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Abstract

Cone-beam CT (CBCT), used to reduce setup error in radiotheed®s f1 sequence
of about 670 two-dimensional X-rays acquired in a circular aound the patient over
two minutes and reconstructs a three-dimensional voluora these projections. Con-
sequently, when tissues move significantly during the aitjom the resulting volume is
blurry or contains streaks. The projections themselvesjgh, are sharp. One of the
main areas of research with CBCT has been to attempt to recongirimotion from
these projections by collecting them into respiratorygghar amplitude bins and using
these to reconstruct bin-specific volumes. A variety of na@itms are employed to iden-
tify and record respiratory motion so that it can be coreslavith the projections.

Not all motion that occurs in the body can be correlated wabpiration. The re-
search question pursued in this thesis is whether motiorbeadentified in a binning
process without prior knowledge or models of the motion. Mootature describing mo-
tion classes and a specific type of artefact are introducdtke distinctiveness of this
artefact class is demonstrated and methods to mitigate fraposed and evaluated. Sev-
eral techniques are then used to reduce an intractablehsgaace to a computationally
feasible one. A unique application of PCA to the reconstancpirocess allows new kinds
of search approaches to be considered including an extawssgarch which requires a
protocol change and a multiple-restart hill-climbing s#athat can be used with exist-
ing protocols. Experiments with three classes of phantametding a novel animated
physical phantom, show the effectiveness of the two seamtads which are finally
compared with each other.
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Chapter 1

Introduction

1.1 Cancer, imaging, and computer science

Cancer is one of the most frightening words in the English lagg. It describes a large
group of diseases all of which are characterized by unchedrgrowth of a cell popula-
tion resulting ultimately, if not eradicated, in the deatht® host. In the US, according
to the American Cancer Society, “men have slightly less thdnira2 lifetime risk of
developing cancer; for women, the risk is a little more than 3" [4]. In absolute num-
bers, more than 1,500 Americans die each day due to cancehwiakes it the second
most common cause of death. The GLOBOCAN database publishibe byorld Health
Organization shows that the US is not an outlier among theerdeveloped nations [99].
The fact that the mantle “cancer” covers so many differentd&iof diseases originating
in different types of tissues makes it an exceedingly diffiptoblem to deal with and yet
the prevalence and mortality rates reinforce the necesspyrsuing solutions.

From the clinical perspective, there are both therapeuticrasearch aspects of can-
cer. The therapeutic aspects cover both the ability to ctiyrdiagnose and to effectively
treat illness. The research aspects are what allow us toiggight and understanding
into the causes of cancer as well as the effectiveness @fhatic approaches. Research
also creates and validates new therapies. The principaésnofitherapy in widespread
use currently are surgery, radiation, and chemotherapenOQfhe treatment design will
include some combination of these three.



Chapter 1 2 Introduction

Preceding any kind of treatment is some kind of diagnostec@anning process. In
addition to any biological or chemical markers found witkt$e images of the region
of interest can be acquired to provide the diagnosticiah mibre information. Different
technologies exist having different strengths and weadewsX-ray imaging provides ex-
cellent bone contrast but poor soft tissue contrast andislaassociated with its use. Nu-
clear imaging techniques such as single photon emissiopet@d tomography (SPECT)
or positron emission tomography (PET) measure tissue imend physiology more
than structure. These can provide better insight into tladtinef soft tissues but likewise
have some risk associated with their use. They can be, howeffecult to “position”
within a known reference frame. To compensate for this, tteeybe “fused” with other
modalities such as X-ray to assist clinicians in seeing wilaeparticular response to the
nuclear material is occurring. Magnetic resonance imaguaids the ionizing radiation
risk of X-rays while providing excellent soft tissue corstrand good spatial resolution.
It is among the most expensive imaging modalities and iscseffily slow that motion
poses a significant problem. On the other end of the cost,sdai@sonic imaging is both
portable and relatively inexpensive. It can also measwedilow and is therefore useful
in assessing heart function and vessel health. Poor ssfidicontrast and the inability to
“see” past bone and gas pockets are some of its limitationktiiRdy new and exciting
modalities such as magnetic resonance elastography (MR#) pmneered at the Mayo
Clinic, or molecular imaging using fluorescing markers in tlear-infrared frequencies,
offer continued hope for improvements in the tools avaéatbl clinicians in the future.
Each of these imaging technologies, or “modalities” haeeléroffs of noise, contrast,
and spatial resolution both within a modality and betweenlatibes. Different modal-
ities will have different risk, cost, and clinical time teaffs as well. Consequently,
different modalities will have different usage models. @lians need to use the best
method based on the information they most need.

In this work, the particular imaging technology or “modgliunder study is cone-
beam computed tomography (CBCT). It is a diagnostic X-ray mtydaitegrated with
a therapeutic linear accelerator that acquires 2D images tessreconstruct a 3D volu-
metric image. Typically, it is an adjunct technique used amjanction with radiation
therapy and will be described later in Chapter 2. In that odnikeis used to evaluate the
patient’s position with respect to the planning frame oérehce and, if necessary, make
adjustments before treatment begins. The acquisitioropobtommonly used captures
approximately 670 X-rays, or “projections,” over the caurd 120 seconds in a single
orbit covering 360 degrees. The two minutes (intentionallsed to capture the images
implies two things: that the resulting reconstructed vaumill be blurry where motion
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has occurred and that, in some sense, that motion has beemethm the projections.
After the reconstructed volume has been used to align therpait and the projections
have no further use. This implies that the alignment assesssia the only benefit of
CBCT at the dosage cost of the 670 X-rays. That is the motivafidimeoresearch in this
thesis; the goal is to find a way to extract the motion infoiorafrom the projections
without requiring any additional model, planning CT, or eapt signal.

1.2 Thesis overview

The main points of the thesis are presented here beginnitig @hapter 2, the tradi-
tional background and relevant literature review. In tHapater, the basic biology and
physics that relate to radiotherapy, the essential clipicctices, and the basic ideas be-
hind CBCT and filtered backprojection reconstruction are priese The work to date on
identifying motion in CBCT is also highlighted. The chapter cloiles with a new clas-
sification for motion types which is sufficiently general Vehtlearly segmenting the mo-
tion types into distinct subgroups; this classificatiorsltye foundation for more clearly
elucidating the thesis problem.

In Chapter 3, the materials used in several of the subseghapters are presented.
Three different kinds of phantom classes and specific cordiguns of them are de-
scribed. Using phantoms lowers the cost of experimentadiwh the time required to
run experiments. It minimizes risk to patients by first exjplg experimental ideas on
virtual or physical objects. A new type of phantom, the Aniethphantom is presented
in this chapter and is one of the novel contributions of tlesih

In Chapter 4, a specific kind of artefact that is a particularseguence of the bin-
ning process as applied to CT and CBCT is defined and named gapctsteSeveral
experiments are run to illustrate its distinctiveness anpact on reconstruction. In the
literature, this class of artefact is alluded to but gengmouped with the larger class
of artefacts it belongs to, namelydersamplingrtefacts. The contribution of this chap-
ter is to explicitly call out the class as an important typat tshould be accounted for in
filtered backprojection reconstructions that include anlmg step. The use of k-means
clustering on a known object’s positions as an “oracle” fmrect binning is described in
this chapter and will be used in subsequent chapters.

In Chapter 5, having characterized the gap artefacts, twbadstare proposed and
evaluated for mitigating the impact of them on the recortsion effort. Each of these
methods in turn uses two different approaches, balanceahfillcomplete fill, to fill the
gaps. These methods tie into and pave the way for the seattlodsepresented in Chap-
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ters6 and 7.

Chapter 6 introduces the core contribution of the thesisaeckamethod for assigning
a bin label to each projection without the use of any prior el@d correlating signal/data.
The search space is identified, an objective function to bemmzaed is proposed, and
then a series of techniques are described to sufficientlyceethe size of the search space
such that an exhaustive search can be performed. One of¥képroposals is the use of
Principal Component Analysis (PCA) as a preparatory stepdease the computational
performance of the filtered backprojection reconstrucsi@p. The overhead required for
this step is more than compensated for by the improvemeperformance given the vast
number of reconstructions that are necessary. A second cawiibution is the proposal
to modify the scanning protocol to include two scans rathanthe standard single scan.
The advantages and disadvantages of this change are @diaithe chapter.

Chapter 7 uses several of the ideas in Chapter 6 but applies tth¢he standard
single-scan protocol. The advantages of the two-scan gob&we no longer available so
a new search method is proposed, a random-restart hill rigmbethod. The justification
for this approach is made, several experiments are perthrara the results presented
and analysed. The two methods presented in Chapter 6 and Chiagrie subsequently
compared.

The thesis concludes with a summary of the work includingstinengths and weak-
nesses of the approaches presented. The elements of tisenthieh are considered novel
contributions are recapitulated, and several directionfuture research are discussed.



Chapter 2

Background

2.1 Introduction

In Chapter 1, the importance of radiotherapy as one of the tadhe fight against cancer
was introduced in the context of cancer types and prevaldndgis chapter, the precise
nature of radiotherapy is introduced. With this undersitagydcurrent issues that form
major thrusts of active research will be discussed. Fingily specific problem that this
research addresses will be identified.

The main imaging modality of interest, cone-beam computetbgraphy (CBCT) is
described in Section 2.3.3.2 along with its diagnostic dadming cousin, Computed To-
mography (CT). A natural progression when talking about aateghtomography, and the
one used here, is the dimensional advance from two-dimealsi®r to three-dimensional
CT and finally four-dimensional CT (3D + time).

Motion, the cause of the main problems of interest, is dbedrin Section 2.4. A new
classification of motion is introduced to more clearly digtiish the different problems
that arise from motion. Methods to compensate for motion thedoroblems it causes
will then be described in Section 2.6.

Some background discussion is deferred until future chaptbere it makes more
sense to introduce the material immediately in context Wwitv it will be used. As an
example, the background on artefacts is introduced in Chdpadere it forms a crucial
part of the material in that chapter specifically. Likewigeeview of principal component
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analysis (PCA) as used to facilitate searching in this resesrintroduced in the first
chapter on search, Chapter 6.

One way to understand radiotherapy is to examine the timelimd the roles played
by different clinicians in the treatment process. The peoid caused by motion are also
a function of these clinical practices and, as such, somepoeimension of the process
is necessary to understand the motivation and constraefisiéh much of the current
research.

To reduce potential confusion, some nomenclature musttbedunced which will be
used when reporting the findings of different authors. Wébpect to anatomical posi-
tion or motion direction, different terminology can be ugeddescribe the same direc-
tion or anatomical coordinate system. For consistencyeéded, the results of a paper
may be translated as follows. When referencing the diredtimm the head to the feet,
the Superior-Inferior (SI) term will be used. This will bebstituted whenever the term
Cranial-Caudal (CC) is used. The term Left-Right (LR) will genlgrak used instead of
Medial-Lateral (ML). Anterior-Posterior (AP) referring the front and back seems to be
universal and needs no translation.

2.2 lonization of tissue

2.2.1 Relevant physics

X-rays are used to both image patients and to kill diseassdéi The critical difference
between the two is thenergy levelsnvolved. The energy levels of the X-rays, measured
in kilo-electron volts (keV), typically range from 50 keV @20 keV [21, p. 113] for
imaging applications. Therapeutic X-rays range betweendd2b mega-electron volts
(MeV) [89] though the distinction is not entire clear sinceWiX-rays are sometimes
used for portal imaging (see Section 2.3.2). Tritensityof the X-ray—or the number of
photons—is a function of the electrical current used to gatieehe X-rays.

Inthe literature reviewed here, the urkig or kVe f orkV, are used. These refer to the
potential voltageapplied between the cathode and anode in the X-ray tubeftbetive
or modal energyof a polychromatic spectrum, and tpeak photon energsespectively
though the last onéV,, seems to be interchangeably used as the peak voltagedifiplie
the tube and the peak photon energy. What is important to pairis that the spectrum,
when shown ageV values, cannot exceed tk¥, value used to generate the X-ray. Fig-
ure 2.1 shows these values and illustrates the polychromature of X-rays. Included
for completeness are the characteristic radiation linésiofjsten which are important to
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Figure 2.1: Example X-ray spectrum at 120 kV showing beanddrang (grey dashed
line), effective kV and peak kV.

analytic chemistry but are irrelevant to the work in thisdise The two spectra will be
explained in more detail shortly.

Choosing voltage and current levels for imaging is complesabse of the many
trade-offs. Ultimately, the aim is to measure photons in eédashion by a detecting
device. Contrast is achieved by the differences in absarpimal scattering of the different
tissue types. Noise in the detection of photons is modekea Boisson process [2] and
therefore is a function of the expected number of photonsieisthat the variance of
a Poisson distribution is equal to the expectation, one #ged#sncreasing the number
of photons (by increasing the current) decreasegdlaive noise. Hence, the signal-
to-noise ratio (SNR) is improved by increasing the currentfddtunately, increasing
current also increases dose which is undesirable. Ravera! estudied the effect of
current change on image quality [65]. They found that for Cages generated at 120kV,
the image quality increased as they increased the curremt 40 mAs to 160 mAs but
then plateaued and no significant increase in quality wasrgbd up to their final value
of 280 mAs.

Increasing electrical potential difference of the X-raygetion device increases the
energy of the photon and hence its ability to penetratedibgfiore being absorbed. How-
ever, it is this absorption (and scatter) which createsesilgjontrast. The higher the
energy the lower the contrast-to-noise (CNR) so decreaseakedf, increases the result-
ing contrast in images. The attenuating differences betvi&ie soft tissue, and bone is
greatest between 10 keV and 30 keV [21, p. 134]. Unfortupali@h-energy X-rays are
quickly absorbed or immediately attenuated by the glasksae on X-ray tubes. This
is why, when imaging the soft tissues in mammography, breasipression is used to
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reduce the distance the X-rays must travel and special tnblesures are used so that
lower-energy X-rays can be generated. Conversely, X-ray®lling through the torso,
especially in larger patients, must have the effectiveggniewels of the photons increased
throughbeam hardeningo that low-energy X-rays, which contribute to dose but oot t
the image, are removed.

Both current and energy contribute to the ionization of malies by X-rays. loniza-
tion occurs in different ways though the probability of aegvkind of interaction is a
function of the energy. In the course of ionizing an atom otenole, the X-ray photon
loses energy. As X-rays continue through matter they castio lose energy and con-
tinue to ionize molecules until they are ultimately absdrb&he speed with which this
occurs is a function of the density of the material. The atédion occurs as an exponen-
tial decay and is frequently described in terms of intensltginges, known as Lambert’s
law, using the equation [21, eq. 1.11]:

| =lge (K (2.2.1)

Wherelg is the initial intensity of the X-rayy is the linear attenuation coefficient for
material at the given X-ray energy levalis the distance travelled, amds the emerging
intensity of the attenuated X-ray. This model indirectlgdgbes a monochromatic X-ray
because the attenuation coefficient is tuned to a specifiggtevel or X-ray frequency.
As was mentioned above, X-rays used in imaging and those@eddor therapeutic use
by a linear accelerator (“linac”) are polychromatic in matuVhile the simple monochro-
matic equation is sufficient for most applications, undarding the polychromatic nature
is necessary to understand when and why beam hardeninglislngégure 2.1, two spec-
tra are shown. The lower intensity plot is shown with a dagiregt line and represents the
initial X-ray spectrum (shown with the solid black line) theas been filtered using a thin
sheet of aluminium or copper for instance. These filters vimyrkreferentially absorbing
the lower energy photons, the easiest ones to absorb. Nsut¢lelt beam hardening oc-
curs automatically for very low energy levels via the X-rapé enclosure. The purpose
of beam hardening is to reduce the number of low energy pkoidrich will only be
absorbed by tissue and thus contribute to dose but not torthge in any way.

On an engineering note, less than 1% of the current used ErgenX-rays are ac-
tually converted into X-ray photons [21, p. 39]; the rem&ndre converted into heat.
Managing heat generation properly is a significant conaethe design of X-ray devices
and is an indirect constraint on imaging ideas. Any suggettehnique that requires
leaving the X-ray tube on for long periods of time should #fere have a feasibility
assessment.
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2.2.2 Key aspects of radiobiology

The principal concern of radiobiology is the effect of iang radiation on biological
processes. lonization changes the chemical propertiée adhized atoms and molecules
in ways that disrupt the normal cellular mechanisms, inipaler DNA replication. For
instance, the ionization of a water molecule begins a clegintion of ionization that may
end up in the production of hydrogen free radicals and hyginqeeroxide both of which
are damaging to cellular function. In fact, given that tessare 70-90% water, “It is
the free radicals formed from water that are responsiblalb@aut 70% of the biological
effects of radiation...” [97, p. 56].

lonization of DNA, RNA, amino acids and proteins has a moredtieffect on cellular
structures. Unrepaired damage can lead to the death of ftremdéor the inability to cor-
rectly replicate. An example of this is found in the p53 tumsuppressing gene. When
DNA is damaged, p53 either delays the normal replicatiorecia give the cell time to
repair the damage or, if the damage is too severe, to trigglesgicide by apoptosis.
However, if the p53 gene itself is damaged, these mechamsayde thwarted leading to
cellular reproduction with damaged DNA (as well as the dasdgap3 gene) [97, p. 21].

Fortunately, cells have built-in repair systems thoughrépair mechanism of cells is
not completely understood. What is known is that healthyscalé able to repair them-
selves more effectively than damaged cells (e.g. malighanbur cells). This fact is
ultimately the basis of the fractional dose delivery protoghich will be described later
in the section on radiotherapy (Section 2.5). The relevapeet is that radiation doses
meant to kill tumours are split into “fractions” and delieerover several treatments rather
than all at once [60, chap.16]. The timing between treatmsntneant to maximize the
repair time for healthy tissue while minimising the repaine for cancerous tissue. The
introduction of fractionated radiotherapy plays a sigaificrole in the research related to
the work presented here.

Another characteristic of radiobiology that affects therdpy planning is the varia-
tion in intrinsic radiosensitivity of different tissue tgp [97, chap. 8]. Simply understood,
certain tissues are more likely to be affected by a therapéote than others. Hence,
when developing a radiotherapy plan, the sensitivity ofithgaissues that will be irra-
diated needs to be taken into account. Similarly, in largecwrs, hypoxic effects often
cause the middle portion of tumours to be less sensitivediatian and this too needs to
be both planned for and, ideally, monitored.

When large tumours are successfully treateztrosis(the death of the tumour cells)
occurs and the cell debris is eliminated throygtagocytosis If the region where this
occurs is large enough, the tumour can collapse or signtficaeshape in response to
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the structural change. Such changes may effectively matdithe original treatment plan
and unless detected and corrected, healthy tissue willrgeted and malignant tissues
will be missed. This becomes another motivation for re-imggatients during a course
of treatments in order to verify that the original plan idl stalid.

2.2.3 Insummary

To recapitulate the essential elements of this section:

e Diagnostic X-rays create images as the attenuated photemseasured by detec-
tors; contrast is generated by the different densitieseflifferent tissue types.

e The energy level of the X-rays is a function of the goal of tmhaging. Low energy
levels are useful in mammograms, high-energy X-rays ardatefor torso imaging.

e All X-rays in medical settings ionize matter. This is intemal in therapeutic X-
rays and undesired in diagnostic X-rays.

e Both voltage (kV or MV) and current (mAs) contribute to dosé twrrent is dom-
inant.

e Sufficient levels of ionization lead to cell, and eventuaibgue, death. Insufficient
ionization allows cells to repair themselves.

[ I f IO ei(IJX)
The application of X-rays in the medical context comes dowithts: minimize the

dose when imaging, minimize the dose to healthy tissue dureatment, and maximize
the dose to target tissues during treatment.

2.3 X-ray imaging

The relevant research and the work presented in this thagestheir roots in the images
created with X-rays. A basic background in the various mitidalis therefore required
and is now presented.
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2.3.1 Radiographs

Radiographs are the “official name” for what commonly aresthK-Rays. These are the
ubiquitous two-dimensional images taken at the dentist tiié hospital to reveal broken
bones or serious diseases, etc. They can be large imagés tase of a chest X-ray,
or small images used to ascertain the health of a tooth. Tinesges originally were
created using a chemical film process which effectivelyldisiaed the use of light values
to represent strong attenuation and dark values to represak attenuation.

2.3.2 Portal images

In addition to diagnostic and planning imaging using keVrggéevels, radiographs using
MeV energy levels are sometimes used during radiotheragsiaes. The main motiva-
tion for these energy levels is the pragmatism of having dyéaV source: the linac
used to deliver the therapeutic radiation. Capturing twbagonal MV images allows
clinicians to verify a patient’s position on a treatment clotefore delivering the radia-
tion dose. The additional dose delivered by these “portaiges has historically been
justified by the increased accuracy of therapeutic doseatgl[15].

2.3.3 Computed Tomography (CT)

Normal radiographs have a high information density. Thayt@o information about an
entire volume of tissue densities compressed into a twedgional projection or sum-
mation. Computed tomography, on the other hand, seeks tdig@amat information by

reconstructing the information inherently summed aloregXhray by taking many sam-
ples at different geometric positions (usually tracing a-coplanar overlapping spiral or
a coplanar arc).

2.3.3.1 2Dand3DCT

In 1979 Godfrey Hounsfield and Allan Cormack were awarded thiegeNPrize in Medicine
for their independent invention of X-ray computed tomodma7, p.34]. While Cor-
mack’s work preceded Hounsfield's by a few years, it was Hbeladswho patented his
work and first successfully introduced it into clinical ptiae in 1972. In honour of this,
the numerical units generated by CT systems are called Helahsiinits. Hounsfield’s
initial work used an iterative algebraic technique to restorct the images. Later, Ra-
machandran and Lakshminarayanan introduced an analfoicaulation usindfiltered
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Figure 2.2: Parallel (left) and equispatial fan-beam @igfeometries.

backprojectionto reconstruct 2D slices that were then stacked to form 3Dmek. It-
erative algebraic techniques are no longer popular fordsti@hreconstruction situations
because they are slow and prone to numerical error [21, p.B8®red backprojection,
in contrast, is very fast and sufficiently accurate givenugimoprojections. The indepen-
dence of the projections means that the reconstruction egim leven before all the pro-
jections have been acquired which further improves itsgoarénce [57,69], [32, p.275].

The work in this thesis is ultimately based on the filteredkipagjection method. For
details on iterative algebraic techniques, the readerféesrexl to Chapter 7 in Kak and
Slaney’s book [32], the work by Mueller [57], or the desaoptin Rit's comparison of
analytic and algebraic technigues with respect to coneali@a [69].

Filtered backprojection is best explained using the sinpaleallel-beam geometry.
Older generations of CT machines used the parallel geometrmgdwer machines use a
fan-beam variant. The most common fan-beam geometry isllmsequiangular spacing
on a curved detector and is used in most CT devices today. Thepadgial geometry, with
a flat detector, becomes the basis for the cone-beam CT gsortietan be shown that
either fan-beam geometry reduces to the parallel caseghrabinning (and weighting
in the equispatial case).

Filtered backprojection for the 2D parallel case begindwie understanding that the
1D projection through the 2D slice of the object (which caralternatively thought of as
a density function), is a line integral taken along the lieegendicular to the projection
direction (See Figure 2.3). These 1D projections are takefonmly at many angles
around the object. The purpose of this is seen from the “Eowlice theorem”, also
known as the “central slice theorem” or the “projectioresltheorem” which essentially
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Figure 2.3: Fourier slice theorem. The 1D Fourier transfofrtihe projection becomes a
slice in the 2D frequency domain.

shows that alice through the 2D frequency domain is equal to the Fourier toansof
the line projection through the spatial domain at that sanggea Figure 2.3 illustrates
this.

Given enough 1D projections, the 2D space can be recoveratdypolating in 2D
frequency space and then transferring back via a 2D inveyaadt transform to the 2D
spatial domain. In practice, interpolation errors are miaed if the interpolation is done
in the spatial domain after the filtering takes place in thefrEquency domain [32].

One very important assumption to note here is that becaag@ dfection is presumed
to be a line integral, the values are presumed to be linearhyed along the projection
line. In Equation 2.2.1, this was shown to not be true for ¥sraHowever, if the logarithm
of the measured intensity is taken, then the assumptiorshold

| =1lo @ HiXig=H2X2 o= HnXn

— g & (HoxatH2xet .+ HnXn) (2.3.1)
becomes
| n
—In(=) =3 M (2.3.2)
lo k;

The most common implementations of 3D CT construct 3D volueidser from
stacks of reconstructed 2D slices, or by reconstructingiatedpolating measurements
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acquired sequentially in a spiral path along the rotatias.aRetails of modern CT tech-
nologies can be found in [97, chap. 1], [21, chap. 14], and ¢8&p. 1].

2.3.3.2 Cone-beam CT

Simplistically, one can say that CT takes one-dimensionajeptions and reconstructs
a two-dimensional slice. Cone-beam CT accomplishes the daingeliut increases the
dimensionality: it takes a set of two-dimensional equispén-beam projections and re-
constructs a three-dimensional volume. Cone-beam CT is hiaganctreasingly popular
as an adjunct to image-guided radiotherapy (IGRT) and id teseerify patient position-
ing and tumour/organ interfraction motion.

Historically, while exact methods for reconstructing 2Daiges from 1D slices were
well understood, the obvious idea of reconstruction 3D iesagom 2D projections was
hindered by the tension between the theoretical and thenatg The work of Tuy [93]
and Smith [85] rigorously describe conditions that are ssagy and sufficient for ex-
act reconstructions from cone-beam or 2D projections. Segndition is frequently
described in visual terms as requiring every possible ptareigh the imaged volume
to intersect the path traced by the cone-beam source at some ghese conditions
show that exact reconstructions are not possible withouertian one independent ac-
quisition path. More specifically, using the existing lineacelerator gantry mechanisms
which describe a source orbit in a single plane to acquirgeptions was proven to be
incomplete. Implementing exact solutions would requireasgamchange to the design of
existing medical equipment.

Nevertheless, this inexact impediment did not stop a teamsafarchers from propos-
ing an inexact but adequate method or, as the title put itactral cone-beam algorithm’
in 1984. The method, by Feldkamp, Davis, and Kress [22].teofeferred to as the FDK
algorithm and is the basis for most modern cone-beam recmtisin implementations de-
spite other algorithm or geometry proposals that fulfilleel Tuy condition [16, 85, 100].
This dense paper is elucidated in the oft referred to tomeadf &d Slaney [32] as well
as the thesis by Turbell [91, chap. 2].

More recent work, by Katsevich for example [33], has introgllian exact solution by
combining the orbit with an axial traversal in the form of &asource traversal. Though
computationally intensive it can be dramatically sped ufhwiarallel implementations
[17]. However, the work in this thesis does not require arcegalution and uses a simple
property of the FDK algorithm to accomplish its goals so laish-type algorithms are
not considered further.

In one of the first reported implementations [12], a modifarabf the FDK algorithm
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Figure 2.4: Cone-beam geometry. The shaded “fan” is shoted tdway from the plane
containing the X-ray source.

is suggested to deal with large field-of-views (FOVs). Thebpem arises from most flat-
panel detectors (FPDs) being smaller than the human tonscorder to compensate,
they shift the detector laterally and then weight the priipecdata appropriately before
reconstructing. Another suggested approach to this pmoldeto virtually extend the
detector and compensate for missing data by mirroring tige ddta appropriately [62].

The most published consequence of the FDK algorithm is ttreased error that oc-
curs along the z-axis (rotation axis) away from the iso@erikhis is a direct consequence
of violating the Tuy conditions and an effort to improve tias proposed by Mori et
al. [56] which they call combination-weighted FDK (CW-FDK).

The pioneering work of Jaffray et al. [28] on CBCT has increasggopularity as
a replacement for portal imaging. Because of this widesppegualarity and its use in
this thesis, the basic geometry and mathematics behind disé popular reconstruction
algorithm, the FDK algorithm as described by [32, chap. 3jriefly recapitulated here.
The seemingly trivial property that forms a significant teat of this research is then
highlighted.

The FDK algorithm takes the parallel filtered backprojettbgorithm, recasts it into
the equispatial fan-beam geometry, and then extends #-thiraeensionally by tilting the
fan-beam geometry up the z-axis (Figure 2.4). Kak and Slaneymarize the cone-beam
reconstruction algorithm as a sequence of three genedaieps:
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1. Weight the projection to compensate for the fan and tittingetry changes
2. Filter the projection
3. Backproject the weighted, filtered projection throughubkime

The derivations of these steps are well documented and regeloerrepeated here.
What is important with respect to the application of PCA to tharsh problem in Chapter
6 is step three. Beginning with Kak and Slaney’s backprapactiquation [32, p.107]:

2n p2 Deot  Dsoz
t,s7 :/ 50 ( sot _so ) d 233
g( ) 0 (DSO— S)Z QB DSO— s DSO— S ﬁ ( )

wheret, s,z x,y, and3 can be seen in Figure 2.4 and

t= xcog + ysinB (2.3.4)
S= —xsin3 + y coP (2.3.5)

To simplify further, the geometric constabt, is removed, the weighting fraction is
made a functionv(s), andQ is made a function of the angfand the rotated coordinates.

21
gt.s2) = [~ wls)Qst,z p) dp (2.3.6)

Then, because this is implemented using discrete voxelsaadidited number of
projections, and because the initial equation only gives#lue at one point in space, the
B value is replaced with a functiopyi) extractingB andD(i) which extractd\ from an
index of projections. The summation now ranges over thexinde

g(t,s,2) = le Q(s,t,z p(i)) D(i) (2.3.7)

This equation is a weighted average. The weifi) is the relative amount of the
total arc covered by a given projection. Pragmaticallys ttan be treated uniformly and
moved outside the summation.

q(t,s,2) =Y le Q(s,t,z p(i)) (2.3.8)

Finally, the three-dimensional volume can just as easilgdm@sidered a very high
dimension vector witts, t, andz being functions of the vector indgxyielding:
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N
V() = ¢ 3 wis(i)) QUs(i) (1), (1), PlD) 239)
or even more simply
1y
V=5 2 W () (233.10)
1 N
V= N.: Wjqj (2.3.11)
VoS (%)qj (2.3.12)

This last equation allows something slightly subtle to beereasily described which
the mathematical notation uncharacteristically failsaptare. From an algorithmic per-
spective, the most efficient way to implement 2.3.12 is tocate space for vectovsand
q, iteratively construct eacf)j, weight it, and add it tov. Equally valid, but seemingly
serving no purpose, is the idea of constructamgl allocating memory foeachq before
performing the averaging step. The motive for this will b@eoclear in Chapter 6 when
the retained) vectors are dimensionally reduced using principal compbaeralysis. It
is shown in that chapter that reconstruction can be perfdrimdeature eigenspace by
averaging the dimensionally reduced vectors and that thiggies a computational boost
to the search algorithms proposed in this thesis.

2.3.3.3 MV CBCT vskV CBCT

Cone-beam CT usually involves reconstructing keV energyeptmns. In light of the fact
that all linacs are equipped by definition with an MV souraad #hat it is much easier
to add a detector than a detector and another X-ray souroge 8@rk has been done
on generating mega-voltage cone-beam CT (MV-CBCT). Investigaby [10] show the
viability of it but they acknowledge the fact that soft tisstontrast is not very good and
that MV-CBCT, in contrast to kV-CBCT results in nearly four timee ttose. Because of
these limitations and because more vendors are introddS@BCT equipped linacs, it
is unlikely that MV-CBCT will gain widespread acceptance.

2.3.3.4 Insummary

To recapitulate the essential elements of this section:
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e X-ray imaging typically uses keV energy levels, though Mehergy levels are
sometimes used to create portal images.

e Traditional radiographs are imaged orthogonally to theation of the X-ray. Com-
puted tomography images are reconstructed from multipteosss resulting in im-
ages roughly parallel to the X-rays.

e 3D CTs are constructed by stacking 2D CT slices; the slices iirereacquired
axially with a “step and repeat” process or interpolateanfra continuous spiral
scanning path.

e Cone beam CT reconstructs 3D volumes directly from 2D prayasti The FDK
algorithm is the most widely adopted reconstruction imm@atation. Some studies
have reported extending portal imaging to construct MV CBCTislbe to extreme
doses and the increasing availability of kV CBCT, there isdidoption of this
idea.

2.4 Physiological motion

The most obvious biological property that impacts all agpet radiotherapy is motion.
Motion comes in many forms. The most dominant motions areheabdominal re-
gion [36] and are caused by respiratory and cardiac motidmes& motions also have
the advantage of being somewhat predictable although tizardoe great variation even
within the same patient [98].

In the pelvic region and lower abdomen, bladder filling anstigantestinal effects can
create motion but are not periodic in nature and less (iflppatdictable. Even though
they can occur during treatment, they are not as much arfraxtteonal motion concern
as they are an interfractional concern. If a plan is constrdubased on a diagnostic CT
with the bladder full and the patient arrives for treatmeithvan empty bladder, the plan
may be invalidated. Research has attempted to quantify tigeraf motions due to these
effects [50], but compensation is essentially limited tetdry regulation and endorectal
balloons [94].

In addition to internal organ/tissue changes and motioeretlis the issue of patient
placement. All treatment plans assume the patient can loegla precisely the same
position in a reference frame. This of course is &vaaassumption and is explicitly
compensated for in the treatment plan as specified by ICRU Repdand 62 [26, 96].



Chapter 2 19 Background

In a review of intensity modulated radiation therapy [98M summarizes the mo-
tion characteristics of tumours in various organs as repdry many authors. In prepara-
tion for the discussion on motion compensation technigats,|certain tumour motions
will be included here.

2.4.1 Motionin the lungs

In a study on 24 lung patients, Alasti et al. [3] found that imotis principally in the
Sl direction. Tumours in the lower lobes incur the greatestiom whilst mid and upper
lobes experience less motion. They also found no signifiddierence between left and
right lungs nor between male and female patients.

Seppenwoolde et al. [81] studied 20 patients using impthgtéd markers in or near
tumours. A real-time tracking system using fluoroscopy wseduo determine tumour
trajectories. They quantified the SI motion as being greatethe lower lobes, when
unattached, with an average amplitude oft12mm AP and LR direction motion was
small (2+1mm). They also documented hysteresis effects and reaffirnsdribre time
is spent in the exhalation state than the inhalation state.

Lujan uses a widely followed formula based on even powers afsane to model
respiration [49]. While useful, it must be noted that Rietf8][mentions respiration
irregularities which manifest themselves as frequencylande, and general waveform
differences. Sharp reports similar variation in amplitadeong 14 lung tumour patients
with standard deviations between 0.8 mm (mean 9.1 mm) anchBidmean 27.5 mm)
[82].

A comprehensive discussion of lung motion with respect dootherapy can be found
in [35] which “describes the magnitude of respiratory motidiscusses radiotherapy spe
cific problems caused by respiratory motion, explains teghes that explicitly manage
respiratory motion during radiotherapy and gives reconuagéans in the application of
these techniques for patient care, including quality aswe (Q) guidelines for these
devices and their use with conformal and intensity moddlaaeliotherapy.”

2.4.2 Motion in the liver

In [13], results of a study on 79 patients showed a median turaolume of 294n?
with average (maximum) intrafraction motion ranges afti{ 29mm), 9mm(18mm), and
8mm(13mm) in the SI, AP, and RL directions respectively. They note thatliver de-
forms during respiratory motion and suggest that deformedgjistration may have more
value than standard rigid registration techniques cugentuse with IGRT. Giergta’s
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team [24] found smaller motion in 7 patients with pancrealsver tumours reporting an
average magnitude of 7.4 mm in the Sl direction and 3.8 mmerAiR direction.

2.4.3 Motion in the prostate

Using gold markers implanted in the prostate, Kitamura etpincipally reported on
interfraction motion differences as a function of proneswsrsupine patient positioning
(supine is better). For supine positioning, the averagelitudp of prostate movement,
in millimetres, was AL +0.1,0.3+ 0.2, and 03+ 0.4 in the LR, SI, and AP directions re-
spectively. Their conclusion is that prostate motion iseté#d by the respiratory cycle and
bowel movement and the principal motion is in the Sl directilm contrast, Millender et
al. [55] reported on a study of three morbidly obese men tjposing errors occurred pre-
dominantly in the LR direction with a mean magnitude of 11 gompared to 7.2 mm
for the Sl direction and 2.6 mm in the AP direction. Other ausireport slightly different
results but the numbers remain relatively small, the Siative is always dominant, and
the conclusion is that intrafraction is insignificant bueiriraction motion is not [50]. For
this reason, motion compensation research with respecbsigte tumours is focused on
interfraction changes, not on intrafraction motion.

2.4.4 Insummary

Perhaps an ideal summary of anatomical motion comes from [R&:

“The physiologic organ motion can be classified, accordintheir temporal
behaviour, in: (i) non-periodic motion, produced by therfidl status of struc-
tures such as the bladder or the rectum, (ii) periodic motilue to breath-
ing and cardiac motion (these movements are repeated nmaag tiuring a
single treatment session), and (iii) quasi-periodic nmgtlike the peristaltic
movement of the stomach.”

To recapitulate the essential elements of this section:

e Respiratory motion is often modelled as a periodic functi@ugh in reality it can
have significant changes even between cycles within the patient.

e Respiratory motion is the most significant cause of motiohiwithe patient. It not
only impacts lung tissue but the liver (and other organs) elé w

e Respiratory motion is principally in the Sl direction.
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e Prostate motion, such asitis, is not as influenced by thegienmotion of the lungs
(though there is some debate about this) but rather by thegpaoadic or quasi-
periodic motions caused by filling events in the rectum odbt& and peristalsis.

2.5 Radiotherapy

In Chapter 1, radiotherapy was introduced as one of the thiege therapies currently
used to treat cancer. Modern radiotherapy is sometimesdcabnformal radiotherapy’
and conveys the idea that the delivered radiation dose oosfto the tumour or target
tissue shape. The goal is to spare healthy tissue and catyateter the target. To enable
this goal, increasingly complex protocols are being inticeet! into both the planning and
treatment stages and the line between these two stagestisgsta become blurred as
re-planning during treatment gains momentum.

In this section, the process and clinical roles involvedadiotherapy are detailed.
These further explain the problems of motion from the chhiperspective as well as
ways in which motion is currently being included in the plarghand execution of radio-
therapy. The differences between curative, adjuvant, afichfive therapy are ultimately
not relevant to the imaging issues discussed in the resedhtsis and will not be con-
sidered here.

2.5.1 Diagnosis

At some point in a patient’s care, a physician may suspedéekielopment of some form

of cancer and order tests to confirm (or not) the suspicioroulshthe diagnostic tests
confirm that the patient has cancer, a clinical team will tegamine the results. The
clinical team often consists of specialists or consultamtancology, surgery, pathology,
radiology, and in some cases may include organ-specificga®s. This team discusses
the prognosis and decides on the best course of treatmeaohwiay include radiation

possibly in conjunction with surgery and/or chemotherapy.

2.5.2 Planning

If radiotherapy is prescribed as part of the treatment, apitey 3D CT is usually created.
In some cases, a 4D CT scan (3D plus time) is preferred. Addiliyg X-ray CT volumes
can be fused with other modalities such as MRI or PET when thussalities provide
better delineation of diseased tissue. In order to pos#ipatient in the same reference
frame for radiotherapy as they were for the planning CT scarkers of some kind are
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Figure 2.5: ICRU Report 50 abstract representation of volumes

placed on the patient. Often these are small alignment mgskiattooed on the sides
and stomach of the patient. These are later used to posite@patient with respect to
treatment room lasers that identify the reference frangirari

As well as providing diagnostic capabilities, an X-ray CT tasadvantage of reveal-
ing bony structures better than other modalities. Bony &tres such as the vertebrae
and pelvis are less subject to motion during image acqoisdind therefore provide bet-
ter landmarks for image registration algorithms. This, @amjanction with the fact that
most imaging at dose delivery time is also done with X-rayakes it useful foimage-
guided radiotherapylescribed in Section 2.6.3.

Once the planning CT has been acquired, the oncologist aéis¢he Gross Tumour
Volume (GTV) and adds a Clinical Tumour Volume (CTV) using, alby a pre-defined
margin. The GTV is the part of the image where the cancersgséiis distinguishable
to the oncologist. In some cases, the CTV is defined directbabse the GTV is not
clearly visible. The CTV is where the oncologist expects ttwecerous tissue to actually
be. Benign tumours usually have distinct edges but maligiamburs often have cellular
tendril-like structures which invade the surrounding bedélssue. These structures are
often invisible on X-ray images yet it is critical that theg killed and so a margin is
added to the GTV based on the knowledge of the oncologisttgheutumour type, its
location, etc. The oncologist may also delineate impontagéans that may be especially
vulnerable to radiation; these are called Organs at Risk (AR the therapy plan must
be devised to minimise their exposure to radiation.

Once the oncologist has marked the CTV and any OAR$psametristdevelops a
conformal treatment plan. The first step is to add a margihedTV based on expected
intrafractional organ motion and interfractional setumer This new expanded volume
is called the Planning Target Volume (PTV). Often this isfpened automatically by the
software used in the planning process. This is because iy pratocols, the PTV mar-
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gins are simply prescribed in adopted standards and it isrefas software to uniformly
add 10mm to a CTV than it is for a dosimetrist. To conform theddieeadiation dose
to the target tissue, and spare healthy tissue, a plan togsef a number of different
fieldsis created. These fields describe the individual dosagesdsd by the megavolt-
age linac X-ray beams at different gantry angles and posattlifferent couch positions
as well. On most machines, these fields are coplanar thouggme newer devices such
as the Cyberknif@), they can be non-coplanar. A field more specifically includeg
collimation of the beam, the voltage, the current, the awoglposition of delivery, any
couch position changes, and the duration of the beam. Thestéield’ and ‘beam’ are
sometimes used interchangeably in the literature but gthasis, they will be used as de-
scribed above. These plans are becoming increasinglystagated and can now include
enhancements such as gating and dynamic leaf collimatiML(@). These are detailed
further in the section on motion compensation (Section.2.6)

It is worth pointing out some ways in which pragmatic reaBtcan affect the research
process. Radically new processes imply new machines whig¢armimply training.
Both the machines and the training are expensive both in tefm®ney and in terms of
time. Also, when dealing with dangerous or insufficientlydarstood methods, a suffi-
cient number of studies with the attendant ethical evadnatmust be performed before
it will even be considered for deployment. Hence a new meailogy may take years to
reach widespread deployment. A further pragmatic comgtraithe limited availability
of skilled clinicians. Marking GTVs and CTVs is tedious anehé consuming. To ask
an oncologist with a heavy patient load to mark up GTVs and Caiva 4DCT creates
a very serious resource trade-off decision. Some of therelsg@roposing 4DCT as part
of their process recognise this and discuss their attenbjgiistamatically creating 4ADCT
versions from a 3DCT PTV [48].

2.5.3 Therapy

Once the plan has been created and verified by the attendowjogyst, the patient can
begin a course of treatment. Delivery of the treatment islilooration betweemadi-
ologistsand medical physicists Radiologists actually oversee the dose delivery using
machines that are installed, calibrated, and maintainethéymedical physicists. Of-
ten radiologists will consult with the physicists as wellwish oncologists in unusual
circumstances.

As mentioned in the section on the biology of radiation,ugssan usually recover
from radiation if the dose is sufficiently small and healtigstie can recover generally
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faster than cancerous tissue. This fact is exploited in tagswIn the planning phase, the
use of multiple fields allows dose to accumulate where thddielerlap while reducing
the dosage in areas of single field radiation. Hypotheticdlflour fields were used with a
uniform dosage per field, the cumulative effect where thesrlay would be 100% while
the non-overlapping regions would only incur a 25% dose. ddfse real plans are more
complicated than this, but the principle is the same. Thersgevay this biological fact
is exploited is in temporally dividing the treatment. If tikended dose for a tumour is
2Gy, this can be delivered in two 1Gy treatments. If thosatinents are separated in time
such that the healthy cells have repaired themselves butdltignant cells have not fully
recovered, then the goal of sparing healthy cells whileetang the cancer is furthered.
This is the main idea behirfdactional delivery wherein a patient is scheduled for multiple
radiation treatments often called “fractions” or “fractated radiotherapy” [60, chap. 16].

Multiple treatments pose a significant problem howeveriepéd need to be posi-
tioned exactly as they were when the planning CT was acquield eme they have a
treatment. One way of attempting this is to line up referemegks made at the plan-
ning time with laser beams that represent the same positispace for both the planning
CT machine and the radiotherapy linac. Unfortunately overdaburse of the fractional
treatments, patients may lose weight and skin may sag aats@markers to shift around
slightly. Likewise, if the treatment period is long enougte tumour may shrink and shift
position. Finally, if the tumour is in the pelvic region, thiedder and bowel changes may
affect the position significantly. One way to compensatetii@se changes is to make
the margins for the PTV sulfficiently generous. This of cowraeses additional healthy
tissues to be unnecessarily irradiated.

Another way to compensate for tumour position changes ang s&rors is to re-
image the patient immediately prior to the dose delivery amdeposition the patient
if the tumour has moved beyond some prescribed thresholereTis some evidence,
at least in prostate patients, that this shifting is ingfec[63]. Conversely, Nelson et
al. conclude that setup error plays a more important rola teapiratory motion [59].
Such use of imaging during the course of treatment is caltexe-guided radiotherapy
(IGRT). An excellent overview of the state of IGRT can be fdum[14].

In addition to setup errors, it is desirable to compensateantbafractional motion.
Many compensation methods have been investigated andwiiebe detailed in the sec-
tion specifically on motion compensation immediately bel®av summarize in advance,
the therapeutic forms of compensation can be categorizattespting to suppress the
motion, waiting to irradiate until the tumour has moved tgagfic position, or tracking
and irradiating the tumour dynamically.
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Figure 2.6: Three classes of motion (a) continuously p&rid) discrete and, (c) shift.

Purdie’s team [64] experienced changes in tumour motiondeh the planning 4DCT
and the respiratory correlated CBCT reporting a discrepandp @hm in one case. This
agrees with the results of two other authors they refereBoake, however, reports con-
tradicting results claiming that tumour trajectory shapestable [86] but reaffirms the
problem of setup error.

2.5.4 Insummary

Radiotherapy involves a clinical team which devises andemgnts a fractionated deliv-
ery plan of radiation treatments. Delivering radiotheraplyactions requires aligning the
patient to the original planning frame of reference whicdutts in setup errors. Likewise,
anatomical changes can occur during the waiting period é@twiractions resulting in
additional sources of misalignment.

2.6 Motion compensation

Motion is positional change in time. In radiotherapy, tang®tion can be compartmen-
talized into the motion that occurs during imaging or treatitrand the motion that occurs
between treatments. As a reminder, these are typicallgdiarafraction andinterfrac-
tion motion respectively.

The physiological motions described earlier (Section 2j summarized by Diez
have motion types that fall into both categories. Howevetually all of the compensa-
tion techniques for physiologically-based motions areyadncerned with the periodic
forms. This is because motion models can be built and easitglated with surrogate
measurements.

To clarify this situation, an extended motion classificasgstem is proposed and used
here. In Figure 2.6, three motion classes are illustratdte solid line represents some
1D description of motion, e.g. the SI motion. The shaded bogpresent the acquisition
times for four representative cone-beam scans. The mati@) s continuously periodic.
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The motion of (b) does not occur during the scan but ratheeafgpwhen comparing
two scans at different times, e.g. interfraction motion.eThotion of (c) represents
motion observed during the acquisition but which is not cardusly periodic. Note that
the motion in (b) could just as easily be represented conediptas two instantaneous
measurements. Motion (a) represents the movement causezsyation and cardiac
cycles. Motion (b) represents changes such as bladder amel fiting or emptying,
tumour shrinkage, and setup error. Motion (c) is what Didls ¢quasi-periodic” motion
though this can be extended beyond peristalsis and caiagialinclude random effects
such as gas shifting or an uncontrolled patient shift. Thiesse classes of motion will
henceforth be termed “continuously periodic”, “shift”,caidiscrete” for types (a), (c),
and (b) respectively.

Motion, if not compensated for, can create a variety of arf28]. All of these errors
result in the same consequence: target tissues may be onsoitfy dosed and re-grow
while healthy tissue may be overdosed leading to loss ataliunction and/or secondary
cancers. In the planning stages, tumour motion during ingagreates blurry images
making the delineation of the GTV difficult. The simplest pide compensation method,
for therapy, is to enlarge the GTV with a margin thus creatmgyPTV and to irradiate
the entire PTV. If the GTV is incorrectly identified, the redng theme of administering
an incorrect dose is raised. Therefore, if the GTV can be raccerately delineated, the
PTV will consequently be more accurately defined. Othernwiseertainty in the GTV
may necessitate an increase in margins required to cohttrIPTV.

Compensation, then, attempts to do any or all of the followingprove the images
used in radiotherapy, improve the accuracy and precisiatosé calculations, and im-
prove the accuracy and precision of delivered therapy.

The ideal solution is to eliminate or minimize motion andstis attempted with vari-
ous restraining methods. The breath-hold technique is acamhynused both for capturing
the planning CT and during treatment. This technique isdetieribed remarkably well:
a patient literally holds their breath while the relevartiaty ensues. Ironically, many of
the patients who would benefit from this technique have sa@mma 6f lung disease which
makes breath control a challenge and therefore this tesamupy not be an option. In
some regions of the body - head, neck, and liver in particuitais sometimes useful to
physically restrain the patient with various devices suslvacuum pillows [61] or cus-
tom fabricated moulds [44]. This branch of motion compepsais not relevant to the
remainder of the thesis and will not be discussed further.

Another interesting branch of research that plays an inaporble in both diagnostic
and planning stages is the fusion of different imaging mitidalto better assess diseased
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tissue location. However, as with motion restraint idebss, is not particularly relevant
to the work yet to be described and so only the research thatlsow relates to motion
identification or compensation in CBCT will be reviewed below.

2.6.1 Continuously periodic motion compensation: IMRT

Most of the work in this area ultimately falls under the calctase “intensity-modulated
radiation therapy” or IMRT. Technically, IMRT covers evéring from using more than
one field to irradiate the patient to advanced dynamic nheiti-collimation linked with
surrogate signals to track tumour motion in real-time. Hastion will not cast its net so
widely but will restrict itself to those ideas that influenmeimpact the research in cone-
beam CT. For the broader picture, a thorough review of IMRTEfound in Webb [98].
In particular, Figure 1 from that paper illustrates the @as tumour position identification
techniques being used. As in the section on discrete moetowb(Section 2.6.3), the
simplest approach to compensation for motion is to incrédasenargin used to construct
the PTV. This is both the historical and current practicewBieand better ideas are being
evaluated of which several will be described in this section

2.6.1.1 Gating

Gating the motion: for the most significant cause of motionespiration — monitoring

the breathing pattern and waiting for a specific phase isigatly used in both planning
and treatment. For planning purposes, image slices orgirojes can be acquired only
during the specific phase as identified by a variety of extelegices (respirometers,
reflective markers, etc.) For treatment purposes, the seggets can lead to turning
the X-ray beam on and off again essentially irradiating tesue only when it reaches
a certain position. The principle downside to this strategthat significant additional
time is required both for treatment and the initial plann@if acquisition. Gating during
acquisition or therapy is often distinguished from posijtasition gating of projections
by the term “prospective gating” versus “retrospectiverggtfor the latter process.

Li introduces something they call dose shaping (DS) basecbamolving a 4D mo-
tion probability model, obtained with 4DCT (discussed newith the PTV [41]. They
compare the results with both gating and conventional margiension and conclude that
DS performs better.

The main problem with gating, especially in therapy, is thaicreases the time re-
quired to deliver the fraction. Especially in respiratoatigg, much of the actual time is
spent waiting for the breathing to reach the desired staltés ificreases the probability
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that the patient will shift or move thus necessitating avahation of the setup and a
possible repositioning before continuing. Dynamicallyigg the motion using dynamic
multi-leaf collimators (dMLCSs) is one attempt to remove timed penalty of gated radio-
therapy. If a sufficiently accurate 4D model can be develdpat correlates well with
the patient’s breathing, then a surrogate can be used tinooosly track the tumour
by proxy while dynamically collimating the radiation beamratch the hypothesized
tumour motion [11, 34]. This method requires a consistedtr@producible respiratory
pattern. It also assumes the surrogate is a good indicatmtoél tumour motion [98].
The fundamental idea behind gating, tracking motion in tiased on its periodically
repeating property, is also the main trick used to add thaHalimension to CT.

26.1.2 4DCT

Four-dimensional CT, sometimes referred to aB “3 t CT” wheret is time, is not as
straight-forward as one might imagine. A video sequenca&agously a 3D object in
that it consists of B + t data. The subtle difference is that each sample in time — each
frame — of a video sequence is complete whereas each voluae&n + t sequence
must be first reconstructed from lower-dimensional samadesliired The acquisition of
these 1D samples and the subsequent reconstructions irgbic2d used to construct 3D
volumes requires a relatively long period of time. The resuthat CT volumes cannot
be constructed in the same “instantaneous” manner anadgathhe capture of the 2D
images in a video sequence. Consequently, the goal of 4DCT & tnoe capture of 3D
volumes over the recording timeframe; rather the goal iotestruct a model of motion
over an appropriate period of time. For respiratory motthis appropriate period would
be a full respiratory cycle. For cardiac motion, the periaolid be a complete cardiac
cycle.

The ideal way to accomplish this is dependent on the methodaje acquisition but
all forms effectively rely on some common principles. Theige of interest is subdi-
vided into phases (or amplitudes) and then samples areradcti eaclpositionfor each
phase/amplitude For instance, with CT a complete set of slices for a breatbyuaje
are acquired at each slice position. These slices are thetdny phase and the phase
volumes can be constructed by stacking slices from the sdraseptogether [67, 95].
Respiratory cycles are typically subdivided into betweeaghtand ten phases resulting
in eight to ten times the number of acquisitions needed tlol lzumotion model. Many
authors continue to use phase-binning though [1,47, 1&&rathat amplitude binning is
more accurate than phase binning.

Assigning slices to a subdivided phase, henceforth refeiweas “binning”, is not
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always easy. For cardiac reconstructions, the electrigabtof the heart measured in
electrocardiograms is sufficient for binning cardiac dicBreathing has no universally
accepted direct measure of phase and so surrogates areTwsed.ery popular exter-

nal surrogates are spirometers which measure tidal voluledp, 47] and optically

tracked markers positioned on the chest [3,53]. The mostrgémternal surrogate is
the diaphragm which requires proper automatic identificatn order to correlate with

phase [64,87]. This method, however, is challenged by [38] alaim that the diaphragm
moves air, not tumours, and that tissue moves and deforrfiesetitly from respiration.

One interesting refinement of this general idea is propogdddClelland et al. [53].
In addition to the initial 4ADCT dataset, they acquire a re#si static volume using a
breath-hold technique. The 4D volumes are then non-rigiégystered with the static
volume and a continuous motion model is then constructedtoygfia temporal B-spline
to the deformation parameters. Rietzel [66] does somethmigs but does not require
the static volume step.

Zeng et al. [102] attempt to eliminate the use of externalogates and propose an
iterative technique that estimates two initial extremerefce volumes from slice cen-
troids. Their method was comparable to surrogate-guideithads in three out of five
tested cases.

Sarrut et al. [75] and Schreibmann [77] proposed a dosevgadea of collecting
only maximum and minimum inspiration volumes and consingca 4D approximating
motion model from them. Sarrut added a prior lung density ehd¢al their densely de-
formable registration algorithm and claim improved accyraBoth report encouraging
results. Keall et al. [34] demonstrate an application ohsaicnodel with respect to plan-
ning for dynamic multileaf collimation (dMLC).

While the use of 4D CT has the potential to increase the accufagdgse planning,
Rietzel et al. explain that it is limited by the increased wWoakl required to delineate
volumes [67]. They propose solving this by nonrigidly regisg the 4D CT volumes to
construct a motion model and then apply this to 3D planningmes to automatically
generate 4D plans and dose assessments.

One particularly interesting line of research is found i0]1102]. They estimate
deformation parameters on a B-spline model by projectingrde¢d reference CT and
minimizing the least square error between measured anuastl. This is done in an
iterative fashion and has relevance to one of the techniprggsosed in Chapter 6.

Regardless of the details, all of these ideas essentiak®ythakoversampled CT slices,
bin them to create sequential volumes at different stagesotibn, then build (for some)
a motion model by registering these volumes, usually usimgesform of B-spline regis-
tration algorithm.
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2.6.1.3 4D reconstruction of cone-beam

It is natural to consider applying the idea behind 4D-CT toezbeam CT to create 4D-
CBCT. In 4D-CT, reconstructions are generated at each slicafbrghase of the periodic
motion. Given the typical 8-10 phase subdivision, to acdwhpghe same thing in CBCT
would require acquiring 8-10 volumes. There are three reasdy this is not feasible.
Firstly, the clinical time required is too great. Typical CBCdlwmes require approxi-
mately two minutes to acquire; a twenty minute protocol wioog too consuming of a
limited resource. Secondly, CBCT X-ray tubes cannot run caotisly and ten volumes
could only be acquired with sufficient pauses to allow thea}{4ube to cool thus exacer-
bating the time-resource problem as well as contributiggifcantly to mechanical wear.
Thirdly, the dose increase makes such an implementationgky The dose for CBCT
can be estimated from Islam’s reporting [27] as approxitgaté mGy which is roughly
in agreement with Lu’s reported dose of 57 mGy [46]. Lu theaggon to compare CBCT
with 4D-CT and concludes that one CBCT scan is approximatelyléqua5 4D CT
scans. If this is true, then constructing 4D-CBCT from ten vadans equivalent to more
than seven 4D-CT scans delivered back-to-back. Dose catmsaare very difficult but
given the on-going debate over the frequency with which 4D§hiaild be administered,
this ndve 4D-CBCT method would clearly be too much dose. Li attemptsrammvent
the dose problem by acquiring CBCT images at lower currentsvieriethe dose [40],
however they have not addressed the expected decrease inrCiN&riwork and they
acknowledge the clinical throughput issues. In consegemost proposed 4D-CBCT
simply sort projections from a single scan using the samdskof surrogates used for
4D-CT [19,40, 46,87, and many others]. This approach createsiety of problems due
to the need to reconstruct phase volumes with significantxeusof missing projections.
The consequent artefacts are discussed in detail in Chapter 4

Cone-beam CT has from its inception been seen as a useful tamrfgpensating for
setup errors (see Section 2.6.3 below). Recently, to conaperisr the lack of projec-
tions, several authors have proposed applying prior matiodels derived from 4D-CT
to deform the out-of-phase CBCT volumes. Rit shows results cosgimg for respira-
tory motion for both analytical and algebraic reconstruttiechniques [69]. Li, Koong,
and Xing propose using the planning CT as a baseline voluméandegistering the ini-
tial phase-binned CBCT volumes to it to construct a motion m{gkjl Hypothetically,
this model is then used to deform the 2D CBCT projections befererstructing to the
baseline phase. They demonstrate this in a 2D simulation.

Just as with 4D-CT, the question of binning by phase or binbingmplitude is im-
portant. Rit [71] describes the amplitude/phase binnindetraff by concluding that, for
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cone-beam, amplitude binning introduces more artefacteywhase binning introduces
more blur.

One concern of using the 4D-CT motion model to compensate déicidncies in
CBCT is that, over the course of the fractionated delivery, tbdon model may become
invalid. Purdie asserts their results show the relatignbetween external surrogate and
tumour motion does not hold over multiple fractions [64].ne seems to disagree by
reporting rather the opposite [87]. Clearly, further inigetion into this possibility is
required before it can be relied upon in a clinical setting.

In 4D-CT, the diaphragm is used as a surrogate [64, 87] and R e same idea
to correlate cone-beam projections [69, 70]. Use of theldeagm has the advantage of
not requiring any additional equipment though it involvesaalditional pre-processing
step. Thus it is applicable to retrospective studies whenegate signals have not been
captured and where real-time requirements do not existhaperthe only criticism of
this technique is the requirement that CBCT projections cor@aough of the diaphragm
to successfully be tracked. As hospitals and regulatorymeige become increasingly
concerned with radiation dose, the desire is growing taroalie CBCT projections to
just the portion that windows the tumour.

Grangeat et al. [25] propose speeding up the rotation of #mrg and collecting
multiple sequences effectively treating CBCT like 4D CT. Thestiply compensate for
the increased dose by acquiring only multiple half-turisegathan multiple full rotations.
Their motion compensation method relies on a dynamic pammodel. Their work is of
particular interest because they propose the multiplegiootadea, albeit for completely
different reasons, which is proposed in Chapter 6. They alakenuse of a region of
interest (ROI) as is done in this work, though they do not ieeRTV as the justification
and basis.

2.6.1.4 C-arm

Recently, a portable form of CBCT called “C-arm” scanners has beesduced princi-
pally in cardiac applications. Motion compensation is #fiere a critical concern in that
context. Most of the methods used for compensation make futhe dact that injected
contrast agents are commonly used in cardiac environm&hésuse of such agents facil-
itates the identification of vascular structures which aentused as proxies for cardiac
motion in general. The relative sparseness and distines® of these vascular trees al-
low gradient based optimizers to be used in finding soluttorEgarameter sets that drive
the motion compensation.

For instance, Rohkohl et al. [72] use a 4D B-spline model to wadwidual backpro-
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jection volumes in much the same way that Rit and others have with CBCT (See [48]
and [69]). Rather than linking the volumes to reference 4D Cllimes, as is commonly
done with CBCT, their objective function compares forward @ctipns of the best esti-
mate with the original images. This work extends the eawierk by Blondel [7, 8].

Zhang et al. [103] present ideas similar to Rohkohl but adayereof interest (ROI)
to improve performance. They also reorder projections fnauntiple cardiac cycles into a
single normalized cycle. This makes the assumptions tlegiehiodic motion of the heart
is consistent and that additional respiratory can be rechowth a breath-hold technique.

Metz et al. [54] mimic the work done in CBCT by registering the @Giarojections
with a pre-operative CTA data. They do so by using a novel 2D8DQ+t registration
approach. The segmented vascular tree aids in the defcemegbtration.

2.6.2 Shift motion compensation

The extent of compensation for this type of motion is esaéiptio attempt to measure
it and then include knowledge of the motion in the planninturees. As was discussed
in the section on prostate motion (Section 2.4.3), it is gaheacknowledged, though
not universally agreed, that respiratory motion has noisegmt impact on the prostate.
Therefore, continuously periodic models and some of thepasmsation ideas described
in the prior sub-section are of no consequence.

Shift motion is, by its very definition, unpredictable. Tafare, any approach that
attempts to correlate motion from some model at tim&ith motion at timet, later
cannot succeed. The only reported ‘surrogates’ for motienraplanted fiducial markers
which is a highly invasive approach [51] and which is susbépto displacement [59].

The result is this: there is no reported method for binninbeziCT slices or cone-
beam projections into some kind of motion bin for unpredttanon-periodic motions.

2.6.3 Discrete motion compensation: IGRT

Much of the work in this area falls under the catchphrase geaguided radiotherapy”
or IGRT. Fundamentally, IGRT seeks to mitigate the effetexternal positioning errors
caused by sagging skin, weight loss, etc. and the consegsi@hmternal tumour shape
and position changes [14].

Positioning errors have historically been “compensatetdy simply adding a setup
error margin to the PTV at planning time. A more active apppand one that some
research has shown to be promising, is to actually reduog setor margins through the
use of IGRT [15].
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The two most common imaging methods used to guide radigijena the older por-
tal imaging systems using orthogonal 2D MV X-ray images Whace registered with
simulated projections taken from the planning CT, and theeméw cone-beam CT vol-
ume which is rigidly registered with planning CT volume ditgcBorst et al. compared
portal imaging with CBCT imaging and concluded that CBCT was mocarate at iden-
tifying and correcting setup errors [9].

A problem with CBCT in IGRT is that motion occurs during acquasitof the pre-
treatment image volume resulting in streaking artefacts¢thers]. These artefacts cause
difficulties for registration algorithms. Consequently teyss such as the Synergy ma-
chine deployed at St James Hospital in Leeds, England, anetsoes equipped with
different registration algorithms including a purely mahaption. One of the outcomes
of Rit's work referred to earlier ( [69]) is a better refere@@BCT for registering with the
planning CT. This improved reference CBCT is created by applyiegtD-CT generated
motion model to the individual CBCT phase volumes via a defoiondield which re-
sults in all CBCT phase volumes behaving as if they came fromahmeegeference phase.
These can then be combined which reduces the streak astetacted both by the motion
and missing projections.

2.6.4 Insummary

e An extended motion classification system is introducedgiiree classes: contin-
uously periodic, shift, and discrete.

e Motion compensation involving restraints, though commoméed, are not dis-
cussed.

e Fusing alternate modalities with X-ray imaging is also eifly removed from
discussion.

e IMRT is introduced.

e Gating, both prospective and retrospective, is introdueedboth a planning and
therapeutic adjunct. Gating paves the way for 4D-CT.

e 4D CT is the construction, from samples acquired over manpg@erof a single
period’s motion.

e Respiration motion is generally subdivided into eight or pdases or amplitudes.
Such subdivision is called “binning” in this thesis. Reshatends to use phase
binning though several papers report that amplitude bmrsrbetter.
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e External surrogates such as spirometers and markers andahsurrogates such as
the diaphragm are used to correlate the 4D model of the motianmepresentative
period with the expected tumour position.

e 4D CBCT uses the binning ideas from 4D CT but not the multiple sergpiieas.
Projections are binned by phase or amplitude using a susagfasome kind.
Binned projections are reconstructed into a phase-speoiiitne.

e shift motion is poorly studied and typically requires immtad gold markers to
study the motion.

e Cone-beam is rapidly becoming the modality of choice for IGRT

2.7 Chapter summary and thesis problem

In this chapter, the nature of X-rays from the standpointhadging and clinical therapy
has been discussed. The biology of radiation has likewiss lbeviewed to the level
sufficient for understanding the goals and problems of thdiapy. Radiotherapy as a
form of treatment for cancer has been reviewed with speamghasis on the GTV, CTV
and PTV volumes and the nature of fractionated delivery. grbblems created by motion
on imaging, planning, and treatment in radiotherapy haeslveviewed. Because of the
many different kinds of motion, a new way of categorizing imotvas proposed to better
clarify one aspect of the problem space this thesis addsefsea precursor to discussing
motion compensation, the principal forms of X-ray imagirayé been quickly described
with an emphasis on cone-beam CT, the modality used by thanasim this thesis. With
the groundwork laid, the main ideas currently proposed tapensate for motion were
then reviewed.

As has been shown, the principal technique when dealing mvdgtion in CBCT is
to bin the projections by phase or amplitude. This techniqudicitly presumes peri-
odicity for the motion and relies on some external or inteangnal surrogate to assign,
either actively or retrospectively, the projections to gdnn. Reconstruction is then per-
formed using only the projections assigned to a given biughosome methods seek
to fill missing projections with projections deformed by ation model derived from a
4DCT sequence. In the following chapters, a novel methodiforibg projections with-
out any model will be presented. This method has the follgvadvantages. It allows
CBCT projections to be collimated to the PTV which may exclude draphragm and
thus reduces dose relative to methods that use the diaplasgm internal surrogate. It
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is performed without the use of externally created motiomet® thus eliminating setup
errors or errors from the degradation of the motion modet thwe course of the fractions.
It creates the potential for capturing a third class of pblggjical motions not addressed
in any other method.
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Materials

3.1 Introduction

In this thesis, phantoms are used to test and evaluate &difegeent methods. In medi-
cal imaging studies, a phantom can be either a physical el@ria digitally synthesized
object. Both of these represent some aspect of the human bbddweilitate experimen-
tation without the necessary approval processes needed wghey patients and without
any risk to patients when new protocols are explored. Phastoave the advantages
of providing ground truth measurements, of being able taipety control experimental
parameters, and — in the case of digitally synthesized phasnt— being inexpensive.
The disadvantage of phantoms is that they are usually muogblesi than real human data
and algorithms that work on phantom-derived data must eadlgtbe tested on human
data. However, by testing ideas on phantoms, bad ideas dastensively and quickly
removed from consideration while good ideas can be refinéordany human trials.
In this work, three different phantoms of increasing corripyeare used to explore the
continuously periodic and shift motions described in Chafte Experiments are per-
formed using a virtual phantom (Section 3.3) constructesimaple mathematical solids.
A physical phantom (Section 3.4) combined with a novel atiomamethod is used to
study simple motions using real projections. Finally, athespomorphic digital phan-
tom, the NCAT 2.0 (Section 3.5), is used to study the more cemptructures of the
human anatomy.

36
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Each of these phantom types can be “configured” accordingegméeds of the ex-
periment and the unique capabilities of the phantom. A coreponent of each config-
uration is the motion that is both simulated and recordeddtar use. The purpose of
digital phantoms is ultimately to generate a set of progeithat are sufficiently close
approximations of the cone-beam projections that woulddmetated if the phantom were
actually scanned.

These phantoms and the configurations constructed araluksbarn this chapter.

flat-panel detector isocentre

X-ray source

ke 535 . 1000 .

Figure 3.1: Geometry of small-field Elekta Synergy systedhnfasurements in mm.

f—— 409.6 —

3.2 CBCT geometries using the Elekta Synergy

In Section 2.3.3.2, the general geometry of cone-beam CTasrdented for the purpose
of understanding FDK reconstruction. For the purposesegttperiments in this thesis,
the specific cone-beam CT geometry used with the Elekta Symex@ge guided radia-
tion therapy systems is described. This configuration fdimedasis for the geometries
used with the virtual phantoms. The Synergy consists of a kiysource that can be
statically collimated and pre-filtered and is located 1008 away from the isocentre. A
square flat panel detector consists of 1D@dtectors measuring 409.6 mm on an edge and
is located 535 mm away from the isocentre. This is illusttateFigure 3.1. For most
clinical scans, the projections are downsampled to 512 »pbdlds. For small field scans,
the type used in the experiments here, the detector’s cenineline with the isocentre
and the source. Small position variations due to mechamadion are recorded as part
of the maintenance calibration of the machine and incotpdranto the reconstruction
process as angle-specific scanner offsets.
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Figure 3.2: Eleckta Synergy system at the St. James’s Wiiydfospital, Leeds, Eng-
land.

3.3 Simple virtual phantoms

The idea and some of the code used to create the synthetitop@oomes from the work
of Jens Miller-Merbach [58] who constructed a static cone-beam gegnX-ray simu-
lator. This work was extended by Henrik Turbell [90] who adaeore general source-
trajectory paths and included additional geometric oBje€inly a subset of the features
provided by the TAKE simulator, as it is named, were needeitievthe ability to incor-
porate motion and noise was missing. The C source code waficagtly modified to fit
in with the custom written C++ framework implementing the FBIgorithm.

Using the simple virtual phantom framework, models are tranted from geometric
shapes and projections are generated analytically. Metidbjects are sinusoid-based
and composed of independent motions in the x/y/z directi®sulated projections are
constructed analytically. Of the three phantom types, piantom gives the greatest
flexibility in terms of simulated tumour shape, contrasty amotion. It also eliminates
the structure “noise” introduced with the other phantonetypsed in this research. For
example, the physical phantom captures the couch suppaihgnany projections while
the anthropomorphic virtual phantom includes virtual rigk. Its principal weaknesses
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are its perfectness: object surfaces, shapes, and dera@siti€ompletely smooth; motion
is too regular; the aforementioned structures that do a@xistal-world projections are
not present; and the analytically generated projectiansiisite a monochromatic energy
source with no beam hardening or characteristic radiation.

3.3.1 Description

Three geometric object types can be instantiated whenmmtisig virtual phantom mod-
els. These are: ellipsoids, cylinders, and boxes. Eaclcbhps position parameters,
scaling factors, rotation parameters, and a density faEtoreach of these parameters, an
independent motion can be attached.

Motions are designed to represent the motions under stuaycdntinuously peri-
odic respiratory motion and the shift motion captured dyanCBCT scan. The simple
motions used for this phantom type are:

Lujan : Lujan [49] has proposed A#t) = z(0) — A co§”("7t — @) model that has been
widely used [19, 41, 86, etc.]. A simplified version of this tina is driven by a
A co§”("7‘) function of timet controlled by periodr, amplitudeA, and exponent
multiplier n. Combining two such motions of the same frequency, one in the S
direction and one in the AP direction, provides a simple &tion of actual lung

tumour motion.

Shift : this motion creates a simple motion shift of a given ampktat a specific point
(percentage) of the scan.

(.:;1) Lujén | (b) Shift

Figure 3.3: Simple virtual phantom motions: (a) Lujan siifigdl respiratory model
shown withcos’ (solid line),cot (dashed line) ando< (dotted line) forms; (b) quantum-
shift motion occurring at different points during a scan.

3.3.2 Projection construction

Synthetic phantoms are used to construct projections tmai&te the Elekta Synergs)
CBCT machine described above in Section 3.2. Normal cliniaatiogol involves acqui-
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sition along a 360-degree arc over the course of two minut#eating approximately
670 projections during one scan. Usually, in a patientregtia medium field of view is
used which means only part of the body is imaged with eacteption. This is necessary
to reconstruct a volume which is larger than what can be oocted using the natu-
ral geometry given the detector size. For the purposes stligisis, the simpler, natural
reconstruction is used which is referred to as a “small fi@djuisition. In addition, a
bow-tie filter matched to the small or medium field is usuakkgd when acquiring data
from the Synergy machine. Experiments confirm that this teraatically compensated
for by the machine and so is not included in our simulation.

As noted in Section 2.2.1, the X-ray attenuation for monoofatic sources can be
modelled as an exponential decay via Lambert’s law whichas tinearized:

I n
G = 3 Mk (3.3.)

An unoccluded image acquired from the Synergy machine d tesereate a reference
point for Ig which is then used in the synthetic simulations. A virtuatedéor pixel
Is calculated by summing the individual attenuation cdmitions of each object in the
phantom that intersects the ray from the source to the pneltaking the exponential of
its negative. Each object’s contribution is simply the léngf the intersection of the ray
with that object times its attenuation parameter.

3.3.3 Simple virtual phantom configurations

(a) Transverse (b) Coronal (c) Sagittal

Figure 3.4: Transverse, coronal, and sagittal slices froexample reconstructed Simple
phantom configuration.

Phantom configurations have been constructed to reflecttbetrespiratory motion
and the sudden-shift motion that is unique to this reseald®ally, the controlling pa-
rameters should mimic known physiological behaviour aselipas possible. Given that
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uniqueness is claimed for studying sudden-shift motiomy veugh estimates are con-
structed from documented interfraction motions. Desmp of lung tumours and their
motion in the literature is inconsistent. For instance,fg@epvoolde [81] records the re-
sults from 20 patients where the average tumour size ésn$3the standard deviation
is 72n?, the median size is 20F, the minimum size is @7 and the maximum size
is 257n?. Breaking this down into lower, middle, and upper lobe regjdhe average
tumour sizes are (respectively) &8, 22cn?, and 4&m? and after removing outliers,
these become 25%, 23cn? and 2&n¥. Li [41] reports the average size for 6 patients,
ignoring one outlier tumour size of 267, is 20&n?. This represents nearly an order
of magnitude of difference between two reported studiestidvianagnitude is likewise
varied. In Seppenwoolde, the average magnituded3sgwhich is quite close to Lan-
gen’s [36] reported 2mmvalue. In contrast, Li reports a fitnaverage magnitude while
a different Li [39] used displacements with a magnitude amn&yfor their lung phan-
tom motion. Reported respiratory periods are somewhat namsistent ranging from
3.7 seconds to 6.5 seconds. Chang et al. [10] best summadrigds/tobserving for that
study on 8 patients, “the breathing periods for these pi&tierre 4 to 6 s.” Some of the
variability of reported breathing patterns can be atteluo different clinical protocols.
Shallow breathing is encouraged in some cases while norreathing is supported in
others. The simple phantom configurations used in thisglesiconstructed to represent
a cross section of these various parameters. Tumour sizbaes @ eragg18 mm sphere)
or large (34 mm sphere). Motion amplitude is eith@rerage(15 mm and 8 mm in the
Sl, AP directions) oshort(5.5 mm and 2.2 mm in the Sl, AP directions). The respiration
period is usually 4-seconds but one 6-second configuratiorciuded.

For the shift motion in configuration 5, an average prostateand the displacements
are chosen from Langen’s survey of organ motion [36]. Thestate” is modelled using
an ellipsoid measured 30, 25, and 20 mm along the three@lligses. This is meant to
represent a wide variety of tumours in the pelvic region elshift-motions are important.

1. Averagelung tumour size, average motion amplitude, Lujan motioSlimnd AP
directions, using a 4-second period.

2. Averagelung tumour size, short motion amplitude, Lujan motion ing8id AP
directions, using a 4-second period.

3. Largelung tumour size, short motion amplitude, Lujan motion ira8tl AP direc-
tions, using a 4-second period.

4. Large lung tumour size, average motion amplitude, Lujan motiorsirand AP
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directions, using a 6-second period.

5. 10mm Shift motion, 50%, high contrast.

3.4 Animated physical phantoms

Animated physical phantoms are constructed from actuggtions of a Quas&® phys-
ical phantom acquired in the Synergy CBCT machine. These pimjscare acquired in
individual steps as the position of the phantom is physjcatlanged. This allows mo-
tion to be simulated in a fashion similar to how stop motiomation is used in motion
photography. Animated phantoms remove the weaknessesiatssbwith simple vir-
tual phantoms but introduce the constraint that motion ¢dy @ccur along the one path
traced by the physical placement of the phantom. The motmmgathis path, however,
can be completely arbitrary and is not restricted to the ssirmusoid-based functions
used with the simple virtual phantoms.

Figure 3.5: Quas&® phantom with cedar insert.
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3.4.1 Description

The Quasar respiratory motion phantom was used to genéaarojections needed to
construct the animated phantoms. This phantom has an@bodily with two cylindrical
insert openings and an optional respiratory motion platf¢see Figure 3.5). Because
motion is generated through animation, the motion platfaras not used. In the outer
position, a neutral acrylic insert was positioned. A cedesert, which emulates lung
densities and contains a spherical object to simulate a tumpur, was placed in the
middle insert position.

3.4.2 Acquisition details

The cedar insert was manually moved inferiorly along the akrotation in 1 mm incre-
ments over the course of 16 mm and a full set of projectionsaggsired for each static
position. The increment size was chosen because of thations of moving the insert
literally by hand and because of the availability of a rdkalmm ruler. The 16 mm span
was chosen because it includes all but the most extreme sarfgaotion observed in
prostate studies recorded by [36]. This allows a projediidne selected from any of the
16 positions and for any chosen angle within a small variaBgeselecting the correct set
of projections, any kind of motion along the axis of rotatean be simulated constrained
by the granularity of individual steps and the overall disi&

Each scan was acquired at 120 kV and 20 ma over the course oksaaga of 124
seconds resulting in an average of 678 projections per fuamto a “warming up” effect
of the X-ray source, the first few projections were often nedhle since the resulting
attenuation was significantly greater then nearby compauaiojections obtained after
sufficient warm-up. Papers that report projection coumntd te use either 670 projections
[9,87] or 660 projections [51] for 360-degree scans. Fartiesis, the 670 figure is used.

3.4.3 Construction

A configuration file for this kind of phantom consists of a sepmjection angles and
the position number to draw the projection from. This configion file can be gener-
ated manually, programmatically using some parametricgs®, or via a simple drawing
utility that translates hand drawn motion into the configiorafile. For this work, the con-
figuration files are generated programmatically. In contnath both the simple virtual
and the NCAT phantoms, projections for the animated phygisahtom are not synthe-
sized from the phantom configuration but copied from the sigpse-acquired scans. For
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(a) Transverse (b) Coronal (c) Sagittal
(d) Coronal 6 (e) Coronal 11 (f) Coronal 16

Figure 3.6: Top row: transverse, coronal, and sagittaéslicom an example animated
physical phantom configuration. Bottom row: coronal slicestthree static positions of
the phantom.

a given projection at position N (where N ranges from 1 to J@esenting the 16 1-mm
steps), the projection in that set whose acquisition argkhe closest to the specified
angle is copied to the new animated projection set. Thisustrated in 3.7.

3.4.4 Animated physical phantom configurations

The goal of this phantom class is to evaluate the effects®aad limitations of the motion
binning methods proposed in Chapters 6 and 7 for the shiftamdyipe. As described in
Section 2.6, this type of motion is not well understood sinesties of motion range are
based on reported interfractional motion [10, 36, 86] anghpe communications. Given
the method that will be introduced in Chapters 6 and 7, oneefriportant parameters
to study is the point where the shift occurs. Two points ar@seh: the 50% position,
the 70% position where percentage is the portion of timendutihe scan(s) preceding
the prescribed motion shift. To that end, the following cgufations are used in the
experiments:

1. Single 16 mm motion shift occurring 50% through the adtjois this configura-
tion represents a best-case scenario wherein the motiargsénd there is an equal
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pos. 1

displacement

reconstructed object

Figure 3.7: Reconstruction from animated sets using a 1Damatiodel.

distribution of the sampling of the two motion states.

2. Single 12 mm motion shift occurring 50% through the adtjais this configu-
ration retains the best-case distribution but begins tbthesrange of detectable
motion.

3. Single 6 mm motion shift occurring 50% through the acdaisi this configuration
approaches what may be a realistic average motion amphtinle keeping the
distribution of projections between the motion states tamtdor this sequence of
tests.

4. Single 16 mm motion shift occurring at the 70% acquisipomt: this configura-
tion maximizes the motion while examining the impact of fewmjections being
available to construct the motion of the second position.

5. Single 16 mm motion shift occurring at the 90% acquisitgmint: this config-
uration maximizes the motion while examining the impact ighgicantly fewer
projections being available to construct the motion of #eosd position.
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3.5 NCAT anthropomorphic phantoms

b Al

(a) Transverse (b) Coronal (c) Sagittal

Figure 3.8: Transverse, coronal, and sagittal slices fronexample NCAT phantom
configuration.

The 4D NCAT phantom is an extension of the earlier work [78-480Paul Segars
on the 4D XCAT phantom. The 2.0 version has been available dademic research
which was used with the kind permission of the Johns Hopkieslighl Institutes. The
NCAT phantom is an anthropomorphic 4D phantom of the bodyriregg mid-femur and
encompassing the head. Surfaces are modelled using NdarkinRational B-Splines
(NURBS) and include major organ and bone structures that moaerealistic fashion.
The two motion drivers, cardiac and respiration, are patacadly controlled. For this
research, volumes are generated at specific time points rapetfions are numerically
generated at specific angles to simulate a CBCT acquisitione thik simple virtual
phantom, a weakness of the use here of the NCAT phantom isri@istic model of
monochromatic X-ray energies. The principal advantagleasuman-realistic structures
which allow experimentation with the impact of high denditne structures and realistic
tissue deformations.

3.5.1 Description

Phantom configuration with the 4D NCAT is extremely flexiblet ahigher level, pa-
rameters exist which dictate the duration of the respinatigcle, the period of the heart
beat, which motions to include, what part of the phantom toegate, how extended the
diaphragm motion should be, how much detail should be gé&eefar the lung brachia,
etc. Well over a hundred such global parameters exist. ichally, there are parameters
to control the activity response (MRI perspective) or dgn@T perspective) in indi-
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vidual anatomical structures.. Individual volumes repreg the state of the phantom
at specific moments in time are subsequently generated loastebse parameters. Tu-
mour simulation is achieved by specifying a tumour locaaowl diameter. All tumours
generated by the NCAT system are spherical. Using the saraenpéers that dictate the
phantom, individual tumour volumes are generated with tb&an of the tumour occur-
ring as if it were embedded in the anatomy. Construction ofanfim containing the
tumour(s) is a simple matter of adding voxels in volumesqmhby time. The density of
the tumour is controlled by the process that merges the tunawumes with the anatom-
ical volumes. Tumours placed anywhere within the left luthg, right lung, or the liver
are “moved” with the same motion controlling those organgesforaverageandvery
large have been derived from the reporting of Seppenwoolde [8d]Laf41].

3.5.2 Construction

Given a two-minute simulation, constructing two minutestivaf volumes (i.e. approxi-
mately 670) is both too time intensive and too disk intensimstead, a single representa-
tive breathing cycle is generated and logically concathator convenience, the location
of the phantom being generated and its size are modified taditiur small-field geom-
etry. Projections are then synthesized using a simple fakRpeojection method. This
method constructs a “ray” from the source to a detector angpkes values in the space
along the ray. The sample size is one quarter the width of@staiction voxel so it over
samples the voxels at least four times. Sampling is dongusaubic interpolation.

3.5.3 NCAT phantom configurations

The goal of this phantom class is to evaluate the effects®aad limitations of the mo-
tion binning methods proposed in Chapters 6 and 7 for the mootisly periodic motion
type. Specifically, the aspect of this motion type that iswéiiest is the motion that, if col-
limated in the cone-beam projections, would wholly or @digiexclude the diaphragm.

1. Upper lobe tumour o&veragesize: upper lobe tumours do not move as much as
middle and lower lobe tumours but, when collimated, ardyike exclude visibility
of the diaphragm.

2. Middle lobe tumour ofiveragesize: this region includes greater motion and will
likely exclude the diaphragm at least partially.
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3. Lower lobe tumour ofiveragesize: the greatest motion for lungs occurs in the
lower lobe. This is also most likely to include diaphragmibiigy in collimated
projections.

4. Lower lobe tumouryery large the motion of a large tumour in the lower lobe
will be large but relative to the tumour size will be less tteanaverage sized tu-
mour. This is likely to negatively affect the algorithms indgiters 6 and 7 so this
configuration is used to better understand that impact.

3.6 Summary

To facilitate the experiments in the remaining chapterggdltlasses of phantoms are used
to first test the ideas (with the Simple phantoms), then tartgsact of using actual CBCT
projections (with the Animated phantoms) and finally to $éleda various proposals work
on more human-realistic data using the NCAT phantoms.

A novel idea presented in this chapter is the use of a hybadgss to virtually create
a very large set of new phantom out of an existing small segpiehacquired scans. In
the case presented, 16 scans were captured with an aver@geé s€¢ans which can then
be used to generate any of®I8different possible results.
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Projection Gap Artefacts in Filtered
Backprojection Reconstructions

4.1 Introduction

The use of binning as a way to separate object motion intesiatthe reconstruction
process was reviewed in Chapter 2. In the case of standard i€Ts tccomplished with
slice binning. In CBCT, it is accomplished with projection bim In both cases the slice
or projection are assigned to a specific bin where the biresgmts some distinct state of
motion. Each collection of slices or projections is thendugeconstruct a volume for the
associated bin. In many cases (see Section 2.6), the sudrgaspiumetric images form
the basis of some kind of motion compensation.

The reconstruction process is, unsurprisingly, imperfeatious processes contribute
to corruption of the resulting image and these errors alectaftefacts In this chapter,
the most common artefacts and their causes are revieweatt@r@scribing a new kind
of CBCT-specific artefact induced by the binning process. Thifact, which will be
subsequently called gap artefact has not been sufficiently described nor evaluated in
the existing literature.

In this chapter, the effects of gap artefacts on filtered pegjkction reconstruction
will be demonstrated as an independent type of artefactlamtivo proposed methods
for mitigating its effects will be described and evaluated.

49
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4.2 Artefacts in reconstruction

In their survey of artefacts in CT [6], Barrett and Keat beginnbgntioning one of the

most significant problems with artefacts: “Artefacts canaesly degrade the quality of
computed tomographic (CT) images, sometimes to the pointaiimy them diagnosti-

cally unusable.” This consequence justifies much of thearebededicated to preventing
or mitigating artefacts. They subsequently describe theviiing classes of artefacts:

4.2.1 Physics-based artefacts

These artefacts are caused by the properties of X-rayssdiedun Section 2.2.1, namely
beam-hardeningind scatter Beam hardening manifests itself in cupping artefacts due
to stronger attenuation in the middle of the patient. Cuppirigfacts in CT images ap-
pear as slightly darker regions in the middle of the imageabse a higher percentage of
low-energy photons have been absorbed relative to thedhieiges of the patient [84].
Beam hardening also appears as streaks and dark bands wdrendensity differences
occur (e.g. between bone and soft tissue). Scatter mamitsstf as voxel noise and is
frequently called “mottle” [65]. Another source of streagfiis photon starvatiorwhich

is effectively beam-hardening to the limit when all phottyase been absorbed resulting
in shadows and streaking. Also included in the class of gisylsased artefacts, but not
described by Barrett and Keat, is the noise caused by X-rdiescthis is reported specif-
ically for CBCT by Siewerdsen and Jaffray [83artial-volumeeffects can occur when
an object is geometrically not present in all ‘views’ of thegjion being imaged. In the
case of CT, this can be caused when slices are sufficiently andeobjects move only
partially into the slices as the imaging occurs. In the cd$@RCT, this can occur if the
image is outside the fan angle on one side of the object andeitise fan angle as the
gantry rotates to the other side. In both cases, large vozet$ €an result in incorrect
reconstruction values. In all cases, the result is inacewalues for the voxeldUnder-
samplingcan either refer to an insufficient density of detectors arexcommonly, to an
insufficient number of samples used to reconstruct the imadpe assumption that the
angular distribution of projections (or samples) is evemsigally implicit when this class
of artefact is discussed. This assumption is particulartpirect with respect to CBCT
binning and is discussed at length beginning with Secti8n 4.
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4.2.2 Patient-based artefacts

Metallic materialscause severe streaking artefacts in CT reconstruction dile teub-
stantial density difference with the surrounding tissuesomplete projectionare gener-
ated when portions of the patient lie outside the sourceetiet geometry; these too result
in shadows and streaks [18, 62]. Of principal significancthéresearch in this thesis is
patient motionnduced artefacts resulting in streaks and blurred regionSection 2.6.3,
the relevant research on image guided radiotherapy whicbriserned with identifying
and compensating for both gross patient setup positiormirggseand the internal tissue
motion that occurs during CT or CBCT imaging was reviewed.

4.2.3 Scanner-based artefacts

Imaging systems are mechanical systems and as such reglifm@aton. During calibra-
tion, a scanner’s offsets are measured and compensatedriog deconstruction [29].
When a scanner becomes out of alignment, ring artefacts cgarmrated. As with any
sensing device, regions or elements of the scanner may lésiear faulty sensors. Both
of these artefacts are usually corrected or compensatday/ fttre machines prior to any
reconstruction.

4.2.4 Artefacts discussion

The list of artefact types presented in this section semwvekemonstrate various artefact
causes and effects in X-ray computed tomography imagingcpkarly those using some
form of filtered backprojection reconstruction. With resp® CBCT, Li et al. [37] note
that when “CBCT is used in imaging the thorax or abdomen of a piatiespiration in-
duced artefacts such as blurring, doubling, streaking a@stdrtion are observed, which
heavily degrade the image quality... These artefacts arehmuore severe than those
found in conventional CT examinations.” In Li's work with Xjrand Munro [40], they
partially explain the cause for the severity of the artefdmt mentioning that each bin
(“phase group”) contains fewer projections than a full CBCTnsedich is true by defi-
nition. Sonke et al. [87] also explain the cause of the actefas being “due to the limited
number of projections acquired per breathing phase.” While, tthis “limited number”
explanation is not complete as is shown later in Section 4.3.

One of the problems also alluded to by [6] are the consequehigms with image
registration as a result of these artefacts. Specificélyjritensity-based similarity mea-
sures used in deformable based registration algorithmsesrstive to artefacts [74]. The
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streaks and bands introduced by many of the artefacts cfaate structures that reg-
istration algorithms attempt to align. These false stmeguare particularly noticeable
with binned CBCT reconstructions (See Figure 4.3). One of thisesof these streaks
Is usually classed with motion-induced artefacts becausg dccur simultaneously with
motion artefacts and are indeed tightly coupled with theroweler, in Section 4.3 they
are shown to exist purely as a function of the binning pro&& in the absence of
motion. These specific artefacts are henceforth cglégdartefacts

Displacement

Projections by time (or gantry angle)

Figure 4.1: Partial plot (only 4 respiratory cycles) of de&sggment over acquisition time
or gantry angle. Projections positioned above the dispi@ce marked by the dashed line
are binned together. Only those projections identified leysthaded areas are included in
this bin, the remainder form the gaps in the projection set.

Figure 4.1 illustrates how binning induces gaps in set ofgatens. In the diagram,
the displacement of the object of interest is plotted as atfan of time or alternately
the gantry angle of the projections. The dashed line dertesd¢he bin containing, for
instance, the projections captured at the maximum inlosiatiate. The shaded area con-
nects this region with the projections and where there isbhaerce of shading, there is
a gap in the projection set used to reconstruct that spedific ligure 4.2 also shows
the gaps in a slightly different way. The wheel representsrapiete 360-degree acqui-
sition path or gantry rotation. During that acquisitionpjections for a given bin will
be captured and then a gap will occur while projections féfedént bins are captured.
The captured projections for some such bin are shown as tfie whdges whereas the
remaining grey area shows the resulting gaps.

It should be pointed out that most of the manifestations téfacts as streaks and
bands have a secondary cause in the choice of reconstruebofiltered backprojection
reconstruction, it is the backprojection stage which getesrthe actual artefact. If an

.& x\’%_ Figure 4.2:_ Example gaps as a function of gantry z_ingle. . I diiri
7* agram, white wedges represent the angles of a given dispiade
/\ bin’s projections. The grey remaining regions show the gapke

projection set visualized by gantry angle.
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algebraic technique is used, the streaks and bands arertessupced and blurring be-
comes the more dominant expression of the artefact causeTB8 penalty when using
an algebraic technique is time. These methods are much raorputationally expensive
which explains why filtered backprojection methods are tle¢hmod of choice in clinical
X-ray computed tomography products. In the search methaddsduced in Chapters 6
and 7, principal component analysis (PCA) will be used toomhtice a requisite signif-
icant performance improvement in the actual reconstroqimcess. As is explained in
Section 6.2.2.3, the successful application of PCA in thig mecessitates the use of the
filtered backprojection method.

In summary: artefacts in computed tomography reconstmdiave a wide variety
of well documented causes. These artefacts create dii@isutir diagnosticians as well
as registration algorithms. A particular type of artefdbe gap artefacts, has not been
sufficiently explored to date yet it contributes signifidgrio the difficulties of binned
CBCT filtered backprojection reconstructions. This is showthefollowing section.

4.3 Gap artefacts

In this section, gap artefacts are examined as an indepesadarce of error in recon-
structions. To do this, two sets of experiments are perfdrtoellustrate the impact of
binning as a source of artefacts. In the first experiment,raptetely static phantom is
used to generate projections and these are grouped firsflyhey were evenly binned
and then in an equally spaced fashion. An even binning makesgifying assumption
that the motion is uniform and therefore each volume for daclwill be reconstructed
from the same number of projections. These projectionsbeiljrouped together in each
period as opposed to the equally spaced reconstruction®\lneindividual projections
will, as the name implies, be spaced equally apart. Thetseshbw the impact of the
gap-inducing projection clustering of the binning methoithaut introducing artefacts
from either motion or scatter noise.

In the second experiment, two of the digital phantom conéigans described in
Chapter 3 are used. As in the first experiment, scatter noisetistroduced into the
experiment. These phantom configurations are designedndate the kind of motion
typically addressed in 4D CBCT research: the respiratory matelled continuously
periodic in Section 2.6. To eliminate the impact of this rantbn the experiment in or-
der to demonstrate the impact of gap artefacts as opposkd tadre generglrojection
undersampling artefactsa method (described in the subsection below) is introddced
generate comparative static phantom configurations.
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4.3.1 Experiments
4.3.1.1 Experiment 1. Evenly binned comparison

In the first experiment, a new simple virtual phantom configion is created for this
experiment alone. It is similar to the simple virtual phansoin Section 3.3 except that
a moving spheroid is replaced with static cylinders. Thiambm is called the Static
phantom for reference. CBCT projections are synthesized aSqution 3.3.2. From the
projections synthesized by this configuration, three chffié sets of reconstructions are
generated to illustrate the impact of projection set choiteeconstruction.

The first set contains randomly chosen projections. Thegjegirons are chosen in
increments of 20 beginning with 40 projections and finishinty 340 projections. This
range is sufficient to cover the number of projections needexenly construct 2 bins

0 ¢

(a) 2 bins (b) 4 bins (c) 6 bins (d) 8 bins (e) 10 bins

Figure 4.3: Transaxial slices from reconstructions of i§tghantom. Reconstructions
from evenly distributed projections and from evenly birghiof projections are shown.
Columns show reconstructions either from 2, 4, 6, 8, and 16 dirfrom using the same
number of projections evenly distributed. Top row: everibtributed projections. Sec-
ond row: evenly binned reconstructions. Third row: highted region from evenly dis-
tributed reconstructions. Fourth row: highlighted regitom binned reconstructions.
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up through 10 bins. Because of the random nature, each suis-tepeated ten times.
Each reconstructed volume is compared to a volume consttdomtm the complete set
of projections. Because there is ho modality change herearadatd sum of squared
difference (SSD) metric is used to measure the error. UseSaf 1S further supported
by the fact that the mechanism generating the projectiodsesonstructing the volumes
is identical for the compared volumes and noise is not addezhanges in voxel values
are driven by the only changing key variables: the introducbf gaps in the set of
projections or the addition of motion. Furthermore, the benof voxels compared in any
given experiment is constant for that particular phantepéement even though region
of interest sizes may differ. For different phantoms, défg voxel value ranges may
occur relative to other phantom classes. This leads to teergation that values shown
in the tables reporting SSD results are not as importanteagetative changes shown by
the processes and/or bins being evaluated. For this reaoables are adjusted so that
the maximum value in the table is represented as a normaligadicand, all other values
are adjusted to have the same exponent, and the exponeeanidrbpped. This removes
the distraction of units or absolute values and emphadima®tationship between results.

The second set of reconstructions simulate the binningatbatd occur in a perfectly
linear fashion if a typical breathing period (five secondsqpplied. In other words, the
simulation treats each bin as having the same number ofghi@js. Given a 120-second
acquisition time used throughout this thesis for singl@ssacquisition protocols, this
yields 24 periods per acquisition. The number of sequept@éctions, and therefore the
number of sequential missing projections in a gap, for alsibg for any given period
IS, on average:

Pro jection Count

Average Sequential Projectioas . - 4.3.1
verag quent! Ject (Periodg(Bins) ( )

. Projection Count 1
A Gap S . 1—-— 4.3.2
verage Sap slze Periods ( Bms) ( )

Using a minimum of two bins and a maximum of ten bins commohditerature [1,49],
a projection count of 660 (which is close to the “normal” figwf 670 but which has
the greatest number of common divisors for the bin counts)ugke values shown in
Table 4.1 are generated from Equations 4.3.1 and 4.3.2.

These nine reconstructed volumes are, like the randonegtron volumes, compared
to the complete reconstruction volume using SSD.
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The third set of reconstructions simulate the results ofv@nly distributed set of pro-
jections given the same total number as exists in the cayreBpg bin set. For example,
in the case of a two-bin test, 330 projections are evenlyidiged resulting in alternate
projections being combined to reconstruct the resultingme. As with the prior two
tests, the resulting volumes are compared to the complet@séuction using SSD.

4.3.1.2 Experiment 2: Realistically binned comparison

The Simple virtual phantom configuration 1 (Chapter 3, Secdi®) and NCAT configu-
ration 3 (Section 3.5) phantom configurations are used me#periment in this section.
These will be referred to subsequently as the Simple and NG®htoms in this chap-
ter. To eliminate an unnecessary variable, the generafiaonise is eliminated from the
synthesis process. As part of the initial generative p®ctee centroids of an object
of interest, the tumour, are recorded for each projectidme dentroids of these objects
are subsequently clustered using the k-means algorithneriergte a binning based on
amplitude, not phase [1]. The cluster assignments form dinacte” for deciding which
projections belong to which bin. For the purpose of this expent, eight bins are used
which is consistent with several other authors’ choice §495]. Figure 4.6 shows such
a clustering for the NCAT phantom.

Bins 2 3 4 5 6 7 8 9 10
Projections| 13.75| 9.17| 6.88| 550| 4.58| 3.93| 3.44| 3.06| 2.75
Gap Size | 13.75| 18.33| 20.63| 22.00| 22.92| 23.57| 24.06| 24.44| 24.75

Table 4.1: Comparison of average number of projections pawghand consequent num-
ber of missing projections creating a gap by number of birges€ values presume 660
projections with 24 evenly divided periods.

Bn | [4] 2] 3] 4/ 51| 6] 7] [8]
Count| 225| 76 | 59 | 53| 46 | 51 | 60 | 100] total: 670

Table 4.2: Total number of projections used to reconstrachéin volume for the Sim-
ple phantom. These values are from 670 projections with dreksimulated breathing
resulting in 30 periods captured over 120 seconds.

Bin | (1] 2] 3] 4][5]] 6] 7][8]
Count| 115| 69| 92| 69| 69| 92| 69| 95 | total: 670

Table 4.3: Total number of projections used to reconstrachéin volume for the NCAT
phantom. These values are from 670 projections with 5.2reesonulated breathing
cycles resulting in approximately 23 periods captured G2€r seconds.
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(a) Complete (b) Beginning (c) Mid-point (d) End

Figure 4.4: Sagittal slice from reconstructions of the Semgrtual moving phantom

that has been “frozen” at three different bin positions.igdhe complete reconstruction
showing the motion, (b) is the extreme position represgnmaximum exhalation, (c) is
a mid-point position (d) is the extreme position representhaximum inhalation.

U

Magnitude of motion
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Figure 4.5: Motion magnitude of Simple phantom “tumour” bpé. Projections corre-
sponding to bins 1, 5, and 8 (the two ends and a middle) ardifigewith red dots, green
X’s, and blue dots respectively.

Because this experiment is attempting to show that gap atsefaie significant and
exist independently of motion, the motion normally captuirethe simulated CBCT pro-
jections from these phantom configurations must be elirathato achieve this, the sec-
ondary output of the k-means clustering process, the setmfads of the clusters, is
used to generate phantom configurations “frozen” at thetpeirere the “tumour” is
closest to the k-means cluster centroid. Figure 4.6 shosvsltister centroid positions as
‘Xs’ amidst the clustered data positions for the NCAT phantdimese “frozen” phantoms
serve both to provide ground truth for evaluating the rasaiftd to simulate projections
without motion. Given that realistic motion binning resuib anunevenly distributed
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number of projectiongor each bin (See Figure 4.12), three of the eight bins arseino
to capture the two endpoints of motion and a midpoint. Figuteidentifies the three
bins for the Simple phantom as marks on a plot of the motionnmade for each pro-
jection. These three reconstructions also serve to relieaiesults of having only a few
projections and of having relatively many projections inim B-igure 4.4 shows sagittal
slices from the normal Simple phantom reconstruction amhfthe “three frozen” states.
Figure 4.7 shows sagittal slices from the normal NCAT phanteconstruction and from
the “three frozen” states.

AP
X

S| Direction

Figure 4.6: K-means clustering of NCAT phantom tumour motiothe sagittal plane.
Centroids are shown as X’s, cluster association is shown loyico

(a) Complete (b) Beginning (c) Mid-point (d) End

Figure 4.7: Sagittal slice from reconstructions of the NCATual moving phantom that
has been “frozen” at three different bin positions. (a) es¢bmplete reconstruction show-
ing the motion, (b) is the extreme position representing imam exhalation, (c) is a
mid-point position, and (d) is the extreme position repnéisg maximum inhalation.

The motion is principally used here to create realistic Bsignments. Once this is ac-
complished and the bin centroids are calculated, the thozeh phantom configurations
are defined. From these configurations, CBCT projections atbesized and reference
volumes are reconstructed. Using the previous oraclergtet bin assignments from
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the moving phantom and the projections from the frozen gimast bin volume recon-
structions can be generated with resulting significanfacts arising from the gap effect
and not from motion. Likewise, the projections from the #nzphantoms can be used
to generate evenly distributed reconstructions withoait & using a projection from the
“wrong” bin. These two volumes, created from the binnedriiation and from the even
distribution, can subsequently be compared to the froZeneece volumes reconstructed
from the complete set of projections.

Moving Frozen

Complete
Binned
A\ W
Binned
," Even
u
.-
Complete

Figure 4.8: lllustration of the volume comparisons used &ctlon 4.3. The top left
“Motion” projections are generated normally. The top rigRtozen” projections are
generated as described in the section. From these prajesgis, volumes are constructed
from the oracle-defined bin assignments. From the Frozejegiron set, a volume is
reconstructed from evenly distributed projections andréierence volume is generated
from the complete set. The two binned volumes and the evarmlre then compared
to the reference volume.

So far, the experiment only demonstrates the presence oagefacts independent
from motion. In reality, gap artefacts never exist isoldtedr motion-generated artefacts.
The purpose of binning is to isolate the motion; without roofithere is no need for
binning. The relationship between artefacts caused byamand gap artefacts must
be understood. To test this, volumes are constructed usagriginal projections and
not projections from the frozen versions of the phantomsweier, to fully understand
the relationship a new constraint based on clinical prastis also introduced into the
experiment. In Section 2.5.2, the practice of adding marg¢inclinical target volume
(CTV) to generate the planning target volume (PTV) was docuate The PTV is meant
to compensate for motion as well as setup error. Wordedtgligltferently, the PTV
completely containthe moving tumour. By simulating a PTV, the measurement afrerr
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can be constrained to just the part of the volume where matianterest is occurring.
This is important because the number of voxels in the volumese intensity values are
changed purely because of motion is much smaller than théeuof voxels changed
because of gap artefacts. Thus the error induced by gapetdefcross the entire volume
is greater than the error induced by the motion. What is mdesaat is the comparison
of motion in the region of interest (ROI) with the gap arteaim that same ROI. The
PTV is the ideal ROI selector. Figure 4.9 shows sagittakeslitom both the Simple
and NCAT phantoms where the simulated PTV is shown in red. Maethe voxels
(pixels in the slices) are not the same size physically bbbithh cases the PTV has been
calculated to add a 10 mm margin which is a commonly used vdtoe completeness,
four volumes are constructed and compared to the grouid+nlume. These volumes
are then clipped to the ROI and re-compared. The four voluithestrated in Figure 4.8,
are the volume reconstructed from the complete set of magpiogections, the volume
reconstructed from the binned set of moving projections viblume reconstructed from
the evenly distributed set of frozen projections, and thieime reconstructed from the
binned set of frozen projections. These are all comparedg&SD as the metric, with
the ground-truth volume reconstructed from the completefskozen projections.

(a) Simple (b) NCAT

Figure 4.9: ROI region of Simple and NCAT phantoms highlighitered on a representa-
tive sagittal slice. ROI regions represent the standard i0expansion of a CTV; pixels
shown are not the same dimension.
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4.3.2 Results and discussion

(&) Bin1 (b) Bin5 (c)Bin 8

Figure 4.10: Transaxial slices from reconstructions ofnapde virtual moving phantom
that has been frozen at three different bin positions. Réngions from evenly dis-
tributed projections and from even binning of projectioms ahown. Columns show
reconstructions from the two extreme positions (a) anddnyl a middle position (b).
Evenly distributed reconstructions use the same numbeoggtions as the correspond-
ing binned reconstructions. Top row: evenly distributedj@ctions. Second row: evenly
binned reconstructions. Third row: highlighted regiomfrevenly distributed reconstruc-
tions. Fourth row: highlighted region from binned recoustions.
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(b) Bin 5 (c)Bin 8

Figure 4.11: Transaxial slices from reconstructions ofMiBAT phantom that has been
frozen at three different bin positions. Reconstructiomsnfrevenly distributed projec-
tions and from even binning of projections are shown. Colusimsvy reconstrutions
from the two extreme positions (a) and (c), and a middle msi). Evenly distributed

reconstructions use the same number of projections as thesponding binned recon-
structions. Top row: evenly distributed projections. Setoow: evenly binned recon-
structions. Third row: highlighted region from evenly dilstited reconstructions. Fourth
row: highlighted region from binned reconstructions.
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b i

(a) Bin 1 assignments

bl o

(b) Bin 5 assignments

SEK S8 a0 |88 SR8

(c) Bin 8 assignments

Figure 4.12: lllustration of assignments caused by everstyiduting projections vs the

distribution created by binning. Five periods from an 8rbiy process of the NCAT

phantom, bins 1,5, and 8, shown. Approximately 30 periods @20 seconds with 670
acquired projections are the parameters used to condirieissignments. Spikes imply
use of that projection in a reconstruction. The signal isnghas a dashed black line,
the binned projection assignments are the tall black spi&ed the evenly distributed
projection assignments are the shorter red spikes.

Figure 4.3 shows qualitatively what is also demonstrateghtjtatively with the graph
in Figure 4.13; for the Static phantom, the artefacts geadrhy reconstructing from
binned projections appear even in the 2-bins case and vaduglly get worse as the
number of bins increases. The artefacts generated by regotsg from evenly dis-
tributed projections are almost non-existent until arotire8-bins case and even by the
10-bins case are not as great as the binning-induced agefaihe best-case 2-bins con-
figuration. Looking at Figure 4.13, one also sees that theibgiinduced gap artefacts
are also worse than randomly assigned projections untéd+tbis case where some ran-
dom assignments have a worse error or the 5-bins case wheeydhage random error
iIs worse. This makes sense given the claim that evenly loliséd projections generate
lower errors. As the number of bins increases, the numbera@égtions in each bin
decreases until, at the extreme case, the number of panjeatised equals the number
of periods captured. When this occurs, each period (in thi®um scenario) will have
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one projection and these will be equally spaced, assumiogleiged periods. This is
partly illustrated with the 5-bin assignment illustratedFigure 4.12b. In that case, 69
projections are distributed over approximately 30 peri@ke Table 4.3). Note in the fig-
ure that the projections are additionally split betweenitiale and exhale phases of the
period for mid-phase bins. This is a consequence of amglibiicning vs phase binning
and further serves to evenly distribute the projectionti@amitimber of projections per bin
(and thus per period) decreases. Nevertheless, the keyageeesm Figure 4.13 is that
the errors generated by gap artefacts are worse than thes gaoerated by general “un-
dersampling” represented by the even distribution errndsthat the difference in errors
only increases as the number of bins used increases.

Having demonstrated that gap artefacts are more severegémanic undersampling,
especially when large numbers of bins are used, using ac §théintom, the question
must be asked: does this result hold true when more reatiater is used? The answer
comes from experiment 2 using the Simple and NCAT phantomthdse examples, the
number of projections per bin varies. Rather than evaluaetior as a function of the
number of bins, as was done with the Static phantom, a relgtsonservative choice
is made for the number of bins (eight) and the error is evatlifdr representative bins
as explained in Section 4.3.1 above. Figures 4.14 and 4vEStige quantitative results.
Consistent with the Static phantom results, the evenlyibiged errors are lower than
the gap artefact errors. Also consistent with the Statiopdra results, the average error
for random assignments is lower when there is a large nunflggogections and higher
when there are fewer projections. In Figure 4.14, the aggéction counts per bin are
shown in Table 4.2; for Figure 4.15, the projection countsiie are shown in Table 4.3.

Figure 4.10 shows the qualitative results of 8-bins binrorgoins 1, 5, and 8 of the
Simple phantom. It is again evident that the artefacts iaduxy binning gaps are worse
than evenly distributed projections and slightly less obsgithat gap artefacts caused by
small number of projections are worse than those caused \agih&arger numbers of
projections. Figure 4.11 shows similar results for the NCA&mom.

Comparison Binl| Bin5| Bin8
Evenly distributed | 0.004| 0.333| 0.066
Binned (frozen) 0.732| 0.903| 1.384
Binned (moving) | 0.732| 0.903| 1.382
Complete (moving) 0.004| 0.005| 0.010

Table 4.4: Sum of squared differences, complete volume eoisgn, Simple phantom
for the listed distributions by bin as per the experimentdeson.
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Figure 4.13: Sum of squared difference error between a ™lvesbnstruction from a

complete set of projections and the test reconstructioimguke Static phantom. Blue
dots show the randomly generated volume experiments bggron count. The magenta
circles identify the average random error by projectionntothe black diamonds show
the error created by binning. Red crosses show the errorecr&gteven distribution of

the same number of projections used in binning.

Tables 4.4, 4.5, 4.6 and 4.7 provide the basis for discuskiaglifference between
gap artefacts errors and motion errors. In Tables 4.4 andie5error when comparing

Comparison Binl| Bin5| Bin8
Evenly distributed | 0.039| 0.160| 0.068
Binned (frozen) 1.349| 0.573| 1.551
Binned (moving) | 1.347| 0.590| 1.551
Complete (moving) 1.197| 0.429| 1.015

Table 4.5: Sum of squared differences, complete volume aosgn, NCAT phantom for
the listed distributions by bin as per the experiment dpson.
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Figure 4.14: SSD error of the reconstructions from the tedected bins for the Simple
phantom. The green squares are from the evenly distributgdgbion reconstructions,

the red diamonds are from the binned projection reconstngtthe blue dots are from

the randomly generated assignments containing the sambanuwh projections as the

binned and evenly distributed reconstructions, and theem@gcircled dots are the aver-
age errors of the random reconstructions.

entire volumes for both the Simple and NCAT phantoms is pitesenLooking at the

two ‘Binned’ results in the middle rows of the table, it is obs that the values are
remarkably close. This is due to the fact that both volumesganerated in the same
way so the gap artefact errors will be similar. The diffeeicomes from the fact that
the second volume is generated from the motion projectidosever, the motion within

a given bin is substantially less than the motion for a cotepteconstruction (this is
the fundamental motivation behind binning). Therefore dmminant source of errors
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Figure 4.15: SSD error of the reconstructions from the tisedected bins for the NCAT

phantom. The green squares are from the evenly distributgdgbion reconstructions,

the red diamonds are from the binned projection reconstnstthe blue dots are from
the randomly generated assignments containing the sambeanuwh projections as the

binned and evenly distributed reconstructions, and theemtagcircled dots are the aver-
age errors of the random reconstructions.
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Comparison Binl| Bin5| Bin8
Evenly distributed | 0.001| 0.021| 0.003
Binned (frozen) 0.086| 0.195]| 0.141
Binned (moving) | 0.086| 0.326| 0.152
Complete (moving) 3.717| 4.715| 8.933

Table 4.6: Sum of squared differences, constrained to megionterest (ROI), for the
Simple phantom. These are listed by distributions by bineaghpe experiment descrip-
tion.

when binning — at least when looking at the entire volume —gae artefacts. This

assertion is likewise supported by comparing the errorsexhby binning with the errors
associated with reconstructed volumes created from evbsiiybuting the same number
of projections as shown in the first line of the tables. Evehsgributing the projections

causes the error to decrease significantly.

The columns in the table show the results on a binning basier&eing Tables 4.2
and 4.3, one sees the projections counts are inverselya®daevith the error (correlation
coefficients of -.84 and -.97 respectively though these ate for sample sizes of 3).
As has been remarked earlier, this is intuitive since a ceteet of projections is the
best volume that can be constructed while the worst reaactgin will be some single
backprojection.

Examining the last line of the tables, the error from the wmdueconstructed from the
complete set of moving projections for the Simple phantoowshin Table 4.4 is quite
small compared to all but the Bin 1 evenly distributed recasion. This too is unsur-
prising because the entire volume is being compared anditbefeom the moving part
of the volume is relatively small. For the Simple phantoniyahe virtual tumour is mov-
ing. For the NCAT phantom, the situation is different. The ptewrity of the phantom
causes much more variation when motion is induced on thetpimarConsequently, the
complete volume comparison with the frozen reference velwill result in a substan-
tially higher error. Nevertheless, the reconstructiongiibinning are still worse than the
blurry moving reconstruction. In this case, the ROI congxans are more helpful. Look-
ing at tables 4.6 and 4.7, the first observation is that evdistyibuted reconstructions
again have the lowest error rate. The important point froeséhtwo tables comes from
the last line. In contrast to the complete volume compasgstime ROI-clipped volume
comparisons show that the error rate from the moving volwsrtee highest error. This
will become an important feature in Chapters 6 and 7, the elngphn search.
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Comparison Binl| Bin5| Bin8
Evenly distributed | 0.018| 0.107| 0.023
Binned (frozen) 0.465| 0.215| 0.510
Binned (moving) | 0.458| 0.267| 0.433
Complete (moving) 1.764| 0.774| 1.465

Table 4.7: Sum of squared differences, constrained to megianterest (ROI), for the
NCAT phantom. These are listed by distributions by bin aslpeekperiment description.

4.3.3 In summary

The term “gap artefacts” has been introduced in the contieather classes of artefacts.
It has been experimentally demonstrated that gaps in tHeghian set caused by a bin-
ning process create larger errors than evenly distributiegsame number of missing
projections. The evenly missing projections pattern regnés the general meaning of
“undersampling” and therefore careful and explicit chegdzation of this source of error
should be included in discussions of 4D CBCT. It has also beenrskizat gap artefacts
cause more error than voxel intensity changes caused bpmaitine but that by clipping
the volumes to the ROI which contains the motion, the PTV imichl terms, the relative
motion error with respect to gap artefacts can be increased.



Chapter 5

Filling Projection Gaps in CBCT
Reconstructions

5.1 Introduction

Previously, in Chapter 4, the presence of gap artefacts asdafispsubclass of artefact
prevalent in binned CBCT filtered backprojection reconstamgiwas demonstrated. It
was shown that volumes reconstructed using binned projectreated these gap arte-
facts as a consequence of grouping projections togethée Veaiving large empty gaps
in the projection set. A corollary observation was that amfly distributed projections
always generate better reconstructions than random oedireconstructions.

In this chapter and in the prior chapter, the assignmentrtd tw projections is per-
formed with the aid of a k-means oracle. In Chapters 6 and 7seaoch methods will be
presented which attempt to find assignments without thdekmowledge. These search
methods generate ‘trial’ reconstructions which potelytigduce gap artefacts, one from
a form of binning and the other from a form of random assignm&he other principal
form of error generated by incorrectly assigned projedtisrblur. Ideally, one would like
to reduce the gap artefacts so that the search evaluatida beyperformed on the blur
generated by motion in some kind of minimizing fashion. Tat#nd, in this chapter two
potential methods for mitigating the gap artefacts are gsed and evaluated.

Fundamentally, the main idea behind the gap filling methaodsgnted here is that

69
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if we have a collection of objects of some kind that can somebe averaged together,
then adding additional ‘average’ objects to the set and/eeagying should not change the
resulting average. Filtered backprojection is an avepgnmocess on individually back-
projected filtered projections, as explained in Chapter 21i@e 2.3.3.2. Consequently,
if one can find an appropriate “average projection” for a gimessing projection, then
hypothetically this can be substituted in the reconstamcprocess without making the
reconstruction any worse than the original reconstruaemerated from the complete set
of projections.

A simple one-dimensional toy analogy helps make this clgéappose some signal is
measured for the one-dimensional position of an object:

5651010016256 Average = 3.0

The object appears to have two roughly stationary positairtss5 and 05 while the
mean position is 3. If these measurements were binned irddbins, those two bins
would contain the values:

565 6 56 Aver age

~ 101001 _ _ _ Aver age

5.5
0.5

From Chapter 4, a fundamental difference between this tojmpleaand CBCT is that
one cannot take the mean of a subset without introducing deafaet errors. If the gaps
in the toy analogy are “filled” with the average, then the hasg binned signals contain
the values:

565333333656 Aver age
333101001333 Aver age

4.25
1.75

Two important observations must be made at this point. Tkedlservation is that
the resultant average values for the binned signals areauotrae. That accuracy is
influenced by the number of average values used to replacngisieasurements (pro-
jections, in the CBCT case). Obviously, the more average valgassed, the closer to the
global average the binned average will become. In the CBCT tlaseore the “average”
projections are used, the blurrier and more like the globabnstruction the resultant will
be. The second observation is that the two binned averagesithapart from each other
- they are still distinct. This property becomes very impattin the search chapters.

What constitutes an “average” projection? Aveapproach might be to take the aver-
age value of all projections and substitute the global valystace of a missing projection
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pixel. However, this would merely shift the intensity of éde values in the reconstruction
by some constant value. Another variation might be to awesdprojections together
and use this as a single global average replacement imadertlrately, as Figure 5.1
shows projections taken at different angles are very diffefrom each other so averaging
these together and then backprojecting them where gapsnexidd just create a general
haze in the reconstructed image. Yet another idea is toecegaatlas of projections and
construct a representative average from these for eackagbian) angle. Unlike the brain,
where this idea has merit, the diversity among patientsaratidominal region is so great
that this approach is questionable at best. Somethingrbstfgeferred. In this chap-
ter, two possible average projections that are both arggeisc and patient-specific are
considered. In Section 5.2, a method for filling gaps in thgqmtion space using the
existing medical protocol for CBCTs is presented. As descrdaetier in Chapter 2, Sec-
tion 2.3.3.2, the existing clinical protocol uses a singit@ation of the CBCT gantry over
360 degrees in approximately two minutes collecting appnately 670 projections. In
Section 5.3, a novel clinical protocol using two scans iadtef one is proposed. The
purpose of this proposed protocol change is made clear int€h@pln both sections, the
phantom configurations and ground truth described in Chdpaéee used to evaluate the
methods.

(a) 0.0 (b) 29.0

(c)69.3 (d) 135.9

Figure 5.1: Four example projections from the NCAT phantoquaed at the represented
angles (degrees).
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(a) Original (b) Reprojected

Figure 5.2: Sample NCAT projection before and after forwaatojection process.

5.2 Filling gaps using one scan

Reconstructions from projections containing moving olg&isisues are visibly blurry.
This is an expected outcome of the averaging nature of rércmti®n. This also presents
an opportunity. If one synthesizes a projection by forwarmjgrtion through a recon-
structed (averaged) volume, then one can creatargte-specific averagprojection.
That is the basis of this proposed method.

5.2.1 Method

For this method, projections from the Simple and NCAT phast@re synthesized as
has been previously described in Chapter 4, Section 4.3Th@se projections are then
used to reconstruct a volume. The simple forward-projectieethod used to generate
the original NCAT projections, and described in Section&.5% used to create a new
set of “average” projections from this reconstructed vauat the same set of angles
as the original projection set. Figure 5.2 shows an exam@AMNphantom projection
before and after this process. The blurring around the dagph, liver, and chest wall is
particularly evident.

The k-means oracle binning used in Chapter 4 is also used l@nee again, the
results from bins 1, 5, and 8 are used as representativerbmsain 8-bin process for both
the Simple and NCAT phantoms. Likewise, as per Chapter 4, lmtiptete volume and
region of interest (ROI) sub-volumes are evaluated usiegstim of squared difference
(SSD) metric.
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The method explored here actually has two variationsoraplete fillvariant and a
balanced fillvariant. With the complete fill variation, the original peations assigned to
a given bin are combined with the reprojected average piojexsuch that a complete
projection count is obtained. In other words, all originabjpction angles have some
contributing projection. For our phantom projection coah670 projections, bin 5 has
69 projections assigned to it (see Table 4.3) so 69 origirgéptions will be combined
with 601 averaged projections.

With the balanced fill variation, one of the principal obsgions from Chapter 4 is
used: that uniformly distributed projections generatedieerrors than clustered projec-
tions. This idea is used to mitigate the main disadvantagheotomplete fill technique
which is that the original ‘signal’ of the binned originalgpections gets lost or swamped
by the average projections. In the bin 5 case just menticrdg 10% of the reconstructed
signal comes from the phantom at the state identified by theifg process. In our toy
analogy used earlier, this would result in estimated pmsstiof 3.25 and 2.75 instead of
5.5 and 0.5. Therefore, the balanced fill method takes the sammber of average pro-
jections as is assigned to a bin and uniformly distributesétprojections throughout the
gaps. In the 5 bin case, 69 average projections, evenlytedl&#om the 601 missing
projections, are combined with the 69 binned projectiongtmnstruct the volume.

5.2.2 Results of one-scan gap filling

When looking at the results of filling the projection gaps ie time-scan protocol, regard-
less of the phantom used one observes that gap filling indéeghtes the error caused
by gap artefacts when the entire volume is considered. Bguéresting is the result

that balanced fill gap filling produces better results tham@ete fill gap filling.

Comparison | Bin1l | Bin5 | Bin 8
No filling 0.732| 0.903| 1.383
Balanced fill | 0.230| 0.394| 0.365
Complete fill| 0.369| 0.710| 0.599
No binning | 0.818| 0.818]| 0.823

Table 5.1: Volume comparisons of results of 1-scan protgagplfilling for Simple phan-
tom.

In Table 5.1, the top row shows the SSD errors when compariagebinned pro-
jections against the frozen reference volumes for each bire second row shows the
errors from the balanced fill method which generates the doweors in the table. The
third row shows the results from the complete fill method Wwhgenerates lower errors
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than just binning, but which are still higher than the bakhtll method. The fourth row
shows the error from a reconstruction using all (reprogcpgojections. Interestingly, it
is higher than the error created by binning without gap filliar bin 1, and lower for bins
5 and 8. This is of interest because it reveals the complexantion between isolating
the motion (reducing blur) and reducing gap artefacts. Refgback to Table 4.2, bin 1
has substantially more projections (225) than bins 5 (46)&(100). Figure 4.5 shows
that bin 1, as shown by the red dots at the bottom, capturesiesion than bins 5 and
8. These two reasons combine when reconstructing from tireetiprojections for bin
1 to create a volume with fewer gap artefacts and minimal. biugure 5.3 shows this
visibly. The binned reconstruction in the left column shaese gap artefacts errors but
also a clearly isolated tumour object. The columns showneditl reconstructions show
minimal gap artefacts errors but visible tumour blur.

EEE
000

(a) Binned (b) Fill (balanced) (c) Fill (complete)

Figure 5.3: One-scan fill results, Simple phantom, bin 1. fp shows sagittal slices,
bottom row shows transaxial slices. Columns: (a) standamairhg, (b) fill using balanced
approach, (c) fill using complete set.

Figure 5.4 shows a different outcome. Using fewer projesticreates very visible gap
artefacts and despite the lack of tumour blur that is stillemt in the fill columns images,
the binned volume error for bin 5 now exceeds the error froencbmplete reprojected
reconstruction. The difference between the balanced fill @mplete fill methods are
also apparent in this figure. The tumour object is blurry & tomplete fill case (right)
but is relatively distinct in the balanced fill case (middkgjhout introducing the larger
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gap artefacts apparent in the binned volume on the left.

IEE
000

Figure 5.4: One-scan fill results, Simple phantom, bin 5. fp shows sagittal slices,
bottom row shows transaxial slices. Columns: (a) standamairhg, (b) fill using balanced
approach, (c) fill using complete set.

Figure 5.5 shows a similar outcome to Figure 5.4. Surprigingough bin 8 has
almost double the number of projections of bin 5, the gafacte are more severe as is
also shown by the third column in Table 5.1. This is possibiyl@ned by the simplistic
nature of the phantom which contains just the single movaingee object. In the position
captured by bin 8, the object has moved to its furthest poamhfthe axis of rotation and
the gap artefacts are slightly less symmetric.

Comparison | Binl1 | Bin5| Bin 8
No filling 1.347| 0.590| 1.551
Balanced fill | 0.668| 0.297| 0.596
Complete fill| 1.082| 0.480| 0.830
No binning | 1.198| 0.430| 1.015

Table 5.2: Volume comparisons of results of 1-scan protgaglfilling for NCAT phan-
tom.

The one-scan fill results for the NCAT phantom are shown in &@&h? with very
similar results to the Simple phantom. The top row again shthve SSD errors when
comparing oracle-binned projections against the frozé&reace volumes for each bin.



Chapter 5 76 Filling Projection Gaps in CBCT

IEE
000

Figure 5.5: One-scan fill results, Simple phantom, bin 8. fp shows sagittal slices,
bottom row shows transaxial slices. Columns: (a) standamairhg, (b) fill using balanced
approach, (c) fill using complete set.

The second row shows the errors from the balanced fill methodhyas for the Simple
phantom, generates the lowest errors in the table. The twvdshows the results from
the complete fill method which also generates lower erran thst binning, but are still
higher than the balanced fill method.

Looking at the NCAT results shown in Figures 5.6, 5.7, andt&&plur of the tumour
object in the column (c) showing the complete fill method restouctions is obvious when
compared to columns (a) binned and (b) balanced fill. Alsdeaviin the middle balanced
fill columns are the balance between a sharp tumour and gejaets. While some gap
artefacts are present, they are not as prevalent as thedbienenstruction on the left.
Similarly, though there is some blur in the reconstructibis, not as severe as the blur in
the complete fill reconstruction on the right.

A further observation that can be made from the image slitdseaeconstructed vol-
umes is that gap artefacts are more substantial at the agiens of the volume than in
the central regions. This is a convenient feature since bfexbof interest, the tumour, is
usually placed at the isocentre (also the volume centemgl@BCT scans. Therefore,
our region of interest (ROI) which has been previously defittebe the planning target
volume (PTV), will likely incur lower gap artefacts inducedors. Likewise, by restrict-
ing the number of voxels compared to the ROI, the ratio of mgwar blurred voxels to
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(a) Binned (b) Fill (balanced) (c) Fill (complete)

Figure 5.6: One-scan fill results, NCAT phantom, bin 1. Top shews sagittal slices,
bottom row shows transaxial slices. Columns: (a) standamairhg, (b) fill using balanced
approach, (c) fill using complete set.

Comparison | Bin1 | Bin5 | Bin 8
No filling 0.09| 0.33] 0.15
Balanced fill| 1.35| 1.36| 2.55
Completefill| 2.39| 4.42| 6.93
No binning 4.77| 5.03| 9.21

Table 5.3: ROI-clipped comparisons of results of 1-scangma gap filling for Simple
phantom.

the total comparison region is significantly increased f@0804% to 11.7%. For these
reasons, it is not surprising that the SSD errors are sufstgriower overall and that

for the extremely simple case (Table 5.3), the binned recectson is substantially better
because of the increased weighting on moving voxels. It to@stoted, though, that the
two filled methods still record lower errors than the completojection volume errors in
the fourth line of the table.

In the more complex and more realistic NCAT phantom resuitss observed that
the binned reconstruction errors are now on par with thengaia fill technique. Both
fill techniques continue to outperform the global recongtan approach. These results
support both the ROI clipping methodology and the balandeddproach to mitigating
gap artefacts.
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(©)

Figure 5.7: One-scan fill results, NCAT phantom, bin 5. Top shews sagittal slices,
bottom row shows transaxial slices. Columns: (a) standamairhg, (b) fill using balanced
approach, (c) fill using complete set.

5.3 Filling gaps using two scans

If, instead of capturing projections during the course & gantry rotation, one captures
them with two rotations, then an interesting property ofgha@ections can be exploited.
This property is that two projections, taken at nearly theesangle, but from two differ-
ent scans, will produce essentially the same image excephéomotion that may have
occurred (See Figure 5.9). Since the purpose of the avepaggettions is effectively to
contain the averaged motion in each projection, this cancberaplished by taking the
projection closest to some established angle from eacheofwib scans and averaging
them together. That is the basis behind this proposed method

Comparison | Binl1 | Bin5 | Bin 8
No filling 0.458| 0.267| 0.433
Balanced fill | 0.699| 0.259| 0.446
Complete fill | 1.519| 0.531| 1.125
No binning | 1.764| 0.774| 1.465

Table 5.4: ROI-clipped comparisons of results of 1-scarigma gap filling for NCAT
phantom.
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(©)

Figure 5.8: One-scan fill results, NCAT phantom, bin 8. Top shews sagittal slices,
bottom row shows transaxial slices. Columns: (a) standamairhg, (b) fill using balanced
approach, (c) fill using complete set.

An additional potential benefit of this method is the likehgiease in the uniformity
of the projection distribution. For continuously periodicenarios, the correct bin as-
signment on any given rotation at some anigietawill be random with a probability
distribution derived from the breathing motion. More tingespent in minimum inhala-
tion than in maximum inhalation and, on some breath cycles,ntaximum inhalation
state is not even achieved. Therefore the probability ofsiate is not the same as the
probability of another state. Nevertheless, there is ditiked that, given eight to ten
bins, the bin assignments for two projections at the samatitmt acquired on indepen-
dent scans will be different. Thus when both sets of prapastirom the two independent
scans are binned, the collective set of projections for amgngoin will have a more uni-
form distribution than that observed from a single scan.nftbhe previous chapter, it
was shown that increasing the uniformity of the projectiendecreases the gap artefacts.
This is effectively what Li et al. [40] attempt using both ddis gantry rotation” protocol
and a “multiple gantry rotation” protocol. To compensate tfte increased number of
projections these methods require, they lower the curréantiwdegrades the projection
quality but, because it mitigates the gap artefacts, imgsadkre reconstruction. They refer
to gap artefacts as “view-aliasing artefacts” and descdhbecause as “insufficient angu-
lar sampling.” However they acknowledge the clinical coast of requiring too much
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time which limits the viability of the protocols and latergpose a B-spline deformable
registration solution using a planning CT as the baselirgetdor registering the binned
volumes [38].

Chang et al. [11] also propose both a slow (five minute) contilstacquisition proto-
col and a slow gated protocol for MV CBCT likewise acknowleddisgeak artefacts.”
Both their work and the earlier work of Li's team essentiathjve the problem of “under-
sampling” by increasing the number of samples.

The two scan protocol is similar in nature to the Opposite RégoAthm (ORA)
proposed by Linney [42]. While that method only works with fagam CT projections,
both that idea and this proposed protocol are conceptuiatiyas. Both seek to acquire
the same view at two different points in time. The ORA doeslyisecognizing the fact
that as the fan beam projections can be rebinned as paradielcbons and that, when
viewing a stationary object, the projections of a parallejgction offset by 180 degrees
will be identical. They will, however, be at different temmpbpoints and therefore can
capture motion. Because of the off-plane geometry of conel§€Rprojections, the same
method cannot be used. Instead, as has been describedmbg@sgose is achieved by
acquiring two scans at nearly the same spatial positioniffetent temporal positions.

5.3.1 Method

For this method, projections from the Simple and NCAT pharstanme synthesized with
slight changes to the normal protocol. Rather than genenateet of 670 projections over
120 seconds, two sets of projections are constructed. Eachcnstructed simulating a
hypothetical 60 second scan which is the maximum scan ratertly allowed for CBCT
machines by the IEC [39]. To keep dosage the same, only halpitbjections (335) are
acquired on each simulated scan so the total number of pijsaemains the same as a
conventional CT at the same kV and mA levels thus keeping tpethgtical total dosage
the same. Likewise, the incremental time required by theesy$o stop the first scan and
then start the second scan is small enough to effectivelximange the duration of the
total scan from the patient’s or hospital’s perspective.

The k-means oracle binning used in Chapter 4 is also used @&nee again, the
results from bins 1, 5, and 8 are used as representativerbimsain 8-bin process for both
the Simple and NCAT phantoms. Likewise, as per Chapter 4, lmtiptete volume and
region of interest (ROI) sub-volumes are evaluated usiegstim of squared difference
(SSD) metric. An important difference with this proposedtpcol is that each scan will
have its own binning assignment.
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The earlier assertion that the differences between siipilacated (in terms of an-
gle) projection pairs from the two scans are principallyssiby motion is based on
the idea that projection differences caused geometricgg®n.e. changes in angle (ap-
proximately half a degree), are small while projectionaténces due to motion can be
large. If a projection in one scan at some an@les captured at the maximum inhala-
tion state while the projection in the second scan at apprately 6 + A81 is captured
at the minimum inhalation state, then the intuition is ttme motion-induced differences
will be greater than the geometry-induced differences. él@s this is a probabilistic
assumption. The two projections may, in the case of periogiton, have come from the
same phase at a given angle. They may both be from, say, thenaraxnhalation state.
Periodic motion is principally respiratory-based and fealrworld patients this means
some level of irregularity will always exist. The hypotloati worst case is that patients
somehow mimic exactly the same breathing pattern for eamh gsulting in effectively
duplicate projections for each angle, but this is extremelikely. Nevertheless, even
this worst case scenario would be equivalent to a singla-saztocol collecting only half
the usual projections. For the purpose of these experimarigst case scenario (two
scans 180-degrees out of phase) is used. More realistiaisosare explored in the next
chapter. Nevertheless, the assertion that motion difteemre greater than geometric
differences needs to be validated. To do so, the frozen phaonbnfigurations are used
again to isolate the motion changes from the geometry clsangeree such phantoms
have been generated for bins 1, 5, and 8 so the validationothetimsists of finding pairs
of projections from the two scans (where motion has occyyredking their absolute
difference, and comparing this to the absolute differera@ined from two projections
from the frozen phantom corresponding to the same angldseasvb scan projections.
In pseudocode, this can be described as follows:

The fill method is different from the one-scan fill methods dese there are more
choices. In the one-scan case, the projection for a givele arag either come from the
bin-assigned set or from the average set (or from neithdrarbalanced fill case). In the
two-scan case, the projection for a given angle can come tinerbin-assigned set of the
first scan, the bin-assigned set of the second scan, or thagatkeset. However, if the
projections from the two scans for a given angle are bothgassi to the bin, then they
should both be used and the best way to do this is to averagettgether. But this is
exactly what is done to create the average set. Therefadillihg method consists of
taking the projectiongxclusivelyassigned to the bin from the first scan, the projections
exclusivelyassigned to the bin from the second scan, and then fillingaimaining slots
with projections from the average set.
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Input: projections from two scans, projections from frozen pbamt
Output: basic statistics of differences from motion vs geometry
foreach Bin b in SampleBingo

foreach Projection fd in scan1Projectionslo

if BinAssignment(l) == b then

/* find projection from 2nd scan closest angle-wise to p1 */
p2 = NearestgcarRPro jectionspl.angle

frozerl = Nearest{rozenPro jectiongl.angle

frozer2 = Nearest{rozenPro jectiong2.angle

[* calculate SADs between moving and frozen projection pdirs
motionDif f = SumOfAbsoluteDifference(l,p2)
geometryDif f= SumOfAbsoluteDifferencdfozeri,frozerR)
motionDif fsbin(b).appendfotionDif )

geometryDif fdin(b).appendgeometryDif

end

end

[* calculate statistics from pair differences */
averageGeometryDif flsin(b) = Averageg¢eometryDif f din(b))
sdGeometryDif fdin(b) = StdDev@eometryDif f din(b))
avgMotionDif fsbin(b) = Average(notionDif fsbin(b))
sdMotionDif fsbin(b) = StdDev(notionDif fshin(b))

end

Algorithm 1: Measuring differences caused by gantry rotation vs phygioal mo-
tion.

5.3.2 Results of two-scan gap filling

The first set of experiments to be examined are those pertpinithe question of phys-
iological motion-induced projection differences vershese induced by changes in the
gantry position. Figure 5.9 visibly demonstrates the é¢§f@¢ geometry changes for the
small angles involved and motion changes caused by the taingaft. On the left are
two representative difference images generated by chgriggangle of acquisition on
the frozen phantom by .54 degrees (360 degrees / 670 pmjsitiOn the right are two
difference images at roughly the same angular separatiomdwufrom the two different
scans thus representing both the geometry and motion cbarides effect of the mo-
tion on the projections is most pronounced along the digphnaall and, in the top right
image, the anterior chest wall.

The guantitative results of the motion differences versesngetry differences vali-
dation are seen in Table 5.5. This table records the avenaxecpon differences and
standard deviation for the three sample bins. For each obitng it is apparent that
motion contributes significant additional differences.oiffe assumes, however, that the
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(a) Geometry differences  (b) Motion differences

(c) Geometry differences  (d) Motion differences

Figure 5.9: Sample NCAT projection differences. On the laJt(€), the absolute differ-
ences between two successive projections from the samsctasfrom a 2-scan protocol
is shown. On the right (b),(d), the absolute differencesvbet two projections at nearly
the same angle but separated in time, using the 2-scan ploéme shown.

Comparison Binl | Bin5| Bin8
Mean difference (motion) | 6.23| 8.96| 5.41
Standard dev. (motion) 150 2.71| 1.74
Mean difference (geometry) 3.48| 3.50| 3.54
Standard dev. (geometry) | 0.42| 0.46| 0.52

Table 5.5: Differences, by sample bins, between projestidrhe top two rows are the

mean and standard deviation induced by motion differenegd®n projections at nearly
the same angle but different times, the bottom two rows aertban and standard devia-
tion caused by geometry changes alone.

comparisons made between projections containing motism @ntain the differences
caused by geometric changes, tlienaveragehe changes induced by motion are a lit-
tle less than the changes caused by geometry. What is lessusb¥ut can be inferred
from the standard deviations lines, is that the motion-aedldifferences are much more
variable than the variation in geometry-change differenddis is caused by the fact that
these phantoms have approximately sinusoidal motion aatictile motion between the
two scans is out of phase. Therefore, as the two motions sttbe motion difference
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will be negligible. Where the two motions peak, the motioried#nce will be maximal.
Figure 5.10 illustrates this. This characteristic will plan important role in the next
chapter.

\WAYAYA

S NSNS N

Figure 5.10: Motion amplitude signals from two scans. Thdiomp perfectly out of
phase, is the same where the signals cross and is maxim#déyedi where one signal
peaks and the other is at rest.

Comparison Binl|Bin5|Bin8
Binned (moving)| 1.52| 8.71| 9.44
Filled 0.06| 0.05| 0.08
Averaged (all) 0.05| 0.06| 0.10

Table 5.6: Volume SSD error comparisons with referencemel of results of 2-scan
protocol gap filling for Simple phantom.

Comparison Binl|Bin5|Bin8
Binned (moving)| 0.03| 0.42| 0.23
Filled 0.52| 3.74| 5.56
Averaged (all) 4.77| 5.03| 9.21

Table 5.7: ROI SSD error comparisons with reference voluohessults of 2-scan proto-
col gap filling for Simple phantom.

Comparison Binl| Bin5| Bin8
Binned (moving)| 1.916| 1.322| 3.000
Filled 1.213| 0.477| 1.072
Averaged (all) | 1.213| 0.478| 1.071

Table 5.8: Volume comparisons of results of 2-scan protgaglfilling for NCAT phan-
tom.
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Comparison Binl| Bin5| Bin8
Binned (moving)| 1.216| 0.595| 1.339
Filled 1.583| 0.881| 1.688
Averaged (all) | 1.764| 0.774| 1.465

Table 5.9: ROI-clipped comparisons of results of 2-scaniqual gap filling for NCAT
phantom.

The results for the Simple phantom shown in Tables 5.6 anéi® tonsistent with
earlier results from the one scan filling approach. Volunrersrare much less for gap
filled reconstructions than for binned reconstructionsdratgreater when clipped to the
ROI. Likewise, the ROI clipped error is still less than therstard complete reconstruction
error. The results for the NCAT phantom (Tables 5.8 and 5®patso consistent with the
results observed for the Simple phantom.

Visually, the difference between filling and binning for tBemple phantom for the
three bins used in the experiment can be seen in Figures®12, and 5.13. Note the
increased gap artefacts visible in the transaxial slicesthe increased blurring in the
filled sagittal slices.

(a) Binned (b) Filled

Figure 5.11: Two-scan fill results, Simple phantom, bin 1p Taw shows sagittal slices,
bottom row shows transaxial slices. Columns: (a) standamdiihg, (b) complete fill.
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(a) Binned (b) Filled

Figure 5.12: Two-scan fill results, Simple phantom, bin 5p T@w~ shows sagittal slices,
bottom row shows transaxial slices. Columns: (a) standamdithg, (b) complete fill.
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(a) Binned (b) Filled

Figure 5.13: Two-scan fill results, Simple phantom, bin 8o T@w~ shows sagittal slices,
bottom row shows transaxial slices. Columns: (a) standamaifg, (b) complete fill.
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(a) Binned (b) Filled

Figure 5.14: Two-scan fill results, NCAT phantom, bin 1. Top hows sagittal slices,
bottom row shows transaxial slices. Columns: (a) standamdithg, (b) complete fill.

(a) Binned (b) Filled

Figure 5.15: Two-scan fill results, NCAT phantom, bin 5. Tow hows sagittal slices,
bottom row shows transaxial slices. Columns: (a) standamaifg, (b) complete fill.
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(a) Binned (b) Filled

Figure 5.16: Two-scan fill results, NCAT phantom, bin 8. Tow hows sagittal slices,
bottom row shows transaxial slices. Columns: (a) standamdithg, (b) complete fill.

As with the Simple phantom, the difference between filling Bimning for the NCAT
phantom can be seen for the three bins used in the experiméigures 5.14, 5.15, and
5.16. Note the increased gap artefacts visible in the tsagsslices and the increased
blur in the filled sagittal slices.

5.4 Conclusions

In this chapter, two methods for reducing the errors intoedliby gap artefacts were
proposed and evaluated experimentally. Both methods attenfii the gaps introduced
by the binning process with a patient-specific, angle-$ppeaverage projection. It was
seen that both methods do reduce the errors when compatting wrlumes. However,
it was also shown that when volumes are clipped to a regiontefest, the total errors
caused by the change in position of the object of intereshénROI exceed the errors
caused by gap artefacts (within the ROI). In the one-scariijag method, a “balanced”
variation was introduced which showed error rates simiddahé normal binned ROI error
rates.



Chapter 6

Searching for CBCT Projection Bin
Assignments Using a Two Scan Protocol

6.1 Introduction

The goal of the previous chapters has been to pave the wayisashiapter and Chapter 7
which seek to satisfy the ultimate goal: generating recanstd volumes that contain dif-
ferent states of motion. In order to get to this goal, thegotpns acquired in the CBCT
scan need to be assigned to bins which represent these atategion. In Chapter 5,
this was accomplished using an oracle. This oracle usedadasi® classify the position
information that is generated with the projections. Giveatt the paths of the motions of
interest are not complex, this method of constructing anleria effective and yields a set
of k motion centroids and a classification of the projections mbtion bins. Such an or-
acle, unfortunately, is not available in reality and so sonethod of finding assignments
must be constructed.

In Chapter 2, the background chapter, various methods feingndifferent kinds of
respiratory markers acquired simultaneously with the CBCTepgtmns in order to bin
the projections were presented. These methods all showmgsotts and are especially
strong when they can be coupled with a 4D CT scan, usually ssingg form of B-spline
deformation model. These solutions handle what has beemreefto in this thesis as
continuously periodic motion. They do not solve the othedki of motion described in

89
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Chapter 2, namely shift and discrete motions.

In this chapter a novel approach to identifying motion, bog evhich requires a pro-
tocol change in how CBCTs are acquired, is presented. This ie Dpriirst defining a
search space (Section 6.2) which is computationally itakde and then using a series of
ideas to reduce the computational task to the point of fdagidResults on the phantom
configurations defined in Chapter 3 are presented and evdluate

6.2 Defining an assignment search space

What is needed is a precise definition of a space to search aray daonsearch it. In
optimization parlance, this is a functidn R" — R to be maximized (or minimized) over
agiven setZ C R. The functionf is theobjective functionand the se is theconstraint
set[88, p.74]. Ultimately, the goal is a set of reconstructetuxtes, one for each bin.
These volumes are in turn reconstructed from the set of giiojes. One way to represent
these volumes, then, is to define a mapping from projectiofsns. Such a mapping is
often called arassignmentThe actual volumes themselves follow from this mapping by
reconstructing each bin volume using those projectiongmasd to that bin.

An objective function for the space defined above can theoga® in two distinctly
different directions. It can assess the quality of the imhlial projection assignments and
perform some aggregating operation (mean, sum, etc.) @e thaues, or it can assess the
quality of the reconstructions generated by the assignnménit binned reconstructions
based on respiratory motion, and which allow the obsermadiod identification of the
diaphragm in the projections, the first approach is readenadach projection can be
evaluated and assigned to a bin. In Chapter 2, it was estadli$tat this is not always
possible or, in terms of X-ray exposure, desired. Likewitstill leaves the question of
non-respiratory motion identification open. If one assuthag having no prior model of
motion, there is nothing to measure a given projection agairen finding an objective
function in this way becomes difficult.

One approach to the difficulty of having no reference modil tseat this as amonoc-
ular structure-from-motiorproblem. The problem is made slightly easier by accurately
knowing the motion of the “camera” but is made significantlpre difficult because
the structures are themselves moving. This makesnu#ibody structure and motion
(MSaM) problem. A further difficulty with this propositiors ithat the moving structures
are (to X-rays) transparent. This makes any depth-queueimy occlusion impossi-
ble and compounds the tracking problem when features cnaseach other. Recent
work by Schindler and Suter [76] reinforces the difficultytbis kind of problem; their
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work is constrained to “a small number of motions.” Likewisige work by Avidan and
Shashua [5] points out that, when attempting to identifygasition in a 3D space from
a monocular image, “if the point is moving generally thentiéek of triangulation is not
feasible...Knowledge of the camera ego-motion does natgdhdéhe feasibility of the
problem.” For these reasons, both search mechanisms sedgeshis chapter and in
Chapter 7 will pursue the second option: evaluating recootd volumes.

If projections are reconstructed into volumes accordingpime candidate bin assign-
ment, an interesting possibility arises which yields a n@praach. If motion has oc-
curred (implicitly to a degree one cares about), and is olasée, then the reconstructed
volumes will be different when the bin assignment is corrddtis difference creates an
initial basis for an objective function: looking for voluméhat are the most different from
each other. As was described in 4.3.1.1, a sum of squaredealiifes metric is proposed
and implemented. This choice of a metric is supported byraévactors. Firstly, the
comparison that occurs is relative and not absolute: wh#ensas that the two volumes
are different, not that they are different by some specitedshold. Secondly, the num-
ber of compared voxels for any particular test in the sameosgparisons are not biased
by one volume having more voxels than another. Thirdly, #eonstruction process is
identical for the compared volumes as is the source data gt process so the values
in one volume will not be biased or shifted as might be the dassemples were acquired
in different ways or at different times or were processediffeent ways. Finally, a
fundamental property of the SSD metric with respect to ththods described here is its
ability to be applied in eigenspace. A problem arises withithea, though. Assuming the
simple case (and the case that will be used for the remairidbe @hesis) of using only
two bins, one can construct two volumes wherein the “brigffitgrojections are assigned
to one bin and the “darkest” projections are assigned to@sklin. In this case the two
reconstructed volumes will be significantly different fregach other without the cause
being from motion.

A further evaluation metric that performs a form of regutation on the difference
metric is to assess whether the two volumes maintain the sasential statistical prop-
erty of the original complete reconstruction. A basieanstatistic is proposed whereby
the mean grey-levels of the two reconstructed candidatenves are compared with the
mean grey-level of the original reconstructed volume. tfifstance, for a given region
of interest (ROI), the tumour contained by the ROl moves @ays within the ROI),
the overall mean of the two reconstructed volumes remaitiasinno each other and to
the original complete reconstruction while the differembetween the two volumes in-
creases. As was the case with the SSD metric, use of thismagdne poses a problem.
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Hypothetically, the reconstruction from a random draw ajj@ctions as a subset of the
overall population, will have a mean close to the mean of tlenae reconstructed from
the complete population of projections. This creates aidenswhile the SSD metric
wants to “pull the volumes apart” the mean metric wants teetkthem together.”

Reality unfortunately imposes certain complications whiesult in possible limita-
tions to this technique. Tissue intensity differences leetwthe tumour and the surround-
ing tissue must be sufficiently large to create a useful nreasent. This difference must
also be larger than the differences caused by noise andartieéacts. This is a possibility
in the case of liver or prostate tumours when no contrastad os when no markers (nat-
ural or implanted) are present. Also, if motion changes aoesmall, i.e. if the tumour
moves very little, the total difference in the reconstrdctelumes caused by noise and
other artefacts may exceed the differences caused by themmstiift. These boundary
conditions are represented in the phantom configuratioss testest this method to verify
both cases where the technique works reasonably well ancewthender performs.

6.2.1 Search method

The search space is defined as the set of possible bin assitmfoethe projection set
and, more specifically for this chapter and Chapter 7, the sev@bin assignments.
In set notationZ = A" | A= {0,1} wheren is the number of projections. Elements in
the search space (of which the solution is a member) will sgissntly be referred to as
projection assignments. Furthermore, the choice has bade to evaluate the projection
assignment using the two reconstructed bins it generategen®he search space, an
objective functionf must be chosen. Three significant barriers impede progtdbssa
point. The firstis the size of the search space. Given a bamsignment and recognizing
that it is irrelevant which volume is defined as “bin 1” and whhis defined as “bin 27,
there exist 2-1 possible assignments or, for the average projection caett throughout
this thesis of 670 projections®® assignments. This is computationally intractable.

A second significant barrier compounds this limitation: efid backprojection re-
constructions currently take between seconds and mingesnding on optimizations
and hardware. The use of cloud computing or local many-cereess can reduce this
significantly because of the ease with which the problem iallgdized. Regardless, re-
construction of a typical 256sized volume from 670 projections each containing%12
voxels which are filtered and then backprojected (averagemsba the volume) requires a
significant amount of computation, memory, and number & decesses.

A third significant barrier which affects the search pogdgibs is the fact that the
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Figure 6.1: Three example objective function scoring sages. Each sequence is ob-
tained by first randomly generating a complete assignmehtren changing each of the
individual projection bin assignments and rescoring witnadbjective function. The plots
show the change in score as a function of the particular gtioje assignment change.

search space is not smooth. Ideally, one would like some ¢&imdonotonically chang-
ing function which allows a gradient descent/ascent setardéte performed. This is not
the case for binned volume comparisons. Assignment chargal in very “spiky” cost
changes using the proposed objective function as can bears&ggure 6.1. In the plots,
the most fine-grained change possible, a single projecsisigament switch, leads to sub-
stantial changes in the score outcome. This makes a gradieant approach unrealistic.
Consequently, since “hill climbing” is a poor option, theadsf an exhaustive search must
be considered. Yet clearly, thism®tan option given these barriers. Something must be
done to reduce the size of the search space in some reasdasiilen and reduce the
computation cost of reconstruction. The proposed method performs an exhaustive
search on a significantly reduced search space using ametyrefficient, after an initial
overhead, reconstruction method.

6.2.2 Reducing the search space and computation cost

Three methods are now proposed as mechanisms for redu@rsgé#inch space and the
computation cost. The first method groups projections twgeb reduce the number of
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objects that must be assigned a bin to reduce the search gpecsecond method applies
principal component analysis (PCA) to reduce the dimenésiyrat vectors lowering the
computation cost of reconstruction. The third method - whecessary - subdivides the
search space into two search spaces which reduces the spaic These are each
explained in the subsections below.

6.2.2.1 Bucketing

To reduce the search space in a reasonable fashion, theatiseis first made that tem-
porally adjacent projections, i.e. projectiamandn+ 1 in a given scan, are more likely to
belong to the same bin than to different bins. This leadsdadea of grouping projections
together and assigning them in unison to one of the two bihs iflea of partitioning the
projection set into sequential groups of projections neggusome way of “throwing the
switch” and changing the bin assignment. Otherwise, thegny assumption will just
traverse the projection set and assume inductively thdt eacl projection belongs to
the same bin as th&" projection’s bin assignment.

Presuming such a partitioning mechanism exists, the vaas¢-reduction in the search
space can be obtained from the fastest respiratory permdatyy used in the literature:
4 seconds (See Chapter 2, Section 2.4). Using two bins meains #hsecond respiratory
cycle will result in two groups of projections over the cauod the 4 seconds, one group
or bucket (the term which will subsequently be used) for e&artitioning projections in
this way over the course of a typical 120-second scan willltés:

(D %s) 2buckets B

T S;grfi’ggs period

WhereD is the duration of the scaf, is the period of a single breathing cycle, and
B is the total number of required buckets. WHar 120, T = 4, thenB = 60. Thus this
simple partition step reduces the search space from appately £/ to approximately
250 which is significantly smaller but still intractable.

The next reduction technique is to introduce the two-scatopol change. This
change requires scanning the patient twice but with a scatoqwl that uses half the
time and half the number of projections. Each scan collgapsaximately 335 projec-
tions and is acquired in about 60 seconds (this is within tlosvad parameters of the
International Electric Commission recommendation; se4)[3Bhus the total scanning
time is nearly the same, the number of projections is the santige same voltage and
current levels, and therefore the patient dose is the saris. résults inD = 60, T = 4
still, andB is now 30. However, this is done for two scans so our total remobobjects
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to assign to a given bin is still 60.

The most significant consequence of the two-scan proto@igdh already discussed
in Section 5.3 but briefly repeated here is that two sets geptions are collected with
each set containing projections at approximately the sargke gwithin 670 projections /
360 degrees = .54 degrees) htdifferent points in timeThe two projections from each
scan that are closest to each other in terms of angle sepawili henceforth be called
paired projections. If paired projections are comparee pitincipal difference should be
from motion and noise and not from geometry changes. Thiscoeasrmed in Chapter 5,
Section 5.3. To compensate for potential noise differemcéise method used, the two
projections are first median filtered with a 3x3 neighbouthtmominimize the noise while
retaining edge features. In a worst case scenario, the tarssmuld be acquired with
patient breathing perfectly in synch but this is highly kaly given the variation within
patient breathing.

/—\ / ~&€— more different
//\\/ -------- \/ ------------- e- more alike

same different same different same different

Figure 6.2: lllustration of the effect of partitioning basen paired projections differences
and constructing buckets with same-different assignméifits top figure shows two one
dimensional motion signals, one in blue and one in red. Thebofigure shows the
difference between these motions and the partitioningdbgtegates paired projections
that are more alike and more different.

The outcome of this is that the differences between pairepkgtions can be treated
as a difference signal over time. This signal can then begssed to generate both a
partition and very simple preliminary comparative classifion of the groups in the par-
tition. This classification states that the paired progdiin a given bucket are either
moreor lessalike. If a bucket contains paired projections that, on tgregate, are more
alike, then the bucket is preliminarily labelled as conitagn*similar” projections. If a
bucket contains paired projections that, on the aggregegdess alike, then the bucket is
preliminarily labelled as containing “different” projeehs. This process of partitioning
and creating a preliminary bucket assignment is hencetatled bucketing. Figure 6.2
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illustrates this idea. Samples of a one dimensional motrenshown for two different
hypothetical acquisitions, the difference signal is thieave, the partitioning based on
the difference signal is shown and finally a similar/differelassification is shown.

It should be pointed out that it is entirely possible to captpaired projections that
are quite similar but do not, in fact, represent similar mottates. If the motion occurs
along the path of the X-rays, it will be undetectable. Theaetwf such a mislabelling is
benign; no information is “lost” because the same situationld eliminate the possibility
of capturing the motion in a bin to begin with. In other worttsthe reconstruction the
same object looks the same in a given projection (minus smadgnification effects)
regardless of where along the path from source to detedtopdsitioned.

In the experiments, two difference signals will be used. fits¢ is one derived from
the ground truth. In all experiments, the position of the mgwbject is recorded and
thus the actual differences between the object’s positidhe two scans can be measured
and transformed into a difference signal based on Euclidigstance. This allows the
experiment to focus on the efficacy of the search method asguiime separate and in-
dependent difference signal generation process is pede@ second difference signal
shows an initial effort at identifying such a signal from fhvejections. The algorithm for
identifying the signal is shown here:

Input: Projections from two independent scans

Output: dif ferenceSignal

foreach Projection p1 in scan1Projectiordo

p2 = NearestgcarRPro jectionspl.angle

[* See Section 6.2.2.4 for ROl masking description */
ml = ROIMaskTheProjectiom)

m2 = ROIMaskTheProjectiop@)

abs= SumOfAbsoluteDifferencefl,m2)

dif ferenceSignabppenddbs

end

Algorithm 2: Difference signal construction. Each projection is masksitig an
angle-specific projection of the ROl and the sum of absolifterdnces for all pixels
in the projection masked region is calculated.

Having identified both the projection partitioning and aiamidifferent classification,
the search space is modified slightly because the bucketg imtlependent scans are no
longer themselves independent. From the pre-processepg istis known whether the
projections from scan 1 contained in bucket N belong to timeeshin as the projections
from scan 2, or whether they belong to a different bin. Thgioal four possibilities for
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each bucket are:

=

. projections from scan 1 in bin 1, projections from scan Bim1

N

. projections from scan 1 in bin 2, projections from scan Bim1

w

. projections from scan 1 in bin 1, projections from scan Bim2

4. projections from scan 1 in bin 2, projections from scan Bim2

With the addition of an assessment of whether the projestiora bucket are from
the same bin or from different bins, the decision changes.tii@®buckets identified as
containing similar paired projections, the average ofeéh@sred projections are used in
the reconstruction and no decision is required. For the discklentified as containing
different paired projections, there are now only two pasisds for each bucket labelled
as containing different projections:

1. projections from scan 1 in bin 1, projections from scan Bim2

2. projections from scan 1 in bin 2, projections from scan Biml

Thus, for buckets containing similar paired projectiorsdecision needs to be made.
For buckets containing different paired projections, dnlg possible assignments can be
made. Once the choices have been made for all the bucketgstiéing assignment can
be used to construct a projection assignment and will itselfalled a bucket assignment
in contrast to the earlier stage preliminary bucket assgttin some circumstances this
may reduce the search space because of phase overlap inctlsedns but in the ideal
case where there is maximum phase difference, the numberckéts actually doubles.
Figure 6.3 illustrates this. In the top figure, three bucketsst be assigned ideally to bin
1 but this must be determined via a different kind of searele (Shapter 7) because the
motion signal does not exist in a one-scan protocol. In tikerse figure, the preliminary
steps construct a partition with six buckets (identifiedwtite green plot), each of which
will be assigned one of two states.

To summarize this reduction step, the size of the searctespatgnificantly reduced
by bucketing the projections and splitting the scan into seans. This provides a basis
for automatically generating the partition for the buckatsl using the information con-
tained in the difference signal to reduce the bin decisiariags from 4 to 2. Instead of
an assignment which tags each projection with a bin, thig generates a preliminary
partition of the paired projections with a same/differessignment for each partition.
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Figure 6.3: Partitioning differences between one-scantaoescan approach. In the top
figure, the motion of interest is characterized as a one-usmeal plot (black line) with
the green plot identifying the projections belonging to direand the red plot identify-
ing the projections assigned to the second bin. In the bofigune, the motion of two
scans are identified by the solid and dashed black lines. fidenglot shows the projec-
tions that are labelled as belonging to different bins wthkered plot shows projections
labelled as belonging to both bins.

Subsequently, this will be used to generate a tueket assignmemnwhere the projec-
tions grouped in a bucket are assigned to either the firsthnsecond bin, or both (i.e.
the reconstruction step uses a projection constructed inenaverage of the paired pro-
jections at that position).

6.2.2.2 Subdividing the search space

Even using the reductions from Section 6.2.2.1, the segratessize is still (potentially)
too large. Taking the worst case scenario, the continuguestiodic respiration with a
short breathing cycle of four seconds, and assuming theedkesase of non-overlap of
breathing cycles between scans, the resulting number debaito assign a value to in
the search is still approximately 30. This results in, sitiee assignment is a binary
assignment into different bins32assignments which, even given the performance im-
provements still to be outlined, is too large.

One of the main results from Chapter 5 is used here, namelatiigtat uniformly
distributed projections create fewer artefacts than rando grouped projections. By
taking an assignment space and uniformly removing evergrdihcket to be assigned
(and replacing with projections from an average set as wimed in Section 5.1), the
search is first performed on this subspace and then, oncetamuop solution is found,
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the search is renewed by searching for the previously ighassignments but adding
them to the optimum solution obtained in the first pass. Fstaince, suppose a bucketing
partition has thereliminaryassignment:

sdsdsdsdsdsdsdsdsdsdsdsdsdsd

where 5’s identify buckets that contain projections that shouldabsigned to the same
bin, and d’s represent buckets that contain projections which shbaldssigned to op-
posite bins (either 1,2 or 2,1). A first pass search can b@peed making assignments
to only half of the candidate buckets:

sds-sds-sds-sds-sds-sds-sds -

where dashes that are actually “different” buckets are teany treated as “same” buck-
ets, i.e. they are filled with average projections duringrémnstruction process. Now
let "1’ denote a “different”preliminaryassignment resulting infinal bucket assignment
wherein the projections from pass 1 are assigned to bin lrengrbjections from pass 2
are assigned to bin 2. The markér then defines the opposite wherein the projections
from pass 1 are assigned to bin 2 and the projections fromzuassassigned to bin 1 for
that given bucket. Assume the optimum solution returned is:

sls-sls-s2s-sl1ls-s2s-5s2s-51s-

The second pass now seeks to fill in the missing “differen€liprinary assignments

(represented by the dashes) by trying alternative final étecgsignments while using and
protecting the final assignments from the first pass. Thewalg sequences show the
first set of assignments that would generated and evaluated:

n nu u n
N N
n v u on
N PN R
n nu nu n
Y
n v u n
NN R R
n v o n
N NNN
n v u on
N
n v o n
N
n v u n
N
n v u n
NN NN
n v nu n
Y
n v u on
NN NN
nw nu u n
N Y
n v u on
I e N
n v o n
Y

Initially, all the remaining “different” preliminary buek assignments are replaced with
a final assignmentl” as described above. This is evaluated against a change ifirsh
unprotected bucket, in position 4, which is modified to theigrament 2’. The next
unprotected bucket is in position 8 which is changed whiterreng position 4 back

to '1’ and so on. Given this approach, thé°Zassignment space is reduced to'4 2
assignment space §22'°) which is, when combined with the remaining enhancements,
computationally tractable.
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6.2.2.3 PCA of individual backprojections

Despite the bucketing reduction, if reconstruction cowerebe reduced to one second,
the time required to exhaustively search the space defineekaly generating two test
reconstructions for each candidate assignment (one fot bame for bin 2) is over 18
hours. Certainly in some scenarios, such as off-line batobgssing for a retrospective
study, this may be acceptable but it clearly puts severddtions on the method. It is at
this point that a classic trade-off in computer science idendo reduce the computational
time required, the memory requirements are increased.

In Chapter 2, it was established that filtered backproject@ffectively an averaging
process. After each projection is filtered, it is “smeardadtigh the reconstruction vol-
ume by adding the pixel values to the voxel values in the velasithe geometry dictates.
This step is repeated for each projection usually with avpeeghting of the projections
such that the resultant volume is averaged once the finatégrop’s values have been
added to it.

The novel idea here is to perform that backprojection fohgaojection,but on in-
dividual backprojection volumesln other words, rather than ending up with a single
backprojection volume containing the averaged values fatinof the projections, the
same number of volumes as projections are generated withvedeme containing just
that single projection’s values “smeared” through it. ksle volumes are then averaged
together, the result is identical to averaging them “in pfao generate the single back-
projection volume. Figure 6.4 illustrates this showingégeivalence of the two different
methods.

The goal of introducing this memory overhead is that theqmtipns, after backpro-
jecting, can now be treated as very high dimensional vedtwas can be averaged to
create a reconstruction volume. By doing so, principal camepbanalysis (PCA) can be
applied to the set to reduce the dimensionality. It is wodinmenting that this is one of
two ways PCA is used to reduce the dimensionality of a dataWéien the number of
samples greatly exceeds the number of features in eachsampdimensionality can be
reduced by using PCA to find the most important features anafégthne others. This is
a “lossy” form of PCA. The other form used here, when the nunolbésatures is greater
than the number of samples, is lossless. PCA provides a misanéor finding an opti-
mal basis folN vectors, regardless of their size, of dimenshr 1. In the case of this
problem, the backprojected volumes are the samples andveaehrepresents a feature.
Given an average reconstruction volume with 28éxels, the 670 backprojected volumes
can be transformed into 670 vectors each 669 elements ldng.isTa vast improvement
over the 16,777,216 elements that would otherwise be redjfiar each vector.
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Projections Reconstructed volume

0
Filtered backprojection

>

Volume averaging

Individually backprojected volumes

Figure 6.4: A reconstructed volume constructed two waysnglthe top, the projections
are reconstructed directly into a volume using a filterekpemjection algorithm. On the
bottom, the projections are individually backprojectetbiseparate volumes which are
then averaged together.

More importantly, the averaging process has just changed &dding 16,777,216-
length vectors together to adding 670-length vectors tegdgand then dividing by 670).
This, ignoring memory caching issues, requires less tha@0s of the computation ef-
fort.

PCA is not a trivial process, however. Constructing a covagamatrix of thefea-
turesof the set of vectors in order to find the eigenvectors caniregularge amount of
memory. It must be done in stages using large amounts of gdastesunless the technique
popularized in the computer vision community by Turk andtRedl [92] is used. This
clever trick is used to find thieatureeigenvectors by first finding treamplesigenvectors
and deriving them from there. Very simply, this is shown by:
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Av=Av (6.2.1)
B'Bv=Av (6.2.2)
B'BV =VA (6.2.3)

(BBT)BV = BVA (6.2.4)

W = BV (6.2.5)

X=W'B (6.2.6)

Equation 6.2.1 is the definition of an eigenvectorith eigenvalueA. Let B be the
array composed of the clipped backprojection volumes aswolectors with the empir-
ical mean of the dataset subtracted from each vector. Egquét2.2 shows an eigenvector
for the sample covariance matrix and Equation 6.2.3 defilecdmplete set of eigen-
vectorsV and their eigenvalues in a diagomamatrix. Multiplying both sides by again
(Equation 6.2.4) shows that the eigenvectors of the sangpigr@nce matrix, when mul-
tiplied by the original matrix, become the eigenvectorsha teature covariance matrix
(Equation 6.2.5) which is the objective. This method acbsethe objective by calculat-
ing the eigenvectors of a matrix many, many orders of magaismaller (around 10 if
complete volumes were used) than the straightforward sswavariance matrix. Once
these eigenvectors are constructed, the original datangecin be dimensionally reduced
by taking them into the row space \f as is shown in Equation 6.2.6.

Each vector inX is a dimensionally reduced version of the original backgcbpn
volume. Reconstruction consists now of averaging togetiewvéctorspr a particular
subset of the vectorgrojecting them back to the original space, and adding thamm
back. For the purposes of the proposed search, these lastéyws are not needed be-
cause the evaluation of a given proposed assignment israotesl as a function of the
dimensionally reduced vectors.

Consider the first metric used in the objective function: thm ef squared differences
between two reconstructed volumes. This metric is exabgystame as the Euclidean
distance (squared) between the averaged transformedsegi®a computational aside,
this also has the nice property of being most efficiently agaieshed as a dot product
of the difference vector with itself on modern CPUs and GPUgkinclude very fast
instructions for this kind of operation. The transformatimatrix W generated by PCA
is composed of orthonormal vectors whose rank is equal toghk of X. Thus, the
distance between two vectors is preserved after beingftnaned so the sum of squared
difference metric can be calculated in eigenspace. Thogalthe optimization function to
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calculate the score for a candidate assignment withoutmieguan inverse transformation

back into the original vector space. For the expected numbassignments generated
in an exhaustive search, avoiding this inverse transfoomas an important part of the

computational cost savings of this method.

The application of the mean metric is somewhat less stri@ighard. A short proof
is presented here which shows that the mean of some vectoe original space is equal
to the dot product of the means of the columns of\tienatrix and the projected orig-
inal vector. First, to disambiguate between the dual uséseohveraging idea, the term
“average of vectors” refers to the vector addition of sontesgectors multiplied by the
scalar reciprocal of the number of vectors. This is diffétBan the “vector mean” which
will refer to the sum of the components of a given vector diddy the total number
of components. Furthermore, in the following discussioa ifector (in bold) is shown
with two subscripts, the first subscript refers to an elenoétite vector while the second
subscript refers to a particular vector from some set ofarsctWith that in mind, some
preliminary equations are described:

b € columngB) (6.2.7)

W'b =x (6.2.8)
W'B =X (6.2.9)
WWTB =WX (6.2.10)
B=WX (6.2.11)
WW'b = Wx (6.2.12)
b = Wx (6.2.13)

These equations describe the relationship between thmalridata space (with av-
erage of vectors subtracted) and the transformed spacéor\ers in the column space
of B either as a column vector or as a linear combination of coluemtors belonging to
B. Vectorx belongs to the column space of the dimensionally reducedfitam space
X which is itself created by multiplying by the principal components W' which is
an orthogonal matrix so the transpose is the inverse. Usiisgotoperty, theB matrix
or ab vector is easily recovered by multiplying thé matrix or x vector byW. Now
let b be some average of vectorsBn The transformed version can be derived either by
multiplying Eby the principal component vectors or by averaging the sanhefvectors
in the transformed space. If this is done, theector can be obtained from tRevector by
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multiplying it by W. This step can also be described as multiplying each of themto
vectors inW by the correct element inand adding them together. Averaging the values
in the vector, however it is obtained, yields the scalar mentean which is the desired
value. More precisely, this is expressed as:

for thek!" column vectoX, the jt" element of thé* vector is

N

bk = i;Xiij’i (6.2.14)

the average of elements of the vector are

b © S bk (6.2.15)
=V 1; J 2.
or, by substitution
_ 1 M N ‘
b= M Z PR Wi (6.2.16)

and rearranging

_ N ‘ 1 M
b:i;Xi (M jzlei) (6.2.17)

but the averages of the column vectors of W can be expressed as

1 M
w==—73 Wj; (6.2.18)
W2,
therefore
b=w-xK (6.2.19)
(6.2.20)

The last step, Equation 6.2.20 is derived from the fact thatdummation on the
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individual elements of the vectors is independent of the summation with respegatad

so the summation can be moved inside of the summation imglk¥ie elements of the
vector. This, if written out in long form as an extended setdditions of multiples, would
be equivalent to factoring out thecomponents. A closer look at this inner summation
reveals that it is just the vector mean of the individual cohwectomw. Therefore, during
the PCA process, if the vector means of the column&/ @ire calculated once and stored
in row vector, then the calculation of the mean of the avedtageonstruction vectds is
simply the dot product of th&/ mean row vector and the averaged transformed vector

A further reduction even before applying the PCA comes from rislization de-
scribed earlier in the discussion of objective functioret the motion of interest is found
in the region of interest. If the reconstructed volumes ase &lipped to this ROI, and
the PCA is performed on that, then typical workstations (afetime of this thesis) are
sufficiently powerful to perform PCA on the datasets. In al &xperiments performed,
disk access proved to be the performance limiting factan wiemory requirements and
processor load being insignificant in comparison.

In the previous paragraphs, the discussion of PCA suggedtedapplied to the orig-
inal set of CBCT projections which have been backprojectedindividual volumes. In
fact, the number of projections, and therefore volumesP freater. The method re-
lies on filling the gaps in assignments with “average” prog@ts, namely the projections
generated by averaging paired projections together. Tistgad of 670 backprojections,
1005 backprojections are used to calculate the featurasigee.

6.2.2.4 Review of the complete bin assignment method

Each of the prior subsections presents a part of the oveiadlegs. They are collected
here and presented as algorithms so that the interactiahsamections can be better
comprehended. One step that has not been described elsewliee generation of 2D
masks for each projection. These are constructed from tHev&1@me by forward pro-
jecting a shadow of the ROI onto the projection plane at tieesangle as each of the
projections in the scan set.

The preparatory process for the two-scan search involvetsciinstructing a set of
“filler” projections by averaging together paired projects. These projections are used
when a bucket from the bucket assignment is labelled as ioomgasimilar projections.
Each projection is then individually filtered and backpobdgel. These backprojected vol-
umes are then clipped to the ROI and these clipped voxelsareatenated to form a
data array of column vectors containing the samples withsroantaining the features
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Input: Projections from two independent scans
Output: PCA feature eigenspace and mean vector
foreach Projection pl in scanlProjectiordn
p2 = Nearest(scan2Projections,pl.angle)
p3 = (pl + p2)/2
p3.angle= (pl.angle+ p2.angle/2
avgdProjectionsadd3)
end
oreach Projection p1 in scanl1Projectiordon
bp = Backprojectpl)
B.append(ROIClipTheVolumbg))
end
foreach Projection p2 in scan2Projectiordn
bp = Backprojectp?)
B.append(ROIClipTheVolumbg))
end
oreach Projection p3 in avgdProjectiongo
bp = Backprojectp3)
B.append(ROIClipTheVolumb))
end
Bavg= VectorAveragdd)
foreach Vector v in Bdo

| v=v-Bavg
end
B=PCA®B)

—h

—

Algorithm 3: PCA on backprojected, clipped volumes.

— the voxels. The average column vector of the data arrayeis tlalculated and sub-
tracted from the original vectors to create data vectorssslieature means are each zero.
Finally, principal component analysis using the covar@antethod described earlier in
Section 6.2.2.3 is performed.

Reviewing the steps discussed so far, the paired projectimnéirst bucketed (Sec-
tion 6.2.2.1) creating a preliminary bucket assignmenterTthe original sets from the
two scans as well as the averaged set of projections aresdlifgpthe ROI. These clipped
regions are treated as high-dimensional vectors and PCAlgdpn a lossless fashion to
reduce their dimensionality. Once these steps have be@rmped, an exhaustive search
is used to find a bucket assignment that maximizes an obgefetivction which can then
be used to construct a projection assignment.
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Input : Eigenspace vectors from PCA process (Algorithm 3)
Output: Best scoring binning assignment

dif ferences= ScanDifferencesgarilPro jectionsscar2Pro jectiong
bkts= Partitiondif ference}

repeat

a = GenerateRandomAssignment()

v1,v1 = ReconstructAssignmeiai(

avg = MeanOfVectory;)

avg = MeanOfVectory;)

avgnax = Max(avg:,avg,avgnay)

until 5000 times

if Count(buckets == different)> 15then

firstSetsecondSet SplitBucketsbkty

passes 2

end

else

firstSet= buckets
passes- 1

end

/* This is the start of the actual exhaustive search */
bestScore 0

bestAssignment []

permutationCount oCount( firstSet==dif ferent)—1
for permuation=0 to permutationCountdo
a = GenerateAssignmentFromPermutation(permutatior§tst
V1,V1 = ReconstructAssignmeiraiy
avg = MeanOfVector(,)
avg = MeanOfVector(,)
SSD= (Vi —V2)T - (v1—Va)
score= ObjectiveFunctiordvg; ,avep,avonaxSSD
if score> bestScor¢hen
bestScore score
bestAssignment a
end
end
if passes == Zhen
[*Same search as prior loop only the assignment is genetayezbmbining the
found bestAssignment with the secondSet pre-assignment.*/
end

Algorithm 4: Two-scan search.
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Input: PCA feature eigenspace and assignment
Output: Two eigenspace vectors containing the two reconstrustion
vi=0
Vo = 0
vl count=0
v2_count=0
[* Add vectors assigned to bins 1, 2 */
foreach EigenspaceBackProjection ebp associated with sabn1
if ebp is assigned to binthen
V1 =V + ebp
Incrementyl_couni
end
if ebp is assigned to binthen
Vo = Vo + ebp
Incrementy2_coun)
end
end
foreach EigenspaceBackProjection ebp associated with sabn2
if ebp is assigned to binthen
v1=Vy + ebp
Incrementyl_coun)
end
if ebp is assigned to bintken
Vo =V + ebp
Incrementy2_coun)
end
end
/* Fill in gaps with averaged vectors */
foreach EigenspaceBackProjection ebp associated with averagedioset
if ebp is assigned to neither bin 1 nor birtten
Vi =V + ebp
Incrementyl_couni
Vo =V + ebp
Incrementy2_coun)
end
end
/* Divide by number of added vectors to create averages */
vi1 =V / vl_count
Vo2 = Vo [ V2_count

Algorithm 5: ReconstructAssignment
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Input: difference signa§, local max thresholth

Output: partitionP, preliminary bucket assignmeAt

S=Normalize®

S= Smooth§, 3-element box kernel)

L = LocalMinimumsg)

Imcount= L.count()

for Im = 0 to Imcount - 1do

xstart=L(Im)

xend=L(Im+1)-1

if some value x between xstart and xend is greater thahnemh
pl = FindFirstk > .5 betweerxstartandxend
p2 = FindLastk > .5 betweerxstartandxend
index= P.addPartitionpl,p2)
A.appendDifferentBuckat{dex

end

end

Algorithm 6: Partition algorithm.

One way to represent the bucket assignments is with a vemtéaioing a binary value
for each of the “different” buckets indicating whether tlssignment is from scan 1 to bin
1 and scan 2 to bin 2 or vice versa. Another way to represengad a single number from
the permutation set of'2 A complete exploration of this set is redundant becausethe
IS no meaning to “bin 1” versus “bin 27; there are just two bid$us an assignment of
projections 1..m to bin 1 and projections m+1..n to bin 2 igiegjent to an assignment
of projections 1..m to bin 2 and projections m+1..n to bin 1trBesult in the same two
volume estimates but with swapped names. A complete setrofytations would test
for both cases so the second “swapped name” set of assiganmehspensed with. This
reduces the size of the permutation space by halftd.2

Assignments are created by converting a numbend< 2" into a sequence of num-
bers corresponding to the bucketing indicating which setpitojections/volumes identi-
fied by a bucket should be drawn from. These bucket assigsmaeathen converted into
projection assignments using the partition informationstoucted during the bucketing
process. This projection assignment is then used to canéwo candidate vectors, one
for each bin. The candidate vectors consist of the vectorageeof the (transformed)
projections belonging to the bin being estimated and tlan¢fiormed) filler projections
from the averaged set. The mean of each of these is thena&i@dus is the SSD between
them. These are passed to the objective function to be setwad with the estimate of a
maximum vector mean obtained from a random trial involvingeepirically determined
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Input: Preliminary assignmem
Output: Al, A2, Two partial preliminary assignments
Al=Al1=A
toggle=0
for n =0 to A.count()do
if A(n) is labelled “different”then
if toggle is everthen
| labelA1(n) “same”

else
| labelA2(n) “same”
end
Increment{oggle
end
end

Algorithm 7: SplitBuckets

number of samples (5000). The assignment with the highest seretained and doubled.
In the case where the number of buckets exceeds the emiyideaérmined threshold of
15, the iterative approach described earlier is applied.

Output: score

avg biggest= max@va,avep)

avg score= max(0,(1-avg biggest/ avg max))

score= (vectorl — vectoR)T - (vectorl — vector2) x avg score

Algorithm 8: Objective scoring function

The objective scoring function is very simplscore= SSD« Penaltyu). It seeks
volumes whose SSD is the largest while retaining the mearacteistic of the original
reconstructed volume. Since the mean has been removedHieodata as part of the PCA
process, the new mean target is zero. The implication isttigavector mean of some
candidate volume is closest to the original complete ptmageeconstruction mean when
it is closest to zero. This property is used to construct goknpenalty function as a
function of u the largest of the two vector means. By constructing a linaaaprwith the
highest value a1 = 0 and terminating it at some estimated globally maxipgdy, and
setting any foungu values that might exceed this estimate to 0, a crude but Vicieat
and, in the experiments, effective way of constructing aafigriunction is created.
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6.3 Evaluation and results

Two novel ideas have been described in this chapter, botthmhare necessary for au-
tomatic binning from data. The search space with its objedtinction and the extraction
of a difference signal from the paired projections both iotphe results of the search and
poor results on either component can mask good results oothiee Consequently, the
experiments below have been run with a ground-truth versidhe difference signal, to
isolate the objective function aspect of the search methnd,they have also been run
with a simple difference signal extraction method.

The experiments consist of performing the search on twosssanulated using the
phantom configurations described in detail in Chapter 3. Ediantom class contains
specific configurations designed to test particular aspeudsoperational boundaries of
the method and results are presented in the context of edohdnal result and then
summarized at the end.

6.3.1 Using a ground-truth derived difference signal

In these experiments, the actual position of the movingatlgéinterest is used to gen-
erate the difference signal. For each scan, the Euclidesiaindie between the position of
the objects at the two times associated with each projeatidhe paired projections is
calculated and this is considered the difference.

In Figure 6.5, the bucketing performed using Algorithm 6 hewn for the Simple
phantom configurations used in these tests. In each sulefithe difference signal de-
rived from the ground-truth measurements of the positiothefobject is shown as a
function of the sequence of paired projections with a blawok. | Thepreliminary bucket
assignments expanded and shown as blue and red bars covering the paogdtions
sequence. The upper blue bars identify paired projectioasshould be considered as
belonging to different bins. The lower red bars identifyrpdiprojections that should be
considered as belonging to both bins. Note in the upper ttwaégurations, the signal
has been normalized so the amplitude appears the same exghtabsolute difference
ranges will be different due to different motions. The péribfference in configuration
4 is evident from the signal difference relative to the topeéhconfigurations. Config-
uration 5 shows a shift motion covering 50% of the total searet For convenience,
this has been accomplished by essentially switching théigo®f the object between
the two separate scans. The transition is smooth and thusith@ppear at either end
of the paired projections sequence. The preliminary saiffereht bucketing using the
ground-truth position information appears to work wellle tSimple case. This focuses
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the results of the search on the search mechanism itselfpaindn poorly partitioned
paired projections.

(c) Simple configuration 3

(d) Simple configuration 4

Figure 6.5: Ground-truth derived difference signals arsliteng bucketing for Simple
phantom configurations. The top blue bar shows projectioaisare grouped into “differ-
ent” buckets; the bottom red bar shows projections grouped same” buckets. The data
iIs normalized in each case before displaying; higher valepsesent greater differences.
Bucketing bars are placed at the 33% and 67% positions fatyclar

A

(e) Simple configuration 5

6.3.1.1 Simple virtual configuration 1, ground truth difference signal

These first sets of results are obtained using the Simple ofaphantom described in
Chapter 3, Section 3.3. This particular configuration miraicaverage sized lung tumour
with average motion amplitude anctantinuously periodic motio(Lujan) in both the Si
and AP direction. In Figure 6.6, the first row contains theultssof the search. The
search actually returns back a bucket assignment and thibden expanded using the
partitioning information in the bucketing to show the puijen assignment. For this
case, the search returned a perfect (relative to the grautiy assignment.

Figure 6.7 shows images from the reconstructed bin volukmg the top row are
sagittal slices that best reveal the motion of the objeces€himages are representative
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of all of the Simple phantoms and are not repeated in othepl8iconfiguration figure
results. The second row contains magnified regions whermtti®n has occurred. The
first image shows the results that would have been obtaioad & volume reconstructed
from the complete 670 projections. Blur is evident but, beeaof the Lujan motion,
the object was more commonly located in the upper left of thage (the “rest” phase
of the simulated respiratory cycle) and this is apparente fiéxt two images show the
ground truth and the estimated volumes, respectively, fiertmn (arbitrarily called “bin
1”). The final two images show the ground truth and estimatddmes, respectively,
for the other bin. No differences are evident and this is t@k@ected since the search
returned a nearly equivalent binning assignment (one gtioje assignment difference)
as the ground-truth derived assignment. Note that thessfiten the bin on the right
reveal where the tumour is positioned for the majority of tinge. This information is
potentially useful for evaluating treatment plans.

6.3.1.2 Simple virtual configuration 2, ground truth difference signal

This configuration mimics an average sized lung tumour vhttrsmotion amplitude and
Lujan motion in both the Sl and AP direction. This particudanfiguration tests the effect
of very little motion which may be the case in lung tumoursaled in the upper lung or in
regions of the abdomen only indirectly affected by the dragin motion. Referring to the
second line of Figure 6.6, the performance is not as good tstie first configuration.
This is expected because the energy contained in the diffesscaused by the motion are
much less than in the first configuration and therefore theasi@ noise ratio is lower (the
noise is the same in both data sets). The error, as a fundtitve mumber of incorrectly
assigned projections is about 7.8%. Looking at the quadgatsults in Figure 6.8, it is
apparent when comparing the estimates with the ground thaiheven with the given
error rate, the results still “look” good. This is espegidtue with the second bin figures
which shows the most significant location of the tumour.

6.3.1.3 Simple virtual configuration 3, ground truth difference signal

This configuration mimics a large lung tumour with short reaotamplitude and Lujan
motion in both the SI and AP direction with a minimum (4 sec®rateathing period. As
with the second configuration above, the error rate is gréateause of the lack of motion
information caused by the smaller motion. In this case, ther eéate is approximately
11.3%. Given that the error rate is relatively high desgi@nging the size of the tumour,
the idea that smaller motion ranges are potentially proatenis suggested. Once again,
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looking at the qualitative results in Figure 6.9, it can bersthat the results are still quite
acceptable.
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(d) Simple configuration 4

S2/B1,S1/B2

S1/B1,S2/B2|

Avg/B1,Avg/B2

(e) Simple configuration 5

Figure 6.6: Ground-truth derived difference signal basstch results for Simple phan-
tom configurations. The black dots each identify a projecpair and its correct assign-
ment. Red dots identify the resulting assignment found bys#ach. The lower set of
dots refer to projections from the averaged set which areddti both of the bin recon-
structions. The middle row shows the paired projectionsafbich the projection from
the first scan is assigned to bin 1 and the projection from ¢lcersd scan is assigned to
bin 2. The top row shows the paired projections for which theggetion from the first
scan is assigned to bin 2 and the projection from the secardis@assigned to bin 1. See
Table 6.1 for error percentages.
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Figure 6.7: Qualitative results of search on Simple conéigan 1, the averaged-sized
tumour travelling an average distance, as define in Sect®B8,3n a Lujan motion over
a 4 second period. Top row shows sagittal slices from a campdeonstruction (a), from
a ground truth bin 1(b), from the estimated bin 1(c), fromgheund truth bin 2 (d), and
from the estimated bin 2 (e). The second row contains magtiiics of the regions from
the images above.

(@) (b) (©) (d) ()

Figure 6.8: Qualitative results of search on Simple conéigan 2, an averaged sized
tumour travelling a short distance in a Lujan motion over &dosd period. Shown are
magnified regions of a sagittal slice from a complete recanson (a), from a ground
truth bin 1(b), from a the estimated bin 1(c), from the grotmith bin 2 (d), and from the
estimated bin 2 (e).

6.3.1.4 Simple virtual configuration 4, ground truth difference signal

This configuration mimics a large lung tumour with averageiomamplitude and Lujan
motion in both the Sl and AP direction with a longer (6 secrieathing period. A
greater range of motion has dropped the error rate back tmer0.9% supporting the
idea that, when compared with the results from configuraBabove, size is not the
issue, the range of motion is. With the smaller error ratgufé 6.9 shows the qualitative
results from representative sagittal slices are quite good
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(@) (b) (©) (d) (€)

Figure 6.9: Qualitative results of search on Simple conéigaon 3, a large tumour trav-
elling a short distance in a Lujan motion over a 4 second gderiSee Figure 6.8 for

explanation.

(@) (b) (€ (d) (e)

Figure 6.10: Qualitative results of search on Simple coméigon 4, a large tumour trav-
elling a large distance over a 6 second period. See Fig. 6i@déaexplanation.

6.3.1.5 Simple virtual configuration 5, ground truth difference signal

This configuration mimics a prostate-sized, ellipsoidpgthtumour with a 10 mm shift
at the 50% point which, for the two scan protocol, means mb#ateomotion in the first
position is obtained in the first scan and then the shift a&céor the second scan. As
in the earlier cases (which differed as well in their use dfescal tumour shapes), the
motion is sufficiently large to reduce the error rate. In ttase there are zero errors so
the ground truth and estimated reconstructions for the iwe dre identical.

(@) (b) (€) (d) (e)

Figure 6.11: Qualitative results of search on Simple conéigon 5, 10 mm shift motion
50% of the total scan time. See Fig. 6.8 for the explanation.
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6.3.1.6 Animated configuration 1, ground truth difference ggnal

These next results are obtained using the Animated phantass derived from real
CBCT data and discussed in Chapter 3, Section 3.4. In Figure thé&Ducketing per-
formed using Algorithm 6 is shown for the Animated phantonmfigurations used in
these tests. See Figure 6.5 for an explanation of the plots.

This first Animated configuration contains a single shift 6fhm occurring half-way
through the total scan cycle. Using the ground truth difieeesignal, the resulting search
method returns an assignment identical to the ground tagigament. This is seen in the

(a) Animated configuration 1

I
i - !

(b) Animated configuration 2

. I .
; - 3

(c) Animated configuration 3

—
/
J

(d) Animated configuration 4

-

A

(e) Animated configuration 5

Figure 6.12: Ground-truth derived difference signal basearch results for Animated
phantom configurations. See Fig. 6.5 for the explanation.
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comparison of the first row of Figure 6.13. The qualitativeules shown in Figure 6.14
are therefore identical for both the ground truth and eggohain volumes.

6.3.1.7 Animated configuration 2, ground truth difference ggnal

This configuration contains a single shift of 12 mm occurtiadf-way through the total
scan cycle. The search results return two wrong paired girojes assignments out of the
possible 335 for an error rate of approximately 0.5%. Thditiize results in Figure 6.15
are consequently very good.

S2/B1,S1/B2

S1/B1,S2/B2 1

Avg/B1,Avg/B2j= _— —

(a) Animated configuration 1

S2/B1,S1/B2| 5

S1/B1,S2/B2 i

Avg/B1,Avg/B2E= = =

(b) Animated configuration 2

S2/B1,S1/B2 1

S1/B1,S2/B2

Avg/B1,Avg/B2 = - —

(c) Animated configuration 3

S2/B1,S1/B2| h

S1/B1,S2/B2 - =|

Avg/B1,Avg/B2 = B

(d) Animated configuration 4

S2/B1,S1/B2 - —

S1/B1,S2/B2| - - R

Avg/B1,Avg/B2 =

(e) Animated configuration 5

Figure 6.13: Ground-truth derived difference signal basearch results for Animated
phantom configurations. See Fig. 6.6 for the explanationTad 6.1 for error percent-
ages.
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Figure 6.14: Qualitative results of search on Animated cmétion 1. Top row shows
sagittal slices from a complete reconstruction (a), fromnaugd truth bin 1(b), from the
estimated bin 1(c), from the ground truth bin 2 (d), and frtva éstimated bin 2 (e). The
second row contains close-ups of the regions from the imalgege.

(@) (b) (©) (d) ()

Figure 6.15: Qualitative results of search on Animated gométion 2. Shown are mag-
nified regions of a sagittal slice from a complete reconsimaqa), from a ground truth

bin 1(b), from a the estimated bin 1(c), from the ground troitm 2 (d), and from the

estimated bin 2 (e).

6.3.1.8 Animated configuration 3, ground truth difference ggnal

This configuration contains a single shift of 6 mm occurriraffway through the total
scan cycle. The earlier results with the Simple configuraticontaining small-motions
suggests that the error rate should be higher for this carafiigen than its contemporary
configurations. This, in fact, is not what is observed. LiKelge cases other than the
second case, using the ground truth difference signal, ébeck results are as perfect
as can be achieved with the bucketing. This introduces ansesignificant factor in
determining the effectiveness of the search: motion typen@aoing this motion range
with the comparable motion range in the Simple cases suggiest the Lujan motion
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creates more difficulty than a shift motion. This is actuayy reasonable. The Lujan
motion “spreads” the motion information through a range asipons whereas the shift
motion concentrates it in only two positions.

(@) (b) () (d) (€)

Figure 6.16: Qualitative results of search on Animated cumétion 3. Shown figures are
as per the previous diagrams.

6.3.1.9 Animated configuration 4, ground truth difference ggnal

This configuration contains a single shift of 16 mm occurabthe 70% point in the total
scan cycle (composed of the two sequential scans). It idaginai virtual configuration
1 but rather than having an equal distribution of projectiomne bin has over twice as
many projections that (should be) assigned to it. This cageesents observing a motion
only part-way into the second scan. The fourth row of Figude&&hows the success of
the search even in this sub-optimal case, given the growtid difference signal. Quali-
tatively, the success is seen in Figure 6.17

(@) (b) (©) (d) (e)

Figure 6.17: Qualitative results of search on Animated cumétion 4.

6.3.1.10 NCAT configuration 1, ground truth difference sigral

These next results are obtained using the NCAT phantom classssed in Chapter 3,
Section 3.5. These more realistic phantoms introduce mresdiey structural complexity
consistent with what would be expected in a real clinicairsgt Figure 6.18, as with the
other phantom types, shows the bucketing performed usiggrahm 6 for the NCAT



Chapter 6 121 Two Scan Searching

phantom configurations used in these tests. See Figurer@ah fExplanation of the plots.
These seem quite reasonable for the ground truth differgigo@ls shown.

The first NCAT configuration contains an averaged size lungturm the upper lobe
of the right lung. The first row of Figure 6.19 shows the raaglassignment with the dot
plot used with each of the phantom configurations. An errobserved with one of the
bucket assignments in the middle and with the beginning addhg buckets. This results
in 16 paired projections being mislabelled creating a 4.8fbreate. Even at that error
rate, the qualitative results appear quite good. Note éspethe diaphragm in the first
bin for both the ground truth (b) and estimated (c) volumes.

6.3.1.11 NCAT configuration 2, ground truth difference sigral

The second NCAT configuration contains an averaged size imgur in the middle lobe
of the right lung. The second row of Figure 6.19 shows theltieguassignment with the
dot plot. An error is observed with one of the bucket assignsia the middle and with
two of the ending buckets. This results in 26 paired progerstibeing mislabelled creating
a 7.8% error rate. Even at that error rate, the qualitatiselte in Figure 6.21 still appear
good. Note especially the diaphragm in the first bin for bo ground truth (b) and

IAAAARAAAAAA AR AR AR RN

(a) NCAT configuration 1

AR AAAAAA R AR AR RS

(b) NCAT configuration 2

VYA

(c) NCAT configuration 3

VAW

(d) NCAT configuration 4

Figure 6.18: Ground-truth derived difference signals asiilting preliminary bucketing
for NCAT phantom configurations. The top blue bar shows ptmes that are grouped
into “different” buckets; the bottom red bar shows projecs grouped into “same” buck-
ets.
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estimated (c) volumes.

6.3.1.12 NCAT configuration 3, ground truth difference sigral

The third NCAT configuration contains an averaged size lumgotr in the lower lobe
of the right lung. The third row of Figure 6.19 shows the r&sgl assignment with
similar bucketing errors observed earlier. This resultsram 16 paired projections being
mislabelled creating a 4.8% error rate. The qualitativeltesn Figure 6.22 again appear
quite good.
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(d) NCAT configuration 4

Figure 6.19: Ground-truth derived difference signal bassatch results for NCAT phan-
tom configurations. The black dots each identify a projecpair and its correct assign-
ment. Red dots identify the resulting assignment found bysdsch. See Table 6.1 for
error percentages.
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(a) (b) (©) (d) (e)

® @) (h) (i) 0)
Figure 6.20: Qualitative results of search on NCAT configaratl. Top row shows
sagittal slices from a complete reconstruction (a), frommaugd truth bin 1(b), from the

estimate for bin 1(c), from the ground truth bin 2 (d), andrirthe estimated bin 2 (e).
The second row contains close-ups of the regions from thgesabove.

Figure 6.21: Qualitative results of search on NCAT configara®. See Fig. 6.20 for the
explanation of the images.

6.3.1.13 NCAT configuration 4, ground truth difference sigral

The fourth NCAT configuration contains a large size lung tumauhe lower lobe of
the right lung. The fourth row of Figure 6.19 shows five buakgkerrors resulting in 42
paired projections being mislabelled creating a 12.5%reate. As with the third case
of the Simple phantom set, this relatively large error réilegenerates very reasonable
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(a) (b) (©) (d) (e)

® @) (h) (i) 0)
Figure 6.22: Qualitative results of search on NCAT configaraB. See Fig. 6.20 for the
explanation of the images.

gualitative results seen in Figure 6.23.

Figure 6.23: Qualitative results of search on NCAT configaratl. See Fig. 6.20 for the
explanation of the images.

6.3.2 Using an estimated difference signal

In these experiments, the difference signal is estimatad the differences between the
2D ROI clipped paired projections. This separates the effeander performing due to
the difference signal processing from the results of theckeagorithm proposed.
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Phantomclass 1 2 3 4| 5
Simple: 0.3|7.8|11.3| 09]|0.0
Animated: 0.0/ 0.6| 0.0| 0.0|0.0
NCAT: 48|78 48]|125| -

Table 6.1: Summary of percentage of errors for phantomgusiground-truth derived
difference signal for partitioning.

In Figure 6.24, the bucketing performed using Algorithm &lewn for the Sim-
ple phantom configurations used in these tests. The signdipartitioning should be
compared with those obtained from a ground truth differesageal shown in Figure 6.5.
The estimated difference is shown as a function of the sexwpuehpaired projections
with a black line. The blue and red bars are as described ur&i§.5. The preliminary
same-different bucketing using the ground-truth positidarmation appears to work ac-
ceptably well in the Simple case for the periodic Lujan typenotion. The shift motion
shows an increased error.

Figure 6.25 shows the results of the search assignments piaddorm. The red dots
are, as in previous plots, the “found” bin assignment andbthek dots are the ground
truth derived assignment. Comparing the first four rows, ffieaey of the partitioning
algorithm seems good; the bucketing is nearly identicath&nshift motion case, row 5,
significant errors begin to appear suggesting the partiald@rithm is not a good fit with
shift style motion.

6.3.2.1 Simple virtual configurations, estimated differene signal

The first row of Figure 6.25 shows 7 paired projections beimgabelled creating a 2.1%
error rate for Simple configuration 1. No noticeable diffeses from the ground truth can
be observed in the sagittal slices shown in Figure 6.26.

The second row of Figure 6.25 shows 30 paired projectiomgyarislabelled creating
a 9.0% error rate for Simple configuration 2. No significafffiedences from the ground
truth can be observed in Figure 6.27.

The third row of Figure 6.25 shows 39 paired projections peirislabelled creat-
ing a 11.6% error rate for Simple configuration 3. Differemé®m the ground truth in
Figure 6.28 are very slight.

The fourth row of Figure 6.25 shows 4 paired projections pemslabelled creating
a 1.2% error rate. Again, no noticable differences from tteeigd truth can be observed
in Figure 6.29.

The Fifth row of Figure 6.25 shows 73 paired projections geimslabelled creating
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a 21.8% error rate. Differences from the ground truth argéeguoioticeable and can be
observed in Figure 6.30. Even with this error, the tumouit sind shape can still be seen.

(@) (b) (©) (d) (e)

Figure 6.26: Qualitative results of search on Simple coméiion 1 using an estimated
difference signal.

(c) Simple configuration 3

(d) Simple configuration 4

e e

(e) Simple configuration 5

Figure 6.24: Estimated difference signals and resultingketing for Simple phantom
configurations. The top blue bar shows projections that eveggd into “different” buck-
ets; the bottom red bar shows projections grouped into “S#nekets.



Chapter 6 127 Two Scan Searching

(@) (b) (©) (d) ()

Figure 6.27: Qualitative results of search on Simple coméigon 2. See Figure 6.7 for
explanation.
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(a) Simple configuration 1
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(c) Simple configuration 3

S2/B1,S1/B2| =
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Avg/B1,Avg/B2

(d) Simple configuration 4

S2/B1,S1/B2

S1/B1,S2/B2

Avg/B1,Avg/B2 &=

(e) Simple configuration 5

Figure 6.25: Estimated difference signal based searclitsdsun Simple phantom con-
figurations. The black dots each identify a projection paid &s correct assignment.
Red dots identify the resulting assignment found by the $eddee Table 6.2 for error
percentages.
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(@) (b) (©) (d) ()

Figure 6.28: Qualitative results of search on Simple comdéigon 3. See Figure 6.7 for
explanation.

(@) (b) (©) (d) (e)

Figure 6.29: Qualitative results of search on Simple coméiion 4. See Figure 6.26 for
explanation.

(@) (b) (©) (d) (e)

Figure 6.30: Qualitative results of search on Simple coméigon 5. See Figure 6.26 for
explanation.

6.3.2.2 Animated configurations, estimated difference sil

In Figure 6.31, the bucketing performed using Algorithm &h®wn for the Animated
phantom configurations used in these tests. The signalsatitigning should be com-
pared with those obtained from a ground truth differencaaighown in Figure 6.12. It
is evident from the resulting bucketing that the partittapalgorithm is insufficient for
correctly partitioning this kind of motion.

Figure 6.32 shows the results of the search assignmentg platdorm. Along with



Chapter 6 129 Two Scan Searching

(b) Animated configuration 2

o

(c) Animated configuration 3

.M\N‘\A N A A f“\ﬂ—

- 7 L e ——
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(d) Animated configuration 4

Figure 6.31: Estimated difference signals and resultingkéting for Animated phantom
configurations.

the previous figure, these results reinforce the idea trepértitioning algorithm per-
forms poorly on this kind of motion.

The first result of Figure 6.32 shows 195 paired projectiaisdpmislabelled creating
a 58.2% error rate which is easily visible in Figure 6.33. s terror rate, the results are
becoming unusable. Here, as in most of the remaining NCATs¢ése qualitative results
will continue to support the assertion that a different atfo is required for partitioning
shift motion difference signals.

The second row of Figure 6.32 shows 148 paired projectioimgbeislabelled creat-
ing a 44.2% error rate which is easily visible in Figure 6.84this error rate, the results
are becoming unusable.

The third row of Figure 6.32 shows 137 paired projectionsigpenislabelled creating
a 40.9% error rate. Artefacts are clearly visible in Figu#l@out the overall shape and
position of the tumour is still apparent.

The fourth row of Figure 6.32 shows 77 paired projectionsipenislabelled creat-
ing a 23.0% error rate. Performance relative to the grouuith tin Figure 6.41 is still
acceptable.
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(b) Animated configuration 2
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(d) Animated configuration 4

Figure 6.32: Estimated difference signal based searclisdeuAnimated phantom con-
figurations.

(@) (b) (©) (d) (€)

Figure 6.33: Qualitative results of search on Animated gumétion 1.
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(@) (b) (©) (d) ()

Figure 6.34: Qualitative results of search on Animated gumétion 2.

(@) (b) (©) (d) (e)

Figure 6.35: Qualitative results of search on Animated gumétion 3.

(@) (b) (©) (d) (€)

Figure 6.36: Qualitative results of search on Animated gumétion 4.

6.3.2.3 NCAT configurations, estimated difference signal

In Figure 6.37, the bucketing performed using Algorithm 8hewn for the NCAT phan-
tom configurations used in these tests. The signals andipairig should be compared
with those obtained from a ground truth difference signakwahin Figure 6.18. The es-
timated difference is shown as a function of the sequenceaibég projections with a
black line. The blue and red bars are as described in FigbreThie preliminary same-
different bucketing using the ground-truth position imf@tion looks reasonable and the
experiments will confirm that it is.
Figure 6.38 shows the results of the search assignmentg platdorm. Comparing

the rows, the efficacy of the partitioning algorithm seemedydhe bucketing is nearly
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identical though the sizes of the partitions show diffeemcin the first set a missing
partition can be observed in the middle of the set in Figus& @nd the effect of this can
be seen in the middle of the assignments on the first row inr€i§LB8.

The missing partition and other search errors result in &labelled paired projec-
tions for a cumulative error of 13.1%. Nevertheless, it ifidilt to observe the error in
the qualitative result shown in Figure 6.39.

The second row of Figure 6.38 shows 53 paired projectiormggrislabelled creating
a 15.8% error rate. Slightly more blurring relative to thewgrd truth can be observed for
the second bin estimated image (e) of Figure 6.40.

The third row of Figure 6.38 shows 38 paired projections pemslabelled creating
a 11.3% error rate. No significant differences from the gdbtrath can be observed in
Figure 6.41.

The fourth row of Figure 6.38 shows 68 paired projectionsi@enislabelled creating
a 20.3% error rate. Demarcation of the two main positionsiofdur is still very clear
though some minor additional warping and blurring can nowlierved in Figure 6.42.

(c) NCAT configuration 3

(d) NCAT configuration 4

Figure 6.37: Estimated difference signals and resultingketing for NCAT phantom
configurations.
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(@) (b) (©) (d) ()

Figure 6.39: 2-scan Qualitative results of search on NCATigaration 1. Sagittal slices
are presented from a complete reconstruction (a), fromrtegl truth for bin 1(b), from
an estimated bin 1(c), from the ground truth for bin 1 (d) amahf the estimate for bin 2

(€).
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(d) NCAT configuration 4

Figure 6.38: Estimated difference signal based searclitsdeu NCAT phantom config-
urations.
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(@) (b) (©) (d) ()

Figure 6.40: 2-scan Qualitative results of search on NCATigaration 2.

(@) (b) (©) (d) ()

Figure 6.41: 2-scan Qualitative results of search on NCATigaration 3.

(@) (b) (©) (d) (e)

Figure 6.42: 2-scan Qualitative results of search on NCATigaration 4.

Phantom class 5
Simple: 21.8
Animated:

NCAT: -

Table 6.2: Summary of percentage of errors for phantomgyusinestimated difference

signal for partitioning.

6.4 Conclusions

The goal of this chapter was to ascertain if the proposedswam approach to searching is
a viable method for finding bin assignments. Two-scan bipnaguires two related steps:

Two Scan Searching
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obtaining and partitioning what has been referred to as ffefénce signal”, and using
this to exhaustively search the space of possibilities. s€veere both described in some
detail in the text and various properties necessary for @& @imensional reduction were
shown. The search space and an objective function for evuadusolutions were defined.

To better isolate the impact of the search ideas, a form afrgidruth was used to
generate the difference signal and a bucketing. The seaastthven tested on a number
of different phantom configurations from three differerdasdes described in Chapter 3.
The results consistently supported the search approaclstaowled it to be generally
successful and robust when the paired projections assiginmeceuracy was between 80
and 100%. Many more tests would be required to establish\ae ¢arbetter estimate an
error rate threshold.

The experiments were then performed again but the grounid ihucketing process
was replaced with a simple automated bucketing approacts. afproach proved to be
reasonably good witkontinuously periodidype motion incurring an average error rate
of 6.9% with the Simple phantom class experiments and arageegrror rate of 15.1%
for the more realistic NCAT phantoms. The approach failedsfoft type motion using
the initial attempt at a partitioning algorithm, but thearlsuccess of the search algorithm
(nearly perfect search in all cases) with accurate patitgp shows the problem to be
with the partitioning algorithm, and not with the searchaaithm.

In both sets of experiments, with ground truth derived défee signals and calcu-
lated difference signals, another factor that increasemt®mwas found to be small mo-
tions. Without sufficient motion information captured byass, the search algorithm had
difficulty finding accurate assignments. Neverthelessagsgnments it found were still
acceptable. Fortunately, as the motion decreases to thewbere the search algorithm
fails, it also ceases to be necessary for the algorithm toceset

A remaining problem with this approach is the necessity siitating a change in well
established clinical protocols. This also precludes treeafghis technique on existing
data sets. A method which can take the core ideas from thetsesthod and apply it to
the single-scan protocol is desired and forms the basihiéonéxt chapter.



Chapter 7

Searching for CBCT Projection Bin
Assignments Using a One Scan Protocol

7.1 Overview

In Chapter 6, a method for finding an assignment of projectiobwo bins was presented
and evaluated in a set of experiments on three classes ofguhsn The principal ad-
vantage of this method was to extract information wherebyeaily) exhaustive search
could be performed on the search space. The principal dasdige of the proposed
method was that it required implementing a new two-scan ingagrotocol. While the
protocol change is not unreasonatd@y protocol change in a clinical setting requires
strong evidence to support the benefit of such a change ardutres time consuming
and expensive studies to validate the impact of the changeethod using the existing
protocol circumvents much of this effort. It also has theadage of being able to be
retrospectively applied to any retained CBCT data sets be¢heseethod is not coupled
with either an existing 4D planning CT or any respiratory nueasient data.

In Chapter 6, paired projections were used to construct ardifice signal which
formed the basis for automatically finding a partition of #et into buckets and for find-
ing a set of preliminary labels for those buckets contairidifferent” or “similar” paired
projections. Without the two-scan protocol, both of theapabilities are lost and the
search space resumes an intractable size for exhaustrehsga Consequently, while

136
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this chapter retains the objective function described inpgdda6, it proposes a different
method for searching the bucket assignment space usingloaiyyaditionally acquired
CBCT projections.

7.2 Method

The one-scan search method can be summarized as groupjagtiomas into uniformly
sized buckets and filling the search space with averageqgtiajs derived from the initial
reconstructed volume using a forward projection methode détails of these steps are
contained in this section.

7.2.1 The search space

As was discussed in Section 6.2, the correct search spaadviar-bin problem with 670
projections contains®? possibilities. In Chapter 6, the idea of bucketing was pregos
as a reasonable approximation of a correct projection asggt by assigning contiguous
projections to the same bin. The boundaries of these buaketsdetermined by exam-
ining the signal constructed from the absolute differerafethe 2D regions of interest
(obtained by projecting a “shadow” of the 3D ROI which, inndtial settings, would be
the planning target volume) of the paired projections. Bigsal is not available without
having the second scan so an alternate form of bucketingpmoged in this chapter.

Taking the respiratory motion as the “fastest” motion to beaintered - i.e. excluding
the cardiac motion from consideration - the standard range breathing period in the
literature is between four and six seconds. If a bucket sizdosen arbitrarily to cover
the number of projections acquired in half of a second, thgiven bucket will contain
approximately(670pro jectiong'120second§ 1second 2bucket$ or 2.8 projections per
bucket. If one makes a simplistic assumption that projestigill be evenly split between
bins (i.e. that folN projectionsN /2 will be assigned to each of the two bins), and if the
partition lines up ideally in the four-second case, foutiian’s worth of projections will
belong to one bin and four will belong to the other. The woestecscenario is one where
the partitions are offset in such a way that half of the priges in a bucket belong to
one bin and the other half, within the same bucket, belongempposite bin. However,
even in this case, six of the buckets can still be correcttygaed and the other two will
effectively become averaged buckets and their effect willibiformly distributed which
has been established in Chapter 4 as a useful artefact redunetithod.

Given this new bucketing approach, the size of the searatedpaa 120 second scan
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(the standard scan duration in clinical practice at the tifrtlis thesis), is approximately
2240 This it is still intractable for an exhaustive search. Aswascribed in Section 6.2.1
and shown in Figure 6.1, a single bucket assignment chanmgereate a significant score
change causing normal gradient ascent methods to get ttappecal maxima. A com-
mon response to this problem is to “hill climb” to the localximaa then restart the search
randomly in a different place. This is known as “random nedtal climbing.” Another
approach, referred to as “local beam search” by Russell amdigN[y' 3], starts with sev-
eral randomly generated states then generates all suce@ssu these states and retains
the bestk successors from all the parent states as the new parerd. statthe specific
search space under discussion, a given state is the cuueketassignment and all suc-
cessor states are those resulting from switching the assighof an individual bucket.
Both the random restart hill climbing and the local beam deatgorithms were imple-
mented with similar overall results. The simpler randomamshill climbing is reported
in the results section.

7.2.2 Forward projections

A fundamental theme of this thesis is the importance of §jlimmojection gaps with some

form of angle and patient specific averaged projection. &tto-scan case, this was
easily accomplished by averaging the paired projectiomsthé one-scan case, a new
approach is taken. Given the property of filtered backptaaaeconstructions being

an average of the projections as described in Chapter 2, &z why to generate an

average projection is to reproject the needed projectiam this volume. This method

is called “forward projection” and is a necessary step iratiee algebraic reconstruction

techniques [30, 32,43].

Turbell, in his thesis [91], compares four different for@grojection techniques: Sid-
don’s method, Joseph’s method, Kohler’'s method, and a &method. His conclusions
suggest the use of Joseph’s method because it performsxapptely the same as the
Kohler method but is less complex. Matej et al. propose aiEotwased forward pro-
jection method [52] while Long et al. [43] suggest using stnmgy they call a separable
footprint projector. These are each interesting but folf@\Einstein’s maxim that, “ev-
erything should be made as simple as possible, but no siftpleisimple method was
chosen to generate projections from the reconstructednmlo create the average pro-
jections needed for the search procedure in this chapter.

Simple forward projection constructs a ray from the souméhe virtual detector
pixel and then samples the values in the discrete volumegalwat ray using tri-linear
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interpolation. The step width of the sampling is the priatiparameter to be adjusted.
In these experiments, the sampling width was set to one gquaithe width of a voxel
(voxels are uniform and cubic in the data sets).

7.2.3 Gap filling during search

The three different gap filling methods described in Chapi@rebused in this chapter as
well. In that chapter, they were usafter a projection assignment had been determined
through external means as would be the case with a spiroroetesme other gating
mechanism. In this chapter, it is used to drive a search igthgor The intuition is that it
will smooth the scoring results by reducing the SSD erradsioed by gap artefacts. This
hypothesis is tested in this chapter by using the “averaggéptions, as described in the
previous section, to fill the gaps. As a quick review of theemnat in Chapter 5, the three
filling mechanisms used are:

Unfilled : reconstruct using only the original projections specifrethe candidate pro-
jection assignment.

Balanced fill : reconstruct using the original projections specified i ¢andidate pro-
jection assignment and fill in the gaps uniformly using upubrot more than the
number of projections specified. For instance, if a binnisgjgnment specifies 200
buckets (out of 240) should be in bin 1, then the maximum nurobéll projec-
tions will be 40, the remaining set. If, however, the binnaggignment specifies
only 50 buckets for a bin, then 50 buckets worth of fill proiecs will be added
uniformly in the gap spaces in the projection set.

Complete fill : reconstruct using the original projections specified e ¢andidate pro-
jection assignment and fill in any missing projections frdra teprojected “aver-
age” set.

From the results in Chapter 5, the expectation is that seagchithout filling will
perform more poorly than searching with filling and that tladainced filling method will
perform the best.

7.2.4 Experiments

The phantom configurations for the three classes of phantasndefined in Chapter 3,
are used in the experiments in this chapter. For each coafigar the ideal two-bin
assignment is searched for using the unfilled, balancedridl @mplete fill methods
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described immediately above. The error is calculated asetifin of correct buckets
assigned in the found bucket assignment as compared withuadtruth derived bucket
assignment. The ground truth, as elsewhere in this thesignistructed using a k-means
clustering on the tumour positions recorded during thelsgis of each phantom. Errors
are reported as a percentage of misassigned buckets.

7.3 Evaluation of results

As in Chapter 6, the phantoms and specific configurations ibescin Chapter 3 are
used to test the proposed search method. Each configuratsmaiched using the three
different filling techniques. The results for each class lditom are reported before a
final summary and conclusion is presented.

As in the previous chapter, a dot plot comparing the grouatth toucket assignment
with the found bucket assignment is shown. For each phartmee such plots can be
shown, one for each type of fill. Because of the consistencyhefrésults, only one
or two representative configurations show all three reggigphically. The complete
filling approach, which ends up being the search variantlwvgenerates the most accurate
projection assignments, is shown for all configurationse &tror rates for all results are
presented in tables for each phantom class.

Sagittal slices, as in Chapter 6, are shown for each resuist@aNy present in a qual-
itative form the achievements of the search variations.iAgacause of the consistency
between the results, only a representative (or especiatiyasting) configuration from
each class has slices from all three search methods.

What is immediately seen is that the complete fill method gererthe best solutions.
Unfortunately, a reconstructed volume containing fill patjons where gaps exist blurs
the volumetric image in the same way that an unbinned volgnéurred. Observing the
utility of the ground truth volumes which are constructeahfran assignment created by
the same oracle used throughout the thesis, the realizatibat one need not reconstruct
the finalvisualizedbinned volumes using the fill projections, one only needmtfa the
searchprocess. For this reason, the bin volumes that would be stearted for clinical
visualization are constructed using the projection assgt found with the complete fill
variation, but without performing any filling while reconstting the volumes. These are
presented next to the ground truth volumes for each of thatphzs.
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7.3.1 Simple phantom results

The Simple phantom configurations all test mostly contirslperiodic kinds of motion
but include a shift motion for case 5. See Chapter 3, Secti®foBdetailed descriptions
of the configurations.
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(c) Complete gap filling

Figure 7.1: Dot plot of bucket assignments for Simple comigjon 1. Each of the three
fill types are shown and for each result, the black dots shewgtiound truth bucket
assignment while the red dots show the bucket assignmaritingsfrom the search.

In Figure 7.1, the results show that using the complete glpgfimethod generates
very good results. In fact, only 19 buckets have been miitsbevhich is about an 8%
error rate. On the other hand both the balanced gap fillingpateand not filling gaps at
all had significant errors of 33% and 49% respectively.

The assignment shown in (a) seems to be driven by some glimlesiosdal function.
If one considers the principal shape of the object being eda@ “squashed” cylinder
with unequal axes) and the circular path of the imaging gégmtnen the attenuation
will be stronger when the (virtual) X-rays cross the widertjgd the cylinder and weaker
when they traverse the smaller axis direction. This effegipens twice as the gantry
rotates about the object. One possible hypothesis for thétrie that the search is trying
to bin “bright” projections in one bin and “dark” projectisiin the other bin to maximize
the SSD term in the objective function. This was anticipatethe previous chapter,
Section 6.2 which motivated the inclusion of the mean prdibyaberm. Examining a plot
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of the mean of (a central section of) the projections in tlisfiguration along with the
assignment, Figure 7.2, shows something interesting. Tdjegiions have been grouped
roughly into four macro-buckets and each macro-bucketaiosa balance of “dark” and
“light” projections which generates an assignment whosenstructed bin volumes have
a mean close to the global mean value. This is the “rewardattome in the objective
function. These macro-buckets also create large gap etsetfaus maximizing the SSD
component as well which is the other rewarded outcome inltfective function. Results
for the other configurations show the same effect for thisckeeariation.

The assignment shown in (b) for the balanced fill approach \dgeals a problem
with the balancing function as it has been defined above3)/.Zhis method is binning
the vast majority of the projections into one bin leavingyambery few projections, along
with a very few fill projections, to form the second bin. Thdurae reconstructed from
the first bin will obviously have a mean value similar to thelgil mean as only a small
number of “samples” have been removed from it. The seconanvelis reconstructed
from the ideal small set of projections such that the meahe¥blume is again close to
the global mean, by virtue of the careful choice of projet$idbut the gap artefacts will
be very severe again leading to a large SSD value.

Bin 2| = = .- - -

Bin 1 fee o oossenee .o o . o -

Figure 7.2: Plot of mean of projections along with the assignt found by the no-fill
search process.
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(a) Complete gap filling

Figure 7.3: Dot plot of bucket assignments for Simple comgjan 2. Only the best
result from the complete fill type is shown. Black dots show dineund truth bucket
assignment while the red dots show the bucket assignmanitingsfrom the search.

Figures 7.3,7.4, and 7.5 show the same good results for cwafigns 2-4 as was seen
in Figure 7.1 (c) for configuration 1. They also manifest tharsh pathologies for the
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(a) Complete gap filling

Figure 7.4: Dot plot of bucket assignments for Simple comgjon 3. Only the best
result from the complete fill type is shown.
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(a) Complete gap filling

Figure 7.5: Dot plot of bucket assignments for Simple comagjan 4.

unfilled and balanced fill methods discussed with Simple gondition 1. The plots for
those cases are not shown here but the error rates are régordiable 7.1. In all the
complete fill cases, the error rates are under 8%. Each of teeses share an important
characteristic: the motion modelled is continuously p#ido In Chapter 6, the two-scan
search protocol performed reasonably well with this typenofion but under performed
with shift type motion when the ground truth difference sibwas not available.

Figure 7.6 shows that, for the Simple phantom class at Ieagt,motion is handled
by the complete fill method with an error rate less than 1%,ktbst error rate of the
class. Interestingly, given the completely different tygfenotion, the effects described
before for Simple configuration 1 shown in 7.1 (b) and (c), @ present with this
configuration.

Figure 7.8 shows a complete set of sagittal slices for the Sireple configuration
results. These slices visually confirm the results showrhéndot plots of the assign-
ments above. In particular, comparing the ground truth esagn the top row with the
reconstructions in the bottom row, one sees very good agreetnough the bin repre-
sented in the left images has more blur. These volumes asFajed without filling in the
gaps but using the best assignment found using the comglateethod. In Chapter 5,
it was discovered that such reconstructions, while coimgithe gap artefacts that can
be problematic to search and registration algorithms, aneglly better from a clinical
perspective because the objects of main interest will hes® Iblur. This can be seen by
comparing the images in the bottom two rows. In both casesséime assignment has



Chapter 7 144 One Scan Searching

Bin 2 [, B

BinlF =

(a) No gap filling

Bin 2 2 B

Bin1f . 5

(b) Balanced gap filling

Bin 2 [ T

Binlf =

(c) Complete gap filling

Figure 7.6: Dot plot of bucket assignments for Simple comfigjan 5. All three fill types
are shown because this represents a new type of motion, ithenskion.

been used to drive the binned volume reconstructions, btaw, the gaps have been
filled while in row 5, they have not been filled.

HEele

(a) Ground truth

HHele

(b) Reconstruction without gap filling using assignmentidwith complete fill

Figure 7.7: Representative sagittal slices from the refmitSimple configuration 2. See
Figure 7.8 for a description of the columns. The rows hereesmpond to the top and
bottom rows in that figure.
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(a) Ground truth

(b) No filling results

(c) Balanced fill results

(d) Compilete fill results

HE ee

(e) Reconstruction without gap filling using assignmentnidwith complete fill

Figure 7.8: Representative sagittal slices from the resaftSimple configuration 1.

Each row contains, from left to right, the full sagittal glifor bins 1 and 2 then the
magnified sub-slices (identified with the light square). Tty row contains the ground
truth obtained from the recorded positions of the movingeobpf interest. The second
row contains the results of searching without any fillinggass. The third row contains
the results of attempting to use a balanced filling methode fBlirth row contains the
results from using the complete fill method. The final row sbdiae results of using the
assignment found using the complete fill method, but recoathg the binned volumes
without the fill projections.
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11 ee

(a) Ground truth

2200

(b) Reconstruction without gap filling using assignmentfdwith complete fill

Figure 7.9: Representative sagittal slices from the resuitSimple configuration 3. See
Figure 7.8 for a description of the columns.

I Zee

(a) Ground truth

I Eee

(b) Reconstruction without gap filling using assignmentfdwith complete fill

Figure 7.10: Sagittal slices from the volumes generatechbyrésults from the Simple
configuration 4 experiment.

Figures 7.8, 7.7, 7.9 and 7.10 qualitatively show the redoit the one-scan search
on Simple configurations 2, 3, and 4. These show the searchecanccessful on con-
tinuously periodic motion for both large and small tumowresi and for large and small
motion ranges.

Figure 7.11 shows the interesting set of sagittal sliceSiimple configuration 5 which
models the shift motion of the object 50% of the way through sbhan. This class of
motion caused the two-scan search method in Chapter 6 torpedoorly, but here it
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performs well with an error rate under 1%. In this figure, e tow showing the ground
truth, the bottom row showing the best reconstruction regmeation, and a middle row
showing one of the under performing methods (balanced fid)skhown. Visually, the
reconstruction using the results from the complete fill dearty superior to the results
from the balanced fill search method.

L Eee

(a) Ground truth

IEee

(b) Balanced fill results

g ee

(c) Reconstruction without gap filling using assignmentifdwith complete fill

Figure 7.11: Sagittal slices from the volumes generatechbyrésults from the Simple
configuration 5 experiment. See Figure 7.8 for a descriggfdhe sub-figures.

Table 7.1 gives the tabulated results as percentage effrtire three different search
variations for the Simple phantom set. The advantage ofdah®pétete fill approach shown
in the fourth column is clear from this table. The highesbefor that gap filling technique
Is 7.9% whereas the lowest error percentage for the othemetbods is 32.9%.
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Phantom configuration No fill | Balanced Complete
Simple 1 48.8 32.9 7.9
Simple 2 46.7 37.5 7.9
Simple 3 47.9 38.3 6.7
Simple 4 45.4 43.3 54
Simple 5 50.0 48.8 0.4

Table 7.1: Percentage of errors for Simple phantoms by dapdihod.

7.3.2 Animated phantom results

The Animated phantom configurations all show different kinél shift motion occurring
at different positions and amplitudes. See Chapter 3, Se8tibfor detailed descriptions
of the configurations.

Bin 2 e

Binl1lf =

(a) No gap filling

Bin 2 . =

Bin 1. B

(b) Balanced gap filling

Bin2f =

Bin1f f

(c) Complete gap filling

Figure 7.12: Dot plot of bucket assignments for Animatedfigomation 1.

The bucket assignments shown in Figure 7.12 are consistiémtwhat is seen in
Figure 7.1 In particular, the results generated by the exfiind balanced gap filling
methods show the same kind of errors. These errors are, he rase with the Simple
phantoms, consistent for the Animated phantoms as is showalle 7.2.
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Bin 2 [, f

Binlf =

(a) Complete gap filling

Figure 7.13: Dot plot of bucket assignments for Animatedfigumation 2.

Bin 2 5

Bin 1 B

(a) Complete gap filling

Figure 7.14: Dot plot of bucket assignments for Animatedfigumation 3.

Bin 2 {2 .

Bin 11 ome -

(a) Complete gap filling

Figure 7.15: Dot plot of bucket assignments for Animatedficumation 4.

Figures 7.13, 7.14, and 7.15 all show good agreement witlyribkend truth assign-
ment though the Animated configuration 4 starts to incur serm@s. This configuration
was explicitly included as a boundary test case to test thestoess of decreasing bin pro-
jection percentages. As fewer and fewer projections in tmepdete scan are attributable
to a second motion state, the reconstructed volume for thahbreasingly looks more
like the global reconstruction than one capturing a distatate. With the complete fill
method, implicitly the projections that do not come from thaginal data set will come
from the averaged (forward projected) set. In this paréicabse, 70% of the projections
for one of the bins are coming from the average set and only &@%6oming from pro-
jections that truly capture the motion in that particulatst The impact of that is seen
qualitatively in Figure 7.19 and in the sudden jump in th@erate in Table 7.2.
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(b) Reconstruction without gap filling using assignmentidwith complete fill

Figure 7.16: Sagittal slices from the volumes generatedhbydsults from the Animated
configuration 1 experiment.

(a) Ground truth

(b) Reconstruction without gap filling using assignmentfdwith complete fill

Figure 7.17: Sagittal slices from the volumes generatedhbyedsults from the Animated
configuration 2 experiment.

Figures 7.16, 7.17 and 7.18 all qualitatively show good lteftom the search. Of
particular note is configuration 3 which shows a small movane the object. One
of the early concerns with the approach that forms the bdsiseosearch in both this
chapter and Chapter 6 was that small movement would not genenaugh difference
information for the SSD metric to be of use. These resultspmunction with the results
for the Simple phantom cases 2 and 3, show that this is notabe at least for these
phantom classes.
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Figure 7.19 qualitatively shows what happens when thera imsufficient number
of projections belonging to a bin. The bin slice on the legpresented with 70% of the
projections, is well defined while the slice from the other bn the right contains a mix
of projections and with only 30% of the projections from tlegrect bin contributing to
its reconstruction, any erroneous projection assignnienis a relatively greater impact
on the reconstruction.

(a) Ground truth

(b) Reconstruction without gap filling using assignmentidwith complete fill

Figure 7.18: Sagittal slices from the volumes generatedhbydsults from the Animated
configuration 3 experiment.
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(e) Reconstruction without gap filling using assignmentfbwith complete fill

Figure 7.19: Sagittal slices from the volumes generatedhbydsults from the Animated
configuration 4 experiment.
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Phantom configuration No fill | Balanced Complete
Animated 1 42.1 50.0 0.0
Animated 2 39.6 49.6 0.4
Animated 3 49.2 49.2 0.4
Animated 4 33.8 30.4 14.6

Table 7.2: Percentage of errors for Simple phantoms by dapdthod.

The results seen in Table 7.2 above confirm the utility of #egsh method using real
projections from a CBCT system. They also demonstrate thatasitiber of projections
from one motion state decreases, the fidelity of the residts decreases. In the the
configuration 4 test case, this resulted in a clear recortgtruof one bin but a poor

reconstruction of the second bin.

7.3.3

The NCAT phantom configurations all show different kinds afitbauously periodic mo-
tion occurring at different anatomical positions. See CéaBt Section 3.5 for detailed

NCAT phantom results

descriptions of the configurations.

Bin 2

Bin 1

Bin 2

Binlf

Bin2

Bin 1

Figure 7.20: Dot plot of bucket assignments for NCAT configjoral. Each of the
types are shown and for each result, the black da& $he ground truth bucket
assignment while the red dots show the bucket assignmaritingsfrom the search.

three fill

(c) Complete gap filling



Chapter 7 154 One Scan Searching

The bucket assignments shown in Figure 7.20 are no longesistent with what is
seen in earlier dot plots for the other phantom types. Inqaar, the results generated by
the balanced fill methods show a more uniform scattering okéuassignments instead
of the kind of assignments seen with the Simple and Animakethfpms wherein most
buckets are assigned to one bin and a small number are ags@tiee other bin. The
same kind of assignment exists for the balanced fill and edfilearches in the other
NCAT phantoms and will be reported numerically in Table 7.8rmt shown in the dot
plot figures. The previous best case, from the complete filawé, shows some regions
of correctness but an overall error of almost 29% shows tiesearch algorithm is not
accurate for this particular configuration. This is visya@emonstrated in Figure 7.24 as
well. One observation to be made is that the total range ofomag shown to be small
in the upper portion of the lung and this is in agreement with ltterature. The earlier
assessment of success with small motion ranges for the &iamal Animated test cases
does not hold in this case.
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(a) Complete gap filling

Figure 7.21: Dot plot of bucket assignments for NCAT configiora2. Only the best
result from the complete fill type is shown.
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(a) Complete gap filling

Figure 7.22: Dot plot of bucket assignments for NCAT configjora3.
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(a) Complete gap filling

Figure 7.23: Dot plot of bucket assignments for NCAT configjora4.



Chapter 7 155 One Scan Searching

The dot plots of the bucket assignments in Figures 7.21 a@&iagain showed poor
performance with error rates of about 43% and 50% respégtiVae sagittal slice sam-
ples in Figures 7.25 and 7.26 visually display the impachefgoor search results.

(e) Reconstruction without gap filling using assignmentnfbwith complete fill

Figure 7.24: Representative sagittal slices from the resaltNCAT configuration 1. See
Figure 7.8 for a description of the images.
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(a) Ground truth

==RD

(b) Reconstruction without gap filling using assignmentidwith complete fill

Figure 7.25: Representative sagittal slices from the resotNCAT configuration 2.

(b) Reconstruction without gap filling using assignmentidwith complete fill

Figure 7.26: Representative sagittal slices from the re$oittNCAT configuration 3.
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(a) Ground truth

)
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(b) Reconstruction without gap filling using assignmentidwith complete fill

Figure 7.27: Representative sagittal slices from the re$otNCAT configuration 4.

NCAT configuration| No fill | Balanced| Complete
NCAT 1 45.0 49.6 28.8
NCAT 2 325 45.0 42.9
NCAT 3 49.2 48.3 49.6
NCAT 4 47.9 20.0 8.3

Table 7.3: Percentage of errors for NCAT phantoms by gapdithrethod.

The results seen in Table 7.3 shows that one-scan searchrsaaly yet for clinical
testing. The complete filling method achieves good resulise fourth case where a large
tumour is simulated, and shows better accuracy than the otathods in the first case.
Its performance on cases 2 and 3, however, is close to thevachwith a purely random
assignment.

7.4 Conclusions

The initial hypothesis, that gap-filling would improve treasch performance when com-
pared with not filling the gaps, was shown to be true for twchefphantom classes. The
surprise was that the superior method in Chapter 5, balanitedds not the superior
method here. From the perspective of the search algoritled here, the complete fill
method was clearly superior. The third phantom class, thigatlanthropomorphic NCAT
phantom, yielded unacceptable results however.
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If the NCAT results are compared with the results for the saordigurations from
Chapter 6, something interesting emerges. For the complleteefihod of searching in
the one-scan case, the effect is similar to the search meathtbe two-scan case: both
construct candidate volumes from a complete set of prajestderived from the origi-
nal projections and a set containing angle-specific, pasipacific and even treatment-
specific averages. The differences are in how the averagecfioms are constructed and
how the projection space is partitioned. In the two-scae cf® average projections are
exactly that. They are pixel-wise averages of the paireeptions. In the one-scan case,
a more complex method is involved requiring a filtered bacjgmtion reconstruction fol-
lowed by the forward projection process. The filtered bacjgmtion reconstruction of
cone-beam projections is not exact [93] especially as oneemaway from the central
plane containing the orbit of the X-ray source [32]. Couplethvperhaps an overly
simple forward projection method which generates aliasirigfacts and the decision to
median filter the projections to reduce scatter noise, tleeabvsystem appears to be pro-
ducing insufficient averaged projections in the NCAT casertso, the search method is
very successful in the other two phantom cases which is @iomi Furthermore, if one
looks at the results of using the true averaged projectiotisa two-scan tests, it is shown
that the search idea itself is viable. This lends credentkeadypothesis of insufficient
average projections for the one-scan case, at least forlegropnfigurations.

The other principal difference between the reasonablyessfal results for the NCAT
phantom using the two-scan approach and the results obitaitiethe one-scan approach
is in the partitioning. Given the observation that the umrfgpartitioning of the one-
scan approach succeeded on the Animated phantom set whitevdhscan partitioning
algorithm requires additional work, one can conclude thafiartitioning method is much
less likely to be the cause of high error rates for the NCAT pdranset in this chapter.
It also suggests that some variation of the uniform partitig algorithm used for the
one-scan approach may solve the problems encounteredavithgning on the data sets
involving shift motions in the two-scan approach.

A further consideration is in the difference in complexitgtlveen the Simple and
Animated phantom sets and the NCAT phantom set. In the Sinmgledaimated cases,
a single high-contrast object is moving against a uniforckijeound. In the NCAT case,
other moving objects (heart) and high density objects (dizphragm) have the potential
to disrupt the search algorithm. Techniques exist to ghrtampensate for these effects
(see [2,31]) but the fact that the two-scan approach wasmneddy successful implies that
they may be unnecessary. Further work is needed to verifythiegorincipal issue is the
forward projection process and to experiment with otherawobust techniques to see if
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the error rate for the NCAT test suite can be reduced befonecalitesting is warranted.

Comparing the two search methods, the one-scan method trddene and the two-
scan method in Chapter 6, there is no clear “winner.” Giverdaalibucketing, the two-
scan method outperforms the one-scan method in the magdribe test cases. With the
current bucketing algorithm, it is on par with the one-scagthod for the continuously
periodic Simple test cases and outperforms it on the aveuageur size NCAT phantoms.
Itis significantly faster than the one-scan method becdiesaveraging step is just a pixel-
wise average whereas the one-scan method requires a meotiost and then each of the
670 projections must be constructed with a forward prapectFurthermore, the two-scan
search method is exhaustive or semi-exhaustive (when itchaplit the search space)
while the one-scan relies on a random restart to find the @pswlution. The two-scan
search is therefore theoretically more reliable than the-swan as a search method. In
contrast, the one-scan search method is successful omsdtitins which was identified
in Chapter 2 as the missing motion in current compensatioimaadstand therefore the
main opportunity for this research. The Animated data seays under performed in
the two-scan search with its current partitioning metho@rehs the one-scan search was
successful on this data. The principal advantage of thesoaa-approach is its use of the
existing CBCT protocol.
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Conclusions and Future Work

8.1 Summary and novel contributions

In Chapter 2, cone beam computed tomography was introducke icontext of radio-
therapy. A review of the relevant biology and physics nemgst understand the modal-
ity and some of the problems was presented and then followddan overview of the
clinical concepts and terminology of radiotherapy in gahand CBCT specifically. Mo-
tion compensation is a significant area of research and theneich overlap with work
that has been done in 4D CT, important work done in this areargtaswed and an un-
addressed gap in the research was identified. To precisehedbis research gap, new
terminology was introduced to distinctly classify diffatéypes of motion. These classes
were coined continuously periodic motion, shift motiond aliscrete motion.

In Chapter 3, three different phantom classes were discusstdpecific test config-
urations were described. These phantom configurations thereused throughout the
thesis. A digital phantom constructed analytically wadechh Simple virtual phantom.
A unique hybrid form of phantom was introduced in this chgptee Animated physical
phantom. This novel phantom consists of a physical phankahis sampled at differ-
ent positions and which can be virtually animated in an eabjtfashion along the path
the samples are acquired. The benefit of such a phantom j@gpetien used for CBCT
studies, is that a small number of scans can be used to gea@raktremely large number
of virtual scansif® wheren is the number of samples apds the number of projections).

160
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A final type of phantom, the digital anthropomorphic NCAT ptwan developed at John
Hopkins Medical Institutions was also described.

In Chapter 4, the existence and causes of various kinds daettevere reviewed in
preparation for a discussion of a particular type of arteféhis artefact, coined gap arte-
facts, is a significant problem observed in filtered baclgmtipn reconstructions when
projections are binned. The artefact was defined as a spsgbidass of under sampled
artefacts and experiments were performed which quantdyrttluced errors. In support
of these experiments, the use of k-means clustering on arkiotject’s positions as an
“oracle” for correct binning was introduced.

In Chapter 5, two methods are proposed and evaluated foratiitgythe impact of
them on the reconstruction effort. One method used the atdngingle-scan protocol
while the second method introduced a novel two-scan pratéaxh of these methods in
turn used two different approaches, balanced fill and comfik, to fill the gaps. The
projections used in both approaches consisted of patiagte aand treatment-specific
averages.

Chapter 6 introduced the core contribution of the thesisaecbemethod for assigning
a bin label to each projection without the use of any prior el@d correlating signal/data.
The search space was identified, an objective function todbemized was proposed, and
then a series of techniques were described and used to enfijcreduce the size of the
search space. PCA was used in a novel fashion as a prepartaiotyg sicrease the overall
computational performance of the filtered backprojectieconstruction step. A second
novel contribution was the proposal to modify the scannirajqeol to include two scans
rather than the standard single scan. The advantages aulaiiages of this change
were explained in the chapter.

Chapter 7 used several of the ideas in Chapter 6 but applied thehe standard
single-scan protocol. This required the development ofvasearch method. A random-
restart hill climbing method was chosen and justified, sEvetperiments are performed,
and the results were presented and analysed. The two megttesisited in Chapter 6 and
Chapter 7 were subsequently compared.

8.2 General conclusions

The principal goal of this work was to find a mechanism for itffging motion states in
CBCT projections without the use of a prior model or correlaigdas. This has been
partially achieved in the two-binning case. The generalctemethod used in Chapters 6
and 7 balances the overall difference between the volumesrged at each search step
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against their fundamental statistical property, the sinty of their means with the mean
of the globally reconstructed volume. Where it performs epbmally, comparisons with

other cases indicated that the cause was not with the seatetith some ancillary step
such as the patrtition estimation in the two-scan method efdhward-projection in the

one-scan method.

The partition estimation step in the two-scan search wawistio be effective for
continuously periodic motion but ineffective for shift nmts. The forward-projection
step in the one-scan search did not cause any problems witSithple and Animated
phantom classes, but is hypothesized to be a cause of thepenideming results with
the NCAT phantom.

For shift motion, the beginning of poor performance was seéme 70/30% split case.
Small motion changes of approximately 5 mm for both shift andtinuously periodic
motion types were detected by the one-scan search method.

In both the one-scan and two-scan approaches, searchirgglfioming assignment
is made possible by the use of the computational gains whsanséructing candidate
volumes. In standard backprojection reconstruction nathevhich are much faster than
algebraic methods and hence form the basis for most depéy@gment, a single volume
reconstruction requires on the order of minutes to compR#&xonstructing volumes by
averaging together sets of eigenspace vectors can be dd/feglad on a computer with
a 2.80 GHz Intel Core i7-860 CPU and 8 GB of RAM in less than 0.0@4rs@s. This
comes at an initial overhead cost to read in the previoustkfrajected volumes of 19.2
minutes from an internal hard drive (one-scan case) or 42rfuites from an external
USB 2.0 hard drive (two-scan case). Once read in and clippede ROI region, the
PCA process takes approximately 5 seconds. For the sake efiegntation, complete
backprojection volumes were stored on the hard drives. alkgrojection process takes
approximately 26 minutes, the majority of which is the diskess time. In a real ap-
plication, only the ROI-clipped sub-volume would be stooedthe hard disk or possibly
retained in RAM which would significantly speed up the init&krhead.

Using the NCAT phantom configuration 3, the performance obite-scan and two-
scan search methods can be compared. For the one-scanheaseatch duration was
285.4 seconds. For the two-scan case, the search duratsohlw&seconds. In each case,
many thousands of reconstructions are needed (more forrnbes@an random search
method, less for the difference-signal informed two-scasthod). Without the com-
putational performance improvements generated by ROpicljpand PCA, the search
methods would require many hundreds of hours. With theseesitiies, the worst-case
search, including the construction of individual backpotions, can be performed in less
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than two hours. Optimizing the methods by keeping clippezkpeojections in RAM and
parallelizing both the backprojection and search processrild dramatically improve
performance.

8.3 Future work

The most promising route of continued research is with theesoan search method. Im-
plementing a more sophisticated forward projection atpariand evaluating the need for
the median filtering step are the principal activities regai Should these be insufficient
for successfully finding search solutions to the NCAT phantest cases, techniques to
remove the high density objects should be considered.

If the one-scan search improvements are still considedfinient then the uniform
partitioning used with that method should be applied to We-$can search method to
determine its sufficiency with respect to shift motion.

If the improvements to either the one-scan or two-scan kearenable them to per-
form adequately on all data sets, then an iterative apprcacihe considered with respect
to the number of bins. By first binning into two bins, each oktabins may possibly sup-
port further binning into two more bins for a total of four birSplitting the projection set
into 4 bins implies an upper bound on the smallest bin cour256b of the projections.
The Animated test configuration 4, where shift motion ocediat the 70% point, showed
some degradation in accuracy so lowering the projectiomicsam 30% to 25% (best
case for at least one of the bins) may prove problematic. dh¢hse, the techniques in
common use with other research described in Chapter 2, ngmeédigrming a B-spline
registration and then using that registration to deformptmections from bin 1 to fit
bin 2 may prove useful.

One class of tumours that are likely to cause both searchaudetto underperform
are the low-contrast tumours visualized without any cattraedium. As part of the
validation step for any performance improved search algor,these test cases should be
added with varying degrees of contrast evaluated.

The algorithms implemented in this thesis made heavy useaaf Hisk resources
as a way of saving state and facilitating the extraction afessary plots and images to
document performance and accuracy. These disk accesshe amtleneck to the overall
system performance and most of the largest disk accessé®aamoved. Additionally,
most of the pre-processing on the projections is indepdrafether projections and can
be parallelized very easily. Likewise, the multi-restaature of the one-scan search and
the sequential nature of the two-scan search make them @otidates for parallelization.
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Given the push for “cloud computing” applications, the islexpressed here are natural
candidates for such an implementation and results needi itimeframe required for
clinical protocols is achievable.

Finally, the application goal of all of this work is to enaldellaborative studies with
a team of clinicians so that discovered tumour motion carobepared with expected tu-
mour motion. The knowledge gained by this clinical reseanely help to better quantify
the margins used in planning the radiotherapy and betteginsawill lead to reduced dose
to healthy tissues and increased dose to the target tidRadscing the dose to healthy tis-
sues reduces the risk of DNA damage which in turn reducesskef radiation-induced
secondary cancers. Increasing the dose to the target isseases the likelihood of suc-
cessfully killing the tissue and avoiding reoccurring camdrichard Hamming is quoted
as saying, “the purpose of computing is insight, not numbeéwsill conclude the report-
ing of this work by paraphrasing him: the purpose of this aesle is better health, not
numbers.
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