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ABSTRACT 

Tumour-associated neutrophils (TAN) can have a significant impact on the tumour 

microenvironment via release of potent growth and angiogenic factors, chemokines and 

proteinases that can profoundly influence tumour progression. Moreover, several studies have 

shown that increased neutrophil numbers systematically or within the tumour correlate with an 

unfavourable prognosis in head and neck squamous cell cancer (HNSCC) patients. The aims of this 

study were to identify which factors are responsible for neutrophil recruitment into HNSCC and if 

TAN affect tumour growth in an in vivo model. 

The number of TAN within human HNSCC tissue was evaluated by immunohistochemical staining 

for the neutrophil marker myeloperoxidase (MPO). The factors secreted by FaDu HNSCC multi-

cellular tumour spheroids (MCTS) were analysed by cytokine array and ELISA.  Neutrophils 

isolated from the peripheral blood of healthy volunteers were used to measure neutrophil 

migration to factors identified from the array, then the recruitment of neutrophils to MCTS was 

assessed overtime by flow cytometry in the absence and presence of small molecule inhibitors. 

FaDu xenograft mouse models were used to confirm the effect of these inhibitors on neutrophil 

recruitment in vivo and also on tumour growth. 

MPO staining confirmed the presence of marked numbers of TAN in HNSCC compared to normal 

oral epithelium. HNSCC MCTS resemble in vivo tumours, displaying areas of hypoxia, necrosis and 

cell proliferation. Neutrophils migrated to recombinant CXCL8, CXCL1 and MIF and these 

chemoattractants were found in the conditioned medium of FaDu MCTS.  The recruitment of 

neutrophils into FaDu MCTS was significantly inhibited when neutrophils were pre-treated with 

antagonists for CXCR2 and CXCR4, the receptors for CXCL8, CXCL1 and MIF respectively. Moreover, 

use of the MIF inhibitor, ISO-1 caused a dramatic reduction in the number of neutrophils recruited 

into FaDu MCTS. In addition, in vivo, ISO-1 significantly reduced the number of TAN by up to 80% 

in xenograft FaDu tumours. Collectively, these data suggest that CXCL8, CXCL1 and MIF in 

particular are important in the recruitment of TAN into HNSCC.   
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Chapter 1: Introduction  

1.1.  Head and Neck Cancer  

Head and neck cancers (HNCs) are a group of heterogeneous malignancies arising from many 

distinct anatomical sites of the head and neck region including the oral cavity, oropharynx, 

nasopharynx, hypopharynx, nasal cavity and para-nasal sinuses, ear, salivary glands and larynx. 

The majority (approximately 90%) of HNCs arise from the squamous epithelium and therefore, 

the term head and neck squamous cell carcinoma (HNSCC) is frequently used to describe 

these cancers.    

1.1.1. Epidemiology of Head and Neck Cancer  

According to the World Health Organization (WHO) approximately 600,000 new cases and 

300,000 deaths of HNSCC are reported annually, making it the sixth most common cancer 

(Warnakulasuriya, 2009) and the eighth leading cause of cancer mortality worldwide (Ragin 

et al., 2007). These cancers also have a higher male to female ratio of approximately 4:1 

(Ferlay et al., 2010). Although, there is a large variation in HNSCC incidence by both sex and 

geographic region, the highest incidences are found in the Indian subcontinent, Eastern 

Europe, Australia, Brazil, Southern Africa and parts of the Pacific region (Warnakulasuriya, 

2009). In UK, there were a total of 7495 cases reported in 2015 with 54% of cases reported in 

people above 65 years of age (Globocan, 2012) (Fig. 1.1). Despite surgical and therapeutic 

advances, individuals with HNSCC have a poor 5-year survival rate that is a result of various 

factors including late stage of diagnosis (primarily due to the lack of pain at early stage of 

disease), high probability of recurrence and secondary metastasis (Ragin and Taioli, 2007, 

Ragin et al., 2007). 
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( A )  

( B ) 

( C ) 

Figure 1.1 Incidence, prevalence and mortality rates for lip, oral cavity and pharynx in 

the UK and globally. (A) Bar chart shows the estimated age-standardized incidence of 

HNC in UK in 2015. (B) 5-year prevalence and (C) mortality rates of lip and oral cavity 

cancer worldwide in 2012. Data is shown as rates per 100, 000 of the global population 

in both sex (Data obtained from GLOBOCAN 2012).    
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1.1.2. Risk Factors  

1.1.2.1. Smoking and alcohol consumption 

The major risk factors identified for HNSCC are tobacco use and alcohol consumption. The 

increased risk is due to the genotoxic effects produced by carcinogen metabolites found in 

tobacco smoke including nitrosamines and polycyclic hydrocarbons, and acetaldehyde 

present in alcohol (Pai and Westra, 2009). Over a prolonged period of time these carcinogens 

irreversibly damage the DNA of key genes that regulate the cell cycle leading to altered gene 

expression and ultimately dysregulated mitosis.  A study of the effect of possible risk factors 

for death from cancer in low and middle income countries showed that smoking accounts for 

42% of deaths of people diagnosed with cancer of the oral cavity while heavy alcohol 

consumption accounts for 16% of deaths globally. In contrast, in high income countries deaths 

due to these risk factors are much higher with smoking accounting for 71% of deaths and 33% 

for alcohol consumption (Danaei et al., 2005). 

1.1.2.2 Human Papillomavirus  

 Approximately, 20-25% of individuals with HNC contain DNA for the oncogenic Human 

Papillomavirus (HPV).  HPV is a DNA virus known as the main causative agent of cervical cancer 

and it is increasingly being associated as a risk factor in the development of HNSCC, 

particularly in younger patients. HPV types 16 and 18 have been recognized as the 

predominant virus responsible for up to 70% of oropharyngeal cancers (Pai and Westra, 2009). 

Increasing evidence shows that HPV-associated HNSCCs strongly correlate with viral infection 

and sexual activity (Smith et al., 2004).  In contrast to cancers arising from smoking and 

alcohol, HPV-positive HNSCC have been associated with better outcomes and a reduced risk 

of recurrence than HPV-negative HNSCC (Ragin and Taioli, 2007). Immune profiling of HPV-
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positive and –negative tumours demonstrated an increased expression of immune-related 

genes such as the antigen presenting ligand (CD83), co-stimulatory molecules (GITRL), 

adhesion molecule (CD62L), chemokine receptor (CXCR3) and the NK cell marker (NKG2D) in 

HPV-positive compared to HPV-negative samples. This immune activation pattern was 

associated with accumulation of CD20+B and FoxP3+T-reg cells and was a predictor for 

improved survival (Russell et al., 2013), suggesting that differences between the aetiology of 

HPV-positive and –negative HNSCC leads to altered immune responses that ultimately affect 

patient outcome.  

1.1.2.3 Other HNSCC aetiological factors  

There is strong evidence to suggest that dietary factors also play an important role in the 

development of HNSCC. For example, there is an association between high intake of red meat 

and increased risk of oral cancer, while other studies show a protective effect of foods that 

contain vitamin C, E, and vegetable and fruit consumption (Saman, 2012). The precise 

mechanism of how these foods affect carcinogenesis is unknown and is a topic of much 

debate. However, several studies have now associated low folate status with cancer risk 

(George et al., 2009, Pelucchi et al., 2003). Folate is an essential dietary component required 

for production of nucleotides and therefore essential for DNA synthesis and repair. Low folate 

status has been shown to cause uracil mis-incorporation (Blount et al., 1997) and impaired 

DNA repair (Duthie et al, 2008) all of which increase the risk of cancer. Other exogenous risk 

factors include ultra-violet DNA damage upon exposure to sunlight (Weller et al., 2010), a 

particular risk for lip cancers, occupational exposure to carcinogens (Gustavsson et al., 1998) 

and poor oral hygiene (Orbak et al., 2005), although the latter may be associated with tumour 

progression rather than carcinogenesis. 
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1.1.3. Mechanisms of tumorigenesis  

Mounting evidence accumulating over several decades indicates that HNSCC tumour 

development is a multistep process involving a number of genetic alterations over a long 

period of time. The route that normal cells take on their way to transformation into a 

neoplastic cell is highly diverse, but during this complex process impairment in function of 

critical genes, including oncogenes and tumour suppressor genes play a critical role in tumour 

initiation and progression (Kopnin, 2000). A prominent example is mutation in the p53 gene 

that occurs commonly in HNSCC and well as in many human cancers. This accounts for 

dysregulated function of the p53 tumour suppressor protein that results in inefficiency of DNA 

repair mechanisms and loss in apoptotic machinery (Levine, 1997). Mutation of p53 has been 

reported in 40%-60% of patients with HNSCC and is linked with progression from pre-

malignancy to invasive disease (Shin et al., 2001, Cruz et al., 1998). Overexpression of 

Epidermal Growth Factor Receptor (EGFR) has been detected in 90% of HNSCC (Kalyankrishna 

and Grandis, 2006) and binding of receptor to any of its ligands initiates multiple layers of 

growth signalling and amplification that mediate uncontrolled cell growth. Other important 

signalling mechanism in HNSCC is the inhibitory transforming growth factor-ß (TGF-ß) 

pathway.  TGF-ß binding to its receptors initiates phosphorylation of intracellular SMAD2, 

SMAD3 and SMAD 4 (Huntley et al., 2004), which governs target gene transcription and thus 

inhibits proliferation and induces apoptosis. Inactivation of TGF-ß has been detected in 

various cancers, including HNSCC (Wang et al., 1997). Oral squamous cell carcinoma (OSCC) 

cells have been shown to avoid apoptosis by the PI3K–PTEN–AKT pathway, and mutations of 

PIK3CA have been defined in 10-20% of patients (Kozaki et al., 2006).   
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As a result of this genetic instability and uncontrolled cell growth, tumours increase in size 

but cannot exceed 1-2 mm3 in an avascular state. In order to maintain an adequate supply of 

oxygen and nutrients and diffusion of waste products the tumour requires the formation of 

new blood vessels – the process of angiogenesis (Folkman, 2002). Under normal physiological 

conditions, like wound healing, this process is tightly regulated, while during tumour 

progression the angiogenic switch, which controls the balance between pro- and anti-

angiogenic molecules, is skewed to a pro-angiogenic state. This leads to multiple defects in 

tumour vascular shape, branching pattern, size and lack of normal arrangement of arterioles, 

capillaries and venules (Baluk et al., 2005). A tumour with a high tendency of forming a 

network of microvessels will mostly transfer from microscopic lesion to a rapidly expanding 

mass with metastatic spread (Zetter, 1998).  For example, increased expression of the pro-

angiogenic factor VEGF in HNSCC was associated with increased tumour vascularity and poor 

prognosis (Kyzas et al., 2005).  

1.1.4. Clinical and histological pathogenesis of oral cancer  

Most of the tumours that occur in the head and neck region are squamous cell in origin and 

the overwhelming majority of these are in the oral cavity (oral squamous cell carcinoma; 

OSCC). Clinically, the appearance of the normal oral mucosa is pink/red with smooth mucosal 

surfaces. Histologically, the tissue is typically comprised of a dense connective tissue 

containing fibroblasts, blood vessels and neuronal tissue. Stratified layers of epithelial cells 

are attached to the connective tissue via interactions between the basal cells and the 

basement membrane by hemi-desmosome contacts. The epithelial basal cells act as stem cells 

and are the only cells that have the ability to replicate (these are also cells that become 

malignant). As the cells divide they differentiate towards the apical surface of the epithelium, 
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firstly becoming spinous cells and then finally differentiating into the stratum corneum before 

desquamating into the oral cavity (Fig. 1.2). Some parts of the oral mucosa are highly 

keratinised (hard palate) whereas others are non-keratinised (buccal mucosa) depending on 

their function.   

 

 

At initial stages, lesions present clinically in the form of pre-malignant lesions such as 

leukoplakia (white plaque), erythroplakia (red plaque) or combination of both 

(erythroleukoplakia). Leukoplakia is the most frequently observed although erythroplakia 

tend to be more aggressive and these lesions are the ones most likely to progress to cancer. 

Lesions at that stage are usually small in size and mostly asymptomatic (Mashberg et al., 1989) 

Figure 1.2 Histology of the oral mucosa. Histological micrograph showing the connective 

tissue and epithelium of the oral mucosa. The epithelium is further divided into distinct 

regions and can be keratinised or non-keratinised depending on location in the oral cavity. 
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with little or no pain commonly experienced. Histological examination of leukoplakias can 

demonstrate thickening of the entire epithelium (acanthosis) and/or thickening of the surface, 

keratinised layers of the epithelium (hyperkeratosis) (Fig. 1.3). Not all leukoplakias continue 

to form tumours. In fact, the development of cancer is uncommon with only 8%-18% of 

patients going on to develop SCC within 8 years after the diagnosis of a pre-malignant lesion 

(Jr et al., 1984). Most pre-malignant lesions regress and the epithelium returns to a normal 

clinical appearance. Most people presenting at oral medicine clinics have high risk factors 

such as smoking and alcohol consumption and so the aetiology of many of the pre-malignant 

lesions that return to normal are unknown, likewise, there is currently no way to discriminate 

between those lesions that progress to cancer from those that do not. At the histological level 

these changes include drop-shaped rete ridges, nuclear enlargement, keratin pearls and 

irregular epithelial stratification and mitotic cells in the spinous (upper) layer of the 

epithelium (Fig. 1.3). Based on the severity of the cellular abnormalities, dysplasia is graded 

from mild dysplasia (abnormalities limited to the lower one-third of the epithelium), 

expanding of dysplastic lesion to the lower two-thirds in moderate dysplasia, and involvement 

of full thickness of the epithelium in severe dysplasia/carcinoma in situ.  Once a pre-malignant 

lesion has progressed to cancer the characteristic clinical features include ulceration and 

sever pain of the lesion, and formation of a lump which is often hard on palpation (Bagan et 

al., 2010) (Fig. 1.3).  As the tumour grows, it invades the connective tissue and it is at this 

stage that the tumour is considered as an invasive carcinoma.  Histologically, this is 

characterized by increased cell nuclear to cytoplasmic ratio, varying degrees of keratinization 

intercellular bridges, increased atypical mitotic figures; hyperchromasia, basement 

membrane invasion, and an associated inflammatory response (Fig. 1.3) (Rivera and Venegas, 

2014).  
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1.1.5. Insight into the HNSCC tumour microenvironment  

For decades most cancers, including HNSCC, have been thought of and treated as if they are 

composed of a heterogeneous population of epithelial cells, but this concept has shifted 

because of the recognition of the active role that the stroma plays in cancer progression 

(Shekhar et al., 2001). The tumour stroma is comprised of endothelial cells (EC), neuronal cells, 

immune cells, cancer-associated fibroblasts (CAF) and their surrounding matrix. Collectively, 

these elements along with cancerous cells are commonly referred to as the tumour 

microenvironment (TME).  The presence of most of these cellular components has been 

Clinical   Histology   

Figure 1.3 Clinical and histological images represent the change in oral mucosa in oral cancer 

progression  



10 
 

reported in HNSCC and their contribution in the process required for tumour progression will 

be discussed briefly here.   

The major cellular elements of TME are CAFs and these have been reported in HNSCC with an 

active myofibroblastic (MF)-like phenotype (Vered et al., 2010). Accumulating evidence has 

demonstrated that cross-talk between CAF and HNSCC cells enhance the neoplastic 

progression by facilitating connective tissue invasion (Daly et al., 2008), aiding epithelial cell 

proliferation (Lin et al., 2011), initiating the epithelial-to-mesenchymal transition (EMT) 

(Dudas et al., 2011a), producing angiogenic factors for tumour angiogenesis, regulating 

immune escaping processes (Dudas et al., 2011b, Alcolea et al., 2012) and promoting 

metastasis (Vered et al., 2010). Not surprisingly, the presence of myofibroblast CAFs have 

been associated with poor prognosis and mortality in OSCC (Marsh et al., 2011).  

Along with CAF there has been much interest in the role that tumour-associated leukocytes 

play in cancer progression. Many different types of tumours have been shown to contain 

leukocytes populations such as lymphocytes, granulocytes and macrophages. In recent years 

tumour-associated macrophages (TAM) have received much attention and in some tumours 

these cells can make up to 50% of a cell population of the tumour mass (Van Overmeire et al., 

2014). Infiltration of macrophages has been observed in numerous human cancers and their 

density has been correlated positively with poor prognosis (Takeya and Komohara, 2016), 

including in OSCC (Mori et al., 2011). TAM have been associated with increased secretion of 

factors that can affect tumour growth directly (Condeelis and Pollard, 2006), but their main 

influence seems to be on tumour angiogenesis (Murdoch et al., 2008). TAM have been shown 

to accumulate in hypoxic/necrotic areas of some tumours, most likely due to their role as 

scavenger phagocytes, where they secrete a number of factors that dramatically influence 
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vascularisation such as vascular endothelial growth factor (VEGF), matrix metalloproteinase 

7 and MMP9 (Granata et al., 2010, Huang et al., 2002). TAM can also secrete 

immunomodulatory cytokines such as IL-10 that dampen down any T-cell response directed 

against tumour cells (Sica et al., 2000). The role that innate immune cells play in cancer 

progression has led to an increased interest in neutrophils. These are also phagocytic cells 

that are traditionally recognised as key players in the innate immunity to pathogens. This 

thesis examines the role that neutrophils play in HNSCC and so the following sections discuss 

this leukocyte in more detail.  

1.2. Neutrophils 

1.2.1. Origin and life cycle 

Neutrophils are key players of the human innate immune system. They are derived from 

hematopoietic pluripotent stem cells in the bone marrow in a process known as myelopoiesis, 

which is a term used to describe the production of granulocytes and monocytes from 

progenitor cells.  During granulopoiesis (production of granulocytes), the appearance of 

cytoplasmic granules marks the transition from myeloblasts to promyelocytes, myelocytes to 

metamyelocyte and continues until these cells differentiate into mature, segmented 

neutrophils also known as polymorphonuclear cells (PMN). Neutrophil granules have been 

classified based on their content and differentiation stage at which granule synthesis takes 

place. They are segregated as primary granules (azurophillic), secondary granules (specific) 

and tertiary granules (gelatinase). These granules house an array of toxic weaponry such as 
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antimicrobial agents, proteinases and reactive oxygen species (ROS), which can have a 

profound effect on host tissues (Fig. 1.4)   

 

The bone marrow acts as a reservoir to hold the extensive high production rate of neutrophils 

(approximately 1011 cells per day) that is essential to meet the increased need during infection 

and explains the relatively short half-life of neutrophils (6-8 hours) compared to other 

leukocytes in the circulation. Migration of mature neutrophils from the bone marrow through 

trans-endothelial pores and into the bloodstream is tightly controlled by several factors. The 

most prominent cytokine is granulocyte colony stimulating factor (G-CSF) (Semerad et al., 

2002) along with the balance in expression levels of chemokine receptors CXCR4 and CXCR2 

Figure 1.4 Development of neutrophils in the bone marrow and granule formation. A 

schematic representation of neutrophil maturation in the bone marrow during granulopoiesis 

that is characterized by appearance of granules.  Neutrophil granules carry a rich variety of 

antimicrobials and signalling molecules that are divided into three types primary, secondary 

and tertiary granules during neutrophil maturation. 
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on the surface of neutrophils that determines their retention or release from bone marrow 

into the circulation (Martin et al., 2003). Neutrophil release from bone marrow is CXCR2 

dependent, the binding partner for CXCL1 and CXCL2 in human or neutrophil chemokine (KC) 

and macrophage inflammatory protein-2α (MIP-2α) in mice respectively, whereas, CXCR4 is 

essential for retention of neutrophils to bone marrow (Eash et al., 2010). Senescent 

neutrophils up-regulate CXCR4 expression and they home to the bone marrow from the 

circulation in CXCR4-dependnt manner (Martin et al., 2003). The use of the small molecule 

antagonist for CXCR4, AMD3100, in humans or mice results in the rapid mobilization of 

neutrophils from bone marrow to blood (Liles et al., 2003, Broxmeyer et al., 2005). Consistent 

with this finding, an in vivo study using transgenic mice carrying a myeloid specific deletion of 

CXCR4, showed a significant reduction in the number of neutrophils in the bone marrow and 

increased numbers in the circulation (Eash et al., 2009), confirming the key role for CXCR4 and 

its ligand CXCL12/SDF-1 in regulating neutrophil mobilization or retention in bone marrow.  
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1.2.2. Neutrophil recruitment cascade 

Neutrophils are the most abundant white blood cell in the circulation and account for two 

thirds of all peripheral blood leukocytes. They are found in two different pools; the circulating 

pool, which are freely circulating in the peripheral blood and the marginated pool, which are 

neutrophils adhering to the endothelium of small vessels. It has been suggested that from the 

circulating pool neutrophils are recruited to sites of inflammation and tumours (Friedman, 

2002).   

 It is well accepted that during transmigration into tissue neutrophils become activated as a 

result of their interaction with vascular walls that induce a number of functional and 

phenotypic changes (Beyrau et al., 2012). For example, a study compared changes in the 

expression of surface receptors of blood and bronchalveolar lavage fluid neutrophils between 

normal and patients with sarcoidosis and found that lung neutrophils switch to the activated 

phenotype in both the healthy and disease group. The key changes in activated phenotype 

were characterized by modulation of adhesion receptors (Mac-1/CD11b, L-selectin/CD62L, α4 

integrins /CD49d, ICAM-1/CD54) and the immunoglobulin receptor (FcγRII/CD32), but 

expression of the anaphylatoxin receptor (C5a/CD88) and CEACAM8/CD66b were 

independent of the disease state (Fortunati et al., 2009). Neutrophils use the increased 

expression and activation of adhesion molecules on their surface to bind to their counter-

ligands expressed on the surface of activated endothelial cells such as E-selectin (CD62E) and 

intercellular adhesion molecule-1 (ICAM-1/CD54). These interactions allow tethering of 

neutrophils on the endothelium surface where they encounter specific chemokines (CXCL1-3, 

CXCL5 and CXCL8 amongst others) presented on glycosaminoglycan chains that decorate the 

endothelial cell surface. Chemokine binding to neutrophil cell surface receptors CXCR1 and 
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CXCR2 influence integrin avidity, which causes neutrophils to firmly adhere to the endothelial 

cell surface. Neutrophils then migrate between the endothelial cells in a PECAM-1/CD31-

dependent mechanism and migrate towards the inflammatory site in a chemokine 

concentration-dependent manner (Chosay et al., 1998). The up-regulation of chemokine 

receptors (CCR1, CCR2, CCR3, CCR5, CXCR3 and CXCR4) on the surface of infiltrated 

neutrophils from patients with chronic inflammatory lung diseases and rheumatoid arthritis 

compared to circulating neutrophils from healthy individuals may account for the increased 

disease severity in these people (Hartl et al., 2008). During trans-endothelial migration 

neutrophil function was altered to prolong the survival of recruited neutrophils during 

inflammation in vitro (McGettrick et al., 2006). Moreover, using labelled neutrophils in a 

zebrafish model to measure the lifespan of tissue neutrophils in vivo, Dixon et al showed that 

tissue neutrophils had an extended half-life (around 120 hours) in comparison to circulating 

counterparts (Dixon et al., 2012). These data suggest that the tissue microenvironment 

contains factors that extended neutrophil life in order that they can exert their effects.  

1.2.3. Neutrophils, inflammation and wound repair  

During tissue-associated injury, inflammation is an essential event to protect the host from 

infection. Inflammatory mediators are released by injured or infected cells to defend against 

bacteria and facilitate the activation and directed migration of different leukocytes from the 

circulation to the site of damage. Neutrophils are the first recruited effectors cells to arrive at 

the site, followed by monocytes and lymphocytes. Neutrophils serve as a potent source of 

cytokines that can further mediate leukocyte adherence to the vascular endothelium (Werner 

and Grose, 2003). Once at sites of inflammation neutrophils can phagocytose microbes or 

necrotic cell debris to remove them from the environment. They can also degranulate to 
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release a plethora of molecules that act as antimicrobial peptides or directly kill organisms 

such as superoxide. Neutrophils store and secrete two important players in remodelling the 

extracellular matrix and re-vascularising of the damaged/infected area; MMP-9 and VEGF 

(Gaudry et al., 1997). They can release MMP-9 in active form (tissue inhibitor of 

metalloproteinases (TIMP)-free form), unlike other cells of body, indicating their potent 

proangiogenic activity (Ardi et al., 2007). The recently identified mechanism neutrophils use 

to defend against pathogens is neutrophil extracellular trap (NETs) (Brinkmann et al., 2004). 

As the name indicates, neutrophil trap pathogens via release of their core DNA and DNA 

binding proteins. Further analysis of NETs, identified 24 neutrophil proteins and enzymes, 

including elastase (proteases), histones (antimicrobial), cathepsins, and lactoferrins, MPO 

among many others toxic molecules that can induce host cell injury (Urban et al., 2009).     

The most important regulatory mechanism is that normal inflammation is self-limiting and 

will diminish gradually after the causative agent is removed or repaired. This is in contrast to 

cancer that has been described as wounds that never heal (Dvorak, 1986), suggesting that 

normal inflammation and cancer share some common features. 

Inflammation has emerged as a new hallmark of malignancy (Colotta et al., 2009) and there 

is an accumulating body of evidence to associate persistent infection and chronic 

inflammation with tumour formation. For instance, patients with chronic ulcerative colitis and 

Crohn’s disease tend to be at a higher risk of developing colon carcinoma (Eaden et al., 2001, 

Ullman and Itzkowitz, 2011) whereas, Helicobacter pylori infection has been identified as the 

main causative agent of gastroduodenal ulcers and gastric cancer (Ernst and Gold, 2000). 

Evidence has also linked increased numbers of the oral microbe Porphyromonas gingivalis (P. 

gingivalis) with malignant OSCC (Gallimidi et al., 2015). This is because P. gingivalis is the main 
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causative agent of periodontitis that is associated with chronic oral inflammation with 

increased influx of neutrophils into the oral tissue (Lakschevitz et al., 2013) and poor oral 

hygiene and periodontitis has been linked with increased risk of oral cancer (Orbak et al., 

2005). 

A key feature of cancer-related inflammation includes infiltration of immune cells and such 

immune responses were firstly thought to reflect an attempt by the immune system to 

eliminate tumour cells. However, numerous studies have since showed that transformed 

tumour cells escape this immunosurveillance in order to initiate tumour progression 

(Sakakura and Chikamatsu, 2013).  

The involvement of reactive oxygen species (ROS) in inducing DNA damage and promoting 

carcinogenesis has been reported in many cancer diseases (Kumar et al., 2008a). High levels 

of ROS were detected in the serum and neutrophils of advance stage OSCC when compared 

to controls (Das et al., 2007). Other neutrophil-secreted products such as neutrophil 

gelatinase–associated lipocalin (NGAL), a protein found in activated neutrophils have been 

correlated with HNSCC tumorigenesis (Wang et al., 2015). 

1.2.4. The emerging role of neutrophils in cancer 

Neutrophils have been observed in close association with tumour cells and within the tumour 

vasculature since the 1980s (Welch et al., 1989) but the exact role of neutrophils in human 

cancers is only just being unravelled. It is becoming clear that tumour-associated neutrophils 

(TAN) play an important role in malignant transformation, tumour progression, angiogenesis 

and immune surveillance (Mantovani et al., 2011) which will be discussed in the following 

section: 
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1.2.4.1. Tumour-infiltrating (associated) neutrophils  

Although TANs make up only between 5-25% of cellular tumour mass (Eruslanov et al., 2014), 

a variety of human cancer studies have linked the number of neutrophils encountered within 

the tumour microenvironment with disease progression and clinical outcome, which suggests 

that these cells may have a role in tumour progression. For example, a study by Trellakis and 

colleagues in head and neck cancer showed a higher percentage of infiltrating neutrophils 

were associated with poor survival in advance disease compared to non-disease tissue 

(Trellakis et al., 2011b, Trellakis et al., 2011a). Similar findings have been observed in gastric 

adenocarcinoma patients, where immunohistochemical analysis determined that elevated 

level of CD15+ neutrophils correlated with poor patient survival (Zhao et al., 2012). The 

presence of increased numbers of neutrophils has also been observed in patients with renal 

cell carcinoma (Jensen et al., 2009a), and hepatocellular carcinoma (HCC) (Zhou et al., 2012, 

Kuang et al., 2011) and their levels related to reduced survival times in these patients 

(summarized in Table 1.1). 

 

 

 

 

 

Tumour type 
Neutrophils 

marker 
Clinical 

outcome 

Mechanism 
of 

recruitment 
Ref. 

Colorectal 
carcinoma 

CD66b 
Shortened 

patient survival 
ND 

(Rao et al., 
2012) 
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Hepatocellular 
carcinoma (HCC) 

CD66b 
CD15+ 

neutrophils 

Poor patient 
survival 

CXCL16 
CXCL5 
CXCL1 
CXCL2 
CXCL3 

and CXCL8 

(Gao et al., 
2012) 

(Zhou et al., 
2012) 

(Kuang et al., 
2011) 

Melanoma CD66b Poor prognosis 
Expression of 

pSTAT3 
(Jensen et 
al., 2012) 

Head and neck 
squamous cell 
carcinoma 
(HNSCC) 

CD66b 
MPO 

Poor patient 
survival in 

advanced disease 

CXCL8 
MIF 

(Trellakis et 
al., 2011a) 

(Dumitru et 
al., 2011) 

Non small cell lung 
cancer (NSCLC) 

CD66b 
Poor clinical 

outcome 
ND 

(Ilie et al., 
2012) 

Broncheoalveolar 
adenocacinoma 

Morphological 
identification 

Poor patient 
survival 

Correlated to 
high CXCL8 
production 

(Bellocq et 
al., 1998) 

Renal Cell 
Carcinoma (RCC) 

CD66b 

Increased tumour 
size and short 

recurrence-free, 
cancer-specific 

and overall 
survival 

ND 
(Jensen et 
al., 2009a) 

Breast Cancer 
Neutrophil 

elastase 
Lower recurrence 

free survival 
ND 

(Yamashita 
et al., 1995) 

Non-Hodgkins 
lymphoma 

CD15, 
elastase, 
nuclear 

morphology 

Indirect link, 
neutrophils were 
main source of 
APRIL which is 

linked to patient 
survival 

ND 
(Schwaller et 

al., 2007) 

Gastric 
adenocarcinoma 

CD15 

Lymph 
node/distant 
metastasis, 

tumour stage and 
patient prognosis 

ND 
(Zhao et al., 

2012) 

 

Table.1.1: Association of TAN with clinical outcome in human cancers. ND= not determined 

1.2.4.2.  Circulating neutrophils in cancer patients 

Many studies have used the neutrophil to lymphocyte ratio in peripheral blood (NLR) as a 

predictor of mortality of patients with cancer. A negative impact of an elevated 
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neutrophils/lymphocyte ratio for patient survival was found in various cancers including 

breast (Azab et al., 2012), non-small cell lung cancer (Cedres et al., 2012), oral (Perisanidis et 

al., 2013), nasopharyngeal (An et al., 2011), ovarian cancer (Cho et al., 2009) and colon cancer 

(Ding et al., 2010). A more detailed analysis in HNSCCs showed that neutrophils not only 

increased in numbers NLR but also the presence of an immature population of CD16-positive 

neutrophils was detected in the peripheral blood of these patients. Functionally, these 

neutrophils had a reduced capability to release reactive oxygen species and reduced 

apoptosis in patients with HNSCC compared to controls (Trellakis et al., 2011b). Others have 

observed that peripheral blood neutrophils in oral cancer patients have a shortened life-span 

that may be due to an increase in activity of proteins participating in extrinsic apoptotic 

pathway; Fas-associated protein with death domain (FADD) and caspase-8 activity (Jablonska 

et al., 2009). 

1.2.4.3. Neutrophil phenotype: N1 versus N2 

Until recently, neutrophils were thought to be a short-lived homogeneous cell type that 

arrives rapidly at the site of an infection or injury as professional phagocytes. These cells then 

die and are then engulfed by macrophages, which is necessary for the resolution of 

inflammation. A growing body of evidence has challenged this notion and the presence of 

longer life-span (5.4 days) human neutrophils in tumours has been reported (Pillay et al., 

2010), suggesting that the tumour microenvironment is capable of generating conditions that 

prolong TAN survival. Wislez et al, showed that tumour-derived GM-CSF and G-CSF from 

patients with bronchoalveolar adenocarcinoma inhibited 24-hour spontaneous neutrophil 

apoptosis in vitro (Wislez et al., 2001). Moreover, the ability of neutrophils within the tumour 

to develop a distinct phenotype that is polarized into two distinct sub-groups (N1 & N2) 
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similar to that described for tumour-associated macrophage (TAM) has been recently 

identified (Galdiero et al., 2012). Fridlender and colleagues found that TANs can present with 

a hyper-segmented, anti-tumorigenic (N1) phenotype, with enhanced ability to eradicate 

tumour cells, enable activation of cytotoxic T lymphocytes, and have increased expression of 

pro-inflammatory cytokines such as tumour necrosis factor-α (TNF-α) with a simultaneous 

reduction in immunosuppressive Arginase-1 (Arg-1) levels. The most characteristic features 

for N2 TAN are increased expression of the pro-angiogenic genes, c-myc and STAT3, known 

regulators of VEGF, MMP9, as well as increased secretion of CCL2, CCL5 that promote 

monocyte recruitment and Arg-1 from neutrophils, thus promoting immunosuppressive 

functions. Up-regulation of CXCR4 receptor expression on the surface of N2-TAN has also 

been reported (Jablonska et al., 2010). There is also evidence that N2 TAN display a ring-like 

nuclear structure that resembles an immature neutrophil morphology (Andzinski et al., 2016). 

This immerging evidence has been obtained mainly from murine models of cancer and may 

not directly relate to human TAN because of species-specific differences. To date there are 

very few studies examining human TAN with just one describing TAN isolated from freshly 

removed early stage lung tumour tissue. Phenotypically, these TANs displayed the cell surface 

markers CXCR1Lo, CXCR2Lo, CD62LLo and CD54Hi with a distinct CC and CXCR profile CXCR4Hi, 

CXCR3Hi, CCR7Hi and CCR5Hi. Unexpectedly, this subset of neutrophils can induce T-cell 

proliferation and increase IFN-γ production, indicating that the early stages of tumour growth 

TAN display markers that have been previously described as an N1 phenotype (Eruslanov et 

al., 2014).  

1.2.4.4. TAN or MDSC 
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It is worth noting the relationship between myeloid-derived suppressor cells (MDSC) and 

TANs. MDSC consist of a heterogeneous mixture of immature myeloid cells, immature 

granulocytes, monocytes-macrophages, dendritic cells and myeloid progenitor cells 

characterized by their immune suppressive behaviour.   In contrast to tumour-bearing mice, 

where MDSC are well characterized based on the expression of myeloid cell markers Gr-1 and 

CD11b (markers also expressed by murine neutrophils), there is much controversy and lack of 

a uniform marker to identify human MDSC.  Major markers employed for immune-

phenotyping of human MDSC include the common myeloid markers CD11b and CD33 and 

HLA-DRneg/low but do not include markers for mature myeloid cells such as CD40, CD80 and 

CD83.  MDSC can be subdivided to CD14+ monocytic MDSC (MoMDSC) (CD14high, CD15neg, 

CD16high) or CD15+ granulocytic MDSC (GrMDSC) (CD14neg/low
,
 CD15+, CD16neg) (Greten et al., 

2011). Both subsets have the ability to supress T-cell responses either via reactive oxygen 

species (ROS) from GrMDSC or depletion of L-arginine mediated by Arg1 and iNOS from 

MoMDSC. However, the differences between GrMDSC and neutrophils in cancer patients are 

less clear and are overlapping. A study in renal cell carcinoma (RCC) showed no morphological 

difference between MDSC and PMN isolated from the peripheral blood of patients, indeed 

the authors demonstrated that human MDSC resemble activated PMN.   These CD15+MDSC 

express high levels of CD11b, CD66b, and VEGFR1, while only a small amount of CD62L and 

CD16 was detected in peripheral blood of RCC patients in compared to control granulocytes. 

GrMDSC from RCC patients release high levels of arginase I, a cytokine that plays a significant 

role to impair T-cell function, similar observations have been  found when neutrophils were 

activated in vitro (Rodriguez et al., 2009). Similarly, a subpopulation of CD66b+PMN was 

identified from the peripheral blood of HNC patients using density gradient centrifugation. 

This neutrophilic MDSC population was found to have longer survival times in blood and lack 
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expression of CXCR1 and CXCR2, which diminished their migration property when compared 

to mature normal neutrophils of the same patients (Brandau et al., 2011). To further 

discriminate TAN from GrMDSC and naive bone marrow neutrophils (BMN) isolated from 

mice, Fridlender and co-workers used a transcriptomics approach to compare the three cell 

populations. They found that TAN are a distinct population of neutrophil and mRNA of BMN 

and GrMDSC are more closely related to each other than to TAN. The most significant 

difference between TAN and either GrMDSC or BMN can be summarized by the up-regulation 

of anti-apoptotic NF-κB genes (IEX-1, SOD-2, GADD-45B, BCL-2A1), cytokine and chemokine 

genes (CXCL1, CXCL2 and CCL3), genes related to proteolysis (MMP-13, MMP-14, TIMP-1), 

whereas the level of mRNA involved in cytoskeleton organization and biogenesis, granule 

protein and respiratory burst were notably down-regulated (Fridlender et al., 2012).    

1.2.5. Tumour-derived factors mediating neutrophil recruitment to tumours    

To be recruited to the tumour site, neutrophils must exit the vasculature and transmigrate 

into tissues. As described previously, neutrophil extravasation is a tightly regulated process 

that comprises capturing of free flowing neutrophils by the activated vascular endothelium, 

followed by firmer adhesion and rolling of neutrophils along the vessel wall that will allow 

interaction between chemokine and their receptor on the neutrophils surface, before the 

transmigration across the endothelial cell barrier into inflammatory tissue along a 

chemotactic gradient (reviewed in (Williams et al., 2011)). The following section will classify 

the potential tumour-derived chemotactic factors involved in neutrophil migration in to 

mediators that belonging to chemokine subfamily or non-chemokine inflammatory.  

1.2.5.1. Chemokine and chemokine receptors 
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The role of chemokines in the pathogenesis of cancer is diverse but mainly they are known 

for their ability to induce cell migration. Chemokines are small chemoattractant peptides (8-

17kDa) that are characterized by the presence or absence of the sequence motif glutamic 

acid-leucine-arginine (ELR) and by four conserved cysteine residues. Chemokines bind to 

seven-transmembrane G-protein-coupled receptors (GPCR). By far the most studied 

neutrophil attracting chemokines in human are CXCL8 (IL-8) and CXCL6 (GCP-2) that bind to 

both CXCR1 and CXCR2, whereas CXCL1 (GROα), CXCL2 (GROβ), CXCL3 (GROγ), CXCL5 (ENA-

78) and CXCL7 bind to CXCR2 on the surface of neutrophils (Lee et al., 1992, Ahuja and Murphy, 

1996a). In murine neutrophils, CXCR2 is very similar to human CXCR2 but binds to KC, a murine 

chemokine with CXCL-8 homology,  (Cacalano et al., 1994), and MIP-2. Although the 

expression of CXCR1 has been detected in mice (Fan et al., 2007), data suggests that CXCR2 is 

predominantly responsible for neutrophil recruitment. As depletion of CXCR2 in inflammatory 

mice model resulted in significant inhibition of recruitment of neutrophils to the peritoneal 

cavity in response to LPS inoculation and CXCR2-/- mice showed almost complete abrogated 

of neutrophils up to two weeks following mycobacterial infection (Gonçalves and Appelberg, 

2002). The expression of CXCR2 has been detected in and non-leukocytic cells such as 

endothelial cell, epithelial cell as well as tumour cells (Murdoch et al., 1999, Desurmont et al., 

2015). The importance of CXCR2 in tumour progression will be further discussed in section 

(1.2.5.1.1). 

 For some of these members of this family the biological activities have already been well 

established in vitro and in vivo. For example, the expression of CXCL8 has been found to be 

highly up-regulated in various human malignancies; for instance, brain, breast, colon, cervical, 

gastric, lung, melanoma, ovarian, Hodgkin’s disease, prostate, renal cell carcinoma and B-cell 
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chronic lymphocytic leukaemia as well as by different cell lines (Xie, 2001). However, many 

studies point to the connection between CXCL8 secreted by tumour cells derived from several 

types of carcinomas or from cells within the tumour stroma and neutrophil infiltration, 

indicating that intratumoral CXCL8 expression is a potent neutrophil chemoattractant within 

the tumour micro-environment (Haqqani et al., 2000, Bellocq et al., 1998). A recent in vitro 

and in vivo study in HNSCC showed that CD66b+ neutrophil infiltration was associated with 

high level of CXCL8, along with detection of high concentrations of CCL4 (MIP-1b) and CCL5 

(RANTES) in the serum of patients (Trellakis et al., 2011a, Trellakis et al., 2011b). This result 

was confirmed by another group who showed that isolated neutrophils migrated towards 

conditioned media collected from the hypopharyngeal squamous cell carcinoma cells line 

(FaDu) that expresses considerable amounts of CXCL8 and CXCL1 (Bru et al., 2009). 

Overexpression of adhesion protein carcinoembryonic antigen-related cell adhesion molecule 

1 (CEACAM1) in tongue squamous cell carcinoma (TSCC) has been linked with increased 

infiltration of neutrophils (Wang et al., 2014). 

CXCL5 was identified as a potent chemoattractant of neutrophils in vitro. Furthermore, a 

murine tumour model and immunohistochemical studies showed a correlation between 

overexpression of CXCL5 and elevated numbers of CD66b+ neutrophils infiltrating into HCC 

tissue that was associated with poor prognosis in HCC patients (Zhou et al., 2012).  The role 

of other chemokines in neutrophil recruitment has been rarely studied, although an elevated 

level of CXCL6 was detected from an osteosarcoma cell line and in patients with 

gastrointestinal tumours that were associated with granulocyte neutrophilic recruitment 

(Proost et al., 1993, Gijsbers et al., 2005).  A separate study also showed that administration 

of CXCL6 neutralizing antibodies in a melanoma mice model, injected subcutaneously with 
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GCP-2 overexpress melanoma cell, reduced tumour growth and metastasis when compared 

to un-treated mice, as well as inhabiting neutrophil migration in vitro (Verbeke et al., 2011). 

Other inflammatory mediators can have an indirect effect on the recruitment of neutrophils. 

For instance, a clinical and experimental study in HCC showed that pro-inflammatory IL-17 in 

the peritumoral stroma of HCC is a critical mediator for the recruitment of neutrophils into 

tissues by up-regulating the expression levels of several chemokines including CXCL1, CXCL2, 

CXCL3 and CXCL8 from epithelial cells compared with intratumoral areas. The same study 

showed microlocalization of CD15+ neutrophils and IL-17 in the peritumoral stroma by 

immunohistochemistry while only marginal levels of CD15 and IL-17 were detected in the 

cancer nest. Additionally, blocking of chemokine receptors CXCR1 and CXCR2 by specific 

monoclonal antibodies markedly reduced neutrophil migration induced by IL-17-treated liver 

epithelial cells L02 (Kuang et al., 2011). Similarly, a significant increase in TANs was observed 

in HCC cell line expressing high levels of CXCR6 receptor via producing pro-inflammatory 

cytokines, such as IL-1β, IL-6, CXCL8 and IL-17F secreted by this cell (Gao et al., 2012). 

The common denominator among all the studies on ELR+ chemokines is that they mainly act 

by high-affinity binding to CXCR2 that is expressed abundantly by neutrophils and plays a role 

in tumour development. The effect of using a specific CXCR2 antagonist (AZ10397767) on 

neutrophils was demonstrated in a lung tumour model. A significant reduction in the number 

of TAN was observed in mice treated with the CXCR2 inhibitor and this was accompanied with 

retardation in tumour growth.  The authors suggested that these infiltrating cells provide a 

secondary source of mediator that can stimulate tumour cell proliferation (Tazzyman et al., 

2011). This notion is supported by the finding HCC cell proliferation, migration and metastatic 

potential can be induced by CXCL5 expression, a chemokine that also binds exclusively to 
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CXCR2. Further analysis for the mechanism underlying HCC proliferation and invasion 

indicated that CXCL5 induced several signalling pathways including PI3K-AkT and ERK1/2 

pathway that was dependent on CXCR2 activation (Zhou et al., 2012). 

1.2.5.1.1. Role of CXCR2 and other receptor in cancer  

The chemokine receptor CXCR2 binds exclusively to ELR+ CXCL chemokines, including CXCL1-

3 and CXCL5-8 (Ahuja and Murphy, 1996b). These ELR+ CXCL chemokines are generally 

considered chemoattractants for neutrophils, which are the major leukocyte cell population 

expressing the CXCR2 receptor. In addition to neutrophils, CXCR2 expression has also been 

found on several types of malignant cells where it has been associated with an aggressive 

phenotype. For example, overexpression of CXCR2 was detected on tumour cells in patients 

with metastatic colon cancer. Treatment of patients with 5-fluorouracil (5FU) chemotherapy 

induced CXCR2 transcripts levels in liver metastases that was associated with poor patient 

outcome (Desurmont et al., 2015). Treatment of HCT116 and Caco2 colorectal cancer cells 

with SCH-527123, a selective CXCR2 antagonist, inhibited phosphorylation of the NF-

κB/MAPK/AKT pathway, and reduced cell migration and invasion by interfering with the 

CXCL8/CXCR2 axis (Ning et al., 2011). Moreover, blocking CXCR2 induced apoptosis in human 

colon carcinoma cells, whilst reducing their motility and proliferation in vitro (Varney et al., 

2011). Administration of SCH-527123 in a murine colon cancer model showed no detectable 

difference on primary tumour growth between treated and untreated mice, but significantly 

reduced the number of metastases, highlighting the role of CXCR2 in tumour cell locomotion 

and angiogenesis. This anti-metastatic activity was found to be associated with diminished 

blood vessel formation within the metastatic lesion. In contrast, using a Lewis lung cancer 

(LLC) murine model, Keane and colleagues showed that depletion of CXCR2 had a significant 
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inhibitory effect on both primary tumour growth as well as lung metastases formation that 

was also associated with reduced angiogenesis (Keane et al., 2004).  

CXCR2 activation may result in autocrine signalling, as CXCL8 gene transfectants in colorectal 

cancer cells increased cell proliferation and migration activity (Ning et al., 2011). Similar 

observations were demonstrated in other tumour cells, where elevated levels of CXCR2 and 

its ligands (CXCL1-3) were detected in oesophageal and lung cancer, further suggesting an 

autocrine loop to induce cell proliferation (Wang et al., 2006, Keane et al., 2004). 

CXCR2 has been implicated indirectly in tumour growth via recruitment of leukocyte to 

tumour sites. As mentioned previously, accumulation of neutrophils has been reported in 

various malignancies (see section 1.2.4) and neutrophil migration to tumour sites was found 

to be CXCR2-dependent (Jablonska et al., 2014). The authors showed that administration of 

anti-CXCR2 antibodies in both melanoma and fibrosarcoma xenograft murine model 

supressed tumour growth by inhibiting neutrophil infiltration and tumour angiogenesis 

(Jablonska et al., 2014). Accumulating evidence has reported the ability of ELR+ CXCL 

chemokines to act as angiogenic agents in a direct or indirect manner. For example, increased 

expression of CXCL8 from malignant colonic epithelial stimulated chemotaxis of human 

microvascular endothelial cells that express CXCR2 (Heidemann et al., 2003). Therefore, it is 

not surprising that neutralizing CXCR2 with specific antibodies impaired angiogenesis in vivo 

(Addison et al., 2000). 

Beside the well-described role of neutrophils as a mediator of angiogenesis, CXCR2 has been 

found to be responsible for recruitment of CXCR2+CD11b+Ly6Gh neutrophil-like MDSC that 

have immunosuppressive activity. Treatment targeting this CXCR2 MDSC population showed 

an enhanced response to checkpoint blockade treatment with anti-programmed death-1 (PD-
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1) in a rhabdomyosarcoma (RMS) mouse model (Highfill et al., 2014, Katoh et al., 2013). 

Depletion of CXCR2 in a murine pancreatic cancer model, provided compelling evidence of 

the importance of CXCR2 signalling in neutrophil infiltration to tumours (Steele et al., 2016). 

Depletion of neutrophils using an anti-Ly6G strategy decreased metastasis and increased the 

recruitment of anti-tumour CD3+ T cells (Steele et al., 2016).  

1.2.5.1.2. Duffy antigen receptor for chemokines binding to CXCR2 ligands 

A protective role of CXCR2 in early tumorigenesis has been recently proposed. In a process 

known as oncogene-induced cellular senescence (OIS), activation of a specific oncogene 

results in the entry of cells into an irreversible growth arrest state known as cellular 

senescence. Here senescence cells were found to secrete CXCL6 and CXCL8 via NF-кB and 

C/EBPβ proinflammtory transcription factors. In addition, OIS was associated with 

overexpression of CXCR2 (Kuilman et al., 2008). Further evidence supports this notion, as 

inhibiting CXCR2 in tumour cells impaired cell cycle arrest and reduced the DNA-damage 

response, whilst overexpression of CXCR2 in cells restored the senescence phenotype (Acosta 

et al., 2008).  

Some ELR+ CXC chemokines, such as CXCL8, CXCL1 and CXCL7 can bind to Duffy antigen 

receptor for chemokines (DARC), a seven transmembrane receptor expressed on erythrocytes 

and other cells that is structurally similar to chemokine receptors. Binding of these ELR+ CXC 

chemokines to DARC does not induce a downstream signalling event by either GPCR or Ca +2 

flux (Neote et al, 1994), and this is proposed to be due to the absence of the highly conserved 

DRY motif from the intracellular loop of DARC that is essential for G protein binding and signal 

transduction (Hadley and Peiper, 1997).DARC are presumed to function as decoy receptors, 

mopping up excess chemokine in the microenvironment and therefore limiting their activity. 
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DARC that is expressed on erythrocytes can absorb CXCL8 from circulation to limit the 

stimulation of leukocytes (Darbonne et al., 1991) . Addsion et al, who demonstrated that 

expression of DARC within tumours could alter the progression of the disease, provided 

further evidence. The authors showed that overexpression of DARC in lung cancer cells 

resulted in enlarged tumours when implanted into a xenograft model, but histological 

examination showed significant increases in tumour necrosis, with reduced tumour cell 

viability and metastasis formation in vivo (Addison et al., 2004). The same negative regulatory 

affect was observed when DARC was overexpressed in a breast cancer model, where tumour 

growth and metastasis were also reduced (Wang et al., 2006). 

1.2.5.2. Other molecules involves in neutrophil infiltration  

Apart from ELR+ chemokines there has been a number of studies describing other factors that 

support neutrophil recruitment to tumours. A recent in vivo study demonstrated a 

neuropeptide, gastrin-releasing peptide (GRP), induced neutrophil recruitment via a GPCR 

that was dependent on the PI3K and MAPKs signalling pathway, similarly to other 

chemoattractant molecules. This migration was abolished using RC-3095, specific inhibitor for 

GRP receptor (Czepielewski et al., 2012). High mobility group box 1 protein (HMGB1) is a 

highly conserved chromatin-binding factor that aids transcription. It is passively released from 

stressed or necrotic cells and acts as an alarm signal to activate innate immune responses, in 

particular phagocytes that can then clear the cell debris (Scaffidi et al., 2002). Orlova and 

colleagues found that HMGB1 injected into the peritoneum of mice rapidly recruited 

neutrophils that was dependent on co-expression of the integrin heterodimer CD11b/CD18 

and the receptor for HMGB1, receptor for advanced glycation end products (RAGE) on 

neutrophils (Orlova et al., 2007).  
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1.2.5.3. Macrophage migration inhibitory factor  

1.2.5.3.1. Characteristics and biological activity  

As its name indicates macrophage migration inhibitory factor (MIF) was first described as an inhibitor 

of random macrophage migration and activation (David, 1966) from a study aimed at understanding 

delayed type hypersensitivity reactions. Subsequent studies have reported that MIF expression is 

ubiquitous in a variety of cells including monocyte/macrophages (Calandra et al., 1994), lymphocytes, 

eosinophils (Rossi et al.), neutrophils (Daryadel et al., 2006), and non-immune cells such as endothelial 

cells (Nishihira et al., 1998) and epithelial cells (Imamura et al., 1996). In addition, the expression of 

MIF has been detected in several tissues and cells, especially those tissues exposed to the environment; 

for example, lung, gastrointestinal and skin (Shimizu et al, 1996). The discovery that MIF is produced 

from corticotrophic cells of the pituitary gland, classify it as a hormone as well as cytokine. Another 

distinctive feature of MIF is that it can overcome the anti-inflammatory effect of glucocorticoids to 

enable a sustained inflammatory response (Bernhagen et al., 2007). There is much evidence to 

demonstrate that MIF plays a significant role in various inflammatory and autoimmune disease, such 

as sepsis (Bozza et al., 1999), acute respiratory distress syndrome (ARDS) (Lai et al., 2003), 

glomerulonephritis (Yang et al., 1998) atherosclerosis (Das et al., 2013), rheumatoid arthritis (Morand 

et al., 2006) and lupus (Foote et al., 2004). Unlike many other cytokines, pre-formed MIF can be stored 

intracellularly and expressed constitutively without de novo protein synthesis (Bacher et al., 1997).  

X-ray crystallographic studies of human and rat MIF revealed a homotrimer structure, each monomer 

consisting of four β sheet and two α helices connected by hydrogen bonds (Suzuki et al., 1996).  

Although not directly related to the chemokine superfamily, MIF shares a structural similarity with 

chemokines as it contains a conserved Glu-Leu-Arg (ELR) motif that is present in many CXCL 

chemokines. However, in MIF an aspartic acid (Asp/D) amino acid residue replaces the glutamate 

(Glu/E) making the sequence DLR in MIF. This motif is consequently known as “pseudo-(E)LR” motif 
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(Hébert et al., 1991)Also, 3D structural analysis has revealed a striking similarity between the 

monomeric form of MIF and dimeric form of CXCL8 (Weber et al., 2008) (Fig.1.5).   

MIF has unique enzymatic catalytic activity toward D-dopachrome or L-dopachrome tautomerase to 

give 5,6-dihydroxyindole-2-carboxylic acid (DHICA)(Rosengren et al., 1996).  The MIF tautomerase site 

is located in the N-terminus with the proline motif being essential for activity as a single proline 

mutation at this site showed reduction in the catalytic activity along with impaired cytokine activity 

(Stamps et al., 1998). A significant reduction in the level of superoxide generated by neutrophils 

incubated with mutant MIF was observed compared to wild-type MIF, indicating the importance of 

the catalytic site for MIF’s biological activity (Swope et al., 1998, Bendrat et al., 1997).  Binding of MIF 

to its cell surface receptor, CD74 (also known as the MHC class II-associated invariant chain (II)), is not 

enough to initiate signal transduction mechanisms as CD74 has a short intracytoplasmic tail of only 46 

amino acids (Shi et al., 2006). However, MIF mediates activation of signal-regulated kinase 1 

(ERK1)/ERK2), members of the family of mitogen-activated protein kinases (MAPKs), by binding to a 

CD74/CD44 complex (Leng et al., 2003). MIF has also been reported to bind to CXCR2 and CXCR4 

(Bernhagen et al., 2007). While it is predicated that there is a two site binding interaction between the 

N-loop of MIF with the N-terminal domain of CXCR2 and between the MIF pseudo (E)LR motif and 

extracellular loops of CXCR2 (Kraemer et al., 2011), the binding site of MIF with CXCR4 are still to be 

revealed.  
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1.2.5.3.2. MIF as inflammatory molecule and chemotactic cytokine  

MIF has been recently classified as having “chemokine-like functions (CLF)” because some of 

its activity is similar to those observed in chemokines, leading to many changing its name from 

MIF to CLF. MIF is released from cells under inflammation, infection and in response to stress 

Figure 1.5 Crystal structure and amino acid sequence comparing MIF to CXCL8 (Tillmann et 

al., 2013)  
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and it is able to induce leukocyte recruitment (Gregory et al., 2004) .MIF has been identified 

as a non-cognate ligand of chemokine receptor CXCR2 and CXCR4 (Bernhagen et al., 2007). 

However, MIF lacks the critical cysteine residues in its N-terminus that is present in classical 

chemokines. The precise biological function of MIF has not yet been fully revealed but 

evidence suggest that MIF is capable of inducing an immune response either by acting directly 

on immune cells or indirectly by activating other stimuli to the immune system. For instance, 

MIF has been shown to act as inflammatory cytokine and that upon release can trigger 

cytokine production such as, CXCL8, CXCL6, TNF-α, INF-γ, IL-1β and IL-12 from macrophages 

(Onodera et al., 2004). These MIF-activated macrophages can induce further inflammatory 

stimuli by releasing free radicals (White et al, 2001). Beside macrophages, MIF has been 

reported to mediate the recruitment of monocytes, neutrophils (Dumitru et al., 2011, 

Trellakis et al., 2011a) and T-cells (Bernhagen et al., 2007). Interestingly, the presence of MIF 

in the tumour microenvironment has been reported to alter anti-cancer immunity response.  

MIF was found to have a direct inhibitory effect on NK cells, and the use of neutralizing 

antibodies against MIF abrogated this effect (Apte et al., 1998). Another study investigated 

the mechanism MIF employees to inhibit NK cell activity; the authors showed that MIF 

reduced the ability of NK cells to recognize tumour cells via downregulation of NK cell receptor, 

NKG2D (natural killer group 2D) (Krockenberger et al., 2008). In addition, high levels of MIF in 

a neuroblastoma model inhinited T lymphocyte activation, via the IFN-γ pathway, resulting in 

arrest of cell growth and increased cell death (Yan et al., 2006). MIF is also essential for the 

immunosuppressive activity of monocytic MDSCs in melanoma, and treatment with a small 

molecule MIF enzymatic antagonist, 4-IPP, significantly reduced T-cell activity (Yaddanapudi 

et al., 2016). 
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There is considerable evidence to demonstrate the central role that MIF plays in the 

inflammatory response indirectly. Deletion of MIF gene from macrophages impairs the 

response to pathogenic bacteria and lipopolysaccharide due to a significant downregulation 

of Toll-like receptor 4 (TLR4), the signal-transducing molecule of the LPS receptor complex 

(Roger et al., 2001).In addition, MIF has been found to downregulate the tumour suppressor 

p53 in fibroblast and macrophage, inducing cell survival (Hudson et al., 1999).  

1.2.5.3.3. MIF in cancer 

Clinical reports has described increased expression of MIF in variety of human tumours 

including breast (Xu et al., 2008), prostate (Meyer-Siegler et al., 2005), osteosarcoma (Han et 

al., 2008), colon (He et al., 2009), gastric (He et al., 2006), neuroblastoma and glioma 

(Mittelbronn et al., 2011). Recently, overexpression of MIF was detected from HNSCC patients 

and correlated with poor patient outcome and tumour progression (Kindt et al., 2013b).  

MIF employs a variety of mechanisms that contribute in tumorigenesis and invasiveness of 

cancer. First, MIF can induce tumour cell survival via inducing the phosphoinositide-3-kinase 

(PI3K)/Akt signalling pathway, which leads to phosphorylation of the proapoptotic proteins 

BAD and Foxo3 supressing apoptosis (Lue et al., 2006) or via down-regulation of tumour 

suppressor gene p53 (Hudson et al., 1999). Second, MIF signalling via CD74 leads to sustained 

activation of MAPK extracellular-signal regulated kinase ERK 1/ERK 2 (Lue et al., 2006). MIF-

induced phosphorylation of ERK1 and ERK2 is mediated by the CD74/CD44 complex has also 

been associated with cell proliferation (Shi et al., 2006). Inhibition of MIF or it is receptor using 

CD74 neutralizing antibodies significantly decreased the proliferation of DU-145 prostate 

cancer cell in vitro (Meyer-Siegler et al., 2006). Knockdown of MIF reduced the tumour growth 

rate in a xenograft model of hepatocellular carcinoma (Huang et al., 2014) ,while MIF 
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overexpression in vivo enhanced tumour growth and metastasis formation (Funamizu et al., 

2013). Investigations using knock out MIF in tumour cells showed reduced proliferation via 

induction of growth related protein such as Bax, caspase-3, while anti-apoptotic proteins Bcl-

2, pAkt, and p53 were decreased (Guo et al., 2015, Huang et al., 2014). Collectively these data 

point to the ability of MIF to induce proliferation of tumour cell in an autocrine manner.  

Interestingly, overexpression of MIF induces epithelial-to-mesenchymal transition (EMT) 

phenotype in pancreatic cancer cells. EMT is an aggressive feature characterized by decreased 

E-cadherin and increased vimentin expression in MIF expressing cancer cells and is associated 

with diminish responsiveness to chemotherapy (Funamizu et al., 2013). MIF has also been 

reported to induce migration of cancer cells in vitro (Ren et al., 2003, Shimizu et al., 1999). 

One of the most important activities of MIF is its ability to act as a pro-angiogenic cytokine.  

Several published studies show that MIF can promote endothelial cell proliferation and 

motility (Chesney et al., 1999, Yang et al., 2000). Tumour-derived MIF has been reported to 

induce macrophages to upregulate angiogenic cytokines, such as CXCL8, CXCL1 and CXCL7 

(White et al., 2001). In support of the role of tumour-derived MIF, deficiency of MIF in a B16 

melanoma tumour model showed that isolated tumour-associated macrophages (TAMs) 

display an M2/pro-tumuoral phenotype.  The level of pro-inflammatory cytokines, TNF-α, IL-

12, cyclooxygenase-2 (COX-2) and inducible NOS (iNOS) were higher in TAM from tumour 

bearing MIF-deficient mice in compared to MIF wild-type mice (Yaddanapudi et al., 2016). 

Similarly, in an inflammatory model, the chemotactic response of neutrophils to CXCL1 (KC) 

was significantly impaired in MIF-deficient mice (Santos et al., 2011). 

A recent study showed that the strong expression of MIF by tumours was associated with neutrophil 

infiltration that positively correlated with disease stage and negatively with disease outcome (Dumitru 
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et al., 2011, Trellakis et al., 2011a). The authors also showed that cross-talk between tumour cells and 

immune cells is necessary for cancer progression and altering the tumour microenvironment. For 

example, HNC cells were able to enhance the viability of neutrophils and induce the releases of 

inflammatory factor, such as CCL4, CXCL8 and MMP-9 in vivo (Dumitru et al., 2011, Trellakis et al., 

2011a). These findings indicate the importance of the interaction between HNC and neutrophils in 

modulation of neutrophils biology and cancer progression. Interestingly, a distinct pattern of TAN 

infiltration as disease progress was observed in OSCC patients, as T3-T4 OSCC presented with higher 

neutrophil infiltration within the intratumoural region and higher neutrophil/lymphocyte ratio in the 

invasive front than T1-T2 OSCC tumours (Caldeira et al., 2015). Furthermore, expression of MIF has 

been found to be up-regulated by tumour hypoxia (Koong et al., 2000). Tumour hypoxia induces 

activation of hypoxia inducible factor α (HIF α), a transcription factor that controls expression of 

several key genes involves in tumour growth, invasiveness and angiogenesis, such as, vascular 

endothelial growth factor (VEGF) (Shweiki et al., 1992), lysyl oxidase (LOX) (Erler et al., 2006)and 

connective tissue growth factor (CTGF) (Higgins et al., 2004) . Deletion of MIF in pancreatic 

adenocarcinoma cells demonstrated that stabilization of HIF-α is MIF-dependant in hypoxia (Winner 

et al., 2007).  

MIF knockdown murine models of ultraviolet B (UVB) showed a 45% reduction in epidermal 

tumorigenesis as a result of chronic exposure UVB irradiation. A further investigation showed that 

MIF-deficient mice not only had reduced neutrophil infiltration but they also show a diminished ability 

of the tumour to progress and grow mainly via stimulation of p53 and reduced levels of VEGF in the 

skin of these mice when compared to wild-type controls (Martin et al., 2009).  

1.2.5.3.4. Targeting MIF in cancer 

Thus far, three main approaches have been utilised in cancer studies to examine the role of 

MIF including the use of small molecules inhibitors, indirect stabilization of MIF and the use 

of monoclonal antibodies against MIF. Anti-MIF antibodies have been successfully generated 
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by Baxter and use of these showed a significant affect in reducing tumour growth in a prostate 

and colon xenograft model (Kerschbaumer et al., 2012, Hussain et al., 2013, He et al., 2009) 

Interestingly, the authors demonstrated that the binding region of anti-MIF was located 

within oxidoreductase motif.  Today, the use of anti-MIF antibodies to treat patients with solid 

tumours is in Phase 1 trial (clinicaltrials.gov.NCT01765790). 

The use of small molecular weight inhibitors that interfere with the enzymatic activity site of 

MIF is widely used in cancer biology. ISO-1, the gold standard MIF inhibitor, binds to the 

tautomerase active sit of MIF and restricts the pro-inflammatory activity of MIF (Al-Abed et 

al., 2005). The use of ISO-1 has been validated in multiple xenograft models, such as in lung 

(A549) (Rendon et al., 2007) prostate (DU145) (Meyer-Siegler et al., 2006) and glioblastoma 

(LN229) (Schrader et al., 2009) and has demonstrated significant results in controlling tumour 

growth. In a DU-145 xenograft prostate cancer model, treatment with 20 mg/kg of ISO-1 

showed a significant reduction in tumour volume and blood vessel formation compared to 

control mice.  Although, exogenous ISO-1 can inhibit the intracellular tautomerase activity of 

MIF (Al-Abed et al., 2005), tumour tissue showed no difference in total MIF protein content 

while MIF released in the serum of mice was significantly reduced in ISO-1 treated mice, 

suggesting that the MIF secreted form the tumour has been affected by ISO-1 treatment 

(Meyer-Siegler et al., 2006). Similarly, ISO-1 administration in colon carcinoma xenograft 

model showed the same suppresser effect on tumour growth via interfering with 

angiogenesis (He et al., 2009). Despite the interesting in vivo result, the use of ISO-1 in human 

clinical trial is limited, because of enzymatic kinetic and route of administration 

(interaperitoneal).  

1.2.5.4. Neutrophil-derived molecules in cancer progression 
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As neutrophils play a well-established role in host defence and in killing invading 

microorganisms they produce secreted products, such as ROS, cytokines and proteinases, that 

are also capable of causing damage to host tissue and altering tumour cell behaviour in many 

aspects. The following section will describe the main neutrophil-derived molecules and their 

role in cancer progression and is summarised in figure 1.6. 

1.2.5.5. Role of neutrophils in tumour initiation and carcinogenesis  

As already mentioned, neutrophils are an abundant source of reactive oxygen (ROS) and 

nitrogen (RNS) species that are produced via the activity of an oxidant generating system 

within the phagososmes (Fialkow et al., 2007). In a mouse model, a strong link was observed 

between neutrophil infiltration and increased DNA mutation frequency in tumour cells. This 

Figure 1.6 Schematic diagram summarising the role of TANs in tumour progression. 

Neutrophil-derived molecules play an essential role in tumour development from initiation to 

metastasis to distant sites. 
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genotoxic capacity was proposed to be due to inducible nitric oxide synthase (iNOS) released 

from TANs and was measured using mutation at the hypoxanthine phosphoribosyltransferase 

(Hprt) locus (Sandhu et al., 2000). Other investigators point to the role that neutrophil 

accumulation in inflamed tissue may play toward cancer progression. Several colon cell lines 

were co-cultured with neutrophils in order to mimic chronic exposure within the tumour 

environment were tested in vitro. Activated neutrophils were able to induce DNA damage and 

replication error in colon epithelial cells via products other than ROS/RNS (Campregher et al., 

2008).   

1.2.5.6. Role of neutrophils in tumour growth, progression and metastasis  

Several lines of evidence have shown that TANs can secrete factors that affect tumour cell 

proliferation. Neutrophil elastase (NE), the major component of neutrophil azurophilic 

granules, is a serine proteinase and was found to induce tumour cell proliferation in Lewis 

lung carcinoma cells by hyperactivity of the phosphoatidylinositol-3-kinase (PI3K) pathway 

and administration of NE inhibitors in mice reduced lung tumour growth by 69% (Houghton 

et al., 2010).  

In addition, NE was found to be important in remodelling of the ECM, thus facilitating invasion 

and metastasis of tumour cells (Mainardi et al., 1980) as neutrophil-derived proteinases 

(elastase, cathepsin-G, protease-3) were reported to cause activation of MMP-2 and 

cooperating with membrane type-1 matrix metalloproteinase (MT1-MMP) to enhance cell 

invasiveness (Shamamian et al., 2000).  In response to TNF-α or GM-CSF, neutrophils release 

protease and heparanase that degrade components of the extracellular matrix (ECM) as they 

transmigrate across endothelium (Mollinedo et al., 1997). The release of ECM degrading 

enzymes alters the expression of cell surface adhesion molecules and provides the neutrophil 
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with the ability to extravasate from the circulatory system, invade the surrounding solid tissue 

and play a crucial role in altering the tumour microenvironment. Of the proteases released by 

neutrophils, matrix metalloproteinases have been found to be a key player in promoting 

tumour progression. There are two types of MMPs within neutrophils, collagenase/MMP-8, 

and gelatinase B/MMP-9 located in secondary and tertiary granules, respectively. It was 

demonstrated that TAN, enhance invasion and metastasis of rat mammary adenocarcinoma 

cells through the secretion of elevated levels of MMP-9 and heparanase that remodel the 

ECM (Welch et al., 1989). 

Other effectors exist within primary granules, antimicrobial peptides called human defensins 

have also been found to promote proliferation of a human lung epithelial cell line via the 

mitogen activated protein kinase (MAPK) signalling pathway (Aarbiou et al., 2002). Recent 

studies revealed that TANs induce a feedback effect on tumour cells. Dumitru and co-workers 

demonstrated that HNSCC supernatant stimulates p38-MAPK in neutrophils, which strongly 

increases the production of CCL4, CXCL8 and MMP-9 (Dumitru et al., 2012); factors that have 

been associated with tumour progression. For example, an association was found between 

CXCL8-induced neutrophil recruitment with increased tumour growth of a highly tumorigenic 

and metastatic melanoma cell line (Schaider et al., 2003). 

Circulating tumour cells can use neutrophils as a vehicle to pass through the endothelial cell 

wall and this is another mechanism by which neutrophils facilitate tumour metastasis. Studies 

have shown that tumour cells (melanoma and lung) secreted CXCL8, causes neutrophil 

recruitment and increases the expression of adhesion molecules β2–integrin (LFA-1, 

CD11a/CD18) on neutrophils that influence tumour cell binding by a “two-step adhesion” 

mechanism involving binding to the endothelial as well as the tumour cell via intracellular 
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adhesion molecules-1 (ICAM-1) (Huh et al., 2010, Slattery and Dong, 2003). Similarly, 

neutrophils were also found to promote liver metastasis by up-regulation of Mac-1 (Spicer et 

al., 2012). Alternatively, TNF-α-stimulated neutrophils up-regulated the expression of 

carbohydrate sialyl Lewis X (sLeX) on non-small cell lung cancer (NSCLC) and increased it is 

binding to selectin receptor (E-selectin) on the endothelial cell surface (St Hill et al., 2011).  

Dumitru and colleagues notice that TAN infiltration was associated with increased expression 

of a cytoskeleton protein that is involved in cellular migration and invasion, cortical actin 

binding protein (CORTACTIN) in oropharyngeal cancer. The investigators provided evidence 

that neutrophils are required to induce migration of tumour cell via release of factors that 

phosphorylated CORTACTIN (Dumitru et al., 2013). Furthermore, neutrophils primed with 

HNC derived MIF have been shown to enhance the adhesion and migration properties of 

tumour cells in vivo (Dumitru et al., 2011).  

A recent study demonstrated that tongue cancers containing high numbers of neutrophil 

infiltrate were associated with lymph node metastasis and predicted a poor clinical outcome 

(Wang et al., 2014). A very recent finding identified a new mechanism neutrophils use to 

mediate tumour cell seeding in the pre-metastatic niche. Coffelt and co-workers showed that 

tumour cells cooperate with gamma delta (γδ) T cells to promote a TAN phenotype via IL-17 

expression. Moreover, neutrophil depletion by neutralizing IL-17 significantly reduced the 

metastatic spread to pulmonary and lymph node in a breast cancer mouse model (Coffelt et 

al., 2015). Increased expression of IL-17 from neutrophils of OSCC patients has been observed 

but no further investigation on the metastasis process was carried out in HNSCC (Garley et al., 

2009). 
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In line with the observation that neutrophil numbers increase in the peripheral blood of 

patients with advanced stage of HNSCC (Trellakis et al., 2011a), gene and surface analysis of 

circulating neutrophils from patients with the advance malignancy demonstrated that these 

express a pro-tumorigenic TAN-like phenotype. Further studies using a tumour bearing mice 

model, showed that these neutrophils enhance tumour metastasis (Zhang et al., 2015). 

1.2.5.7. Role of tumour-associated neutrophils in angiogenesis 

Mounting evidence supports the association between TANs and the process of angiogenesis 

and neovascularization (Tazzyman et al., 2009). The mechanism by which neutrophils 

facilitate the formation of new blood vessels is believed to be mediated by the secretion of 

chemokines, protease and growth factors from internal pre-stored granules. These molecules 

can either stimulate angiogenesis directly or indirectly via remodelling of extracellular matrix 

or by promoting the release of angiogenic molecules.  Neutrophils were found to be a plentiful 

source of the potent angiogenic vascular endothelial growth factor (VEGF) (Gaudry et al., 1997) 

and active recruitment of neutrophils containing VEGF has been observed in human 

endometrium during endometrial proliferation and angiogenesis through menstrual cycle 

(Mueller et al., 2000). An in vitro study showed that conditioned medium from neutrophils 

infiltrating A549 spheroid contains elevated level of VEGF and MMP-9 that were responsible 

for microvascular endothelial cell proliferation and tubule formation (Tazzyman et al., 2011). 

Furthermore, Bv8 has recently been identified as a neutrophil-derived mediator of tumour 

angiogenesis using rat insulin promoter (RIP)-T-antigen (Tag) transgenic mouse model of 

pancreatic cancer. This protein is structurally similarly to endocrine gland derived VEGF (EG-

VEGF) both of which bind to receptors known as prokineticin (PKR) 1/EG-VEGF receptor 1 

(PKR1/EG-VEGFR1) and PKR2/EG-VEGFR2 that are expressed on endothelial cells. Blocking 
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Bv8 using neutralizing antibodies at an early tumour stage resulted in a reduction in the 

number of pancreatic islets undergoing angiogenic switch and reduction in tumour infiltrating 

CD11b+ Gr1+ cells than controls (Shojaei et al., 2007). 

Other neutrophil-derived molecules play a role in tumour vascularisation by degrading the 

ECM to facilitate endothelial cell and pericyte movement and stromal re-modeling that is 

crucial for angiogenesis. Of this, MMP-9 was identified as an essential indirect factor during 

the angiogenic switch. Immunohistochemical analysis showed that accumulated 

peritumoural neutrophils within HCC were the major source of MMP-9 in the tissue. An 

association was found between the high infiltration of neutrophils with angiogenesis and 

tumour progression at the tumour invading edge, and in vivo depletion of neutrophils 

significantly inhibited tumour angiogenesis and tumour growth (Kuang et al., 2011). In 

addition to its effect on the ECM, it has been shown that neutrophil-derived MMP-9 can 

promote the release of potent pro-angiogenic factors such as VEGF (Nozawa et al., 2006). 

Interestingly, neutrophils were found to release MMP-9 free of negative regulator, tissue 

inhibitors metalloproteinases (TIMP-1) and upon stimulation neutrophil TIMP-free proMMP-

9 release in tumour microenvironment in a pro-enzyme form which is easily and rapidly 

converted to its biologically protolytic active form (Bekes et al., 2011). Furthermore, it has 

been reported that neutrophils secrete cytokines that can stimulate tumour cells to produce 

angiogenic factors. For instance, when neutrophils were co-cultured with human breast 

cancer cells, they released a large quantity of Oncostatin M (OSM), which is a pleiotropic 

cytokine belonging to the IL-6 family. Neutrophil-derived OSM enhanced the expression of 

VEGF from T47D and MDA-MB-231 breast cancer cell lines and increased the invasive and 

detachment capacity of the cells (Queen et al., 2005).  
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Figure 1.7 Mechanisms of neutrophil recruitment and neutrophil-mediated tumour 

angiogenesis. Neutrophils are recruited into the tumour from the circulation via the 

production of ELR+ chemokines or MIF that bind to CXCR2. Once inside the tumour, 

neutrophils can influence angiogenesis directly or indirectly. The direct 

mechanisms include release of such angiogenic factors as VEGF, ELR+ chemokines 

and Bv8 that promote endothelial cell migration and proliferation. The main indirect 
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mechanism appears to be the release of TIMP-1-free MMP-9 upon degranulation. TIMP-1-

free MMP-9 has a dual role; it liberates the pro-angiogenic growth factors (VEGF & FGF-2) 

that are sequestered in the stromal matrix and also degrades components of the ECM. In 

addition, neutrophils can also secrete factors such as oncostatin M that stimulates tumour 

cells to increase their VEGF production and CCL2/CCL5 

that may support the recruitment of TAM.   
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1.2.5.8. Role of Neutrophils in Immunomodulation 

The possible mechanisms by which TAN can regulate innate and adaptive immune cell 

responses are less clear. However, evidence has shown that TAN are not only able to recruit 

more inflammatory cells to the tumour micro-environment but they can also induce 

suppressive effects on other immune cells. For example, neutrophils have been shown to 

inhibit T-cell effector functions. One explanation for the suppression of T-cell proliferation 

and activation is due to release of stored Arg-1from neutrophils that can cause degradation 

of extracellular arginine, an element required to activate T-cells (Rotondo et al., 2009). In 

addition, TAN mediated the recruitment of an immunosuppressive subset of T-cells, known 

as T-regulatory (T-regs) via the production of CCL17 (Mishalian et al., 2013). The same group 

showed previously that levels of CCL17 from N2 TAN was significantly higher compared to N1 

TAN in this tissue (Fridlender et al., 2012). In agreement with this observation, Zhang et al 

reported that circulating neutrophils which exhibit an N2 TAN phenotype in the blood of 

patients with advanced cancer have an immunosuppressive function on peripheral leukocyte 

by increased expression of Arg-1(Zhang et al., 2015). 

Traditionally, neutrophils can exert cytotoxic effect on tumour cells but there are several lines 

of evidence to suggest that tumour cells can escape the immune response directly or 

indirectly. For instance, when the direct contact between neutrophils and FaDu cells was 

prevented using antibodies against adhesion molecules, tumour cell-mediated lysis by 

neutrophils was significantly reduced (Bru et al., 2009).   
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1.3. Hypothesis  

Tumour-derived factors drive neutrophil recruitment and induce polarisation by interacting 

with receptors on their cell surface. Interfering with this ligand-receptor interaction will 

reduce neutrophil recruitment to HNSCC that may disrupt tumour progression. 

1.4. Aims  

1. To examine distribution pattern and number of TAN in biopsies of HNC  

2. To characterise a 3D in vitro model of HNSCC and use this to better understand the 

mechanism by which neutrophils are recruited into HNC tumour 

3. Study the effect of neutrophil depletion and MIF inhibition on immune cell 

recruitment and tumour growth in vivo  

4. To examine if MIF and HNSCC-derived factors affect human neutrophil phenotype.  

 

 

 

 

  



49 
 

Chapter 2: Material and Methods 

2.1. Materials    

2.1.1. Reagents 

Reagents  Supplier  

Agarose type V Sigma-Aldrich 

Bovine serum album (BSA) Sigma-Aldrich  

Cell Tracker TM Green  Invitrogen, UK 

CXCR2 antagonist (AZ10367797) AstraZeneca, UK 

CXCR2 antagonist (SB-265610) GlaxoSmithKline 

CXCR4 antagonist (AMD3100) Sigma-Aldrich 

Dimethylsulphoxide (DMSO) Sigma-Aldrich 

4',6-diamidino-2-phenylindole (DAPI)  Invitrogen, UK 

FACS lysis buffer   

Foetal bovine serum (FBS) Sigma-Aldrich 

fMLP (f-Met_Leu-Phe) Sigma-Aldrich 

Ficoll-Paque TM plus  GE Healthcare 

HBSS medium without Ca+2, Mg+2or phenol red  Fisher Scientific  

MIF antagonist (ISO-1)  Millipore 

Penicillin/streptomycin  Sigma-Aldrich 

Phosphate-buffered saline  Sigma 

Recombinant human CXCL1 Peprotech, UK 

Recombinant human CXCL5 Peprotech, UK 

Recombinant human CXCL8 Peprotech, UK 

Recombinant human MIF  Peprotech, UK                                                                 

Recombinant human TGF-β Peprotech, UK                                                                 
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Recombinant human TNF-α Peprotech, UK 

Recombinant human INF-γ Peprotech, UK                                                                 

RPMI-1640 Sigma-Aldrich 

Sterile water Baxter, UK 

Thiazolyl Blue Tetrazolium Bromide (MTT) powder Sigma, M5655 

0.25%Trypsin/EDTA Sigma  

Non-enzymatic cell dissociation solution   

2.1.2. Equipment 

Instrumentation Manufacturer 

Applied Biosystems 7900HT Fast Real-Time PCR System Life technologies 

Avanti J-26 XP Centrifuge Beckman Coulte 

Automated Cellular Imaging System III Dako, Denmark 

Attune Autosampler Flow Cytometry Life technologies, USA 

Axiovert 200M microscope Zeiss, Germany 

Class II Safety Cabinet Walker, UK 

Colorimetric (spectrophotometric) plate reader Infinite® M200, TECAN, USA 

Cytospin CytoFuge 2 

Cryostat Leica, Germeny 

FACS Calibur Becton-Dicknson, USA 

FACS LSRII Becton-Dicknson, USA 

Galaxy CO2 incubators Eppendorf 

High-Speed Centrifuge Sigma-Aldrich 

MACSmix tube rotator Miltenyi Biotec 

MACSexpress Separator Miltenyi Biotec 

Microtome Leica, Germeny 

NanoDrop 1000 ThermoFisher, UK 

Spanning disc  confocal system PerkinElmer UltraView 
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Slide Stainer Leica, Germeny 

TissueFAXS plus 200 system TissueGnostics GmbH, 
Austria 

 

2.1.3. Commercial kits 

Commercial Kits Supplier 

ABC Vectastain kit alkaline phosphates mouse IgG Vector Labs 

ABC Vectastain Elite kit peroxidase rabbit IgG Vector Labs 

Alkaline phosphate substrate kit  Vector Labs 

ArC™ Amine Reactive Compensation Beads ThermoFisher 

BDTM CompBeads (anti-mouse IgƘ/negative control 
compensation particle set) 

BD biosciences 

Bioline Isolate RNA mini kit Bioline 

BrdU (B5002) Sigma 

CCL4 ELISA kit  R & D system 

CXCL8 ELISA kit Peprotech 

DAB substrate Kit  Vector Labs 

FACS lysis buffer BD biosciences 

Human cytokine array panel A  R & D system 

High Capacity cDNA Reverse Transcription kit Life Technologies 

MIF ELISA kit R & D system 

LIVE/DEAD™ Fixable Blue Dead Cell Stain Kit Invitrogen 

Vectastain Elite ABC Kit Rat IgG Vector Labs 

Vector Red substrate (SK-5100) Vector Labs  

VEGF ELISA kit  R & D system 

TACS Annexin V apoptois  kit (4830-01-K) Trevigen 

TMB substrate BD biosciences 
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2.1.4. Buffers  

Solution Preparation 

Acidified Isopropanol 1 µl Hydrochloric acid to 1 ml isopropanol 

FACS buffer PBS + 0.1% BSA + 0.1% sodium azide 

Cryopreservation 
media 

90% FCS and 10% DMSO 

Formalin agarose 2 g of Agarose dissolved in 90 ml of distilled water and mixed with 10 
ml of 40% formaldhyde 

 

2.1.5. Antibodies  

Antibody (Clone) Working 
concentration 

Labelled Supplier Applic
ation 

Goat Anti-Mouse IgG As required AlexaFluor® 
488 

Invitrogen, 
UK 

IC 

Anti-Mouse IgG As required R-
phycoerthrin(P

E) 

Sigma IC 

Rat anti-mouse Ly6G (1A8) 1:50 R-
phycoerthyrin 

(PE) 

BD 
Bioscience 

IMF 

Rat anti-mouse F4/80 
(CI: A3-1) 

1:50 Alex flour-488 AbD Serotec IMF 

Anti-mouse CD31 (Clone 390) 1:50 Allophycocyani
n(APC) 

eBioscience, IMF 

Rat IgG2a 1:50 AlexaFlour488 Santa Cruz 
(sc-3896) 

IMF 

Rat IgG2a 1:50 APC eBioscience IMF 

Anti-mouse IgG F(ab) fragment 
R-PE 

1:50 PE  IMF 

Mouse anti-human CD66b 
(80H3) 

1/50 (IHC) UL Beckman 
Coulter 

IHC/Fl
ow 

Mouse anti-human MIF 
antibody(10C3) 

25 μg/ml Biotin Biolegend IHC 
(Hum

an 
sectio

n) 

Mouse anti-human ICAM-1   Abcam Flow 

Rat anti-human CD31 /DIA-310 
(SZ31) 

1:20 UL Dianova IHC 
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Rabbit anti-PIMO antisera 1:20 UL Hypoxyprobe IMF 

Rabbit anti-human MIF 
antiserum (FL-115) 

1:50 UL Santa Cruz IHC 
(mous

e 
sectio

n) 

rabbit serum IgG Isotype control As required UL Abcam IHC 

Sheep anti-BrdU (ab2285) 1:20 HRP Abcam IHC 

Mouse anti-human MIF (10C3) 1:20 Biotin Biolegend IHC 

2.1.6. Cells 

  Adherent Cells 

Cell line Source Tissue Culture Medium Supplier 

FNB6 Immortalized normal 
keratinocyte (Buccal) 

 

Green’s Medium 
330 ml DMEM, 108 ml 
F-12, 50 ml FCS, 5 ml 

P/S, 1.25 ml 
Amphotericin B, 2 ml  

Adenine, 0.5 ml T3, 25 
µl EGF, 80µl 

Hydrocortisone, 2.5 ml 
Insulin, 500µl Cholera 

Toxin 
 

Beatson Cancer 
Institute, Glasgow, UK 

OKF6 Immortalized normal 
keratinocyte (floor of the 

mouth) 

Defined keratinocyte 
serum-free medium 

(GIBCO) + 1 ml growth 
supplement 

James Rheinwald, 
Brigham and 

Women's Hospital, 
Harvard Institutes of 

Medicine, Boston, 
USA 

SCC-4 OSCC (tongue) 
 

250 ml DMEM, 250 ml 
Ham’s nutrition 

mixture F12, 10% FCS, 
1% P/S + 50 µl 

Hydrocortisone 

ATCC 

SCC-9 OSCC (tongue, HPV-ve) 
 

DMEM (low 
glucose),10% FCS, 1% 
P/, 2mM L-glutamine 

 

ATCC 
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SCC2 Hypopharynx carcinoma 
(HPV+) 

DMEM (low glucose), 
10% FCS, 1% P/S, 2mM 
L-glutamine  
 

Prof. S. Gollin, 
University of 
Pittsburgh School of 
Public Health, 
Pittsburgh, USA 

SCC89 Tonsil carcinoma (HPV-) DMEM (low glucose), 
10% FCS, 1% P/S, 2mM 
L-glutamine  
 

Prof. S. Gollin, 
University of 
Pittsburgh School of 
Public Health, 
Pittsburgh, USA 

SCC72 Tonsil carcinoma (HPV-) DMEM (low glucose), 
10% FCS, 1% P/S, 2mM 
L-glutamine  
 

Prof. S. Gollin, 
University of 
Pittsburgh School of 
Public Health, 
Pittsburgh, USA 

H357 OSCC (tongue) 
 

Green’s medium (see 
FNB6) 
  
 

Prof. Steven Prime, 
University of Bristol, 
UK 

T5 OSCC (buccal) 
 

Green’s medium (see 
FNB6) 
 

Beatson Cancer 
Institute, Glasgow, UK 

FaDu Hypopharygeal 
carcinoma (HPV-) 
 

RPMI-1640, 10% FCS,  
1% P/S, 2mM L-
glutamine 

ATCC 

 
Cells cultured in suspension 

 

Cell line Source Tissue Medium Origin 

THP-1 Acute Monocytic 
leukemia 

RPMI-1640, 10% FCS, 
1% P/S, 2mM L-
glutamine 

ATCC 

 
Primary human cells 

Cell number Source Tissue Medium Origin 

OK334 Buccal mucosa Green’s medium (see 
FNB6) 
 

Healthy volunteer  

NOK340 Buccal mucosa  Green’s medium (see 
FNB6) 
 

Healthy volunteer 
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NOF316 Wisdom tooth extraction  DMEM+10% FCS+ 1% 
P/S +L-glutamine 

Healthy volunteer 

NOF320 Wisdom tooth extraction DMEM+10% FCS+ 1% 
P/S +L-glutamine 

Healthy volunteer 

NOF343 Wisdom tooth extraction DMEM+10% FCS+ 1% 
P/S +L-glutamine 

Healthy volunteer 

 

All normal oral keratinocytes (NOKs) and fibroblasts (NOFs) were isolated from biopsies 

obtained from patients during routine dental procedures with written, informed consent 

(ethical approval number 09/H1308/66; cells were used with permission from Dr Helen 

Colley).  

2.2. Methods 

2.2.1. Cell Culture  

2.2.1.1. Routine cell culture procedure 

Using aseptic technique in all procedures; FaDu cells were cultured in tissue culture flaks with 

their specific media (See tables 2.1.6) and incubated at 37˚C with 5% CO2 in a humidified 

incubator. The morphology and cell growth was monitored by microscopy. Cells were allowed 

to grow until they reached 80% confluence whereupon they were either sub-cultured for use 

in experiments or maintained as stock cultures. Growth medium was replenished every 2-3 

days by aspirating half of the medium and replacing it with fresh medium. Cells were tested 

on regular basis for the presence of mycoplasma.  

2.2.1.2.  Hypoxic cell culture 

Normal or cancer cell lines were seeded in triplicate at 1×105 cells per well in 6-well plates.  

Cells were incubated with 2 ml of specific media and were allowed to attach for the next 24 

hours at 37°C, 5% CO2 in a humidified incubator under normoxic (21% O2) conditions. Non-
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adherent cells were removed, fresh 1.5 ml serum-free medium added and cells cultured under 

hypoxic (0.5% O2) or normoxic (21% O2) conditions for 24 hours. Following incubation, cell 

culture conditioned medium was collected, centrifuged at 5000 rpm for 5 minutes to remove 

cell debris and stored at -70 ˚C for further analysis.  Cells were harvested from the wells using 

trypsin/EDTA, centrifuged at 1000 rpm for 5 minutes and the cell pellet stored at -70˚C for 

total RNA extraction.  

2.2.1.3. Sub-culturing adherent cells  

Cell culture medium was removed and cells were washed twice with sterile phosphate buffer 

saline (PBS) without calcium and magnesium. Pre-warmed Trypsin/EDTA solution was added 

and cells incubated for 3-5 minutes at 37 °C, 5% CO2 to detach the monolayer from the flask 

surface. Upon cell detachment an equal volume of serum containing growth medium was 

added to neutralise the trypsin activity, and the cell suspension was centrifuged at 1000 rpm 

for 5 minutes. The cell pellet was then re-suspended in the required volume of medium and 

the number of cells determined using a haemocytometer. For general passaging, cells were 

seeded at 1 × 106 in pre-warmed fresh culture medium in 75 cm2 tissue culture flasks.       

2.2.1.4. Sub-culturing suspension cells  

THP-1 cell cells were seeded between 2-4× 105 cells/ml in their specific medium (Table 2.1.6) 

and maintained by renewing the medium every 2 to 3 days. Expansion of cells was continued 

until they reached approximately 8 × 105 cell/ml; whereupon cells were collected by 

centrifugation at 1000 rpm for 5 minutes then cells resuspended with fresh pre-warmed 

media to 2-4× 105 cells/ml. Cells were incubated at 37 °C, 5 % CO2 in a humidified incubator 

in flasks in an upright position. Although, THP-1 can be cultured in vitro up to 25 passages, 

but for the propos of our study, cells were used within 10 passages after thawing to prevent 
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unwanted phenotypic drift, as it has been reported that THP-1 are sensitive for culture 

condition and it could alter their response (Aldo et al., 2013). 

2.2.1.5. Cell counting 

Routine cell counting was performed using a haemocytomer.  After harvesting cells, 10 µl of 

a cell suspension was added to a clean chamber and the number of cells counted using an 

inverted microscope with a 10 x objective. The number of cells were counted in four of the 1 

mm corner square, as shown in the figure 2.1 below, and then the average number of cells 

was multiplied by 104 to calculate the number of cells in 1 ml. If the sample was diluted before 

counting, then the number of cell/ml was multiplied by the dilution factor to calculate the 

final concentration of cells.  

The viability stain Trypan Blue was used to determine cell viability. Live cells can exclude the 

dye from the inside of cells and so only dead are stained blue under light microscopy. The 

number of cells within the haemocytometer was counted as before and cell viability was 

determined according to following formula:     

% Cell Viability  = 
number of blue (dead) cells

number of total cells 
 × 100 

Greater than 90% viable cells were used in each experiment.  
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Figure 2.1 Counting chamber haemocytometer. Cells were counted in larger squares (Red).      
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2.2.1.6. Cryogenic preservation and recovery 

For long-term storage, cells were re-suspended at a density of 1× 106 cells/ml in freezing 

medium (90% FBS, 10% DMSO), aliquoted into cryovials, and then placed into a cooling box 

(Mr.Frosty) at -80°C for overnight; this allows the temperature to be lowered slowly by 1°C 

/min prior to the cells being transferred to liquid nitrogen.  

To resurrect cells, cryovials containing cells were thawed rapidly in a 37˚C water bath.  The 

cells were slowly re-suspended in 9 ml pre-warmed medium and centrifuged at 1000 rpm for 

5 minutes to remove any remaining DMSO. Pelleted cells were re-suspended in 5 ml specific 

medium, placed in a T25 cm2 tissue culture flask and incubated at 37°C, 5 % CO2 in a 

humidified incubator as previously described. After 24 hours, non-adherent cells were 

removed and fresh medium was added.  

2.2.2.  Neutrophils isolation and culture   

2.2.2.1. Isolation of human neutrophils from peripheral blood using density 

centrifugation 

Density gradient centrifugation was used to isolate human neutrophils from whole blood 

according to the modified method by Ferrante and Thong (Ferrante and Thong, 1978). 

Periperhal blood was collected by venipuncture from healthy volunteers with written, 

informed consent (University of Sheffield Ethical Approval). Blood was anticoagulated with 

3.8% sodium citrate (1 part to 9 parts blood) and centrifuged at 400 x g for 20 minutes to 

separate the serum from cells. The upper serum layer was removed and the remaining blood 

cells were diluted 1:1 with HPSS without Ca+2 or Mg+2. The blood mixture was layered slowly 

over 20 ml of Ficoll-Paque and centrifuged at 400 x g for 40 minutes at room temperature 

with the break set to 0 to separate cells. Following centrifugation, the blood was separated 
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into four distinct layers (Fig. 2.2), the top three layers were carefully removed and discarded. 

Neutrophils are present within the lower polymorphonuclear granulocyte/erythrocyte layer 

at the bottom of the tube. Erythrocytes were lysed by hypertonic lysis using ice cold sterile 

water for 30 seconds followed by the addition of an equal volume of 1.8% NaCl to bring the 

suspension to an isotonic state.  Cells were centrifuged at 400 g for 15 minutes and the 

process repeated 3-4 times until all erythrocytes had been lysed. Neutrophils were then 

washed in HPSS without Ca+2 or Mg+2 and counted before being resuspended to the required 

cell density. Cell viability was assed using Trypan blue (2.2.1.5) and neutrophil viability was 

greater than 90% in all experiments. Neutrophil purity was evaluated by flow cytometry using 

the neutrophil-specific marker CD66b. The neutrophil sample was discarded if signs of 

neutrophil activation was observed at any step during the isolation process. 

2.2.2.2. MACSexpress separation for neutrophil isolation  

Figure 2.2 Schematic diagram for layers obtained after Density gradient centrifugation 
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This method allows for the fast isolation of neutrophils from whole blood without the need 

for density centrifugation or erythrocyte lysis. The procedure uses a cocktail of antibody-

conjugated beads that are specifically designed to bind to erythrocytes and other leukocyte 

populations besides neutrophils. The neutrophils are then purified by immunomagnetic 

negative selection. Venous blood was collected from healthy volunteers into EDTA 

anticoagulant tubes. The lyophilized antibody cocktail was prepared freshly before each cell 

separation according to manufacture instructions and the final cocktail mixture used in the 

recommended volume of whole blood. For example, for 8ml of blood, one vial of antibody 

cocktail was reconstituted in 2 ml buffer A by pipetting up and down 3 to 4 times. Then 2 ml 

of buffer B was added to the cocktail mixture and mixed gently for 3 to 4 times. Eight ml of 

blood was transferred into a 15 ml universal tube and mixed with 4 ml of the prepared 

antibody cocktail and incubated in a MACSmix tube rotator at approximately 12 rpm for 15 

minute. Following this incubation, the mixture removed from the rotator and placed in a 

magnetic field using a MACSexpress Separator without the lid for 15 minutes. The cell fraction 

was collected from the supernatant from the front wall of the tube and the supernatant 

containing the neutrophils was suspended in sterile HBSS without calcium and magnesium 

and the number of cells determined using a haemocytometer.  Cell purity of the isolated 

neutrophils was evaluated by flow cytometry using the neutrophil-specific marker CD66b and 

a yield of >95% neutrophils with >95% viability was used in downstream applications.  

 

 

2.2.2.3.  In vitro differentiation of neutrophils into an N1 or N2 phenotype  
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Directly after isolation, neutrophils were suspended at a concentration of 1×106 cells/ml; a 

portion of the suspension was removed for flow cytometric staining on naive (untreated) 

neutrophils. Neutrophils were stimulated with 25 ng/ml human recombinant TGF-β for N2 

polarisation (Fridlender et al., 2009), 100 ng/ml human recombinant INFγ for N1 polarization 

(van Egmond et al., 2001), 100 ng/ml human recombinant MIF or incubated with serum free-

conditioned medium collected from FaDu spheroids for 8 or 24 hours at 37°C, 5% CO2 under 

humidified conditions. Untreated cells were incubated under the same conditions and used 

as a negative control.  At the end of incubation period, the neutrophil condition medium was 

collected and centrifuged at 1000 rpm for 10 minutes to remove cell debris.  The supernatant 

was then filtered through a 0.2 μm filter, aliquoted and then frozen at -70oC for later analysis. 

Cell pellets were collected and resuspended in FACS buffer analysed by flow cytometry to 

measure the expression of N1 or N2 markers as described in section 2.2.9.7. 

2.2.2.4. Cytospin preparation and staining  

The morphological properties of treated neutrophils were studied using light microscopy.  

Cells were resuspended in HBSS with 1% BSA to aid cell adherence to microscope slides. One 

hundred µl of a 2.5×105 cell suspension was loaded into a cytospin funnel and centrifuged 

onto Superfrost slides. The slides were left to air-dry overnight and then stained with 

haematoxylin and eosin (H&E).  

 

 

2.2.3. Culture of multi-cellular tumour spheroids (MCTS)  

2.2.3.1. Tumour spheroid culture 
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FaDu MCTS were generated from single cell suspensions using the liquid overlay technique 

(Carlsson and Yuhas, 1984). Tumour cells were prevented from adhering to the tissue culture 

plastic by covering each well of a 96-well plate with a layer (100 μl/well) of 1.5% agarose in 

serum-free media and allowed to dry at room temperature for 1 hour. Pre-coated agarose 

plates stored inverted at 4 °C for use for up to 8 weeks. FaDu cells were cultured as 

monolayers, harvested as described in 2.2.1.4 and re-suspended at 1× 105 cells/ml in culture 

medium, then 100 μl of the cell suspension was added to each well of a pre-warmed agarose-

coated plate and incubated at 37˚C, 5% CO2 for 6-7 days (unless otherwise stated). Tissue 

culture medium was replaced every 2 days by adding 100 μl of fresh medium to each well and 

then removing 100 μl medium. The size of the resulting spheroids was measured using 

Axiovision software (Zeiss) to obtain a growth curve.  

2.2.3.2.  Generation of MCTS conditioned medium  

Media conditioned by FaDu MCTS was generated for the analysis of secreted cytokines, 

chemokines and growth factors and to stimulate neutrophils. To generate FaDu MCTS 

conditioned medium day-6 MCTS were washed three times with serum-free RPMI and 

incubated with or without TNF-α (50 ng/spheroid) at 37˚C in a 5% CO2 incubator for 5 hours. 

Condition media was collected, centrifuged at at 1000rpm for 10 minutes to remove cell 

debris, filtered through a 0.2 μm, aliquoted and then stored at -70oC for later analysis. 

 

 

2.2.3.3.  Neutrophil and monocyte Infiltration into FaDu MCTS 
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Day-6 FaDu MCTS were stimulated with 50 μl TNF-α (final concentration 50 ng/spheroid) in 

serum-free media and spheroids incubated overnight. The following day MCTS were washed 

with serum-free RPMI media three times. Freshly isolated neutrophils or THP-1 cells were re-

suspended in 10 ml pre-warmed serum-free RPMI containing a final concentration of 2 μM 

CellTracker GreenTM and incubated for 45 minutes at 37˚C, 5% CO2, after which a 500µl of FBS 

was added and the cells centrifuged at 1000 rpm for 5 minutes. The cell pellet was re-

suspended in serum-free RPMI and incubated for another 15 minutes at 37˚C, 5% CO2. Cell-

tracker-labelled neutrophils were counted and re-suspended at 6×105 cells/ml; 50 μl of cell 

suspension were added to each well containing a single FaDu MCTS and incubated for 

increasing lengths of time at 37˚C in a 5% CO2 incubator to allow neutrophil infiltration. In 

some experiments, neutrophils were pre-exposed to synthetic CXCR2 antagonist AZ-

10397767 (25 nM) or SB-265610 (100 nM) and/or CXCR4 antagonists AMD3100 (500 ng/ml) 

or FaDu spheroids were pre-incubated with MIF antagonist ISO-1 (4,5-Dihydro-3-(4-

hydroxyphenyl)-5-isoxazoleacetic acid methyl ester) at concentration of 500 µM for 1 hour 

prior to being added to the assay. DMSO was added as a vehicle control and incubated for the 

same length of time. 

At the end of assay, MCTS were collected in a 25 ml universal tube and culture media 

collected, filtered and stored for further analysis (see section 2.2.3.1). FaDu MCTS were then 

washed three times in PBS to remove non-infiltrated neutrophils and individual spheroids 

were placed in microtubes in the presence of 300 μl of 0.25% trypsin/EDTA solution for 10 

minutes. MCTS were disaggregated by flicking the microtube, then 700 μl of media was added 

to neutralize the effect of the trypsin/EDTA. Disaggregated MCTS were centrifuged at 5,000 
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rpm for 2 minutes, after which the cells were re-suspend in 300 μl 1% paraformaldehyde and 

stored in the dark at 4˚C until analysis by flow cytometry.  

2.2.3.4. Collecting, fixing and processing MCTS for immunostaining    

MCTS were collected in 25ml universal tubes, then, after the MCTS had settled to the bottom 

of the tube, excess media was removed and the spheroids were washed with PBS 3-4 times. 

After final wash MCTS were fixed with 10% PBS-buffered formalin overnight; then after 

transferring to a flat bottomed plastic embedding tray, the excess fixative was removed and 

the MCTS were embedded using a solution of 2% agarose and 4% formaldehyde (the solution 

was slowly added so as not to disturb the MCTS). The agarose was allowed to set before 

placing in a cassette and then paraffin-wax embedding. Using a microtome, 5 μm sections of 

embedded MCTS were cut, placed onto Superfrost glass slides and dried for later analysis.  

For frozen sections, spheroids were embedded in optimum cutting temperature (OCT) 

medium and rapidly frozen using dry ice or liquid nitrogen. Ten μm sections were cut, placed 

onto Superfrost glass slides and dried prior to store at -80˚C for later analysis. 

2.2.4. Functional assays 

2.2.4.1.  Migration assay  

Neutrophils migration towards chemoattractants or CM was tested using a 48-well micro-

chemotaxis chamber and the number of cells migrated through a porous membrane during a 

specified period of time was assessed by flow cytometry.  Chemokines or control were diluted 

in serum-free RPMI supplemented with 0.1% BSA (filter- sterile) with 1% antibiotics and 28 μl 

added to the lower wells of the chamber and overlaid with a nitrocellulose membrane filter 

(3 μM pore size). After the upper part of chamber was assembled, 50 μl of neutrophil cell 
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suspension (1×106 cells/ml) was added to the upper wells and chamber incubated for 3 hours 

at 37˚C in a 5% CO2 incubator. At the end of incubation period, non-migrated neutrophils were 

removed from the upper wells by tapping the chamber on clean tissue and the content of the 

lower wells were transferred to micro-tubes containing 300 μl of 1% paraformaldehyde for 

further analysis by flow cytometry (see section 2.2.9.2). Chemoattractant used were: CXCL1, 

CXCL5, CXCL8, MIF and fMLP at varying concentrations or buffer alone as a control. 

 

2.2.4.2. Cell viability assay (MTT)  

This assay was applied to test the cytotoxicity of ISO-1 on FaDu cells by measuring the 

metabolic activity of these cells as a surrogate marker for viability. Briefly, cells were 

harvested as described in section 2.2.1.3 and seeded at 4,000 cells per well in a 96-well plate. 

Then 10 µl of a solution of ISO-1 or vehicle control (DMSO) at double the desired final 

concentration was added to the cells and incubated for 2, 24, 48, and 72 hours. At the end of 

incubation time, cells were washed with PBS and 100 μl fresh medium added. MTT solution 

was prepared by dissolving 0.5 mg/ml Thiazolyl Blue Tetrazolium Bromide (MTT) powder, in 

PBS and 100 µl of the MTT solution was incubated with the cells for 2 hours. The mitochondrial 

dehydrogenases of living cells can reduce the yellowish MTT dye to an insoluble formazan 

(dark blue). The blue crystals formed were solubilized by the addition of 50 µl acidified 

isopropanol and the intensity of the colorimetric reaction measured using a plate reader at 

540 nm with correction readings taken at 630nm. Reading were normalized to a control 

sample of untreated (100% viable) cells.   

2.2.5. Molecular assays  

2.2.5.1.  RNA extraction  
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Total RNA from cell pellets was isolated using Bioline Isolate RNA mini kit, according to the 

manufacturer’s instructions.  Briefly, cell pellets were lysed and filtered by centrifugation for 

1 minute at 11,000g. Then an appropriate amount of 70% ethanol was added to the 

homogenized lysate to improve binding of the RNA to the silica-based membrane of the spin 

column during centrifugation. Complete removal of genomic DNA was achieved by incubation 

with DNase I for 15 minutes. Column-bound RNA was washed three times and eluted in 

RNase/nuclease-free water. The concentration and purity of the isolated RNA was measured 

using a NanoDrop spectrophotometer and only RNA samples with high-purity (A260/A280 ratio) 

more than or equal to 2.0 were used for complementary DNA preparation and qPCR analysis. 

2.2.5.2.  Complementary DNA (cDNA) preparation 

Single stranded cDNA synthesized from total RNA was achieved using High Capacity cDNA 

Reverse Transcription kit, according to manufacturer’s instructions. In this protocol, 300 ng of 

total RNA was reverse transcribed per reaction containing the following reagents: 

Component Volume/Reaction(µl) 

10 ✕ RT Buffer 2 

25 ✕ dNTP Mix (100 mM) 0.8 

10 ✕ RT Random Primers 2 

MultiScribe™Reverse Transcriptase 1 

Nuclease-free water 5.2 

Sample RNA (300 ng) 9 

Total per Reaction 20 

 

Samples were then loaded in a thermal cycler and recommended protocol was followed as 

instructed below.  At the end of the run, reverse transcription reactions were stored at -20 ˚C 

for qPCR.  
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                                   Step 1              Step 2             Step 3         Step 4  

Temperature  16 °C  42 °C  85 °C  4 °C  

Time  10 min  120 min  5 min  ∞  

 

2.2.5.3. Quantitative polymerase chain reaction (qPCR) 

Quantitative detection of target genes (MIF, VEGF) was achieved using pre-designed 

TaqMan® primers. In each of 96-well plate, a mixture of target gene (labelled with FAM 

reporter) and suitable reference control (labelled with VIC reporter) were added to the 

following mixture of reagents: 

   

Reagents µl/well 

Master Mix (life Technology) 5 

TaqMan®gene’s primers 0.5 

Endogenous control primers  
 

0.5 

cDNA 0.5 

Nuclease-free water 3.5 

Total volume  10 

Each sample was run in triplicate in the 96-well plate and negative control (no cDNA) sample 

was run for quality control. PCR plates were centrifuged briefly before loading into the ABI 

7900HT Fast Real-Time PCR machine with the following thermocycle settings: 

Initial hold at 50˚C for 2 minutes, DNA Polymerase Activation at 95˚C for 10 minutes, followed 

by 40 cycles of Annealing and Extension at 95˚C for 15 second, 1 minute at 60˚C, respectively.                      

The relative quantification comparative delta threshold cycle (ΔCT) value was used to 

calculate fold change gene expression using the 2ΔCt  equation.  

2.2.6. Immunoassays  
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2.2.6.1. Chemokine/cytokine protein arrays 

Human cytokine array panel A (ARY005, R&D system) was used to screen conditioned medium 

generated from FaDu MCTS, according to manufacturer’s instruction. In this assay, different 

antibodies have been spotted in duplicate on nitrocellulose membranes. Conditioned 

medium was mixed with biotinylated detection antibodies prior to loading to the BSA-blocked 

membrane. At the end of incubation period, captured proteins were visualized using 

chemiluminescent detection using hyper-film. The relative expression levels of each cytokine 

were determined by densitometry using Quantity One software (Biorad, CA, USA). Here, the 

intensity of each dot was measured by drawing a circle around its circumference and 

comparing its intensity to the negative control. 

 

2.2.6.2. Enzyme-Linked Immunosorbent Assay (ELISA) 

ELISA was used to measure the levels of MIF, VEGF, CXCL8 in the conditioned medium 

collected from various experiment according to the manufacturer’s instructions. Wells of a 

96-well plate was coated with the recommended concentration of capture antibody and 

incubated at room temperature overnight. The following day, unbound antibody was 

removed and nonspecific binding sites blocked with a BSA-containing solution before 

samples/standards were incubated for 2 hours at room temperature. Unbound protein was 

removed by washing with wash buffer and the recommended concentration of biotinylated-

detection antibody was incubated for 2 hours. Finally, horseradish peroxidase (HRP)-

conjugated streptavidin was added to each well for 30 min at room temperature followed by 

TMB substrate and the colorimetric reaction was measured using micro-plate reader set to 

450nm and 540nm for correction.  The reading at 540nm was subtracted from the reading at 

450nm before averaging the reading of each samples/standards. A standard curve was 
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created using Deltasfot software by generating four parameter logistic (4-PL) curve fit and the 

concentration of target protein was obtained from standard curve.  

2.2.7. Immunohistochemistry  

2.2.7.1. De-waxing of tissue  

IHC was used to detect the presence of a cell specific marker in tissue sections. Paraffin-

embedded tissue was sectioned (5 µm) and mounted onto adhesive SuperFroset slides. 

Complete removal of paraffin was achieved by treating the slides with two changes of Xylene. 

Then the tissue was rehydrated through descending concentrations of ethanol (100%, 95%, 

75%) before endogenous peroxidase sites were blocked using 3% H2O2 diluted in methanol 

for 15 minutes. The sections were washed in water in preparation for antigen retrieval.     

2.2.7.2. Antigen (Epitope) retrieval methods  

Methylene bridges formed during the tissue fixation process can mask the antigen binding 

site. These antigen sites can be ‘un-masked’ using a variety of treatments; each treatment 

being dependent on the primary antibody used. For many antibodies heat-induced epitope 

retrieval (HIER) is the method of choice but different buffers may be used in this process. For 

the anti-BrdU antibody used in this study acidic antigen retrieval (AAR) using 10 mM 

anhydrous citric acid (pH 6) buffer was used to denature DNA and permit the access of anti-

BrdU antibodies to the previously incorporated BrdU label.  In contrast, a basic sodium citrate 

buffer (pH 6) was used for other antigen retrieval methods. For both buffers, 0.5% Tween-20 

was added to enhance antigen un-masking. The antigen retrieval solution was pre-heated to 

95°C and slides were immersed in buffer for 15 minutes. The buffer was then removed from 
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the steamer and slides allowed to cool to ambient temperature for approximately 15 minutes 

before being transferred to PBS with 0.05% Tween 20 (TBS). 

2.2.7.3. Detection of neutrophils in MCTS   

Neutrophils within MCTS were identified using the neutrophil-specific marker, CD66b (also 

known as carcinoembryonic antigen-related cell adhesion molecule 8) . Following fixation and 

antigen retrieval using sodium citrate buffer (see section 2.2.7.2), tissue sections were 

incubated overnight at 4°C with normal horse serum to block non-specific binding sites. The 

following day, serum was removed and 4 µg/ml mouse monoclonal anti-human CD66b or 

Isotype control diluted in TBS buffer was added to each slide and incubated for 60 minutes at 

room temperature. After washing the unbound antibody three times with TBS, biotinylated 

anti-mouse secondary IgG antibody from vector kit (VECTOR Ltd, Peterborough, UK) was 

added for 30 minutes at room temperature. The advantage of using a biotinylated antibody 

is to amplify the staining signal by formation of an avidin-biotin complex.  After washing with 

TBS a solution of streptavidin-conjugated HRP was added and incubated for 30 minutes at 

room temperature. Colour was developed using the DAB chromogen from Vectorstain and 

the reaction was stopped by washing in distilled water. Slides were counter-stained with 

Haematoxylin, 0.1% acid alcohol, Scott’s tap water, dehydrated in ethanol (95% then 100%) 

and then dipped in xylene, prior to mounting in DPX and coversliping.  

2.2.7.4. Immunolocalization of CD66b and MIF in OSCC tissue sections  

The detection of neutrophils in human biopsy tissue sections using CD66b was carried out as 

described in section 2.2.7.3. However, in this protocol, an alkaline phosphatase detection 

system was used according to manufacturer’s instructions and Vector Red substrate was used 
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to localize the neutrophils in tissue sections by incubating in substrate for 30 minutes to allow 

red/magenta colour development. The reaction was stopped by washing the slides in TBS 

buffer followed by rinsing in water. For dual staining the sections were incubated for 60 

minutes at room temperature with normal horse serum before the addition of biotin-

conjugated monoclonal mouse anti-human MIF antibody (Biotin anti-Human MIF) at a 

concertation of 25 μg/ml.  Mouse IgG at the same concentration was used as a control. 

Sections were incubated overnight at 4°C and washed three times with TBS. Next, the sections 

were incubated with streptavidin-conjugated HRP for 30 minutes at room temperature, 

followed by TBS washes and then colour development with DAB chromogen for 10 minutes. 

The reaction stopped by washing the slides in distilled water before slides were counter-

stained with haematoxylin and mounted as described previously.  

2.2.7.5. MIF staining of FaDu Tumour Xenografts   

The expression level of MIF in both treated (Ly6G & ISO-1) and control (PBS) groups of FaDu 

xenograft murine models were examined in tissue sections using a polyclonal rabbit anti-

human MIF antiserum. Slides were de-waxed and treated with sodium citrate buffer for 

antigen retrieval (see section 2.2.7.1 and 2.2.7.2). Tissue sections were blocked with normal 

goat serum for 60 minutes at room temperature before the addition of 1:50 diluted anti-MIF 

antiserum diluted in neat goat serum or a rabbit serum IgG Isotype control and the slides 

incubated overnight at 4 °C. The following day, the slides were washed in TBS and then 

incubated with secondary biotinylated goat anti-Rabbit antiserum from Vectastin Elite kit as 

per the manufacture guidelines, followed by colour development using DAB chromogen. The 

remaining procedure was carried out as in section 2.2.7.3.  
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For this study, a semi-quantitative approach was applied using a modified ʽquickscoreʼ 

method (Detre et al., 1995). The main factors considered in this method is the staining 

intensity of the tumour cells within sections corresponding to 0 = no staining, 1 = week 

staining, 2 = moderate staining and 3 = intense staining.  The second factor is the proportion 

of positive (brown) cells in each field of view that is scored from 0 to 4 (0 = no cells positive, 

1 = 1-25% of cells, 2 = 26-50% of cells, 3 = 51-75% of cells and 4 = 76-100% of cells). All the 

slides were examined under low power (10 x magnification) and scored by an oral pathologist 

(Dr Keith Hunter). The intensity score was multiplied by the proportion of positive stained 

cells to give an overall score for each section.   

2.2.7.6. Bromodeoxyuridine  and CD31 dual labelling to identify proliferating cells and 

the endothelium in sections of FaDu tumour xenografts 

Actively proliferating cells in each of the treated (ISO-1, anti-Ly6G) and control group was 

detected using anti-BrdU antibody (sheep polyclonal anti-BrdU HRP). Mice were injected with 

100 mg/kg of the thymidine analog, BrdU, (see section 2.2.2.10) that is incorporated into 

newly synthesised DNA, while the endothelial marker CD31 was used to evaluate the 

presence and number of blood vessels in the same section. Following sample preparation 

(section 2.2.7.1), antigen retrieval was by HIER in 10 mM citric acid (section 2.2.7.2), then 

tissue sections were incubated with normal rabbit serum to block non-specific sites for 1 

hours at room temperature. Samples were then incubated with rat anti-human CD31 or rat 

IgG isotype for 24 hours at 4°C. Slides were washed in TBS and the ABC alkaline phosphatase 

detection system was used as per the manufacture instructions. Vector Red substrate was 

used to visualise the immunoreactive areas by incubating with substrate for 30 minutes 

before the reaction was stopped by incubating slides in TBS buffer then water.  Sections were 
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blocked again with normal rabbit serum for 30 minutes and then directly labelled with HRP-

conjugated anti-BrdU antibody diluted at 1:20 in TBS or Sheep IgG isotype control overnight 

at 4°C. Sections were then incubated with Streptavidin-HRP for 30 minutes, followed by 

incubation with DAB chromogen substrate for 10 minutes. The reaction was stopped by 

washing in water and the samples counterstained with haematoxylin prior to mounting in 

DPX and coversliping as described previously.  

2.2.7.7. Image analysis of MPO immunostained HNSCC tissue section  

MPO-immunostained whole sections were scanned automatically using an ACIS® inverted 

research microscope at 40 x magnification. These images of can be digitally visualised using 

the associated software. In the image analysis, MPO+ neutrophils were defined as cells with 

dark brown staining and this colour selection was maintained for analysis of all images. For 

analysis of tumour sections, a circle representing 40 x in diameter (0.53mm) were randomly 

placed in each area of interest. Eight individual fields of view were found to be the minimum 

number required to minimize data variation (see section3.4.3). The number of neutrophils in 

each of the following areas within the sections were measured automatically using image 

analysis software: (1) invasive front of the tumour (2) tumour stroma (3) tumour body and (4) 

areas of necrosis (Fig. 2.3)  



75 
 

 

2.2.8. Immunofluorescence staining 

2.2.8.1. Staining of hypoxic areas in MCTS 

The presence of hypoxia (low oxygen concentration) in MCTS was determined using the 

hypoxic marker, Pimonidazole hydrochloride (PIMO). PIMO was diluted 1:200 in pre-warmed 

serum free medium and 10 µl added to each well containing an MCTS and incubated for 2-3 

hours at 37°C. At the end of the incubation period, MCTS were collected, washed in PBS and 

snap-frozen as describe in section 2.2.3.4. MCTS were then cyrosectioned into 6 µm sections 

onto Superfrost slides and fixed in cold acetone (4°C) for 10 minutes. Sections were washed 

in PBS before the addition of rabbit anti-PIMO antisera, diluted at 1:20 in TBS with 0.1% 

bovine serum albumin (BSA), and incubated for 1 hour at room temperature.  The sections 

were further washed before incubation with Texas red-conjugated secondary antibody for 

30-45 minutes at room temperature. Slides were washed twice in cold TBS and nuclei 

Figure 2.3 Representative example for evaluation of MPO+ immunostaining in 

paraffine-embedded HNSCC section. Distribution of MPO+ cells was evaluated in four 

tumour compartments; tumour invasive (blue circle), tumour invasive (black circle) and 

tumour body (Green circle) by selecting eight random filed per area 
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counterstained with DAPI for 2 minutes. Finally, slides were washed with TBS and mounted 

with ProLong Gold anti-fade, coverslipped and left to cure for 24 hours in dark before being 

analysed by fluorescent microscopy.    

2.2.8.2. Immunolocalization of monocyte/macrophage, neutrophils and endothelium in 

FaDu tumour xenografts 

OCT-embedded frozen tumours were cut into 6µm thick sections and placed on super-

adhesive slides.  Sections were warmed to room temperature and washed for 5 minutes with 

PBS prior to blocking with normal rabbit serum for 30 minutes at room temperature. Serum 

was removed and 100 µl of antibody cocktail (see table of antibodies in section 2.1.5) or 

isotype control were applied and incubated for 30 minutes at room temperature in the dark. 

Slides were then washed three times in TBS, 5 minutes each in duration. After the final wash, 

sections were counterstained with 5µg/ml DAPI diluted TBS for 2 minutes, then rinsed in 

excess TBS. ProLong Gold Anti-fade mountant was applied to slide to avoid loss of 

fluorescence signal during analysis performed with a PerkinElmer UltraView spinning disc 

confocal microscope at 488 nm excitation (F4/80-Alexflour 488; green), or mixed gas argon-

krypton laser at 568 nm (Ly6G-PE; yellow green) and 647 nm (CD31-APC; red) excitation and 

UV laser, at 355 nm (DAPI, deep blue) with the appropriate emission filters. 

2.2.8.3. Image analysis of immunofluorescence-stained tumour xenografts sections  

To quantify the number of infiltrated neutrophils, macrophage and blood vessel density in the 

fluorescently stained xenograft sections, 10 random fields for each tumour section were 

captured using a PerkinElmer confocal system with a 10 x objective. The images were acquired 

as Z-stacks and captured using Volocity software (version 6.3). Images were analysed by 
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thresholding the images and measuring intensity and area of fluorescence in mm3 per 

microscopic field that was then converted to pixel density for each wavelength.  

2.2.9. Flow Cytometry 

2.2.9.1. Analysis neutrophil viability and purity  

The purity of neutrophils isolated from whole blood was determined by flow cytometry based 

on expression of the neutrophil-specific cell surface marker, CD66b. Cells washed in FACS 

buffer twice, and re-suspended in 100 µl of ice-cold FACS buffer containing 2.5×105 cells. 

Neutrophils were incubated with appropriate concentration (1:50) of APC-conjugated CD66b 

and incubated for 30 minutes on ice in the dark. Cells were washed with cold FACS buffer and 

the viability of purified blood neutrophils assessed using LIVE/DEAD™ Fixable Blue Dead Cell 

Stain Kit. This dye reacts with intracellular amines in cells with compromised cell membranes 

resulting in a strongly fluorescent intensity in dead cells compared to live cell populations.  

Cells were washed with protein/azide free-PBS and re-suspended in 1 ml of PBS.  Then 0.25 

µl of freshly reconstituted dye was added to the cell suspension and incubated at room 

temperature for 30 minutes. Cells were then centrifuged, washed with 1 ml PBS, fixed with 

300 μl of 1% paraformaldehyde and kept in 4˚C until flow cytometry was performed. To 

achieve gating based on viable cells only, cells were killed by heat-shock where cells were 

incubated for 5 minutes in a water bath at 70 °C and then transferred to ice for 5 minutes. 

Then untreated cells were mixed with the heat-shock treated cells at a 1:1 ratio and the 

viability dye added as described above. 
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2.2.9.2. Flow cytometric analysis of neutrophil chemotaxis using celltracker  

A FACS Calibur or ATTUNE was used to analyse migration of neutrophils toward control media 

or media containing various chemoattractants. The contents of the lower wells of a 48-well 

Boyden chamber were collected and fixed in 300 μl 1% paraformaldehyde (as described in 

section 2.2.2.4). The forward incidental light scatter (Fsc) and side incidental light scatter (Ssc) 

detectors were set to values that optimised visualisation of granulocytes. A threshold was set 

on the Fsc detector to exclude small sub-cellular particles from data acquisition. Samples were 

then acquired for a set time of 30 seconds. The number of events registered by the flow 

cytometer during this time was used as a measure of relative chemotaxis rate of neutrophils 

from the upper wells across the membrane to the lower wells of the Boyden chamber 

(Tazzyman et al., 2011). 

 

 

( A )  ( B )  ( C )  ( D )  

Figure 2.4 Dot plot show gating strategy applied after neutrophils isolation. Other leukocyte 

populations were removed by negative selection (A), followed by single cell gating (B) and 

exclusion of dead cell (C) and neutrophils were selected using CD66b+ marker (D).   
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2.2.9.3. ICAM-1 expression by FaDu cell  

FaDu cells were seeded at 5×105 cells/well in 6 well plates and allowed to adhere at 37˚C in a 

5% CO2 incubator. After 24 hours incubation, the medium was removed and 2 ml of TNF-α 

containing medium (50 ng/ml), a pro-inflammatory cytokine known to induce the expression 

of ICAM-1 (Chiu et al., 2004), was added and the cells incubated overnight. The following day, 

media was removed and replaced with fresh media with or without TNF-α for 5 hours and 

incubated at 37˚C in a 5% CO2 incubator after which conditioned media was collected and 

stored at -20˚C for analysis by ELISA. Cells were washed twice with PBS prior to removal from 

tissue culture plates by addition of 750 μl non-enzymatic cell dissociation solution for 15 

minutes at 37˚C. The effect of cell dissociation solution was neutralized by the addition of an 

equal volume of medium to each well and the cell suspension centrifuged at 5000 rpm for 2 

minutes to the pellet cells. Each sample was then re-suspended in 50 μl of mouse anti-human 

ICAM-1 or mouse IgG1 control antibody (10ug/ml) in FACS buffer (PBS + 0.1% BSA + 0.1% 

sodium azide) and incubated on ice for 45 minutes. Excess antibody was then removed by 

washing with 1 ml FACS buffer followed by centrifugation at 5000 rpm for 2 minutes. The 

supernatant was discarded and the cell pellets re-suspended in 50 μl of anti-mouse IgG Fab2 

fragment R-PE antibody diluted 1:50 in FACS buffer and incubated on ice for 30 minute in the 

dark. Finally, cells were washed as before and cell pellets re-suspend in 300 μl, 1% 

paraformaldehyde and kept at 4˚C until flow cytometry was performed. 

Expression of ICAM-1 on day 6 FaDu spheroids was detected by disaggregating 3 spheroids 

from each treatment with 300 μl of non-enzymatic cell dissociation solution for 15 minutes 

at 37˚C; then 700μl of media was added and cells centrifuged at 5000 rpm for 2 minutes to 

pellet cells. The cells were re-suspended in 50 μl FACS buffer and 50μl of mouse anti-human 
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ICAM-1 or mouse IgG1 control, as described previously. Excess antibody was removed by 

addition of 1 ml FACS and then centrifuged at 5000 rpm for 2 minutes. The supernatant was 

discarded and the cell pellets re-suspended in 50μl of Alexa Fluor® 488 goat anti-mouse IgG 

followed by incubation on ice for 30 minutes in the dark. Finally, cells were washed as before 

and cell pellets re-suspended in 300 μl, 1% paraformaldehyde and kept in 4˚C until flow 

cytometry was performed. 

2.2.9.4. Flow cytometric analysis of neutrophil/monocyte infiltration to MCTS  

Dissociated spheroids (as described in section 2.2.3.3) containing neutrophils or monocytes 

were analysed by flow cytometry. The cell population was sorted according to forward scatter 

(Fsc) and fluorescence to allow differentiation between immune cells (neutrophils or THP-1 

cells) and tumour cells (Fig. 2.5 -A&B). Each sample was collected until the flow cytometer 

had registered 10,000 events and then the data stored and analysed using CellQuest™ (Becton 

Dickinson) software. For analytical purposes, and after making sure the detector was 

optimised to visualise both cell populations, a mixture of labelled neutrophils or THP-1 cells 

and tumour cells were plotted as Fsc against fluorescence and a gate was placed around green 

fluorescent neutrophils only. This gate was applied to all of experiential test groups and the 

number of events represented as % infiltration. 

2.2.9.5. CXC receptor expression on whole blood  

Expression of CXCR receptors (CXCR1, 2 and 4) were stained on neutrophils, monocyte and T 

cells from isolated whole blood anti-coagulated with a 1 in 10 dilution of 3.8% sodium citrate. 

200 µl of whole blood was added to Eppendorf tubes and mixed with 100 µl of FACS buffer 

containing CXCR1, CXCR2, CXCR4, CD66b, CD14 or IgG mouse control antibody (final 



81 
 

concentration 10 µg/ml), and the cells incubated at room temperature for 30 minutes. Cells 

were washed twice with 1 ml FACS buffer and centrifuged at 5000rpm for 2 minutes. After 

removal of supernatant 50 µl of R-phycoertherin-conjugated anti-mouse antibody was added 

to each tube or directly R-phycoertherin-conjugated CD3 antibodies and cells incubated for 

30 minutes on ice in the dark. Cells were washed and RBC lysed by the addition of 1 ml FACS 

lysis buffer and incubated for 10 minutes at room temperature in the dark. Cells were 

centrifuged as before and the lysis step repeated until the removal of all erythrocytes. Finally, 

cells were re-suspended in 300 μl 1% paraformaldehyde and kept on ice until flow cytometry 

was performed. For each sample 10,000 events were collected. Three populations 

corresponding to granulocyte, monocyte and lymphocyte sub-populations were distinguished 

by flow cytometry based on their forward (Fsc) and side scatter (Ssc) characteristics. During 

analysis of each of the receptor a gate was set around the required cell population based on 

expression of a cell specific marker (CD66b = neutrophils, CD14 = monocytes, CD3 = T cells) 

(Fig. 2.6); then the relative median fluorescence intensity was obtained after subtracting IgG 

background fluorescence.  

2.2.9.6. Analysis of necrosis and apoptosis  

Neutrophil cell death by apoptosis and necrosis after exposure to ISO-1 were determined 

using flow cytometry. Neutrophils were isolated (section 2.2.2.1) and reconstituted at 1×106 

cells in media containing 10 nM recombinant MIF. Cells were then treated with ISO-1 or 

vehicle control (DMSO) at equivalent concentrations of 0.05 μM 0.5 μM, 5 μM, 50 μM, 500 

μM or 5000 μM for 24 hours at 37˚C. After incubation, cells were pelleted by centrifugation 

at 6000 rpm for 2 minutes, washed with ice cold PBS and labelled with Annexin V-FITC that 

binds to phosphatidylserine (PS) of cells undergoing apoptosis while propidium iodide (PI) 
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enters permeabilised cells and binds to the DNA of necrotic cells according to manufacturer's 

instructions. Cells were analyzed using a LSRII cytometry (BD Biosciences) equipped with Cell 

Quest software for cells acquisition and data analysis. 

 

2.2.9.7. Multicolour phenotypic characterization of polarized neutrophils  

Immediately after incubation with polarising agents (see section 2.2.2.3) cells were washed 

once with ice cold FACS buffer and resuspended in 100 μl FACS buffer at final concentration 

of 2.5×105 cells/test.   Cell markers were classified into four groups based on antibody 

fluorochrome availability and expression levels; CXCR receptor (CXCR1, CXCR2, CXCR4), 

adhesion molecules (CD62-L, ICAM-1), CC receptor (CCR5) and Fcγ receptor (CD64).   A cocktail 

of antibodies at optimized concentrations (table below) was added to neutrophils to a final 

volume of 100 μl, in addition to 2.5 µl neutrophil specific marker CD66b-APC for each tube. 

Annexin V-FITC  

P
I 

Figure 2.5 Analysis of ISO-1 traeted neutrophils using Annexin V and Propidium Iodide (PI).   
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Unstained cells were used as negative control and stained cells were used as florescence 

minus one (FMO) controls for each of the four groups for cell gating and to exclude any 

spectral overlap due to use of multiple fluorochromes. Cells were incubated at 37 ˚C for 1 

hour for CCR5, while all other antibodies included in the panel were incubated on ice for 30 

minutes.  At the end of incubation period, cells were washed once with 1 ml FACS buffer and 

then with protein/Azide free-PBS before being re-suspended in 1 ml of PBS.  Then, 0.25 µl of 

freshly reconstituted LIVE/DEAD™ Fixable Blue Dead Cell dye was added to cell suspensions 

and incubated with cells for 30 minutes on ice. Cells were then pelleted by centrifugation and 

washed with 1 ml PBS before fixation with 300 μl of 1% paraformaldehyde. Cells were kept at 

4˚C until flow cytometry was performed. 

 

Table 2.1. Reagents used to identify N1 and N2 polarised neutrophils. All antibodies were 

purchased from eBioscience, +++ = strong expression, ++ = moderate expression, +/- = weak 

expression, - = no expression  

2.2.9.8. Compensation for multicolour flow cytometric experiments 

Specificity  Fluorochrome Ab clone Dilution/
100 µl 

Staining 
condition  

Expression 
on Blood 
neutrophils  

CXCR1(CD181) FITC eBio8F1-1-4 2.5 µl 4 ˚C +++ 

CXCR2 (CD182) PE eBio5E8-C7-
F10 

2.5 µl 4 ˚C +++ 

CXCR4 (CD184) PE-Cyanine7 12G5 2.5 µl 4 ˚C + 

ICAM-1 (CD54) PE YN1/1.7.4 2.5 µl 4 ˚C +/- 

L-Selectin (CD62L) FITC  2.5 µl 4 ˚C +++ 

CCR5 (CD195) PE NP-6G4 1.5µl 37˚C +/- 

Fc γ receptor 1 
(CD64) 

FITC 10.1 2.5 µl 4 ˚C - 

CD66b APC G10F5 2.5 µl 4 ˚C ++ 
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Compensation controls were used to determine the extent of fluorochrome spectral overlap 

in all detectors using two types of beads; BDTM CompBeads for each of the fluorochrome 

labelled antibodies used in the study or ArC™ Amine Reactive Compensation Beads for 

LIVE/DEAD™ staining according to manufacture instructions. Firstly, the unstained cell sample 

was run through LSRII Cytometer (BD Biosciences) with a three-laser (blue/red/violet) 

configuration, to set up the voltages for each of the fluorescence channels used. Then, tubes 

containing the BDTM CompBeads with attached fluorochrome-conjugated antibodies were run 

on the flow cytometry and the gate was adjusted on a single bead population. Then, using a 

histogram plot, a gate was placed around the negative and positive bead population for each 

of the fluorochromes used. Finally, spectral overlap values were converted by mathematical 

algorithms within the instrument software (DB FACSDiva software) to yield accurate 

compensation values.  

2.2.9.9. Gating and analysis of multicolour flow cytometry  

Cells were firstly gated using FSC and SSC, followed by single cell gating and then positive 

selection of live cells (Fig. 2.5). Neutrophils were gated using the neutrophil-specific marker 

CD66b (APC) and then expression of target cell surface markers on the neutrophil population 

was examined after adjusting the gating using the FMO control. The median fluorescence 

intensity (MFI) of the target population was compared to controls and normalized as follows: 

Normalized MFI    =    
Median fluorescence intensity (MFI) of positive staining

Median fluorescence intensity (MFI)of unstained sample
 

 

2.2.10. Murine tumour xenografts model   

Male CD1 nude mice aged 8-weeks, were purchased from Charles River, UK. All mice were 
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kept in ventilated cages with food and water provided and maintained in pathogen-free 

conditions in the Field Laboratories, Veterinary Services Unit, Medical school, University of 

Sheffield. FaDu cells, were suspended in PBS (pH 7.4) at a density of 5 × 107 cells/ml and each 

animal received a subcutaneous (S.C) injection of 5 × 106 cells (100 μl). Once xenografts were 

established, tumours were measured every third day using measuring callipers and tumour 

volume calculated based on modified ellipsoidal formula = (length × width2)   

Tumours were allowed to grow for 3 days and mice were assigned randomly into groups (n = 

5 per group) before beginning the treatment schedule (Fig. 2.8). The control group received 

Intraperitoneal (i.p.) injections of 100 μl PBS three times a week over a 3 week period, with 

the treatment groups receiving either 200 µg anti-Ly6G in PBS or 100 μl ISO-1 twice weekly at 

20 mg/kg by the same route. For all groups, tumour volumes were monitored regularly, and 

the experiment ended 3 weeks after treatment or when tumours reached the maximum 

permitted size (15 mm diameter). To assess FaDu tumour cell proliferation, mice were 

injected i.p with 100 mg/kg BrdU for 1 hour before being Schedule 1 culled.   

Blood sample was collected from cardiac puncture and stored at -80°C for further analysis. 

Tumours were removed and divided into two; one section was placed into labelled microfuge 

tubes and snap-frozen in OCT, then transferred to -80°C for further analysis. The other half of 

the tumour was fixed in 10% PBS-buffered formalin and paraffin-wax embedded for 

immunohistochemical analysis (section 2.2.7.5 & 2.2.7.6).   
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2.2.11. Statistical analysis  

All experiments were repeated a minimum of three times and results are expressed as mean 

± standard deviation (SD) or median ± 25-75% quartile ranges (min and max) unless otherwise 

stated. Data was subjected to normality testing and statistical significance was evaluated 

using an unpaired Student’s t-test (parametric) or Mann-Whitney U test (non-parametric) to 

test the difference between two variables and one-way ANOVA (parametric) of Kruskal–Wallis 

test (non-parametric) for multiple variables. p-values of ≤ 0.05 were considered statistically 

Figure 2.6 Experimental design of xenograft murine model. CD-1 nude mice subcutaneously 

with FaDu cells and tumours allowed to grow before treatment start. Mice received 

Intraperitoneal dose of vehicle (PBS), anti-Ly6G (200 µg) and ISO-1 (20 mg/kg) for period of 

three weeks.  BrdU were injected one hour prior to culled schedule. 
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significant. All statistical evaluation was performed using GraphPad Prism software 

(GraphPad Prism software, CA, USA). 

2.2.12. Ethics 

Ethical approval for the use of volunteer’s peripheral blood in this study was approved by The 

University of Sheffield Ethics Committee. All volunteers participated in the study with written, 

informed consent. Use of archival tumour tissue was permitted with National Ethical Approval  

(08/S0709/70) and the isolation and use of normal oral keratinocytes was permitted with 

National Ethical Approval (09/H1308/66).  All animal experiments were conducted in 

accordance with the UK Home Office Regulations under the Animals (Scientific Procedures) 

Act 1986 and the awarded project licence number under which these protocols were 

performed is PPL:40/3424 (Dr Munitta Muthana). In addition, the University of Sheffield 

Animal Welfare & Ethical Review Body approved all the in vivo experiments performed in this 

study.  
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Chapter 3: Histological localization of Tumour-Associated 

Neutrophils in a cohort of patients with head and neck squamous 

cell carcinoma 

3.1. Introduction  

Several clinical studies have shown that TAN are associated with poor patient prognosis in a 

variety of human tumours including renal cell carcinoma (Jensen et al., 2009b), hepatocellular 

carcinoma (HCC) (Kuang et al., 2011), non-small cell lung cancer (Ilie et al., 2012), gastric 

adenocarcinoma (Zhao et al., 2012), colorectal carcinoma (Rao et al., 2012) and melanoma 

(Jensen et al., 2012). To date, few studies have examined the presence of TAN in HNSCC. Wan 

et al (2014) observed high levels of TAN in squamous cell carcinoma of the tongue whilst 

Trellakis and colleagues demonstrated that patients with advanced stage HNSCC tumours (T4) 

displayed higher levels of neutrophil infiltration compared to early stage T1 and T2 tumours 

and that levels of TAN related to poor patient prognosis (Trellakis et al., 2011). These studies 

examined TAN enrichment within the body of the cancerous epithelium, often termed 

tumour nests. However, tumours do not solely consist of tumour nests but also contain large 

areas of stromal tissue that is comprised of fibroblasts and blood vessels that surrounds the 

tumour epithelium. Moreover, the tumour epithelium itself can be sub-divided into the 

invasive front (the region of the tumour that invades into the stromal tissue) and the tumour 

body. In oral cancer, tumour cells at the invasive front of the tumour (IFT) have been found 

to behave differently from those within the tumour body. For example, cells located at the 

IFT have been shown to have a high proliferative activity (Piffko et al., 1997) and display more 

aggressive characteristics that are important for tumour spread and metastasis (Bànkfalvi and 
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Piffkò, 2000). The different areas within a tumour create distinct tumour microenvironments 

that may have different capacities to recruit leukocytes and so it is possible that neutrophil 

recruitment is not evenly distributed within tumour tissue.  For example, Kuang et al showed 

that 72 cells/field were detected in the peri-tumoural stroma and only 8.7 cells/field were 

present in the cancer nests in HCC (Kuang et al., 2011). Moreover, these peri-tumoural 

neutrophils were exclusively found to express MMP-9, a known inducer of angiogenic 

regulatory molecules, which stimulate the angiogenesis of adjacent tumour cell.  These data 

suggest that TAN within different tumour locations may experience different stimuli leading 

to the generation of different phenotypes or alerted responses that may have profound 

effects on tumour invasion or progression. However, to date, little is known about the spatial 

distribution of TAN in HNSCC. Based on this it was hypothesised that the microenvironment 

within different tumour sites will cause TAN to be preferentially recruited to some sites more 

than others and that neutrophil-tumour cell interactions at these sites could influence tumour 

behaviour and as a result clinical outcome.  

3.2. Aims 

To evaluate the number and location of TAN within biopsies of HNSCC tumour tissue using 

immunohistochemical staining for TAN to enable an investigation of their distribution pattern 

in each of the following areas:  invading front of tumour, tumour stroma, tumour nest and 

necrotic tumour areas.  

 

 

3.3. Methods 
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The presence of neutrophils in normal healthy oral mucosa compared to tumour tissue was 

evaluated in biopsies from 9 normal healthy volunteers and 9 patients with clinically 

diagnosed HNSCC. Sections were stained with neutrophil-specific anti-CD66b antibody (as 

described in section 2.2.7.4) and the number of neutrophils per high power field (HPF = x40 

magnification) were counted in five random field. Cells within blood vessels were exclude 

form the analysis.  

To examine TAN within specific tumour areas, neutrophils within paraffin-wax embedded 

histological tissue sections from 30 HNSCC patients were stained using an anti-MPO antibody 

followed by visualization using DAB chromagen. Tissue sections were digitally scanned using 

a 40x objective attached to an ACIS inverted research microscope. The images of section were 

visualised on screen and tumour areas were selected manually by placing circles of 40 x in 

diameter (0.53mm) in different regions of the tumour tissue. Cumulative means were 

calculated from eight individual fields of view to minimize data variation. Images were 

analysed digitally using ACIS III image analysis software (see section 2.2.7.7 for detailed 

method).   
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3.4. Results  

3.4.1. The presence of neutrophils in normal and cancer tissues 

In general, CD66b cells were not detected in the epithelium or stroma of normal healthy tissue 

(Fig. 3.1) (for patients demographic see appendix I, table 1). In contrast, in the HNSCC tissue 

sections the presence of CD66b cells were detected mainly in tumour stroma tissue with a 

median number of 3.6 TAN/HPF. In contrast, fewer CD66b neutrophils were detected within 

the tumour epithelium (median number 0.4 TAN/HPF). There was a statistical significant 

difference between the number of CD66b neutrophils in the tumour epithelium compared to 

normal epithelium (p=0.0294) and also the number of CD66b cells in the tumour stroma 

compared to the normal stroma (p <0.0001) (Fig. 3.2) 
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Figure 3.1 Detection of CD66b+ neutrophils in healthy and cancer tissue. A panel of nine 

normal and nine HNSCC tumour tissue sections were screened for the presence of neutrophils 

using the neutrophil-specific marker CD66b (A) Healthy tissue form buccal mucosa shows 

stratified squamous epithelium (NE) with underlying lamina propria or connective tissue (NS) 

(B) moderately differentiated OSCC of the tongue with tumour epithelium (TE) cells, 

containing large nuclei and increased nuclear-to-cytoplasmic ratio (left top). Dense 

Lymphocytic infiltration was observed in tumour stroma (TS) with neutrophils infiltration 

(bottom left, arrows). 
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Figure 3.2 Detection of CD66b neutrophils in healthy and cancer tissue. A panel of nine 

normal and nine HNSCC tumour tissue sections were screened for the presence of neutrophils 

using the neutrophil-specific marker CD66b. The number of neutrophils was counted per high 

power filed (HPF)(40x). Non-parametric Mann Whitney test was used to show a statistically 

significant difference between the number of CD66b neutrophils in TE compared to NE 

(*p=0.0294) and number of CD66b cells in the tumour stroma compared to the normal stroma 

(****p <0.0001) 
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3.4.2. Study of MPO localization patient demographics   

In this study, pathological specimens from 30 patients with HNSCC were examined. These 

patients comprised of 10 (30%) women and 20 (70%) men with an average follow up time of 

47.03 months (range 6-144 months).  The average age of the patients was 60 (ranging 

between 37-83). The HNSCC lesions were located in retromolar trigone (RMT) (n=5, 16%), 

floor of mouth (FOM) (n=15, 50%), anterior tongue (AT) (n=6, 20%), posterior tongue (PT) 

(n=2, 6.6%), hard palate (HP) (n=1, 3.3%) and soft palate (SP) (n=1, 3.3%). Lymph node 

involvement was observed in all the cases.  Thirteen (42.3%) cases had a single lymph node 

metastasis (N1), 8 (26.6%) with metastasis in multiple lymph nodes (N2b), 3 (10%) with 

metastasis in the bilateral or contralateral lymph nodes (N2c) and 5 (16.6%) with distant 

metastasis. Five (16.6 %) patients had recurrence, 3 (10%) patients had a secondary primary 

tumour, and 6 (20%) of the patients the data were not available.  During the follow-up, 1 (3%) 

patient died of disease (DOD), 6 (20%) died of an unrelated cause (DUR), 14 patients (46.6 %) 

were disease free (DF) and 2 (6.6%) patient was alive with disease (AWD).   

Patient characteristics are summarized in  appendix I (Table 2), while the full details about the 

patients that participated in this study have been published previously (Alkureishi et al., 2010).  

3.4.3. Selection of observation field 

In order to obtain the number of areas of assessment for each parameter required to 

minimise variation, cumulative means plots were constructed. Presence of MPO+ neutrophils 

was evaluated in four tumour compartments; (a) invasive front of tumour, (b) tumour stroma, 

(c) tumour body, (d) necrosis centre of tumour, if present. These areas were defined 

accordingly:  
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The invasive front (IF) is the periphery or the leading edge of the tumour as it progress.  It 

comprises tumour tissue and breaks through the sub-epithelial connective tissue. Tumour 

Stroma (TS) is the connective tissue separating the solid tumour nest and is often 

accompanied by a desmoplastic stromal reaction and a dense inflammatory infiltrate (Fig. 3.3-

A). The tumour body (TB) is located in central tumour areas where the characteristic of 

squamous carcinoma is well represented by irregular cell shape (Polygonal), enlarged 

cytoplasmic membrane and large nucleus with multiple prominent nucleoli (Fig. 3.3-B). Area 

of necrosis were identified by fragmented cells, nuclear shrinkage and cellular debris 

surrounded by tumour epithelium. The necrotic centre (NC) was associated with dense 

infiltration of leukocytes (fig. 3.3-C)    

Figure 3.3. Photomicrographs of HNSCC tumour section shows the distribution of MPO+ 

cells within tumour. The presence of MPO+ neutrophils was observed throughout the tissue 

(left, Scale bar=1mm ) and the localization of MPO+ neutrophils was evaluated in four tumour 

compartments;  (A) Red dots line separated tumour invasive (TI) area from tumour stroma 

(TS) (B)Tumour body (C) and necrotic centre. The numbers of MPO+ was quantified in each 

of the patient in the cohort (right,Scale bar=200µm). 
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Cumulative means plot analysis showed that the variability in most assessments was 

minimised upon assessing eight individual HPF, selected at random in the area of interest (Fig. 

3.4) and so in subsequent analysis each area within a histological section was evaluated with 

8 HPF per area of interest for each patient tumour section in order to obtain representative 

data. 

3.4.4. Spatial Distribution of MPO+ Neutrophils in Histological Sections of HNSCC  

Figure 3.4 Cumulative means required for adjusting the variability for the image analysis to 

quantify the intensity of MPO immunostaining. Cumulative means calculated by adding up 

the mean of each view field to the sum of its predecessors as you go along, for the eight fileds 

to determine the value that lie above or below, for example, M1= number of cells in field 1 + 

number of cells in field 2.   
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The distribution of neutrophils in HNSCC was investigated in paraffin-embedded tissues 

sections from 30 HNSCC patients. The presence of neutrophils was visualized by 

immunostaining and the number of MPO-positive cells was quantified by digital image 

analysis and in each of the selected area and presented as mean number of cells ± SEM/HPF.  

The presence of MPO+ cells was detected in all cases, except one, throughout the tissue.  

Figure 3.5 shows that there was much variation in the number of neutrophils in each tumour 

site analysed in each patient. The tumours of some patients contained numerous neutrophils 

at some or all of the tumour sites analysed whilst others contained very few. When the 

median values of all the patients were calculated and compared the presence of MPO+ 

neutrophils in the different tumour compartments showed that the number of MPO+ cells in 

the tumour stroma (TS) was 366±109 cells/HPF and 172±62 cells/HPF was detected in the 

tumour invasive front (TI). The number of MPO+ cells in tumour body (TB) was only 37±10 

cells/HPF. In contrast, the number of MPO+ cells observed in the centre of the necrotic tissue 

was 3059±602 cells/HPF (Figure 3.6).  Thus, the density of MPO+ cells in necrotic tissue (NC) 

was significantly higher in comparison to TI, TS and TB (P<0.0001) (Fig. 3.6-C). To evaluate the 

prognostic importance of MPO+ cells in each of the tumour compartments, the data was 

analysed according to patient survival status (Fig.3.7). No correlation was found between 

overall survival and number of MPO+ cells in any of the tumour areas analysed. This result 

was expected as this pilot cohort was too small to allow robust survival analysis.  
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Figure 3.5 Individual patient analysis for MPO+ neutrophil infiltration in different tumour 

compartments showing variation between the cases.  Number of MPO+ neutrophils 

calculated in eight fields in each of selected area presented as box and whisker blot with 

minimum and maximum number of MPO+ cells detected.  X-axis represent the 30 individuals 

included in this study.  The band inside the box represent the median.   
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Figure 3.6 A screen for distribution of MPO+ neutrophils in HNSCC tissue. High MPO+ 

neutrophils was observed in tumour stroma (A) and invasive front of the tumour tissue (B), 

whereas the presence of MPO+ neutrophils toward in the tumour body was scarce (D). The 

accumulation of MPO+ neutrophils was predominant within the necrotic tissue (C). Scatter 

plot of the thirty patients involved in the study showing the median differential localization 

of MPO+ neutrophils in selected areas of tumour, the intensity of MPO+ cells was significantly 

different in the necrotic centre compared to TI, TS, TB using one way ANOVA (p< 0.0001). 

Scale bar = 50 uM 
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Figure 3.7 Analysis of infiltrated neutrophils in HNSCC tissue. Paraffin-embedded OSCC 

samples were stained with MPO and distribution of MPO+ neutrophils were evaluated in each 

of invading front of tumour (TI) and tumour stroma (TS), tumour nest and necrotic areas 

according to patient’s survival show no significant difference (Students t-test)   
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3.4.5. Presence of necrosis associated with influx of high number of neutrophils  

Based on the above data, we predicted a correlation between presence of necrosis and 

number of neutrophils in tumour tissue. Large areas of necrosis were observed in 17 patients 

(57%) and this was associated with the influx of large number of neutrophils to the tissue 

(median number of neutrophils 944 cells/tumour) when compared to the 13 patients (43%) 

with no apparent necrosis where the number of neutrophils were significantly lower (median 

number of neutrophils 14 cells/tumour, P<0.01) (Fig. 3.8).  The reduction in number of 

neutrophils in the absence of necrosis was associated with better outcome, since 61.5% (n=8) 

of patients were free of disease, and 15% (n=2) were alive with disease and one patient died 

of an unrelated disease. On the other hand, the presence of neutrophils in patients with 

necrosis were associated with death in 35.5% (n=6), 35.5% (n=6) were free of disease while 

the survival for 5 (30%) patients were unknown. 
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Figure 3.8 MPO+ neutrophils level in necrotic areas in a cohort of biopsy tissue from HNSCC 

patients. Patients were grouped according to the presence (A and C) or absent (B and D) of 

necrotic tissue. Mann-Whitney U test was used to compare the statistical significance of 

intensity of the stain between the two groups (E).The infiltration index of MPO+ neutrophils 

in tissue with necrosis was significantly higher (median number of neutrophils 944 

cells/tumour) when compared to tissue with no necrosis (median number of neutrophils 14 

cells/tumour; p<0.001). 
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3.4.6. Association of MPO+ neutrophils with T stage  

Cases were classified into two groups according to T stage. Among the 30 patients studied 70% 

(n=21) had T1-T2 tumours and 30% (n=9) had T3-T4 tumours. Statistical comparison using 

Mann-Whitney U test was applied to evaluate the impact of T status on the distribution of 

neutrophils in tumour tissue. In general, the number of MPO+ cells present in the T1-T2 

tumour was slightly higher than T3-T4 lesion, although there was a no statistically significant 

difference in the MPO+ index in the tumour with median number of 16 cells/tumour versus 

9.5 cells/tumour, for T1-T2 and T3-T4 respectively (Fig. 3.9).  In addition, no significant 

difference was observed between late and early stage of MPO+ cells detected in the tumour 

stroma with median of 67 cells/tumour for T1-T2 group versus 54 cells/tumour for T3-T4 

tumours (Fig. 3.9-B). The lowest number of MPO+ infiltration was detected in tumour body 

with median number of 5.7 cells/tumour and 3 cells/tumour for T1-T2 and T3-T4, respectively 

(Fig. 3.10).   The data also showed an increased number of neutrophils MPO+ accumulated in 

the necrotic tissue of T1-T2 patients with median number of cells 677 when compared to late 

stage tumours (T3-T4) but once again this was not statistically significant (Fig. 3.9).  In 

conclusion, patients with T1-T2 tumour had abundant accumulation of neutrophils at the NC 

(2016 cells), which was significantly higher than neutrophils detected at TS (344 cells), TI (204 

cells) and TB (29 cells) (Fig. 3.10-A). On the other hand, patients with advanced stage (T3-T4) 

had fewer numbers of MPO+ cells detected in the tissue with similar pattern of distribution. 

The highest accumulation was observed in NC with mean value of 894 cells, followed by TS 

199.8 cells, very few in TI (65 cells) and almost no cells was detected at TB (18 cells) (Fig. 3.10-

B)  
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Figure 3.9 Analysis of MPO+ distribution according to T stage of disease.  There was a high 

infiltration index of MPO+ neutrophils observed in T1-T2 (n=21) patients in compared to T3-T4 

(n=9) and there was no significant difference in the number of MPO+ neutrophil infiltration 

between T1-T2 and T3-T4 lesions. Data are displayed as median +/- interquartile range.  Mann-

Whitney U test was used to calculate significant differences.   
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Figure 3.10 Frequency of MPO+ cells in each tumour compartment according to disease 

stage.  Multiple comparisons using one way ANOVA test was used to compute distribution 

of MPO+ cells at different stage of disease. Patients at early stage T1-T2 had more 

neutrophils accumulation at TI, TS, NC while patients with advance stage T3-T4 show no 

evidence of MPO+ cells in TB and very few in TI. However, the predominate accumulation of 

MPO+ cells was presented at NC of T3-T4, then in TS. Data are displayed as Median ± 

interqurtile range. *** p<0.0001, ** p<0.005, * p<0.05. 
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3.5. Discussion  

The concept of cancer related inflammation was raised as a new hallmark of cancer by 

(Hanahan and Weinberg, 2011) and emerging evidence has demonstrated the presence of 

large populations of inflammatory cells within the tumour microenvironment, including 

tumor-associated neutrophils (TAN).  
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As a tumour grows its complexity increases and it invades the surrounding connective tissue, 

often termed the tumour stroma, in which tumour cells are involved in cross-talk with the 

stromal cells.  The tumour neighbourhood includes a multitude of cells such as fibroblasts, 

pericytes, endothelial and immune cells. The communication between all these cell types has 

been shown to influence the tumour microenvironment such as oxygen tension, tissue 

necrosis, local inflammation and degradation and remodelling of extracellular matrix (ECM) 

leading to tumour angiogenesis (Curry et al., 2014). For this purpose, the distribution of 

infiltrated neutrophils in different HNSCC tumour compartments including invading front, 

stroma, tumour body and necrotic areas was examined.  

Despite the small study sample size, and the inability to perform Kaplan-Meier survival plots 

due to lack of clinical information, several important observations were noted. MPO+ 

neutrophils were present throughout cancer tissue samples with most of neutrophils 

accumulating in the stromal tissue and necrotic areas rather than in the tumour body. The 

number of neutrophils infiltrating into the necrotic foci was significantly higher than other 

areas, suggestes that neutrophils might be recruited to areas of necrosis under the influence 

of specific molecules. This feature was also evident at all stages of cancer progression, 

suggesting its prolonged importance over the life-span of a tumour. Like macrophages, 

neutrophils are innate immune phagocytes that are pre-programmed to engulf cellular 

necrotic debris in order to clear areas of cellular material during wound healing so it is 

reasonable that neutrophils are recruited to sites of necrosis to clear debris and so neutrophils 

could be directed to these necrotic sites under the influence of chemoattractants.  
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Evidence that necrotic cells can cause neutrophil accumulation has been observed in vivo. 

Injection of P388 necrotic leukemic cells in the peritoneal cavity in mice induced neutrophil 

infiltration into the site of injection via the production of chemokines KC and MIP-2, 

suggesting that neutrophils are attracted to tumours by necrotic cues (Tanimoto et al., 2007). 

Another study showed that necrotic but not apoptotic cells release both nuclear factor and 

secreted protein HMGB1, which has the ability to trigger inflammation and enable neutrophil 

recruitment to sites of tissue injury (Scaffidi et al., 2002). In fact, HMGB1 protein is responsible 

for the Mac-1-dependent neutrophil recruitment via the receptor for advanced glycation end 

products (RAGE) present on neutrophils (Scaffidi et al., 2002). Further investigation showed 

that deletion of HMGB-1 diminished the ability of necrotic tissue lysates to induce neutrophil 

migration but did not affect macrophage ability to migrate to HMGB-1 null tissue lysates. The 

HMGB-1 mediated neutrophils recruitment of was not dependent on CXCR4, as the use of 

small molecule inhibitors AMD3100 or neutralizing antibody did not inhibit the recruitment, 

whereas, deletion of RAGE on neutrophils, significantly reduced migration toward necrotic 

tissue lysate (Huebener et al., 2015). 

 However, it has been demonstrated recently that recruitment of neutrophils to tissue leads 

to what called as ‘inflammatory hypoxia’, where neutrophils can themselves evoke hypoxia 

by depleting sites of molecular O2 as result of reactive oxygen or nitrogen species generation 

(Campbell et al., 2014). Like other solid tumours, HNSCC usually develop a hypoxic 

microenvironment along with necrosis and this also imparts a negative prognostic factor and 

induces a more aggressive cancer phenotype (Swartz et al., 2015). Tumour hypoxia is 

developed as a result of the low oxygen tension in tissue, caused by high cellular demand and 

an inadequate supply of oxygen. Clinical studies have shown that the ‘hypoxic tumour volume’ 
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is now is an important prognostic factor in HNSCC (Dunst et al., 2003). Although there are no 

direct evidence that links the presence of neutrophils in hypoxic tissue in HNSCC but a very 

elegant study using a uterine cancer mouse model, showed that neutrophil recruitment 

occurred at early stages of tumour was associated with development of tumour hypoxia 

(Blaisdell et al., 2015). Other studies have shed light into the underlying mechanism of 

neutrophils homing to sites of localized hypoxia and necrosis.  Hypoxic tissue up-regulates the 

expression of vascular endothelial growth factor A (VEGF-A) which induces the trafficking of 

a specific subpopulation of circulating neutrophils that co-express VEGF receptor1 (VEGFR1), 

CXCR4 and Integrin Subunit Alpha 4 (CD49d). Their recruitment to VEGF-A foci was found to 

be dependent upon activation of VEGFR1 on neutrophils. However, when recruitment of the 

newly identified neutrophil population was inhibited by targeting CD49d in an in vivo model, 

not only was the number of neutrophils migrating to site of hypoxia affected significantly but 

also tumour angiogenesis was impaired (Massena et al., 2015). Of note, in response to 

hypoxia human neutrophils can survive longer in vitro and produce anti-apoptotic effect that 

is associated with up-regulation of hypoxia inducible factor HIF-1α  (Walmsley et al., 2005). 

This evidence supports the notion that neutrophils recruited to low oxygen tension area of 

tumours such as hypoxic and necrotic sites are able to live longer and be more likely detected 

than in other areas and potentially are likely to play a crucial role in disease pathogenesis. 

 

To date, among all studies evaluating the role of TANs from the standpoint of their histological 

localization in cancer tissue it has been shown that the presence of neutrophils either in 

intratumoural or peri-tumoural stromal was associated with poor outcome in various 

malignancies. To the best our knowledge, this is the first study identifying the presence of 
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increased number of neutrophils in necrotic areas compared to other tumour sites and 

demonstrates that patients without necrosis that have significantly lower number of 

neutrophils may have a better prognosis.     

When the distribution of TAN in relation to disease stage was assessed, results showed that 

most of the T1-T2 tumours displayed high numbers of neutrophils in most areas, except the 

tumour nest, whereas tumours at T3-T4 exhibited a lower degree of infiltration.  These 

findings contradicted those of Trellakis et al, (2011), Caldeira et al, (2015) who showed that 

patients with advance stage disease displayed a strong neutrophil infiltration (mean of 71) 

when compared to less advanced tumours (mean of 63) (Caldeira et al., 2015, Trellakis et al., 

2011a). Mouse models have been used to evaluate the localization of TAN at early and late 

stage of tumour growth. There was no difference in the percentage of TAN in early compared 

to later stage tumours of Lewis lung xenograft models, whereas a minor increase at later stage 

was observed in AB12 mesothelioma tumours. The distribution of TAN at the early stage was 

found mainly at the periphery of the tumour, while in more advance stage tumours TAN was 

seen in the tumour periphery and the central parts of tumour (Mishalian et al., 2013). 

In summary, this chapter has shown that neutrophils are recruited to HNSCC in large numbers 

and this occurs in both early and late stage tumours. More specifically, they are preferentially 

recruited to certain sites within tumours such as necrotic areas and this is undoubtedly in 

response to specific chemoattractant cues. There is now increasing evidence that TAN play a 

major role in tumour progression (Tazzyman et al., 2011) in many tumours including HNSCC 

by releasing tumour promoting factors or molecules that stimulate tumour angiogenesis. 

However, little is known about the specific molecules that recruit neutrophils form the 

peripheral blood to HNSCC. These are crucial molecules in directing the fate of neutrophils 
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and their discovery could pave the way for the generation of novel therapeutics. The following 

chapter will investigate the likely neutrophil chemoattractants that HNSCC cells generate and 

which of these are the most important for mediating TAN recruitment in HNSCC. 
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Chapter 4: Mechanisms driving neutrophil recruitment into head 

and neck tumours: in vitro analysis using a multi-cellular tumour 

spheroid model 

4.1. Introduction 

Data from the immunohistochemical analysis of HNSCC patient biopsies (Chapter 3) showed 

accumulation of neutrophils (TAN) in HNSCC tissues. This raises the question of precisely how 

neutrophils are recruited to these tumour sites. Two-dimensional (2D) cell culture models lack 

essential components of the complex tumour microenvironment such as tumour hypoxia, 

necrosis, gradients of nutrients and metabolites, and are therefore an undesirable option to 

represent tumours in vivo. The growth of cancer cells in a three-dimensional (3D) context that 

recapitulate the characteristic features of solid a tumour was made by Sutherland et al in 

1970s (Sutherland et al., 1971), and today these models are known as multi-cellular tumour 

spheroids (MCTS). In these models, aggregates of cells have been shown to mimic common 

properties seen in avascular tumours or intervascular micro-regions of solid tumours in situ. 

As MCTS grow to 200-500µm in diameter, they develop a central area of hypoxia as a result 

of insufficient supply of oxygen, nutrients and accumulation of waste products, and this 

further develops into necrosis when MCTS grow beyond 500 µm. In contrast, the well-

oxygenated rim of the MCTS typically contains large numbers of proliferative tumour cells 

similar to that seen in vivo (Sutherland and Durand, 1984, Groebe and Mueller-Klieser, 1991).  

Many research groups have employed the MCTS model in different tumour biology fields and 

there is overwhelming evidence that cells grown in 3D behave differently to those cultured in 

conventional 2D culture. For example, gene expression and protein profiling of cells cultured 
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in 3D was similar to that observed in a clinical sample than the same cells grown in 2D (Kumar 

et al., 2008b). Moreover, generation of a 3D placental vascular model by co-culturing three 

cells components,  (cytotrophoblasts, villous stromal cells and endothelial precursor cells) 

showed that cells cultured in a 3D system had structurally and morphologically similar 

phenotype to tissues from early placenta (Baal et al., 2009). For these reasons MCTS are now 

frequently used as pre-clinical screening systems in drug evaluation for many new anticancer 

therapies. For example, Hirschhaeuser et al used the MCTS system to test Catumaxomab, a 

trifunctional hybrid monoclonal antibody that binds to tumour cells via epithelial cell 

adhesion molecule (EpCAM), CD3 on T cells and antigen-presenting cells via the Fc receptor, 

thereby linking the three cell types together. Addition of Catumaxomab and peripheral blood 

mononuclear cells to an EpCAM-positive MCTS tumour model showed active tumour killing 

in a realistic 3D in vitro model compared to 2D models (Hirschhaeuser et al., 2009). This model 

also demonstrates the usefulness of MCTS when combined with leukocytes and provides an 

opportunity for the use of 3D methodologies to analyse the interaction of leukocytes with 

tumour cells in a realistic tumour microenvironment in vitro. Such models have been used 

previously to analyse the role of neutrophils in lung cancer (Tazzyman et al., 2011) but none 

have yet been established for use in HNSCC research.  

4.2. Aims 

The aim of the experiments outlined in this chapter were to firstly characterise the features 

of a HNSCC cell line grown as an MCTS (growth, morphology, expression of inflammatory 

molecules etc.) and then to use this model to identify specific factors responsible for the 

recruitment of TAN into HNSCC.  

4.3. Methods  
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MCTS were generated by an agarose over-lay technique (2.2.3.1) using a hypopharyngeal 

HNSCC cell line (FaDu). MCTS were grown in culture until day 6 and then analysed for features 

characteristically observed in avascular tumours in vivo (hypoxia, necrosis and proliferation). 

The release of factors by FaDu MCTS into the culture media was identified using a cytokine 

array (2.2.6.1). The optimum conditions for neutrophils isolated (2.2.2.1) from the peripheral 

blood of healthy volunteers and added to the MCTS either with or without stimulation with 

TNF-α (2.2.3.3) for different time points were assessed.  The infiltration of fluorescent-

labelled neutrophils into FaDu MCTS in presence or absence of receptor antagonists or small 

molecular inhibitors was quantified by flow cytometry (2.2.9.4).  

4.4. Results 

4.4.1. Culture of the head and neck cancer cell line FaDu as MCTS 

The use of in vitro 3D culture systems has been proposed as a valuable tool in cancer research 

that holds several advantages in comparison to monolayer cultures. Although tumour 

spheroids have been made from cancer cells of several tumour types, MCTS made from head 

and neck cancer cells have not been fully characterised. MCTS were generated from FaDu 

cells using the agarose overlay technique. A few hours after initial seeding the FaDu cells 

started to aggregate into small clumps in the centre of each well of the 96-well plate and 

began to adhere to one another. The cells formed a characteristic spherical shape over the 

first 24 hours with an average diameter of 694 μm (Fig. 4.1A). Over the next three days in 

culture the MCTS developed a uniform appearance and increased in size reaching an average 

of 731 μm in diameter at day 3 with very few cells seen unattached to the spheroid border. 

When observed using light microscopy, necrosis could be seen at day 3 (Fig. 4.1-A) as a darker 

area at centre of the growing spheroid and this continued to enlarge as the size of MCTS 
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increased in subsequent days of culture (Figure 4.1A). By day 6 the FaDu MCTS had reached 

a mean diameter of 937 μm and the size gradually increased to reach an average diameter of 

1482 μm by day 13. MCTS growth slowed by day 14 (1457 μm) to reach a maximum diameter 

of 1533 μm at day 15 (Fig. 4.1B). As the MCTS further enlarges the necrotic centre increases 

and the viable rim becomes smaller.  

 Upon histological analysis, the darker area at the centre of FaDu MCTS observed from day 3 

was confirmed as necrosis surrounded by a viable rim of tumour cells. Haematoxylin and eosin 

stained sections showed an expands area of necrosis over time to reach up to 90% of the 

diameter of the whole spheroid by day 15 with a corresponding shrinkage of the outer viable 

rim. As a result of the larger necrotic core, the spheroids become more fragile during the 

histological processing (Fig. 4.2)  
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Figure 4.1 Pharynx SCC cancer cell grows as MCTS in culture (A) Light microscopy 

images of FaDu MCTS in culture over a 15-day period (10x magnification), (B) 

growth curve of FaDu spheroids shows the mean diameter measurements from 

six spheroids ± SD. Scale bar =200µm (C) The diameter of the necrotic core (light 

blue) and the viable rim (dark blue) from FaDu MCTS were measured under light 

microscopy using Axiovision software. 

Figure 4.2 Representative images of haematoxylin and eosin-stained sections of FaDu 

MCTS showing necrotic centre and viable tumour cell rim at day 3 (A), day 6 (B) day 8 

(C), day 10 (D) day 13 (E) and day 15 (F). Scale bar = 200µm   

 ( C ) 
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4.4.2. FaDu MCTS as a model of avascular HNSCC tumours 

Tissue necrosis and hypoxia are characteristic features seen in most of solid tumours. The 

oxygen tension expressed as partial pressure of oxygen (pO2) within primary HNSCC tumour 

was measured 8.6 mmHg (Becker et al., 2002), whereas advance stage SCC was found to have 

even lower oxygen tension as low as ≤ 2.5mmHg which associated with poor prognosis 

(Nordsmark and Overgaard, 2000). Light microscopy suggests the presence of necrosis at the 

central area of FaDu MTCS from day 3. This was confirmed by histological analysis, which 

showed a necrotic focus at the centre of spheroid and tissue architecture breakdown that was 

the same as observed clinically (Fig. 4.3-A&B).  The presence of hypoxia within MCTS was 

measured using the hypoxia-sensitive dye PIMO (Raleigh et al., 1991). MCTS at day 6 were 

selected as these developed a necrotic core but still contain a large viable rim (295 µm) (Figure 

4.2-B). Fluorescence microscopy of PIMO-stained FaDu MCTS showed strong red fluorescence 

staining in the centre of the spheroid that then slightly decreased within the viable rim 

towards the periphery (Fig. 4.3-C). The presence of hypoxia around a necrotic area observed 
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in the MCTS was similar to that observed in HNSCC (Fig. 4.3-D).  Figure 4.3 shows proliferating 

cancer cells (Ki-67 positive cells) that were located in outermost part of the spheroid (Fig. 4.3-

E); an observation that was in line with the distribution of Ki-67 staining observed in a patient 

biopsy of HNSCC (Fig. 4.3-F).  
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4.4.3. Neutrophil infiltration into FaDu MCTS  

HNSCC section  

H&E 

PIMO 

Ki67 

MCTS 

Figure 4.3 Characterisation of in vitro MCTS as a model of avascular HNSCC tumours.  FaDu MCTS 

(A) and HNSCC tumour island (B) showing necrotic centres.  FaDu MCTS stained with pimonidazole 

(C) to demonstrate hypoxia as is commonly observed in HNSCC in vivo (D). Ki67-positively stained 

proliferating cancer cells (Brown) at the well-oxygenated periphery of FaDu MCTS (E) and a human 

biopsy tumour island (F).  Scale bar = 200. Patient biopsy slides were kindly provided by Dr Helen 

Colley. 
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To assess the ability of neutrophils isolated from peripheral blood to infiltrate HNSCC in vitro 

fluorescently-labelled neutrophils were co-cultured with FaDu MCTS (for 2, 5 and 20 h) in the 

absence or presence of 50 ng/ml recombinant human TNF-α (for 5 or 18 h) and infiltration 

measured by flow cytometric analysis of dispersed MCTS (as described in Fig. 4.19-A). TNF-α 

was used as a stimulant because HNSCC are known to be within a pro-inflammatory micro-

environment (Soylu et al., 1994) and this cytokine also regulates expression of adhesion 

molecule intercellular adhesion molecule-1 (ICAM-1) on epithelial cells (Burke-Gaffney and 

Hellewell, 1996).  Flow cytometric analysis showed that neutrophils infiltrated tumours in the 

absence of a pro-inflammatory stimuli but this was significantly (p<0.05) increased by addition 

of TNF-α (Fig. 4.4-B).  In fact, neutrophil infiltration for 2 h was markedly increased upon 

stimulation of FaDu MCTS with TNF-α for 5 h (10.8%) and 18 h (14.5%) compared to un-

stimulated FaDu spheroids (1.3%). Neutrophil infiltration after 5 h co-culture with FaDu MCTS 

was significantly increased after 5 h prior stimulation with TNF-α, reaching a peak of 15% 

compared to un-stimulated FaDu spheroids (2.1%). However, stimulation of MCTS with TNF-

α for 18 h resulted in a reduction in the number of infiltrated neutrophils (11.9%) after 5 h. 

Eighteen hours incubation of neutrophils with FaDu MCTS stimulated for either 5 or 18 h 

showed a reduced level of neutrophil infiltration reaching 10.4% and 11.1% respectively, 

compared to un-stimulated FaDu MCTS (2.6%). A similar trend was observed in all 

experiments (n= 4) although the infiltration rate varied slightly from donor to donor (Fig. 4.4-

B).  
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( B )  

Figure 4.4 Neutrophil infiltration into TNF-α-stimulated FaDu MCTS. (A) FaDu MCTS were 

incubated with fluorescently labelled neutrophils and number of infiltrated neutrophils was 

assessed by flow cytometric analysis.  Dot plot shows the gating around the fluorescently 

labelled neutrophils (FL-1) and the number of neutrophils in FaDu MCTS measured as % 

infiltration. (B) Bar chart of flow cytometric analysis shows stimulation of MCTS with TNF-α leads 

to significant increase of neutrophil infiltration into MCTS over time. One-way ANOVA was used 

to compute the difference in neutrophils filtration after with or without TNF-α stimulation. **** 

P< 0.0001. Data are mean of 3 FaDu MCTS per time point ± SD, and are representative of n=4 

independent experiment.  
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Neutrophil infiltration into FaDu MCTS at selected time points was confirmed by analysing 

frozen (Fig. 4.5A&B) and formalin-fixed, paraffin wax-embedded sections by 

immunohistochemistry (Fig. 4.5-C & D). These data show that neutrophil infiltration into 

MCTS is maximal under pro-inflammatory conditions upon treatment with TNF-α for 5 h 

followed by neutrophil infiltration for 5 h. Since neutrophils are recruited to tumours in vivo 

and MCTS in vitro, it was reasoned that this was due to increased expression of neutrophil 

specific chemotactic factors. Thus, the presence of chemo-attractants in the conditioned 

medium of MCTS was investigated.   

4.4.4. FaDu MCTS secrete neutrophil chemoattractants 

( A )                                                                       ( B )                       

 

 

 

 

 

 

 

( C )                                                                        ( D ) 

Figure 4.5 Neutrophil infiltration into FaDu MCTS. (A) Image of 6µM frozen section of 

day 6 FaDu MCTS showing infiltrated of MCTS with green fluorescently labelled (red 

arrows) neutrophils for 5 h (B) or FaDu MCTS alone. FaDu MCTS were immuno-stained 

for the neutrophil marker CD66b (Red, black arrows; (C) compared to control MCTS (D).   
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To identify factors present in FaDu MCTS responsible for neutrophil infiltration, FaDu MCTS 

were grown until day 6, and were either unstimulated or stimulated with TNF-α in the 

absence of presence of neutrophils and their conditioned medium collected after 5 h and 

analysed by multiplex cytokine array followed by densitometry (section 2.2.6.1). Among 36 

cytokines tested, data shows that unstimulated FaDu MCTS released several well-known 

neutrophil chemokines including CXCL-1 (Gro-α), CXCL-8 (IL-8) and CCL5 (RANTES) and these 

chemokines, particularly CXCL8, were increased by treatment with TNF-α with no further 

increase upon the addition of neutrophils. However, in both unstimulated and stimulated 

MCTS the most abundant protein released was Macrophage migration inhibitory factor (MIF). 

Other molecules released include IL-6, IL-23, IL-1 receptor antagonist (IL-1ra), INFγ and 

SerpinE1 also known as plasminogen activator inhibitor type-1 (PAI-1) (Fig. 4.6 and 4.7).   
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( A ) ( B ) ( C ) ( D ) 

Figure 4.6 Cytokine array analysis of FaDu MCTS conditioned media at day 6 (A) Control 

media alone (RPMI), (B) conditioned media from FaDu MCTS, (C) conditioned media from 

FaDu MCTS stimulated with TNF-α, (D) conditioned media from FaDu MCTS stimulated 

with TNF-α and infiltrated with neutrophils for 5 h. Each cytokine is duplicated with the 

one dot directly above the other and six positive controls can be seen, two at each upper 

corner of the membrane and two in the lower left corner. Each colured box highlights 

detected chemoattractant, from top left to bottom right are: RANTES (CCL5), IL-1ra (IL-

1F3), TNF- α, GRO-α (CXCL1), MIF, IL-6, IL-8 (CXCL8), SerpinE1 (PAI-1). A list of the 

cytokines detected by the arrays is provided in appendix II. 
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Immunohistochemical analysis was then performed to confirm the presence of the most 

abundant cytokines detected from the cytokine array; MIF and CXCL1 in sections of FaDu 

MCTS. Formalin fixed paraffin-wax embedded (FFPE) sections of day 6 spheroid were stained 

for MIF and CXCL1 according to the methods described in section 2.2.7.4. Microscopic analysis 

demonstrated expression of MIF protein throughout the spheroid with slightly increased 

expression around the necrotic centre (Fig. 4.8).  Similarly, expression of CXCL1 was observed 

throughout the spheroid confirming the array data (Fig. 4.8)   

 

Figure 4.7 Densitometry analysis of cytokine array data showing the difference in 

the level of molecules in conditioned media from FaDu MCTS, conditioned media 

from FaDu MCTS stimulated with TNF-α, conditioned media from FaDu MCTS 

stimulated with TNF-α and infiltrated with neutrophils for 5 hours compared to 

control media alone. 
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4.4.5. Expression of ICAM-1 on FaDu cells  

To be recruited to the tumour site, neutrophils must first leave the general circulation by 

extravasation up a chemoattractant gradient into tumour tissue. Once across the 

endothelium, neutrophils enter the tumour using the adhesion molecule ICAM-1 expressed 

on the epithelial cell surface and the integrin CD11a/CD18 on the neutrophil surface (Wu et 

al, 2001). As well as increased chemoattractants, the migration of neutrophils into MCTS may 

also require increased ICAM-1 expression. Therefore, the level of ICAM -1 expressed on the 

cell surface of FaDu cells cultured as monolayers or MCTS was tested using flow cytometry in 

the absence or presence of 50 ng/ml recombinant human TNF-α for 5 and 18 h. There was 

not a significant difference in ICAM-1 expression on the cell surface of FaDu cell monolayer 

after 5 h stimulation with TNF-α (median fluorescence 9.22) compared to un-stimulated 

controls (median fluorescence 6.3). However, the level of ICAM-1 was markedly up-regulated 

upon 18 h TNF-α stimulation (median fluorescence 36.85) (Fig. 4.9-A). Day 6 FaDu MCTS were 

disaggregated, labelled with antibodies raised against ICAM-1 or an isotype-matched IgG 

antibody (negative control) and then analysed by flow cytometry. After 5 h stimulation with 

IgG MIF IgG MIF CXCL-1 

Figure 4.8 Immunohistochemical identification of MIF and CXCL1 expression in FaDu MCTS. 

6µM FFPE FaDu MCTS were immunostained using IgG control, biotin-conjugated monoclonal 

anti-human MIF antibody or anti-human CXCL1 antibody. Scale bar = 100 µm. 
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TNF-α, the expression level of ICAM-1 was not significantly different (median fluorescence of 

62) when compared to un-stimulated FaDu MCTS (median fluorescence of 78). However, the 

histogram plot for 18 h TNF-α stimulated FaDu MCTS showed a significantly (p<0.05) high 

level of ICAM-1 expression (median fluorescence of 97) and the presence of another 

population of cells expressing low levels of ICAM-1 (Fig. 4.9-B). This could be due cells at the 

outer surface of the spheroid encountering high levels of TNF-α and therefore expressing high 

levels of ICAM-1, whilst those on the inside of spheroid may not directly experience contact 

with TNF-α and express low levels of ICAM-1. Taken together these data suggest that when 

experiencing pro-inflammatory conditions FaDu MCTS increase expression of chemokines and 

adhesion molecules that are likely to be the reason for the increased neutrophil infiltration.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.4.6. Neutrophil migration to MCTS chemoattractants 

( A ) FaDu Monolayer ( B ) FaDu MCTS 

Figure 4.9 Flow cytometric analysis of ICAM-1 expression on FaDu monolayers and 

MCTS. Histogram overlay showing IgG negative control (black filled histogram), and 

ICAM-1 of un-stimulated FaDu (green), TNF-α stimulated 5 h FaDu monolayers and MCTS 

for 5 (red) and 18 h (blue) significantly increased the expression of ICAM-1 in FaDu 

monolayers (A) and FaDu MCTS (B). 
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The data from the cytokine array showed that FaDu MCTS express known neutrophil 

chemoattractants and MIF at high levels. Neutrophil migration towards recombinant forms 

of these proteins was performed (as described in section 2.2.4.1) to ensure their 

chemoattractant abilities and to test if MIF was able to act as a chemoattractant. In these 

experiments the bacterial-derived peptide, N-formyl-methionine-leucine-phenylalanine 

(fMLP) (which binds to the G-protein coupled seven-transmembrane formyl peptide receptor 

on neutrophils). Migration towards fMLP and CXCL8 yielded a typical bell-shaped curve with 

a peak of migration at 1 nM for both fMLP and CXCL8 (Fig. 4.10). Migration toward CXCL1 was 

dose-dependent up to 1000 nM, while migration towards CXCL5 peaked at 100 nM (Fig. 4.10). 

Interestingly, neutrophils migrated towards MIF with a classical bell-shaped response with 

peak migration at 10 nM. These data show that human neutrophils migrate towards classical 

neutrophil chemokines (CXCL8, CXCL1, CXCL5) as expected but also specifically migrate 

towards MIF.  

 

 

 

 

 

 

 

 

 

4.4.7. Chemokine receptor expression on neutrophils form whole blood  
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Next the cell surface expression of chemokine receptors on neutrophils (CXCR1 and CXCR2) 

was examined by flow cytometry. Although MIF was first described in the mid-1960s, the first 

identified cell surface receptor for MIF (CD74) was only discovered in 2003 (Leng et al., 2003). 

However, Dumitru et al (2011) showed that neutrophils do not express CD74, suggesting that 

MIF acts and functions through a different receptor. Molecular and cell transfection studies 

have suggested that MIF may bind to CXCR2, CXCR4 and/or CD44 (Bernhagen et al., 2007). 

Therefore, in addition to CXCR1 and CXCR2, expression of CXCR4 and CD44 was also measured 

on CD14-positive monocytes (Griffin et al., 1981), CD3-positive T cells (van Dongen et al., 

1987),  as well as CD66b-positive neutrophils (Torsteinsdóttir et al., 1999). 

Three distinct leukocyte populations were detected by flow cytometry based on size (forward 

scatter FSC) and granularity (side scatter SSC) from whole blood samples from healthy 

volunteers (Fig. 4.11). The most abundant cell population (high cell granularity, gated green, 

CD66b-positive) represents neutrophils, while the red CD14-positive region represents 

monocytes and yellow CD3-positive region represents lymphocytes. The expression of CXCR1, 

CXCR2, CXCR4 and CD44 in each of the three populations is represented in figure 4-12. Data 

were normalised to isotype control and are presented as median  fluorescent intensity 

(Fig.4.12). As expected, the expression of CD66b was highest on neutrophils (17036), when 

compared to monocytes and lymphocytes (7246 and 2208, respectively). CD14 was highly 

expressed on monocytes (44329) in comparison to neutrophils (8009) and lymphocytes 

(3369). Neutrophils were found to express abundant cell surface levels of CXCR1 (30289), and 

slightly less but still marked amounts of CXCR2 (11157), CXCR4 (6752) and CD44 (11617).  On 

the other hand, monocytes were found to express high levels of CD44 (39834) and abundant 

CXCR4 (11985), followed by CXCR2 (9443) with lower expression of CXCR1 (3215). CD3-
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positive T cells expressed low levels of CXCR1 (2793) but moderate levels of both CXCR2 and 

CXCR4 (3673 and 4871 respectively) as well as high levels of CD44 (33077).  These data show 

that neutrophils (and monocytes) express receptors for not only classical neutrophil 

chemokine but also MIF and these data provide an explanation as to why MIF caused 

neutrophil chemotaxis in vitro previously. 
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Figure 4.11 Flow cytometric analysis of receptor expression on human whole blood leukocyte.  

Dot plots show three populations (neutrophils, monocytes, lymphocytes) based on forward 

scatter (FSC) and side scatter (SSC) for size and granularity respectively from whole blood sample 

stained as describe in 2.2.9.5. CD66b/Neutrophils, CD14/Monocyte, CD3/T-Lymphocyte were 

used as specific cell markers for gating and histograms of CXCR1, CXCR2, CXCR4, CD44 surface 

expression for each of the three were compared to isotype control (black line). 
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4.4.8.  MIF is expressed at higher levels by FaDu MCTS than monolayer cultures 

0
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Figure 4.12 Expression of cell surface receptors on whole blood leukocyte populations by flow 

cytometry. Bar chart summarising the expression of CD66b, CD14 CXCR1, CXCR2, CXCR4 and 

CD44 on neutrophils, monocytes and T lymphocytes. Data are normalised median fluorescence 

intensity (nMFI) ± SEM and are representative of 3 patient samples (n=3). 
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Previous cytokine array densitometry and IHC data showed that MIF is highly expressed by 

FaDu MCTS but these methods are not fully quantitative. Therefore, MIF levels were assessed 

in conditioned medium from 2D and 3D FaDu culture by ELISA. FaDu were seeded at 

1×106cell/ml into T25 flask and allowed to adhere for overnight, then un-attached cell were 

removed and replaced media with serum free media and incubated for 24hours before 

collecting the CM for analysis. FaDu MCTS CM were generated as previously describe at 

2.2.3.2 and collected after 24hours incubation.  Strikingly, ELISA analysis revealed that levels 

of MIF was significantly (p<0.0001) elevated when FaDu were cultured as MCTS compared to 

2D monolayer cultures (576 pg/ml to 89 pg/ml).  A slight but not significant increase in 

expression of MIF was detected upon TNF-α-stimulation (637pg/ml) and MCTS infiltration 

with neutrophils (716pg/ml). Neutrophils secrete very low levels of MIF (56pg/ml) (Fig. 4.13-

B). 
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Figure 4.13 Quantitative measurement of MIF from conditioned media collected from FaDu 

cultured as monolayers or MCTS. (A) t test was used to compare the statistical significance of 

MIF protein level in serum free CM collected from FaDu grown in monolayer and Day 6 FaDu 

MCTS showed a significant increase in level of MIF protein (p<0.0001) in MCTS model (B) 

Stimulation with TNF-α or co-culture with neutrophils dose not stimulate the production of 

MIF from MCTS, while CM collected from NQ detected very low amounts of MIF release into 

media    
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4.4.9. MIF mRNA level in a panel of HNSCC cell line 

Thus far, this study has focussed on the FaDu cell line. However, to ascertain whether the MIF 

high expression observed in the FaDu ELISA data is a global head and neck cancer cell response, 

a panel of normal oral keratinocyte (NOK) and different types of HNSCC (tongue, HPV-, HPV+) 

were screened for gene expression of MIF. All the cells used in this analysis were cultured as 

monolayers as not all cell types can form MCTS.  Quantitative PCR demonstrated that 

although MIF expression was observed in NOK, MIF overexpression was detected in a panel 

of HNSCC.  Of note, the expression level of MIF differed between the tested cell lines, with 

the highest level detected in SCC89 (3), SSC72 (2.2), T5 (1.8), SCC2 (1.7), SCC4 (1.4) with fold 

increases compared to NOK. Surprisingly, the mRNA level of MIF detected from FaDu (0.9), 

SCC90 (0.7) and H357 (0.45) was low and almost the same as NOK (Fig. 4.14-A) showing that 

other cancer cells lines express more MIF than FaDu and that high MIF expression is a 

widespread response. HPV-negative cells generally displayed higher MIF expression levels 

than HPV-positive cells (Fig. 4.14-B) and expression in tongue cancer cells was varied with 2 

out of 3 cell lines showing high expression.  
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4.4.10. Hypoxia upregulates the expression of MIF in vitro 
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The data provided previously shows that MIF mRNA is highly expressed by HNSCC. In addition, 

IHC studies showed higher MIF expression around the necrotic centre of the MCTS and the 

results in Chapter 3 show that neutrophils are more abundant in the hypoxic/necrotic centres 

of tumours. Taken together these data suggest that expression of MIF may be regulated by 

hypoxia. Indeed, increased expression of MIF in response to hypoxia has been demonstrated 

in other cancers (Larsen et al., 2008). Therefore, a panel of HNSCC cells were subjected to low 

oxygen concentration (0.5% O2) and gene expression of MIF analysed by qPCR. VEGF, a 

cytokine known to be upregulated by hypoxia, was used as a positive control and β2 

microglobulin (B2M) was selected as a housekeeping gene for normalisation of gene 

expression as this gene has been found to be unaffected by hypoxia (Baddela et al., 2014). 

The gene expression for MIF mRNA was generally up-regulated in cancer cells subjected to 

hypoxia when compared to cells cultured in normoxic conditions, but no significant affect was 

observed in normal OK or immortalize NOK. In contrast, a significant increase of MIF mRNA 

expression was observed in H357 (P=0.0147) SCC2 (P= 0.0228) in compare to normoxic 

condition. Even more upregulation of MIF was observed in SCC4, SCC72 and SCC90 (P <0.0001) 

by hypoxia, while no significant difference was detected in FaDu (Fig. 4.15-A). Hypoxia is the 

main regulator of VEGF production in many cells (Buchler et al., 2003) and this was the case 

for all head and neck cells tested in the panel. As expected, the upregulation of mRNA for 

VEGF was detected in most of cancer cells, except H357, when culture under low oxygen 

tension. Highest level of hypoxic-induced VEGF detected in SCC4, SCC90 (P <0.0001), T5 (P= 

0.0140) FaDu (P=0.0045), SCC72 (P=0.0216), SCC89 (P=0.0061) and SCC2 (P= 0.0054) 

compared to cells cultured under normoxic conditions. Unlike MIF, the levels of VEGF 

detected from FaDu cells cultured under hypoxic conditions was significantly increase (Fig. 
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4.15-B), suggesting that MIF upregulation in FaDu may not be as responsive to hypoxia as 

other cancer cells.   
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Figure 4.15 Effect of hypoxia on expression of MIF on a panel of HNSCC. Cells were 

subjected to hypoxic (0.5% O2) or normoxic conditions (21% O2) overnight. The gene 

expression change in each of the tested cell were compared to normoxic cultured cells and 

expressed as fold change in gene expression. Multiple comparison using two-way ANOVA 

test was used to calculate the significant differences. Data are mean ± SEM from three 

independent experiments. * P˂0.05, ** P˂0.005, ***P˂0.0001 
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4.4.11. FaDu cells secrete more chemoattractants when cultured under hypoxic 

conditions. 

Results from the cytokine array showed that FaDu cells produce classical neutrophil 

chemokines (CXCL1 and CXCL8) and MIF. Moreover, MIF gene expression is increased by 

hypoxia and more neutrophils were observed in hypoxic/necrotic areas of HNSCC tumours. 

Therefore, it was reasoned that hypoxic HNSCC cells would produce more chemotactic factors 

and so have increased neutrophil chemotactic capacity. This was assessed by measuring the 

migration of freshly isolated human neutrophils towards serum-free conditioned medium 

generated from FaDu monolayers cultured under normoxic or hypoxic conditions for 24 h. 

The results shown in figure 4.16 indicate that conditioned medium from FaDu cultured in 

normoxic conditioned is chemotactic for neutrophils. However, a significant increase in level 

of neutrophil migration was observed with the conditioned medium from FaDu cultured 

under hypoxic conditions (0.5% O2), showing approximately 2.6 fold increase in neutrophil 

chemotaxis.       
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4.4.12. MIF protein level of in HNSCC tissue sections 

The data presented in this chapter so far has focussed on expression of MIF by HNSCC cell 

lines, in particular FaDu cells. To examine whether MIF over-expression occurs in HNSCC 

cancer, a screen of MIF expression in human HNSCC cancer tissue specimens was conducted 

by immunohistochemically analysis and compared to expression in healthy oral mucosa. The 

intensity of MIF stain was evaluated using a semi-quantitative quick scoring method 

(described in section 2.2.7.5). Low expression of MIF was detected in the basal layer of the 

stratified squamous epithelium in normal tissue (Fig. 4.17- A & B).  The staining intensity was 

significantly (p<0.05) increased in HNSCC epithelium, with abundant expression 

predominantly localized at the surface of tumour (Fig. 4.17- C & D).  In some of the cases 
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Figure 4.16 Migration of neutrophils toward FaDu condition media. Flow cytometric analysis 

of neutrophils migrated towards FaDu conditioned medium collected under normoxic (21% O2) 

or hypoxic (0.5% O2) conditions. The data is expressed as fold change in neutrophil migration 

compared to control media. One –way ANOVA show significant (*p<0.05) increase in migration 

towards hypoxic condition media was observed compared to normoxic conditioned medium or 

medium alone. Data are mean ± SD, n=3 independent experiments.    
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expression of MIF was variable between surface and deeper SCC although statistical analysis 

showed that that there were no significant differences.   
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n=9 

n=17 

n=8 

( E ) 

Figure 4.17 MIF protein expression in a cohort of HNSCC tissue biopsies. Paraffin-embedded 

samples from normal and HNSCC were stained with anti-MIF antibody and stain intensity 

evaluated using a quick-score method. Normal tissue displayed low expression of MIF in the basal 

layer (A and B), while in HNSCC epithelium the level of MIF protein was found to be significantly 

higher in surface epithelium (C and D) and moderate to low expression was detected in the deeper 

cancer cells (SCC). One-way ANOVA test was used to compare the statistical significance of the 

scores of normal and cancer tissue (E). The number of cases in each category is shown in E.        
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4.4.13. Effect of MIF small molecules inhibitor ISO-1 on viability of FaDu  

Neutrophils migrate toward the conditioned medium from FaDu and recombinant 

chemoattractants in Boyden chamber chemotaxis assays. In addition, it was found that FaDu 

MCTS secrete chemoattractants and recruit neutrophils but it is not known which 

chemoattractants or neutrophil receptors are the most important in this process. One way to 

determine this is to block chemoattractant receptors expressed by neutrophils or inhibit 

chemoattractant activity. Small molecule inhibitors of CXCR2 (AZ-767, SB265610) and CXCR4 

(AMD3100) are well-characterised in terms of toxicity and potency (Tazzyman et al., 2011), 

whereas the toxicity of (S,R)-3-(4-hydroxyphenyl)-4,5-dihydro-5-isoxasole acetic acid methyl 

ester (ISO-1), a specific MIF inhibitor, have not previously been determined. The cytotoxic 

effect of ISO-1 on FaDu cells was assessed using MTT viability assay and compared to vehicle 

control (DMSO).  The concentration of ISO-1 that was toxic to 50% FaDu cells (IC50=250 µM) 

was calculated, by plotting the percentage of viable cells against log (concentration, µM) of 

ISO-1. Among the tested concentrations, 500 and 100 µM were found to be the most cytotoxic 

concentration at 24, 48, and particularly 72 h compared to the DMSO control (Fig. 4.18). 

Therefore, a treatment of 50 µM and was selected for the infiltration experiment as it did not 

show toxicity to cells at 24, 48, 72 hours.   
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4.4.14. Effect of ISO-1 on neutrophil viability and apoptosis  

( A ) 

( B ) 

Figure 4.18 Assessment of cell viability of FaDu in response exposure to increasing 

concentrations of ISO-1.   FaDu monolayer were treated with ISO-1 (0.05, 0.5, 5, 50, 500 or 5000 

μM) or it vehicle control DMSO for 24 h. (A) The IC50 of ISO-1 on FaDu was calculated by plotting 

the percentage of viable cells against log (μM) after 24hr ISO-1 treatment. Data are 

representative of 3 independent experiments. (B) ISO-1 was observed to be cytotoxic at higher 

concentrations at 24, 48 and 72 h.  Data are mean ± SEM, n = 3. ** P˂0.005, ***P˂0.0001 
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To determine whether ISO-1 was cytotoxic to neutrophils, freshly isolated neutrophils were 

treated with increasing concentrations of ISO-1 or DMSO for 24 h. The cells were then 

analysed for markers of apoptosis and necrosis using Annexin-V and propidium iodide (PI) by 

flow cytometric analysis (described in section 2.2.9.6). After 24 h 75.1% of untreated 

neutrophils were viable, less than 20% undergo natural apoptosis and 6.3% of the cell 

population was necrotic. The use of 5000 μM ISO-1 was very cytotoxic and ISO-1 treated cells 

displayed 73% necrosis, 11% apoptosis and only 14% viability. However, similar findings were 

observed with the DMSO vehicle control where 87% of cells were necrotic, 7% apoptotic and 

only 1% viable cells were detected, suggesting that the high concentration of vehicle could be 

responsible for the loss of viability. Treatment with 500 μM ISO-1 had negligible effect on 

necrosis (5%) but induced around 25% of apoptosis in cells with 68% of cells being viable. Use 

of drug concentrations ranging between (0.05 to 50 μM) had little effect on neutrophils, with 

almost 70% of cells being viable, approximately 25% apoptotic (not significantly different from 

untreated cells) and less than 5% of population was necrotic (Fig. 4.19). These data showed 

that use of ISO-1 at 50 μM is not significantly toxic and so was used in future experiments.   
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 ( A ) 

Figure 4.19 Flow cytometric analysis of apoptosis and necrosis induced in neutrophils by 

exposure to increasing concentrations of ISO-1.  Freshly isolated neutrophils were treated 

with ISO-1 (0.05, 0.5, 5, 50, 500 or 5000 μM) or it vehicle control DMSO for 24 hours. Cells 

were stained with Annexin V-FITC and PI to determine the level of viability (A), apoptosis (B) 

and necrosis (C). Data are representative of 3 pooled experiments from individual donors. 

Data are mean ± SEM. 
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4.4.15. Infiltration of neutrophils into FaDu MCTS is blocked using specific 

inhibitors. 

Small molecule inhibitors for CXCR2 (AZ767 and SB265610), CXCR4 (AMD3100) and MIF (ISO-

1) were used to determine the importance of these molecules in directing neutrophil 

migration into FaDu MCTS.  Neutrophils from healthy volunteers were pre-incubated with 

saturating concentrations of AZ767 25nM, (Tazzyman et al., 2011), SB265610 100nM, 

(Bradley et al., 2009) or 500ng/ml AMD3100 (Bot et al., 2014) for 1 h to block their respective 

receptors, or FaDu MCTS cultures were incubated with 50 μM ISO-1 for 1 h. DMSO was used 

as a vehicle control.  Untreated FaDu spheroids were then incubated with receptor-blocked 

neutrophils for 5 h, whilst ISO-1 treated FaDu were incubated with untreated neutrophils for 

5 h. Flow cytometric analysis of disaggregated FaDu MCTS was carried out as described in 

section 2.2.4.3 to determine the number of infiltrated neutrophils in treated and control 

MCTS. Neutrophil infiltration into the vehicle control group was an average  19%, whereas in 

the AMD3100 (CXCR4 antagonist)-treated group, neutrophil infiltration was significantly 

reduced to an average  6% infiltration. Treatment with either CXCR2 antagonist (AZ-767 and 

SB265610) caused a significant reduction in neutrophil infiltration up to approximately 5%. 

Moreover, inhibition of neutrophil infiltration using the MIF specific inhibitor (ISO-1) was 

most pronounced at 2.5% (Fig. 4.20).  
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Figure 4.20 Flow cytometric analysis of neutrophil infiltration into FaDu MCTS. Neutrophils 

pre-incubated with CXCR2 antagonist (AZ-10397767 or SB-265610) CXCR4 antagonist 

(AMD3100) and the MIF inhibitor (ISO-1) reduced neutrophil migration into FaDu MCTS 

compared to vehicle control. One-way ANOVA test was used to compare the statistical 

significance of neutrophils infiltration (*P<0.05, **0.01, ***0.001). Data is pooled from six 

individual experiments as mean % of Infiltration ± SEM. 
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4.4.16. Infiltration of THP-1 monocytes into FaDu MCTS is blocked using 

specific inhibitors. 

Previous data showed that human monocytes also express receptors for CXCR2 and CXCR4. 

Moreover, increased numbers of macrophages have been reported in HNSCC with numbers 

correlating to poor prognosis (Fujii et al., 2012). It was therefore interesting to determine if 

blocking these receptors or ISO-1 would inhibit recruitment of monocytes into FaDu HNSCC. 

The human monocytic cell line, THP-1 (Qin, 2012), is the most used cell line to study 

monocytes and macrophages. THP-1 cells are positive for CXCR4 (Schols et al., 1997) and 

CXCR2 (Vogiatzi et al., 2013) and so were used in this study using the same protocol as 

described previously for neutrophils. Untreated THP-1 infiltration into FaDu MCTS at this time 

period was slightly lower than for neutrophils at 13%. THP-1 infiltration was significantly 

inhibited using the CXCR4 antagonist AMD3100 (5.5%). Surprisingly, the use of the CXCR2 

antagonist, AZ-767 showed no significant inhibition of THP-1 infiltration, whereas SB265610 

showed a small but significant reduction in infiltration (8%).  Interestingly, the use of ISO-1 

showed the greatest reduction on THP-1 infiltration to just 3% (Fig. 4.21). 
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4.4. Discussion  

Figure 4.21 Flow cytometric analysis of THP-1 monocyte infiltration into FaDu MCTS. THP-1 

cells were pre-incubated with CXCR2 antagonist (AZ-10397767 or SB-265610), CXCR4 

antagonist (AMD3100) or FaDu MCTS treated with the MIF inhibitor (ISO-1). One-way ANOVA 

test was used to compare the statistical significance, showed CXCR4 and ISO-1 significantly 

reduced monocyte migration into FaDu MCTS compared to vehicle control (*P<0.05, **0.01, 

***0.001). Data pooled from three individual experiments as mean % of Infiltration ± SEM.   
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FaDu MCTS formation was generated using the liquid overlay method as previously described 

(Carlsson and Yuhas, 1984). The use of MTCS gives advantages over monolayer culture as it is 

more close to the in vivo situation. The multi-cellular, 3D MCTS structures enable MCTS to 

replicate various micro-environmental aspects, such as the oxygen diffusion, glucose, lactate 

and pH gradients, and the distribution of proliferation/quiescent cells within the spheroid 

(Sutherland and Durand, 1984). When tumour MCTS grow larger than 500 µm in diameter, 

they are frequently characterized by hypoxic regions and necrotic centres, therefore they 

resemble avascular tumour in vivo (Hirschhaeuser et al., 2010). The presence of hypoxia 

around a necrotic area observed in the MCTS was similar to that observed in HNSCC tissue 

section.  This is due to failure of oxygen and nutrition delivery beyond the distance of 100-

150μm  (Thomlinson and Gray, 1955). 

Although the use of MCTS in cancer research is widespread there has been little use of these 

models in studies of HNSCC.  MCTS co-culture approaches have been utilised in the field of 

oral cancer to investigate the tumour micro-environment or in tumour therapy related work. 

For example, the formation of tumour (UM-SCC 14C)/fibroblast mixed MCTS were utilised to 

study the effect of anti-EGFR mAb on leukocyte migration towards HNSCC (Hoffmann et al., 

2009). Hirschhaeuser et al, (2009) used FaDu MCTS to test the mode of action and 

effectiveness of catumaxomab in vitro.  In comparison to the results presented here, the FaDu 

MCTS used in their study grew slower, even though they were plated at the same seeding 

density. In this study data generated from growth curves show that after 24 h FaDu cells 

aggregated together and formed a spheroid with average size of 694 µm and these continued 

to grow to reach approximately 1413 µm by day 13 (Hirschhaeuser et al., 2009). Whereas, 

Hirschhaeuser (2009) FaDu spheroids formed after 2 to 4 days, and these reached a diameter 
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of about 900 µm after a week of incubation and then slightly decreased in size but stayed 

over 400 µm the size of the day 0 MCTS. These differences may be due to the culture medium, 

supplements or culture conditions used. The FaDu used in this study were verified using STR 

analysis to rule out cell line contamination. The data provided in this chapter clearly show 

that FaDu MCTS display many of the micro-environmental features on an in vivo HNSCC 

tumour are good in vitro models to represent these cancers. FaDu MCTS have also been used 

to develop a model of oral cancer in order to facilitate the study of cancer invasion using 

human organotypic models (Colley et al., 2011).  

It has been reported that tumour cells are able to recruit and modulate the function of 

neutrophils by a variety of inflammatory mediators and cytokines.  For example, the 

expression of CXCL8, a potent neutrophil chemoattractant, was found to be increased in 

various tumour cells (De Larco et al., 2001). Cytokine analysis of FaDu secreted products 

revealed high levels of the classic neutrophil chemokines CXCL8, CXCL1 as well as CCL5 and 

MIF in the medium from FaDu MCTS. In addition, a small amount of CXCL6 was released from 

FaDu MCTS but only after stimulation with TNF-α. In two separate studies by the same group, 

the serum concentration of CXCL8 was found to be higher in the peripheral blood of HNSCC 

patients than in that of a control group and the use of neutralizing CXCL8 antibodies reduced 

the migration neutrophil towards FaDu conditioned medium in vitro. This finding was 

supported by a subsequent screening array of FaDu conditioned media which showed that 

CXCL8, CXCL6 and MIF were the most abundant cytokines released by these cells (Trellakis et 

al., 2011a, Dumitru et al., 2011); data that are concordant with those of this study. High levels 

of MIF have also been detected in HNSCC patients (Kindt et al., 2013a, Kindt et al., 2013b). 

These data suggest that the MCTS models are replicating those in vivo by secreting 
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chemotactic factors into the culture medium as in vivo tumours secrete these factors into the 

circulation. Data in chapter 3 show high numbers of neutrophils in biopsies of HNSCC and so 

the FaDu MCTS model was used to investigate neutrophil recruitment into tumours.   

Neutrophil infiltration into FaDu MCTS peaked at 5 hours when pre-incubated with TNF-α, 

with similar levels of infiltration induced after 2 hours following pre-incubation with TNF-α 

for 18 h. In contrast, co-cultured FaDu MCTS with neutrophils for 24 h caused a decline in 

their infiltration.  The likely reason for this reduction is possibly due to the limited neutrophil 

life-span, as many studies have reported that neutrophils do not exceed 16-24 hours ex- vitro 

before undergoing apoptosis (Dancey et al., 1976).   

Neutrophil infiltration into FaDu spheroids is most likely to be chemokine and adhesion 

molecule-dependent, as the infiltration of neutrophils into un-stimulated spheroids was 

limited. FaDu MCTS were pre-treated with TNF-α because the tumour micro-environment is 

known to be pro-inflammatory. For instance, many studies have reported elevated levels of 

TNF-α in various tumours, including pancreatic (Schmiegel et al., 1993), renal cancer  (Al-

Lamki et al., 2010) and HNC (Soylu et al., 1994). In lung adenocarcinoma, TNF-α was able to 

induce expression of ICAM-1 on tumour cells in vitro and in vivo facilitating leukocyte 

adhesion and migration (Huang et al., 2004). When FaDu MCTS were pre-treated with TNF-α 

neutrophil recruitment increased several fold in a time dependent manner and this was 

associated with the respective increased levels of chemokines and ICAM-1 expression. ICAM-

1 is an essential adhesion molecule that allows neutrophils to bind to epithelial cells (Dustin 

et al., 1989). It is likely that addition of TNF-α not only increases the secretion of neutrophil 

chemokines but also increases expression of ICAM-1 leading to increased infiltration 

compared to un-treated MCTS. The importance of ICAM-1 in neutrophil recruitment could 
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have been verified using siRNA or blocking antibodies to ICAM-1 although this was not 

performed in this thesis. One element missing in this tumour MCTS assay when compared to 

in vivo neutrophil recruitment into inflamed tissue or a tumour mass is the binding of 

neutrophils to the endothelium lining the blood vessels during the extravasation.   These 

interactions induce activation of signalling pathway leading to alteration in integrin 

expression, phagocytosis and release of granule content (Zarbock and Ley, 2008). The 

generation of more complex assays using neutrophils delivered under flow to the 

endothelium with MCTS placed below the epithelium have been created (Muthana et al., 

2015) but these were considered too complex for this study.  

Neutrophil recruitment into tumours appears to be dependent on chemokines that bind to 

CXCR1 and CXCR2 expressed by neutrophils. CXCR1 binds CXCL6 and CXCL8 with high affinity 

but binds CXCL1-3, CXCL5 with only low affinity. On the other hand, CXCR2 binds CXCL1-3, 

CXCL5, CXCL6 and CXCL8 all with high affinity (Lee et al., 1992, Ahuja and Murphy, 1996a). In 

contrast to the role of CXCL8, CXCL1 and CXCL6 in neutrophil recruitment, little is known 

about MIF-induced neutrophil recruitment. MIF was originally identified as a regulator for 

macrophage migration in vitro (David, 1966). However, many studies have reported 

expression in different human tumours, such as breast (Larsen et al., 2008), liver (Hira et al., 

2005), colorectal (Legendre et al., 0000) prostate (Meyer-Siegler et al., 2005), melanoma 

(Shimizu et al., 1999), oesophageal and recently increase level of MIF was detected in HNSCC 

patients and correlated with poor patient outcome and tumour progression (Dumitru et al., 

2011, Kindt et al., 2013a, Kindt et al., 2013b). Using qPCR, we confirmed that MIF was over-

expressed in a number of HNSCC cell lines suggesting that the data obtained with FaDu is 

common amongst all other HNSCC cells. Interestingly, HPV-negative cell lines generally 
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secreted more MIF than HPV-positive cell lines and this may be due to their aetiology 

(carcinogen-promoted mutations rather than viral mediated). This phenomenon has also 

been observed with chemokine secretion in the group’s laboratory (Sarmad Al-Sahaf, 

unpublished personal communication). This study went on to confirm that MIF is over-

expressed in HNSCC by measuring its expression in biopsies of human HNSCC and comparing 

this to normal mucosa. Interestingly, in normal oral mucosa weak MIF staining was localized 

in the basal/proliferating cells of mucosa and not in any of the upper differentiating cell, as 

reported by Cludts et al, where they showed low or absence of MIF expression in the basal 

cellular layer and weak stain was also detected in superficial layers of normal mucosa (CLUDTS 

et al., 2010).  It has been reported that MIF expression in the basal layer of human skin 

contributes to epidermal cell proliferation and differentiation (Shimizu et al., 1996), and this 

may account for why isolated normal oral keratinocytes displayed MIF expression in in vitro 

culture (it is the basal cells that are isolated and grown in culture). MIF expression was 

significantly increased in HNSCC tissues confirming that the in vitro cell line data is matched 

in vivo. MIF overexpression has also been reported in hypopharyngeal carcinoma (CLUDTS et 

al., 2010) and Laryngeal carcinoma (Kindt et al., 2013b) and this correlated positively with 

disease progression.   

 

Neutrophil migration toward FaDu conditioned media significantly increased when FaDu cells 

were incubated under hypoxia, suggesting that hypoxia induces the secretion of neutrophil 

chemoattractants from FaDu cells. Hypoxia, a common characteristic of locally advanced solid 

tumours, occurs due to the inability of oxygen to meet the cellular demand by the growing 

tumour mass (Vaupel and Mayer, 2007). In response to hypoxia, cellular adaptation is 

mediated by the transcription factor hypoxia-inducible factors HIF-1 and HIF-2. Hence, 
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activation of these transcription factors by tumour cells facilitates their progression by 

inducing proteomic and genomic changes that have a profound effect on tumour 

angiogenesis, anaerobic metabolism and other process that enable tumour cells to survive in 

a low oxygen concentration environment (Eales et al., 2016). Evidence shows that hypoxia 

can induce MIF secretion in breast cancers (Larsen et al., 2008), pancreatic adenocarcinoma 

(Winner et al., 2007) in both a HIF-dependent or independent manner. Although, MIF has 

been identified as a hypoxia inducible gene firstly in squamous cell carcinoma-derived cell line 

(FaDu) (Koong et al., 2000), but our gene expression data has not MIF upregulation in FaDu in 

response to hypoxia. However, other HNSCC cells (H357, SCC4, SCC72, SCC2 and SCC90) 

cultured under hypoxic conditions confirmed that MIF expression is induced by hypoxia. A 

recent study showed that knocking down hypoxia-inducible factors (HIF) -1α and HIF-2α I in 

HNSCC cells, significantly reduce the level of MIF, providing evidence that MIF is HIF 

dependant in vitro (Zhu et al., 2014). Surprisingly, silencing HIF did not affect the migration of 

CD11b+Gr-1+ myeloid cells to hypoxia treated HNSCC cells in vitro (Zhu et al., 2014). Hypoxia 

also induced expression of VEGF in all the cells tested and this is a well know pathway in most 

cancer types, including HNC (LIANG et al., 2008) and is the basis of tumour angiogenesis (Goel 

and Mercurio, 2013) . 

 

Small molecule antagonists of CXCR2, a CXCR4 antagonist and a MIF activity inhibitor were 

used to investigate the recruitment of neutrophils and monocytes into HNSCC tumour 

spheroids. Neutrophil recruitment into FaDu MCTS was significantly reduced in the presence 

of both CXCR2 inhibitors and in the presence of AMD3100, the CXCR4 inhibitor. 

Concentrations of inhibitors used have previously been shown to be non-toxic to neutrophils 
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in previous studies (Tazzyman et al., 2011, Bradley et al., 2009, Bot et al., 2014). Moreover, at 

a concentration determined to be non-toxic, the MIF inhibitor ISO-1, inhibited approximately 

77% of neutrophil infiltration into FaDu spheroids when compared to control. It has been 

showed previously that the CXCR2 small molecule inhibitor (AZ10397767) prevented 

neutrophil migration towards the CXCR2 specific ligands CXCL1-3 and CXCL5 but had no 

inhibitory effect towards CXCL8 (Tazzyman et al., 2011). These may explain the partial 

inhibition effect noticed using the CXCR2 antagonist in the experiment performed in this 

thesis and is in agreement with Hammond et al. whose findings showed that CXCL8 induces 

chemotaxis of neutrophils via both CXCR1 and CXCR2 (Hammond et al., 1995).  At first glance, 

this data suggest that neutrophils are recruited to FaDu MCTS via CXCR2 along a CXCL1/CXCL6 

axis. However, inhibition of CXCR4, a receptor that does not bind CXCL1, CXCL6 or CXCL8 also 

dramatically inhibited neutrophil recruitment, suggesting the role of another 

chemoattractant. Bernhagen et al (2006) found that MIF can bind to and activate signal 

transduction pathways via both CXCR2 and CXCR4 in monocyte and T-cells. We also found 

that recombinant MIF causes directed migration of neutrophils in a dose-dependent manner 

showing that MIF is chemotactic for neutrophils in vitro as reported by Bernhagen, who 

showed moderate chemotactic activity of neutrophils in response to MIF mainly exhibited 

through CXCR2 not CXCR1 (Bernhagen et al., 2007). 

 Since neutrophils do not express CD74 (Dumitru et al., 2011) it is likely that MIF acts via CXCR2 

and/or CXCR4 expressed by neutrophils. To support this ISO-1 was used, as it is the most 

characterized non-toxic inhibitor of MIF function. Many have reported that this compound is 

effective in blocking a MIF-dependent malignant phenotype (Meyer-Siegler et al., 2006). 

Therefore, the action of this inhibitor on neutrophil recruitment to FaDu MCTS was tested.  
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ISO-1 was found to be the most potent inhibitor of neutrophil recruitment. Since inhibitors to 

both CXCR2, CXCR4 and ISO-1 all block neutrophil recruitment these data suggest that MIF is 

the major neutrophil chemoattractant in HNSCC that is mediated most likely by both CXCR2 

and CXCR4. The evidence support our hypothesis is that, neutrophils isolated from MIF-/- 

mice showed a reduce migration index to cytokine-induced KC, homology to human CXCL1, 

known ligand for CXCR2 (Santos et al., 2011). On the other hand, our findings contrast to that 

of Dumitru et al. who showed that MIF neutrophil recruitment relied solely on CXCR2 

(Dumitru et al., 2011). Most literature proposes that the CXCR4 ligand CXCL12 is 

overexpressed and this has been widely detected in various tumours including HNSCC (Clatot 

et al., 2015). However, the cytokine array analysis did not detect expression of CXCL12 and so 

recruitment by this mechanism is unlikely, although further analysis is required to rule out 

this possibility.   

In contrast to neutrophils we found that monocyte (THP-1) recruitment into tumours was 

blocked by inhibitors to CXCR4 and ISO-1 whereas the CXCR2 inhibitors were much less 

effective.  This suggests that for monocytes, CXCR4 is the main receptor utilised and this is 

most likely driven by a MIF-mediated mechanism as FaDu MCTS did not express CXCL12 or 

CCL2 by cytokine array (generally known to be the main monocyte chemokine acting via CCR2).  

 

Taken together these data suggests that MIF is over-expressed in HNSCC and is the main 

driver of neutrophil recruitment to these tumours. However, this conclusion is based on in 

vitro functional experiments and so the next chapter will examine the potential role of MIF-

mediated neutrophil recruitment in an in vivo model. 
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Chapter 5: Effect of the MIF antagonist, ISO-1 and anti-Ly6G 

treatment on neutrophil infiltration and subsequent growth of 

FaDu xenograft tumours in vivo 

5.1. Introduction  

Data in chapter 4 showed that neutrophil recruitment to an HNSCC MCTS model was 

predominantly under the control of MIF, most likely acting via CXCR2 and CXCR4. A 

growing body of evidence has reported the therapeutic advantage of blocking MIF activity 

in oncology. Thus far, the main strategies involved in cancer studies include the use of 

small molecule inhibitors of MIF’s biological activity (He et al., 2009, Meyer-Siegler et al., 

2006, Kindt et al., 2013a) or destabilization of MIF via the heat shock chaperone complex 

(HSP90) (Schulz et al., 2012). Furthermore, inhibition of the receptor for MIF, CD74, 

decreased tumour cell proliferation and invasion in vitro (Govindan et al., 2013, Meyer-

Siegler et al., 2006). Indeed, anti-MIF therapeutic interventions are in clinical trials at the 

moment for solid tumours       

(https://clinicaltrials.gov/ct2/show/NCT01765790?term=MIF&rank=1). 

Anti-MIF antibodies have been developed by Baxter and recently investigated 

(Kerschbaumer et al., 2012). The authors showed that out of a panel of 74 antibodies 

screened, 14 were able to neutralize MIF activity in vitro while only three monoclonal 

antibodies (BaxG03, BaxB01, and BaxM159) reduced the cell growth and viability of the 

human prostate cancer cell line (PC3) by inhibiting activation of p44/42 mitogen-activated 

protein kinase (MAPK)/ ERK1/2. Administration of anti-MIF antibodies in a PC3-xenograft 

mouse model showed a significant reduction in tumour growth in a dose-dependent 

manner compered to isotype control antibody (Hussain et al., 2013).   
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Pharmacological inhibition of MIF using ISO-1, the most studied compound that binds to 

the catalytic site of MIF, has shown shrinkage in tumour size and reduced vascularization 

in xenograft experimental models of colorectal cancer (He et al., 2009) and Prostate 

cancer (Meyer-Siegler et al., 2006). A similar reduction in tumour growth was also 

achieved using anti-MIF antibodies in colorectal cancer (He et al., 2009).   

5.2. Aims 

The aim of this chapter was to explore the actions of the small molecule MIF inhibitor ISO-

1 as well as anti-Ly6G treatment on innate immune cell recruitment, growth and 

vascularity of FaDu xenografts in an in vivo CD-1 immunodeficient murine model of HNSCC. 

5.3. Methods 

5.3.1.  In vivo study Design  

A xenograft murine model was generated by injecting CD-1 nude mice subcutaneously with 

5×107 FaDu cells.  Tumours were allowed to develop for 3 days, at which point mice were 

randomly divided into treatment groups. Each group consisted of 5 tumour-bearing mice and 

the treatment schedule was as follows; control group were given Intraperitoneal (i.p.) 

injections of PBS, the neutrophil depleted group received 200 µg anti-Ly6G three times a week 

over a 3 week period while the ISO-1 treated group received 20 mg/kg ISO-1 twice weekly by 

the same route (He et al., 2009) (see section 2.2.10 for further details). Tumours were 

measured using measuring callipers and length, depth and width of the tumour were 

recorded. At the end of experiment, mice were injected with BrdU for 1 h, mice culled and 

the tumour and serum were collected for further analysis. Tumours were divided and FFPE 



165 
 

for IHC analysis (see section 2.2.7.5 and 2.2.7.6) or snap frozen for immunofluorescence 

analysis for presence of leukocyte populations (see section 2.2.8.2). 

5.3.2.  Tissue imaging and quantitative analysis   

For each tumour the entire tumour section was scanned using an image acquiring system 

(TissueFaxs200). Images were obtained with a 20X objective that automatically creates a high-

resolution digital file, which can be viewed using automated tissue analysis software 

HistoQuest (4.0.4.161). The HistoQuest software uses algorithms that allow cell detection 

based on nuclear segmentation and the intensity measurement of nuclear as well as 

membrane and cytoplasmic antigens. Analysis for this thesis focused on quantifying 

proliferating cells (BrdU+) and the microvessel density (MVD) in whole tumour sections. The 

area of necrosis was excluded from analysis and MVD was assessed using a modified “Hot-

spot” approach proposed by Weidner (Weidner, 1995). Whole tissue was examined and eight 

representative non-overlapping regions of interest (ROI) with high vascular density (HVD) and 

eight ROI with low vascular density (LVD) were selected (Fig. 5-1). The distribution of BrdU+ 

cells in relation to the vascular density of tumour (HVD vs LVD) was counted in each region.   

Each ROI had a fixed size of (0.03 mm2) and the mean number of BrdU + cells counted in each 

ROI was expressed as % of BrdU + cells / tumour tissue and between high and low vascular 

areas.  

The cut-off value to distinguish between positive (brown) and negative (blue) for nuclear 

detection of BrdU was determined manually based on the threshold selected on the IgG 

isotype control slide (threshold = 45) and then a threshold was selected for MVD was based 

on intensity of red (Vector red stain) threshold of CD31 immunostaining (threshold = 60).  
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Data from the quantitative analysis of immunostaining were expressed as following: 

  % cell proliferating = 
number of positive (brown)cells 

number of total cells 
 ×100 

% of MVD= 
Area of positive CD31 stain

total area of tumour 
×100 

  

Figure 5.1 Automated Image analysis system HistoQuest was used to analyse FaDu xenograft 

sections.  Tumour sections were scanned and area of tumour was measured (mm2) (black 

dotted line) area of necrosis was defined microscopically (green dotted line) and excluded from 

analysis. Proliferating activity of cells (BrdU+) was quantified on the whole tumour section and 

correlated to Microvessel density (MVD). A detailed analysis of BrdU + cells was investigated in 

8 region of interest (ROI) with HVD (red circles) and 8 ROI with LVD (blue circles). Each of ROI 

had a fixed size of 0.03 mm2. 
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5.4. Results 

5.4.1. Effects of ISO-1 and anti-Ly6G on tumour growth of FaDu xenograft 

tumours  

Mice were implanted with 5×107 FaDu cells to create subcutaneous tumours and were 

subsequently treated with ISO-1, anti-Ly6G or PBS as control to examine the role of neutrophil 

depletion of MIF inhibition on FaDu growth. The onset of a measurable tumour was observed 

at day 11, with tumour size of 49.3±6.9 mm3 for vehicle, 75± 18.4 mm3 for anti-Ly6G and 37.4 

± 16.7mm3 for ISO-1 treated mice.  At the next measurement at day 13, the tumours from 

vehicle-treated animals had increased by approximately 31 mm3 while the tumours from anti-

Ly6G neutrophil depleted mice only increased by 8 mm3 to around 45 mm3. However, tumour 

sizes in the ISO-1 treated mice had grown to approximately 62 mm3.  Because the tumour size 

was variable between individual tumours, the tumour size at each time point was calculated 

in proportion to initial tumour volume at day 11 (Fig. 5.2-A).   

All the tumours were found to be of equal size up until day 11 after which the growth of the 

tumour treatment groups started to diverge. Administration of vehicle control did not reduce 

or over promote tumour growth and these tumours grew at a consistent rate, and were 

significantly larger at the end of the experiment on day 21 than tumours at day 11 (p=0.0159). 

Treatment with anti-Ly6G appeared to reduce tumour growth from day 11 to day 21 

compared to PBS treated controls although this was not statistically significantly different 

(p=0.7606) (Fig.5.2-B). The anti-Ly6G tumours had increased growth from day 18 to day 21.  

However, inhibition of MIF using ISO-1 significantly (p<0.05) increased tumour volume 

between day 13 and day 18 compared to both PBS controls and anti-Ly6G treated tumours 

(Fig. 5.2-A). 

Measuring the tumour at the time of harvesting revealed that tumour-bearing mice treated 

with anti-Ly6G or ISO-1 were generally larger than tumours from untreated controls tumours 

with final tumour volume of 484±315mm3 for ISO-1 compared to 308±127 mm3 for anti-Ly6G 

treated tumours and 70±23 mm3 for PBS treated animals. However, the difference was not 

statistically significant between groups (Fig. 5.3).   
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Figure 5.2 Effect of anti-Ly6G and ISO-1 treatment on FaDu xenograft tumour growth. (A) 

Growth kinetics of FaDu tumour after treatment with i.p. injection of either vehicle (PBS), 

200 µg anti-Ly6G anti-Ly6G or 20mg/kg ISO-1. The tumour volume was measure every other 

day and tumour volume was calculated and represented as relative to initial tumour volume 

at day 11. Treatments with anti-Ly6G significantly reduce tumour volume in compare to ISO-

1 treated tumour at day 13, 15 and 18 (P=0.0286, 0.0460 and 0.0140 respectively) using 2-

way Anova. (B) Bar chart represents the difference in tumour size from initial developing of 

tumour (day 11) until the last dose of treatment (day 21). Two -way ANOVA test was used to 

compute the statistical significance and *= P<0.05 and ***= P<0.0001. Data are expressed as 

mean ± SEM (n=5). 

( A ) Vehicle control 

(PBS) 

 ( B ) Anti-Ly6G ( C ) ISO-1 

 
Figure 5.3 Growth of FaDu xenograft tumour in response to anti-Ly6G or ISO-1 treatment.  

CD-1 nude mice were inoculated with FaDu cells. Tumours were allowed to develop for 3 

days before mice received i.p. injection with either vehicle (PBS), anti-Ly6G or ISO-1 for 

three weeks. On day 22, mice were scarified and tumours were harvested and 

photographed (A, B, C). Scatter plot represented tumour volumes calculated from the 

dimensions of each individual xenografts mice at the end point (volume = length x depth x 

width). Data are expressed as range and black horizontal line represents the median (n=5). 
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Microscopic analysis of histological sections was carried out to further investigate the 

increase in tumour size in ISO-1 treated animals. The histopathology of FaDu xenograft 

stained sections revealed that tumours from control mice and anti-Ly6G mice appear as well 

circumscribed masses. In contrast, two out of five tumours excised from ISO-1 treated mice 

were less circumscribed masses with tumour infiltration into surrounding muscles (Fig. 5.4). 

 

 

 

 

 

 

Figure 5.4 Extent of tumour infiltration at the tumour margin when harvested. Histopathology of 

PBS control tumours (A), anti-LY6G (B) shows that tumours are well circumscribed, whereas in ISO-1 

treated mice (D) tumours were often found infiltrating into muscle tissue (red arrows).  
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The first objective of this examination was to assess the area of necrosis in each of treatment 

regimen. Tumour necrosis, a common feature of solid tumours, is usually a result of rapid 

tumour growth and inadequate blood supply. Areas of necrosis were identified, after 

consultation with an oral pathologist (Dr Keith Hunter), based on the morphology of 

fragmented cells, nuclear shrinkage and cellular debris (Fig. 5.5). Image analysis of the tumour 

area (as described in 5.3.2) from control and anti-Ly6G shows an average size of tumour of 

9.51mm2 and 9.12 mm2, respectively. In contrast, ISO-1 tumour measurements revealed large 

tumours with an average size of 16.72 mm2, with a large difference in size ranging between 

2.06 mm2 and 57.73 mm2. Control tumours displayed small foci of necrosis covering 18.9 ± 

9.7% mm2 (Fig. 5.5A), whereas anti-Ly6G tumours contained predominantly large necrotic 

areas of 31 ± 4.5% (Fig. 5.5B). Images from ISO-1 treated groups contained an area of 24.3 ± 

8.5% (Fig. 5.5C). Although the percentage area of necrosis was lower in control tumours than 

treated tumours, no statistical significance was detected between the groups (p = 0.4749 and 

0.8535 for anti-Ly6G and ISO-1, respectively). However, when necrosis is expressed relative 

to tumour area (Fig. 5.6-B), the results show that the large tumour size in ISO-1 treated group 

was as result of the presence of large area of necrosis (37%) with less tumour cells, compared 

to 15% necrosis in control tumours.     

 

.   
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Figure 5.5 Area of necrosis present in FaDu xenograft tumour growth. Histopathology of PBS 

control tumours (A, B), anti-Ly6G (C, D) and ISO-1 treated mice (E, F) shows the presence of 

necrosis (green dotted line). Necrosis was defined morphologically as change in tumour cells with 

nuclear shrinkage and cellular debris. The area of necrosis was measured using automated image 

analysis in whole tumour sections. At higher magnification images (B, D, F) neutrophils (black 

arrow) and other inflammatory cells could be identified by their distinctive nuclear morphology 

within the necrotic area. A,C,E scale bar = 500 µm,. B, D, F scale bar = 50 µm. 
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( A ) 

Figure 5.6 Image analysis of tumour necrosis present in FaDu xenograft tumours. (A) 

Presence of necrosis was assessed in whole tumour tissue and expressed as percentage 

relative of tumour area. One-way ANOVA showed no significance difference between 

control group or treated group (B) % Necrosis in proportion to the whole tumour area as 

measured by Image analysis. 
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5.4.2. ISO-1 or anti-Ly6G alter the number of neutrophils in FaDu xenograft 

tumours  

To determine the importance of MIF in neutrophil recruitment that was observed in vitro and 

also in tumour progression, using the same FaDu tumour bearing mice were injected with 

ISO-1. Treatment with anti-Ly6G was used as a positive control for neutrophil depletion and 

was used alongside DMSO control treated mice.  At the end of experiment, tumours were 

removed, snap-frozen in OCT, sectioned and immunofluorescently stained for the murine 

neutrophil marker Ly6G, macrophage marker F4/80 and vascularization using CD31 (see 

section 2.2.8.2).  The intensity and area of fluorescence in mm3/microscopic field for each of 

the targeted cells was analysed using velocity software (section 2.2.8.3).  Image analysis (Fig. 

5.7) showed an 87% reduction (p=0.0013) in the number of murine neutrophils in FaDu 

xenograft tumours treated with anti-Ly6G when compared to vehicle control (PBS). Similarly, 

FaDu xenograft tumours treated with ISO-1 also displayed a significant (80%) reduction 

(p=0.0025) in the number of tumour-associated neutrophils with the area of fluorescence 

decreasing from average 42885.2 mm3/microscopic field with the control treated tumours to 

average 8896.1 mm3/microscopic field for the ISO-1 treated tumours and average 5594.37 

mm3/microscopic for anti-Ly6G (Fig. 5.7).    
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Figure 5.7 Image analysis of Ly6G+ neutrophils in anti-Ly6G and ISO-1 treated FaDu 

xenograft tumours. A) Representative images Ly6G staining (red, neutrophils) and DAPI 

(blue, nuclei) in tissue sections of xenograft tumours treated with DMSO control, anti-

Ly6G or ISO-1. Scale bar = 100 µm B) The number of Ly6G cells in z-stacks was measured 

based on intensity and area of fluorescence per microscopic field, and presented in bar 

chart as mean ± SEM (n=5).   One-way ANOVA test was used to compute the statistical 

significance **= p<0.001. 
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5.4.3.  Treatment of FaDu xenograft tumours with ISO-1 or anti-Ly6G affects 

macrophage recruitment.  

MIF has been reported to elicit human monocyte chemotaxis through CXCR2 (Bernhagen et 

al., 2007) and mice express a homologous of CXCR2 on monocytes (Cacalano et al., 1994). In 

addition, inhibition of MIF in an inflammatory disease model reduced infiltrated F4/80 

macrophages in diseased tissue (Leng et al., 2011). This evidence along with the data 

presented in chapter 4 suggests that treatment with ISO-1 or anti-Ly6G may alter macrophage 

recruitment into tumours. Therefore, the number of macrophages in ISO-1 and anti-Ly6G 

treated FaDu tumours were examined using the murine macrophage marker, F4/80 and 

compared to control tumours.  

Image analysis showed that the number of F40/80 positive cells in both anti-Ly6G and ISO-1 

treated tumour-bearing mice were lower than those observed in control mice (Fig. 5.8). 

Statistical analysis confirmed a significant reduction (p=0.0427, 40.2%) in the number of F4/80 

macrophages observed in FaDu xenograft tumours receiving anti-Ly6G compared to control 

tumours to 25870 mm3/microscopic field. Moreover, there was an even greater reduction in 

the number of F4/80 positive macrophages in ISO-1 treated FaDu tumours decreasing from 

43189mm3/microscopic field in control tumours to 6443.85 mm3/microscopic field in ISO-1 

treated tumours, equating to an 86% fold decrease in neutrophil numbers (p=0.0003).   
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Figure 5.8 Image analysis of F4/80 macrophages in anti-Ly6G and ISO-1 treated FaDu 

xenograft tumours. A) Representative images F4/80 staining (green, macrophages) and 

DAPI (blue, nuclei) in FaDu xenograft sections treated with DMSO control, anti-Ly6G or 

ISO-1. Scale bar = 100 µm. B) The number of   F4/80 cells in z-stacks was measured based 

on intensity and area of fluorescence per microscopic field, and presented in bar chart 

as mean ± SEM (n=5).  One-way ANOVA test was used to compute the statistical 

significance *= P<0.05, ***= P<0.0001. 
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5.4.4. Effects of neutrophil depletion and ISO-1 treatment on angiogenesis in 

FaDu xenograft tumours 

Accumulating evidence suggest that TAN play a role in the vascularization process in many 

types of tumours (Tazzyman et al., 2013) with one study showing an association between 

increased numbers of TAN detected in hepatocellular carcinoma (HCC) tissue and MVD. Zho 

et al showed that depletion of TAN using anti-Ly6G significantly attenuated the MVD in HCC 

based on immunostaining analysis of CD34-positive endothelial cells (Zhou et al., 2016). 

Therefore, the influence of TAN depletion by anti-Ly6G and inhibition of MIF in tumour 

vascularization was investigated in FaDu tumour sections using CD31, a murine endothelial 

cell marker.  Image analysis showed that there was no significant difference in CD31 density 

either in ISO-1 (11097.9 mm3/microscopic field) (P=0.1638) or anti-Ly6G (13026 

mm3/microscopic field) (p=0.2607) treated tumours compared to controls (20138.6 

mm3/microscopic field). These data exclude the possibility that the difference in tumour 

growth rate observed between control and treated tumours is due to an inhibitory effect on 

tumour angiogenesis by neutrophil or macrophage depletion.      
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Figure 5.9 Effect of anti-Ly6G and ISO-1 on the distribution of CD31 blood vessels in 

FaDu xenograft tumours. A) Representative immunostaining images of vascularized 

CD31+ areas (white, endothelial cell) and DAPI (blue, nuclei) in FaDu xenograft sections 

treated with DMSO, anti-Ly6G or ISO-1. Scale bar = 100 µm.  B) The number of CD31+ 

endothelial cells was measured based on intensity and area of fluorescence per 

microscopic field, and presented mean ± SEM (n=5). One-way ANOVA test was used to 

compute the statistical significance. 
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5.4.5. Effects of neutrophil depletion and ISO-1 treatment on tumour 

proliferation using BrdU  

TAN can release factors that are capable of stimulating tumour cell proliferation and depletion 

of neutrophils reduced the tumour growth and microvessel density in a melanoma and 

fibrosarcoma murine cancer model (Jablonska et al., 2010). In section 5.4.3 it was found that 

the number of neutrophils was significantly diminished in both anti-Ly6G and ISO-1 treated 

FaDu tumours. To test if this depletion affects tumour cell proliferation mice received BrdU, 

a thymidine analog which is incorporated into newly synthesised DNA, an hour prior to 

sacrifice and tumour removal. Proliferating cells were detected in tumour sections using anti-

BrdU (see section 5.3.2) and the number of BrdU+ cells counted using automated image 

analysis. The proliferation index was calculated by dividing the number of BrdU positively 

stained nuclei (Brown, Fig. 5.10) by the total number of cells detected in the same area of 

tumour (excluding areas of necrosis) and the value express as a percentage proliferating cell 

per image. 

 Microscopical analysis shows that BrdU+ cells were abundant in both the control and Ly6G 

depleted FaDu tumours with the BrdU staining co-localising to the nuclei of tumour cells. 

There was no significant difference (p=0.2758) in the abundance of proliferating cells 

between these two groups. In contrast, significantly (p=0.0155) fewer BrdU positive cells were 

detected in ISO-1 -treated cells (2.2%) compared to both control (8.7%) and Ly6G neutrophil 

depleted (11.9%) tumours (Fig. 5.11). Indeed, ISO-1 treated tumours displayed a 75-fold 

decrease in tumour cell proliferation compared to control and Ly6G display 35-fold increase 

in tumour cell proliferation compared to control (Fig. 5.11).  
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Figure 5.10 The proliferative status and vascularity of FaDu cells in control, Ly6G neutrophil 

depleted and ISO-1-treated xenograft murine models. Paraffin-embedded samples from 

tumour bearing mice were stained with anti-BrdU to measure the proliferative status of FaDu 

cells. A & B are representative images from vehicle control tumour, C & D are representative 

image from anti-Ly6G treated tumours and E & F are from ISO-1 treated tumours. Numbers 

of BrdU+ nuclei were counted in whole tumour sections. Scale bar A, C, E = 200 µm. Scale bar 

B, D, F = 50 µm. Black arrow indicated positive stain of BrdU in the nuclei of cells; red arrow 

indicates CD31 positive staining of blood vessels; green arrow shows a tumour cell 

undergoing mitosis. 
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5.4.6. Dual analysis of tumour vascularisation and proliferation  

Figure 5.11 Image analysis of the proliferative status in FaDu tumour xenografts. The 

number of BrdU positive nuclei (brown) were evaluated using automated image analysis in 

whole tumour tissue and expressed as % of BrdU + cells in the whole cell population. One-

way ANOVA test was used to compute the statistical significance of proliferating cells and 

this revealed no statistical difference in the % of BrdU+ cells between control and anti-Ly6G 

tumours. In contrast, the % of BrdU + cells in ISO-1 treated tumours were significantly 

reduced (*p<0.05) when compared to control.  Data are mean ± SEM. n=5/group. 
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Of note, BrdU + cells were observed to be accumulated in the tumour periphery or areas with 

HVD. Therefore, a detailed analysis of proliferating cells based on density of blood vessels 

distribution was carried out as described in section 5.3.3 (Fig 5.12 and Fig5.13). As can be seen 

in figure 5.14, BrdU+ accumulation was associated with areas of high vascular density (HVD) 

and a significant reduction (p=0.0005) in the number of BrdU + cells was observed in low 

vascular density (LVD) areas in comparison to those that were highly vascularised in control 

treated mice (1.52 cells and 13.47 cells respectively). Similarly, the number of proliferating 

cells in anti-Ly6G tumours significantly decreased from 14.42 cells in HVD areas to 2.43 cells 

in LVDs (p=0.0015). In ISO-1 treated, less proliferating cells was detected in general but more 

BrdU+ cells was observed around HVD with mean number of 5.3 cells, whereas no or very 

weak BrdU positive cells were detected in LVD.         
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Figure 5.12 Image analysis of BrdU in correlation to CD31 distribution in FaDu tumour 

xenografts. Dual stained sections were scanned using HistoQuest software that detected the 

intensity of both CD31 (white areas in overlay image B) and BrdU (brown) Scale bar = 50 µm. 

(C) High magnification image showing CD31 (red staining, red arrow) and BrdU (brown nuclear 

stain, black arrow), Scale bar = 100 µm. 
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Figure 5.13. Image analysis of BrdU in FaDu tumour xenografts using the hot spot 

method.the intensity of BrdU+ (brown) in LVD (Aqua blue circle, left) and HVD (red circle, left) 

in control treted mice (A) anti-Ly6G (B) and ISO-1 treated tumour 
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Figure 5.14 Image analysis of BrdU in FaDu tumour xenografts using the hot spot method. 

Bar chart of BrdU+ cells in HVD and LVD areas of FaDu tumour, showing accumulation of 

proliferating cells in highly vascularize areas in comparison to avascular areas of tumors.  

The statistical significance of proliferation index between HVD vs LVD in each of treatment 

regimen was calculated by Students t-test. * = p<0.05, ** = p<0.005, *** = p<0.0001. Data 

are mean ± SEM of eight fields selected for each HVD and LVD area. 
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5.4.7. MIF expression in FaDu xenograft control and treated tumours  

MIF expression has been observed in vivo in tumours in this and other studies (Dumitru et al., 

2011), and has been shown to correlate with disease severity (Kindt et al., 2013). Therefore, 

the intensity of MIF immunostaining in control and treated tumours was evaluated using a 

modified Quick-score method (described in section 2.2.7.5) and scoring was independently 

reviewed by an oral pathologist (Dr Keith Hunter). Staining analysis showed expression of MIF 

primarily in the cell cytoplasm. Surprisingly, the detected level of MIF in the anti-Ly6G and 

ISO-1 treated mice was significantly higher than control mice (p=0.0045 and p=0.0005, 

respectively) (Fig. 5.15).  
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Figure 5.15 MIF protein expression levels in FaDu xenograft tumour sections. Paraffin-embedded 

sections from FaDu tumour bearing mice were stained with anti-human MIF antibody and the stain 

intensity was evaluated using a Quick-score method. The level of MIF detected in vehicle control 

(PBS) was lower than anti-Ly6G treated or ISO-1 treated mice model. One-way ANOVA test was 

used to compute the statistical significance of the scores variance of MIF cancer tissue with or 

without treatment. Scale bar = 500 µm. 
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5.4.8. MIF serum concentration in ISO-1, Ly6G-treated and control tumours   

Quantitative analysis of MIF released in to the serum of mice-bearing FaDu tumours as well 

as non-tumour-bearing mice was assessed by ELISA. Although the ELISA was developed with 

antibodies raised against human MIF, this cytokine was detected in mice with no tumours, 

albeit at low levels, suggesting some cross-reactivity to murine MIF. However, MIF levels were 

greatly increased in mice bearing human FaDu tumours showing that these tumours release 

MIF into the bloodstream (non-tumour bearing mice vs. control tumours, p=0.0001). High 

levels of MIF were also detected in the serum from both anti-Ly6G and ISO-1 treated tumour-

bearing mice. Interestingly, depletion of neutrophils using anti-Ly6G significantly reduced the 

levels of MIF in the serum of mice (p=0.0414) compared to controls (Fig. 5.15). In addition, 

ISO-1 treated tumour-bearing mice also displayed significantly reduced MIF levels in their 

serum compared to control tumours (p=0.0138, Fig. 5.15). However, there was no significant 

difference between the levels of MIF in the serum of ISO-1 and Ly6G-treated tumour-bearing 

mice.  
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Figure 5.15 MIF levels in tumour-bearing and non-tumour-bearing mice. ELISA analysis of MIF levels in 

the serum collected from non-tumour bearing or mice with treated or control FaDu xenograft. Non-

tumour-bearing mice showed low levels of MIF whereas the levels of MIF were significantly increased in 

all tumour-bearing mice. Administration of anti-Ly6G or ISO-1 significantly reduced the level of MIF in 

the serum compared to vehicle control tumours. Multiple comparisons One-way ANOVA test was used 

to compute the statistical significance for differences in MIF levels between normal and tumour-bearing 

mice (PBS, anti-Ly6G, ISO-1) or between untreated tumour bearing mice (PBS) and treated tumour-

bearing mice (anti-Ly6G, ISO-1). The histograms represent the mean ± SEM of MIF level from 5 mice for 

each treatment. *= p<0.05, **=p<0.005, ***= p<0.0001. 
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5.5. Discussion  

In this chapter it was demonstrated that administration of the small molecule inhibitor, ISO-

1, in FaDu tumour-bearing mice did not reduce the tumour growth when compared to control 

tumours. Instead the sizes of tumours were observed to increase after ISO-1 treatment. In 

contrast, targeting MIF either by using MIF inhibitor ISO-1 in xenograft colon or prostate 

cancer murine models (He et al., 2009, Meyer-Siegler et al., 2006) or using anti-MIF 

neutralizing antibody in a prostate xenograft model (Hussain et al., 2013) was shown to 

reduce tumour growth. Further histological analysis showed that although the tumour burden 

was greater, ISO-1 tumour-bearing mice contained larger areas of necrosis and less 

proliferating cells. This result is in line with an in vivo study that used humanized anti-MIF 

antibodies to treat a murine prostate cancer model, which showed a reduction in proliferating 

tumour cells using Ki67 immunostaining in dose-dependent manner (Husaan et al., 2013). 

Large areas of tumour were found to be necrotic (up to 37.5%) in the ISO-1 treated group 

compared to control tumours (15.5%). The reduction in number of proliferating cells 

associated with presence of large area of necrosis in ISO-1 section indicates a higher death 

rate in these tumours. This could be due to the direct effect of MIF on tumour cells or an 

indirect effect. It must be noted that the data presented in this thesis is a snapshot of events 

occurring at 21 days when the tumours were excised and analysed. However, time course 

data suggests that differences in tumour growth first occurred at 11 days, 7 days after 

treatment. It is possible that MIF inhibition affects events occurring in the tumours at day 11 

and 13 that have dissipated and so are not picked up by the analysis at day 21. Analysis of the 

early tumours would provide more insight into the reason for low proliferation with elevated 

necrosis but this was not possible in this study. Treatment of FaDu tumours with anti-Ly6G to 

deplete mice of neutrophils caused a marked reduction in tumour growth. A similar effect 
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was observed in a murine model of melanoma and fibrosarcoma (Jablonska et al., 2010), while 

neutrophil depletion did not influence tumour growth in a mammary tumour-bearing murine 

model (Coffelt et al., 2015). It has been demonstrated that the effect of neutrophil depletion 

on tumour growth is dependent on the stage of tumour development. Systemic depletion of 

neutrophils at an early stage of cancer development (Ly6G treatment started at the same 

time tumour cells were inoculated) had no effect on tumour growth. In contrast, when 

tumours were allowed to develop before neutrophil were depleted (as in the model described 

in this thesis), the authors observed a significant reduction in tumour growth in the murine 

model of Lewis lung cancer and mesothelioma (Mishalian et al., 2013). These data accord with 

the data presented in this thesis and suggest that neutrophils aid tumour progression once a 

tumour has been established.  

The FaDu tumour xenografts were evaluated microscopically and immunohistochemically for 

tumour necrosis, cell proliferation, vascularisation and presence of macrophages. In this study 

we observed that ISO-1 treatment induced a strong inhibitory effect on recruitment of innate 

inflammatory cells (neutrophils and macrophage). The inhibition was not 100% suggesting 

that other factors aid MIF in leukocyte recruitment. Data from the in vitro MCTS studies 

suggest that CXCL1, CXCL6 and CXCL8 may aid neutrophil recruitment in human tumours. 

Murine neutrophils express CXCR2 (the receptor for KC, the murine equivalent of CXCL1 – 

mice do not have the gene for CXCL8) and so are likely to be recruited via human CXCL1 

expressed by FaDu xenografts. It is possible that MIF and CXCL1 may act in concert because 

neutrophils from MIF-/- mice showed reduced migration toward KC (known as CXCL1 in 

human) in vitro (Santos et al., 2011), suggesting an interplay between the two molecules. 

Macrophages may also be recruited to tumours by chemoattractants independent of MIF, for 
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example by CCL2 a potent monocyte chemoattractant. In fact, CCL2 expression has been 

reported to be regulated by MIF in injured hepatocytes in an autocrine manner (Xie et al., 

2016). However, CCL2 was not detected in the conditioned medium for FaDu MCTS in the 

cytokine array data suggesting that this chemokine does not play a role in monocyte 

recruitment in HNSCC. However, there are several other monocyte chemoattractants (CCL7, 

CCL8, CCL13) that were not on the cytokine array that could be involved in the recruitment of 

monocytes to FaDu tumours and this possibility needs further investigation.   

One of the most important roles MIF has been observed to play in promoting tumour 

progression is stimulation of angiogenesis (He et al., 2006) and, although not statistically 

significant, tumours treated with ISO-1 and Ly6G displayed a marked and consistent reduction 

in CD31 staining (a marker of microvessel vessel density, which also expressed by endothelial 

cells lining lymphatic vessels). Knock-down of MIF in melanoma cells prior to implanting these 

cells in a syngeneic murine model showed up to a 40% reduction in CD31 staining density, 

without affecting tumour growth, in comparison to wild-type mice (Girard et al., 2012). A 

similar reduction in microvessel density, assessed by CD34, was observed in DU-145 xenograft 

tumours treated with ISO-1 (Meyer-Siegler et al., 2006), suggesting that MIF inhibition may 

affect tumour vascularisation either directly or indirectly by inhibition of leukocyte 

recruitment.    

Immunohistochemical analysis of MIF protein expression on FaDu xenografts tumour sections 

showed an increased level of MIF in ISO-1 and anti-Ly6G treated tumours compared to control 

tumours. This result could be explained by the fact that, diverse cell types store pre-formed 

MIF in their cytoplasm, ready to be released upon stimulation. Since MIF has been reported 

to act via autocrine and paracrine loops, the increased expression of MIF could be a feedback 
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mechanism to compensate for the loss of the MIF producing cells, neutrophils and 

macrophages (Daryadel et al., 2006, Calandra et al., 1994). It could also be that neutrophils 

and macrophages somehow regulate MIF production by tumour cells via paracrine signalling. 

Further experiments are required to determine if paracrine signalling mechanisms regulate 

MIF expression. In fact, blocking exogenous MIF by ISO-1 in glioblastoma multiforme cells 

enhanced mRNA expression not only of MIF but also its receptors CD74, CXCR2, and CXCR4 in 

vitro (Baron et al., 2011). 

The observation that MIF serum levels from FaDu xenograft tumour increase compared to 

non-tumour bearing mice show that MIF is released by the tumour into the circulation. 

Elevated levels of MIF in the circulation have been reported for many cancers, including, renal 

cancer (Du et al., 2013), HNSCC (Kindt et al., 2013b) and prostate cancer (Meyer-Siegler et al., 

2005). By contrast, the levels of protein detected in the serum of ISO-1 and anti-Ly6G treated 

mice were reduced compared to levels seen in control tumours.  This reduction in secreted 

MIF protein might be as a result of blocking the D-dopachrome active site of MIF (Lubetsky et 

al., 2002), whereas, the reduction of MIF serum levels observed in anti-Ly6G (and possibly 

ISO-1) treated mice may be due to the significant reduction in number of neutrophils in these 

tumours.  

The observation that MIF levels are increased in the tumours but decreased in the circulation 

of ISO-1 and Ly6G treated tumours may suggest that MIF is prevented from being released 

into the circulation.  It is possible that since MIF can be pre-stored intracellularly its presence 

is still detected in tumours using IHC but its secretion into the circulation is somehow reduced 

when neutrophils are absent or in the presence of ISO-1. It is possible that neutrophils 
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produce factors that regulate tumour cell secretion of MIF, although this needs to be 

examined experimentally.  

Administration of ISO-1 in a DU-145 prostate tumour model reduced tumour growth by 40% 

(Meyer-Siegler et al., 2006). Further investigation showed that inhibiting MIF in vitro could 

affect tumour growth directly by reducing the downstream signalling of ERK1/2 MAPK 

cascade (Meyer-Siegler et al., 2006).  In addition, a preliminary study using an irreversible MIF 

inhibitor (4-iodo-6-phenylpyrimidine (4-IPP), which is estimated to have 5-10 times more 

inhibitory potency than ISO-1, reduced migration of murine SCCVII squamous carcinoma cells 

in a Boyden chamber assay and proliferation in vitro (Kindt et al., 2013a), suggesting that 

exogenous MIF partially affects the proliferative capacity of tumour cells in vitro. MIF may 

also exert its effects indirectly by stimulating other cells. In fact, Dumitru et al (2011) showed 

increased proliferation and invasive properties of FaDu cells cultured as monolayers in the 

presence of FaDu-primed neutrophil conditioned medium. This effect was abolished when 

cells were co-culture with FaDu primed neutrophil conditioned medium in presence of ISO-1 

inhibitor (Dumitru et al., 2011). These data suggest that MIF activated neutrophils to secrete 

factors that affect tumour cell proliferation.           

Other possible reason for not observing an inhibitory effect generated by ISO-1 treatment in 

vivo might be dosing regimen.  The in vivo study in this thesis followed the same treatment 

regimen used in a colorectal cancer xenograft model (He et al., 2009), but ISO-1 

administration twice per week may be not enough to achieve sustained inhibition of MIF.  Of 

note, a 47% reduction in tumour growth was achieved by using MIF-/- mice (Girard et al., 

2012).  
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Chapter 6: The effect of cytokines and HNSCC-secreted factors on 

neutrophil phenotype 

6.1. Introduction  

The concept of neutrophil polarization into N1 (anti-tumour) or N2 (pro-tumour) 

phenotypes in response to molecules in the tumour microenvironment has been recently 

reported in two elegant studies using murine cancer models. In the first study, Fridlender 

et al, (2009) noted that upon inhibition of TGF-β in two murine cancer models (NSCLC and 

mesothelioma) neutrophils recruited to these tumours displayed what they characterised 

as an N1 phenotype. The most important features of the N1 anti-tumour phenotype are 

activation of cytotoxic T lymphocytes and improved ability to kill tumour cells, increased 

expression of pro-inflammatory cytokines such as TNF-α and their ability to stimulate the 

immune response with levels of immunosuppressive Arg-1 significantly reduced 

(Fridlender et al., 2009). In another study, when tumour-bearing Ifnβ1-/- mice received a 

low dose IFN-β therapy, neutrophils appeared to change their phenotype to one with an 

enhanced ability to cause tumour cell destruction (Andzinski et al., 2016); a trait of N1 

neutrophils. In addition, administration of adjuvant type I IFN treatment in melanoma 

patients resulted in reduced expression of CXCR1 and CXCR2, up-regulation of ICAM-1 and 

increased apoptosis of blood-derived neutrophils, other features that were deemed 

characteristic for anti-tumour N1 neutrophils (Andzinski et al., 2016). Further evidence 

confirmed the important role that type I INFs plays in polarization of TAN. Mice lacking 

endogenous INF-β acquire a TAN phenotype that express increased levels of pro-

angiogenic genes (VEGF, MMP9) as well as c-myc and STAT3 activation. Moreover, 

depletion of this type of neutrophil showed a therapeutic effect in reducing tumour 
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growth in both control and IFN-β–deficient mice (Jablonska et al., 2010). Such TAN have 

been described as displaying an N2 pro-tumour phenotype, and have immunosuppressive 

functions as well as increased secretion of chemokines CCL2, CCL5 and expression of 

chemokine receptor CXCR4 (Jablonska et al., 2010).  

The major challenge in studying TAN phenotype is the fact that the proposed phenotype 

and function of TAN has mainly been characterized in murine tumour models that may 

not directly relate to humans because of species-specific differences. Currently, there is 

only one study that describes the characteristic phenotype of TAN isolated from freshly 

removed lung tumour tissue when compared to neutrophils isolated from distant non-

malignant lung tissue (Eruslanov et al., 2014). Using flow cytometric analysis, the authors 

confirmed that human TAN show decreased expression of CXCR1, CXCR2, adhesion 

molecule CD62L (L-selectin) and increased expression of ICAM-1 (CD54), a previously 

reported neutrophil activation marker (Fortunati et al., 2009). In addition, analysis of CCR 

and CXCR chemokine receptor expression revealed increased levels of CXCR4, CXCR3, 

CCR7 and CCR5 on TAN whereas no expression was detected on peripheral blood 

neutrophils (Eruslanov et al., 2014).  Therefore, there appears to be differences in the 

phenotypic markers between human and murine N1 and N2 neutrophils. 

The influence of factors in the HNSCC microenvironment on the phenotype of TAN is 

unclear. There is evidence that the tumour-associated stroma, mainly CAF, within HNSCC 

induce elevated level of TGF-β in vitro and in vivo (Rosenthal et al., 2004), this study found 

high levels of MIF both in vitro and in vivo HNSCC tumours. Pilot study experiments 

described in this chapter test if stimulation with molecules found in the HNSCC 

environment are able to alter the phenotype of neutrophils in vitro.  
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6.2. Aims 

The aim of the work described in this chapter was to determine the phenotype of freshly 

isolated neutrophils upon stimulation with recombinant human MIF and HNSCC-derived 

factors and compare these phenotypes to those driven by INFγ (N1) or TGF-β (N2) 

phenotype. This entailed investigating changes in cell surface marker expression in 

response to each stimulus by flow cytometry. 

6.3. Methods 

6.3.1. Neutrophil isolation using MACSexpress 

Although the standard ficoll density gradient isolation method is a reliable and cost effective 

way to isolate neutrophils from blood, it is lengthy and prone to cause unwanted cell 

activation.  Thus, a different technique involving the use of antibody-coated micro-beads to 

deplete non-target cells from anti-coagulated whole blood within 30 minutes, yielding 

unstimulated neutrophils of high purity was used in the studies described here (the detailed 

method is described in section 2.2.2.2).   

 

 

 

 

6.3.2. Neutrophil polarization  
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To examine the neutrophil phenotype (N1 or N2 selected marker, Fig. 6.1), freshly isolated 

peripheral blood neutrophils from healthy donors were exposed to 100 ng/ml recombinant 

INF-γ to polarize neutrophils to an N1 phenotype, 25 ng/ml recombinant TGFβ to polarize 

neutrophils to an N2 phenotype, 100 ng/ml recombinant MIF or to conditioned medium from 

FaDu MCTS for 8 and 24 hours (see section 2.2.2.3).  

6.3.3. Multicolour flow cytometry  

At the end of incubation period neutrophils were washed with cold FACS buffer and stained 

according to the protocol in section 2.2.9.7. In summary, a cocktail of antibodies were 

selected according to antibody fluorochrome availability, receptor expression levels and 

classified into three groups for staining purposes; 1. CXCRs (CXCR1-FITC, CXCR2-PE, CXCR4-

PE-Cyanine-7), 2. adhesion molecules (CD62-L-FITC, ICAM-1-PE), 3. CCRs (CCR5-PE) and Fcγ 

receptor (CD64-FITC).  In addition, the neutrophil marker CD66b-APC and a LIVE/DEAD™ cell 

dye was used in each group so that viable CD66b-positive neutrophils could be gated for cell 

Figure 6.1 Schematic diagram for polarization of TAN in response to INF (N1 phenotype) or 

TGF-β (N2 phenotype) in mice and humans and characteristic alterations associated with 

both neutrophils phenotype.  
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surface expression analysis.  Compensation beads were run for each of the antibodies used 

to eliminate spill-over as a result of the use of multiple fluorochromes in this experiment and 

BD FACSDiva software was used for analysis (section 2.2.9.8). 

Neutrophils were gated based on expression of CD66b after excluding cell doublets and non-

viable cells. Expression of the selected N1 and N2 markers on the neutrophil population was 

examined after adjusting the gating using a fluorescence-minus one (FMO) control. 

Expression of cell surface markers on all tested neutrophils was measured using median 

fluorescence values and stimulations were performed and analysed on neutrophils obtained 

from each donor. Unfortunately, due to time constraints, the data presented here is not 

complete. Although experiments have been performed from neutrophils obtained from 3 

individuals, some of the analysis has only been performed for 2 individuals (further analysis 

is on going) whereas other experiments show data from 3 individuals (details are provided in 

the figure legends). In the following sections average median fluorescence values are in 

parentheses.  

6.4.  Results 

6.4.1. Neutrophil activation marker  

Un-treated peripheral blood neutrophils analysed directly after removal from the circulation 

(also called resting naïve cells) showed high expression of CXCR1 (3784), CXCR2 (2159) and 

CD62-L (474), low expression of ICAM-1 (266), CXCR4 (138), CCR5 (200) and CD64 (337) (Fig. 

6.2). In contrast, isolated neutrophils cultured at 37οC for 8 hours without stimulus (media 

only) displayed a reduced expression of CXCR1 (2062) CXCR2 (100) than freshly isolated 

neutrophils. There were no statistically significant differences in expression of CD62-L (250), 

CXCR4 (384), ICAM-1 (267), CCR5 (206) and CD64 (267) in freshly isolated compared to 8-hour 
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cultured neutrophils (Fig. 6.2-A). These cultured neutrophils showed a similar expression 

pattern to that described previously (Fortunati et al., 2009). Also, in order to characterise the 

change in expression of phenotype, the percentage of CD66b+neutrophils for each of selected 

marker was analysed and compered to naïve neutrophils (Fig. 6.2-B).   The results showed 

that 100% of naïve neutrophils expressed CXCR1, 96.4% expressed CXCR2, whilst little CXCR4 

expression was detected in naive neutrophils 0.76%. This result did not change after culturing 

neutrophils for 8 hours for CXCR1 and CXCR2 (99.6% & 82.1%, respectively) but a slight 

increase in number of CD66b+ expressing CXCR4 was observed (13.3%). However, less than 

half of the naïve neutrophil population expressed ICAM-1 (48.1%) and this was reduced after 

8 hours (5.4%). Similar to CD64, which was reduced form 24% in naïve neutrophils to 14.8% 

after an 8-hour incubation. While no difference in the number of CD66b+ for CD62L was 

detected in naïve or cultured neutrophils (27.4% and 24%, respectively) (fig 6.2-B)      
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Figure 6.2 Neutrophil phenotype after 8 hours in culture. (A)Expression of CXCR (CXCR1, 

CXCR2 and CXCR4) adhesion molecules (ICAM-1, CD62-L) CCR5 and Fc γ receptor 1 (CD64) 

between freshly isolated neutrophils and neutrophils cultured in serum-free media for 8 

hours then analysis by flow cytometry. Data are mean of MFI ± SD from 2 individuals. (B) 

Percentage of CD66b+ neutrophils positive for each of selected marker.    
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6.4.2. Phenotypic changes in polarized neutrophils  

Isolated neutrophils were incubated for 8 and 24 h with recombinant MIF and HNSCC 

conditioned medium collected from FaDu MCTS and compared to neutrophils treated with 

INF-γ to stimulate an N1-like phenotype, TGF-β to stimulate an N2-like phenotype or to those 

cultured in medium alone. As a result of the small sample size and variability between donors, 

no statistically significance difference could be detected between the tested groups. However, 

several observations were noted in the pilot study data that will be discussed in the following 

section. First observation notice was that gating with the neutrophil specific marker CD66b 

gave a single cell population for both treated and un-treated control cells when cells were 

incubated for 8 hours. However, at 24 h neutrophils were split into 2 populations, one 

expressing high levels of CD66b and one expressing low levels and this was observed for 

neutrophils in all conditions tested (Fig. 6.3).  

Figure 6.3 Flow cytometry analysis showing gating of neutrophils based on CD66 b in 

unstained cells (A), untreated cells (B), 8 hours TGF-β treated (C) and 24 hours TGF-β treated 

(D). Note the 2 populations of CD66b stained cells after 24 h.     

 

  ( A )   ( B )   ( C )   ( D ) 
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Alternatively, the modulation of surface marker expression in CD66b+ neutrophils after 8 

hours stimulation was expressed as % of cells positive for each marker (figure 6.4). No change 

in % of cells positive for CXCR1 was detected in any of treated groups after 8 hours. A slight 

reduction in % of CXCR2 was detected after INF-γ treatment (62.5%) followed by TGF-β (69%) 

and MIF (74.3%), while MCTS-CM showed same level of CXCR2 (81.8%) as control (82.1%). 

Massive increase in % of CD66b+ positive for CXCR4+ appeared after co-cultured with 

conditioned medium from FaDu MCTS (72.3% in compare to 13.3% media), while the use of 

single agent like TGF-β or MIF induce a slight increase (37.2% & 27.6%, respectively). Simalrly 

for percentage of CD6b+ positive for CD62L was increased upon MCTS-CM incubation (media 

24%) to 54.8% of cells and reduce upon TGF-β treatment (9.86%). However, ICAM-1 was 

detected only in 5.4% of CD66b+ neutrophils but INF-γ treatment increase the population of 

ICAM-1 up to 48.7% and up to 36.6% after MCTS-CM, while only slight increase in %ICAM-1 

was detected upon TGF-β or MIF (10%). As expected, treatment with INF-γ induce the 

percentage of CD64 positive cells from 14.8% to 38.7%, followed by MCTS-CM treatment 

(27.1%), while treatment with MIF (18.3%) and TGF-β (20.5%) show less predominant affect. 

Finally, although CCR5 have been suggested as a N2-TAN marker (Eruslanov et al., 2014), but 

only few cells was positive for CCR5 (2.53%) which only slightly up-regulte upon  TGF-β (4.2%) .     
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Generally, the expression of both CXCR1 (2185) and CXCR2 (1001) in the media control group 

was almost the same as in all the treated groups (MFI for CXCR1 2055, 2030, 2146, 1931, MFI 

for CXCR2 895.5, 1004, 861.5, 861.5 For TGF-β, INF-γ, MIF and conditioned medium (CM), 

respectively; Fig. 6.5 and fig 6.6). Treatment of neutrophils with INF-γ increased the 

expression of ICAM-1 (409) and CD64 (279) compared to untreated cells (ICAM-1 (274) and 

CD64 (267) respectively), whereas none of the treatments affected the expression of CD62L 

(Fig. 6.4). On the other hand, when incubated with the N2 stimulant TGF-β, neutrophils 

presented with increased expression of CXCR4 (703.5) compared to untreated control cells 

(384). Cells incubated with recombinant MIF displayed slightly increased expression of CXCR4 

(541), whereas conditioned medium from FaDu MCTS markedly increased the expression of 

neutrophil cell surface CXCR4 (1486). In addition, treatment with TGF-β also moderately 

increased the expression of CCR5 (248) compared to control (206) as did culture with INF-γ, 

recombinant MIF and conditioned medium (242, 252, 242, respectively). 
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Figure 6.4 Bar chart represent percentage of cells positive for selected marker in response 

to different stimuli after 8 hours  
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Figure 6.5 Modulation of neutrophil cell 

surface receptor expression in response to 

different stimuli.  A whisker plot showing 

median expression with interquartile range of 

CXCR receptor (CXCR1, CXCR2 and CXCR4) 

adhesion molecules (ICAM-1, CD62-L) CCR5 and 

Fcγ receptor 1 (CD64) in untreated cells (media) 

neutrophils cultured in TGF-β, INF-γ, MIF and 

CM for period of 8 hours then analysis by flow 

cytometry. Data for 2 or 3 individuals is shown. 
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Figure 6.6 Representative histogram overlay plot of neutrophil cell surface receptor 

expression in unstimulated neutrophils (naïve) or in response to different stimuli 

after 8 hours.  
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6.4.3. Neutrophil phenotype after 24 hours incubation  

 

Neutrophils incubated with same treatment regime were also analysed by flow cytometry 

after 24 hours. Unexpectedly, two populations were observed based on CD66b+ expression 

after 24 hours incubation on both control and treated neutrophils (Fig. 6.7-A). CD66b is an 

activation antigen that is specifically expressed on the cell surface of neutrophils and is also 

stored on the membrane of neutrophilic secondary granules that are released to the cell 

surface upon stimulation (Ducker and Skubitz, 1992). The number of CD66b+High and 

CD66b+low in each of the groups was analysed by gating each population. Untreated control 

neutrophils consisted of 65% CD66b+low and 32% CD66b+High (with 13% falling outside the 

gates). These levels were similar to neutrophils incubated with INF-γ (N1 phenotype) with 70% 

CD66b+low and 26% CD66b+High and neutrophils incubated with recombinant MIF (68% 

CD66b+low and 27% CD66b+High). In contrast, TGF-β stimulated (N2 phenotype) showed a 

decreased amount of CD66b+low neutrophils (40%) but increased numbers of CD66b+High 

neutrophils (59%). Similarly, neutrophils co-cultured in FaDu MCTS conditioned medium 

exhibited a similar pattern with 40% CD66b+low and 60% CD66b+High neutrophils (Fig. 6.7-B). 

Statistical analysis using one-way ANOVA highlights the major modulation of CD66b+ 

expression after 24 hours treatments. For example, TGF-β stimulated neutrophils significantly 

reduce the population of CD66b+low (P= 0.0180) and induce the population of   CD66b+High (P= 

0.0131). Treatment with FaDu MCTS conditioned medium also induce same pattern to TGF-β 

with significant diminish in expression of CD66b+low neutrophils population (P=0.0215) and 

significant increase expression of CD66b+High (P= 0.0214) in compare to untreated neutrophils 

control after 24hour ex vivo culture condition (Fig 6.8).    
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Figure 6.7 Response of neutrophils surface receptor after 24 h incubation.  (A) Flow 

cytometry contour plot showing two population of cells based on CD66b+ expression. (B) bar 

chart summarising the modulation in expression of CD66b+ cells in untreated cells (media) 

neutrophils cultured in TGF-β, INF-γ, MIF and CM for a period of 24 hours. Data are 

represented from 3 individuals as Mean ± SEM.  
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Figure 6.8 Statistical analysis comparing the change in CD66b+ expression in compared to 

untreated cell (media). One-way ANOVA was used to compute the modulation of CD66b+ 

expression after 24hours neutrophils cultured in TGF-β, INF-γ, MIF and CM for a period of 24 

hours. Data are represented from 3 individuals as Mean ± SEM. *P<0.05 
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Unfortunately, due to time constraints, a detailed analysis for each of the surface expression 

markers was only carried out on one donor sample.  The main observation was noticed by 

analysing the % of CXC4 positive cells is that after 24hours all neutrophils are CXCX4+ (83.8%) 

in compare to 13% of CD66b+ after 8 hours’ incubation, which could indicate that neutrophils 

are coming to the end of their life-span. In compare to media (83.8%), MCTS-CM (99.7%), TGF-

β (97.2%) followed by MIF (95.5%) are the factor induce expression of CXCR4% mainly.  While 

CXCR1+ CD66b+ induce from 6.73% in un-treated neutrophils up to 48.9% in response to TGF-

β, 43.8% in response to MIF, 31.4% in response to INF-γ and 16.2%  in response to MCTS-CM. 

While TGF-β increase CXCR2 + population (73.8%), MCTS-CM (54%) and INF-γ (36.9%) reduce 

the number of CD66b+ CXCR2 in compare to control (67.5%).  The CD66b+ cells that express 

adhesion molecules were low, where only CD62L detected in 1.21% of cells, ICAM-1 positive 

cells were increase mainly upon MCTS-CM stimulation (Fig 6.9).  As two population of CD66b+ 

was detected as showed in figure 6.7-A and from histogram plot in figure 6.10 the analysis of 

each of the selected receptor was carried out separately.  
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Figure 6.9 Bar chart represent percentage of cells positive for selected marker in response 

to different stimuli after 24 hours  
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Figure 6.10 Representative histogram overlay plot of neutrophil cell surface 

receptor expression in in response to different stimuli after 24 hours.  
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In general, neutrophils that were CD66bhi displayed increased expression of all the markers 

tested than CD66blow neutrophils irrespective of whether they were stimulated or not. Of 

note, TGF-β treatment induced increased expression of CXCR4 (7114) on CD66b+High and 

CD66b+low (5127) neutrophils when compared to control (media) cells (CD66b+High (4270) 

and CD66b+low (3597) respectively). Again, this increased CXCR4 and ICAM-1 expression was 

observed in neutrophils treated with conditioned medium from FaDu MCTS. The conditioned 

medium cells also showed decreased expression of CXCR1 and CXCR2 compared to controls. 

In contrast, treatment with INF-γ reduced the expression of CXCR4. Recombinant MIF did not 

alter the expression pattern of CXCR4 (CD66b+High (4965) and CD66b+low (4017) and levels 

of CCR5, CD64, CD62L were unchanged in all samples at this time point (fig.6.11).   
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Figure 6.11 Characterisation of neutrophils by flow cytometry after 24 hours. A bar chart 

comparing the expression of CXCR (CXCR1, CXCR2 and CXCR4), adhesion molecules (ICAM-1, 

CD62-L) CCR5 and Fc γ receptor 1 (CD64) in CD66b+High and CD66b+low in untreated cells (media) 

neutrophils cultured in TGF-β, INF-γ, MIF and conditioned medium (CM) for 24 hours. Data 

represented MFI of one donor. 
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6.5. Discussion  

There are currently only a few studies that have examined human neutrophil polarisation, 

often because of the difficulty in isolating unstimulated neutrophils from blood as well as from 

tumour tissue and the lack of well-characterised polarisation markers. Moreover, neutrophils 

are short-lived cells that do not survive well once isolated from the circulation or tissues. 

Indeed, cell surface expression of CXCR1, CXCR2 and CD62L decreased dramatically whereas 

CXCR4 increased upon 8-hour in vitro culture with medium alone compared to expression on 

freshly isolated neutrophils from the same donor. A previous study by Fortunati et al showed 

that cultured neutrophils acquired a phenotype characterized by decreased expression of 

CXCR1, CXCR2, CD62-L and up-regulation of ICAM-1 in time-dependent manner (Fortunati et 

al., 2009). The alteration in expression of CXCR4 is likely to be a natural response to cell 

survival signals as neutrophils in the circulation programmed for cell destruction in the bone 

marrow or spleen increase expression of CXCR4 and decrease expression of CXCR1 and CXCR2 

in order to migrate back to these tissues when their life-span is coming to an end (Martin et 

al., 2003). Therefore, it is likely that decreased CXCR1/2 and CD62L and increased CXCR4 

observed in culture are stress response signals signifying the desire for neutrophil termination.  

Neutrophils cultured for 8 hours in the presence or absence of stimulants were analysed by 

flow cytometry for differences in N1, N2 polarisation markers. According to the few studies 

examining neutrophil phenotypes, N1 neutrophils should display decreased CXCR1/2 and 

CD62L expression, and increased ICAM-1 expression (Andzinski et al., 2016). Using the N1 

stimulant INF-γ, overall we observed no change in CXCR1/2 or CD62-L expression but an 

increase in ICAM-1 expression compared to unstimulated neutrophils, so only one of the 

markers tested confirmed with previous data. Stimulation with MIF did not increase any of 
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the proposed N1 markers, however, incubation with FaDu MCTS conditioned medium did 

increase ICAM-1, suggesting at least some polarisation to an N1 phenotype if expression of 

these markers are believed to represent an N1 phenotype. Previously, Eruslanov et al (2014) 

characterized human TAN isolated from early stage lung cancer as CD66b+CD11b+CD15hi, here 

TAN were characterized by ICAM-1hi (in the previous study shown to be an N1 marker), CD62-

Llow, CXCR4hi, CCR5hi, CCR7hi, CXCR3hi (Eruslanov et al., 2014). At the mRNA level, high 

expression of CXCR4 as well as other cytokines (VEGF, arginase, CCL2, CCL5, MMP-9, C-MYC 

and STAT-3) has been detected in N2 TAN from murine tumours (Jablonska et al., 2010). 

Overall we found that after 8 hours human neutrophils stimulated with the N2 polarisation 

factor TGFβ a cytokine found to be over-expressed in HNSCC patients, (Rosenthal et al, 2004), 

displayed increased expression of CXCR4, with no change in the other markers analysed (CCR5, 

CCR7 and CXCR3 were not analysed in this study). Therefore, increases in some but not all 

suggested N2 markers were the same as observed in previous studies and it could be that 

increased expression in of CXCR4, are the most reliable markers for the human N2 phenotype. 

If this is the case then it could be argued that MIF and conditioned medium for FaDu MCTS in 

particular, skew neutrophils towards an N2 pro-tumour phenotype.   

After 24 hours it was noted that there were 2 populations of CD66b+ in both control and 

treated neutrophils whereas at 8 hours neutrophils showed as only a single population. 

Expression of cell surface CD66b has been shown to increase on activated, degranulating 

neutrophils (Ducker and Skubitz, 1992), suggesting that over time in culture some neutrophils 

become activated increasing their cell surface expression of CD66b. Interestingly, the ratio of 

high/low expressing neutrophils was similar for medium control, INFΥ and MIF-treatment 

with more CD66blow than CD66bhi cells. In contrast, treatment with the N2 cytokine TGFβ and 
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FaDu conditioned medium displayed elevated numbers of CD66bhi compared to CD66blow 

neutrophils. This suggests that TGFβ and FaDu conditioned medium may be able to further 

stimulate neutrophil degranulation and therefore their activation status increasing 

expression of CD66b. Expression of polarisation markers on both CD66blow and CD66bhi 

neutrophils was conducted for only one of the donor samples due to time constraints and so 

interpretation of this data must be taken lightly. The data showed that in nearly all cases 

CD66bhi neutrophils expressed more sell surface markers than CD66blow neutrophils and this 

may be linked with differences in their activation status. On the whole data at 24 hours 

matched those at 8 hours with TGFβ and conditioned medium from FaDu displaying increased 

expression of CXCR4 (and ICAM-1 for conditioned medium) suggesting polarisation to an N2 

phenotype. Treatment with MIF did not alter any polarisation markers at this time point.  

The use of specific cell surface markers to characterise neutrophil polarisation into N1 or N2 

phenotypes is controversial and at best can be described as in an early stage of development. 

Because only a few studies have been performed in this area there is currently no consensus 

as to which markers are N1 and which are N2. However, if the current paradigm is to be 

believed, the pilot data generated in this chapter tentatively suggest that the tumour 

microenvironment from HNSCC may polarise neutrophils to an N2 phenotype although this 

seems to be independent of MIF and may be due to TGFβ amongst other cytokines. Clearly, 

further experiments are required on more individuals to overcome individual-to-individual 

variability in cell surface expression of these markers and to gain a consensus of neutrophil 

polarisation. In addition, analysing the phenotype of neutrophils within HNSCC or even within 

specific areas of these tumours (necrotic, invasive front) and comparing these to the 
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neutrophil phenotype in non-diseased tissue would further clarify phenotypic markers and if 

these have any meaning in tumour progression or for diagnostic purposes.  

Unfortunately, this study was not able to investigate functional changes in neutrophil activity 

or cytokine secretion upon polarised as suggested in the literature (Fridlender et al., 2009 and 

Jablonska et al., 2010). Clearly, this is an emerging field and further extensive and detailed 

analysis of the change (or not) in polarised human TAN and their roles in tumour progression 

are required.  
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Chapter 7: General Discussion 

Several studies have linked the number of TAN in various types of cancer, including HNSCC, 

with poor patient prognosis, suggesting that the presence of neutrophils within tumours has 

an impact on tumour progression and outcome. However, only a few of these studies have 

evaluated TAN localization within cancer tissue. In chapter 3, the spatial distribution of TAN 

within HNSCC tissue of a small cohort of patients showed that TAN mainly accumulate in 

necrotic and stromal areas. The tumour stroma is the area that probably has the most cell 

diversity within the tumour microenvironment. It is composed of fibrous connective tissue 

and various types of non-cancerous cells that secrete factors, which continuously interact 

with the tumour cells. This process is often termed desmoplastic reaction (DR), which is 

characterized by a connective tissue densely packed with fibroblasts, inflammatory and 

endothelial cells. DR has been reported in HNSCC (Janot et al., 1996), but the contribution of 

neutrophils in the tumour stroma is poorly understood.  Most studies have focused on the 

communication between CAFs, the most predominant component of the stroma, and the 

adjacent tumour cells to provide evidence that this cell-cell interaction modulates tumour 

growth and facilitates HNSCC invasion (Rosenthal et al, 2004, Kawahiri et al 2009).  However, 

this study observed many neutrophils in the tumour stroma of HNSCC patient biopsies; an 

observation reported in hepatocellular carcinoma (HCC) (Kuang et al., 2011). In HCC the CD15+ 

neutrophils found in tumour stroma was associated with increased MMP-9 expression, a 

known regulator of the angiogenic switch.  An in vivo study has showed that co-culture of Gr-

1+CD11b+ neutrophils isolated from tumour-bearing mice promoted the activation of CAF and 

displayed enhanced survival and increased expression of cytokines, indicating the importance 

of cell communication between many cell types, including neutrophils within in the tumour 
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stroma. Furthermore, these interactions highlight the possibility of targeting tumour growth 

by disturbing the tumour stroma, indeed, treatment with the immunomodulatory drug 

dexamethasone reduced DR and attenuated tumour growth in a murine tumour model (Stairs 

et al., 2011). Collectively, these data support the notion that the presence of neutrophils in 

the tumour stroma is important in tumour progression and so further in vivo studies ideally 

using orthotropic HNSCC tumours along with Ly6G-depleted neutrophils and knock-out mice 

deficient in fibroblast-derived factors are required to substantiate these observations.  

TAN were found to accumulate in necrotic areas of HNSCC tumours. Necrotic tissue develops 

as a result of chronic stress due to the lack of oxygen within tissue. The presence of necrosis 

has been observed in HNSCC and patients with low levels of tumour necrosis were found to 

have a better prognosis and responded better to chemotherapy than patients with large areas 

of necrosis who tended to develop chemoresistant tumours (Kuhnt et al., 2005). Data in this 

thesis found that neutrophils were recruited in large numbers to areas of tumour necrosis. 

Although the mechanism of neutrophil recruitment to necrotic areas is largely unknown it is 

likely due to increased expression of hypoxia-regulated chemoattractants or factors released 

from necrotic tissue. This was substantiated to a degree by the finding that FaDu hypoxic 

conditioned medium was more chemotactic than that produced from cells cultured under 

normoxic conditions, and that MIF gene expression was up-regulated by hypoxia.  Zhu et al 

also observed accumulation of Gr-1+CD11b+ neutrophils around the necrotic zone in a 

xenograft HNSCC tumour model, and confirmed the increased migration of Gr-1+CD11b+ to 

hypoxic derived conditioned medium in vitro. Similar to our MCTS cytokine array analysis, the 

authors detected MIF, IL-6, sICAM-1, and PAI-1 release from HNSCC from under normoxic 

conditions with increased expression under hypoxia (Zhu et al., 2014). Knock-down of HIF-1α 
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and HIF-2α, the main regulatory mechanism for hypoxia in HNSSC cells, reduced the level of 

MIF but, in contrast to the data presented here, did not affect Gr-1+CD11b+ migration 

towards hypoxic condition medium in vitro, suggesting that other factors were responsible 

for the recruitment of neutrophils (Zhu et al., 2014). Other factors may also aid recruitment 

of neutrophils to necrotic areas such as HMGB1, a protein released by necrotic tissue (Scaffidi 

et al., 2002). HMGB1 specifically triggers neutrophil but not macrophage migration to necrotic 

tissue and this is independent of CXCR4 (Scaffidi et al., 2002).  Whereas migration of 

neutrophils lacking RAGE (receptor for advanced glycation end-products), the HMGB1 

receptor, was reduced  by 80% toward liver necrotic lysate compared to control neutrophils 

(Huebener et al., 2015). Further investigation using laser capture microdissection to isolate 

neutrophils from stroma and necrotic tissue of HNSCC patient tissue will help understand the 

molecular mechanism of recruitment and the cross-talk between TAN and cancer cells. It is 

likely that neutrophils accumulating in large numbers in HNSCC biopsies in this study do so by 

a combination of hypoxia regulated chemoattractants such as MIF and CXCL12 and the actions 

of HMGB1 within the necrotic debris. This study is limited by the number of patient samples 

analysed and inability to link neutrophil numbers and MIF expression in various areas of the 

tumour to patient outcome. Access to further patient samples and clinical data would have 

allowed a more in-depth statistical analysis and further investigation in this area is required.   

In chapter 4, MCTS generated from HNSCC carcinoma cells were utilized to investigate the 

complex phenomena of neutrophil recruitment and factors responsible for this process. The 

use of an in vitro 3D model to study the immune cell-tumour cell interaction provides an 

excellent alternative to conventional monolayer culture and experimental murine models 

where species differences occur. For example, neutrophils account for 50-70% of peripheral 
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blood leukocytes in humans, while they only make up 15-20% of peripheral blood leukocytes 

in mice (Haley, 2003). The key observation was that MCTS secrete multiple neutrophil 

chemoattractant factors, such as MIF, CXCL1 and CXCL8. MIF overexpression was detected in 

HNSCC patient biopsies and FaDu cells and has been reported previously by others (Kindt et 

al., 2013b, CLUDTS et al., 2010, Dumitru et al., 2011). Pre-incubation of neutrophils with a 

pharmacological inhibitor of CXCR4 and CXCR2 significantly inhibited neutrophil recruitment 

suggesting that ligands binding to these receptors (MIF, CXCL1, CXCL8, CXCL12) are important 

in this process. FaDu MCTS express little CXCL12 (array data) suggesting that factor is not 

crucial for neutrophil recruitment. Moreover, the MIF specific inhibitor ISO-1 caused a 

dramatic inhibition of neutrophil infiltration that was greater than blocking CXCR2 or CXCR4.  

This observation and the fact that neutrophils do not express the MIF receptor CD74 (Dumitru 

et al., 2011) strongly suggest that MIF is the main neutrophil chemoattractant and this is via 

a CXCR2/CXCR4 axis. Similar findings were observed when MIF expression was prevented in 

knock down studies using HNSCC cell lines Cal-27 and Tca8113.  When MIF expression was 

blocked, Gr-1+CD11b+ neutrophil recruitment was reduced from 10% to 4% (61% reduction) 

in a nude mouse xenograft model (Zhu et al., 2014). Using ISO-1 the data presented in this 

thesis showed reduced Ly6G neutrophil infiltration up to 80% in vivo and 87% in vitro MCTS 

FaDu model.  The difference between these studies could be due to the different HNSCC cell 

types employed. The involvement of CXCR4 in neutrophil chemotaxis has not reported before 

but migration of B lymphocyte towards MIF or CXCL12 was reduced significantly upon 

treatment of B cells with AMD3100 (Klasen et al., 2014). Interestingly, in vitro and in vivo data 

in this study showed that THP-1 monocyte recruitment to HNSCC might also by MIF-

dependent, or at least partially. Previous studies examining other tumour-derived factors 

have pointed to CCL2 and/or CXCL12 amongst other molecules as the main ligands that recruit 
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monocytes to tumours (Kitamura et al., 2015, Murdoch et al., 2004). This is the first report 

citing MIF as an important tumour-derived factor to recruit monocytes to HNSCC tumours. 

However, these data must be taken with caution as the THP-1 monocytic cell line was used in 

this study and there are several reports that THP-1 cells are not good models of peripheral 

blood monocytes (Heil et al., 2002) and so these data need to be repeated using human 

peripheral blood monocytes. Clearly, further investigations are required to confirm these 

findings but it does raise the possibility that MIF inhibition may reduce recruitment of both 

TAN and TAM.  

This hypothesis was further investigated in chapter 5 where depletion of neutrophils using 

anti-Ly6G caused a decrease in tumour volume compared to PBS controls. Similarly, Ly6G 

depletion of neutrophils caused a reduction in tumour growth in melanoma and 

fibroosarcoma in vivo tumour models (Jablonska et al., 2010) supporting the tumour-

facilitating role of TAN. Administration of ISO-1 in CD-1 mice bearing subcutaneous FaDu 

tumours caused a significant reduction in the number of TAN and TAM but increased the size 

of tumour. This result was unexpected as a reduction in tumour size upon ISO-1 treatment 

was previously reported in a murine model of colon and prostate cancer (He et al, 2009, 

Meyer-Siegler 2006). Histological examination showed large areas of necrosis in ISO-1 treated 

tumours when compared to PBS-treated controls and unexpectedly this observation was 

associated with a reduction in the number of proliferative (BrdU+) cells in ISO-1-treated 

compared to control tumours. These results were opposite to those found with neutrophil 

depletion using Ly6G and points to the involvement of MIF in other tumour processes as well 

as leukocyte recruitment. For example, the reduction of tumour cell proliferation could be a 

direct effect of blocking the actions of MIF on tumour cells and not as a result of neutrophil 
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depletion. Several in vitro studies have shown that MIF inhibition using ISO-1 in lung (A549) 

(Rendon et al., 2007) prostate (DU145) (Meyer-Siegler et al., 2006) and glioblastoma (LN229) 

(Schrader et al., 2009) affected the migration, proliferation and invasiveness of these cancer 

cells. Accordingly, blocking exogenous MIF may diminish the proliferation ability of HNSCC 

tumour cells. This is supported by evidence showing that blocking endogenous MIF using 

shRNA in HNSCC cells resulted in a significant inhibition of tumour cell proliferation and 

motility, suggesting that endogenous MIF acts in an autocrine feedback mechanism to 

promote cell division and migration (Kindt et al., 2013b). Therefore, it is possible that MIF acts 

to accelerate tumour growth in an autocrine fashion in early tumours leading to increased 

tumour growth, and increased hypoxia and necrosis but then tumour cell proliferation is 

inhibited by ISO-1 treatment leading to low tumour cell proliferation rates observed in later 

in vivo tumours. In other words, the effect of inhibiting MIF in other aspects of tumour biology 

in addition to the recruitment of leukocytes may significantly impact on tumour growth.  

Further investigations are required specifically looking at the early stage tumours to examine 

the precise role of MIF during HNSCC tumour progression. These studies could include the 

use of MIF knockout mice or MIF knock-out HNSCC cell lines, preferably implanted 

orthotopically as these will be more representative of tumours in humans.   

Although differences in vascularisation (CD31) were not found in this study between 

neutrophil-depleted and control tumours, there is much evidence to suggest that neutrophils 

can express pro-angiogenic factors and therefore have a significant impact tumour 

angiogenesis (Tazzyman et al, 2013). For example, CXCR4hi neutrophils are rapidly recruited 

to pancreatic islets that have been grafted into striated muscles. These CXCR4hi neutrophils 

produced 10 times more MMP-9 than neutrophils recruited to inflammatory stimuli with this 
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factor mediating islet revascularization (Christoffersson et al., 2012). A further investigation 

by same group using a different mouse model showed that hypoxia-induced secretion of 

VEGF-A identified distinct cell surface receptor expression on circulating pro-angiogenic 

neutrophils, such as VEGF receptor1 (VEGFR1), CXCR4 and integrin a4 subunit (CD49d) in both 

humans and mice (Massena et al., 2015). This observation may explain the increase in CXCR4 

expression that we reported upon neutrophil stimulation with TGF-ß and conditioned 

medium from FaDu MCTS. 

In chapter 6, the effect of MIF and HNSCC-derived molecules on TAN polarization ex vivo was 

examined by flow cytometry.  Neutrophils acquired an activated phenotype, characterized by 

decreased expression of CXCR1, CXCR2, CD62L and up-regulation of ICAM-1 in time-

dependent manner. Stimulation with the N2 polarisation factor TGFβ increased expression of 

CXCR4 and to a lesser extent CCR5. Prolonged culture of neutrophils for 24 hours resulted in 

two populations of CD66b+ neutrophils in both control and treated groups whereas at 8 hours 

only one population was observed. Although only based on three (and in some instances two) 

blood samples this study provides pilot data that healthy neutrophils can change their 

phenotype based on their cell surface marker expression when stimulated. However, since 

there are very few studies to analyse and validate neutrophil polarisation markers it is difficult 

to determine what exactly constitutes a N1 or N2 phenotype.  Expression of cell surface 

CD66b has been shown to increase on activated neutrophils (Ducker and Skubitz, 1992), 

suggesting that over time in culture all neutrophils become activated. This is a very 

preliminary study and neutrophil polarisation into N1 or N2 phenotypes is controversial as 

most of the evidence for TAN polarization comes from murine studies and these markers may 

not translate to a human setting. To date, only one study has attempted to characterise TAN 
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polarisation markers in neutrophils isolated from early stage lung cancer tissue. These cells 

were described as CD66b+CD11b+CD15hi and characterized by ICAM-1hi, CD62Llow, CXCR4hi, 

CCR5hi, CCR7hi, CXCR3hi (Eruslanov et al., 2014). This study is unable to confirm that TGFβ 

induces an N2 phenotype or that INFγ treatment induces an N1 anti-tumour phenotype and 

more studies from the field need to be published to validate and confirm these markers. 

However, for the first time, this study shows that neutrophils from healthy volunteers can be 

polarised, in particular by culturing them with HNSCC tumour-derived factors where elevated 

expression of CXCR4 was evident, pointing to an N2 phenotype. This is strong evidence that 

tumour factors as a whole can modulate the gene and protein expression of neutrophils; the 

implications of these changes require further examination.  

 

Overall the data provided in this thesis show that MIF is overexpressed in HNSCC tumours and 

this factor appears to be central for the recruitment of TAN and possibly TAM into HNSCC, 

and that this occurs by activation of CXCR2 and CXCR4. There is very good evidence that 

leukocyte (TAN and TAM) recruitment into HNSCC is closely linked with poor prognosis, and 

although not identified in this study, this appears to be due to pro-angiogenic factors that 

these cells secrete within the tumour microenvironment that aids tumour progression. 

Therefore, inhibiting the actions of MIF may be a potential adjunctive therapy aimed at 

increasing the survival rates of individuals presenting with HNSCC.  
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APPENDIX I 

Table 1. Detection of neutrophils in healthy and cancer tissue. A panel of ten normal and 

seventeen  HNSCC tumour tissue sections were screened for the presence of neutrophils 

using the neutrophil-specific marker CD66b. Abbreviations: M= Male, F=Female  

Case Age Gender Site Diagnosis 

1 55 M Tongue Normal 

2 72 F Buccal mucosa Normal 

3 69 F Buccal mucosa Normal 

4 59 F Buccal mucosa Normal 

5 58 F Buccal mucosa Normal 

6 33 F Buccal mucosa Normal 

7 57 M Buccal mucosa Normal 

8 56 F Buccal mucosa Normal 

9 36 F Labial mucosa Normal 

10 16 M Tongue Normal 

11 75 M Lower lip SCC mod diff 

12 74 M Tongue SCC mod diff 

13 77 F Tongue SCC mod diff 

14 57 M Tongue SCC mod diff 

15 73 F Lip SCC mod diff 

16 67 M Lip SCC mod diff 

17 76 F Floor of mouth SCC mod diff 

18 43 M Tongue SCC mod diff 

19 54 M Tongue SCC mod diff 

20 37 F Tongue SCC mod diff 

21 85 F Tongue SCC mod diff 

22 38 M Tongue SCC mod diff 

23 67 F Tongue SCC mod diff 

24 62 F Floor of mouth SCC mod diff 

25 57 M Tongue SCC mod diff 

26 76 M Tongue SCC mod diff 

27 72 M Tongue SCC mod diff 
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Case 

 

sex Site Age Stage Other 

node 

Grade Recurrence Follow up   (months) Survival A Presence of 

Necrosis 

1 F RMT 69 T1N1mi Yes well yes 9 DoD 433±211 Yes 

2 M RMT 66 T4N2b Yes UN no 24 DF 14±3.4 No 

3 F FOM 59 T2N2b Yes UN no 72 DF 32.75±5.9 No 

4 F AT 63 T4N1 NO well no 72 DF 0.041±0.041 No 

5 F PT 83 T2N2b Yes well no 24 DF 944±184.4 Yes 

6 M AT 65 T1N1 NO Mod 2nd P 48 DUR 3116±787 Yes 

7 M FOM ? T2N2b Yes UN UN UN UN 1240±519 Yes 

8 F AT 54 T1N1mi NO UN no 24 DF 0.6±0.4 No 

9 F HP 50 T1N2c NO POOR UN UN UN 1526±8.9 Yes 

10 M AT 50 T1N1 NO Mod no 60 DF 1831±392 Yes 

11 M FOM 65 T1N2c ? UN UN UN UN 2431±140 Yes 

12 M AT 71 T1N1 NO Mod no 96 DF 1076±382 Yes 

13 F FOM 54 T1N2c NO UN UN UN UN 38.5±16.6 No 

14 F FOM 76 T2N1 NO Well no 6 DUR 692±175 Yes 

15 M FOM 60 T4N1 NO UN no 60 DF 15.9±5.2 No 
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Table 2: Patient and tumour characteristics for MPO distrubtion study . Abbreviations: M= Male, F=Female, RMT=Retromolar trigone, 

FOM=Floor of mouth, AT=anterior tongue, PT= posterior tongue, HP= Hard palate, SP=soft palate, DoD= dead of disease, DF=disease free, 

DUR=dead unrelated cause, AWD=alive with disease

16 M FOM 53 T1N1mi NO UN yes 36 AWD 8.5±3.7 No 

17 M AT 49 T1N1mi NO UN no 96 DF 374±117 Yes 

18 M PT 57 T2N1 NO UN no 72 DF 1723±398 Yes 

19 M FOM 51 T1N2b Yes UN yes 84 DF 9.7±4.3 No 

20 F RMT 73 T1N1 Yes Well Yes 12 DF 1.6±0.88 No 

21 M FOM 37 T1N2b NO UN 2nd P 96 AWD 127±49.9 No 

22 M FOM 62 T1N1 NO UN no 144 DUR 394±76.8 Yes 

23 M FOM 59 T1N2b Yes Mod yes 84 DF 97.9±25.3 No 

24 M FOM 60 T4N1mi NO UN 2nd P 48 DUR 28.25±12 No 

25 M RMT 65 T3N1 NO UN UN UN UN 614±170 Yes 

26 M FOM 67 T4N1 NO Mod no 48 DF 555±87 Yes 

27 M SP UN T3N2b Yes UN UN UN UN 994±250 Yes 

28 M RMT 55 T4N2b Yes Mod no 72 DF 3.5±1.6 No 

29 F FOM 67 T4N1 Yes UN no 12 DUR 565±17.9          Yes 

30 M FOM 58 T2N1 NO Mod no 18 DUR 160±9 Mod 
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APPENDIX II 

 

  

 

 

 

 

 

 

 

 

 

 

  

Figure 1  A human cytokines array coordinates for localizing the positive detected in 
the array  
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Table 1:  showing the cytokine/growth factor proteins detected in the array coordinates.  

 

 

 




