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the supervision of Dr. José Luis Curiel-Sosa at the University of Sheffield.

Sheffield, November



Abstract

In this thesis, the computational simulation of cracks in advanced compos-

ite structures subjected to biaxial loading is studied. A structural integrity

analysis using the eXtended Finite Element Method (XFEM) is consid-

ered for simulating the crack behaviour of a chopped fibre-glass-reinforced

polyester (CGRP) cruciform specimen subjected to a quasi-static tensile

biaxial loading [99]. This is the first time this problem is accomplished

for computing the stress intensity factors (SIFs) produced in the biaxially

loaded area of the cruciform specimen. SIFs are calculated for infinite plates

under biaxial loading as well as for the CGRP cruciform specimens in order

to review the possible edge effects. A new ratio relating the side of the cen-

tral zone of the cruciform and the crack length is proposed. Additionally,

the initiation and evolution of a three-dimensional crack are successfully

simulated. Specific challenges such as the 3D crack initiation, based on a

principal stress criterion, and its front propagation, in perpendicular to the

principal stress direction, are conveniently addressed. No initial crack loca-

tion is pre-defined and an unique crack is developed.

A three-dimensional progressive damage model (PDM) is implemented within

a CGRP cruciform structure for modelling its damage under loading [100].

In order to simulate the computational behaviour of the composite, the

constitutive model considers an initial elastic behaviour followed by strain-

softening. The initiation criterion defined is based on the maximum prin-

cipal stress of the composite and once this criterion is satisfied, stiffness

degradation starts. For the computation of damage, the influence of the

fibre and the matrix are taken into account within the damage rule. This

is the first time a three-dimensional PDM is implemented into a composite

cruciform structure subjected to biaxial loading.

A new approach for dynamic analysis of stationary cracks using XFEM is



derived. This approach is capable of addressing dynamic and static frac-

ture mechanics problems. Additionally, by means of this relatively simple

approach, it is possible to address correctly the crack pattern of the 10◦

off-axis laminate manufactured solving the limitation observed with pro-

gressive damage modelling. During the whole thesis, the computational

outcomes have been validated by means of comparison with theoretical and

experimental results.
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1

Introduction

1.1 Motivation

It is well known that the power of computers has been notably increased in the last

decades. Considering this fact, a huge development in, for instance, computational

mechanics (CM) is been a reality nowadays. CM is interdisciplinary because many

concepts, methods and principles are applied in order to successfully simulate com-

plex physical events such as, for instance, a car crash, a human aorta containing an

aneurism, etc [103]. Great news that so many physical phenomena of interest are been

reproduced by means of a computer. For example, stress analysis is an excellent tool

for predicting the distribution of loads in the structure when the behaviour of the ma-

terial is linear-elastic. Nonetheless, when modelling material failure, the computational

tools available are not as robust as linear stress analysis. In the literature, different

approaches deal with this problem but limitations exits generally e.g. divergence of

the numerical technique before virtual failure. Hence, failure modelling of materials

is still in ongoing research. In particular, for Advanced Composite Materials (ACM),

computational modelling of fracture is being a challenging task. ACM are formed by

two different materials: fibres (e.g. carbon or glass) and matrix (e.g. epoxy). The ma-

trix is responsible for supporting and protecting the fibres and in the other hand, the

fibres are the reinforcement of the matrix and provides the majority of the strength and

stiffness in the material [151]. The amount of engineering applications using composite

materials have been increased significantly in the last decades e.g. military and civil

aircraft, automotive industry, etc [72]. This huge increment is attributed, mainly, to

1



1. INTRODUCTION

the high strength-weight ratio that these materials provide, its excellent resistance to

fatigue and corrosion as well as its satisfactory durability.

When modelling computational failure in ACM, different scales of interest may be

chosen from microlevel to macrolevel passing though mesolevel (see Figure 1.1). The

microscale is the level where fibres and matrix are considered individually while in the

mesolevel the material is homogenized. In other hand, when there is a homogenization

through the thickness the analysis is understood to be at the macrolevel. It is under-

standable that when considering the micromechanics effects, a computational solution

closer to reality is expected. However, the computational cost may be unaffordable.

Therefore, depending of the interest of the user, a scale or another is preferred. In

this work, the attention is focused in the mesolevel and macrolevel. Depending of the

type of composite under analysis, the material is defined with orthotropic or isotropic

properties.

Matrix

Fiber

Layers

Laminate

Microscale Mesolevel Macrolevel

Figure 1.1: Three different approaches of study composite materials.

Computational simulation of failure for composite materials has been an area of

interest for many years because experimental costs of these materials may be reduced

by means of computer simulations. For instance, according to Cox and Yang [33], a

typical airframe on which the human lives depends currently requires∼104 experimental

tests of material specimens to reach safe certification. Taking the previous example into

account, it is noticed how important is to obtain more reliable computational tools for

these kind of materials in order to reduce experimental tests.

The motivation of this thesis is the computational simulation of cracks in structures

subjected to multiaxial loading using XFEM and PDM. The structures under consid-

eration in this thesis are form by two types of ACM: a chopped fibre glass reinforced

2



1.2 Advanced composite materials

polyester (CGRP) and a carbon fibre reinforced polymer (CFRP). The CGRP pre-

sented in this work is used in internal coating and frontal parts of trains (see Figure 1.2

(a)). In the other hand, the CFRP laminate extensively used in the fuselage of aircraft

such as, for instance, a Boeing 787 (see Figure 1.2 (b)).

(a) (b)

Figure 1.2: (a) The CGRP composite under analysis is used for internal coating and the

frontal parts in trains. (b) The CFRP laminate is used in the fuselage of a Boeing 787 [1]

1.2 Advanced composite materials

The material under consideration in this research is a fibre-reinforced composite com-

posed of fibres embedded in a matrix. In particular, two main types of composite are

considered, the first type of composite is form by continuous fibres that provide the

majority of the stiffness and strength and the matrix provides protection and support

to the fibres (see an schematic representation in Figure 1.3 (b)). The second one is

a composite form by short or chopped glass fibres (see an schematic representation in

Figure 1.3 (a)). In this case, each lamina contains short fibres distributed randomly

and several laminae are stacked into a laminate forming the desired structure. The

load is mainly carried by the matrix and the fibres provide some stiffening.

The mechanical properties of the composite depends on the properties of the fibres

and matrix and also about the orientation and amount of fibres. Considering a scale

3



1. INTRODUCTION

(a) (b)

Figure 1.3: Schematic representation of a (a) chopped fibre composite and (b) a contin-

uous fibre composite.

that is large compared to the fibre diameter, it can be assumed that the composite may

be treated as homogeneous [74]. This implies that the properties are the same at every

point. The orientation of the fibres determines the behaviour of the composite under

loading. As mention previously, two type of composite are considered in this thesis.

The first type considers continuous unidirectional fibres. In this type of composite, in

order to define the elasticity properties, a local coordinate system {123} (see Figure 1.4)
is defined aligned with the fibre direction where direction 1 corresponds with the fibre

orientation, direction 2 is the first in-plane transverse direction and direction 3 is the

second out-of-plane direction. The modulus of elasticity for direction 1, E1, is typically

higher that those in the transverse direction (E2 and E3). When E1 ̸= E2 ̸= E3, the

material behaves as a orthotropic. It is common to assume that the plane transverse

properties to the fibre direction are isotropic i.e. E2 = E3. Therefore, the material is

so-called transversely isotropic. Thus, the transversally isotropic Hooke’s law for a ply

is defined as:

σ̄ = D̄ϵ̄ (1.1)

where

[D̄]−1 =



















1
E1

−ν21
E2

−ν21
E2

0 0 0
−ν21
E2

1
E2

−ν23
E2

0 0 0
−ν21
E2

−ν23
E2

1
E2

0 0 0

0 0 0 1
G23

0 0

0 0 0 0 1
G12

0

0 0 0 0 0 1
G12



















(1.2)

σ̄ is the stress tensor with respect to the local coordinate system {123}, ϵ̄ is the

strain tensor with respect to the local coordinate system {123}, ν12 and ν23 are the

longitudinal and transverse Poisson ’ s ratios, G12 is the longitudinal shear modulus

4



1.2 Advanced composite materials

and G23 is the transverse shear modulus which for a transverse isotropic material is

defined as;

G23 =
E2

2(1 + ν23)
(1.3)

12

x

y
3, z

�

Figure 1.4: Local coordinate system defined in unidirectional (UD) layers.

The second type considers a glass reinforced composite with fibres oriented ran-

domly. In this case, under linearly elastic conditions, the material is defined as linear

elastic. For this kind of material the coordinate system is chosen arbitrary and in this

case is defined respect to the local coordinate system {123}. The stress-strain relation

is defined by means of two independent material constants E, ν ( E = E1 = E2 = E3

and ν = ν23 = ν13 = ν12) as;

σ̄ = D̄ϵ̄ (1.4)

with

[D̄]−1 =

















1
E

−ν
E

−ν
E

0 0 0
−ν
E

1
E

−ν
E

0 0 0
−ν
E

−ν
E

1
E

0 0 0
0 0 0 1

G
0 0

0 0 0 0 1
G

0
0 0 0 0 0 1

G

















(1.5)

where E is the Young modulus and ν the Poisson’s ratio.

It is important to notice that the previous stress and strain relations are defined

in the local coordinate system {123}. For defining stress and strains in the finite

element (FE) context, these vectors have to be defined in the global coordinate system

{xyz} (see Figure 1.4). Therefore, a rotation from the local coordinate system {123}
to the global coordinate system {xyz} has to be made. In order to transform the
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global stress vector σ = {σx, σy, σz, σyz, σzx, σxy, } to the local coordinate system σ̄ =

{σ1, σ2, σ3, τ23, τ31, τ12, } the following transformation is considered;

σ̄ = Tσ (1.6)

with

T =

















cos2θ sin2θ 0 0 0 2sinθcosθ
sin2θ cos2θ 0 0 0 −2sinθcosθ
0 0 1 0 0 0
0 0 0 cosθ −sinθ 0
0 0 0 sinθ cosθ 0
−sinθcosθ sinθcosθ 0 0 0 cos2θ − sin2θ

















(1.7)

where θ is the angle between the x-axis and the 1-axis. The constitutive matrix respect

to the global coordinate system is written as D = T−1D̄T . Tacking this relation into

account, the constitutive relation is defined as σ = Dϵ.

1.3 Computational failure of materials

In order to simulate cracks in a material, two main computational approaches can be

distinguished: the continuum approach and the discontinuous approach. The contin-

uum approach is based on continuum damage mechanics (CDM) where a crack is view

as a band with finite width. In the other hand, the discontinuous approach permits

the representation of a crack as a jump in the displacement field. This point of view is

more realistic approach because a crack by definition is a discontinuity.

It has to be noticed that when using the FEM for the case of continuum approach a few

changes in the formulation are necessary. However, using the discontinuous approach

changes are necessary for adapting the FEM scheme to the discontinuous view e.g. in-

troducing enrichment functions. In this Section, several continuous and discontinuous

approaches are reviewed.

1.3.1 Continuum approach

1.3.1.1 Plasticity

The theory of plasticity concerns the mathematical study of stress and strain when a

solid deforms plastically [26, 61]. During years, this approach mainly has been applied
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1.3 Computational failure of materials

to metals. Many materials under high load levels i.e. up to yield stress, exhibit non-

linear behaviour and this non-linear tendency is usually connected with irreversible

processes like plastic behaviour. The main assumptions considered in plasticity when

modelling failure is shown in Figure 1.5. In this figure, the stress-strain curve in a

uniaxial loading case for hardening plasticity is plotted. At low values of stress i.e.

under yield yield stress, loading and unloading presents a elastic behaviour while for

higher stress, unloading is still elastic while loading introduces a plastic strain ϵP .

�
P

 

�

Figure 1.5: Hardening plasticity.

In order to build the finite element implementation of a plasticity mode, a return

mapping algorithm [76, 130] is a common way forward.

1.3.1.2 Failure models based on stress quadratic functions

During years, failure models using quadratic stress functions have been used for predic-

tion of failure in ACM [144][112][57]. The majority of theses models were derived from

analytical solutions and afterwards implemented on finite element codes. The imple-

mentation of these failure models have been successfully applied for commercial finite

element e.g. ANSYS (Tsai and Wu criterion [144]) and ABAQUS (Hoffman criterion

[66]). It is important to mention that, important efforts have been carried out in order

to find a criteria that may be applied for the majority of the problems. For instance,

during the world-wide failure exercise (WWFE), a number of these criteria were de-

scribed and tested with experimental results [63, 64, 65, 133]. For a computational

point of view, a finite element that satisfies the stress condition is removed from the

discretization. This removal can cause numerical oscillations and as a consequence, the

possible divergence of the numerical technique.

It is important to underline that the prediction of the initiation of the failure process is

7
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not enough because the local failure does not imply that the whole structure will fail.

For example, in a laminate, once a ply fail the stresses may be redistributed along the

structure and consequently the laminate may carry more load.

1.3.1.3 Progressive damage modelling

Progressive damage modelling is based in continuous damage mechanics [26][79]. This

discipline considers progressive material strength degradation before one main macro-

scopic crack appears (final state). For instance, as Kachanov [73] initially proposed

for a one-dimensional case, the previous idea is related by means of a damage variable

D using the effective stress concept [26]. On a macroscopic scale, the damage vari-

able D takes into account the microscopic deteriorations (voids, microcracks, etc). For

instance, modelling isotropic damage processes it suffices to consider a scalar damage

variable whereas modelling anisotropic damage a second or fourth order tensor is re-

quired [129]. Thus, for example, the constitutive law for isotropic degradation can be

written as;

σ = (1− ω)Dϵ (1.8)

The value of ω is ranged between 0 and 1, thus, the value of the damage variable is

zero in the case of unstressed material and one when the macroscopic crack is initiated.

Several progressive damage for composite materials has been proposed during the last

decades e.g. Matzenmiller [85], Lapczyk [77], Edlund [44], Maimı́ [81], [82],[83].

Mesh-dependency exist when using continuum damage models for failure. Partic-

ularly, during strain-softening and strain location i.e. where deformation trends to

concentrate in the structure, the results present a strong mesh dependency in the finite

element solution where the energy dissipated decreases upon mesh refinement. This

behaviour can be relieved using the crack band model proposed by Bazǎnt and Oh [12].

In this method, local stress-strain behaviour depends of the element size. However, this

method does not completely solve the mesh dependency because, for instance, element

form and orientation still provoked changes in the solution. Some authors have solved

this mesh dependency problem by regularisation techniques [40]. Another possibility is

to use nonlocal damage models where the damage variables depend on the strain state

of the neighbourhood giving a characteristic length. Additionally, some applications of

progressive failure analysis applied to bolted joints or pin-loaded laminates are provided

in [23, 24, 28, 113, 118, 145, 157]

8



1.3 Computational failure of materials

1.3.2 Discontinuous approach

1.3.2.1 eXtended Finite Element method

A limitation is observed when using FEM for simulating moving cracks throughout

a structure. To accurate represent discontinuities with FEM, it becomes necessary

to conform the discretisation to the discontinuity. Then, in the case of crack propa-

gation, the mesh is re-generated at each crack-growth increment with a considerable

computational cost. Over the last decades several approaches for modelling material

discontinuities have been proposed based on the partition of unity concept [11, 52, 88],

as the Generalized Finite Element Method (GFEM) [49] or the XFEM [14] developed

by Belytschko and Black in 1999 and improved by Moes et al. [96]. In particular,

XFEM has been a robust numerical technique for modelling fracture.

General problem

A two-dimensional dynamic problem is considered where a body Ω with boundary

∂Ω is defined. This boundary is divided into ∂Ωu, ∂ΩF and Γc (see Figure 1.6). Hence,

∂Ω = ∂Ωu ∪ ∂ΩF ∪Γc, where ∂Ωu represents the prescribed displacements in the body

Ω, ∂ΩF is the part of the body subjected to surface forces and Γc corresponds to the

displacement discontinuity e.g. a crack. Note that the crack ’s faces are traction free.

The motion of the body is defined by the displacement u(x, t), which is a function of the

location of the material point x and the time t. The material is linear elastic isotropic

and its mass density is ρ. The body presents applied displacements ū on the Dirichlet

boundary ∂Ωu and applied traction t̄ on the Neumann boundary ∂ΩF ; ∂Ωu∩∂ΩF = ∅,
∂Ωu ∩ Γc = ∅, ∂ΩF ∩ Γc = ∅ . The outward normal vector in the material boundary

is defined as n⊥ and b is the body force per unit mass. Thus, the strong form of the

problem is written as follows:

∇σ + ρb− ρü = 0 in Ω (1.9)

subjected to the boundary conditions:

u = ū on ∂Ωu (1.10)

9
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Γ 

X

X

X

Γt

2
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1

Γ
c
1

Γc
s

Ω 

Figure 1.6: A two dimensional body cracked and its boundaries.

σn = t̄ on ∂ΩF (1.11)

σn = 0 on Γc (1.12)

The constitutive relation of the material is written:

σ(x, t) = Cϵ(u(x, t)) (1.13)

where σ is the Cauchy stress tensor, C the constitutive matrix and ϵ the strain

tensor.

Space discretisation
The displacement at a generic point x, u(x, t) is approximated by uh using contin-

uous and discontinuous terms as follows [95]:

uh(x, t) = ucont(x, t) + ucut(x, t) + utip(x, t) (1.14)

where ucont corresponds to the continuous approximation of the displacement, ucut

corresponds to the discontinuous approximation for addressing the crack and utip de-

notes the discontinuous approximation corresponding to the crack tip. The continuous

part of uh is approximated by the standard shape functions NI(x) as follows:

ucont(x, t) =
∑

I∈nstd

NI(x)uI(t) (1.15)
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1.3 Computational failure of materials

Here, nstd is the total number of nodes into the mesh and uI are the displacement

nodal values. The enrichment strategy adopted is illustrated in Figure 1.7. In this

Figure, the nodes enriched by the Heaviside functions are marked with circles and the

nodes enriched with the crack tips functions are marked by squares.

Figure 1.7: Definition of the nodes ncut cut by the crack (circles) and ntip enriched with

the crack tip enrichment function (squares).

The discontinuity across the crack is included by the second term of Eq.(1.14)

defined as:

ucut(x, t) =
∑

I∈ncut

NI(x)H(x)aI(t) (1.16)

where aI are the enriched degrees of freedom and H(x) is the Heaviside function

defined as:

H(x) =







1 if x ≥ 0

−1 if x < 0
(1.17)

ncut are the nodes corresponding to the crack body (see Figure 1.7). The third dis-

placement contribution in Eq. 1.14, utip(x, t), corresponds with the displacement field

on the crack tip,

utip(x, t) =
∑

I∈ntip

NI(x)Φ(x)bI(t) (1.18)
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where bI are the degree of freedom associated with the crack tip enrichment and ntip is

the set of nodes of an element that contains the crack tip. The elements that contain

the crack tip are enriched with a function that represents the asymptotic displacement

field ahead of the crack tip. This function is responsible for introducing more physics in

the solution and also localising the crack throughout an element. As Elguedj et al. [45]

points out, the localisation of the crack inside the element is addressed by the function,

Ψ(x) =
√
rsin

(

θ

2

)

(1.19)

where r and θ define the local polar crack tip coordinate system ahead of the crack

tip. This function is responsible for the strong discontinuity inside the crack. Note

that another set of functions can be used to address the asymptotic displacement field

ahead of the crack tip such as [46]:

Ψ(x) =
√
r

[

sin

(

θ

2

)

, cos

(

θ

2

)

, sin

(

θ

)

sin

(

θ

2

)

, sin

(

θ

)

cos

(

θ

2

)]

(1.20)

In this approach, the standard singular crack tip field for linear elasticity (Eq.(1.19))

is chosen for its simplicity and because it is capable of addressing the strong discon-

tinuity inside the crack. Finally, taking into account all displacement terms, the dis-

placement approximation is expressed as follows:

uh(x) =
∑

I∈nstd

NI(x)uI +
∑

I∈ncut

NI(x)H(x)aI +
∑

I∈Ntip

NI(x)Ψ(x)bI (1.21)

Considering the displacement field ( Eq.(1.21)) into the weak form of the momentum

equation, the discretised motion equation (see Belytschko et al. [16] for a more detailed

description) can be defined as,

MIJ ü
h
j = f ext

I − f int
I (1.22)

where MIJ is the mass matrix for all DOF, ühj represents the acceleration, f ext
I and

f int
I are external and internal nodal forces respectively. Therefore, the internal forces

are defined as:
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f int
I =







fu,int
I

fa,int
I

f b,int
I






(1.23)

The strain is expressed based on the strain-displacement relation:

ϵ(u(x)) = Bu
I uI +Ba

I aI +Bb
IbI (1.24)

where

Bu
I =





NI,x 0
0 NI,y

NI,y NI,x



 (1.25)

Ba
I =





(NIH),x 0
0 (NIH),y
(NIH),y (NIH),x



 (1.26)

Bb
Ij =





(NIΦj),x 0
0 (NIΦj),y
(NIΦj),y (NIΦj),x



 (1.27)

New developments in analysis of crack growth modelling are carried out since XFEM

came up [2], for instance the implementation of XFEM in 3D [139], the delamination of

GLARE [37], frictional contact [42], growth of arbitrary cohesive cracks [94], mesoescale

modeling of dislocations in two dimensions [18] and three dimensions [51], etc. For inter-

ested readers, a detail understanding of XFEM is presented in the work of Mohammadi

[135] and in the reviews of Rabczuk et al.[114] and Belytschko et al. [19].

1.3.2.2 Interface modelling

The interface elements allows the discontinuity to be between the elements. In order

to illustrate the formulation of this approach, a simple two-dimensional example is

considered where the interface is a line element as depicted in Figure 1.8. Node 3 and 4

are on the top side while 1 and 2 are the bottom side of the interface. Thus, considering

two degrees of freedom per node, u and v, the nodal displacements of the top are
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pTtop = (u3 v3 u4 v4) and in the bottom pTbot = (u1 v1 u2 v2). The displacement

field for the top element is utop = Nptop and for the bottom element ubot = Npbot where

N are the shape functions. Then, the relative displacement is defined as the different

of displacement between the top and bottom surfaces u = utop − ubot.

3

4

1

2

top

bottom

Figure 1.8: Schematic representation of the interface element in a two-dimensional ex-

ample.

A wide range of examples has shown that interface modelling is a very effective

way of modelling discrete failures that are important in fracture of polymer matrix

composites [155]. For instance, interface modelling has been applied for delamination

[3, 31, 34, 124] and impact in composites [53, 71].

1.3.2.3 Phantom node method

Initially proposed by Hansbo and Hansbo [55]. The method was afterwards related

with XFEM using the approach of Hansbo [138] for dynamic crack and shear band

propagation. The main advantage of phantom node method is that that its implemen-

tation is relatively easy because any changes to the adjacent element are necessary. In

this method crack are treated adding phantom nodes and superposing elements on the

original mesh. This idea is represented in Figure 1.9. In this figure, it is presented the

decomposition of the cracked element into two elements where solid circles are original

nodes and hollow circles phantom nodes.

1 2

34

=

1 2

34

+

1 2

34

Figure 1.9: Decomposition of a cracked element. Solid circles denoted original nodes and

hollow circles denote phantom nodes.
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1.4 Biaxial loading analysis

The phanton node method has been considered in 2D [91, 115], 3D [43, 90] and thin

shells based on Kirchhoff theory [9, 136, 137]

1.3.3 Phase field methods

Phase-field modelling of brittle fracture has been a topic of interest during the last

years [4, 5, 21, 92, 93]. This approach is very attractive because is capable of simulat-

ing complicated fracture scenarios such as crack initiation, propagation, merging and

branching for general situations without the need of ad-hoc criteria. The crack propa-

gation is tracked automatically by the evolution of the smooth crack field. Accoding to

[47], the quasi-static process of crack initiation, propagation and branching is governed

by the minimization problem of the free energy functional:

E(u,Γ) =

∫

Ω
Ψe(ϵ(u))dx+Gc

∫

Γ
ds (1.28)

where Ψe is the elastic energy density function, ϵ the strain tensor and Gc the

material fracture toughness. The solution is valid when Γ ⊂ Ω and a displacement

field u : Ω→ R which is discontinuous along Ψ. According to [47], the problems of the

classical Griffith theory for brittle fracture are overcome using the formulation presented

in Equation 1.28. In order to provide an efficient numerical implementation of Equation

1.28, its regularized formulation was proposed by Bourdin et al. [22]. However, the

proposed formulation of Bourin et al. does not make a difference between fracture due

to tension or compression. To avoid this fact, a modified regularized formulation was

proposed by [6]. Recently, in order to improve the efficiency of phase-field methods,

higher-order and hybrid formulations has been proposed [21].

1.4 Biaxial loading analysis

In some cases, for validating material models, an uniaxial loading test is considered.

Normally, composite structural components are subjected to general loading scenarios

which allow them to developed general stress scenarios. Hence, the real applications

require a detailed knowledge of the biaxial if not triaxial state of stresses. Therefore,

a better understanding of the response of composite structures to multiaxial loading

is desired [62]. In this work, the attention is focused in the study of the behaviour of

composites subjected to pure biaxial stress states. There are several ways of reproducing
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measurable biaxial stress states [131]. In particular, two principal approaches to deal

with biaxial loading in composite materials are well known in the scientific community:

the first one using tubular specimens e.g [54, 132] and the second one by means of

cruciform specimens where the loads are applied in-plane and perpendicular directions

e.g [41, 78, 84, 148, 152, 158]. In the current thesis the attention is focused in cruciform

specimens subjected to in-plane tensile loading as well as specimens subjected to tensile

loading in one direction.

1.5 A discussion of the current state of art

In this chapter, three main approaches have been considered for the simulation of cracks

i.e. continuum approach, discontinuous approach and phase field methods. In the case

of continuous approaches, some limitations are observed. For instance, in failure models

based on stress quadratic functions, the prediction of the initiation of the fracture

process is not enough because local failure does not imply that the considered structure

fails. In fact, in a laminate, once a ply fail the stresses can be distributed thought the

structure and then, the structure can carry more load. In general, in continuous models

such as plasticity and progressive damage modelling, the constitutive equations present

a strong softening behaviour as the damage level rises, which induce strain and damage

localization. This fact allows the loss of ellipticity of the differential equations and

a strong mesh dependency of the results. For solving this issue, a material length

scale through non-local or gradient damage approaches has been proposed [13, 109].

Continuous approaches are typically unable to describe the surface decohesion [5]. In

additiona, when damage localizes into a macroscopic crack, the continuum models

are known to exhibit stress locking (spurious stress transfer) and possible instability

(spurious kinematic modes)[70]

On the other hand, discontinuous approaches presents some limitations. In the case

of XFEM, in order to simulate cracks, a tracking of the discontinuity is needed, the

integration is not straight and a remeshing may be required for curve cracks [87].

Additionally, using discontinuous models based on a cohesive crack model, it is not

possible to address the first phase of densely distributed microcracks in the fracture

process zone [123].
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Recently, there have been some attempts to combine continuous and discontinuous

approaches to address localization, crack initiation and propagation [123].

1.6 Thesis outline

The thesis presented is subdivided in six different chapters. In the current chapter, the

main concepts of the research work and the literature review are provided.

In Chapter 2, the numerical and experimental analysis of a 10◦ off-axis laminate are

carried out. Considering this laminate, it is pointed out a limitation of progressive

damage modelling in correctly address the crack pattern of the laminate under analysis.

This example serves to underline that the current state of the art, when dealing with

fracture and damage in ACM, is still in ongoing development.

In Chapter 3, the attention is focused in numerical tools for the simulation of a

complex loading scenario such as the biaxial loading. Therefore, two new outcomes us-

ing the eXtended Finite Element Method (XFEM) are presented, firstly, the 2D crack

initiation and propagation of a crack on a chopped glass reinforced polyester (CGRP)

composite are simulated by means of XFEM. Secondly, a 3D cruciform structure sub-

jected to different biaxial in-plane loading scenarios is analysed numerically considering

XFEM. This is the first time this problem is accomplished for computing the stress in-

tensity factors (SIFs) produced in the biaxially loaded area of the cruciform specimen.

A new ratio relating the side of the central zone of the cruciform and the crack length

is proposed. It is important to underline that no initial crack location is pre-defined,

then, as a natural outcome the 3D crack is initiated and propagated. The numerical

results are afterwards validated with experimental tests.

In Chapter 4, a 3D PDM is implemented within a CGRP cruciform structure for

modelling its damage under loading. The structure is subjected to a biaxial loading

and its damage is addressed. The cruciform is form by chopped fibres and the material

is assumed to be computationally isotropic. However, for the computation of damage,

a new relation is considered taking into account the influence of the fibre and the

matrix within the damage rule. The computational outcomes are then validated with

experimental tests.

In Chapter 5, a new dynamic approach for simulating stationary crack using XFEM

is proposed. The objective of this chapter is to propose a solution for the limitation
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found in chapter 2 with PDM. In order to validate the proposed approach, several

numerical examples are simulated and compared with the theoretical solution and ex-

perimental outcomes.

In Chapter 6, the main conclusions of the work are underlined as well as the new

developments proposed in this thesis.

1.7 Conclusions

In this chapter, an overview of the computational strategies for modelling cracks in

ACM has been presented. Hence, for the simulation of cracks in a material, two main

approaches have been distinguished: the continuum approach and the discontinuous

approach. Although, there are several approaches for simulating fracture and damage

in these high performance materials (each one with its advantages and disadvantages),

the conclusion extracted from this chapter is that there is not a computational approach

good enough to predict the complete mixed damage mode behaviour that appears in

ACM.
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2

Computational and experimental

analysis of a 10
◦ off-axis laminate

2.1 Introduction

In this chapter, a computational limitation encountered in the modelling of damage

when dealing with ACM is discussed. The objective of this analysis is to underline

that the current state of the art in the simulation of fracture in ACM is still in ongoing

development and this outcome serves as a motivation during the work carried out in

this thesis.

Chapter 2 is sub-divided into three main parts. Firstly, the design (Section 2.2.1)

and linear elastic FE analysis (Section 2.2.2) of a 10◦ off-axis laminate is carried out.

Two different end-tab designs are considered in order to compare the influence of the

end-tab design in the strain field of the specimen. Secondly, in Section 2.2.3, an ex-

perimental tensile analysis using a non-interferometric technique called Digital Image

Correlation (DIC) is carried out. Using this procedure, the full-field maps of strains

while loading is addressed. Thus, the influence of the end-tab design will be observed

from an experimental point of view validating the results obtained by means of simu-

lations. Finally, a progressive damage model (PMD) is challenged to predict the crack

pattern observed during experiments.

In this chapter, the manufacture of the specimens has been carried out by the

University of Castilla La Mancha (Spain). On the other hand, the author of the thesis

19



2. COMPUTATIONAL AND EXPERIMENTAL ANALYSIS OF A 10◦
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is responsible for the design of the specimens, the linear and non-linear computational

simulations and the experimental tensile testing using Digital image Correlation.

2.2 The 10◦ off-axis tensile test

In order to determine the shear strength of composite materials, several test methods

have been developed [69] [27] [142]. In this chapter, the attention is focused on the 10◦

off-axis tensile test proposed by Chamis and Sinclair [27]. Considering this approach, a

uniaxial tension is applied to a unidirectional composite, such as the fibres, to form an

angle of ten degrees with the loading direction. The advantages of rectangular off-axis

specimens are notable: those specimens are easy to manufacture and the testing process

is relatively simple. To obtain the material constants using this test, a uniform state of

stresses is required along the specimen. However, it has been demonstrated [106] that

when the ends of the specimen are clamped using a straight end-tab, the application

of constant end displacement induces shearing forces and bending moments in the

specimen. Consequently, perturbations in the stress and strain field are observed. In

order to overcome this limitation, Sun and Chung [140] proposed the use of an oblique-

shaped end-tab design that resulted in a better estimation of the shear modulus and a

more homogeneous stress distribution throughout the specimen. Several authors have

been dealing with this test in experiments (using distributed strain gauges throughout

the specimen) and by means of FEA [102, 111, 140, 149, 150, 156]. In this Chapter,

the laminate is analysed computationally using linear/non-linear FE simulations and

experimentally using DIC.

2.2.1 Material and geometries

The major dimensions of the rectangular specimens are 200 x 10 mm. The specimens

were fabricated from commercially available (Hexcel Corporation) carbon/epoxy pre-

impregnated tapes of 0.25 mm thick having a total thickness of 1.5 mm. Six specimens

were cut for a 200 x 200 mm panel of carbon/epoxy IMA/M21. Six-ply unidirectional

(UD) were stacked at ten degrees forming a [10◦]6 laminate. Additionally, two differ-

ent end-tab designs are considered with 1 mm thickness, a traditional straight end-tab

(see Figure 2.1) and an oblique end-tab (see Figure 2.2). The proposed specimen and

loading condition may be observed in the fuselage of a commercial aircraft such as the
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2.2 The 10◦ off-axis tensile test

Specimen A[m2]

Straigh glass/epoxy tabs 1 1.59 ·10−5

2 1.75 ·10−5

3 1.42 ·10−5

Oblique glass/epoxy tabs 4 1.42 ·10−5

5 1.46 ·10−5

6 1.45 ·10−5

Table 2.1: Measured values of cross section A for 6 different specimens.

Boeing 787 (see Figure 2.1).

The theoretical cross section A for the specimens presented in Figure 2.1 and 2.2

is A = 1.5 · 10−5m2. However, due to the manufacturing process a different value

is obtained for each specimen considered. The values of the cross section for each

specimen are presented in Table 2.1. In that table, A is obtained as the average area

for three different sections along each specimen.

The material properties in the principal directions are presented on Table 2.2 and

its fibre volume fraction Vfibre is 59.2 % . Following the work carried out by [111], the

end-tabs are formed by a ± 45 glass/epoxy laminate. The off-axis composite specimen

under analysis is subjected to a uniaxial loading stress and different end-tab designs

are considered: a straight and an oblique design.

The angle of the straight design in respect to the horizontal is 90 degrees. However,

the angle of the oblique end-tab ϕ in respect to the x-axis is obtained using the following

equation proposed by Sun and Chung [140]:

cotϕ = −C16

C11
(2.1)

Here C11 and C16 are the elements of the compliance matrix with respect to the

global coordinate system {x,y}. Therefore, the strain in x-direction ϵxx is defined as

ϵxx = C11σxx and the shear strain is defined as γxy = C16σxx. The load applied in

x-direction σxx is the only non zero component of the stress tensor, σ. Tacking that
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Figure 2.1: The image of the Boeing 787 has been extracted from www.boeing.com.

Below this image the dimensions of the specimen with straight end-tab are presented. All

dimensions in millimeters.
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Figure 2.2: Dimensions of the specimen with oblique end-tab. All dimensions in millime-

ters.

into account, the strain-stress relation in respect to the global coordinate system is

written as:

ϵ = T T C̄Tσ (2.2)
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2.2 The 10◦ off-axis tensile test

Where ϵ is the strain tensor in respect to the {x,y} coordinate system, T is the coor-

dinate transformation matrix and C̄ is the compliance matrix in respect to the local

coordinate system {1,2}. Considering the material properties of the CFRP provided on

Table 2.2, the angle of the oblique end-tab ϕ following Eq.(2.1) is calculated as ϕ = 20◦

in respect to the x-axis.

Elasticity Ply strength

E1 174.4 GPa Xt 2600 MPa

E2 11.84 GPa Xc 1500 MPa

ν12 0.39 Yt 56 MPa

G12 5.15 GPa Yc 56 MPa

G13 5.15 GPa SL 89.6 MPa

G23 3.1 GPa

Table 2.2: Material parameters in the principal directions.

2.2.2 Linear FE analysis of the 10◦ laminate

In this subsection, a numerical analysis using the FE code ABAQUS is carried out.

The purpose of this analysis is to address the linear elastic behaviour of the [10◦]6

laminate. A 2D finite element model for the simulation of the off-axis specimens with

oblique (see Figure 2.2) and straight end-tab (see Figure 2.1) is developed. From the

ABAQUS FE library, a shell element S4R is chosen. Those elements are normally used

to model structures in which one dimension is significantly smaller than the other two

[59]. The elements have displacement and rotational DOF, therefore each node has six

DOF. Linear approximation of displacements and reduced integration are considered.

In order to avoid zero-energy modes of deformation due to the single integration point,

hourglassing control is considered. As depicted in Figure 2.3, a mesh convergence

analysis has been carried out considering three different meshes. In this Figure, the

convergence analysis for the oblique specimen is presented. The chosen mesh for both

specimens has 2400 elements.

The boundary and loading conditions considered for both specimens are presented

in Figure 2.4. The boundary conditions are intended to address the rigid gripping
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Figure 2.3: Mesh sensitivity analysis of the oblique end-tab design.

arrangement corresponding with the experimental testing. On the nodes of the left

edge, the displacements and rotations are constrained to zero and in the right edge the

only free DOF is the horizontal displacement ux where the rest are constrained. The

specimens considered for the analysis are the specimens number 3 and 4 since they

have the same average cross section (see Table 2.1). For both specimens, the load is

applied incrementally by means of a prescribed displacement until the force applied

in the right edge reached 4.5 KN. Hence, since both specimens have the same cross

section, the same stress is applied in the x-direction i.e. σxx = 316.9MPa. In order to

achieve this value of force, the horizontal displacement applied in the oblique end-tab

was 0.43 mm and for the specimen with the straight end-tab was 0.39 mm. These

displacements are different because the specimen with the oblique end-tab is slightly

longer than the specimen with the straight end-tab. In this case, the specimen with

straight end-tab is 120 mm long and the specimen with oblique end-tab has a length

of 122.52 mm.

ux

All DOF

Fixed
only

free DOF

Figure 2.4: Boundary conditions and discretisation for both specimens. The meshes

plotted have 2400 elements.

Plane stress conditions are assumed i.e. σ33 = σ23 = σ13 = 0, hence, the strain-
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2.2 The 10◦ off-axis tensile test

stress relation respect to the local coordinate system {123} is defined as;





ϵ11
ϵ22
ϵ12



 =





1
E1

−ν12
E1

0
−ν21
E1

1
E2

0

0 0 1
G12









σ11
σ22
σ12



 (2.3)

Notice that the engineering strain ϵ12 is considered in the strain tensor. An implicit

solver (Newton method) for solving the static problem is considered.
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Figure 2.5: Computational maps of global strain for the 10◦ off-axis laminate with straigh

end-tab design at 4.5 KN. It is considered a deformation factor of x30.

In Figure 2.5, the global maps of strains i.e. ϵx, ϵy, ϵxy, for the specimen with straight

end-tab are presented. These maps correspond with a tensile loading of 4.5 KN in x-

direction. It is observed that the maps of strains are not homogeneous throughout
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the specimen. In particular, the strain in x-direction ϵx (positive defined because the

specimen is loaded in x-direction) is ranged between 6.54 · 10−3 and 1.75 · 10−3. Con-

trary to the specimen with the straight end-tabs, the specimen with oblique end-tab

(see Figure 2.6) presents a homogeneous state of strain in x-direction and its value is

3.7·10−3 throughout the specimen. In the same manner, the strain in y-direction (nega-

tive defined because of the Poisson effect) for the specimen with straight end-tabs is not

homogeneous and its maximum and minimum values are −8.84 · 10−5 and −3.03 · 10−3

respectively. On the other hand, the strain in y-direction for the specimen with oblique

end-tab remains constant in the specimen and its value is −1.36 · 10−3. Finally, for the

case of shear strain ϵxy, the straight specimen has a heterogeneous strain field contrary

to the specimen with oblique end-tab which has a homogeneous strain field and its

value is constant in the whole specimen and equal to 1.1 · 10−2.

It is important to notice that the straight end-tabs induce significant shear forces

and bending couples, which leads to the characteristic ’S-shape’ observed in Figure 2.5.

On the other hand, the specimen with oblique end-tab presents a homogeneous state of

stresses and lower values of strain (when applying 4.5 KN) compared with the straight

end-tab specimen. In order to magnify deformation for both specimens, a deformation

scale factor of 30 is considered.

In conclusion, based on the results from simulations, higher values of strain are

observed in the specimen with straight end-tab than in the specimen with oblique end-

tab for a fixed load of 4.5 KN. Hence, the specimen with straight end-tab will be able

to carry less load than the specimen with oblique end-tab since the material is the same

for both specimens. This fact is corroborated in Section 2.2.3 by experimental testing.

2.2.3 Experimental testing

In order to validate the computational results obtained for the two different end-tab

designs, experimental tensile tests were carried out. The tests were done using a Tinius

Olsen 25 KN tensile machine with self-tightening grips. The specimen was loaded at 2

mm per minute in order to apply the load slow enough to be considered as a quasi-static

loading. Force over time was recorded during the test. The values of applied ultimate

stress for the six specimens tested are presented in Table 2.3 and its values are defined

as σu
x = Fu

A
, where F u is the ultimate applied force and A is the average area for three
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Figure 2.6: Computational maps of global strain for the 10◦ off-axis laminate with oblique

end-tab design at 4.5 KN. It is considered a deformation factor of x30.

different sections along each specimen. As presented in Table 2.3, the values of ultimate

stress obtained using oblique end-tab are higher than the ones obtained for the straight

end-tab. This fact is justified because the straight end-tabs induce strain concentrations

that make the specimen fail prematurely. This fact was clearly observed in Figure 2.5

by means of numerical results. In table 2.3, the mean and standard deviation of the

failure stress are calculated for the two different end-tab designs. It is observed that

the failure stress for each specimen using oblique end-tab is closer to the mean value

than in the case of the straight end-tab, therefore, using the oblique end-tab design,

the repeatability of the final applied stress is higher than in the case of the straight

end-tab.

In Figure 2.7, the experimental crack pattern for the specimen with straight end-
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specimen F u[N ] A[m] σu
x [MPa]

Straigh glass/epoxy tabs 1 6020 1.59 ·10−5 376.9

2 6220 1.75 ·10−5 354.6

3 4920 1.42 ·10−5 344.6

Mean 358.7 ±16.53
Oblique glass/epoxy tabs 4 5581 1.42 ·10−5 393

5 5750 1.46 ·10−5 393.5

6 5550 1.45 ·10−5 380.6

Mean 389.03 ±7.3

Table 2.3: Experimental average area A, ultimate force Fu and ultimate stress failure σu
x

for straigh and oblicue end-tab design

(a)

(b)

Figure 2.7: (a) Experimental crack path for the specimen with straight end-tab and (b)

for the specimen with oblicue end-tab

tab (Figure 2.7 (a)) and for the specimen with oblique end-tab (see Figure 2.7 (b)) are

presented. It is observed that the crack runs throughout the matrix following a clean

crack path in the fibre direction. Although, the crack runs at 10◦ for both specimens,

different locations of the crack, depending on the end-tab design are observed. In the

case of the specimen with straight end-tab, the crack is developed close to the end-tab.

This is not surprising since in the FE analysis a strain concentration in the clamped

zone (which is induced by bending and shear force) was observed. This fact makes

the specimen fail prematurely compared with the specimen with oblique end-tab. On

the other hand, the specimen with oblique end-tab presents a clean crack path in the

middle of the specimen as a consequence of the homogeneous strain field (see Figure

2.6).
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2.2 The 10◦ off-axis tensile test

2.2.3.1 Digital Image Correlation (DIC)

In section 2.2.2, the maps of strain along the specimens provided by the FE simulations

are presented. Those results allow us to predict that the specimen with oblique end-

tab presents a more homogeneous strain field than the specimen with straight end-tab.

However, this fact has to be validated. In this subsection, an experimental analysis

of the strain field of the specimens is carried out. The results obtained will allow the

comparison, in real conditions, of the two different end-tab designs. The experimental

technique used is the so-called DIC. This tool was developed in the 1980s and it is based

on digital image processing and numerical computing [110] [30] [141]. This technique

is a non-interferometric tool that provides the full-field displacements and strains by

comparing a digital image reference (un-deformed) with a deformed image stage. In

this analysis, it is considered the two-dimensional DIC approach, hence, in-plate defor-

mation measurement of the planar surface is addressed. The DIC technique presents

advantages compared with interferometric optical techniques [108] such as its simple

setup and specimen preparation, its low dependency for environment conditions and

its wide range of measurement sensitivity. In Figure 2.8, the experiment setup made in

this experimental analysis is illustrated. The camera was placed perpendicular to the

specimen ś flat surface in order to consider the out-of-plane motion of the specimen

small enough to be neglected. Two white light sources were placed in both sides of

the camera during loading. On the specimen surface, a random speckle patter that

deforms with the specimen is artificially made by first spraying, a homogeneous white

paint followed by a black speckle. This leads to a random structures aspect that is

observed by the camera.

The procedure used for the determination of the whole-field displacements in the

specimen is as follows: the random speckle pattern is recorded in two moments; the

first one is before loading the specimen and the second is when the specimen is de-

formed. Afterwards, by correlating sub-images between those images it is possible to

determine the surface displacement vector. To address the degree of similarity between

the reference and the deformed image a cross correlation (CC) criterion or sum-squared

difference (SSD) correlation criterion may be defined [50]. In literature, several corre-

lation criteria may be defined such as CC, SSD, normalised cross-correlation (NCC),

zero normalised cross-correlation (ZNCC), normalised sum-squared difference (NSSD)
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Figure 2.8: Experimental set-up of DIC.

and zero-normalized sum-squared difference (ZNSSD). According to Tong [143], ZNSSD

and ZNCC presents higher robustness and reliability especially for variable lighting or

exposure problems.

(a) (b) (c)
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Figure 2.9: DIC analysis of the 10◦ laminate with oblique end-tab design. The scale

represents % of strain

In Figure 2.9, the experimental maps of strains for the oblique specimen are pre-
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2.2 The 10◦ off-axis tensile test

sented. The load is applied in the x-direction and the average strain in this direction

ϵx is 0.38 % (see Figure 2.9(a)), which is similar to 0.37 % obtained by means of sim-

ulations. As depicted on Figure 2.9 (c), the higher values of strain are observed in the

shear strain map ϵxy. In this case, the average shear strain is calculated as 1.2 % which

is similar to the value obtained by means of simulations which was 1.1 % (see Figure

2.6). A shear strain concentration in Figure 2.9(c) (yellow zone) is observed. This zone

is where the crack is initiated. Figure 2.10 presents the maps of strain obtained for

the specimen with straight end-tab. For a fixed load of 4.5 KN, the values of strain in

the loading direction ϵx (see Figure 2.10 (a)) for the specimen with straight end-tab

are higher than the ones obtained for the specimen with oblique end-tab (see Figure

2.9 (a)). The higher values of strain for this specimen are presented in Figure 2.9 (c)

where the map of shear strain is presented. In this case, no peak of shear strain along

the specimen is observed. This is justified because the macro crack is located close to

the end-tab and it was not addressed by the DIC analysis.

(a) (b) (c)

�
X

�
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Figure 2.10: DIC analysis of the 10◦ laminate with straigh end-tab design. The scale

represents % of strain
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2.3 Limitation of progressive damage modelling

The specimen with oblique end-tab (see Figure 2.2) presents a lay-up sequence where

the fibres are oriented in the same direction for all plies. Experimentally, the crack

observed follows a 10◦ path (see Figure 2.7 (b)) and in a quasi-instantaneous event the

crack grows though the matrix. In order to assess the computational crack behaviour

of the 10◦ off-axis laminate, the anisotropic damage model proposed by Lapczyk and

Hurtado [77] is considered. Through this analysis, it is possible to point out a limitation

encountered in PDM and this limitation will serve as a motivation for the work carried

out in the following chapters.

2.3.1 2D progressive damage analysis

2.3.1.1 Constitutive model

The model is formulated in plane stress and takes into account the constitutive model

proposed by Matzenmiller et al. [86]. Three characteristic parts are considered, in the

first stage, the material is linear elastic (see Eq. (2.3)). Once the material achieves

a specific state of stresses determined for an initiation criteria based on stress, the

material degradation starts. The model is capable of addressing the different damage

scenarios and it considers four different damage modes: fibre tension, fibre compression,

matrix tension and matrix compression. In order to implement the material degradation

in the constitutive relation, a set of damage variables are considered for each of the

different damage modes. Then, after damage initiation, the corresponding constitutive

damaged matrix Dd is defined as:

Dd =
1

Q





(1− df )E1 (1− df )(1− dm)ν12E1 0
(1− df )(1− dm)ν21E1 (1− df )E2 0
0 0 Q(1− ds)G12



 (2.4)

where df , dm, and ds are the damage variables for fibre, matrix and shear failure modes,

respectively and Q = 1 − (1 − df )(1 − dm)ν12ν21. The damage variables are ranged

between zero (undamaged state) and one (fully damaged state for the corresponding

damage mode). In this model, the damage variable corresponding to shear, ds is defined

as a function of the other two independent damage variables as;

ds = 1− (1− dft)(1− dfc)(1− dmt)(1− dmc) (2.5)
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The damage variables df and dm have different values for tension and compression

which will be identified by the subscripts t and c. The initiation criteria considered

for this model is the Hashin ’s initiation criteria [56, 58]. It considers four different

damage initiation mechanisms: fibre rupture, fibre compression, matrix tension and

matrix compression and its mathematical definition is described as;

Fibre tension (σ̂11 ≥ 0)

Fft =

(

σ̂11
Xt

)2

(2.6)

Fibre compression (σ̂11 ≤ 0)

Ffc =

(

σ̂11
Xc

)2

(2.7)

Matrix tension (σ̂22 ≥ 0)

Fmt =

(

σ̂22
Y t

)2

+

(

σ̂12
SL

)2

(2.8)

Matrix compression (σ̂22 ≤ 0)

Fmc =

(

σ̂22
2ST

)2

+

[(

Y C

2ST

)2

− 1

]

σ̂22
Y C

+

(

σ̂12
SL

)2

(2.9)

In the equation presented above, σ̂ij represents the components of the effective

stress tensor, XT and XC are the tensile and compressive stress in the fibre direction;

Y T and Y C are the tensile and compressive strength in the matrix direction, SL and

ST represents the longitudinal and the transverse shear strength, respectively.

The evolution of each damage variable di is controlled by an equivalent displacement

[77] and the following relation for each failure mode i is defined:

di =
δui (δi − δoi )

δi(δui − δoi )
(2.10)

where i ∈ {ft, fc,mt,mc}, δoi represents the equivalent displacement at the peak for the

failure mode i, δui represents the ultimate displacement for a i damage mode i.e. when

di = 1 (see Figure 2.11) and δi satisfies δoi ≤ δi ≤ δui . The equivalent displacements

and stresses for each of the damage modes considered are presented in Table 2.4. Note

that the symbol <> in the equations presented on Table 2.4 represents the Macaulay

operator.

In order to fully define a linear strain-softening, a value of critical fracture energy

Gc needs to be specified for each failure mode i.e. fibre tension Gft, fibre compression

33



2. COMPUTATIONAL AND EXPERIMENTAL ANALYSIS OF A 10◦

OFF-AXIS LAMINATE

Failure mode δ σ

Fibre tension (σ̂11 ≥ 0) Lc < ϵ11 >
Lc(<σ11><ϵ11>)

δft

Fibre compression (σ̂11 ≤ 0) Lc < −ϵ11 > Lc(<−σ11><−ϵ11>)
δfc

Matrix tension (σ̂22 ≥ 0) Lc

√

< ϵ22 >2 +ϵ212
Lc(<σ22><ϵ22>+σ12ϵ12)

δmt

Matrix compression (σ̂22 ≤ 0) Lc

√

< −ϵ22 >2 +ϵ212
Lc(<−σ22><−ϵ22>+σ12ϵ12)

δmt

Table 2.4: Equivalent displacement and stresses for each damage mode considered.

Gfc, matrix tension Gmt and matrix compression Gmc. However, those values were not

obtained during experimental testing.

In this model, a characteristic length Lc, which allows to define the constitutive law

as a stress-displacement relation (see Figure 2.11), is considered. In Figure 2.11, σo
i is

the value of peak stress at the i mode of failure. The grey area i.e. the area under the

curve stress-displacement, represents the fracture energy for the damage mode consid-

ered. Then, the energy for each damage mode i can be obtained as Gc
i =

δui σ
o
i

2 . Since

the material under analysis is brittle, it is assumed that:

- The ultimate displacement δui for each damage mode is 1% higher than the peak

displacement δo

- There is no contribution of shear stress to the fibre tensile initiation

Taking into account the equivalent displacement presented in Table 2.4, the fracture

energy for fibre rupture is defined as Gc
ft =

1.01·Lc·ϵ0ft·Xt

2 where ϵ0ft is the corresponding

strain at the peak value of stresses and its value is obtained as ϵ0ft = Xt

E1
which is a

simplification of the constitutive relation. Equivalent to the tensile case, the fracture

energy for fibre under compressive loading is defined as Gc
fc =

1.01·Lc·ϵ0fc·Xc

2 where ϵ0fc

is the corresponding value of strain for the peak load obtained as ϵ0fc =
Xc

E1
. In the case

of the damage mode connected with the matrix, it is assumed that the significant term

that aim failure is the shear since the values of shear strain are one order of magnitude

higher than the ones perpendicular to the fibre direction. Hence, the fracture energy for

the matrix tensile is calculated as Gc
mt =

1.01Lcϵ
0
mtSL

2 and for the matrix compression

Gc
mt = 1.01·Lc·ϵ0mc·SL

2 . Taking into account the elastic matrix that relates stress and
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strain, the values of fracture energy for each damage mode are presented in Table 2.5.

In this case, the characteristic length is defined as Lc =
√

A(e) = 7.07e−4m being A(e)

the average area of an element for a mesh of 2400 elements.

��

 

 
o

o u

i

i i
�

Figure 2.11: Stress-displacement law for each damage mode i.

Ply strength Energy

Xt 2600 MPa Gc
ft 13834

N
m

Xc 1500 MPa Gc
fc 4606.2

N
m

Yt 56 MPa Gc
mt 94.56

N
m

Yc 56 MPa Gc
mc 94.56

N
m

Table 2.5: Material parameters for off-axis test in the principal directions.

It is important to note that when the material presents strain-softening and strain

localisation, the formulation provides a high mesh dependency of the results, hence

the energy dissipated decreased under mesh refinement. In order to correct the mesh

dependency, the crack band model proposed by Bažant and Oh [12] is adopted. Con-

sidering the crack band model for avoiding mesh dependency, the ultimate strain ϵu is

not kept constant and it is changed in a way that the fracture energy is conserved;

ϵu =
2G

σyLc
(2.11)

where σy is the peak stress. The model deals with strain-softening and stiffness

degradation that may provoke convergence difficulties and so, abortion of the simula-

tion. To overcome this, a viscous regularisation scheme is considered. By means of
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this strategy the tangent stiffness matrix of the softening material is positive defined

for small time increments during simulations. If viscous regularisation with a small

value of viscosity parameter η (small compared with the time increment) is considered,

the convergence of the model in the softening state is improved without affecting the

results significantly.

2.3.2 Results

Taking into account the 2D PDM presented in Section 2.3.1.1, the specimen with the

oblique end-tab design was considered for numerical analysis. In order to aim compu-

tational failure, a displacement in x-direction on the right edge is applied incrementally

leaving the vertical DOFs free. As shown in Section 2.2.2, the maps of strains in the

oblique specimen are homogeneous. Therefore, the corresponding state of stresses are

homogeneous and no stress concentration is localised. For a better understanding of

this fact, in Figure 2.12 the function Fmt (see Eq. 2.8) is plotted for the whole speci-

men. In this graph, Fmt informs when an element along the mesh satisfies the initiation

criteria for matrix cracking i.e. failure. As depicted in Figure 2.12, the Hashin initia-

tion criteria for matrix cracking is satisfied in the whole specimen at once due to the

homogeneous state of stresses along the specimen.

Due to the homogeneity of the stress field, the crack is obligated to be initiated

in the area so-called ”weak zone” in Figure 2.15 (a) which is 1x1 mm2. According

to experiments (see Section 2.2.3), this assumption is realistic for the specimen with

oblique end-tab since, in all specimens tested, the crack initiates in the central zone

of the specimen and not next to the end-tab like the specimens with straight end-tab.

The square area defined presents a longitudinal shear strength SL = 50MPa, which is

44 % lower than the intact material (see Table 4.1). For this analysis, the dimensions

of the specimen are the ones depicted in Figure 2.2.

Figure 2.13 shows the force-displacement curve for different meshes: 1040, 2400 and

3760 elements. Once the mesh has a reasonable size the results converge to a unique

solution, consequently, a higher mesh refinement does not improve the computational

solution but it does increase the computational cost. As depicted, the crack band

model seems to alleviate the mesh-dependency of the solution for a reasonable mesh

size when strain-softening and strain location occurs. Hence, the energy dissipated does

not decrease upon mesh refinement and it is maintained constant. In order to improve
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Figure 2.12: Hashin matrix tensile map for the specimen considering a mesh with 2400

elements.
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Figure 2.13: Force versus displacement in the right end-side of the specimen for a mesh

of 1040,2400 and 3760 elements.

the convergence of the numerical approach, a constant value of viscosity parameter is

considered η = 1 · 10−6s for all damage modes.

In Figure 2.15 (b) (c) and (d), a detailed view of the specimen in the zone where the

crack is initiated i.e. weak zone, is depicted. In this graph, the maps of initiation for

matrix cracking according to the Hashin criteria are depicted in three different stages

of the damage propagation. Those maps are equivalent to the ones obtained by means

of the plot of the damage variable for matrix cracking dmt. In Figure 2.15 it is observed

that the failure pattern of the specimen it does not correspond with the experimental

tests where the crack path follows the fibre direction. In fact, in Figure 2.15 it is

observed that, after the computational crack is initiated in the weak zone, the crack

path follows a wrong path. This mechanics of failure is also observed in the deformed

mesh (see Figure 2.14) of the specimen. The reason for this behaviour relies on the fact
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that the direction of propagation is governed by the stress concentration instead of the

fibre direction. Thus, this behaviour is a consequence of the homogenisation present in

continuous models [146].

Figure 2.14: Deformed mesh of the specimen after failure for a mesh of 3740 elements.
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Figure 2.15: Map of damage due to matrix cracking in the specimen. A weak zone of 1

by 1 mm has been defined to localise the crack.
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2.4 Conclusions

In this chapter, a 10◦ off-axis laminate has been design, manufactured and computa-

tionally analysed. A PDM has been considered for addressing the crack path in the 10◦

off-axis laminate. The predicted crack path obtained by means of simulations using

PDM is different from the crack path observed experimentally. During experimental

testing, the matrix cracking is observed along the fibre direction. Hence, the fail of

the PDM in addressing the crack path correctly relies on the fact that the direction of

crack propagation is induced by the stress concentration rather than by fibre direction.

The failure of the PDM in addressing the crack mechanist observed serves to justify

the work carried out in the following chapters.
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3

Static and dynamic analysis of a

cruciform structure subjected to

biaxial loading: A discontinuous

approach

3.1 Introduction

In this chapter, a structural integrity analysis using XFEM is considered for simulating

the crack behaviour of a chopped fibre-glass-reinforced polyester (CGRP) cruciform

specimen subjected to a quasi-static tensile biaxial loading [99]. This is the first time

this problem is accomplished for computing the stress intensity factors (SIFs) produced

in the biaxially loaded area of the cruciform specimen. A static crack analysis for the

calculation of the mixed-mode SIFs is carried out. SIFs are calculated for infinite

plates under biaxial loading as well as for the CGRP cruciform specimens in order to

review the possible edge effects. A ratio relating the side of the central zone of the

cruciform and the crack length is proposed. Additionally, the initiation and evolution

of a three-dimensional crack are successfully simulated. Specific challenges such as the

3D crack initiation, based on a principal stress criterion, and its front propagation, in

perpendicular to the principal stress direction, are conveniently addressed. No initial

crack location is pre-defined and an unique crack is developed. Finally, computational

outputs are compared with theoretical and experimental results validating the analysis.
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In this chapter, the author presents a structural integrity analysis using XFEM for

simulating the crack behaviour of a chopped fibre-glass-reinforced polyester (CGRP)

cruciform specimen subjected to a quasi-static tensile biaxial loading [99]. This is the

first time this problem is accomplished for computing the stress intensity factors (SIFs)

produced in the biaxially loaded area of the cruciform specimen.

In addition, due to the collaboration with Dr. Serna Moreno from the University of

Castilla-la Mancha (Spain), the 2D crack initiation and propagation in the cruciform

specimen subjected to quasi-static biaxial loading were analysed numerically [125]. This

work was the first attempt to investigate with XFEM the crack initiation and propaga-

tion on a randomly oriented fibre composite under biaxial loading. This collaboration

has not been included in this thesis since Dr. Serna Moreno was the corresponding

author of the manuscript [125].

3.2 Cruciform structure

In industrial applications using ACM, different complex loading cases are observed.

For instance, in the fuselage of an aircraft, multi-axial loadings perform during working

conditions. Then, it is required a better understanding of these materials under multiple

loading in different directions [132]. For this reason, in this thesis, the computational

behaviour of a cruciform structure is studied (see Figure 3.1). This structure was

initially designed by Serna et al. [126] and it is formed by CGRP composite that

behaves experimentally in a quasi-isotropic manner [126],[127]. This fact is justified

because of the uniformly random distribution of the fibres throughout the matrix. The

ACM tested owns a polymer matrix with 20% volume of glass fibre reinforcement.

The design of this structure is intended to localize a biaxial loading stress state

in its central zone i.e. the intersection of both arms. In order to aim that, a tensile

load in the longitudinal direction of each arm is applied. As depicted in the detail

view of Figure 3.1, a milled zone in the central part is observed. The objective of that

is to aim higher stresses in the central zone compared with the rest of the specimen

[126]. Three different cruciform geometries A, B and C (Figure 3.1) are studied. The

material properties are depicted in Table 3.1. In that table, E represents the modulus
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Figure 3.1: The three different cruciform structures studied. Additionally, a detail view

of the geometry A is given for localizing the zone where a biaxial state of stresses occur.

Dimensions are in millimeters.

of elasticity, υ the Poisson ratio, ϵyield the yield strain and σyield the yield strength

which are obtained in [127].

Density[Kg/m3] E[MPa] υ G[MPa] σyield[MPa] ϵyield GC
I [N/m]

1440 6500 0.37 2370 90 0.0138 6210

Table 3.1: Material parameters

Geometry A has the same width in both arms while in geometries B and C the

width of the arm in the direction x changes respect to the arm in the y direction that

remain constant (see Figure 3.1). In geometry B, the width of the arm in x direction
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is 1.5 times the width of the arm in the y direction and geometry C has an arm in x

direction that it is half of the width of the y arm. The CGRP presented in this work

is used in internal coating and the frontal parts used in trains (see Figure 3.2). This

composite substitutes the traditional materials used in trains due to its lower weight

and its high resistant to corrosion.

Figure 3.2: Aplication of the CGRP composite under analysis. Image provided by UCLM.

3.3 A 3D discontinuous approach/model based on the eX-

tended Finite Element Method

Experimentally different biaxial loading cases are applied in each cruciform. These

loading cases cause failure through the diagonal of the central zone. 1/8 of the model for

each geometry is simulated due to the symmetry. The boundary conditions applied to

the three different geometries are depicted in Figure 3.3. Also, the cruciform specimen

is fixed in the out-of-plane direction.

For the finite element discretization, eight node hexahedral elements with reduced

integration and three degrees of freedom per node are chosen (C3D8R). Reduced in-

tegration may provoke spurious zero-energy modes that provides an unreal solution.

Therefore, hourglassing control is considered. A mesh convergence analysis was carried

out for obtaining an adequate size mesh in this cruciform specimen under analysis [126]

. Two different average size meshes are defined: 1.5 mm in the arms of the cruciform

specimen and 0.5 mm in the central zone. In previous work, it was presented a two-

dimensional crack initiation and propagation analysis [125]. The computational results
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Figure 3.3: Boundary conditions considered in the simulations for the three different

cruciform geometries under biaxial loading: A,B and C.

were validated by means of comparison with experimental results. In this chapter, the

main objective is focused in the calculation of SIFs for the real cruciforms submitted

to biaxial loading as well as quantify the edge effects into each geometry. For making

that possible, previous computational tests are needed. It is important to notice that

in this Chapter a 3D model is simulated. This model has not been validated before

and higher numerical complexity is expected compare with the 2D case. Therefore, in

Section 3.3.1 crack initiation and propagation is simulated within the 3D cruciform and

compared with experimental outcomes. By means of this first computational analysis

the three-dimensional abilities of XFEM are demonstrated. With the confidence of this

analysis, the author is able to go further when dealing with a 3D model. In Section

3.3.2, a 3D static crack analysis is carried out. This section can be divided into two

main parts. The first part, Section 3.3.2.1, considers a quasi-infinite plate subjected to

biaxial loading. Those plates are equivalent to the central zone of the cruciforms and

SIFs are obtained using XFEM and afterwards compared with the theoretical solution.

This analysis serves to show that XFEM is capable of accurately obtain SIFs in a bi-

axial loading context. The second part, Section 3.3.2.2, it is focused in the calculation

of SIFs within cruciform specimens once the capabilities of XFEM has been validated

in previous sections.
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3.3.1 Crack initiation and propagation

3.3.1.1 Constitutive Model

The constitutive model for modelling crack initiation and propagation into the cruci-

form is defined by means of three characteristic steps (see Figure 3.4) and it needs to

represent the fragile fracture process of the CGRP cruciform:

- Linear elastic traction-separation behaviour (point 1 to 2 in Figure 3.4). The elastic

behaviour is defined in terms of elastic constitutive matrix that relates normal and

shear stresses with nominal strains.

- Damage initiation (point 2 in Figure 3.4). It is connected with the beginning of the

degradation of the cohesive response in an enriched element. The criterion of initiation

selected is based on maximum principal stresses σmax = σyield ± σtol. Therefore, when

the maximum principal stresses σmax achieve a value that it is the sum of yield stress

σyield and a certain value of tolerance σtol (define by the user) the damage process

starts.

- Damage evolution (point 2 to 3 in Figure 3.4). Once the initiation criterion is satisfied,

damage evolution defines the degradation of the stiffness (softening). The constitutive

relation is written as follows σ = (1−ω)Dδ, where ω is a scalar variable that is respon-

sible for the degradation of the stiffness. Initially this variable is zero (full load-carrying

capability) and at the end of the degradation process this variable takes value 1 (no

load-carrying capability). For a proper definition of that variable, it is requested a

critical fracture energy GC for each pure failure mode. Based on experimental obser-

vations, the dominant mode of fracture in the cruciform specimen is mode I. Then, it

is assumed that the mode I of failure defines the fracture process and consequently it is

defined the critical energy for pure mode I of failure GC
I . This energy GC

I refers to the

energy dissipated during the damage process per unit area and its value in this work

is estimated by means of uniaxial testing. Therefore, the energy dissipated per unit

volume during damage evolution is GC
I =

σyield0.01ϵyield
2 (Table 3.1). In this case, GC

I

is equal to the critical fracture energy per unit area because the traction-separation

model considered a unitary cohesive thickness. Due to the brittle material behaviour

of the composite, it is assumed that the fracture strain ϵu is 1% higher than the yield

strain ϵyield.
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Figure 3.4: Segment form by point 1 to 2: Undamaged liner elastic behaviour, point 2:

damage initiation and segment form by point 2 to 3: softening.

Difficulties of convergence using implicit solver are detected when strain-softening

behaviour is modelled. For solving this issue, a viscous regularization of the constitutive

equations defining the cohesive behaviour is adopted. In the regularization scheme, a

viscous damage variable is defined ωv = (ω−ωv)/η, where η is the viscosity coefficient

that represent the relaxation of time of the viscous system and ω the damage variable in

the inviscid model. The viscous coefficient η increments the rate of convergence of the

model when it is dealing with strain-softening material behaviour. Then, using a small

coefficient (small compared with a characteristic time tc of the system) convergence

can be improved. The value of the characteristic time tc of the system is calculated

using the expression tc = Le

cd
where Le is the smallest element size and cd =

√

E
ρ

is

the stress wave velocity of propagation for a material with density ρ=1147.5 kg
m3 and

modulus of elasticity E= 6.5 GPa. For this application, the characteristic time 2.1 µs.

It is noticed that one of the viscous coefficient considered during crack propagation

is higher than the characteristic time of the system. However, the viscous energy in-

volved during simulations is a 0.16 % of the total internal energy stored in the system,

then, the viscous regularization does not compromise the solution and realistic results

are consequently provided. It is noticed that during this research the damage toler-

ance σtol and viscous parameter η have a considerable influence on the progression of

the crack and the convergence of the solution. It is assumed that the specimen is in

elastic equilibrium during the loading process so quasi-static simulations are developed

employing an implicit solver for solving the momentum equation. An automatic time

stepping is chosen. Maximum and minimum values of the time step are 10−2 and 10−20
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Figure Geometry Loading case σtol[Pa] η[s] Initial crack

Figure3.5(c) A 1/2 1 10−7 No

Figure3.5(a) A 1/1 1 10−7 No

Figure3.6(a) B 1.5/1 1 10−3 No

Figure3.7(a) C 0.5/1 1 10−3 No

Table 3.2: Simulation parameters

respectively. 10000 increments per time step are used.

3.3.1.2 Validation of the 3D model by comparison with experimental tests

Experiments showed two main outcomes: the first is that the correct failure within the

cruciform is when the crack transverse the central region submitted to biaxial loading

in geometries A, B and C [126] and the second one is that each geometry owns a certain

biaxial loading case where a crack is localized in the central zone. Considering that,

simulations were carried out and the simulation parameters to aim a crack path crossing

the central zone are presented in Table 3.2. In the current work, non a-priori crack

location is defined for all geometries, thus, the crack is initiated and propagated as a

solution-dependent.

Damage initiation is properly predicted by XFEM and all geometries initiated a

crack at 90 MPa in the rounded zone. Geometry A is submitted to a loading case 1/1,

which means that the same load is applied in both arms. As a result of this loading

condition, simulation results show a crack throughout the central zone of the geometry

(figure 3.5 (a)) and the crack-path followed is similar to the experimental case (see

Figure 3.5 (b)). In geometry A, when the loading case is different to 1/1, an incorrect

failure is detected (failure in the arm with bigger load). This fact is also predicted by

XFEM. In Figure 3.5 (c), geometry A is submitted to a loading case 1/2 (double load

in the vertical arm). Thus, the crack is developed in the arm suffering a higher load

which is in good agreement with experiments (see Figure 3.5 (d)).

In the case of geometry B, the in-plane biaxial loading case applied is 1.5/1. As the

previous example for geometry A, no pre-definition of the crack location is necessary,

so as a natural outcome crack is initiated and propagated throughout the central zone.

In figure 3.6 (a), it is depicted a translucent view where the surface of the crack is
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Crack path (a) (b)

Crack path
(c) (d)

Figure 3.5: (a) Computational and (b) experimental crack propagation in geometry A

under loading 1/1 without definition of a priori crack. Computational (c) and experimental

(d) crack propagation in geometry A under loading 1/2 without definition of a priori crack.

appreciated in the 3D geometry. In Figure 3.6 (b) it is illustrated the experimental

results for geometry B under biaxial loading 1.5/1. That figure serves to illustrate the

pattern of failure to achieve the correct collapse of the cruciform i.e. across the central

zone. Geometry C is under a biaxial loading 0.5/1. Experimental results (Figure

3.7 (b)) are accurately predicted by the simulations (Figure 3.7 (a)), therefore the

computational crack is developed crossing the central zone.

3.3.2 Biaxial static crack analysis

In this section, a static crack analysis is carried out into the CGRP composite. Firstly,

three different quasi-infinite plates are simulated with the objective of validating XFEM
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(a) (b)

Figure 3.6: (a) Computational crack propagation in geometry B under loading case 1.5/1

without definition of a priori crack location (b) Experimental path failure in geometry B

for a biaxial loading 1.5/1 [126].

(a) (b)

Crack path

Figure 3.7: (a) Computational and (b) experimental crack propagation in geometry C

under loading 0.5/1 without definition of a priori crack.

for the calculation of SIFs in a biaxial contest. The size of these quasi-infinite plates

is proportional to the central zone of the cruciform specimens. Secondly, SIFs are also

obtain for the real cruciforms and compared with the analytical solution for infinite

plates. A 3D model is needed for studying static crack analysis [60] within the quasi-

infinite plates and the cruciform specimens. The edge effects into the SIFs calculation

are studied.
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3.3.2.1 Inclined crack in a biaxial stress field

SIFs are calculated for infinite plates and CGRP cruciforms. SIFs are extracted from

the J-integral calculation [7]. This integral is a contour integral for bi-dimensional

geometries and its definition in this application is extended to three-dimensional ge-

ometries. The relation between the J-integral J and SIFs for linear elastic material [60]

is given by the following equation:

J =
1

8π
KTP−1K (3.1)

where K = [KI ,KII ,KIII ]
T and P the pre-logarithmic energy factor tensor. Interested

readers for a better understanding of fracture mechanics concepts can consult fracture

mechanics references such as [7].

In this section, the objective is to validate XFEM for calculating the mixed-mode

SIFs in a 3D biaxial scenario. Therefore, the part of the structure with interest is the

central zone of geometry A,B and C because it is where a biaxial loading is located.

To study independently these regions, rectangular plates are considered for simulations

(see Figure 3.8). The dimensions of the plates (Table 3.3) are one order of magnitude

higher that the original central zone on the cruciforms to consider the study of an ideal

quasi-infinite plate respect to the real critical area. Thus, the solution of the SIFs in

mode-I and mode-II is admissible and its expression is [121]:

KTheo
I = σ

√
πa(sin2β + αcos2β) (3.2)

KTheo
II = σ

√
πa(1− α)cosβsinβ (3.3)

where β is the angle form by the crack and the vertical direction, σ is the stress, a

is half-crack length, KTheo
I and KTheo

II are the first and second theoretical mode SIF,

respectively. α is defined as the ratio between the major and minor stress into the

plate.

As it is illustrated in Figure 3.8, a centre crack is defined in each plate under analysis.

This crack is 2 mm long for all geometries. The crack size chosen for this analysis is

relatively small compared with the dimensions of the quasi-infinite plates considered.

Therefore, the quasi-infinite plate can be considered as a infinite respect to the crack

size and edge effects are then minimized. The crack under analysis is inclined with an

angle β. This angle is the angle form between the crack and the vertical direction. This
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angle is subtracted from experiments and corresponds with the failure angle observed

in the rounded zone for each geometry. The crack path is almost constant throughout

the cruciform so the crack angle observed in the rounded zone is approximately the

same as the central zone. Thus, for geometry A this angle is 45◦, for B 33.69◦ and C

63.43◦. The values of the load applied to the plates in each direction are depicted on

Table 3.3. These values of stress correspond with the stress failure in the central region

observed during experiments. Boundary conditions and loading directions in the plate

are depicted in Figure 3.8. Note that plates are also constrained in the out-of-plane

direction. In Figure 3.8, W represent the width and H the hight of the plates. Thus,

different values of W and H are considered for simulations as shows Table 3.3.

W

2
a

H

�

��

 

Figure 3.8: Boundary conditions of the centre crack under biaxial loading.

In the neighbourhood of the crack location, it is considered a square area of 4x4 mm

around a centre crack where 2500 elements are stacked in order to capture the crack-tip

stress field. The major edges of the plate are partitioned into 80 equal subdivisions for

each plate. The thickness of the plate is 2 mm and two mesh subdivision are considered
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Geometry A B C

Dimensions plate(W|H)[mm] 220x220 220x330 220x110

Loading (σx-σy)[MPa] 84-84 81.8-49.9 48-103.5

Table 3.3: Dimensions and loading in the infinite plates considered

Geometry β KTheo
I KTheo

II KNum
I KNum

II |errorKI |(%) |errorKII |(%)

A 45 4.70 0 4.56 0 3.06 0

B 33.69 3.34 0.82 3.36 0.85 5.68 3.01

C 63.43 5.17 1.24 5.13 1.29 0.9 3.74

Table 3.4: SIFs for a 2 mm crack in the central zone of the plate

throughout the thickness. SIFs obtain by simulations are presented in Table 3.4. The

analytical solution is compared with the results obtained with XFEM.

Computationally, the J-integral is considered for the SIFs calculation. It is well-

known that in theory the J-integral is path independent. However, computationally

this is not true. Therefore, different contours give different solutions of SIFs. In this

study five contours are taken into account. Because of numerical singularities, the first

contour is not considered as it is suggested in [60]. Then, the SIFs depicted on Table

3.4 have been obtained as the mean of the five consecutive values starting from the

second value of KI and KII calculated.

The theoretical values of SIFs are compared with the numerical ones obtained by

means of XFEM. The small relative error appreciated between theoretical and numerical

solutions confirms that XFEM is able to predict the mixed-mode fracture process here

considered and validates its use for SIFs calculation considering a biaxial loading.

3.3.2.2 SIFs into the real cruciforms

In this section, SIFs are calculated for the real cruciform specimens and then compared

with the theoretical solution. 1/8 of each cruciform is simulated with inclined cracks in

the central zone. Different values of a i.e. half-size of the crack length, are considered,

a = 0.5, 1, 1.5, 2mm. The angle of inclination β considered is the same as for the

quasi-infinite plate analysed in previous section. Three different mesh regions can be
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distinguished with different element size in the structure. The first one defined is in the

central zone with a 0.5 mm size, the second one defined in the arms with 1.5 mm size and

the third one in the proximity of the static crack as depicted in Figure 3.9. For the third

mesh refinement, a 4x4mm square is defined surrounding the crack with 1600 elements.

The loading applied in this case is on the arms of the cruciform. Then, for geometry A,

54MPa are applied in each arm, in geometry B, 61MPa and in geometry C, 44.25MPa.

These values of load in each arm are responsible for the final fracture of the structure.

The values of SIFs obtain with the quasi-infinite plates presented on Table 3.4 show

that the values of KI obtained by XFEM are higher than the ones KII . This fact is

also observed on Figure 3.10 for the cruciform structures. These results allow us to

demonstrate numerically that the dominant mode of fracture is mode I. Comparing

Table 3.4 and Figure 3.10 for a = 1mm (2 mm of crack length), it is observed that

the values of SIF calculated for quasi-infinite plates are closer than the SIF obtained

for the cruciform specimen to the theoretical solution for an infinite plate. This fact

it is explained because the quasi-infinite plates represent a similar configuration than

the theoretical solution for an infinite plate. As mentioned previously, a pure biaxial

loading is located on the central zone of the cruciform structure. The magnitude of

the horizontal and vertical stresses in this zone is the same as the ones applied in X

and Y direction to the quasi-infinite plate depicted on Figure 3.8. Hence, in Figure

3.8 it is considered a quasi-infinite plate with loading conditions, angle of the crack

and material properties identical as the central zone of the cruciform. Therefore, when

considering these plates, the theoretical solutions for an infinite plate (Equations 3.2

and 3.3) provide SIF values close to values of SIF obtained numerically using XFEM (see

Table 3.4). However, in the cruciform structure, when calculating SIF the theoretical

solution for an infinite plate is not able to provide results close to the ones computed

numerically (see Figure 3.12 and 3.13). This is justified because the length of the area

loaded biaxially is not infinite if it is compared with the size of the crack.

In Figure 3.10 and 3.11 it is depicted the values of KI and KII obtained. These

values calculated by means of XFEM are represented against the half-crack size con-

sidered for each cruciform. In theory, under a biaxial loading any increment of the

crack length a (maintaining all other parameters constant) will always contribute to

increment the values of SIFs. This tendency is observed numerically in Figure 3.10 and

3.11. However, it is noticed a reduction in the accuracy of the SIF calculation when
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a

4 mm

4
 m

m

Figure 3.9: Crack location in cruciform A for SIFs calculation. Note a 4x4 quadrilateral

area where a special refinement is required to accurately represent the crack-tip behaviour.

the crack size is incremented within each geometry. This is due to the edge effects that

influence the SIFs calculation when using XFEM. The influence of the edge effects for

the SIFs calculation depends of the size of the central zone of each geometry as shows

Figure 3.12 and 3.13. In these figures, the absolute value of the relative error between

theoretical and numerical solution is presented. Higher values of error for KI and KII

are found in geometry C while geometry B is noticed a less influence of the edge ef-

fects. This fact is explain because geometry B has bigger central zone than geometry

C, then the edge effects are mitigated when considering a crack with the same length

into both geometries. In other words, the central zone on geometry B is closer to the

quasi-infinite plate than the central zone of geometry C.

Considering the last outcome, a possible alternative to minimize the edge effects is to

stablish a new ratio α between the crack size a and the dimensions of the central zone

that will minimize the edge effects. This ratio α is based on the calculation of SIFs for

geometry B. As depicted in Figure 3.12 and 3.13, the relative error of SIFs is minimum

when the half-crack size is 0.5 mm. In particular, for geometry B, the absolute relative

error for mode I is 1.5 % and for mode-II is 1 %. Hence, if the dimensions of the central

of a cruciform structure are similar to geometry B, the edge effects may be considered

negligible. Considering the major dimension of the central zone of geometry B which
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is 33 mm and a crack size of 0.5 mm, α is defined as follows:

α =
L

a
= 66 (3.4)

In Equation 3.4, α considers a cruciform structure with a square central zone of side L.

According to Equation 3.4, for a crack size bigger than L
66 not negligible edge effects into

the SIF calculation are appreciated compared with the theoretical solution. Obviously,

considering a specimen with a higher α edge effects are reduced. Additionally, this

analysis serves to give us a first idea of the relation between central zone and the

crack size and allow future experiment tests to by oriented according to the ratio

presented. It is important to notice that the values of KI are higher than KII in the

cruciform specimens. Therefore, taken into account the SIFs calculation with XFEM,

for geometry A only mode I is observed and the shear does not exist. However, for

geometry B and C it is noticed a mixed mode failure. The values of shear in geometries

B and C are small compared with the normal stress. In previous studies, the shear has

not been considered nevertheless here it is demonstrated computationally that it has

its influence within geometry B and C.
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Figure 3.10: KI obtained by means of XFEM is represented against the half-crack length

a defined for geometry A,B and C.

3.4 Conclusions

In this Chapter, an investigation on the utility of the relatively novel numerical method

XFEM applied to biaxial loading of composites has been presented. A static crack
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Figure 3.11: KII obtained by means of XFEM is represented against the half-crack length

a defined for geometry A,B and C.
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Figure 3.12: The absolute relative error for mode-I |errorKI | is represented against the

half-crack length a for geometries A,B and C.

analysis is completed in order to determine the mixed-mode SIFs into CGRP cruciforms.

Initially, SIFs are determined for infinite plates subjected to biaxial loading. Once

the 3D XFEM model is validated, SIFs are also calculated for the whole cruciform

specimens. By means of this analysis, it has been noticed that the edge effects into

the cruciform specimens affects the SIFs values. The variation of SIFs values between

the cruciform and the analytical solution are quantified. A ratio between the side of

the central zone and the crack length is proposed in order to minimize edge effects

and specimen size simultaneously. The dominant fracture mode into the cruciform

structure is mode I according to the comparison between the numerical value of KI
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Figure 3.13: The absolute relative error for mode-II |errorKII | is represented against

the half-crack length a for geometries A,B and C.

and KII . In other words, the nominal stress is higher than the shear stress during

loading in the neighbourhood of the crack tip. In the authors best knowledge, this

is the first time that SIFs are calculated for this kind of CGRP cruciform specimens.

Modelling initiation and propagation was not straightforward as has been shown above

and challenges that are not an issue indeed becomes critical in a 3D context, overall

when dealing with fracture. The following points were addressed during this research:

- Propagation of a 3D crack front without pre-notching.

- Criteria for crack initiation.

- Although re-meshing was not carried out, no deterioration of the solution was observed

in terms of validation against experimental tests.

Overall, the application of XFEM here presented contributes to emphasizes that using

XFEM for modelling crack in biaxial loading cases is adequate. Additionally, dealing

with 3D XFEM a more realistic view of cracks is provided.
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4

Mixed-mode damage into a

CGRP cruciform subjected to

biaxial loading

4.1 Introduction

In this Chapter, the author implements a three-dimensional progressive damage model

(PDM) is implemented within a CGRP cruciform structure for modelling its damage

under loading [100]. The three cruciform specimens presented in previous Chapter are

studied. In order to simulate the computational behaviour of the composite, the con-

stitutive model considers an initial elastic behaviour followed by strain-softening. The

initiation criterion defined is based on the maximum principal stress of the composite

and once this criterion is satisfied, stiffness degradation starts. For the computation

of damage, the influence of the fibre and the matrix are taken into account within the

damage rule. Realistic values of the energy dissipated during damage are computed.

The computational results obtained by means of an explicit time marching solver are

compared with experimental outcomes for validation purposes. Finally, it is concluded

that the PDM is able to localize the damage effectively as well as predicting its initia-

tion. In the best of authors’ knowledge, this is the first time a three-dimensional PDM

is implemented into a composite cruciform structure subjected to biaxial loading.
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4.2 Background: Three-dimensional progressive damage

model for fibre-reinforced materials

The PDM proposed by Curiel-Sosa [39] is modified in order to model damage in a

cruciform structure. The main characteristic of the initial model [37] is that the paths

for computation of damage offer an effective localization of the several damage modes

i.e. fibre rupture, matrix cracking, etc. In addition, comparing this PDM with others

from literature it is noticed a notable different. The initial PDM considers interaction

between damage modes. Hence, a certain damage mode, for instance fibre rupture,

is affected by others and, so that, this characteristic makes the model more realistic.

In reality, during the fracture process of composite structures, damage modes are not

independent. For the simulation of the CGRP cruciform structure the initial model

proposed is changed. The principal adaptations of the PDM to the problem here pre-

sented are:

- Due to the quasi-isotropic material behaviour, a single damage variable is con-

sidered. This damage variable takes into account the influence of matrix cracking and

fibre rupture for computing damage.

The initial model [39] is framed into strain-space damage models according to con-

tinuum damage mechanics. The thermodynamic framework of an irreversible process

for dissipative materials [25] is considered as well as the idea of effective stress σ̂ [26]

(Eq.[4.1]). The main mathematical formulation of the model is presented in the follow-

ing equations:

1. Relation between effective stress and nominal stress

σ̂ = D(η)σ (4.1)

2. Diagonal second-order tensor composed by damage variables

D = diag[
1

(1− ηxx)
,

1

(1− ηyy)
,

1

(1− ηzz)
,

1

(1− ηxy)
,

1

(1− ηyz)
,

1

(1− ηzx)
] (4.2)
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3. Effective stress taking into account the strain equivalence principle

σ̂ = Coϵ (4.3)

4. Stress-strain relation

σ = D−1(η)Coϵ = C(η)ϵ (4.4)

5. Normalized energy release rates

Ȳij(σ, η) =















σ2
ii

2E(1−η2)X
if i = j and σii ≥ 0

σ2
ij

2G(1−η2)S
if i ̸= j

(4.5)

6. Stress damage surfaces

f ξ(σ, η) = σTF ξ(η)σ − 1 ξ = 1, 2, . . . ,m (4.6)

7. Strain damage surfaces

gξ(ϵ, η) = ϵTGξ(η)ϵ− 1 ξ = 1, 2, . . . ,m (4.7)

8. Damage rule

η̇ =

m
∑

ξ=1

Φξvξ (4.8)

9. Damage directors

v(1) = [λ(1)
xx 0 0 λ(1)

xy 0 λ(1)
zx ]

T (4.9)

10. Definition of growth functions Φξ

Φξ = ⟨∇ϵg
ξ, ϵ̇⟩+ (4.10)
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Firstly, for clarity in the notation, it has to be noted that bold characters de-

note tensor and vector variables. In Eq.[4.1], D(η) is the second-order diagonal tensor

formed by the internal damage variables, ηij , and σ =[σx, σy, σz, σxy, σyz, σzx]
T is the

nominal stress. These variables, ηij , are responsible of the stiffness degradation due to

the different damage modes in the composite material: fibre rupture, fibre buckling or

kinking, matrix cracking and matrix crushing.

The damage tensor D is built as a diagonal tensor and contains all the damage

variables associated with each damage mode, Eq.[4.2]. The effective stress tensor σ̂,

which takes into account the strain equivalence principle [79], can be expressed as in

Eq.[4.3]. C0 is the second-order constitutive tensor containing all stiffness components

of the undamaged material and ϵ is the strain tensor. The stress-strain relation is given

in Eq.[4.4] where C(η) is the non-symmetric damaged stiffness tensor.

In terms of stress, according to the plasticity theory, the first question that must

be answered is how the stress state in the material is. For this purpose, stress dam-

age surfaces associated with each damage mode ξ are defined. Then, the undamaged

domain is delimited by the stress damage surfaces. These stress damage surfaces are

built taking into account the so-called normalized energy release rates (NERR) given

by Eq.[4.5]. Every damage mode is characterized by a certain combination of these

NERRs where E is the Young modulus, G is the in-plane shear modulus, X is the

tensile strength and S the shear strength. In the composite here considered, i and j

directions correspond with the x and y axis. The form of the stress damage surfaces

is presented in Eq.[4.6]. In this equation, F ξ(η) is a second-order tensor associated to

the damage mode ξ and m is the total number of damage modes modelled.

Once f ξ is obtained, the strain damage surfaces gξ can be calculated by mapping

into the strain space given by Eq.[4.7]. For computing the damage, the damage variables

give a value of the damage that is occurring in the structure due to the different damage

modes. The time variation of damage variables is given by the damage rule expressed

by Eq.[4.8]. In that equation, Φξ are growth functions and vξ are the unitary damage

directors. The modelling of the damage directors is made according to the degradation

of stiffness due to a damage mode. For instance, fiber rupture v(1) affects to the
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degradation in direction xx, xy and zx (see Eq[4.9]). Thus, following the references [38]

and [37] the weights λij represent the influence of the damage modes in the computation

of a certain damage mode. In previous research, these weights λij were defined in a

qualitative manner. In this work, it is proposed a new relation based on the volume

fraction and the properties of both components of the material (fibre and matrix). By

means of this new relation, a realistic amount of energy is dissipated during damage.

The mathematical definition of the growth functions Φξ for each damage mode ξ can

be made according to Eq.[4.10]. In this equation the growth functions Φξ are defined

as the non-negative inner product between the strain gradient of the damage surface

in the strain space, ∇ϵ · gξ, and the strain rate ϵ̇. Note that if the strain increment

vector is pointing to the interior of the damage surface, for a determined damage

mode, then no progression of such damage mode occurs. A flowchart of the explicit

time integration [20] is presented in Figure 4.1 and the constitutive law subroutine in

which the progressive damage model is implemented.

4.3 Mixed-mode damage analysis

4.3.1 Numerical model

In this Section, the CGRP cruciform structure presented in Section (see Figure 3.1)

is considered for the current analysis. It is important to notice that the cruciform

geometries under analysis are subjected to different biaxial loadings. Those loadings

provoked the appearance of a macro-crack throughout the central zone of the cruci-

form specimen. Then, for geometry A the loading which will lead to failure through

the diagonal of its central zone is 1/1, which means that the same load is applied in

horizontal and vertical arms. In geometry B, the loading condition is 1.5/1, the first

term means that more load is applied in horizontal arm (50% more) compared to the

vertical one. Geometry C has a loading case 0.5/1, so that, half of the vertical load is

applied in the horizontal arm.

The composite under analysis presents a quasi-isotropic behaviour and homogeneity

through the thickness as has been demonstrated experimentally in [126][127]. Based on

this fact, computationally, the composite is treated as an isotropic and homogeneous

material.
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Figure 4.1: Flowchart of the explicit time integration of a Lagrangian mesh that is used

for solving the momentum equation (left side). The constitutive damage law subroutine

(right part) for calculating in each quadratic point the damage progression.

In this analysis, an explicit central-difference time integration rule is considered

with an automatic time increment. The numerical simulations have been performed

by means of the finite element (FE) software ABAQUS [60]. For provoking failure in

the structures, a displacement in the tip of the arms is defined. This displacement

is applied incrementally and quasi-statically. For the FE discretization, two different

mesh regions are distinguished with different element size in the structure (see Figure
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4.2). The first one, it is in the central zone with a 0.4 mm size (zone of interest) and

the second one defined in the arms with 1.4 mm size. The finite element used is an

eight noded hexaedra element with reduced integration. Hourglassing control has been

considered in order to avoid spurious deformation in the FE mesh. A nonlinear explicit

dynamic analysis has been performed. A 3D model is studied, considering a 1/8 of the

structure due to the symmetry of the problem and also in order to save computational

costs considering symmetry boundary conditions.

X

Y

Figure 4.2: FE mesh of 1/8 of the geometries A, B and C respectively. Notice a finer

mesh in the central zone (0.4 mm) than in the arms (1.4 mm)

A damage variable η is defined in order to model damage in the cruciform structure.

This damage variable degrades equally the x and y components of the stress tensor i.e.

σx and σy, due to the quasi-isotropic behaviour of the composite under analysis. The

damage rate considers the influence of fibre rupture and matrix cracking as presented

in Eq.[4.11]:

η̇ =
∑

Φξvξ = λfΦ
f + λmΦm (4.11)

Where η̇ represents the damage variable rate. Note that, this variable is defined as

a linear combination of damage growth for fibre rupture Φf and matrix cracking Φm.

So, the increment of damage is a contribution of the fibre and matrix breakage. λf

and λm quantify the influence of fibre rupture and matrix cracking respectively into

the damage growth.

The definition of λf and λm is based on the rule of mixtures within the two com-

ponents of the CGRP composite: fibre and matrix. The percentage in volume of the

fibre is vfibre = 20 % , and its elastic modulus is Efibre = 70GPa. The remaining per-

centage of volume corresponds to the matrix (vmatrix = 80%) and its elastic modulus is

Ematrix = 2GPa. Tacking into account those material properties, the stiffness and the
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percentage of volume of the fibres is described as a function of the matrix properties

in Eq.[4.12] and Eq.[4.13].

vfibre =
1

4
vmatrix (4.12)

Efibre = 35Ematrix (4.13)

Based on the above equations and considering the stiffness and the percentage of volume

of each component separately it is possible to define two ratios denoted as α and β for

fibre and matrix respectively. Those ratios are defined as:

α =
3

8
Efibre vfibre (4.14)

β = Ematrix vmatrix (4.15)

Notice that the term 3
8 in equation 4.14 has been considered to address the ran-

domness of fibres throughout the CGRP composite [75]. Finally, the values of λf and

λm are described as follows:

λf =
α

√

α2 + β2
= 0.96 (4.16)

λm =
β

√

α2 + β2
= 0.29 (4.17)

By means of Eq.[4.16] and Eq.[4.17], a more physical definition has been considered

for λf and λm. As shown in Eq.[4.11], those scalar variables affect the computation

of damage. In particular, λf and λm control the amount of energy dissipated dur-

ing strain-softening i.e. the area under the curve stress-strain. The goodness of the

proposed definition is verified in the next Section where a realistic value of energy is

dissipated during simulations.

The PDM here adopted is a local damage model in which damage variables depend

on the strain state of the element under consideration and the numerical simulations

exhibit mesh dependency. Therefore, it has been noticed that during mesh refinement

the energy dissipated tends to zero when damage occurs. To overcome this limitation,

some authors had considered different approaches to deal with mesh dependency. For

example, regularisation techniques [40], nonlocal damage models (the damage variables
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depend on the strain state of the neighbourhood giving a characteristic length [120]) or

the crack band model [12]. Using this last approach particularly, the strength limit is

not kept constant in order to preserve the fracture energy constant. In this work, this

strategy is not considered in order to preserve the material strength during simulations

and therefore give a more realistic model. Hence, for this application, the strategy

followed is based on preserve the energy dissipated during the fracture process in order

to provide realistic results without changes in the material strength.

The energy released during an uniaxial test has been compared with the computa-

tional energy released in the rounded zone of the cruciform where the macro-crack is

initiated. The value of energy estimated for the uniaxial test is GC
I = 6210Pa [125],

being mode I the dominant fracture mode. A fragile fracture process has been pro-

duced, considering that the strain at the moment of failure ϵf is considered 1% higher

that the yield strain ϵY = 0.0138. In the other hand, the expected strain-softening

provided by simulations reached ultimate failure when the failure strain is 8% higher

than yield strain ϵY . This deviation of energy released compared with mode I (uniaxial

test) is attributed to the fact that in the rounded zone of the specimen a notable shear

stress component is observed during loading [128] that consequently induces mode II

of failure.

During simulations, an initiation criterion based on the maximum principal stress

σmax into CGRP cruciform is defined. Consequently, damage is initiated once the

maximum principal stress σmax within the model reached the material strength i.e. 90

MPa. For the post-pick behaviour in the constitutive model, a damage variable is de-

fined considering the influence of matrix cracking and fibre rupture. This consideration

is realistic because the fibres are randomly embedded into the matrix so both damage

processes occurred at the same time and aim failure.

F damage =



















1
(1−η2x)X

2 0 0 0 0 0

0 1
(1−η2y)X

2 0 0 0 0

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0



















(4.18)
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A second-order tensor is defined into the PDM. The components of this second-order

tensor are in-plane components. F damage corresponds to the damage tensor associated

to the material degradation of the composite. By mapping those tensors into the stress

space it is possible to define the stress damage curve, fdamage(σ, η) = σTF 1(η)σ − 1.

This stress curve defines the undamaged domain of the CGRP composite. Once damage

grows this curve is degraded reducing the undamaged domain because of the material

degradation. This behaviour is illustrated in Figure 4.3. Looking at that figure, when

the material is undamaged i.e. η = 0, the undamaged domain is defined by the solid

line and once the damage is developed (dashed line in Figure 4.3), for instance η = 0.6,

the undamaged domain is reduced.
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Figure 4.3: In-plane stress space curves for the undamaged CGRP material, η=0, and

the damaged material, η=0.6.

4.4 Results and validation

In this section, the results from simulations are compared with the experimental tests in

order to validate the proposed numerical approach for a biaxial loading context. Several

simulations (Table 4.1) have been performed with three different geometries and loading

conditions. Experimental results for geometry A are presented in Figure 4.4. In that

figure, the macro-crack is initiated in the rounded zone and propagated throughout the

central zone. The same pattern of failure is observed during experiments for geometries
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B and C under its corresponding biaxial loading cases shown on Table 4.1. The CGRP

composite owns random fibre distribution within the matrix so any crack observed

will consequently provoke matrix cracking and fibre rupture. Due to the manufacture

process, the composite is statistically homogeneous through the thickness as depicted

on Figure 4.4. Hence, there is not an interface macroscopically between layers. The

case under analysis serves to emphasise the fact that degradation in a certain direction

is influenced by multi mixed-mode damage. In the cruciform specimen, the fact that

matrix cracking is developed makes fibre rupture developed as well, and viceversa.

Thus, the application of the current model it is well fundamented because the PDM

implemented considers the influence between different damage modes.

Fibre rupture

Matrix cracking

Figure 4.4: Experimental modes of failure observed into the cruciform when the macro-

crack is fully developed.

Experimentally, for the cruciform specimen A, a loading case 1/1 yields to an ad-

equate failure across the central zone and the crack is initiated in the rounded zone.

Considering the last fact, the PDM was embedded in geometry A. Hence, in Figure 4.5

(b), it is illustrated the map of damage predicted by the numerical approach. In that

Figure, a damage variable called SDV1 is defined. It is important to notice that this

variable is ranged between 0 (undamaged material) and 1 (total failure) and represents

the percentage of damage as a contribution of fibre and matrix breakage. The local-

ization of damage in geometry A is properly addressed by the PDM and higher values

of damage are found in the rounded zone as depicted. In Figure 4.5 (a), the map of

principal stresses is presented. This map of stresses corresponds with the initiation of

degradation in the area of stress concentration.

It has to be highlighted that experimentally for a loading case different to 1/1 in

geometry A failure appears in the arm with bigger load applied so non-adequate failure

is achieved. This fact is predicted by the proposed technique and it is shown in Figure
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(Avg: 75%)
S, Max. Principal

+1.8e+01
+2.4e+01
+3.0e+01
+3.6e+01
+4.2e+01
+4.8e+01
+5.4e+01
+6.0e+01
+6.6e+01
+7.2e+01
+7.8e+01
+8.4e+01
+9.0e+01

(Avg: 75%)
SDV1

+0.0e+00
+1.7e−02
+3.5e−02
+5.2e−02
+6.9e−02
+8.7e−02
+1.0e−01
+1.2e−01
+1.4e−01
+1.6e−01
+1.7e−01
+1.9e−01
+2.1e−01

(a) (b)

Figure 4.5: (a) Maximum principal stresses map for geometry A under loading case 1/1

(units are in MPa) and (b) Map of damage in geometry A under loading 1/1.

4.6 (b). In that figure, higher values of damage are located in the vertical arm where

double load is applied compared to the load applied in the horizontal arm.

(Avg: 75%)

SDV1

+0.000e+00
+3.285e−03
+6.570e−03
+9.855e−03
+1.314e−02
+1.643e−02
+1.971e−02
+2.300e−02
+2.628e−02
+2.957e−02
+3.285e−02
+3.614e−02
+3.942e−02

(Avg: 75%)

S, Max. Principal

+1.045e+01
+1.724e+01
+2.402e+01
+3.081e+01
+3.759e+01
+4.437e+01
+5.116e+01
+5.794e+01
+6.472e+01
+7.151e+01
+7.829e+01
+8.508e+01
+9.186e+01

(a) (b)

Figure 4.6: (a) Maximum principal stress map for geometry A under a loading cases 1/2

(units are in MPa) and (b) Map of damage in geometry A under 1/2 loading.

The PDM was also implemented in geometries B and C. In these geometries the

biaxial loading case considered are 1.5/1 and 0.5/1 respectively. In Figure 4.7 (b)

and Figure 4.8 (b), the corresponding map of damage for geometries B and C are

addressed. For both geometries, the localization of the damage is properly localized

when comparing with experimental tests. Hence, the crack is initiated in the rounded

zone where the PDM predicts higher damage for all geometries.
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Figures Figure 4.6 Figure 4.5 Figure 4.7 Figure 4.8

Geometry A A B C

Loading case 1/2 1/1 1.5/1 0.5/1

Table 4.1: Simulations parameters

(Avg: 75%)

S, Max. Principal

+1.7e+01
+2.3e+01
+2.9e+01
+3.5e+01
+4.2e+01
+4.8e+01
+5.4e+01
+6.0e+01
+6.6e+01
+7.2e+01
+7.9e+01
+8.5e+01
+9.1e+01

(Avg: 75%)

SDV1

+0.0e+00
+1.5e−02
+3.1e−02
+4.6e−02
+6.1e−02
+7.6e−02
+9.2e−02
+1.1e−01
+1.2e−01
+1.4e−01
+1.5e−01
+1.7e−01
+1.8e−01

(a) (b)

Figure 4.7: (a) Maximum principal stress map for geometry B under a loading cases

1.5/1 (units are in MPa) and (b) Map of damage in geometry B under loading 1.5/1.

(Avg: 75%)

S, Max. Principal

+1.271e+01
+1.958e+01
+2.646e+01
+3.333e+01
+4.021e+01
+4.708e+01
+5.395e+01
+6.083e+01
+6.770e+01
+7.458e+01
+8.145e+01
+8.832e+01
+9.520e+01

(Avg: 75%)

SDV1

+0.000e+00
+8.306e−03
+1.661e−02
+2.492e−02
+3.322e−02
+4.153e−02
+4.983e−02
+5.814e−02
+6.644e−02
+7.475e−02
+8.306e−02
+9.136e−02
+9.967e−02

(a) (b)

Figure 4.8: (a) Maximum principal stress map for geometry C under a loading cases

0.5/1 (units are in MPa) and (b) Map of damage in geometry C under 0.5/1 loading.

4.5 Conclusions

The implementation of a PDM within a cruciform structure has been addressed. Mixed

damage modes have been considered being matrix cracking and fibre rupture the agents

that provoke the macro-crack initiation in the rounded zone of the cruciform. Special
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care has been taken into account in order to solve the mesh dependency issue and pro-

vide realistic results during simulations. Thus, the PDM has been able to:

• Accurate localise the damage compared with experimental tests. This localiza-

tion depends on the two damage modes (fibre rupture and matrix cracking) that

are involved on the failure.

• Address the initiation of damage based on a maximum principal stress criterion.

Then, when the value of maximum principal stresses in the rounded zone was 90

MPa the damage process started. This fact was observed in experimental obser-

vations.

Based on the computational results obtained and the comparison with experimental

tests, it is possible to conclude that the PDM successfully predicts damage initiation

in complex loading cases such as biaxial. Additionally, during the damage process, a

realistic amount of energy is dissipated. The strategy adopted takes material properties

of the composite such as the stiffness/volume ratio.
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5

An XFEM approach for

simulating cracks in ACM

5.1 Introduction

In previous chapters, two different formulations for representing damage and fracture

were adopted: a discontinuous approach i.e. 2D/3D XFEM (Chapter 3) and a contin-

uous approach (Chapter 4) i.e. 3D PDM. For the implementation of these numerical

tools, an implicit (Newton method) and explicit (central difference method) FE solver

were used for obtaining the main unknowns i.e. the nodal displacements. Those al-

gorithms were embedded into the commercial FE code ABAQUS and new capabilities

were added by means of the implementation of user-subroutines.

The objective of this chapter is to propose a solution for the limitation found in chap-

ter 2 with PDM. The idea is to develop an approach based on XFEM for solving the

limitation inherent in PDM. In the author knowledge, there is not a commercial code

that is capable of simulating cracks in ACM using XFEM. Hence, there is a need to

develop an in-house code that allows the full control of the formulation and therefore

the possibility of simulate cracks with XFEM in ACM.

Initially, the FE code needs to be validated. Hence, in Section 5.2, the main formu-

lation written in MATLAB environment, so-called Main Updated Lagrangian Explicit

(MULE), is explained for a better understanding of the code. Initially, MULE was

coded by Dr. Curiel-Sosa and it was formulated for solving static and dynamic two-
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dimensional problems. In Section 5.3, MULE has been improved by the author, adding

capabilities such as the simulation of damage in advanced composite materials. Tak-

ing into account several functions of MULE and adding new ones, in Section 5.4, the

author presents an approach for simulating cracks in the framework of XFEM is devel-

oped. This explicit XFEM code, so called explicit eXtended Finite Element Method

(X2FEM), is capable of solving static and dynamic problems. Initially, the proposed

approach has been validated by using tests which theoretical solutions were known.

Once the code was validated, the proposed approach has been used for solving the

limitation found in chapter 2.

5.2 Main explicit Finite element program

5.2.1 Spatially FE approximation and time-discretisation by central

difference method

The CDM is the solution procedure considered for the construction of MULE. This

method is characterised for its robustness and accuracy. However, it is conditionally

stable. This stability condition is called the Courant condition [32] and it is presented

in Equation 5.1. Then, during simulations, if the time increment is bigger than the

critical time step, instabilities are present and divergence of the numerical technique is

possible.

∆tc ≤
2

ωmax
(5.1)

In Equation 5.1, ωmax denotes the maximum frequency of the mesh i.e. ωmax =

max∀(e){ωe
max} obtained form the eigenvalue problem given by:

det(K− ω2
M) = 0 (5.2)

where K and M are the stiffness matrix and the mass matrix of the whole mesh, re-

spectively. The CDM is developed from the central difference formulas of velocity and

acceleration. Therefore, the time increments are defined as follows:

∆tn+
1
2 = tn+1 − tn, tn+

1
2 =

1

2
(tn+1 − tn), ∆tn = tn+

1
2 − tn−

1
2 (5.3)
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u

tt t t t tn-1 n-1/2 n n+1/2 n+1

∆t n+1/2

∆t n

∆t n -1/2

Figure 5.1: Discretisation used in central difference scheme.

The definition of those time increments is better understood referring to Figure

5.1. According to this graph, the central difference formula for velocity at the mid-

step, u̇n+
1
2 given by Eq.(5.4) and acceleration for time step n, ün given by Eq.(5.5) are

defined as,

u̇n+
1
2 =

un+1 − un

tn+1 − tn
=

1

∆tn+
1
2

(un+1 − un)→ un+1 = un +∆tn+
1
2 u̇n+

1
2 (5.4)

ün = an =
vn+

1
2 − vn−

1
2

tn+
1
2 − tn−

1
2

)→ vn+
1
2 = vn−

1
2 +∆tnan (5.5)

Taking into account the time integration in the equation of motion for a given time

step n, it is derived from the following equation:

Man = fn
ext − fn

int (5.6)

where fn
ext and fn

int are the external and internal nodal forces respectively for a time

step n. The external and internal forces are functions of the time and the displacement.

The main steps considered for the implementation of the central difference method

[16] are provided in Box I. These steps point out the flow followed by the algorithm

coded in MATLAB in order to obtain the main unknowns i.e. the nodal displacements

u. The nodal displacements and nodal forces of an element e are denoted by ue and

fe, respectively. The element type considered is a four-node element with a linear

displacement field and nodes are numbered counterclockwise. For an element e, the

nodal displacements are written as ue = [ux1 uy1 ux2 uy2 ux3 uy3 ux4 uy4]
T and nodal
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forces as fe = [fx1 fy1 fx2 fy2 fx3 fy3 fx4 fy4]
T being two the number of DOF per node.

The current explicit FE code is formulated mainly for solving linear and non-linear

static and dynamic problems. The static solution requires an additional term included

in the total force vector fn = fn
ext − fn

int, this term is a linear viscous force defined as

fn
damp = Cdampv

n where Cdamp is the diagonal damping matrix considered in this case

proportional to the mass matrix Cdamp = αM and vn is the nodal velocity. The total

force is re-defined as fn = fn
ext−fn

int−Cdampv
n. In Box I the velocity update is broken

into two substeps for enabling the energy balance at integer time steps [16]. Thus, the

discretised equation of motion is defined as:

Man + fn
damp + fn

int = fn
ext (5.7)

As shown in Box I, the main part of the algorithm is the calculation of the nodal

internal forces. For a more detailed understanding of the central difference method the

author recommends consulting Belytschko et al. [16].
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5.3 Improvements in the initial in-house code

(a) Defined initial conditions such as:

Initial velocity u̇o and displacement uo

Set counter n = 0 and the initial time to = 0

Input: nodal coordinates Xo, topology matrix, material properties, constraints, load, damp-
ing parameter.
(b) Compute the diagonal mass matrix M .
(c) Loop over time steps:
(c.1) Internal force fn

int at tn for all DOF:
(c.1.1) Loop over elements e

(c.1.2) Loop over quadrature points
(c.1.2.1) Compute strain : ϵn = B · un
(c.1.2.2) Compute stress σ using the constitutive law: σn = D · ϵn
(c.1.2.3) Compute internal forces: fn

int,e =
∫

ΩBTσdΩ
END quadrature point loop

(c.1.3) Compute the global internal force vector for an element (e), fn
int,(e)

END loop over elements
(c.2) Compute the global external force vector: fn

ext

(c.3) Compute the global force vector: fn = fn
ext − fn

int

(c.4) Compute accelerations from considering the time integration in the equation of motion:

an = M−1(fn − Cdampvn−
1
2 )

(c.5) Time update: tn+1, tn+
1
2

(c.6) 1st partial update of nodal velocities: vn+
1
2

(c.7) Boundary conditions

(c.8) Update nodal displacement: un+1 = un +∆tn+
1
2 vn+

1
2

(c.9) Get internal force f int,n+1 following (c.1)
(c.10) Compute an+1

(c.11) 2nd partial update of nodel velocities: vn+1

Update counter: n ← n+1
END loop of time steps

5.3 Improvements in the initial in-house code

The previous section introduced the main scheme of MULE. In this section, several

improvements in this code are presented, for instance, the possibility of elastic analysis

of composite laminates as well as 2D damage analysis of composite. Apart from that,

the simulation of material non-linearities is addressed considering a PDM that predicts

the different damage modes. The PDM considered is the PDM proposed by Curiel-Sosa

et al. reduced to a 2D context.
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5.3.1 Numerical implementation of a 2D Progressive damage model

for fibre-reinforced composites

The objective of this section is the implementation of the PDM initially proposed by

Curiel-Sosa et al. in the in-house code developed in MATLAB. By means of this

implementation, the in-house code will allow the analysis of damage in problems where

a composite is subjected to a certain load scenario. For the numerical implementation,

the formulation of the PDM is reduced from a 3D to a 2D context. Therefore, two

different damage variables ω1 and ω2 are included in the constitutive relation. The

purpose of the internal damage variables is to degrade gradually the stiffness matrix.

Their values are ranged between zero (undamaged material) and one (total failure).

Particularly, ω1 takes into account the degradation in the direction of the fibres for

tensile loading (fibre rupture) and compressive loading (fibre buckling) and ω2 takes

into account the first transverse direction damage for tensile loading (matrix cracking)

and compressive loading (matrix crushing). In this model, the relation between effective

stress, σ̂, and the nominal stress, σ is defined as σ̂ = Lσ where L is the diagonal damage

operator:

L =





1
1−ω1

0 0

0 1
1−ω2

0

0 0 0



 (5.8)

The 3D formulation of the initial PDM is presented in Chapter 4 and its reduction

to 2D is needed to enable it to be coupled with the 2D in-house code. Hence, plane

stress conditions are assumed. The simplified stress tensor is defined as σ = [σ1σ2σ12]
T

according to the local coordinate system {123} defined in Figure 5.2.

For the implementation of the PDM within the explicit FE code, the stiffness of

the material must be degraded in order to address the lost load carrying capability of

the composite. In this code, the subroutine responsible for the implementation of the

PDM is described in Appendix B. This subroutine, so-called PDM, takes as an input

arguments the element strain epse, the damage tensor w, the time increment dt, the

angle of the fibres teta and the iteration number it. The element strain epse is rotated

into the local coordinate system at an angle teta by means of the function rotate strain.

Since it is a material non-linearity, it requires an update of stress and stiffness along

the procedure such as: ϵ −→ϵ̂ −→σ̂ D̂ −→σ D

78



5.3 Improvements in the initial in-house code

Along the subroutine, once the initiation criteria is satisfied, the values of the dam-

age variables w are different than zero and then the damaged tensor Dw (output of

the subroutine) degrades the element stiffness according to the evolution of the damage

variable tensor w.

L

x

y
12

�

 

Figure 5.2: Single element test.

The PDM within the in-house code is tested for a single element test (see Figure

5.2). The material chosen for the test is a carbon fibre reinforced AS4/3501 and its

properties are presented in Table 5.1. The element type considered is a four node

element with two DOF per node, full integration and assuming plane stress. A non-

linear static analysis is carried out. The load σ is applied incrementally in the x-

direction in order to keep inertia and damping forces small from the beginning. Hence,

the non-linear problem is converted in a succession of small linear analysis. To validate

this example, the computational stress and strain at failure are compared with the

corresponding experimental values for a single lamina extracted from Soden et al. [134].

Two different fibre orientations are considered with respect to the x-axis (0 and 90

degrees). For θ = 0 (see Figure 5.2), the fibres are aligned with the x-axis, then,

when loading in the fibre direction, the damage mode expected experimentally is fibre

rupture. The results obtained from the model are presented on Figure 5.3. In Figure

5.3 (a), the stress in x-direction σx is plotted against the strain ϵx. In this figure, the

constitutive relation of the model for fibre rupture is observed. Thus, initially a linear

elastic behaviour is observed and once the initiation criteria based on the longitudinal

strength is satisfied, the degradation process begins. In Figure 5.3 (b), it is observed

that the only damage mode that appears is fibre rupture once the initiation criteria

is reached. The experimental failure strength in fibre direction is 1950 MPa which is

equal to the computational value obtained from the model. The experimental yielding

strain is 1.38 % and its corresponding computational value is 1.54 %.
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Figure 5.3: (a) Stess σx versus strain ϵx in x-direction and (b) damage variables versus

ϵx for a single element when fibres form zero degrees with the x-axis.

In order to check the predictability of the code when loading perpendicular to the

fibres, the fibres are rotated 90 degrees with respect to the x-axis i.e. θ = 90. Therefore,

the experimental damage mode expected is matrix cracking. This fact is addressed by

the 2D PDM. In Figure 5.4 (a), the stress and strain in x-direction is plotted being the

experimental and computational stress at yielding equal to 48 MPa. The experimental

yield strain was 0.436 % and the computational value was 0.435 %, hence, the relative

error for both strains is 0.2 %, which shows a good agreement. In Figure 5.4 (b),

the value of the damage variables during simulation are depicted. It is observed that

the only damage mode is matrix cracking, which corresponds with the experimental

observations.
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Figure 5.4: (a) Stress σx versus strain ϵx in x-direction and (b) damage variables versus

ϵx for a single element when fibres form 90 degrees with the x-axis.
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Elasticity Ply strength

E1 126 GPa Xt 1950 MPa

E2 11 GPa Xc 1480 MPa

ν12 0.28 Yt 48 MPa

G12 6.6 GPa Yc 200 MPa

Table 5.1: Mechanical properties of AS4/3501 lamina [134].

It is important to note that the numerical oscillations associated with the explicit

FE code are avoided using an artificial damping so-called dynamics relaxation. There-

fore, after an initial transient the solution converges to the quasi-static solution. It is

concluded, that the values obtained for the ultimate tensile stress and failure strain

are in reasonable agreement with the experimental results. During tensile loading in

the fibre direction, the damage mode observed was fibre rupture whereas, for instance,

matrix cracking was not computed. This shows the capacity of the PDM to properly

address the corresponding damage modes depending on the stress state. On the other

hand, when the angle between the fibres and the x-direction forms 90 degrees, the dam-

age mode expected is matrix cracking and the ultimate tensile stress and failure strain

agree with the experimental results for matrix failure i.e. first transverse direction.

5.4 New dynamic explicit XFEM approach for fixed cracks

5.4.1 Introduction

In the previous section, several improvements in the main FE code were added, for

instance, the implementation of a 2D PDM embedded in the main platform. It is well

known that the FEM is a useful technique for modelling many interesting phenomena

[103]. For instance, a linear stress analysis on a component under a certain load state

may be simulated with few complications. However, when dealing with simulation of

moving cracks throughout a structure a limitation is noticed using FEM. Basically,

the FE mesh has to adapt to the topology of the moving discontinuity. Therefore, the

mesh needs to be updated at each time step, which is computationally expensive. Thus,

with the motivation of adapting the FEM to fracture mechanics, a numerical method
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for modelling cracks independently of the mesh was introduced in 1999, the so-called

XFEM [17] [95]. This method is inspired by the partition of unity concept initially

proposed by Babuska and Melenk [10]. The development of numerical techniques for

modelling fracture and its implementation in numerical codes is a topic in ongoing

research. This interest is attributed to the desire to address the behaviour of structures

whilst a loading is acting. The motivation of this section is to present an approach

for modelling fracture dealing with static and dynamic problems in the framework of

XFEM.

A numerical approach to analyse stationary cracks in the framework of XFEM is

presented. The approach proposed considers an explicit time integration scheme. In

this case, the well-known CDM [101] is adopted for time discretisation. A diagonal mass

matrix is used to solve the discrete momentum equation. The part of the mass matrix

corresponding with the standard DOF uI are lumped by direct mass lumping. However,

lumping of the enriched DOF (aI and bI) is not straightforward and a limitation exists.

The limitation was found by Belytschko et al. [15]. Basically, they found out that

the critical time step of the explicit XFEM decreases notably as a discontinuity gets

closer to nodes. To overcome this, Belytschko et al. [15] used an implicit integrator

for the enriched element and explicit integrator for standard elements. Recently, other

possible solutions for solving this limitation are based on using mass lumping strategies.

In this work, using specific lumping techniques for enriched elements (see Section 5.4.2

for details) the diagonalised mass matrix is obtained avoiding the possibility of having

a null critical time step.

5.4.2 Proposed damping strategy

Dynamic relaxation (DR) has been used in dynamic structural analysis for making

static analysis possible. Therefore, the solution of the static problem is obtained as an

ultimate state of the associated transient dynamic problem [117] i.e. the steady state

response. Using an artificial damping technique, the static solution can be obtained by

attenuation of the transient response [36].

In the context of FEM, the mass matrix can be calculated by means of different

methods such as, for instance, direct mass lumping where the mass of an element is

distributed over its nodes. After that, a diagonally lumped mass matrix is constructed.
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However, when dealing with XFEM where extra DOF are considered in the displace-

ment field, the mass matrix calculation is not trivial. In fact, it has been demonstrated

that when a crack approaches a node, the critical time increment tends to zero what

is crucial while working with an explicit solver such as the CDM. To overcome this

limitation, some authors have considered different mass lumping strategies for the en-

riched part of the displacement approximation, e.g. Heaviside and crack tip enrichment

functions.

In order to understand the influence of the position of the crack in the stable time

increment calculation, the following example is considered; the geometry is depicted

in Figure 5.5. In that figure, a 1D element is presented fractured by a crack. The

length of the element is L, the distance between the discontinuity and the left node of

the element is d. The 1D element presents a section A, young modulus E and density

ρ. Initially, the standard finite elements (without discontinuity) are considered for the

calculation of the stable time increment. In order to obtain its value, the stiffness and

mass matrix of the 1D element with 2 DOF are needed . Hence, for the one-dimensional

case [89], the stiffness matrix is defined as;

KFE =
EA

L

[

1 −1
−1 1

]

(5.9)

By means of a mass lumping technique, the mass matrix for this element considering

standard shape functions is;

MFE = ρAL

[

1
2 0
0 1

2

]

(5.10)

L
d

21

X

Figure 5.5: Cracked 1D element with a crack at distance d with respect to the left node.

Finally, solving the eigenvalue problem det(Ke − ω2
M

e) = 0, the stable time incre-

ment for the 1D FE element is defined as:

∆tlumped
c =

2

ωmax
= L

√

ρ

E
(5.11)
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Now, it is considered the discontinuity in the 1D element by using the XFEM

displacement field defined as;

u = N1u1 +N2u2 +N1Hb1 +N2Hb2 (5.12)

The first two terms represent the classical FE approximation and the last two are

the enriched terms. The matrix form of the equation presented above is written as

u = Nu being N = [N1 N2 N1H N2H] and u = [u1 u2 b1 b2]. The stiffness matrix

can be calculated as K =
∫

VT
CBTCdV where B is the matrix with the derivatives of

the shape functions, C is the constitutive matrix and VT is the total volume. Due to

the discontinuity that includes the enriched shape functions H, the integration of the

stiffness matrix must be subdivided into two sub domains. Then, in the left subdomain

0 ≤ x ≤ s, N− = [N1 N2 − N1 − N2] and for the right subdomain s ≤ x ≤ L,

N+ = [N1 N2 N1 N2]. The stiffness matrix is calculated as K =
∫ s

0 BT
−EAB−dx +

∫ L

s
BT

+EAB+dx. Finally, the stiffness matrix is obtained as a function of the distance

between the left edge and the crack located at the element;

KXFEM =
EA

L









1 −1 1− 2d 2d− 1
−1 1 2d− 1 1− 2d
1− 2d 2d− 1 1 −1
2d− 1 1− 2d −1 1









(5.13)

In order to build the mass matrix for the elements fractured by the crack, the

lumping technique proposed by Menouillard et al. [89] is adopted and it is defined as

follows;

m
(e)
diag =

ρ

nnodes

∫

Ω(e)

H2(x)dΩ → MXFEM =
ρAL

2









1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1









(5.14)

where Ω(e) is the element being considered, m(e) corresponds to its mass, mes(Ω(e)) its

area, nnodes the number of nodes in the cut element and H(x) is the Heaviside function.

By using the lumping technique proposed in Eq. (5.14), the critical time step does

not tend to be zero when the crack approaches a node. For a better understanding of

this fact, in Figure 5.6 the critical time increment derived for the XFEM case (once the
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eigenvalue problem is solved) is normalised with the critical time increment obtained

for the lumped matrix in the FE problem ∆tlumped
c (see Eq. (5.11)). This normalised

stable time increment is plotted against the ratio d
L

that defines the position of the

crack along the element. Although, in Figure 5.6 there is a variation of the stable

time increment for the lumped mass matrix with the discontinuity, its minimum is

∆tc = 1√
2
∆tlumped−XFEM

c which is different than zero. However, in the case of the

consistent mass matrix for the XFEM case (see dashed line in Figure 5.6), the stable

time increment is zero when d
L

= 0 or d
L

= 1. Therefore, for arbitrary cracks, the

stability of the CDM using the presented lumping mass strategy is guaranteed.

d/L

0 0.2 0.4 0.6 0.8 1

∆
 t

c
 /

 ∆
 t

clu
m

p
e

d
-F

E
M

0

0.2

0.4

0.6

0.8

1 Lumped mass XFEM

Consistent mass XFEM

Figure 5.6: Normalised stable time increment against the ratio d
L
.

The mass lumping technique proposed by Menouillard et al. is valid for cracked

elements i.e. presents Heaviside enrichment. However, this lumping technique cannot

be applied to elements that contain the crack tip. Following the idea of Menouillard et

al. [89], Elguedj et al. [45] derived a mass lumping strategy for crack tip enrichment

functions. Therefore, considering the enrichment function present in Eq. (1.19) and

the displacement on every point inside an element (see Eq. 1.21), the corresponding
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exact and discrete kinetic energy are defined as;

T =
1

2

∫

Ωe

ρΦ2dΩe (5.15)

T h =
1

2
U̇T
x−femMU̇x−fem (5.16)

If the consistent matrix M is replaced by a diagonal form ML, the discrete kinetic

energy becomes;

T h =
1

2

nnode
∑

i=1

mLi
Φ2(xi) (5.17)

where mLi
are the terms that form the diagonal of ML,xi is the position of the ith node

and nnodes is the total number of nodes in an element. Supposing that all diagonal

terms in the matrix ML are identical and tacking into account the conservation of the

kinetic energy, the mass lumping matrix for crack tip enrichment function is defined as

[45];

m
(e)
diag =

1
∑nnodes

i=1 Φ2(xi)

∫

Ωel

ρΦ2(x)dΩ (5.18)

The calculation of the global mass matrix permits the simulation of dynamic prob-

lems in the context of explicit XFEM. However, if the static solution is wanted by

attenuation of the transient response, an artificial damping is needed. Therefore, in

order to obtain the static solution, a new damping strategy is presented in the context

of XFEM defined as;

Cdamp = αML (5.19)

where α is the mass proportional damping coefficient. The damping presented C

on Eq. (5.19) is based on the classical damping or proportional damping proposed by

Rayleigh [116]. The novelty of the proposed damping relies on the fact that the damping

is applied to elements that are enriched with the discontinuous function, i.e. Heaviside

function, and elements that are enriched with the crack tip enrichment. Therefore, the

local enrichment inherent in XFEM is damped and consequently an artificial damping

can be obtained for attenuating the transient response, hence, it is possible to obtain

the static solution of the dynamic problem.
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It is important to notice that another parameter that affects the stable time incre-

ment ∆tn is the damping. Hence, the stable time increment is bounded by the damping

ratio and the natural frequencies [35] as follows:

∆t ≤ min
2

ωi

(

− ξi +
√

1 + ξ2i

)

(5.20)

where ξi is the damping ratio at node i.

5.4.3 SIFs calculation

The dynamic stress intensity factorsKI andKII defines the asymptotic stress behaviour

next to the crack tip (see Reference [48] for details) :

KI = lim
r→0

√
2πrσyy (5.21)

KII = lim
r→0

√
2πrσxy (5.22)

For the calculation of KI and KII using the proposed numerical implementation,

the domain integral method [97] together with the interaction energy integral are con-

sidered. Taking the interaction energy integral, auxiliary fields are implemented onto

the actual fields and therefore a link between mixed-mode SIF and interaction energy

integrals is possible. In general, the relation between the J-integral and the SIF is

defined as follows:

J =
1

E′
[K2

I +K2
II ] (5.23)

where E
′

for plane strain conditions is defined as E
′

= E
1−ν2

. The definition of the

J-integral [119] for a homogeneous body, subjected to a two-dimensional deformation

field is defined as:

J =

∫

Γ
[Wdx2 − Ti

∂ui
∂x1

dΓ] (5.24)

where W defines the strain-energy density, Γ is a curve that surrounds the notch tip

(see Figure 5.7), Ti = σijnj is the traction vector on the contour Γ, n the unit normal

vector to the contour and u is the displacement vector. Note that a Cartesian crack-tip
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e
1

e
2

n

Notch

Γ

n

Figure 5.7: Two dimensional space domain for the computation of mixed mode SIF.

coordinate system (ê1, ê2) is built ahead of the crack tip (see Figure 5.7 ). Two different

stages are considered in the cracked body, the first stage is the present stage ( σ
(1)
ij ,

ϵ
(1)
ij , u

(1)
i ) and the second stage corresponds with an auxiliary stage (σ

(2)
ij , ϵ

(2)
ij , u

(2)
i ).

In this implementation, the auxiliary stress and displacements fields near the crack tip

are given by Westergaard [153] and Williams [154]. Once terms are rearranged the

J-integral for the sum of the two stages is written as:

J (1+2) = J (1) + J (2) + I(1,2) (5.25)

where I(1+2) is the interaction integral for stages one and two. Finally, it is possible to

derive the following for the interaction integral:

I(1,2) =
2

E′
(K

(1)
1 K

(2)
1 +K

(2)
II K

(1)
II ) (5.26)

The interaction integral I(1,2) is defined as a function of the auxiliary SIF i.e.

K
(2)
1 ,K

(2)
II . Thus, for the determination of K

(1)
I , it is considered K

(2)
I = 1 and K

(2)
II = 0,

and for obtaining K
(1)
II , it is considered K

(2)
I = 0 and K

(2)
II = 1. Hence, mode I and II

are defined in terms of the interaction integral as:

K
(1)
I =

E
′

2
I(1,ModeI) (5.27)

K
(1)
II =

E
′

2
I(1,ModeII) (5.28)

The contour definition I(1,2) is converted to an area integral by using a smoothing

function q in order to address its numerical evaluation. This function takes a value 1

on innermost contour and a value of zero on the outermost contour.
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5.4.4 Numerical implementation

The in-house implementation of XFEM is named X2FEM . The proposed code consid-

ers three MATLAB functions extracted from Pais [107]: a function called JIntegral.m,

responsible for the calculation of the mixed-mode SIFs, a function called subDomain.m,

responsible for subdividing the enriched elements and determining the gauss points and

weights and a function called levelSet.m for representing the crack. The author has built

the rest of the code i.e. global mass matrix, global stiffness matrix, connectivity ma-

trix, nodal labeling, etc. A schematic representation of the code is depicted on the

flowchart presented in Figure 5.10. The code is formed by about 2000 lines in Matlab

environment

5.4.4.1 Crack representation

In order to keep track of the evolution of cracks, the level set method (LSM) proposed

by Osher and Sethian [104] is considered. This method was originally applied to track

the evolution of closed boundaries. Afterwards, it was extended to track evolution of

open segments such as crack growth by Stolarska et al.[80]. The level set representation

of the crack helps the computation of the enrichment. The crack is represented as the

zero level set Φ and all values above or below are either positive or negative (see Eq.

(5.29)). In order to define the coordinates of the enrichment function ahead of the

crack tip, a local co-ordinate system is considered. These coordinates can be defined

using the level set function Ψ where its zero level set is orthogonal to the zero level

set Φ at the crack tip. Thus, the orthogonality of the two level sets makes a natural

coordinate system as depicted in Figure 5.8. This coordinate system allows to re-define

the Heaviside function as:

H(f) =







1 if Φ ≥ 0

−1 if Φ < 0
(5.29)

The assignment of enrichment in the nodes is addressed from the nodal values of Φ and

Ψ. For a certain element, being Φmin and Φmax the minimum and the maximum nodal

values of Φ respectively, if Ψ < 0 and Φmax · Φmin ≤ 0, then the element is cut by the

crack and the enrichment considered is given in Eq.(5.29). On the other hand, being

Ψmin and Ψmax the minimum and maximum nodal values of Ψ respectively, in a certain

element, if in the element it is satisfied that Φmin · Φmax ≤ 0 and Ψmin · Ψmax ≤ 0,
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then the tip of the crack is located within that element and therefore the element is

enriched using Eq.(1.19).

Crack

Φ>0

Φ<0

Φ=0

Ψ=0

Ψ>0Ψ<0

Figure 5.8: Level set co-ordinate system.

In the proposed approach, the mesh contains classical and enriched nodes. The

number of enriched nodes for each element, defined in the in-house code with the

variable EN (e), will allow to define whether the element does not have enriched nodes

i.e. EN (e) = 0, or if the element is enriched with Heaviside or crack tip enrichment

function i.e. EN (e) ̸= 0.

The numerical implementation of XFEM has been done for a 4-node quadrilateral

element. Each node for a standard element presents two DOF. The nodes of full

cracked elements have two classical DOF and two additional DOF addressing the strong

displacement jump. On other hand, the nodes of the elements containing the crack tip

have two classical DOF and four extra DOF. In order to build the matrices in the code,

the strategy adopted by Sukumar et al. [98] is used. Basically, all enriched DOF are

allocated in the second part of the vector after the classical DOF.

5.4.4.2 Stiffness matrix and mass lumped matrix

The construction of the global mass matrix is not a trivial task. As mention in Section

5.4.2, the mass lumping strategy adopted for the enriched part is critical for the stabil-

ity of the CDM. Therefore, different mass lumping strategies are adopted depending on

the type of enrichment. The implementation of the global mass matrix in the in-house

code is better understood by referring to the flowchart presented in Figure 5.10. As

depicted in that flowchart, the variable that takes into account the number of enriched

nodes per element (e), EN (e), determines the mass lumping strategy depending on
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whether the element presents a enriched node i.e. EN (e) ̸= 0 or not i.e. EN (e) = 0.

Hence, if the node is enriched with the Heaviside function, the mass lumping adopted

is according to Eq. (5.14) and if the node is enriched with the crack tip enriched func-

tion, the strategy adopted is according to Eq. (5.18). For standard elements, direct

mass lumping is considered, therefore the total mass of the element is distributed to

the nodes. Once the loop over elements is completed, the resultant global mass matrix

is assembled considering standard and enriched elements. The main function for the

construction of the mass matrix in MATLAB is presented in Appendix C. This function

is formed by some sub-functions that helps the calculation of the global mass matrix.

The inputs in this function are the global Degree of freedoms called DOF, enriched

elements called EE and the angle of the crack with respect to the horizontal called an-

glecrack. Three different sub-functions are considered along the loop over the elements.

The first function, called mass element FEM XFEM, is responsible for the calculation

of the mass matrix for the FE DOF. The second function mass heaviside XFEM ad-

dresses the nodes enriched with Heaviside enrichment and mass tip XFEM address the

nodes enriched with the crack tip enrichment function.

In the flowchart presented in Figure 5.10, a schematic representation of the main

steps for the construction of the stiffness matrix is depicted. In this flowchart, according

to the value of the variable EN (e) for a certain element (e), the element is considered

as a standard, i.e. EN (e) = 0 or enriched, i.e. EN (e) ̸= 0. For standard elements, the

calculation of the stiffness matrix considers four integration points. On the other hand,

for elements containing the tip of the crack or cut by the crack, the integrals for the

calculation of internal forces cannot be derived by standard quadrature methods since

the integrand is defined as discontinuous. Therefore, the standard Gauss quadrature

does not adequately consider the discontinuity. The discrete weak form is constructed

by a loop over all elements, as the domain Ω is defined as:

Ω =
∑

e

Ωe (5.30)

where Ωe is the element domain. For elements that are cut by the crack or contain

the crack tip, the element domain is defined as the sum of a set of subtriangles whose

boundaries are aligned with the crack definition, hence:

Ωe =
∑

s

Ωs (5.31)
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Crack

Sub-division

Figure 5.9: Sub-triangles for the quadrature of the weak form .

The subdivision of the elements into sub-triangles [29, 95] just has integration pur-

poses, hence, no additional DOF are added to the system. It is important to note that

to get accurate results in the sub-triangles, high order Gauss quadrature rule is used.

For a better understanding of the sub-division Figure 5.9 presents a crack where the

elements cut or containing the crack are sub-divided in the integration process.

The main function for the construction of the stiffness matrix in MATLAB for

a linear isotropic material is presented in Appendix D. This function is formed by

some sub-functions that help the calculation of the global stiffness matrix. The input

arguments for this function are the angle of the crack in respect to the horizontal

anglecrack, the global DOF, DOF and the enriched elements EE. The stiffness function

for the elements with no enriched nodes is calculated initially in the function initia.

For those elements, the stiffness is constant during the simulation since in Appendix D

a linear isotropic material is considered. For the fully or partially enriched elements,

stiffness cannot be derived by standard quadrature methods since the integrand is

defined as discontinuous. By means of the function gauss jaco weight, the elements are

subdivided and additionally the Gauss points and weight considered in the integration

and assembly of the stiffness are obtained. In this function, a loop is described over

the Gauss points and the derivative matrix for the shape functions, Heaviside function

and crack tip function is obtained. At the end of the loop over Gauss points, the whole

stiffness matrix of the system is assembled.
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Figure 5.10: Flowchart of the main steps for the construction of the in-house code
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5.4.5 Numerical Results

This section tests the performance of the presented approach by analysing several ex-

amples. Initially, a semi-infinite stationary crack within an infinite plate is simulated.

The plate is loaded in its vertical edge as depicted in Figure 5.11. The influence of

the external loading on the SIF calculation is addressed. Hence, the load applied is

introduced in three different manners: as a jump, a ramp and a sinusoidal wave. The

dynamic SIFs obtained from the code are compared with the analytical solution. The

second example is presented in Section 5.4.5.2 where a finite plate with an edge crack

is analysed (see Figure 5.16). The material considered in this example is a CGRP

composite. The load is applied vertically and the crack is defined as stationary. The

static solution is obtained by adding an additional term in the equation of motion i.e.

a viscous damping. Finally, Section 5.4.5.3 addresses the simulation of fracture in the

10◦ off-laminate studied in Chapter 2. By means of this example, it is possible to see

how, with the proposed approach, a correct crack path is achieved if it is compared

with the experimental outcomes presented in Chapter 2.

5.4.5.1 Analysis of a stationary mode I crack

A schematic representation of the problem under consideration is depicted in Figure

5.11 where a tensile stress is applied perpendicular to the crack. The analytical solution

of the SIF in mode I (denoted as KI) for a linear elastic material was first proposed by

Freund [48]. The analytical solution was obtained under the assumptions of an infinite

plate with a semi-infinite crack. This solution is valid until the tensile wave stress is

reflected in the bottom of the plate and reaches again the crack tip. The time needed

by the wave stress to reach the crack tip is calculated as tc =
h
cd

= 3.36 · 10−4s, where

cd = c1

√

k+1
k−1 = 5944.5m/s is the dilatational wave speed being c1 =

√

µ
ρ
. Note that

µ is the second Lamé constant, ρ the density and k the Kolosov constant in plane

strain (see Table 5.2). The duration of the simulation is t ≤ 3tc = 1.009 × 10−3s and

beyond this value the analytical solution is not longer valid. Plane strain conditions

are considered.

The dimensions of the plate are L=10 m, h=2 m and the crack length is a=5 m.

The material properties are presented in Table 5.2 where E is the elasticity modulus, ν

the Poisson ratio and ρ the density. As Freund [48] proposed, when the crack reaches
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the crack tip, the analytical solution for mode I dynamic stress intensity factor for the

stationary crack is written as:

Kdyn
1 (0, t) =

2σo(t)

1− µ

√

cdt(1− 2µ)

π
(5.32)

where σo(t) is the stress applied and t represents the time.

a

L

2
h

o

Figure 5.11: Geometry and loading for an infinite plate with a semi-infinite crack.

E[GPa] ν ρ[kg/m3] µ[GPa] k

210 0.3 8000 80.76 1.8

Table 5.2: Mechanical properties

In Figure 5.12, the normalised mode I dynamic SIF KI

σo

√
h
is depicted against the

normalised time t
tc
. This graph serves to point out the mesh independence of the

solution using two different discretisations with 92x39 and 140x59 elements. These

discretisations were considered in order to have an aspect ratio of approximately one

in the mesh. Note that the time step considered is ∆tXFEM
c = 5µs (a simulation of

200 time steps). The tensile load applied σ0(t) is defined as σ0(t) = σgn(t), where

σ = 500MPa and gn(t) defines the way that the load is provided. Initially, a step load

g1(t) is applied to the plate as follows:

g1(t) =







0 if t ≤ 0

1 otherwise
(5.33)

The results depicted in Figure 5.12 for this loading condition show a reasonable

agreement between the analytical and the computational solution for the coarse and
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Figure 5.12: Normalised mode I stress intensity factor against normalised time for a sta-

tionary semi-infinite crack. The analytical solution is plotted as well as the computational

solution considering two different discretisations: 92 by 39 and 140 by 59 elements .

fine mesh, which consequently proves the ability of the proposed code for the calculation

of SIF considering different discretisations.

For a better understanding of the spreading process of the stress wave along the

plate, in Figure 5.13, the vertical component of the stress (σy) is depicted for different

times during the simulation. By means of this sequence, the wave stress is localised

before it reaches the crack tip (t= 200µs), while it is reaching the crack tip (t=500µs)

and after bouncing off the bottom edge (t=800µs).

Some oscillations in the SIF calculation are found when the load is applied as an

step wave, g1(t) (see Figure 5.12). This observation was also noticed by other authors,

[45, 89]. Therefore, in order to address the sensibility of the proposed approach to

different loading scenarios, a ramp loading g2(t) (see Eq. (5.34)) and sinusoidal loading

g3(t) (see Eq.(5.35)) are considered. Those definitions are applied from the beginning

of the simulation until T = 0.2tc . Afterwards (t > T ), the whole magnitude of stress is

applied. Results from those loading cases (see Figure 5.14), considering a mesh of 140

by 59 elements, present a smoother solution than the jump loading as well as reasonable

agreement with the analytical solution.
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g2(t) =























0 if t ≤ 0

t
T

if 0 ≤ t ≤ T

1 otherwise

(5.34)

g3(t) =























0 if t ≤ 0

1
2(1− cos(πt

T
)) if 0 ≤ t ≤ T

1 otherwise

(5.35)

It is observed that the main source of error in the calculation of dynamic SIF is

when the wave stress reaches the crack tip i.e. t = tc. This discrepancy is justified due

to the fact that the tensile stress wave affects the contour of the interaction integral for

the SIF computation before it reaches the crack tip. This source of error has also been

addressed by another author e.g. [89]. As it is illustrated in Figure 5.12, a finer mesh

provides better results because a small contour is used. It is also worth saying that for

a smoother loading i.e. g2(t) and g3(t), the error near t = tc is decreased as depicted

in Figure 5.14.

Additionally, point out the discrepancy between the analytical and the computa-

tional outcome once the wave stress has passed the crack, the relative error of KI with

respect to the normalised time from t = 1.4tc till the end of the simulation is depicted

in Figure 5.15. It is noticed that the relative error trend to 2 % when loading is applied

following equations (5.34) and (5.35) and to 4 % considering Eq. (5.33).

5.4.5.2 Static analysis of a plate with an edge crack

In this section, a plate with an edge crack is analysed as depicted in Figure 5.16.

The major dimensions of the plate are 2L= 20 mm, W=10 mm and the crack length

is defined as a. The material considered is a CGRP composite that experimentally

behaves as a quasi-isotropic [126]. Thus, it is assumed to be computationally isotropic.

The properties of the material are presented in Table 5.3 where E is the young modulus,

ν the Poisson ratio, ρ the density of the composite.

The exact value of KI for a plate with an edge crack is given as [122]

KI = Cσ
√
aπ (5.36)
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�t=200 s
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Figure 5.13: σy[Pa] throughout the plate for different times during the simulation t =

200, 500 and 800µs. The load is applied by means of a step. The mesh considered is 140x59

elements.

where C is the finite-geometry correction factor defined as:

C = 1.12− 0.231

(

a

w

)

+ 10.55

(

a

w

)2

− 21.72

(

a

w

)3

+ 30.39

(

a

w

)4

(5.37)

In this example, the load is applied as a step with a magnitude of 30 MPa and

different crack lengths are considered. Three different meshes of 31x61, 41x81 and

51x10 elements were considered during simulations for each of the crack lengths studied.

Those meshes are intended to present an aspect ratio of approximately one. The
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Figure 5.14: Normalised KI against normalised time considering different loadings: step,

ramp and sinusoidal wave. A mesh of 150x59 elements is considered.
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Figure 5.15: Absolute relative error of KI for loading inputs considered.

loading stresses considered for analysis are lower than the critical load σC =
KC

I

C
√
aπ

for

the different lengths of the crack studied where KC
I is the fracture toughness of the

composite. The experimental value of KI
c is unknown. However, the fracture energy

GIc is known. Irwin showed [8] that for an isotropic material and assuming plane strain,
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E[GPa] ν ρ[kg/m3] KI
c [Pa ·m 1

2 ] GIc[
N
m2 ]

6.5 0.37 1440 6.83 ·10e6 6210

Table 5.3: Mechanical properties CGRP composite

a

w

L

L

�(t)

�(t)

Figure 5.16: Geometry and loading for the infinite plate.

the critical energy and the critical SIF are related by means of the following equation:

KI
c =

√

E

(1− ν2)
GIc (5.38)

where GIc is the fracture energy derived from [125] [99]

On Table 5.4, the computational and analytical values of mode I of fracture KI are

presented for different crack lengths. The relative error between those values ranges

between 16.92 and 12 %. Therefore, an approximation of the theoretical values is

obtained using the new damping strategy proposed in the current approach. The results

presented in Figure 5.17 clearly show how the dynamic solution oscillates around the

static solution for different discretisations until there are no oscillations.
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a[mm] KTheo
I [Pa ·m 1

2 ] KComp.
I [Pa ·m 1

2 ] Relative error (%)

3 4.83 ·106 5.49 ·106 13.66

4 7.07 ·106 8.10 ·106 14.56

5 10.62 ·106 12.01 ·106 13.08

6 16.58 ·106 18.59 ·106 12.12

Table 5.4: Mode I SIF calculation considering different crack sizes

Time [s] ×10-4
0 1 2 3 4 5 6 7

K
I [P

a 
m

1/
2
]

×106
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7

31x61
41x81
51x101

Figure 5.17: SIF in mode I KI versus time t for a crack 2 mm long.

5.4.5.3 A possible solution for the limitation of PDMs

In Chapter 2, a numerical and experimental analysis was carried out in order to address

the behaviour of a 10◦ off-axis laminate. Through this example, a limitation in PDM

to correctly address its crack behaviour was pointed out (See Section 2.3). The main

conclusion for this analysis was that the micromechanical effects for cracks to grow

are not considered in PDM because the material is homogenised [146]. Therefore,

since the matrix crack is an event observed at the microscale, the transition between

microlevel to mesolevel disappears and consequently, in this case, the PDM is not

capable of addressing its crack path correctly. A possible alternative to overcome

this was proposed by van der Meer and Sluys [147]. They proposed a phantom node

formulation with mixed mode cohesive law. This section proposes a different solution

to solve the limitation encountered in PDM. The explicit XFEM approach formulated
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in this section is adopted. Therefore, the 10◦ laminate studied in Section 2 is considered

as an example for simulations. Experimentally, it was observed that the crack runs at

10◦ (see Figure 2.7) and propagates throughout the matrix, which is locally isotropic.

Hence, it is assumed that the asymptotic displacement field ahead of the crack tip can

be defined by means of the enrichment function presented by Eq. (1.19) for the enriched

nodes at the crack tip. As discussed in this chapter, Eq. (1.19) guarantees the stability

of the CDM.

The objective of this section is to demonstrate that the proposed approach is ca-

pable of addressing the crack path for the 10◦ off-axis laminate. However, before that,

it is necessary to prove that the in-house code is capable of addressing the elastic dis-

placement field for the [10◦]6 laminate. The specimen chosen for this analysis is the

specimen with oblique end-tab studied in Chapter 2 and its properties were presented

in table 2.2. The linear behaviour of the specimen was studied by means of FE simu-

lations using ABAQUS where a displacement was applied until the force was 4.5 KN

in the right edge. Additionally, the maps of strain were validated though experimental

testing using the DIC.

The boundary conditions and mesh (1400 elements) for the analysis of the speci-

men with oblique end-tab is shown in Figure 2.4. The horizontal ux displacement field

obtained at 4.5 KN by FE simulations using ABAQUS is presented in Figure 5.18.

The same boundary conditions and material were adopted for the simulation with the

in-house code but considering a discretisation of 600 elements. The horizontal displace-

ments obtained (see Figure 5.19) are the same as the ones obtained using ABAQUS.

Consequently, the elastic behaviour of the composite is validated.

+0.000e+00

+3.627e−05

+7.254e−05

+1.088e−04

+1.451e−04

+1.814e−04

+2.176e−04

+2.539e−04

+2.902e−04

+3.264e−04

+3.627e−04

+3.990e−04

+4.352e−04

u
x

Figure 5.18: Horizontal displacement ux for the oblique specimen using ABAQUS. The

load applied is 4.5 KN.
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ux

Figure 5.19: Horizontal displacement ux for the oblique specimen using the MATLAB

code. The load applied is 4.5 KN.

The specimen with oblique end-tab under analysis presents a homogeneous state of

strain. Therefore, using an initiation criteria based on stresses, initiation is satisfied

in the whole specimen at once due to its homogeneity (see Figure 2.12). Based on

this fact, it is assumed that the crack is initiated in the middle of the specimen as it

was observed during experimental loading. This assumption is logical since it is what

actually happens in experiments.

In order to check that the current approach is capable of addressing the crack path

of the laminate, four different stationary cracks are considered for simulations with

lengths of 10, 20, 30 and 40 mm. The load is applied incrementally on the right edge

of the specimen and on the left edge the specimen is fixed horizontally and vertically.

In this case, 2400 elements are used.

Figure 5.20: Deformed meshes for four different crack sizes. It is considered a deformation

factor of 100. The meshes have 2400 elements.

In Figure 5.20, the results obtained from the in-house code are depicted. It is

observed that the crack path follows the experimental crack direction at 10◦. This
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is not a big deal since the crack direction is pre-defined. However, this is the great

advantage compared with PDM since, by means of XFEM, the crack direction can be

controlled and therefore the micromechanics nature is addressed at the mesoscale level.

5.5 Conclucions

In this chapter, a new approach for modelling stationary cracks in the framework of

XFEM has been proposed. Initially, the proposed approach has been considered for

the simulation of a stationary mode I crack and the static analysis of a plate with

an edge crack. Afterwards, the computational results obtained were compared with

theoretical outcomes. Once the approach was validated, the main objective was to

solve the limitation encountered in PDM for correctly address the crack path in a 10◦

off-axis laminate. The results obtained for this test show that the computational crack

path follows the experimental crack direction. Therefore, using the proposed approach,

the micromechanics nature of the ACM is addressed at the mesoscale level solving the

limitation presented in chapter 2 with PDM.
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6

Conclusions and discussion

6.1 New improvements

In this work, the main contributions for the simulation of damage and fracture in ad-

vanced composite structures are:

1. The XFEM has been used in some applications, however, it is important to underline

that there are very few dealing with biaxial stress states e.g. [67]. In this thesis, the

author presents the first endeavour to research with XFEM the 2D and 3D crack initi-

ation and propagation of cracks on a randomly oriented fibre composite under biaxial

loading without defining the initial position of the crack.

2. In this thesis, the first endeavour to investigate the SIFs into a CGRP cruciform

structure submitted to biaxial loading by means of XFEM has been accomplished. The

calculation of SIFs in the cruciform specimen are altered by the edge effects of the

specimen. Based on the analysis of the edge effects, a novel ratio relating the crack size

and the dimensions of the cruciform is suggested. This ratio allows edge effects to be

mitigated with the smallest cruciform design possible.

3. A 3D damage modelling analysis has been considered for a CGRP cruciform struc-

ture. The structure is tensile loaded in two different in-plane directions and the pre-

sented study represents the first attempt to research the 3D damage response within

a composite cruciform structure subjected to biaxial loading. For the computation of

damage, the damage rate considers material properties of the composite such as the

stiffness/volume ratio.

4. A new approach for dynamic analysis of stationary cracks using XFEM is derived.
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Different mass lumping strategies are adopted for standard and enriched elements. This

approach is capable of addressing dynamic and static fracture mechanics problems. Ad-

ditionally, by means of this relatively simple approach, it is possible to address correctly

the crack pattern of a ten off-axis laminate contrary to progressive damage modelling

where a wrong crack path was observed.

5. Tacking into account the global mass matrix derived for standard and enriched

elements (Heaviside and crack tip enrichment), a damping strategy for solving static

problems is determined.

6. An experimental analysis has been carried out within a 10◦ off-axis laminate using

DIC. Therefore, the whole experimental maps of strains have been addressed for the

proposed geometries using straight and oblique end-tabs. This experimental analysis

serves well for validating the numerical framework proposed.

6.2 Conclusions

The numerical tools proposed have been tested by means of numerical tests and vali-

dated with analytical and experimental outcomes. An investigation of the applicability

of XFEM applied to biaxial loading of composites has been given. The XFEM is used

to study the complex crack propagation problems which appear on cruciform specimens

subjected to a biaxial loading scenario. The convergence of the solution in agreement

to the experimental results is an issue that has been solved. The simulations have been

able to reproduce the experimental results such as: crack initiation, its evolution path,

velocity and the value of applied stress which produces the failure of the specimen. The

constitutive model considers a linear elastic behaviour followed by a linear softening law

evolution. This constitutive model is enough to predict the response of the composite

due to the brittle and quasi-isotropic behaviour of the CGRP under consideration.

SIFs have been calculated for infinite plates subjected to biaxial loading. Tacking

that into account, the 3D model is validated. Hence, SIFs are also calculated for the

whole cruciform specimens. In order to minimise the edge effects and specimen size

simultaneously, a new ratio relating the side of the central zone and the crack length

is proposed. As has been shown, 3D modelling initiation and propagation was not
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straightforward. The main points addressed were: 3D propagation of a crack front

without pre-notching and initiation criteria. It is important to underline that no dete-

rioration of the solution was noticed in terms of validation against experimental tests.

In addition, a more realistic view of the crack is provided.

The simulation of damage in a cruciform structure has been carried out. For doing

that, a 3D PDM has been implemented within the numerical method addressing the

material non-linearity. Two damage modes have been considered: matrix cracking and

fibre rupture. These two damage modes are responsible for provoking the macro-crack

initiation in the rounded zone of the cruciform. Therefore, the PDM has been able to:

- Properly localise the damage compared with experimental tests. Two damage agents

are taken into account (fibre rupture and matrix cracking) for the computation of dam-

age.

- Correctly compute the initiation of damage based on a maximum principal stress

criterion. Hence, when the value of maximum principal stresses in the rounded zone

reached 90 MPa the damage process started. This behaviour was also observed in ex-

perimental tests.

Considering the computational results obtained and the experimental outcomes, it

is possible to stablish that the PDM successfully predicts damage initiation in a com-

plex loading scenario such as the biaxial. In addtion, a realistic amount of energy is

dissipated. The strategy adopted takes material properties of the composite such as

the stiffness/volume ratio.

Another important conclusion is extracted from Chapter 1. It is established that the

use of progressive damage modelling i.e a continuous approach, should not be trusted

for matrix cracks in laminates. Basically, the micromechanical influence for cracks to

grow is not taken into account in the continuous models because the material is ho-

mogenised. Thus, since matrix cracking is a typical microscale event, the transition

between microlevel to mesolevel disappears, and then, the continuous model is not

suitable for addressing its crack adequately. In order to overcome this issue, the XFEM

approach presented in Chapter 5 is capable of addressing matrix cracks in the laminate
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analysed. Considering this approach, it is observed that the crack path follows the ex-

perimental crack direction. This is not unusual since the crack direction is pre-defined.

However, this is a great advantage compared with PDM since, by means of XFEM, the

crack direction is controlled and therefore the micromechanics nature is addressed at

the mesoscale level.

6.3 Future developments

The work in this thesis is limited and some improvements for the future may be con-

sidered:

- Uniaxial and biaxial tests are carried out in the thesis. However, a more complex

loading scenario such as out-of-plane loading may be simulated in order to replicate

the behaviour of some advanced composite structures while working conditions. Addi-

tionally, the tests carried out consider tensile loading, this work may be extended, for

instance, to shear and compression.

- The results obtained are mesh independent. For instance, for the 3D PDM it was

intended to provide a meaningful value of energy dissipated during the stiffness degra-

dation. Nevertheless, a more robust approach such as regularisation technique can

improve the numerical approach.

- The 3D progressive damage model considered addresses the majority of the damage

modes i.e. fibre rupture and kicking, matrix cracking and crushing in the first trans-

verse direction and matrix cracking and crushing in the second transverse direction.

However, in computational terms, delamination between plies is not addressed. Its im-

plementation could address in future developments in order to reproduce this interface

failure.

- It is well known that the cohesive XFEM approach i.e. remove the stress singularity

and propose a traction-separation behaviour, serves the macro-crack behaviour well.

However, for describing the fracture process zone, in particular, the initial distributed

microcracks, the use of XFEM is not convenient. On the other hand, PDM is capable

of describing the first phase of microcracks properly. Hence, a hybrid approach (PDM

and XFEM) may be a powerful solution to describe the whole fracture process observed
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Appendix A. Finite element

method

This work can be frame into the Finite Element Method (FEM) [20][68][105]. This

well-known numerical method is used for obtaining approximate solutions of differential

equations e.g continuum mechanics partial differential equations (PDEs). A large class

of engineering problems can be solved by means of FEM e.g. stress analysis, heat

transfer, fluid flow, failure in composite, etc. The standard definition of static FEM is

based on the equilibrium:

f int = fext (6.1)

Where f int represent the internal force vector which is a function of the displacement

and fext is the external force vector. The fundamental unknown is the displacement

u. Then, the displacement field uT = [ux, uy, uz] can be written using a shape function

matrix N and the nodal displacement a like;

u = Na (6.2)

With

N =





N1 0 0 N2 0 0 .... Nn 0 0
0 N1 0 0 N2 0 .... 0 Nn 0
0 0 N1 0 0 N2 .... 0 0 Nn





Where n is the number of nodes of the element. The strain ϵ is defined as a function

of the displacement according to the following expression

ϵ = Ba (6.3)
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where B is the derivative of the shape functions. The stress can be expressed as a

function of the strain and the simplest relation between then it is given thought the

constitutive law proposed by Hooke;

σ = Dϵ (6.4)

where D is the constitutive matrix of the material and σ the stresses.

In some cases, the finite element discretizations for the differential equation are

nonlinear. Thus, the most common solution procedures for the nonlinear problems are

implicit (e.g. Newton-Raphson) and explicit (e.g. central difference method) methods.

Solution procedures
Newton method

This method is the most used and robust for solution of nonlinear algebraic equations.

It is known as Newton method and often called Newton-Raphson. For a better under-

standing of this procedure, it is considered the discrete momentum equation at time

step n+1 for static problems:

0 = r(un+1, tn+1) = f int(un+1, tn+1)− f ext(un+1, tn+1) (6.5)

where r(un+1, tn+1) is named the residual. In this equation, the acceleration is not

considered in order to solve the static problem. The main unknown of the equation is

the displacement u. This method is an iterative procedure where the iteration number

is indicated by the subscript k, therefore, uk is the displacement in iteration k. For the

onset of the iterative process, a starting value uo for the unknown is chosen. Considering

a Taylor expansion of the residual about the value uk, making the residual equal to zero

and dropping the higher order terms than linear, the linearized model of the nonlinear

equation is defined as [20]:

0 = r(uk) +
∂(uk)

∂u
∆u (6.6)

where ∆u = uk+1 − uk. Finally, the value of the unknown in the iterative process for

each iteration rewriting equation 6.6 is defined as;

uk+1 = uk −
r(uk)
∂r(uk)
∂u

(6.7)
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In order to better understand the method, an schematic representation of the nu-

merical procedure is presented in Figure 6.1. In this figure, it is observed the linear

model which is tangent to the nonlinear residual function. It is important to mention

that when it is satisfied a desired level of accuracy, the solution is obtained.

Solution

Linear model

r(u)

r

u uk k+1
u

Figure 6.1: Linear model for a nonlinear equation r(u).

Central difference method

The CDM is characterized for its robustness and accuracy. However, it is conditionally

stable. This stability condition is called Courant condition [32] and it is presented

in Equation 6.8. Then, during simulations, if the time increment ∆t is bigger than

the critical time step ∆tc, instabilities are present and the possible divergence of the

numerical technique.

∆tc ≤
2

ωmax
(6.8)

In Equation 6.8, ωmax denotes the maximum frequency of the mesh i.e. ωmax =

max∀(e){ωe
max} obtained form the eigenvalue problem given by:

det(K− ω2
M) = 0 (6.9)

where K and M are the stiffness matrix and the mass matrix of the whole mesh,

respectively. The CDM is developed from the central difference formulas of velocity v

and acceleration a. Therefore, the time increments are defined as follows:

∆tn+
1
2 = tn+1 − tn, tn+

1
2 =

1

2
(tn+1 − tn), ∆tn = tn+

1
2 − tn−

1
2 (6.10)
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u

tt t t t tn-1 n-1/2 n n+1/2 n+1

∆t n+1/2

∆t n

∆t n -1/2

Figure 6.2: Discretization used in central difference scheme.

The definition of those time increments is better understood referring to Figure 6.2.

According to this graph, the central difference formula for velocity at the mid-step,

u̇n+
1
2 given by Eq.(6.11) and acceleration for time step n, ün given by Eq.(6.12) are

defined as,

u̇n+
1
2 =

un+1 − un

tn+1 − tn
=

1

∆tn+
1
2

(un+1 − un)→ un+1 = un +∆tn+
1
2 u̇n+

1
2 (6.11)

ün = an =
vn+

1
2 − vn−

1
2

tn+
1
2 − tn−

1
2

)→ vn+
1
2 = vn−

1
2 +∆tnan (6.12)

Taking into account the time integration in the equation of motion for a given time

step n, it is derived the following equation:

Man = fext,n − f int,n (6.13)

where f ext,n and f int,n are the external and internal nodal forces respectively for

a time step n. The external and internal forces are functions of the time and the

displacement.
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Appendix B. Subroutine for the

implementation of the PDM

within the in-house code

f unc t i on [Dw,w, s ig , phi , eps ] = PDM ( epse ,w, dt , i t , t e t a )

g l oba l LAMINA

% Declare s t a t i c v a r i a b l e s
p e r s i s t e n t epsOld s igOld

% Rotate s t r a i n in to the l o c a l coo rd ina te
[ e p s r o t ] = r o t a t e s t r a i n ( eps , t e t a ) ;

i f i t==1
epsOld (1 : 3 , 1 )=0 ;
s igOld (1 : 3 , 1 )=0 ;

end

% Plane s t r e s s lamina
E1= LAMINA( 1 ) ;
E2= LAMINA( 2 ) ;
G12= LAMINA( 3 ) ;
v12= LAMINA( 4 ) ;
v21=(E2/E1)∗ v12 ;

C11= E1/(1−v12∗v21 ) ;
C12= ( v12∗E2)/(1−v12∗v21 ) ;
C22= E2/(1−v12∗v21 ) ;
C33= 2∗G12 ;
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D = [C11 C12 0 ; . . .
C12 C22 0 ; . . .
0 0 C33 ] ;

X11 = LAMINA( 5 ) ;
X22 = LAMINA( 6 ) ;
S12 = LAMINA( 7 ) ;
% Strenght parameters
s t rengh = [ X11 ; X22 ; S12 ] ;

% Unitary d i r e c t o r s o f damage
q = ze ro s ( 3 ) ;

% Fibre rupture
q (1 ,1)=1; q (3 ,1)=0;
% Matrix c rack ing f i r s t t r an sv e r s e d i r e c t i o n
q (2 ,2)=0; q (3 ,2)=0;

% St ra in ra t e
e r a t e = ( eps ro t ’−epsOld ’ ) / dt ;

% Damage d iagona l t en so r
f o r i =1:3

M( i , i )=1/(1−w( i ) ) ;
end
%’Damaged ’ s t i f f n e s s t en so r
Dw = inv (M)∗D;

% Cons t i tu t i v e law
s i g = Dw∗ ep s r o t ;

% F matr i ce s der ived from s t r e s s−based c l a s s i c a l f a i l u r e c r i t e r i a
F = ze ro s ( 3 , 3 , 3 ) ;
% Fibre rupture ( t ) F( , , 1 )

F(1 ,1 ,1)=1/((1−w(1) )ˆ2∗X11ˆ2 ) ;
F(3 ,3 ,1)=1/((1−w(3) )ˆ2∗ S12 ˆ2 ) ;

% Matrix c rack ing in f i r s t t r an sv e r s e d i r e c t i o n ( t ) F( , , 3 )
F(2 ,2 ,2)=1/((1−w(2) )ˆ2∗X22ˆ2 ) ;
F(3 ,3 ,2)=1/((1−w(3) )ˆ2∗ S12 ˆ2 ) ;

% G matrix
f o r j =1:3
G( : , : , j )=Dw’∗F ( : , : , j )∗Dw;
A( : , : )=G( : , : , j ) ;
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B=A’ ;
% Gradient ve c t o r s : Nabla g
Nab l a co l s g ( j , : )= eps ro t ’ ∗ (A+B) ;
Nabla g=Nabla co l s g ’ ;
end
% Damage growth func t i on s
phi=e r a t e ∗Nabla g ;
% Damage ru l e
w rate=phi (1)∗ q ( : , 1 )+ phi (2)∗ q ( : , 2 )+ phi (3)∗ q ( : , 3 ) ;
% Yie ld
f o r i =1:2

i f s i g ( i )>=0
i f ( s i g ( i )− s igOld ( i )>=0) && ( s i g ( i )< s t rengh ( i ) )

w rate ( i )=0;
end

e l s e
i f ( s i g ( i )− s igOld ( i )<0) && ( s i g ( i )> (−1)∗ s t rengh ( i ) )

w rate ( i )=0;
end

end
end

% Update damage
w=w+w rate ’∗ dt ;
% Upperbound f o r damage v a r i a b l e s
f o r i =1:3

i f w( i )>1.
w( i )=0.999999;

e l s e i f w( i )<0.
w( i )=0;

end
end
% Update p e r s i s t e n t v a r i a b l e s
s igOld=s i g ;
epsOld=ep s r o t ;
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Appendix C. General view of the

Matlab code for the mass matrix

construction

f unc t i on [ g lobalMass ] = Mass XFEM(DOF,EE, ang l ec rack )
% DOF = Total Degree o f Freedom (DOF) in the model
% EE = Enriched e lements
% ang l ec rack = Angle o f the crack r e sp e c t to the ho r i z on t a l

% Def ine the g l oba l Mass matrix
globalMass = spar s e (DOF,DOF) ;
globalDOF=DOF;

% De f i n i t i o n o f v a r i a b l e s
[ row index , co l i ndex , t o t a l s i z e , nElemX , nElemY ] = I n i t i a l i z a t e (DOF,EE) ;
nIndex = 0 ;

% Loop over e lements
f o r e l = 1 : ( nElemY∗nElemX)

% Nodes f o r each element , nodal in fo rmat ion
[ n1 , n2 , n3 , n4 , nnenriched , e lem data ] = NODES id( e l ,EE) ;

l o ca l Mass = 0 ;
% Locat ions
l o c a l = [ n1∗2−1 n1∗2 n2∗2−1 n2∗2 n3∗2−1 n3∗2 n4∗2−1 n4 ∗ 2 ] ;
id Loc = 9 ;

i f ( nnenr iched == 0)
% Unenriched nodes ( t r a d i t i o n a l FE)
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[MFEM] = mass element FEM XFEM( e l ) ;
% Mass matrix o f element without enrichment
loca l Mass = MFEM;

e l s e i f nnenr iched > 0
% Enriched nodes
[MFEM] = mass element FEM XFEM( e l ) ;
M enr = [ ] ;

index=1;
f o r i = 1 :4 % Loop over nodes

i f e lem data ( i , 2 ) ˜= 0
% Heav i s ide enrichment .

[ M heavi ] = mass heaviside XFEM ( e l ) ;

M enr ( index : ( index+1) , index : ( index+1)) = M heavi ;
index = index+2;

l o c a l ( id Loc : ( id Loc +1)) = [2∗ e lem data ( i ,2)−1 2∗ e lem data ( i , 2 ) ] ;
id Loc = id Loc+2;

e l s e i f e lem data ( i , 4 ) ˜= 0
% Crack−t i p enrichment
[ M ct ] = mass tip XFEM ( e l , i , ang l e c rack ) ;

M enr ( index : ( index+7) , index : ( index+7)) = M ct ;
index = index+8;

l o c a l ( id Loc : ( id Loc+7)) = [2∗ e lem data ( i ,4)−1 2∗ e lem data ( i , 4 ) . . .
2∗ e lem data ( i ,6)−1 2∗ e lem data ( i , 6 ) . . .

2∗ e lem data ( i ,8)−1 2∗ e lem data ( i , 8 ) . . .
2∗ e lem data ( i ,10)−1 2∗ e lem data ( i , 1 0 ) ] ;
id Loc = id Loc+8;

end
end

% End loop over nodes

% Mass matrix o f the element
l oca l Mass = [ MFEM zero s ( rows (MFEM) , c o l s (M enr ) ) ; . . .
z e r o s ( rows (M enr ) , c o l s (MFEM)) M enr ] ;

end
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i f l ength ( l oca l Mass ) == 8
% Unenriched element

f o r i = 1 :8
f o r j = 1 :8

nIndex = nIndex+1;
row index ( nIndex ) = l o c a l ( i ) ;
c o l i nd ex ( nIndex ) = l o c a l ( j ) ;
t o t a l s i z e ( nIndex ) = loca l Mass ( i , j ) ;

end
end

e l s e

globalMass ( l o c a l , l o c a l ) = globalMass ( l o c a l , l o c a l ) + loca l Mass ;
end

end
% end loop over e lements

globalMass = globalMass +
spar s e ( row index , co l i ndex , t o t a l s i z e , globalDOF , globalDOF ) ;

end
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Appendix D. General view of the

Matlab code for the stiffness

matrix construction

f unc t i on [ globalK ] = KMatrix XFEM( anglecrack ,DOF,EE)

globalK = spar s e (DOF,DOF) ;
[K FEM,D, row index , co l i ndex , t o t a l s i z e , nElemX , nElemY]= i n i t i a (DOF,EE) ;
index G = 0 ;

f o r e l = 1 : ( nElemY∗nElemX)

% Nodes f o r each element , nodal in fo rmat ion
[ n1 , n2 , n3 , n4 , nnenriched , e lem data ] = NODES id K( e l ,EE) ;

% I n i t i z a l i z e K
loca l K = 0 ;
l o c a l = [ n1∗2−1 n1∗2 n2∗2−1 n2∗2 n3∗2−1 n3∗2 n4∗2−1 n4 ∗ 2 ] ;
id Loc = 9 ;
i f ( nnenr iched == 0)

% Unenriched element
l o ca l K=K FEM;

e l s e i f nnenr iched > 0
% Enriched element
[ x1 , y1 , x2 , y2 , x3 , y3 , x4 , y4 ] = coord (n1 , n2 , n3 , n4 ) ;

i f nnenr iched == 4
% Ful ly enr i ched element

[ gauss p , weight , Jaco ] = gaus s j a co we i gh t ( x1 , x2 , x3 , x4 , y1 , y2 , y3 , y4 , e l ) ;
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e l s e
% Pa r t i a l l y enr i ched element
[ gauss p , weight , Jaco ]= p a r t i a l l y ;
end
% Loop over gauss po in t s
f o r i = 1 : l ength ( gauss p )

W = weight ( i ) ;
[ N x , N y , X gauss , Y gauss ,N, detJ ]=
d e r i v a t i v e ( gauss p , weight , Jaco , i , x1 , x2 , x3 , x4 , y1 , y2 , y3 , y4 ) ;

Bu = [ N x (1) 0 N x (2) 0 N x (3) 0 N x (4) 0 ; . . .
0 N y (1) 0 N y (2) 0 N y (3) 0 N y ( 4 ) ; . . .

N y (1 ) N x (1) N y (2) N x (2) N y (3) N x (3) N y (4) N x ( 4 ) ] ;
B Enr = [ ] ;

i n d i c e = 1 ;
% Loop over nodes
f o r node = 1 :4

i f e lem data ( node , 2 ) ˜= 0
[H]= heavi (N, elem data , node , n1 , n2 , n3 , n4 ) ;

Ba = [ N x ( node )∗H 0 ;
0 N y ( node )∗H;

N y ( node )∗H N x( node )∗H] ;
B Enr ( : , i n d i c e : ( i n d i c e +1)) = Ba ;
i nd i c e = i nd i c e +2;

i f ( i == length ( gauss p ) )
l o c a l ( id Loc : ( id Loc +1)) = [2∗ e lem data ( node ,2)−1 2∗ e lem data ( node , 2 ) ] ;

id Loc = id Loc+2;
end

e l s e i f e lem data ( node , 4 ) ˜= 0
[ B ct ]= . . .
B c ra ck t i p ( anglecrack , X gauss , Y gauss , node , i , e lem data , id Loc , gauss p ,
N, N x , N y , i nd i c e ) ;

B Enr ( : , i n d i c e : ( i n d i c e +7)) = B ct ;

i n d i c e = i nd i c e +8;

i f ( i == length ( gauss p ) )
l o c a l ( id Loc : ( id Loc+7)) = [2∗ e lem data ( node ,4)−1 2∗ e lem data ( node , 4 ) . . .
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2∗ e lem data ( node ,6)−1 2∗ e lem data ( node , 6 ) . . .
2∗ e lem data ( node ,8)−1 2∗ e lem data ( node , 8 ) . . .
2∗ e lem data ( node ,10)−1 2∗ e lem data ( node , 1 0 ) ] ;

id Loc = id Loc+8;
end

end
end

B = [Bu B Enr ] ;
l o ca l K = loca l K + W∗B’∗D∗B∗detJ ;

end
end
i f l ength ( l o ca l K ) == 8

% FEM element
f o r i = 1 :8

f o r j = 1 :8
index G = index G+1;
row index ( index G ) = l o c a l ( i ) ;
c o l i nd ex ( index G ) = l o c a l ( j ) ;
t o t a l s i z e ( index G ) = loca l K ( i , j ) ;

end
end

e l s e
globalK ( l o c a l , l o c a l ) = globalK ( l o c a l , l o c a l ) + loca l K ;

end
end

globalK = globalK + spar s e ( row index , co l i ndex , t o t a l s i z e ,DOF,DOF) ;
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