. We have shown that instead of varying the transmissivity of a

two-mode beam splitter, the SIL can be achieved using a M-path interferometer and

varying the number of phase paths. This is likely to be only one of many potential

advantages of multimode interferometry.
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Chapter 9

Conclusions

We now take a moment to review the main results of the thesis and discuss how these

results have achieved our initial aim, namely, to improve the practical precision of

phase measurements, in particular phase measurements corresponding to rotations,

by creating initial states that allow for (close to) Heisenberg limited precision in

an idealised setting, yet that are robust to the effects of particle loss meaning this

precision is not destroyed in a realistic experimental set-up.

Interferometers offer unrivalled precision in the measurement of phase shifts.

These phase shifts could correspond to any one of a number of different physical

quantities such as a difference in field strength or a rotation rate, as is the case in this

thesis. We reviewed the process of interferometry in Chapter 3 and introduced the

quantum Fisher information which provided a simple way to quantify the precision

with which an interferometer can measure a phase independent of the measurement

procedure. This therefore allowed us to focus solely on the precision potential of

different initial states without having to concern ourselves with ways to optimise the

read-out procedure which would be another project in itself. In this same chapter we

introduced two important precision bounds, the standard quantum limit where the

precision scales as 1/
√
N and the Heisenberg limit where the precision scales as 1/N ,

which is the best precision allowed by quantum mechanics. We also introduced the

initial states responsible for these bounds; the classical initial state and the highly
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entangled NOON state.

However, this was nothing new as it has long been known that the precision of

phase measurements can be improved using highly entangled states. The problem,

however, is how to create such entangled states with large numbers of particles and

how to keep the Heisenberg limited precision in the presence of particle loss, be-

cause, as was demonstrated in Chapter 3 the NOON state rapidly loses its precision

capabilities as the probability of particle loss is increased. As such, to date, practical

precision schemes use classical initial states as their measurement resource. In the

remainder of the thesis we therefore set about trying to find and create initial states

that allowed for Heisenberg (or close to Heisenberg) limited precision and that were

robust to the effects of particle loss. Two of the proposed schemes focussed on phase

shifts corresponding to rotations and the final scheme considered the more general

case of a linear interferometer.

9.1 Main results

In order to measure rates of rotation we first needed to develop a way to create

superpositions of atoms flowing in opposite directions around a ring. As such we

proposed a scheme to create multiport atomic beam splitters where the input and

output ports were arranged in a ring geometry. In Chapter 6 we showed how the

resulting three port beam splitter allowed for these superpositions to be created. We

considered the ring of three sites as this is the fewest number of sites required to

create a ring, however, the four and five port beam splitters should also be capable

of achieving similar superpositions. This would be an interesting field for future

research as the more sites the ring has, the more momentum states the system can

occupy which may allow for more precise and/or more robust phase measurements.

We developed two schemes capable of measuring rotation rates. The first scheme

used a ring of lattice sites and the multiport devices developed in Chapter 5. We

showed how to create three different initial states in this system and determined the

precision of each. We found a bat state, which is similar to a NOON state in that it
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has a large number variance but dissimilar in that the detection of one of the atoms

does not betray the whereabouts of the remaining atoms, allowed for approximately

Heisenberg limited precision and was robust to the effects of particle loss. It beat

the precision capabilities of both the NOON and classical initial states for modest

loss rates making it a great candidate for the initial state of precision measurement

schemes. Its success, however, was short lived as in the following chapter an initial

state was created that allowed for exactly Heisenberg limited precision in an idealised

setting and that demonstrated similar robustness to particle loss as the classical

initial state. It therefore outperformed the precision capabilities of both the NOON

and unentangled initial states for all loss rates. To our knowledge, no initial state,

has ever been shown to be so precise and robust and consequently this state is of

fundamental interest to the metrology community. The origin of the robustness is the

spreading of particle observables over many momentum modes rather than just two.

This motivated us to begin investigating the potential of multimode interferometers

to make precise and robust phase measurements in the following chapter.

We considered a general multimode interferometer scheme and showed how, by

balancing the number of paths with the number of phase shifts depending on the loss

rate, a factor of two improvement in the quantum Fisher information over a standard

two-path interferometer was possible. However, it is thought other advantages may

soon be found as discussed in the future work section. Chapter 8 also looked at

standard two-path interferometry in more detail and developed an experimentally

accessible way to optimise the initial state depending on the rate of loss. The

precisions achieved by this set-up were shown, under certain experimentally realistic

conditions, to be comparable to those achieved by the theoretical optimum two-mode

initial state proposed in references [1, 2].

So, to conclude, we have achieved our original aim: we have investigated the pre-

cision capabilities of different initial states and through these investigations found

states, such as the bat and TG cat state, that allow for precise and robust phase mea-

surements. We have also developed schemes capable of producing such states, mak-
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ing their promised improvements in precision/robustness over the classical/NOON

initial states experimentally realistic and of fundamental interest to the metrology

community.

9.2 Proposals for future work

Whilst the work presented in this thesis has gone some way towards improving the

precision of phase measurements in the presence of particle loss there is still much

more to be investigated. The field of multipath interferometry in particular, holds a

great deal of promise as was demonstrated in Chapters 7 and 8. However, due to the

many possible phases that could be applied to the paths and the many possible ways

particles could be lost, the results of these chapters by no means give a complete

understanding of the precision capabilities of multipath interferometry. Here we

discuss several ideas that could shine light on its true potential.

9.2.1 Theoretical optimum multimode initial state in a lossy envi-

ronment

References [1, 2] recently calculated the optimum initial state for a two-mode inter-

ferometer in the presence of particle loss, as discussed in detail in Chapter 8. An

interesting avenue of research would be to determine the optimum initial state, and

the precision achieved by this state, for the equivalent multimode interferometer.

Preliminary results suggest that when the phases on the multipath interferometer

are arranged as in Chapter 8 (i.e. phase φ on q paths, where φ is the phase on one

path of the two-mode interferometer) the optimum multimode initial state achieves

the same precision as the optimum two-mode initial state for the case of equal loss

on all paths. If, however, we were to let the phase increase linearly between paths,

as may be the case in a potential field, the results of Chapter 7 suggest that the

precision of a two-mode interferometer could be beaten for all loss rates. Not only

this, the precision in the idealised setting in which no particles are lost has already

been shown to scale as 1/(MN) (where M is the number of paths).
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9.2.2 Multimode ‘bat’ states

After demonstrating the success of the two-mode bat state for precise and robust

phase measurements in Chapter 6 it would be interesting to determine the precision

capabilities of multimode bat states, that is the output of a balanced multiport

beam splitter (described by the unitary matrix of equation 8.17) into which the

state |N/M,N/M, . . . , N/M〉 is input. A two and three mode bat state are shown

in figure 9.1. As can be seen spreading the particle observables over many modes in

this manner is likely to lead to a slight worsening of precision in the idealised case

due to a decrease in the number variance, but it may lead to better robustness as

the loss of a particle will give away even less information about the whereabouts of

the remaining N − 1 particles.
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Figure 9.1: Left: A plot of the probability of having n particles in one of the output
modes of a two-port 50:50 beam splitter into which |N/2, N/2〉 is input i.e. a two-
mode bat state. Right: A plot of the probability of having n andm particles in two of
the output modes of a balanced three-port beam splitter into which |N/3, N/3, N/3〉
is input i.e. a three-mode bat state. In both plots N = 30.

9.2.3 Read-out schemes

Another obvious area for future research would be to investigate ways to optimise

the read-out of the phase shifts. Throughout this thesis we have focused solely on

improving precision by optimising the initial state. We were able to do this by calcu-
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lating the quantum Fisher information of the various interferometer schemes in their

middle sections i.e. after the phase shift but before the read-out procedure. It is

always theoretically possible to achieve the precisions calculated from the quantum

Fisher information and as such we have not concerned ourselves with read-out pro-

cedures thus far. It may, however, sometimes prove difficult to find experimentally

accessible read-out schemes that achieve these precisions. Consequently investiga-

tions will be required to find read-out schemes that allow φ to be determined with

the precision calculated from the quantum Fisher information.

9.2.4 Extending the work on multiport beam splitters

A slightly different avenue of research would be to extend the work of Chapter 5

where a scheme to create balanced multiport splitting devices was developed. In

this chapter we had a ring of S lattice sites which corresponded to the input (and

output) ports of a S port beam splitter. We showed how, by a careful raising and

lowering of the potential barriers between sites, it was possible to create a balanced

splitting device. We were not, however, concerned with the phases generated by this

splitting procedure and as such the matrix operators of these multiport devices are

not those commonly quoted in the literature i.e. the matrix given by equation 8.17.

In Chapter 6 we demonstrated how it is possible to imprint phases on the indi-

vidual lattice sites by applying energy off-sets to a particular site for a fixed time.

It would therefore be interesting to see if, by imprinting phases on the sites both

before and after the raising and lowering of the barriers, the overall phases of the

device could be made to match those of equation 8.17. This could prove useful in

an extension of the atomic gyroscope scheme of Chapter 6 as in the present scheme

we only considered a superposition of two different flow states which meant we did

not require the phases produced by the splitting device and the phase imprinting

procedure to exactly match those of equation 8.17. If however, we wanted to cre-

ate a superposition of three flows we would require an exact match. Similarly if

we were to use more than three sites the phases would, once again, become more
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important. Spreading particle observables over more flow states may allow for more

robust phase measurements and as such this extension may prove useful.

9.3 To conclude

During the course of this thesis we have developed an understanding of the inter-

play between the precision and the robustness of initial states of an interferometer.

We have demonstrated ways to create several different initial states that balance

this interplay, allowing for precise yet robust phase measurements. Interestingly

we have shown how by using a multimode Hilbert space unprecedented precision

can be achieved in a lossy environment. This result is likely to have far reaching

consequences. In particular, it is likely to motivate further research into the preci-

sion capabilities of multimode systems and may ultimately alter the way precision

measurements are made.
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Appendix A

Multiport devices: the

differences between odd and

even S

A.1 Proof of equation 5.14

In Chapter 5 section 5.3.2 we discussed differences between multiport atomic devices

with an even and an odd number of lattice sites. One of the main differences we

found was that the phase between adjacent sites varied by a fixed amount of ±π/2

for systems with an even number of sites, whilst for systems with an odd number of

sites it varied continuously in time. This, in turn, meant that particles moved with

a fixed velocity in systems with an even S and a velocity that changed with time

in systems with an odd S. The constraint of a fixed particle velocity meant it was

harder for systems with an even number of sites to form a balanced splitter than for

those with an odd number of sites.

Here we prove that the phase between sites for even values of S is always ±π/2.

We do this by considering the Ωx terms of equation 5.11 as the phase of these terms

directly corresponds to the phase of the sites. We begin by considering the general
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form of Ωx

Ωx =
1
S

S−1∑

n=0

ei2Jt cos(2πn/S)+i2πnx/S . (A.1)

In order to show that the phase between adjacent sites varies by ±π/2 for even

values of S we need to show that we can rewrite the above equation for Ωx as

Ωx = eiπx/2Λ(S, J, t, x) (A.2)

where Λ(S, J, t, x) is some real valued function (i.e. equation 5.14). To do this we

rewrite equation A.1 as

Ωx =
1
S

S/2−1∑

n=0

(
ei2Jt cos(2πn/S)+i2πnx/S + ei2Jt cos(2π(n+S/2)/S)+i2π(n+S/2)x/S

)

=
2eiπx/2

S

S/2−1∑

n=0

ei2πnx/S cos
(

2Jt cos
(

2πn
s

)
− πx

2

)
. (A.3)

We must now show that

λ(S, J, t, x) =
S/2−1∑

n=0

ei2πnx/S cos
(

2Jt cos
(

2πn
S

)
− πx

2

)
(A.4)

is always real.

We first rewrite λ(S, J, t, x) as

λ(S, J, t, x) = cos
(

2Jt− πx

2

)
+
S/2−1∑

n=1

ei2πnx/S cos
(

2Jt cos
(

2πn
s

)
− πx

2

)

= cos
(

2Jt− πx

2

)
+
S/2−1∑

n=1

Π(S, J, t, x, n). (A.5)

The cos(2Jt−πx/2) term is real for all x. In order to prove λ(S, J, t, x) is real we must

therefore show that the second term in the equation is also real. We do this by pairing

terms in the sum, that is, we shall show that for n = z, Π(S, J, t, x, z) = Rze
i2πxz/S

(where 1 ≤ z ≤ S/4 is an integer and Rz is some real number) whilst for n = S/2−z,

Π(S, J, t, x, S/2 − z) = Rze
−i2πxz/S . Summing these two terms therefore results in
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a real number. For S = 4y − 2 where y is an integer, S/2 − 1 is even meaning all

the terms in the above summation pair in this manner. For S = 4y, S/2− 1 is odd

meaning all the terms except n = S/4 pair in this way. When n = S/4

Π(S, J, t, x, S/4) = eiπx/2 cos
(πx

2

)
(A.6)

which is equal to 0 for odd x and 1 for even x. This term is therefore always real

and so providing we can show that all the n = z and n = S/2− z pairs sum to give

a real number we will have shown that λ(S, J, t, x) is real.

To prove the pairs sum to a real number we split the possible values of x into

four groups: 4y, 4y − 2, 4y − 1 and 4y − 3. If we can prove that λ(S, J, t, x) is real

for each of these x values we will have shown it is real for all possible values of x.

Let us first take the case of x = 4y. For n = z we have

Π(S, J, t, 4y, z) = ei8πzy/S cos
(

2Jt cos
(

2πz
s

))
(A.7)

and for n = S/2− z we have

Π(S, J, t, 4y, S/2− z) = e−i8πzy/S cos
(

2Jt cos
(

2πz
s

))
. (A.8)

We therefore see that when these two terms are added together the result is a real

number. Similarly for x = 4y − 2 we have

Π(S, J, t, 4y − 2, z) = −ei2πz(4y−2)/S cos
(

2Jt cos
(

2πz
s

))
(A.9)

for n = z and

Π(S, J, t, 4y − 2, S/2− z = −e−i2πz(4y−2)/S cos
(

2Jt cos
(

2πz
s

))
(A.10)

for n = S/2−z. Once again the sum of these two terms is a real number. Repeating

for x = 4y − 1 and x = 4y − 3 we find the sum of the n = z and n = S/2 − z pair
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is always a real number. Since every pair is a real number the sum of all the pairs

must therefore also be a real number. We have therefore shown that λ(S, J, t, x) is a

real number and consequently that the phase difference between Ωx and Ωx+1 (and

hence sites j and j + 1) is π/2.

For the case of an odd number of lattice sites the same pairings are not possible.

Instead we find that the phase between Ωx and Ωx+1 varies with time.

A.2 The number of different Ω for S even and S odd

A second difference we found between devices with even and odd numbers of lattice

sites is that the number of different values of Ω for odd values of S is (S + 1)/2

whilst for even values of S it is (S + 2)/2. This again supports the observation that

it is harder for devices with even numbers of sites to produce balanced splitters than

for those with odd numbers as there are more different Ω to match (as a fraction

of the total S). Here we show why the number of different Ω for odd values of S is

(S + 1)/2 and why it is (S + 2)/2 for even values of S.

The general Ωx is given in equation A.1. The subscript x can take any integer

value in the range 0 ≤ x ≤ S − 1 suggesting there are S different values of Ω for all

S. However, as we shall now show Ωx = ΩS−x for integer values of x in the range 1

to (S − 1)/2. Consequently, since S − 1 is even for odd values of S all the Ωx pair

up in this manner except Ω0. The number of different Ω is therefore easily seen to

be (S + 1)/2. For even values of S, however, both x = 0 and x = S/2 have no pair

meaning the total number of different Ω is (S + 2)/2 (since Ω0 6= ΩS/2).

To show that Ωx = ΩS−x we begin by writing Ωx in the form

Ωx =
1
S

(
ei2Jt +

S−1∑

n=1

ei2Jt cos(2πn/S)+i2πxn/S

)

=
1
S

(
ei2Jt +

S−1∑

n=1

Θ1(S, J, t, x, n)

)
(A.11)
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and ΩS−x in the form

ΩS−x =
1
S

(
ei2Jt +

S−1∑

n=1

ei2Jt cos(2πn/S)+i2π(S−x)n/S

)

=
1
S

(
ei2Jt +

S−1∑

n=1

ei2Jt cos(2πn/S)−i2πxn/S

)

=
1
S

(
ei2Jt +

S−1∑

n=1

Θ2(S, J, t, x, n)

)
. (A.12)

Putting n = y (where y is an integer in the range 1 ≤ y ≤ S−1) into Θ1(S, J, t, x, n)

gives

Θ1(S, J, t, x, y) = ei2Jt cos(2πy/S)+i2πyx/S (A.13)

whilst putting n = S − y into Θ2(S, J, t, x, n) gives

Θ2(S, J, t, x, S − y) = ei2Jt cos(2πy/S)+i2πyx/S (A.14)

and so Θ1(S, J, t, x, y) = Θ2(S, J, t, x, S − y). We see, therefore, that

Θ1(S, J, t, x, 1) = Θ2(S, J, t, x, S − 1)

Θ1(S, J, t, x, 2) = Θ2(S, J, t, x, S − 2)

... =
...

Θ1(S, J, t, x, S − 2) = Θ2(S, J, t, x, 2)

Θ1(S, J, t, x, S − 1) = Θ2(S, J, t, x, 1) (A.15)

and consequently

S−1∑

n=1

Θ1(S, J, t, x, n) =
S−1∑

n=1

Θ2(S, J, t, x, n). (A.16)

It therefore directly follows that Ωx = ΩS−x.
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