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Abstract	

	

Total	 disc	 replacements,	 are	 valuable	 interventions	 for	 the	 spinal	 surgeon	 for	 the	

treatment	 of	 back	 pain	 associated	 with	 degeneration	 of	 the	 intervertebral	 disc.	 The	

longevity	of	these	devices	is	compromised	by	wear	and	there	are	growing	concerns	within	

the	 neurosurgical	 community	 regarding	 the	 exposure	 of	 periprosthetic	 tissues	 to	metal	

particles	 and/or	 ions.	 Considering	 the	 potential	 for	 metallic	 wear	 debris	 and	 ions	 to	

trigger	 inflammation,	 genotoxicity,	 cytotoxicity,	 hypersensitivity	 and	 pseudotumour	

formation,	 coupled	 with	 evidence	 that	 nanoscale	 metal	 particles	 can	 compromise	 the	

barrier	 function	of	 the	outer	meningeal	 layer,	 it	 is	 imperative	to	determine	the	effects	of	

metallic	wear	particles	on	cells	of	the	spinal	cord.	It	was	hypothesised	that,	utilising	a	3D	

type-I	collagen	gel,	enabling	glial	cells	to	behave	in	a	more	physiologically	relevant	manner	

than	when	cultured	in	monolayer,	the	effects	of	increasing	concentrations	of	metallic	wear	

particles	 on	 glial	 cell	 viability,	 cellular	 reactivity,	 and	 cytokine	 release	 could	 be	 more	

accurately	determined.	

	

Clinically	relevant	cobalt	chrome	and	stainless	steel	wear	particles	were	generated	using	a	

six-station	pin-on-plate	wear	simulator.	Initially	in	2D	culture	C6	glial,	PC12	neuronal	cells	

and	 primary	 astrocytes	 with	microglia	 were	 cultured	with	 increasing	 concentrations	 of	

metallic	 particles	 (0.05µm3-50µm3	 debris	 per	 cell)	 and	 their	 effect	 on	 cell	 viability	 and	

DNA	integrity	assessed.	Using	a	more	physiologically	relevant	3D	culture	environment	the	

effects	 of	 increasing	 metallic	 particles	 (0.5µm3-50µm3	 debris	 per	 cell)	 on	 cell	 viability,	

cellular	 activity	 and	 cytokine	 expression	 were	 investigated	 using	 live/dead	 staining,	

immunocytochemistry	and	an	enzyme	linked	immunosorbent	assay,	respectively.		

	

This	 study	 highlighted	 the	 necessity	 for	 appropriate	 cell	 culture	 environments	 in	

biomaterial	 biocompatibility	 testing.	 In	 2D	 culture	 all	 cobalt	 chrome	 particle	 doses	

triggered	significant	reductions	 in	primary	astrocyte	and	microglia	viability,	however,	 in	

3D	 culture,	 cobalt	 chrome	 particles	 (30-39nm	 in	 length)	 only	 adversely	 affected	 the	

viability	of	primary	astrocytes	and	microglia	in	co-culture	when	cultured	with	the	highest	

cobalt	 chrome	 particle	 dose	 (50µm3	debris	 per	 cell)	 after	 two	 and	 five	 days	 in	 culture	

(41.8%	and	54.2%	viable	cells,	respectively)	and	with	5µm3	debris	per	cell	after	five	days	

in	culture	(70.5%	viable	cells).	In	2D	culture,	after	24	hours	in	culture	0.5µm3,	5µm3	and	

50µm3	 stainless	 steel	 particles	 per	 cell	 caused	 significant	 reductions	 in	 cell	 viability	

(38.8%,	38.9%	and	24.9%	reductions	respectively)	however,	no	adverse	effect	on	viability	

was	 observed	 in	 3D	 culture.	 Ions	 released	 from	 cobalt	 chrome	 caused	 significant	
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reductions	 in	 astrocyte	 viability	 (in	 isolation)	 at	 all	 doses	 after	 two	days	 in	 culture,	 this	

effect	 was	 not	 as	 pronounced	 after	 five	 days.	 Ions	 from	 cobalt	 chrome	 particles	 only	

caused	 adverse	 effects	 on	 the	 viability	 of	 astrocytes	 and	microglia	 after	 five	 days	 at	 the	

5µm3	per	 cell	 ion	 concentration	 in	 3D	 culture.	 Ions	 released	 from	 stainless	 steel	 caused	

significant	 reductions	 in	 astrocyte	 viability	 (in	 isolation)	 at	 all	 doses	 after	 five	 days	 in	

culture.	 Stainless	 steel	 ions	 caused	 adverse	 effects	 on	 the	 viability	 of	 astrocytes	 and	

microglia	 after	 five	 days	 with	 the	 50µm3	per	 cell	 ion	 concentration.	 DNA	 damage	 was	

observed	 with	 both	 astrocytes	 and	 microglia	 and	 astrocytes	 in	 isolation	 with	 both	

biomaterials	 tested.	 Intriguingly,	when	glial	cells	were	cultured	with	stainless	steel	wear	

particles,	the	DNA	damage	observed	did	not	correlate	with	cell	death.	Increasing	particle	

volumes	of	cobalt	 chrome	did	not	 trigger	 the	release	of	TNF-a,	however	50µm3	stainless	

steel	debris	per	 cell	 caused	 the	 release	of	 significantly	 elevated	 levels	of	TNF-a	 after	48	

hours	 in	 culture	 (29.9	pg.ml-1).	 Stainless	 steel	wear	particles	did	not	 stimulate	 astrocyte	

reactivity	 unlike	 cobalt	 chrome	 wear	 products,	 which	 had	 a	 dose	 dependent	 affect	 on	

astrocyte	activation.	The	effect	was	more	pronounced	 in	 the	presence	of	microglia.	Thus	

the	 use	 of	 3D	 culture,	 whereby	 glial	 cells	 behaved	 in	 a	 more	 physiologically	 relevant	

manner,	with	a	 low	baseline	of	 reactivity	and	more	 representative	of	 the	 in	vivo	 cellular	

spatial	arrangement	was	a	more	appropriate	cell	culture	environment	for	determining	the	

biological	 response	 of	 cells	 of	 the	 central	 nervous	 system	 to	 metal	 wear	 particles.	 The	

results	 from	 this	 study	 would	 suggest	 that	 stainless	 steel	 is	 more	 biocompatible	 than	

cobalt	chrome.			
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Chapter	1	

Introduction	

	

1.1	Spinal	anatomy	and	biomechanics		

The	 spine	 is	 a	 complex	 columnar	 structure,	 encompassing	 hard	 and	 soft	 tissue	

components.	 The	 vertebral	 column	 supports	 the	 head,	 enables	movement	 of	 the	 upper	

limbs	and	protects	the	spinal	cord	from	damage.	The	spine	serves	as	a	rigid	support	but	

must	also	be	 flexible	 to	allow	movement	of	 the	neck	and	back.	The	segmental	nature	of	

the	 spinal	 column	 and	 presence	 of	 intervertebral	 discs	 is	 ideally	 suited	 to	 this	

multipurpose	nature.	The	spine	is	comprised	of	33	vertebrae.	The	first	24	vertebrae	have	

intervertebral	 discs	 between	 them,	 whilst	 the	 remaining	 nine	 vertebrae	 are	 fused	 and	

have	no	discs.		The	spine	is	categorised	into	five	morphologically	distinct	regions;	cervical,	

thoracic,	 lumbar,	 sacral	 and	 coccygeal.	 In	 an	 adult	 spine	 there	 are	 seven	 cervical	

vertebrae	(C1-C7),	twelve	thoracic	vertebrae	(T1-T12)	and	five	lumbar	vertebrae	(L1-L5)	

(Figure	1.1).	The	next	five	bones	are	fused	together	and	are	named	the	sacrum,	with	the	

remaining	 four	 bones	 making	 up	 the	 coccyx.	 The	 morphology	 and	 function	 of	 the	

vertebrae	 differ	 along	 the	 length	 of	 the	 spine.	 The	 cervical	 vertebrae	 allow	 maximum	

flexibility	and	range	of	motion	for	the	head	(Kurtz	&	Edidin,	2006).	The	thoracic	vertebrae	

support	the	ribs	and	enable	flexibility	of	the	spine.		The	lumbar	vertebrae	are	the	largest	

and	strongest	of	the	vertebral	bodies	and	are	optimised	for	structural	support.	

	

Each	vertebra	is	predominantly	comprised	of	cancellous	bone	with	a	thin	outer	vertebral	

shell.	 Each	 vertebra	 consists	 of	 an	 anterior	 portion,	 the	 vertebral	 body,	 which	 resists	

compression	under	load.	The	vertebral	body	is	the	largest	part	of	a	vertebra,	cranially	and	

caudally	 it	 is	 flat.	 The	 posterior	 regions	 of	 the	 vertebrae	 form	 a	 vertebral	 arch	 (Figure	

1.2).	The	vertebral	arch	comprises	two	pedicles	(short	processes	that	extend	out	from	the	

side	 of	 the	 vertebral	 body),	 two	 laminae	 (broad,	 flat	 plates	which	 extend	 out	 from	 the	

pedicles	 joining	 in	 a	 triangular	 conformation,	 yielding	 a	 hollow	 vertebral	 foramen)	 and	

seven	processes;	spinous	process,	transverse	process,	superior	articular	process,	inferior	

articular	 process,	 mammillary	 process,	 accessory	 process	 and	 uncinate	 process.	 The	

function	of	the	vertebral	arch	is	to	protect	the	spinal	cord	and	facilitate	motion	by	offering	

anchorage	for	muscle	attachment	(Martini	&	Nath,	2008).		
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Figure	1.1	The	cervical,	thoracic,	lumbar,	sacral	and	coccygeal	regions	of	the	adult	spine.	

The	 vertebrae	 are	 designated	 C1-C7,	 T1-T12,	 L1-L5	 in	 the	 cranial	 to	 caudal	 direction	

(Gray,	1918).		
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Figure	1.2.	 Anatomy	of	 a	human	 cervical	 vertebra.	The	processes,	 pedicles,	 lamina	 and	

vertebral	body	(Gray,	1918).		

	

Cervical	 vertebrae	 are	 the	 smallest	 vertebrae	 in	 the	 vertebral	 column.	 The	 body	 of	 a	

cervical	vertebra	 is	 small	 and	 is	broader	 from	side	 to	 side	 than	 from	 front	 to	back.	The	

first	 cervical	 vertebra,	 the	 atlas,	 has	 no	 body	 or	 spinous	 process	 and	 is	 considerably	

different	in	shape	to	the	majority	of	the	remaining	vertebra.	The	atlas	is	a	ring-like	bone	

comprising	an	anterior	and	posterior	arch	and	two	lateral	masses	(Figure	1.3).	The	atlas,	

along	with	C2,	the	axis,	forms	a	joint	connecting	the	skull	with	the	spine.		

	

The	thoracic	vertebrae	support	the	ribs	and	enable	flexibility	of	the	spine.		The	vertebral	

bodies	 in	 this	 region	are	 roughly	 cylindrical	 in	 shape.	The	upper	 thoracic	vertebrae	are	

similar	 in	shape	to	those	of	the	cervical	vertebrae.	The	mid	thoracic	vertebrae	are	heart	

shaped	 and	 the	 lower	 thoracic	 vertebrae	 are	 kidney	 shaped,	 similar	 to	 the	 lumbar	

vertebrae	 (Watson	 et	 al.,	 2008).	 The	 lumbar	 vertebrae	 are	 the	 largest	 in	 the	 spine	 and	

enable	larger	loads	to	be	sustained.		

	

It	is	crucial	to	understand	the	anatomy	and	biomechanics	of	the	spine	in	a	healthy	system,	

in	order	to	treat	spinal	pathologies	appropriately.	The	biomechanics	of	the	spine	has	been	

widely	 researched	 and	 information	 regarding	 spinal	 stability,	 torque	 resistance,	

intervertebral	 pressure	 and	 load	 bearing	 are	 readily	 available	 (Benzel,	 2001;	 Adams	&	

Dolan,	2005;	Winkelstein,	2012;	Poitout,	2016).		

	

	

Vertebral	arch	

Vertebral	foramen	
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Figure	1.3	The	atlas	is	the	first	cervical	vertebra	of	the	cervical	spine.	This	vertebra	has	

no	body	or	spinous	process	(Gray,	1918).	

	

The	curved	nature	of	 the	spine	 is	designed	to	bear	 load	as	 it	evenly	distributes	the	 load	

along	the	vertebral	column.	The	weight	of	the	body	is	transmitted	through	the	vertebral	

column	to	the	hips	and	lower	limbs.	However,	as	most	of	the	body	weight	lies	anteriorly,	

the	spinal	curvature	brings	the	weight	in	line	with	the	body’s	axis.		

When	describing	movement	within	 the	 spine,	 a	 tri-axis	 coordinate	 system,	utilising	 x,	 y	

and	 z-axes,	 is	 employed	 to	 explain	 displacements.	 The	 spine	moves	with	 six	 degrees	 of	

freedom:	 flexion	 extension	 (angular	movement	 in	 the	 sagittal	 plane	 around	 the	 Y-axis),	

lateral	bending	(angular	movement	 in	the	frontal	plane	around	the	X-axis),	axial	 torsion	

and	traction	(angular	movement	 in	the	transverse	plane	around	the	Z-axis)	(ISO	18192-

1).	 Together	 with	 the	 intervertebral	 discs,	 facet	 joints	 also	 enable	 motion,	 have	 load-

bearing	capability	and	move	with	six	degrees	of	freedom;	(Smith	&	Fernie,	1991).	These	

facet	 joints	are	 typical	diarthrodial	 joints	possessing	cartilage	surfaces,	which	provide	a	

low-friction	interface	to	allow	motion	in	a	healthy	spine	(Jaumard	et	al.,	2011).	During	full	

extension	of	the	spinal	column,	the	lower	facet	joints	have	been	reported	to	support	16	%	

of	the	applied	load	and	resist	torsion	due	to	their	bony	interactions.		

Upon	axial	loading	of	the	vertebral	column,	axial	compression	of	the	intervertebral	discs	

occurs.	If	the	load	is	not	applied	to	the	body’s	centre	of	rotation,	the	vertebral	column	will	

bend	to	take	the	load.		

1.2	The	healthy	intervertebral	disc	

A	 functional	 spinal	unit	 is	 comprised	of	 two	vertebrae	and	an	 intervertebral	disc	and	 is	

the	 smallest	 physiological	 motion	 unit	 of	 the	 spine.	 The	 intervertebral	 disc	 (IVD)	 lies	

between	adjacent	vertebrae	and	links	them	together.	The	role	of	the	IVD	is	mechanical	in	
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Transverse	
Process	

Anterior	tubercle	

Foramen	
transversarium	
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nature,	allowing	the	persistent	transmission	of	load,	arising	from	body	weight	and	muscle	

activity	 within	 the	 spinal	 column,	 enabling	 3D	 motion	 (Raj,	 2008).	 The	 intervertebral	

discs	enable;	bending,	flexion	and	torsion	by	providing	flexibility.	The	intervertebral	disc	

is	a	complex	structure	comprised	of	three	regions;	the	gelatinous	nucleus	pulposus	(NP)	

at	 the	 centre	 of	 the	 disc,	 which	 is	 contained	 inferiorly	 and	 superiorly	 by	 cartilage	 end	

plates	and	is	contained	circumferentially	by	the	annulus	fibrosus	(AF).		

	

1.2.1	The	nucleus	pulposus	

The	 nucleus	 pulposus	 (NP)	 comprises	 randomly	 orientated	 fibres	 of	 collagen,	 water,	

proteoglycans	 and	 radially	 aligned	 elastin	 fibres	 embedded	 in	 an	 aggrecan-containing	

hydrated	 gel.	 The	 random	 alignment	 of	 the	 collagen	 fibres	 plays	 a	 crucial	 role	 in	 the	

tissues	isotropic	mechanical	properties,	meaning	the	mechanical	properties	of	the	tissue	

are	 identical,	 regardless	 of	 direction	 of	 application.	 The	 collagen	 fibres	 account	 for	

approximately	20%	of	 the	dry	weight	of	 the	NP.	Type	 II	 collagen	makes	up	80%	of	 the	

collagen	content	of	the	NP,	the	remaining	collagen	content	comprises	types;	V,	VI,	IX	and	

XII.	Dispersed	within	this	hydrated	gel	in	low	numbers	(5000/mm3)	are	chondrocyte-like	

cells,	 these	cells	are	sometimes	 located	 in	a	capsule	within	 the	matrix	 (Colombier	et	al.,	

2014)	and	are	predominantly	involved	in	the	production	of	type	II	collagen	and	aggrecan.	

Approximately	30-50%	of	the	dry	weight	of	the	NP	is	proteoglycan	and	approximately	70-

80%	of	the	total	weight	of	the	NP	is	water.		

	

After	water,	proteoglycans	are	the	most	abundant	substance	in	the	NP	and	play	a	crucial	

role	 in	 the	 function	 of	 the	 IVD.	 	 The	main	 proteoglycan	 present	 in	 the	 IVD	 is	 aggrecan.	

Aggrecan	 possesses	 a	 brush-like	 assembly.	 This	 proteoglycan	 macromolecule	 is	 made	

when	many	aggrecan	molecules	 attach	 to	 a	 long	hyaluronan	molecule	 via	 link	proteins.	

These	proteoglycans	possess	a	net	negative	charge,	which	attract	positively	charged	ions	

into	 the	NP	 to	 achieve	 electroneutrality,	 here	 the	 ion	 concentration	within	 the	 tissue	 is	

greater	than	the	concentration	outside	the	tissue	surrounding	the	NP,	yielding	an	osmotic	

pressure	within	the	IVD,	causing	the	entry	of	water	into	the	tissue.	The	entry	of	water	into	

the	 tissue,	 the	 in-balance	 in	 ion	 concentrations	 and	 the	 negative	 charge	 of	 the	

glycosaminoglycan	 contribute	 to	 intradiscal	 pressure	within	 the	 NP.	 It	 is	 this	 pressure,	

which	enables	the	disc	to	transmit	compressive	loads	within	the	spine.		

	

1.2.2	The	annulus	fibrosus	

The	nucleus	pulposus	is	surrounded	by	the	annulus	fibrosus	(AF),	which	is	comprised	of	

concentric	 rings	 (15-25)	 of	 collagen	 fibres	 (lamellae)	 embedded	within	 a	 proteoglycan	

matrix	(Figure	1.4).	The	collagen	fibres	within	each	lamella	are	parallel	to	one	another	but	
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are	arranged	at	approximately	60°	to	the	vertical	axis	(Yu	et	al.,	2007),	switching	from	60°	

left	of	the	longitudinal	axis	to	60°	right	of	the	axis	between	lamellae	(Figure	1.4).	It	is	this	

layered	 structure,	 which	 allows	 the	 IVD	 to	 withstand	 large	 loads,	 applied	 in	 multiple	

directions.	Elastin	fibres	play	a	key	role	in	maintaining	the	structure	of	the	IVD.	When	the	

IVD	deforms	under	load,	the	elastin	fibres	enable	the	disc	to	return	to	its	original	height	

and	shape	(Yu	et	al.,	2002).	The	fluid	present	in	the	NP	deforms	under	load,	however,	the	

volume	cannot	be	compressed,	and	as	a	result	compression	forces	are	transmitted	in	all	

directions	 to	 allow	 deformation	 of	 the	 NP.	When	 load	 is	 applied,	 the	 height	 of	 the	 NP	

decreases,	 whilst	 the	 radial	 distance	 increases	 towards	 the	 AF	 (Guerin	 &	 Elliot,	 2006). 

The	inner	region	of	the	AF	is	occupied	by	cells	that	have	a	similar	nature	to	cells	of	the	NP	

(Setton	 &	 Chen,	 2004).	Within	 the	 outer	 region	 of	 the	 annulus	 are	 fibroblast-like	 cells.	

These	are	long,	thin	cells	that	lie	in	parallel	with	the	collagen	fibres.		

	

1.2.3	Cartilage	end	plates	

End	 plates,	 the	 interface	 between	 the	 hard	 bony	 vertebra	 and	 the	 pliant	 intervertebral	

disc,	 are	 comprised	 of	 a	 bilayer	 of	 cartilage,	 <1mm	 thick,	 and	 bone.	 The	 deep	 calcified	

region	 of	 the	 end	 plate	 is	 adjacent	 to	 the	 vertebrae.	 This	 layer	 is	 covered	with	 hyaline	

cartilage,	comprising	proteoglycans,	water	and	collagen	(predominantly	type	II	and	some	

type	I	collagen).	Here	the	collagen	fibres	are	aligned	vertically,	in	parallel	with	the	ends	of	

the	vertebrae	(Lotz	et	al.,	2013).	 	This	uniform	structure	assists	the	even	distribution	of	

load	across	the	IVD.		

	

	

	

	

	

	

	

	

Figure	1.4	The	organisation	of	the	annulus	fibrosus.	The	collagen	fibres	are	organised	in	

multiple	 concentric	 rings	with	 alternate	 layers	 running	 in	 interchanging	 directions	 at	 a	

60°	angle	to	the	vertical	axis	(Neumann,	2010).	

	

1.3	Degenerative	disc	disease	

Degenerative	 disc	 disease	 (DDD)	 is	 a	 common	 condition	 of	 the	 ageing	 process	 and	 for	

most	 people	 is	 asymptomatic.	 For	 certain	 individuals	 the	 morphological	 alterations	

associated	with	disc	 degeneration	 can	 cause	back	pain.	 The	 characteristic	 signs	 of	DDD	
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include;	 pain	 and	 stiffness	 in	 the	 back,	 which	 may	 spread	 to	 the	 neck	 and	 to	 the	

extremities;	shoulders,	arms,	hands,	legs	and	feet.		

	

There	 is	 a	 strong	association	between	back	pain	and	degeneration	of	 the	 intervertebral	

disc	(Urban	&	Roberts,	2003).	Over	75%	of	low	back	pain	is	associated	with	DDD	(Schaff,	

1998).	 In	a	healthy	disc	 the	nucleus	 is	well	hydrated	and	applies	a	hydrostatic	pressure	

(or	 intradiscal	 pressure)	 on	 the	 annulus,	 enabling	 transfer	 of	 loads	 between	 adjacent	

vertebral	bodies	(discussed	previously	in	section	1.2.1).	In	the	case	of	a	degenerated	disc	

both	 the	 NP	 and	 the	 AF	 alter	 with	 age	 (Kurtz	 &	 Edidin,	 2006).	 As	 the	 body	 ages	 the	

proteoglycan	 concentration	 in	 the	 NP	 decreases	 and	 the	 nucleus	 becomes	 less	

hydrophilic,	 resulting	 in	 a	 loss	 of	 fluid	 from	 the	 disc.	 The	 dehydration	 that	 follows	 is	

caused	by	alterations	in	the	keratin	sulphate	to	chondroitin	sulphate	ratio,	changes	in	the	

collagen	fibres	and	an	increase	in	collagen-proteoglycan	binding	(Kurtz	&	Edidin,	2006).	

Such	 alterations	 cause	 the	nucleus	 to	 become	 less	 resilient	 and	more	 fibrous	 in	nature.	

Dehydration	 causes	 the	 level	 of	 deformation	 under	 load	 to	 be	 considerably	 greater,	

resulting	in	reduced	disc	height	and	pain.	The	fibres	of	the	annulus	are	no	longer	loaded	

under	tension,	as	they	are	in	the	healthy	disc.	Instead	the	inner	layers	of	the	annulus	may	

bulge	 inwards	 under	 compression.	 Changes	 to	 the	 mechanical	 loading	 of	 the	 AF	 may	

increase	 inter-laminae	 sheer	 stresses,	 which	 have	 the	 potential	 to	 result	 in	 cracks,	

fissures	or	tears	 in	the	tissue.	Tears	 in	the	AF	may	 lead	to	the	expulsion	of	NP	material,	

disc	herniation	or	may	even	cause	delamination	of	the	annulus	layers	(Iatridis	&	Gwynn,	

2004).			

	

Degeneration	 significantly	alters	 the	 cartilaginous	end	plates	of	 the	 IVD.	The	end	plates	

become	thinner	and	calcify,	diminishing	the	blood	supply	to	the	end	plates.	The	blockage	

of	 the	marrow	contact	 channels,	which	 in	 a	healthy	disc	 enables	 the	passage	of	 fluid	 to	

and	from	the	end	plate,	restricts	the	removal	of	waste	materials	from	the	nucleus	(such	as	

lactic	acid)	and	prevents	the	entry	of	nutrients	such	as	glucose	and	oxygen	(Maroudas	et	

al.,	1975,	Ayotte	et	al.,	2001).	This	lack	of	material	transport	prevents	the	maintenance	of	

IVD	chondrocytes,	depleting	the	ability	of	the	cells	to	function	normally	and	maintain	the	

ECM.	

	

Decreased	disc	height	as	a	result	of	degeneration	impacts	other	localised	structures	such	

as	 the	 facet	 joints,	 again	 causing	 pain.	 Treatment	 for	 back	 pain	 associated	 with	 DDD	

begins	 with	 conservative	 treatment,	 the	 reduction	 of	 physical	 activity	 and	 the	

prescription	of	anti-inflammatory	medication.	This	 level	of	 treatment	has	been	 found	to	

be	 effective	 in	 patients	 suffering	 from	 back	 pain,	 within	 the	 first	 three	 months	 of	
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treatment.	The	remaining	patients	whose	pain	 levels	do	not	 improve	are	considered	 for	

surgical	 intervention,	 which	 has	 a	 much	 greater	 economic	 burden	 than	 conservative	

treatment.	Spinal	fusion	and	total	disc	replacements	are	regarded	as	the	most	commonly	

utilised	treatment	modalities	for	reducing	back	pain	associated	with	disc	degeneration.					

	

1.4	Spinal	Fusion	

Spinal	fusion	is	the	current	gold	standard	for	the	treatment	of	degenerative	disc	disease	

(Serhan	 et	 al.,	 2011;	 Shichang	 et	 al.,	 2016).	 Approximately	 450,000	 spinal	 fusion	

procedures	are	performed	annually	in	the	U.S.	(HCUP,	Nationwide	Inpatient	Sample	(NIS)	

Healthcare	cost	and	utilisation	project,	2011).	 	 In	addition	to	this,	approximately	16,000	

revision	 fusion	 surgeries	 are	 performed	 each	 year	 (Kirkpatrick	 et	 al.,	 2005).	 There	 are	

numerous	 fusion	devices	 available	 to	 the	 spinal	 surgeon	 including;	 segmental	 and	non-

segmental	 constructs	 or	 rigid	 and	 non-rigid	 connectors	 involving	 several	 types	 of	

instrumentation;	 rods,	 plates,	 hooks,	 wires	 and	 screws	 all	 of	 which	 are	 composed	 of	

different	biomaterial	combinations,	approximately	35%	of	which	are	medical	grade	316L	

stainless	steel	and	65%	titanium	alloy	(Figure	1.5).		

	

	

	

	

	

	

	

	

	

	

Figure	 1.5	 Spinal	 fusion	 devices	 A)	 Cervical	 spine	 three-level	 locking	 plate	 with	 four	

unicortical	 screws	 and	 anchoring	 expanding	 screws	 removed	 less	 than	 one	 year	 after	

surgery	(Kurtz	&	Edidin,	2006).	B)	ABC	dynamic	cervical	fusion	plate	and	screw	system,	

with	variable	angle	screws	to	reduce	stress	shielding	in	the	cervical	spine	(Kurtz	&	Edidin,	

2006).			

	

Spinal	fusion	surgery	aims	to	restore	disc	height,	reduce	pain	and	re-establish	stability	in	

a	 specific	 spinal	 segment,	 relieving	 neurologic	 symptoms	 with	 minimal	 complications	

(Bohlman	 et	 al.,	 1993;	 Neuman,	 2014).	 	 Spinal	 fusion	 promotes	 growth	 of	 bone	 over	 a	

joint	or	space	in	the	spine,	limiting	the	ability	of	the	fused	bones	to	move.	The	prevention	

of	motion	reduces	the	pain	associated	with	instability.		

A	 B	
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1.4.1	History	of	spinal	fusion	

Early	spinal	fusion	procedures	involved	the	removal	of	the	pain	causing	disc	and	utilised	

bone	harvested	 from	the	 Iliac	crest	 to	 fill	 the	 joint	space	and	promote	bone	growth	and	

union	between	adjacent	vertebrae	(Kurtz	&	Edidin,	2006).	There	are	difficulties	with	this	

procedure,	 including	 problems	 with	 donor	 site	 morbidity	 and	 instances	 of	 non-fusion.	

The	 need	 to	 minimise	 problems	 with	 harvest	 site	 complications	 has	 led	 to	 the	

development	 of	 various	 commercial	 bone	 graft	 substitutes	 (Kurtz	 &	 Edidin,	 2006).	

Allografts,	 the	 use	 of	 demineralised	 bone	 matrix	 and	 hydroxyapatite	 to	 ensure	 the	

formation	of	a	lasting	union	following	spinal	fusion	surgery,	have	been	used	with	varying	

rates	of	success	(Heary	&	Madhavan,	2008).	Kim	et	al.	(2016)	reported	a	52%	fusion	rate	

using	hydroxyapatite	and	demineralised	bone	for	lumbar	interbody	fusion,	which	was	not	

statistically	 different	 from	 a	 62.2%	 success	 of	 fusion	 in	 a	matched	 autograft	 group.	 An	

80.8%	 fusion	 rate	 was	 reported	 when	 demineralised	 bone	 was	 used	 to	 fuse	 multiple	

vertebrae	 compared	 to	 an	85.7%	 fusion	 rate	when	using	 autologous	 laminectomy	bone	

for	 long	multi-segment	posterolateral	spinal	 fusion	(Fu	et	al.,	2016).	The	results	of	both	

studies	highlight	the	similarity	in	the	rate	of	fusion	between	autologous	bone	and	the	use	

of	demineralised	bone	matrix.		

	

In	 1953	 Paul	 Harrington	 developed	 posterior	 hooks	 and	 rods	 for	 spinal	 fusion.	 The	

Harrington	Rod	is	a	stainless	steel	distraction	rod,	with	hooks	at	both	ends	for	attachment	

to	the	vertebral	laminae	and	possesses	a	ratchet	mechanism	for	adjustment	(Figure	1.6).	

	

Figure	1.6	The	Harrington	rod	system.		Secured	with	hooks	at	both	ends.	Removed	after	

being	in	vivo	for	13.5	years	(Kurtz	&	Edidin,	2006).			

	

	This	instrumentation	was	restricted	as	it	could	only	attach	to	the	spine	in	two	locations,	

at	either	end	of	 the	rod.	Also	 the	rod	was	rigid	and	straight,	which	did	not	 recreate	 the	

natural	curvature	of	the	spine	(Good,	2010).	A	12.5%	incidence	of	failed	instrumentation	

was	 reported	 (Erwin	 et	 al.,	 1980)	 following	 the	 analysis	 of	 over	 2000	medical	 records	

from	 1961-1974.	 To	 account	 for	 the	 problems	 faced	 by	 the	 Harrington	 rod	 system	

including	 hardware	 fracture,	 loosening,	 corrosion	 and	 non-union	 (Prikryl	 et	 al.,	 1989;	

Lark	et	al.,	2013),	segmental	instrumentation	was	developed	in	1973	by	Edwardo	Luque.	

This	 two-rod	 system	was	 contoured,	 restoring	 the	 normal	 spinal	 curvature.	 These	 rods	

were	attached	to	 the	vertebrae	by	wires	passed	through	the	 lamina	of	each	vertebra.	 In	
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the	1980’s	 the	Cotrel-Dubousset	 instrumentation	was	developed,	here	 two	 flexible	 rods	

were	 used,	 this	 instrumentation	 enabled	multiple	 fixation	 points	 along	 the	 spine	 using	

hook	and	rod	combinations	(Figure	1.7)	 (Good,	2010).	Survivorship	rates	between	71%	

and	 91.5%,	 after	 two	 years	 have	 been	 reported	 with	 the	 Cotrel-Dubousset	

instrumentation	(Boos	et	al.,	1992;	Bago	et	al.,	2003).	The	predominant	failure	modes	for	

this	instrumentation	were;	screw	breakage,	bending	or	loosening.	Further	advances	have	

been	made	and	pedicle	screw	systems	have	enhanced	spinal	fusion	surgery	by	providing	

a	 more	 rigid	 fixation	 system,	 yielding	 an	 improved	 fusion	 rate	 and	 permitting	 fewer	

segments	to	be	fused.		

	

Figure	1.7	The	Cotrel-Duboussett	fusion	instrumentation;	rods,	hooks	and	transverse	rod	

connectors,	retrieved	after	8.3	years	in	vivo	(Kurtz	&	Edidin,	2006).	

	

1.4.2	The	success	of	spinal	fusion	

Previously	 there	 has	 been	 much	 debate	 within	 the	 literature	 regarding	 the	 success	 of	

spinal	fusion	in	comparison	to	non-operative	alternatives.	The	success	of	a	spinal	fusion	

procedure	can	be	measured	in	numerous	ways;	pain	relief,	promotion	of	union,	improved	

stability,	minimal	complications	and	ability	to	return	to	normal	function.		

	

It	has	been	suggested	that	pain	relief	achieved	from	spinal	fusion	is	greater	than	that	from	

conservative	 treatments	 alone.	 Utilising	 numerous	 pain,	 disability	 and	 depression	

measurement	 systems;	 the	 Visual	 Analogue	 Scale	 (VAS),	 the	 Oswestry	 Low	 Back	 Pain	

Questionnaire,	 the	 Million	 Score,	 the	 General	 Function	 Score	 (GFS)	 and	 the	 Zung	

Depression	Scale,	Fritzell	et	al.	(2001)	reported	a	33%	reduction	in	back	pain	in	patients	

who	were	treated	with	a	spinal	fusion	procedure,	compared	with	a	7%	reduction	in	pain	

in	 the	 nonsurgical	 treatment	 group.	 However,	 due	 to	 a	 significantly	 greater	 number	 of	

patients	 in	 the	 surgical	 treatment	 group	 (222)	 compared	 to	 the	 conservative	 treatment	

group	(72)	in	this	study,	there	may	be	the	introduction	of	unintended	bias.			
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In	contrast,	Fairbank	et	al.	(2005)	compared	the	effects	of	lumbar	fusion	with	an	intensive	

non-surgical	 rehabilitation	programme	 for	 the	 treatment	of	 chronic	 low	back	pain.	Two	

years	 post-surgery,	 or	 post	 rehabilitation,	 each	 patient	 was	 scored	 using	 the	 Oswestry	

disability	 index.	 No	 significant	 difference	 in	 the	 level	 of	 improvement	 was	 observed	

between	the	two	groups.	Fritzell	et	al.	(2001)	utilised	a	wider	range	of	pain	and	disability	

scores	compared	to	the	single	measurement	used	in	this	study,	which	may	have	led	to	a	

more	thorough	analysis	of	the	patient’s	condition.		

	

In	 addition	 to	 the	 ability	 of	 spinal	 fusion	 to	 treat	 pain	 associated	 with	 DDD,	 there	 are	

numerous	 complications	 and	 long	 term-implications	 to	 consider.	 Spinal	 fusion	does	not	

restore	 the	 normal	 biomechanics	 of	 the	 spine.	 As	 a	 result	 it	 is	 common	 for	 patients	 to	

experience	 adjacent	 level	 effects	 (ALE)	 post	 spinal	 fusion	 surgery,	 due	 to	 a	 lack	 of	

mobility	 in	the	fused	segment	(Yoshihara,	2013).	Here	segments	either	side	of	the	fused	

vertebral	 body	 experience	 hastened	 degeneration,	 as	 these	 vertebral	 bodies	 try	 to	

compensate	for	the	immobile	region.	The	global	motion	of	the	spine	is	unaffected	but	the	

spine	recruits	alternative	regions	to	carry	out	the	same	tasks.	This	could	result	in	further	

surgery	being	necessary.	Following	a	cervical	fusion	procedure,	ALE	have	been	reported	

at	 a	 rate	 of	 2.9-8%	 per	 year	 of	 follow	 up	 (Hilibrand	 et	 al.,	 1999;	 Goffin	 et	 al.,	 2004;	

Ishihara	et	al.,	2004;	Horsting	et	al.,	2012).	Considering	that	there	is	much	debate	within	

the	literature	regarding	the	effectiveness	of	spinal	fusion	to	treat	back	pain	as	a	result	of	

DDD	 compared	 to	 non-surgical	 alternatives	 and	with	 increasing	 incidences	 of	 adjacent	

level	 effects,	 alternative	 motion	 preservation	 devices	 were	 sought	 (De	 Kleuver	 et	 al.,	

2003).		

	

1.5	Total	disc	replacement	

The	 aim	 of	 total	 disc	 replacements	 (TDR)	 is	 to	 preserve	 motion	 (where	 fusion	 limits	

motion),	reduce	pain	associated	with	DDD	and	to	maintain	the	normal	kinematics	of	the	

functional	spinal	unit,	thus	potentially	avoiding	ALE	(Hochschuler	et	al.,	2002;	Phillips	&	

Garfin,	2005).	The	most	common	design	observed	in	TDR’s	are	the	fixation	of	metal	end	

plates	 (stainless	 steel,	 titanium	 or	 the	 most	 commonly	 used	 cobalt	 chrome)	 into	 the	

vertebral	 bodies	 above	 and	 below	 the	 disc	 space	with	 either	 a	metal	 or	 a	 polyethylene	

articulation	 (predominantly	 metal-on-polyethylene	 articulations)	 (Veruva	 et	 al.,	 2014).	

The	 FDA	 have	 strict	 regulations	 when	 considering	 patients	 for	 cervical	 total	 disc	

replacements	 (cTDR).	 Auerbach	 et	 al.	 (2008)	 identified	 that	 only	 43%	 of	 patients	

considered	 for	 cervical	 total	disc	 replacement	actually	met	 the	necessary	 requirements.	

The	FDA	contraindications	for	cTDR	are	detailed	in	Table	1.1.				
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Table	1.1	Contraindications	for	total	disc	replacement	surgery	set	out	by	the	FDA	

FDA	Contraindications	

Mechanical		 Cervical	 instability,	 previous	 surgery	 at	 the	 level	 to	 be	 treated,	 rheumatoid	

arthritis,	reduced	spinal	motion,	excessive	loss	in	disc	height.	

Biological	 Hepatitis,	 HIV,	 diabetes,	 pregnancy,	 infection,	 obesity,	 osteoporosis,	 autoimmune	

disease,	metallurgy.	

	

Upon	designing	a	TDR	there	are	a	number	of	criteria	which	need	to	be	considered	for	a	

successful	 implant	 (Hallab	&	 Singh,	 2014).	 The	 total	 disc	 replacement	 should;	 preserve	

motion,	 restore	 disc	 height,	 restore	 stability	 to	 the	 spinal	 segment,	 accurately	 transmit	

loads,	perform	 for	 the	 life	 span	of	 the	patient,	 resist	wear	and	corrosion	 to	 the	greatest	

degree	 possible,	 be	 stable,	 failsafe,	 revisable	 and	 monitorable.	 Currently	 seven	 cTDR’s	

have	 been	 approved	 by	 the	 FDA,	 on	 the	 basis	 that	 preclinical	 testing	 has	 provided	

sufficient	evidence	that	they	meet	the	above	criteria	of	a	successful	device.	These	devices	

are	outlined	in	Table	1.2	and	shown	in	Figure	1.8.	

	

Table	1.2	The	seven	cervical	total	disc	replacements	approved	by	the	FDA	

FDA	Approved	cervical	total	disc	replacements	

Prosthesis	 Manufacturer	 Material	 Articulation	 Year	

approved	

PRESTIGEÒ	ST	 Medtronic	 Stainless	steel	 Metal-on-Metal	 2007	

ProDisc	CÒ	 Depuy	

Synthes	

Cobalt	Chrome	

And	Polyethylene	

Metal-on-Polyethylene	 2007	

Bryan	c	 Medtronic	 Titanium	 Metal-on-polyurethane	 2009	

PCM	cervical	

discÒ	

Nu	Vasive	 Cobalt	Chrome	

And	Polyethylene	

Metal-on-Polyethylene	 2012	

SecureÒ-C	 Globus	

Medical	

Cobalt	Chrome	

And	Polyethylene	

Metal-on-Polyethylene	 2012	

Kineflex-C	Ò	 Spinal	Motion	 Cobalt	Chrome	 Metal-on-Metal	 2013	

Mobi-CÒ	 LDS	Spine	 Cobalt	Chrome	

And	Polyethylene	

Metal-on-Polyethylene	 2013	
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Figure	1.8	Current	FDA	approved	cervical	total	disc	replacements	A)	Bryan	Cervical	disc	

(O’Boynick	&	Darden,	2016)	B)	Kineflex-C	Ò	(Palepu	et	al.,	2012)	C)	Mobi-CÒ	(O’Boynick	

&	Darden,	2016)	D)	PCM	cervical	discÒ	 (O’Boynick	&	Darden,	2016)	E)	PRESTIGEÒ	 ST	

cervical	disc	(O’Boynick	&	Darden,	2016)		F)	ProDisc	CÒ	(O’Boynick	&	Darden,	2016)	G)	

SecureÒ-C	(Vaccaro	et	al.,	2013).		

	

Although	 total	disc	 replacements	aim	 to	alleviate	 some	of	 the	problems	associated	with	

spinal	 fusion,	 these	 implants	 present	 different	 problems	 and	 failure	mechanisms.	 Such	

issues	 include	 hyper-mobility,	 hypo-mobility,	 material	 wear	 and	 adverse	 reactions	 to	

wear	 particles	 such	 as;	 osteolysis,	 metallosis	 and	 pseudotumour	 formation	 (Reeks	 &	

Liang,	2015).	There	has	been	much	debate	in	the	literature	regarding	the	effectiveness	of	

TDR	compared	to	spinal	fusion	surgery,	in	terms	of	relieving	pain	associated	with	DDD.	

	

Sasso	et	al.	 (2011)	conducted	a	 four-year	 follow	up	clinical	 investigation	comparing	 the	

ability	of	 the	Bryan	cTDR	and	 the	Atlantis	 cervical	plating	 fusion	system	to	 reduce	pain	

associated	 with	 DDD.	 A	 15-point	 improvement	 in	 the	 neck	 disability	 index	 score,	

neurological	 improvement,	 absence	of	 serious	 adverse	 incidents	 in	 association	with	 the	

implant	or	 implant	procedure	and	 lack	of	additional	surgical	 intervention	was	regarded	

as	a	surgical	success.	Patients	who	received	a	cTDR	demonstrated	an	85.1%	success	rate	

in	the	treatment	of	DDD	compared	to	72.5%	in	the	spinal	fusion	group	(Sasso	et	al.,	2011).	

Zigler	 et	 al.	 (2007),	 reported	 that	 the	 ProDisc-L	 total	 disc	 replacement	 provided	 pain	

relief	 and	 improved	 function	 in	 patients	 that	 were	 equal	 to	 the	 benefits	 provided	 by	

fusion	surgery.	Here,	the	VAS	and	Oswestry	disability	index	scores	significantly	improved	

C	A	 B	

D	 E	 F	 G	
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in	both	treatment	groups	as	early	as	6-weeks	post-surgery	and	remained	so	throughout	

the	24-month	follow-up	period	with	no	significant	difference	between	the	two	conditions.	

In	 a	 similar	 investigation Guyer	 et	 al.	 (2009),	 found	 no	 significant	 differences	 in	 the	

improvement	 in	 pain	 intensity	 scores	 when	 patients	 were	 treated	 with	 the	 Charité	 III	

lumbar	 TDR	 and	 the	 BAK	 fusion	 cage	 to	 reduce	 pain,	 after	 two	 and	 five	 years	 post-

surgery.	 However,	with	 large	 differences	 between	 the	 numbers	 of	 patients	 allocated	 to	

each	 surgical	 treatment	 group	 (205	 in	 the	 TDR	 group	 and	 99	 in	 the	 fusion	 group)	

implications	of	bias	cannot	be	discounted.		

The	comparison	between	the	effectiveness	of	spinal	fusion	instrumentation	and	total	disc	

replacements	 to	 relieve	 pain	 associated	with	 degenerative	 disc	 disease	 is	 still	 lacking	 a	

high	quality,	 long-term	prospective	 study.	Controlled,	 long-term	(longer	 than	 ten	years)	

follow-up	 studies	 with	 equal	 group	 sizes,	 relevant	 control	 groups	 and	 more	 uniform	

methods	of	analysing	success	are	required	to	establish	the	efficiency	and	the	longevity	of	

the	devices.	The	results	presented	by	Sasso	et	al.,	(2011),	Zigler	et	al.,	(2007)	and	Guyer	et	

al.	(2009)	predominantly	focus	on	short-term	success.	The	existing	evidence,	specifically	

regarding	 long-term	 effectiveness	 and/or	 safety	 is	 considered	 insufficient	 to	 justify	 or	

refute	 the	 widespread	 use	 of	 TDR	 preferentially	 to	 spinal	 fusion	 for	 a	 single	 level	

degenerative	disc.		

A	key	motivator	in	the	use	of	TDR	to	treat	back	pain	associated	with	DDD	lies	in	its	ability	

to	preserve	motion	and	thus	reduce	the	risk	of	ALE	and	the	need	for	additional	surgery.	

However,	there	are	conflicting	findings	presented	in	the	literature	regarding	the	ability	of	

TDR	 to	 minimise	 this	 complication.	 A	 series	 of	 published	 meta-analyses	 regarding	 the	

incidence	of	ALE	 following	spinal	 fusion	and	TDR	have	demonstrated	minimal	 clinically	

relevant	differences	between	the	two	surgical	procedures	(Heller	et	al.,	2009;	Murrey	et	

al.,	2009;	Bartels	et	al.,	2010;	McAfee	et	al.,	2012).	 	However,	within	the	 literature	there	

have	 been	 numerous	 reports	 of	 elevated	 rates	 of	 ALE	 in	 patients	 undergoing	 a	 spinal	

fusion	 procedure	 to	 treat	DDD	 compared	 to	 patients	 receiving	 a	 TDR	 (Robertson	 et	 al.,	

2005;	Coric	et	al.,	2011),	with	incidences	of	severe	ALE	radiographic	changes	in	as	many	

as	 24.8%	 of	 patients	 with	 fusion	 instrumentation	 and	 9%	 in	 those	 treated	 with	 TDR	

(Coric	et	al.,	2011).	Garrido	et	al.	(2011)	observed	a	greater	incidence	of	ALE	in	patients	

after	anterior	cervical	discectomy	and	fusion	compared	to	patients	who	received	a	Bryan	

cervical	 disc,	 with	 36%	 of	 patients	 presenting	 no	 ossification	 (indicative	 of	 a	 hastened	

degeneration	of	the	neighboring	functional	spinal	unit)	in	the	fusion	group	after	two	years	

and	16%	had	no	ossification	at	four	years	compared	to	75%	of	patients	had	no	ALE	at	two	

years	 and	 48%	had	 no	 ossification	 after	 four	 years	 in	 the	 TDR	 group.	However,	 due	 to	
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disproportionate	 group	 sizes,	 short	 follow	 up	 periods	 (four	 years)	 and	 the	 use	 of	

radiographs	in	isolation	to	evaluate	the	incidence	of	ALE,	there	is	likely	to	be	unintended	

bias	 in	 these	 findings.	 Such	 investigations	highlight	 the	necessity	 for	 clinical	 analysis	 in	

addition	to	the	use	of	radiographic	findings	to	report	the	onset	of	ALE.		

	

Numerous	 criteria	 are	 required	 to	 determine	 the	 incidence	 of	 ALE,	 including;	 a	 patient	

history,	 a	 physical	 examination	 prior	 to	 surgery	 (for	 post-surgery	 comparison),	

neurological	 evaluation	 of	 the	 patients	 strength,	 sensation,	 and	 reflexes	 in	 addition,	 to	

evaluate	 using;	 plain	 radiography,	 myelography,	 computerised	 tomography	 and	 MRI	

imaging	pre	and	post-operatively	(Hilibrand	et	al.,	1999).	Though	the	work	of	Garrido	et	

al.	(2011),	Robertson	et	al.	(2005)	and	Coric	et	al.	(2011)	quote	Hillibrand’s	findings	as	a	

standard	for	detecting	ALE,	none	of	these	studies	used	the	same	level	of	analysis	to	assess	

ALE	occurrence	(Nunley	et	al.,	2013).	

	

1.6	Biomaterials	used	in	total	disc	replacements	and	spinal	fusion	

Two	major	 biomaterials	 are	 utilised	when	designing	 total	 disc	 replacements	 and	 spinal	

fusion	 instrumentation;	 metals	 (cobalt	 chrome,	 stainless	 steel	 and	 titanium),	 and	

polymers	 (UHMWPE,	 polycarbonate	 urethane,	 polyether	 urethane).	 Each	 material	

possesses	different	characteristics,	which	makes	it	suitable	for	use	in	spinal	implants.		

	

1.6.1	Metals	used	in	total	disc	replacements	and	spinal	fusion	instrumentation	

Metals	deliver	an	unparalleled	combination	of	high	strength,	ductility,	hardness,	fracture	

toughness,	corrosion	resistance	and	biocompatibility	for	use	in	the	design	of	orthopaedic	

implants	and	are	cost-effective	(Hallab	&	Singh,	2014).	Metal	alloys,	a	mix	of	two	or	more	

metals,	 enable	 desirable	 characteristics	 of	 several	 materials	 to	 be	 combined	 into	 one	

biomaterial	for	use	in	the	production	of	orthopaedic	implants.	Pure	metals	are	not	often	

used	 in	 these	 applications,	 as	 they	 tend	 to	 be	 soft,	 brittle	 and	 reactive.	 Stainless	 steel,	

cobalt	 chrome	 and	 titanium	 have	 been	 used	 in	 metal-on-metal	 articulations	 or	 in	

conjunction	with	 polyethylene	 and	 ceramic	 components	 for	 total	 disc	 replacements	 for	

the	past	50	years.		

	

1.6.1.1	Stainless	steel		

Stainless	steel,	an	alloy	of;	 iron,	nickel	and	carbon,	with	a	minimum	of	10.5%	chromium	

by	mass,	 does	 not	 easily	 rust	 or	 corrode.	 Stainless	 steel	 has	 been	used	 in	 the	design	 of	

total	disc	replacements	since	the	1980’s.	It	was	first	used	in	the	Bristol/Cummins	device,	

this	device	introduced	an	articulating	metal-on-metal	coupling	based	on	a	ball	and	socket	

design,	secured	to	the	vertebral	body	with	a	plate	and	screw	fixation	system	(Chapman	&	
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Riew,	2012).	Over	the	years	this	device	was	modified	to	encompass	a	more	anatomically	

relevant	 end	 plate	 design	 and	 a	 porous	 coating	 to	 promote	 bony	 ingrowth	 (the	

PRESTIGEÒ	ST),	which	received	FDA	approval	in	2007.	Stainless	steel	has	also	been	used	

in	spinal	fusion	instrumentation.	In	more	recent	years	cobalt	chrome	and	titanium	metals	

have	been	seen	as	more	favourable	and	they	have	more	desirable	yield	strength	and	are	

less	susceptible	to	corrosion	and	fatigue	(Bankston	et	al.,	1993).		

	

1.6.1.2	Cobalt	chrome		

Cobalt	chrome,	an	alloy	of	cobalt	and	chromium,	exhibits	superior	mechanical	and	wear	

properties	when	compared	 to	stainless	steel	and	 titanium.	Due	 to	 the	presence	of	5-7%	

molybdenum	in	this	alloy	it	is	sometimes	referred	to	as	cobalt	chrome	molybdenum.	High	

carbon	 wrought	 cobalt	 chrome	 used	 for	 orthopaedic	 applications	 (in	 accordance	 with	

ASTM	F75)	has	a	high	yield	strength	and	is	approximately	twice	as	stiff	as	titanium.	Cobalt	

chrome	 is	 commonly	 used	 in	 total	 disc	 replacements	 as	 a	 result	 of	 its	 theoretical	

corrosion	resistance	for	implantation.	Within	the	spine,	cobalt	chrome	is	commonly	used	

in	both	metal-on-metal	and	metal-on-polyethylene	total	disc	replacements	(Kineflex-CÒ,	

Mobi-CÒ,	PCM	cervical	discÒ,	ProDisc	CÒ	and	the	SecureÒ-C).		

	

1.6.1.3	Titanium	

Titanium	 has	 a	 lower	 Young’s	modulus	 compared	 to	 cobalt	 chrome	 and	 stainless	 steel,	

which	 matches	 more	 closely	 to	 the	 Young’s	 modulus	 of	 bone,	 resulting	 in	 greater	

mechanical	compatibility,	osseointegration	and	fixation.	This	observation	has	resulted	in	

titanium	being	used	on	the	outer	surface	of	cervical	total	disc	replacement	end	plates	for	

long-term	 fixation	 (Pham	 et	 al.,	 2015).	 	 The	 Bryan,	 ProDisc	 CÒ	 and	 Mobi-C	 total	 disc	

replacements	utilise	 this	 technology.	The	Bryan	 cTDR	encompasses	 titanium	end	plates	

and	 a	 polyurethane	 core.	 The	 ProDisc	 CÒ	 is	 comprised	 of	 titanium	 plates,	 coated	with	

plasma	sprayed	rough	pure	 titanium.	The	Mobi-CÒ	possesses	cobalt	chrome	end	plates,	

with	a	roughened	titanium	surface	coated	with	hydroxyapatite.	Titanium	is	not	regarded	

as	a	viable	material	 for	articulating	bearing	surfaces	due	to	inferior	wear	characteristics	

and	poor	abrasion	resistance	(Head	et	al.,	1995).	 Interestingly,	 titanium	produces	 fewer	

artefacts	when	 imaged	using	MRI,	 compared	 to	 stainless	 steel	 and	cobalt	 chrome	alloys	

(Taksali	 et	 al.,	 2004).	 The	 stainless	 steel	 PRESTIGEÒ	 total	 disc	 replacement	 generated	

significant	 artefacts,	 limiting	 post-operative	 imaging	 of	 the	 implant	 and	 adjacent	 spinal	

segments	(Boden	et	al.,	2004).				
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1.6.2	Polymers	in	total	disc	replacements	

Polymers	are	typically	regarded	as	bio-inert	materials.	The	most	common	polymer	used	

in	 total	 disc	 replacements	 is	 ultra-high	 molecular	 weight	 polyethylene	 (UHMWPE).	

However,	 as	 observed	 in	 total	 hip	 and	 disc	 replacements	 this	 material	 wears	 at	 an	

elevated	 rate	 compared	 to	 metal-on-metal	 articulations	 and	 so	 in	 more	 recent	 years	

efforts	 have	 been	 made	 to	 reduce	 the	 wear	 by	 crosslinking	 the	 polymer	 (Kurtz	 et	 al.,	

1999;	McKellop	et	al.,	1999;	Muratoglu	et	al.,	2001).	This	was	effective	in	reducing	wear	in	

hips	but	altered	the	mechanical	properties	of	the	material.	Doping	with	anti-oxidants	such	

as	 vitamin	 E	 has	 also	 been	 used	 to	 reduce	 wear	 in	 the	 hip	 (Oral	 et	 al.,	 2004;	 Reno	 &	

Cannas,	2006;	Oral	et	al.,	2007;	Oral	&	Muratoglu,	2011).			

	

1.7	Wear	of	orthopaedic	biomaterials	

The	 longevity	 of	 any	 orthopaedic	 device	 is	 compromised	 by	 wear,	 regardless	 of	 the	

biomaterial	 combinations	 selected.	 However,	 some	 material	 combinations	 wear	 more	

than	others	(Chen	&	Thouas,	2015).	Metal	biomaterials	are	capable	of	forming	two	types	

of	wear	products;	metal	wear	particles	(from	frictional	articulation)	and	metal	ions	(from	

corrosion)	(Doorn	et	al.,	1996;	Tipper	et	al.,	2005).		

	

1.7.1	Mechanisms	of	wear	in	total	joint	arthroplasty		

The	 most	 commonly	 observed	 mechanisms	 of	 wear	 in	 total	 joint	 arthroplasty	 are;	

adhesive	wear,	abrasive	wear	and	third	body	wear.	By	understanding	the	mechanisms	of	

wear	 of	 an	 orthopaedic	 implant,	 surgeons,	 clinicians	 and	 material	 scientists	 alike	 can	

better	understand	the	performance	of	the	device	 in	vivo,	this	 information	can	be	used	in	

future	implant	development.		

	

Adhesive	 wear	 occurs	 when	 two	materials	 are	 in	 contact,	 and	 adhesion	 bonding	 takes	

place.	Here	 the	 pressure	 between	 the	 two	 contacting	 surfaces	 is	 great	 enough	 to	 cause	

plastic	 deformation	 and	 adhesion	 (Eyre,	 1976).	 This	 bonding	 results	 in	 the	 shearing	 of	

material	upon	articulation.	Burnishing,	associated	with	adhesive	wear	has	been	observed	

with	 metal-on-polyethylene	 and	 metal-on-metal	 total	 disc	 replacements	 (Kurtz	 et	 al.,	

2009).	Burnishing	 is	 characterised	by	 a	polished	 glossy	 appearance	 and	 is	 the	 result	 of	

plastic	 deformation	 of	 a	 surface	 due	 to	 articulation,	 this	 occurs	 if	 the	 contact	 stress	

between	the	articulations	is	larger	than	the	yield	strength	of	the	material.	

	

When	 one	 surface	 is	 much	 harder	 than	 the	 other	 abrasive	 wear	 may	 occur,	 this	 is	

evidenced	by	scratching	and	 is	commonly	seen	with	metallic	and	polyethylene	 implants	

for	 TDR.	 Abrasive	 wear	 is	 due	 to	 hard	 protuberances	 forced	 to	 move	 against	 a	 softer	
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surface.	 At	 a	 microscopic	 level,	 surfaces	 are	 not	 entirely	 smooth,	 they	 possess	

irregularities,	upon	articulation	these	asperities	meet;	the	protrusions	must	either	deform	

or	fracture.	When	two	surfaces	are	brittle,	the	asperities	fracture	and	break	off.	However,	

if	one	material	is	softer	than	the	other	the	harder	surface	will	damage	the	softer	surface	

causing	progressive	loss	of	the	softer	material.	This	mechanism	of	wear	can	occur	either	

at	the	primary	articulation	or	at	other	secondary	surfaces	(Bozic	&	Ries,	2005).		

Third-body	wear	occurs	when	third-body	particles	become	embedded	in	the	articulating	

bearing.	This	in	turn	can	scratch	the	metal	bearing	surface.	The	formation	of	a	scratch	in	

the	metal	 results	 in	 the	 formation	of	a	 trough,	with	metal	elevated	on	either	side	of	 the	

depression.	These	ridges	cause	further	abrasive	wear	of	the	polyethylene	component.				

	

Metallic	implants	and	their	wear	products	are	subject	to	corrosion	when	exposed	to	the	in	

vivo	environment.	 It	 is	essential	 to	understand	 the	mechanisms	of	 corrosion	 in	order	 to	

understand	the	host	response	to	corrosion	by-products.	

1.8	Corrosion		

There	are	two	key	features	that	govern	how	and	why	a	metal	corrodes,	the	first	attribute	

is	 the	 thermodynamic	 driving	 force;	 oxidation	 and	 reduction	 reactions	 and	 the	 second	

phenomenon	involves	kinetic	barriers,	which	limit	the	rate	of	corrosion.				

	

The	corrosion	of	wear	particles	in	situ	causes	alterations	to	the	size	and	shape	of	the	wear	

debris	generated	by	metal-on-metal	implants,	which	may	affect	the	host	response.	Cobalt	

and	titanium	ions	are	more	soluble	than	aluminium	and	chromium	ions,	as	a	consequence	

of	this,	cobalt	and	titanium	are	readily	removed	from	the	region	of	the	implant,	whereas	

aluminium	and	chromium	persist	 in	periprosthetic	 tissues	 (Shahgaldi	 et	 al.,	 1995).	This	

corroborated	the	findings	of	Case	et	al.	(1994),	where	five	times	more	cobalt	and	twice	as	

much	chromium	was	found	in	the	lymph	nodes	than	in	the	synovium	of	individuals	with	

failed	 metal-on-metal	 total	 hip	 replacements.	 During	 corrosion,	 metal	 atoms	 lose	

electrons	forming	free	metal	ions	in	solution;	these	can	either	disseminate	away	from	the	

metal	surface	or	can	lead	to	the	formation	of	metal	oxides	or	organometallic	compounds.	

These	products	can	exist	as	solids	or	can	be	soluble.	The	second	factor,	which	governs	the	

process	 of	 corrosion	 of	 metallic	 biomaterials	 are	 kinetic	 barriers,	 which	 are	 physically	

capable	of	limiting	the	oxidation	and	reduction	reactions.	The	most	common	example	of	a	

kinetic	barrier	is	the	formation	of	a	passive	oxide	layer	on	the	surface	of	the	metal.	These	

kinetic	barriers	prevent	the	migration	of	metal	 ions	from	the	metal	 into	solution,	 inhibit	

the	movement	 of	metal	 anions	 from	 solution	 to	 the	metal	 and	 reduce	 the	migration	 of	
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metal	ions	across	the	metal-solution	barrier.	These	passive	oxide	films	must	encapsulate	

the	 surface	 of	 the	metal	 and	must	 remain	 undisturbed	 upon	 application	 of	mechanical	

stresses	 and	 abrasion,	 which	 is	 anticipated	 in	 the	 articulation	 of	 orthopaedic	 implants	

(Jacobs	et	al.,	1998).		Generally	speaking	the	more	the	oxide	layer	is	compromised	the	less	

able	the	oxide	layer	is	able	to	prevent	corrosion.		

	

All	 metals	 corrode	 when	 exposed	 to	 biological	 systems,	 the	 products	 of	 corrosion	 are	

typically	 oxides	 (Cr2O3	 and	 CoO),	 metal	 phosphates,	 metal	 salts,	 metal	 ions	 bound	 to	

proteins	or	organometallic	compounds	(Hallab	et	al.,	2009).	Metal	ions	can	combine	with	

serum	 proteins	 and	 trigger	 an	 immune	 response	 (Goodman,	 2007).	 Metal-protein	

complexes	 can	 be	 regarded	 as	 candidate	 antigens	 in	 the	 onset	 of	 a	 hypersensitivity	

response	 (Martin,	 2004).	 The	 most	 common	 forms	 of	 corrosion	 observed	 in	 total	 disc	

replacements	are	fretting	corrosion,	crevice	corrosion	and	galvanic	corrosion	leading	to	a	

“battery	effect”.		

		

1.8.1.	Fretting	corrosion	

Fretting	corrosion,	most	commonly	associated	with	modular	 taper	 junctions	 in	 total	hip	

arthroplasty	 and	 with	 modular	 fusion	 instrumentation	 in	 the	 spine,	 is	 correlated	 with	

micro-motion	 between	metal-on-metal	 components.	 Fretting	 corrosion	 typically	 occurs	

between	 two	 bodies,	 which	 have	 a	 small	 oscillatory	 motion	 of	 small	 amplitude,	 in	

particular	 where	 the	 motion	 is	 no	 greater	 than	 100µm	 (Waterhouse,	 1972).	 Fretting	

corrosion	occurs	as	a	result	of	contact	between	a	few	“high	spots”	or	asperities	between	

the	 materials.	 Micromotion	 between	 the	 two	 surfaces	 causes	 the	 production	 of	 wear	

products	and	material	transfer.	Cyclic	loading	causes	disruption	of	the	passive	oxide	film	

of	the	metal,	leaving	the	exposed	biomaterial	and	wear	products	subject	to	oxidation	and	

corrosion.	

	

1.8.2	Crevice	corrosion	

Crevice	 corrosion	 occurs	 as	 a	 result	 of	 part	 of	 the	metal	 surface	 being	 shielded	 or	 in	 a	

restricted	environment	(the	crevice)	compared	to	the	rest	of	the	metal,	which	is	exposed	

to	an	electrolyte.	Initially	anodic	(oxidation)	and	cathodic	(reduction)	processes	occur	at	

the	surface	of	the	metal	causing	the	formation	of	metal	ions.	As	oxygen	is	used	up	in	these	

reactions,	more	oxygen	diffuses	in	from	the	surrounding	electrolyte.	The	crevice	now	acts	

as	an	anode	and	the	overall	charge	within	the	crevice	is	positive,	there	is	now	a	potential	

difference	between	the	crevice	(positively	charged)	and	the	outside	solution.	Negatively	

charged	 ions	 from	 the	 electrolyte	 (normally	 chloride	 ions)	 diffuse	 into	 the	 crevice	 to	

balance	 the	 charge.	The	 chloride	 ions	 enhance	 the	 corrosive	 effect	 and	 form	 complexes	
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with	 metallic	 ions,	 which	 upon	 interaction	 with	 water,	 form	 acid.	 This	 continues	 the	

metallic	attack,	referred	to	as	an	autocatalytic	process	(Bryant,	2013).			

	

1.8.3	Galvanic	corrosion	

Galvanic	 corrosion	 is	 an	 electrochemical	 process,	 which	 occurs	 when	 two	 dissimilar	

metals	 are	 in	 contact	 in	 the	 presence	 of	 an	 electrolyte.	 Here	 one	 metal	 behaves	 as	 an	

anode	 and	 the	 other	 as	 a	 cathode.	 The	 less	 noble	metal	 is	more	 likely	 to	 behave	 as	 an	

anode	in	the	presence	of	an	electrolyte,	the	more	noble	metal	is	more	likely	to	behave	as	a	

cathode.	 The	 electro-potential	 difference	 between	 the	 two	materials	 provides	 a	 driving	

force	for	the	anode	to	dissolve	into	the	electrolyte,	resulting	in	the	collection	of	deposits	

on	 the	 cathodic	 metal	 (Hesketh,	 2012).	 The	 electrolyte	 allows	 the	 migration	 of	 ions	

between	the	anode	and	the	cathode,	which	leads	to	the	metal	at	the	anode	corroding	more	

quickly	 than	 it	 otherwise	would,	 causing	 an	 inhibition	 of	 corrosion	 at	 the	 cathode	 (the	

battery	 effect). Galvanic	 corrosion	 is	 a	 particular	 problem	 for	modular	 hip	 replacement	

systems,	 and	 due	 to	 the	 modular	 nature	 and	 use	 of	 mixed	 metals	 in	 total	 disc	

replacements	there	 is	a	growing	concern	that	galvanic	corrosion	may	also	be	a	problem	

with	these	devices	(McTighe	et	al.,	2015).	

	

1.9	Wear	and	corrosion	in	modular	implants	

Though	 the	wear	 rates	of	metal-on-metal	 total	 hip	 replacements	 are	 significantly	 lower	

than	 metal-on-polyethylene	 total	 hip	 replacements	 the	 wear	 particles	 produced	 upon	

articulation	 are	 smaller	 at	 approximately	 30nm	 in	 length	 (Firkins	 et	 al.,	 2001).	 These	

small	 particles	 provide	 a	 large	 surface	 area	 and	 energy	 for	 ion	 release.	 Metal	 wear	

products	 from	metal-on-metal	 and	metal-on-polyethylene	 devices	 have	 the	 potential	 to	

disseminate	widely	throughout	the	body	with	particles	found	in	the	lymph	nodes,	spleen,	

bone	marrow	and	liver	(Langkamer	et	al.,	1992;	Case	et	al.,	1994;	Shea	et	al.,	1997;	Urban	

et	 al.,	 2000;	 Campbell	 et	 al.,	 2003;	 Urban	 et	 al.,	 2004).	 These	metal	 particles	 can	 enter	

numerous	cell	 types	and	be	phagocytosed	by	macrophages.	Total	disc	 replacements	are	

being	increasingly	implanted	into	younger	patients	(Karnoub	et	al.,	2015),	this	may	mean	

that	 metal	 particles	 may	 be	 present	 within	 the	 body	 for	 extended	 periods	 of	 time,	

potentially	for	30-40	years.	There	have	been	concerns	regarding	the	release	of	cobalt	and	

chromium	ions,	which	may	elevate	the	risk	of	cancers	such	as	leukaemia	and	lymphoma	

and	 the	 development	 of	 masses	 of	 necrotic	 tissue,	 pseudotumors	 (Guyer	 et	 al.,	 2011).	

Elevated	 concentrations	 of	 chromium	 ions	 have	 been	 found	 in	 the	 urine	 and	 blood	 of	

patients	with	metal	hip	devices	(Jacobs	et	al.,	1996).	This	phenomenon	combined	with	an	

unacceptable	 number	 of	 total	 hip	 replacement	 revision	 procedures	 associated	 with	 an	

adverse	 tissue	 reaction	has	 lead	 to	 the	withdrawal	of	 certain	 implants	 from	 the	market	
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(Langton	et	al.,	2011;	Hug	et	al.,	2013).	Most	noted	in	the	literature	was	the	withdrawal	of	

the	 ASRÔ	 hip	 resurfacing	 system	 and	 the	 ASRÔ	 acetabular	 system	 in	 2010,	 due	 to	

revision	 rates	 of	 12%	 and	 13%,	 respectively	 after	 five	 years	 (reported	 in	 the	 Seventh	

annual	report	from	the	National	Joint	Registry	(NJR)	for	England	and	Wales).	In	addition	

to	 this,	 there	have	been	growing	concerns	within	 the	orthopaedic	community	regarding	

corrosion	 in	 modular	 hip	 devices,	 referred	 to	 as	 “trunnionosis”.	 A	 modular	 head-neck	

junction	 can	 correct	 leg	 length	 inequality	 and	 permits	 alterations	 to	 femoral	 head	

diameter	even	after	 the	stem	has	been	 implanted	(McTighe	et	al.,	2015).	 	Depending	on	

loading	 and	 the	 relative	 activity	 of	 a	 patient	 this	 taper	 junction	 can	 be	 susceptible	 to	

varying	stresses,	which	may	trigger	fretting	and/or	corrosion.			

	

Jacobs	 et	 al.	 (2014)	 in	 a	 recent	 report	 of	 20	 patients	 who	 had	 received	 metal-on-

polyethylene	 total	 hip	 replacements	 found	 mechanically	 assisted	 crevice	 corrosion	

occurring	at	the	taper	junction	at	a	mean	follow-up	of	3.9	years	(0.7–17.3	years).	 	Under	

normal	mechanical	 loading	 the	 interface	 between	 the	 two	mating	 surfaces	 of	 the	 taper	

junction	 is	 designed	 to	 be	 mechanically	 stable	 to	 prevent	 adverse	 effects	 such	 as	

loosening,	fracture,	wear	or	fretting	damage.	Although	there	is	an	intimate	fit	between	the	

trunnion	and	the	bore,	which	prevents	disassembly	of	 the	device,	 small	gaps	may	occur	

between	 the	 mating	 surfaces	 as	 a	 result	 of	 manufacturing	 tolerances	 between	 the	

components.	Fluid	entry	and	micro-motion	(fretting)	within	these	gaps	and	cyclic	loading	

of	the	device	may	result	in	damage	to	the	passive	oxide	layer	leading	to	crevice	corrosion.	

There	 is	 evidence	 in	 the	 literature	 that	 both	 the	 mechanical	 and	 corrosive	 processes	

occurring	at	the	taper	junction	and	cause	the	production	of	particulate	debris	and	metal	

ion	release	(Pansard	et	al.,	2012).	There	have	been	extensive	reports	within	the	literature	

regarding	 the	 adverse	 effects	 of	 the	 wear	 particles	 and	 ions	 associated	 with	 trunnion	

wear	 from	 metal-on-metal,	 metal-on-polyethylene	 and	 ceramic-on-ceramic	 total	 hip	

replacements	(Hohman	et	al.,	2011;	Cooper	et	al.,	2012;	Vundelinckx	et	al.,	2013;	Jacobs	et	

al.,	2014),	however,	gross	failure	of	tapers	has	been	less	widely	reported	in	primary	total	

hip	replacements,	with	only	a	few	case	studies	reported	(Botti	et	al.,	2005;	Banerjee	et	al.,	

2015).		

	

As	spinal	devices	are	often	modular	in	nature	this	important	lesson	learned	from	total	hip	

arthroplasty	could	be	crucial	to	the	design	of	better	performing	total	disc	replacements.		

	

1.10	Wear	simulation		

One	 of	 the	 key	 factors	 affecting	 the	 longevity	 of	 total	 disc	 replacements	 is	 the	 wear	

resistance	 of	 the	 implant.	 The	 rapid	 evolution	 and	 improvement	 of	wear	 simulation	 to	
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determine	 the	 wear	 performance	 of	 metals,	 polymers	 and	 ceramics	 used	 in	 total	 joint	

replacement	 has	 culminated	 in	 a	more	 accurate	 prediction	 of	 the	wear	 performance	 of	

biomaterials	in	vivo.	By	more	closely	simulating	the	in	vivo	conditions	in	terms	of	loading,	

lubrication	and	kinematics,	the	results	of	simulator	studies	can	feedback	and	improve	the	

design	of	total	joint	replacements.	

Numerous	methodologies	for	simulating	wear	have	been	used;	pin-on-disc,	pin-on-plate,	

sphere-on-disc	wear	simulators	and	whole	joint	simulators.	

A	crucial	requirement	for	an	appropriate	method	for	wear	simulation	must	be	the	ability	

to	 enable	 direct	 comparison	 between	 devices	 (Grupp	 et	 al.,	 2009).	 The	 development	 of	

multi-directional	wear	simulators	was	a	crucial	development	for	determining	the	in-vitro	

performance	 of	 biomaterials	 (Tipper	 et	 al.,	 1999;	 Baykal	 et	 al.,	 2014).	 In	 more	 recent	

years,	advanced	methods	of	wear	simulation	have	been	seen	with	the	development	of	hip,	

knee	and	spine	simulators	which	can	be	modified	to	closely	mimic	anatomical	loading	and	

kinematics.			

	

In	recent	years,	simulator	testing	of	orthopaedic	implants	has	vastly	improved	and	there	

are	 now	 international	 testing	 standards;	 ISO	 and	 ASTM	 guidelines,	 for	 simulator	 input	

parameters	for	hip,	knee	and	spine	implants	(ISO	14242,	ISO	14243,	ISO	18192	and	ASTM	

F2423-05,	respectively).	International	standards	aim	to	establish	uniform	procedures	for	

implant	testing	and	to	produce	data	that	can	be	reproducible	and	comparable	within	and	

between	 different	 research	 laboratories	 for	 testing	 and	 reporting	 of	 the	 wear	

performance	of	total	 joint	replacements.	 	 It	must,	however,	be	recognised	that	there	are	

numerous	 variations	 in	 the	 in	vivo	conditions	 and	 numerous	 interpretations	 of	 the	 ISO	

and	 ASTM	 standards.	 An	 isolated	 simulation	 with	 definitive	 parameters	 may	 not	 be	

representative	of	the	in	vivo	conditions.		

	

Previously	 simplistic	 linear	 motion	 was	 used	 to	 determine	 the	 wear	 performance	 of	

orthopaedic	biomaterials.	Baykal	et	al.	 (2014)	utilised	a	pin-on-disc	wear	simulator	and	

test	parameters	in	accordance	with	ASTM	F732	(Standard	Test	Method	for	Wear	Testing	

of	Polymeric	Materials	Used	in	Total	Joint	Prostheses)	to	determine	whether	pin-on-disc	

testing	 was	 capable	 of	 correctly	 ranking	 the	 wear	 performance	 of	 non-irradiated,	

conventional	 (25-50kGy)	 and	 highly	 cross-linked	 (³90kGy)	 UHMWPE.	 The	 mean	 wear	

rates	 of	 non-irradiated,	 conventional	 and	 highly	 cross-linked	 UHMWPEs	 were	 7.03	

mm3/million	cycles,	5.39	mm3/MC	and	0.67	mm3/MC,	respectively.	Upon	comparison	of	

these	wear	rates	with	others	reported	in	the	literature	that	complied	with	the	ASTM	F732	
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guidelines,	 the	mean	wear	 rate	of	 the	highly	 cross	 linked	UHMWPE	was	 lower	 than	 the	

conventional	and	non-irradiated	UHMWPE	materials.	Thus,	pin-on-disc	simulators	can	be	

used	 to	 compare	 highly	 cross-linked	 and	 conventional	 UHMWPEs	 despite	 different	 test	

parameters.	 However,	 narrowing	 the	 allowable	 range	 for	 standardised	 test	 parameters	

could	improve	the	sensitivity	of	multi-axial	testers	in	correctly	ranking	materials.  

	

ISO	 18192	 (2011)	 stipulates	 guidelines	 for	 a	 test	 procedure	 to	 investigate	 the	 relative	

angular	 movement	 between	 articulating	 components	 in	 intervertebral	 spinal	 disc	

prostheses.	It	specifies	the	pattern,	size	of	the	applied	force,	speed	and	duration	of	testing,	

the	 orientation	 of	 the	 sample	 and	 provides	 a	 detailed	 specification	 for	 the	 test	

environment	in	order	to	simulate	physiological	conditions.	In	accordance	with	ISO	18192	

calf	 serum,	 should	 be	 utilised	 as	 the	 test	 lubricant	 at	 a	 concentration	 of	 20g	 ±	 2g	 of	

protein/L.	Six	components	should	be	used	for	wear	testing.	The	details	of	the	motion	and	

loading	parameters	outlined	by	ISO	18192	are	shown	in	Tables	1.3	and	1.4,	respectively.		

In	 accordance	 with	 ISO	 18192	 the	 superior	 component	 of	 the	 total	 disc	 replacement	

should	be	orientated	 in	the	superior	position,	enabling	the	axis	of	rotation	 in	 its	neutral	

position	to	be	situated	at	the	centre	of	the	axes	of	rotation	of	the	test	machine,	this	should	

be	 the	 same	 for	 the	 inferior	 component	 so	 as	 to	 avoid	 preloading	 in	 the	 initial	 test	

position.		

Table	1.3.	 Angular	 displacements	 for	 both	 cervical	 and	 lumbar	 total	 disc	 replacements	

outlined	by	ISO	18192	

Implant	type	 Angle	 Flexion/Extension	 Axial	Rotation	 Lateral	

bending	

Cervical	 Minimum	 -7.5°	 -4°	 -6°	

Maximum	 7.5°	 4°	 6°	

Lumbar	 Minimum	 -3°	 2°	 2°	

Maximum	 6°	 -2°	 -2°	

	

Table	 1.4.	 Loading	 parameters	 for	 both	 cervical	 and	 lumbar	 total	 disc	 replacements	

outlined	by	ISO	18192	

Implant	 Load	(N)	

Cervical	 Minimum	 50	

Maximum	 150	

Lumbar	 Minimum	 600	

Maximum	 2000	

	



	 	 Chapter	1	
	

	24	

The	intended	sequence	of	the	motion	of	the	device	outlined	by	the	ISO	standard	is	initially	

lateral	bending	followed	by	flexion/extension	and	finally	axial	rotation.	The	motions	test	

the	 components	 in	 four	 degrees	 of	 freedom;	 flexion/extension,	 lateral	 bending,	 axial	

rotation	 and	 axial	 force	 and	 should	 be	 operated	 at	 a	 frequency	 of	 1	 Hz.	 Though	 the	

guidelines	 outlined	 in	 ISO18192	 do	 not	 fully	 reproduce	 the	 complex	 in	 vivo	 loads	 and	

motions,	 they	 provide	 a	 structured	 testing	 system	 so	 wear	 data	 obtained	 within	 the	

parameters	of	this	test	method	can	be	compared	between	differing	total	disc	replacement	

implants,	but	may	differ	from	wear	rates	observed	clinically.		

ASTM	 F2423-05	 (2011),	 the	 Standard	 Guide	 for	

Functional,	 Kinematic,	 and	Wear	 Assessment	 of	 Total	 Disc	 Prostheses	 provides	 similar	

guidelines	on	the	wear	simulation	of	a	total	disc	replacement	in	terms	of	concentration	of	

calf	serum	used	in	the	test	lubricant	(20g	of	protein/L	of	medium)	to	ISO	18192.	However	

ASTM	F2423-05	suggests	a	minimum	sample	size	of	five	for	each	kinematic/load	profile.	

The	 key	 difference	 between	 these	 two	 standards	 is	 between	 the	 guidelines	 for	 test	

profiles,	 angular	 displacements	 and	 loading	 parameters.	 The	 test	 parameters	 for	 loads	

and	motions	of	cervical	total	disc	replacements	outlined	by	ASTM	F2423-05 are	shown	in	

Table	1.5	and	should	be	operated	at	a	 frequency	no	greater	 than	2Hz.	Between	 the	 two	

international	 standards,	 for	 the	 cervical	 spine,	 the	 parameters	 for	 flexion	 extension,	

lateral	 bending	 and	 axial	 load	 are	 comparable,	 however	 the	 level	 of	 axial	 rotation	 is	

greater	 in	 the	 ASTM	 F2423-05	 guidelines.	 For	 the	 lumbar	 spine,	 the	 parameters	 for	

flexion	extension,	lateral	bending,	axial	rotation	and	axial	load	are	comparable.	

Table	 1.5	 Loading	 parameters	 for	 both	 cervical	 and	 lumbar	 total	 disc	 replacements	

outlined	by	ASTM	F2423-05	

	 Cervical	 Lumbar	

Test	Profile	 Axial	load	(N)	 Range	of	

Motion	

Axial	load	(N)	 Range	of	

Motion	

Flexion	

extension	

100	 ±7.5°	 1200	 ±7.5°	

Lateral	bend	 100	 ±6°	 1200	 ±3°	

Rotation	 	 ±6°	 1200	 ±6°	

	

In	vitro	spinal	simulations	performed	on	cobalt	chrome	lumbar	metal-on-metal	total	disc	

arthroplasties	 in	 accordance	 with	 these	 international	 standards	 have	 revealed	 steady-

state	wear	rates	of	0.33	±	0.12	mm3	per	million	cycles	in	flexion	extension	and	0.43±	0.06	

mm3	per	million	cycles	 in	combined	motion,	 flexion	extension,	 lateral	bending	and	axial	
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rotation	 in	 accordance	 with	 ASTM	 F2423-05	 (Paré	 et	 al.,	 2007).	 Such	 wear	 rates	 are	

significantly	 lower	 than	 conventional	 metal-on-polyethylene	 lumbar	 total	 disc	

replacements,	 which	 were	 reported	 to	 be	 13.4-16.1mm3	 /million	 cycles	 in	 spine	

simulation	 studies	 (Hyde,	 2012).	 Kurtz	 et	 al.	 (2012)	 compared	 simulator	 and	 in	 vivo	

retrieved	metal-on-metal	 PRESTIGEÒ.	 Cervical	 total	 disc	 replacements.	 The	parameters	

used	 for	 the	 spine	 simulation	 included;	 five	million	 cycles	with	 coupled	motion;	 lateral	

bending	(±	4.7°)	and	axial	rotation	(±	3.8°)	with	a	49N	axial	load	followed	by	ten	million	

cycles	with	flexion	extension	(±	9.7°)	with	148N	axial	load.		It	is	important	to	note	that	in	

the	 first	 five	million	cycles	the	parameters	 for	 lateral	bending	and	axial	rotation	did	not	

meet	 the	guidelines	of	 the	 international	 standards.	Also	 the	serum	utilised	 in	 this	 study	

had	a	protein	concentration	of	11.5g/L,	which	is	not	comparable	to	parameters	detailed	

in	 ISO-1819-2	 and	 ASTM	 F2423-05.	 Kurtz	 et	 al.	 (2012)	 reported	 a	 wear	 rate	 of	

0.74mm3/million	cycles	in	the	first	five	million	cycles	and	0.03mm3/	million	cycles	in	the	

latter	10	million	 cycles	of	 the	 test.	Thus	highlighting	how	coupled	motion	 increases	 the	

wear	rate	in	spine	simulations.	Despite	the	similarities	in	wear	mechanisms	between	the	

in	vitro	and	in	vivo	devices,	the	degree	of	wear	was	found	to	be	much	greater	during	the	in	

vitro	test	when	compared	with	the	retrievals,	regardless	of	their	implantation	time.	

	

Using	 four	 individual	wear	 testing	regimes;	 in	accordance	with	 the	parameters	outlined	

by	ISO	18192,	lowered	axial	loading,	altered	centre	of	rotation	and	low	cross	shear,	Hyde	

et	al.	(2015)	assessed	the	wear	performance	of	the	metal-on-polyethylene	Charité	lumbar	

total	disc	replacement.	The	simulator	parameters	employed	were	as	follows;	for	the	ISO	

standard	 wear	 test;	 600-2000N	 load,	 -3°	 flexion,	 6°	 extension,	 ±	 2°	 axial	 rotation	 and	

lateral	bending,	for	the	reduced	load	test;	a	load	of	300-1000N	was	employed,	however	all	

other	 parameters	 matched	 the	 ISO	 standard.	 To	 achieve	 low	 cross	 shear	 the	 same	

parameters	 as	 the	 ISO	 test	 were	 used,	 however	 the	 flexion	 and	 extension	 and	 lateral	

bending	parameters	were	changed	 from	90°	 out	of	phase	 to	0°	 in	phase.	Finally	 for	 the	

altered	centre	of	rotation	test	the	centre	of	rotation	was	inferior	to	the	lower	end	plate	as	

it	would	be	 in	vivo.	 The	wear	 rate	was	highest	when	 the	 centre	 of	 rotation	was	 altered	

with	 a	 wear	 rate	 of	 17.8mm3/million	 cycles	 reported.	 Thus	 demonstrating	 that	 by	

inducing	changes	to	the	kinematics	and	loading	inputs	of	the	standard	testing	regime	(in	

accordance	with	ISO	18192)	wear	phenomena	not	found	in	standard	ISO	cycle	results	can	

be	observed.		

	

The	 International	 standard	 ISO	 18192	 only	 specifies	 parameters	 for	 four	 degrees	 of	

freedom	 in	 spine	 simulations.	 Two	 additional	 degrees	 of	 freedom	 exist	 in	 the	 spine	 in	
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vivo;	anterior	and	posterior	shear	and	lateral	shear.	Vicars	et	al.	(2010)	used	a	five-degree	

of	freedom	spine	simulation	to	determine	the	effect	of	the	addition	of	anterior-posterior	

shear	 on	 the	 wear	 of	 the	 ProDisc-L	 metal-on-polyethylene	 total	 disc	 replacement.	 The	

four-degree	 of	 freedom	 test	 met	 the	 parameters	 stipulated	 by	 ISO	 18192	 and	 the	 five	

degree	of	freedom	test	added	an	AP	load	of	+175N	anterior	-140N	posterior	load.	Vicars	

et	 al.	 (2010)	 reported	 a	 wear	 rate	 of	 12.7	 mg/million	 cycles	 with	 the	 four	 degree	 of	

freedom	test	and	a	lower	11.6mg/million	cycle	with	the	five	degree	of	freedom	test.	These	

wear	 rates	 were	 larger	 than	 those	 reported	 by	 Nechtow	 et	 al.	 (2007)	 using	 the	 same	

implant	and	same	parameters	as	the	four-degree	of	freedom	test	by	Vicars	et	al.	(2010).	

Though	the	parameters	were	identical	different	wear	rates	of	4.64mg/million	cycles	and	

5.30mg/	 million	 cycles	 were	 reported.	 This	 study	 highlighted	 the	 problem	 upon	

comparing	wear	performance	using	the	same	parameters	with	differing	simulator	set	ups.	

Thus	 caution	 should	 be	 employed	 when	 comparing	 results	 across	 TDR	 simulation,	

different	simulator	parameters	as	well	as	different	test	specimens	and	test	environments.	

All	conditions	should	be	reported	to	enable	informed	conclusions.		

	

1.11	Metal	particle	isolation	and	characterisation	

To	fully	understand	the	mechanisms	behind	the	wear	of	total	disc	replacements	and	the	

subsequent	response	of	localised	tissues	to	particulate	debris,	metal	wear	debris	from	ex	

vivo	tissues	 from	 around	 failed	 implants	must	 be	 analysed	 in	 terms	 of	 shape,	 size	 and	

chemical	 composition.	 It	 is	 crucial	 to	 optimise	 the	 particle	 isolation	 procedure	 and	

minimize	changes	 to	 the	debris	as	a	consequence	of	 the	reagents	used.	Ex	vivo	particles	

from	 around	 fusion	 devices	 are	 not	well	 characterised	 at	 this	 time	 and	 there	 has	 been	

limited	 characterisation	 of	 particulate	 debris	 from	 around	 metal-on-metal	 total	 disc	

replacements	(Kurtz	et	al.,	2005;	Anderson	et	al.,	2006)	and	spinal	fusion	instrumentation		

(Senaran	et	al.,	2004;	Kim	et	al.,	2007).	 	Efficient	 isolation	and	characterisation	of	metal	

wear	 particles	 generated	 in	 vivo	 provides	 essential	 information	 for	 the	 generation	 of	

clinically	 relevant	 CoCr	 and	 stainless	 steel	 particles	 and	 allows	 determination	 of	 the	

validity	 of	 in	 vitro	 spine	 simulators	 and	 pin-on-plate	 wear	 simulators.	 There	 are	

numerous	 challenges	 to	 overcome	 to	 develop	 an	 efficient	 protocol	 for	 the	 isolation	 of	

metal	 wear	 particles,	 for	 instance	 the	 small	 sizes	 and	 volumes	 of	 the	 particles	make	 it	

difficult	to	isolate	all	the	particles	and	minimize	the	effects	of	particle	loss.	The	tendency	

of	 small	 (nano)	 particles	 to	 agglomerate	 means	 that	 it	 can	 be	 difficult	 to	 size	 these	

particles	 accurately.	 Previous	methodologies	 to	 isolate	metal	 debris	 from	hip	 simulator	

serum	have	utilised	alkaline	treatments,	but	it	is	known	that	these	reagents	alter	the	size,	

shape	and	composition	of	 the	metal	particles	(Catelas	et	al.,	2001).	Thus	there	has	been	

more	interest	in	the	use	of	enzymatic	protocols	for	particle	isolation	(Doorn	et	al.,	1998).	
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Catelas	 et	 al.	 (2001)	 performed	 a	 systematic	 study	 of	 the	 effects	 of	 different	 protocols,	

both	 enzymatic	 and	 alkaline,	 on	metal	 particles	 isolated	 from	 hip	 simulator	 lubricants.	

The	 results	 highlighted	 that	 alkaline	 treatments	 performed	 on	 both	 large	 and	 small	

particles	 (generated	 in	 water)	 caused	 a	 decrease	 in	 the	 particle	 size.	 These	 effects	

increased	with	 longer	 incubation	periods	 and	with	greater	 concentrations	of	potassium	

hydroxide.	The	effects	of	the	reagents	used	in	each	protocol	were	less	pronounced	on	the	

particles	generated	in	95%	(v/v)	serum	than	on	those	generated	in	water,	suggesting	that	

the	 serum	 (and	 the	 proteins	 and	 lipids	within	 it)	 had	 an	 initial	 protective	 effect	 on	 the	

particles,	 perhaps	 limiting	 the	 oxidizing	 action	 of	 the	 reagents.	 In	 terms	 of	minimising	

alterations	 to	 particle	 size,	 shape	 and	 chemical	 composition	 and	 reducing	 particle	

agglomeration,	 enzymatic	 protocols	 yielded	more	 promising	 results	 compared	 to	 other	

protocols.	However	this	methodology	is	not	without	its	drawbacks,	particle	loss	is	one	of	

the	 main	 problems	 with	 this	 process.	 The	 enzymatic	 digestion	 process	 developed	 by	

Brown	 et	 al.,	 (2007)	 involved	 numerous	 centrifugation	 (2),	 wash	 (12),	 dilution	 (12),	

heating	(5)	and	digestion	(12)	processes	to	ensure	the	removal	of	serum	proteins	and	any	

contaminants.	 Throughout	 this	 protocol	 the	 samples	 were	 often	 transferred	 between	

centrifugation	tubes,	here	particles	may	be	lost	through	inefficient	transfer.	Particles	may	

also	be	lost	during	the	centrifugation	steps	upon	removal	of	supernatants.	As	a	result	of	

these	 factors	 it	was	 difficult	 to	 isolate	 low	wear	 volumes.	 Attempts	 have	 been	made	 to	

minimise	particle	loss	by	utilising	a	single	pass	of	ultracentrifugation	following	enzymatic	

digestion,	which	removed	proteins	and	contaminants	and	deposited	particles	onto	silicon	

wafers	 for	 imaging.	 During	 centrifugation,	 particles	 were	 passed	 through	 numerous	

layers	of	denaturants	and	a	metal-selective	high-density	 layer	 that	 reduced	protein	and	

nucleic	 acid	 contamination.	 This	methodology	 reduced	 aggregation,	 and	 provided	well-

dispersed	particles	on	a	platform	for	size	analysis	(Billi	et	al.,	2012).	Within	the	literature,	

a	novel	particle	 isolation	method	has	been	developed	 to	 enable	 the	 recovery	of	80%	of	

ceramic	 particles	 from	 simulator	 serum	 used	 in	 wear	 testing	 of	 ultra-low	 wearing	

materials	using	enzymatic	digestion	 in	conjunction	with	a	sodium	polytungstate	density	

gradient	(Lal	et	al.,	2016).	This	protocol	is	yet	to	be	adapted	for	the	use	with	metallic	wear	

particles.		

	

1.12	Retrieval	analysis	

The	use	of	motion	preservation	devices	as	a	treatment	modality	for	back	pain	associated	

with	 DDD	 still	 remains	 in	 its	 early	 stages.	 This	 technology	 will	 progress	 with	 pace	 by	

facing	 its	 failures	 and	 learning	 from	 its	 successes	 (2000	NIH	 consensus	 statement).	 By	

observing	 the	 failures	 of	metal-on-metal	 total	 hip	 and	 knee	 replacements	 and	 drawing	

parallels	between	 these	concerns	and	 the	adverse	effects	observed	with	metal-on-metal	
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total	disc	replacements,	clinicians	and	researchers	alike	can	learn	from	these	failures	and	

feed	these	into	future	developments	of	total	disc	replacements.		

	

The	 retrieval	of	 an	 implant	normally	arises	 following	a	 revision	procedure;	 this	may	be	

due	 to	 failure	 of	 the	 device,	 subsidence	 of	 the	 device	 or	 late	 onset	 pain.	 Following	

retrieval,	 the	 explanted	device	 and	periprosthetic	 tissue	 samples	 are	 analysed	 to	 gain	 a	

better	understanding	of	how	the	implant	has	performed	 in	vivo	and	to	elucidate	why	the	

prosthesis	 and	 its	 biomaterials	 failed	 (Kurtz	 et	 al.,	 2009).	 Potential	material	 responses	

include;	wear,	 fracture,	plastic	deformation	and	creep.	Adverse	 reactions	 to	 the	 implant	

by	 the	 host	 include,	 inflammation	 in	 response	 to	 wear	 of	 the	 device,	 infection	 and	

accumulation	 of	 metallic	 ions	 and	 particles	 in	 remote	 organs	 of	 the	 body	 (or	

periprosthetic	tissues).			

	

1.12.1	Retrieval	analysis	of	total	disc	replacements	

There	is	limited	information	within	the	literature	regarding	retrieval	analysis	from	failed	

metal-on-metal	 total	 disc	 replacements	 (Kurtz	 et	 al.,	 2005;	 Anderson	 et	 al.,	 2006),	

however	 there	 is	 a	 growing	 number	 of	 clinical	 retrieval	 investigations	 revealing	 the	

modes	 of	 failure,	 wear	 mechanisms	 and	 size	 of	 wear	 particles	 produced	 by	 metal-on-

polyethylene	total	disc	replacements	(Choma	et	al.,	2009;	Kurtz	et	al.,	2009;	Kurtz	et	al.,	

2012)	and	metal	fusion	instrumentation.		

	

Retrieval	 analysis	 of	 a	 single	 Maverickä	 cobalt	 chrome-on-cobalt	 chrome	 lumbar	 total	

disc	replacement	(removed	as	a	result	of	nerve	root	impingement	after	one	year	in	situ),	

presented	 micro-abrasion,	 evidenced	 by	 microscopic	 scratches	 at	 the	 articulating	

surfaces,	 as	 the	 predominant	 mechanism	 of	 wear	 in	 this	 metal-on-metal	 device.	 This	

mechanism	 of	wear	was	 consistent	with	wear	mechanisms	 observed	 in	metal-on-metal	

(cobalt	chrome)	total	hip	replacements	(Kurtz	et	al.,	2005).	Although	this	is	an	important	

preliminary	 investigation	 into	 the	 in	 vivo	 performance	 of	 MOM	 TDR’s,	 isolation	 and	

characterisation	 of	 debris	 from	 periprosthetic	 tissues	 was	 not	 performed.	 To	 date	

characterisation	 of	metallic	wear	 particles	 from	around	 failed	metal-on-metal	 total	 disc	

replacements	has	not	been	conducted.	

	

In	a	similar	clinical	investigation,	Anderson	et	al.	(2006)	performed	a	retrieval	analysis	on	

the	 Bryan	 and	 the	 PRESTIGEÒ	 cervical	 discs.	 Reasons	 for	 implant	 retrieval	 included;	

infection,	 adjacent	 level	 effects	 and	 persistent	 pain	 post	 operatively.	 There	 were	 no	

obvious	signs	of	wear	on	the	polymeric	component	of	the	Bryan	implants	and	no	evidence	

of	 titanium	 found	 in	 the	periprosthetic	 tissues.	However,	with	 only	 a	 small	 sample	 size	
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analysed,	 there	was	 not	 sufficient	 evidence	 to	 confirm	 that	 titanium	particles	were	 not	

produced	 in	 this	 device.	 Varying	 amounts	 of	 polymer	 debris	 was	 observed;	 in	 some	

instances	 this	 had	not	 elicited	 an	 inflammatory	 response,	 evidenced	by	 the	presence	of	

macrophages	 and	 foreign	 body	 giant	 cells,	 whereas	 in	 others	 macrophages	 had	 been	

recruited.	Fretting	corrosion	was	observed	on	the	screw	heads	of	the	explanted	stainless	

steel	 PRESTIGEÒ	 devices.	 Metallic	 wear	 debris,	 identified	 in	 all	 periprosthetic	 tissue	

samples,	 triggered	 the	 recruitment	of	macrophages.	However	 this	 study	was	 conducted	

on	 a	 minimal	 number	 of	 explants	 (n=2).	 It	 is	 therefore	 difficult	 to	 extrapolate	 these	

findings	to	normally	functioning	prostheses	in	vivo.		

	

The	few	retrieval	analysis	studies	of	metal-on-metal	total	disc	replacements	indicate	that	

the	main	mechanisms	of	wear	include	micro-abrasion	and	fretting	corrosion	between	the	

plate	and	screw	interface.	Though	the	wear	products	were	not	characterised	in	terms	of	

size,	 shape	 or	 chemical	 composition,	 Anderson	 et	 al.	 (2006)	 reported	 the	 presence	 of	

metallic	 particles	 in	 periprosthetic	 tissue,	 which	 triggered	 the	 recruitment	 of	

macrophages	and	foreign	body	giant	cells,	in	a	chronic	inflammatory	response.	A	similar	

biological	response	was	reported	by	Austen	et	al.	(2012).	Here	macrophages	and	a	limited	

number	of	foreign	body	giant	cells	were	associated	with	UHMWPE	particles	generated	by	

MobidiscÒ	total	disc	replacements.	Analysis	of	periprosthetic	tissue	samples	from	around	

the	 Activ-LÒ	 device	 revealed	 the	 mean	 number	 of	 UHMWPE	 particles	 found	 in	 the	

periprosthetic	 tissue	 was	 three	 particles/mm2	 periprosthetic	 tissue.	 These	 particles	

ranged	from	2.05-9.59µm	in	size	and	were	round	to	oval	in	shape.	The	particles	generated	

by	 the	 MobidiscÒ	 were	 2.05-73.56µm	 in	 size.	 Though	 the	 results	 of	 this	 study	

demonstrate	 similar	 sizes	 of	 particles	 from	 around	 metal-on-polyethylene	 devices	

compared	 to	 particles	 observed	 in	 periprosthetic	 tissue	 surrounding	 failed	 metal-on-

polyethylene	 total	 hip	 replacements	 (10nm-1mm	 (Tipper	 et	 al.,	 2000))	 the	 number	 of	

particles	produced	was	much	lower.	

	

Choma	 et	 al.	 (2009)	 reported	 an	 individual	 retrieval	 of	 a	 ProDisc-L	 (cobalt	 chrome	 on	

UHMWPE	lumbar	total	disc	replacement)	as	a	result	of	unremitting	low	back	pain	after	16	

months	 in	situ.	Analysis	 of	 the	device	 revealed	 there	was	 evidence	of	 burnishing	on	 the	

dome,	anterior	rim	and	back-side	of	the	polyethylene	core,	which	is	also	consistent	with	

the	 adhesive,	 abrasive	 wear	 mechanisms	 observed	 in	 metal-on-polyethylene	 total	 hip	

replacements.	The	burnishing	observed	at	 the	anterior	 rim	was	accompanied	by	plastic	

deformation,	 consistent	 with	 impingement	 by	 the	 superior	 end	 plates.	 Chronic	

impingement,	 invariably	 between	 the	 polyethylene	 core	 and	 the	 end	 plate	 was	 also	
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observed	by	Kurtz	et	al.	(2008)	in	70%	of	polyethylene	mobile	bearing	retrievals.	Pitting,	

delamination	 or	 fracture	 of	 the	 polyethylene	 core	 was	 not	 observed	 in	 this	 Pro-Disc-L	

retrieval.	 Polarised	 light	microscopy	was	used	 to	 evaluate	 the	presence	of	polyethylene	

wear	 debris	 in	 periprosthetic	 tissue	 samples	 taken	 from	 around	 the	 failed	 Pro-Disc-L.	

Particles	of	approximately	1µm	in	size	were	observed	in	the	periprosthetic	tissue.	There	

was	no	report	of	 infection	or	adverse	tissue	response.	Particles	 in	the	sub-micron	range	

could	 not	 be	 detected	 due	 to	 the	 diffraction	 limit	 of	 the	 imaging	 techniques	 employed	

(0.2µm)	and	thus	their	presence	could	not	be	eliminated.		

	

In	 one	 of	 the	 few	 long-term	 follow-up	 investigations	 of	 the	 performance	 of	 metal-on-

polyethylene	 total	 disc	 replacements,	 periprosthetic	 tissue	 from	 around	 failed	 Charité	

devices	 was	 analysed	 (in	 situ	3-16	 years)	 (Kurtz	 et	 al.,	 2012).	 A	 chronic	 inflammatory	

reaction	 involving	 macrophages,	 giant	 cells	 and	 lymphocytes,	 in	 association	 with	 both	

phagocytosed	and	non-phagocytosed	polyethylene	particles	(>2µm	in	size)	was	observed	

in	15	of	the	16	patients	analysed.	Further	in	depth	analysis	from	five	periprosthetic	tissue	

samples	revealed	>1	billion	particles.gram-1	of	tissue.	The	cellular	response	and	presence	

of	micron	sized	polyethylene	particles	in	the	periprosthetic	tissue	presented	in	this	study	

were	comparable	to	the	findings	presented	by	Austen	et	al.	(2012),	who	found	UHMPWE	

particles	 contained	 in	 macrophages	 surrounding	 failed	 metal-on-polyethylene	 lumbar	

Activ-L	total	disc	replacement.		

	

Ultra-high	 molecular	 weight	 polyethylene	 particles	 as	 small	 at	 30nm	 have	 also	 been	

isolated	 from	 periprosthetic	 tissue	 (Richards	 et	 al.,	 2008)	 from	 around	 total	 hip	

replacments	 though	 in	 this	 study	 the	majority	of	 the	particles	were	 found	 to	be	0.1µm-

0.99µm	in	size.	The	number	of	nanoscale	particles	only	represented	a	small	proportion	of	

the	total	volume	of	wear.	Tipper	et	al.	(2000)	reported	UHMWPE	particles	isolated	from	

around	 failed	 total	 hip	 replacements	 had	 a	 wide	 range	 of	 sizes	 and	 morphologies,	

particles	 ranging	 from	 the	 nanoscale	 to	 100µm	 have	 been	 identified	 in	 vivo.	 Particles	

between	50nm	and	2µm	in	size	were	isolated	from	periprosthetic	tissue	from	around	the	

failed	metal-on-polyethylene	(SB	Charité)	total	disc	replacements	using	a	tissue	digestion	

protocol	and	using	scanning	electron	microscopy	(Punt	et	al.,	2011).	The	size	of	UHMWPE	

particles	reported	by	Punt	et	al.	(2011)	were	within	the	size	range	of	particles	identified	

in	vivo	around	 failed	metal-on-polyethylene	 total	 hip	 replacements	 (Doorn	 et	 al.,	 1998).	

Thus	 it	may	be	extrapolated	 that	 if	 there	are	parallels	between	 the	size	of	polyethylene	

particles	 from	 failed	metal-on-polyethylene	 total	hip	and	disc	 replacements	 the	metallic	
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wear	particles	produced	by	metal-on-metal	total	disc	replacements	may	be	of	similar	size	

to	those	observed	in	metal-on-metal	THR	i.e.	in	the	nanoscale	size	range.		

	

1.12.2	Retrieval	analysis	of	spinal	fusion	instrumentation	

Retrieval	 analysis	 has	 revealed	 substantial	 levels	 of	 corrosion	 of	 the	 stainless	 steel	

Harrington	rod	spinal	fusion	system	(Aulisa	et	al.,	1982).	Corrosion	was	most	prominent	

at	 the	 rod-hook	 junction.	 Fretting	 was	 also	 found	 in	 this	 region	 of	 the	 fusion	

instrumentation,	evidenced	by	the	production	of	metal	shavings.	Histological	analysis	of	

periprosthetic	 tissue	 revealed	 the	 presence	 of	 metallic	 particles	 associated	 with	 a	

granulomatous	 tissue	 containing	 monocytes,	 fibroblasts	 and	 macrophages.	 Similarly	

Senaran	 et	 al.	 (2004)	 analysed	metallic	 debris	 surrounding	 stainless	 steel	 spinal	 fusion	

implants	 associated	with	 late	 operative	 site	 pain.	 Substantial	metallic	 debris	was	 found	

localised	 around	 the	 rod-transverse	 connector	 junction	 and	 lesser	 amounts	 around	

pedicle	screws,	similar	to	the	findings	presented	by	Anderson	et	al.	(2006),	where	debris	

was	 found	 localised	 around	 the	 screw	 heads	 of	 the	 Prestige	 metal-on-metal	 TDR.	

Histology	 of	 these	 periprosthetic	 tissues	 revealed	 the	 presence	 of	 macrophages	 at	 the	

bone-metal	interface	with	particles	of	1-10µm	reported	using	polarised	light	microscopy,	

the	resolution	of	which	would	not	be	sufficient	 to	detect	submicron	wear	particles.	 In	a	

retrieval	study	conducted	by	Kirkpatrick	et	al.	(2005)	numerous	forms	of	corrosion	were	

observed	in	modular	fusion	instrumentation	made	from	stainless	steel	or	titanium	alloys.	

Crevice	 corrosion,	 fretting	 corrosion	 and	mechanically	 assisted	 crevice	 corrosion	 were	

detected.	Fretting	damage	and	crevice	corrosion	were	the	two	alterations	most	commonly	

observed	in	the	stainless	steel	 instrumentation.	Though	the	examination	of	metal	 fusion	

instrumentation	 and	 metal-on-metal	 and	 metal-on-polyethylene	 total	 disc	 replacement	

wear	performance	using	 retrieval	 analysis	 is	 no	 longer	 in	 its	 infancy	 it	 still	 remains	 far	

from	 complete.	 With	 small	 numbers	 of	 retrievals	 and	 limited	 long-term	 findings,	 the	

relationships	 between	 TDR	 bearing	 design,	 wear	 debris	 release,	 and	 impingement	

damage	 remain	 poorly	 understood.	 Because	 of	 the	more	 detailed	 clinical	 and	 retrieval	

history	 describing	 their	 performance,	metal-on-polyethylene	 TDRs	 provide	 the	 starting	

point	for	validating	realistic	wear	and	fatigue	test	protocols	to	characterise	TDRs	during	

the	research	and	development	phase	of	implant	design.	

	

1.13	The	host	 response	 to	metallic	wear	particles:	 lessons	 learned	 from	 total	 hip	

replacements		

The	host	biological	response	to	wear	debris	differs	depending	on	the	biomaterial	selected,	

debris	 size,	 volume,	 number,	 shape	 and	 chemical	 composition.	 The	 differences	 in	wear	

characteristics	 and	 biological	 responses	 to	 metal-on-polyethylene	 and	 metal-on-metal	
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bearing	surfaces	are	shown	in	Table	1.6	below.	(Adapted	from	Golish	&	Anderson,	2012).	

The	biological	responses	to	metal	wear	debris	will	be	discussed	in	more	detail.		

	

Table	1.6	Comparison	of	the	wear	characteristics	and	subsequent	biological	response	to	

metal-on-polyethylene	and	metal-on-metal	bearing	surfaces	in	total	hip	arthroplasty.		

Property	 Metal-on-Polyethylene	 Metal-on-Metal	

Bearing	material	

	

Wear	debris	

Size	of	particles	

	

Particle	morphology	

Corrosion	potential	

	

	

Cellular	response	

	

Host	biochemical	reaction	

	

	

Systemic	effect	

	

Hypersensitivity	

	

Pathobiology	

Cobalt	chrome		(CoCr)-

UHMWPE	

Polyethylene	(PE)	

Variable	(10nm->1000µm)	

	

Round/needle/flake/ribbon	

Minimal	

	

	

Macrophage	and	giant	cells	

	

RANKL	(receptor	activator	

of	nuclear	factor	kappa-B	

ligand),	cytokines	

Polyethylene	in	liver	and	

spleen		

Occasional	with	metal	

allergy	

Osteolysis	and	aseptic	

loosening		

CoCcr-on-CoCr	

	

CoCrMo	and	CrO	

~50nm	(variable)	

	

Round/needle	

Chromium	Phosphates	and	

Cr-protein	compounds	

	

Lymphocytic	and	

macrophage	

Cytokines	

	

	

Ion	levels	elevated	in	blood	

and	urine	

Type	IV	hypersensitivity	

	

Osteolysis,	aseptic	loosening	

and	pseudotumor	

	

Due	to	a	limited	number	of	studies	within	the	literature	regarding	the	wear	mechanisms	

(Kurtz	 et	 al.,	 2012),	 size	 and	morphology	 (Pasko	 et	 al.,	 2016)	 of	 particles	 produced	 by	

metal-on-metal	total	disc	replacements,	and	due	to	similarities	being	reported	in	terms	of	

wear	mechanisms	and	size	of	particles	between	metal-on-polyethylene	total	hip	and	disc	

replacements	 (Doorn	 et	 al.,	 1998,	 Tipper	 et	 al.,	 2001,	 Tipper	 et	 al.,	 2006;	 Choma	 et	 al.,	

2009;	Punt	et	al.,	2011;	Tipper	et	al.,	2012;	Tipper	et	al.,	2013;	Hyde	et	al.,	2015)	parallels	

may	 be	 made	 between	 the	 biological	 response	 to	 metal-on-metal	 total	 hip	 and	 disc	

replacements.			

	

Osteolysis	 induced	 by	 wear	 particles	 from	 metal-on-metal	 total	 hips,	 though	 not	 as	

prominent	 in	 the	 literature,	 compared	 to	 osteolysis	 caused	 by	 metal-on-polyethylene	
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devices,	may	be	 linked	with	a	hypersensitivity	reaction	(Park	et	al.,	2005;	Korovessis	et	

al.,	2006;	Holloway	et	al.,	2009)	and	should	be	considered	in	metal-on-metal	TDR.	

	

1.13.1	Osteolysis	in	association	with	total	disc	replacements		

The	UHMWPE	particles	generated	in	metal-on-polyethylene	TDR	articulations	range	from	

0.01-100µm	 in	 length	 (Punt	 et	 al.,	 2011;	 Tipper	 et	 al.,	 2012;	 Tipper	 et	 al.,	 2013).	

Considering	UHMWPE	particles	 from	metal-on-metal	 total	hip	 replacements	 it	has	been	

reported	that	 these	particles	are	actively	phagocytosed	by	macrophages	at	 the	 interface	

between	the	implant	and	the	bone	(Green	et	al.,	1998).	Phagocytosis	of	polyethylene	wear	

particles	 triggers	 the	 release	 of	 inflammatory	 cytokines,	 IL-6,	 IL-1	 and	 TNF-a	 by	

macrophages,	 resulting	 in	 an	 inflammatory	 response	 and	bone	 resorption	 (Green	 et	 al.,	

1998).		

	

In	2007,	Van	Ooij	 et	 al.	 described	 four	 cases	of	 osteolysis	 in	patients	who	had	 received	

Charité	 metal-on-polyethylene	 TDR’s.	 Previously	 this	 phenomenon	 was	 not	 thought	 to	

occur	in	the	spine	due	to	the	lack	of	a	synovium	and	a	low	range	of	motion	(Büttner-Janz	

et	al.,	2003).	 	The	process	by	which	the	polyethylene	wear	particles	are	contained	at	the	

location	of	implantation	for	sufficient	periods	of	time	to	induce	osteolysis	is	not	clear	due	

to	 the	 fact	 there	 is	 no	 real	 joint	 space.	 However	 it	 is	 possible	 that	 the	 host	 develops	 a	

pseudocapsule	after	surgery	around	the	implant,	forming	a	contained	region	conducive	to	

the	 initiation	of	osteolysis	(Devin	et	al.,	2008).	Histology	of	periprosthetic	 fibrous	tissue	

samples	 from	around	 failed	metal-on-polyethylene	 total	disc	 replacements	has	 revealed	

an	inflammatory	tissue	with	polyethylene	particles	localised	within	the	tissue	and	within	

multi-nucleated	giant	cells.	The	observation	of	polyethylene	particles	was	 limited	 to	 the	

use	of	polarised	 light	microscopy.	This	meant	that	the	particles	could	only	be	 imaged	to	

0.1-1µm	 in	 size,	 submicron	 particles	 could	 not	 be	 identified.	 Ideally	 a	 size	 distribution	

obtained	 by	 tissue	 digestion	 and	 subsequent	 electron	microscopy	 analysis	 would	 have	

provided	 a	 more	 detailed	 account	 of	 particle	 sizes	 in	vivo	 (Van	 Ooij	 et	 al.,	 2007).	 In	 a	

similar	clinical	case	study	Devin	et	al.	(2008)	reported	an	individual	case	of	osteolysis	in	a	

50-year	old	man	who	received	 the	ActoFlex	 trial	TDR	(titanium	end	plates	and	an	poly-

olefin	core).	As	this	implant	had	been	in	situ	for	19	years,	this	case	highlights	the	fact	that	

although	early	short-term	reports	may	have	positive	clinical	outcomes	the	clinical	course	

can	 be	 devastating	 with	 long-term	 follow-up	 (Devin	 et	 al.,	 2008).	 Patients	 who	 are	

candidates	 for	 disc	 arthroplasty	 are	 generally	 much	 younger	 and	 more	 active	 than	

patients	 recommended	 for	 lower	 extremity	 total	 joint	 replacement,	 which	 places	

increased	mechanical	demands	on	the	implant.		
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1.13.2	Mechanism	of	osteolysis	

Several	 mechanisms	 of	 osteolysis	 have	 been	 identified	 in	vivo.	 The	 prevailing	 cause	 of	

osteolysis	around	joint	replacement	is	due	to	the	increased	bone	resorption	triggered	by	

cytokine	 signalling	 from	macrophages,	 which	 have	 been	 stimulated	 by	 particles	 in	 the	

surrounding	periprosthetic	membrane.	This	activation	process	 is	dependent	on	 the	size	

and	number	of	UHMWPE	particles	in	the	periprosthetic	tissue.	Particles	in	the	size	range	

0.2-0.8µm	at	 a	 concentration	 of	 10-100µm3	per	 cell	 are	 thought	 to	 trigger	macrophage	

activation	(Green	et	al.,	1998;	Green	et	al.,	2000;	Matthews	et	al.,	2001).		

	

Macrophages	 respond	 to	 the	 presence	 of	 wear	 particles	 by	 taking	 up	 the	 particles	 by	

phagocytosis,	however,	 this	process	 is	not	 capable	of	 eliminating	bio-inert	polyethylene	

wear	 debris	 and	 causes	 the	 release	 of	 biochemical	 mediators	 associated	 with	

inflammation,	 cellular	 recruitment	 and	 bone	 resorption	 in	 an	 innate	 immune	 response	

(Ingham	&	Fisher,	 2000).	 Cytokines	 and	 cell	 signalling	molecules	 found	 localised	 in	 the	

periprosthetic	 tissue	 include;	 TGF-b,	 TNF-a,	 IL-1a,	 IL-1b,	 IL-3,	 IL-6,	 IL-8,	 IL-11,	

macrophage	 colony	 stimulating	 factor	 (M-CSF),	 Platelet-derived	 growth	 factor	 (PDGF),	

receptor	 activator	 of	 nuclear	 factor	 κ-B	 (RANK)	 and	 its	 corresponding	 ligand	 RANKL,	

prostagliandin-E2	(PGE2)	and	adhesion	molecules	(Abu-Amer	et	al.,	2007).	The	interaction	

of	 these	 cytokines	 with	 monocytes,	 macrophages,	 epithelial	 cells,	 giant	 cells,	 pre-

osteoclasts,	T-cells,	hematopoietic	stem	cells,	osteoblasts	and	osteoclasts,	 in	 the	process	

of	 bone	 resorption	 is	 detailed	 in	 Figure	 1.9.	 The	 communication	 between	 RANK	 and	

RANKL	stimulates	the	differentiation	of	pre-osteoclasts	to	osteoclasts,	responsible	for	the	

breakdown	 of	 bone,	 leading	 to	 osteolysis	 and	 subsequent	 loosening	 of	 the	 implant	

(Kandahari	 et	 al.,	 2016).	The	 role	of	key	 cytokines	 in	osteolysis	 is	 summarised	 in	Table	

1.7.	

	

Table	1.7	The	role	of	key	cytokines	involved	in	the	mechanism	of	osteolysis	

Molecular	

effector	

Role	

TNF-a	 • Increases	RANKL	expression	
• Strongly	augments	RANKL-induced	osteoclastogenesis		
• Inhibits	osteoclast	apoptosis		
• Enhances	the	production	of	macrophage	activation	and	attraction	of	chemokines.	

IL-1	 • Increases	RANKL	expression		
• Inhibits	osteoclast	apoptosis	

IL-3	 • 	Stimulates	hematopoietic	stem	cells	to	differentiate	into	bone	resorbing	osteoclasts	

IL-6	 • Secreted	by	osteoblasts	in	response	to	to	IL-1β,	and	TNF-α	stimulation	
• Released	by	stimulated	macrophages	and	associated	with	increased	osteolysis	

PGE-2	 • Stimulates	the	expression	of	the	RANK	ligand	on	osteoblasts.		

M-CSF	 • Stimulates	hematopoietic	stem	cells	to	differentiate	into	bone	resorbing	osteoclasts	
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If	the	polyethylene	particles	are	too	large	or	the	macrophages	can	no	longer	phagocytose	

the	debris,	 frustrated	phagocytosis	 occurs.	Here,	 the	 activated	macrophages	 continually	

try	 to	 take	 up	 the	 material	 and	 continue	 to	 produce	 pro-inflammatory	 cytokines	 and	

chemokines,	 resulting	 in	 the	 further	 recruitment	 of	 macrophages.	 The	 macrophages	

become	frustrated	and	fuse	together	forming	multi-nucleated	giant	cells,	indicative	of	the	

cells	 attempting	 to	 “wall-off”	 the	 particles	 and	 protect	 the	 surrounding	 tissue	 from	

damage	 (Ingham	 &	 Fisher,	 2000).	 The	 continued	 release	 of	 chemokines	 and	 pro-

inflammatory	 cytokines	 subsequently	 activate	 osteoclasts,	 which	 begin	 to	 resorb	 bone	

surrounding	the	device	(Figure	1.9).	

	

Figure	1.9	The	mechanism	of	osteolysis.	PE	debris	>10μm	are	taken	up	by	giant	cells.	

Particles	 <10µm	 are	 phagocytosed	 by	 macrophages	 inducing	 the	 release	 of	 cytokines	

causing	the	proliferation	of	osteoclasts.	The	balance	between	osteoblasts	and	osteoclasts	

is	altered	and	triggers	bone	resorption	(Adapted	from	Gowland,	2014).		
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1.14.	 Hypersensitivity	 and	 pseudotumors	 in	 association	 with	 metal	 total	 disc	

replacements	

Although	 metals	 are	 essential	 elements	 within	 the	 human	 body,	 when	 metal	 ion	

concentrations	surpass	normal	levels	there	is	an	increased	risk	of	a	toxic	response	in	the	

human	body	in	the	form	of	cytotoxicity,	genotoxicity,	potential	carcinogenicity	and	metal	

hypersensitivity	(Sargeant	&	Goswami,	2007).	Metal	ions,	produced	from	nano-scale	wear	

debris	 or	 as	 a	 result	 of	 corrosion	 are	 capable	 of	 triggering	 a	 hypersensitivity	 reaction	

(Hallab	 et	 al.,	 2001).	 When	 metals	 are	 in	 contact	 with	 biological	 environments	 they	

corrode,	 the	 ions	 released	 from	 this	 process,	 while	 not	 sensitizers	 on	 their	 own,	 can	

trigger	 an	 immune	 response	 by	 forming	 complexes	 with	 native	 proteins.	 These	 metal-

protein	 complexes	 are	 regarded	 as	 candidate	 antigens	 (allergens)	 for	 eliciting	

hypersensitivity	responses.	Numerous	implant	metals	are	capable	of	triggering	a	delayed-

type	 hypersensitivity	 reaction,	 the	 most	 common	 is	 nickel,	 followed	 by	 cobalt	 and	

chromium.	 This	 phenomenon	 linked	 with	 the	 well-documented	 increase	 of	 cobalt	 and	

chromium	 ions	 in	 the	 blood	 and	 urine	 of	 patients	with	metallic	 total	 hip	 replacements,	

supports	 the	 idea	 of	 a	 risk	 of	 hypersensitivity	 response	 with	 other	 metal-on-metal	

arthroplasties	 including	metal-on-metal	 total	disc	replacements	(Teo	&	Schalock,	2016).	

In	addition,	pseudotumour-like	reactions	can	be	triggered	by	high	wearing	 implants	but	

can	also	be	caused	by	low	wear	due	to	metal	hypersensitivity	(Campbell	et	al.,	2010).		

	

There	is	however,	controversy	within	the	literature;	do	metal-on	metal	implants	fail	as	a	

result	 of	 a	 pre-existing	metal	 hypersensitivity	 or	 does	 the	metal	 hypersensitivity	 occur	

because	 of	 the	 release	 of	 large	 numbers	 of	 nanoscale	 metallic	 wear	 particles	 and	

subsequent	release	of	ions?	(Thyssen	et	al.,	2010).	

	

Soft	 tissue	 inflammatory	 reactions	 to	 metal	 wear	 particles	 are	 a	 well-documented	

complication	of	metal-on-metal	 total	hip	replacements	and	there	 is	growing	evidence	 in	

the	 literature	 that	 such	 adverse	 reactions	 are	 associated	with	metal-on-metal	 total	 disc	

replacements.	These	reactions	commonly	referred	to	as	adverse	reactions	to	metal	debris	

(ARMD),	have	been	termed;	 inflammatory	pseudotumour,	aseptic	 lymphocytic	vasculitis	

associated	lesion	(ALVAL)	and	metallosis	(Daniel	et	al.,	2012;	Drummond	et	al.,	2015).	A	

pseudotumour	is	a	clinical	term	given	to	a	non-infectious,	aseptic,	mass	of	necrotic	tissue,	

that	 is	 either	 solid	or	 cystic,	 formed	 from	a	 fibrous	exudate	developed	as	 a	 result	 of	 an	

inflammatory	 response	 (Davis	 &	 Morrison,	 2016).	 An	 aseptic	 lymphocyte-dominated	

vasculitis-associated	 lesion	 (ALVAL),	 identified	 histologically,	 defines	 the	 individual	

cellular	response	that	is	stimulated	periprosthetically	 in	response	to	metal	particles	and	

cobalt	 and	 chromium	 ions.	 The	 mechanism	 behind	 an	 ALVAL	 is	 thought	 to	 be	 a	 T	
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lymphocyte	 mediated	 type	 IV	 hypersensitivity	 reaction.	 Here	 cytotoxic	 T	 cells	 and	

activated	monocytes/macrophages	cause	tissue	damage	(Watters	et	al.,	2010).	An	ALVAL	

reaction	 was	 previously	 thought	 to	 be	 proportional	 to	 the	 amount	 of	 wear	 debris	

released,	but	more	recently	has	been	reported	in	patients	with	smaller	amounts	of	wear	

debris	also	(Langton	et	al.,	2011).	A	metallosis	response	can	be	defined	as	aseptic	fibrosis,	

local	necrosis	or	loosening	of	an	implant	due	to	metallic	corrosion	and	wear.	It	has	been	

suggested	within	the	literature	that	pseudotumors	and	metallosis	are	continuous	with	the	

same	pathological	spectrum	of	disease	(Teo	&	Schalock,	2016).  	

	

1.14.1.	Type	IV	hypersensitivity	mechanism		

Type	IV	hypersensitivity,	or	delayed	type	hypersensitivity	(DTH),	is	characterised	by	the	

process	of	antigen	presentation	 in	 local	 tissues	by	antigen	presenting	cells	and	 involves	

presentation	 of	 antigen	 in	 association	 with	 MHC	 class	 II	 molecules.	 The	 occurrence	 of	

such	a	 reaction	 is	 evidenced	by	elevated	 levels	of	numerous	 immune	cells	 and	markers	

located	 in	 the	 periprosthetic	 tissue	 including;	 CD3+	 and	 CD4+	 T	 lymphocytes,	 CD11c+	

macrophages/dendritic	cells	and	cells	with	abundant	expression	of	MHC	class	II	(Perry	et	

al.,	1995;	Torgersen	et	al.,	1995)	

	

A	 type	 IV	 hypersensitivity	 response	 to	 metals	 requires	 both	 a	 sensitisation	 (afferent)	

phase	 and	 an	 elicitation	 (efferent)	 phase,	which	 is	 responsible	 for	 the	 recruitment	 and	

activation	of	 specific	T	 cells	 to	 a	 hapten	 challenge.	 In	 the	 afferent	 (sensitisation)	phase	
metal	ions	(haptens)	produced	by	mechanical	wear	or	physiochemical	corrosion	sensitise	

T-cells	in	the	secondary	lymphoid	tissue	(lymph	nodes	or	spleen).	  
	

The	 next	 phase	 of	 the	 reaction	 is	 referred	 to	 as	 the	 effector	 phase,	 here	 metal	 ions	

produced	by	mechanical	wear	or	physiochemical	corrosion	bind	to	endogenous	proteins,	

to	 form	 metal-protein	 complexes	 (antigen).	 The	 T-cells	 which	 were	 stimulated	 (in	 the	

afferent	 stage),	 upon	 interaction	 with	 antigen	 presenting	 cells	 (APC’s)	 presenting	 the	

metal-protein	complexes	at	the	site	of	the	pathological	reaction,	secrete	cytokines	such	as	

IFN-g,	IL-1	and	IL-2,	which	attract	macrophages	and	other	lymphoid	cells	(Murphy	et	al.,	

2008;	 Athanasou,	 2016).	 These	 cytokines	 play	 a	 crucial	 role	 in	 the	 chemotaxis	 of	

monocytes	 to	 the	 site	 of	 DTH	 reaction.	 Interferon	 gamma	 and	 TNF-a	 also	 prevent	 the	

migration	 of	macrophages	 away	 from	 the	 site	 of	 DTH.	 It	 is	 this	mechanism,	which	 can	

cause	significant	tissue	damage;	as	activated	macrophages	trigger	the	activation	of	more	

CD4+	T	cells,	which	in	turn	activate	more	macrophages	and	the	cycle	continues.			
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1.14.2	Adverse	tissue	reactions	to	total	disc	replacements	

In	an	isolated	clinical	case	study	reported	by	Cavanaugh	et	al.	(2009)	where	a	39	year	old	

woman	received	a	CoCrMo	cervical	 total	disc	 replacement,	 six	months	post-surgery	 she	

began	 to	 experience	 radicular	 pain	 associated	 with	 a	 large	 yellow	 mass	 of	 tissue	

extending	into	the	epidural	space,	presumed	to	be	a	pseudotumor.		

	

Similarly	 to	 the	 isolated	 case	 presented	by	Cavanaugh	 et	 al.	 (2009)	 Guyer	 et	 al.	 (2011)	

reported	 four	 case	 studies	 of	 pseudotumour	 development	 in	 the	 cervical	 and	 lumbar	

spine	 following	total	disc	replacement	with	cobalt	chrome	molybdenum	metal	 implants.	

Each	 of	 the	 four	 patients	 had	 successful	 primary	 surgeries	 with	 good	 initial	 clinical	

outcomes,	however	over	time	they	each	developed	increasing	pain	levels	and	neurological	

problems.	 Upon	 investigation	 large	 soft-tissue	masses	 were	 observed	which	 protruded	

into	 the	 epidural	 space	 causing	 neural	 compression,	 (Guyer	 et	 al.,	 2011).	 Histological	

analysis	 of	 these	 tissues	 showed	 them	 to	 contain;	 macrophages,	 lymphocytes	 and	

eosinophilic	 granulocytes	 indicative	 of	 type	 IV	 hypersensitivity	 (Guyer	 et	 al.,	 2011).	 In	

particular	with	the	one	cervical	device	a	mass	of	black	tissue	was	observed.	This	was	not	

found	 to	 contain	 metal	 particles	 using	 backscattered	 electron	 imaging,	 however,	 the	

detection	limit	of	this	technique	was	0.1µm	and	as	mentioned	previously,	the	size	of	metal	

debris	 from	 metal-on-metal	 articulations	 have	 been	 found	 to	 be	 in	 the	 nanoscale	 size	

range,	 therefore	 the	 resolution	 of	 the	 technique	may	 not	 have	 been	 sufficient	 to	 detect	

nanoscale	 metal	 particles.	 However,	 with	 the	 three	 lumbar	 cases,	 analysis	 of	 the	

periprosthetic	 tissue	 identified	 a	 delayed	 type	 hypersensitivity	 reaction.	 In	 these	 cases	

metallic	 particles	 were	 identified	 within	 macrophages,	 which	 were	 similar	 to	 particles	

generated	in	metal-on-metal	total	hip	replacements	(Jacobs	et	al.,	2009).	Inspection	of	the	

retrieved	 devices	 showed	 micrometre	 and	 sub-micrometre	 scale	 scratches	 associated	

with	third	body	abrasive	wear.		

	

1.14.3	Metal	wear	from	total	disc	replacement	and	associated	genotoxicity	

A	 growing	 concern	 within	 the	 neurosurgical	 community	 is	 that,	 due	 to	 the	 nanoscale	

nature	 of	 the	 particulate	 debris,	 the	 wear	 particles	 are	 able	 to	 disseminate	 widely	

throughout	 the	 body,	 meaning	 there	 is	 a	 potential	 for	 tumours	 to	 develop	 in	 regions	

distant	from	the	metal	prosthesis	(Tsaousi	et	al.,	2010).		

	

Both	 cobalt	 and	 chromium	are	 recognised	 by	 the	 International	Agency	 for	Research	 on	

Cancer,	 commissioned	 by	 the	 European	 Union,	 as	 human	 carcinogens.	 Commonly,	

chromium	 occurs	 in	 two	 distinct	 forms;	 Cr	 III	 and	 Cr	 VI	 (though	 it	 is	 also	 found	 less	

commonly	as	Cr	 IV	and	Cr	V).	Chromium	VI	 ions	are	capable	of	entering	cells	and	upon	
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entry	 are	 reduced	 to	 Cr	 III	 and	 free	 radicals	 (Figure	 1.10);	 such	 as	 thyl	 and	 hydroxyl	

radicals	 which	 are	 particularly	 harmful	 to	 cells,	 causing	 damage	 to	 the	 DNA	 and	

organelles.	Cr	III	is	known	to	trigger	numerous	different	types	of	DNA	damage	including	

oxidative	 DNA	 damage,	 Cr-DNA	 adducts,	 single	 strand	 breaks	 and	 DNA-protein	 cross	

links.	 This	 damage	 to	 DNA	 can	 alter	 its	 ability	 to	 replicate	 via	 interference	 with	 DNA	

polymerase,	 inhibition	 of	 transcription	 and	 finally	 via	 genetic	mutations.	 Such	 negative	

consequences	can	result	in	apoptosis,	yielding	necrotic	tissue	(Singh	et	al.,	1998).		

	

	

	

	

	

	

	

	

	

	

	

Figure	 1.10	 Proposed	 mechanisms	 of	 genotoxicity	 triggered	 by	 cobalt	 chrome	

nanoparticles.	 Adapted	 from	 Raghunathan	 et	 al.	 (2013).	 NADPH	 oxidase	 triggers	

production	of	reactive	oxygen	species	within	two	hours	of	exposure.	Prolonged	exposure	

to	 CoCr	 particles	 results	 in	 sustained	 release	 of	 intracellular	 ROS	 associated	 with	

disruption	 to	 lamin	 B1,	 misshapen	 nuclei	 and	 micronuclei,	 CoCr	 nanoparticles	 can	

damage	 cytoskeletal	 elements	 and	 cause	 chromosomal	 clumping	 and	 numerical	

aberrations	either	directly	or	via	ROS.	Corrosion	of	CoCr	particles	can	generate	metal	ions	

that	 can	 lead	 to	 genotoxicity.	 CoCr	 particles	 are	 taken	 up	 by	 cells	 and	 release	 further	

metal	ions,	triggering	the	release	of	ROS	to	result	in	genotoxic	effects.  

1.15	In	vivo	investigation	into	the	biological	response	to	wear	debris.		

Although	retrieval	studies	have	been	used	to	determine	the	effects	of	cobalt	chrome	and	

stainless	steel	wear	particles	on	 the	 tissues	surrounding	 total	 joint	replacements	and	to	

determine	the	size	and	morphology	of	wear	products	produced	by	orthopaedic	implants,	
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a	more	 thorough	understanding	regarding	 the	molecular	mechanisms	of	adverse	effects	

such	 as	 cytotoxicity,	 genotoxicity,	 hypersensitivity,	 inflammation	 and	 osteolysis	 is	

required	for	the	advancement	of	orthopaedic	implants.	Animal	models	allow	a	controlled	

study	into	individual	aspects	of	the	biological	response	and	compatibility	of	biomaterials	

for	total	joint	arthroplasty.	

	

One	of	the	earliest	investigations	into	the	toxicity	of	CoCr	particles	in	vivo	was	conducted	

in	 1983	 by	 Meachim	 and	 Brooke.	 Here,	 cobalt	 chrome	 particles	 (500nm-50µm),	 with	

approximately	80%	between	1µm	and	2µm	were	used.	Cobalt	 chrome	particles	 (30mg)	

were	 injected	 into	 the	 medial	 pouch	 of	 the	 synovial	 cavity	 in	 the	 patella-femoral	

articulation	in	guinea	pigs.	The	short-term	response	to	CoCr	was	investigated	at	intervals	

between	 one	 day	 and	 one-month	 post	 operatively.	 Histological	 analysis	 of	 the	

periprosthetic	tissue	showed	progressive	incorporation	of	the	particles	into	the	synovial	

fluid	and	found	the	smaller	particles	had	been	taken	up	by	macrophages	and	fibroblasts.	

Larger	particles	triggered	the	recruitment	of	multi-nucleated	giant	cells	and	subsequently	

triggered	 fibrosis.	 This	 research	 highlighted	 the	 ability	 of	 CoCr	 particles	 to	 disseminate	

throughout	the	body	as	particles	were	found	in	the	lymph	nodes.	There	are	limitations	in	

the	experimental	design	in	that	a	large	volume	of	particles	was	injected	into	the	synovial	

cavity,	 which	 would	 not	 accurately	 mimic	 the	 mechanism	 of	 wear	 release	 into	 the	

synovial	cavity	and	may	cause	damage.	Additionally,	the	injection	procedure	could	trigger	

inflammation	making	it	difficult	to	ascertain	whether	the	effect	was	the	result	of	the	CoCr	

particles	or	simply	a	response	to	the	method	of	particle	application.	The	milled	particles	

used	 in	 this	 study	 were	 larger	 than	 would	 be	 found	 in	 vivo,	 thus	 the	 validity	 of	 their	

findings	 is	 somewhat	 questionable.	 Milled	 particles	 do	 not	 produce	 the	 correct	

morphology	that	would	be	seen	in	vivo.	

	

In	an	effort	to	overcome	the	limitations	of	previous	work	regarding	the	crude	mechanism	

of	particle	 administration	and	non-clinically	 relevant	particle	 sizes,	Brown	et	 al.	 (2013)	

investigated	the	biological	consequences	of	clinically	relevant	micro	(average	particle	size	

2.9µm)	 and	 nano-scale	 (average	 particle	 size	 of	 32nm)	 cobalt	 chrome	 particles	 using	 a	

murine	model,	with	 the	aim	of	understanding	 the	 in	vivo	biological	 response	 to	metallic	

particles	 generated	 from	 metal-on-metal	 total	 hip	 replacements.	 Here	 the	 mice	 were	

repeatedly	exposed	to	micro	and	nanoparticles	at	0,	6,	12	and	18	weeks	and	analysis	of	

immunological	and	genotoxic	effects	performed	at	1,	4	and	40	weeks.	The	use	of	repeat	

injections	aimed	to	reduce	the	concentration	of	a	single	dose	and	simulated	progressive	

release	 of	 particles.	 The	mice	were	 exposed	 to	 three	 test	 conditions;	 4	 x	 109	 nanoscale	

CoCr	particles	per	injection,	1.2	x	1010	nanoscale	CoCr	particles	per	injection	and	4.5	x	104	
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micron	sized	CoCr	particles	per	injection.	Brown	et	al.	(2013)	detected	elevated	levels	of	

chromium	ions	in	the	knees	with	all	test	conditions,	when	compared	to	the	sham	control	

after	 one	 and	 four	 weeks.	 No	 significant	 inflammatory	 response	 was	 observed	 and	 no	

evidence	 of	 pseudotumour	 formation.	However	DNA	damage	was	 reported	 in	 the	 bone	

marrow	at	one	and	40	weeks	post	injection.		The	findings	of	this	study	revealed	that	the	

response	 to	 the	 larger	 micron	 sized	 particles	 was	 Th1	 driven	 and	 indicative	 of	 a	

hypersensitivity	reaction.	There	are	however	some	limitations	to	this	investigation,	firstly	

the	 purpose	 of	 the	 study	 was	 to	 investigate	 the	 response	 of	 metal-on-metal	 particles	

generated	 in	 total	 hip	 replacements	but	 the	mice	were	 injected	 in	 the	 knee.	The	 site	 of	

injection	 was	 so	 small	 it	 was	 difficult	 to	 discern	 whether	 the	 particles	 had	 been	

administered	 to	 the	 intended	 site,	 this	 could	 have	 been	 improved	with	 a	 larger	 animal	

model	 such	 as	 a	 rat.	 Secondly	 the	 particles	 were	 injected	 (which	 may	 trigger	

inflammation)	at	four	time	points,	which	although	better	than	a	single	injection	to	mimic	

the	release	of	wear	debris	over	 time,	perhaps	continuous	perfusion	of	 low	doses	would	

have	been	a	more	appropriate	model.		

	

More	recently,	Cunningham	et	al.	(2013)	assessed	the	effect	of	epidural	application	of	11	

biomaterials	on	the	spinal	cord	and	systemic	tissues	 in	New	Zealand	White	rabbits	with	

the	 aim	 of	 further	 understanding	 the	 host	 biological	 response	 to	 unintended	 metallic	

wear	debris	produced	by	metal-on-metal	bearing	surfaces.	The	metallic	particles	tested	in	

this	study	were	stainless	steel	(0.2-37µm),	titanium	(0.2-18.5µm)	and	cobalt	chrome	(0.2-

9.3µm).	A	mass	of	4mg	of	each	particle	type	was	added	to	the	surface	of	the	dura	mater	in	

a	 dry,	 endotoxin	 free,	 sterile	 format.	 No	 evidence	 of	 particles	 in	 systemic	 tissues	 was	

reported,	however,	 there	was	evidence	of	 the	 formation	of	epidural	 fibrous	 tissue	 in	all	

test	groups	and	none	 in	the	control	groups	(epidural	exposure	alone).	Upon	histological	

examination	 of	 this	 tissue	 evidence	 of	 phagocytosed	 particles	 and	 a	 local	 inflammatory	

response	was	 reported.	 There	were,	 however,	 flaws	 in	 the	 experimental	 design	 of	 this	

study;	the	metallic	particles	were	commercially	sourced	and	not	generated	by	articulation	

in	a	simulator,	meaning	 the	elemental	composition	of	 the	particles	may	be	dissimilar	 to	

those	generated	in	vivo	from	medical	grade	metal	components.	The	particles	utilised	were	

large	 (micron	sized)	 compared	 to	 those	 that	would	be	generated	 in	vivo	from	metal-on-

metal	 total	 disc	 replacements.	A	 key	 limitation	 of	 this	 study	 lies	 in	 the	 fact	 that	 the	

particles	were	 administered	based	 on	weight,	 this	 did	 not	 account	 for	 the	 difference	 in	

particle	size	of	the	different	biomaterials.	Thus	for	the	smaller	metallic	particles,	a	greater	

number	of	particles	per	gram	of	tissue	would	be	delivered	than	the	larger	particle	sized	

materials.	Moreover,	 the	particles	were	applied	directly	onto	 the	dura	which	 is	a	 some-
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what	crude	simulation	of	wear	debris	generation	and	is	not	representative	of	the	build-up	

of	wear	debris	seen	in	vivo	over	time.	

	

In	 an	 attempt	 to	 understand	 the	 response	 of	 the	 spinal	 cord	 to	 titanium	wear	particles	

generated	in	a	spine	simulator	Chang	et	al.	(2004).	Administered	titanium	particles	to	the	

epidural	space	of	New	Zealand	white	rabbits	following	a	laminotomy	at	L2	or	via	a	lateral	

flank	approach	at	L2-L3.		Interestingly,	the	host	tolerated	these	particles	well	(<5µm	and	

5-15µm),	 adverse	 effects	 such	 as	 necrosis,	 fibrosis	 or	 granulomatous	 tissue	 were	 not	

observed	 in	any	of	 the	specimens	at	any	time	point.	A	 low	number	of	 titanium	particles	

were	observed	 in	 the	 local	 tissue,	 smaller	particles	were	phagocytosed	by	macrophages	

and	at	the	time	points	tested	this	had	not	elicited	an	inflammatory	response.		There	were	

numerous	shortcomings	to	this	investigation,	primarily	this	study	was	not	quantitative	in	

that	 no	 obvious	 signs	 of	 inflammation	 or	 adverse	 effects	were	 seen,	 however	 histology	

and	 cytokine	 expression	were	 not	 explored.	No	 control	 groups	were	 used	 in	 this	 study	

and	finally	minimal	particle	characterisation	was	performed.		

	

Though	 the	 use	 of	 animal	 models	 has	 provided	 an	 invaluable	 holistic	 view	 of	 the	

biological	response	of	metallic	wear	particles,	 to	ascertain	the	fine	details	of	the	cellular	

mechanisms	involved,	a	more	controlled,	specific,	simplistic	model	is	required.	There	are	

reoccurring	 limitations	with	these	models.	The	current	research	using	animal	models	to	

assess	 the	 biological	 response	 to	 metallic	 wear	 particles	 have	 predominantly	 used	

particles	that	are	at	least	10	times	larger	than	is	anticipated	to	be	produced	 in	vivo	from	

metal-on-metal	total	disc	replacements,	with	predominantly	micron	sized	particles	used.	

Further	 work	 needs	 to	 be	 conducted	 to	 determine	 an	 appropriate	 method	 of	 particle	

administration	 with	 continuous	 perfusion	 being	 regarded	 as	 a	 potential	 technique	 to	

more	 closely	model	 continuous	particle	 release	 and	 reduce	 the	 risk	 of	 inflammation.	 In	

vitro	 cellular	 models	 involving	 individual	 and	 co-cultured	 cell	 populations	 exposed	 to	

wear	particles	of	varying	doses	would	allow	the	effects	of	cell	viability,	cellular	reactivity,	

cytokine	release	and	DNA	damage	to	be	investigated	in	a	more	controlled	manner.	 	This	

has	lead	to	the	use	of	in	vitro	investigations	to	determine	the	cellular	response	to	metallic	

wear	particles.			

	

1.16	In	vitro	investigation	of	the	biological	response	to	metal	wear	debris		

In	vitro	cellular	models	offer	several	advantages	over	whole	animal	studies	when	used	to	

determine	 the	 behaviour	 of	 specific	 cell	 populations	 to	 external	 stimuli.	 The	 use	 of	

simplified	in	vitro	models	enable	the	assessment	of	various	cellular	outcomes	in	response	

to	 well	 defined	 parameters	 while	 providing	 greater	 control	 over	 cellular	 components,	
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manipulation	 and	monitoring	 (LaPlaca	 et	 al.,	 2007).	 	 In	 recent	 years	 numerous	 studies	

have	been	performed	 to	determine	 the	effect	of	metallic	wear	particles	on	cell	viability,	

DNA	integrity,	cytokine	release,	proliferation,	reactivity	and	differentiation.	A	wide	array	

of	 cell	 types	 (cell	 lines	 and	 primary	 cells)	 have	 been	 used	 to	 ascertain	 the	 cellular	

response	 to	 medical	 grade	 cobalt	 chrome	 and	 stainless	 steel	 wear	 particles	 used	 in	

orthopaedic	 implants	 including;	 histiocytes,	 osteoblast	 precursors,	 macrophages,	

fibroblasts,	glial	cells,	dural	epithelial	and	dural	fibroblast	cells.		

	

To	 determine	 the	 effect	 of	 CoCr	 wear	 particles	 on	 cell	 viability	 Germain	 et	 al.	 (2003)	

cultured	U937	human	histiocytes	 and	L929	 fibroblast	 cells	with	 commercially	 available	

CoCr	 and	 pin-on-plate	 wear	 simulator	 generated	 CoCr	 particles.	 The	 CoCr	 particles	

(29.5nm	from	pin-on-plate	simulator	and	9.87µm	commercially	available	particles)	were	

cultured	with	U937	cells	at	increasing	particle	to	cell	ratios;	0.005,	0.05,	0.5,	5	and	50µm3	

debris	 per	 cell.	 The	 CoCr	 particles	 generated	 using	 a	 pin-on-plate	 wear	 simulator	

significantly	reduced	the	viability	of	U937	and	L929	cells	after	five	days	in	culture,	when	

cultured	 with	 50µm3	and	 5µm3	 CoCr	 debris	 per	 cell.	 The	 commercially	 available	 CoCr	

particles,	 which	 were	 not	 clinically	 representative	 in	 terms	 of	 size	 and	 chemical	

composition,	 did	 not	 adversely	 affect	 cell	 viability	 at	 any	 dose	 and	 time	 point	 tested.	

(Germain	 et	 al.,	 2003).	 In	 a	 similar	 in	vitro	 study	 U937	 cells	were	 cultured	with	 cobalt	

chrome	particles	(150nm-6.5µm	in	length)	generated	from	an	ASR	hip	implant	using	a	hip	

simulator.	After	five	days	in	culture	with	5mg	of	cobalt	chrome	wear	debris	a	significant	

(77%)	decrease	in	cell	viability	was	observed	(Posada	et	al.,	2014).			

	

Clinically	 relevant	 nano	 and	 micron	 sized	 cobalt	 chrome	 particles	 were	 cultured	 with	

human	 fibroblasts	 to	 determine	 the	 effects	 of	 different	 size	 ranges	 of	 particles	 on	

fibroblast	viability,	 cytokine	 release	and	DNA	damage	 (Papageorgiou	et	 al.,	 2007).	After	

24	hours	in	culture	the	nano-sized	CoCr	particles	triggered	four	times	more	DNA	damage	

than	 the	 micron-sized	 CoCr	 particles.	 In	 terms	 of	 viability,	 the	 nano	 CoCr	 particles	

triggered	 a	 time	 and	dose	dependent	 reduction	 in	 viability,	whereas	micron-sized	CoCr	

particles	did	not	adversely	affect	viability	until	after	four	days	in	culture.	No	effect	on	the	

release	 of	 IL-6,	 IL-10,	 TNF-a	 and	 FGF-23	was	 observed.	 These	 studies	 on	 the	 effect	 of	

cobalt	 chrome	 particles	 on	 the	 viability	 of	 U937,	 L929	 and	 human	 fibroblast	 cells	

highlight	 the	 importance	 of	 particle	 size	 and	 elemental	 composition	 on	 the	 biological	

response	 to	 metallic	 wear	 particles.	 The	 commercially	 available	 particles	 utilised	 by	

Germain	et	al.	(2003)	and	the	particles	generated	by	Posada	et	al.	(2014)	were	larger	than	

clinically	 relevant	 particles	 observed	 from	 around	 failed	 metal-on-metal	 total	 hip	
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replacements	 (~50nm).	 Additionally,	 the	 elemental	 composition	 of	 the	 commercially	

available	particles	will	have	varied	from	the	debris	generated	from	medical	grade	cobalt	

chrome,	thus	direct	associations	between	the	biological	responses	observed	and	potential	

in	vivo	 responses	cannot	be	made.	Furthermore,	 the	particle	dosing	regimen	selected	by	

Posada	 et	 al.	 (2014)	 was	 not	 physiologically	 relevant.	 The	 use	 of	 clinically	 relevant	

particles	 by	 Papageorgiou	 et	 al.	 (2007)	 was	 crucial	 in	 obtaining	 a	 more	 precise	

understanding	 of	 the	 biological	 response	 of	 human	 fibroblasts	 to	 CoCr	 wear	 particles.	

Metallic	 nanoparticles	 are	 capable	 of	 generating	 significantly	 more	 superoxide	 and	

hydroxyl	free	radicals	than	micron	size	particles,	which	are	involved	in	DNA	damage	and	

thus	there	may	be	differences	in	the	DNA	damage,	viability	and	inflammatory	responses	

of	fibroblasts	as	a	result.	

	

In	one	of	the	limited	in	vitro	investigations	assessing	the	cytotoxic	effect	of	stainless	steel,	

Li	et	al.	(2014)	investigated	the	effect	of	316L	stainless	steel	and	high-nitrogen,	nickel	free	

austenitic	stainless	steel	on	 the	viability	of	MC3T3-E1	mouse	osteoblast	precursor	cells.	

The	MC3T3-E1	 cells	were	 cultured	with	 bulk	materials	 for	 five	 days	 and	 an	MTT	assay	

used	 to	determine	 their	 effects	on	 cell	 viability.	Neither	material	 adversely	 affected	 cell	

viability	at	any	time	point	tested.	Though	this	study	 investigated	the	biocompatibility	of	

bulk	 316L	 stainless	 steel	 it	 provides	 a	 preliminary	 insight	 into	 the	 cellular	 response	 to	

currently	available	medical	grade	stainless	steels	and	potential	alternative	biomaterials.	

In	another	study	the	response	of	bulk	and	particulate	316L	stainless	steel	on	the	viability	

of	 the	 RAW	murine	macrophage	 cell	 line	 was	 investigated	 by	 Bailey	 et	 al.	 (2005).	 The	

stainless	 steel	particles	produced	by	N2	gas	atomization	were	 spherical	 and	1-100µm	in	

diameter.	 The	 316L	 stainless	 steel	 particles	 significantly	 reduced	 the	 viability	 of	 RAW	

cells	when	 compared	 to	 the	 cell	 only	negative	 control.	 This	 response	was	not	 observed	

with	 the	 nitrogenated	 stainless	 steel	 particles.	 The	 particles	 used	 in	 this	 study	 were	

generated	using	N2	gas	atomization	which	did	not	yield	clinically	relevant	sized	particles,	

nor	 was	 this	 method	 representative	 of	 the	 mechanism	 of	 wear	 observed	 in	 vivo.	

Generation	of	particles	using	a	pin-on-plate	wear	simulator	or	hip/spine	simulator	would	

have	 been	 a	 more	 appropriate	 method	 for	 particle	 generation.	 Furthermore,	 a	

quantitative	 measure	 of	 viability	 was	 not	 utilised,	 which	 would	 have	 been	 preferable.	

Upon	 comparison	with	 the	work	 conducted	by	Li	 et	 al.	 (2014)	 it	 can	be	 concluded	 that	

although	bulk	stainless	steel	did	not	adversely	affect	cell	viability	but	 the	stainless	steel	

particles	did.	

	

To	 date	 much	 of	 the	 work	 conducted	 to	 determine	 the	 cellular	 response	 to	 CoCr	 and	

stainless	 steel	wear	 particles	 has	 been	 conducted	 in	macrophage,	 fibroblast,	 osteoblast,	



	 	 Chapter	1	
	

	45	

histiocytic	and	epithelial	cells.	More	recently	there	have	been	a	limited	number	of	studies	

investigating	 the	 CNS	 cellular	 response	 to	 metallic	 wear	 particles	 from	 total	 disc	

replacements	(DeGuzman	and	VandeVord,	2007;	Papageorgiou	et	al.,	2014).	

	

De	Guzman	 and	VandeVord.	 (2007)	 used	 the	C6	 rat	 glioma	 and	 the	Rat2	 fibroblast	 cell	

line	to	determine	the	response	of	cells	of	the	CNS	to;	CoCr	and	titanium	used	in	total	disc	

replacements.	The	CoCr	particles	were	on	average	5.7µm	in	diameter	(1-20µm)	whereas	

the	titanium	particles	were	2.3µm	in	diameter	(0.1-68µm).	An	increase	in	the	viability	of	

C6	 glial	 cells	was	 observed	when	 cultured	with	 low	doses	 of	 CoCr	 and	 titanium	 (0.625	

mg.ml-1	and	1.25mg.ml-1).	However,	a	significant	reduction	in	viability	was	observed	with	

the	higher	doses	(2.5	mg.ml-1	and	5	mg.ml-1)	of	CoCr	and	titanium.	A	significant	decrease	

in	 viability	was	 observed	when	Rat2	 cells	were	 cultured	with	 high	 doses	 of	 CoCr	 (1.25	

mg.ml-1	 2.5	 mg.ml-1	 and	 5	 mg.ml-1)	 and	 titanium	 (2.5mg.ml-1).	 There	 are	 numerous	

limitations	with	 the	 experimental	 design	 of	 this	 study,	 firstly	 the	 particles,	 of	 unknown	

origin	were	large	when	compared	to	the	clinically-relevant	size	ranges	for	these	materials	

seen	 in	 the	 literature	 (Doorn	 et	 al.,	 1998).	 	 The	 viability	 of	 both	 cell	 types	 was	 only	

assessed	 after	 48	 hours	 in	 culture,	 further	 time	 points	would	 have	 revealed	 the	 longer	

term	response	of	C6	and	Rat2	cells	to	materials	used	in	total	joint	arthroplasty.		

	

More	 recently	 the	 use	 of	 an	 advanced	 organ	 culture	model	 of	 the	 dura	mater	 has	 been	

applied	to	simulate	the	effect	of	clinically	relevant	CoCr	nanoparticles	generated	in	total	

disc	 replacements	 on	 the	 dura	 mater,	 the	 outermost	 membrane	 of	 the	 meninges,	 a	

protective	 tri-layer	 structure	 surrounding	 the	 spinal	 cord	 (Papageorgiou	 et	 al.,	 2014).	

After	the	dura	mater	was	exposed	to	CoCr	nanoparticles	(20-60nm,	generated	using	a	pin-

on-plate	 wear	 simulator)	 a	 loosening	 of	 the	 epithelial	 layer	 and	 alterations	 to	 the	

underlying	 collagen	matrix	were	 observed.	 These	 structural	 changes	were	 linked	 to	 an	

increase	in	production	of	MMP-1,	-3,	-9	and-13.	The	CoCr	nanoparticles	also	triggered	an	

increase	 in	 production	 of	 IL-6,	 IL-8	 and	 TNF-a.	 Such	 observations	may	 lead	 to	 particle	

infiltrate	across	the	dura	mater	membrane.	Though	cellular	cytotoxicity	was	not	observed	

the	 significant	 alterations	 to	 the	 epithelial	 layer	 compromised	 the	 integrity	 of	 this	

protective	 barrier	 and	 could	 have	 a	 serious	 impact	 on	 periprosthetic	 tissues	 due	 to	

nanoparticle	penetration	(Papageorgiou	et	al.,	2014).	The	CoCr	nanoparticles	used	in	this	

study	were	 within	 the	 predicted	 size	 range	 of	 particles	 from	metal-on-metal	 total	 disc	

replacements.		

	

With	mounting	evidence	in	the	literature	regarding	the	wear	of	metal-on-metal	total	disc	

replacements	 and	 with	 lessons	 learned	 from	 total	 hip	 replacements,	 in	 terms	 of	
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inflammation,	 osteolysis	 and	 pseudotumour	 formation,	 there	 is	 growing	 concern	

regarding	the	 impact	of	metal	nanoparticles	produced	by	total	disc	replacements	on	the	

periprosthetic	 tissues	 surrounding	 these	 devices	 and	 with	 evidence	 presented	 by	

Papageorgiou	et	al.	(2014)	that	nanoscale	cobalt	chrome	particles	are	capable	of	altering	

the	structural	integrity	of	the	meninges	it	is	imperative	to	study	the	effect	of	metallic	wear	

products	 on	 cells	 of	 the	 CNS.	 Much	 of	 the	 work	 conducted	 to	 determine	 the	 cytotoxic	

effects	of	wear	particles	from	orthopaedic	implants	has	utilised	2D	culture,	which	in	itself	

has	 limitations,	 advanced	 3D	 constructs	 may	 provide	 a	 more	 appropriate	 cell	 culture	

environment	for	biocompatibility	testing.		

	

1.17	The	use	of	advanced	3D	culture	systems.	

	Much	of	the	current	understanding	of	the	in	vitro	biological	response	to	wear	particles	is	

based	 on	 cell	 culture	 studies,	 which	 have	 utilised	 homogenous	 populations	 of	 cells	

cultured	 in	two-dimensional	(2D),	 flat,	plastic	 tissue	culture	wells.	However	 in	vivo,	cells	

are	 arranged	 in	 a	 more	 complex	 matrix,	 an	 information-rich,	 stimulating	 environment	

containing	 numerous	 extracellular	matrix	 (ECM)	 components	 and	 cell-secreted	 factors.	

Within	 this	 three	 dimensional	 (3D)	 environment,	 multiple	 cell	 types	 interact	

heterotypically.	 The	main	 advantage	 of	 utilising	 2D	 culture	 is	 that	 its	 simplistic	 nature	

allows	 the	 application	 of	 reductionist	 approaches	 to	 understand	 individual	 cellular	

responses,	 however	 the	 2D	model	may	not	 accurately	 capture	 the	natural	 behaviour	 of	

cells	in	vivo	(Baker	&	Chen,	2012;	Adcock	et	al.,	2015).		

	

A	 3D	 culture	 environment	 encapsulates	 the	 cells	 within	 an	 ECM,	 providing	 structural	

support	and	nutrition	from	all	directions,	unlike	the	2D	system.	The	main	objective	of	3D	

cell	culture	is	to	bridge	the	gap	between	the	somewhat	primitive	monolayer	cell	culture	

studies	 and	 complex	 whole	 animal	 models.	 The	 use	 of	 the	 intermediate	 3D	 culture	

enables	 the	control	and	precise	manipulation	of	a	cell	culture	system,	while	providing	a	

growth	environment	that	mimics	the	host	tissue	as	closely	as	possible,	enabling	the	cells	

to	behave	as	they	would	in	vivo	(Haycock,	2011).		

	

It	 is	 now	 a	 well-established	 phenomenon	 that	 when	 cells	 are	 isolated	 from	 tissue	 and	

cultured	in	2D	their	phenotype	becomes	flatter,	the	rate	of	cellular	division	changes	and	

the	differentiated	phenotype	is	lost	(Von	der	Mark	et	al.,	1977).	 	Such	observations	have	

led	 to	 the	opinion	 that	 the	dimension	 in	which	cells	are	cultured	determines	 the	 fate	of	

their	 phenotype.	 As	 such,	 monolayer	 culture	 drives	 abnormal	 cell	 function	 and	

dedifferentiation,	 whereas	 a	 3D	 culture	 environment	 provides	 a	 more	 physiologically	

representative	setting	(Weaver	et	al.,	1997).		
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Previously,	 various	 naturally	 derived	 polymers	 have	 been	 used	 for	 3D	 cell	 culture	

including	collagen,	 chitosan	 (Li	et	al.,	2012),	 glycosaminoglycans	 (Chwalek	et	al.,	2014),	

agarose	(Chun	&	Mun,	2015),	alginate	(Andersen	et	al.,	2015)	and	starch	(Salgado	et	al.,	

2004).	 There	 are	 numerous	 advantages	 for	 the	 use	 of	 naturally	 occurring	 polymers	 as	

they	 generally	 exhibit	 low	 cellular	 toxicity,	 good	 biocompatibility	 and	 a	 minimal	

inflammatory	 response.	Though	 recently	 there	has	been	a	 growing	 interest	 in	 synthetic	

polymers	 such	 as;	 poly	 (glycolic	 acid),	 poly	 (lactic	 acid),	 polyester	 and	 polyurethanes	

(Carletti	et	al.,	2010).			

	

Type	 I	 collagen,	 has	 been	used	 extensively	 for	 the	 culture	 of	 cells	 in	 a	 3D	 environment	

especially	in	the	fields	of;	tissue	engineering,	drug	delivery	(Obarzanek-Fojt	et	al.,	2016),	

toxicology	and	spinal	cord	injury	repair	(Han	et	al.,	2010;	Macaya	et	al.,	2013;	Altinova	et	

al.,	 2014),	 as	 this	 material	 is	 capable	 of	 supporting	 numerous	 cell	 types	 and	 is	 highly	

adaptable	 to	mimic	 in	vivo	 conditions.	 In	 recent	 years,	 collagen	 gels	 have	 been	 used	 to	

enable	cells	of	the	CNS;	neurons	and	glial	cells;	astrocytes,	microglia	and	oligodendrocytes	

to	interact	and	behave	as	they	would	in	vivo	by	creating	an	environment	similar	to	that	of	

the	CNS	(East	et	al.,	2009).	

	

East	&	Phillips.	(2008)	utilised	type	I	collagen	gels	for	the	3D	culture	of	cells	of	the	CNS	as	

it	 is	 readily	 available	 and	 easy	 to	 control	 and	 manipulate,	 for	 cell	 monitoring	 and	

visualization.	 Type	 I	 collagen	 provides	 a	 scaffold	 structure	 on	 which	 additional	

extracellular	 matrix	 (ECM)	 components	 can	 be	 deposited,	 as	 the	 3D	 environment	

undergoes	modification.		

	

Haw	et	 al.	 (2014)	demonstrated	 the	 importance	of	 a	 cells	 physiological	 environment	 in	

governing	 cell-to-cell	 interactions,	 response	 to	 stimuli	 and	 contact	with	 the	 ECM	which	

governs	cellular	proliferation,	phenotype,	migration	and	differentiation.	By	culturing	BV2	

microglia	 in	 a	 3D	 matrix	 with	 the	 aim	 of	 providing	 a	 physiologically	 relevant	

environment.	BV2	cells	were	cultured	in	three	separate	environments,	2D	monolayer,	and	

collagen-coated	monolayer	and	 in	a	3D	collagen	gel.	The	microglia	morphology	differed	

between	 the	 2D	 and	 3D	 systems.	 In	 the	 collagen	 gel	 the	 BV2	 cells	 exhibited	 a	 ramified	

phenotype,	 which	 was	 not	 observed	 in	 2D	 culture.	 Similar	 levels	 of	 viability	 were	

reported	in	all	culture	systems.	In	vitro	BV2	microglia	become	activated	when	exposed	to	

lipopolysaccharide.	 One	 of	 the	 key	 markers	 of	 activation	 for	 this	 cell	 type	 is	 the	

expression	of	CD40.	CD40	expression	was	elevated	by	70%	when	moving	from	2D	to	3D	

culture.	Thus	by	culturing	the	BV2	cells	in	a	simple,	more	physiologically	relevant	matrix	

a	more	appropriate	model	of	cell	activation	was	developed.		
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In	 one	 of	 the	 limited	 number	 of	 studies	 utilising	 3D	 culture	 to	 determine	 the	 effects	 of	

metals	on	cell	viability	Tasneem	et	al.	(2016)	utilised	a	collagen	hydrogel	to	determine	the	

effect	 of	 increasing	 concentrations,	 10pM-10µM,	 of	 three	 heavy	 metals;	 cadmium,	

mercury	and	lead	on	the	viability	of	embryonic	murine	neural	stem	cells	after	14	days	in	

culture	 using	 a	 live	 dead	 assay.	 After	 14	days	 in	 culture	 lead	 and	mercury	 appeared	 to	

adversely	affect	cell	viability	at	particle	doses	as	low	as	100pM,	this	was	not	the	case	for	

cadmium	with	1nM	being	the	lowest	dose	to	adversely	affect	viability.		

	

In	addition	to	selecting	an	appropriate	physiologically	relevant	cell	culture	environment	

for	 in	vitro	 investigations	 into	 the	host	 response	 to	metallic	wear	particles,	 appropriate	

cell	types	are	also	required.		

	

1.18	Cell	types	used	to	model	cells	of	the	CNS	

Cell	 lines	of	 immortalised	glial	 cells	 such	as	PC12	neuronal	and	C6	glial	 cells	have	been	

shown	to	be	extremely	useful	to	model	cells	of	the	CNS	when	large	numbers	of	cells	are	

necessary	and	 they	circumvent	 the	 issue	of	culture	 impurity	 (De-Guzman	&	VandeVord,	

2007).	 However	 these	 cells	 differ	 to	 primary	 glial	 cells	 and	 neurons	 in	 many	 ways.	

Primary	astrocytes	have	a	limited	potential	to	proliferate,	this	effect	is	often	observed	in	

the	culture	of	primary	astrocytes,	where	the	cellular	phenotype	changes	after	more	than	

two	passages	(Calvo	et	al.,	1991).	Conversely,	cell	lines	rapidly	proliferate.	The	molecular	

expression	 profiles	 of	 cell	 lines	 can	 also	 differ	 from	 primary	 cells.	 For	 instance	 upon	

activation	astrocytes	up-regulate	GFAP,	this	cellular	response	is	not	seen	with	C6	cells	as	

they	express	very	little	GFAP	if	any	at	all	(Eddleston	&	Mucke,	1993).	

	

Previous	work	using	the	astrocyte-like	C6	cell	line	(De	Guzman	&	VandeVord,	2007)	and	

primary	 astrocytes	 (East	 et	 al.,	 2009)	 in	 2D	 culture	 has	 revealed	 a	 highly	 reactive	 cell	

profile	 under	 controlled	 conditions	 (without	 being	 exposed	 to	 reactive	 triggers).	When	

considering	 a	 complex	 biological	 response	 such	 as	 the	 kind	 triggered	when	 cells	 of	 the	

spinal	cord	are	exposed	to	CoCr	wear	particles,	the	simplicity	of	2D	monolayer	culture	is	

not	 advanced	 enough	 to	 accurately	 mimic	 the	 in	 vivo	 CNS	 environment.	 Advanced	 3D	

culture	 systems	 are	 advantageous	 in	 that	 they	 enable	 the	 reproduction	 of	 the	 in	 vivo	

spatial	 arrangement	 of	 cells,	 allow	 polarized	 cell	 attachment	 and	 perfusion	 to	 opposite	

faces	of	 the	cell	 (in	2D	monolayer	one	side	would	be	adhered	to	 the	base	of	 the	culture	

flask)	and	enable	more	advanced	cell	signalling	with	co-cultures	(East	et	al.,	2012).	

	

Having	taken	what	has	been	determined	from	metal-on-metal	total	hip	replacements	and	

from	 a	 limited	 number	 of	 cases	 of	 total	 disc	 replacements	 regarding	 the	 potential	 for	
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metal	 wear	 particles	 and	 subsequent	 ions	 to	 induce	 inflammation,	 genotoxicity,	

cytotoxicity,	 hypersensitivity	 and	 pseudotumour	 formation,	 coupled	with	 the	 results	 of	

the	 Papageorgiou	 et	 al.	 (2014)	 organ	 culture	 study,	 it	 is	 imperative	 to	 determine	 the	

effects	of	cobalt	chrome	and	stainless	steel	wear	particles	on	the	cells	of	the	CNS	such	as	

astrocytes	and	microglia.	Cobalt	chrome	is	the	predominant	biomaterial	used	in	metal-on-

metal	 total	 disc	 replacements,	 stainless	 steel	 has	 been	 used	 in	 total	 disc	 replacements	

(PRESTIGEÒ	 cervical	 disc	 replacement)	 and	 in	 spinal	 fusion	 instrumentation	 (the	

Harrington	 rod	 and	 Cotrel	 Duboussett	 fusion	 system).	 Astrocytes	 and	 microglia,	 the	

resident	macrophages	 of	 the	 central	 nervous	 system	 play	 crucial	 roles	 in	 responses	 to	

CNS	damage.	By	culturing	 these	cells	 in	co-culture	and	 isolation	using	a	3D	collagen	gel	

construct	the	biological	response	to	metallic	wear	particles,	in	terms	of	cell	viability,	DNA	

damage,	cellular	reactivity	and	cytokine	release	may	be	elucidated.		

	

1.19	Aims	and	objectives	

Hypothesis-	The	use	of	a	3D	type-I	collagen	gel,	allowing	glial	cells	 to	behave	 in	a	more	

physiologically	relevant	manner,	would	more	precisely	determine	the	biological	response	

of	CNS	cells	in	co-culture	and	in	isolation,	to	metallic	wear	particles,	compared	to	the	use	

of	simplistic	2D	culture.	

	

This	project	aims	to	investigate	the	biological	responses	of	specific	CNS	cell	populations,	

primary	 astrocytes	 and	 microglia	 in	 co-culture	 and	 astrocytes	 in	 isolation	 to	 clinically	

relevant	metallic	wear	debris	using	a	physiologically	relevant	3D	cell	culture	system.	This	

can	be	broken	down	into	the	following	objectives;	

	

1) To	 generate	 clinically	 relevant	 metallic	 (cobalt	 chrome	 and	 stainless	 steel)	 wear	

particles	using	a	six-station	pin-on-plate	wear	simulator.		

	

2) To	 characterise	 the	morphology	 and	 size	of	 the	wear	particles	using	 field	 emission	

gun	scanning	electron	microscopy	(FEGSEM).		

	

3) To	 investigate	 the	 biological	 responses	 of	 primary	 astrocytes	 and	microglia	 in	 co-

culture	and	primary	astrocytes	in	isolation	to	cobalt	chrome	and	stainless	steel	wear	

debris.	

a)	To	compare	the	response	of	primary	rat	astrocytes	and	microglia	 in	co-culture,	

and	neuronal	 (PC12)	 and	astrocytic	 (C6)	 cell	 lines	 to	 cobalt	 chrome	and	 stainless	

steel	wear	particles	in	2D	culture	in	terms	of	cell	viability	and	DNA	integrity.	
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b)	 To	 determine	 the	 biological	 response	 of	 primary	 astrocytes	 and	 microglia	 (in	

isolation	and	co-culture)	to	wear	particles	in	3D	culture.	To	determine	the	effects	of	

cobalt	 chrome	 and	 stainless	 steel	 wear	 particles	 and	 ions	 on	 cell	 viability.	 To	

investigate	 the	 effects	 of	 cobalt	 chrome	 and	 stainless	 steel	 wear	 particles	 on	 the	

expression	of	glial	fibrillary	acidic	protein	(GFAP,	indicative	of	reactive	astrocytes)	

and	TNF-a.		
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Chapter	2	

Materials	and	Methods	

	

2.1	Materials		

The	general	materials	used	in	this	study	are	shown	in	the	Appendices.	

	 	

2.1.1	General	materials	

The	general	materials	including;	chemicals,	reagents,	equipment,	consumables,	antibodies	

and	 stains	 used	 in	 this	 study	 are	 shown	 in	 the	 Appendices	 in	 Appendix	 I,	 Appendix	 II,	

Appendix	III	and	Appendix	IV,	respectively.		

	

2.1.2	Measurement	of	pH	

A	 Jenway	 3020	 pH	meter	was	 used	 to	measure	 the	 pH	 of	 solutions.	 The	 pH	meter	was	

calibrated	prior	to	use,	with	three	solutions	of	varying	pH	(4,	7	and	10),	these	were	made	

from	buffer	tablets	dissolved	in	deionised	water.	To	alter	the	pH	of	solutions,	6M	sodium	

hydroxide	 (NaOH)	 or	 6M	 hydrochloric	 acid	 (HCl)	 was	 used.	 Sodium	 hydroxide	 or	

hydrochloric	acid	was	added	drop-wise	(solutions	were	prepared	in	glass	duran	bottles	of	

varying	 sizes	 and	 thoroughly	 mixed	 using	 a	 magnetic	 stirrer	 and	 stirrer	 bar)	 until	 the	

required	pH	was	reached.		

	

2.1.3	Sterilisation	

Three	 different	 methods	 of	 sterilisation	 were	 employed	 to	 sterilise	 equipment	 and	

solutions.		

• 2.1.3.1	 Filter	 sterilisation-	 Solutions	 containing	 proteins,	 growth	 factors	 and	

supplements,	which	were	not	suitable	 for	heat	sterilisation,	were	 filter	sterilised.	

In	a	class	II	safety	cabinet,	solutions	were	placed	in	a	sterile	disposable	syringe	and	

passed	through	a	filter	with	a	pore	size	of	0.22µm.	Solutions	sterilised	in	this	way	

included	MTT	solution,	solutions	for	primary	cell	 isolation,	poly-d-lysine	(used	to	

coat	 tissue	 culture	 flasks)	 and	 10x	 minimum	 essential	 medium	 used	 in	 the	

production	of	collagen	hydrogels.			

• 2.1.3.2	Dry	heat	sterilisation-	Items	were	placed	in	a	hot	air	oven	at	a	temperature	

of	190°C	 for	 four	hours.	 Items	suitable	 for	 this	 type	of	 sterilisation	 included;	 the	

dissection	kit	and	pre-weighed	cobalt	chrome	and	stainless	steel	wear	particles.		
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• 2.1.3.3	Moist	heat	sterilisation-	items	not	suitable	for	dry	heat	sterilisation	or	filter	

sterilisation	were	 sterilised	using	 an	 autoclave	 at	 a	 temperature	of	 121°C	 for	20	

minutes	under	103	KPa	pressure.	PBS	solution	was	sterilised	using	this	method.		

	

2.1.4	Sterilisation	of	the	dissection	kit	

The	dissection	kit,	used	for	primary	astrocyte	and	microglia	cell	isolation,	comprised;	fine	

tweezers,	standard	tweezers,	scalpel	blade	holder,	two	small	spatulas,	curved	scissors	and	

standard	dissection	scissors.	Any	sharp	utensils	were	wrapped	in	foil	at	the	tip	to	prevent	

blunting.	The	dissection	kit	was	heat	 sterilised	 in	 an	oven	at	190°C	 for	4	hours	 (section	

2.1.3.2)	the	day	before	dissection.		

	

2.2	Cells	

2.2.1	Primary	astrocytes	and	microglia.	Primary	astrocytes	and	microglia	were	isolated	

from	 P2	 Wistar	 rat	 cortices	 in	 accordance	 with	 the	 protocol	 first	 stated	 by	 East	 et	 al.	

(2009)	 and	 outlined	 in	 Chapter	 2,	 section	 2.4.1.6.2.	 The	 cells	 were	 cultured	 at	 the	

University	 of	 Leeds,	 UK.	 The	 cortices	 were	 obtained	 in	 accordance	 with	 UK	 Animals		

(Scientific	Procedures)	Act	1986	under	 the	Home	Office	Schedule	One	procedure	 (Home	

Office	Project	license:	PPL70/8085).		

2.2.2	The	PC12	neuronal	cell	 line	 (rat)	pheochromocytoma	was	donated	by	Dr.	 James	

Phillips,	University	College	London,	London,	UK.		

2.2.3	The	C6	 glial	 cell	 line	 (rat)	was	 donated	 by	 Dr.	 James	 Phillips,	 University	 College	

London,	London,	UK.		

2.3	Stock	solutions	

2.3.1	Alkaline	electrophoresis	buffer	

The	buffer	was	prepared	by	the	addition	of	18g	of	sodium	hydroxide	(NaOH)	pellets,	3ml	

0.5M	EDTA	to1.5L	of	distilled	water	in	a	glass	duran	bottle.	The	solution	was	mixed	using	a	

magnetic	stirrer	bar	and	stirrer.			

	

2.3.2	Astrocyte	cell	line	(C6)	culture	medium	

Ham’s	 F12	 nutrient	 mixture	 (without	 phenol	 red)	 was	 supplemented	 with	 10%	 (v/v)	

foetal	 bovine	 serum	 (FBS),	 2mM	 L-glutamine,	 100	 U.ml-1	 penicillin	 and	 100	 U.ml-1	

streptomycin.	This	solution	was	stored	at	4°C	for	up	to	one	month	and	used	for	the	culture	

of	C6	astrocyte-like	cells.		
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2.3.3	ATP-Liteä	substrate	solution	for	use	in	the	ATP-liteä	assay	

The	lyophilised	substrate	solution	provided	as	part	of	the	ATP-LiteTM	kit	was	reconstituted	

with	25ml	of	substrate	buffer	solution	(also	provided	in	the	kit).	The	contents	of	the	vial	

were	mixed	thoroughly	by	inversion	(avoiding	the	production	of	bubbles)	and	left	to	stand	

for	 five	 minutes	 resulting	 in	 a	 clear	 homogenous	 solution.	 Five,	 5ml	 aliquots	 were	

produced.	The	aliquots	were	wrapped	in	foil	to	limit	contact	with	light	(as	the	solution	is	

light	sensitive)	and	stored	at	-20°C	for	up	to	three	months.				

	

2.3.4	Biotinylated	anti-rat	TNF-a	solution		

In	 a	 clean	 glass	 vial	 the	 biotinylated	 anti-rat	 TNF-a	 was	 diluted	 with	 the	 biotinylated	

antibody	diluent	provided	 in	 the	enzyme	 linked	 immunosorbent	assay	(ELISA)	kit.	For	a	

96	well	plate,	240µl	of	biotinylated	antibody	was	diluted	in	6360µl	biotinylated	antibody	

diluent.		

	

2.3.5	Bovine	serum	albumin	solution	

Bovine	serum	albumin	 (BSA)	solution	was	prepared	by	 floating	400mg	of	BSA	on	 top	of	

10ml	 of	 disaggregation	 medium	 (section	 2.3.8).	 This	 was	 allowed	 to	 dissolve	 at	 room	

temperature	 and	 then	mixed	 well	 by	 inverting	 the	 universal	 slowly	 several	 times.	 This	

solution	was	 filter	 sterilised	 prior	 to	 use.	 The	 solution	was	 discarded	 after	 use	 and	 not	

stored.	

	

2.3.6	Camptothecin	

Camptothecin,	 was	 used	 as	 a	 positive	 control	 in	 2D	 cell	 culture	 studies.	 A	 working	

concentration	 of	 2	 µg.ml-1	was	 used	 in	 the	 in	vitro	 studies.	 A	 1mg.ml-1	 stock	 solution	 of	

camptothecin	was	 generated	by	dissolving	 camptothecin	 in	DMSO.	By	diluting	 the	 stock	

1:250,	 adding	 4µl	 of	 camptothecin	 stock	 to	 996µl	 supplemented	 medium.	 The	 solution	

was	 further	diluted	1:2	when	 the	 cells	were	 seeded	 in	a	volume	of	100µl	 supplemented	

medium	and	the	camptothecin	in	supplemented	medium	(100µl)	added	on	top.		

	

2.3.7	Concentrated	and	dilute	inhibitor	solutions.	

Concentrated	inhibitor	was	prepared	by	adding	13ml	disaggregation	medium,	1ml	of	pre-

prepared	soy-bean	tryspin	inhibitor	(SBTI)	2mg.ml-1		(working	concentration	of	133µg.ml-

1),	 1ml	 of	 pre-prepared	 DNase	 (2000U.ml-1),	 working	 concentration	 of	 133U.ml-1	 and	

150µl,	 150mM	MgSO4	(final	 concentration	 1.5mM)	 to	 a	 labelled	 universal.	 This	 solution	

was	mixed	slowly	by	inversion	to	avoid	creating	bubbles.		
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The	dilute	inhibitor	(SBTI	working	concentration	of	21.28µg.ml-1)	was	prepared	by	adding	

16.8ml	of	disaggregation	medium	(section	2.3.8)	to	3.2ml	of	concentrated	inhibitor.	These	

solutions	were	filter	sterilised	prior	to	use.	These	solutions	were	discarded	after	use	and	

not	stored.	

	

2.3.8	Disaggregation	medium	

A	volume	of	99ml	Earle’s	balanced	salt	solution	(EBSS)	was	transferred	to	a	glass	beaker.	

Glucose	powder	(252mg)	and	2ml	150mM	magnesium	sulphate	(MgSO4)	was	added	to	the	

EBSS.	Finally,	300mg	of	bovine	serum	albumin	 (BSA)	was	 floated	on	 top	of	 the	solution,	

this	was	allowed	to	dissolve	without	agitation	at	room	temperature	(for	approximately	10	

minutes).	 Once	 the	 BSA	 had	 fully	 dissolved,	 the	 solution	was	mixed	 thoroughly	 using	 a	

magnetic	 stirrer	 and	 stirrer	 bar	 for	 10	minutes	 at	 room	 temperature.	 This	 solution	was	

filter	 sterilised	 prior	 to	 use,	 any	 excess	was	 discarded	 once	 the	 cell	 isolation	 procedure	

was	complete.	

	

2.3.9	DNase	stock	solution		

Deoxyribonuclease	 I	 type	 II	 from	 bovine	 pancreas	 (Sigma,	 UK	 lyophilised	 powder)	

20,000U	(2,000U.mg-1	of	protein)	was	re-suspended	in	10ml	of	distilled	water,	dispensed	

into	1ml	aliquots	(2000U.ml-1)	and	stored	at	-20°C	until	required.	

	

2.3.10	DNA	unwinding	solution	

Sodium	 hydroxide	 (NaOH)	 pellets	 (1.2g)	 were	 added	 to	 300µl	 of	 0.5M	 EDTA	 in	 150ml	

distilled	water,	the	solution	was	mixed	thoroughly	using	a	magnetic	bar	and	heated	stirrer	

platform	and	allowed	to	cool	to	room	temperature	before	use.		

	

2.3.11	Ethylenediaminetetraacetic	acid	(EDTA)	Solution	(0.5M)	

A	volume	of	250ml	of	0.5M	EDTA	was	prepared	by	re-suspending	36.53g	of	EDTA	(Sigma,	

UK)	 in	250ml	of	distilled	water.	The	powder	was	dissolved	using	a	magnetic	 stirrer	and	

stirrer	 bar.	 This	 solution	was	 stored	 at	 room	 temperature	 until	 required	 for	 up	 to	 one	

month.		

	

2.3.12	Goat	serum	blocking	solution	

Goat	serum	blocking	solution	5%	(v/v)	was	made	up	on	the	day	of	use.	A	slight	excess	of	

what	was	required	was	made	up	in	sterile	PBS.	The	excess	solution	was	discarded.	
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2.3.13	6M	Hydrochloric	acid	

A	volume	of	246ml	of	stock	hydrochloric	acid	(Sigma,	UK)	was	slowly	added	to	125ml	of	

deionised	water.	The	final	volume	was	adjusted	to	500ml	of	deionised	water.	This	solution	

was	stored	at	room	temperature.		

	

2.3.14	Live	Dead	stain		

A	volume	of	1µl	of	calcein	and	2µl	ethidium-homodimer	was	added	to	every	4mls	of	pre-

warmed	 (37°C)	 supplemented	medium.	This	 solution	was	prepared	 fresh	 at	 the	 start	 of	

each	experiment.			

	

2.3.15	Magnesium	Sulphate	solution	(150mM)	

A	mass	of	0.361g	magnesium	sulphate	powder	(Sigma,	UK)	was	re-suspended	in	20ml	of	

distilled	water	 and	mixed	using	a	magnetic	 stirrer	 and	 stirrer	bar	until	 the	powder	was	

completely	dissolved.	The	solution	was	stored	at	4°C	for	up	to	one	month	until	required.		

		

2.3.16	Neuronal	cell	line	(PC12)	culture	medium	

RPMI	 1640	 culture	 medium	 (without	 phenol	 red)	 was	 supplemented	 with	 10%	 (v/v)	

Horse	serum,	5%	(v/v)	foetal	bovine	serum	(FBS),	2mM	L-glutamine,	100	U.ml-1	penicillin	

and	100	U.ml-1	streptomycin.	This	solution	was	stored	at	4°C	for	up	to	one	month.		

	

2.3.17	Paraformaldehyde	4%	(w/v)	as	a	fixative	for	collagen	hydrogels	

A	1L	stock	of	4%	(w/v)	paraformaldehyde	(PFA)	solution	was	prepared	by	adding	800ml	

to	a	glass	beaker.	The	glass	beaker	was	placed	on	a	hot	plate	and	the	solution	heated	 to	

60°C.	A	mass	of	40g	PFA	powder	was	added	to	the	heated	PBS	(ensuring	the	PBS	did	not	

reach	boiling	point)	and	the	solution	stirred.	The	pH	of	the	solution	was	raised	by	adding	

1M	sodium	hydroxide	(NaOH),	drop-wise,	until	the	powder	dissolved	(the	powder	would	

not	 dissolve	 at	 the	 existing	 pH).	 The	 solution	was	 allowed	 to	 cool	 and	 the	 final	 volume	

made	up	to	1L	using	PBS.	The	pH	was	adjusted	to	approximately	pH	6.9	by	the	drop-wise	

addition	 of	 0.1M	 hydrochloric	 acid	 (HCl).	 The	 solution	 was	 filter	 sterilised	 and	 20ml	

aliquots	stored	at	-20°C	until	required.	

	

2.3.18	Phosphate	buffered	saline	(PBS)	

Phosphate	buffered	saline	(PBS)	was	prepared	by	adding	ten	PBS	tablets	to	1L	of	distilled	

water.	A	magnetic	stirrer	and	stirrer	bar	was	used	to	dissolve	the	PBS	tablets.	The	pH	was	

adjusted	 to	pH	7,	using	12M	hydrochloric	 acid	 (HCl)	 and	6M	sodium	hydroxide	 (NaOH).	
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The	solution	was	sterilised	using	an	autoclave	and	stored	at	room	temperature	for	up	to	

one	month.		

	

2.3.19	Poly-D-Lysine	solution	

Poly-d-lysine	was	used	to	coat	25cm3	and	75cm3	tissue	culture	flasks	to	enable	adhesion	of	

primary	astrocytes	and	microglia	 to	 tissue	culture	plastic	 for	cell	 culture.	Approximately	

50ml	stock	solution	was	prepared	by	dissolving	50mg.ml-1	of	poly-d-lysine	(PDL)	powder	

in	distilled	water.	The	solution	was	filter	sterilised	using	a	0.22µm	filter	and	sterile	50ml	

syringe.		Aliquots	of	10ml	were	transferred	into	universals	and	the	solution	was	stored	at	-

20°C	until	required	(for	up	to	two	years).		

	

2.3.20	Primary	astrocyte	and	microglia	cell	culture	medium	

Dulbecco’s	modified	Eagle’s	medium	(DMEM)	500ml	was	 supplemented	with	20%	(v/v)	

FBS,	 2mM	 L-glutamine,	 100	U.ml-1	 penicillin	 and	 100	U.ml-1	 streptomycin.	 This	 solution	

was	stored	at	4°C	for	up	to	one	month.		

	

2.3.21	6M	Sodium	hydroxide	(Na0H)	

A	volume	of	158ml	of	stock	sodium	hydroxide	(Sigma,	UK)	was	slowly	added	to	125ml	of	

deionised	water.	The	final	volume	was	adjusted	to	500ml	of	deionised	water.	This	solution	

was	stored	at	room	temperature.			

	

2.3.22	Soy-bean	trypsin	inhibitor	stock	solution	

A	mass	of	100mg	trypsin	inhibitor	from	glysine	max	(soybean)	was	re-suspended	in	50ml	

of	 distilled	 water	 and	 dispensed	 into	 1ml	 aliquots	 (2mg.ml-1)	 and	 stored	 at	 -20°C	 until	

required.	

	

2.3.23	Standard	diluent	buffer	

The	contents	of	 the	10x	concentrate	vial	provided	 in	 the	enzyme	 linked	 immunosorbent	

assay	(ELISA)	kit	was	added	to	a	graduated	cylinder	containing	225ml	of	distilled	water	

before	use	and	agitated	to	mix	thoroughly.		

	

2.3.24	Streptavidin-HRP	solution	

The	contents	of	the	streptavidin	vial	provided	in	the	enzyme	linked	immunosorbent	assay	

(ELISA)	kit	were	diluted	with	0.5ml	of	HRP	diluent	(also	provided	in	the	kit).	
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2.3.25	SYBR	gold	solution	

A	volume	of	1µl	of	10,000x	SYBR	gold	was	diluted	in	30ml	of	10mM	tris-HCl	pH	7.5,	1mM	

EDTA	buffer.	This	solution	was	stored	at	4°C	for	up	to	eight	weeks.		

	

2.3.26	Tris-HCl	(1M)	

A	 mass	 of	 121g	 of	 tris	 base	 was	 dissolved	 in	 800ml	 of	 distilled	 water	 and	 mixed	

thoroughly	using	a	magnetic	stirrer	and	stirrer	bar.	The	pH	of	the	solution	was	adjusted	to	

pH	 7.5	 using	 6M	 hydrochloric	 acid	 the	 solution	 was	 once	 again	 mixed	 thoroughly	 and	

made	up	 to	one	 litre	with	distilled	water.	This	solution	was	stored	at	room	temperature	

until	required	for	up	to	three	months.	

	

2.3.27	10mM	Tris-HCl	1mM	EDTA	buffer	

	Tris-HCl	 EDTA	buffer	was	 prepared	 by	mixing	 5ml	 of	 1M	 tris-HCl	 (section	 2.3.26)	with	

1ml	of	0.5M	EDTA	(2.3.11)	 in	500ml	of	distilled	water.	This	solution	was	stored	at	room	

temperature	until	required	for	up	to	three	months.	

	

2.3.28	Triton	X-100	

A	stock	0.1%	(v/v)	Triton	X-100	solution	was	prepared	by	adding	1ml	of	Triton	X-100	to	

1L	 of	 distilled	 water.	 This	 solution	 was	 stored	 at	 room	 temperature	 for	 up	 to	 three	

months.		

	

2.3.29	Trypsin	for	primary	cell	isolation	

Trypsin	 solution	 (working	 concentration	 250µg.ml-1)	 was	 prepared	 by	 adding	 19ml	 of	

disaggregation	 media	 to	 1ml	 of	 pre-prepared	 5mg.ml-1	trypsin.	 This	 solution	 was	 filter	

sterilised	prior	to	use.	The	solution	was	discarded	after	use	and	not	stored.		

	

2.3.30	Trypsin	stock	solution	

A	weight	of	50mg	of	trypsin	from	bovine	pancreas	(Sigma,	UK)	was	re-suspended	in	10ml	

of	distilled	water.	The	solution	was	dispensed	into	10x	1ml	aliquots	(5mg.ml-1	trypsin)	and	

stored	at	-20°C	until	required.		

	

2.3.31	Wash	buffer	for	use	in	Enzyme	Linked	Immunosorbent	Assay	

The	200x	wash	buffer	concentrate	(provided	in	the	enzyme	linked	immunosorbent	assay	

kit)	 was	 diluted	 200	 fold	 with	 distilled	 water	 to	 produce	 a	 1x	 working	 solution.	 The	

contents	 (10ml)	of	 the	provided	washing	buffer	concentrate	were	poured	directly	 into	a	

clean	 2L	 graduated	 cylinder.	 The	 solutions	were	mixed	 gently	 by	 inverting	 the	 cylinder	
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taking	care	to	avoid	the	production	of	bubbles.	The	remaining	solution	was	stored	at	4°C	

for	up	to	one	week.	
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2.4	Methods	

	

2.4.1	Tissue	culture	

All	 cell	 types;	 C6	 (rat	 brain,	 glial	 astrocytic	 cell	 line),	 PC12	 (rat	 adrenal	 gland,	

pheochromocytoma	 neuronal	 cell	 line)	 and	 primary	 rat	 astrocytes	 and	 microglia	 were	

cultured	 in	 cell	 culture	 medium	 (sections	 2.3.2,	 2.3.16	 and	 2.3.20,	 respectively).	 The	

resurrection,	 isolation,	 maintenance	 and	 passaging	 of	 C6,	 PC12	 and	 primary	 astrocytes	

and	microglia	were	performed	in	class	II	safety	cabinets	using	aseptic	technique.		All	cells	

were	cultured	at	37°C	in	5%	(v/v)	CO2	in	air.	Prior	to	use	all	media	and	supplements	were	

warmed	to	37°C	in	an	incubator. 

	

2.4.1.1	Resurrection	and	maintenance	of	C6	and	PC12	cell	lines.	

Both	 cell	 lines	were	 removed	 from	 liquid	nitrogen	 storage	and	 thawed	 in	a	37°C	water-

bath.	Once	the	cell	stock	had	thawed,	the	contents	(1ml)	were	transferred	to	a	universal,	

the	 cryovial	was	washed	with	1ml	of	pre-warmed	supplemented	 cell	 culture	medium	 to	

ensure	 all	 the	 cells	 were	 removed	 from	 the	 vial.	 An	 additional	 8ml	 of	 pre-warmed	

supplemented	 culture	 medium	 was	 added	 to	 the	 cells	 in	 the	 universal.	 The	 cell	

suspensions	were	then	centrifuged	at	150g	for	10	minutes	at	room	temperature	to	remove	

the	cryoprotectant.		

	

The	supernatant	was	carefully	aspirated	 from	the	cell	pellet,	which	was	re-suspended	 in	

3ml	of	 the	appropriate	supplemented	medium.	The	cell	 suspensions	were	 transferred	 to	

25cm3	 cell	 culture	 flasks	 and	an	 additional	7ml	of	 culture	medium	was	 added.	The	 cells	

were	 incubated	at	37°C	 in	5%	(v/v)	CO2	 in	air.	When	the	cells	were	80%	confluent	 they	

were	passaged	and	transferred	into	larger	75cm3	cell	culture	flasks.		

	

2.4.1.2	Cell	passaging	of	C6	astrocytic	cell	line	

Prior	 to	 passaging,	 the	 appropriate	 cell	 culture	 medium	 was	 warmed	 to	 37°C	 in	 an	

incubator.	The	cells	were	viewed	using	an	inverted	light	microscope	to	ensure	they	were	

approximately	 80%	 confluent	 prior	 to	 splitting.	 The	 cell	 culture	 medium	 was	 removed	

from	the	75cm3	flask.	The	monolayer	of	cells	was	washed	twice	with	10	ml	DPBS	(without	

calcium	or	magnesium)	to	remove	any	residual	culture	medium.	Trypsin/EDTA	(5ml)	was	

added	 to	 each	 flask	 and	 incubated	 for	 five	minutes	 at	 37°C	 in	 5%	 (v/v)	 CO2	 in	 air.	 The	

flasks	were	gently	tapped	to	detach	the	adherent	cells	from	the	tissue	culture	plastic	and	

transferred	 to	 a	 universal.	 A	 further	 10ml	 of	 pre-warmed	 supplemented	 medium	 was	

added	to	the	suspended	cells	to	inhibit	the	trypsin.	The	cells	were	centrifuged	at	150g	for	
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10	minutes	at	room	temperature.	The	supernatant	was	aspirated	from	the	cell	pellet	and	

re-suspended	in	3ml	of	the	appropriate	cell	culture	medium.		The	cells	were	counted	using	

the	 trypan	blue	 exclusion	 assay	 (section	2.4.1.4)	 and	 a	 seeding	density	between	5	 x	105	

and	1	x	106	was	used	to	seed	the	cells	 into	 fresh	75cm3	tissue	culture	 flasks.	The	culture	

medium	was	changed	or	topped	up	every	3-4	days	until	the	cells	were	confluent	and	ready	

to	be	passaged	again.	

	

2.4.1.3	Cell	passaging	of	PC12	neuronal	cell	line.	

Prior	 to	 passaging	 the	 appropriate	 cell	 culture	 medium	 was	 warmed	 to	 37°C	 in	 an	

incubator.	The	cells	were	viewed	using	an	inverted	light	microscope	to	ensure	they	were	

approximately	 80%	 confluent	 prior	 to	 splitting.	 The	 cell	 culture	 medium	 containing	

suspended	 non-adherent	 cells	 was	 removed	 from	 the	 75cm3	 flask	 and	 placed	 in	 a	

universal.	 The	 cells	were	 centrifuged	 at	 150g	 for	 10	minutes	 at	 room	 temperature.	 The	

supernatant	was	aspirated	from	the	cell	pellet	and	re-suspended	in	3ml	of	the	appropriate	

cell	 culture	 medium.	 	 The	 cells	 were	 counted	 using	 the	 trypan	 blue	 exclusion	 assay	

(section	2.4.1.4)	and	a	seeding	density	between	5	x	105	and	1	x	106	was	used	to	seed	the	

cells	into	fresh	75cm3	tissue	culture	flasks.	The	culture	medium	was	topped	up	every	3-4	

days	until	the	cells	were	confluent	and	ready	to	be	passaged	again.	

	

2.4.1.4	Cell	counting	using	the	trypan	blue	exclusion	assay.		

The	number	of	viable	cells	was	determined	using	the	trypan	blue	exclusion	assay.	When	a	

cell	 dies	 the	 integrity	of	 the	membrane	becomes	 compromised	allowing	 the	 trypan	blue	

dye	to	permeate	the	cell,	thus	dead	cells	appear	blue	when	viewed	using	light	microscopy	

(and	 thus	 were	 excluded	 from	 the	 count)	 and	 the	 living	 cells	 (cell	 membrane	 integrity	

intact)	appear	colourless.	

	

Cells	were	passaged	and	the	cells	and	supplemented	medium	transferred	into	a	universal.	

Cellular	 aggregates	 were	 removed	 by	 gentle	 agitation	 and	 pipetting.	 Trypan	 blue	 0.2%	

(v/v)	was	mixed	with	each	cell	suspension	at	a	ratio	of	1:10,	a	volume	of	90μl	of	the	cell	

suspension	was	placed	into	an	eppendorf	and	10μl	of	trypan	blue	was	added.	Using	70%	

(v/v)	 ethanol,	 a	 haemocytometer	was	 cleaned	 prior	 to	 performing	 the	 cell	 count	 and	 a	

glass	coverslip	was	gently	adhered	onto	the	chamber	of	the	haemocytometer.		

	A	 volume	 of	 10µl	 of	 the	 cell	 suspension:	 trypan	 blue	 mixture	 was	 loaded	 into	 the	

haemocytometer	chamber,	which	was	then	placed	under	an	inverted	light	microscope	to	

perform	 the	 cell	 count.	 A	 minimum	 of	 100	 cells	 were	 counted	 within	 the	 25	 square	

counting	grid	(Figure	2.1).	Generally,	the	number	of	viable	cells	in	6	squares	exceeded	100	
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cells,	 thus	 the	number	 of	 viable	 cells	 in	 6	 squares	was	 counted	 and	 the	number	 of	 cells	

present	in	1ml	of	medium	was	calculated	using	the	equation	outlined	below.		

	

Figure	2.1.	Neubauer	haemocytometer	25	square	counting	grid.	Cells	 located	on	the	top	

and	 left	extremity	 lines	were	 included	 in	 the	count	(green	 lines).	Cells	positioned	on	 the	

bottom	and	right	extremity	lines	were	not	included	in	the	cell	count	(red	lines).	

Number	of	viable	cells=	

	

	(Total	number	of	cells-	number	of	blue	stained	cells)	x	(25/6)	x	1x104	x	(10/9)	

																							Number	of	squares	counted	

	

Here	 25/6	was	 the	 correction	 factor	 for	 the	 total	 number	 of	 cells	 in	 a	 known	 area	 (the	

central	25	squares),	10/9	was	 the	correction	 for	 the	dilution	 factor	when	adding	 trypan	

blue	to	the	cell	suspension	and	1	x	104
	

was	the	dilution	factor	per	ml.		

	

2.4.1.5	Cell	Cryopreservation	

So	as	to	maintain	a	stock	of	each	cell	type,	after	passaging,	a	proportion	of	the	cells	were	

cryopreserved	 for	 later	 use	 when	 needed.	 Cells	 were	 passaged	 and	 detached	 from	 the	

tissue	culture	flasks	using	trypsin.	The	cell	pellet	was	re-suspended	at	a	seeding	density	of	

1x106	cells	 per	ml	 in	 cryopreservation	medium;	70%	 (v/v)	 supplemented	medium,	20%	

(v/v)	 FBS	 and	 10%(v/v)	 filter	 sterilised	 dimethyl	 sulphoxide	 (DMSO).	 Cryovials	

containing	 cellular	 aliquots	 (1ml)	 were	 transferred	 to	 a	 cryofreezing	 pot	 containing	

isopropanol.	 The	 vials	 were	 frozen	 at	 -80°C	 overnight	 and	 then	 transferred	 to	 liquid	

nitrogen	for	storage	in	the	long	term.		
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2.4.1.6	Primary	Astrocyte	and	microglia	cell	isolation	and	culture	

Primary	 astrocytes	 and	 microglia	 were	 isolated	 from	 P2	 Wistar	 rat	 pups	 so	 as	 to	

investigate	the	effect	of	metallic	wear	particles	on	cells	of	the	CNS.	

	

2.4.1.6.1	 Coating	 tissue	 culture	 flasks	 with	 Poly-D-Lysine	 for	 culture	 of	 primary	

astrocytes	and	microglia.		

Prior	to	the	collection	of	P2	Wistar	rat	pups,	75cm3	tissue	culture	flasks	were	coated	with	

4mls	of	poly-d-lysine	(PDL)	50mg.ml-1	(section	2.3.19)	and	incubated	at	37°C	in	5%	(v/v)	

CO2	 in	 air	 (the	 number	 of	 flasks	 to	 be	 coated	was	 dependent	 on	 the	 size	 of	 the	 litter	 of	

pups-	 2	 cortices	 per	 flask).	 The	 PDL	 enabled	 the	 primary	 cells	 to	 adhere	 to	 the	 tissue	

culture	 plastic.	 After	 the	 one-hour	 incubation,	 PDL	 was	 aspirated	 from	 each	 flask	 and	

discarded.	To	eliminate	residual	PDL	the	flasks	were	washed	twice	with	4mls	of	PBS	and	

once	 with	 4mls	 of	 supplemented	 medium	 and	 left	 to	 dry	 (with	 caps	 on)	 in	 the	 37°C	

incubator	in	5%	(v/v)	CO2	in	air	for	30	minutes.		

	

The	day	prior	to	the	rat	cortex	dissection	and	cell	isolation,	the	required	dissection	kit	was	

dry	 heat	 sterilised	 (section	 2.1.4	 and	 section	 2.1.3.2).	 	 The	 solutions	 required	 for	 the	

isolation	 protocol	 including;	 disaggregation	 medium,	 trypsin,	 concentrated	 inhibitor,	

dilute	 inhibitor	and	BSA	were	prepared	 fresh	on	 the	day	of	 the	dissection	(section	2.3.8,	

2.3.29,	2.3.7	and	2.3.5	respectively).		

	

2.4.1.6.2	Isolation	of	primary	astrocytes	and	microglia.		

Primary	astrocytes	were	isolated	from	the	cortices	of	P2	(2	day	old)	Wistar	rat	pups.		The	

animals	 were	 collected	 from	 The	 University	 of	 Leeds,	 Central	 Biomedical	 Services	

(between	 six	 and	eight	pups	per	 litter).	The	 tissue	was	obtained	 in	 accordance	with	 the	

Home	Office	Schedule	1	procedure	in	a	home	office	licenced	laboratory	at	The	University	

of	Leeds.		

	

Prior	to	the	dissection	of	the	rat	cortices,	10ml	of	sterile	disaggregation	medium	(section	

2.3.8)	was	added	to	two	tissue	culture	dishes	(60	x	10mm),	in	order	to	prevent	the	tissue	

from	drying	out.	 Prior	 to	 and	during	dissection,	 the	heads	were	 stored	on	 ice	 in	 a	50ml	

falcon	tube.	Each	head	was	removed	from	the	tube	on	ice	and	sprayed	liberally	with	70%	

(v/v)	ethanol	before	being	brought	into	the	class	II	cabinet.	The	snout	was	held	between	

the	thumb,	 index	finger	and	middle	finger,	pinching	very	slightly	to	maintain	a	firm	grip.	

Care	was	taken	to	ensure	the	ears	were	still	visible	and	the	snout	pointed	down	towards	

the	palm	of	 the	hand.	This	positioning	ensured	accurate,	 repeatable	alignment	when	 the	

initial	incisions	were	made.		
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The	cavity	at	the	back	of	the	skull,	where	the	brain	stem	joined	the	brain,	was	located	and	

sterile,	 curved	 scissors	 were	 inserted	 into	 this	 hollow	 region.	 An	 incision	 was	 made	

around	the	edge	of	the	skull	to	the	front	of	the	head	aligning	the	scissors	above	the	ear	and	

through	 the	eye.	Care	was	 taken	 to	keep	 the	 inner	blade	still	 and	make	 the	cut	with	 the	

outer	blade	only,	so	as	to	protect	the	brain	tissue	from	damage.		

	

Using	tweezers	the	skull	was	carefully	peeled	back	making	sure	the	brain	tissue	remained	

in	position.	The	cortex	was	carefully	 loosened	from	the	rest	of	 the	brain	using	a	spatula.	

The	 cortex	was	 removed	 from	 the	 skull	 and	 placed	 on	 the	 lid	 of	 a	 sterile	 tissue	 culture	

dish.	Excess	brain	tissue	was	removed	using	the	spatula.	Using	fine	tweezers	the	meninges	

were	peeled	away	from	the	cortex	tissue.	The	cortex	was	then	inverted	and	the	vascular	

tissue	underneath	removed	using	fine	tweezers.	The	meninges	were	then	discarded	along	

with	 other	 waste	 tissue.	 The	 cortices	 were	 then	 placed	 in	 the	 tissue	 culture	 dishes	

containing	10ml	of	disaggregation	medium.	 	This	procedure	was	repeated	 for	each	head	

and	 three	 cortices	placed	 in	 each	 tissue	 culture	dish	 containing	disaggregation	medium.	

The	 dissection	 equipment	 was	 thoroughly	 washed	 in	 70%	 (v/v)	 ethanol	 between	

dissections.		

	

Once	 all	 the	 cortices	were	dissected,	 the	disaggregation	medium	was	 removed	 from	 the	

tissue	culture	dishes,	 the	cortices	 transferred	 to	 fresh	sterile	 tissue	culture	dish	 lids	and	

chopped	into	1mm3	cubes	using	the	flat	edge	of	the	scalpel	blade.	The	chopped	tissue	was	

placed	 into	 fresh	 tissue	culture	dishes	 containing	7ml	of	 filter	 sterilised	 trypsin	 solution	

(section	2.3.29)	and	incubated	for	15	minutes	at	37°C	in	5%	(v/v)	CO2	in	air.	

	

After	 the	 incubation	 period	 the	 cortices	 were	 removed	 from	 the	 incubator	 and	 7ml	 of	

sterile	dilute	trypsin	inhibitor	added	(section	2.3.7).	The	contents	of	each	dish	were	then	

transferred	 to	 sterile	 50ml	 falcon	 tubes	 (one	 falcon	 tube	 per	 tissue	 culture	 dish).	 The	

cortices	were	 centrifuged	 at	 400g	 for	 approximately	 five	 seconds.	 The	 supernatant	was	

aspirated	 and	 discarded	 and	 the	 remaining	 pellet	 re-suspended	 in	 10	 drops	 of	 sterile	

concentrated	 inhibitor	 (section	 2.3.7).	 The	 tissue	 was	 mechanically	 dissociated	 by	

aspiration	 using	 a	 wide	 bore	 pipette	 tip	 and	 a	 P1000	 Gilson	 pipette.	 The	 tissue	 was	

allowed	to	settle	for	approximately	five	minutes	at	room	temperature,	the	cell	suspension	

was	 collected	 and	 transferred	 to	 a	 sterile	 15	 ml	 falcon	 tube.	 A	 further	 10	 drops	 of	

concentrated	 inhibitor	 were	 added	 to	 the	 tissue	 debris,	 the	 tissue	 mechanically	

dissociated,	(as	described	previously)	and	allowed	to	settle,	the	supernatant	was	removed	

and	pooled	with	the	first	supernatant.	This	step	was	repeated	a	total	of	five	times	pooling	

together	 all	 the	 supernatants.	 In	 the	 15ml	 falcon	 tube,	 the	 cell	 suspension	 (pooled	
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supernatants)	was	 underlaid	with	 an	 equal	 volume	 of	 BSA	 solution	 (section	 2.3.5).	 The	

solution	was	centrifuged	at	400g	for	five	minutes	at	room	temperature.	The	supernatant	

was	 removed	 and	 discarded	 and	 the	 cell	 pellet	 re-suspended	 in	 12ml	 of	 supplemented	

DMEM	medium,	pre-warmed	to	37°C.		The	PDL	coated	flasks	were	filled	with	8mls	of	fresh	

supplemented	 medium	 and	 3ml	 of	 cell	 suspension	 (the	 flasks	 were	 seeded	 with	 1.5-2	

cortices	per	flask	depending	on	the	number	of	pups	in	the	litter,	the	pooled	cells	from	one	

litter	were	split	evenly	between	four	flasks	and	one	flask	of	cells	used	per	investigation).	

The	 cells	 were	 incubated	 at	 37°C	 in	 5%	 (v/v)	 CO2	 in	 air.	 The	 cells	were	 cultured	 for	 2	

weeks	 prior	 to	 use.	 	 After	 one	 week	 in	 culture,	 half	 of	 the	 medium	 was	 removed	 and	

replaced	with	6mls	of	 fresh	supplemented	DMEM	medium.	The	cells	were	only	passaged	

once	 (section	 2.4.1.6.3).	 Once	 again	 the	 tissue	 culture	 flasks	 were	 pre-coated	 with	 PDL	

prior	to	passaging.		

	

2.4.1.6.3	Passaging	of	primary	rat	astrocytes	and	microglia.	

After	two	weeks	in	culture,	the	primary	rat	astrocytes	and	microglia	were	passaged	(this	

was	performed	only	once	to	prevent	differentiation	into	a	more	fibroblast-like	cell	type).	

Due	to	the	use	of	PDL	to	enable	the	primary	astrocytes	and	microglia	to	adhere	to	tissue	

culture	plastic,	a	process	not	employed	with	the	cell	lines	utilised	in	this	study,	the	method	

of	 passaging	 the	 primary	 cells	 was	 slightly	 modified	 when	 compared	 to	 the	 method	

utilised	with	the	C6	glial	and	PC12	neuronal	cell	lines.		

	

The	appropriate	supplemented	cell	culture	medium	was	warmed	to	37°C	in	an	incubator	

for	 one	 hour	 prior	 to	 passaging	 the	 primary	 astrocytes	 and	 microglia.	 The	 cell	 culture	

medium	was	 removed	 from	each	75cm3	 flask.	 The	primary	 rat	 astrocytes	 and	microglia	

were	 washed	 twice	 with	 10ml	 DPBS	 (without	 calcium	 or	 magnesium)	 and	 5ml	

Trypsin/EDTA	added	to	each	flask	and	agitated	at	150rpm	for	10	minutes	at	37°C	in	5%	

(v/v)	CO2	in	air	in	an	incubator.	The	5ml	cell,	trypsin/EDTA	suspension	was	transferred	to	

a	 universal.	 A	 volume	 of	 5ml	 of	 pre-warmed	 supplemented	 medium	 was	 added	 to	 the	

suspended	cells	in	the	universal	to	inhibit	the	trypsin.	An	additional	10ml	of	supplemented	

medium	was	added	 to	each	 flask	and	 the	remaining	cells,	which	had	not	detached,	were	

removed	using	a	cell	scraper.	The	cells	were	centrifuged	at	150g	for	10	minutes	at	room	

temperature.	The	supernatant	was	aspirated	from	the	cell	pellet	and	re-suspended	in	3ml	

of	 the	 appropriate	 cell	 culture	 medium.	 	 The	 cells	 were	 counted	 using	 the	 trypan	 blue	

exclusion	assay	(section	2.4.1.4)	and	a	seeding	density	of	1	x	106	used	to	seed	the	cells	into	

fresh	75cm3	tissue	culture	flasks.	A	volume	of	3ml	of	pre-warmed	supplemented	medium	

was	added	every	3	days	until	the	cells	were	confluent.	
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2.4.1.6.4	 Separation	 of	 primary	 astrocytes	 and	 microglia	 into	 individual	 cell	

populations	

To	further	understand	the	cellular	mechanisms	behind	the	biological	response	of	primary	

astrocytes	 and	 microglia	 to	 cobalt	 chrome	 and	 stainless	 steel	 nanoparticles	 additional	

experiments	were	performed	with	primary	rat	astrocytes	 in	 isolation.	This	was	achieved	

by	shaking	off	the	non-adherent	microglia	from	the	adherent	astrocytes.		

	

To	eliminate	microglia	from	the	astrocyte	culture,	once	the	cells	were	80%	confluent	the	

filter	 caps	of	 each	 flask	were	 removed	and	 replaced	with	 closed	 caps	 in	 a	 class	 II	 safety	

cabinet.	The	flasks	were	placed	onto	a	shaker	in	a	37°C	incubator,	the	closed	caps	carefully	

loosened	(enabling	CO2	to	enter	the	flasks)	and	the	level	of	CO2	in	the	incubator	allowed	to	

reach	5%	(v/v).	The	caps	were	then	tightened	and	the	flasks	were	shaken	for	4	hours	at	

150rpm.	During	the	four-hour	incubation	period	new	75cm3	flasks	were	coated	with	PDL	

(section	2.4.1.6.1)	in	preparation	for	passaging.		

	

After	the	4	hour	incubation	period	the	medium	(containing	predominantly	microglia)	was	

added	to	the	fresh	PDL	coated	flasks	and	allowed	to	grow	overnight.	A	volume	of	12ml	of	

supplemented	 DMEM	 medium	 was	 added	 to	 the	 confluent	 flasks	 containing	 astrocytes	

only.	The	flasks	were	then	returned	to	the	incubator	at	37°C	in	5%	(v/v)	CO2	in	air.		

	

2.4.1.6.5	Preparation	of	cellular	3D	collagen	gels.	

Primary	astrocytes	 and	microglia	 in	 co-culture	and	primary	astrocytes	 in	 isolation	were	

cultured	in	a	3D	collagen	hydrogel	to	determine	the	biological	effects	of	cobalt	chrome	and	

stainless	 steel	 on	 cells	 in	 a	 more	 physiologically	 relevant	 environment	 than	 a	 2D	

monolayer	cell	culture	system.		

	

Primary	 astrocytes	 and	 microglia	 or	 primary	 astrocytes	 in	 isolation	 were	 seeded	 in	

collagen	 gels	 at	 a	 seeding	 density	 of	 1	 x	 105	cells	 per	 100µl	 gel.	 The	 cells	 from	 a	 single	

75cm3	 flask	 were	 utilised	 per	 investigation	 (for	 instance	 in	 the	 culture	 of	 primary	

astrocytes	and	microglia	with	increasing	concentrations	of	cobalt	chrome	wear	particles,	

for	two	days	in	culture,	to	investigate	the	effect	of	these	particles	on	cell	viability).	For	cell	

only	gels,	the	volume	of	gel	required	per	experiment	was	calculated.	The	gel	composition	

was	 as	 follows,	 80%	 (v/v)	 type	 I	 acidified	 rat	 tail	 collagen,	 10%	 (v/v)	 10x	 minimum	

essential	 medium	 (MEM),	 5.8%	 (v/v)	 neutralising	 solution	 (predominantly	 sodium	

hydroxide,	 remaining	 contents	 remain	 confidential	 to	 TAP	 biosystems)	 and	 4.2%	 (v/v)	

cells	re-suspended	in	supplemented	medium.		
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To	produce	the	3D	collagen	hydrogels,	firstly	the	10x	MEM	was	added	to	a	universal.	Using	

a	wide	 bore	 pipette	 (so	 as	 to	 reduce	 cross	 shear	 in	 the	 collagen	 gel)	 the	 type	 I	 rat	 tail	

collagen	was	added	to	the	10x	MEM	and	mixed	well	with	a	smooth	swirling	action	so	as	to	

avoid	the	production	of	bubbles.	The	neutralising	solution	was	added	and	a	colour	change	

from	 luminous	 yellow	 to	 peach	was	 observed.	 The	 addition	 of	 the	 neutralising	 solution	

provided	 an	 optimum	 pH	 for	 the	 growth	 of	 the	 primary	 astrocytes	 and	 microglia	 and	

began	 the	 setting	 process	 of	 the	 gel.	 The	 cell	 (or	 cell	 and	 particles	 or	 particles	 only)	

solution	 was	 finally	 added	 and	 the	 solution	 mixed	 thoroughly	 to	 ensure	 an	 even	

distribution	 of	 cells	 and	 particles	 throughout	 the	 viscous	 gel,	 once	 again	 bubbles	 were	

avoided	at	 this	stage.	A	volume	of	100µl	gel	was	pipetted	 into	flat	bottom	96	well	plates	

using	a	wide	bore	pipette	and	the	gels	allowed	to	set	for	10	minutes	at	37°C	in	5%	(v/v)	

CO2	in	air.	Six	replicates	were	produced	per	test	condition.	Supplemented	medium	(200µl)	

was	added	to	the	surface	of	each	gel	(once	set).	For	the	DMSO	control	a	volume	of	100µl	of	

supplemented	medium	and	100µl	99.9%	(v/v)	DMSO	was	added	to	the	surface	of	each	gel	

and	allowed	to	penetrate	through	the	porous	hydrogel.				

	

When	 the	 cells	 were	 exposed	 to	 cobalt	 chrome	 and	 stainless	 steel	 wear	 particles,	 the	

appropriate	 volume	 of	 cobalt	 chrome	 or	 stainless	 steel	 debris	 was	 calculated	 and	 the	

solution	ultra-centrifuged	and	the	water	supernatant	discarded.	The	cell	solution	was	then	

added	 to	 the	 particles	 and	 the	 gels	 made	 according	 to	 the	 same	 protocol	 as	 stated	

previously.	

	

For	 the	 culture	 of	 primary	 cells	 with	 cobalt	 chromium	 and	 stainless	 steel	 ions,	 the	

equivalent	particle	 volumes	 for	 each	particle	 dose	 (0.5µm3,	 5µm3	and	50µm3	debris	 per	

cell)	were	incubated	for	24	hours	at	37°C	in	5%	(v/v)	CO2	in	air	in	supplemented	medium	

(the	volume	of	medium	required	was	200µl	per	100µl	gel	and	scaled	up	to	make	a	20%	

excess	 to	 account	 for	 any	 evaporation).	 After	 the	 24-hour	 incubation	 period	 the	 sample	

was	 ultra-centrifuged	 and	 the	 supernatant	 (containing	 the	 metal	 ions)	 removed	 and	

transferred	 to	 a	 fresh	 universal,	 leaving	 the	 particles	 behind.	 A	 volume	 of	 200µl	 of	 the	

supernatant	was	added	to	the	surface	of	each	cellular	gel	and	allowed	to	penetrate	the	gel.	

The	gels	were	then	incubated	for	two	and	five	days	at	37°C	in	5%	(v/v)	CO2	in	air.		

	

2.4.2	Cell	viability	assays	

To	 determine	 the	 effects	 of	 cobalt	 chrome	 and	 stainless	 steel	 wear	 particles	 on	 the	

viability	 of	 C6	 astrocytic	 cells	 (cell	 line),	 PC12	 neuronal	 cells	 (cell	 line)	 and	 primary	

astrocytes	 and	microglia	 in	 a	 simple	 2D	 culture	 system,	 each	 cell	 type	was	 seeded	with	
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increasing	concentrations	of	metallic	particles	(0.05µm3	debris	per	cell-	50µm3	debris	per	

cell).	 In	 2D	 culture	 the	 effect	 on	 viability	 was	 determined	 using	 an	 ATP	 Liteä	 assay	

(PerkinElmer,	USA).	The	ATP	Liteä	 assay	utilises	 the	principal	 that	 living,	metabolically	

active	 cells	 produce	 ATP	 (adenosine	 triphosphate).	 The	 level	 of	 ATP	 is	 significantly	

reduced	when	a	cell	undergoes	apoptosis	or	necrosis.	When	ATP	from	lysed	cells	interacts	

with	 the	 added	 D-Luciferin	 and	 Luciferase	 (in	 the	 provided	 ATP	 substrate)	 light	 is	

produced.	The	level	of	light	generated	is	proportional	to	the	concentration	of	ATP	and	thus	

is	an	indicator	of	cell	viability.		

	

2.4.2.1	ATP-liteäassay		(2D	culture	system)			

The	ATP-Liteä	assay	was	used	to	determine	the	effect	of	cobalt	chrome	and	stainless	steel	

wear	particles	on	the	viability	of	C6	glial	cells,	PC12	neuronal	cells	and	primary	astrocytes	

and	microglia	 in	 a	 2D	 culture	 system.	 Here,	 all	 the	 supplemented	medium	 (200µl)	 was	

removed	 from	 each	 well.	 The	 PC12	 neuronal	 suspension	 cells	 clustered	 together	 in	 a	

pellet-like	formation	at	the	bottom	of	the	U	bottomed	wells	and	great	care	was	taken	not	

to	 disturb	 this	 pellet	 and	 hence	 remove	 cells	 in	 the	 process	 when	 removing	 the	

supernatant.	The	adherent	cell	types	remained	adhered	to	the	tissue	culture	plastic	of	the	

flat-bottomed	 96-well	 plates.	 A	 volume	 of	 100µl	 of	 fresh	 supplemented	 medium	 was	

added	to	each	well.	A	volume	of	50µl	of	mammalian	lysis	solution	was	added	to	each	well.	

The	 plate	 was	 shaken	 at	 700rpm	 for	 5	 minutes.	 Following	 this	 50µl	 of	 ATP	 substrate	

solution	 was	 added	 to	 each	 well	 and	 the	 plate	 sealed	 with	 a	 micro-plate	 sealing	 film,	

wrapped	 in	 foil	 and	 agitated	 on	 the	 plate	 shaker	 at	 700rpm	 for	 a	 further	 5	minutes.	 A	

volume	of	 100µl	 from	each	well	was	 transferred	 to	 a	white	96	well	 optiplate.	 The	plate	

was	 dark	 adapted	 for	 10	 minutes	 and	 the	 average	 luminescence	 count	 for	 each	 well	

(average	over	10	seconds	per	well)	recorded.	The	output	for	this	assay	was	presented	as	

average	luminescence	counts	per	second	(CPS).				

	

2.4.2.2	 Effect	 of	 cobalt	 chrome	 and	 stainless	 steel	 wear	 particles	 on	 cell	 viability	

(3D)	using	the	live	dead	assay.		

Primary	 astrocytes	 and	 microglia	 and	 primary	 astrocytes	 in	 isolation	 (seeding	 density	

1x105	cells	per	100µl	gel)	were	cultured	in	a	3D	system	with	all	doses	of	stainless	steel	or	

cobalt	chromium	particles	(0.5µm3	-50µm3	debris	per	cell)	 for	48	hours	and	five	days	at	

37°C	in	5%	(v/v)	CO2	in	air.	DMSO	was	used	as	a	positive	control	to	trigger	cell	death.			

	

After	 the	appropriate	 incubation	period	with	 the	cobalt	 chrome	and	stainless	steel	wear	

debris,	 48	 hours	 or	 five	 days,	 the	 supplemented	medium	was	 removed	 from	 the	 top	 of	
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each	gel	and	the	supernatant	was	transferred	to	a	non-coated	96	well	plate	and	stored	at	-

80°C	 for	 later	use	 in	 the	ELISA	assay.	The	gels	were	washed	 twice	 for	 five	minutes	with	

sterile	DPBS	(without	calcium	and	magnesium).		During	the	wash	steps	the	live	dead	stain	

solution	was	prepared	(see	section	2.3.14).	 	After	the	necessary	wash	steps,	100µl	of	the	

supplemented	medium,	with	the	addition	of	calcein	and	ethidium	homodimer,	was	added	

to	each	gel,	the	96	well	plate	was	wrapped	in	foil	and	incubated	for	one	hour	at	37°C	in	5%	

CO2	in	air.	

	

After	 the	 one-hour	 incubation	 period	 the	 residual	 live	 dead	 stain	 was	 removed	 and	

discarded	 and	 once	 again	 the	 gels	 washed	 twice	 in	 sterile	 DPBS	 for	 five	minutes.	 After	

washing,	200µl	of	fresh	supplemented	DMEM	medium	was	added	to	each	well	and	the	gels	

immediately	imaged	using	a	Zeiss	Olympus	upright	microscope	at	10x	magnification	using	

the	calcein	and	ethidium	homodimer	pre-set	filters.	A	total	of	6	images	were	taken	per	gel,	

yielding	 36	 images	 per	 condition	 (there	 were	 six	 replicates	 per	 condition).	 The	 total	

number	 of	 living	 (green)	 and	 dead	 (red)	 cells	 were	 counted	 for	 each	 image	 and	 the	

percentage	viability	compared	to	the	cell	only	negative	control.			

	

2.5	Statistical	Analysis	

2.5.1	Two	way	ANOVA	

Data	was	presented	±	95%	confidence	 limits	and	statistical	significance	analysed	using	a	

two-way	ANOVA.	Significant	differences	between	the	means	of	test	groups	(particle	doses	

ranging	 from	 0.5µm3-50µm3	wear	 debris	 per	 cell)	 and	 controls	 were	 determined	 using	

Tukey’s	Post	hoc	analysis.	A	p	value	<	0.05	was	 indicative	of	a	significant	difference.	For	

data	 that	 was	 not	 normally	 distributed	 an	 arc	 sine	 transformation	 was	 performed	 to	

generate	accurate	confidence	limits.	
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Generation,	Isolation	and	Characterisation	of	Cobalt	Chrome	and	
Stainless	Steel	Particles		

	
	

	

3.1	Introduction	
	

In	order	to	determine	the	impact	that	the	design	and	biomaterial	selection	of	a	total	disc	

replacement	has	on	 its	wear	performance	and	consequently	the	host	biological	response	

to	 the	 TDR	 device	 (Vital	 &	 Boissiere,	 2014),	 wear	 simulators	 with	 increasing	 levels	 of	

complexity	and	varying	kinematic	parameters	have	been	used,	ranging	from	pin-on-plate	

(Tipper	et	al.,	1999;	Germain	et	al.,	2003;	Papageorgiou	et	al.,	2014),	pin-on-disc	(Chiba	et	

al.,	2007;	Saikko,	2015)	to	whole	joint,	spine,	simulators	(O’Leary	et	al.,	2005;	Kurtz	et	al.,	

2012;	Vicars	et	al.,	2010;	Colle	et	al.,	2013;	Hyde	et	al.,	2015;	Pasko	et	al.,	2016).		

	

It	is	important	to	consider	the	appropriate	biomaterial	when	simulating	wear	using	a	joint	

simulator	 or	 a	 pin-on-plate	 simulator.	 Previous	 studies	 have	 utilised	 both	wrought	 and	

cast	cobalt	chrome	molybdenum	alloys,	with	varying	carbon	content.	Kretzer	et	al.		(2009)	

using	 a	 hip	 simulator	 found	 steady	 state	 and	 run	 in	 wear	 rates	 from	 cobalt	 chromium	

molybdenum	alloy	were	 lowest	when	using	 low	carbon	CoCrMo	on	 low	carbon	CoCrMo.	

Conversely,	 Firkins	 et	 al.	 (2001)	 using	 four	 28mm	 femoral	 heads	 and	 acetabular	 cups	

made	 of	 medical	 grade	 wrought	 cobalt	 chromium	 molybdenum	 studied	 the	 effect	 of	

varying	 the	 carbon	 content	 of	 the	 cobalt	 chromium	molybdenum	 alloy,	 <0.07%	 for	 low	

carbon	 and	 >0.2%	 for	 high	 carbon,	 and	 tested	 their	 wear	 performance	 using	 a	 hip	

simulator	and	25%	Bovine	serum	as	the	lubricant.	Firkins	et	al.	(2001)	found	than	the	high	

carbon	 on	 high	 carbon	 devices	 produced	 round	 to	 oval	wear	 particles	 that	 had	 a	mean	

length	 between	 25nm	 and	 36nm	 in	 length	 which	 were	 significantly	 larger	 than	 wear	

particles	produced	by	the	low	carbon	on	low	carbon	articulations.	The	particles	from	high	

carbon	cobalt	chrome	articulation	were	 in	 the	appropriate	size	range	 for	metal	particles	

observed	 in	 vivo	 following	 failed	 total	 hip	 replacements.	 Unlike	 Kretzer	 et	 al.	 (2009),	

Firkins	et	al.	(2001)	found	the	wear	rates	for	the	low	carbon	on	low	carbon	articulations	

were	 largest	at	0.51mm3.	million	cycles-1		which	 is	significantly	 larger	 than	 the	0.18mm3.	

million	 cycles-1	 	 observed	 with	 high	 carbon	 on	 high	 carbon	 articulations.	 Kinbrum	 &	

Unsworth.	 (2008)	 also	 found	 high	 carbon	wrought	 cobalt	 chrome	molybdenum	 alloy	 to	

have	 superior	 wear	 properties	 to	 low	 carbon	 wrought	 alloys	 (Kinbrum	 &	 Unsworth,	

2008).	Tipper	et	al	 	(1999)	used	medical	grade	wrought	cobalt	chrome	alloy,	and	using	a	
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six-station	 pin-on-plate	 wear	 simulator	 and	 25%	 bovine	 serum	 as	 the	 lubricant,	 used	

uniaxial	and	biaxial	simulations	to	assess	the	effect	of	carbon	content	and	type	of	motion	

on	 the	wear	performance	of	 cobalt	 chromium	molybdenum	bearing	 surfaces	 and	on	 the	

characteristics	 of	 the	 wear	 particles	 produced.	 	 Similarly	 to	 the	 results	 presented	 by	

Firkins	et	al	(2001),	Tipper	et	al.	(1999)	found	that	the	low	carbon	on	low	carbon	bearings	

both	 with	 uniaxial	 and	 biaxial	 motion	 demonstrated	 the	 highest	 wear	 rates	 of	 0.53	

mm3.km-1	and	0.15mm3.km-1	respectively.	This	material	coupling	also	produced	the	largest	

particles	(90nm	for	uniaxial	motion	and	87nm	for	biaxial	motion).	The	high	carbon	cobalt	

chromium	 molybdenum	 on	 high	 carbon	 cobalt	 chromium	 molybdenum	 articulations	

generated	 the	 smallest	 particles	 (76nm	 and	 56nm	 respectively)	 and	 demonstrated	 the	

lowest	 wear	 rates	 (0.12	 mm3.km-1	 and	 0.11	 mm3.km-1)	 with	 both	 uniaxial	 and	 biaxial	

motion.	These	results	highlight	the	importance	of	the	addition	of	multi-directional	motion	

and	 the	 articulating	 surface.	 Biaxial	 motion	 produced	 particles,	 which	 more	 closely	

modelled	the	particles	observed	 in	hip	simulations	and	 in	vivo	 from	around	failed	metal-

on-metal	total	hip	replacements,	thus	this	more	simplistic	method	of	wear	production	can	

be	 used	 to	 generate	 clinically	 relevant	 metallic	 wear	 particles.	 Previous	 in	 vitro	

investigations	 have	 utilised	 metallic	 particles,	 which	 weren’t	 clinically	 relevant	 in	 size.		

The	use	of	high	carbon	wrought	cobalt	chrome	and	316L	stainless	steel	was	implemented	

to	generate	clinically	relevant	wear	particles.		

	

Germain	 et	 al.	 (2003)	 utilised	 a	 six-station	 pin-on-plate	 wear	 simulator	 to	 generate	

nanoscale	cobalt	chromium	particles	for	use	in	cell	culture	studies.	Here	water,	not	serum	

or	medium,	was	used	 as	 the	 lubricant.	 The	particles	produced	were	between	30nm	and	

50nm	in	size,	 thus	simulation	using	high	carbon	wrought	cobalt	chromium	molybdenum	

pins	and	plates	in	a	six-station	pin-on-plate	wear	rig	using	a	stroke	length	of	28mm	with	

30°	 rotation,	with	biaxial	motion	 and	a	 load	of	 80N	at	 a	 rate	of	 1Hz	 in	water	 generated	

cobalt	chromium	particles	in	the	nanoscale	size	range	which	would	be	appropriate	for	use	

in	cell	culture	studies	as	they	were	similar	in	size	to	particles	observed	in	metal-on-metal	

total	 hip	 replacements.	 Thus	 these	 parameters	 were	 also	 utilised	 for	 the	 generation	 of	

clinically	relevant	wear	particles	in	this	part	of	the	study.		

	

The	aim	of	this	part	of	the	study	was	to	generate	clinically	relevant	cobalt	chromium	and	

stainless	 steel	 particles	 using	 a	 six-station	 pin-on-plate	 wear	 simulator	 in	 water,	 using	

high	carbon	wrought	cobalt	chrome	molybdenum	and	316L	stainless	steel	pins	and	plates.	

These	 particles	 will	 subsequently	 be	 filtered	 and	 characterised	 in	 terms	 of	 particle	

morphology	and	size,	heat	sterilised	and	utilised	 in	cell	 culture	studies	 to	determine	 the	

response	of	cells	of	the	spinal	cord	to	cobalt	chromium	and	stainless	steel	wear	particles.		
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3.2	Materials		

The	 specification	 for	 the	pins	 and	plates	used	 in	 the	production	of	 the	 cobalt	 chromium	

and	stainless	steel	wear	particles	are	shown	in	Table	3.1.	The	elemental	compositions	of	

medical	grade	316L	stainless	steel	and	high	carbon	cobalt	chrome	used	 in	this	study	are	

shown	in	Tables	3.2	and	3.3,	respectively.				

	

Table	3.1	Material	specifications	for	pins	and	plates	used	to	generate	metallic	wear	debris	

in	the	six-station	pin-on-plate	wear	simulator	(all	pins	and	plates	were	made	in	house	in	

the	 School	 of	 Mechanical	 Engineering	 at	 the	 University	 of	 Leeds).	 Bar	 stocks	 were	

provided	by	DePuy	Synthes	Joint	Reconstitution,	UK.		

	

Material	 Surface	
Roughness	

Pin	Dimensions	 Plate	
Dimensions	
	(L	x	W)	

High	Carbon	
Cobalt	Chrome	
Molybdenum	
ASTM	F75	

Ra	£0.01µm	 Height	12mm	

Width	11.975mm	

100°	radius	

	58	x	24.12mm	

Stainless	Steel	
316L	

Ra	£0.01µm	 Height	12mm	

Width	11.975mm	

100°	radius	

58	x	24.12mm	

	

The	cobalt	 chromium	and	stainless	steel	pins	and	plates	were	manufactured	 in	house	 in	

the	School	of	Mechanical	Engineering,	 the	University	of	Leeds.	The	pins	and	plates	were	

manufactured	 from	 high	 carbon	 (0.27%	 w/w)	 wrought	 cobalt-28	 chromium-6	

molybdenum,	 which	 is	 the	 alloy	 used	 in	 the	 production	 of	 surgical	 implants,	 or	 316L	

medical	grade	stainless	 steel	 (see	Figure	3.1	 for	pin	dimensions	and	Figure	3.2	 for	plate	

dimensions).	 To	 generate	 clinically-relevant	 cobalt	 chrome	 and	 stainless	 steel	 wear	

particles	the	pins	and	plates	were	manufactured	with	a	smooth	contact	face	with	a	mean	

Ra	value	of	£	 0.01µm	(in	accordance	with	 ISO	5832).	The	pin	was	produced	with	a	100°	

radius.				

	

For	 identification,	 all	 pins	 and	plates	were	engraved	with	a	number;	on	 the	non-contact	

face	of	the	pin	and	on	the	non-contact	front	of	the	plate.	This	numbering	system	enabled	

continuity	 of	 orientation	within	 the	wear	 simulator.	 Prior	 to	 use	 in	 the	 six-station	wear	

simulator	the	pins	and	plates	were	sonicated	in	isopropanol	70%	(v/v)	for	15	minutes	to	

ensure	 the	 components	 were	 thoroughly	 cleaned.	 From	 this	 point	 on	 the	 components	

were	 handled	 with	 clean	 gloves	 to	 ensure	 no	 grease	 or	 oil	 from	 the	 simulator	

contaminated	the	contact	surfaces,	gloves	were	changed	regularly	throughout	the	set	up	of	
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the	wear	simulator	to	avoid	this.		

	

	

	

Figure	3.1	The	dimensions	of	the	cobalt	chromium	and	stainless	steel	pins	used	in	the	six-

station	pin-on-plate	wear	simulator	for	the	generation	of	clinically-relevant	metallic	wear	

debris.	Highlighting	the	height	of	the	pin	12mm	and	the	degree	of	curvature	of	the	contact	

surface;	100°	radius.			
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3.3	Methods	
	

3.3.1	Generation	of	cobalt	chrome	and	stainless	steel	wear	debris	using	a	six-station	

pin-on-plate	wear	simulator.	

Clinically-relevant	 cobalt	 chrome	 and	 stainless	 steel	 wear	 particles	 were	 generated	 in	

water	 using	 the	 six-station	 pin-on-plate	 wear	 simulator	 using	 wrought	 high	 carbon,	

smooth	(Ra	0.01µm)	cobalt	chrome	or	smooth	316L	stainless	steel	pins	and	plates	(section	

3.2).	The	materials	used	in	the	generation	of	particles	were	the	same	as	those	used	in	the	

manufacture	 of	 orthopaedic	 implants.	 Once	 generated	 these	 metallic	 particles	 were	

cultured	 with	 spinal	 cord	 cells	 in	 2D	 and	 3D	 cell	 culture	 systems	 to	 investigate	 the	

biological	response	of	cells	of	the	CNS	to	metal	wear	particles.		

	

3.3.1.1	 Machining	 and	 preparation	 of	 cobalt	 chrome	 and	 stainless	 steel	 pins	 and	

plates	for	generation	of	clinically-relevant	metallic	wear	debris.		

Prior	 to	 the	generation	of	cobalt	chrome	and	stainless	steel	wear	particles	using	the	six-

station	pin-on-plate	wear	 simulator,	high	carbon	cobalt	 chrome	and	316L	stainless	 steel	

pins	 and	plates	were	polished	 to	produce	a	 smooth	 surface	 finish	 (Ra	0.01µm)	 this	was	

performed	in	house	at	the	School	of	Mechanical	Engineering	at	the	University	of	Leeds.		

	

3.3.1.2	 Parameters	 for	 generation	 of	 cobalt	 chrome	 and	 stainless	 steel	 wear	

particles	using	a	six-station	pin-on-plate	wear	simulator.			

The	stroke	length	for	this	wear	simulation	was	set	at	28mm	with	±	30°	of	rotation	and	a	

load	 of	 80N	 at	 a	 frequency	 of	 1Hz.	 Deionised	 water	 was	 used	 as	 the	 lubricant	 and	 the	

simulator	 operated	 for	 a	 total	 of	 80	hours	 (Germain	 et	 al.,	 2003).	 The	 calibration	of	 the	

stroke	 length	 and	 reciprocating	 speed	 was	 performed	 by	 a	 mechanical	 engineering	 lab	

technician	prior	to	each	80-hour	test.	The	load	was	calibrated	prior	to	the	start	of	each	test	

(section	3.3.1.3).		

	

3.3.1.3	Load	calibration		

To	ensure	that	an	80N	load	was	transferred	to	the	pin	accurately,	prior	to	each	test,	a	load	

calibration	was	performed	in	accordance	with	the	standard	operating	procedure,	SOP	01.3	

revision	4	provided	by	 the	 School	 of	Mechanical	Engineering	 at	 the	University	 of	 Leeds.	

For	all	six	stations	the	bridges	were	assembled	into	position	and	the	load	cell	was	placed	

into	 the	 cavity	 where	 the	 pin	 holder	 would	 sit	 (starting	 with	 station	 one	 first	 and	

repeating	 for	 all	 six	 stations).	 The	 lever	 arms	 were	 fixed	 into	 position	 and	 the	 screws	

removed,	it	is	at	this	location	on	the	lever	(via	the	screw)	that	the	load	is	transferred	to	the	

pin	from	the	lever	arm	through	a	linear	bearing	mechanism	(these	were	all	replaced	after	
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calibration).	The	same	“calibration”	screw	was	used	for	all	six	stations.	Using	a	magnetic	

spirit	 level,	 the	 screw	 was	 adjusted	 to	 ensure	 the	 lever	 arm	 was	 level	 and	 the	 weight	

added	to	provide	a	load	of	80N.	Readout	from	the	load	cell	was	generated	and	recorded.	If	

the	load	was	incorrect	by	±	5N,	a	technician	was	consulted	and	the	test	was	not	performed	

until	the	load	was	corrected	by	a	technician.		

	

3.3.1.4	Assembly	of	the	six-station	pin-on-plate	wear	simulator.	

The	components	required	for	the	set	up	of	the	six-station	pin-on-plate	wear	simulator	are	

described	below	in	Table	3.4:	

	

Table	3.4.	The	components	required	for	the	assembly	of	the	six-station	pin-on-plate	wear	

simulator.		

Assembly	of	

pin/plate/load	

Six-station	pin-on-plate	wear	simulator	

components	

Equipment	for	assembly	of	

the	plate	in	the	bath.	

Six	stainless	steel	baths,	six	stainless	steel	bath	inserts	

(cobalt	chromium	and	stainless	steel	plates	were	fixed	

into	these	for	the	duration	of	the	test),	six	polymer	

baffles,	six	stainless	steel	toothed	racks	and	six	plastic	

sheets.	

Equipment	for	assembly	of	

the	pin	in	the	holder.	

Six	polymer	gear	wheels,	four	stainless	steel	bridges	

(spans	all	six	stations,	two	large	bridges	were	designed	

to	connect	together	two	stations	and	two	smaller	bridges	

covered	one	station),	six	stainless	steel	pin	holders	

(collets),	six	pin	holder	(collet)	outer	sleeves,	six	

threaded	nuts	and	six	9mm	stainless	steel	spacers.	

Screws,	pins	and	bearings.	 12	large	stainless	steel	screws,	12	short,	small	stainless	

steel	screws,	24	long,	small	stainless	steel	screws,	six	

pivot	pins,	12	split	pins,	six	ball	bearing	assemblies	and	

six	linear	bearings.	

Additional	equipment.		 Six	polyethylene	connecting	rods,	six	cantilever	arms,	six	

weights,	black	PVC	tape,	scalpel	holder,	curved	scalpel	

blade,	a	range	of	Allen	keys	to	fit	four	different	sized	

screws,	spirit	level,	adjustable	wrench,	tissue	paper,	

50ml	syringe,	sterile	deionised	water	(50ml	per	bath),	

150ml	sterile	collection	pot	(to	collect	lubricant	after	

each	40	hour	period).			
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3.3.1.4.1	Preparation	of	the	linear	bearing	tray	

Prior	to	the	assembly	of	the	six-station	wear	simulator	the	six	numbered	pins	and	plates	

were	 assigned	 to	 a	 station	 and	 recorded.	 The	 appropriately	 labeled	 bath	 insert	 (for	

example	bath	insert	1)	was	placed	inside	the	corresponding	stainless	steel	bath	(stainless	

steel	bath	number	1).	The	assigned	cobalt	chrome	or	stainless	steel	plate	was	screwed	into	

position	within	the	bath	using	two	of	the	large	screws.	

	

The	corresponding	polymer	baffle	was	placed	into	the	bath	ensuring	a	snug	fit.	The	baffle	

was	secured	into	position	using	two	layers	of	PVC	tape.	The	two	layers	of	tape	provided	a	

tight	 seal	between	 the	baffle	 and	 the	 stainless	 steel	well,	which	prevented	any	 lubricant	

loss.	The	two	screw	holes	(where	the	toothed	rack	connected	to	the	bath)	were	exposed	

using	 a	 curved	 edge	 scalpel	 blade,	 care	 was	 taken	 not	 to	 remove	 too	 much	 tape,	 thus	

keeping	the	seal	intact.	The	toothed	rack	was	secured	onto	the	left	hand	side	of	each	well	

using	two	small	screws.	A	plastic	sheet	was	fitted	between	the	well	and	the	linear	bearing	

platform	 to	 prevent	 lubricant	 loss.	 The	 well	 was	 then	 secured	 onto	 the	 linear	 bearing	

platform	using	four	of	the	small	long	screws.	This	process	was	repeated	for	each	of	the	six	

plates.		

	

3.3.1.4.2	Preparation	of	the	pin	holders	

A	9mm	high	stainless	steel	spacer	(Figure	3.3)	was	placed	into	the	collet	before	fixing	the	

pin	into	place	(smooth	side	facing	outward	numbered	face	in	contact	with	the	spacer).	It	

was	important	to	ensure	that	the	pin	protruded	out	of	the	holder	by	approximately	5mm	

(Figure	3.4).	
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Figure	3.3	The	components	of	the	pin	holder,	collet	and	bridge.	

	

The	 collet	was	 then	 placed	 into	 the	 outer	 pin	 holder	 sleeve,	 ensuring	 correct	 alignment	

between	the	key	and	the	taper.	The	pin	holder	was	then	passed	through	the	corresponding	

numbered	 bridge	 section	 and	 the	 threaded	 nut	 screwed	 in	 place,	 fixing	 the	 pin	 into	

position	 in	 the	 collet.	 The	 polymer	 gear	wheel	was	 fixed	 onto	 the	 top	 of	 the	 pin	 holder	

apparatus.		

	

The	bridge	apparatus	was	placed	into	the	support	brackets	in	the	simulator.	The	polymer	

wheel	connected	to	the	toothed	rack	at	the	side	of	the	stainless	steel	well	and	it	was	this	

connection	that	allowed	rotation.	At	this	point	in	the	assembly	the	connection	between	the	

gear	wheel	and	the	toothed	rack	was	checked	to	ensure	smooth	motion	between	the	two	

bearings.	

Bridge	

9mm	
Spacer	

Pin	
Pin	
holder	
(collet)		

Threaded	
nut		

Pin	holder	
outer	
sleeve	and	
gear	wheel		
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Figure	3.4	Protrusion	of	the	pin	out	of	the	holder.	

	

At	 this	 point	 the	 stroke	 length	was	 also	 checked	by	 a	 technician	 to	 ensure	 it	was	 set	 to	

28mm.	The	bridge	was	secured	into	position	by	tightening	the	clamps.	Clearance	distances	

were	checked,	ensuring	there	was	approximately	3mm	between	the	threaded	nut	and	the	

bridge,	5mm	between	the	bridge	and	the	gear	wheel	and	that	the	pins	connected	with	the	

plates	and	were	free	to	move	vertically.	This	procedure	was	repeated	for	all	six	stations.					

	

	 	

5mm	
protrusion	

Pin	

Polymer	
gear	
wheel	
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3.3.1.4.3	Final	assembly	of	the	six-station	pin-on-plate	wear	simulator		

Using	a	syringe,	50ml	of	sterile	deionised	water	was	added	to	each	bath.	This	volume	filled	

the	 bath	 to	 approximately	 3mm	 above	 the	 superior	 surface	 of	 the	 plate.	 The	 pin	 was	

moved	vertically	to	ensure	the	lubricant	passed	between	the	pin	and	the	plate.		

	

The	polymer	 connecting	 rods	were	 screwed	 into	position,	 connecting	 the	 linear	 bearing	

trays	 to	 the	 scotch	 yolk	 mechanism.	 The	 numbered	 cantilever	 arms	 were	 fixed	 into	

position	using	two	split	pins	per	arm	and	a	pivot	pin.	Using	a	spirit	level	and	spanner	the	

screws	on	the	cantilever	arms	were	adjusted	until	the	levers	were	parallel	to	the	plate	and	

perpendicular	to	the	pin.		

	

A	ball	bearing	assembly	was	positioned	on	top	of	each	threaded	nut	and	a	bearing	placed	

on	 top.	These	bearings	provided	a	point	where	 the	 load	could	be	applied	 to	 the	pin	 in	a	

smooth	manner	(allowing	for	the	±	30°	rotation).	The	frequency	counter	was	set	to	zero	

and	 the	 motor	 turned	 on.	 The	 speed	 was	 adjusted	 to	 1Hz,	 meaning	 that	 the	 simulator	

performed	60	cycles	per	minute.	The	weights	were	positioned	at	 the	80N	marker	on	the	

cantilever	arm.	The	simulator	was	turned	off	after	8	hours	continuous	operation	per	day	

and	the	level	of	lubricant	checked	three	times	per	day.	If	the	level	of	water	fell	below	3mm	

above	the	superior	surface	of	the	plate	it	was	topped	up	with	sterile	deionised	water.		

	

3.3.1.4.4	Dismantling	the	wear	simulator	and	cleaning	the	components.				

After	80	hours	(eight	hours	per	day	for	ten	days)	the	wear	simulator	was	dismantled.	The	

weights	 were	 removed	 from	 each	 station	 and	 the	 speed	 reduced	 until	 the	 components	

stopped	moving,	the	motor	was	then	turned	off.	The	number	of	cycles	was	recorded.	The	

cantilever	arms	were	removed	and	returned	to	their	position	in	the	storage	rack.		

	

The	polymer	connecting	rods	were	un-screwed,	this	disconnected	the	linear	bearing	trays	

from	the	scotch-yolk	mechanism.	The	ball-bearing	assemblies	atop	the	threaded	nuts	were	

removed,	 the	bridges	were	released	and	 the	 threaded	nuts	carefully	unscrewed.	The	pin	

holders	 and	 polymer	 gear	 assemblies	 were	 then	 uncoupled	 from	 the	 bridge	 (the	 pin	

holder	was	kept	in	the	upright	position	to	ensure	the	pin	was	not	released	and	damaged).	

The	cobalt	chrome	or	stainless	steel	pins	and	spacers	were	carefully	removed	from	the	pin	

holder	 and	 stored	 in	 medical	 wipes	 to	 prevent	 contamination	 with	 grease	 from	 the	

simulator	and	damage.	The	collet	was	released	from	the	pin	holder.		

	

The	six	baths	were	detached	from	the	linear	bearing	platforms	and	the	plastic	sheets	taken	

from	the	platform.	The	toothed	rack,	PVC	tape	and	polymer	baffle	were	disconnected	from	
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the	 wells.	 The	 polymer	 baffles	 were	 placed	 above	 the	 bath	 and	 left	 to	 drain	 for	

approximately	10	minutes	to	ensure	all	lubricant	on	the	baffles	was	drained	into	the	bath	

and	 collected.	 After	 draining,	 the	 lubricant	was	 collected	 into	 150ml	 pots.	 To	 ensure	 all	

debris	was	 collected,	 each	 bath	was	 rinsed	with	 an	 additional	 50ml	 of	 sterile	 deionised	

water	 and	 collected	 in	 the	 150ml	 labeled	 pots	 (name,	 date	 and	material)	 each	 pot	was	

taped	closed	to	prevent	loss	of	lubricant.	The	lubricant	was	stored	at	-20°C	until	required.	

The	cobalt	chromium	or	stainless	steel	plate	and	bath	insert	was	removed	from	each	well,	

taking	care	not	to	damage	the	surface	upon	removal.	

	

All	 components	were	 cleaned	 thoroughly	after	use.	 Immediately	after	 the	 simulator	was	

dismantled	 all	 the	 components	were	washed	 in	warm	water	with	 household	 detergent.	

The	 metal	 components	 were	 thoroughly	 cleaned	 with	 a	 hard	 bristled	 brush.	 A	 softer	

bristled	 brush	 was	 used	 to	 clean	 the	 polymer	 components.	 After	 this	 initial	 cleaning	

procedure,	 all	 components	were	 rinsed	 thoroughly	with	 distilled	water	 to	 eliminate	 the	

detergent.	 Finally	 all	 the	 components	were	 soaked	 in	 1%	 (v/v)	 Trigene	 solution	 for	 20	

minutes.	 The	 components	 were	 rinsed	 with	 distilled	 water	 and	 dried.	 The	 cobalt	

chromium	 and	 stainless	 steel	 pins,	 plates	 and	 all	 the	 screws	were	 placed	 in	 70%	 (v/v)	

isopropanol	and	sonicated	for	15	minutes.	The	pins	and	plates	were	dried	using	medical	

wipes	 to	avoid	 further	damage	 to	 the	contact	 surfaces	and	stored	 in	medical	wipes.	The	

pins	and	plates	were	re-polished	after	80	hours	use.					

	

3.3.1.5	 Recovery	 of	 the	 cobalt	 chrome	 and	 stainless	 steel	 wear	 particles	 using	

sequential	filtration.		

The	 “as	 generated”	 cobalt	 chrome	 and	 stainless	 steel	 wear	 particles	 were	 sequentially	

filtered	through	5µm	1µm,	0.1µm,	and	0.015µm	polycarbonate	filters	to	recover	particles	

in	order	to	generate	a	size	distribution	and	to	determine	the	morphology	of	 the	metallic	

wear	debris.		

	

The	 stainless	 steel	 and	 cobalt	 chromium	wear	 particles	 (as	 generated)	were	 stored	 at	 -

20°C.	Prior	to	filtration	or	generation	of	particle	stocks,	the	samples	were	thawed	at	room	

temperature.	 Prior	 to	 use	 all	 glass	 filtration	 equipment	 was	 thoroughly	 cleaned.	 The	

apparatus	was	first	washed	in	household	detergent	with	a	hard	bristled	brush	and	warm	

water.	 The	 equipment	 was	 then	 rinsed	 once	with	 tap	water	 and	 then	 three	 times	with	

deionised	water.	The	apparatus	was	left	to	dry.		
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3.3.1.5.1	Preparation	of	a	known	concentration	(1mg.ml-1)	of	cobalt	chromium	and	

stainless	steel	particle	stock	solutions.					

After	 the	cobalt	chromium	and	stainless	steel	wear	debris	was	generated	 in	water	using	

the	 six-station	 pin-on-plate	 wear	 simulator,	 the	 lubricant	 was	 collected	 from	 each	 bath	

and	stored	at	-20°C	until	required	for	size	distribution,	particle	morphology	and	elemental	

composition	analysis	or	cell	culture	studies.		

	

To	generate	the	stock	solutions,	the	samples	of	wear	debris	were	thawed	slowly	at	room	

temperature	 allowing	 the	 debris	 to	 settle	 to	 the	 bottom	 of	 the	 250	ml	 storage	 pot.	 The	

cobalt	 chrome	debris	was	 passed	 through	 a	 0.1µm	polycarbonate	 filter	 to	 remove	 large	

platelet-like	particles	prior	 to	 the	generation	of	 the	stock	solution,	 this	was	not	done	 for	

the	stainless	steel	wear	particles.	The	debris	was	collected	from	the	bottom	of	the	pot	and	

transferred	 to	 a	 pre-weighed	 glass	 bottle.	 The	 sample	 was	 then	 placed	 in	 the	 oven	 at	

190°C	 for	 four	hours	 to	sterilise	 the	debris	and	remove	endotoxin,	derived	 from	the	cell	

membrane	 of	 gram-negative	 bacteria,	 ready	 for	 culture	 with	 cells.	 The	 bottle	 was	

reweighed.	The	initial	weight	was	subtracted	from	the	final	weight	yielding	a	value	for	the	

mass	 of	 debris.	 The	 appropriate	 volume	 of	 deionised	 water	 was	 added	 to	 generate	 a	

1mg.ml-1	stock	of	particles.		

	

3.3.1.5.2	Sequential	filtration	of	as	generated	cobalt	chrome	and	stainless	steel	wear	

particles	through	5µm,	1µm	0.1µm	and	0.015µm	pore	size	polycarbonate	filters.		

The	 apparatus	 was	 assembled	 in	 a	 class	 I	 laminar	 flow	 hood	 (to	 reduce	 airborne	

contamination).	A	volume	of	1ml	of	 the	 “as	generated”	stock	sample	of	stainless	steel	or	

cobalt	 chrome	 particles	 in	 water	 (1mg.ml-1)	 was	 diluted	 in	 a	 further	 5ml	 of	 deionised	

water	for	the	cobalt	chromium	particles	and	10ml	of	deionised	water	for	the	stainless	steel	

particles	 and	 sequentially	 filtered	 through	 25mm	 diameter;	 5µm	 1µm,	 0.1µm,	 and	

0.015µm	 pore	 size	 polycarbonate	 filters	 (for	 generation	 of	 stock	 solutions	 see	 section	

3.3.1.5.1).	 The	 filters	 were	 handled	with	 care,	 using	 tweezers,	 on	 the	 edge	 of	 the	 filter.	

Each	filter	was	thoroughly	cleaned	by	filtering	10ml	70%	(v/v)	ethanol,	then	10ml	ultra-

pure	water.	 This	 process	 also	 ensured	 there	was	 a	 tight	 seal	 formed	 between	 the	 glass	

reservoir,	 the	 filter	 and	 the	 glass	 filter	 tray,	 ensuring	 the	 vacuum	was	 strong	 enough	 to	

draw	the	liquid	through	the	filter.	The	sample	was	then	placed	in	the	glass	reservoir	and	

the	vacuum	pump	turned	on	and	set	to	a	pressure	of	1	Bar,	drawing	the	sample	through	

each	 filter.	 Once	 the	 samples	 had	 passed	 through	 the	 filter,	 the	 filters	 were	 carefully	

transferred,	using	tweezers,	to	sterile	petri	dishes,	one	filter	per	petri	dish,	and	allowed	to	

dry	under	an	 infra-red	 lamp	for	a	minimum	of	4	hours	 inside	the	class	 I	hood.	The	glass	
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filter	tray	was	cleaned	with	pyrogen	free	water	between	each	filtration.	Prior	to	and	after	

imaging	using	field	emission	gun	scanning	electron	microscopy	(FEGSEM)	the	filters	were	

stored	under	vacuum	in	the	presence	of	silica	gel	to	minimise	exposure	to	moisture.	

	

3.3.1.6	Preparation	of	 filters	 for	 field	 emission	 gun	 scanning	 electron	microscopy.	

(FEGSEM)	and	energy-dispersive	X-ray	spectroscopy	(EDX)	analysis.		

All	 filters;	 5µm,	 1µm,	 0.1µm,	 and	 0.015µm	 were	 mounted	 onto	 aluminium	 stubs	 (the	

filters	and	stubs	were	 the	 same	diameter;	25mm)	using	an	adhesive	 carbon	 tab	 (double	

sided).	To	reduce	charging	of	the	sample,	the	circumference	of	each	filter	was	painted	with	

a	viscous	black	carbon	paste.	The	 filters	were	coated,	 to	a	 thickness	of	3nm,	with	either	

platinum	(using	a	sputter	coater)	or	carbon	rod	evaporation.	 	The	samples	were	 imaged	

immediately	using	a	high-resolution	scanning	electron	microscope.		

	

3.3.1.7	 Scanning	 electron	 microscopy	 of,	 as	 generated,	 stainless	 steel	 and	 cobalt	

chromium	wear	particles		

The	cobalt	chromium	and	stainless	steel	particles	generated	in	the	six-station	pin-on-plate	

wear	 simulator	were	 imaged	 using	 scanning	 electron	microscopy	 in	 order	 to	 determine	

their	morphology	and	size	distribution.	

	

3.3.1.7.1	 Imaging	 protocol	 for	 cobalt	 chromium	 and	 stainless	 steel	wear	 particles	

using	the	Hitachi	SU8230	FEGSEM	

After	the	filters	had	been	mounted	and	coated,	 the	samples	were	 imaged	using	a	Hitachi	

SU8230	FEGSEM,	the	samples	were	viewed	at	a	voltage	of	1Kv	and	a	working	distance	of	

3mm.	 For	 each	 filter	 three	 fields	 of	 view	 were	 selected	 per	 magnification.	 The	

magnifications	 used	were	 x	 30K	 (x	 30,000	magnification),	 x	 60K,	 x	 90K,	 and	 x	 150K.	At	

least	two	images	per	magnification	(high	magnification)	were	obtained	for	each	filter.		

	

3.3.1.8	EDX	analysis	of	cobalt	chrome	and	stainless	steel	wear	particles	

Energy	 dispersive	 x-ray	 spectroscopy	 (EDX)	 was	 used	 to	 determine	 the	 elemental	

composition	 of	 the	 particles	 collected	 on	 the	 25mm	 polycarbonate	 filters.	 EDX	 analysis	

was	performed	at	 the	 same	 time	as	 SEM	 imaging.	Numerous	EDX	detection	points	were	

selected	from	metallic	wear	particle	agglomerates	(EDX	was	performed	when	the	particles	

were	 coated	 with	 carbon,	 as	 the	 platinum	 coating	 contaminated	 the	 samples	 when	

performing	the	elemental	analysis).	Numerous	fields	of	view	(3-5)	were	selected	for	each	

filter	and	between	3-6	spectra	obtained	for	each	field	of	view.		
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3.3.1.9	Particle	characterisation	and	image	analysis	using	Image	Pro	PlusÒ	

To	 generate	 a	 size	 distribution	 of	 the	 cobalt	 chromium	 and	 stainless	 steel	 particles	 the	

scanning	 electron	microscopy	 images	were	 analysed	using	 Image	Pro	PlusÒ	 version	6.0	

image	 analysis	 software.	 For	 this	 body	 of	 work,	 between	 one	 and	 five	 images	 were	

captured	 for	 each	 filter,	 The	 number	 of	 images	 taken	was	 dependent	 on	 the	 number	 of	

particles	available	for	counting	in	that	particular	field	of	view,	a	particle	was	only	analysed	

if	 the	 entire	perimeter	of	 the	particle	 could	be	observed	 and	draw	around.	The	 imaging	

protocol	 was	 designed	 so	 a	 minimum	 of	 300	 particles	 could	 be	 analysed	 per	 material.	

Measurements	 from	 all	 filter	 sizes	 were	 combined	 and	 analysed	 to	 generate	 a	 size	

distribution.	 Each	 particle	 was	 sized	 manually	 by	 drawing	 around	 the	 particle.	 Every	

particle	 from	each	 image	(High	magnifications	only)	 from	all	 filters	were	 included	 in	 the	

size	 distribution,	 providing	 the	 entire	 perimeter	 of	 the	 particle	 could	 be	 observed	 and	

drawn	around.	If	any	region	of	the	particle	was	obscured	by	another	particle,	for	instance	

in	agglomerates,	this	particle	was	not	 included.	The	measurements	from	each	filter	were	

pooled	 and	 exported	 into	 an	 excel	 spreadsheet.	 For	 each	 particle,	 the	 particle	 area,	

perimeter,	width,	 length,	 aspect	 and	 roundness	was	measured.	 Initially	 the	 sample	was	

viewed	at	a	low	magnification	(x	35)	to	ensure	the	sample	was	of	an	appropriate	quality	to	

image	and	to	make	sure	the	surface	was	evenly	dispersed	with	particles.		High-resolution	

images	were	taken	at	x	30K,	x	60K,	x	90K	and	(sample	permitting)	x	150K	magnification.	A	

minimum	of	300	particles	were	analysed	for	each	material	(cobalt	chromium	and	stainless	

steel).	The	data	was	organised	into	incremental	size	categories.	The	size	range,	0-500nm	

was	separated	into	10nm	increments,	the	remaining	particles	were	categorised	as	500nm-

1µm	and	>1µm	and	each	particle	allocated	to	a	category	depending	on	its	length.	This	was	

achieved	in	excel	using	“countifs”	formula.	The	results	are	presented	as	a	percentage	of	the	

total	number	of	particles	sized.		
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3.4	Results	

	

3.4.1	Production	of	cobalt	chromium	and	stainless	steel	wear	particles	using	the	six-

station	pin-on-plate	wear	simulator.	

The	aim	of	this	body	of	work	was	to	generate	sufficient	volumes	of	cobalt	chromium	and	

stainless	 steel	 wear	 particles,	 to	 be	 used	 in	 cell	 culture	 studies,	 where	 cell	 lines	 and	

primary	cells	were	cultured	with	metallic	wear	particles	and	the	biological	effects	on	cells	

of	the	central	nervous	system	(CNS)	determined.	

3.4.2	 Isolation	of,	as	generated,	cobalt	chrome	and	stainless	steel	particles	using	a	

filter	sequence	of	5µm,	1µm,	0.1µm	and	0.015µm	polycarbonate	filters.	

FEGSEM	images	were	taken	of	the	cobalt	chrome	and	stainless	steel	wear	particles	on	all	

four	polycarbonate	 filters	and	 the	particles	analysed	using	 Image	Pro	PlusÒ	6.0	 imaging	

software.	 A	 2Kv	 voltage	 and	 working	 distance	 between	 8mm	 and	 8.2mm	 was	 used	 to	

obtain	images	at	low	magnification	on	the	larger	5µm	and	1µm	filters	A	voltage	of	1Kv	and	

a	 working	 distance	 of	 3mm	 was	 used	 to	 obtain	 high	 resolution	 images	 at	 high	

magnifications	on	the	0.1µm	and	0.015µm	filters	The	morphologies	of	the	cobalt	chrome	

particles	collected	on	each	polycarbonate	filter	can	be	seen	in	Figures	3.5,	3.6,	3.7	and	3.8	

and	the	stainless	steel	particles	in	Figures	3.12,	3.13,	3.14	and	3.15.	
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Figure	3.5	Cobalt	chromium	aggregates	and	micron-sized	cobalt	chromium	wear	particles	

generated	 in	a	six-station	pin-on-plate	wear	simulator.	The	particles	were	collected	on	a	

5µm	filter	analysed	using	high	resolution	FEGSEM	at	low	magnification	x	60	(A)	and	x	120	

respectively	 (B).	 *=	 Large,	 irregular	 micron-sized	 particles,	 **=	 Agglomerates	 of	 sub-

micron	cobalt	chrome	particles.	
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Figure	3.6	Cobalt	chromium	aggregates	and	micron-sized	cobalt	chromium	wear	particles	

generated	 in	a	six-station	pin-on-plate	wear	simulator.	The	particles	were	collected	on	a	

1µm	filter	 analysed	using	high	 resolution	FEGSEM	at	 low	magnification	x	120	 (A)	 and	x	

400	(B)	respectively.		
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Figure	3.7	Aggregates	 of	 nanoscale	 cobalt	 chromium	wear	 particles	 generated	 in	 a	 six-

station	 pin-on-plate	 wear	 simulator.	 The	 particles	 were	 collected	 on	 a	 0.1µm	 filter	

analysed	using	a	high	resolution	FEGSEM	at	high	magnification	x	30K		(A)	and	x	60K	(B)	x	

90K	(C)	and	x	150K	(D)	respectively.		
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Figure	 3.8	 Aggregates	 of	 nano-scale	 cobalt	 chrome	 wear	 particles	 generated	 in	 a	 six-

station	 pin-on-plate	 wear	 simulator	 collected	 on	 a	 0.1µm	 filter	 analysed	 using	 high	

resolution	FEGSEM	at	high	magnification	x	60K	(A)	x	90K	(B)	and	x	150K	(C)	respectively.	
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C	

                     89



																																																																		 	 Chapter	3	
	

	

Using	 the	 FEGSEM	 at	 low	 magnifications	 (x	 60,	 x	 120,	 x	 200	 and	 x	 400	 respectively)	

granular	 micron	 sized	 cobalt	 chrome	 particles	 were	 observed	 on	 the	 5µm	 and	 1µm	

polycarbonate	 filters	 (Figures	3.8	and	3.9).	Using	high	magnification	(x	60k,	x	90k	and	x	

150k)	 0.1µm	 filter	 it	 was	 observed	 that	 many	 of	 these	 irregular	 particles	 were	

agglomerates	of	smaller	sub-micron	or	nano-scale	cobalt	chromium	particles	(Figure	3.10	

and	Figure	3.11).		

Furthermore	on	the	smaller	pore	sized	filters	(0.1µm	and	0.015µm)	at	high	magnification	

x	 30K,	 x	 60K,	 x	 90K	 and	 x	 150K,	 large	 quantities	 of	 round	 to	 oval	 nano-scale	 cobalt	

chromium	particles	were	observed	(Figures	3.10	and	11).		

The	 size	 distribution	 of	 particles	 collected	 on	 all	 four	 sized	 filters	 were	 obtained	 using	

Image	 Pro	 PlusÒ	 6.0	 image	 analysis	 software.	 The	 percentage	 (of	 the	 total	 number	 of	

particles)	of	 cobalt	 chromium	particles	 that	were	<50nm	 in	 length	was	55.5%,	25.8%	of	

cobalt	 chromium	 particles	 were	 between	 50nm	 and	 99nm	 in	 length,	 14.8%	 of	 cobalt	

chromium	particles	were	between	100nm	and	499nm	in	length,	1.5%	of	cobalt	chromium	

particles	were	 between	500nm	and	1µm	 in	 length	 and	 finally	 2.6%	of	 cobalt	 chromium	

particles	were	>1µm	in	length	(Table	3.5).	The	mode	size	distribution	of	cobalt	chromium	

particles	was	in	the	30nm-39nm	size	range	(Figure	3.9).		
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Table	3.5	The	percentage	of	 cobalt	 chromium	particles	generated	 in	 the	six-station	pin-

on-plate	wear	 simulator	which	were	 0-49nm,	 50nm-99nm,	 100nm-499nm,	 500nm-1µm	

and	greater	than	1µm.	

Cobalt	chrome	particle	length	(nm)	 Percentage	(%)	of	total	number	of	

particles	

0-49nm	 55.5%	

50nm-99nm	 25.8%	

100nm-499nm	 14.8%	

500nm-1µm	 1.5%	

>1µm	 2.6%	

	

The	elemental	composition	of	the	particles	collected	on	each	filter	was	determined	using	

EDX	analysis,	as	described	previously	in	section	3.3.1.8.	EDX	detection	points	were	taken	

from	 within	 particle	 agglomerates	 (Figure	 3.10)	 or	 were	 taken	 from	 particles	 >100nm	

(Figure	3.11).	The	EDX	analysis	revealed	peaks	of	excitation	for	carbon,	cobalt,	chromium,	

oxygen	 and	 phospherous	 in	 both	 nano-scale	 particles	 (Figure	 3.10B)	 and	 micron-sized	

cobalt	chrome	particles	(figure	3.11B).	The	carbon	peak	was	present,	as	the	samples	were	

coated	with	carbon	for	SEM	imaging	and	EDX	analysis.	No	contamination	was	detected	on	

any	filter.		

	

	

                     91



	 	 	 	 	
	

Fi
gu
re
	3
.9
	Th

e	s
ize
	di
str
ibu

tio
n	o

f	c
ob
alt
	ch
ro
m
iu
m
	w
ea
r	d
eb
ris
	ge
ne
ra
ted

	in
	a	
six
-st
ati
on
	pi
n-
on
-p
lat
e	w

ea
r	s
im
ula

to
r.	
	

	

0-
9n

m
10

-1
9n

m
20

-2
9n

m
30

-3
9n

m
40

-4
9n

m
50

-5
9n

m
60

-6
9n

m
70

-7
9n

m
80

-8
9n

m
90

-9
9n

m

10
0-

10
9n

m

11
0-

11
9n

m

12
0-

12
9n

m

13
0-

13
9n

m

14
0-

14
9n

m

15
0-

15
9n

m

16
0-

16
9n

m

17
0-

17
9n

m

18
0-

18
9n

m

19
0-

19
9n

m

20
0-

20
9n

m

21
0-

21
9n

m

22
0-

22
9n

m

23
0-

23
9n

m

24
0-

24
9n

m

25
0-

25
9n

m

26
0-

26
9n

m

27
0-

27
9n

m

28
0-

28
9n

m

29
0-

29
9n

m

30
0-

30
9n

m

31
0-

31
9n

m

32
0-

32
9n

m

33
0-

33
9n

m

34
0-

34
9n

m

35
0-

35
9n

m

36
0-

36
9n

m

37
0-

37
9n

m

38
0-

38
9n

m

39
0-

39
9n

m

40
0-

40
9n

m

41
0-

41
9n

m

42
0-

42
9n

m

43
0-

43
9n

m
44

0-
44

9m

45
0-

45
9n

m

46
0-

46
9n

m

47
0-

47
9n

m

48
0-

48
9n

m

49
0-

49
9n

m

50
0n

m
-1

µm >1
µm

0510152025

P
ar

tic
le

 s
iz

e 
(le

ng
th

) n
m

Percentage of total number of particles (%) A	

                     92



	 	 Chapter	3	
	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

Figure	3.10	A)	SEM	image	and	B)	energy	dispersive	X-ray	(EDX)	traces	of	cobalt	chrome	
particles	captured	on	a	0.015µm	filter	

	

	

	

	

A	

B	

A	

B	

                     93



	 	 Chapter	3	
	

	

	

	

	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
Figure	3.11	A)	SEM	image	and	B)	energy	dispersive	X-ray	(EDX)	traces	of	cobalt	chrome	
particles	captured	on	a	0.1µm	filter	
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When	 observed	 at	 low	magnifications	 large,	 granular	 micron-sized	 stainless	 steel	 wear	

particles	 were	 observed	 on	 the	 5µm	 and	 1µm	 polycarbonate	 filters	 (Figures	 3.12	 and	

3.13).	 These	 large	 irregular	 particles	were	more	 numerate	 for	 the	 stainless	 steel	 debris	

than	observed	with	cobalt	chrome.		

Furthermore,	on	the	smaller	pore	sized	filters	(0.1µm	and	0.015µm)	at	high	magnification	

x	 30K,	 x	 60K,	 x	 90K	 and	 x	 150K,	 large	 quantities	 of	 round	 nano-scale	 stainless	 steel	

particles	were	observed	(Figures	3.14	and	3.15).		

The	 mode	 of	 the	 size	 distribution	 for	 the	 stainless	 steel	 particles	 generated	 in	 the	 six-

station	 pin-on-plate	 wear	 simulator	 was	 between	 30nm	 and	 39nm	 in	 length,	 a	 second	

peak	was	observed	between	160nm	and	169nm,	and	a	 final	peak	at	>1µm.	(Figure	3.17)	

The	 stainless	 steel	 particles	were	more	widely	distributed	 than	 the	 cobalt	 chrome	wear	

particles.	The	size	distribution	of	particles	collected	on	all	four	sizes	of	filters	was	obtained	

using	 Image	 Pro	 PlusÒ	 6.0	 image	 analysis	 software.	 The	 percentage	 of	 stainless	 steel	

particles	 that	were	 <50nm	 in	 length	was	 30.7%,	 22.0%	of	 stainless	 steel	 particles	were	

between	 50nm	 and	 99nm	 in	 length,	 41.5%	 of	 stainless	 steel	 particles	 were	 between	

100nm	and	499nm	in	length,	0.9%	of	stainless	steel	wear	particles	were	between	500nm	

and	1µm	 in	 length	 and	 finally	 5.0%	of	 the	 stainless	 steel	 particles	were	>1µm	 in	 length	

(Table	3.6).	
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Table	3.6	The	percentage	of	stainless	steel	particles	generated	 in	 the	six-station	pin-on-

plate	 wear	 simulator	 which	 were	 0-49nm,	 50-100nm,	 100-499nm,	 500nm-1µm	 and	

greater	than	1µm.	

Stainless	steel	particle	length	(nm)	 Percentage	(%)	of	total	number	of	

particles	

0-49nm	 30.7%	

50nm-99nm	 22.0%	

100nm-499nm	 41.5%	

500nm-1µm	 0.9%	

>1µm	 5.0%	

	

The	 elemental	 composition	 of	 the	 stainless	 steel	 particles	 collected	 on	 each	 filter	 was	

determined	 using	 EDX	 analysis	 (Figure	 3.16)	 this	 protocol	 was	 identical	 to	 the	 EDX	

analysis	for	cobalt	chrome	debris	(section	3.3.1.8).	Dominant	peaks	on	the	EDX	spectrum	

were	 observed	 for	 carbon,	 oxygen,	 iron	 and	 a	 small	 peak	 for	 nickel	 (Figure	 3.16).	Upon	

comparison	 of	 these	 findings	 to	 Table	 3.2	 in	 section	 3.2,	 which	 outlines	 the	 elemental	

composition	 of	medical	 grade	 316L	 stainless	 steel,	 iron	 comprises	 62.045%-72%	of	 the	

elemental	composition,	nickel	comprises	10%-14%	and	carbon	makes	up	0.03%.		Thus	the	

peaks	observed	as	part	of	the	EDX	analysis	were	as	expected.	As	carbon	was	used	to	coat	

the	samples	prior	to	SEM	imaging	and	EDX	analysis	this	explains	the	high	carbon	peak.	No	

contamination	was	observed	upon	analysis.		 	
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Figure	 3.12	 Stainless	 steel	 wear	 particles	 generated	 in	 a	 six-station	 pin-on-plate	 wear	

simulator.	 The	particles	were	 collected	on	 a	5µm	 filter	 analysed	using	 a	 high	 resolution	

FEGSEM	at	low	magnification	x	120	(A),	x	300	(B),	x	400	(C)	and	x	1K	(D)	respectively.	
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	Figure	3.17	A)	FEG-SEM	images	of	stainless	steel	wear	particles	generated	in	a	six-
station	pin-on-plate	wear	simulator	collected	on	a	1µm	filter	analysed	using	a	high	
resolution	FEGSEM	at	low	magnification	90x	(A),	120x	(B)	and	400x	(C)	respectivel	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	

Figure	 3.13	 Stainless	 steel	 wear	 particles	 generated	 in	 a	 six-station	 pin-on-plate	 wear	

simulator.	 The	particles	were	 collected	on	 a	1µm	 filter	 analysed	using	 a	 high	 resolution	

FEGSEM	at	low	magnification	x	90	(A),	x	120	(B)	and	x	400	(C)	respectively.	
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Figure	 3.14	 Stainless	 steel	 wear	 particles	 generated	 in	 a	 six-station	 pin-on-plate	 wear	

simulator.	The	particles	were	collected	on	a	0.1µm	filter	analysed	using	a	high	resolution	

FEGSEM	at	high	magnification	x	35K	(A),	x	60K	(B)	and	x	90K	(C)	respectively.	
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Figure	3.15	A)	Stainless	steel	wear	particles	generated	in	a	six-station	pin-on-plate	wear	

simulator.	 The	 particles	 were	 collected	 on	 a	 0.015µm	 filter	 analysed	 using	 a	 high	

resolution	FEGSEM	at	high	magnification	x	60K	(A),	x	90K	(B)	and	x	150K	(C)	respectively.	
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Figure	3.16	A)	SEM	image	and	B)	energy	dispersive	X-ray	(EDX)	traces	of	stainless	steel	
particles	captured	on	a	0.1µm	filter	
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3.5	Discussion		
	
For	this	part	of	the	study	a	six-station	pin-on-plate	wear	simulator	was	used	to	generate	

cobalt	chromium	and	stainless	steel	wear	debris,	using	smooth	(Ra	£0.01)	wrought	high	

carbon	 cobalt	 chromium	molybdenum	 and	 316L	medical	 grade	 stainless	 steel	 pins	 and	

plates,	 using	 deionized	water	 as	 a	 lubricant.	 Here,	 six	metal	 pins	 articulated	 against	 six	

metal	 plates	 using	 multi-directional	 motion.	 Particles	 were	 generated	 over	 an	 80-hour	

time	period,	articulating	at	a	frequency	of	1Hz	under	a	load	of	80N.				

The	 cobalt	 chromium	 particles	 generated	 in	 this	 part	 of	 the	 study	 had	 a	 mode	 size	 of	

30nm-39nm	in	length.	The	stainless	steel	wear	particles	generated	using	a	six-station	pin-

on-plate	wear	 simulator	 also	 had	 a	mode	 length	 of	 30nm-39nm,	 though	 these	 particles	

were	 more	 widely	 distributed	 than	 the	 cobalt	 chromium	 wear	 particles.	 Both	 stainless	

steel	 and	 cobalt	 chromium	 particles	were	 of	 a	 comparable	 size	 to	 those	 observed	 from	

around	failed	metal-on-metal	hip	replacements	(in	the	nanoscale	size	range)	(Doorn	et	al.,	

1998)	 and	 could	 be	 compared	 to	 those	 observed	 in	 the	 limited	 amount	 of	 literature	

regarding	simulation	of	wear	of	metal-on-metal	total	disc	replacement	in	terms	of	size	and	

morphology		(Pasko	et	al.,	2016).		

These	cobalt	chrome	and	stainless	steel	particles	were	to	be	used	at	a	later	date	in	both	2D	

and	3D	cell	culture	studies.	To	determine	the	effect	of	metallic	wear	debris	on	cells	of	the	

spinal	cord,	the	cobalt	chromium	and	stainless	steel	debris	was	sterilised	and	a	1mg.ml-1	

stock	generated	for	each	material.		

Due	 to	 the	 presence	 of	 large	 irregular	 shaped	 cobalt	 chrome	 particles	 present	 in	 the	

pooled	cobalt	chrome	particle	stock,	 identified	using	SEM,	prior	to	culture	with	cells,	 the	

pooled	 cobalt	 chrome	 particles	 were	 passed	 through	 a	 0.1µm	 polycarbonate	 filter.	

However	 SEM	 images	 and	 size	 distribution	 analysis	 was	 only	 carried	 out	 on	 the	 “as	

generated”	cobalt	chrome	particle	stock.		Ideally	additional	SEM	images	would	have	been	

acquired	 and	 EDX	 analysis	 would	 have	 been	 performed	 on	 the	 filtered	 particles	 to	

precisely	determine	the	size	range	of	 the	particles	cultured	with	the	glial	cells	 in	2D	and	

3D	 culture,	 however	 this	 was	 not	 performed.	 The	 additional	 filtration	 step	 was	 not	

performed	on	the	stainless	steel	particles.		

	It	 is	 important	 to	 note	 that	 in	 order	 to	 begin	 evaluating	 the	 host	 response	 to	 metal	

particles	 a	 thorough	 morphological	 and	 chemical	 composition	 characterisation	 of	 the	

debris	 is	 required	 as	 the	 biological	 response	 to	 implant	 wear	 debris	 is	 dependent	 on	

particle	 volume,	 size,	 shape	 and	 chemical	 composition	 (Nine	 et	 al.,	 2014).	 There	 are	

numerous	 requirements	 of	 a	 reproducible,	 efficient	 isolation	 process,	 this	 includes	
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minimal	 alteration	 to	 particle	 size,	 morphology	 and	 chemical	 composition	 as	 well	 as	

isolating	particles	that	are	residue	and	contaminant-free	(Billi	et	al.,	2009).		

A	 particle	 isolation	 protocol	 can	 generally	 be	 considered	 to	 comprise	 four	 aspects;	

isolation,	display	and	image	acquisition,	characterization	and	analysis.		

Acid	and	alkaline	digestion	protocols	for	particles	generated	in	serum	have	been	reported	

to	alter	the	size	and	chemical	composition	of	the	metallic	wear	debris	(Catelas	et	al.,	2001)	

and	enzymatic	digestion	does	not	enable	a	direct	retrieval	of	all	of	the	debris	in	the	sample	

(efforts	need	to	be	made	to	improve	the	efficiency	of	enzymatic	digestion	protocols)	and	

may	 leave	 a	 protein	 residue	 on	 metal	 particles	 making	 morphological	 analysis	 difficult	

(Brown	et	al.,	 2007)	as	a	 result	 the	particles	 in	 this	part	of	 the	 study	were	generated	 in	

water.	 Particles	 generated	 in	 serum	 have	 been	 shown	 the	 have	 very	 similar	 size	 and	

morphology	to	those	generated	in	water	(Hailey	et	al.,	1996).			

Direct	 isolation	from	water	by	filtration,	was	employed	in	this	part	of	the	study	as	 it	 is	a	

simple	technique	for	collecting	all	particles	on	a	support.	The	polycarbonate	filter	can	be	

mounted	easily	onto	stainless	steel	stubs	and	imaged	using	scanning	electron	microscopy.	

Problems	 may	 arise	 with	 vacuum	 filtration	 due	 to	 agglomeration.	 As	 the	 particles	 are	

being	 forced	 to	pass	 through	 a	pore	 via	 a	path	 that	 is	 not	 straight	 (a	 funnel-effect),	 this	

means	the	particles	become	concentrated	around	the	pores.	In	addition	particles	larger	in	

size	 than	 the	 size	 of	 the	 pores	may	 cause	 a	 blockage,	 which	would	 reduce	 the	 area	 for	

filtration	 and	may	 cause	more	 agglomeration.	By	 sequentially	 filtering	particles	 through	

four	 different	 sized	 polycarbonate	 filters	 (5µm,	 1µm,	 0.1µm	 and	 0.015µm)	 blockage	 of	

filters	 is	avoided.	Care	was	 taken	when	selecting	 the	size	of	 the	 filter	pores	 to	maximise	

capture	of	all	sized	particles.		

The	two	main	methods	for	image	acquisition	are	scanning	electron	microscopy	(SEM)	and	

transmission	 electron	 microscopy	 (TEM),	 which	 work	 in	 fundamentally	 different	 ways.	

For	analysis	using	TEM,	particles	are	embedded	in	resin	and	cut	into	thin	sections		(80nm	

thick).	TEM	works	by	passing	 an	 electron	beam	 through	 the	 sample	being	 analysed,	 the	

image	produced	is	the	projection	of	the	particles	in	the	path	of	the	beam,	this	makes	TEM	

very	difficult	for	use	in	size	and	morphology	analysis	of	sub-micron	particles	as	aggregates	

would	 appear	 as	 one	 large	 particle.	 Problems	 with	 this	 technique	 also	 arise	 when	

considering	 the	 orientation	 of	 the	 beam	 and	 the	 sample	 as	 the	 angles	 between	 the	 two	

may	 cause	 long	 fibril-like	 particles	 to	 appear	 short	 and	 round	 depending	 on	 their	

positioning,	 by	 cutting	 sections	 every	 80nm	 this	 may	 also	 slice	 through	 particles	 thus	

underestimating	the	particle	size.	As	an	accurate	analysis	of	particle	size	and	morphology	
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was	 required	 for	 this	 study,	 scanning	 electron	 microscopy	 was	 used	 for	 the	 image	

acquisition.	The	Hitachi	 SU8230	SEM	at	 the	University	of	Leeds	 is	 capable	of	 generating	

high	resolution	 images	and	EDX	analysis	of	both	micron	and	sub-micron	metal	particles.	

The	resolution	of	this	SEM	was	<1nm.	However,	when	nanoparticles	exist	in	solution	they	

move	 under	 Brownian	 motion,	 due	 to	 the	 high	 surface	 area	 to	 volume	 ratio	 of	

nanoparticles	 they	 behave	 as	 highly	 reactive	 colloidal	 particles	 and	 have	 a	 tendency	 to	

form	aggregates,	 this	makes	 individual	particles	difficult	 to	 see	and	 thus	 sizing	becomes	

more	awkward.		

Morphological	and	chemical	characterisation	has	been	performed	differently	by	individual	

research	 groups,	 using	 numerous	 parameters	 as	 descriptors	 of	 particle	 morphology.	

Schmiedberg	 et	 al.	 (1994)	 imaged	 titanium	 and	 cobalt	 chromium	debris	 using	 SEM	 and	

used	 length	and	width	as	 the	two	parameters	 to	size	cobalt	chromium	molybdenum	and	

titanium	wear	debris	 from	 intervertebral	disc	prostheses.	The	 length	of	 the	particle	was	

defined	as	the	longest	axis	through	the	debris	and	the	width	was	the	shorter	length	of	the	

particle	 perpendicular	 to	 the	 length.	 Schmiedberg	 et	 al.	 (1994)	 found	 titanium	particles	

ranging	from	<1µm	to	>30µm	in	length.	Cobalt	chromium	wear	debris		<5µm	and	>30µm	

in	 size	 were	 produced	 from	 the	 articulation	 of	 a	 novel	 dynamic	 intervertebral	 disc	

prosthesis	when	tested	using	a	spine	simulator.		

Doorn	et	al.	(1998)	isolated	cobalt	chrome	particles	from	tissue	from	around	failed	metal-

on-metal	 hip	 prosthesis	 (isolated	 from	patients	who	were	 undergoing	 revision	 surgery)	

using	 an	 enzymatic	 digestion	 technique	 and	 TEM	 to	 image	 the	 particles.	 These	 authors	

observed	nanoscale	cobalt	chrome	debris,	which	was	round-oval	in	morphology.	Doorn	et	

al.	 (1998)	 used	 the	 length	 to	 define	 the	 particle	 size	 using	 TEM.	 When	 using	 TEM	 the	

measured	size	of	the	particle	is	limited	to	the	thickness	of	the	tissue	section,	which	in	this	

study	was	80nm,	and	the	orientation	of	the	particle	within	that	section.	Thus	this	method	

of	image	acquisition	may	underestimate	the	actual	particle	size.	Doorn	et	al.	(1998)	found	

the	 cobalt	 chromium	 molybdenum	 particles	 were	 predominantly	 <50nm	 (6-834nm).	

Unlike	Doorn,	Catelas	et	al	 (2003)	used	the	ratio	of	 the	 length	and	width	to	determine	a	

quantitative	 measure	 of	 morphology.	 The	 length	 of	 the	 particle	 was	 defined	 as	 the	

maximum	dimension	of	 the	particle	 and	 the	width	 the	maximum	orthogonal	dimension,	

similar	to	Schmiedberg	et	al	in	their	definition	of	the	size	parameters.	

Brown	et	al.	(2007)	used	maximum	diameter	measurements	taken	from	150	particles	per	

sample	 to	 assess	 the	 size	 distribution	 of	 metal-on-metal	 and	 ceramic-on-ceramic	 wear	

particles	produced	under	differing	hip	simulator	conditions.	Brown	et	al.	(2007)	aimed	to	

characterize	metal	wear	 from	metal	 on	metal	 and	metal	 on	 ceramic	 hip	 implants	 using	
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standard	 and	 micro-separation,	 adverse	 hip	 wear	 conditions.	 Using	 an	 enzymatic	

digestion	 procedure	 to	 limit	 the	 alterations	 to	 the	 size	 and	 chemical	 composition	 of	 the	

cobalt	 chromium	 particles	 during	 isolation,	 accurate	 particle	 characterisation	 was	

performed.	 Brown	 et	 al.	 (2007)	 found	 cobalt	 chromium	particles	with	 a	mean	 length	 of	

<50nm	 with	 a	 rounded,	 irregular	 morphology.	 Significant	 differences	 in	 size	 and	

morphology	 of	 particles	 were	 not	 observed	 between	 bearing	 couples	 and	 simulator	

conditions.		

In	this	part	of	the	study,	the	length	was	used	to	define	particle	size.	The	mode	length	of	the	

cobalt	 chrome	 size	 distribution	 was	 30-39nm	 (Figure	 3.9)	 and	 the	 mode	 length	 of	 the	

stainless	 steel	 debris	 generated	was	30-39nm	 (Figure	3.17).	The	percentage	of	 the	 total	

number	of	particles	>1µm	for	cobalt	chrome	debris	was	2.6%	(Table	3.5)	and	for	stainless	

steel	 debris	 was	 5%	 (Table	 3.6)	 suggesting	 more	 larger	 particles	 were	 produced	 by	

stainless	 steel.	 This	 was	 supported	 by	 the	 fact	 that	 approximately	 2.6%	 of	 the	 CoCr	

particles	 were	 >1µm,	 whereas	 5%	 of	 the	 stainless	 steel	 particles	 were	 >1µm.	 The	

percentage	of	the	total	number	of	particles	<100nm	for	cobalt	chrome	debris	was	81.23%	

(Table	3.5)	and	for	stainless	steel	debris	was	52.7%	(Table	3.6).	Upon	comparison	of	these	

particles	to	the	metallic	nanoparticles	observed	around	failed	total	hip	replacements	it	can	

be	see	that	the	cobalt	chrome	particles	match	what	has	been	seen	in	the	literature	(Doorn	

et	al.,	1998;	Firkins	et	al.,	2001;	Germain	et	al.,	2003;	Papageorgiou	et	al.,	2014;	Pourzal	et	

al.,	 2011;).	 Though	 there	 is	 a	 lack	 of	 literature	 detailing	 the	 size	 of	 metal	 particles	

produced	 in	vivo	by	 total	disc	replacements	 there	 is	evidence	 that	 these	particles	will	be	

similar	 in	 size	 to	 those	 observed	 in	 the	 articulation	 of	 metal-on-metal	 hips,	 In	 the	

nanoscale	size	range	(Punt	et	al.,	2011).		Upon	comparison	of	cobalt	chrome	wear	particles	

generated	in	this	part	of	the	study	to	those	produced	in	a	spine	simulator	in	The	School	of	

Mechanical	 Engineering	 at	 The	 University	 of	 Leeds	 and	 cobalt	 chrome	 wear	 debris	

generated	in	the	six-station	pin-on-plate	wear	simulator	there	is	no	significant	difference	

in	size	distribution	and	particle	morphology	(Pasko	et	al.,	2016).	

3.6	Conclusion	

	Cobalt	 chrome	 and	 stainless	 steel	 wear	 particles	 for	 use	 in	 cell	 culture	 studies	 were	

generated	in	water	in	a	six-station	pin-on-plate	wear	simulator.	The	size	and	morphology	

of	 this	metallic	wear	debris	was	 similar	 to	 that	 generated	by	 articulating	 cobalt	 chrome	

molybdenum	total	disc	replacement	components	in	a	spine	simulator	at	the	University	of	

Leeds	(Pasko	et	al.,	2016)	and	to	those	observed	in	metal-on-metal	total	hip	replacements.	

The	 cobalt	 chrome	 and	 stainless	 particles	 were	 isolated	 via	 vacuum	 filtration	 and	
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characterized	using	SEM	and	 their	elemental	composition	confirmed	using	EDX	analysis.	

Sufficient	 wear	 debris	 had	 been	 generated	 to	 complete	 cell	 studies	 with	 cell	 lines	 and	

primary	cells	to	determine	the	effect	of	stainless	steel	and	cobalt	chrome	wear	particles	on	

cells	of	the	spinal	cord.		
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The	effect	of	cobalt	chrome	and	stainless	steel	wear	particles	on	

the	viability	and	DNA	integrity	of	glial	cells	in	a	2D	cell	culture	

system.	

	
	
	
4.1	Introduction	

Wear	 generation,	 corrosion	 and	 re-passivation	 of	metal-on-metal	 implants	 can	 cause	 an	

accumulation	of	metal	particles	and	ions	within	the	body,	which	may	be	toxic	to	the	host.	

With	increasing	reports	within	the	literature	of	adverse	tissue	reactions	and	the	formation	

of	 pseudotumors	 associated	 with	 the	 wear	 products	 of	 metal-on-metal	 total	 disc	

replacements	(Cavanaugh	et	al.,	2009;	Berry	et	al.,	2010;	Guyer	et	al.,	2011;	Cabraja	et	al.,	

2012)	and	with	growing	evidence	 that	nanoscale	cobalt	chrome	particles	(20-60nm)	are	

capable	of	altering	the	structural	integrity	of	the	dura	mater,	(Papageorgiou	et	al.,	2014)	it	

can	 be	 hypothesised	 that	 the	 protective	 barrier	 surrounding	 the	 spinal	 cord	 may	 be	

breached	by	metal	nanoparticles	generated	by	metal-on-metal	total	disc	replacements.	 It	

is	therefore	essential	to	investigate	the	response	of	the	periprosthetic	tissue	to	such	wear	

products,	with	particular	focus	on	the	spinal	cord	cellular	response	to	cobalt	chrome	and	

stainless	steel	wear	products,	the	two	leading	materials	selected	in	the	design	of	total	disc	

replacements.		

	

Numerous	 in	vitro	studies	have	been	performed	to	determine	the	effect	of	cobalt	chrome	

(Allen	et	 al.,	 1997;	Germain	et	 al.,	 2003;	Williams	et	 al.,	 2003;	Papageorgiou	et	 al.,	 2007	

Posada	et	al.,	2014)	and	stainless	steel	(Bailey	et	al.,	2005)	wear	particles	on	cell	viability	

using	 2D	 monolayer	 culture.	 A	 variety	 of	 cell	 types	 including;	 osteoblast,	 monocyte,	

macrophage,	 fibroblast	 and	 glioma	 cell	 lines	 and	 primary	 cells	 have	 previously	 been	

utilised.	However,	only	a	limited	number	of	studies	have	been	performed	to	determine	the	

effects	of	metallic	wear	particles	on	 cells	 of	 the	CNS.	Primarily,	within	 the	 literature	 the	

effect	of	wear	products	on	glial	cells	and	neuronal	cells	has	been	investigated	(DeGuzman	

&	VandeVord,	2007;	Behl	et	al.,	2013).	These	studies	have	been	performed	using	porcine	

dural	 cells	or	C6	 (astrocytic)	 and	PC12	 (neuronal)	 cell	 lines	 to	assess	 the	effects	of	bulk	

and	particulate	materials	used	in	the	production	of	orthopaedic	implants	on	cell	viability.	

A	high	quality	study	using	physiologically	relevant	particle	volumes	and	clinically	relevant	

particle	sizes	is	still	required.	

	

The	cobalt	chrome	and	stainless	steel	wear	particles	were	generally	found	to	have	a	toxic	

effect	on	cells	at	varying	concentrations	and	time	points	tested	(Allen	et	al.,	1997;	Germain	
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et	 al.,	 2003;	 Bailey	 et	 al.,	 2005;	 De	 Guzman	 &	 VandeVord,	 2007;	 Posada	 et	 al.,	 2014).	

However	 the	 cobalt	 chrome	particles	 utilised	 in	 these	 studies	were	 often	>1µm	and	 the	

stainless	 steel	 particles	 were	 1-100µm	 in	 length	 which	 were	 not	 comparable	 to	 the	

nanoscale	particles	observed	around	failed	metal-on-metal	total	hip	replacements	(Doorn	

et	al.,	1998)	and	metal-on-metal	total	disc	replacements	(Pasko	et	al.,	2016).	Furthermore,	

the	use	of	 large	wear	particles	 to	establish	 the	cytotoxicity	of	CoCr	particles	may	reduce	

the	 release	of	potentially	 cytotoxic	 ions	 from	 the	wear	particles,	 as	 a	 result	 of	 a	 smaller	

exposed	surface	area	of	 the	particles,	 and	may	no	 longer	 represent	 the	 in	vivo	 condition	

accurately.	 In	 many	 of	 the	 in	vitro	 investigations	 commercially	 available	 cobalt	 chrome	

particles	were	used;	these	particles	often	possessed	a	different	morphology	and	chemical	

composition	 to	 particles	 generated	 using	 either	 a	 pin-on-plate	 wear	 simulator,	 hip	

simulator	or	spine	simulator	and	to	those	found	in	vivo.	In	numerous	instances	the	particle	

doses	 that	 the	cells	were	challenged	by	were	extremely	high	and	would	not	be	clinically	

relevant.	Thus	to	more	accurately	understand	the	biological	response	of	cells	of	the	CNS	to	

metallic	wear	products	produced	by	total	disc	replacements,	model	CNS	cells	such	as	C6	

glial,	 PC12	 neuronal	 cell	 lines	 and	 rat	 primary	 astrocytes	 and	 microglia	 in	 co-culture	

should	be	cultured	with	clinically	relevant	cobalt	chrome	and	stainless	steel	wear	particles	

at	physiologically	relevant	particle	doses.		

	

The	use	of	 in	vitro	models	offers	numerous	advantages	over	 in	vivo	models.	They	enable	

the	investigation	of	the	role	of	a	single	cell	type	in	the	biological	response	to	wear	particles	

and	 the	 study	 of	 the	 possible	 deleterious	 or	 protective	 roles	 of	 specific	 molecules	 or	

compounds,	without	the	complexity	and	cost	that	has	been	associated	with	in	vivo	animal	

models	 (Schlachetzki	 et	 al.,	 2013).	 In	 the	 development	 of	 new	 biomaterials	 and	 in	 the	

testing	 of	 existing	 ones	 for	 orthopaedic	 applications,	 it	 would	 be	 of	 great	 interest	 to	

quantitatively	 screen	 the	 genotoxic	 and	 cytotoxic	 responses	 of	 cells	 to	wear	 particles	 in	

vitro.	

	

The	 use	 of	 the	 neuronotypic	 PC12	 model	 cell	 line	 has	 been	 widely	 reported	 in	 the	

literature	 (Slotkin	 et	 al.,	 2014).	 This	 cell	 line	 has	 been	 used	 as	 a	 model	 cell	 type	 to	

investigate	 neurological	 disorders	 such	 as;	 Alzheimer’s	 disease,	 Huntington’s	 disease,	

Parkinson’s	 disease	 and	 amyotrophic	 lateral	 sclerosis	 (ALS)	 also	 known	as	 Lou	Gehrig’s	

disease.	C6	astrocytic	cells	have	been	reported	in	the	literature	as	a	model	glial	cell	which	

has	been	used	for	numerous	applications	such	as	CNS	repair	(Assis	et	al.,	2014),	the	study	

of	 glioblastoma	 growth	 and	 invasion	 (Grobben	 et	 al.,	 2002),	 therapeutic	 targeting	 and	

screening	 (Quincozes-santos	 et	 al.,	 2013)	 and	 drug	 delivery	 mechanisms	 (Tang	 et	 al.,	

2015),	as	 these	cells	behave	 in	similar	ways	to	primary	astrocytes	 in	 terms	of	molecular	
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mechanisms,	 apoptotic	 pathways	 and	 cytokine	 expression	 (Grobben	 et	 al.,	 2002).	 These	

cell	lines	were	ideally	suited	for	a	preliminary	investigation	into	the	biological	response	of	

CNS	cells	to	metallic	wear	particles	in	this	study.	

When	selecting	a	specific	cell	line	for	determining	the	biological	response	to	metallic	wear	

debris	it	is	of	the	utmost	importance	to	select	a	cell	type	that	will	be	capable	of	modelling	

the	response	or	phenomenon	that	is	likely	to	be	incurred	by	the	particulate	stimuli	in	vivo		

(Jones	and	Grainger,	2009).		

The	 C6	 cell	 line	 is	 commonly	 selected	 for	 in	vitro	investigations	 on	 the	 basis	 that	 these	

cells	behave	in	a	similar	manner	to	astrocytes.	Astrocytes	are	a	dynamic	cell	type	and	have	

numerous	 roles	 within	 the	 CNS,	 predominantly	 in	 maintaining	 homeostasis	 within	 the	

CNS.	 Astrocytes	 have	 also	 been	 implicated	 in	 the	 regulation	 of	 the	 brain	

microenvironment,	 maintenance	 of	 the	 blood-brain	 barrier,	 guidance	 of	 neuronal	

migration,	immune	function	and	in	the	onset	of	glial	scar	formation	following	spinal	cord	

injury	 (Markiewicz	 &	 Lukomska,	 2006).	 The	 glial	 scar	 comprises	 reactive,	 ramified,	

hypertrophic	astrocytes,	which	have	undergone	numerous	cellular	changes,	referred	to	as	

astrogliosis.	 Astrogliosis	 can	 be	 characterized	 by	 and	 up-regulation	 of	 intermediate	

filament	protein;	glial	 fibrillary	acidic	protein	(GFAP).	However,	 the	C6	cell	 line	does	not	

express	glial	fibrillary	acidic	protein	(GFAP)	at	detectable	levels,	unlike	primary	astrocytes	

(Pentreath	&	Mead,	2004;	 Jacobs	et	al.,	2011).	Therefore	 the	amount	of	 information	 that	

can	 be	 determined	 from	 the	 use	 of	 C6	 glial	 and	 PC12	 neuronal	 cell	 lines	 is	 limited	 to	

understanding	the	effects	of	cobalt	chrome	and	stainless	steel	on	the	viability	of	these	cell	

types,	 thus	 the	use	of	more	physiologically	 relevant	primary	 astrocytes	 and	microglia	 is	

necessary	for	a	more	in	depth	study	into	the	biological	response.		

An	ATP	Liteä	assay	was	used	to	assess	cell	viability.	This	assay	was	selected	as	 it	was	a	

highly	 sensitive,	 reproducible	 assay	 and	was	 able	 to	 detect	 as	 few	 as	 five	 cells	 in	 100µl	

medium.	 An	 alkaline	 comet	 assay	was	 chosen	 to	 assess	 the	 effect	 of	 cobalt	 chrome	 and	

stainless	 steel	 wear	 particles	 on	 the	 integrity	 of	 primary	 astrocyte	 and	 microglia	 and	

primary	astrocyte	DNA.	Previously	the	alkaline	comet	assay	has	been	used	extensively	to	

assess	 the	 genotoxic	 effect	 of	 nanoparticles	 (Papageorgiou	 et	 al.,	 2007;	 Karlsson	 et	 al.,	

2008;	 Singh	 et	 al.,	 2009;	Gajski	 et	 al.,	 2014).	 Alternative	methods	 to	 assess	 genotoxicity	

have	also	been	reported	within	the	literature	such	as	the	use	of	chromosome	painting,	the	

chromosome	aberration	 test	 and	 the	micronucleus	 assay.	The	 comet	 assay	 is	 a	 versatile	

and	 sensitive	 method	 for	 quantitatively	 measuring	 single	 and	 double	 strand	 breaks	 in	

DNA.	 It	has	been	reported	that	 the	alkaline	comet	assay	 is	more	sensitive	than	the	more	
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traditionally	used	micronucleus	assay	and	was	therefore	selected	for	this	application	(He	

et	al.,	2000).		

	

4.1.1.	Aims		

The	first	aim	of	this	part	of	the	study	was	to	determine	whether	increasing	physiologically	

relevant	particle	volumes	(0.05µm3,	0.5µm3,	5µm3	and	50µm3)	of	clinically	relevant	cobalt	

chrome	and	stainless	steel	wear	particles,	generated	using	a	six-station	pin-on-plate	wear	

simulator	with	 a	mode	 size	 of	 30nm-39nm,	 for	both	materials,	 had	 a	 toxic	 effect	 on	C6-

glial,	 PC12-neuronal	 cell	 lines	 and	 primary	 rat	 astrocytes	 and	microglia	 after	 24	 hours,	

three	and	five	days	in	2D	culture.	

	

The	second	aim	was	to	determine	whether	increasing	concentrations	of	stainless	steel	and	

cobalt	 chrome	 particles	 (0.5µm3,	 5µm3	 and	 50µm3)	 caused	 significant	 DNA	 damage	 in	

primary	 astrocytes	 and	microglia	 in	 co-culture	 and	primary	 astrocytes	 in	 isolation	 after	

24hours,	48	hours	and	five	days.		

	

The	effect	of	cobalt	chrome	and	stainless	steel	wear	particles	on	cell	viability	was	assessed	

using	 an	 ATP-Liteä	 cell	 viability	 assay.	 An	 alkaline	 comet	 assay	was	 used	 to	 assess	 the	

effect	of	cobalt	chrome	and	stainless	steel	wear	particles	on	DNA	integrity.		
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4.2	Materials	

	

4.2.1	Rat	C6	glial	cell	line.	This	cell	line	was	cloned	from	a	rat	glial	tumor,	induced	by	N-

nitrosomethylurea.	This	cell	type	was	donated	to	the	University	of	Leeds,	for	the	study	by	

Dr.	James	Phillips,	University	College	London,	UK.	

4.2.2	Rat	PC12	neuronal	cell	 line.	This	 cell	 line	was	derived	 from	a	 transplantable	 rat	

adrenal	pheochromocytoma	and	was	donated	to	the	University	of	Leeds,	for	the	study	by	

Dr.	James	Phillips,	University	College	London,	UK.	

4.2.3	Primary	astrocytes	and	microglia.	 These	 cells	were	 isolated	 from	P2	Wistar	 rat	

cortices.	 The	 cortices	 were	 obtained	 in	 accordance	 with	 UK	 Animals	 (Scientific	

Procedures)	 Act	 1986	 under	 the	 Home	 Office	 Schedule	 One	 procedure	 (Home	 Office	

Project	 license:	 PPL70/8085).	 The	 primary	 astrocytes	 and	 microglia	 were	 isolated	 and	

cultured	according	to	the	protocol	first	described	by	East	et	al.	(2009)	detailed	in	section	

2.4.1.6.	Primary	astrocytes	and	microglia	were	separated	into	 individual	cell	populations	

in	accordance	with	the	protocol	outlined	in	Chapter	2,	section	2.4.1.6.4.		
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4.3	Methods	

The	 effects	 of	 cobalt	 chrome	 and	 stainless	 steel	 wear	 particles,	 generated	 using	 a	 six-

station	pin-on-plate	wear	simulator,	on	the	viability	of	C6	glial	cells,	PC12	neuronal	cells	

and	on	the	viability	and	DNA	integrity	of	primary	astrocytes	and	microglia,	 in	co-culture,	

in	a	2D	cell	culture	system,	were	investigated	in	this	chapter.			

4.3.1	Particle	preparation		

4.3.1.1	Generation	of	 cobalt	 chrome	and	 stainless	 steel	wear	particles	using	a	 six-

station	pin-on-plate	wear	simulator.	

Cobalt	 chrome	and	stainless	 steel	wear	particles	were	generated	using	a	 six-station	pin-

on-plate	wear	simulator	manufactured	in	house	in	the	School	of	Mechanical	Engineering	at	

the	University	of	Leeds.	Smooth	cobalt	 chrome	or	stainless	steel	pins	articulated	against	

smooth	cobalt	chrome	or	stainless	steel	plates	using	water	as	the	lubricant,	as	described	in	

Chapter	3,	section	3.3.1.4.	Cobalt	chrome	and	stainless	steel	stock	solutions	(1mg.ml-1)	in	

deionized	water	were	 generated	 in	 accordance	with	 the	 protocol	 outlined	 in	 Chapter	 3,	

section	3.3.1.5.1	and	stored	at	-20°C	until	required	for	cell	culture	experiments.		

4.3.1.2	 Determination	 of	 the	mass	 of	 cobalt	 chrome	 particles	 for	 culture	with	 C6,	

PC12	cell	lines	and	primary	astrocytes	and	microglia.	

	

The	quantity	of	particles	cultured	with	each	cell	type	was	expressed	as	a	particle	volume	

(µm3)	to	cell	number	ratio.	A	ratio	of	50:1	(the	largest	particle	volume	assessed)	equated	

to	50µm3	of	debris	per	cell.	 	The	largest	particle	volume	to	cell	number	ratio	used	in	this	

study	was	50:1	and	the	smallest	was	0.05:1.		

	

To	calculate	the	volume	of	the	cobalt	chrome	particle	stock	solutions	(1mg.ml-1)	required	

for	 each	 cobalt	 chrome	 particle	 dose,	 the	 following	 equations	 were	 applied,	 where	 the	

density	of	cobalt	chrome	is	equal	to	7.7g/cm3	and	the	density	of	stainless	steel	is	equal	to	

7.99g/cm3.	The	same	equations	were	used	to	calculate	the	volume	of	stainless	steel	stock	

solution	required	for	each	particle	dose.		

	

Density	=	Mass	(M)/	Volume	

Therefore;	Mass	(M)=	Density	x	Volume	
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4.3.1.3	Worked	 example	 for	 50µm3	 cobalt	 chrome	 debris	 per	 cell	 using	 a	 seeding	

density	of	1	x	104	cells	per	well.	

Applying	the	above	equation	for	a	particle	volume	of	50µm3	cobalt	chrome	debris	per	cell,	

a	density	of	7.7g/cm3	for	cobalt	chrome	and	a	seeding	density	of	1	x	104	cells	per	well	with	

six	replicates	for	each	test	condition:	

Density=	Mass	(M)/	Volume	

1cm3=1000mm3	

1mm3	CoCr=	7.7mg	

1mm3=1x109µm3	

therefore	1µm3=	7.7	x10-9	mg	

For	a	dose	of	50µm3	cobalt	chrome	of	debris	per	cell	and	a	seeding	density	of	1	x	104	cells	
per	well	

50µm3	x	7.7	x10-9	mg=	Mass	of	cobalt	chrome	needed	per	cell	

=	3.85	x	10-7	mg	per	cell	

1	x	104	x	3.85	x	10-7	mg=	Mass	of	cobalt	chrome	needed	per	well	

=3.85	x	10-3mg	debris	per	well	

=3.85µg	per	well		

Therefore	3.85µl	of	the	1mg.ml-1	cobalt	chrome	stock	solution	was	required	per	well.	This	

volume	was	multiplied	by	six	to	give	sufficient	volume	for	six	repeats	per	condition.	The	

volume	was	scaled	up	further	so	a	1	in	10	dilution	could	be	made	for	 lower	doses	5µm3,	

0.5µm3	and	0.05µm3	cobalt	chrome	debris	per	cell.	

4.3.2	The	effect	of	cobalt	chrome	and	stainless	steel	particles	on	C6	glial	cell,	PC12	

neuronal	cell	and	primary	astrocytes	and	microglia	viability			

Each	 cell	 type,	 C6,	 PC12	 and	 primary	 astrocytes	 and	 microglia	 in	 co-culture	 (seeding	

density	1	x	104	cells	per	well)	were	cultured	in	vitro	in	2D	culture	with	cobalt	chrome	and	

stainless	steel	wear	particles	of	increasing	particle	concentrations	(0.05µm3,	0.5µm3,	5µm3	

and	50µm3	wear	debris	per	cell)	for	five	days	and	the	effect	on	viability	assessed	using	an	

APT	Liteä	assay	after	24	hours,	three	days	and	five	days	in	culture.	
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4.3.2.1	The	effect	of	cobalt	chrome	and	stainless	steel	wear	particles	on	the	viability	

of	cells	in	2D	culture	assessed	using	an	ATP	Liteä	assay.			

In	2D	culture	the	effect	of	cobalt	chrome	and	stainless	steel	wear	particles	on	cell	viability	

was	determined	using	an	ATP	Liteä	assay	(PerkinElmer,	USA).	The	ATP	Liteä	assay	relies	

upon	 the	 principal	 that	 living,	 metabolically	 active	 cells	 produce	 ATP	 (Adenosine	

triphosphate).	The	level	of	ATP	is	significantly	reduced	when	a	cell	undergoes	apoptosis	or	

necrosis.	When	ATP	from	lysed	cells	 interacts	with	the	added	D-Luciferin	and	Luciferase	

(in	 the	 provided	 ATP	 substrate)	 light	 is	 produced.	 The	 level	 of	 light	 generated	 is	

proportional	to	the	concentration	of	ATP	and	thus	is	an	indicator	of	cell	viability.		

		

C6	 glial,	 PC12	 neuronal	 cells	 and	 primary	 astrocytes	 and	microglia	 (in	 co-culture)	were	

passaged	and	a	cell	count	performed	as	outlined	previously	 in	Chapter	2,	section	2.4.1.4.	

After	passaging	it	was	ensured	that	each	cell	type	had	a	viability	of	at	least	90%	(the	cell	

lines	 were	 passaged	 a	 maximum	 of	 eight	 times	 for	 this	 part	 of	 the	 study	 to	 reduce	

phenotypic	 changes	 in	 these	 cell	 types).	 The	 primary	 astrocytes	 and	 microglia	 were	

passaged	only	once	to	reduce	the	likelihood	of	changes	to	the	cells	characteristics.		The	C6,	

rat	glioma	cell	line	was	cultured	in	supplemented	Ham’s	F12	medium	(Chapter	2,	section	

2.3.2).	The	PC12	rat	neuronal	cell	 line	was	cultured	in	supplemented	RPMI1640	medium	

(Chapter	 2,	 section	 2.3.16).	 Primary	 astrocytes	 and	 microglia	 were	 cultured	 with	

supplemented	 DMEM	 culture	 medium	 (Chapter	 2,	 section	 2.3.20).	 In	 a	 class	 II	 cabinet,	

using	 aseptic	 technique,	 the	 cells	 were	 seeded	 into	 96-well	 plates	 (flat	 bottom	 for	 the	

adherent	C6	glial	cell	line	and	primary	astrocytes	and	microglia,	U	bottomed	for	the	PC12	

neuronal	 suspension	 cells).	 The	 flat-bottom	 96-well	 plates	were	 pre-coated	with	 poly-d	

lysine	for	the	primary	astrocytes	and	microglia	to	enhance	cellular	adherence.	A	seeding	

density	of	1	 x	104	cells	per	well	 in	100µl	 of	 the	 appropriate	 supplemented	medium	 (see	

Chapter	 2,	 sections	 2.3.2,	 2.3.16	 and	 2.3.20,	 respectively)	 was	 used	 for	 all	 cell	 types	 (6	

replicates	per	test	condition).		

	

After	seeding,	 the	cells	were	exposed	to	cobalt	chrome	and	stainless	steel	wear	particles	

(taken	 from	 a	 pre-prepared	 1mg.ml-1	 stock)	 at	 varying	 particle	 concentrations	 ranging	

from	 0.05µm3	 debris	 per	 cell	 to	 50µm3	 debris	 per	 cell	 (suspended	 in	 100µl	 of	

supplemented	medium),	 the	 volume	 of	 particle	 stocks	 used	 for	 each	material	 and	 each	

dose	was	calculated	using	the	equations	detailed	in	section	4.3.1.2.	
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Camptothecin	 (2µg.ml-1	 in	 200µl	 supplemented	medium)	was	used	 as	 a	 positive	 control	

for	 this	 study,	 the	 preparation	 of	 camptothecin	 was	 outlined	 previously	 in	 Chapter	 2,	

section	 2.3.6.	 A	 volume	 of	 200µl	 of	 medium	 only	 acted	 as	 a	 blank	 (six	 repeats	 per	

condition)	 to	determine	 the	baseline	spectrophotometric	 reading	of	 the	medium	used.	A	

cell	only	negative	control	was	included	as	well	as	a	particle	only	control.	The	plate	set	up,	

detailing	each	test	condition	and	controls	is	shown	in	Figure	4.1.	The	cells	were	cultured	

with	the	particles	for	24	hours,	three	days	and	five	days	at	37°C	in	5%	(v/v)	CO2	in	air.	

	
Figure	4.1	96-well	 plate	 set	 up	 for	ATP	Liteä	 assay.	 Purple=	 cells	 cultured	with	50µm3	

wear	 debris	 per	 cell.	 Blue=	 cells	 cultured	 with	 5µm3	wear	 debris	 per	 cell.	 Green=	 cells	

cultured	 with	 0.5µm3	wear	 debris	 per	 cell.	 Yellow=	 cells	 cultured	 with	 0.05µm3	wear	

debris	per	cell.	Orange=	cell	only	negative	control	where	cells	were	not	treated	with	wear	

debris.	Red=	blank	(200µl	supplemented	medium).	White=	particle	only	control,	CoCr	or	

stainless	 steel	 particles	 equivalent	 to	 the	 highest	 particle	 dose	 suspended	 in	 200µl	

supplemented	medium.	Grey=	positive	control,	cells	 treated	with	Camptothecin	(2	µg.ml-

1).	

	

At	the	appropriate	time	point,	24	hours,	three	days	or	five	days,	the	ATP-Liteä	assay	was	

performed	 in	 accordance	 with	 the	 protocol	 outlined	 in	 Chapter	 2,	 section	 2.4.2.1.	 The	

output	for	this	assay	was	presented	as	average	luminescence	counts	per	second	(CPS).				

	

4.3.2.2	Statistical	analysis	for	cell	viability	data.	

The	raw	data	generated	by	the	spectrophotometer	was	transferred	into	a	Microsoft	Excel	

document	 for	 analysis.	 The	 data	was	 analysed	 and	 expressed	 as	 an	 average	 counts	 per	

second	reading	and	as	a	percentage	of	the	cell	only	negative	control.	Prior	to	analysis	the	
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percentage	 data	was	 transformed	 using	 an	 arcsine	 transformation	 to	 enable	 a	 two-way	

ANOVA	to	be	performed.	A	two-way	ANOVA	was	used	to	determine	whether	there	was	a	

significant	 difference	 (p<0.05)	 between	 the	 test	 conditions	 and	 the	 cell	 only	 negative	

control.	The	 two-way	ANOVA	reports	significant	differences	between	groups,	 it	does	not	

detail	which	 groups	 differed	 significantly,	 and	 therefore	 a	 post-hoc	 test	was	 performed.		

Significant	 differences	 in	 the	 cell	 viability	 between	 the	 test	 conditions	 and	 the	 cell	 only	

negative	control	were	determined	using	a	Tukey	post-hoc	analysis	test.			

	

4.3.3	The	effect	of	cobalt	chrome	and	stainless	steel	particles	on	primary	astrocytes	

and	microglia	DNA	integrity.	

To	 determine	 the	 effect	 of	 cobalt	 chromium	 and	 stainless	 steel	 wear	 particles	 on	 the	

integrity	 of	 primary	 astrocyte	 and	 microglia	 (in	 co-culture)	 and	 primary	 astrocyte	 (in	

isolation)	DNA,	in	2D	culture,	an	alkaline	comet	assay	was	used.	An	alkaline	comet	assay	

kit	 (Trevigen,	Maryland,	USA)	was	utilised	 to	 assess	DNA	damage	 in	primary	 astrocytes	

and	microglia.	The	Olive	tail	moment	was	used	as	a	measure	of	DNA	damage.	The	Olive	tail	

moment	 is	 the	product	of	 the	 length	of	 the	 tail	of	 the	comet	and	the	 fraction	of	 the	 total	

DNA	located	within	the	tail.		

	

4.3.3.1.The	effect	of	cobalt	chrome	and	stainless	steel	wear	particles	on	the	integrity	

of	CNS	cell	DNA.	

An	alkaline	comet	assay	was	used	to	determine	the	effect	of	cobalt	chrome	and	stainless	

steel	 on	 the	 integrity	 of	 the	 DNA	 of	 primary	 astrocytes	 and	microglia	 in	 co-culture	 and	

primary	 astrocytes	 in	 isolation.	 The	 comet	 assay	 was	 a	 simplistic	 test	 to	measure	 DNA	

strand	breaks.	The	 assay	utilises	 the	principle	 that	when	 cells	 are	 embedded	 in	 agarose	

gels	 and	 are	 lysed	 with	 detergent	 in	 a	 high	 salt	 environment,	 this	 will	 result	 in	 the	

formation	 of	 nucleoids	 containing	 supercoiled	 DNA.	 If	 there	 were	 single	 or	 double	

stranded	breaks	in	the	DNA,	the	supercoiling	is	lost	leaving	the	negatively	charged	genetic	

material	free	to	move	towards	the	anode	and	a	comet	is	formed	(Figure	4.2).	The	amount	

of	 movement	 of	 genetic	 material	 is	 dependent	 on	 the	 size	 of	 the	 DNA	 strand	 and	 the	

number	of	breaks	in	the	DNA.	In-tact	DNA	does	not	lose	its	supercoiling	and	thus	the	DNA	

remains	in	the	nucleoid.	This	effect	can	be	visualised	using	SYBR	gold	to	stain	the	genetic	

material	and	the	results	analysed	using	the	Comet	IV	Lite	software	package.				
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Figure	4.2	Comet	images.		A)	No	DNA	damage,	DNA	remains	in	the	nucleoid	B)	DNA	

damage,	the	negatively	charged	fragmented	genetic	material	is	able	to	move	through	the	

agarose	gel	towards	the	anode	and	a	comet	is	formed.			

	

4.3.3.2	Preparation	of	cells	prior	to	the	comet	assay.		

Prior	 to	 the	 comet	 assay,	 primary	 astrocytes	 and	 microglia	 in	 co-culture	 and	 primary	

astrocytes	 in	 isolation	 were	 cultured	 using	 a	 2D	 monolayer	 cell	 culture	 system	 with	

increasing	 particle	 doses	 of	 cobalt	 chrome	 and	 stainless	 steel	 wear	 particles	 (0.5µm3-	

50µm3	debris	per	cell)	for	24	hours,	48	hours	and	five	days.	Hydrogen	peroxide	(100µM),	

a	 known	 inducer	 of	 single	 stranded	 and	 double	 stranded	 DNA	 breaks,	 was	 used	 as	 a	

positive	 control.	 The	 cells	 were	 seeded	 into	 24-well	 plates	 pre-coated	 with	 PDL	 to	

encourage	 cell	 adhesion	 at	 a	 seeding	density	of	 1.5	 x	105	 cells	 (in	1.25ml	 supplemented	

medium)	per	well	 for	the	24hours	and	two-day	assays.	A	seeding	density	of	1	x	105	cells	

(in	 1.25ml	 supplemented	medium,	 Chapter	 2,	 section	 2.3.20)	 per	well	was	 used	 for	 the	

longer-term	assay	(over	five	days)	to	avoid	cell	crowding.	

	

The	 cells	were	 cultured	with	 increasing	particle	 volumes	of	 cobalt	 chrome	and	 stainless	

steel	 (particle	volume	re-suspended	 in	1.25ml	supplemented	medium)	 in	24-well	plates,	

pre-coated	with	PDL.	Supplemented	DMEM,	Chapter	2	section	2.3.20,	was	used	to	culture	

the	 primary	 astrocytes	 and	 microglia	 and	 primary	 astrocytes	 in	 isolation.	 The	 mass	 of	

cobalt	chrome	and	stainless	steel	particles	needed	to	provide	the	necessary	volume	doses	

was	calculated	using	the	method	previously	outlined	in	Chapter	4,	section	4.3.1.2	

	

4.3.3.3	Preparation	of	solutions	and	equipment	for	the	alkaline	comet	assay.		

Prior	to	commencing	the	comet	assay,	the	lysis	solution	was	cooled	to	4°C.	Using	a	Bunsen	

burner,	in	a	beaker	of	boiling	water,	the	LMP	agarose	was	melted,	allowed	to	cool	slightly	

for	 five	minutes,	 and	 transferred	 to	a	37°C	water	bath.	The	CometSlidesä	were	 labelled	

with	 the	 test	 conditions,	 the	date	 and	 slide	 ID	and	 transferred	 to	 a	37°C	 incubator	until	

B	

A	

B	 B	 B	
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ready	 for	use.	Each	CometSlideä	was	 supplied	with	 two	windows	allowing	 two	agarose	

gels	to	be	prepared	on	each	slide.	As	there	were	four	repeats	per	condition	2	slides	were	

prepared	per	condition	(Figure	4.3).	

		

The	alkaline	electrophoresis	buffer	(preparation	outlined	in	Chapter	2,	section	2.3.1)	and	

DNA	unwinding	 solutions	were	 prepared	 (Chapter	 2,	 section	 2.3.10).	When	 the	 alkaline	

electrophoresis	 solution	 was	 thoroughly	 mixed,	 the	 solution	 was	 transferred	 into	 an	

electrophoresis	 tank	at	4°C	 for	one-hour	prior	 to	use.	The	DNA	unwinding	 solution	was	

prepared	and	allowed	to	cool	to	room	temperature,	for	30	minutes,	prior	to	use.	

	

A	 volume	 of	 500ml	 of	 pre-prepared	 sterile	 PBS,	 without	 calcium	 and	 magnesium,	 was	

placed	on	ice	prior	to	commencing	the	comet	assay.		

	
Figure	4.3	The	design	of	the	CometSlideä	with	two	windows	per	slide.	Two	slides	were	

used	per	test	condition	(4	repeats	per	condition).		

	

4.3.3.4	Preparation	of	agarose	gels	and	protocol	for	the	alkaline	comet	assay	

After	 all	 the	 solutions	 and	 necessary	 equipment	were	 prepared	 as	 described	 in	 section	

4.3.3.3	 above,	 the	 agarose	 gels	were	 produced.	 The	 24-well	 plates	 containing	 cells	 plus	

particles	were	removed	from	the	incubator	after	the	appropriate	incubation	period	and	in	

a	 class	 II	 safety	 cabinet	 the	 supplemented	 medium	 was	 removed	 from	 each	 well	 and	

discarded.			

	

The	cells	were	washed	twice	with	500µl	 sterile	DPBS	(without	calcium	and	magnesium)	

and	 300µl	 0.5%	 with	 EDTA	 of	 trypsin	 was	 added	 to	 each	 well.	 The	 24-well	 plate	 was	

incubated	for	10	minutes	on	a	rocker	at	80rpm	at	37°C	in	5%	(v/v)	CO2	in	air	to	detach	the	

cells	from	the	tissue	culture	plastic.	
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After	 the	 10	minute	 incubation,	 the	 24-well	 plate	was	 gently	 tapped	 to	 detach	 the	 cells	

from	 the	bottom	of	 each	well.	 The	 cells	were	observed	using	 an	 inverted	microscope	 to	

ensure	all	cells	had	detached	from	the	base	of	the	well.	If	this	was	not	the	case	then	the	24-

well	plate	was	incubated	at	37°C	in	5%	(v/v)	CO2	in	air	for	an	additional	two	minutes.	The	

trypsin	was	inhibited	with	800µl	of	supplemented	DMEM	medium,	described	in	Chapter	2,	

section	2.3.20.	The	contents	of	each	well	were	mixed	thoroughly	by	pipetting	up	and	down	

and	 transferred	 to	 pre-labelled	 sterile	 1.5ml	 eppendorfs.	 The	 24-well	 plate	 was	 again	

observed	using	an	inverted	microscope	to	ensure	that	the	cells	had	been	removed.		

	

The	cells	were	centrifuged	at	200g	for	10	minutes	at	4°C.	The	supernatant	was	removed	

taking	extra	care	to	ensure	the	pellet	was	not	dislodged.	The	cell	pellet	was	re-suspended	

in	150µl	ice	cold	PBS	and	thoroughly	mixed	by	aspiration.	The	cells	were	placed	on	ice,	to	

prevent	any	DNA	repair,	and	a	cell	 count	performed	 for	each	condition	using	 the	 trypan	

blue	exclusion	assay	(see	Chapter	2,	section	2.4.1.4).	 	The	cells	were	diluted	further	with	

ice	cold	PBS	(without	calcium	and	magnesium)	to	a	concentration	of	1	x	105	cells	per	ml.	

This	ensured	sufficient	cells	would	be	visualised	in	each	window	on	the	comet	slides	and	

that	 sufficient	 cells	would	be	 analysed	using	 the	Comet	 IV	Lite	 Software.	The	 cells	were	

incubated	on	ice	in	the	dark	until	the	agarose	gels	were	prepared.		

	

Cells	were	added	to	the	LMP	agarose	at	a	ratio	of	1:10	(v/v).	Here,	6µl	of	cell	suspension	

(approximately	 600	 cells)	was	 combined	with	60µl	 LMP	agarose	 and	 carefully	mixed	 to	

ensure	 the	 cells	 were	 evenly	 distributed	 throughout	 the	 gel.	 Immediately	 after	 mixing,	

50µl	of	the	cell:	LMP	agarose	mixture	was	pipetted	onto	the	corresponding	CometSlideä	

(this	step	was	carried	out	at	speed	so	that	the	agarose	gel	did	not	set	in	the	pipette	tip	or	

in	the	eppendorf	where	it	was	mixed).	The	viscous	cell,	agarose	mixture	was	manipulated	

using	 a	 pipette	 tip	 to	 ensure	 there	 was	 an	 even	 distribution	 of	 the	 gel	 over	 the	 slide	

window.	To	confirm	the	presence	of	an	appropriate	concentration	of	cells	in	each	window	

each	slide	was	observed	using	an	inverted	light	microscope.	The	slides	were	then	placed	in	

the	dark	at	4°C	for	10	minutes	to	ensure	the	gels	were	set.	

	

After	 all	 the	 gels	 were	 prepared,	 the	 positive	 control,	 hydrogen	 peroxide,	 slides	 were	

immersed	in	a	coplin	jar	containing	30ml	of	100µM	hydrogen	peroxide	for	five	minutes	at	

4°C.	This	was	a	sufficient	length	of	time	to	cause	DNA	damage	in	primary	astrocytes	and	

microglia.	 After	 five	 minutes	 the	 slides	 were	 thoroughly	 rinsed	 in	 sterile	 PBS	 (without	

calcium	 and	 magnesium),	 to	 remove	 residual	 hydrogen	 peroxide,	 to	 prevent	

contamination	of	the	remaining	slides	in	the	subsequent	steps.	All	slides	were	flooded	in	
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pre-cooled	(4°C)	 lysis	solution	(provided	as	part	of	 the	Trevigen	Comet	assay	kit)	 for	30	

minutes.		

	

After	 the	 30-minute	 incubation	 period,	 any	 excess	 lysis	 solution	 was	 drained	 and	

discarded	and	the	slides	were	 immersed	in	alkaline	DNA	unwinding	solution	(Chapter	2,	

section	 2.3.10),	 in	 the	 dark,	 at	 room	 temperature	 for	 20	 minutes.	 The	 excess	 DNA	

unwinding	 solution	 was	 discarded	 and	 the	 slides	 placed	 in	 an	 electrophoresis	 tank	

containing	the	alkaline	electrophoresis	solution	at	4°C.	Care	was	taken	to	ensure	the	slides	

were	 equidistant	 from	 the	 electrodes.	 The	 orientation	 of	 the	 slides	 was	 noted	 for	 later	

analysis.	The	power	pack	was	set	to	1	Volt.cm-1	length.	As	the	length	of	the	tank	was	30cm,	

it	was	 set	 to	 30V.	 The	mAMP	was	 adjusted	 to	 300	±	 5mAMP,	 this	was	 achieved	 by	 the	

addition	or	removal	of	electrophoresis	solution.	The	samples	were	electrophoresed	in	the	

dark	at	4°C	for	20	minutes.	The	slides	were	then	removed	from	the	electrophoresis	tank	

and	washed	twice	with	distilled	water	in	the	dark	for	five	minutes.	Finally,	the	slides	were	

immersed	in	70%	(v/v)	ethanol	for	five	minutes	in	the	dark.	Following	this	the	slides	were	

incubated	at	37°C	 in	5%	(v/v)	CO2	 in	air	 for	10	minutes	 to	dry.	The	CometSlidesä	were	

stored	in	plastic	trays	containing	desiccant	beads	in	the	dark	at	room	temperature	prior	to	

imaging.	The	imaging	was	always	performed	24	hours	after	the	comet	assay	for	continuity.		

	

4.3.3.5	Staining	and	imaging	of	CometSlidesä	

A	volume	of	100µl	 pre-prepared	SYBR	gold	 solution	 (see	Chapter	2,	 section	2.3.25)	was	

added	 to	 each	 window	 of	 all	 CometSlidesä	 ensuring	 each	 agarose	 gel	 was	 completely	

immersed	in	SYBR	gold	solution.	The	slides	were	incubated	at	37°C	in	5%	(v/v)	CO2	in	air	

for	 30	minutes	 in	 the	 dark.	 After	 the	 required	 incubation	 period,	 any	 excess	 SYBR	 gold	

solution	was	 removed	and	discarded.	The	 slides	were	washed	 three	 times	with	distilled	

water	to	remove	any	residual	SYBR	gold.	Any	excess	water	on	the	slides	was	removed	with	

blue	tissue	roll,	taking	care	not	to	disrupt	the	agarose	gels.	The	gels	were	then	allowed	to	

dry	in	the	dark	at	37°C	in	5%	(v/v)	CO2	in	air	(for	approximately	2	hours),	which	brought	

all	the	cells	into	the	same	focal	plane.		

	

The	slides	were	imaged	using	a	Zeiss	upright	microscope.	To	ensure	uniformity	of	imaging	

for	each	experiment	the	following	settings	were	utilised.		

• The	HXP	120V	power	source	was	set	to	10.		

• A	x	10	objective	lens	was	used	for	all	windows	on	all	sides.		

• The	EGFP	channel	was	used	for	all	images	(emission	wavelength	509nm).	

• The	exposure	time	was	set	to	1500ms	
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• The	Zen	 software	was	used	 so	numerous	 images	were	 taken	of	 each	 gel.	 A	7x7	

grid	was	 selected	 creating	49	 tiles	 in	 total	 for	 imaging.	A	4	 x	3	 grid	was	placed	

over	 the	 tiles	 to	 generate	 set	 points.	 Each	 set	 point	 was	 checked	 to	 ensure	 all	

areas	of	 the	gel	were	 in	 focus.	Then	the	49	tiles	were	sewn	 into	one	 image.	The	

image	intensity	was	set	to	maximum	to	ensure	all	the	comets	were	clear.	This	was	

uniform	 for	 all	 images	 in	 all	 experiments.	 This	 was	 necessary	 as	 the	 software	

detecting	 the	 comets	 used	 tail	 intensity	 as	 a	 key	 measurement.	 This	 would	 be	

different	if	the	same	settings	were	not	adhered	to	for	all	images.			

	

The	olive	tail	moment	was	used	to	detect	DNA	damage	over	time.	The	olive	tail	moment	is	

a	product	of	tail	length	and	the	fraction	of	the	total	DNA	located	in	the	tail.	

	

4.3.3.6	Image	processing	using	Comet	IV	Lite	Software.	

Prior	 to	 image	 processing	 all	 images	were	 orientated	 such	 that	 the	 heads	 of	 the	 comet	

were	positioned	to	the	left	hand	side	in	the	field	of	view	and	the	tail	to	extend	out	of	the	

right	 hand	 side	 of	 the	 head.	 This	 made	 sure	 all	 comets,	 regardless	 of	 the	 direction	 of	

electrophoresis,	 were	 aligned	 in	 the	 same	 direction.	 This	 ensured	 the	 software	 would	

accurately	detect	 the	comets	and	the	readings	 for	tail	moment	would	all	be	 in	a	uniform	

direction.		

	

Overlapping	 comets,	 comets	 located	 on	 the	 edge	 of	 the	 image	 so	 part	 of	 the	 comet	 had	

been	removed,	comets	surrounded	by	cellular	debris	or	too	close	together	for	the	software	

to	 detect	 individual	 comets,	 were	 not	 included	 in	 the	 measurements.	 All	 the	 well-

separated	cells	were	counted	 in	each	window,	this	ranged	between	10	and	150	cells	per	

window.	A	minimum	of	50	cells	per	condition	(0.5µm3	debris	per	cell,	5µm3	debris	per	cell,	

50µm3	debris	per	cell,	 cell	only	and	hydrogen	peroxide	positive	control)	were	measured	

and	processed.		

	

4.3.3.7	Statistical	analysis	of	comet	assay	data.	

When	 imaging	 the	 agarose	 gels,	 a	 minimum	 of	 50	 cells	 were	 analysed	 for	 each	 test	

condition.	The	number	of	cells	counted	per	window	was	different	for	each	test	condition	

meaning	 that	 the	 number	 of	 comets	 analysed	 for	 each	 test	 condition	was	 not	 equal.	 In	

order	to	compare	means	of	each	test	condition	and	determine	whether	or	not	significant	

DNA	 damage	 had	 been	 caused	 in	 relation	 to	 the	 cell	 only	 negative	 control,	 a	 two-way	

ANOVA	 was	 performed.	 However	 the	 calculations	 performed	 as	 part	 of	 the	 two-way	

ANOVA	 assume	 equal	 group	 sizes,	 adjustments	 were	 made	 to	 accommodate	 for	 the	

varying	group	sizes.		
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4.4	Results	

	

4.4.1	The	effect	of	cobalt	chrome	and	stainless	steel	wear	particles	on	the	viability	of	

C6	glial,	PC12	neuronal	cell	lines	and	primary	astrocytes	and	microglia.	

	

4.4.1.1	The	effect	of	cobalt	chrome	particles	on	the	viability	of	C6	glial	cells.		

An	ATP	Liteä	cell	viability	assay	was	used	to	determine	the	effect	of	increasing	volumes	of	

cobalt	chrome	particles	(0.05µm3,	0.5µm3,	5µm3,	and	50µm3	per	cell)	on	the	viability	of	C6	

glial	cells	in	2D	culture.	The	average	luminescence	values,	indicative	of	cellular	metabolic	

activity	 and	 thus	 viability,	 for	 the	 cell	 only	 negative	 control	 continued	 to	 rise	 over	 the	

course	of	the	five	day	culture	period	(Figure	4.4)	demonstrating	an	approximately	10-fold	

increase	over	five	days.		

	 	
Figure	 4.4	The	 effect	 of	 cobalt	 chrome	 particles	 on	 the	 viability	 of	 C6	 glial	 cells	 in	 2D	

monolayer	culture	after	24	hours,	three	days	and	five	days	in	culture.	Data	is	presented	as	

the	mean	(n=6)	±	95%	confidence	 limits.	A	single	asterisk	depicts	a	significant	decrease,	

between	 means	 (p	 <0.05)	 when	 compared	 to	 the	 cell	 only	 negative	 control	 (Two-way	

ANOVA	and	Tukey	posthoc	analysis).		

	

C6	 cells,	 which	 received	 the	 highest	 cobalt	 chrome	 particle	 dose,	 50µm3	cobalt	 chrome	

debris	 per	 cell,	 demonstrated	 significant	 reductions	 in	 viability	 at	 all	 three	 time	 points	

tested	when	compared	to	the	cell	only	negative	control	(Figure	4.4).	A	65%	reduction	 in	
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viability	was	observed	after	24	hours,	97.5%	reduction	after	three	days	and	98%	after	5	

days	in	culture	(Figure	4.5).		

	
Figure	 4.5	The	 effect	 of	 cobalt	 chrome	 particles	 on	 the	 viability	 of	 C6	 glial	 cells	 in	 2D	

monolayer	 culture	 over	 five	 days,	 expressed	 as	 a	 percentage	 of	 the	 cell	 only	 negative	

control.	 Data	 is	 presented	 as	 the	 mean	 (n=6).	 A	 single	 asterisk	 depicts	 a	 significant	

reduction	in	viability.		

	

The	 C6	 cells	 cultured	 with	 cobalt	 chrome	 at	 a	 particle	 volume	 of	 5µm3	 exhibited	 a	

significant	 reduction	 in	 viability	 at	 all	 time	 points	 tested	 with	 a	 14.7%	 reduction	 in	

viability	 observed	 after	 24	 hours.	 After	 three	 days	 in	 culture	 a	 significant,	 72.1%,	

reduction	was	observed	when	C6	cells	were	cultured	with	5µm3	cobalt	chrome	debris	per	

cell.	After	five	days	in	culture	a	significant	25.8%	reduction	in	viability	was	observed.		

	

Upon	culture	with	a	particle	volume	of	0.5µm3	the	C6	glial	cells	demonstrated	a	decrease	

in	viability	when	compared	with	the	cell	only	negative	control	at	all	time	points	tested.	A	

significant	 23.4%	 reduction	 in	 viability	 was	 observed	 after	 24	 hours	 and	 a	 significant	

76.8%	reduction	after	three	days.	After	five	days	in	culture	a	significant	52.5%	reduction	

in	viability	was	observed	when	compared	to	the	cell	only	negative	control.			

	

When	C6	glial	cells	were	cultured	with	0.05µm3	cobalt	chrome	debris	per	cell	a	significant	

decrease	 in	 viability	was	 observed	 at	 all	 time	 points	when	 compared	with	 the	 cell	 only	

negative	 control,	 with	 a	 significant	 34%	 reduction	 observed	 after	 24	 hours	 and	 a	

significant	78.4	%	decrease	after	 three	days.	After	 five	days	 in	 culture	a	 significant	82%	

reduction	in	viability	was	observed	when	compared	to	the	cell	only	negative	control.			
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Camptothecin,	significantly	reduced	the	viability	of	the	C6	glial	cells	over	the	course	of	the	

investigation,	 here	 a	 55.8%	 significant	 reduction	 was	 observed	 after	 24	 hours,	 94.6%	

reduction	after	three	days	and	96.7%	reduction	after	five	days.	The	cobalt	chrome,	particle	

only	control,	did	not	interfere	with	the	luminescence	readings	for	this	assay.	A	summary	of	

the	effects	of	cobalt	chrome	on	the	viability	of	C6	glial	cells	is	provided	in	Table	4.1	

	

4.4.1.2	The	effect	of	stainless	steel	on	the	viability	of	C6	glial	cells.	

The	effects	of	stainless	steel	on	the	viability	of	C6	glial	cells	are	shown	in	Figure	4.6.	The	

average	luminescence	counts	per	second	value	for	the	cell	only	negative	control	continued	

to	rise	 for	 the	duration	of	 the	cell	 culture	experiment	with	a	10-fold	 increase	 in	average	

luminescence	counts	per	second	seen	over	five	days.		

	 	
Figure	4.6	The	effect	of	stainless	particles	on	the	viability	of	C6	glial	cells	in	2D	monolayer	

culture	after	24	hours,	three	days	and	five	days	in	culture.	Data	is	presented	as	the	mean	

(n=6)	±	95%	confidence	limits.	A	single	asterisk	depicts	a	significant	reduction	in	viability	

(p	value	of	<0.05)	when	compared	to	the	cell	only	negative	control.	An	•	is	indicative	of	a	

significant	increase	in	viability	when	compared	to	the	cell	only	negative	control.		
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Figure	 4.7	The	 effect	 of	 stainless	 steel	 particles	 on	 the	 viability	 of	 C6	 glial	 cells	 in	 2D	

monolayer	 culture	 over	 five	 days	 expressed	 as	 a	 percentage	 of	 the	 cell	 only	 negative	

control.	 Data	 is	 presented	 as	 the	 mean	 (n=6).	 A	 single	 asterisk	 depicts	 a	 significant	

reduction	 in	 viability.	 An	 •	 is	 indicative	 of	 a	 significant	 increase	 in	 viability	 when	

compared	to	the	cell	only	negative	control.		

	

When	 C6	 glial	 cells	 were	 cultured	 with	 the	 highest	 dose	 of	 stainless	 steel	 wear	 debris,	

50µm3	stainless	steel	debris	per	cell,	no	adverse	effect	on	C6	cell	viability	was	observed	at	

any	time	point.	Conversely	a	significant	increase	in	viability	was	detected	at	all	time	points	

when	compared	to	the	cell	only	negative	control	(Figure	4.6	and	Figure	4.7).			

	

The	C6	Glial	cells	cultured	with	5µm3	for	five	days	were	not	adversely	affected	in	terms	of	

cell	viability	when	compared	to	the	cell	only	negative	control	at	any	time	point	tested.		

	

After	24	hours	the	0.05µm3	per	cell	dose	of	stainless	steel	particles	significantly	increased	

the	viability	of	C6	cells	and	on	the	third	day	in	culture	both	0.5µm3	and	0.05µm3	doses	of	

stainless	steel	were	observed	to	significantly	increase	the	viability	of	C6	Cells.	This	effect	

was	 no	 longer	 observed	 at	 day	 five.	 After	 five	 days	 in	 culture	 the	 lowest	 stainless	 steel	

dose,	0.05µm3debris	per	cell,	significantly	reduced	the	viability	of	C6	glial	cells	by	11%.		

	

When	the	C6	cells	were	cultured	with	camptothecin	for	five	days	a	continuous	significant	

decline	 in	 viability	was	 observed,	 with	 a	 significant	 37.7%	 reduction	 observed	 after	 24	

hours,	76.1	%	decrease	after	three	days	and	91.9%	after	five	days.		
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The	 stainless	 steel	wear	particles	 suspended	 in	 supplemented	medium	did	not	 interfere	

with	the	luminescence	count	for	the	ATP	Liteä	assay.	A	summary	of	the	effects	of	stainless	

steel	on	the	viability	of	C6	glial	cells	is	provided	in	Table	4.1.	

	

Table	4.1	The	effect	of	cobalt	chrome	and	stainless	steel	wear	particles	on	the	viability	of	

C6	glial	cells.	A	significant	decrease	in	viability	(p<0.05)	compared	to	the	cell	only	negative	

control	 is	 indicated	 with	 an	 asterisk.	 Conditions	 marked	 with	 an	 •	 are	 indicative	 of	 a	

significant	increase	in	cell	viability	relative	to	the	cell	only	control.	

	

	 C6	and	Cobalt	chrome	particles	 C6	and	stainless	steel	particles	

	 0.05µm3	 0.05µm3	 5µm3	 50µm3	 Camp.	 0.05µm3	 0.5µm3	 5µm3	 50µm3	 Camp.	

Day	1	 *	 *	 *	 *	 *	 •	 	 	 •	 *	
Day	3	 *	 *	 *	 *	 *	 •	 •	 	 •	 *	
Day	5	 *	 *	 *	 *	 *	 *	 	 	 •	 *	

	

4.4.1.3	The	effect	of	cobalt	chrome	particles	on	the	viability	of	PC12	neuronal	cells.	

The	 effects	 of	 cobalt	 chrome	 wear	 particles	 on	 the	 viability	 of	 PC12	 neuronal	 cells	 are	

shown	in	Figure	4.8.	The	PC12	neuronal	suspension	cells	continued	to	grow	and	multiply	

for	the	duration	of	the	investigation,	indicated	by	a	continuing	rise	in	the	level	of	ATP	over	

the	five	day	time	period.		

	

	

	

	



	 	 Chapter	4	
	

	128	

	 	
Figure	4.8	The	effect	of	cobalt	chrome	particles	on	the	viability	of	PC12	glial	cells	 in	2D	

monolayer	culture	after	24	hours,	three	days	and	five	days	in	culture.	Data	is	presented	as	

the	mean	(n=6)	±	95%	confidence	limits.	A	single	asterisk	depicts	a	significant	reduction	in	

viability	(p	value	of	<0.05)	and	an	•	is	indicative	of	a	significant	increase	in	viability	when	

compared	to	the	cell	only	negative	control.		

	

	
Figure	4.9	The	effect	of	cobalt	chrome	particles	on	the	viability	of	PC12	glial	cells	 in	2D	

monolayer	 culture	 after	 five	 days	 in	 culture,	 expressed	 as	 a	 percentage	 of	 the	 cell	 only	

negative	 control.	 Data	 is	 presented	 as	 the	 mean	 (n=6).	 A	 single	 asterisk	 depicts	 a	

significant	reduction	in	viability	an	•	is	indicative	of	a	significant	increase	in	viability	when	

compared	to	the	cell	only	negative	control.	
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After	24	hours	the	highest	dose	of	cobalt	chrome	did	not	have	a	significant	adverse	effect	

on	the	viability	of	PC12	cells	(Figure	4.8).	Interestingly,	after	24	hours	in	culture	the	cobalt	

chrome	particles	had	a	beneficial	effect	on	the	PC12	viability	at	this	dose,	but	after	three	

and	five	days	in	culture	a	significant	reduction	in	cell	viability	was	observed,	with	a	96.2%	

reduction	evident	after	three	days	and	a	97.7%	reduction	after	five	days	(Figure	4.9).	

	

When	PC12	cells	were	cultured	with	5µm3	cobalt	chrome	debris	per	cell.	After	24	hours	in	

culture	there	were	no	adverse	effects	on	the	cell	viability	of	PC12	neuronal	cells,	however	

after	three	days	in	culture	a	significant	48.8%	reduction	was	observed,	and	after	five	days	

the	 viability	 decreased	 by	 58.6%	which	was	 significant	when	 compared	 to	 the	 cell	 only	

negative	control	(p<0.05).	

	

The	 PC12	 neuronal	 cells	 cultured	 with	 0.5µm3	cobalt	 chrome	 debris	 per	 cell	 were	 not	

adversely	 affected	 in	 terms	 of	 cell	 viability	 when	 compared	 to	 the	 cell	 only	 negative	

control	 after	 24	 hours.	 After	 the	 PC12	 cells	 were	 cultured	 with	 0.5µm3	cobalt	 chrome	

debris	per	cell	for	three	and	five	days,	significant	14.3	%	and	47.8%	reductions	in	viability	

were	observed	respectively.		

	

The	PC12	cells	cultured	with	particle	volume	(µm3)	to	cell	number	ratio	of	0.05:1	of	cobalt	

chrome	particles	were	not	adversely	affected	in	terms	of	viability	when	compared	to	the	

cell	only	control	at	any	time	point	tested.		

	

When	the	PC12	cells	were	cultured	with	the	camptothecin	positive	control	for	five	days	a	

continuous	decline	 in	 viability	was	 observed,	with	 an	8.8%	 reduction	 observed	 after	 24	

hours,	 which	 was	 not	 significant	 when	 compared	 to	 the	 cell	 only	 negative	 control.	 A	

significant	 85.2%	 decrease	 in	 viability	 was	 observed	 after	 three	 days	 in	 culture	 and	 a	

significant	96.7%	reduction	after	five	days.	 	The	cobalt	chrome	wear	particles	suspended	

in	 supplemented	medium	did	 not	 interfere	with	 the	 luminescence	 readings	 for	 the	 ATP	

Liteä	assay.		A	summary	of	the	effects	of	cobalt	chrome	on	the	viability	of	PC12	neuronal	

cells	can	be	seen	in	Table	4.2.	

	

4.4.1.4.The	effect	of	stainless	steel	particles	on	the	viability	of	PC12	neuronal	cells.		

The	 effect	 of	 increasing	 stainless	 steel	 particle	 volumes	 (0.05µm3-50µm3	 stainless	 steel	

debris	per	cell)	on	the	viability	of	PC12	neuronal	cells	was	assessed	using	the	ATP	Liteä		

cell	viability	assay	over	five	days	in	culture.	Over	the	course	of	the	five	day	culture	period	
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the	 cell	 only	 negative	 control	 continued	 to	 proliferate	 with	 an	 approximately	 four-fold	

increase	in	ATP	production	from	day	one	to	day	five	(Figure	4.10).	

	
Figure	4.10	The	effect	of	stainless	steel	wear	particles	on	the	viability	of	PC12	glial	cells	in	

2D	monolayer	culture	after	24	hours,	three	days	and	five	days	in	culture.	Data	is	presented	

as	 the	mean	(n=6)	±	95%	confidence	 limits.	An	asterisk	depicts	a	significant	decrease	 in	

viability	(p	value	<0.05)	compared	to	the	cell	only	negative	control.	An	•	is	indicative	of	a	

significant	increase	in	viability	when	compared	to	the	cell	only	negative	control.		

	
Figure	4.11	The	effect	of	stainless	steel	on	the	viability	of	PC12	glial	cells	in	2D	monolayer	

culture	after	five	days	as	a	percentage	of	the	cell	only	negative	control.	Data	is	presented	

as	 the	mean	(n=6).	An	asterisk	depicts	a	 significant	decrease	 in	viability	 (p	value	<0.05)	

compared	to	the	cell	only	negative	control.	Conditions	marked	with	an	•	are	indicative	of	a	

significant	increase	in	viability	when	compared	to	the	cell	only	negative	control.	
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No	adverse	effect	on	viability	was	observed	when	PC12	cells	were	cultured	with	50µm3,	

5µm3	and	0.05µm3	stainless	steel	debris	per	cell	after	24	hours	in	culture	(Figure	4.10	and	

Figure	4.11).	 	The	0.5µm3	stainless	steel	dose	did	trigger	a	significant	12.9%	reduction	at	

this	time	point.	

	

Interestingly	 after	 three	 days	 in	 culture	 a	 significant	 increase	 in	 viability	was	 observed	

when	 the	PC12	cells	were	cultured	with	5µm3	stainless	steel	debris	per	cell.	At	 this	 time	

point	 the	 50µm3,	 0.5µm3	 and	 0.05µm3	 stainless	 steel	 debris	 per	 cell	 did	 not	 adversely	

effect	PC12	viability.	

	

After	five	days	in	culture	the	50µm3	stainless	steel	debris	per	cell	dose	adversely	affected	

PC12	cells,	with	a	12.1	%	reduction	in	viability	observed.	

	

The	 camptothecin	 positive	 control	 elicited	 a	 significant	 reduction	 in	 PC12	 viability	 over	

the	 course	of	 the	experiment	when	compared	 to	 the	 cell	 only	negative	 control.	A	30.9%	

reduction	 in	 viability	 observed	 after	 24	 hours,	 82.6%	 reduction	 after	 three	 days	 and	 a	

96.6%	decrease	after	 five	days.	A	 two-way	ANOVA	and	Tukey	post-hoc	 test	was	used	 to	

determine	whether	the	reduction	in	viability	was	significant	(p<0.05).	

	

The	 luminescence	 readings	 were	 not	 disrupted	 by	 the	 presence	 of	 stainless	 steel	 wear	

particles.	 A	 summary	 of	 the	 effects	 of	 stainless	 steel	 on	 the	 viability	 of	 PC12	 cells	 is	

provided	in	Table	4.2	
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Table	4.2	The	effect	of	cobalt	chrome	and	stainless	steel	wear	particles	on	the	viability	of	

PC12	neuronal	cells.	A	significant	decrease	in	viability	(p<0.05)	compared	to	the	cell	only	

negative	control	is	indicated	with	an	asterisk.	Conditions	marked	with	an	•	are	indicative	

of	a	significant	increase	in	cell	viability	relative	to	the	cell	only	control.	

	

	 PC12	and	Cobalt	chrome	particles	 PC12	and	stainless	steel	particles	

	 0.05µm3	 0.5µm3	 5µm3	 50µm3	 Camp.	 0.05µm3	 0.5µm3	 5µm3	 50µm3	 Camp.	

Day	1	 	 •	 	 •	 	 	 *	 	 	 *	
Day	3	 	 *	 *	 *	 *	 	 	 •	 	 *	
Day	5	 	 *	 *	 *	 *	 	 	 	 *	 *	

	

4.4.1.5.	The	effect	of	cobalt	chrome	particles	on	the	viability	of	primary	astrocytes	

and	microglia.	

The	 effect	 of	 increasing	 cobalt	 chrome	 volume	 doses	 of	 particles	 on	 the	 viability	 of	

primary	 astrocytes	 and	microglia	 in	 co-culture	was	 assessed	 using	 the	ATP	 Liteä	 assay	

over	 time.	 Over	 the	 course	 of	 the	 investigation	 the	 primary	 astrocytes	 and	 microglia	

continued	to	proliferate	(Figure	4.12).	
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Figure	4.12	The	 effect	 of	 cobalt	 chrome	particles	 on	 the	 viability	 of	 primary	 astrocytes	

and	microglia	 in	 co-culture	 in	2D	monolayer	 culture	 after	 24	hours,	 three	days	 and	 five	

days.	Data	is	presented	as	the	mean	(n=6)	±	95%	confidence	limits.	An	asterisk	depicts	a	

significant	decrease	 in	viability	(p	value	<0.05)	when	compared	to	 the	cell	only	negative	

control.	

	
Figure	4.13	The	 effect	 of	 cobalt	 chrome	particles	 on	 the	 viability	 of	 primary	 astrocytes	

and	microglia	in	2D	monolayer	culture	after	five	days,	expressed	as	a	percentage	of	the	cell	

only	 negative	 control.	 Data	 is	 presented	 as	 the	 mean	 (6	 replicates	 per	 condition).	 An	

asterisk	depicts	a	significant	decrease	 in	viability	(p	value	<0.05)	when	compared	to	 the	

cell	only	negative	control.	
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The	culture	of	primary	astrocytes	and	microglia	with	50µm3,	5µm3,	0.5µm3	and	0.05µm3	

cobalt	chrome	wear	particles	did	not	elicit	an	adverse	effect	on	cell	viability	after	24	hours	

in	culture	(Figure	4.12).	However	after	three	and	five	days	in	culture	with	cobalt	chrome	

wear	particles,	a	significant	reduction	in	the	viability	of	primary	astrocytes	and	microglia	

was	observed	 for	 all	 particle	doses	 (50µm3,	 5µm3,	 0.5µm3	and	0.05µm3).	When	primary	

astrocytes	 and	 microglia	 in	 co-culture	 were	 cultured	 with	 the	 highest	 cobalt	 chrome	

particle	dose	of	50µm3,	an	83.8%	and	70.8%	decrease	in	viability	was	observed	after	three	

and	five	days,	respectively,	compared	to	the	cell	only	negative	control	(Figure	4.13).	The	

viability	of	primary	astrocytes	and	microglia	in	co-culture	was	significantly	reduced	after	

three	 and	 five	 days	when	 cultured	with	 5µm3	cobalt	 chrome	 debris	 per	 cell.	 After	 three	

days	 in	 culture,	 a	 significant	 73.9%	 reduction	 in	 viability	 was	 observed	 and	 a	 69.4%	

decrease	was	observed	after	 five	days	when	 compared	 to	 the	 cell	 only	 negative	 control.	

The	viability	of	primary	astrocytes	and	microglia	 in	co-culture	was	significantly	 reduced	

when	 cultured	 with	 0.5µm3	cobalt	 chrome	 debris	 per	 cell	 after	 three	 and	 five	 days	 in	

culture.	After	three	days	a	59.8%	decrease	was	observed	and	after	5	days	a	55.7%	decline	

was	 recorded.	 Primary	 astrocytes	 and	 microglia	 cultured	 with	 0.05µm3	cobalt	 chrome	

debris	per	cell	revealed	a	gradual	decline	in	viability	over	the	course	of	the	investigation.	

After	 three	 days	 in	 culture	 a	 29%	 reduction	 in	 viability	 was	 observed	 and	 a	 58.8%	

reduction	in	viability	after	five	days.		

	

When	 primary	 astrocytes	 and	 microglia	 were	 cultured	 with	 the	 camptothecin	 positive	

control	a	rapid	decline	in	cell	viability	occurred	over	the	five-day	study.	After	24	hours	in	

culture	 with	 camptothecin	 the	 viability	 of	 primary	 astrocytes	 and	 microglia	 was	

significantly	reduced	by	99.5%.	After	three	days	the	viability	was	significantly	reduced	by	

91.4%	and	significantly	reduced	by	99.3%	after	five	days.		

	

The	 luminescence	 readings	were	 not	 disrupted	 by	 the	 presence	 of	 cobalt	 chrome	wear	

particles	 for	 this	 assay.	 A	 summary	 of	 the	 effects	 of	 cobalt	 chrome	 on	 the	 viability	 of	

primary	astrocytes	and	microglia	can	be	seen	in	Table	4.3.	

	

4.4.1.6.	The	effect	of	 stainless	steel	particles	on	 the	viability	of	primary	astrocytes	

and	microglia.		

The	 effect	 of	 increasing	 stainless	 steel	 particles	 volumes	 on	 the	 viability	 of	 primary	

astrocytes	and	microglia	in	co-culture	was	assessed	using	the	ATP	Liteä	assay	over	time.	

When	 primary	 astrocytes	 and	 microglia	 were	 cultured	 with	 50µm3,	 5µm3	 and	 0.5µm3	

stainless	steel	debris	per	cell	for	24	hours	a	significant	reduction	in	viability	was	observed	
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for	 all	 three	 doses	when	 compared	 to	 the	 cell	 only	 negative	 control	 (38.8%,	 38.9%	 and	

24.9%	reductions	respectively)	(Figures	4.14	and	4.15).	

	 	
Figure	4.14	The	effect	of	stainless	steel	particles	on	the	viability	of	primary	astrocytes	and	

microglia	 over	 24	 hours,	 three	 days	 and	 five	 days	 in	 2D	 monolayer	 culture.	 Data	 is	

presented	 as	 the	mean	 (n=6)	±	 95%	 confidence	 limits.	 An	 asterisk	 depicts	 a	 significant	

decrease	in	viability	(p	value	of	<0.05)	when	compared	to	the	cell	only	negative	control.	

	

Figure	4.15	The	effect	of	stainless	steel	particles	on	the	viability	of	primary	astrocytes	and	

microglia	after	five	days	in	2D	monolayer	culture	system,	expressed	as	a	percentage	of	the	

cell	only	negative	control.	Data	is	presented	as	the	mean	(6	replicates	per	condition).	An	

asterisk	depicts	a	significant	decrease	 in	viability	(p	value	<0.05)	when	compared	to	 the	

cell	only	negative	control.	
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Primary	astrocytes	and	microglia	cultured	with	the	lowest	0.05µm3	stainless	steel	per	cell	

particle	dose	were	not	adversely	affected	in	terms	of	viability,	when	compared	to	the	cell	

only	negative	control	after	24	hours	in	culture	(Figure	4.15).			

	

No	 significant	 differences	 in	 cell	 viability	 were	 observed	 when	 primary	 astrocytes	 and	

microglia	were	cultured	with	5µm3,	0.5µm3	and	0.05µm3	stainless	steel	debris	per	cell	at	

the	 three	 and	 five	 day	 time	 points.	 After	 five	 days	 in	 culture	 primary	 astrocytes	 and	

microglia	 cultured	 with	 the	 highest	 stainless	 steel	 particle	 dose	 of	 50µm3	a	 significant	

reduction	in	viability	of	14.1%	was	observed.	

	

The	 primary	 astrocytes	 and	 microglia	 cultured	 with	 camptothecin	 showed	 progressive	

reductions	 in	viability,	20.9%,	36.2%,	81.5%	after	one,	 three	and	 five	days,	 respectively,	

when	compared	to	the	cell	only	negative	control.		

	

The	stainless	steel	wear	particles	did	not	interfere	with	the	luminescence	counting	for	this	

assay.	A	summary	of	the	effects	of	stainless	steel	on	the	viability	of	primary	astrocytes	and	

microglia	can	be	seen	in	Table	4.3	

	

Table	4.3	The	effect	of	cobalt	chrome	and	stainless	steel	wear	particles	on	the	viability	of	

primary	astrocytes	and	microglia.	A	significant	decrease	 in	viability	p<0.05	compared	 to	

the	cell	only	negative	control	is	indicated	with	an	asterisk.		

	

	 Primary	A	+M	and	CoCr	particles	 Primary	A+M	and	SS	particles	

	 0.05µm3	 0.5µm3	 5µm3	 50µm3	 Camp.	 0.05µm3	 0.5µm3	 5µm3	 50µm3	 Camp.	

Day	1	 	 	 	 	 *	 	 *	 *	 *	 *	
Day	3	 *	 *	 *	 *	 *	 	 	 	 	 *	
Day	5	 *	 *	 *	 *	 *	 	 	 	 *	 *	
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4.4.2.	The	effect	of	cobalt	chrome	and	stainless	steel	wear	particles	on	the	integrity	

of	primary	astrocyte	and	microglia	DNA.	

	

4.4.2.1.	 The	 effect	 of	 cobalt	 chrome	 wear	 particles	 on	 the	 integrity	 of	 primary	

astrocyte	and	microglia	DNA.		

Primary	astrocytes	 and	microglia	 in	 co-culture	and	primary	astrocytes	 in	 isolation	were	

cultured	in	a	2D	monolayer	cell	culture	system	with	increasing	particle	volumes	of	cobalt	

chrome	and	 stainless	 steel	 (0.5µm3,	5µm3	and	50µm3	debris	per	 cell).	An	alkaline	 comet	

assay	was	used	to	determine	the	effect	of	these	particle	doses	on	the	integrity	of	primary	

astrocyte	and	microglia	DNA.		

	

When	 primary	 astrocytes	 and	 microglia	 were	 cultured	 in	 a	 2D	 monolayer	 system	 low	

levels	of	DNA	damage	were	detected	over	the	duration	of	the	investigation.	After	24	hours	

a	tail	moment	of	0.95	was	observed,	0.56	after	two	days	and,	1.16	after	five	days.	The	level	

of	 DNA	 damage	 in	 response	 to	 increasing	 cobalt	 chrome	 wear	 particle	 doses	 was	

compared	 to	 the	 cell	 only	 negative	 control	 at	 each	 time	 point	 tested	 using	 a	 Two-way	

ANOVA	and	Tukey	post	hoc	analysis	(Figure	4.16).		

	

When	 primary	 astrocytes	 and	 microglia	 were	 cultured	 with	 the	 highest	 cobalt	 chrome	

particle	 volume	 (50µm3	cobalt	 chrome	 debris	 per	 cell)	 for	 24	 hours,	 two	 days	 and	 five	

days	the	level	of	DNA	damage	was	significantly	greater	than	that	observed	in	the	cell	only	

negative	control.	After	24	hours	a	tail	moment	of	2.63	was	recorded	and	after	two	days	in	

culture	 the	 tail	 moment	 was	 2.16,	 after	 five	 days	 in	 culture	 a	 tail	 moment	 of	 1.65	 was	

recorded.			
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Figure	4.16	 The	 effect	 of	 increasing	 cobalt	 chrome	 particle	 volumes	 on	 the	 integrity	 of	

primary	astrocytes	and	microglia	DNA	after	24	hours,	two	and	five	days	in	culture,	mean	

tail	moment	±	95%	confidence	intervals	(six	replicates	per	condition).	Hydrogen	peroxide	

was	used	as	a	positive	control.	An	asterisk	 indicates	a	significant	 increase	 in	 the	 level	of	

DNA	damage	expressed	as	a	value	for	tail	moment	(p<0.05)	when	compared	with	cell	only	

negative	control	using	a	Two-way	ANOVA.	An	•	indicates	a	significant	decrease	in	the	level	

of	DNA	damage	expressed	as	a	value	 for	 tail	moment	(p<0.05)	when	compared	with	cell	

only	negative	control	using	a	Two-way	ANOVA.		

	

When	 primary	 astrocytes	 and	microglia	 were	 cultured	with	 5µm3	cobalt	 chrome	 debris	

per	 cell,	 no	 significant	 DNA	 damage	 was	 observed	 after	 24	 hours	 in	 culture.	 After	 two	

days,	 this	 particle	 dose	 induced	 significantly	 greater	 levels	 of	 DNA	 damage	 when	

compared	 to	 the	cell	only	negative	control.	At	 this	 time	point	a	 tail	moment	of	2.83	was	

recorded.	This	effect	was	no	longer	significant	at	the	five-day	time	point	(Figure	4.16).		

	

The	 lowest	 cobalt	 chrome	 particle	 concentration	 of	 0.5µm3	 cobalt	 chrome	 caused	

significant	DNA	damage	after	48	hours	in	culture	with	a	tail	moment	of	1.27	compared	to	a	

tail	moment	 of	 0.56	 observed	 in	 the	 cell	 only	 gels.	 Interestingly	 after	 24	 hours	 and	 five	

days,	the	level	of	DNA	damage	of	primary	astrocytes	and	microglia	was	significantly	lower	

at	 this	 dose,	 when	 compared	 to	 the	 cell	 only	 negative	 control	 (Figure	 4.16).	 This	 was	

denoted	by	a	•	symbol	in	Figure	4.16		
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At	 all	 time	 points	 tested	 the	 hydrogen	 peroxide	 positive	 control	 caused	 significant	DNA	

damage	when	compared	to	the	cell	only	negative	control.	After	24	hours	 in	culture	a	tail	

moment	of	7.87	was	recorded.	This	 level	of	DNA	damage	 increased	 further	 to	9.71	after	

two	days,	almost	20	times	the	level	observed	in	the	cell	only	control.	At	the	five-day	time	

point	a	tail	moment	of	3.95	was	recorded.		

	

4.4.2.2.	 The	 effect	 of	 cobalt	 chrome	 wear	 particles	 on	 the	 integrity	 of	 primary	

astrocyte	DNA.	

When	primary	astrocytes	in	isolation	were	cultured	in	a	2D	monolayer	system,	low	levels	

of	DNA	damage	were	observed	throughout	the	duration	of	the	investigation.		The	levels	of	

DNA	damage	observed,	expressed	as	a	tail	moment	value,	were	4.71,	1.74	and	1.99	after	

24	hours,	two	days	and	five	days,	respectively	(Figure	4.17).		

	

	
Figure	4.17	 The	 effect	 of	 increasing	 cobalt	 chrome	 particle	 volumes	 on	 the	 integrity	 of	

primary	astrocyte	DNA	after	24	hours,	 two	and	five	days	 in	culture,	mean	tail	moment	±	

95%	confidence	intervals	(six	replicates	per	condition).	Hydrogen	peroxide	was	used	as	a	

positive	control.	An	*	indicates	a	significant	increase	in	level	of	DNA	damage	expressed	as	

a	value	 for	 tail	moment	(p<0.05)	when	compared	with	cell	only	negative	control	using	a	

Two-way	ANOVA.	An	•	indicates	a	significant	decrease	in	level	of	DNA	damage	expressed	

as	a	value	for	tail	moment	(p<0.05)	when	compared	with	cell	only	negative	control	using	a	

Two-way	ANOVA.	
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When	 primary	 astrocytes	 in	 isolation	 were	 cultured	 with	 the	 highest	 cobalt	 chrome	

particle	concentration,	50µm3	cobalt	chrome	debris	per	cell,	significant	 increases	 in	DNA	

damage,	when	compared	to	the	cell	only	negative	control,	were	observed	at	all	three	time	

points	 tested.	 The	 tail	moments	 recorded	were	 7.28,	 3.05	 and	 5.29	 after	 24	 hours,	 two	

days	and	five	days,	respectively.			

	

At	all	time	points	tested,	24	hours,	two	days	and	five	days,	the	5µm3	cobalt	chrome	particle	

volume	 dose	 triggered	 significant	 levels	 of	 DNA	 damage.	 The	 levels	 of	 DNA	 damage	

recorded,	expressed	as	a	tail	moment	value,	were	5.35,	3.39	and	4.72	after	24	hours,	two	

days	and	five	days,	respectively	(Figure	4.17).			

	

When	 primary	 astrocytes	 in	 isolation	 were	 cultured	 with	 the	 lowest	 cobalt	 chrome	

particle	 concentration	 of	 0.5µm3cobalt	 chrome	 debris	 per	 cell	a	 significant	 level	 of	 DNA	

damage	was	observed	after	24	hours	with	a	tail	moment	of	4.94.	The	level	of	DNA	damage	

was	not	significantly	greater	than	the	cell	only	control	at	any	other	time	point,	in	fact	after	

48	hours	and	five	days	the	 level	of	DNA	damage	with	this	particle	dose	was	significantly	

lower	than	the	cell	only	control.			

	

The	hydrogen	peroxide	positive	control	caused	significant	DNA	damage	for	the	duration	of	

the	investigation	when	compared	to	the	cell	only	negative	control.	The	tail	moment	values	

recorded	after	24	hours,	two	days	and	five	days	were	12.40,	6.65	and	5.50,	respectively.			

	

A	 summary	 of	 the	 effects	 of	 increasing	 cobalt	 chrome	 particle	 volumes	 (0.5µm3	-50µm3	

cobalt	chrome	debris	per	cell)	on	the	integrity	of	primary	astrocyte	and	microglia	DNA	can	

be	seen	in	Table	4.4	below.		
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Table	4.4	The	effects	of	increasing	cobalt	chrome	particle	concentrations	on	the	integrity	

of	primary	astrocyte	and	microglia	DNA.	Cells	with	 significantly	 increased	 levels	of	DNA	

damage	p<0.05	(two-way	ANOVA	with	Tukey	post	hoc	analysis)	compared	to	the	cell	only	

negative	control	were	indicated	with	an	*.	An	•	Indicates	a	significant	decrease	in	level	of	

DNA	damage	expressed	as	a	value	for	tail	moment	(p<0.05)	when	compared	with	cell	only	

negative	control	using	Two-way	ANOVA.	

	

	 Astrocytes	and	microglia	 Astrocytes	in	isolation	

	 0.5µm3	 5µm3	 50µm3	 H2O2	 0.5µm3	 5µm3	 50µm3	 H2O2	

Day	1	 •	 	 *	 *	 *	 *	 *	 *	

Day	2	 *	 *	 *	 *	 •	 *	 *	 *	

Day	5	 •	 	 *	 *	 •	 *	 *	 *	

	

4.4.2.3.	 The	 effect	 of	 stainless	 steel	 wear	 particles	 on	 the	 integrity	 of	 primary	

astrocyte	and	microglia	DNA.	

When	primary	astrocytes	and	microglia	in	co-culture	were	cultured	using	a	2D	monolayer	

system,	 low	 levels	of	DNA	damage	were	observed	 throughout	 the	 five-day	 investigation.		

The	DNA	damage	expressed	as	a	tail	moment	value,	were	7.94,	1.85	and	1.0	after	24	hours,	

two	days	and	five	days,	respectively	(Figure	4.18).		
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Figure	4.18	 The	 effect	 of	 increasing	 stainless	 steel	 particle	 volumes	 on	 the	 integrity	 of	

primary	astrocytes	and	microglia	 in	co-culture	DNA	after	24	hours,	 two	and	 five	days	 in	

culture,	 mean	 tail	 moment	 ±	 95%	 confidence	 intervals	 (six	 replicates	 per	 condition).	

Hydrogen	peroxide	was	used	as	a	positive	control.		An	*	indicates	a	significant	increase	in	

the	 level	of	DNA	damage	expressed	as	a	value	 for	 tail	moment	(p<0.05)	when	compared	

with	 cell	 only	 negative	 control	 using	 Two-way	 ANOVA.	 An	 •	 indicates	 a	 significant	

decrease	 in	 level	 of	 DNA	 damage	 expressed	 as	 a	 value	 for	 tail	 moment	 (p<0.05)	 when	

compared	with	cell	only	negative	control	using	Two-way	ANOVA.	

	

When	 primary	 astrocytes	 and	 microglia	 were	 cultured	 with	 the	 highest	 stainless	 steel	

particle	concentration	(50µm3	stainless	steel	debris	per	cell)	the	level	of	DNA	damage	was	

significant	when	compared	to	the	cell	only	negative	control	at	all	time	points	tested.	After	

24	 hours	 in	 culture	 with	 the	 highest	 stainless	 steel	 particle	 volume	 the	 level	 of	 DNA	

damage,	 expressed	 as	 a	 tail	 moment	 value	 was	 18.08.	 After	 two	 days	 the	 tail	 moment	

observed	was	4.94.	After	five	days	the	tail	moment	was	2.09.		

	

The	5µm3	stainless	 steel	 particle	 dose	 also	 triggered	 significant	DNA	damage	 in	primary	

astrocytes	and	microglia	at	all	 time	points	tested.	The	 level	of	DNA	damage	 induced	was	

recorded	as	a	value	of	tail	moment.	The	mean	tail	moments	recorded	after	24	hours,	two	

days	and	five	days	were	14.42,	3.74	and	1.73,	respectively.	
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The	 lowest	 stainless	 steel	 particle	 dose	 0.5µm3	stainless	 steel	 debris	 per	 cell	 induced	

significant	 levels	 of	 DNA	 damage	 after	 24	 hours	 in	 culture	 with	 a	 tail	 moment	 of	 8.96	

compared	 to	 the	 7.94	 tail	 moment	 of	 the	 cell	 only	 negative	 control.	 This	 effect	 was	 no	

longer	 significant	 after	 48	 hours	 and	 after	 5	 days	 the	 level	 of	 DNA	 damage	 was	

significantly	lower	than	the	cell	only	negative	control.		

		

When	 primary	 astrocytes	 and	 microglia	 were	 cultured	 with	 the	 hydrogen	 peroxide	

positive	control,	 significant	 levels	of	DNA	damage	were	detected	at	all	 time	points.	After	

24	 hours	 the	 level	 of	 DNA	damage	 caused	 by	 the	 hydrogen	 peroxide,	 recorded	 as	 a	 tail	

moment	value,	was	15.99.	At	the	two	and	five	day	time	points	tail	moments	of	11.57	and	

5.55,	respectively	were	recorded.		

	

4.4.2.4.	 The	 effect	 of	 stainless	 steel	 wear	 particles	 on	 the	 integrity	 of	 primary	

astrocyte	DNA.	

When	primary	astrocytes	in	isolation	were	cultured	in	a	2D	monolayer	system,	low	levels	

of	DNA	damage	were	observed	at	all	time	points	tested.	 	The	level	of	damage	to	primary	

astrocyte	DNA,	expressed	as	a	tail	moment	value,	was	11.57,	7.93	and	0.95	after	24	hours,	

two	days	and	five	days	respectively	(Figure	4.19).		
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Figure	4.19	 The	 effect	 of	 increasing	 stainless	 steel	 particle	 volumes	 on	 the	 integrity	 of	

primary	astrocyte	DNA	after	24	hours,	 two	and	five	days	 in	culture,	mean	tail	moment	±	

95%	confidence	intervals	(six	replicates	per	condition).	Hydrogen	peroxide	was	used	as	a	

positive	 control.	 An	 *	 indicates	 a	 significant	 increase	 in	 DNA	 damage	 (p<0.05)	 when	

compared	 with	 cell	 only	 negative	 control	 using	 a	 Two-way	 ANOVA.	 An	 •	 indicates	 a	

significant	decrease	in	level	of	DNA	damage	expressed	as	a	value	for	tail	moment	(p<0.05)	

when	compared	with	cell	only	negative	control	using	a	Two-way	ANOVA.	

	

When	 primary	 astrocytes	 in	 isolation	 were	 cultured	 with	 the	 highest	 stainless	 steel	

particle	 dose	 (50µm3	 stainless	 steel	 wear	 debris	 per	 cell)	 significant	 adverse	 effects	 on	

cellular	DNA	were	observed	after	five	days	in	culture	only.	After	the	five-day	time	point	a	

tail	moment	of	1.69	was	recorded.	 Interestingly	after	24	hours	and	two	days	the	 level	of	

DNA	damage	caused	by	this	particle	dose	was	significantly	lower	than	the	level	of	damage	

seen	in	the	cell	only	control.		

	

After	48	hours	and	five	days,	the	mid	particle	volume	of	5µm3,	induced	significant	levels	of	

DNA	 damage	 in	 primary	 astrocytes	 in	 a	 2D	monolayer	 cell	 culture	 system.	 The	 level	 of	

DNA	damage	expressed	as	a	tail	moment	value	was	9.87	after	two	days	and	1.93	after	five	

days	in	culture	with	this	particle	dose.		

	

Primary	astrocytes	in	isolation	did	not	exhibit	significant	increased	levels	of	DNA	damage	

when	compared	to	 the	cell	only	negative	control	at	any	time	point	 tested	when	cultured	
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with	 the	 lowest	 0.5µm3	stainless	 steel	 debris	 per	 cell.	 	 Interestingly	 at	 the	 24	 hour	 and	

two-day	time	points,	the	levels	of	DNA	damaged	induced	by	this	particle	dose	in	primary	

astrocytes	was	significantly	lower	than	the	cell	only	negative	control.		

	

The	 hydrogen	 peroxide	 positive	 control	 induced	 significant	 levels	 of	 DNA	damage	 at	 all	

three	time	points	tested.	After	24	hours	the	level	of	DNA	damage	caused	by	the	hydrogen	

peroxide,	recorded	as	a	tail	moment	value	was	46.69,	approximately	four	times	the	level	of	

damage	seen	in	the	cell	only	negative	control.	At	the	two-day	and	five-day	time	points	tail	

moments	of	14.19	and	5.79,	respectively	were	recorded.		

	

The	effects	of	increasing	stainless	steel	particle	volumes	(0.5µm3	-50µm3)	on	the	integrity	

of	primary	astrocyte	and	microglia	DNA	are	summarised	in	Table	4.5	below.		

	
Table	 4.5	 The	 effects	 of	 increasing	 stainless	 steel	 particle	 volumes	 on	 the	 integrity	 of	

primary	 astrocyte	 and	 microglia	 DNA.	 Cells	 with	 significantly	 increased	 levels	 of	 DNA	

damage	p<0.05	(two-way	ANOVA	with	Tukey	post	hoc	analysis)	compared	to	the	cell	only	

negative	control	were	indicated	with	an	*.	An	•	indicates	a	significant	decrease	in	level	of	

DNA	damage	expressed	as	a	value	for	tail	moment	(p<0.05)	when	compared	with	cell	only	

negative	control	using	Two-way	ANOVA.	

	

	 Astrocytes	and	microglia	 Astrocytes	in	isolation	

	 0.5µm3	 5µm3	 50µm3	 H2O2	 0.5µm3	 5µm3	 50µm3	 H2O2	

Day	1	 *	 *	 *	 *	 •	 	 •	 *	

Day	2	 	 *	 *	 *	 •	 *	 •	 *	

Day	5	 •	 *	 *	 *	 	 *	 *	 *	
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4.5	Discussion		

The	 use	 of	 total	 disc	 replacements	 to	 reduce	 pain	 and	 instability	 associated	 with	

degenerative	 disc	 disease	 has	 been	 an	 instrumental	 intervention	 for	 the	 spinal	 surgeon.	

Motion	 preservation	 devices	 such	 as	 total	 disc	 replacements	 are	 increasingly	 being	

implanted	into	younger,	more	active	patients	with	high	subjective	expectations	regarding	

their	postoperative	performance	(Siepe	et	al.,	2007).		Such	intentions	to	return	to	previous	

activity	 levels	 poses	 a	 significant	 challenge	 to	 surgical	 techniques	 and	 implant	 design	

(Burnett,	2010).	In	the	design	of	total	hip	replacements	such	high	demands	lead	to	the	use	

of	 metal-on-metal	 hip	 prostheses	 for	 younger	 individuals.	 The	 use	 of	 metals,	

predominantly	 stainless	 steel	 and	 cobalt	 chrome	 for	 total	 disc	 replacements	 has	 raised	

substantial	 concerns	 regarding	 the	 long-term	 health	 implications	 and	 risks	 including;	

adverse	 reactions	 to	metal	 debris	 and	 elevated	 levels	 of	metal	 ions	 in	 blood	 and	 urine.	

Limited	 investigations	 have	 been	 performed	 to	 understand	 the	 adverse	 biological	

outcomes	 to	 intervertebral	 disc	 prostheses.	With	 numerous	 instances	 of	 pseudotumors	

being	developed	in	association	with	metal-on-metal	total	disc	replacements	(Cavanaugh	et	

al.,	2009;	Berry	et	al.,	2010;	Guyer	et	al.,	2011	Cabraja	et	al.,	2012)	and	with	evidence	of	

metal	 nanoparticles	 breaching	 the	 dura	 mater	 in	 an	 organ	 culture	 model	 there	 is	 an	

overwhelming	 need	 to	 investigate	 the	 response	 of	 cells	 of	 the	 CNS	 to	 metallic	 wear	

products.			

		

The	aim	of	this	study	was	to	determine	the	effect	of	increasing	particle	volumes	(0.05µm3,	

0.5µm3,	 5µm3	 and	50µm3)	 of	 cobalt	 chrome	 and	 stainless	 steel	 (mode	 size	 30-39nm	 for	

both	cobalt	chrome	and	stainless	steel)	on	the	viability	of	C6-glial,	PC12-neuronal	cell	lines	

and	 primary	 astrocytes	 and	 microglia	 after	 24	 hours,	 three	 days	 and	 five	 days	 in	 2D	

culture	 and	 the	 effects	 of	 0.5µm3,	 5µm3	 and	 50µm3	cobalt	 chrome	 and	 stainless	 steel	

particles	 on	 the	 DNA	 integrity	 of	 primary	 astrocytes	 and	 microglia	 in	 co-culture	 and	

primary	astrocytes	in	isolation	after	24	hours,	48	hours	and	five	days.		

	

4.5.1.	The	effect	of	cobalt	chrome	and	stainless	steel	wear	particles	on	the	viability	

of	 C6	 glial,	 PC12	 neuronal	 cell	 lines	 and	 primary	 astrocytes	 and	 microglia	 in	 co-

culture	using	a	2D	cell	culture	system.		

When	C6	glial	 cells	were	 cultured	with	 cobalt	 chrome	wear	particles	 significant	 adverse	

effects	 on	 cell	 viability	 were	 observed	 at	 all	 time	 points	 with	 all	 particle	 doses	 tested	

(0.05µm3,	 0.5µm3,	 5µm3	 and	 50µm3	cobalt	 chrome	 debris	 per	 cell).	 Similarly	 when	 the	

PC12	neuronal	cell	 line	was	cultured	with	 increasing	particle	volumes	(0.05µm3,	0.5µm3,	

5µm3	and	50µm3)	of	cobalt	chrome	wear	particles	significant	adverse	effects	on	PC12	cell	
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viability	 were	 observed	 after	 three	 and	 five	 days	 in	 culture	 with	 the	 0.5µm3,	 5µm3	and	

50µm3	cobalt	chrome	debris	per	cell	particle	doses.	Interestingly,	after	24	hours	in	culture	

the	 0.5µm3	 and	 50µm3	cobalt	 chrome	 per	 cell	 had	 a	 significant	 beneficial	 effect	 on	 the	

viability	of	PC12	cells.	When	primary	astrocytes	and	microglia	in	co-culture	were	cultured	

with	cobalt	chrome	wear	particles	of	 increasing	doses	no	adverse	effects	on	cell	viability	

were	observed	after	24	hours	 in	 culture	with	any	dose	 tested.	However,	 after	 three	and	

five	days	in	culture	significant	reductions	in	viability	were	observed	with	all	particle	doses	

(0.05µm3,	0.5µm3,	5µm3	and	50µm3).		

	

When	 C6-glial	 cells	were	 cultured	with	 stainless	 steel	wear	 particles,	 for	 the	 first	 three	

days	in	culture	no	adverse	effects	on	cell	viability	were	observed.	After	five	days	in	culture	

adverse	 effects	 on	C6	 cell	 viability	were	 reported	when	 cultured	with	0.05µm3	 stainless	

steel	 debris	 per	 cell.	When	 PC12	 cells	were	 cultured	with	 stainless	 steel	 for	 24	 hours	 a	

significant	reduction	in	cell	viability	was	observed	with	0.5µm3	stainless	steel	debris	per	

cell.	 After	 five	days	 in	 culture	 the	highest	 stainless	 steel	 particle	dose,	 50µm3	debris	per	

cell,	 adversely	 affected	 the	 viability	 of	 PC12	 neuron-like	 cells.	 Finally	 when	 primary	

astrocytes	 and	 microglia	 in	 co-culture	 were	 exposed	 to	 increasing	 particle	 volumes	 of	

stainless	 steel	 after	 just	 24	 hours	 in	 culture	 significant	 reductions	 in	 viability	 were	

observed	 with	 the	 50µm3,	 5µm3	 and	 0.5µm3	 particle	 doses,	 these	 adverse	 effects	 on	

viability	did	not	persist	for	the	duration	of	the	investigation.	After	five	days	in	culture,	only	

the	 highest	 particle	 dose	 of	 50µm3	stainless	 steel	 debris	 per	 cell	 significantly	 reduced	

primary	 astrocyte	 and	microglia	 cell	 viability.	 Interestingly,	 the	 stainless	 steel	 particles	

also	had	beneficial	effects	on	the	viability	of	the	C6	and	PC12	cells.	Positive	effects	on	the	

viability	 of	 C6	 cells	 were	 observed	 at	 all	 time	 points	 when	 cultured	 with	 the	 highest	

particle	dose	of	50µm3	stainless	steel	debris	per	cell.	After	three	days	in	culture	the	0.5µm3	

stainless	steel	per	cell	dose	had	a	beneficial	effect	on	C6	cell	viability.	After	24	hours	and	

three	 days	 in	 culture	 the	 lowest	 particle	 dose	 0.05µm3	stainless	 steel	 debris	 per	 cell	

significantly	 increased	 the	 viability	 of	 C6	 cells.	 Similarly,	 after	 three	 days	 in	 culture	 a	

significant	 increase	 in	 cell	 viability	 was	 observed	 when	 PC12	 cells	 were	 cultured	 with	

5µm3	stainless	steel	debris	per	cell.	

	

Interestingly	when	C6	glial	cells	were	cultured	with	increasing	doses	of	clinically	relevant	

cobalt	 chrome	 wear	 particles,	 though	 significant	 adverse	 effects	 on	 cell	 viability	 were	

reported	 with	 all	 particle	 doses,	 a	 noteworthy	 pattern	 in	 the	 cellular	 response	 was	

observed.	 	 The	 highest	 particle	 dose	 (50µm3	 cobalt	 chrome	 debris	 per	 cell)	 reduced	 C6	

viability	 by	 65%,	 97.5%	and	98%	after	 24	hours,	 three	 days	 and	 five	 days,	 respectively	
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(when	compared	to	the	cell	only	negative	control).	However	the	adverse	effect	observed	

with	the	lower	particle	doses	(0.05µm3	-5µm3	cobalt	chrome	debris	per	cell)	was	not	dose	

dependent,	 in	 fact	 the	 inverse	 of	 this	 statement	 was	 true.	 The	 lowest	 particle	 dose	

(0.05µm3)	appeared	to	have	most	prominent	adverse	effect	on	C6	glial	cell	viability	when	

compared	to	the	0.5µm3	and	5µm3	dose,	with	the	lowest	counts	per	second	reading	being	

recorded	for	the	0.05µm3	particle	dose	(discounting	the	reading	for	highest	particle	dose,	

50µm3).	 This	 observation	 remained	 true	 for	 all	 time	 points	 tested.	 The	 C6	 glial	 cell	 line	

selected	for	this	part	of	the	study	was	representative	of	astrocytes.	In	vivo	when	the	CNS	

becomes	damaged	as	 a	 result	of	 injury,	 infection,	 ischemia	or	 as	part	of	 an	autoimmune	

response	a	process	referred	to	as	astrogliosis	ensues.	Here	astrocytes	become	reactive	and	

rapidly	 proliferate	 in	 response	 to	 stressful	 stimuli	 and	 a	 series	 of	 morphological	 and	

molecular	expression	profile	alterations	within	these	cells	is	triggered.	In	this	instance	at	

the	lower	particle	doses	(0.05µm3,	0.5µm3	and	5µm3	cobalt	chrome	debris	per	cell),	rapid	

cellular	proliferation	may	have	been	responsible	for	the	elevated	ATP	level	observed	with	

the	 5µm3	 compared	 to	 the	 0.5µm3	 particle	 dose,	 therefore	 a	 dose	 dependent	 astrocyte	

reactivity	 response	 may	 be	 a	 possible	 explanation	 for	 this	 unusual	 observation.	 The	

protein	 GFAP	 is	 up-regulated	 in	 the	 process	 of	 astrogliosis	 however	 due	 to	 this	 cells	

inability	to	express	this	marker	at	detectable	levels	this	could	not	have	been	investigated	

to	determine	whether	or	not	this	process	was	occurring.	By	coupling	the	ATP	liteä	assay	

with	 a	 cellular	 proliferation	 assay	 such	 as	 CytoTrackä,	 flow	 cytometry	 (using	 BrdU	 to	

detect	proliferating	cells)	or	a	live	dead	assay	more	information	could	have	been	provided	

to	 further	 understand	 this	 effect.	 	 Without	 the	 support	 of	 an	 additional	 assay	 the	

possibility	that	stimulatory	effect	on	proliferation	by	cobalt	chrome	particles	could	not	be	

eliminated.	

	

Although,	 throughout	 this	 part	 of	 the	 study	 there	may	have	been	 statistically	 significant	

increases	or	decreases	in	cell	viability	when	compared	to	the	cell	only	negative	control,	the	

cobalt	chrome	and	stainless	steel	particle	volumes	were	considered	to	have	a	significant	

effect	on	cell	viability	when	a	consistent	decrease	in	ATP	emerged	over	the	five	day	period	

(evidenced	by	a	continuous	decline	in	counts	per	second	readings).	Isolated	changes	in	cell	

viability	 relative	 to	 the	 cell	 only	 negative	 control	 even	 when	 significant	 could	 not	 be	

considered	 truly	meaningful.	 An	 example	 of	 this	 phenomenon	 can	 be	 seen	when	 the	 C6	

glial	cell	line	was	cultured	with	5µm3	cobalt	chrome	debris	per	cell.	At	all	three	time	points	

tested	the	average	counts	per	second	reading	was	significantly	lower	than	that	of	the	cell	

only	 control,	 however	 over	 the	 five	 day	 time	 period	 the	 counts	 per	 second	 reading	
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continuously	increased.		A	possible	explanation	for	this	result	may	be	that	the	cells	are	not	

actually	dying	but	are	simply	dividing	at	a	lower	rate.		

	

There	are	numerous	methodologies	reported	in	the	literature	to	quantitatively	assess	cell	

viability,	most	assays	involve	the	addition	of	a	dye	which	is	either;	 included,	excluded	or	

converted	 (normally	 via	 an	 enzymatic	 process)	 within	 living	 cells	 and	 quantified	

colorimetrically	or	fluorescently	(Jones	&	Grainger,	2009).	These	assays	include;	MTT	(De	

Guzman	&	VandeVord,	2007;	Papageorgiou	et		al.,	2007;	Papageorgiou	et	al.,	2008;	Li	et	al.,	

2014;	Posada	et	al.,	2014;	Kaja	et	al.,	2015),	XTT	(Vetten	et	al.,	2013),	MTS	(Chueh	et	al.,	

2014),	ATP-Liteä,	(Germain	et	al.,	2003;	Behl	et	al.,	2013;	Liu	et	al.,	2015),	LDH	(Allen	et	

al.,	 1997;	 Papageorgiou	 et	 al.,	 2007),	 fluorescein	 diacetate	 (Sruthi	 &	 Mohanan,	 2015),	

propidium	 iodide	 (Radzium	 et	 al.,	 2011),	 live	 dead	 (De	 Guzman	 &	 VandeVord,	 2007),	

trypan	 blue	 (Tsaousi	 et	 al.,	 2010)	 and	 alamar	 blue	 (Bonnier	 et	 al.,	 2015).	 The	 most	

commonly	used	cytotoxicity	assay	is	the	MTT	assay	(Nogueira	et	al.,	2014).	For	this	part	of	

the	study	the	ATP	liteä	assay	was	used	to	quantitatively	determine	the	effect	of	increasing	

doses	 of	 cobalt	 chrome	 and	 stainless	 steel	 wear	 particles	 on	 C6,	 PC12	 and	 primary	

astrocyte	and	microglia	cell	viability.	The	principle	for	this	assay	is	outlined	in	Chapter	2,	

section	2.4.2.	The	ATP	Liteä	assay	is	more	sensitive	than	the	MTT	assay	with	a	detection	

limit	of	5	cells	 in	100µl	medium,	which	was	more	appropriate	 for	 this	part	of	 the	study.	

There	have	been	reports	 in	 the	 literature	where	nano-particles	have	 interfered	with	 the	

readings	for	MTT,	by	reducing	MTT	to	formazan	in	the	particle	only	control;	hence	the	ATP	

Liteä	assay	was	preferable	(Fisichella	et	al.,	2009).		

	

Attempts	 were	 made	 to	 utilise	 the	 MTT	 assay	 for	 this	 part	 of	 the	 study,	 however	 the	

detection	 limit	 of	 this	 assay	 is	 1x104	cells,	 below	 this	 quantity	 the	 MTT	 is	 no	 longer	

efficient	 in	 detecting	 subtle	 differences	 in	 cell	 number.	 Due	 to	 significant	 reductions	 in	

viability	 when	 C6,	 PC12	 and	 primary	 astrocyte	 and	 microglia	 cells	 were	 cultured	 with	

cobalt	chrome	and	stainless	steel	wear	particles,	this	assay	could	not	be	utilised	reliably.	

	

For	 this	 part	 of	 the	 study	 camptothecin	was	used	 as	 a	positive	 control,	 as	 it	 is	 a	 known	

inducer	 of	 apoptosis.	 There	 have	 been	 numerous	 reports	 in	 the	 literature	 of	 the	 use	 of	

camptothecin	for	this	purpose	(Germain	et	al.,	2003;	Williams	et	al.,	2004;	De	Guzman	&	

VandeVord,	 2007;	 Behl	 et	 al.,	 2013;	 Suner	 et	 al.,	 2014).	 Morris	 &	 Geller.	 (1996)	 found	

camptothecin	 to	 inhibit	 the	 activity	 of	 the	 enzyme	 topoisomerase	 I.	 The	 function	 of	 the	

topoisomerase	 enzyme	 is	 to	 relax	 DNA	 supercoiling	 during	 DNA	 transcription	 and	

replication.	Camptothecin	binds	to	the	topoisomerase	I-DNA	complex	and	causes	a	single	

strand	break	in	the	DNA.	Attempts	made	by	the	cell	to	enter	the	S	phase	of	the	cell	cycle	
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fail	 leading	 to	 a	 late	 S	 phase-G2	 arrest	 and	 subsequently	 trigger	 apoptosis	 (Morris	 &	

Geller,	 1996).	 	 It	 is	 thought	 that	 the	 cytotoxic	 effect	 of	metallic	wear	 particles	 and	 their	

subsequent	ions	is	due	to	apoptosis	as	opposed	to	necrosis	(Rana	&	Vir,	2008)	as	a	result	

camptothecin	was	selected	as	an	appropriate	positive	control	for	this	part	of	the	study.		

	

Using	2D	monolayer	in	vitro	cell	culture	investigations	cobalt	chrome	has	been	found	to	be	

toxic	to	numerous	cell	types;	U937	macrophages,	L929	fibroblasts,	porcine	dural	epithelial	

cells,	 porcine	dural	 fibroblasts,	 human	 fibroblasts	 and	C2C12	myotubes;	 (Germain	et	 al.,	

2003;	Williams	 et	 al.,	 2003;	 Papageorgiou;	 2007;	 Tsaousi	 et	 al.,	 2010;	 Behl	 et	 al.,	 2013;	

Rovetta	et	al.,	2013;	Posada	et	al.,	2014).	Williams	et	al.	 (2003)	 found	 that	50µm3,	5µm3	

and	 0.5µm3	 cobalt	 chrome	 debris	 per	 cell	 were	 sufficient	 particle	 volumes	 to	 trigger	

significant	 reductions	 in	 U937	 cell	 viability	 after	 four	 days	 in	 culture.	 However,	 L929	

fibroblasts	were	 less	 sensitive	 and	 only	 the	 highest	 cobalt	 chrome	 particle	 dose	 tested,	

50µm3,	caused	significant	cytotoxic	effects	with	this	cell	type.	These	results	were	similar	to	

the	findings	presented	by	Germain	et	al.	(2003)	who	found	nanoscale	(5nm-200nm)	cobalt	

chrome	 particles	 triggered	 a	 significant	 reduction	 in	 the	 viability	 of	 U937	macrophages	

and	 L929	 fibroblasts	 when	 both	 cell	 types	 were	 cultured	 with	 50µm3	and	 5µm3	cobalt	

chrome	 debris	 per	 cell.	 An	 adverse	 effect	 on	 viability	 was	 reported	 after	 two	 days	 in	

culture	with	the	U937	cells	and	persisted	for	the	duration	of	the	investigation,	whereas	the	

significant	reduction	in	viability	of	L929	was	detected	earlier	after	just	24	hours	in	culture	

and	persisted	for	the	duration	of	the	investigation.	Similarly,	Posada	et	al.	(2014)	reported	

that	 the	viability	of	U937	macrophages	was	 significantly	 reduced	by	5mg	cobalt	 chrome	

debris	 after	 five	 days	 in	 culture.	 The	 findings	 of	 the	 study	 conducted	 by	Williams	 et	 al.	

(2003)	were	comparable	 to	 the	results	presented	here	as	part	of	 this	 study	with	similar	

particle	 doses	 causing	 cell	 death.	 Interestingly,	 C6	 cells	 and	 primary	 astrocytes	 and	

microglia	 appear	 to	 be	 more	 sensitive	 than	 macrophages	 as	 an	 even	 lower	 dose	 of	

0.05µm3	stimulated	significant	reductions	in	viability	with	these	cell	types.	It	is	important	

to	 note	 that	 the	 particles	 utilised	 by	 Germain	 et	 al.	 (2003)	 Williams	 et	 al.	 (2003)	 and	

Posada	 et	 al.	 (2014)	were	 generated	by	 articulation	 and	 thus	were	 clinically	 relevant	 in	

terms	of	size	and	morphology.	

	

Behl	et	al.	(2013)	found	that	nanoscale	cobalt	chrome	wear	particles	caused	a	significant	

reduction	in	the	viability	of	porcine	dural	epithelial	cells	after	24	hours	when	these	cells	

were	 cultured	 with	 6.05µm3,	 60.5µm3	 and	 121µm3	cobalt	 chrome	 debris	 per	 cell.	 This	

adverse	 effect	 on	 viability	 persisted	 until	 the	 final	 time	 point	 of	 four	 days	 in	 culture.	

Interestingly	no	adverse	effect	on	porcine	dural	fibroblasts	was	reported	with	any	particle	
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dose	 at	 any	 time	 point	 tested.	 Once	 again	 these	 findings	 are	 comparable	 to	 the	 particle	

doses	that	were	toxic	to	C6,	PC12	and	primary	astrocytes	and	microglia	presented	here.		

Papageorgiou	 et	 al.	 (2007)	 reported	 that	 nanoscale	 cobalt	 chrome	 particles	 had	 a	 dose	

dependent	and	progressive	adverse	effect	on	the	viability	of	human	fibroblasts	over	a	five	

day	culture	period.	The	highest	cobalt	chrome	particle	dose	50µm3	cobalt	chrome	debris	

per	cell	triggered	a	significant	reduction	in	human	fibroblast	viability	when	compared	to	

the	cell	only	negative	control	after	just	24	hours	in	culture.	The	5µm3	particle	dose	caused	

a	 significant	 reduction	 in	 viability	 after	 three	 days	 in	 culture	 and	 this	 adverse	 effect	

persisted	 to	 the	 end	 of	 the	 investigation.	 Finally	 the	 0.5µm3	 particle	 dose	 caused	 a	

significant	adverse	effect	on	viability	after	five	days	in	culture.		

	

Though	 there	 is	 a	 paucity	 of	 literature	 regarding	 the	 use	 of	 C6	 and	 PC12	 cell	 lines	 to	

investigate	 the	 toxicity	 of	 wear	 particles	 from	 orthopaedic	 biomaterials,	 De	 Guzman	 &	

VandeVord,	 (2007)	used	 the	C6	cell	 line	as	a	model	astrocyte	 cell	 type	 to	determine	 the	

neurotoxicity	 of	 numerous	 biomaterials	 used	 in	 the	 orthopaedic	 industry	 e.g.	 titanium,	

UHMWPE,	 cobalt	 chromium	 and	 PMMA,	 at	 increasing	 particle	 doses,	 0mg.ml-1,	

0.3125mg.ml-1,	0.625mg.ml-1,	1.25mg.ml-1,	2.5mg.ml-1	5mg.ml-1	and	measured	 their	effect	

on	viability	using	an	MTT	assay	and	a	 live	dead	 stain.	 Similarly	 to	 the	 results	presented	

here,	De	Guzman	&	VandeVord.	 (2007)	observed	significant	reductions	 in	viability	when	

C6	cells	were	cultured	with	cobalt	chrome	wear	particles	after	48	hours	with	2.5mg.ml-1	

and	 5mg.ml-1	 particle	 doses.	 Interestingly,	 these	 authors	 also	 observed	 an	 increase	 in	

proliferation	 of	 C6	 cells	 when	 cultured	 with	 lower	 doses	 of	 cobalt	 chrome	 particles;	

0.3125mg.ml-1	and	0.625mg.ml-1	after	48	hours	in	culture.	However,	the	particles	utilised	

in	 the	 study	 conducted	 by	 De	 Guzman	 &	 VandeVord.	 (2007)	 were	 approximately	 100	

times	 larger	 than	 would	 be	 observed	 in	 vivo	 from	 total	 disc	 replacements,	with	 cobalt	

chrome	 particles	 with	 an	 average	 size	 of	 5.7µm	 tested	 (range	 of	 1µm	 -20µm)	 and	 the	

particle	doses	were	not	clinically	relevant,	when	considering	the	wear	rates	on	metal-on-

metal	total	disc	replacements	reported	in	the	literature.	The	particles	used	in	this	part	of	

the	 study	 (30nm-39nm	 in	 length)	 had	 a	 more	 severe	 adverse	 effect	 on	 viability,	 with	

significant	adverse	effects	on	viability	observed	with	all	doses,	0.05µm3,	0.5µm3,	5µm3	and	

50µm3,	 at	 all	 time	 points,	 24	 hours,	 three	 days	 and	 five	 days,	 when	 compared	 to	 the	

findings	of	De	Guzman	&	VandeVord.	(2007).	

	

Though	there	is	limited	information	in	the	literature	regarding	the	effect	of	stainless	steel	

wear	 products	 on	 cell	 viability,	 a	 small	 number	 of	 studies	 have	 been	 performed	 to	

determine	 the	 effect	 of	 bulk	 and	 particulate	 stainless	 steel	 on	 RAW	 macrophage	 and	
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MC3T3	mouse	osteoblast	cells.	Bailey	at	al.	(2005)	observed	a	reduction	in	the	viability	of	

RAW	macrophages	when	cultured	with	316L	stainless	steel	particles	1-100µm	in	size	after	

24	hours	in	culture.	The	particle	dose	of	stainless	steel	particles	was	not	reported	for	this	

particular	investigation	and	the	effect	on	cell	viability	only	qualitatively	measured	using	a	

live	dead	stain.	Conversely,	Li	et	al.	(2014)	did	not	report	any	adverse	effects	on	viability	

when	MC3T3	mouse	osteoblast	cells	were	cultured	with	bulk	316L	stainless	steel.	This	is	

similar	to	the	results	reported	here	in	this	part	of	the	study,	where	C6	glial	cells	were	not	

adversely	affected	by	stainless	steel	wear	particles,	and	PC12	neuronal	cells	and	primary	

astrocytes	and	microglia	were	only	adversely	affected	by	the	highest	particle	dose,	50µm3	

stainless	steel	debris	per	cell.		

	

This	part	of	the	study	revealed	that	there	were	clear	differences	in	the	cellular	responses	

to	nanoscale	cobalt	chrome	and	stainless	steel	wear	particles.	 It	 is	well	documented	that	

these	two	orthopaedic	biomaterials	have	very	different	elemental	compositions,	(Chapter	

2,	section	3.2).	Medical	grade	316L	stainless	steel	has	16-18%	chromium	content,	whereas	

high	 carbon	 cobalt	 chrome	molybdenum	has	 a	27-30%	chromium	content.	 Furthermore	

cobalt	chrome	molybdenum	is	composed	of	~60%	cobalt,	whereas	cobalt	is	not	present	in	

medical	grade	316L	stainless	steel.	Cobalt	ions	have	been	found	to	induce	more	cytotoxic	

effects	than	chromium	(Sansone	et	al.,	2013;	Kanaji	et	al.,	2014).	Chromium	exerts	a	more	

genotoxic	effect	on	cells	this	may	explain	the	different	effects	on	cell	viability	seen	with	the	

two	 biomaterials.	Within	 the	 literature	 the	 effects	 of	 cobalt	 and	 chromium	 ions	 on	 cell	

viability	and	genotoxicity	have	 focused	on	osteoblasts	and	macrophages,	 there	 is	 limited	

literature	on	the	effects	on	CNS	cells.		

	

Within	 the	 literature	 it	 has	 been	 found	 that	metallic	 particles	 200nm	or	 smaller,	with	 a	

preference	 for	 50nm	 metal	 particles	 which	 are	 taken	 up	 into	 cells	 faster	 and	 more	

extensively	than	smaller	(≥	14nm)	and	larger	(≤	500nm)	particles	(Chithrani	et	al.,	2006;	

Gratton	et	al.,	2008;	Billi	&	Campbell,	2010).	With	a	greater	proportion	of	cobalt	chrome	

particles	(55.5%)	being	less	than	50nm	compared	to	stainless	steel	particles	(30.7%)	this	

may	 also	 account	 for	 the	 differing	 biological	 response	 observed	 between	 the	 two	

biomaterials.		

	

In	addition	to	causing	adverse	effects	on	cell	viability,	orthopaedic	metals	including	cobalt	

chrome	 are	 considered	 complex	 genotoxins	 (Papageorgiou	 et	 al.,	 2007).	 Hexavalent	

chromium	(Cr	VI)	is	known	to	cause	single	and	double	strand	DNA	breaks	as	well	as	DNA	

cross	-links	(O’Brien	et	al.,	2003;	Ha	et	al.,	2004;	Depault	et	al.,	2006).	Trivalent	chromium	

is	also	a	genotoxic	 intermediate	and	can	cause	cellular	apoptosis.	Cobalt	 is	also	a	known	
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toxin	to	cells	and	can	produce	reactive	oxygen	species	(Kopera	et	al.,	2004)	and	acts	as	a	

poison	to	topoisomerase	II		(Baldwin	et	al.,	2004)		

	

4.5.2.The	 effect	 of	 cobalt	 chrome	 and	 stainless	 steel	 wear	 particles	 on	 the	 DNA	

integrity	of	primary	astrocytes	and	microglia	 in	co-culture	and	primary	astrocytes	

in	isolation.		

For	 this	part	 of	 the	 study	hydrogen	peroxide	 (100µM)	was	used	as	 the	positive	 control.	

Hydrogen	 peroxide	 has	 been	 used	 previously	 as	 a	 known	 inducer	 of	 single	 and	 double	

strand	DNA	breaks	(Nakamura	et	al.,	2003;	Daroui	et	al.,	2004;	Driessens	et	al.,	2009).	In	

the	 Fenton	 reaction,	 ferrous	 iron	 reduces	 hydrogen	 peroxide	 to	 reactive	 free	 radicals,	

which	are	known	to	cause	DNA	strand	breaks.		

	

When	primary	astrocytes	and	microglia	in	co-culture	were	exposed	to	increasing	particle	

volumes	of	cobalt	chrome	debris	(0.5µm3	to	50µm3	cobalt	chrome	debris	per	cell)	after	24	

hours	 the	 highest	 particle	 dose	 only	 (50µm3	cobalt	 chrome	 debris	 per	 cell)	 triggered	

significant	 levels	 of	DNA	damage	 in	primary	 astrocytes	 and	microglia.	After	 five	days	 in	

culture	 once	 again	 only	 the	 highest	 particle	 dose	 50µm3	cobalt	 chrome	 debris	 per	 cell	

caused	 significant	DNA	damage	when	 compared	 to	 the	 cell	 only	 negative	 control.	When	

primary	 astrocytes	 in	 isolation	 were	 cultured	 with	 increasing	 particle	 doses	 of	 cobalt	

chrome	debris,	all	particle	doses	triggered	significant	levels	of	DNA	damage	after	24	hours	

in	 culture	 when	 compared	 to	 the	 cell	 only	 negative	 control.	 After	 two	 and	 five	 days	 in	

culture;	the	50µm3	and	5µm3	particle	doses	of	cobalt	chrome	only	caused	significant	DNA	

damage	 in	primary	astrocytes	when	compared	 to	 the	cell	only	negative	control.	Primary	

astrocytes	 cultured	 with	 the	 lowest	 particle	 dose	 (0.5µm3	 debris	 per	 cell)	 exhibited	

significantly	less	DNA	damage	after	two	and	five	days	in	culture.	

	

When	primary	astrocytes	and	microglia	in	co-culture	were	exposed	to	increasing	particle	

volumes	of	stainless	steel	debris	(0.5µm3	to	50µm3	debris	per	cell)	after	24	hours	culture	

all	 particle	 doses	 triggered	 significant	 levels	 of	DNA	damage	when	 compared	 to	 the	 cell	

only	negative	control.	Similar	levels	of	DNA	damage	were	also	observed	after	two	and	five	

days	in	culture	however	the	lowest	particle	dose	0.5µm3	stainless	steel	debris	per	cell	no	

longer	 cause	 significant	 DNA	 damage	when	 compared	 to	 the	 cell	 only	 negative	 control.	

Dissimilarly	 after	 five	 days	 in	 culture	 the	 lowest	 stainless	 steel	 particle	 dose	 caused	

significantly	 less	 DNA	 damage	 when	 compared	 to	 the	 cell	 only	 negative	 control.	 When	

primary	 astrocytes	 in	 isolation	were	 cultured	with	 increasing	particle	 doses	 of	 stainless	

steel	 debris,	 after	 24	 hours	 in	 culture	 no	 significant	 DNA	 damage	 was	 observed	 when	
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compared	to	the	cell	only	negative	control.	After	two	days	in	culture	the	mid,	5µm3	particle	

dose	 triggered	significant	DNA	damage.	Finally	after	 five	days	 in	culture;	 the	50µm3	and	

5µm3	particle	doses	of	stainless	steel	caused	significant	DNA	damage	in	primary	astrocytes	

when	compared	to	the	cell	only	negative	control.			

	

Unlike	the	results	presented	in	this	part	of	the	study,	Gajski	et	al	in	2014	investigated	the	

in	vitro	genotoxicity	of	medical	 implant	materials;	titanium,	cobalt	chrome	and	UHMWPE	

in	human	lymphocytes.	Human	lymphocytes	were	cultured	with	10µg.ml-1	(particles	were	

<10µm	 in	 size	 and	 generated	 by	milling)	 for	 24	 hours	 and	 the	 effect	 on	 DNA	 integrity	

assessed	using	 an	 alkaline	 comet	 assay.	 In	 this	 investigation	no	 significant	DNA	damage	

was	observed	with	any	biomaterial	tested.		

	

Papageorgiou	 et	 al	 in	 2007,	 cultured	 human	 fibroblasts	 with	 increasing	 particle	 doses	

(0.005µm3-5000µm3	debris	 per	 cell)	 of	 nano-scale,	 29.5nm	 and	 micron,	 2.904µm,	 sized	

cobalt	chrome	particles	for	five	days	in	culture.	Papageorgiou	found	that	the	nanoparticles	

caused	statistically	more	DNA	damage	than	the	micron-sized	particles	in	primary	human	

fibroblasts	 after	24	hours.	After	24	hours	 all	 particle	doses	of	 nano-scale	 cobalt	 chrome	

triggered	significant	DNA	damage	in	human	fibroblasts,	this	adverse	effect	deceased	with	

time	as	 after	 three	days	 in	 culture	only	 the	0.005µm3,	0.5µm3	and	50µm3	cobalt	 chrome	

particle	 doses	 caused	 significant	 DNA	 damage.	 These	 findings	 were	 comparable	 to	 the	

results	 presented	 in	 this	 part	 of	 the	 study.	 The	 results	 presented	 by	 Papageorgiou	

highlighted	 the	 role	 of	 particle	 size	 on	 the	 induction	 of	 DNA	 damage	with	micron-sized	

particles	causing	significantly	less	DNA	damage.		

	

Similarly	Parry	et	al	 in	2010	investigated	the	effect	of	 increasing	particle	doses	of	cobalt	

chrome	 0.00018mg/cm2,	 0.00036	 mg/cm2,	 0.0036	 mg/cm2	 and	 0.036	 mg/cm2	 on	 the	

integrity	of	human	fibroblast	DNA	after	24	hours	in	culture	using	the	alkaline	comet	assay.	

Parry	found	that	all	doses	triggered	significant	DNA	damage	after	just	24	hours	in	culture.	

The	particle	doses	tested	by	Parry	et	al	were	similar	to	the	doses	utilised	in	this	part	of	the	

study	and	the	same	adverse	effect	observed.			

	

Finally	Tsaousi	et	al	in	2010	determined	the	genotoxic	effects	of	cobalt	chrome	on	primary	

human	fibroblasts.	Cobalt	chrome	of	increasing	particle	volumes,1-10mg/T-75	flask	were	

cultured	 with	 primary	 human	 fibroblasts	 for	 five	 days	 and	 the	 effect	 on	 DNA	 damage	

assessed	using	 the	micronucleus	assay.	After	24	hours	 in	culture	significant	 increases	 in	

micronucleated	 bionucleated	 cells	 were	 observed	 in	 a	 clear	 dose	 dependent	 manner.	
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Tsaousi	 et	 al.	 (2010)	 observed	 that	 the	 1	 mg/T-75,2	 mg/T-75	 and	 5	 mg/T-75	 particle	

doses	caused	significant	DNA	damage	after	24	hours	in	culture.		

	

Interestingly	 similar	 levels	 of	 DNA	 were	 observed	 in	 this	 part	 of	 the	 study	 with	 both	

cellular	conditions	and	both	biomaterials	tested.	Intriguingly	when	primary	astrocytes	and	

microglia	 in	 co-culture	 and	 primary	 astrocytes	 in	 isolation	were	 cultured	with	 stainless	

steel	wear	particles	of	 increasing	particle	volume	significant	DNA	damage	was	observed	

but	this	did	not	translate	to	cell	death.		

	

As	 mentioned	 previously,	 PC12	 neuronal	 and	 C6	 glial	 cell	 lines	 have	 been	 used	 in	 the	

literature	as	model	CNS	cells	(Grobben	et	al.,	2002;	Assis	et	al.,	2014;	Slokin	et	al.,	2014;	

Tang	et	al.,	2015)	though	there	are	numerous	advantages	for	the	use	of	immortalised	cell	

lines	 such	 as;	 unlimited	 supply	 of	 pure	 cells	 providing	 a	 consistent	 sample	 and	 yields	

reproducible	results,	they	are	easier	to	maintain	than	primary	cells,	cost	effective,	bypass	

ethical	 concerns	 regarding	 the	 use	 of	 animals	 or	 human	 tissue.	 Cell	 lines	 should	

fundamentally	 express	 and	maintain	 functional	 features	 as	 closely	 to	 primary	 cells	 as	 is	

possible	to	achieve.	Due	to	the	fact	that	cell	lines	have	been	genetically	manipulated	their	

phenotype,	response	to	stimuli	and	characteristic	functions	may	be	altered.	Also	repeated	

passaging	 of	 cells	may	 alter	 cell	 line	 phenotype	 over	 time	 resulting	 in	 heterogeneity	 of	

cultures	 	 (Kaur	 &	 Dufour,	 2012).	 Though	 the	 cell	 lines	 were	 important	 in	 preliminary	

investigations	as	a	means	of	determining	lethal	and	sub-lethal	particle	doses	of	both	cobalt	

chrome	and	stainless	steel	wear	particles	it	was	imperative	to	move	forward	and	use	more	

physiologically	relevant	primary	rat	astrocytes	and	microglia.			

	

However,	 when	 primary	 cells	 are	 isolated	 from	 tissue	 and	 cultured	 in	 2D	 phenotypic	

changes	have	been	observed.	The	cell	shape	becomes	flatter,	and	their	division	rate	alters	

(Bonnier	 et	 al.,	 2015).	 In	 simplistic	 2D	 monolayer	 culture	 astrocytes	 adopt	 a	 reactive	

phenotype,	which	is	characterised	by	an	up-regulation	of	glial	 fibrillary	acidic	protein.	In	

3D	 culture,	 astrocytes	 do	 not	 present	 this	 phenotype	 unless	 stimulated	 to	 do	 so,	

highlighting	 the	 superior	 control	 over	 the	 environment	 in	 3D	 culture,	 (East	 &	 Phillips,	

2008).	The	wider	aims	of	the	study	were	to	determine	the	biological	response	of	CNS	cells	

in	 terms	 of	 cellular	 reactivity,	DNA	damage	 and	 cytokine	 release.	 As	 primary	 astrocytes	

already	adopt	a	reactive	phenotype	in	2D	culture,	it	would	be	difficult	to	discern	whether	

or	not	the	cellular	response	of	primary	astrocytes	and	microglia	in	co-culture,	and	primary	

astrocytes	in	isolation,	to	metallic	wear	particles	was	due	to	the	particle	doses	they	were	

challenged	 with	 or	 just	 a	 consequence	 of	 the	 culture	 environment	 they	 were	 in.	 Thus,	

moving	forward,	a	3D	culture	system	was	deemed	to	be	critical.			
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When	 culturing	primary	 astrocytes	 and	microglia	 and	primary	 astrocytes	 in	 isolation	 in	

3D	 culture	 a	 greater	 cell	 seeding	 density	 is	 required,	 which	 increases	 the	 number	 of	

particles	required	in	each	experiment.	So	as	to	minimise	wastage	of	particles	and	reduce	

the	number	of	primary	cells	utilised	only	 three	of	 the	 four	particle	doses	 (0.5µm3,	5µm3	

and	 50µm3	 debris	 per	 cell)	 used	 in	 this	 part	 of	 the	 study	 and	 shown	 to	 exert	 adverse	

effects	of	 the	C6	glial,	PC12	neuronal	and	primary	cells	and	were	 taken	 forward	 into	3D	

culture.	

	

4.5.3	Key	findings	

• In	2D	culture	cobalt	chrome	and	stainless	steel	wear	particles	had	differing	effects	

on	 the	 viability	 of	 C6	 glial,	 PC12	 neuronal	 cells	 and	 primary	 astrocytes	 and	

microglia.	Cobalt	chrome	wear	particles	adversely	affected	the	viability	of	C6	glial	

cells	 at	 all	 particle	 doses	 and	 all	 time	 points	 tested	 whereas	 cobalt	 chrome	

particles	 (the	 0.5µm3,	 5µm3	 and	 50µm3	 particle	 per	 cell	 doses)	 only	 adversely	

affected	 PC12	 and	 primary	 astrocyte	 and	microglia	 viability	 after	 three	 and	 five	

days	in	culture.		

• Stainless	 steel	 wear	 particles	 only	 caused	 significant	 adverse	 effects	 on	 the	

viability	 of	 C6	 glial	 and	 PC12	 neuronal	 cells	 after	 five	 days	 (0.05µm3	debris	 per	

cell)	 in	 culture	 and	one	 (0.5µm3	debris	 per	 cell)	 and	 five	days	 (50µm3	debris	 per	

cell)	 in	 culture	 respectively,	 interestingly,	 stainless	 steel	 particles	 caused	

significant	 adverse	 effects	 on	primary	 astrocyte	 and	microglia	 viability	 after	 just	

24	hours	in	culture	(the	0.5µm3,	5µm3	and	50µm3	particle	per	cell	doses)	and	after	

five	days	in	culture	with	the	highest	particle	dose	(50µm3	debris	per	cell).			

• Significant	 levels	 of	 DNA	 damage	 were	 observed	 when	 primary	 astrocytes	 and	

microglia	in	co-culture	were	cultured	with	the	highest	cobalt	chrome	particle	dose	

(50µm3	debris	 per	 cell)	 at	 all	 time	 points	 tested.	 The	 mid	 5µm3	cobalt	 chrome	

debris	per	cell	dose	only	caused	significant	DNA	damage	after	48	hours	in	culture.	

The	highest	(50µm3	debris	per	cell)	and	mid	(5µm3	debris	per	cell)	particle	doses	

caused	significantly	high	 levels	of	DNA	damage	 in	primary	astrocytes	 in	 isolation	

at	all	time	points	tested.	The	lowest	particle	dose	(0.5µm3	debris	per	cell)	triggered	

significant	DNA	damage	after	just	24	hours	in	culture	but	this	effect	did	not	last	for	

the	duration	of	the	investigation.	

• Significant	 levels	 of	 DNA	 damage	 were	 observed	 when	 primary	 astrocytes	 and	

microglia	were	cultured	with	the	highest	and	mid	stainless	particle	doses	(50µm3	

debris	per	cell	and	5µm3	debris	per	cell	respectively)	at	all	time	points	tested.	The	

lowest	 stainless	 steel	 particle	 dose,	 0.5µm3,	 caused	 significant	 levels	 of	 DNA	
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damage	 after	 just	 24	 hours	 in	 culture.	 DNA	 damage	 was	 induced	 in	 primary	

astrocytes	 in	 isolation	 after	 48	 hours	 in	 culture	with	 5µm3	stainless	 steel	 debris	

per	 cell	 and	 when	 cultured	 with	 50µm3	and	 5µm3	stainless	 steel	 debris	 per	 cell	

after	five	days	in	culture.		

• The	differences	 in	cellular	response	to	the	two	biomaterials	may	be	attributed	to	

the	differing	elemental	compositions.			
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Chapter	5	
	

The	Biological	Effects	of	Cobalt	Chrome	and	Stainless	Steel	Wear	
Particles	on	Primary	Astrocytes	and	Microglia	in	Co-Culture	and	
Primary	Astrocytes	in	Isolation	in	a	3D	Cell	Culture	System.	

	
5.1	Introduction	

Metallic	wear	particles	generated	in	total	disc	replacements	have	the	potential	to	interact	

with,	 and	 alter	 the	 structural	 integrity	 of	 the	 dura	mater	 by	 disrupting	 the	 underlying	

collagen	matrix	(Papageorgiou	et	al.,	2014).	Such	alterations	in	the	barrier	function	of	the	

meninges	 have	 the	 potential	 to	 pose	 significant	 clinical	 problems,	 as	 evidenced	 by	

increasing	cases	of	adverse	soft	tissue	reactions	to	wear	products	being	reported	within	

the	literature	(Cavanaugh	et	al.,	2009;	Berry	et	al.,	2010;	Guyer	et	al.,	2011;	Cabraja	et	al.,	

2012).	 A	 limited	 number	 of	 studies	 have	 been	 performed	 to	 investigate	 how	 clinically	

relevant	cobalt	chrome	and	stainless	steel	wear	particles	interact	with	cells	of	the	central	

nervous	system	(Mohanty	et	al.,	2003;	De	Guzman		&	VandeVord,	2007).	

	

There	are	certain	criteria,	which	should	be	considered	when	designing	an	 in	vitro	model	

to	 investigate	 the	 biological	 response	 of	 CNS	 cells	 to	metallic	wear	 products	 from	 total	

disc	replacements.	The	particles	utilised	must	be	clinically	relevant	in	terms	of	size,	shape	

and	 chemical	 composition.	 The	 particle	 volumes	 the	 cells	 are	 subjected	 to	 should	 be	

physiologically	 relevant	 and	 not	 be	 in	 excess	 of	 what	 is	 possible	 within	 the	 in	 vivo	

environment.	 The	 cell	 type	 selected	 should	 be	 physiologically	 relevant	 and	 behave	 in	 a	

manner	 that	 is	 representative	 of	 the	 response	 experienced	 upon	 stimulation	 in	 vivo.	

Finally,	it	is	of	paramount	importance	that	cells	are	cultured	in	a	spatial	arrangement	that	

is,	as	close	as	possible,	reflective	of	the	in	vivo	environment.		

	

The	use	of	model	CNS	cells;	C6	glial	and	PC2	neuronal	enabled	a	preliminary	investigation	

into	the	effect	of	clinically	relevant	metallic	wear	particles	on	CNS	cell	viability,	however	

due	 to	 an	 inability	 to	 express	 key	 markers	 of	 cellular	 reactivity	 at	 detectable	 levels	

without	 prior	 stimulation,	 specifically	 glial	 fibrillary	 acidic	 protein,	more	 applicable	 rat	

primary	astrocytes	and	microglia	were	utilised	for	this	part	of	the	study.		

	

The	 spinal	 cord	 is	 comprised	 of	 numerous	 different	 cell	 types	 including	 neurons	 and	

neuroglia;	whose	 primary	 role	 is	 in	 the	 protection	 of	 neurons.	 The	 CNS	 possesses	 four	

different	types	of	neuroglia;	astrocytes,	oligodendrocytes,	microglia	and	ependymal	cells.	

This	 study	 focused	on	 the	effects	of	 cobalt	 chrome	and	stainless	 steel	wear	particles	on	
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the	 viability,	 cellular	 reactivity	 and	 cytokine	 production	 of	 primary	 astrocytes	 and	

microglia	 in	 co-culture	and	astrocytes	 in	 isolation.	Astrocytes	 are	 star-shaped	glial	 cells	

and	possess	extensions	or	processes.	Astrocytes	are	the	predominant	cell	type	involved	in	

the	 formation	 of	 a	 glial	 scar	 following	 trauma,	 injury,	 inflammation,	 autoimmune	

responses	or	ischemia.	Microglia	are	the	least	numerate	and	smallest	neuroglia	of	the	CNS	

and	 are	 referred	 to	 as	 the	 resident	 macrophages	 of	 the	 brain	 and	 the	 spinal	 cord,	

continually	 scavenging	 the	 CNS	 for	 infectious	 agents,	 plaques	 and	 damaged	 neurons.	

Under	normal	 conditions	 in	 the	brain	 and	 spinal	 cord	 these	 cells	 appear	 to	be	 inactive.	

Upon	activation	by	an	infectious	agent,	these	cells	rapidly	proliferate	to	mount	a	response	

to	 the	 potential	 harmful	 agent.	 These	 cells	 are	 extremely	 sensitive	 to	 brain	 and	 spinal	

cord	homeostasis	(Gehrmann	et	al.,	1995).	As	the	resident	macrophage	of	the	CNS	it	was	

important	to	investigate	the	biological	response	of	this	cell	type	to	metallic	wear	particles.	

	

The	 culture	 of	 primary	 astrocytes	 and	 microglia	 from	 P2	 rat	 cortices	 yields	 a	 high	

proportion	of	astrocytes	 in	comparison	to	microglia	(85%	astrocytes	to	15%	microglia).	

Though	 the	 cellular	 physiologies,	 functions	 and	 responses	 of	 astrocytes	 and	 microglia	

upon	 activation	 are	 profoundly	 different,	 microglia	 can	 perform	 cellular	 functions	 that	

astrocytes	cannot	and	minimal	numbers	of	microglia	can	occasionally	be	responsible	for	

the	 effects	 observed	 in	 cultures	 where	 astrocytes	 are	 the	 dominant	 cell	 type	 (Saura,	

2007).	If	the	involvement	of	both	astrocytes	and	microglia	in	co-culture	and	astrocytes	in	

isolation	are	not	investigated	separately	the	effects	of	particles,	toxins	or	external	stimuli	

can	be	erroneously	attributed	to	the	predominant	astrocyte	cell	type.	Thus	for	this	part	of	

the	study	it	was	important	to	investigate	the	effects	of	cobalt	chrome	and	stainless	steel	

wear	particles	on	astrocytes	and	microglia	in	co-culture	and	astrocytes	in	isolation.		

	

Much	 of	 the	 current	 understanding	 regarding	 the	 biological	 response	 to	 cobalt	 chrome	

and	 stainless	 steel	 wear	 particles	 has	 utilised	 cell	 lines	 or	 primary	 cells	 cultured	 in	 a	

simplistic	2D	monolayer	environment.	This	some-what	primitive	method	of	culture	is	not	

representative	 of	 the	 in	 vivo	 environment,	 where	 cells	 are	 arranged	 in	 much	 more	

complex	matrices.	

	

Additionally	 In	vivo	multiple	 cell	 types	 are	 capable	 of	 interaction	with	 one-another	 and	

with	the	extracellular	matrix	itself.	This	is	not	accurately	mimicked	by	monolayer	culture		

(Haycock	et	al.,	2011).	Primarily,	the	goal	of	3D	cell	culture	is	to	bridge	the	gap	between	

monolayer	 culture	 and	 complex	 animal	models.	 A	 simple	 starting	 point	 in	 recreating	 a	

growth	environment,	which	closely	models	that	of	the	native	tissue	is	the	culture	of	cells	

in	 a	 porous	 biocompatible	 scaffold.	 The	 decision	 to	 move	 from	 2D	 culture	 to	 a	 more	
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complex	 3D	 culture	 environment	 required	 careful	 consideration	 of	 cell	 adhesion,	

interaction,	proliferation	and	waste	removal.		

	

In	 vivo,	 in	 the	 undamaged	 CNS	 astrocytes	 express	 low	 levels	 of	 glial	 fibrillary	 acidic	

protein	 (GFAP)	 (Cancilla	 et	 al.,	 1992;	 East	 et	 al.,	 2009).	 However	 following	 injury	 or	

inflammation	 they	demonstrate	a	 reactive	hypertrophic	phenotype	evidenced	by	an	up-

regulation	of	GFAP,	vimentin	and	chondroitin	sulphate	proteoglycans	(Calvo	et	al.,	1991;	

Silver	&	Miller,	2004).		Difficulties	may	arise	when	primary	astrocytes	are	cultured	on	stiff	

matrices,	 as	 they	 are	 in	 2D	 culture.	 Here	 the	 primary	 astrocytes	 exhibit	 a	 reactive,	

ramified	phenotype.	As	a	result	of	this	phenomenon	any	cellular	reactivity	observed	could		

incorrectly	be	regarded	as	a	response	to	variations	 in	experimental	parameters	and	not	

simply	a	product	of	the	spatial	environment	the	cells	are	cultured	in.	Within	3D	culture,	

type	 I	 collagen	 gels,	 primary	 astrocytes	 possess	 a	 rounded,	 unreactive	 morphology	

resembling	 their	 morphology	 in	 the	 physiological	 environment,	 which	 would	 be	 much	

more	 appropriate	 for	 this	 application	 whereby	 the	 effect	 of	 metallic	 wear	 particles	 on	

cellular	reactivity	was	to	be	investigated.		

	

Type	I	collagen,	has	been	used	extensively	for	the	culture	of	cells	in	a	3D	environment	for	

a	wide	range	of	applications	especially	 in	 the	 fields	of;	 tissue	engineering,	drug	delivery	

(Obarzanek-Fojt	et	al.,	2016),	 toxicology	and	spinal	 cord	 injury	repair	 (Han	et	al.,	2010;	

Macaya	 et	 al.,	 2013;	 Altinova	 et	 al.,	 2014).	 This	 material	 is	 capable	 of	 supporting	

numerous	cell	 types	and	 is	highly	adaptable	 to	mimic	 in	vivo	 conditions.	 In	recent	years	

collagen	gels	have	been	used	 to	 enable	 cells	 of	 the	CNS	 such	as	neurons	 and	glial	 cells;	

astrocytes,	microglia	and	oligodendrocytes	 to	 interact	and	behave	as	 they	would	 in	vivo	

by	creating	an	environment	similar	to	that	of	the	CNS	(East	et	al.,	2009).	

	

5.1.2.	Aims	

There	 is	 a	paucity	of	 literature	 regarding	 the	effect	of	wear	products	 from	biomaterials	

utilised	in	the	orthopaedic	industry	on	the	viability	of	cells	of	the	CNS	in	3D	culture	thus	it	

was	 the	 aim	 of	 this	 part	 of	 the	 study	 to	 investigate	 the	 effect	 of	 cobalt	 chrome	 and	

stainless	 steel	 wear	 particles	 (and	 ions)	 on	 the	 viability	 of	 primary	 astrocytes	 and	

microglia	 in	co-culture	and	primary	astrocytes	 in	 isolation	and	to	determine	whether	or	

not	 the	 effects	 of	 the	 metallic	 particles	 on	 viability	 are	 different	 between	 2D	 and	 3D	

culture	 systems.	 Though	 it	 is	 important	 to	 understand	 the	 effect	 of	 lethal	 doses	 these	

materials	 on	 cell	 viability	 it	 is	 also	 key	 to	 understand	 some	 of	 the	 sub-lethal	 effects.	

Therefore	 the	 effect	 of	 cobalt	 chrome	and	 stainless	 steel	 particles	on	 cellular	 activation	

and	 cytokine	 release	were	 also	 studied	using	 a	 physiologically	 relevant	 3D	 collagen	 gel	
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cell	culture	system.	An	up-regulation	in	the	expression	of	GFAP	was	selected	as	a	marker	

of	 astrocyte	 reactivity	 and	 assessed	 using	 immunocytochemistry.	 The	 effect	 of	metallic	

wear	 products	 on	 the	 release	 of	 TNF-a	 was	 established	 using	 an	 enzyme	 linked	

immunosorbent	assay.		
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5.2.	Materials		

Materials	used	in	addition	to	those	stated	previously	in	Chapter	2,	section	2.1	include	the	

reagents	and	antibodies	detailed	in	Table	5.1	and	5.2	respectively.	

	
Table	5.1.	 Assay	 kits	 used	 to	 determine	 the	 effect	 of	 cobalt	 chrome	 and	 stainless	 steel	

particles	on	cell	viability	and	cytokine	release.		

	

Material	 Supplier	

Live	deadÒ	cytotoxicity	kit	for	

mammalian	cells.	Calcein	AM	and	

Ethidium	homodimer-1	

ThermoFisher	Scientific.	

Massachusetts,	USA.	

Rat	TNF-a	sandwich	ELISA	kit	 2B	Scientific,	Oxfordshire	UK.	

	
Table	 5.2	 Antibodies	 and	 stains	 used	 to	 determine	 the	 effect	 of	 cobalt	 chrome	 and	

stainless	steel	on	primary	astrocyte	cellular	reactivity.			

	

Antibody	

	

Primary	

antibody	

dilution	

Secondary	

antibody	

dilution	

Secondary	

antibody	

Glial	fibrillary	

acidic	protein	

(GFAP)	

1:300	 1:300	 DyLight®	549	

Anti-rabbit	IgG	

Hoescht	33258	 1:1000	 -	
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5.3	Methods	
	
The	aspects	of	the	biological	response	that	were	investigated	as	part	of	this	study	were;	

cell	 viability	 (response	 to	 metallic	 particles	 and	 ions),	 cellular	 reactivity	 and	 TNF-a	

cytokine	release.		A	live	dead	assay	was	used	to	determine	the	effect	of	cobalt	chrome	and	

stainless	 steel	 wear	 particles	 on	 cell	 viability,	 immunocytochemistry	 to	 determine	 the	

effects	 of	metallic	particles	on	 cellular	 reactivity	 and	an	enzyme	 linked	 immunosorbent	

assay	used	to	determine	the	effects	on	TNF-a	release.			

	

5.3.1.	Cell	viability	assays	

A	live	dead	assay	was	used	to	determine	the	effects	of	cobalt	chromium	and	stainless	steel	

wear	 particles	 on	 the	 viability	 of	 primary	 astrocytes	 and	 microglia	 in	 co-culture	 and	

primary	astrocytes	in	isolation.	

	
5.3.1.1.The	effects	of	cobalt	chrome	and	stainless	steel	debris	on	cell	viability	in	an	

advanced	3D	cell	culture	system	using	a	live	dead	assay.	

The	live	dead	assay	comprised	two	fluorescent	dyes;	ethidium	homodimer-1	and	calciein	

AM.	The	calcien	fluorescent	dye	stained	living	cells	green	and	the	ethidium	homodimer-1	

stained	dead	cells	red.		Primary	astrocytes	and	microglia	were	isolated	and	cultured	in	co-

culture	and	astrocytes	in	isolation	in	accordance	with	the	protocol	outlined	previously	in	

Chapter	2,	section	2.4.1.6.			

	

Primary	astrocytes	and	microglia	 in	co-culture	and	primary	astrocytes	 in	 isolation	were	

seeded	into	collagen	gels	at	a	seeding	density	of	1	x	105	cells	per	100µl	gel	and	cultured	

with	all	doses	of	stainless	steel	or	cobalt	chromium	particles	(0.5µm3	-	50µm3	debris	per	

cell,	6	repeats	per	condition)	for	48	hours	and	five	days	at	37°C	in	5%	(v/v)	CO2	in	air.	A	

volume	of	100µl	DMSO	was	used	as	a	positive	control	to	induce	cell	death.		

	

After	the	appropriate	incubation	period	with	cobalt	chrome	or	stainless	steel	wear	debris,	

a	 live	 dead	 assay	 was	 performed.	 The	 assay	 was	 performed	 in	 accordance	 with	 the	

protocol	 outlined	 in	Chapter	2,	 section	2.4.2.2.	The	 gels	were	 imaged	 immediately	 after	

the	 live	 dead	 assay	 was	 performed	 using	 a	 Zeiss	 Olympus	 upright	 microscope	 at	 x	 10	

magnification	 using	 the	 calcein	 and	 ethidium	 homodimer	 pre-set	 filters	 (617nm	 and	

514nm	emission	wavelengths,	respectively).	A	total	of	six	images	were	taken	for	each	gel,	

and	 with	 six	 gels	 per	 test	 condition,	 a	 total	 of	 36	 images	 were	 captured	 for	 each	 test	

condition.	The	number	of	living	(green)	and	dead	(red)	cells	was	totalled	for	each	image	

using	 image	J	and	the	cell	counter	analysis	 tool	within	the	software	and	a	percentage	of	
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living	cells	recorded.	A	mean	percentage	of	living	cells	was	calculated	for	each	condition	

by	 calculating	a	mean	of	 all	36	 images.	A	 two-way	ANOVA	and	Tukey	post-hoc	analysis	

was	 used	 to	 determine	 whether	 the	 effects	 of	 the	 particles	 on	 cell	 viability	 were	

significant	when	compared	to	the	cell	only	negative	control.	

	

5.3.1.2	Image	acquisition	protocol.	

A	 precise,	 well	 defined,	 protocol	 was	 developed	 to	 image	 each	 collagen	 gel	 after	 the	

appropriate	incubation	period	with	the	live	dead	fluorescent	dyes	to	determine	the	effect	

that	the	cobalt	chrome	and	stainless	steel	wear	particles	had	on	the	viability	of	primary	

astrocytes	and	microglia	 in	co-culture	and	primary	astrocytes	 in	 isolation.	This	protocol	

was	 specifically	designed	 to	 avoid	 areas	of	 the	 gel	where	 the	primary	astrocytes	would	

demonstrate	a	reactive	phenotype	in	response	to	tissue	culture	plastic	so	as	to	avoid	false	

positive	 results.	The	areas	of	 the	 gel	 that	were	not	 imaged	 included	 the	 edge	of	 the	 gel	

where	the	cells	would	be	in	contact	with	tissue	culture	plastic	and	the	surface	of	the	gel.	

Upon	 setting,	 the	 gels	 naturally	 formed	 a	 meniscus,	 the	 tension	 in	 this	 area	 leads	 to	

cellular	reactivity	and	therefore	this	area	was	omitted	from	analysis.		

After	 performing	 the	 live	 dead	 assay	 at	 the	 appropriate	 time	point	 (after	 two	days	 and	

five	days	in	culture)	the	collagen	gels	were	imaged	using	a	Zeiss	upright	microscope.	For	

each	experiment	the	same	settings	were	selected	on	the	microscope.	 

	For	 all	 images	 the	 x	 10	 objective	 lens	 was	 used	 to	 view	 the	 gels.	 Initially	 the	 gel	 was	

positioned	 so	 the	 objective	 lens	 was	 aligned	 directly	 over	 the	 centre	 of	 the	 gel.	 By	

adjusting	the	Z	plane	and	noting	where	the	cells	moved	 in	and	out	of	 focus,	 the	top	and	

bottom	of	 the	 gel	was	 located	 and	 the	 co-ordinates	noted.	These	 reference	points	were	

utilised	to	find	the	centre	of	the	gel	and	an	image	taken	at	this	point	(acquisition	of	image	

one).		Further	images	were	taken	around	this	central	point	(see	Figure	5.1).	
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Figure	5.1.	Gel	imaging	protocol	A)	The	location	of	image	5,	1	and	6	points.	These	points	

were	selected	to	avoid	the	meniscus	at	the	surface	and	to	be	equidistant	from	the	centre	

to	obtain	representative	images	of	the	gel.	B)	Images	1,2,3	and	4	were	taken	in	the	same	Z	

plane	half	way	 through	 the	 gel.	 Image	1	was	 taken	directly	 at	 the	 centre	of	 the	 gel	 and	

images	2,	3	and	4	at	equidistant	locations	around	this	central	point.		

	

A	total	of	six	images	were	taken	and	analysed	for	each	gel	and	six	gels	were	produced	for	

each	 condition	 (0.5-50µm3	cobalt	 chromium	 or	 stainless	 steel	 debris	 per	 cell,	 cell	 only	

negative	control,	DMSO	positive	control,	particle	only	control	and	blank).		Using	point	one	

as	 a	 reference	point,	 a	 further	 three	 images	were	acquired	 in	 the	 same	Z	plane,	 images	

two,	 three	and	four.	 Imagining	the	gel	as	a	clock,	 image	two	was	taken	at	 the	12	o’clock	

position,	image	three	at	the	4	o’clock	position	and	four	at	the	8	o’clock	position.	Image	five	

was	 taken	closer	 to	 the	 top	of	 the	gel	and	 to	 the	 left	of	 the	central	point.	 Image	six	was	

A	

B	
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acquired	 towards	 the	 bottom	 of	 the	 gel,	 to	 the	 right	 of	 the	 central	 point.	 The	 rationale	

behind	taking	six	images	per	gel	was	to	obtain	a	holistic	view	of	the	cellular	response	in	

all	non-reactive	regions	of	the	gel.	

	

5.3.1.3	Image	analysis	using	Image	J	

Image	J	software	was	used	to	count	 living	(green)	and	dead	(red)	cells	as	a	quantitative	

measure	 to	 assess	 the	 effect	 of	 metallic	 wear	 particles	 on	 the	 viability	 of	 primary	

astrocytes	and	microglia	 in	co-culture	and	primary	astrocytes	 in	 isolation.	For	each	 test	

condition	all	36	images	were	included	in	analysis.	All	cells,	living	and	dead	(in	and	out	of	

focus),	were	counted	for	each	image	using	the	cell	counter	analysis	tool	within	the	Image	J	

software.	For	each	image	the	number	of	viable	cells	was	expressed	as	a	percentage	and	an	

average	 percentage	 over	 all	 36	 images	 calculated	 for	 each	 test	 condition,	 this	 was	

compared	to	the	cell	only	negative	control	using	a	 two-way	ANOVA	and	Tukey	post	hoc	

analysis.		

	

5.3.1.4	Statistical	analysis	for	live	dead	data.		

As	the	data	generated	from	the	 live	dead	 images	was	presented	 in	percentages,	prior	to	

any	 statistical	 analysis,	 the	 data	was	 adjusted	 to	 account	 for	 the	 fact	 the	 data	was	 not	

normally	 distributed,	 and	 an	 arcsine	 transformation	 also	 known	 as	 the	 angular	

transformation	 performed.	 A	 histogram	 of	 the	 percentage	 data	 for	 each	 condition	 was	

produced	 to	 ensure	 the	 data	was	 not	 normally	 distributed.	 Upon	 transformation	 of	 the	

original	 percentage	 data	 using	 the	 arcsine	 transformation	 the	 distribution	 closely	

approximated	 a	 normal	 distribution.	 A	 two-way	 ANOVA	 and	 Tukey	 post-hoc	 analysis	

(whose	formulas	and	assumptions	rely	on	normally	distributed	data)	were	performed	on	

the	 transformed	 data.	 In	 reporting	 the	 mean	 for	 each	 condition,	 the	 data	 was	 back-

transformed	back	to	percentages	for	graphical	purposes.				

	
5.3.2	Primary	astrocyte	reactivity.	

In	 vivo	 astrocytes	 are	 rounded	 in	 morphology	 and	 unreactive,	 in	 response	 to	 trauma	

astrocytes	 exhibit	 a	 reactive	 phenotype,	 of	which	 the	 up-regulation	 of	 the	 intermediate	

filament	 protein,	 glial	 fibrillary	 acidic	 protein	 (GFAP)	 is	 a	 marker.	 In	 vivo	 primary	

astrocytes	 do	 not	 constitutively	 express	 this	 protein,	 this	 only	 occurs	 in	 adverse	

environmental	conditions.	

	

5.3.2.1	Immunocytochemistry	to	detect	glial	fibrillary	acidic	protein	(GFAP).		

To	 determine	 the	 effect	 of	 cobalt	 chromium	 and	 stainless	 steel	 wear	 particles	 on	 the	

reactivity	 of	 primary	 astrocytes	 and	 microglia	 in	 co-culture	 and	 primary	 astrocytes	 in	
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isolation,	 cells	were	 cultured	with	 increasing	particle	volumes	 (0.5µm3	 -	50µm3	metallic	

wear	debris	per	cell).	After	the	appropriate	incubation	period,	two	and	five	days,	the	gels	

were	fixed	using	4%	PFA	(v/v)	and	immunocytochemistry	used	to	determine	the	effect	on	

GFAP	expression.		

	

5.3.2.2	Antibodies	used	for	labelling	of	glial	fibrillary	acidic	protein		

The	 primary	 antibody	 was	 polyclonal	 rabbit	 anti-glial	 fibrillary	 acidic	 protein	 (GFAP)	

diluted	1:300	in	PBS	without	calcium	and	magnesium.		

The	secondary	antibody	was	DyLight®	549	anti-rabbit	IgG	(H+L)	diluted	1:300	in	PBS.	In	

addition,	 Hoechst	 33258	was	 used	 to	 identify	 nuclear	 DNA	 diluted	 1:1000	 (1μg/ml)	 in	

PBS.		

The	PFA	was	discarded	and	the	gels	(100µl	collagen	gels	in	96-well	plates)	were	washed	

three	 times	 for	 five	minutes	with	PBS	 (without	 calcium	and	magnesium).	Following	 the	

PBS	washes,	100µl	of	0.1%	(v/v)	Triton	X-100	(Chapter	2,	section	2.3.28)	was	added	to	

each	gel	and	incubated	at	room	temperature	for	30	minutes.		After	the	incubation	period,	

the	Triton	X-100	was	removed	and	the	gels	washed	three	times	in	PBS	for	five	minutes.	

During	the	washes	a	5%	(v/v)	goat	serum	block	(Chapter	2,	section	2.3.12)	and	primary	

GFAP	antibody	solution	was	prepared.		

	

After	the	PBS	washes,	cells	were	blocked	with	100µl	of	5%	(v/v)	goat	serum	to	prevent	

any	non-specific	binding	of	the	primary	antibody.	The	gels	were	incubated	for	30	minutes	

at	room	temperature.	The	gels	were	then	washed	with	PBS	three	times	for	 five	minutes	

each	and	100µl	 of	 the	primary	GFAP	antibody	 (1:300	primary	antibody	diluted	 in	PBS)	

was	added	to	each	gel.	The	96-well	plate	was	wrapped	in	foil	and	stored	overnight	at	4°C.	

		

After	 the	 overnight	 incubation	 the	 primary	 antibody	 was	 removed	 from	 each	 gel	 and	

three,	 10	 minute	 washes	 with	 PBS	 performed	 at	 room	 temperature.	 During	 the	 PBS	

washes	 the	 combined	 secondary	 antibody	 and	 Hoechst	 33258	 solution	 was	 prepared	

(1:300	dilution	of	the	secondary	antibody	in	PBS	with	1:1000	Hoescht	33258).	A	volume	

of	100µl	of	the	secondary	antibody	Hoecht	solution	was	added	to	each	well	and	incubated	

at	 room	 temperature	 in	 the	 dark	 for	 90	 minutes.	 The	 secondary	 antibody	 Hoescht	

solution	was	removed	and	three,	 five-minute	washes	with	PBS	were	performed	at	room	

temperature.	The	gels	were	stored	 in	PBS	at	4°C	and	 imaged	the	same	day	according	to	

the	previously	outlined	protocol	(section	5.3.1.2).	A	negative	control	was	not	used	for	the	

antibody	staining.			
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5.3.2.3	Immunocytochemistry	image	acquisition	protocol.	

The	imaging	protocol	was	identical	to	the	procedure	outlined	in	section	5.3.1.2,	where	the	

effects	 of	 cobalt	 chrome	 and	 stainless	 steel	 wear	 debris	 on	 the	 viability	 of	 primary	

astrocytes	 and	 microglia	 were	 investigated.	 However	 the	 Hoescht	 and	 red	 pre-set	

channels	were	selected.	The	laser	settings	used	were	Laser	Diode	405:	405nm	(Hoechst)	

and	HeNe1:	543nm	(for	the	detection	of	GFAP).	A	total	of	six	images	were	taken	per	gel	in	

the	same	orientation	as	outlined	previously	in	section	5.3.1.2	and	six	gels	were	produced	

per	test	condition.	This	yielded	a	total	of	36	images	per	test	condition.		

	

Each	 image	 was	 analysed	 for	 the	 expression	 of	 GFAP	 (stained	 red).	 When	 the	 cells	

expressed	GFAP,	red	staining	was	present,	the	image	was	labeled	with	a	+,	When	no	GFAP	

expression	was	observed,	no	red	staining,	the	image	was	labeled	-.	The	number	of	+	and	–	

images	for	each	test	condition	was	recorded,	the	mode	grade	for	each	test	condition	was	

determined	and	compared	to	the	cell	only	negative	control.	

	

5.3.3	TNF-a	Cytokine	release		

5.3.3.1	A	solid	phase	sandwich	Enzyme	Linked	Immunosorbent	Assay	to	determine	

the	effect	of	cobalt	chrome	and	stainless	steel	wear	particles	on	TNF-a	production	

in	primary	astrocytes	and	microglia.		

A	 solid	 phase	 sandwich	 enzyme	 linked	 immunosorbent	 assay	 (ELISA)	 was	 used	 to	

determine	the	concentration	of	TNF-a	produced	by	primary	astrocytes	and	microglia	 in	

co-culture	 and	 primary	 astrocytes	 in	 isolation	 when	 cultured	 with	 metallic	 (cobalt	

chrome	and	stainless	steel)	wear	debris.	

	

Rat	 astrocytes	 do	 not	 constitutively	 produce	 TNF-a	 but	 upon	 mechanical	 injury	 or	

biological	 stimulation	 are	 known	 to	 release	 TNF-a.	 TNF-a	 production,	 a	 marker	 of	

systemic	 inflammation,	 was	 measured	 using	 a	 solid	 phase	 sandwich	 enzyme	 linked	

immunosorbent	 assay	 (ELISA).	 Supernatants	 stored	 from	 previous	 cytotoxicity	

investigations	were	used	 for	 this	part	of	 the	 study.	 Lipopolysaccharide	was	used	as	 the	

positive	 control	 in	 this	 investigation.	 Lipopolysaccharide	 (2ng.ml-1),	 is	 a	 component	 of	

endotoxin,	 originating	 from	 the	 cell	 walls	 of	 gram-negative	 bacteria	 is	 know	 to	 induce	

TNF-a	 production	 in	 primary	 rat	 astrocytes	 (Brahmachari	 et	 al.,	 2006).	 The	

lipopolysaccharide	stimulated	positive	control	gels	(100µl	gels,	with	a	seeding	density	of	

1x105	cells	per	100µl	 gel)	were	produced	 in	a	 separate	 investigation	 to	 the	cytotoxicity	

studies,	the	supernatant	was	collected	and	stored	at		-80°C	until	required.	An	alternative	

positive	 control	 was	 also	 investigated.	 In	 2D	 monolayer	 culture,	 primary	 astrocytes	
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exhibit	a	reactive	phenotype	and	up-regulate	the	expression	of	GFAP.	Glial	fibrillary	acidic	

protein	 is	 a	 marker	 of	 astrogliosis,	 an	 abnormal	 proliferation	 of	 primary	 astrocytes	 in	

response	 to	 a	 biological	 or	 mechanical	 stimulus.	 One	 of	 the	 key	 detrimental	 effects	 of	

astrogliosis	 is	 the	 release	 of	 pro-inflammatory	 cytokines	 such	 as	 TNF-a.	 Thus	 primary	

astrocytes	 were	 cultured	 in	 a	 2D	 monolayer	 cell	 culture	 system	 for	 48	 hours,	 the	

supernatant	 was	 removed	 and	 stored	 at	 -80°C	 for	 use	 in	 this	 part	 of	 the	 study	 for	 an	

additional	positive	control.	

		

Pre-coated	 plates,	 already	 coated	 with	 a	 monoclonal	 capture	 antibody	 specific	 for	 rat	

TNF-a,	were	used	in	this	study.	The	supernatants	from	previous	cytotoxicity	experiments	

(time	points	two	and	five	days)	were	collected	and	stored	at	-80°C.		The	required	samples	

were	 thawed	at	 room	 temperature	 for	 approximately	2	hours	prior	 to	 commencing	 the	

ELISA.	 During	 the	 thawing	 process	 the	 wash	 buffer,	 standard	 diluent	 buffer	 and	

biotinylated	anti-rat	TNF-a	were	prepared	 (Chapter	2,	 sections	2.3.31,	2.3.23	and	2.3.4,	

respectively).		

	

Initially	 the	 standards	 for	 generation	 of	 the	 standard	 curve	 were	 prepared	 in	 the	 pre-

coated	 96-well	 plate.	 To	 prepare	 the	 standards	 the	 vial	 provided	 in	 the	 kit	 was	

reconstituted	 in	 the	 recommended	 volume	 (1.19ml)	 of	 standard	 diluent,	 immediately	

prior	 to	use.	By	 reconstituting	 the	vial	 in	1.19ml	of	 standard	diluent	a	 stock	 solution	of	

1000pg.ml-1	of	rat	TNF-a	was	produced.	This	solution	was	mixed	thoroughly	by	inverting	

the	 vial.	 Serial	 dilutions	 of	 rat	 TNF-a	were	 prepared	 directly	 in	 the	 pre-coated	 96-well	

plate.	The	 standard	dilutions	 ranged	 from	31.25-1000pg.ml-1	 of	 rat	TNF-a.	 Immediately	

after	reconstitution	200µl	of	indicated	standard	was	added	to	wells	A1	and	A2	providing	

the	 highest	 concentration	 on	 the	 standard	 curve	 (1000pg.ml-1).	 A	 volume	 of	 100µl	 of	

standard	diluent	was	added	to	the	remaining	standard	wells,	B1	and	B2	to	F1	and	F2.	A	

volume	of	100µl	was	taken	from	A1	and	A2	and	added	to	B1	and	B2,	respectively	yielding	

the	 second	 standard,	 500pg.ml-1.	 The	 contents	 of	B1	 and	B2	were	mixed	 thoroughly	 by	

aspiration.	The	1:1	dilution	was	continued	using	100µl	from	wells	B1	and	B2	through	to	

wells	 F1	 and	 F2.	 The	 excess	 100µl	 was	 discarded	 from	 wells	 F1	 and	 F2	 and	 100µl	 of	

antibody	diluent	added	to	wells	G1	and	G2	to	provide	the	zero	standard	concentration.	A	

volume	of	100µl	of	the	thawed	supernatant	samples	were	added	to	the	remaining	wells	of	

the	pre-coated	96-well	plate	in	accordance	with	Figure	5.2.	
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Figure	5.2	The	positioning	of	supernatant	samples	in	the	pre-coated	96-well	plate	in	the	

enzyme	 linked	 immunosorbent	 assay.	 Purple=	 Standards	 ranging	 from	 0-1000pg.ml-1.	

Red=Primary	astrocytes	and	microglia	in	co-culture	cultured	with	50µm3	CoCr	debris	for	

two	 days.	 Orange=	 Primary	 astrocytes	 and	microglia	 in	 co-culture	 cultured	 with	 5µm3	

CoCr	debris	for	two	days.	Yellow=	Primary	astrocytes	and	microglia	in	co-culture	cultured	

with	0.5µm3	CoCr	debris	 for	 two	days.	Light	green=	Primary	astrocytes	and	microglia	 in	

co-culture	 for	 two	days	(cell	only	negative	control).	Dark	green=Primary	astrocytes	and	

microglia	and	reactive	cell	supernatant	from	2D	monolayer	culture	two	days.	Light	Blue=	

Primary	 astrocytes	 and	 microglia	 with	 LPS	 (2ng.ml-1)	 two	 days.	 Dark	 Blue=	 Primary	

astrocytes	and	microglia	in	co-culture	cultured	with	50µm3	stainless	steel	debris	for	two	

days.	Pink=	Primary	astrocytes	and	microglia	 in	 co-culture	cultured	with	5µm3	stainless	

steel	debris	for	two	days.	White=	Primary	astrocytes	and	microglia	in	co-culture	cultured	

with	0.5µm3	stainless	steel	debris	for	two	days.	Grey=	Primary	astrocytes	and	microglia	in	

co-culture	 for	 two	 days	 (cell	 only	 negative	 control).	 Black=	 Primary	 astrocytes	 and	

microglia	 and	 reactive	 cell	 supernatant	 two	 days.	 Brown=	 Primary	 astrocytes	 and	

microglia	with	LPS	(2ng.ml-1)	two	days.	

	

After	 the	 samples	were	 added	 to	 the	96-well	 plate,	 50µl	 of	 biotinylated	 anti-Rat	TNF-a	

was	 added	 to	 all	 wells.	 The	 plate	 was	 covered	 with	 a	 micro-plate	 sealing	 film	 and	

incubated	at	room	temperature	for	three	hours.	During	this	three-hour	incubation	period	

the	Streptavidin-HRP	solution	was	prepared	(Chapter	2,	section	2.3.24).	The	Streptavidin-

HRP	 solution	 was	 diluted,	 150µl	 of	 Streptavidin-HRP	 in	 10mls	 of	 Streptavidin-HRP	

diluent	(the	recommended	dilution	for	a	96-well	plate).		
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After	the	three-hour	incubation	period	all	wells	were	washed	with	300µl	the	wash	buffer	

solution.	 Initially	 the	 contents	 of	 each	 well	 were	 aspirated	 over	 the	 sink	 and	

approximately	300µl	of	wash	buffer	solution	was	added	to	each	well.	After	30	seconds	the	

contents	were	once	again	aspirated.	This	wash	step	was	repeated	three	times	ensuring	all	

wash	buffer	was	removed	after	each	step.		

	

A	volume	of	100µl	of	Streptavidin-HRP	solution	was	added	to	each	well.	The	96-well	plate	

was	 covered	 with	 a	 plastic	 micro-plate	 sealing	 film	 and	 the	 plate	 incubated	 at	 room	

temperature	for	30	minutes.	After	the	30-minute	incubation	period	each	well	was	washed	

three	 times	with	PBS	 (as	previously	outlined).	The	 ready-to-use	TMB	substrate	 (100µl)	

provided	 in	 the	 kit	 was	 added	 to	 each	well.	 The	 plate	was	 covered	with	 a	micro-plate	

sealing	film,	wrapped	in	foil	and	incubated	at	room	temperature	for	20	minutes.	After	this	

time	wells	containing	TNF-a	developed	a	blue	colouring.	The	ready-to-use	stop	solution	

was	 added	 to	 each	well	 in	 the	 96-well	 plate	 (100µl	 per	well).	 The	 addition	 of	 the	 stop	

solution	converted	the	blue	solution	to	a	yellow	solution.	The	plate	was	then	read	using	a	

spectrophotometer	using	450nm	as	the	primary	wavelength	and	630nm	as	the	reference	

wavelength,	providing	an	optical	density	value	for	each	sample.		

	

An	average	optical	density	value	was	calculated	for	the	standard	samples,	all	test	samples	

and	controls.	Using	the	average	optical	densities	for	the	standards	a	linear	standard	curve	

was	generated.	Here	the	mean	optical	density	value	for	each	standard	was	plotted	against	

the	corresponding	TNF-a	concentration.	The	concentration	of	TNF-a	(measured	in	pg.ml-

1)	 for	 each	 test	 sample	was	 derived	 from	 the	 standard	 curve	 using	 the	 average	 optical	

density	value.		

	

	

	
	
	
	
	
	
	
	
	

	

	

	

	



				 	 Chapter	5	

	 172	

5.4	Results		

	
5.4.1.The	 effect	 of	 cobalt	 chrome	 wear	 particles	 on	 the	 viability	 of	 primary	

astrocytes	and	microglia	in	co-culture	and	primary	astrocytes	in	isolation.		

To	determine	the	effect	of	cobalt	chrome	wear	particles	on	the	viability	of	cell	of	the	CNS.	

Primary	astrocytes	and	microglia	 in	co-culture	and	primary	astrocytes	 in	 isolation	were	

cultured	with	 increasing	particle	volumes	 (0.5µm3	–	50µm3)	and	 their	effect	on	viability	

determined	using	a	live	dead	assay.		

	

5.4.1.1	 The	 effect	 of	 cobalt	 chrome	 wear	 particles	 on	 the	 viability	 of	 primary	

astrocytes	and	microglia	in	co-culture.	

Primary	astrocytes	and	microglia	were	cultured	with	increasing	particle	volumes	(0.5µm3	

CoCr	 debris	 per	 cell	 to	 50µm3	CoCr	 debris	 per	 cell)	 for	 two	 and	 five	 days	 (Figure	 5.3).	

Following	 this	 incubation	period	 the	 live	dead	assay	was	performed	 in	accordance	with	

the	protocol	outlined	in	Chapter	2,	section	2.4.2.2.	Live	dead	images	showing	the	effect	of	

cobalt	chrome	wear	particles	on	the	viability	of	primary	astrocytes	and	microglia	after	48	

hours	and	five	days	in	culture	can	be	seen	in	Figures	5.4	and	5.5	respectively	

	

When	 primary	 astrocytes	 and	 microglia	 in	 co-culture	 were	 cultured	 with	 increasing	

concentrations	of	 cobalt	 chrome	particles	 for	 two	and	 five	days	 in	 culture,	 the	 cell	 only	

negative	 control	 maintained	 a	 high	 percentage	 of	 living	 cells	 at	 77.8%	 and	 82.7%,	

respectively	after	two	and	five	days	in	culture	(Figure	5.3).		

	

After	the	primary	astrocytes	and	microglia	were	cultured	with	the	largest	cobalt	chrome		

particle	dose	of	50µm3	CoCr	debris	per	cell,	at	two	and	five	days	a	significant	decrease	in	

viability	was	observed	when	compared	to	the	cell	only	negative	control	with	only	41.8%	

of	cells	being	viable	after	two	days	and	54.2%	of	cells	being	viable	after	five	days.				
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Figure	5.3	The	effect	of	increasing	particle	volumes	(0.5µm3-50µm3)	of	cobalt	chrome	on	

the	 viability	 of	 primary	 astrocytes	 and	microglia	 in	 co-culture	 after	 two	 and	 five	 days.	

Mean	percentage	of	living	cells	±	95%	confidence	intervals	(six	replicates	per	condition).	

DMSO	was	used	as	a	positive	control,	a	particle	only	negative	control	was	also	used.	An	

asterisk	 indicates	 a	 significant	 reduction	 in	 viability	 (p<0.05)	when	 compared	with	 cell	

only	negative	control	using	a	Two-way	ANOVA.		

	

When	the	primary	astrocytes	and	microglia	were	cultured	in	3D	collagen	gels	with	5µm3	

cobalt	chrome	debris	per	cell	no	significant	adverse	effect	on	cell	viability	was	observed	

after	 two	 days,	 however,	 a	 significant	 decline	 in	 viability	 was	 seen	 after	 five	 days	 in	

culture,	with	only	70.5%	viable	cells	 recorded	at	 this	 time	point,	 compared	 to	82.7%	 in	

the	cell	negative	only	control.	

	

After	two	and	five	days	in	culture	with	the	lowest	cobalt	chrome	particle	dose	of	0.5µm3	

CoCr	debris	per	 cell,	no	adverse	effect	on	primary	astrocyte	and	microglia	viability	was	

detected	when	compared	to	the	cell	only	negative	control.		

	

When	primary	astrocytes	and	microglia	were	cultured	with	100µl	DMSO	positive	control,	

significant	 decreases	 in	 viability	 were	 observed	 at	 both	 two	 and	 five-day	 time	 points.	

After	 48	 hours	 in	 culture	with	 the	DMSO	 positive	 control	 only	 17.3%	of	 the	 cells	were	

viable.	After	five	days	in	culture	47.6%	of	primary	astrocytes	and	microglia	were	viable.	

No	 fluorescence	was	emitted	 from	the	particle	only	gels,	 indicating	the	particles	did	not	

auto-fluoresce	and	interfere	with	the	assay.		
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Figure	5.4	The	effect	of	increasing	cobalt	chrome	particle	volumes	(0.5µm3-50µm3	cobalt	

chrome	 particles	 per	 cell)	 on	 the	 viability	 of	 primary	 astrocytes	 and	 microglia	 in	 co-

culture	after	48	hours	assessed	using	a	live	dead	assay.	The	highest	particle	dose	(50µm3	

cobalt	 chrome	particles	per	 cell)	was	used	as	a	particle	only	 control.	The	green,	 calcein	

stain,	 stains	 living	cells	and	 the	 red,	 ethidium	homodimer	 fluorescent	dye,	 stained	dead	

cells.			
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Figure	5.5	The	effect	of	increasing	cobalt	chrome	particle	volumes	(0.5µm3-50µm3	cobalt	

chrome	 particles	 per	 cell)	 on	 the	 viability	 of	 primary	 astrocytes	 and	 microglia	 in	 co-

culture	after	five	days	assessed	using	a	live	dead	assay.	The	highest	particle	dose	(50µm3	

cobalt	 chrome	particles	per	 cell)	was	used	as	a	particle	only	 control.	The	green,	 calcein	

stain,	 stains	 living	cells	and	 the	 red,	ethidium	homodimer	 fluorescent	dye,	 stained	dead	

cells.			
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5.4.1.2	 The	 effect	 of	 cobalt	 chrome	 wear	 particles	 on	 the	 viability	 of	 primary	

astrocytes	in	isolation.		

The	 effect	 of	 cobalt	 chrome	 wear	 particles	 on	 the	 viability	 of	 primary	 astrocytes	 in	

isolation	was	determined	using	a	live	dead	assay	(Figure	5.6).	Live	dead	images	showing	

the	 effect	 of	 cobalt	 chrome	 wear	 particles	 on	 the	 viability	 of	 primary	 astrocytes	 in	

isolation	 after	 48	 hours	 and	 five	 days	 in	 culture	 can	 be	 seen	 in	 Figures	 5.7	 and	 5.8	

respectively.	

	

Over	 the	 course	 of	 the	 investigation	 the	 primary	 astrocytes	 (in	 isolation)	 continued	 to	

grow	and	divide	and	maintained	a	high	proportion	of	living	cells;	84.4%	living	cells	after	

two	days	and	94.3%	after	five	days	(Figure	5.6).	

	
	

Figure	5.6	The	effect	of	increasing	particle	volumes	(0.5µm3-50µm3)	of	cobalt	chrome	on	

the	 viability	 of	 primary	 astrocytes	 in	 isolation	 after	 two	 and	 five	 days	 in	 culture.	Mean	

percentage	of	living	cells	±	95%	confidence	intervals	(six	replicates	per	condition).	DMSO	

was	 used	 as	 a	 positive	 control,	 a	 particle	 only	 negative	 control	 was	 also	 used.	 An	 *	

Indicates	 a	 significant	 reduction	 in	 viability	 (p<0.05)	 when	 compared	 with	 cell	 only	

negative	control	using	Two-way	ANOVA.	

	
Similar	effects	on	cell	viability	were	observed	when	primary	astrocytes	in	isolation	were	

cultured	with	 cobalt	 chrome	 particles	 in	 a	 3D	 collagen	 hydrogel	 for	 two	 and	 five	 days.	

Significant	 adverse	 effects	 on	 viability	 were	 observed	 when	 the	 primary	 astrocytes	 in	

isolation	were	 cultured	with	 the	 highest	 cobalt	 chrome	 particle	 dose	 of	 50µm3	per	 cell,	

after	 two	and	 five	days	 in	culture	when	compared	 to	 the	cell	only	negative	control.	The	
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cell	viability	was	reduced	to	71.6%	living	cells	after	two	days	(compared	to	84.4%	living	

cells	in	the	cell	only	control)	and	82.0%	after	five	days	(compared	to	94.3%	living	cells	in	

the	 cell	 only	 control).	 No	 adverse	 effects	 on	 viability	 were	 observed	 when	 primary	

astrocytes	were	cultured	with	the	5µm3	and	0.5µm3	cobalt	chrome	per	cell	particle	doses	

after	two	and	five	days	in	culture.		

	

The	 DMSO	 positive	 control	 induced	 a	 significant	 reduction	 in	 viability	 of	 primary	

astrocytes	at	both	time	points.	The	percentage	of	living	cells	after	two	days	fell	to	61.1%	

from	84.4%	viable	cells	in	the	cell	only	control	and	to	33.9%	from	94.3%	in	the	cell	only	

control	after	five	days.		

	

No	 fluorescence	was	emitted	 from	the	particle	only	gels,	 indicating	the	particles	did	not	

auto-fluoresce	and	interfere	with	the	assay.	
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Figure	5.7	The	effect	of	increasing	cobalt	chrome	particle	volumes	(0.5µm3-50µm3	cobalt	

chrome	particles	per	cell)	on	the	viability	of	primary	astrocytes	in	isolation	after	48	hours	

assessed	using	a	live	dead	assay.	The	highest	particle	dose	(50µm3	cobalt	chrome	particles	

per	cell)	was	used	as	a	particle	only	control.	The	green,	calcein	stain,	stains	living	cells	and	

the	red,	ethidium	homodimer	fluorescent	dye,	stained	dead	cells.			
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	Figure	5.8	The	effect	of	increasing	cobalt	chrome	particle	volumes	(0.5µm3-50µm3	cobalt	

chrome	particles	per	cell)	on	the	viability	of	primary	astrocytes	in	isolation	after	five	days	

in	 culture	 assessed	 using	 a	 live	 dead	 assay.	 The	 highest	 particle	 dose	 (50µm3	cobalt	

chrome	particles	 per	 cell)	was	 used	 as	 a	 particle	 only	 control.	 The	 green,	 calcein	 stain,	
stains	living	cells	and	the	red,	ethidium	homodimer	fluorescent	dye,	stained	dead	cells.			
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A	 summary	 of	 the	 effects	 of	 cobalt	 chrome	 wear	 particles	 on	 the	 viability	 of	 primary	

astrocytes	and	microglia	 in	 co-culture	and	primary	astrocytes	 in	 isolation	 in	3D	culture	

after	two	and	five	days	are	presented	in	Table	5.3	

	

Table	 5.3	 The	 effects	 of	 cobalt	 chrome	 wear	 particles	 on	 the	 viability	 of	 primary	

astrocytes	and	microglia	in	co-culture	and	primary	astrocytes	in	isolation	in	an	advanced	

3D	cell	culture	system	assessed	using	a	live	dead	assay.	Cells	with	significantly	decreased	

viabilities	 (p<0.05)	 compared	 to	 the	 cell	 only	 negative	 control	 were	 indicated	 with	 an	

asterisk.		

	

	 Astrocytes	and	microglia	 Astrocytes	in	isolation	

	 0.5µm3	 5µm3	 50µm3	 DMSO	 0.5µm3	 5µm3	 50µm3	 DMSO	

Day	2	 	 	 *	 *	 	 	 *	 *	

Day	5	 	 *	 *	 *	 	 	 *	 *	
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5.4.1.3.The	 effect	 of	 stainless	 steel	 wear	 particles	 on	 the	 viability	 of	 primary	

astrocytes	and	microglia	in	co-culture.		

A	live	dead	assay	was	used	to	determine	the	effect	of	stainless	steel	wear	particles	on	the	

viability	 of	 primary	 astrocytes	 and	microglia	 in	 a	more	 physiologically	 relevant	 3D	 cell	

culture	system	compared	to	2D	monolayer	culture	(Figure	5.9).	Live	dead	images	showing	

the	 effect	 of	 stainless	 steel	 wear	 particles	 on	 the	 viability	 of	 primary	 astrocytes	 and	

microglia	in	co-culture	after	48	hours	and	five	days	in	culture	can	be	seen	in	Figures	5.10	

and	5.11	respectively.		

	

A	high	proportion	of	living	cells	were	maintained	for	the	primary	astrocyte	and	microglia	

cell	only	negative	control	over	the	course	of	the	investigation	with	79.4%	living	cells	after	

48	hours	and	88.6%	after	five	days	(Figure	5.9).		

	 	
Figure	5.9	The	effect	of	increasing	particle	volumes	(0.5µm3-50µm3)	of	stainless	steel	on	

the	viability	of	primary	astrocytes	and	microglia	 in	co-culture	after	two	and	five	days	 in	

culture.	 Mean	 percentage	 of	 living	 cells	 ±	 95%	 confidence	 intervals	 (six	 replicates	 per	

condition).	DMSO	was	used	as	a	positive	control,	a	particle	only	negative	control	was	also	

used.	 An	 asterisk	 indicates	 a	 significant	 reduction	 in	 viability	 (p<0.05)	when	 compared	

with	cell	only	negative	control	using	Two-way	ANOVA.	

	

No	 adverse	 effects	 on	 viability	 were	 observed	 when	 primary	 astrocytes	 and	 microglia	

were	cultured	with	50µm3,	5µm3	and	0.5µm3	stainless	steel	debris	per	cell	after	48	hours	

or	five	days	in	culture.		
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The	 DMSO	 positive	 control	 triggered	 a	 progressive	 reduction	 in	 viability	 of	 primary	

astrocytes	and	microglia	over	the	course	of	the	study.	The	percentage	of	living	cells	was	

reduced	to	59.0%	compared	to	79.4%	viable	cells	in	the	cell	only	gel	after	48	hours	and	to	

33.4%	compared	to	88.6%	viable	cells	in	the	cell	only	gels	after	five	days.		
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Figure	 5.10	 The	 effect	 of	 increasing	 stainless	 steel	 particle	 volumes	 (0.5µm3-50µm3	

stainless	steel	particles	per	cell)	on	the	viability	of	primary	astrocytes	and	microglia	in	co-

culture	after	48	hours	assessed	using	a	live	dead	assay.	The	highest	particle	dose	(50µm3	

stainless	 steel	 particles	per	 cell)	was	used	as	 a	particle	 only	 control.	 The	 green,	 calcein	
stain,	 stains	 living	cells	and	 the	 red,	 ethidium	homodimer	 fluorescent	dye,	 stained	dead	

cells.			
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Figure	 5.11	 The	 effect	 of	 increasing	 stainless	 steel	 particle	 volumes	 (0.5µm3-50µm3	

stainless	steel	particles	per	cell)	on	the	viability	of	primary	astrocytes	and	microglia	in	co-

culture	 after	 five	 days	 in	 culture	 assessed	 using	 a	 live	 dead	 assay.	 The	 highest	 particle	

dose	 (50µm3	stainless	 steel	 particles	 per	 cell)	 was	 used	 as	 a	 particle	 only	 control.	 The	
green,	calcein	stain,	stains	living	cells	and	the	red,	ethidium	homodimer	fluorescent	dye,	

stained	dead	cells.			
	

	

	

	

	

0.5µm3	 5µm3	

50µm3	 Cell	Only	

Particle	Only	 DMSO	



				 	 Chapter	5	

	 185	

No	 fluorescence	was	 observed	 in	 the	 particle	 only	 gels,	 indicating	 the	 particles	 did	 not	

auto-fluoresce.		

	

5.4.1.4	 The	 effect	 of	 stainless	 steel	 wear	 particles	 on	 the	 viability	 of	 primary	

astrocytes	in	isolation.		

The	 effect	 of	 stainless	 steel	 wear	 particles	 on	 the	 viability	 of	 primary	 astrocytes	 in	

isolation	was	assessed	using	a	live	dead	assay.	The	primary	astrocytes	were	cultured	with	

increasing	 particle	 volumes	 of	 stainless	 steel	 (0.5µm3-50µm3	stainless	 steel	 debris	 per	

cell)	for	two	and	five	days	(Figure	5.12).	Live	dead	images	showing	the	effect	of	stainless	

steel	wear	particles	on	the	viability	of	primary	astrocytes	in	isolation	after	48	hours	and	

five	days	in	culture	can	be	seen	in	Figures	5.13	and	5.14	respectively.	

	

Over	 the	 five-day	 incubation	 period	 the	 primary	 astrocytes	 in	 isolation	 continued	 to	

proliferate	with	92.2%	viable	 cells	 after	48	hours	 and	93.7%	 living	 cells	 after	 five	days	

(Figure	5.12).	

	 	
Figure	5.12	The	effect	of	 increasing	particle	volumes	 (0.5µm3-50µm3)	of	 stainless	 steel	

on	the	viability	of	primary	astrocytes	in	isolation	after	two	and	five	days	in	culture.	Mean	

percentage	of	living	cells	±	95%	confidence	intervals	(six	replicates	per	condition).		DMSO	

was	used	as	a	positive	control,	a	particle	only	negative	control	was	also	used.	An	asterisk	

indicates	 a	 significant	 reduction	 in	 viability	 (p<0.05)	 when	 compared	 with	 cell	 only	

negative	control	using	a	Two-way	ANOVA.	
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Once	 again	 the	 stainless	 steel	 wear	 particles	 did	 not	 trigger	 an	 adverse	 effect	 on	 the	

viability	of	primary	astrocytes	after	48	hours	and	5	days	 in	culture	at	any	particle	dose	

tested.		

	

A	 progressive	 reduction	 in	 viability	was	 detected	when	 primary	 astrocytes	 in	 isolation	

were	cultured	with	DMSO	after	48	hours	and	five	days.	The	percentage	of	living	cells	was	

reduced	 to	 13.6%	 from	 92.2%	 in	 the	 cell	 only	 negative	 control	 after	 48	 hours	 and	 to	

15.9%	from	93.7%	in	the	cell	only	negative	control	after	five	days.		

	

No	 fluorescence	was	 observed	 in	 the	 particle	 only	 gels,	 indicating	 the	 particles	 did	 not	

auto-fluoresce.		
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Figure	 5.13	 The	 effect	 of	 increasing	 stainless	 steel	 particle	 volumes	 (0.5µm3-50µm3	

stainless	steel	particles	per	cell)	on	the	viability	of	primary	astrocytes	in	isolation	after	48	

hours	 assessed	using	a	 live	dead	assay.	The	highest	particle	dose	 (50µm3	stainless	 steel	

particles	per	cell)	was	used	as	a	particle	only	control.	The	green,	calcein	stain,	stains	living	
cells	and	the	red,	ethidium	homodimer	fluorescent	dye,	stained	dead	cells.			
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Figure	 5.14	 The	 effect	 of	 increasing	 stainless	 steel	 particle	 volumes	 (0.5µm3-50µm3	

stainless	 steel	particles	per	 cell)	 on	 the	viability	of	primary	astrocytes	 in	 isolation	after	

five	days	 in	 culture,	 assessed	using	a	 live	dead	assay.	The	highest	particle	dose	 (50µm3	

stainless	 steel	 particles	per	 cell)	was	used	as	 a	particle	 only	 control.	 The	 green,	 calcein	
stain,	 stains	 living	cells	and	 the	 red,	 ethidium	homodimer	 fluorescent	dye,	 stained	dead	

cells.			
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A	 summary	 of	 the	 effects	 of	 stainless	 steel	 wear	 particles	 on	 the	 viability	 of	 primary	

astrocytes	and	microglia	 in	 co-culture	and	primary	astrocytes	 in	 isolation	 in	3D	culture	

after	two	and	five	days	can	be	seen	below	in	Table	5.4.	

	

Table	5.4	The	effect	of	stainless	steel	wear	particles	on	the	viability	of	primary	astrocytes	

and	microglia	in	co-culture	and	primary	astrocytes	in	isolation	using	an	advanced	3D	cell	

culture	 system	 and	 assessed	 using	 a	 live	 dead	 assay.	 Cells	with	 significantly	 decreased	

viabilities	 p<0.05	 (Two-way	 ANOVA)	 compared	 to	 the	 cell	 only	 negative	 control	 were	

indicated	with	an	asterisk.		

	

	 Astrocytes	and	microglia	 Astrocytes	in	isolation	

	 0.5µm3	 5µm3	 50µm3	 DMSO	 0.5µm3	 5µm3	 50µm3	 DMSO	

Day	2	 	 	 	 *	 	 	 	 *	

Day	5	 	 	 	 *	 	 	 	 *	

	
In	 conjunction	 with	 the	 live	 dead	 assay,	 attempts	 were	 made	 to	 validate	 the	 semi-

quantitative	 live	dead	assay	with	 the	quantitative	ATP	Liteä	assay,	however,	due	 to	 the	

density	of	the	viscous	collagen	gels	it	was	extremely	difficult	to	reliably	and	reproducibly	

determine	 the	 effects	 of	 cobalt	 chrome	 and	 stainless	 steel	 on	 cell	 viability	 using	 this	

method	 in	 an	 advanced	 3D	 cell	 culture	 system.	 The	ATP	 Liteä	 assay	was	 based	 on	 the	

generation	of	light	as	a	result	of	the	interaction	with	ATP	and	Luciferin,	this	was	difficult	

to	 capture	 when	 the	 cells	 were	 embedded	 in	 a	 gel,	 therefore	 this	 part	 of	 the	 study	

proceeded	with	the	use	of	the	live	dead	assay	only.		
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5.4.2	The	effect	of	cobalt	chromium	ions	and	stainless	steel	ions	on	the	viability	of	

primary	astrocytes	and	microglia	in	co-culture	and	primary	astrocytes	in	isolation.		

To	 determine	 the	 effect	 of	 ions	 from	 cobalt	 chrome	 and	 stainless	 steel	 particles	 on	 the	

viability	 of	 primary	 astrocytes	 and	 microglia	 in	 co-culture	 and	 primary	 astrocytes	 in	

isolation,	 particle	 doses	 (0.5µm3	 –	 50µm3)	 of	 each	 material	 were	 suspended	 in	

supplemented	DMEM	media	 (Chapter	2,	 section	2.3.20)	 for	24	hours,	after	 the	24	 	hour		

incubation	 period	 the	 medium-particle	 suspension	 was	 centrifuged	 to	 remove	 the	

particles	and	the	supernatant	added	to	both	cell	types	in	3D	culture.	The	effect	of	metallic	

ions	on	cell	viability	was	determined	using	a	live	dead	assay.	The	data	was	presented	as	

percentage	 of	 living	 cells	 and	 prior	 to	 any	 statistical	 analysis	 the	 data	 was	 arcsine	

transformed.	The	data	was	back-transformed	to	percentages	for	graphical	presentation.	

	

5.4.2.1	The	effect	of	cobalt	chromium	ions	on	the	viability	of	primary	astrocytes	and	

microglia.		

A	 live	 dead	 assay	 was	 used	 to	 determine	 the	 effect	 of	 cobalt	 chromium	 ions	 on	 the	

viability	of	primary	astrocytes	and	microglia	in	co-culture	using	a	3D	cell	culture	system	

(Figure	 5.15).	 Live	 dead	 images	 showing	 the	 effect	 of	 ions	 from	 cobalt	 chrome	 wear	

particles	on	the	viability	of	primary	astrocytes	in	co-culture	after	48	hours	and	five	days	

in	culture	can	be	seen	in	Figures	5.16	and	5.17	respectively.	

	

A	 continuously	 high	 proportion	 of	 cells	 in	 the	 cell	 only	 negative	 control	 were	 viable	

throughout	 the	 duration	 of	 the	 investigation.	 After	 two	 days	 in	 culture	 84.5%	 of	 the	

primary	 astrocytes	 and	 microglia	 were	 viable	 and	 90.5%	 were	 viable	 after	 five	 days	

(Figure	5.15).			
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Figure	 5.15.	 The	 effect	 of	 increasing	 concentrations	 of	 ions	 from	 wear	 particle	 doses	

(0.5µm3-50µm3)	of	cobalt	chrome	on	the	viability	of	primary	astrocytes	and	microglia	in	

co-culture	 after	 two	 and	 five	 days	 in	 culture.	 Mean	 percentage	 of	 living	 cells	 ±	 95%	

confidence	intervals	(six	replicates	per	condition).	DMSO	was	used	as	a	positive	control,	

an	 ion	 only	 negative	 control	 was	 also	 used.	 An	 *	 Indicates	 a	 significant	 reduction	 in	

viability	 (p<0.05)	 when	 compared	 with	 cell	 only	 negative	 control	 using	 a	 Two-way	

ANOVA.	

	

When	 the	 primary	 astrocytes	 and	 microglia	 were	 cultured	 with	 the	 highest	 ion	

concentration	 (the	 concentration	 of	 ions	 released	 from	 50µm3	 cobalt	 chrome	 wear	

particles	 per	 cell	 in	 a	 24	 hour	 incubation	 period)	 no	 significant	 effect	 on	 viability	 was	

observed	at	either	time	point	tested.			

	

Ions	 released	 from	 5µm3	 cobalt	 chrome	 wear	 particles	 did	 not	 adversely	 affect	 cell	

viability	 after	48	hours	 in	 culture,	 however	 a	 significant	 reduction	 in	 viability	with	 this	

concentration	 of	 cobalt	 chrome	 ions	 was	 observed	 after	 five	 days	 in	 culture.	 The	

percentage	of	living	cells	was	reduced	from	90.5%	in	the	cell	only	control	to	86.5%.			

	

The	 viability	 of	 primary	 astrocytes	 and	microglia	 was	 not	 adversely	 affected	 by	 cobalt	

chromium	 ions	 when	 cultured	 with	 the	 lowest	 ion	 concentration,	 the	 concentration	 of	

cobalt	chromium	ions	released	from	0.5µm3	cobalt	chrome	wear	debris	at	any	time	point	

tested.	
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After	48	hours	the	DMSO	positive	control	had	a	dramatic	effect	on	the	viability	of	primary	

astrocytes	 and	microglia,	 causing	 a	 significant	 level	 of	 apoptosis	with	 only	 8.2%	 viable	

cells	at	this	time	point.	The	effect	was	not	as	pronounced	after	five	days	in	culture	but	the	

decline	in	viability	was	still	significant	with	49.3%	viable	cells.		

	

No	fluorescence	was	seen	in	the	ion	only	control	at	either	time	point	tested.		
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Figure	 5.16	 The	 effect	 of	 increasing	 doses	 of	 ions	 generated	 by	 increasing	 volumes	

(0.5µm3-50µm3)	of	cobalt	chrome	particles	per	cell	on	the	viability	of	primary	astrocytes	

and	microglia	in	co-culture	after	48	hours,	assessed	using	a	live	dead	assay.	The	ion	only	

control	 was	 produced	 from	 the	 greatest	 cobalt	 chrome	 particle	 dose	 (50µm3	 cobalt	

chrome	debris	per	cell).	The	green,	calcein,	fluorescent	dye	stains	living	cells	and	the	red,	

ethidium	homodimer,	stains	dead	cells	red.			

	

	

	

	
	

0.5	µm3 5	µm3 

50	µm3 Cell	Only 

Ion	Only DMSO 



				 	 Chapter	5	

	 194	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

Figure	 5.17	 The	 effect	 of	 increasing	 doses	 of	 ions	 generated	 by	 increasing	 volumes	

(0.5µm3-50µm3)	of	cobalt	chrome	particles	per	cell	on	the	viability	of	primary	astrocytes	

and	microglia	in	co-culture	after	five	days	in	culture,	assessed	using	a	live	dead	assay.	The	

ion	 only	 control	 was	 produced	 from	 the	 greatest	 cobalt	 chrome	 particle	 dose	 (50µm3	

cobalt	chrome	debris	per	cell).	 	The	green,	calcein,	fluorescent	dye	stains	living	cells	and	

the	red,	ethidium	homodimer,	stains	dead	cells	red.			
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5.4.2.2	The	effect	of	cobalt	chromium	ions	on	the	viability	of	primary	astrocytes	in	

isolation	

Primary	 astrocytes	 in	 isolation	 were	 cultured	 with	 increasing	 concentrations	 of	 cobalt	

chromium	 ions	over	 a	 five-day	period	 (the	 cobalt	 chromium	 ions	 released	 from	50µm3,	

5µm3	and	0.5µm3	cobalt	chrome	particle	doses	following	a	24	hour	incubation	at	37°C	in	

5%	 (v/v)	 CO2	 in	 air).	 After	 48	 hours	 and	 five	 days	 a	 live	 dead	 assay	was	 performed	 to	

determine	the	effect	of	cobalt	chromium	ions	on	primary	astrocyte	viability	(Figure	5.18).		

Live	 dead	 images	 showing	 the	 effect	 of	 ions	 form	 cobalt	 chrome	 wear	 particles	 wear	

particles	on	the	viability	of	primary	astrocytes	in	isolation	after	48	hours	and	five	days	in	

culture	can	be	seen	in	Figures	5.19	and	5.20	respectively.			

	

The	primary	astrocytes	 in	 isolation	had	similar	proportions	of	viable	cells	after	two	and	

five	days	in	culture,	88.2%	and	87.7%	living	cells,	respectively	(Figure	5.18).			

	
Figure	 5.18	 The	 effect	 of	 increasing	 concentrations	 of	 ions	 from	 wear	 particle	 doses	

(0.5µm3-50µm3)	of	cobalt	chrome	on	the	viability	of	primary	astrocytes	in	isolation	after	

two	and	five	days	 in	culture.	Mean	percentage	of	 living	cells	±	95%	confidence	intervals		

(six	replicates	per	condition).	DMSO	was	used	as	a	positive	control,	an	ion	only	negative	

control	was	 also	used.	An	asterisk	 indicates	 a	 significant	 reduction	 in	 viability	 (p<0.05)	

when	compared	with	cell	only	negative	control	using	Two-way	ANOVA.	

	
When	 primary	 astrocytes	 in	 isolation	 were	 cultured	 with	 the	 highest	 concentration	 of	

cobalt	 chromium	 ions	 (ions	 released	 from	 the	 highest	 cobalt	 chrome	 particle	 dose	 of	

50µm3	debris	 per	 cell)	 a	 significant	 reduction	 in	 viability	 was	 observed	 at	 both	 the	 48	

hours	and	five-day	time	point	when	compared	to	the	cell	only	negative	control.	After	two	
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days	 in	 culture	 the	 percentage	 of	 viable	 primary	 astrocytes	was	 reduced	 to	 75.3%	 and	

was	reduced	to	76.1%,	after	five	days.		

	

Upon	 culture	of	primary	astrocytes	 in	 isolation	with	 the	middle	 concentration	of	 cobalt	

chromium	ions	(ions	released	from	the	5µm3	cobalt	chrome	debris	per	cell	particle	dose	

after	 a	 24	 hour	 incubation	 at	 37°C	 in	 5%	 (v/v)	 CO2	 in	 air)	 a	 significant	 reduction	 in	

viability	was	observed	after	two	and	five	days	in	culture	when	compared	to	the	cell	only	

negative	control.	After	48	hours	the	percentage	of	living	cells	had	fallen	to	76.8%	and	to	

82.4%	after	five	days	in	culture			

	

An	adverse	effect	on	viability	was	observed	after	48	hours	when	primary	astrocytes	were	

cultured	 with	 the	 lowest	 concentration	 of	 cobalt	 chromium	 ions	 (the	 concentration	 of	

cobalt	chromium	ions	released	from	0.5µm3	cobalt	chrome	wear	particles	per	cell	after	24	

hours	incubation)	the	percentage	of	viable	cells	fell	to	81.9%	at	this	time	point,	the	effect	

was	no	longer	significant	after	five	days	in	culture.		

	

In	comparison	with	the	cell	only	negative	control,	a	continuing	reduction	in	viability	was	

seen	when	primary	astrocytes	were	cultured	with	 the	DMSO	positive	control.	After	 two	

days	in	culture	with	DMSO	the	percentage	of	living	primary	astrocytes	had	fallen	to	29.7%	

living	cells	and	was	reduced	further	to	19.6%	by	five	days.			

	

No	fluorescence	was	seen	in	the	ion	only	control	at	either	time	point	tested.		
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Figure	 5.19	 The	 effect	 of	 increasing	 doses	 of	 ions	 generated	 by	 increasing	 volumes	

(0.5µm3-50µm3)	of	cobalt	chrome	particles	per	cell	on	the	viability	of	primary	astrocytes	

in	 isolation	 after	 48	 hours,	 assessed	 using	 a	 live	 dead	 assay.	 The	 ion	 only	 control	 was	

produced	from	the	greatest	cobalt	chrome	particle	dose	(50µm3	cobalt	chrome	debris	per	

cell).	 The	 green,	 calcein,	 fluorescent	 dye	 stains	 living	 cells	 and	 the	 red,	 ethidium	

homodimer,	stains	dead	cells	red.			
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Figure	 5.20	 The	 effect	 of	 increasing	 doses	 of	 ions	 generated	 by	 increasing	 volumes	

(0.5µm3-50µm3)	of	cobalt	chrome	particles	per	cell	on	the	viability	of	primary	astrocytes	

in	 isolation	 after	 five	 days	 in	 culture,	 assessed	 using	 a	 live	 dead	 assay.	 The	 ion	 only	

control	 was	 produced	 from	 the	 greatest	 cobalt	 chrome	 particle	 dose	 (50µm3	 cobalt	

chrome	debris	per	cell).	The	green,	calcein,	fluorescent	dye	stains	living	cells	and	the	red,	

ethidium	homodimer,	stains	dead	cells	red.			
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A	summary	of	 the	effects	of	cobalt	chromium	ions	on	the	viability	of	primary	astrocytes	

and	microglia	in	co-culture	and	astrocytes	in	isolation	is	presented	in	Table	5.5.		

	

Table	5.5	The	effect	of	cobalt	chromium	ions	on	the	viability	of	primary	astrocytes	and	

microglia	 in	 co-culture	 and	 primary	 astrocytes	 in	 isolation	 using	 an	 advanced	 3D	 cell	

culture	 system	 and	 assessed	 using	 a	 live	 dead	 assay.	 Cells	with	 significantly	 decreased	

viabilities	 (two-way	ANOVA	with	Tukey	post	hoc	 analysis)	p<0.05	 compared	 to	 the	 cell	

only	negative	control	are	indicated	with	an	asterisk.	

	

	 Astrocytes	and	microglia	 Astrocytes	in	isolation	

	 0.5µm3	 5µm3	 50µm3	 DMSO	 0.5µm3	 5µm3	 50µm3	 DMSO	

Day	2	 	 	 	 *	 *	 *	 *	 *	

Day	5	 	 *	 	 *	 	 *	 *	 *	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	



				 	 Chapter	5	

	 200	

5.4.2.3	The	effect	of	metallic	ions	released	from	stainless	steel	wear	particles	on	the	

viability	of	primary	astrocytes	and	microglia.		

Primary	 astrocytes	 and	microglia	were	 cultured	with	 increasing	 concentrations	 of	 ions	

released	 from	 increasing	 stainless	 steel	 particle	 volumes	 over	 a	 five-day	 period.	 A	 live	

dead	 assay	 was	 performed	 after	 two	 and	 five	 days	 in	 culture	 (Figure	 5.21).	 Live	 dead	

images	 showing	 the	 effect	 of	 ions	 from	 stainless	 steel	wear	 particles	 on	 the	 viability	 of	

primary	astrocytes	and	microglia	in	co-culture	after	48	hours	and	five	days	in	culture	can	

be	seen	in	Figures	5.22	and	5.23	respectively.					

	

Primary	astrocytes	 and	microglia	 in	 co-culture	 continued	 to	 increase	 in	number	 for	 the	

duration	of	 the	study.	After	48	hours	 in	culture	78.1%	of	 the	cells	were	viable	and	after	

five	days	91.5%	of	the	cells	were	viable	(Figure	5.21).			

	

	
Figure	 5.21	 The	 effect	 of	 increasing	 concentrations	 of	 ions	 from	 wear	 particle	 doses	

(0.5µm3-50µm3)	of	stainless	steel	on	the	viability	of	primary	astrocytes	and	microglia	 in	

co-culture	 after	 two	 and	 five	 days	 in	 culture.	 Mean	 percentage	 of	 living	 cells	 ±	 95%	

confidence	intervals		(six	replicates	per	condition).	DMSO	was	used	as	a	positive	control,	

an	 ion	 only	 negative	 control	 was	 also	 used.	 An	 *	 Indicates	 a	 significant	 reduction	 in	

viability	(p<0.05)	when	compared	with	cell	only	negative	control	using	Two-way	ANOVA.	

	
No	adverse	effect	on	viability	was	observed	after	two	days	when	primary	astrocytes	and	

microglia	were	cultured	with	the	highest	dose	of	stainless	steel	 ions,	 ions	released	from	

the	 50µm3	stainless	 steel	 wear	 particle	 volume.	 However,	 after	 five	 days	 in	 culture	 a	

significant	reduction	in	viability	was	observed	when	primary	astrocytes	and	microglia	in	
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co-culture	were	cultured	with	the	highest	concentration	of	ions	from	stainless	steel	wear	

particles.	A	reduction	in	viability	from	91.5%	in	the	cell	only	control	to	86.5%	viable	cells	

was	observed	at	this	time	point.		

	

No	 adverse	 effects	 on	 viability	 were	 observed	 after	 two	 and	 five	 days	 when	 primary	

astrocytes	 and	microglia	were	 cultured	with	 the	 lower	 concentrations	 of	 ions	 released	

from	 increasing	 stainless	 steel	wear	 particle	 volumes	 (5µm3	 and	 0.5µm3	 stainless	 steel	

particle	volumes)	when	compared	to	the	cell	only	negative	control.		

	

The	 DMSO	 positive	 control	 adversely	 affected	 the	 viability	 of	 primary	 astrocytes	 and	

microglia	cultured	in	a	3D	collagen	matrix	over	the	five-day	investigation.	After	two	days	

in	culture	only	31.4%	of	the	primary	astrocytes	and	microglia	were	viable.	After	five	days	

51.9%	of	the	cells	were	viable.		

	

No	fluorescence	was	seen	in	the	ion	only	control	gels	at	either	time	point	tested.		
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Figure	 5.22	 The	 effect	 of	 increasing	 doses	 of	 ions	 generated	 by	 increasing	 volumes	

(0.5µm3-50µm3)	of	stainless	steel	particles	per	cell	on	the	viability	of	primary	astrocytes	

and	microglia	in	co-culture	after	48	hours	assessed	using	a	live	dead	assay.	The	ion	only	

control	was	produced	from	the	greatest	stainless	steel	particle	dose	(50µm3	stainless	steel	

debris	 per	 cell).	 The	 green,	 calcein,	 fluorescent	 dye	 stains	 living	 cells	 and	 the	 red,	

ethidium	homodimer,	stains	dead	cells	red.			
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Figure	 5.23	 The	 effect	 of	 increasing	 doses	 of	 ions	 generated	 by	 increasing	 volumes	

(0.5µm3-50µm3)	of	stainless	steel	particles	per	cell	on	the	viability	of	primary	astrocytes	

and	microglia	in	co-culture	after	five	days	in	culture	assessed	using	a	live	dead	assay.	The	

ion	 only	 control	 was	 produced	 from	 the	 greatest	 stainless	 steel	 particle	 dose	 (50µm3	

stainless	steel	debris	per	cell).	The	green,	calcein,	 fluorescent	dye	stains	 living	cells	and	

the	red,	ethidium	homodimer,	stains	dead	cells	red.			
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5.4.2.4	The	effect	of	metallic	ions	released	from	stainless	steel	wear	particles	on	the	

viability	of	primary	astrocytes	in	isolation.		

Primary	 astrocytes	 in	 isolation	 were	 cultured	 with	 increasing	 concentrations	 of	 ions	

released	from	increasing	stainless	steel	particle	doses	for	five	days	in	culture.	A	live	dead	

assay	was	performed	after	two	and	five	days	in	culture	to	assess	the	effect	of	ions	on	cell	

viability	 (Figure	 5.24).	 The	 Live	 dead	 images	 showing	 the	 effect	 of	 ions	 from	 stainless	

steel	wear	particles	wear	particles	on	the	viability	of	primary	astrocytes	in	isolation	after	

48	hours	and	five	days	in	culture	can	be	seen	in	Figures	5.25	and	5.26	respectively.								

	

The	primary	astrocytes	in	isolation	maintained	a	high	level	of	living	cells	for	the	duration	

of	 the	 experiment.	 After	 two	 days	 in	 culture	 in	 a	 3D	 collagen	 hydrogel	 86.5%	 of	 the	

primary	astrocytes	were	viable,	this	level	of	viability	remained	constant	as	the	percentage	

of	living	cells	after	five	days	in	culture	was	a	very	similar	86.8%	(Figure	5.24)	

	
Figure	 5.24	 The	 effect	 of	 increasing	 concentrations	 of	 ions	 from	 wear	 particle	 doses	

(0.5µm3-50µm3)	of	stainless	steel	on	the	viability	of	primary	astrocytes	in	isolation	after	

two	and	five	days	 in	culture.	Mean	percentage	of	 living	cells	±	95%	confidence	intervals	

(six	replicates	per	condition).	DMSO	was	used	as	a	positive	control,	an	ion	only	negative	

control	was	 also	 used.	 An	 *	 Indicates	 a	 significant	 reduction	 in	 viability	 (p<0.05)	when	

compared	with	cell	only	negative	control	using	Two-way	ANOVA.	

	

After	48	hours	in	culture	with	the	ions	released	from	the	mid	5µm3	stainless	steel	particle	

dose	 an	 adverse	 effect	 on	 viability	 was	 observed.	 	 With	 the	 middle	 ion	 concentration	

(from	 the	 5µm3	debris	 per	 cell	 dose),	 the	 percentage	 of	 viable	 cells	was	 reduced	 from	
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86.5%	in	the	cell	only	gels	to	81.2%.	No	significant	effect	on	viability	was	observed	with	

the	other	ion	concentrations	at	this	time	point.		

	

Interestingly	 after	 five	days	 in	 culture	primary	astrocytes	 in	 isolation	 cultured	with	 the	

ions	released	from	all	particle	doses	demonstrated	significant	adverse	effects	on	the	cell	

viability	 when	 compared	 to	 the	 cell	 only	 negative	 control.	 Only	 73.0%	 of	 the	 primary	

astrocytes	 cultured	with	 the	 ions	 released	 from	 the	highest	 stainless	 steel	particle	dose	

were	viable,	 only	78.1%	of	 cells	were	 living	when	 cultured	with	 ions	 released	 from	 the	

5µm3	stainless	steel	debris	per	cell	particle	dose	and	only	81.1%	of	cells	were	living	when	

cultured	with	 ions	 released	 from	 the	0.5µm3	stainless	 steel	 debris	per	 cell	 particle	dose	

when	compared	to	86.8%	viable	cells	in	the	cell	only	negative	control.	

	

Significant	reductions	in	the	viability	of	primary	astrocytes	were	detected	when	the	cells	

were	cultured	with	the	DMSO	positive	control.	After	48	hours	only	23.5%	of	the	cells	were	

viable	and	after	five	days	the	percentage	of	viable	cells	was	41.0%.	

	

No	fluorescence	was	seen	in	the	ion	only	control	gels	at	either	time	point	tested.	
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Figure	 5.25	 The	 effect	 of	 increasing	 doses	 of	 ions	 generated	 by	 increasing	 volumes	

(0.5µm3-50µm3)	of	stainless	steel	particles	per	cell	on	the	viability	of	primary	astrocytes	

in	 isolation	 after	 48	 hours	 in	 culture,	 assessed	 using	 a	 live	 dead	 assay.	 The	 ion	 only	

control	was	produced	from	the	greatest	stainless	steel	particle	dose	(50µm3	stainless	steel	

debris	 per	 cell).	 	 The	 green,	 calcein,	 fluorescent	 dye	 stains	 living	 cells	 and	 the	 red,	

ethidium	homodimer,	stains	dead	cells	red.			
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Figure	 5.26	 The	 effect	 of	 increasing	 doses	 of	 ions	 generated	 by	 increasing	 volumes	

(0.5µm3-50µm3)	of	stainless	steel	particles	per	cell	on	the	viability	of	primary	astrocytes	

in	 isolation	 after	 five	 days	 in	 culture,	 assessed	 using	 a	 live	 dead	 assay.	 The	 ion	 only	

control	was	produced	from	the	greatest	stainless	steel	particle	dose	(50µm3	stainless	steel	

debris	 per	 cell).	 The	 green,	 calcein,	 fluorescent	 dye	 stains	 living	 cells	 and	 the	 red,	

ethidium	homodimer,	stains	dead	cells	red.			
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A	summary	of	the	effects	of	stainless	steel	ions	on	the	viability	of	primary	astrocytes	and	

microglia	can	be	seen	in	Table	5.6	below.		

	

Table	5.6	The	effect	of	 ions	released	from	increasing	stainless	steel	particle	volumes	on	

the	viability	of	primary	astrocytes	and	microglia	in	co-culture	and	primary	astrocytes	in	

isolation	using	an	advanced	3D	cell	culture	system	and	assessed	using	a	live	dead	assay.	

Cells	 with	 significantly	 decreased	 viabilities	 p<0.05	 (two-way	 ANOVA	with	 Tukey	 post	

hoc	analysis)	compared	to	the	cell	only	negative	control	were	indicated	with	an	asterisk.	

	

	 Astrocytes	and	microglia	 Astrocytes	in	isolation	

	 0.5µm3	 5µm3	 50µm3	 DMSO	 0.5µm3	 5µm3	 50µm3	 DMSO	

Day	2	 	 	 	 *	 	 *	 	 *	

Day	5	 	 	 *	 *	 *	 *	 *	 *	
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5.4.3	The	effect	of	cobalt	chrome	and	stainless	steel	wear	particles	on	glial	fibrillary	

acidic	 protein	 (GFAP)	 expression	 by	 primary	 astrocytes	 in	 the	 presence	 and	

absence	of	microglia.		

Primary	astrocytes	and	microglia	in	co-culture	and	astrocytes	in	isolation	were	cultured	

with	increasing	doses	of	cobalt	chrome	and	stainless	steel	wear	particles	(0.5µm3,	5µm3	

and	 50µm3	 wear	 debris	 per	 cell)	 for	 48	 hours	 and	 five	 days	 in	 a	 3D	 collagen	 gel.	

Immunocytochemistry	was	used	to	determine	the	effects	of	metallic	wear	particles	on	the	

production	 of	 GFAP	 by	 primary	 astrocytes	 in	 the	 presence	 and	 absence	 of	 microglia.	

Images	 of	 GFAP	 expression	 profiles	 of	 the	 response	 of	 astrocytes	 and	microglia	 in	 co-

culture	and	astrocytes	in	isolation	in	response	to	cobalt	chrome	wear	particles	after	two	

and	5	days	 can	be	 seen	 in	 Figures	 5.27,	 5.28	 and	5.29	 and	5.30	 respectively.	 Images	 of	

GFAP	 expression	 profiles	 of	 the	 response	 of	 astrocytes	 and	microglia	 in	 co-culture	 and	

astrocytes	 in	 isolation	 in	response	to	stainless	steel	wear	particles	after	 two	and	5	days	

can	be	seen	in	Figures	5.31,	5.32	and	5.33	and	5.34	respectively.			

	

A	 total	 of	 six	 images	 were	 taken	 per	 gel	 and	 six	 gels	 were	 produced	 for	 each	 test	

condition,	 yielding	36	 images	 for	 each	 condition.	 Each	 image	was	 graded	depending	on	

GFAP	expression.	A	–	grade	was	indicative	of	no	GFAP	expression	and	a	+	was	indicative	

of	 the	 cells	 expressing	GFAP.	 	More	detailed	 tables	 showing	 the	grading	of	 every	 image	

can	be	seen	in	Appendix	2	Tables	A-H.		

	
5.4.3.1	The	effects	of	cobalt	chrome	wear	particles	on	GFAP	expression	by	primary	

astrocytes	in	the	presence	of	microglia	after	two	and	five	days.	

When	 primary	 astrocytes	 and	microglia	 were	 cultured	 with	 the	 highest	 cobalt	 chrome	

particle	dose	of	50µm3	cobalt	chrome		per	cell	GFAP	expression	was	observed	(+)	at	both	

time	 points	 tested,	 this	 was	 compared	 to	 the	 cell	 only	 controls	 where	 no	 GFAP	 was	

expressed	 as	 the	 cells	were	 not	 reactive.	When	 primary	 astrocytes	 and	microglia	were	

cultured	 with	 5µm3	 and	 0.5µm3	 cobalt	 chrome	 particle	 concentrations	 no	 GFAP	

expression	was	observed	after	48	hours,	however	GFAP	(+)	was	expressed	when	primary	

astrocytes	and	microglia	were	exposed	 to	both	5µm3	and	0.5µm3	cobalt	 chrome	particle	

doses	after	five	days.	Once	again	the	cell	only	negative	control	cells	did	not	express	GFAP	

(Table	5.7).		

	

Primary	astrocytes	and	microglia	as	the	cell	only	negative	control	did	not	express	GFAP	at	

any	time	point	tested.	Primary	astrocytes	and	microglia	cultured	with	the	TGF-b1	positive	

control	expressed	GFAP	(+)	after	both	two	and	five	days	in	culture.	
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Figure	 5.27	 The	 effect	 of	 increasing	 cobalt	 chrome	 particle	 volumes	 (0.5µm3-50µm3	

cobalt	 chrome	 particles	per	 cell)	 on	 the	 expression	 of	 glial	 fibrillary	 acidic	 protein	 by	

primary	astrocytes	in	the	presence	of	microglia	after	48	hours.	The	highest	particle	dose	

(50µm3	cobalt	chrome	particles	per	cell)	was	used	as	a	particle	only	control.	The	genetic	

material	 is	 stained	blue	 (Hoechst)	 and	 the	 intermediate	 filament	 protein,	 glial	 fibrillary	

acidic	protein,	stained	red.	
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				 	 Chapter	5	

	 211	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

Figure	 5.28	 The	 effect	 of	 increasing	 cobalt	 chrome	 particle	 volumes	 (0.5µm3-50µm3	

cobalt	 chrome	 particles	per	 cell)	 on	 the	 expression	 of	 glial	 fibrillary	 acidic	 protein	 by	

primary	 astrocytes	 in	 the	 presence	 of	 microglia	 after	 five	 days	 in	 culture.	 The	 highest	

particle	dose	(50µm3	cobalt	chrome	particles	per	cell)	was	used	as	a	particle	only	control.	

The	genetic	material	is	stained	blue	(Hoechst)	and	the	intermediate	filament	protein,	glial	

fibrillary	acidic	protein,	stained	red.	
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5.4.3.2	The	effects	of	cobalt	chrome	wear	particles	on	GFAP	expression	by	primary	

astrocytes	in	isolation.	

When	 primary	 astrocytes	 were	 cultured	 in	 isolation	 with	 the	 highest	 cobalt	 chrome	

particle	dose	(50µm3	cobalt	chrome	debris	per	cell)	no	GFAP	expression	was	observed	at	

either	time	point	tested	(Table	5.8).		

	

Primary	astrocytes	cultured	with	the	lower	5µm3	and	0.5µm3	did	not	express	GFAP	after	

48	 hours,	 however	 GFAP	 (+)	 was	 detected	 when	 primary	 astrocytes	 in	 isolation	 were	

exposed	to	both	5µm3	and	0.5µm3	cobalt	chrome	particle	doses	after	five	days.	Once	again	

the	cell	only	negative	control	cells	did	not	express	GFAP	(Table	5.8)	at	either	time	point	

tested.	Primary	astrocytes	cultured	with	the	TGF-b1	positive	control	expressed	GFAP	(+)	

after	both	two	and	five	days	in	culture	
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Figure	 5.29	 The	 effect	 of	 increasing	 cobalt	 chrome	 particle	 volumes	 (0.5µm3-50µm3	

cobalt	 chrome	 particles	per	 cell)	 on	 the	 expression	 of	 glial	 fibrillary	 acidic	 protein	 by	

primary	astrocytes	 in	 the	absence	of	microglia	after	48	hours.	The	highest	particle	dose	

(50µm3	cobalt	chrome	particles	per	cell)	was	used	as	a	particle	only	control.	The	genetic	

material	 is	 stained	blue	 (Hoechst)	 and	 the	 intermediate	 filament	 protein,	 glial	 fibrillary	

acidic	protein,	stained	red.	
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Figure	 5.30	 The	 effect	 of	 increasing	 cobalt	 chrome	 particle	 volumes	 (0.5µm3-50µm3	

cobalt	 chrome	 particles	per	 cell)	 on	 the	 expression	 of	 glial	 fibrillary	 acidic	 protein	 by	

primary	 astrocytes	 in	 the	 absence	 of	 microglia	 after	 five	 days	 in	 culture.	 The	 highest	

particle	dose	(50µm3	cobalt	chrome	particles	per	cell)	was	used	as	a	particle	only	control.	

The	genetic	material	is	stained	blue	(Hoechst)	and	the	intermediate	filament	protein,	glial	

fibrillary	acidic	protein,	stained	red.	
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5.4.3.3	The	effects	of	stainless	steel	wear	particles	on	glial	fibrillary	acidic	protein	

GFAP	expression	by	primary	astrocytes	in	the	presence	of	microglia.	

No	GFAP	expression	was	observed	when	primary	astrocytes	and	microglia	were	exposed	

to	stainless	steel	particles	(doses	0.5µm3,	5µm3	and	50µm3	stainless	steel	debris	per	cell)	

at	any	time	points	tested	(Table	5.7).		

	

There	was	no	expression	of	GFAP	in	the	cell	only	negative	control	gels,	at	any	time	point	

tested.	 Primary	 astrocytes	 and	 microglia	 cultured	 with	 the	 TGF-b1	 positive	 control	

expressed	GFAP	(+)	after	both	 two	and	 five	days	 in	 culture.	 Images	of	GFAP	expression	

profiles	 of	 the	 response	 of	 astrocytes	 and	 microglia	 in	 co-culture	 and	 astrocytes	 in	

isolation	in	response	to	stainless	steel	wear	particles	after	two	and	five	days	can	be	seen	

in	Figures	5.31,	5.32	and	5.33	and	5.34	respectively.			

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	



				 	 Chapter	5	

	 216	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

Figure	 5.31	 The	 effect	 of	 increasing	 stainless	 steel	 particle	 volumes	 (0.5µm3-50µm3	

stainless	 steel	 particles	per	 cell)	 on	 the	 expression	 of	 glial	 fibrillary	 acidic	 protein	 by	

primary	astrocytes	in	the	presence	of	microglia	after	48	hours.	The	highest	particle	dose	

(50µm3	stainless	steel	particles	per	cell)	was	used	as	a	particle	only	control.	The	genetic	

material	 is	 stained	blue	 (Hoechst)	 and	 the	 intermediate	 filament	 protein,	 glial	 fibrillary	

acidic	protein,	stained	red.	
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Figure	 5.32	 The	 effect	 of	 increasing	 stainless	 steel	 particle	 volumes	 (0.5µm3-50µm3	

stainless	 steel	 particles	per	 cell)	 on	 the	 expression	 of	 glial	 fibrillary	 acidic	 protein	 by	

primary	 astrocytes	 in	 the	 presence	 of	 microglia	 after	 five	 days	 in	 culture.	 The	 highest	

particle	dose	(50µm3	stainless	steel	particles	per	cell)	was	used	as	a	particle	only	control.	

The	genetic	material	is	stained	blue	(Hoechst)	and	the	intermediate	filament	protein,	glial	

fibrillary	acidic	protein,	stained	red.	
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5.4.3.4	The	effects	of	stainless	steel	wear	particles	on	glial	fibrillary	acidic	protein	

GFAP	expression	by	primary	astrocytes	in	the	absence	of	microglia.	

Glial	 fibrillary	 acidic	 protein	 was	 not	 expressed	 when	 primary	 astrocytes	 in	 isolation	

were	 exposed	 to	 stainless	 steel	 particles	 (doses	 0.5µm3,	5µm3	and	 50µm3		stainless	 steel	

debris	 per	 cell)	 	 at	 any	 time	 point	 tested.	 	 The	 cell	 only	 negative	 control,	 primary	

astrocytes	in	isolation	in	supplemented	media,	did	not	express	GFAP	at	either	time	point	

tested	(Table	5.8).	

	

Primary	astrocytes	in	isolation	cultured	with	the	TGF-b1	positive	control	expressed	GFAP	

(+)	after	both	two	and	five	days	in	culture.	
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Figure	 5.33	 The	 effect	 of	 increasing	 stainless	 steel	 particle	 volumes	 (0.5µm3-50µm3	

stainless	 steel	 particles	per	 cell)	 on	 the	 expression	 of	 glial	 fibrillary	 acidic	 protein	 by	

primary	astrocytes	 in	 the	absence	of	microglia	after	48	hours.	The	highest	particle	dose	

(50µm3	stainless	steel	particles	per	cell)	was	used	as	a	particle	only	control.	The	genetic	

material	 is	 stained	blue	 (Hoechst)	 and	 the	 intermediate	 filament	 protein,	 glial	 fibrillary	

acidic	protein,	stained	red.	
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Figure	 5.34	 The	 effect	 of	 increasing	 stainless	 steel	 particle	 volumes	 (0.5µm3-50µm3	

stainless	 steel	 particles	per	 cell)	 on	 the	 expression	 of	 glial	 fibrillary	 acidic	 protein	 by	

primary	 astrocytes	 in	 the	 absence	 of	 microglia	 after	 five	 days	 in	 culture.	 The	 highest	

particle	dose	(50µm3	stainless	steel	particles	per	cell)	was	used	as	a	particle	only	control.	

The	genetic	material	is	stained	blue	(Hoechst)	and	the	intermediate	filament	protein,	glial	

fibrillary	acidic	protein,	stained	red.	
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Table	5.7	The	effects	of	cobalt	chrome	and	stainless	steel	on	the	expression	of	GFAP	by	

primary	astrocytes	in	the	presence	of	microglia	after	two	and	five	days	in	culture.	

Astrocytes	

and	

microglia	

Cobalt	

chrome	2	

days	

Cobalt	

chrome	5	

days	

Stainless	

steel	2	days	

Stainless	

steel	5	days	

50	µm3	debris	

per	cell	

+	 +	 -	 -	

5	 µm3	 debris	

per	cell	

-	 +	 -	 -	

0.5	µm3	debris	

per	cell	

-	 +	 -	 +/-	exactly	18	

images	

expressing	

GFAP	and	18	

without	

TGF-b1	

Positive	

control	

+	 +	 +	 +	

Cell	only	 -	 -	 -	 -	

Particle	only	 -	 -	 -	 -	

Blank	 -	 -	 -	 -	

Note:	 The	 primary	 astrocytes	 and	 microglia	 were	 cultured	 with	 increasing	 particle	

volumes	of	cobalt	chrome	and	stainless	steel	wear	particles	(0.5µm3-50µm3	particles	per	

cell)	 for	 five	days	 in	culture.	A	cell	only	negative	control	was	used.	 	The	highest	particle	

dose	(50µm3	particles	per	cell)	was	used	as	a	particle	only	control	and	acellular	100µl	gels	

used	as	a	blank	reference	control	(6	replicates	per	condition).	
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Table	5.8	The	effects	of	cobalt	chrome	and	stainless	steel	on	the	expression	of	GFAP	by	

primary	astrocytes	without	microglia	after	two	and	five	days	in	culture.	

Astrocytes	

only	

Cobalt	

chrome	2	

days	

Cobalt	

chrome	5	

days	

Stainless	

steel	2	days	

Stainless	

steel	5	days	

50	µm3	debris	

per	cell	

-	 -	 -	 -	

5	 µm3	 debris	

per	cell	

-	 +	 -	 -	

0.5	µm3	debris	

per	cell	

-	 +	 -	 -	

TGF-1b	

Positive	

control	

+	 +	 +	 +	

Cell	only	 -	 -	 -	 -	

Particle	only	 -	 -	 -	 -	

Blank	 -	 -	 -	 -	

Note:	The	primary	astrocytes	in	isolation	were	cultured	with	increasing	particle	volumes	

of	cobalt	chrome	and	stainless	steel	wear	particles	(0.5µm3-50µm3	particles	per	cell)	 for	

five	 days	 in	 culture.	 A	 cell	 only	 negative	 control	 was	 used.	 	 The	 highest	 particle	 dose	

(50µm3	particles	per	cell)	was	used	as	a	particle	only	control	and	acellular	100µl	gels	used	

as	a	blank	reference	control	(6	replicates	per	condition).	

	

Primary	astrocytes	with	no	particle	 stimulation	did	not	express	GFAP	at	any	 time	point	

tested.	Primary	astrocytes	exposed	to	the	TGF-b1	positive	control	expressed	low	levels	of	

GFAP	(+)	after	both	two	and	five	days	in	culture.	
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5.4.4	Cytokine	release	by	primary	astrocytes	and	microglia	and	primary	astrocytes	

The	 aim	 of	 this	 section	 of	 the	 study	was	 to	 compare	 the	 cellular	 responses	 of	 primary	

astrocytes	 and	 microglia	 in	 co-culture	 and	 primary	 astrocytes	 in	 isolation	 to	 cobalt	

chrome	and	stainless	steel	wear	particles	in	terms	of	cytokine	release.		

	

5.4.4.1	The	effect	of	cobalt	chrome	and	stainless	steel	particles	on	TNF-a	cytokine	

release	by	primary	astrocytes	and	microglia	in	co-culture.		

When	 primary	 astrocytes	 and	 microglia	 were	 cultured	 with	 increasing	 cobalt	 chrome	

particle	volumes	(0.5µm3	-	50µm3	cobalt	chrome	debris	per	cell)	 for	48	hours	no	TNF-a	

release	was	observed	for	any	particle	volume.	The	average	optical	density	values	for	each	

condition	were	 below	 the	 average	 optical	 density	 for	 the	 0	 pg.ml-1	 standard.	No	TNF-a	

production	was	observed	in	the	cell	only	negative	control.	A	concentration	of	213.3pg.ml-1	

TNF-a	was	produced	when	primary	astrocytes	and	microglia	were	cultured	with	the	LPS	

positive	control.	

	

When	 primary	 astrocytes	 and	 microglia	 were	 cultured	 with	 the	 highest	 stainless	 steel	

particle	volume,	50µm3	stainless	steel	debris	per	cell,	for	48	hours,	29.9pg.ml-1	TNF-a	was	

produced.		

	

TNF-a	was	not	secreted	when	primary	astrocytes	and	microglia	were	cultured	with	5µm3	

and	0.5µm3	stainless	steel	debris	per	cell.	No	TNF-a	production	was	observed	in	the	cell	

only	negative	control.	A	concentration	of	288.7pg.ml-1	TNF-a	was	produced	when	primary	

astrocytes	and	microglia	were	cultured	with	the	LPS	positive	control.	

	

5.4.4.2	The	effect	of	cobalt	chrome	and	stainless	steel	particles	on	TNF-a	cytokine	

release	by	primary	astrocytes	in	the	absence	of	microglia.		

When	primary	astrocytes	 in	 isolation	were	cultured	with	 increasing	particle	volumes	of	

cobalt	 chrome	 (0.5µm3	 -50µm3	 cobalt	 chrome	 debris	 per	 cell)	 for	 48	 hours	 no	 TNF-a	

release	was	observed	for	any	particle	volume.	The	average	optical	density	values	for	each	

test	condition	was	below	the	average	optical	density	for	the	0	pg.ml-1	standard.	No	TNF-a	

production	was	observed	in	the	cell	only	negative	control.	A	concentration	of	143.6pg.ml-1	

TNF-a	 was	 produced	 when	 primary	 astrocytes	 were	 cultured	 with	 the	 LPS	 positive	

control.	

	

TNF-a	was	not	secreted	when	primary	astrocytes	were	cultured	with	increasing	particle	

volumes	of	stainless	steel,	50µm3,	5µm3	and	0.5µm3	debris	per	cell.	No	TNF-a	production	
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was	observed	 in	 the	 cell	 only	negative	 control.	A	 concentration	176.4pg.ml-1	TNF-a	was	

produced	 when	 primary	 astrocytes	 in	 isolation	 were	 cultured	 with	 the	 LPS	 positive	

control.	
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5.5	Discussion	

An	in	vitro	model	designed	for	the	purpose	of	analysing	the	biological	response	of	cells	to	

particulate	stimuli	should	create	a	spatial	environment	whereby	the	cells	cultured	within	

the	matrix	scaffold	are	able	to	behave	as	they	would	in	vivo.		Using	a	3D,	type	I	collagen	gel	

primary	 astrocytes	 and	 microglia	 in	 co-culture	 and	 primary	 astrocytes	 in	 isolation	

resembled	glial	cells	in	their	physiological	environment.	Primary	astrocyte	and	microglia	

cellular	 responses	 to	 particulate	 stimuli	 could	 be	 more	 accurately	 analysed	 with	 this	

model,	than	in	2D	where	astrocytes	exhibit	a	reactive	phenotype.	The	high	level	of	activity	

demonstrated	by	primary	astrocytes	in	2D	culture	inhibited	the	further	study	of	cellular	

reactivity	 upon	 simulation	with	 cobalt	 chrome	 and	 stainless	 steel	wear	 particles	 as	 the	

baseline	levels	of	activity	were	too	high	(East	et	al.,	2009).	It	would	be	difficult	to	discern	

whether	 the	 level	 of	 reactivity	 detected,	 using	 immunocytochemistry,	was	 a	 product	 of	

the	environment	the	cells	were	cultured	in,	or	a	response	to	particulate	insult.		

	

The	 aim	 for	 this	 part	 of	 the	 study	 was	 to	 determine	 the	 effect	 of	 increasing	 particle	

concentrations	of	cobalt	chrome	and	stainless	steel	(0.5µm3	-50µm3)	wear	particles	on	the	

viability,	cellular	reactivity	and	TNF-a	release	of	primary	astrocytes	and	microglia	in	co-

culture	and	astrocytes	in	isolation	using	a	3D	type	I	collagen	gel	cell	culture	system.	The	

effect	of	 cobalt	 chrome	and	 stainless	 steel	on	CNS	cell	 viability	was	determined	using	a	

live	 dead	 assay.	 The	 effect	 of	 these	 particles	 on	 cellular	 reactivity	 was	 assessed	 using	

immunocytochemistry	to	investigate	up-regulation	of	glial	fibrillary	acidic	protein	(GFAP)	

an	 intermediate	 filament	 protein	 expressed	 in	 reactive	 astrocytes.	 Finally	 an	 enzyme	

linked	 immunosorbent	 assay	was	 used	 to	measure	 the	 release	 of	 TNF-a	 in	 response	 to	

stimulation	with	cobalt	chrome	and	stainless	steel	wear	particles.		

	

	5.5.1	The	effect	of	cobalt	chrome	and	stainless	steel	wear	particles	on	the	viability	

of	 primary	 astrocytes	 and	 microglia	 in	 co-culture	 and	 primary	 astrocytes	 in	

isolation	in	a	3D	cell	culture	system.		

When	 primary	 astrocytes	 and	 microglia	 in	 co-culture	 were	 cultured	 with	 increasing	

particle	 volumes	 of	 cobalt	 chrome	 (0.5µm3-50µm3)	 for	 two	 days	 in	 culture	 the	 highest	

particle	 dose	 50µm3	triggered	 significant	 reductions	 in	 viability	 were	 observed	 when	

compared	 to	 the	 cell	 only	 negative	 control.	 After	 five	 days	 in	 culture	 both	 the	 highest	

cobalt	 chrome	 particle	 dose,	 50µm3	 and	 5µm3	cobalt	 chrome	 debris	 per	 cell	 triggered	

significant	 reductions	 in	 cell	 viability	when	 compared	 to	 the	 cell	 only	 negative	 control.	

When	primary	astrocytes	 in	 isolation	were	cultured	with	 increasing	particle	volumes	of	

cobalt	chrome	(0.5µm3-50µm3)	for	two	and	five	days	in	culture	only	the	highest	particle	
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dose	 significantly	 reduced	 cell	 viability.	 Interestingly	 the	 removal	 of	microglia	 from	 the	

culture	 environment	 appears	 to	 reduce	 the	 sensitivity	 of	 primary	 astrocytes	 to	 cobalt	

chrome	wear	particles	(30-39nm	in	length).	This	suggested	that	the	resident	macrophage	

of	 the	 CNS,	microglia,	 played	 an	 important	 role	 in	 determining	 the	 cellular	 response	 to	

particulate	stimuli.		

	

Upon	culture	of	primary	astrocytes	and	microglia	and	primary	astrocytes	in	isolation	with	

increasing	 particle	 volumes	 of	 stainless	 steel	 (0.5µm3-50µm3)	 for	 two	 and	 five	 days	 in	

culture	no	adverse	effects	on	cell	viability	were	observed	at	any	particle	dose,	at	any	time	

point	tested.		

	

Upon	 comparison	 of	 these	 findings	 in	 3D	 culture	 to	 the	 results	 reported	 in	 Chapter	 4,	

section	 4.4.1.5	 and	 4.4.1.6	where	 in	 a	 preliminary	 investigation	 primary	 astrocytes	 and	

microglia	were	cultured	with	increasing	particle	volumes	of	cobalt	chrome	and	stainless	

steel	particles	(0.05µm3-50µm3)	in	2D	monolayer	culture.	In	2D,	after	three	and	five	days	

in	culture	all	doses	significantly	reduced	the	viability	of	primary	astrocytes	and	microglia,	

whereas	 in	 3D	 culture	 only	 50µm3	and	 5µm3	debris	 per	 cell	 of	 this	 material	 caused	

significant	 reductions	 in	 viability.	When	 primary	 astrocytes	 and	microglia	 in	 co-culture	

were	cultured	with	increasing	volumes	of	stainless	steel	wear	particles	no	adverse	effects	

on	 cell	 viability	were	 observed	 in	 3D	 culture,	 however	 in	 2D	 culture	 after	 24	 hours	 in	

culture	 the	 0.5µm3,	 5µm3	 and	 50µm3	 stainless	 steel	 debris	 per	 cell	 doses	 significantly	

reduced	cell	viability	and	the	highest	50µm3	adversely	affected	cell	viability	after	5	days	in	

culture.	These	results	indicate	that	when	primary	astrocytes	and	microglia	were	cultured	

with	metallic	wear	particles	in	a	simplistic	2D	cell	culture	model	the	effect	on	cell	viability	

was	 perhaps	 overestimated,	 when	 compared	 to	 the	 findings	 reported	 when	 primary	

astrocytes	and	microglia	were	cultured	in	a	more	physiologically	relevant	3D	cell	culture	

system.		

	

It	is	essential	to	note	that	a	direct	comparison	between	the	2D	and	3D	findings	presented	

in	 this	 investigation	 cannot	 be	 achieved.	 Two	 different	 methodologies	 were	 utilised	 to	

determine	 the	 effects	 of	metal	 particles	 on	 cell	 viability	 between	 the	 two	 different	 cell	

culture	environments;	the	ATP	Liteä	assay	and	the	live	dead	assay.	The	ATP	Liteä	assay	

used	ATP	as	a	marker	of	cellular	metabolic	activity	and	the	assumption	that	increases	in	

metabolic	activity	corresponded	to	a	greater	number	of	living	cells.	Considering	primary	

astrocytes,	when	activated	and	stressed,	 rapidly	 increase	 in	number,	 the	use	of	 a	 single	

metabolic	activity	assay	in	isolation	could	not	precisely	explain	the	full	mechanism	behind	
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the	biological	response	observed.	Similarly	in	3D	the	use	of	a	single	live	dead	assay	raises	

some	limitations.	The	live	dead	assay	relies	on	the	principle	that	non-fluorescent	calcein;	

upon	entry	into	a	living	cells	and	interaction	with	intercellular	esterases	(and	the	removal	

of	the	acetomethoxy	group)	results	in	the	emission	of	strong	green	fluorescence	(Berney	

et	 al.,	 2007).	Ethidium	homodimer	 is	 capable	of	 entering	membrane-compromised	 cells	

and	staining	cells	red.	Though	it	seems	fair	to	assume	that	a	membrane-compromised	cell	

can	be	classified,	as	dead	the	reverse	may	not	necessarily	be	true	(Joux	&	Lebaron,	2000).	

Thus	 the	utilisation	of	an	additional	 cell	 viability	assay	would	have	been	preferential	 in	

this	investigation.					

	

Attempts	were	made	to	utilise	the	ATP	Liteä	assay	in	the	3D	cell	culture	system,	however	

problems	with	penetration	of	the	lysis	solution	and	ATP	substrate	within	the	collagen	gel	

caused	high	variance	between	 replicates.	The	possibility	 that	 some	of	 the	 cells	 towards	

the	bottom	of	the	gel	were	not	lysed	could	not	be	discounted.		

	

These	 findings	 were	 dissimilar	 to	 the	 results	 reported	 by	 Papageorgoiu	 et	 al.	 (2014)	

where	a	dura	mater	organ	culture	model	was	exposed	to	cobalt	chrome	wear	particles	of	

50µm3	and	5µm3	debris	per	cell	for	7	days	in	culture.	Here	the	cobalt	chrome	particles	did	

not	adversely	affect	 the	viability	of	 the	dura	 tissue	at	any	dose	or	any	 time	point	 tested	

(Papageorgiou	et	al.,	2014).		

	

Similarly	 to	 the	 results	 presented	 in	 Chapter	 four	 there	 are	 clear	 differences	 in	 the	

cytotoxicity	 of	 nano-scale	 cobalt	 chrome	 and	 stainless	 steel	 wear	 particles.	 Suggesting	

once	again	that	the	differences	in	elemental	composition	between	these	two	biomaterials	

could	be	responsible	for	the	differing	effects	on	cell	viability.		

	

5.5.2	The	effect	of	metal	ions	from	cobalt	chrome	and	stainless	steel	wear	particles	

on	 the	 viability	 of	 primary	 astrocytes	 and	 microglia	 in	 co-culture	 and	 primary	

astrocytes	in	isolation	in	a	3D	culture	system.	

Interestingly	 when	 primary	 astrocytes	 and	microglia	 were	 cultured	 with	 ions	 released	

from	 cobalt	 chrome	wear	particles	 (after	 a	 24	hour	 incubation	period	 in	 supplemented	

medium	Chapter	2,	section	2.3.20	at	37°C	at	5%	CO2	(v/v)	in	air)	after	two	days	in	culture	

no	significant	adverse	effect	on	viability	was	observed,	however	after	five	days	in	culture	

with	 ions	 released	 from	 the	 5µm3	 cobalt	 chrome	 per	 cell	 particle	 dose	 a	 significant	

reduction	in	primary	astrocyte	and	microglia	cell	viability	was	observed	when	compared	

to	the	cell	only	negative	control.		
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Intriguingly	when	primary	astrocytes	in	isolation	were	cultured	with	ions	released	from	

cobalt	chrome	wear	particles	(after	a	24	hour	incubation	period	in	supplemented	media	

Chapter	 2,	 section	 2.3.20	 at	 37°C	 at	 5%	 CO2	 (v/v)	 in	 air)	 after	 two	 days	 in	 culture	

significant	 adverse	 effects	 on	 viability	 were	 observed	 with	 all	 doses	 of	 ions	 when	

compared	 to	 the	cell	only	negative	control,	however	after	 five	days	 in	culture	with	 ions	

released	 from	cobalt	 chrome	particles	 the	effect	was	not	as	pronounced,	with	only	 ions	

from	the	highest,	50µm3	and	5µm3	particle	doses	significantly	decreasing	the	viability	of	

primary	astrocytes	in	isolation.		

	

No	 significant	 adverse	 effects	 on	 primary	 astrocyte	 and	 microglia	 cell	 viability	 were	

observed	when	cultured	with	ions	from	stainless	steel	particles	after	two	days	in	culture.	

However	after	 five	days	 in	culture	a	significant	reduction	in	astrocyte	and	microglia	cell	

viability	was	 reported	when	 cultured	with	 ions	 from	 the	highest	 stainless	 steel	 particle	

dose,	50µm3	stainless	steel	debris	per	cell.		

	

When	 astrocytes	 in	 isolation	 were	 cultured	with	 increasing	 concentrations	 of	 stainless	

steel	 ions	 from	increasing	particle	volumes	(0.5µm3	to	50µm3	debris	per	cell),	after	 two	

days	in	culture	a	significant	reduction	in	astrocyte	viability	was	observed	with	ions	from	

the	5µm3	particle	dose,	after	 five	days	 in	culture	a	more	pronounced	adverse	effect	was	

reported	with	 ions	 from	 all	 particle	 doses,	 0.5µm3,	 5µm3	 and	 50µm3	causing	 significant	

astrocyte	cell	death	at	this	time	point.						

	

Upon	 comparison	 of	 the	 results	 from	 astrocytes	 and	 microglia	 in	 co-culture	 and	

astrocytes	 in	 isolation	with	metallic	particles	and	 ions	 there	are	clear	differences	 in	 the	

response	to	the	two	different	test	conditions.	Cobalt	chrome	particles	had	a	more	severe	

cytotoxic	 effect	 on	 primary	 astrocytes	 and	microglia	 than	 the	 ions	 from	 cobalt	 chrome	

particles.	 Conversely	 the	 ions	 from	 cobalt	 chrome	 particles	 had	 a	 more	 pronounced	

adverse	effect	on	astrocytes	in	isolation	than	the	cobalt	chrome	particles.		These	findings	

suggest	 that	 the	 microglia,	 the	 resident	 macrophage	 of	 the	 CNS,	 may	 phagocytose	 the	

metallic	particles	and	trigger	cell	death	within	the	primary	astrocytes,	 in	 the	absence	of	

these	cells	the	cobalt	chrome	particles	do	not	have	as	severe	effects	on	astrocyte	viability.		

	

On	the	contrary	the	stainless	steel	particles	do	not	adversely	affect	the	viability	of	primary	

astrocytes	and	microglia	in	co-culture	or	primary	astrocytes	in	isolation	at	any	time	point	

tested.	 Upon	 comparison	 of	 the	 size	 of	 the	 cobalt	 chrome	 and	 stainless	 steel	 wear	

particles,	 the	 cobalt	 chrome	 particles	 have	 a	 mode	 size	 of	 30-39nm,	 interestingly	 the	
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stainless	steel	particles	have	a	tri-modal	distribution	with	peaks	at	30-39nm,	160-169nm	

and	>1µm.	Closer	 inspection	of	 the	 size	distribution	of	 these	 two	biomaterials	 revealed	

that	 just	 18.77%	 of	 cobalt	 chrome	 particles	 were	 >100nm	 in	 size	 whereas	 47.3%	 of	

stainless	steel	particles	were	>100nm	in	size.	This	may	indicate	that	a	larger	proportion	

of	 the	stainless	steel	particles	are	 too	 large	 for	uptake	by	microglia	and	thus	not	have	a	

cytotoxic	effect.		

	

Interestingly	after	five	days	in	culture	the	ions	released	from	the	highest	dose	of	stainless	

steel	 particles,	 50µm3	 stainless	 steel	 debris	 per	 cell,	 caused	 a	 significant	 reduction	 in	

primary	 astrocyte	 and	microglia	 viability.	 In	 the	 absence	 of	microglia	 the	 effect	 of	 ions	

from	 stainless	 steel	 particles	 was	 more	 pronounced	 with	 ions	 from	 all	 particle	 doses	

adversely	 affecting	 astrocyte	 cell	 viability.	 Suggesting	 astrocytes	 and	 microglia	 and	

astrocytes	 in	 isolation	 are	more	 sensitive	 to	 ions	 from	 stainless	 steel	 particles	 than	 the	

actual	particles	themselves.				

	

Upon	closer	inspection	of	the	results	presented	in	this	part	of	the	study	it	 is	essential	to	

question	whether	or	not	the	results	reported	following	the	Two-way	ANOVA	and	posthoc	

analysis	were	 truly	meaningful.	 For	 instance,	when	primary	astrocytes	and	microglia	 in	

co-culture	 were	 cultured	 with	 5µm3	 cobalt	 chrome	 debris	 per	 cell	 for	 five	 days	 a	

“significant	 reduction”	 in	 viability	 was	 observed	 upon	 comparison	 with	 the	 cell	 only	

negative	control.	The	percentage	of	 living	cells	 in	the	cell	only	control	at	 this	 time	point	

was	 90.5%	 compared	 to	 86.5%	 with	 primary	 astrocytes	 cultured	 with	 5µm3	 cobalt	

chrome	debris	per	cell.	Thus	raising	the	question	is	this	effect	pronounced	enough	to	be	

regarded	as	scientifically	significant.	This	observation	occurs	repeatedly	in	this	part	of	the	

study,	when	 slight	decreases	 in	 viability	 are	 regarded	as	 significantly	different	but	may	

not	constitute	being	classed	as	scientifically	significant.	The	question	of	true	significance	

was	not	apparent	when	cells	were	cultured	with	metallic	particles	as	greater	reductions	

in	viability	were	observed.	

	

The	adverse	effect	of	ions	from	stainless	steel	particles	on	primary	astrocytes	in	isolation	

are	comparable	to	the	findings	of	Ortiz	et	al	 in	2011.	Here	the	142BR	Human	Fibroblast	

cell	line	was	used	to	determine	the	cytotoxic	effect	of	ions	from	orthodontic	implants	on	

cell	 viability.	 Ortiz	 found	 that	 ions	 released	 from	 stainless	 steel	 tubes	 and	 brackets	

significantly	 reduced	 the	 viability	 of	 Human	 Fibroblasts	 by	 95.4%	 after	 seven	 days	 in	

culture	(Ortiz	et	al.,	2011).		

	



				 	 Chapter	5	

	 230	

David	and	Lobner	 in	2004	utilised	murine	 cortical	 cell	 culture;	 including	both	neuronal	

and	 glial	 cell	 types,	 to	 investigate	 the	 neurotoxicity	 of	 metallic	 ions	 released	 from	

orthodontic	metallic	 archwire	 alloys.	 The	metals	 investigated	 included;	 nickel	 titanium,	

copper-nickel	 titanium,	 titanium	molybdenum,	 Elgiloy	 and	 stainless	 steel.	 Ions	 released	

from	stainless	steel	and	Elgiloy	were	found	to	be	significantly	toxic	to	murine	cortical	cell	

cultures.	 David	 found	 that	 the	 use	 of	 Trolox,	 a	water	 soluble	 analogue	 of	 vitamin	 E,	 an	

oxide	 radical	 scavenger,	 significantly	 reduced	 cell	 death	 as	 a	 result	 of	 culture	with	 ions	

from	 stainless	 steel	 in	 cortical	 cell	 cultures.	 Indicating	 the	 cell	 death	 was	 free	 radical	

mediated.	The	use	of	Z-VAI.ALa-Asp	 fluromethylketone,	a	caspase	 inhibitor	also	blocked	

the	 toxic	 effect	 of	 ions	 from	 stainless	 steel	 biomaterial	 suggesting	 these	 ions	 induced	

apoptosis.										

	

No	 adverse	 effects	 on	 cell	 viability	were	 reported	when	U937	 cells	were	 cultured	with	

cobalt	 ions,	 however	 cobalt	 chrome	 wear	 particles	 (150nm-6.05µm)	 did	 trigger	 a	

significant	 reduction	 in	 cell	 viability	 when	 cultured	 with	 5mg/1	 x	 106	 cells	 when	

compared	 to	 the	cell	only	negative	control	 (Posada	et	al.,	2014).	This	was	supported	by	

the	work	presented	in	this	part	of	the	study.	

	

Behl	et	al	in	2013	cultured	dural	epithelial	and	dural	fibroblasts	with	ions	from	increasing	

particle	 volumes	 of	 cobalt	 chrome	 particles	 (0.062	 mg.ml-1,	 0.62	 mg.ml-1,	 6.2	 mg.ml-1,	

62mg.ml-1	and	121	mg.ml-1,).	Each	particle	dose	was	cultured	at	37°C	in	5%	CO2	in	air,	in	

supplemented	media	 for	 24	 hours.	 Following	 this	 incubation	 period	 the	 particles	were	

removed	 by	 centrifugation	 at	 3000g	 for	 20	 minutes	 and.	 The	 highest	 cobalt	 chrome	

particle	 dose	 yielded	 the	 following	 concentrations	 of	metallic	 ions;	 Co-	 368	ng.ml-1	,	 Cr-

433	ng.ml-1			 and	Mo-291ng.ml-1	.	The	 ions	released	 from	cobalt	chrome	particles	did	not	

significantly	 affect	 the	viability	of	dural	 fibroblasts.	Only	 ions	 released	 from	 the	highest	

particle	dose	121	mg.ml-1	significantly	reduced	the	viability	of	dural	epithelial	cells	after	

three	and	four	days	in	culture.	These	findings	compared	with	the	results	presented	in	this	

part	of	 the	study	suggest	 that	primary	astrocytes	 in	 isolation	are	more	sensitive	 to	 ions	

released	from	cobalt	chrome	particles	compared	to	dural	epithelial	cells.	

	

5.5.3	 The	 effect	 of	 cobalt	 chrome	 and	 stainless	 steel	 wear	 particles	 on	 the	

expression	of	GFAP	by	primary	astrocytes	and	microglia	in	co-culture	and	primary	

astrocytes	in	isolation.	

Immunocytochemistry	was	used	to	determine	the	effect	of	increasing	particle	volumes	of	

cobalt	chrome	and	stainless	steel	wear	particles	on	the	activation	of	primary	astrocytes	in	

the	 presence	 and	 absence	 of	microglia.	 Up-regulation	 of	 glial	 fibrillary	 acidic	 protein,	 a	
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know	marker	of	primary	astrocyte	activation	was	reported	in	this	part	of	the	study.	This	

marker	 of	 cellular	 reactivity	 has	 been	 reported	 widely	 in	 the	 literature	 (Phillips	 et	 al.,	

2004;	Pekny	&	Nilsson,	2005;	DeGuzman	&	VandeVord,	2007;	East	et	al.,	2009;	Grissa	et	

al.,	2016;	Tasneem	et	al.,	2016).				

	

The	positive	control	utilised	in	this	part	of	the	study	was.	TGF-b1.	In	vivo	and	in	vitro	this	

cytokine	 is	 known	 to	 up-regulate	 the	 expression	 of	 GFAP	 and	 has	 been	 reported	 to	 be	

involved	in	the	formation	of	the	glial	scar	(Gomes	et	al.,	1999).	East	et	al	in	2009	had	also	

previously	used	TGF-	b1	as	an	inducer	of	reactive	astrocytes.		

	

When	 primary	 astrocytes	 and	microglia	 were	 cultured	 with	 the	 highest	 cobalt	 chrome	

particle	dose	of	50µm3	per	cell	an	up-regulation	of	GFAP	expression	was	observed	(+)	at	

both	 time	 points	 tested.	No	GFAP	was	 expressed	 in	 the	 cell	 only	 negative	 control.	 Glial	

fibrillary	acidic	protein	was	not	 expressed	after	48	hours	when	primary	astrocytes	and	

microglia	 were	 cultured	 with	 5µm3	 and	 0.5µm3	cobalt	 chrome	 particle	 concentrations.	

However	after	five	days	in	culture	GFAP	(+)	was	expressed	when	primary	astrocytes	and	

microglia	were	exposed	to	both	5µm3	and	0.5µm3	cobalt	chrome	particle	doses.		

	

After	 48	 hours	 in	 culture	 an	 up-regulation	 in	GFAP	 expression	was	 not	 observed	when	

primary	 astrocytes	 in	 isolation	 were	 cultured	 with	 increasing	 cobalt	 chrome	 particle	

volumes.	 However	 after	 five	 days	 in	 culture	 GFAP	 (+)	 was	 expressed	 when	 primary	

astrocytes	 in	 isolation	 were	 exposed	 to	 both	 5µm3	 and	 0.5µm3	cobalt	 chrome	 particle	

doses.	This	effect	may	be	due	 to	cell	death	 in	primary	astrocytes	when	culture	with	 the	

highest	 cobalt	 chrome	 particle	 dose.	 Upon	 comparison	with	 the	 earlier	 findings	 of	 this	

study	 where	 primary	 astrocytes	 in	 isolation	 were	 cultured	 with	 50µm3	 cobalt	 chrome	

debris	per	 cell	 it	 can	be	seen	 that	a	 significant	 reduction	 in	viability	was	 reported,	 thus	

with	 significant	 cell	 death	 cellular	 reactivity	may	 have	 been	missed,	 the	 addition	 of	 an	

earlier	time	point	may	have	been	beneficial	in	this	investigation.			

	

Glial	fibrillary	acidic	protein	was	not	expressed	when	primary	astrocytes	and	microglia	in	

co-culture	and	primary	astrocytes	in	isolation	were	exposed	to	stainless	steel	particles	at	

any	particle	dose	at	any	time	point	tested.	

	

Due	 to	 large	 levels	 of	 variance	 of	 GFAP	 expression	 within	 test	 conditions,	 a	 simplistic	

positive/negative	 method	 of	 analysis	 was	 selected.	 However	 a	 more	 quantitative	

approach	may	have	provided	a	more	thorough	evaluation.	The	use	of	advanced	software	
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packages	 such	as	Volocity	or	 Imaris	and	 the	use	of	3D	confocal	 imaging	 techniques,	 the	

volume	of	red	staining		(corresponding	to	glial	fibrillary	acidic	protein	expression)	to	blue	

staining	(DNA)	could	have	been	compared.	This	could	have	been	used	to	approximate	the	

amount	of	GFAP	expression	per	cell.	Attempts	were	made	in	this	study	to	utilise	confocal	

microscopy	to	evaluate	the	level	of	reactivity	induced.	However	the	time	taken	to	obtain	a	

single	Z	stack	was	 too	great,	with	six	replicates	per	 test	condition,	 seven	conditions	per	

experiment	 and	eight	 experiments	 in	 total	 this	 level	 of	 analysis	was	not	possible	 in	 the	

time	frame	of	the	study.	

	

The	effect	of	cobalt	chrome	and	stainless	steel	wear	particles	on	the	activation	of	primary	

astrocytes	has	not	been	investigated	previously,	Grissa	et	al.	2016	investigated	the	effect	

of	 titanium	dioxide	TiO2	on	neuro-inflammation	 in	 the	 rat	brain.	TiO2	nano-particles	 (5-

10nm)	in	length	at	increasing	concentrations;	0	mg.kg-1,	50	mg.kg-1,	100	mg.kg-1	and	200	

mg.kg-1	body	weight	were	administered	daily	for	60	days.	The	effects	of	these	particles	on	

GFAP	expression	were	examined	to	quantify	brain	damage.	Grissa	observed	an	increase	in	

GFAP	expression	in	the	rat	cerebral	cortex	when	the	animals	were	exposed	to	100	mg.kg-1	

and	 200	 mg.kg-1	 TiO2	 nano-particle	 doses.	 By	 converting	 the	 doses	 utilised	 in	 Grissas’	

study	 and	 to	 the	 weight	 of	 a	 single	 cell	 these	 particle	 doses	 are	 similar	 to	 the	 lowest	

particle	 dose	 utilised	 in	 this	 part	 of	 the	 study.	 Thus	 the	 findings	 of	 Grissa’s	 study	

demonstrate	 that	 rat	 cortical	 cell	 cultures	 are	 slightly	 more	 sensitive	 to	 TiO2	particles,	

than	primary	astrocytes	and	microglia	and	primary	astrocytes	are	to	cobalt	chrome	and	

stainless	steel	wear	particles	presented	here.		

	

5.5.4	The	effect	of	cobalt	chrome	and	stainless	steel	wear	particles	on	the	release	of	

TNFa	by	primary	astrocytes	and	microglia	in	co-culture	and	primary	astrocytes	in	

isolation.		

An	 enzyme	 linked	 immunosorbent	 assay	 (ELISA)	 was	 used	 to	 determine	 the	 effect	 of	

cobalt	 chrome	 and	 stainless	 steel	 wear	 particles	 on	 the	 release	 of	 TNF-a	 by	 primary	

astrocytes	and	microglia	in	co-culture	and	primary	astrocytes	in	isolation.		Enzyme	linked	

immunosorbent	 assays	 have	 been	 used	 widely	 in	 the	 literature	 to	 determine	 the	

expression	of	cytokines	by	cells	 in	response	to	wear	particle	stimuli	 (Green	et	al.,	1998;	

Ingram	et	al.,	2004;	Bailey	et	al.,	2005;	East	et	al.,	2009;		Xue	et	al.,	2012;	Papageorgiou	et	

al.,	2014;	Liu	et	al.,	2015).			

	

For	this	part	of	the	study	lipopolysaccharide,	LPS,	was	used	as	a	positive	control	 for	the	

stimulation	 of	 TNF-a	 production.	 It	 has	 been	 reported	 in	 the	 literature	 that	

lipopolysaccharide	 activates	 signal	 transduction	 pathways	 including	 the	 activation	 of	
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nuclear	factor	Kappa	B	and	mitogen	activated	protein	kinases,	which	are	involved	in	the	

control	of	cellular	responses	to	a	wide	array	of	stimuli	and	induce	the	production	of	TNF-

a.		Lipopolysaccharide	has	been	used	previously	in	the	literature	as	a	positive	control	for	

the	induction	of	TNF-a	release	(Van	der	Bruggen	et	al.,	1999;	Dumitru	et	al.,	2000).		

	

Interestingly	when	primary	astrocytes	and	microglia	in	co-culture	and	primary	astrocytes	

in	isolation	were	cultured	with	increasing	particle	volumes	of	cobalt	chrome	and	stainless	

steel	wear	particles	(0.5µm3	-50µm3	wear	debris	per	cell)	for	two	and	five	days	in	culture	

cobalt	 chrome	 did	 not	 stimulate	 TNF-a	 production	 with	 either	 cell	 condition	 at	 any	

particle	dose	at	time	point	tested.	However,	after	two	days	in	culture	primary	astrocytes	

and	 microglia	 cultured	 with	 the	 highest	 stainless	 steel	 particle	 dose	 triggered	 a	 slight	

production	of	TNF-a,	29.9pg.ml-1.		

	

So	as	to	implement	the	3R’s	principle	implicit	to	the	Animal	Welfare	Act,	for	ethical	use	of	

animals	 in	 scientific	 research	 (replacement,	 reduction	 and	 refinement)	 and	 considering	

the	cellular	expense	that	would	be	incurred	by	the	addition	of	another	time	point	in	the	

3D	cellular	viability	assays,	supernatants	from	the	48	hour	and	five	day	time	points	were	

used	 in	 this	 study.	 Though	 there	 have	 been	 reports	 of	 TNF-a	 being	 produced	 at	 an	

optimum	after	 five	days	(Posada	et	al.,	2014)	 in	culture,	predominantly	 in	macrophages	

this	particular	cytokine	is	produced	within	the	first	24	hours	of	stimulation,	this	may	be	a	

limitation	of	this	part	of	the	study	and	the	effect	of	cobalt	chrome	and	stainless	steel	on	

TNF-a	release	investigated	at	shorter	time	points	in	future	work.		 	

	

Similar	to	the	effect	of	metallic	wear	particles	on	cell	viability,	to	date	much	of	the	work	

conducted	 to	 determine	 the	 effect	 of	 wear	 from	 metal-on-metal	 prostheses	 has	 been	

conducted	 in	 2D	 monolayer	 culture	 and	 so	 cannot	 be	 directly	 compared	 to	 the	 work	

performed	 in	 this	part	of	 the	study.	The	potential	 for	cell-particle	 interactions	 is	greatly	

elevated	 in	2D	culture	and	may	not	be	representative	of	mechanism	of	 in	vivo	exposure.	

Fini	 et	 al.	 In	 2003	 investigated	 the	 effect	 of	 nickel-reduced	 stainless	 steel	 (P558)	 on	

cytokine	 production	 by	 primary	 osteoblasts	 in	 2D	 culture.	 An	 increase	 in	 TNF-a	

production	was	not	observed	 in	response	 to	 this	biomaterial.	This	work	correlated	well	

with	the	findings	presented	in	this	part	of	the	study.		

	

Posada	et	al	 in	2014	investigated	the	effect	of	cobalt	chrome	wear	particles	at	a	dose	of	

5mg/1	x	106	cells	and	subsequent	metallic	ions	on	the	cytokine	release	of	U937	cells	using	

an	enzyme	 linked	 Immunosorbent	 assay.	 Significant	 increases	 in	 IFN-g	 expression	were	
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reported	after	120	hours	in	culture	when	U937	cells	were	exposed	to	both	cobalt	chrome	

and	 ions.	 Interestingly	TNF-a	 expression	was	 significantly	 lower	 than	cell	 only	 controls	

when	U937	cells	were	exposed	to	particles	only	and	ions	only.			

	

Similar	to	the	findings	reported	in	this	part	of	the	study,	upon	culture	of	primary	human	

fibroblasts	with	increasing	particle	volumes	of	cobalt	chrome	wear	debris,	Papageorgiou	

et	al	in	2007	did	not	observe	a	significant	increase	in	the	production	of	TNF-a	at	any	time	

point	 tested	with	 any	 particle	 dose.	 Dissimilarly	 when	 the	 dura	mater	 was	 exposed	 to	

increasing	 concentrations	 of	 cobalt	 chrome	 particles	 as	 part	 of	 an	 organ	 culture	 study	

significant	 increases	 in	 TNF-a	 production	were	 reported	 after	 just	 24	 hours	 of	 culture	

with	50µm3	and	5µm3	cobalt	chrome	debris	per	cell.		

	

Bailey	et	al	in	2005	investigated	the	response	of	bulk	and	particulate	316L	stainless	steel	

on	the	cytokine	expression	of	RAW	murine	macrophage	cells.	Bailey	et	al.	(2005)	used	RT-

PCR	 to	determine	 the	 effect	 of	 bulk	 stainless	 steel	 and	316L	 stainless	 steel	 particles	 on	

murine	 macrophage	 cytokine	 release.	 Bailey	 found	 a	 three-fold	 increase	 in	 TNF-a	

production	by	RAW	cells	in	response	to	stainless	steel	particles	compared	to	the	level	of	

TNF-a	produced	by	the	cell	only	negative	control	Though	increased	levels	of	TNF-a	were	

observed	when	primary	astrocytes	and	microglia	were	cultured	with	the	highest	stainless	

steel	 particle	 dose	 for	 two	 days	 in	 culture,	 this	 was	 not	 as	 high	 as	 pronounced	 as	 the	

effects	reported	by	Bailey	et	al.	(2005).	

	

5.5.5	Conclusion	

This	part	of	 the	study	highlighted	the	 importance	of	 the	spatial	arrangement	of	primary	

astrocytes	 and	 microglia	 in	 determining	 the	 biological	 response	 of	 CNS	 cells	 to	 cobalt	

chrome	 and	 stainless	 steel	wear	 particle	 stimuli.	Within	 2D	 culture	 primary	 astrocytes	

exhibit	 a	 reactive	phenotype,	which	 is	not	 representative	of	primary	astrocytes	 in	 their	

physiological	 environment.	 It	 can	 be	 seen	 by	 the	 results	 presented	 here	 that,	 in	 this	

application,	with	 these	 cell	 types,	 that	 the	 adverse	 effect	on	 cell	 viability	 in	 conjunction	

with	increasing	concentrations	of	cobalt	chrome	and	stainless	steel	wear	particles	may	be	

overestimated	 in	 a	 2D	 monolayer	 system.	 Thus	 the	 use	 of	 a	 type	 I	 collagen	 hydrogel	

provided	 an	 appropriate	 environment	 in	 which	 to	 more	 precisely	 determine	 the	

biological	response	to	particle	insult.	

	

	

	



				 	 Chapter	5	

	 235	

5.5.6	Key	findings	

• In	3D	culture	cobalt	chrome	and	stainless	steel	wear	particles	(30-39nm	in	size)	

had	very	different	effects	on	 the	viability	of	primary	astrocytes	and	microglia	 in	

co-culture	and	primary	astrocytes	in	isolation.		

• When	 primary	 astrocytes	 and	 microglia	 were	 cultured	 with	 increasing	

concentrations	 of	 cobalt	 chrome	 wear	 particles	 (0.5µm3	 -50µm3	cobalt	 chrome	

debris	 per	 cell)	 after	 48	 hours	 in	 culture	 the	 highest	 particle	 dose	 adversely	

affected	the	viability	of	primary	astrocytes	and	microglia,	after	five	days	in	culture	

both	the	5µm3	and	the	50µm3	particle	doses	had	an	adverse	effect	on	cell	viability.	

The	viability	of	primary	astrocytes	and	microglia	was	not	affected	by	any	stainless	

steel	particle	dose	at	any	time	point	tested.		

• When	 primary	 astrocytes	 in	 isolation	 were	 cultured	 with	 the	 highest	 cobalt	

chrome	 particle	 dose,	 50µm3	debris	 per	 cell,	 an	 adverse	 effect	 on	 viability	 was	

observed	 after	 both	 48	 hours	 and	 five	 days	 in	 culture.	 The	 viability	 of	 primary	

astrocytes	in	isolation	was	not	affected	by	any	stainless	steel	particle	dose	at	any	

time	point	tested.	

• When	primary	astrocytes	and	microglia	 in	 co-culture	were	 challenged	with	 ions	

from	cobalt	chrome	wear	particles	an	adverse	effect	on	cell	viability	was	observed	

after	 five	 days	 in	 culture	 with	 the	 mid	 5µm3	 particle	 dose.	 When	 primary	

astrocytes	 in	 isolation	were	cultured	with	cobalt	chrome	 ions	adverse	effects	on	

viability	were	observed	with	all	 ion	concentrations	after	48	hours	in	culture,	the	

effect	 was	 less	 pronounced	 after	 five	 days	 in	 culture	 with	 only	 ions	 from	 the	

50µm3	and	 5µm3	causing	 a	 significant	 reduction	 in	 cell	 viability.	 When	 primary	

astrocytes	and	microglia	were	cultured	with	stainless	steel	ions	an	adverse	effect	

on	viability	was	only	observed	after	five	days	in	culture	with	the	largest	stainless	

steel	 ion	 concentration.	 This	 effect	 was	 more	 pronounced	 when	 primary	

astrocytes	in	isolation	were	challenged	with	stainless	steel	ions.	After	48	hours	in	

culture	ions	from	the	mid	5µm3	particle	dose	caused	a	significant	reduction	in	cell	

viability.	 After	 five	 days	 in	 culture	 all	 ion	 concentrations	 caused	 significant	

reductions	in	viability.		

• When	 primary	 astrocytes	 and	microglia	were	 cultured	with	 the	 highest	 dose	 of	

cobalt	chrome	particles	GFAP	production	was	observed	after	48	hours.	After	five	

days	 in	 culture	all	 particle	doses	 triggered	elevated	GFAP	expression.	The	effect	

on	 GFAP	 expression	was	 less	 pronounced	when	 primary	 astrocytes	 in	 isolation	

were	cultured	with	increasing	concentrations	of	cobalt	chrome	particles,	no	GFAP	

expression	was	observed	with	any	particle	dose	after	48	hours	in	culture	and	after	
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five	 days	 in	 culture	 GFAP	 expression	was	 reported	when	 primary	 astrocytes	 in	

isolation	 were	 cultured	 with	 0.5µm3	 and	 5µm3	 cobalt	 chrome	 debris	 per	 cell.	

Stainless	 steel	 did	 not	 induce	 GFAP	 production	 in	 primary	 astrocytes	 and	

microglia	in	co-culture	or	primary	astrocytes	in	isolation	at	any	particle	dose	and	

time	point	tested.		

• No	 changes	 in	 TNF-a	 production	 were	 observed	 when	 primary	 astrocytes	 and	

microglia	or	primary	astrocytes	in	isolation	were	cultured	with	increasing	cobalt	

chrome	 wear	 particle	 doses.	 However	 the	 highest	 stainless	 steel	 particle	 dose	

(50µm3	stainless	steel	debris	per	cell)	triggered	an	increase	in	TNF-a	production	

(29.9pg.ml-1)	in	primary	astrocytes	and	microglia	after	two	days	in	culture.		
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Chapter	6	

Discussion	
	

6.1	General	discussion	

The	 underpinning	 hypothesis	 of	 this	 study	 was	 that,	 utilising	 a	 3D	 type-I	 collagen	 gel,	

whereby	 primary	 astrocytes	 and	 microglia	 could	 behave	 in	 a	 physiologically	 relevant	

manner,	 the	 biological	 response	 to	 increasing	 cobalt	 chrome	 and	 stainless	 steel	 particle	

volumes	 could	 be	 more	 precisely	 determined.	 This	 study	 was	 the	 first	 to	 culture	 rat	

primary	astrocytes	and	microglia	with	clinically	relevant	cobalt	chrome	and	stainless	steel	

wear	particles	at	physiologically	representative	particle	doses	in	a	3D	cell	culture	system.	

A	 more	 thorough	 understanding	 of	 the	 response	 of	 cells	 of	 the	 CNS	 to	 metallic	 wear	

products	could	be	used	 to	 improve	 the	design	of	metal-on-metal	 total	disc	replacements	

used	 to	 treat	back	pain	associated	with	degenerative	disc	disease.	 Such	modifications	 to	

implant	design	have	the	potential	to	improve	the	quality	of	care	provided	to	patients.	

	

Back	pain	is	a	major	public	health	concern	in	the	UK,	which	affects	84%	of	the	population	

at	any	given	point	in	their	lifetime	and	can	be	triggered	by	a	wide	array	of	pathologies,	in	

association	 with	 any	 part	 of	 the	 complex	 interconnected	 network	 of	 spinal	 muscles,	

vertebrae,	ligaments	or	intervertebral	disc	(Taylor	&	Twomey,	1986;	Wheeler	et	al.,	2016).	

Degeneration	of	 the	 intervertebral	 disc	 can	 cause	 a	 reduction	 in	 disc	 height,	which	may	

impact	upon	localised	structures,	for	instance	the	facet	joints	and	spinal	ligaments,	which	

may	 cause	 pain	 (Hughes	 et	 al.,	 2012).	 If	 conservative	 treatment	 options	 such	 as	 non-

steroidal	 anti-inflammatory	drugs,	 epidural	 steroidal	 injections,	 physical	 therapy	or	 rest	

fail	 to	 alleviate	 adverse	 symptoms	 caused	 by	 a	 degenerated	 disc,	 the	 two	main	 surgical	

treatment	 options	 considered	 by	 spinal	 surgeons	 include	 spinal	 fusion	 and	 total	 disc	

replacement.	As	 spinal	 fusion	 limits	 the	motion	of	 the	 spine	 it	 has	been	 associated	with	

ALE,	 the	 incidence	of	which	has	been	reported	at	a	 rate	of	2.9-8%	per	year	of	 follow	up	

(Hillibrand	et	al.,	1999;	Goffin	et	al.,	2004).	As	a	result	there	has	been	renewed	interest	in	

the	use	of	cervical	total	disc	replacements	(TDR),	to	restore	normal	motion	and	kinematics	

of	the	functional	spinal	unit	and	relieve	pain	associated	with	degenerative	disc	disease.	

	

The	longevity	of	these	devices	is	compromised	by	wear.	Metal	biomaterials	form	two	types	

of	wear	 product	 in	vivo;	metal	wear	 debris	 (from	 frictional	 articulation)	 and	metal	 ions	

(from	corrosion)	(Doorn	et	al.,	1996;	Tipper	et	al.,	2005).	Previously	within	the	literature,	

metallic	 wear	 debris	 and	 metallic	 ions	 from	 implants	 have	 been	 associated	 with	

hypersensitivity	(Sun	et	al.,	2009;	Shang	et	al.,	2014),	genotoxicity	 	(Faccioni	et	al.,	2003;	
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Papageorgiou	et	al.,	2007;	Landsiedel	et	al.,	2009;	Parry	et	al.,	2010;	Brown	et	al.,	2013;	

Raghunathan	et	al.,	2013)	cytotoxicity	(Allen	et	al.,	1997;	Germain	et	al.,	2003;	Williams	et	

al.,	 2003;	 Bailey	 et	 al.,	 2005;	 Papageorgiou	 et	 al.,	 2007;	 Tsaousi	 et	 al.,	 2010;	 Behl	 et	 al.,	

2013;	Posada	et	al.,	2014;	Li	et	al.,	2014;)	the	development	of	pseudotumours	(Cavanaugh	

et	 al.,	 2009;	Berry	 et	 al.,	 2010;	Guyer	 et	 al.,	 2011),	 and	 in	 very	 rare	 instances	osteolysis	

(Park	 et	 al.,	 2005).	 These	 reports	 have	 raised	 questions	 about	 the	 long-term	 clinical	

implications	of	wear	products	from	metal-on-metal	total	disc	replacements	in	particularly	

in	relation	to	periprosthetic	tissues	including	the	spinal	cord.		

	

Presently,	there	is	a	limited	amount	of	literature	regarding	retrieval	analysis	of	metal-on-

metal	 TDR.	 Since	 UHMWPE	 particles	 produced	 by	 metal-on-polyethylene	 total	 disc	

replacements	 are	 similar	 in	 size	 and	 morphology	 to	 those	 produced	 by	 metal	 on	

polyethylene	total	hip	replacements	it	is	reasonable	to	assume	that	particles	produced	by	

metal-on-metal	 total	 disc	 replacements	 will	 be	 similar	 to	 those	 produced	 by	 metal-on-

metal	 total	 hip	 replacements,	 thus	 the	 particles	 would	 be	 in	 the	 nanometre	 size	 range.		

This	was	 supported	by	 a	 spine	 simulation	 study	 conducted	by	Pasko	 et	 al.	 (2016).	Here	

wear	particles	(154nm	diameter)	were	generated	using	a	spine	simulator	(50-150N	axial	

loading,	±7.5°	flexion/extension,	±4°	axial	rotation	and	±6°	lateral	bending)	using	custom	

made	cervical	total	disc	replacements.	

	

In	previous	years,	numerous	 in	vitro	studies	have	been	conducted	 to	 further	understand	

the	 biological	 response	 of	 fibroblasts,	 epithelial	 cells,	 histiocytes,	 osteoblasts	 and	

macrophage	cells	to	metallic	wear	particles	from	orthopaedic	biomaterials.	Cobalt	chrome	

and	stainless	steel	wear	particles	have	been	found	to	have	adverse	effects	on	cell	viability,	

DNA	integrity	and	have	been	associated	with	the	release	of	pro-inflammatory	cytokines	at	

varying	particle	 concentrations	 (Germain	et	 al.,	 2003;	Williams	et	al.,	 2003;	Bailey	et	 al.,	

2005;	Papageorgiou	et	al.,	2007;	Tsaousi	et	al.,	2010;	Brown	et	al;	2013	Behl	et	al.,	2013;	

Posada	 et	 al.,	 2014;	 Li	 et	 al.,	 2014;).	 With	 increasing	 evidence	 in	 the	 literature	 that	

nanoparticles	 (silver	 and	 cobalt	 chrome)	 are	 capable	 of	 crossing	 in	vitro	 models	 of	 the	

blood	 brain	 barrier	 (Tang	 et	 al.,	 2010,	 Cramer	 et	 al.,	 2014;	 Shilo	 et	 al.,	 2015)	 combined	

with	a	recent	organ	culture	study	which	reported	that	nanoscale	cobalt	chrome	particles	

altered	the	structural	integrity	of	the	outermost	layer	of	the	meninges	by	loosening	of	the	

epithelial	layer	and	the	underlying	collagen	matrix	of	the	dura	mater	(Papageorgiou	et	al.,	

2014),	 it	 is	 imperative	 to	 study	 the	 effects	 of	 cobalt	 chrome	 and	 stainless	 steel	 wear	

products	on	cells	of	the	central	nervous	system.	
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The	 first	 objective	 of	 this	 study	 was	 to	 generate	 clinically	 relevant	 cobalt	 chrome	 and	

stainless	 steel	 wear	 particles	 using	 a	 six-station	 pin-on-plate	 wear	 simulator.	 Wear	

simulation	was	performed	using	smooth	Ra	£0.01µm	high	carbon	(0.27%	w/w)	wrought	

cobalt	 chromium	 molybdenum	 and	 316L	 stainless	 steel	 pins	 and	 plates.	 The	 materials	

utilised	 in	 this	 study	 were	 comparable	 in	 terms	 of	 elemental	 composition	 to	 materials	

used	in	TDR.	High	carbon	wrought	cobalt	chrome	molybdenum	alloy	has	been	utilised	due	

to	 its	 superior	 wear	 properties	 compared	 to	 low	 carbon	 and	 cast	 materials	 and	 is	 the	

material	 of	 choice	 for	medical	 devices	 (Tipper	 et	 al.,	 1999).	 Utilising	 a	 stroke	 length	 of	

28mm,	with	30°	rotation	at	a	velocity	of	1Hz,	with	multidirectional	motion,	metallic	wear	

particles	were	produced	under	a	load	of	80N	using	water	as	a	lubricant.	These	parameters	

have	been	used	previously	to	replicate	the	loading	and	kinematics	of	the	hip	joint	(Tipper	

et	al.,	1999;	Galvin	et	al.,	2006,	Behl	et	al.,	2013	Papageorgiou	et	al.,	2014).	In	addition,	a	

load	of	80N	has	been	used	previously	 in	 the	 literature	to	simulate	cervical	spine	 loading	

characteristics	and	is	representative	of	two	times	head	weight	(Rapoff	et	al.,	1999;	Reidy	

et	al.,	2004).		

	

Scanning	electron	microscopy	(SEM)	was	used	 to	 image	 the	cobalt	 chrome	and	stainless	

steel	wear	 particles	 and	 energy-dispersive	 x-ray	 spectroscopy	 (EDX)	 used	 to	 determine	

the	 elemental	 composition	 of	 the	 wear	 products.	 Within	 the	 literature	 there	 are	 two	

commonly	 used	 image	 acquisition	 techniques	 to	 determine	 the	 size	 and	morphology	 of	

wear	 particles	 from	 orthopaedic	 implants;	 scanning	 electron	 microscopy	 (SEM)	 and	

transmission	 electron	 microscopy	 (TEM).	 Samples	 prepared	 for	 TEM	 are	 embedded	 in	

resin	and	cut	into	80nm	thin	sections,	this	causes	significant	problems	for	precise	imaging.	

Depending	on	the	orientation	of	the	particle	in	the	section,	the	size	of	the	particle	may	be	

underestimated.	 TEM	 passes	 an	 electron	 bean	 through	 the	 sample	 and	 the	 image	

generated	represents	the	projection	of	the	particles	in	the	path	of	the	electron	beam.	Due	

to	 the	 fact	 that	nanoscale	particles	have	a	high	surface-area	 to	volume	ratio	 they	have	a	

tendency	to	aggregate,	individual	particles	within	aggregates	are	not	easy	to	visualise	with	

this	 method	 of	 microscopy,	 and	 therefore	 it	 was	 not	 the	 most	 appropriate	 imaging	

technique	for	this	application.	A	key	limitation	in	determining	the	size	distribution	of	the	

cobalt	chrome	and	stainless	steel	wear	particles	in	this	study	was	in	the	processing	of	the	

SEM	 images,	 it	was	 extremely	difficult	 to	 ascertain	 the	 size	of	 each	particle	within	 large	

aggregates.	Particles	were	only	included	in	the	size	distribution	if	the	whole	perimeter	of	

the	particle	 could	be	measured.	This	was	necessary	 so	as	not	 to	over-estimate	or	under	

estimate	the	length	of	the	particle.	However,	this	did	result	in	a	proportion	of	the	particles	

being	excluded	from	the	size	analysis.	Attempts	were	made	to	reduce	particle	aggregation,	
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with	sonication	in	between	each	filtering	step.	Increasing	the	number	of	images	captured	

per	filter	and	sizing	more	particles	may	have	reduced	the	effect	of	this	problem.		

	

Both	the	cobalt	chrome	and	stainless	steel	wear	particles	generated	in	the	six-station	pin-

on-plate	wear	 simulator	had	a	mode	 length	of	30-39nm.	 Interestingly	 the	 lengths	of	 the	

stainless	 steel	 wear	 particles	 were	 more	 widely	 distributed	 than	 the	 cobalt	 chrome	

particles.	The	percentage	of	the	total	number	of	particles	>1µm	for	cobalt	chrome	debris	

was	 2.6%	 and	 for	 stainless	 steel	 debris	was	 5%,	 the	 percentage	 of	 the	 total	 number	 of	

particles	<100nm	for	cobalt	chrome	debris	was	81.3%	and	for	stainless	steel	debris	was	

52.7%,	 suggesting	a	greater	number	of	 larger	particles	were	produced	by	stainless	 steel	

pin	on	plate	articulation.	The	cobalt	chrome	and	stainless	steel	particles	generated	in	this	

part	of	the	study	were	comparable	to	the	size	of	metallic	nanoparticles	(~50nm)	observed	

around	failed	metal-on-metal	total	hip	replacements	reported	in	the	literature.	(Doorn	et	

al.,	1998).		

The	wider	 size	 distribution	 of	 the	 stainless	 steel	wear	 particles	 compared	 to	 the	 cobalt	

chrome	wear	debris,	may	be	a	consequence	of	the	differing	mechanical	properties	of	the	

two	 metals.	 The	 Young’s	 modulus	 (elastic	 modulus)	 of	 a	 material	 is	 a	 measure	 of	 the	

materials	 elasticity,	 equal	 to	 the	 ratio	 of	 the	 stress	 acting	 on	 a	 substance	 to	 the	 strain	

produced.	 	 Stainless	 steel	 has	 a	 Young’s	 modulus	 of	 approximately	 190	 GPa,	 whereas	

medical	grade	cobalt	chrome	has	a	higher	Young’s	modulus	of	approximately	230	GPa.	The	

elastic	 modulus	 of	 a	 material,	 from	 statistical	 trends,	 is	 usually	 considered	 to	 be	 an	

increasing	 function	 of	 hardness	 (Bao	 et	 al.,	 2004).	 The	 hardness	 of	 a	 biomaterial	 is	 an	

important	 parameter	 in	 determining	 the	 materials	 resistance	 to	 abrasion.	 A	 harder	

material	has	a	reduced	depth	of	penetration	by	abrasion	resulting	 in	a	 lower	wear	rates	

and	 smaller	 sized	 wear	 particles	 (Murray	 et	 al.,	 1982),	 therefore	 the	 lower	 Young’s	

modulus	of	stainless	steel	may	explain	why	the	size	range	was	more	widely	distributed.	

Furthermore,	Tipper	et	al.		(1999)	used	etching	to	detect	differences	in	the	microstructure	

of	wrought;	high	and	low	carbon	cobalt	chrome	(CoCr)	alloys.	This	study	revealed	that	the	

high	carbon	wrought	CoCr	alloy	possessed	a	bi-phasic	structure.	The	wrought	high	carbon	

CoCr	was	made	up	of	small	CoCr	grains,	which	were	encircled	by	embedded	hard,	scratch	

resistant	 carbides.	 Carbides	 are	 compounds	 of	 carbon	 and	 are	 a	 less	 electromagnetic	

element	than	carbon.	Tipper	et	al.	(1999)	found	that	the	low	carbon	specimens	produced	

significantly	 larger	 particles	 than	 the	 other	material	 combinations,	 additionally	 the	 high	

carbon	on	high	carbon	articulations	generated	 lower	wear	rates	than	 low	carbon	on	 low	

carbon	articulations.	The	positive	effect	on	wear	resistance	of	an	elevated	level	of	carbon	
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in	the	alloy	was	accounted	for	by	the	greater	number	of	carbides	within	the	matrix	of	the	

material.	 Due	 to	 a	 reduced	 carbon	 content	 in	 316L	 stainless	 steel	 (0.03%)	 compared	 to	

medical	grade	cobalt	chromium	(<0.35%)	this	may	also	explain	why	there	was	a	greater	

proportion	of	<100nm	cobalt	chrome	wear	particles	than	stainless	steel	particles.	

The	second	aim	of	this	study	was	to	establish	whether	or	not	increasing	volumes	of	cobalt	

chrome	and	stainless	steel	particles,	(with	mode	lengths	of	30-39nm)	had	a	toxic	effect	on	

C6	glial,	PC12	neuronal	cell	lines,	primary	rat	astrocytes	and	microglia	in	co-culture	for	24	

hours,	three	days	and	five	days	in	2D	culture.	The	effect	of	metallic	wear	particles	on	cell	

viability	 was	 assessed	 using	 an	 ATP-Lite	 cell	 viability	 assay.	 Though	 previous	 in	 vitro	

investigations	have	been	performed	to	ascertain	the	biological	response	of	cells	to	cobalt	

chrome	and	stainless	steel	wear	particles,	this	is	the	first	time	C6	glial,	PC12	neuronal	cell	

lines	and	primary	astrocytes	with	microglia	in	co-culture	had	been	cultured	with	clinically	

relevant	 cobalt	 chrome	 and	 stainless	 steel	 wear	 particles	 at	 physiologically	 relevant	

particle	doses	in	2D	culture.	

	

This	study	 found	that	cobalt	chrome	wear	particles	adversely	affected	the	viability	of	C6	

glial	 cells	at	all	 time	points	 tested	with	all	particle	doses	 tested.	Similarly	cobalt	 chrome	

adversely	affected	the	viability	of	PC12	neuronal	cells	after	three	and	five	days	in	culture.	

The	cobalt	chrome	particles	did	not	adversely	affect	the	viability	of	primary	astrocytes	and	

microglia	 in	 co-culture	 after	 24	 hours	 in	 culture.	 Significant	 reductions	 in	 cell	 viability	

were	observed	after	three	and	five	days	in	culture	with	all	cobalt	chrome	particle	doses	in	

these	 primary	 cells.	 In	 2D	 culture	 limited	 cytotoxicity	was	 observed	with	 stainless	 steel	

wear	 particles.	 When	 increasing	 particle	 volumes	 of	 stainless	 steel	 were	 cultured	 with	

primary	astrocytes	and	microglia	a	cytotoxic	effect	was	observed	but	this	did	not	last	for	

the	duration	of	the	investigation.		

	

A	key	limitation	of	this	part	of	the	study	is	the	use	of	a	single	assay	to	determine	the	effect	

of	metal	particle	stimuli	on	cell	viability.	It	can	be	seen	from	the	results	reported	that	over	

the	 time	 course	of	 the	 investigation	 (five	days),	 that	 although	 significant	 reductions	and	

elevations	in	counts	per	seconds	readings	were	observed,	upon	comparison	with	the	cell	

only	negative	control,	these	findings	may	not	be	indicative	of	cell	death.	In	some	instances	

within	 this	 investigation	 (such	 as	 the	 culture	 of	 C6	 glial	 cells	with	 5µm3	 cobalt	 chrome	

wear	 particles	 per	 cell)	 the	 average	 counts	 per	 second	 reading	 was	 significantly	 lower	

than	that	of	the	cell	only	control,	however	over	the	five	day	time	period	the	level	of	ATP	

produced	continuously	increased.	The	cells	exposed	to	the	particle	stimuli	may	simply	be	

dividing	 at	 a	 lower	 rate	 than	 those	 of	 the	 cell	 only	 negative	 control.	 	 The	 use	 of	 a	 cell	
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proliferation	assay	or	live	dead	assay	would	have	enabled	a	more	complete	understanding	

of	this	biological	response.		

	

Furthermore,	 the	 use	 of	 the	ATP-Liteä	 assay	 in	 this	 study	may	 have	 certain	 limitations	

especially	when	 used	 in	 conjunction	with	 primary	 astrocytes	 and	microglia.	 It	 has	 been	

well	established	in	the	literature	that	astrogliosis	involves	a	rapid	proliferation	of	cells,	an	

adverse	process	triggered	by	neurological	damage,	infection	and	inflammation.	By	using	a	

cell	 viability	 assay	 that	 measures	 cellular	 metabolism,	 an	 increase	 in	 cell	 proliferation	

prior	to	death	may	falsely	be	seen	as	a	beneficial	effect	on	cell	viability.	A	live	dead	assay	

or	 the	 use	 of	 propidium	 iodide	 may	 be	 a	 more	 appropriate	 method	 of	 cell	 viability	

assessment	 as	 this	 stain	 can	differentiate	 between	 apoptotic,	 necrotic	 and	normal	 living	

cells.		

	

Though	there	is	limited	information	in	the	literature	regarding	the	effect	of	stainless	steel	

wear	 products	 on	 cell	 viability,	 a	 small	 number	 of	 studies	 have	 been	 performed	 to	

determine	 the	 effect	 of	 bulk	 and	 particulate	 stainless	 steel	 on	 RAW	 macrophage	 and	

MC3T3	mouse	osteoblast	cells.	Bailey	at	al.	(2005)	observed	a	reduction	in	the	viability	of	

RAW	macrophages	 when	 cultured	 with	 316L	 stainless	 steel	 particles,	 1-100µm	 in	 size,	

after	24	hours	in	culture.	However,	the	dose	of	stainless	steel	particles	administered	to	the	

cells	was	not	reported	for	this	particular	investigation	and	so	cannot	be	directly	compared	

to	 the	 findings	 presented	 in	 this	 study.	 Moreover,	 the	 effect	 on	 cell	 viability	 was	 only	

qualitatively	 measured	 using	 a	 live	 dead	 stain,	 a	 quantitative	 measure	 of	 assessment	

would	have	been	more	appropriate.	Conversely,	Li	et	al.	(2014)	did	not	report	any	adverse	

effects	 on	 viability	 when	 MC3T3	 mouse	 osteoblast	 cells	 were	 cultured	 with	 bulk	 316L	

stainless	 steel.	 Though	 the	 results	 reported	by	Li	 et	 al.	 (2014)	 are	 similar	 to	 the	 results	

reported	 in	this	study,	where	C6	glial	cells	were	not	adversely	affected	by	stainless	steel	

wear	particles,	and	PC12	neuronal	cells	and	primary	astrocytes	and	microglia	were	only	

adversely	 affected	 by	 the	 highest	 particle	 dose,	 50µm3	stainless	 steel	 debris	 per	 cell.	 A	

direct	 comparison	between	 the	 two	 investigations	 cannot	be	performed	as	 in	 this	 study	

the	cells	were	cultured	with	particulate	stimuli	not	the	bulk	material.	

	

The	 results	 presented	 in	 this	 study	 revealed	 that	 similar	 levels	 of	 DNA	 damage	 were	

observed	when	primary	astrocytes	and	microglia	in	co-culture	and	astrocytes	in	isolation	

were	cultured	with	cobalt	chrome	and	stainless	steel	wear	particles.	Interestingly	the	level	

of	DNA	damage	observed	with	cells	of	the	CNS	to	stainless	steel	particles	did	not	correlate	

with	a	cytotoxic	response.	It	is	important	to	note	that	to	assess	the	effect	of	cobalt	chrome	

and	stainless	steel	wear	particles	on	the	DNA	integrity	of	primary	astrocytes	and	microglia	
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in	 co-culture	and	astrocytes	 in	 isolation,	 the	 cells	were	 cultured	with	 the	debris	 in	 a	2D	

environment,	and	then	suspended	in	an	agarose	gel	to	perform	the	comet	assay.	As	stated	

previously	the	use	of	2D	culture	is	not	representative	of	the	spatial	arrangement	of	these	

cells	 in	 vivo,	 consequently	 the	 use	 of	 the	 more	 physiologically	 relevant	 3D	 culture	

environment	 may	 have	 been	 necessary,	 however	 problems	 were	 encountered	 with	 the	

retrieval	 of	 these	 primary	 cells	 from	 the	 collagen	 matrix	 without	 causing	 additional	

cellular	damage.			

	

The	results	presented	here	are	similar	to	previous	reports	in	the	literature	regarding	the	

effect	of	nanoscale	cobalt	chrome	particles	on	DNA	integrity.	Papageorgiou	et	al.	 (2007),	

Parry	 et	 al.	 (2010)	 and	 Tsaousi	 et	 al.	 (2010)	 reported	 that	 nanoscale	 cobalt	 chrome	

particles	 caused	significant	DNA	damage	 to	human	 fibroblast	 cells	after	 just	24	hours	 in	

culture.	 In	 contrast	 to	 these	 findings,	 Gajski	 et	 al.	 (2014)	 reported	 no	 significant	 DNA	

damage	 upon	 culture	 of	 human	 lymphocytes	 with	 micron	 size	 cobalt	 chrome	 particles	

using	the	alkaline	comet	assay,	this	may	be	due	to	the	micron	size	of	the	particles	reducing	

metal	 ion	 production	 and	 limiting	 entry	 into	 the	 cell	 via	 phagocytosis.	 	 Similar	 to	 the	

results	 presented	 in	 this	 study,	 Ortiz	 et	 al.	 (2011)	 reported	 significant	 levels	 of	 DNA	

damage	when	human	fibroblasts	were	cultured	with	ions	from	stainless	steel	buccal	tubes	

and	brackets	used	in	orthodontic	treatments.		

	

Recently	 there	 have	 been	 growing	 concerns	 regarding	 the	 high	 levels	 of	 cobalt	 and	

chromium	ions	released	by	metal-on-metal	biomedical	implants	(Scharf	et	al.,	2014).	The	

associated	 toxicity	 of	 cobalt	 and	 chromium	 is	 dependent	 on	 their	 oxidation	 state	

(Beyersmann	&	Hartwig,	2008).	Chromium	and	cobalt	can	be	found	in	a	range	of	different	

oxidation	 states;	 Cr(I),	 Cr(III),	 Cr(IV),	 Cr(V),	 Cr(VI),	 Co(II)	 and	 Co(III).	 Trivalent	 and	

hexavalent	 chromium	 are	 the	 most	 energetically	 stable	 and	 so	 are	 most	 commonly	

observed,	 however	 Cr	 (III)	 has	 a	 limited	 capacity	 to	 enter	 cells.	 Cr	 (VI)	 has	 been	

categorised	 as	 carcinogenic	 to	 humans	 by	 the	 International	 Agency	 for	 Research	 and	

Cancer	 (Keegan	 et	 al.,	 2008).	 Reports	within	 the	 literature	 suggest	 that	 cobalt	 is	 highly	

toxic	 asserting	 cytotoxic	 effects	 by	means	 of	 oxidative	 stress	 and	 chromosomal	 damage	

(Sansone	 et	 al.,	 2013).	 Whereas	 chromium	 appears	 to	 have	 a	 genotoxic	 effect	 on	 cells	

(Singh	et	al.,	1998;	Catelas	et	al.,	2003;	Papageorgiou	et	al.,	2007).	The	genotoxic	effects	

caused	by	cobalt	and	chromium	 ions	are	 thought	 to	be	 triggered	either	by	direct	action,	

causing	DNA	breaks	involving	free	radicals,	or	by	an	indirect	method,	whereby	the	repair	

of	 DNA	 is	 prevented	 (Daley	 et	 al.,	 2004).	 Stainless	 steel	 and	 cobalt	 chrome	 used	 in	 the	

manufacture	 of	 orthopaedic	 implants	 have	 very	 different	 elemental	 compositions.	More	

precisely,	the	high	carbon	wrought	cobalt	chrome	utilised	in	this	study	was	made	up	of	27-
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30%,	chromium,	5-7%	molybdenum	and	~60%	cobalt.	Medical	grade	316L	is	made	up	of	

62-72%	iron,	16-18%	chromium	and	10-14%	nickel.	Such	 large	differences	 in	elemental	

composition	may	explain	 the	differences	 in	 toxicity	 to	primary	astrocytes	and	microglia.	

Stainless	 steel	 (316L)	does	not	 contain	any	 cobalt	 and	has	a	 reduced	chromium	content	

compared	 to	 high	 carbon	 wrought	 cobalt	 chrome.	 As	 cobalt	 is	 regarded	 to	 be	 more	

cytotoxic,	 this	may	explain	why	the	cobalt	chrome	wear	particles	were	more	toxic	to	the	

CNS	cells	than	stainless	steel	but	why	similar	levels	of	DNA	damage	were	seen	in	response	

to	the	two	biomaterials.		

	

To	 date	 many	 of	 the	 investigations	 into	 the	 biological	 response	 of	 cells	 to	 nanoscale	

metallic	wear	particles	has	been	performed	using	2D	monolayer	cell	culture	systems.	The	

use	of	a	2D	model	in	isolation	may	not	accurately	represent	the	natural	behaviour	of	cells,	

in	particular	CNS	cells	which	exhibit	a	different	phenotype	in	2D	and	3D	culture	(East	et	

al.,	 2009;	 Haycock	 et	 al.,	 2011;	 Baker	 et	 al.,	 2012).	 This	 study	 utilised	 an	 advanced	 3D	

culture	 system	 to	provide	 a	more	physiologically	 relevant	 cell	 culture	 environment.	The	

final	aim	of	this	study	was	to	determine	the	biological	response	of	primary	astrocytes	and	

microglia	in	co-culture	and	primary	astrocytes	in	isolation	to	cobalt	chrome	and	stainless	

steel	wear	particles	in	a	physiologically	relevant	3D	cell	culture	system.	More	specifically	

the	 effects	 of	 metallic	 wear	 products	 on	 cell	 viability,	 cellular	 reactivity	 and	 TNF-a	

production	were	investigated.		

	

When	primary	astrocytes	and	microglia	were	cultured	with	increasing	particle	volumes	of	

cobalt	chrome,	the	highest	particle	dose	adversely	affected	cell	viability	at	all	time	points	

tested.	 	After	 five	days	 in	culture	5µm3	per	cell	cobalt	chrome	debris	 triggered	significant	

reductions	in	cell	viability	when	compared	to	the	cell	only	negative	control.	When	primary	

astrocytes	 in	 isolation	were	 cultured	with	 increasing	 particle	 volumes	 of	 cobalt	 chrome	

only	 the	 highest	 particle	 dose	 adversely	 affected	 cell	 viability.	 The	 removal	 of	microglia	

from	the	culture	environment	appeared	to	reduce	the	sensitivity	of	primary	astrocytes	to	

cobalt	 chrome	wear	 particles.	 Thus	 it	 is	 postulated	 that	 the	microglia	 may	 take	 up	 the	

particles	 by	 phagocytosis	 and	 cause	 cell	 death	 in	 primary	 astrocytes	 possibly	 by	 the	

release	of	pro-inflammatory	cytokines	and	other	mediators	of	 inflammation.	No	adverse	

effects	on	cell	viability	were	observed	at	any	particle	dose,	at	any	time	point	upon	culture	

of	primary	astrocytes	and	microglia	 and	primary	astrocytes	 in	 isolation,	with	 increasing	

particle	 volumes	 of	 stainless	 steel.	 Similarly	 to	 the	 results	 reported	 using	 2D	 culture,	

cobalt	 chrome	 particles	 were	 more	 toxic	 to	 primary	 astrocytes	 and	 microglia	 than	

stainless	steel	particles.	In	this	3D	investigation,	stainless	steel	particles	did	not	appear	to	
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induce	 a	 toxic	 response	 at	 all.	 As	 mentioned	 previously	 this	 may	 be	 due	 to	 differing	

elemental	compositions	between	the	two	biomaterials.		

	

These	results	of	 this	study	demonstrate	 the	 importance	of	 the	use	of	an	appropriate	cell	

culture	environment	 in	 in	vitro	 biocompatibility	 investigations.	 	Upon	comparison	of	 the	

effects	 of	 primary	 astrocytes	 and	microglia	 to	metallic	 particle	 stimuli	 between	 the	 two	

culture	 environments,	 it	 was	 observed	 that	 the	 cells	 were	 more	 sensitive	 to	 both	

biomaterials	 in	 2D	 culture.	 Cells	 cultured	 in	 2D	 are	 often	 cultured	 at	 a	 solid-liquid	

interface	between	the	surface	of	 the	matrix	and	the	culture	medium,	 these	surroundings	

are	 unlikely	 to	 occur	 in	 vivo.	 In	 this	 static	 monolayer	 environment	 the	 particles	 were	

applied	directly	on	top	of	the	cells	thus	increasing	the	incidence	of	cell-particle	interaction.	

This	 method	 of	 particle	 administration	 did	 not	 replicate	 the	 intricacies	 of	 the	 gradual	

production	of	wear,	the	transport	of	metallic	particles	and	ions	or	the	cell-cell	interactions	

in	 the	 native	 tissue	 and	 may	 provide	 an	 explanation	 for	 the	 heightened	 sensitivity	 of	

primary	astrocytes	and	microglia	cultured	on	 tissue	culture	plastic	 to	particle	stimuli.	 In	

3D	culture	the	primary	astrocytes	and	microglia	were	less	likely	to	be	in	contact	with	the	

debris	 and	 thus	 less	 likely	 to	 elicit	 a	 cellular	 response.	 Thus	 by	 use	 of	 a	 simplistic	 2D	

culture	model,	the	effects	of	wear	particles	on	cell	viability	may	be	overestimated	and	not	

representative	of	the	effect	that	would	be	seen	in	vivo.		

	

Clinically	 relevant	 3D	 culture	 environments	 have	 been	 developed	 to	 more	 accurately	

mimic	the	properties	of	tissue	and	ECM	in	vivo.	Using	murine	macrophages	RAW	cells	in	a	

novel	 3D	 culture	 environment,	 Hashimoto	 et	 al.	 (2014)	 investigated	 the	 biological	

response	 to	 polyvinylpyrrolidone-coated	 silver	 nano	 particles.	 The	 toxicity	 of	 these	

particles	 differed	 between	2D	 and	3D	 culture	 environments.	 The	 cells	 in	 the	 3D	 culture	

system	were	less	sensitive	to	the	NP	cytotoxic	effects.	This	observation	was	similar	to	the	

findings	 reported	 in	 the	 present	 study	 where	 the	 cells	 cultured	 in	 3D	 tolerated	 the	

presence	 of	 the	 particles	 better	 than	 in	 2D.	 In	 an	 additional	 investigation,	 a	 3D	 in	vitro	

model	 was	 used	 to	 assess	 the	 potential	 of	 carbon	 nanotubes	 to	 develop	 epithelioid	

granulomas	 in	 non-adherent	 primary	murine	 bone	marrow-derived	macrophages	 in	 3D	

culture	 (Sanchez	 et	 al.,	 2011).	 Differing	 morphological	 and	 phenotypic	 responses	 were	

observed	with	3D	culture,	suggesting	the	use	of	a	more	advanced	spatial	environment	may	

be	 a	 crucial	 alternative	 to	 both	 traditional	 2D	 monolayer	 cultures	 and	 in	 vivo	 animal	

models.	

	

The	findings	presented	in	this	part	of	the	study	were	in	contrast	to	the	results	reported	by	

Papageorgoiu	et	al.	(2014).	In	the	latter	study	cobalt	chrome	particles	of	similar	size	to	the	
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ones	utilised	in	this	study	did	not	adversely	affect	the	viability	of	the	dura	mater	tissue	at	

any	 dose	 or	 any	 time	 point	 tested	 (Papageorgiou	 et	 al.,	 2014).	 However,	 the	 results	

presented	here	did	 correspond	 to	 levels	of	 toxicity	observed	 in	previous	 in	vitro	 studies	

using	 2D	 culture	 (Germain	 et	 al.,	 2003;	 Williams	 et	 al.,	 2003;	 Bailey	 et	 al.,	 2005;	

Papageorgiou	et	al.,	2007;	Tsaousi	et	al.,	2010;	Brown	et	al.,	2013;	Behl	et	al.,	2013;	Posada	

et	 al.,	 2014;	 Li	 et	 al.,	 2014).	 Using	 clinically	 relevant	 (29.5nm	 in	 length)	 cobalt	 chrome	

particles,	Germain	et	al.	 	 (2003)	found	particle	concentrations	of	50µm3	and	5µm3	debris	

per	cell	caused	a	significant	reduction	in	the	viability	of	U937	macrophage	cells	and	L929	

fibroblasts.	The	findings	reported	by	Germain	et	al.	(2003)	were	supported	by	the	work	of	

Williams	 et	 al.	 (2003)	 here	 cobalt	 chrome	wear	 particles	 (<20nm	 in	 length)	 at	 particle	

doses	of	50µm3,	5µm3	and	0.5µm3	were	 reported	 to	 significantly	 reduced	 the	viability	of	

U937	cells.	The	authors	found	that	the	L929	cells	were	less	sensitive	than	U937	cells	upon	

exposure	 to	 cobalt	 chrome	wear	 particles,	 as	 only	 the	 highest	 dose	 of	 50µm3	 caused	 a	

significant	reduction	in	L929	viability	after	five	days	in	culture.	Papageorgiou	et	al.	(2007)	

and	Tsaousi	 et	 al.	 (2010)	both	 cultured	human	 fibroblast	 cells	with	 cobalt	 chrome	wear	

particles,	particle	doses	ranging	from	0.5µm3	to	500µm3	cobalt	chrome	debris	per	cell	and	

1mg,	2mg	and	5mg	per	flask	of	human	fibroblasts	significantly	reduced	cell	viability	after	

five	 days	 in	 culture.	 Similarly	 to	 the	 results	 reported	 in	 this	 study,	 Behl	 et	 al	 (2013)	

reported	 that	 cobalt	 chrome	 particles	 (50-59nm	 in	 length)	 significantly	 reduced	 the	

viability	 of	 dural	 epithelial	 cells	 at	 doses	 of	 6.05	 µm3	 to	 121µm3	 of	 debris	 per	 cell.	

Conversely,	 no	 significant	 reduction	 in	 the	 viability	 of	 the	 dural	 fibroblasts	 at	 all	 the	

particle	doses	and	time	points	studied	was	reported.		

	

A	key	limitation	of	the	present	study	was	that	the	biological	response	of	primary	microglia	

in	 isolation	 to	 cobalt	 chrome	 and	 stainless	 steel	 wear	 particles	 was	 not	 investigated.	

Numerous	 attempts	 were	 made	 to	 culture	 primary	 microglia	 in	 isolation,	 however	

significant	adaptations	to	the	cell	isolation	procedure	would	have	been	necessary	to	yield	

a	large	enough	number	of	cells	for	subculture.	This	was	not	possible	in	the	time	frame	of	

this	 study.	 As	 postulated	 earlier	 the	 “macrophage	 like”	 microglia	 may	 have	 been	

responsible	for	uptake	of	the	metallic	wear	particles	and	stimulation	of	an	adverse	effect	

on	 cell	 viability	 in	 primary	 astrocytes.	 Culture	 of	 these	 cells	 in	 isolation	with	 the	 cobalt	

chrome	and	stainless	steel	wear	debris,	and	use	of	TEM	analysis	may	have	provided	more	

evidence	to	refute	or	confirm	this	supposition.		

	

An	 additional	 limitation	 to	 this	 work	 was	 that	 different	 assays	 were	 utilised	 to	 assess	

viability	between	the	2D	and	3D	culture	system	and	thus	direct	comparisons	between	the	

two	investigations	cannot	be	made	as	the	two	assays	were	measuring	different	markers	of	
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viability	(metabolic	activity	and	esterase	activity).	Attempts	were	made	to	utilise	the	ATP	

Liteä	 assay	 in	 the	3D	culture	 system,	however	 the	 reagents	 failed	 to	 fully	permeate	 the	

gels	and	thus	resulted	in	incomplete	cell	lysis.	Additional	work	using	the	live	dead	assay	in	

2D	would	have	been	beneficial	to	enable	a	direct	comparison	between	the	cytotoxic	effects	

of	cobalt	chrome	and	stainless	steel	wear	particles	on	primary	astrocyte	and	microglia	cell	

viability	between	the	two	culture	systems.		

	

Interestingly,	 when	 primary	 astrocytes	 and	microglia	 were	 cultured	 with	 ions	 released	

from	 cobalt	 chrome	 wear	 particles,	 limited	 levels	 of	 cytotoxicity	 were	 observed.	

Conversely	when	primary	 astrocytes	 in	 isolation	were	 cultured	with	 ions	 released	 from	

cobalt	 chrome	wear	particles	 significant	adverse	effects	on	viability	were	observed	with	

all	doses	of	ions	when	compared	to	the	cell	only	negative	control	after	two	days	in	culture.	

This	effect	was	not	as	pronounced	after	five	days	in	culture.	No	significant	adverse	effects	

on	primary	astrocyte	and	microglia	cell	viability	were	observed	when	cultured	with	ions	

from	stainless	steel	particles	after	two	days	in	culture.	Although	after	five	days	in	culture,	

a	 significant	 reduction	 in	 viability	 was	 reported	 when	 astrocytes	 and	 microglia	 were	

cultured	 with	 ions	 from	 the	 highest	 stainless	 steel	 particle	 dose,	 50µm3	 stainless	 steel	

debris	per	cell.	In	the	absence	of	microglia,	after	two	days	in	culture	a	significant	decline	in	

astrocyte	viability	was	observed	with	ions	from	the	5µm3	stainless	steel	particle	dose,	the	

adverse	 effect	was	more	 pronounced	 after	 five	 days	 in	 culture	 as	 ions	 from	 all	 particle	

doses	caused	significant	astrocyte	cell	death.	These	results	would	suggest	that	astrocytes	

and	microglia	 and	 astrocytes	 in	 isolation	 are	more	 sensitive	 to	 ions	 from	 stainless	 steel	

particles	than	the	actual	particles	themselves.			

		

A	closer	examination	of	the	results	presented	in	this	part	of	the	study	raises	the	question	

of	true	significance	between	means.	Although,	upon	comparison	with	the	cell	only	control,	

test	conditions	induced	significant	decreases/increases	in	viability	only	minor	alterations	

in	the	percentage	of	living	cells	were	reported.	This	observation	occurs	repeatedly	in	this	

part	of	the	study,	when	slight	decreases	in	viability	are	regarded	as	significantly	different	

but	 may	 not	 constitute	 being	 classed	 as	 “scientifically	 significant”.	 The	 uncertainty	

regarding	 true	 significance	 was	 not	 apparent	 when	 cells	 were	 cultured	 with	 metallic	

particles	 as	 greater	 reductions	 in	 viability	were	 observed.	 This	may	 be	 the	 result	 of	 an	

underestimation	 in	the	number	of	dead	cells	as	a	 limitation	of	 the	 live	dead	cell	viability	

assay	selected.	

	

The	use	of	the	live	dead	assay	in	isolation	represents	a	limitation	for	this	part	of	the	study.	

The	 live	dead	 assay	works	on	 the	principle	 that	 upon	 cell	 death	 the	 integrity	 of	 the	 cell	
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membrane	 is	 lost,	 thus	 enabling	 the	 entry	 of	 the	 ethidium	 homodimer	 into	 the	 cell	

(providing	a	red	stained	cell)	however	this	assay	is	not	capable	of	detecting	cells	that	have	

been	lost	in	culture	after	cell	death	and	detached	from	the	extracellular	matrix.	Therefore	

there	may	be	an	underestimation	in	the	number	of	dead	cells	within	the	gel.		The	use	of	an	

additional	cell	viability	assay	would	have	been	beneficial	for	this	investigation.		

	

The	 increasing	 ion	 concentrations	were	 produced	 by	 incubating	 supplemented	medium	

containing	 increasing	 particle	 volumes	 of	 cobalt	 chrome	 and	 stainless	 steel	 particles	 at	

37°C	in	5%	CO2	(v/v)	in	air	for	24	hours.	After	this	time	point	the	particles	were	removed	

and	 primary	 astrocytes	 and	 microglia	 in	 3D	 culture	 were	 exposed	 to	 the	 conditioned	

medium.	It	is	important	to	consider,	when	the	cells	are	exposed	to	increasing	volumes	of	

metallic	wear	particles,	after	24	hours	ions	will	also	be	released,	meaning	the	cells	will	be	

exposed	 to	 both	 ions	 and	particles.	 Therefore	 the	 addition	 of	 a	 24-hour	 time	point	may	

have	been	useful	in	order	to	compare	the	effect	of	ions	in	isolation	and	particles	and	ions	

on	CNS	cell	viability	in	3D.		

	

A	major	 limitation	 in	 this	 part	 of	 the	 study	was	 that	 the	 concentration	 of	 ions	 released	

from	 each	 particle	 dose	 was	 not	 quantified.	 Previous	 research	 has	 utilised	 inductively	

coupled	 plasma	 mass	 spectroscopy	 to	 quantify	 ion	 release	 from	 metallic	 particles	 in	

medium	 (Kumazawa	 et	 al.,	 2002;	Ortiz	 et	 al.,	 2011;	Behl	 et	 al.,	 2013;	 Shilo	 et	 al.,	 2015).	

This	information	would	have	been	useful	to	determine	which	concentrations	of	ions	were	

lethal	and	which	were	not		

	

Similar	 in	vitro	 studies	have	reported	adverse	effects	on	cell	viability	 in	association	with	

ions	released	from	stainless	steel	particles.	Ortiz	et	al.	(2011)	reported	that	ions	released	

from	 stainless	 steel	 tubes	 and	 brackets	 significantly	 reduced	 the	 viability	 of	 human	

fibroblasts.	Behl	et	al.	(2013)	reported	that	upon	culture	of	dural	epithelial	and	fibroblasts	

with	ions	from	increasing	volumes	of	cobalt	chrome	particles	(0.062µm3,	0.62µm3,	6.2µm3,	

62µm3	and	121µm3),	 the	 ions	 released	 from	 cobalt	 chrome	 particles	 did	 not	 have	 an	

adverse	 effect	 on	 dural	 fibroblast	 viability.	 However,	 ions	 released	 from	 the	 highest	

particle	dose	significantly	reduced	the	viability	of	dural	epithelial	cells.	 It	 is	 important	to	

note	 that	 the	 highest	 particle	 dose	 used	 by	 Behl	 et	 al.	 2013	was	more	 than	 double	 the	

particle	 dose	 utilised	 in	 this	 investigation,	 thus	 suggesting	 that	 primary	 astrocytes	 in	

isolation	may	be	more	sensitive	to	ions	released	from	cobalt	chrome	particles	compared	to	

dural	epithelial	cells.	In	the	present	study,	cobalt	chrome	particles	had	a	more	pronounced	

effect	on	the	viability	of	primary	astrocyte	and	microglia	than	the	ions	from	cobalt	chrome	

particles.	 Conversely,	 the	 ions	 from	 cobalt	 chrome	 particles	 had	 a	 more	 pronounced	
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adverse	effect	on	astrocytes	in	isolation	than	the	cobalt	chrome	particles.	 	These	findings	

support	the	previous	hypothesis	that	the	microglia	may	take	up	the	metallic	particles	and	

trigger	cell	death	within	the	primary	astrocytes.		

The	 culture	of	primary	astrocytes	 and	microglia	 in	 co-culture	 and	primary	astrocytes	 in	

isolation	 with	 cobalt	 chrome	 wear	 particles	 did	 not	 stimulate	 TNF-a	 production	 from	

either	 cell	 type	 at	 any	 particle	 dose.	 Conversely,	 after	 two	 days	 in	 culture	 primary	

astrocytes	and	microglia	cultured	with	the	highest	stainless	steel	particle	dose	triggered	a	

slight	increase	in	production	of	TNF-a,	(29.9pg.ml-1).	

	

Similar	to	the	findings	reported	in	this	part	of	the	study,	upon	culture	of	primary	human	

fibroblasts	 with	 increasing	 particle	 volumes	 of	 nanoscale	 cobalt	 chrome	 wear	 debris,	

Papageorgiou	et	al.	(2007)	did	not	observe	a	significant	increase	in	the	production	of	TNF-

a	 at	 any	 time	 point	 tested	with	 any	 particle	 dose.	 However,	 when	 the	 dura	mater	 was	

exposed	 to	 increasing	 concentrations	 of	 cobalt	 chrome	 particles	 as	 part	 of	 an	 organ	

culture,	 significant	 increases	 in	 TNF-a	 production	were	 reported	 after	 just	 24	 hours	 of	

culture	with	50µm3	and	5µm3	cobalt	 chrome	debris	per	cell	 (Papageorgiou	et	al.,	2014).	

The	 findings	 presented	 in	 this	 study	 were	 different	 from	 previous	 reports	 within	 the	

literature,	where	nanoscale	cobalt	chrome,	stainless	steel,	cadmium	and	lead	(Bailey	et	al.,	

2005;	Posada	et	al.,	2014;	Papageorgiou	et	al.,2014;	Tasneem	et	al.,	2016)	wear	particles	

caused	a	significant	increase	in	TNF-a	production.	

	

The	main	limitation	with	this	part	of	the	study	was	that	the	assessment	of	cytokine	release	

was	performed	after	48	hours.	In	macrophages	TNF-a	 is	predominantly	produced	within	

the	first	24	hours,	thus	it	would	have	been	useful	to	assess	the	effect	of	debris	on	cytokine	

release	 at	 this	 time	 point.	 Tasneem	 et	 al.	 (2016),	 cultured	 neural	 stem	 cells	 in	 3D	

hydrogels	with	 increasing	doses	of	heavy	metals	and	pooled	together	supernatants	 from	

over	the	entire	14-	day	experiment	to	assess	TNF-a	release.	The	levels	of	cytokine	release	

reported	 were	 extremely	 low	 (1-3pg.ml-1).	 Perhaps	 the	 ELISA	 using	 in	 this	 part	 of	 the	

study	 was	 not	 sensitive	 enough	 and	 that	 only	 low	 levels	 of	 TNF-a	 are	 produced	 with	

primary	 astrocytes	 and	microglia.	 Alternative	 cytokines	 such	 as	 IL-6	 and	 IL-8	may	have	

been	more	 appropriate.	 In	 future	 TNF-	a	 release	 would	 be	 investigated	 at	 earlier	 time	

points	(12	and	24	hours,	respectively).	

	

The	effect	of	cobalt	chrome	and	stainless	steel	wear	particles	on	the	activation	of	primary	

astrocytes	has	not	been	previously	 investigated.	When	primary	astrocytes	and	microglia	

were	 cultured	 with	 the	 highest	 cobalt	 chrome	 particle	 dose	 of	 50µm3	per	 cell,	 an	 up-
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regulation	of	GFAP	expression	was	observed	at	both	time	points	tested	(two	and	five	days		

in	culture).	 	Glial	 fibrillary	acidic	protein	was	only	expressed	when	primary	astrocytes	 in	

isolation	were	 exposed	 to	both	5µm3	and	0.5µm3	cobalt	 chrome	particle	doses	 after	 five	

days	 in	 culture.	 Stainless	 steel	 particles	 did	 not	 trigger	 glial	 fibrillary	 acidic	 protein	

expression	at	any	particle	dose	at	any	time	point	tested	with	either	cellular	condition.			

	

The	use	of	GFAP	as	a	marker	of	astrocyte	reactivity	has	been	extensively	researched	and	

reported	 in	 the	 literature	 (Phillips	 et	 al.,	 2004;	 Pekny	 &	 Nilsson,	 2005;	 De	 Guzman	 &	

VandeVord,	 2007;	 East	 et	 al.,	 2009;	 Grissa	 et	 al.,	 2016;	 Tasneem	 et	 al.,	 2016).	 	 Though	

there	 are	 a	 limited	 number	 of	 studies	 within	 the	 literature	 investigating	 the	 effect	 of	

nanoparticles	on	the	expression	of	GFAP,	Tasneem	et	al.	(2016)	investigated	the	effect	of	

gold	nanoparticles	on	GFAP	expression	in	the	rat	cerebral	cortex.	It	can	be	seen	from	the	

results	of	this	study	that	once	again	the	different	biomaterials	have	significantly	different	

effects	 on	 astrocyte	 reactivity.	 Stainless	 steel	 wear	 particles	 did	 not	 induce	 GFAP	

expression	in	primary	astrocytes	and	microglia	and	astrocytes	in	isolation	at	any	dose	or	

time	 point	 tested.	 Cobalt	 chrome	 induced	 significant	 GFAP	 expression	 in	 primary	

astrocytes	 and	 microglia	 with	 all	 particle	 doses	 after	 five	 days	 in	 culture	 and	 induced	

significant	GFAP	expression	in	primary	astrocytes	in	isolation	with	the	0.5µm3	and	5µm3	

per	 cell	 particle	 volume	 after	 five	 days	 in	 culture.	 Further	 analysis	 regarding	 the	

underlying	 mechanism	 behind	 these	 differences	 is	 necessary.	 The	 investigation	 of	

additional	markers	of	astrocyte	reactivity	such	as	Nestin,	Vimentin	and	IL-6	(Wang	et	al.,	

2004;	 Sergent-Tanguy	 et	 al.,	 2006;	 Pekny	 &	 Pekna,	 2014)	 would	 have	 been	 useful	 in	

conjunction	with	GFAP	up-regulation	to	further	investigate	the	potential	for	cobalt	chrome	

and	stainless	steel	wear	particles	to	cause	astrocyte	reactivity.		

	

It	 can	 be	 observed	 from	 the	 results	 presented	 in	 this	 study	 that	 stainless	 steel	 wear	

products	 have	 fewer	 adverse	 effects	 on	 primary	 astrocyte	 and	 microglia	 viability	 and	

cellular	 reactivity.	 Though	 similar	 levels	 of	 DNA	 damage	 were	 observed	 when	 primary	

astrocytes	and	microglia	 in	co-culture	and	primary	astrocytes	 in	 isolation	were	cultured	

with	 increasing	 concentrations	 of	 cobalt	 chrome	 and	 stainless	 steel	 wear	 particles,	 the	

level	of	DNA	damage	caused	by	stainless	steel	wear	particles	did	not	equate	to	cell	death.	

In	the	context	of	the	neurosurgical	community	these	findings	would	suggest	that	the	use	of	

316L	stainless	steel	 in	 the	manufacture	of	metal-on-metal	 total	disc	replacements	would	

be	less	toxic	to	the	host	and	would	be	a	biologically	safer	option	for	patients.		

	

The	 use	 of	 a	 3D	 type-I	 collagen	 gel,	 where	 glial	 cells	 behave	 in	 a	 more	 physiologically	

relevant	manner,	with	a	low	baseline	of	reactivity,	and	which	is	more	representative	of	the	
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in	 vivo	 cellular	 spatial	 arrangement,	 was	 found	 to	 be	 a	 more	 appropriate	 cell	 culture	

environment	for	determining	the	biological	responses	of	CNS	cells	to	metal	wear	particles.	

	

6.2	Future	work	

Though	 this	 study	 has	 provided	 numerous	 insights	 into	 the	 biological	 responses	 of	

primary	astrocytes	and	microglia	to	metallic	wear	particles	there	is	much	more	work	to	be	

conducted	 in	 this	 area.	 Further	 work	 would	 allow	 better	 understanding	 of	 the	 host	

response	 to	metal-on-metal	 total	disc	 replacements	 and	provide	 surgeons	and	 clinicians	

with	 essential	 information	 regarding	 the	 appropriate	 use	 of	 metal-on-metal	 total	 disc	

replacements,	leading	to	better	long	term	clinical	outcomes	in	patients.		The	main	priority	

for	future	work	would	be	to	isolate	metallic	wear	particles	from	periprosthetic	tissue	from	

around	 failed	metal-on-metal	 total	 disc	 replacements	 and	 spinal	 fusion	 instrumentation	

and	confirm	the	size	and	elemental	composition	of	these	wear	particles	generated	in	vivo.	

Wear	particles	could	then	be	generated	using	a	fretting	simulator	(to	simulate	the	fretting	

wear	of	 spinal	 fusion	 instrumentation)	 and	 spine	 simulator	 (to	 simulate	 the	 articulating	

wear	 from	metal-on-metal	 total	 disc	 replacements)	 to	 generate	 clinically	 relevant	 wear	

products.		

	

Titanium	 is	 a	 commonly	 used	 biomaterial	 in	 spinal	 fusion	 instrumentation	 and	 is	 often	

used	in	the	design	of	total	disc	replacements	as	a	material	for	coating	metallic	end	plates	

to	promote	osseointegration	 (Powell	 et	 al.,	 2005;	 Chen	&	Thouas,	 2015),	 There	 are	 also	

concerns	within	 the	 neurosurgical	 community	 regarding	 the	wear	 and	 corrosion	 of	 this	

material	in	vivo.	Though	previous	studies	have	shown	titanium	to	have	limited	toxic	effect	

when	compared	to	cobalt	chrome	and	stainless	steel	(Davies,	2003;	Kwon	et	al.,	2009)	and	

reduced	wear	resistance	(Chen	&	Thouas,	2015).	There	has	also	been	growing	interest	in	

the	 use	 of	 alternative	 biomaterials	 such	 as	 PEEK	 and	 ceramic	 coatings	 such	 as	 silicon	

nitride	 in	 the	 design	 of	 total	 disc	 replacements.	With	 the	 increase	 in	 use	 of	 alternative	

biomaterials	in	the	design	of	fusion	instrumentation	and	motion	preservation	devices,	this	

is	 a	 crucial	 area	 for	 future	 research,	 in	 particular	 in	 terms	 of	 the	 wear	 rate	 of	 these	

materials,	the	size,	morphology	and	chemical	composition	of	their	wear	products	and	the	

biological	response	of	cells	of	the	CNS	to	these	particles.	In	future	investigations	titanium,	

PEEK	 and	 silicon	 nitride	 particles	 could	 also	 be	 cultured	 with	 primary	 astrocytes	 and	

microglia	and	the	biological	response	investigated.		

	

Within	this	study	it	was	observed	that	primary	astrocytes	and	microglia	in	co-culture	and	

primary	astrocytes	in	isolation	responded	differently	to	both	cobalt	chrome	and	stainless	

steel	particles	and	their	ions.	However,	the	underlying	mechanism	behind	these	responses	
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was	not	established	during	this	study,	though	it	was	hypothesised	that	microglia	may	take	

up	 the	 particles	 and	 subsequently	 trigger	 cell	 death	 within	 astrocytes.	 Transmission	

electron	microscopy	 could	be	used	 to	determine	whether	or	not	 astrocytes	or	microglia	

are	capable	of	 taking	up	the	particles,	and	if	so,	 identify	where	within	the	cell	 the	debris	

became	 localised.	 In	 order	 to	 understand	 this	 effect	 in	 more	 detail	 cells	 could	 be	

challenged	with	conditioned	media.	In	larger	24	well	plates	(so	as	to	provide	an	excess	of	

supernatant),	astrocytes	and	microglia	could	be	cultured	with	increasing	concentrations	of	

cobalt	 chrome	 particles,	 stainless	 steel	 particles,	 ions	 from	 cobalt	 chrome	 particles	 and	

ions	 from	 stainless	 steel	 particles	 for	 24	 hours	 in	 culture.	 At	 the	 same	 time	 setting	 up	

separate	 24	 well	 plates	 with	 just	 astrocytes	 in	 isolation	 not	 exposed	 to	 wear	 particles.	

Following	this	incubation	period	the	supernatant	from	the	cells	cultured	with	debris	and	

ions	 could	 be	 removed,	 a	 small	 sample	 taken	 for	 ELISA,	 and	 the	 remaining	 conditioned	

media	transferred	to	the	astrocytes	in	isolation	(without	debris),	then	after	three	and	five	

days	in	culture	assess	the	effect	of	the	culture	swap	on	cell	viability	and	compare	the	level	

of	 viability	 of	 the	 primary	 astrocytes	 in	 isolation	 which	 received	 the	 supernatant	 with	

astrocyte	 only	 controls.	 This	 may	 determine	 whether	 or	 not	 the	 microglia	 were	

responsible	for	cytokine	release	which	triggered	astrocyte	cell	death.				

	

It	would	 also	 be	 imperative	 in	 the	 future	 to	 investigate	 the	 effect	 of	 cobalt	 chrome	 and	

stainless	 steel	 wear	 particles	 on	 the	 viability,	 DNA	 integrity	 and	 cytokine	 release	 of	

primary	 neurons,	 both	 in	 isolation,	 and	 in	 co-culture	 with	 primary	 astrocytes	 and	

microglia	 in	 order	 to	 gain	 a	 deeper	 understanding	 of	 the	 cellular	 interactions	 and	

biological	 response	 to	 metallic	 wear	 particles	 and	 ions	 produced	 from	 metal-on-metal	

total	 discs.	 Oligodendrocytes	 and	 oligodendrocyte	 precursor	 cells	would	 perpetuate	 the	

advanced	 3D	 cellular	 system	 utilised	 in	 this	 study	 in	 an	 attempt	 to	 fully	 re-create	 the	

complexity	 of	 the	 spinal	 cord.	 This	 cellular	 model	 could	 then	 be	 used	 to	 assess	 the	

biological	response	of	the	cells	of	the	spinal	cord	to	metallic	wear	products.				

	

As	an	extension	of	 the	work	performed	in	this	study	to	 further	understand	the	effects	of	

cobalt	 chrome	and	 stainless	 steel	wear	particles	 on	primary	 astrocytes	 and	microglia	 in	

co-culture	 and	 astrocytes	 in	 isolation,	 investigation	 into	 alternative	 cytokines	would	 be	

invaluable.	 For	 instance	 investigation	of	 IL-1,	 IL-6,	 IL-8	 and	 IL-10	 release.	The	 effects	 of	

these	particles	on	IL-6	and	IL-8	release	would	be	of	particular	importance,	due	to	the	fact	

that	 IL-6	 is	also	associated	with	expression	of	glial	 fibrillary	acidic	protein	and	astrocyte	

reactivity.	 This	 cytokine	 could	 be	 used	 to	 validate	 the	 findings	 presented	 in	 this	 study	

regarding	 the	 effect	 of	 metallic	 wear	 products	 on	 primary	 astrocytes	 reactivity	 in	 the	

presence	and	absence	of	microglia.		
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Finally,	the	use	of	in	vitro	cell	studies	provides	a	platform	for	the	investigation	of	the	role	

of	 single	 cell	 types	 in	 the	 biological	 response	 and	 they	 have	 been	 used	 previously	 to	

quantitatively	 screen	 the	 cytotoxic	 and	 inflammatory	 response	 to	 wear	 particles.	 This	

study	 could	 be	 broadened	 to	 include	 in	vivo	models.	 	 Though	 animal	models	 have	 been	

used	 previously	 to	 assess	 the	 effect	 of	 wear	 products	 from	 orthopaedics	 on	 local	 and	

systemic	 tissues	 following	 the	 epidural	 application	 of	 particulate	 wear	 debris	

(Cunningham	et	al.,	2013),	the	somewhat	crude	method	of	application	of	the	particles	was	

a	key	limitation.	Thus	efforts	should	be	made	to	simulate	a	more	physiologically	relevant	

mechanism	of	particle	dosing	such	as	numerous	injections,	as	performed	by	Brown	et	al.	

(2013)	or	continuous	perfusion.	

	

6.3	Key	Findings		

In	summary	the	main	findings	of	this	study	were:	

• In	2D	culture	CoCr	wear	particles	adversely	affected	the	viability	of	C6	glial	cells	at	

all	 time	 points	 and	 at	 all	 particle	 doses	 tested.	 Conversely,	 in	 2D	 culture	 when	

PC12	 neuronal	 cells	 were	 cultured	 with	 CoCr	 wear	 particles,	 adverse	 effects	 on	

viability	were	only	observed	after	three	and	five	days	in	culture	with	the	0.5µm3,	

5µm3	and	50µm3	particle	doses.	Finally,	when	primary	astrocytes	and	microglia	in	

co-culture	 were	 cultured	 with	 CoCr	 wear	 particles,	 adverse	 effects	 on	 viability	

were	observed	after	three	and	five	days	with	all	particle	doses.		

• Stainless	 steel	wear	particles	only	 adversely	 affected	 the	viability	of	C6	glial	 and	

PC12	neuronal	cells	after	five	days	in	culture.	Interestingly,	stainless	steel	particles	

caused	a	significant	reduction	in	the	viability	of	primary	astrocytes	and	microglia	

after	24	hours	in	2D	culture	with	the	0.5µm3,	5µm3	and	50µm3	particle	doses,	but	

this	affect	did	not	persist	for	the	duration	of	the	investigation,	five	days.		

• It	was	observed	that	there	were	clear	differences	in	the	responses	of	C6	glial,	PC12	

neuronal	 cells	 and	primary	astrocytes	and	microglia	 to	 stainless	 steel	 and	cobalt	

chrome	particles.	The	differences	in	responses	to	the	two	biomaterials	tested	may	

be	attributed	to	the	elevated	cobalt	content	in	cobalt	chrome	compared	to	stainless	

steel.			

• In	3D	culture,	CoCr	wear	particles	caused	a	dose	dependent	adverse	effect	on	the	

viability	 of	 primary	 astrocytes	 and	 microglia	 in	 co-culture.	 In	 astrocyte	 only	

cultures,	a	reduced	sensitivity	 to	CoCr	was	observed	compared	to	astrocytes	and	

microglia	 in	 co-culture.	 In	 3D	 culture,	 stainless	 steel	 particles	 did	 not	 adversely	

affect	the	viability	of	primary	astrocytes	and	microglia	in	co-culture	or	astrocytes	

in	isolation.	When	comparing	these	findings	to	the	results	obtained	in	2D	culture,	

the	need	for	physiologically	relevant	cell	culture	environments	was	highlighted	for	
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in	vitro	 biomaterial	 testing	with	 cells	 of	 the	 spinal	 cord.	 A	 simplistic	 2D	 culture	

environment	may	overestimate	the	adverse	effects.		

• When	primary	astrocytes	and	microglia	 in	 co-culture	were	 challenged	with	CoCr	

ions	in	3D	culture,	an	adverse	effect	on	viability	was	only	observed	after	five	days	

in	culture.	Conversely,	when	astrocytes	 in	 isolation	were	cultured	with	CoCr	 ions	

adverse	effects	were	reported	at	early	time	points	(two	days	in	culture)	but	did	not	

persist.	When	primary	astrocytes	and	microglia	were	cultured	with	stainless	steel	

ions	an	adverse	effect	on	viability	was	only	observed	after	five	days	in	culture,	this	

effect	was	more	pronounced	when	primary	astrocytes	in	isolation	were	challenged	

with	stainless	steel	ions,	thus	suggesting	that	both	cell	types	were	more	sensitive	

to	stainless	steel	ions	than	stainless	steel	particles.	

• Cobalt	chrome	particles	caused	significant	levels	of	DNA	damage	to	astrocytes	and	

microglia	at	all	time	points	tested.	Interestingly	CoCr	particles	caused	DNA	damage	

in	primary	astrocytes	 in	 isolation	after	only	24	hours,	although	the	effect	did	not	

persist	 for	the	duration	of	the	 investigation	(five	days).	When	primary	astrocytes	

and	microglia	 were	 cultured	with	 stainless	 steel	 wear	 particles,	 significant	 DNA	

damage	was	observed	with	all	particle	doses	at	all	time	points,	interestingly	in	the	

absence	 of	 microglia,	 stainless	 steel	 wear	 particles	 only	 caused	 significant	 DNA	

damage	 after	 five	 days	 in	 culture.	 These	 results	 indicate	 that	 both	 CoCr	 and	

stainless	 steel	 particles	 caused	 significant	 levels	 of	 DNA	damage,	 although	when	

glial	 cells	 were	 cultured	 with	 stainless	 steel	 particles	 this	 DNA	 damage	 did	 not	

relate	to	cytotoxicity.		

• Cobalt	chrome	wear	particles	did	not	cause	a	significant	increase	in	the	production	

of	 TNF-a	 in	 primary	 astrocytes	 and	 microglia	 in	 co-culture	 or	 astrocytes	 in	

isolation.	 However	 the	 highest	 stainless	 steel	 particle	 dose	 50µm3	stainless	 steel	

per	cell	caused	significant	increase	in	TNF-a	production	in	primary	astrocytes	and	

microglia	in	co-culture	after	two	days	in	culture.		

• Stainless	 steel	 particles	 did	 not	 cause	 significant	 GFAP	 production	 in	 either	

astrocytes	 and	microglia	 in	 co-culture	 or	 astrocytes	 in	 isolation.	However,	when	

primary	 astrocytes	 and	 microglia	 were	 cultured	 with	 the	 highest	 dose	 of	 CoCr	

particles	 GFAP	 production	was	 significantly	 elevated.	 In	 addition,	when	 primary	

astrocytes	 in	 isolation	 were	 cultured	 with	 the	 lower	 5µm3	 and	 0.5µm3	 CoCr	

particle	doses	the	level	of	GFAP	was	up-regulated.		
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General	chemicals	and	reagents	used	in	this	study	are	shown	in	Appendix	I	
	
Appendix	I	General	chemicals	and	reagents	

Chemicals/reagents	 Storage	
conditions	

Supplier	

ATP	Liteä	Assay.	Luminescent	
ATP	detection	assay	kit	

Substrate	buffer	
solution,	
Mammalian	cell	
lysis	and	
lyophilised	
substrate	stored	at	
4°C	

PerkinElmer,	Windsor	UK	

Bovine	Serum	Albumin	(BSA)	 4°C	 Sigma-Aldrich	Ltd.,	Dorset	UK	
Calcein	 -20°C	 ThermoFisher	Scientific,	

Northumberland	UK	
Carbon	paste	 Room	

Temperature	
Agar	Scientific,	Stanstead	UK	

Collage	(type	I	rat	tail	
>2mg/ml	in	0.6%	(v/v)	Acetic	
acid)	

4°C	 First	Link	Ltd,	Wolverhampton	
UK	

CometAssay	lysis	solution	 4°C	 Bio-Techne	,	Abingdon	UK	
Dimethyl	Sulphoxide	(DMSO)	 Solvents	cupboard	

Room	
Temperature	

Fisher	Scientific,	Loughborough	
UK	

DNase	type	II	from	bovine	
pancreas	

-20°C	 	Sigma-Aldrich	Ltd.,	Dorset	UK	

DPBS	 Room	
Temperature	

Bio-Whittaker,	Lonza,	Verviers,	
Belgium	

Dulbecco’s	modified	Eagle’s	
medium	(DMEM)	with	and	
without	phenol	red	

4°C	 Lonza	Biological,	Cambridge	UK	

Earle’s	balanced	salt	solution	
(EBSS)	

Room	
Temperature	

Sigma-Aldrich	Ltd.,	Dorset	UK	

Ethidium	Homodimer	 -20°C	 ThermoFisher	Scientific,	
Northumberland	UK	

Ethylenediaminetetraacetic	
acid	(EDTA)	

Room	
Temperature	

Sigma-Aldrich	Ltd.,	Dorset	UK	

Ethanol	 Room	
temperature,	
Flammables	
cupboard	

VWR	international,	Poole	UK	

ELISA	kit	(TNF-a)	 4°C	 2B	Scientific,	Oxfordshire	UK.	
Fairy	liquid	 Room	

Temperature	
Local	Store	

Foetal	Bovine	Serum	(FBS)	 -20°C	 Bio-Whittaker,	Lonza,	Verviers,	
Belgium	

Goat	Serum	Blocking	Solution	
(5%)	

4°C	 Sigma-Aldrich	Ltd.,	Dorset	UK	

Glucose	Powder	 Room	
Temperature	

Sigma-Aldrich	Ltd.,	Dorset	UK	
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Ham’s	F12	(Without	phenol	
red)	

4°C	 ThermoFisher	Scientific,	
Northumberland	UK	

Horse	Serum	 -20°C	 Sigma-Aldrich	Ltd.,	Dorset	UK	
Hydrochloric	Acid	(HCl)	 Room	Temperture	 Fisher	Scientific,	Loughborough	

UK	
Hydrogen	peroxide	 4°C	 Sigma-Aldrich	Ltd.,	Dorset	UK	

Isopropanol	 Flammables	
cupboard,	Room	
Temperature	

Fisher	Scientific,	Loughborough	
UK	

L-glutamine	 -20°C	 Sigma-Aldrich	Ltd.,	Dorset	UK	
Lipopolysaccharide	(LPS)	 4°C	 Sigma-Aldrich	Ltd.,	Dorset	UK	
LM	Agarose	 4°C	 Bio-Techne	,	Abingdon	UK	
Magnesium	Sulphate	(MgSO4)	 Room	

Temperature	
Sigma-Aldrich	Ltd.,	Dorset	UK	

10X	Minimum	Essential	Media	 4°C	 Sigma-Aldrich	Ltd.,	Dorset	UK	

MTT	powder	 4°C	 Sigma-Aldrich	Ltd.,	Dorset	UK	
Neutralising	solution	
(predominantly	sodium	
hydroxide)	

4°C	 Tap	Biosystems	now	part	of	
Sartorium	Stedim	Biotech,	
Hertfordshire	UK	

Paraformaldehyde	(PFA)	
powder	

Room	
Temperature	

Sigma-Aldrich	Ltd.,	Dorset	UK	

Penicillin/Streptomycin	 -20°C	 Bio-Whittaker,	Lonza,	Verviers,	
Belgium	

PBS	tablets	 Room	
Temperature	

Oxoid	Thermo	
Scientific,Northumberland	UK	

pH	Standards	 -20°C	 Scientific	Laboratory	Supplies	
Ltd,	Nottingham	UK	

Poly-D-lysine	powder	 Room	
Temperature	

Sigma-Aldrich	Ltd.,	Dorset	UK	

Rosslyn	Park	Memorial	
Institute	(RPMI)	1640	Media	
(with	and	without	phenol	red)	

4°C	 Bio-Whittaker,	Lonza,	Verviers,	
Belgium	

Sterile	Water	 Room	
Temperature	

Baxter	Healthcare,	UK	

Sodium	Hydroxide	(NaOH)	 Room	
Temperature	

Fisher	Scientific,	Loughborough	
UK	

Soy-bean	Trypsin	Inhibitor	
(SBTI)	

4°C	 Sigma-Aldrich	Ltd.,	Dorset	UK	

SYBR	gold	 -20°C	 ThermoFisher	Scientific,	Life	
technologiesNorthumberland	
UK	

Transforming	growth	factor	
beta	(TGF-)b	

-20°C	 Sigma-Aldrich	Ltd.,	Dorset	UK	

Trigene	 Room	
Temperature	

Scientific	Laboratory	Supplies	
Ltd,	Nottingham	UK	

Tris	 Room	
temperature	

Sigma-Aldrich	Ltd.,	Dorset	UK	

Trypan	Blue	 Room	
Temperature	

Sigma-Aldrich	Ltd.,	Dorset	UK	

Trypsin	from	bovine	pancreas	 -20°C	 Sigma-Aldrich	Ltd.,	Dorset	UK	
Trypsin	(passaging	cells)	 -20°C	 Sigma-Aldrich	Ltd.,	Dorset	UK	
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Triton	X-100	 Room	

Temperature	
BDH	laboratory	supplies,	Poole	
UK	

Virkon	 Room	
Temperature	

Scientific	Laboratory	Supplies	
Ltd,	Nottingham	UK	
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The	general	equipment	used	in	this	study	is	shown	in	Appendix	II	
	
Appendix	II	General	Equipment	used	in	this	investigation	

Equipment	 Supplier	
Absorbance	microplate	reader	
Chameleon	plate,	multi-label	detection	
platform.		

HIDEX	,	Finland.		

Accublock	Digital	dry	bath	 Labnet	International	Inc	Global,	Edison	
USA.		

Aluminium	stub	holder	 Agar	Scientific	Ltd.	Essex	UK	
Autoclave	 Priorclave,	London	UK	
Automatic	Pipette	(PipetteboyÒ)	 Scientific	Laboratory	Supplies	Ltd,	

Nottingham	UK	
Balance	AT21	Comparator	 A&D	Instruments	Ltd,	Oxford	UK	
Balance	GR200	(Accuracy	0;01g)	 A&D	Instruments	Ltd,	Oxford	UK	
Balance	GX-2000	EC	 Sartorius,	Goettingen,	Germany	
Bunsen	Burner		 -	
Carbon	Coater	 	
Centrifuge	(Tissue	Culture)	Harrier	
15/80	

Sanyo,	Japan.		

Centrifuge	(L6)	MIKRO	22R	 Hettich,	Tuttlingen	Germany	
Class	I	Laminar	Flow	Cabinet	 Howorth	Airtech	Ltd,	UK	
Class	II	Laminar	Flow	Cabinet	 Heraeus,	Hanau	Germany	
Confocal	Microscope	laser	scanning	
upright	LSM510	

Carl	Zeiss	Ltd,	UK.	

Cryopreservation	Freezer	 -	
Eppendorf	Centrifuge	5415R	 Hyland	Scientific,	Stanwood,	Washington	

USA.	
Field	Emission	Gun	Scanning	Electron	
Microscope	(FEGSEM)	

Hitachi,	Schaumburg	USA	

-20°C	Freezer	 Jencons	Plc,	East	Grinstead	UK	
-80°C	Freezer	 Sanyo	Biomedical	Europe,	BV	
Fluorescent	Microscope	 Zeiss	

Fume	Cupboard	 Whiteley	fume	extraction	solutions	Ltd,	
Bradford	UK	

Gilson	Pipettes	P2,	P20,	P200	and	
P1000	

Fisher	Brand,	Fisher	Scientific	
Loughborough	UK	

25mm	Glass	filtration	system	 Sartorius,	Goettingen,	Germany	
Glass	Universals	 Scientific	Laboratory	Supplies	Ltd,	

Nottingham	UK	
High	Speed	Harrier	Centrifuge	15/80	 Sanyo,	Watford	UK	
Ice	blocks	 Medicool	MC28	Laminar	Medica	UK	
Image	Pro	Plus	image	analysis	software	
version	6.0	

Media	Cybernetics,	Maryland	USA.		

Incubator	 Sanyo	Biomedical	Europe,	BV	Amsterdam,	
Holland	

Infra	Red	Lamp	(100	W	bulb)	 Infraphil	PhillipsÒ,	Surrey	UK	

Inverted	Microscope	(IX71)	 Olympus	Optical	Co.	Ltd,	London	UK	
Light	Microscope	 Olympus	Optical	Co.	Ltd,	London	UK	
Liquid	Nitrogen	Dewar	BIO65	 Jencons	Plc,	East	Grinstead	UK	
Magnetic	Stirrer	 Scientific	Laboratory	Supplies	Ltd,	
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Nottingham	UK	
Magnetic	Stirrer	Bar	 Scientific	Laboratory	Supplies	Ltd,	

Nottingham	UK	
Microcentaur	microfuge	 MSE,	London	UK	
Microwave	 ProLine,	France	
Oven	 Genlab	Ltd,	Cheshire	UK	
pH	meter	(Jenway	3510)	 VWR	International	Poole	UK	
Plastic	Tray	for	CometSlides	 -	
Plate	Shaker	 Bibby	Sterilin	Stone,	Staffordshire	UK.	
Plate	Spinner	 	
4°C	Refrigerator	 Jencons	Plc,	East	Grinstead	UK	
Sonicator	 Fisher	Scientific,	Leicestershire	UK.	
Sorvall	Evolution	RC	High	Speed	
Centrifuge	and	SLA	1500	Rotors	

-	

Spirit	Level	 Camlab	UK.	
Sputter	Coater	(B7341)	and	Film	
Thickness	Monitor	(B7348)	

Agar	Scientific	Ltd,	Stanstead	Essex	UK	

Uktrasonic	Waterbath	 Grant	Instruments	Ltd,	Harts	UK	

Vortex-MS2	Minishaker	 Fisher	Scientific,	Leicestershire	UK.		
Water	Bath	 Fisher	Scientific,	Leicestershire	UK.	
Water	Purifier	 Triple	Red	Laboratory	Technology	UK.		
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The	general	consumables	used	in	this	study	are	shown	in	Appendix	III	
	
Appendix	III	General	consumables	used	throughout	this	study		

Item	 Size	 Supplier	
Bijou	 5ml	 Scientific	Laboratory	

Supplies	Ltd,	Nottingham	
UK	

Blue	Roll	 -	 -	

Cell	scraper	 18mm	blade	length	260mm	
handle	

Fisher	Scientific,	
Leicestershire	UK.	

Closed	Flask	Caps	 For	75cm3	tissue	culture	
flasks	

Scientific	Laboratory	
Supplies	Ltd,	Nottingham	
UK	

Comet	Assay	Slides	 2	well	x	100	 Trevigen,	USA	

Coplin	jar	 25ml	 -	

Cryovial	 1.5ml	 Nange	Nunc	International	
Corporation.	New	York	USA	

Disposable	Plastic	
syringe	

1ml,2ml,5ml,10ml,	20ml	
50ml	

Scientific	Laboratory	
Supplies	Ltd,	Nottingham	
UK	

Electrophoresis	power	
pack	

-	 Pharmacia,	New	Jersey	
USA.		

Electrophoresis	Tank		
Bio-rad	DNA	SUB	CELL	

30cmx10cm	 Bio-Rad	Hertfordshire	UK.	

Eppendorf	Tubes	 1.5ml	 Sarstedt,	Germany	

Falcon	Tubes	
	

15ml,	50ml	 Fisher	Scientific,	
Leicestershire	UK.	

Glass	Beaker	 100ml	250ml	600ml	 -	
Glass	Duran	Bottle	 1L	5L	 Fisher	Scientific,	

Leicestershire	UK.	
Glass	cover	slips	 22mmx47mm	 Scientific	Laboratory	

Supplies	Ltd,	Nottingham	
UK	

Haemocytometer	
neubauer	

22mmx47mm	 VWR	International	Poole	
UK	

Microplate	Adhesive	
Sealing	Film	

96	well	plate	 PerkinElmer,	Windsor	UK	

Optiplateä	 96	well	plate	 PerkinElmer,	Windsor	UK	

Parafilm	 To	seal	edges	of	96	well	
plate	

Bemis,	Oshkosh,	Wisconsin	
USA	

Pipette	tips	 20µl,	200µl,	1000µl	 Starlab,	Ahrensburg	
Germany	

	
Polycarbonate	Filter	
Membranes	

5µm,	1µm,	0.1µm,	0.015µm	 Whatman,	Kent	UK	

Scalpel	Blade	flat	edge	 	 Swann-Morton	UK	
Scalpel	Holder	 130mm	 Swann-Morton	UK	
Scissors	(curved	blade	for	
dissoction)	

-	 Karl	Hammacher,	Germany	

Spatula	 -	 -	
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Sterile	Pot	 60ml,	150ml,	250ml	 Scientific	Laboratory	

Supplies	Ltd,	Nottingham	
Syringe	Filter	(single	use)	 0.22µm	pore	size	 Millex	Merck	Millipore,	

Germanys	
Test	Tube	Holder	 -	 -	

Tissue	Culture	Dishes		 60mmx10mm	 Corning	BV	
Tissue	Culture	Flasks	 25cm2,	75cm2,	125cm2,	 ThermoFisher	Scientific,	

Northumberland	UK	
Tweezers	 Extra	fine	point	 TAAB	

Universal	 30ml	 Scientific	Laboratory	
Supplies	Ltd,	Nottingham	

Weighing	Boat	 -	 -	
Well	Plates	nunclon	delta	
surface	

96well	(flat	and	U	bottom),	
24well,	12	well	

ThermoScientific,	
Northumberland	UK	

Wide	Bore	optifit		pipette	
tips	pre-sterilised	

1000µl	 Biohit	UK.	
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Antibodies	and	stains	used	in	this	study	are	shown	in	Appendix	IV	
		
Appendix	IV	Antibodies	used	in	this	study	
Antibody/	
Stain	

Isotype	 Concentration	 Dilution	 Supplier/Product	
code	

Incubation	
Time	

GFAP	
primary	
antibody	

IgG	 2.9g/L	 1:300	In	
PBS	

Dako	 Overnight	

GFAP	
secondary	
antobody	
DyLight®	
549	Anti-
rabbit	IgG	

IgG	
(H+L)	

N/A	 1:300	in	
PBS	

Vector	
Laboratories,	
Peterborough	UK	

90	Minutes	

Hoescht	
33258	

N/A	 1µg/ml	 1:1000	
in	PBS	

Sigma-Aldrich	
Ltd.,	Dorset	UK	

90	Minutes	
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