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Abstract 

      Dietary restriction (DR) can extend the lifespan in various organisms and is 

thought to present potential benefits in human. However, it is still a controversial issue 

now among scientists due to lack of strong supportive evidence in human. Aging is an 

important issue in every developed country, and the aging process causes 

neurodegeneration and sarcopenia, (the degeneration of muscle mass, strength and 

function). The aim was to understand sarcopenia in the model organism, Drosophila 

melanogaster, by monitoring the decline in output of a single twitch muscle, the jump 

muscle, with age. Jumping assays were performed using an ergometer, while the flies 

were fed with different yeast concentrations throughout their adult life. We did not 

observe failure of neuronal conduction as the flies aged; rather the muscle 

performance declined gradually with age. Flies fed with reduced yeast concentration 

showed significant extension of lifespan in both Canton-S or Canton-S/Wee-P flies 

but no difference in jumping performance. However, flies raised in high yeast 

concentration both from larval stage or adult stage had shorter lifespan without any 

reduced jumping performance. 
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Chapter 1 Introduction 

Aging is correlated with the loss of neuromuscular function and structural 

integrity that often results in a substantial decline in muscle strength and mobility 

(Doherty, 2003). The loss of skeletal muscle mass, strength and function associated 

with aging is commonly known as sarcopenia. As the proportion of the population 

over 65 increases, the medical, social and financial consequences of muscle failure 

will increase, so any measures that can be taken, e.g. changes in diet, to improve 

muscle function are to be welcomed. 

 

1.1 Theories of causing Aging 

Aging involves an array of complex mechanisms at different levels. The first 

point taken into account will be the theory of molecular mechanisms, based on age-

related cellular deterioration.  

1.1.1 Theories with Molecular Mechanism of Aging 

1.1.1.1 Somatic Mutation Theory 

Previous studies implicate the capacity for DNA repair as a key factor for aging 

at the cellular and molecular level. The relationship between lifespan and DNA repair 

is exemplified by some enzymes, such as ADP-ribose and PARP-1, which play an 

important role in the immediate cellular response to stress-induced DNA damage 

(Promislow, 1994; Burkle, 2001). 

1.1.1.2 Telomere Loss Theory 

In some human somatic tissues, the integrity of chromosomes is maintained 

through the presence of telomeres, as well as recombination processes. The length of 

telomere is a clear age marker becoming gradually shorter when cells divide (Kim et 

al., 2002). The loss of telomeric DNA is usually called the “end replication” problem 
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because the newly synthesized DNA is shorter at the 5’ end compared to the original 

DNA template, due to shorter telomere at the end of the strand (Kirkwood, 2005); 

however, this situation occurs only in eukaryotes.  Some in vitro studies have shown 

that the rate of losing telomeres is influenced by stress especially oxidative stress (von 

Zglinicki et al., 1995, 2000). Accelerating or slowing different levels of stress in cells 

has a great effect on shortening the length of telomeres. 

1.1.1.3 Mitochondrial Theory 

Mitochondrial DNA (mtDNA) mutations have  an important relationship with 

molecular stress and aging (Wallace, 1999; Kirkwood, 2005).  The accumulation of 

somatic mtDNA mutations will ultimately reduce the energy output below the needed 

level and results in loss of memory, hearing, vision and stamina as aging occur. The 

activity of a main mitochondrial respiratory-chain enzyme called cytochrome c 

oxidase (COX) has a close relationship with mitochondrial DNA deletion which 

greatly accumulates in human muscle (Müller-Höcker, 1989; Brierley et al., 1998), 

brain (Cottrell et al., 2000a, 2000b), and gut (Taylor et al., 2003), cells where COX is 

deficient. Cells with normal COX activity have less mitochondrial DNA deletions than 

cells with low COX activity, where the latter one is prone to cause age-related diseases 

(Bender et al., 2006). 

1.1.1.4 Altered Proteins Theory 

Protein turnover, whereby damaged or redundant proteins are removed, is 

essential to maintain cellular homeostasis and regulate the multiple cell functions. The 

rate of protein turnover is related to the rate of protein synthesis and degradation. 

Some experimental evidence showed that an accumulation of altered proteins and 

protein turnover led to a variety of age-related neurodegenerative disorders, including 

Alzheimer’s disease, Parkinson’s disease and cataract. Protein turnover has the aid of 
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chaperones, to protect against the aggregation of proteins, by clearing damaged 

proteins, (Söti and Csermely, 2007, p.511), restore denatured proteins and target to 

proteasomes (Söti and Csermely, 2000, 2003, 2007; Young et al., 2004). 

1.1.2 Network Theories of Aging 

Multiple aging mechanisms are now widely acknowledged. Whilst studies have 

shown molecular or cellular damage during aging, none of them sufficiently connect 

to age-related weakness, disability or disease in any of the theories. The development 

“network theories” of aging has implicated various mechanisms working together, 

with different processes interacting or acting synergistically (Kirkwood et al., 2003). 

For example, the accumulation of mitochondrial DNA mutations might cause an 

increasing production of reactive oxygen species (ROS), decreasing the energy output 

occurring over time. Understanding these connections will help develop understanding 

of age-related cellular deterioration. 

The other approach of network theory is that although many mechanisms within 

the network are conserved in all cell types and species, many have differences relevant 

to which mechanisms are more important to that cell type. All cells share a basic 

common repair mechanism for damage affecting primary macromolecules such as 

DNA and protein, specifically when the damage appears from normal sources such as 

endogenous oxidative stress caused by ROS. However, although the network of 

mechanisms may share similar common components across all cell types, 

consideration of differences may apply to different species (Kirkwood, 2005). 

1.2 Muscular Aging 

Sarcopenia is a gradual and long term irreversible loss of skeletal muscle mass, 

strength and muscle function, which occurs during aging in many different living 
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organisms (Fang et al., 2011). During the aging process, age-related loss of muscle 

strength occurs with either the loss of muscle mass, or the decrease in muscle-specific 

force. The oxidative damage and repair system will slowly fail during aging. The loss 

of skeletal muscle capacity and loss of locomotory abilities are the typical influences 

during aging and we will focus on muscle and neuronal degeneration. The muscle 

output will be measured as a monitor of this degenerative process. The first question 

we would like to address will be the causes of sarcopenia, based on age-related loss of 

skeletal muscle. 

 

1.2.1 Skeletal strength and muscle mass loss in aging 

Loss of skeletal strength is a common sign resulting from aging and also directly 

impacts and relates with loss of skeletal muscle mass. The evidence shows that male 

subjects were physically fitter than females at all ages; the loss of muscle strength was 

similar for both male and female subjects and the decline of these were similar for 

both evoked and voluntary contraction determined by examining the ankle plantar 

flexor and dorsiflexor muscles of adolescent, middle-aged, and aged male and female 

subjects (Vandervoort and McComas, 1986). Most elderly male and female subjects 

were able to ultimately activate less motor neuron pool for producing the maximum 

energy. Overall, the losses of proximal and distal muscles in the upper and lower 

extremities were being lost at similar levels, and both male and female subjects had 

similar muscle losses.  

Similarly, male subjects had obviously higher skeletal muscle mass than females 

with more loss of skeletal muscle mass during the aging process, determined by 

examining several different parts of muscles with 148 female subjects and 136 male 

subjects aged between 20 and 90 years old (Gallagher et al., 1997). 
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1.2.2 Muscle quality changes in aging 

Muscle quality (MQ) is related to the strength per unit cross-sectional area (CSA) 

or strength per unit of muscle mass and is more related with muscle function than only 

strength (Roubenoff and Hughes, 2000). Some MQ experiments with different genders 

during aging have been reported. For example, arm MQ is greater than leg MQ 

looking at groups of all ages (Lynch et al., 1999). These age-related losses of muscle 

quality may relate to some factors, such as changes in neural drive, altered muscle 

pennation and increases in connective tissue. Moreover, the expression of myosin 

heavy chain (MHC) in muscle fibres from adolescent male subjects was healthier 

(decline lower) than elderly males, and type I and IIA fibres from elderly males were 

healthier than elderly females (Frontera et al., 2000). These findings showed clearly 

that there were differences in MQ between older men and women (Doherty, 2003). 

Also, there is another experiment showing the changes in expression of MHC in the 

slow twitch soleus (Sol) muscle shifts to the opposed direction compared to glycolytic 

or fast twitch muscles, such as gastrocnemius (Gas) muscle, in rats during aging 

(Edstrom and Ulfhake, 2005; Snow et al., 2005). By comparing the phenotypic 

changes in slow twitch Sol muscle and fast twitch Gas muscle at advanced stages of 

sarcopenia, the evidence reveals that there are large phenotypic shifts in both twitch 

muscles with aging (Carter et al., 2010). 

Drosophila skeletal muscle has similar energy generation and muscle contraction 

mechanisms compared with humans, so that it is a suitable model for muscle aging 

research (Miller et al., 2008). Muscle degeneration can be divided into two main 

reasons: external parts include lack of physical performance and nutrition; while the 

internal parts include a decreased level of circulatory anabolic hormones, increased 

apoptosis caused by raised incidence, accumulation of mitochondrial DNA mutations, 
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reduced oxidative capacity, and muscle regenerative properties declined (Augustin and 

Partridge, 2009). 

 

1.3 Neurodegeneration 

Muscle loss is not the only factor responsible for physical damage. 

Neurodegeneration could be the other cause of physical deterioration during aging 

process. During the aging process, brain function is significantly reduced. Several 

reasons account for the loss of neurons, which leads to neurodegeneration. Other 

reasons, which can relate to aging brains, includes oxidative stress, reduced 

innervations and genetic defects (Sang and Jackson, 2005). 

There is much debate as to whether muscle atrophy results from when muscles 

start to degenerate as innervations degenerate. It was reported in mice that after loss of 

innervation, the muscle will start to degenerate (Muller et al., 2007). However, it is 

still not clear in Drosophila. There are few experimental studies focusing on neural 

function and muscle activity using Drosophila as a model. Superoxide dismutase 

(SOD) enzymes work together with catalase to de-toxify ROS in cells, which have 

been reported to extend the lifespan in flies (Parkes et al., 1998) and in mice. The 

skeletal muscles were identified as the primary target for SOD1G93A mutant protein 

toxicity due to muscle atrophy (Dobrowolny et al., 2008; Godenschwege et al., 2009) 

but the detail for muscle degeneration before neurodegeneration or vice versa are still 

unknown in flies. 

1.4 Lifespan Studies 

Over the past hundred years, the general lifespan of human beings has increased 

extensively in the world due to the medical and environmental improvement. Many 

types of interferences, genetic manipulations and caloric restriction (CR), have been 
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reported to increase the maximal lifespan in many different species. However, the 

results from these experiments are to be determined whether or not it will carry out the 

ultimate benefit to prolong the human lifespan. Several hypotheses (Table 1.) have 

been posed to illustrate the biological aging process (Vendelbo and Nair, 2011). In 

Drosophila melanogaster, the response of lifespan in dietary restriction is regulated by 

nutrient-sensing pathway, which include the Target of Rapamycin (TOR) (Figure 1.) 

(Hansen et al., 2007; Kapahi et al., 2005; Kapahi et al., 2004), adenosine 

monophosphate-activated protein (AMP) kinase (Greer et al., 2007), sirtuins (Rogina 

and Helfand, 2004; Li et al., 2008) and Insulin/Insulin-like growth factor (IGF-1) 

signalling (Honjoh et al., 2009; Arum et al., 2009).  
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Table 1 Hypotheses explain biological processes regarding senescence. 

 

Key hypotheses in aging 

 Mitochondrial function and ROS formation 

 Caloric restriction (CR) 

      ROS scavenging 
      tissue development 
      energy metabolism 

signal transduction 
stress response 
structural and contractile proteins 
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Lifespan can be extended by several conditions, such as heat, oxidative stress, 

low ambient temperature, chemosensory signals, thermosensory signals, signals from 

the reproductive system and reductions in the rates of respiration or translation. In 

these conditions mentioned above, the response of lifespan is under active control by 

specific regulatory proteins (Kenyon, 2010). 

Some tissues (e.g. adipose tissue) also have a predominant role in prolonging the 

lifespan of Drosophila melanogaster (Libina et al., 2003; Wang et al., 2005; Wolkow 

et al., 2000). For example, FOXO proteins are a subgroup of the forkhead family of 

transcription factors. The overexpression of FOXO in Drosophila fat bodies extends 

lifespan, which points out a main role of this tissue when regulating the lifespan 

(Giannakou et al., 2004; Hwangbo et al., 2004). In Drosophila, FOXO is a key 

component of the insulin signalling cascade and by binding directly to target gene 

promoter regions, it regulates the expression of various numbers of target genes such 

as those regulating metabolism, cell growth, cell proliferation, stress resistance, and 

differentiation (Figure 2) (Salih and Brunet, 2008). In adipose tissue, an increase in 

Foxo activity prolongs the lifespan (Fabio and Perrimon
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Figure 1 

Pathways that extension of lifespan influenced by responding to chronic dietary restriction in 
Drosophila melanogaster. By downregulating TOR activity, chronic dietary restriction increases 
lifespan. (Modified after (Kenyon, 2010)) 
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Figure 2 
Regulation of FOXO/4E-BP signalling in muscles and other tissues. FOXO/4E-BP activity regulates 
muscle to maintain muscle function, and prolong the lifespan by autophagy/lysosome pathway 
(Modified after (Demontis and Perrimon, 2010)) 
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1.5 Dietary Restriction 

Without losing key nutrients and minerals, dietary restriction (DR) is described as 

a reduced consumption of particular nutrients or total nutrient absorption. In the 

general broad definition, DR may include caloric restriction (CR), but the same 

calories from different nutrients may lead to different results, which may correlate to 

feeding behaviour and physiology in living organisms (Katewa and Kapahi, 2009). In 

1935, the first effect of DR on extension of lifespan was reported in rodents (McCay et 

al., 1935), whilst the reduction of nutrient ingestion has been shown to prolong 

lifespan in a variety of invertebrate species. DR has turned into a main study in many 

living organism models, including Saccharomyces cerevisiae (Jiang et al., 2000, 2002; 

Lin et al., 2000, 2004; Anderson et al., 2003; Kaeberlein et al., 2004; Sinclair, 2005; 

Guarente, 2005; Piper, 2006; Kaeberlein et al., 2007; Dilova et al., 2007; Longo, 

2009), Caenorhabditis elegans (Klass, 1977; Johnson et al., 1990; Lakowski and 

Hekimi, 1998; Houthoofd et al., 2003; Walker et al., 2005; Schulz et al., 2007) and 

Drosophila melanogaster (Partridge et al., 1987; Chippindale et al., 1993; Chapman 

and Partridge, 1996; Pletcher et al., 2002; Mair et al., 2003, 2004; Piper et al., 2005, 

Piper and Patridge, 2007). For these living organisms to survive DR conditions, 

resources may be diverted from reproduction to somatic maintenance. The effect of 

DR in Drosophila is between starvation resistance and lifespan. Flies in high yeast 

concentration laid many eggs but lived with short lifespan after food deprivation; 

however, flies in low yeast concentration laid fewer eggs but survived with longer 

lifespan (Chippindale et al., 1993). Moreover, by varying all components of adult diet 

(yeast and carbohydrate), the intermediate food concentration resulted in the longest 

lifespan in female flies, but the level of egg production was increased similarly 

followed by the level of food concentration (Chapman and Partridge, 1996). It seems 
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the resource allocation of Drosophila shift is due to the somatic function when under 

DR (Good and Tatar, 2001). 

Preliminary studies also suggest that DR may extend lifespan in other organisms 

(Roth et al., 1999; Lane et al., 2000) and have potential benefits in human beings 

(Fontana et al., 2004). In 2006, some biogerontology scientists argued a question: “Do 

you think that DR can increase longevity in all species, particularly in human beings?” 

(Bourg and Rattan, 2006, p.124) This question led several experts from different 

backgrounds to a wide discussion. It came out with three different conclusions. Firstly, 

it is too early to decide. There was an experiment that showed DR failed to extend 

lifespan in DBA/2 mice strain (Sohal et al., 2009), and the result in flies has been 

unclear yet. It seems that DR is not the only condition that would influence the 

lifespan. There might be having a species-species problem, so that it is too early to 

mention the potential positive effects of DR in human beings. Secondly, some experts 

believed that DR could be of benefit for human beings. They claimed that although 

DR did not increase lifespan in monkeys which were older than 15 years at the early 

stage of study, these monkeys showed improvement when they were in DR, such as 

less diabetes, cancer, heart and brain diseases (Nicholas, 2009). Therefore, people 

would never know the result for the impracticability of DR experiments on human 

beings. Also, some people think that DR seems to have potential improvement of 

protecting against age-related diseases in human. Moreover, DR may also improve 

human being’s health and increase their average lifespan, as it affects many species. 

For example, DR already improved the extension of lifespan on people who live in 

Okinawa, Japan. It is clear that having a large amount of fruits and vegetables could 

positively extend the lifespan in humans. However, it was mentioned that DR cannot 

function for human beings by Bart Braeckman groups, which they proposed that DR 
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does not have any effect on species with an aging sexual maturity, small offspring size 

and long lifespan. Also, in Okinawa’s case, the daily energy provided was 2800 kCal, 

which was nearly 20% less than the average of developed countries, and that the 

average lifespan of women in Japan was 85 years old (Sataro Goto, 2006). Therefore, 

DR is not a convincible subject on increasing the lifespan in human beings from this 

example. Thus, they claimed that bigger-sized and long-lived primates are less 

susceptible to a temporary food shortage than smaller-sized and short-lived ones, since 

the former can at least depend on nutrients stored in the body for a short period during 

the shortage of food (Bourg and Rattan, 2006). 

 

1.6 Drosophila as a Model 

Drosophila has many advantages as a useful experimental model organism for 

investigating the prolongation of lifespan and the effect of DR during the aging 

process. Their short life cycle allows lifespan and aging experiments to be under taken 

in a short period. They are sexually dimorphic (males and females are different 

individuals), males and females are clearly distinguishable and virgin females are 

easily isolated, also helpful for lifespan assays and aging experiments. They are an 

excellent model for genetic and molecular manipulation, easy to care for and culture in 

the laboratory and they are obligate aerobes, which may cause similar aging-related 

damage during the aging process (Partridge et al., 2005). The developmental period 

for Drosophila varies with temperature. Adult flies live about 30 days at 29 °C, under 

ideal conditions. Though they can live longer at lower temperatures, changes in 

lifespan can still be observed at 29 °C during the aging experiments. (Loeb and 

Northrop, 1917; Ashburner and Thompson, 1978; Ashburner et al., 2005) 

From many previous studies, Drosophila flies work well as a DR experimental 

model. Especially, the lifespan of flies is obviously maintained longer in the yeast diet 
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treatments than in the sugar diet treatments. The effect of calories from the metabolites 

specific to yeast can be categorized into carbohydrates, sterols, fatty acids, vitamins, 

minerals and amino acids. Amino acids can be seen as the most important components 

because there were some experimental results showing that decreasing the quantity of 

methionine can extend the lifespan either in rats or mice (Miller et al., 2005; 

Zimmerman et al., 2003). It perhaps leads to similar effects in flies (Min et al., 2006). 

 

1.7 Muscle Measurement 

Muscle degeneration occurs throughout the aging process. The aim of my study 

is to understand the relationship between age and decline in jump performance by 

measuring the muscle output of Drosophila jump muscle at different time points. The 

measured muscle will be the Drosophila jump muscle, the tergal depressor of the 

trochanter (TDT), also named the tergo-trochanteral muscle (TTM) (Figure 3.). This 

muscle produces a single twitch for each stimulus and also the size of this muscle is 

bigger than other muscles, which is responsible for movement of the legs (Harvey et 

al., 2008). 

The jump pathway can be activated by an electrical stimulus to the head, causing 

an action potential in giant descending neurons (GDN), which follows generating an 

action potential in the TDT motorneuron and Peripherally Synapsing Interneuron  (PSI) 

interneuron. The PSI next excites the motorneurons supplying the indirect flight 

muscles (IFM). The TDT contracts, the legs are extended and the wings move into 

position for flight, so that when the IFMs are activated, flight begins (Figure 4A and 

B) (Allen et al., 2006). 

Moreover, Wee-P 26 flies (Clyne et al., 2003) can express green fluorescent 

protein (GFP), and the only thoracic muscle that expresses GFP in the Wee-P flies is 
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the TDT; other muscles (in the leg) also express GFP, so that it might be useful in 

monitoring the jump muscle size. 
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Figure 3 
The tergal depressor of the trochanter muscle (TDT) (black field) in the thorax of Drosophila 
melangaster. (Modified after (Peckham et al., 1990)) 
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Figure 4 
Pathway of jumping performance in Drosophila melangaster. (A.) The organisation of the jumping 
pathway. (Harvey et al., 2008) (B.) Simple representation of the synaptic connection involved in the 
stimulation of the TDT during the experience. Stimulation of the GF will active the TDTMn. The GF-
TDTMn synapse is represented by a dotted circle (purple and green). This will finally result in the 
contraction of the TDT. Only one side of the fly has been represented for clarity. (Modified after (Allen 
and Murphey, 2007)) (GDN: Giant Descending Neuron; VNC: Ventral Nerve Cord; TDT: Tergal 
Depressor of  Trochanter; IFM: Indirect Flight Muscles; GF: Giant Fibre; TDTMn: Tergal Depressor of 
trochanter motoneuron) 
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Chapter 2 Aim of the Project 

The aim of this project is to observe the effect of dietary nutrients in a wide range 

of concentrations on the jumping performance of Drosophila and compare this with 

lifespan and anatomy changes. Some of hypotheses may proposed as following, Does 

a change in diet, sufficient to induce DR, affect muscle performance? Do long-lived 

flies have stronger muscles than short-lived flies? In DR, is muscle performance 

maintained at a plateau for longer? What are the impacts of additional food? Can 

changes in muscle performance be explained by changes in body size or mass? 

First, we tested these hypotheses in the standard lab flies, Canton-S. Secondly, 

we have examined the suitability of the Wee-P fly as a model in which the muscle 

performance could be correlated with its size during aging. We find that the Canton-

S/Wee-P cross provides a better model and have therefore tested our hypotheses in this, 

more robust, outcross. 
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Chapter 3 Materials and Methods 

3.1 Drosophila Stocks and Husbandry 

Our stocks were wild type Drosophila melanogaster: Canton-S (CS) or the Wee-

P 26 transgenic (Clyne et al., 2003). Canton-S flies had been maintained at the 

University of York stocks for > 20 years; Wee-P flies for > 5 years at York. Flies were 

kept in vials at 25 ℃ on standard sugar-yeast-agar medium (Carpenter, 1950, full 

details in Appendix) and were transferred to fresh vials every 3 to 4 days. 

Canton-S/Wee-P Crosses: Adult virgin female Canton-S flies, less than 8 hours 

old, were collected on the day of eclosion by CO2 anaesthesia, and placed in vials 

containing one of the experimental food types (Table 2) and male Wee-P 26 flies 

added. All crosses were also maintained at 25 ℃ and turned over every 3 to 4 days to 

maintain isolation of parents and offspring.  
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Table2 Composition of the different experimental food types. 

Yeast 
Concentration 

Ratio of yeast in 
food to normal stock Composition 

1% Quarter 6.25g yeast/ 50g sugar / 7.5g agar medium 

2% Half times 12.5g yeast/ 50g sugar / 7.5g agar medium 

4% Standard 25g yeast/ 50g sugar / 7.5g agar medium 

8% Two times 50g yeast/ 50g sugar / 7.5g agar medium 
 
*yeast: Allison dried active baking yeast, Westmill Foods Ltd, Maidenhead, UK. 

Agar: Agar Technical n.3, Oxoid Ltd, England. 
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3.2 Lifespan Assay 

Larvae were raised on standard food, and adult females collected within 24 hours 

of eclosion, then placed in vials containing the different food types. For each food 

treatment we used approximately 50 female flies separated equally in 5 vials and 

maintained at 29℃. The number of living flies was recorded every 2 days and flies 

were changed to new vials every 3 to 4 days. 

 

3.3 Anatomy measurements 

3.3.1 Body Mass Assay 

Flies of known age were anaesthetised with ether and placed in a petri dish on a 

OHAUS Analytical Standard weighing balance to determine the body mass. 

3.3.2 Distance between eyes and wing vein 

Flies of known age were anaesthetised with ether and observed with a Stemi 

2000-C Ziess microscope and AxioCam ERc 5s camera. Photomicrographs (Figure 

5A) were made of the head and then the wings were cut off and photographed (Figure 

5B). A calibration bar (1mm) was used as a reference. The actual distance was 

calculated using  Image Processing and Analysis in Java (Image J) (version 1.44i, 

National Institutes of Health, USA; http://rsbweb.nih.gov/ij/). Data was tabulated in 

Excel . 
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Figure 5 

Measurement of the size of flies. (A) The graphic shows the length of wing vein (posterior crossvein) as 
measured in the experiment. (B) The graphic shows the distance between eyes as measured in the 
experiment. 
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3.4 Jumping Assay 

The jump performance of the fly was measured using a flexible beam ergometer 

(Figure 6A) (Harvey et al., 2008). All six legs were free to be placed on the platform 

at the end of the beam. 

All the jumping experiments were only recording female flies because of their 

larger size, the process of using ergometer was described in (Elliott et al., 2007; 

Harvey et al., 2008). The flies were anaesthetised with carbon dioxide, and glued the 

dorsal surface of their thoraces with the tungsten pins on the end of wooden cocktail 

sticks. After allowing 20-30 minutes recovery, the cocktail sticks holding the fly were 

mounted on a MM3 micromanipulator, horizontally above the platform, under visual 

control. The giant descending neurons were then stimulated via electrodes inserted 

into the eyes, the jumping pathway activated, and then the fly started jumping. The 

final result was the contraction of the tergal depressor of the trochanter muscle (TDT) 

through the stimulation of its motoneuron. To find magnitude and direction, the traces 

were recorded as a variation in the illumination of the photodiode and transformed to a 

graph using the DasyLab and Dasyview software (Figure 6B, C). The changes in 

vertical and horizontal traces were imported into Excel and calculated using 

Pythagoras’ theorem for magnitude of total displacement and trigonometry for 

direction of movement (Harvey et al., 2008). 
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Figure 6 

Measurement of the horizontal and vertical movements of the jumping output. (A) The ergometer. The 
fly is glued to a tungsten pin by its thorax at the end of wooden cocktail sticks, mounted with a 
micromanipulator and placed over the platform (5 X 5 mm) from the end of flexible light beam. When 
the electrodes stimulation into its head, activated the jumping pathway, then the fly will jump. The 
platform and the flexible light beam will move and the intensity changes will recorded by four 
quadrants of the photodiode. (B) The data is transferred into computer and generated the graph with 
vertical and horizontal. Vertical represents upward and downward movement and horizontal means 
forward and backward movement of platform. (C) Six successive responses on a faster timescale, 
overlaid to show the slight changes in output between responses. (a. modified after (Elliott et al., 2007)) 
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3.5 Statistical Analysis 

All data in our experiment were analysed by SPSS statistical software (v, 18.0; 

SPSS, Chicago, IL). For comparison of only two groups, independent t-test was 

performed to determine the difference between the means of two samples. Multiple 

significance tests were calculated in ANOVA by using Tukey HSD and Bonferroni 

methods. Estimates of the survival of lifespan assays were calculated by life table 

analysis using the Kaplan-Meier method and survival curves compared with use of the 

Log-rank, Breslow and Tarone-Ware tests. Statistical significance was defined as a p-

value < 0.05. All error bars represent Mean±SEM. 
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Chapter 4 Results 

4.1 How does feeding Canton-S flies with standard food affect the jump 
performance 

To observe how muscle output decreased during the aging, jumping performance 

was measured at 6 different time points, 3, 7, 14, 21, 28, and 35 days, using an 

ergometer. 

The general trend followed by all the flies in standard food was a significantly 

decreased in jumping performance with age. The differences between the time points 

are significant (ANOVA  -  ***p < 0.0001) (Figure 7). 

 

 

 

 

Figure 7 

On standard food, jumping performance declines steadily with age. The graph shows the mean and SE 
for each time point, with at least 15 flies in each sample. Analysis of variance shows that the difference 
is significant (F 5,89 df = 18.0, p < 0.0001). (Error bars: ± standard error of the mean) 
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4.2 How does jump performance of Wee-P compare with Canton-S flies 

To determine if the Wee-P flies were a suitable model with good jumping 

performance, and to observe muscle output in different types of flies, jumping 

performance was measured with 2 different genotype of flies, Canton-S and Wee-P. 

Wee-P flies showed very significantly less jump muscle output (about 50% less) 

(independent t-test - ***p < 0.0001) (Figure 8). Therefore, in order to collect data 

from flies with fluorescence expressed in the TDT muscle, we tested the cross 

between Canton-S and Wee-P flies. 

The jumping performance of Canton-S/Wee-P showed no significant difference 

from the Canton-S flies (Figure 9), with a mean 126.39 µm ± SE 5.9. 

To test for a physical anatomical difference and for comparison with jump 

performance, body mass, distance between eyes and length of wing vein were 

measured with 3 different genotypes of flies in 3 day old virgin female flies. Wee-P 

flies showed very significantly lower average body mass compared to Canton-S and 

Canton-S/Wee-P flies (ANOVA - ***p < 0.0001) (Figure 10A); however, the 

distance between eyes and length of wing veins, were only slightly different between 

Wee-P and Canton-S/Wee-P flies (ANOVA - *p < 0.05). There was no difference 

between Canton-S/Wee-P flies and Canton-S flies (Figure 10B and C).  
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Figure 8 
Wee-P flies are not a suitable model as they do not jump well. Levene’s Test for the equality of 
variance gives a p-value > 0.05, so equality of variance can be assumed. Next, at the α = 0.05 level of 
significance, there is enough evidence to conclude that there is a difference between Canton-S and 
Wee-P flies in jump performance. (Error bars: ± standard error of the mean) 
 

  

*** 



 

- 30 - 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9 
Jumping performance between different fly genotypes. Mean jumping performance with Canton-S, 
Wee-P, and Canton-S/Wee-P 3 day-old virgin female flies. There is no significant difference with 
Canton-S/Wee-P and other two fly genotypes, and significant difference between Canton-S and Wee-P 
flies. (Error bars: ± standard error of the mean) 
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Figure 10 
Body mass, distance between eyes, and distance between wing vein of 3 day old female flies with 3 
different genotypes. (A) The body mass of Wee-P flies is different from both Canton-S and Canton-
S/Wee-P flies. (B) There is slight difference between Wee-P and Canton-S/Wee-P flies on distance 
between eyes. (C) There is only a small difference in the length of the wing vein between the 3 
genotypes.  (Error bars: ± standard error of the mean) 
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4.3 How does feeding larvae with different yeast concentration affect their size 
and jump performance? 

To observe the anatomical changes in Canton-S/Wee-P flies fed with difference 

concentration of yeast from larval stage, we measured the body mass, distance 

between eyes and length of wing vein of 3 day old virgin female flies. Overall, feeding 

the larvae with increasing yeast correlated with increased size of the adult fly at 3 days 

old. The biggest effect was on body mass, where the difference between 1% and 8% 

yeast was 50%, and the smallest effect was on the length of the posterior crossvein, 

where the difference was only 14%. For body mass, flies fed with 1% yeast showed 

little significant difference with 2% yeast, significant difference with 4% yeast, and 

very significantly with 8% yeast (ANOVA - *< 0.05; **< 0.001; ***p < 0.0001) 

(Figure 11A). However, for distance between eyes and length of wing veins, former 

measurement only showed slightly difference between 1% yeast and high 

concentration groups (4% yeast and 8% yeast) (ANOVA - *p < 0.05) and the latter 

measurement did not show any difference between each yeast concentrations (Figure 

11B and C). 

We also compared the jumping performance of 3 day old adults which had  

eclosed from larvae raised on food with different yeast concentrations. Here we found 

the best jumping performance was from those treated with 4% yeast. This was 

approximately twice the jump performance of those raised on 1% yeast, and nearly 7% 

of those raised on 8% yeast. The jumping performance of Canton-S/Wee-P flies which 

were raised in different percentage of yeast food treatment were statistically having 

slightly difference between 3 groups-1%, 4%, 1%, 8% and  2%, 4% as shown by 

Tukey HSD and Bonferroni tests (AVOVA *p < 0.05; **p < 0.01) (Figure 12) . 
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Figure 11 
Body mass, distance between eyes, and length of wing vein (mm) of 3 day old Canton-S/Wee-P flies 
raised from larval stage in different concentration of yeast food treatment. (A) The graph shows 
significant difference between different concentrations, highest concentration had highest body mass 
and decreased by concentration. (B) The graph shows slightly significant difference between lowest 
concentration and high concentration groups on distance between eyes. (C) The graph shows there is no 
any significant difference in any yeast concentrations with length of wing vein. 
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Figure 12 
The yeast composition of larval food affects jump performance of young (3 day old) flies (Canton-
S/Wee-P). The Tukey HSD tests suggest that the 1% differs from both the 4% and 8% treatment ( p= 
0.003,  p < 0.05 respectively) and 2% slightly differs from 4% treatment (p < 0.05). However, the 1% 
and 2% treatments are not significantly different (p = 1.000). The same P values were obtained in the 
Bonferroni post-hoc tests. (Error bars: ± standard error of the mean) 
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4.4 How does yeast concentration affect the lifespan? 

To compare if the different percentage of yeast food treatment had an effect on 

the survival/mortality of Canton-S and Canton-S/Wee-P flies, flies were fed with food 

containing different percentages of yeast (Figure13A, and B). The Kaplan-Meier 

statistical analysis with three different tests, Log-Rank, Breslow, and Tarone-Ware 

tests ( ***p < 0.0001 in all tests) in SPSS, showed significant differences in longevity 

between high concentration (4% and 8%) and low concentration (1% and 2%) in 

Canton-S and significant difference between each concentration in Canton-S/Wee-P. 

On the whole, flies survived well in both Canton-S and Canton-S/Wee-P flies- in 

Canton-S, the survival curve remained relatively flat until 20 days in 4% and 8% yeast, 

but did better (30 days) in 1% and 2 % yeast; in Canton-S/Wee-P, the overall lifespan 

are longer compared to Canton-S. The survival curve remained nearly flat until 29 

days in general. Flies survived best on 2% yeast in both groups, with median age-34 

and 47 days; either lower or higher concentrations were detrimental to survival with 

the median age being reduced to between 24-32 days in Canton-S and 36-41days in 

Canton-S/Wee-P (Figure 13C). 
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Figure 13 
Lifespan curves for the media with different percentage of yeast in Canton-S and Canton-S/Wee-P. (A.) 
The graph shows the number of remaining Canton-S flies with different percentage of yeast food 
treatment by days. (B.) The graph shows the number of remaining Canton-S/Wee-P flies with different 
percentage of yeast food treatment by days. By using Kaplan-Meier analysis includes 3 different tests 
(Log-Rank, Breslow and Tarone-Ware tests to compare the lifespan distribution showed a significant 
difference between the curves with ***p-value < 0.0001 and df=1. (C.) The graph shows the median 
lifespan as a function of yeast concentration in SY media in Canton-S and Canton-S/Wee-P flies. 
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4.5 How does feeding the flies with different yeast concentration affect their size 
and jump performance? 

To observe the difference between anatomy change and jumping performance of 

Canton-S/Wee-P flies in different yeast food concentration at different ages, larvae 

were raised on 4% yeast (standard lab food) and transferred to different food on the 

day of eclosion. Their body mass was measured with 3 time points-3, 28, and 35 days. 

Even by 3 days, there is a significant correlation between yeast concentration and 

body mass, with the adults on 8% yeast weighing 44% more than those on 2% yeast. 

The mass continued to increase with age, with the flies on 8% yeast gaining most mass. 

There was no sign of loss of mass in old flies. The body mass measurement showed 

statistically significant difference either between ages or concentrations in Canton-

S/Wee-P flies (ANOVA - ***p < 0.0001) (Figure 14). 

A comparison between the age of Canton-S and Canton-S/Wee-P flies fed by 

different percentage of yeast, and the jumping performance was measured at 6 

different time points can help us understand if the DR affect the jumping performance 

of flies differently with age, using an ergometer. 

In general, Canton-S flies maintained in different yeast food treatments had a 

similar decline in jump performance. There was a statistical difference between lowest 

concentration (1%) and the highest concentration (8%) as shown by Tukey HSD and 

Bonferroni tests. The rest of yeast food treatment (2% and 4%) did not show 

significant differences (Figure 15). However, the data from the flies feed with 8% 

yeast are out of line at 21 days; well below the rest of the data samples, but by 28 days 

the lines have converged again. When the 21 day data were removed from the results, 

there was no significant difference between the yeast food treatments. We believe that 

the 21 day, 8% yeast data point is aberrant [possibly due to a sudden variation in the 

incubator temperature]. 
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With the Canton-S/Wee-P flies, the jump performance also declined gradually 

over the experimental period, with little difference between the different yeast food 

treatments. The Post-hoc tests showed significantly difference between two groups- 

2% & 4% and 4% & 8%, but there was no significant difference between 2% and 8% 

(Figure 16). Since the lowest and highest yeast treatments (2% and 8%) do not differ 

significantly, we conclude that the overall effect is not biologically important. Thus 

both our experimental genotypes, the inbred Canton-S and the outcross Canton-

S/Wee-P lead to the same general conclusion, that DR does not have a big impact on 

jumping performance. 

To confirm this conclusion, we compared the median lifespan (i.e. the time for 

50% of the flies to die), the time to 50% of the initial jump performance and the time 

taken for 50% gain in body mass at each yeast concentration (Figure 17). As expected, 

the 2 % yeast food treatment has the longest lifespan in both fly genotypes. However, 

the jumping performance showed much less dependence on yeast concentration than 

lifespan and body mass gain. This is true for both Canton-S and Canton-S/Wee-P flies. 
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Figure 14 

Body mass of Canton-S/Wee-P in different concentration of yeast food treatment at different ages. The 
graph shows significant difference between different concentrations at different ages. (Error bars: ± 
standard error of the mean) 
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Figure 15 
Jumping performance does not decline very differently when the concentration of yeast is varied 
(Canton-S flies). The Tukey tests suggest that the 1% differs from 8% treatment (p < 0.05). However, 
1% and 2%, 8% treatments are not significantly different ( both p=1.000). The same P values were 
obtained in the Bonferroni post-hoc tests. (Error bars: ± standard error of the mean) 
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Figure 16 
Jumping performance does not decline very differently when the concentration of yeast is varied 
(Canton-S/Wee-P flies). The Bonferroni post-hoc tests suggest that the 4% differs from both the 2% 
and 8% treatment (p <0.001 and p= 0.002 respectively). However, the 2% and 8% treatments are not 
significantly different ( p = 1.000). The same P values were obtained in the Tukey tests. (Error bars: ± 
standard error of the mean) 
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Figure 17 
Dietary restriction has more effect on lifespan and the median gain in body mass than jump 
performance in Canton-S and Canton-S/Wee-P flies. The median lifespan decreased as the yeast 
concentration was increased, and 2% yeast concentration produced the optimal lifespan. We define 
DJUMP50 as the age at which the jump performance reaches half the initial jump performance. 
DJUMP50 is not significantly affected by different yeast concentration in Canton-S or Canton-S/Wee-P 
flies.  
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Chapter 5 Discussion 

The main finding from these experiments is that dietary restriction (DR) does not 

affect the jump muscle performance, although it affects lifespan and body mass. On 

the other hand, over-feeding flies results in a shorter lifespan and also a quicker 

decline in jumping performance compared to the flies on standard food. We can thus 

begin to answer the questions posed in the Introduction: 

 Does a change in diet, sufficient to induce DR, affect muscle performance? No. 

 Do long-lived flies have stronger muscles than short-lived flies? No. 

 In DR, is muscle performance maintained at a plateau for longer? No. 

 What are the impacts of additional food? Reduced lifespan and with no biologically 

significant decline in  muscle performance. 

 Can changes in muscle performance be explained by changes in body size or mass? 

This question is not fully answered. 

However, is the apparatus sensitive enough to resolve changes in muscle 

performance, due to changes in (i) size or (ii) feeding? The first issue was addressed 

by comparing the Canton-S, Wee-P and their heterozygote genotypes, the second by 

examining the morphology and jump ability of young adults, which had been raised as 

larvae on different yeast diets. 

 

5.1 How does size and jump performance of Wee-P compare with Canton-S and 
Canton-S/Wee-P flies? 

The jumping performance of Wee-P flies was 50% less than Canton-S flies at age 

3 days (Figure 8). This results in a much worse signal to noise ratio, making the 

measurement (especially at old age) much worse. Wee-P flies are therefore not a 

suitable model for monitoring jumping performance.  
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Poor jumping performance in the Wee-P could result from the GFP insert 

producing a defect in the actomyosin ATPase, a defect in the sliding filaments or be a 

simple consequence of a smaller muscle volume. Measurements of indicators of body 

size (wing vein length, eye separation and mass) shows that the Wee-P flies are much 

smaller than Canton-S flies (Figure 10) The ratio of mass/jump performance is the 

same in Canton-S and Wee-P flies as would be expected if the TDT muscle always 

occupies the same proportion of the volume of the fly.  

The heterozygote of Canton-S and Wee-P flies had the same size and jumping 

performance as the Canton-S but still have the GFP, so we can discount any effect of 

the GFP on the ATPase or sliding filaments. 

Taken together, these factors suggest a homeostatic mechanism, whereby the fly 

tries to regulate its overall muscle output to the required level; so that it can take of 

and start flying away from predators affectively. 

  

5.2 How does feeding larvae with different yeast concentration affect their size 
and jumping performance? 

When larvae were grown on different diets, there was little change in average 

body size (length of wing vein, not significant, eye separation < 15%) of 3 day old 

heterozygote flies in different yeast concentration; however, there was a large 

difference in mass (~45%) and jumping performance (79%). This shows that the 

apparatus is sensitive enough to record differences in jumping performance, even in 

flies of similar size. However, when fed with more yeast than normal, the body mass 

increased but the jump performance decreased. We conclude that body size is not the 

only determinant of jumping performance and that measurement of muscle size is 

crucial. 
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5.3 How does yeast concentration effect the lifespan in Canton-S and Canton-
S/Wee-P flies 

As there has been debate in the literature about the best media to demonstrate 

lifespan extension by DR (Bourg and Minois, 2005; Bass et al., 2007), we can validate 

our lifespan data by comparison with that from the Tatar and Partridge groups. Our 

differences in Canton-S lifespan compare well with data from corn-sugar-yeast food 

(Min and Tatar, 2006). From their figure 1, the extension of Canton-S lifespan by DR 

was at the similar level compared with our food manipulations (Figure 18A and B). 

For example, we found a 16% change in lifespan from 4% to 1% yeast, and Min and 

Tatar found a 5%. Moreover, in (Partridge et al., 2005), figure 1, the lifespan of 

female Drosophila on sugar-yeast food was longer at 2% than 1% yeast level (Figure 

19), which is also similar to our result. The data from Min and Tatar, Partridge et al 

and our experiments all showed flies with DR food treatment (reduced yeast 

concentration) have longer lifespan compared to living in standard or higher yeast 

concentration and flies have longest lifespan in about 2% yeast concentration food 

from all results. However, in all of their experiments, lifespan was longer than in ours. 

This may due to the different experimental temperature (25℃ with Min and Tatar and 

29℃ with our experiments) (Mair et al., 2003), rearing conditions and procedure for 

food preparation. As we had expected, the Canton-S/Wee-P heterozygote lived longer 

than the Canton-S, with no mortality before 30 days, and the median lifespan in 2% 

yeast was 38% longer. These may possible caused by a genetic difference in response 

to variation in yeast concentration. 
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Figure 18 
Comparison lifespan of Canton-S between our data in colour and that reported by Min and Tatar in 
black and white. (A) The graph showed the Canton-S female lifespan with different concentration of 
yeast food treatment calculated by days. (B) The graph shower the median lifespan in different 
concentration of yeast food treatment, compared with our Canton-S median lifespan. (Modified after 
(Min and Tatar, 2006)) 
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Figure 19 
Median lifespan in different concentration of yeast food treatment, compared between our Canton-S 
median lifespan in colour and that reported by Partridge et al. in black and white (Modified after 
(Partridge et al., 2005)) 
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5.4 How does aging on standard food affect the jumping performance in flies 

Overall, the jumping performance of Canton-S flies fed with standard yeast-sugar 

food showed significant decrease as the flies aged (Figure 7). There is no sign of the 2 

week optimal plateau suggested by initial experiments (Harvey et al., 2008); the best 

performance is at 3 days and by 7 and 14 days the gradual decline is already underway. 

The same consistent decline starting at 3 days is seen in the Canton-S/Wee-P outcross. 

The declined of heterozygote is slower than the inbred strain, and it refers to our data 

(Figure 16). The potential explanations for this decline include a loss of muscle mass 

or a reduction in muscle effectiveness, possibly related to mitochondria dysfunction or 

changes in contractile proteins. In Drosophila flight muscle, accumulated structural 

damage in mitochondrial is suggested to cause a drop in ATP levels and so affect the 

flight ability of flies age (Miller et al., 2008). Flies appear to compensate for this by 

increasing the power output of the individual muscle fibres (Miller et al., 2008). 

However, in humans and other vertebrates, a reduction in the contractile properties of 

muscle was considered more important (Larsson et al., 1997; Krivickas et al., 2001; 

Lowe et al., 2001, 2002; Prochniewicz et al., 2005; Ochala et al., 2006, 2007; 

D’Antona et al., 2003, 2007; Yu et al., 2007). From our results, there is no sign of 

nerve conduction failure in older flies, unlike Angeles (2009), suggesting 

neurodegeneration is not a key contributor of the decline jump performance. 
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5.5 How does dietary restriction affect jumping performance? 

Although DR has a clear affect on both lifespan and body mass, there is no clear 

effect on jump performance either in Canton-S or Canton-S/Wee-P flies (Figure 17.). 

This is also unlike our manipulations of larval food, which had a big impact on the 

adult jump performance. The sensitivity and reproducibility of the apparatus suggests 

that the maximum effect of DR on muscle performance must be < 10%, and therefore, 

we find no evidence of a change in muscle performance with DR, which might 

indicate a diversion of resources from reproduction to somatic tissues 

Also, interestingly, in a second dietary manipulation, both wild-type flies and 

those carrying a PTEN-induced putative kinase 1 (PINK1) mutation (Clark et al., 2006; 

Park et al., 2006; Gautier et al., 2008; Gispert et al., 2009) fed with α-tocopherol 

treatment have improved lifespan but no change in jumping performance (Xu, 2011). 

This is similar to our results with yeast dietary restriction treatment. Although this data 

set was smaller than our DR experiment, it too suggests that muscle performance and 

lifespan are not tightly coupled.  

Initial work with DR suggested a trade-off between reproduction and survival. 

However, more recent studies have questioned this relationship, providing varying 

results. Data suggesting a trade off include manipulations of the genes chico (Clancy 

et al., 2001; Tu et al., 2002) and insulin-like receptor gene (dInR) (Tatar et al., 2001). 

These are part of the insulin signalling system in Drosophila, where the lifespan was 

promoted but fecundity and fertility reduced. In contrast,  Indy and ecdysone receptor 

(EcR) mutant flies showed increased lifespan and also showed greater fecundity and 

fertility than control flies (Marden et al., 2003; Simon et al., 2003). Also, in C. 

elegans, age-1 and daf-2 are long lived mutants without reduction in reproduction 

(Flatt, 2011). There are some other studies suggesting evidence for the crucial role of 
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physiologically based trade-offs and the hormonal controls. For example, high 

reproduction is related with poor moult, reduced immunological status, decreased 

investment in sexual ornamentation in birds, decreased growth in guppies, flight 

capability in crickets and longevity in insects (Shanley and Kirkwood, 2000). 

In our experiments, flies in DR have no effect in sarcopenia; however, rats under 

calorie restriction have less severe sarcopenia compared to normal fed rats 

(McKiernan et al., 2004). 

 

5.6 How does dietary supplementation affect jumping performance? 

The 8% yeast produced the largest increase in body mass without any increase in 

body size, and lifespan shortened by 11 % and 12 % in Canton-S and Canton-S/Wee-P 

respectively. Body mass increases are associated with reductions in lifespan in insects 

and flies organisms (Warbrick-Smith et al., 2006; Kolss et al., 2009). Although the 

statistical tests showed some differences between 8% and the other yeast treatments at 

some time points, the overall conclusion is that this is not biologically significant. 

Thus both the reduction and increase in yeast concentration have a marked effect on 

lifespan but not on the rate at which jump performance declines with age. 
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Chapter 6 Conclusion 

The main finding from these experiments is that in flies dietary restriction (DR) 

extended the lifespan, and reduced body mass but had little effect on the jump 

performance of flies. Even though predator escape is a crucial part of survival, we find 

no evidence that resources may be diverted from reproduction to muscle, a somatic 

tissue, to maintain survival. On the other hand, over-feeding flies both shortened their 

lifespan and led to a more rapid decrease in their jumping performance, compared to 

the flies on standard food. 

If the TDT jump muscle is taken as a typical muscle, then a gradual deterioration 

in performance with increasing age might be expected in all muscles. This might lead 

to a slower ability to find food and to ingest it, reducing energy intake and with the 

consequence of further weakening throughout the organism. We suggest a homeostatic 

mechanism may be a brake on this vicious circle and further analysis of the size and 

metabolic profile of the TDT muscle may provide novel insights into the aging 

process. 
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Appendix 

Procedure of fly food 

 
Sucrose 50g、Yeast 25g 、Agar 7.5g 

 

Clean 2 litre conical flask 
• 1 bag of sugar/yeast/agar mixture 
• 430 ml distilled water 
• 12.5 ml solution X (Dissolve 20g CaCl2 in 1 litre distilled water) 
• 12.5 ml solution Y (dissolve 20g Ferrous sulphate in 1 litre distilled water) 
• 75 ml solution Z (160g potassium sodium tartrate, 10g sodium chloride, 10g manganous chloride) 

 

Cover the flask with foil and label with autoclave tape 
(3 flasks = 2trays) 

 

Autoclave at 121°C for 15 minutes 

Cool in a water bath at around 40°C for approximately 1 hour 

4 ml methyl paraben (“ Nipagin”)、15 ml CBZ (“ Bavistin”) 
* The temperature should NOT more than 50°C 
* Swirl the flasks occasionally to stop separation of the ingredients 

8 ml of media into each vial 

Plug vial with non-absorbent cotton wool 

Wrap the trays in an autoclave bag and label with date 
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