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Abstract

We present a new generalised eigenfunction of the reduced two-particle, mixed-charge,
hyperbolic Ruijsenaars-Schneider (or, relativistic A1-Calogero-Moser) Hamiltonian. The
asymptotics of this function displays transmission and reflection in a way that generalizes
the familiar non-relativistic picture. Using this function we construct integral transforms
diagonalizing the Hamiltonian (an analytic difference operator, or A∆O). When the
three parametric dependences of the Hamiltonian are restricted to a certain polytope,
these transforms can be used for a functional-analytic Hilbert space theory with all the
desired quantum mechanical features (self-adjointness, spectrum, S-matrix etc.). As a
final consideration we see how such a theory can be constructed in a different way for a
special choice of the coupling parameter, with accompanying special features.



Some conventions.

z Throughout Chapter 1 we make use of three fixed parameters or, simply, parameters
or constants for short,

(a+, a−, b) ∈ (0,∞)2 × R
On a handful of occasions we allude to complex b, but never in our main results,
i.e. in our lemmas, theorems or corollaries. In Chapter 2, b is fixed as a positive
integer multiple of a+, with the designation (a+, a−) ∈ (0,∞)2 still in force.

z All the objects (functions, A∆Os, integral transforms etc.) considered in Chapters
1 and 2 have a dependence on at least one of these parameters. Whether or not
we include this dependence in the symbol of the object depends on the context
(often we include b but not a+, a−). If the symbol for the object also includes
a dependence on the position variable x and/or the dual position variable y, we
separate them from the parameters by writing the latter to the left of a semi-colon.
E.g. c(a+, a−, b; z).

Sometimes when defining objects we do not include the parametric dependences
in the symbol; in such cases one can implement the convention just described,
combined with a fixed ordering a+, a−, b to the left of the semi-colon, to attain an
unambiguous definition. Most of the time this should not be necessary.

z Almost all equation references in Chapter 1 are internal to that chapter, and likewise
for Chapter 2. We therefore suppress chapter number in our equation and section
references, and likewise for proposition, lemma, corollary and theorem references.
Instances of inter-chapter referencing are clearly indicated. These are most common
in Chapter 0, the introduction.

z Throughout the thesis we make use of the following shorthands

cα(z) ≡ cosh(πz/aα), sα(z) ≡ sinh(πz/aα), eα(z) ≡ exp(πz/aα), α = +,−

Often without reference we make use of the following identities

sα(z + iaα/2) = icα(z), α = +,−

sα(z + iaα) = −sα(z), cα(z + iaα) = −cα(z), α = +,−

z The two Hilbert spaces used throughout are

H ≡ L2(R, dx), Ĥ ≡ L2(R+, dy)⊗ C2

where R+ denotes the strictly positive real numbers, R+ ≡ (0,∞). One could
equivalently use Ĥ = L2(R+, dy)2. We write elements of Ĥ in the form f̂ = 〈f+, f−〉.
We use C to denote the functions in C∞0 (R) with support away from the origin, as
well as Ĉ ≡ C∞0 (R+)× C∞0 (R+). These are dense subspaces, respectively, of H and
Ĥ.

z For us, a unitary map J between Hilbert spaces is one that strictly satisfies both
JJ∗ = 1 and J∗J = 1, and thus amounts to a surjective isometry.



z We always take the counting numbers N to include 0, i.e. N ≡ {0, 1, . . .}. If we
want to remove 0 from N, Q or R, we indicate this by affixing an asterisk to the
symbol, e.g. N∗.

z The shift on functions used throughout is defined by T ricF (r) ≡ F (r − ic).

z The main analytic difference operators (A∆Os) used in this thesis consist of two
shifts, one into the upper-half plane and one into the lower, each with a different,
not necessarily meromorphic, coefficient (or “potential”). The presence of two shifts
is said to make the A∆O second order.

z Formally, we can consider an A∆O action on any function, but this does not imply
analyticity properties of the resulting function, which must be studied separately.
For example the real-x restriction of (1.75) in Chapter 1 takes on a different light
once the analyticity properties in Lemmas 1.1 and 3.1 are known.

z A convention in itself: the word ‘formal’ is used to mean ‘pertaining to form’,
and is often a useful way to momentarily disregard any underlying analysis. Thus,
colloquially, it is closer to the meaning of ‘informal’.

z We always write A∆Os with an explicit argument, e.g. A(x) (where x is the variable
being shifted). By contrast we never use an explicit argument for an operator
defined in Hilbert space, even if it happens to have an A∆O action. Thus it makes
sense to ask, for example, whether some Hilbert space operator A has an A∆O
action, A(x).

z The word ‘eigenfunction’ is always meant in an algebraic, or formal, sense. Likewise
for ‘generalised eigenfunction’. If we want to indicate that an eigenfunction of this
kind is also in some L2-space we will refer to it as an L2-eigenfunction. If we want
to indicate that it is in the domain of a particular Hilbert space operator A, we will
refer to it as an A-eigenfunction. (The latter two usages are in fact quite rare in
this thesis.)

z A function F (x, y) is said to be a ‘generalised eigenfunction’ of an A∆O, A(x),
when there exists a function B(·) such that A(x)F (x, y) = B(y)F (x, y).

z In §1.2 in Chapter 1 we invoke the notion of O-asymptotics. We clarify here the
meaning of this in the most general context from which other variations in the main
text can be deduced. Consider the statement:

f(x, y) = fas(x, y) +O(g(x)), Rex→∞

where the bound represented by O is uniform for Imx, y varying,respectively, over
fixed K1, K2 ⊆ R. This means: there exist positive constants R,C such that

|f(x, y)− fas(x, y)| ≤ C|g(x)|

for all y ∈ K2 and x ∈ C satisfying Im x ∈ K1 and Rex ≥ R.



z Most of the results that we prove are specific to objects arising in the Ruijsenaars-
Schneider system. However, there are others that are proven for abstract objects
satisfying some set of assumptions. To keep the distinction clear, any instance of the
latter is given as a Proposition. Thus any result specific to a Ruijsenaars-Schneider
object is either a Lemma, Theorem or Corollary (of which there are far more). This
is a somewhat arbitrary, but we hope useful, convention.

z Many equations have symmetries that we express using indices equalling + or −.
Most of these indices arise in one of five ways, and so it helps to always use the
same symbol for each of the five (equations involving several indices are thus easier
to understand when they have a fixed meaning). We review what they are here.
The reader may wish to refer back to them later.

I δ = +,− enumerates the components of a function f̂ = 〈f+, f−〉 in the Hilbert
space Ĥ ≡ L2(R+, dy) ⊗ C2. For example, we might define one such function
by fδ(x) = δ exp(−(x+ δπ)2).

I ε = +,− is used when describing asymptotics of the kind x → ε∞. So for
example, sinhx ∼ εeεx/2 as x→ ε∞.

I τ = +,− is used to enumerate the two plane wave components of ψ(b;x, y),
most commonly in Chapter 2, cf. (2.14) for example.

I ν = +,− is used to enumerate the two shifted versions of Rr(b;x, y) that fea-
ture in ψ(b;x, y). In Chapter 2, this passes on to the two additive components
of the functions `±N , cf. (2.15).

I σ = +,− arises when looking at the transforms F and FN . The analysis of
these transforms reduces to an analysis of residues and boundary integrals of
two distinct kinds that can characterised by a sign choice. The index σ arises
as a product of two δ-type indices, usually occurring as δδ′ in the main text.

I α = +,− is used in miscellaneous cases not covered by any of the above.
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Chapter 0

Introduction.

1 Overview

In its mathematical content, this thesis provides an elaborate Hilbert space theory for a
particular one-variable analytic difference operator (A∆O) with three fixed parametric
dependences. Thus it contributes, by way of example, to the theory of unbounded self-
adjoint operators. In its physical aspect, significance derives from the fact this A∆O is the
Hamiltonian for the reduced two-particle, mixed-charge, quantum hyperbolic Ruijsenaars-
Schneider (or, equivalently, relativistic A1-Calogero-Moser) system, and thus also con-
tributes to the field of quantum integrable systems. The pertinent features of this system
are reviewed in §3 of this introduction. At the end of this section we look at some basic,
relevant aspects of A∆O theory.

The three parameters alluded to are denoted a+, a−, b. The first two can be viewed
respectively as the interaction and Compton wave lengths. They are always taken to be
positive, whereas b represents a coupling parameter which we may on occasion treat as
complex (though in all our results, a restriction to the real line is always in force). The
physicist may view each as having dimension position.

One of the notable features of A∆Os which we mention straight away is the enormous
degree of freedom which exists in the determination of eigenfunctions. For say we are
considering an A∆O of the form U1(z) exp(−i∂z) + U2(z) exp(i∂z). Any eigenfunction
of this may be multiplied by any meromorphic function periodic in i to yield another
eigenfunction with the same eigenvalue, thus giving rise to infinite-dimensional solution
spaces. This is what we call the ‘multiplicity’ issue, and it is why we often speak of
eigenfunctions as being ‘suitable’ or as meeting certain ‘expectations’, notions which
make less sense in the relatively more rigid setting of differential operators.

Although there is presently no general theory for the Hilbert space aspects of A∆Os,
various concrete cases studied by Ruijsenaars in [3], [20]-[23] and [25]-[26] all suggest a
departure from the approach to differential operators (reviewed in texts such as [7], [24]
and [29], as well as the notes [19]). In fact the papers just cited all share a common
approach, which we successfully extend to the A∆O studied in this thesis. This turns
on the central role given to generalised eigenfunctions in constructing the Hilbert space
theory and is one reason why the multiplicity issue is important. The role consists roughly
of this: one looks for a generalised eigenfunction of the A∆O that can be used to define an
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1. OVERVIEW

isometric integral transform from some spectral representation space into position space.
The A∆O is thus diagonalised in this space as a self-adjoint operator. (We provide further
motivation for this approach in a variety of places including: the toy model below; §2 of
this introduction; and §4 in Chapter 1.)

In addition to the works by Ruijsenaars already cited, the literature provides other
examples of A∆Os that have been studied in detail, some going back several decades.
These focus on bases of orthogonal polynomial eigenfunctions, and so they are less relevant
to the kind of theory we want to construct (involving continuous spectrum). Notable
examples include the following: Askey-Wilson [9]; Macdonald [16]; T.H. Kooornwinder
[13]; and J.F. van Diejen [15]. In fact a small subclass of the polynomials considered in
[9] reappear in the present theory, cf. §2 in Chapter 1.

As the reduced Hamiltonian for a system of opposite charges we have certain expec-
tations for the physics of the theory. The construction of the generalised eigenfunction
in §1 of Chapter 1, which has also been described in the author’s joint paper [32], is
motivated foremost by the desire for asymptotics of the transmission and reflection kind,
familiar from non-relativistic quantum mechanics. Moreover, an explicit form for the
transmission and reflection coefficients is already suggested by [4]. In line with integrable
system lore, we would like these coefficients to satisfy the Yang-Baxter equations, and
indeed they do. And later, they should end up in the expression for the S-operator. (A
suitable, easy-to-read reference for the notions invoked in this paragraph and the one
below is [24]; for more in-depth accounts of spectral theory, cf. [7], [29] or [12].)

Before reaching this stage, the first task is to render the A∆O (specified in the next
section) as a Hilbert space operator and prove existence of self-adjoint dynamics in H
(which we do in §5.1, Chapter 1). As suggested already, we define a Hilbert space operator
by diagonalising the A∆O using an integral transform with the generalised eigenfunction
as its kernel (§4, Chapter 1). Once this same integral transform is proved to be isometric,
we have a direct realisation of the spectral theorem and an explicit contribution to the
absolutely continuous spectrum. We also expect a non-empty discrete spectrum which,
in quantum mechanical terms, means a non-empty bound state subspace. This follows
because of the orthogonality results in §3.4 of Chapter 1. (For the discrete part of
the spectrum, the operator defined by diagonalisation must be supplemented with an
extension, cf. §5.3, Chapter 1.) The final exercise in Chapter 1 is to prove that the L2-
eigenfunctions enumerated in §2 span this subspace, thus giving us a complete description
of Hilbert space, and of the spectrum. This proof, inspired by [3], is very indirect and
involves focusing on the so-called dual A∆O. (The two figures in the next section provide
a detailed picture of how these results tie together.)

In Chapter 2 we see how the same results for self-adjointness and spectrum can be
proved in an entirely different way when the parameter b is fixed as an integer multiple of
a+. Under this specialisation all the special functions in Chapter 1 become elementary.
In addition, various novel phenomena can be seen explicitly such as isometry breakdown
of the integral transform.

For the analogous same-charge system, all angles of Hilbert space theory are covered
by [3]. Indistinguishability of particles entails a focus on the half-line (in contrast to
the mixed-charge case). Using these results, the same-charge Hamiltonian is found to
give rise to self-adjoint dynamics with purely absolutely continuous spectrum. The phase
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CHAPTER 0. INTRODUCTION

function which describes the scattering also appears in our transmission and reflection
coefficients (as expected, cf. [4]).

The work in [3] involves a Hilbert space theory based on an integral transform which
takes as its kernel the 8-variable BC1 ‘relativistic’ R-function generalising the hyperge-
ometric 2F1 function, cf. [1]. In fact, the very wide scope of this parameter domain
encompasses two cases that correspond to an even and odd channel description of the
system under consideration in this thesis. The details of these specialisations can be
found in [4] (and we say more on this in §2). One consequence of this is that we are not
in the dark with respect to the problem approached. Far from it, the paper [3] presents
many valuable insights that guide our proofs.

The present work represents a useful addition to what is already known from [3] and
[4] for at least one important reason. Our eigenfunction is constructed using the A1

specialisation of the aforementioned R-function, recently surveyed in [5]. In recent work
by Ruijsenaars and Hallnäs in [30], multi-particle (AN−1) joint eigenfunctions have been
constructed. By contrast there are no multi-particle versions of the BC1 function. Ac-
cordingly, by basing our work on the A1 function we hold out a greater hope of facilitating
a >2 particle extension of the Hilbert space theory. This is not attempted in the present
work, but it is the most plausible avenue for future research.

A note on sine-Gordon. One of the phenomena that makes this system special and
worth considering is its connection to sine-Gordon quantum field theory. At the classical
level a correspondence between the N -body point particle dynamics of the hyperbolic
Ruijsenaars-Schneider system and the factorised scattering of the N -soliton sine-Gordon
field theory was established by Ruijsenaars and Schneider in [10]. The extension of the
N -particle correspondence to the quantum level is still an open conjecture. But it can
be answered affirmatively for the N = 2 case. Indeed there are now two perspectives on
this: the one presented in thesis and the one deriving from the even and odd channel
specialisations of the R-function (a combination of [3] and [4]).

This is not the place for a detailed account of what the correspondence involves (we
refer the reader to [4] for more details and other relevant references). But we can be a
little more precise; when we set the coupling parameter b equal to a+/2, the bound state
spectrum and S-matrix for our system reproduce those of sine-Gordon quantum field
theory (namely, the DHN formula and Zamolodchikov’s S-matrix, respectively). Indeed,
other choices of the coupling parameter have connections to other soliton systems. Since
a rigorous functional-analytic treatment eludes the integrable quantum field theories, it
is curious that the same physics can be reproduced here on a functional-analytic level by
means of a relativistic, non-field-theoretic system.

� � �
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1. OVERVIEW

A toy model for A∆Os. To set the scene for our investigation, let us look more closely
at some of the formal and Hilbert space aspects of some basic, general A∆Os. (The
reader looking for more in this vein may consult [22] which inspires the sketch below.
Note that we do not say anything about general A∆E theory in this thesis; a detailed
account is given in [17].) First, let us think about the shift out of which all our A∆Os
are built,

T xicF (x) ≡ F (x− ic), x, c ∈ R (1.1)

Provided F (x) is analytic in a suitable strip it is well-known that T xic = exp(−ic∂x), and
so we see that the shift inherits formal self-adjointness from that of −i∂x when c is real.
Now suppose we introduce a potential term into this picture,

V (x)T xic (1.2)

where V (x) is some meromorphic function in x. Then, one finds that, formally,

[V (x)T xic]
∗ = V (x+ ic)T xic, x ∈ R (1.3)

And so we have a clear iff condition for formal self-adjointness of this A∆O, namely
V (x) = V (x+ ic). (Adapting this condition appropriately, one easily sees that the A∆O
considered in this thesis is also formally self-adjoint.)

At the Hilbert space level there is an obvious way to render the up and down shifts
as unbounded self-adjoint operators (setting c = 1 for simplicity). This involves noting
their unitary equivalence to real-valued multiplication,

T x±i = Je∓yJ∗ (1.4)

where J is Fourier transform,

J : L2(R, dy)→ H ≡ L2(R, dx), f̂ 7→ (2π)−1/2

∫
R
dy eixyf̂(y), x ∈ R (1.5)

Denoting by D(e±y) the maximal domains of multiplication on L2(R, dy) by e±y respec-
tively, we see explicitly that unitarity of J entails the two shifts

T x±i : J(D(e∓y)→ H (1.6)

are unbounded self-adjoint operators in H.
To motivate the work in §4 of Chapter 1 it will be illustrative to look at this another

way. Let us take the classic schoolboy approach to symmetry and write out

(T xi f, g) =

∫
R
dx f(x− i)g(x) =

∫
R+i

dx f(x)g(x− i) (1.7)

where the last equality involves a variable change (readily adaptable for T x−i). At this
point we ask what would be required to shift this contour down to R, and thereby exhibit
symmetry. By Cauchy’s theorem it would clearly suffice if f, g were holomorphic in the
strip i[−1, 0] × R, with uniform L2-asymptotics. At this point, our mind jumps to the

3



CHAPTER 0. INTRODUCTION

Paley-Wiener theorems, relating analyticity properties to decay properties under Fourier
transform. Indeed, Theorem IX.13 in [8], tells us precisely what we want to know: that
if a function f̂ has the necessary properties for membership of D(e−y), then (Jf̂)(x) has
analytic continuation to the above strip with uniform L2-asymptotics. In other words,
we have a rigorous symmetry result

(T xi f, g) = (f, T xi g), f, g ∈ J(D(e−y)) (1.8)

There are two things to take away this: the active role of analyticity properties of do-
main functions for a property like A∆O symmetry; and the possibility of grasping these
properties by means of an integral transform on some spectral representation space. This
is precisely the approach we take in Chapter 1 of the main text. In this regard one may
think of our integral transform as a generalised Fourier transform (indeed for certain
explicit values of the parameters one can see the reduction of the transform kernel to a
plane wave explicitly).

As a final consideration, let us see what happens if we try to adapt (1.7)-(1.8) directly
to accommodate a potential term. Writing (1.2) as T xi V (x + i) it is clear we could
reproduce the same argument, but the result would only hold for functions in

D(V (x+ i)) ∩ J(D(e−y)) (1.9)

where D(V (x+ i)) is the maximal domain of multiplication on L2(R, dx) by the function
V (x+ i). This is a highly unusual space and we are not aware of a procedure by which
it could be analysed, and proved to be dense in H. Moreover, even if there were such a
procedure, it is not clear that the symmetry property could then be strengthened to self-
adjointness (something which turns out to be fairly straightforward for our generalised
Fourier transform).

4



2. SUMMARY OF RESULTS

2 Summary of results.

In this section we give a summary of the results proved in this thesis. Their combined
effect is to render the following analytic difference operator (A∆O) as an unbounded
self-adjoint operator in the Hilbert space H = L2(R, dx) with explicit spectral properties,

H̃(a+, a−, b;x) =

[
c+(x− ib)
c+(x)

c+(x+ ib− ia−)

c+(x− ia−)

]1/2

T xia− + (i→ −i) (2.1)

c+(x) = cosh(πx/a+), T xia−F (x) = F (x− ia−) (2.2)

As relevant to quantum mechanics, we obtain an explicit description of the corresponding
bound states and S-operator, and prove orthogonality and completeness (we recommend
[24] as a concise summary of these notions). In the next section we see exactly how H̃(x)
arises as the center-of-mass-reduced two-particle, mixed-charge, hyperbolic, Ruijsenaars-
Schneider Hamiltonian.

Proving these kind of facts for an A∆O requires a novel approach. As an operator in
H, its domain will be defined using an integral transform with kernel given by a particular
generalised eigenfunction of H̃(x). This gives us a grip on the analyticity properties of
the domain functions when meromorphically-continued to a given strip (something which
is clearly of interest for an A∆O). This choice of generalised eigenfunction is key to the
successful construction of a self-adjoint operator with desirable spectral properties. The
issue of choice is non-trivial given the highly non-unique nature of A∆O eigenfunctions.
Moreover, an A∆O like exp(−ia−∂x) + exp(ia−∂x), which is seemingly free, may have
non-trivial (i.e. non-plane-wave) eigenfunctions and thus describe non-trivial physics.
Indeed the whole of Chapter 2 is premised on this fact.

As we suggested in the introduction, this is not the first time a Hilbert space theory
has been presented which enables H̃(x) to be rendered as a self-adjoint operator. One
such theory comes from the paper [3] by Ruijsenaars (which deals with a much larger,
four-coupling, class of A∆Os). Both theories are based upon the method of generalised
eigenfunctions with corresponding isometric integral transforms. However they are also
different in at least two important ways.

First, [3] deals with integral transforms on the half-line, and so the Hilbert space
version of H̃(x) arising there acts only in L2(R+, dx). Nevertheless, it connects closely
to the present work because what it gives us are two generalised eigenfunctions for H̃(x)
(and so two different transforms) which yield an even and odd channel description of the
same physics below (i.e. transmission-reflection asymptotics and bound state subspace.
Cf. [4]). The rigorous results for half-line transforms in [3], combined with the two spe-
cialisations described in [4], can be adapted fairly easily to make the physical equivalence
rigorous on H (the adaptation is not presently in the literature).

Second, the two generalised eigenfunctions in question are, to be more precise, one-
coupling specialisations of the four-coupling (BC1) R-function. As we have said already,
one of the achievements of this thesis is to prove everything in terms of the one-coupling
(A1) R-function. Because of recent work by Hallnäs and Ruijsenaars in [30], this has a
multi-particle (An−1) extension, unlike the R-function.
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CHAPTER 0. INTRODUCTION

The work in this thesis involves three fixed parameters or, simply, parameters or
constants for short, a+, a−, b, which have the physical interpretation sketched at the start
of §1 (and elucidated further in §3. In fact the latter uses a different set of “physical”
parameters - the only place to do so). Except for a handful of occasions when we allude
to complex b, the most general domain for these parameters considered in this thesis is

(a+, a−, b) ∈ (0,∞)2 × R (2.3)

Indeed (2.3) is always in effect for our lemmas, corollaries and theorems. The latter
typically require additional restrictions on the parameters which are taken to hold in
addition to (2.3). These restrictions fall under two kinds. There are those that prohibit
the parameters from equalling certain linear combinations of each other (over Q), and
those that involve a size restriction. The former would disappear if we were to employ
generic parameters, i.e. a+, a−, b taken to be linearly independent over Q. However, we
do not impose the requirement of genericity in this work. Our preference is to express
both kinds as b restricted in terms of a+, a− (which reflects the fact that physically, b is
like an interaction coupling parameter and thus more “controllable”).

With respect to the first kind of restriction, the most important is given below, cf.
(2.11). The Hilbert space results in this thesis require that we combine the latter with a
size restriction on b. This combination amounts to the following,

b ∈ (0, a− + a+/2) \ A−, (a+, a−) ∈ (0,∞)2 (2.4)

The effect of A− here is to exclude positive integer multiples of a− from the interval (cf.
(3.1) in Chapter 1). The latter are the exceptional b-values for which the ψ-asymptotics
becomes reflectionless, and for which a different Hilbert space theory applies (namely that
in [20]. Cf. (3.47) in [32] for the connection). Again, we stress that (2.4) is consistent
with/stronger than/sufficient for (2.11).

(Because of the symmetry (2.14), the results below are readily adaptable to the b-
interval, b ∈ (−a+/2, a−) with non-positive integer multiples of a− excluded. These
results mirror what we get for (2.4) in a way which is not worth detailing.)

We proceed to summarise the main results of this thesis. We stress that these are all
taken from Chapter 1. The reason this chapter is said to deal with general b becomes
clear when contrasted to Chapter 2 which looks at the special case when b is fixed as
a positive integer multiple of a+. The latter chapter proceeds by an entirely different
chain of arguments, but since it does not yield any results bearing on self-adjointness and
spectrum that do not also follow from Chapter 1, we do not summarise it here.

In almost all cases below, the defining expressions for objects are identical to those
in the main text. We consider these to be their proper place, insofar as they arise there
as part of the story. Nevertheless we stress that the reader does not have to read this
summary to follow the main text, and vice versa. We will not re-use the equivalence
symbol in the defining expressions below.

The fundamental building blocks for this work are the hyperbolic gamma function
G(z) [17] and the relativistic conical function R(a+, a−, b;x, y) [5] as well as its renor-
malised counterpart denoted by a subscript r. An overview of these functions is given at
the start of Chapter 1.
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2. SUMMARY OF RESULTS

Let us now specify the function central to the construction of our Hilbert space theory
for H̃(x), which introduces a dual variable y,

ψ(a+, a−, b;x, y) = w̃(b;x)1/2 (2s−(ib− y)c(b;−y))−1

×
∑
ν=+,−

νe−(ν(ib− y)/2)Rr(b;x+ iνa+/2, y) (2.5)

This features the following meromorphic functions, whose a+, a−-dependence we suppress,

c(b; y) = G(y + ia− ib)/G(y + ia) (2.6)

w̃(b;x) = 1/c̃(b;x)c̃(b;−x) (2.7)

c̃(b;x) = c(b;x− ia+/2) = G(x+ ia−/2− ib)/G(x+ ia−/2) (2.8)

a = a+/2 + a−/2 (2.9)

and the two entire functions

s−(z) = sinh(πz/a−), e−(z) = exp(πz/a−) (2.10)

Algebraic, asymptotic and analyticity properties of ψ(x, y). We now detail certain
properties which all hold when the parameters satisfy

b ∈ R \ Y (2.11)

Y = {± [ka+/2 + (l + 1)a−] | k, l ∈ N} ∪ {−ka+/2 | k ∈ N} (2.12)

(in addition to a± ∈ (0,∞)).
The function ψ(x, y) has two important symmetries

ψ(x, y) = ψ(x,−y), (2.13)

ψ(b;x, y) = ψ(a− − b;x, y) (2.14)

Moreover, it is meromorphic in y and its square is meromorphic in x; it has no branch
points on the real line (Lemma 1.1). It is smooth in both x and y (statements about
smoothness involve the restriction of the variables to the real line; Corollary 3.2). It
satisfies the following generalised eigenvalue equation (Lemma 1.1),

H̃(x)ψ(x, y) = 2 cosh(πy/a+)ψ(x, y) (2.15)

And, finally, it has the following asymptotics (Lemma 1.3),

ψ(x, y) =

t(y) exp(iπxy/a+a−) +O(e−ρRex), Rex→∞

exp(iπxy/a+a−)− r(y) exp(−iπxy/a+a−) +O(e ρRex), Rex→ −∞
(2.16)
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CHAPTER 0. INTRODUCTION

where ρ > 0 is a constant fixed by a+, a−, and where the bound represented by O is
uniform for Imx and y varying over any compact subset of R (the precise meaning of
this statement follows from our conventions). The functions t(y) and r(y) are defined as
follows

t(b; y) =
s−(y)

s−(ib− y)
u(y), r(b; y) =

s−(ib)

s−(ib− y)
u(y) (2.17)

and where u(y) is a phase,
u(b; y) = −c(y)/c(−y) (2.18)

From well-known trigonometric identities we thus have

|t(y)|2 + |r(y)|2 = 1, (2.19)

as well as consistency with the Yang-Baxter equations (cf. Chapter 1, §1.1). Using (1.3)
in Chapter 1 we also have the following integral representation for Im y in a sufficiently
small interval,

− u(y) = exp

(
2i

∫ ∞
0

du

u
sin(2yu)

sinh((b− 2a)u) sinh(bu)

sinh(a+u) sinh(a−u)

)
(2.20)

Continuous spectrum of H̃. The following claims hold when the parameter restriction
(2.4) is in force (a stronger version of (2.11)). It is notable that these results require a size
restriction on b which is not required for the properties above, or for formal self-adjointness
of H̃(x). This is one of the novel phenomena of A∆Os; namely, that heuristics are a poor
guide to functional-analytic results.

Out of the function ψ(x, y) we construct two transforms

(F±f)(x) =

∫
R+

dy ψ(±x, y)f(y) (2.21)

and glue these together to create a third which acts on pairs f̂ = 〈f+, f−〉,

F f̂ = c (F+f+ + F−f−), c = 1/
√

2a+a− (2.22)

This is an isometry on the Hilbert space Ĥ = L2(R+, dy)⊗ C2 (Corollary 5.3),1

F : Ĥ → H (2.23)

We note that F can alternatively be viewed as an eigenfunction transform on L2(R, dy)
(a trivial isomorphism links the two perspectives). This may seem preferable but there

1It is also true that cF± are isometries on L2(R+, dy). This is not in the main text but follows by
adapting results in §4-5 in Chapter 1. This approach is not obviously preferable because it does not give
us isometry of F without an independent proof of RanF+ ⊥ RanF−. For the adaptation one must define
new operators, analogous to H̃ac, by the intertwining H̃±F± = F±m̂. Symmetry of these operators is
implied by vanishing of d+,+(f, g). An analogue of Lemma 5.2 can be written down for H̃± and cF±
which is true in light of (5.48) in Chapter 1. This analogue implies the isometry claimed.
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2. SUMMARY OF RESULTS

is a catch: the integrand has a piecewise dependence on y,

f 7→ c

∫
R
dy ψ−(x, y)f(y), x ∈ R, ψ−(x, y) ≡

ψ(x, y), y > 0

ψ(−x,−y), y < 0
(2.24)

Plus, there are other issues. For instance, the S-operator below would not be neatly
expressible in terms of the matrix S(y) in a formalism based on (2.24). In sum, we
consider F (2.22) to be preferable and do not use the alternative anywhere in the thesis.
We note it here simply because the reader may find it more intuitive.

This isometry result has a natural application to the Hilbert space theory of H̃(x).
To see this we need the space of functions

Ĉ = C∞0 (R+)× C∞0 (R+) (2.25)

which is dense in the Hilbert space Ĥ. We also need multiplication on pairs by the
unbounded function 2 cosh(πy/a+), denoted M̂ . Clearly, Ĉ is invariant under M̂ . It then
follows that the operator

H̃ac = FM̂F−1 (2.26)

H̃ac : F(Ĉ)→ F(Ĉ) ⊂ H (2.27)

is a priori symmetric in the Hilbert space

F(Ĉ) = F(Ĥ) (2.28)

where this equality follows from F ’s isometry (all the same, we often prefer to use the lhs
expression for reasons of illustration; the bar denotes closure). In fact a simple argument
using Nelson’s Theorem allows us to strengthen this symmetry to essential self-adjointness
(i.e. existence of a unique self-adjoint extension; Theorem 5.1). Because of the generalised
eigenvalue equation above it is clear we have constructed a diagonalisation of H̃(x). In
other words, H̃ac reproduces the action of the A∆O H̃(x) on F(Ĉ).

The wider problem is to render the A∆O H̃(x) as a self-adjoint operator in the
generally larger Hilbert space, H. The result just given for H̃ac obviously plays a major
part in this. In light of it, we introduce an operator H̃ with the following dense domain
in H,2

D(H̃) = F(Ĉ)⊕F(Ĉ)
⊥

(2.29)

The action of H̃ is defined separately on the two spaces in this orthogonal sum. On
F(Ĉ) we set it to be H̃ac, unsurprisingly. However, to define a suitable action on the
orthocomplement requires knowledge from the next set of results. For the present set, it
is enough to define H̃ as an arbitrary, bounded self-adjoint operator on this space. I.e.
the results (2.36)-(2.38) hold independently of this arbitrary choice.

The operator H̃ clearly inherits essential self-adjointness from H̃ac. As a result, it
has a contribution to its absolutely continuous spectrum of multiplicity two given by the

2 Recall our convention wherein A∆Os are written with an explicit variable, unlike operators defined
in Hilbert space.
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CHAPTER 0. INTRODUCTION

closure of the set {2 cosh(πy/a+) | y ∈ R+}, i.e. [2,∞). When the action of H̃ on the
orthocomplement is fixed as below, this becomes the sole contribution.

Finally we have results for time-dependent scattering theory. Essential self-adjointness
entails existence of a one parameter unitary group,3

exp(itH̃), t ∈ R (2.30)

We compare this to a free motion defined using Fourier transform on pairs f̂ = 〈f+, f−〉,

J : Ĥ → H (2.31)

(J f̂)(x) ≡ c
∑
δ=+,−

∫
R+

dy exp(iπδxy/a+a−)fδ(y), c ≡ 1/
√

2a+a− (2.32)

We then have an a priori self-adjoint operator

H0 = J M̂J−1 (2.33)

with dense domain J (D(M̂)) in H (here, D(M̂) is the maximal domain of all functions
f ∈ Ĥ such that M̂f̂ ∈ Ĥ) and a corresponding one-parameter unitary group,

exp(itH0), t ∈ R (2.34)

The operator H0 has the free action H0(x) = exp(−ia−∂x) + exp(ia−∂x). (We note that
to understand the limiting case H̃ → H0, it is not enough to ask when H̃(x) → H0(x).
Rather we must ask when F → J , which is a much more non-trivial question. One way
to achieve this is to fix b = bN and a−/a+ ∈ N∗ simultaneously, cf. Chapter 2 and [32].)

We may now consider the following wave operators on H,

W± = s·lim
t→∞

exp(±itH̃) exp(∓itH0) (2.35)

(where s·lim means the limit is defined in the strong operator topology). Then, we have
(Theorem 5.4),

W− = FJ ∗ (2.36)

W+ = F Ŝ∗J ∗ (2.37)

where Ŝ denotes matrix multiplication on functions in Ĥ by the unitary matrix

S(b; y) =

(
t(y) −r(y)
−r(y) t(y)

)
(2.38)

Moreover, the S-operator W ∗
+W− is equal to J ŜJ ∗ and the scattering states (intersection

of the ranges of the wave operators) are given by (2.28).4

3 The H̃ in the exponent is understood to stand for its own unique self-adjoint extension.
4 To attain positive signs for r(y) in this matrix, one may redefine F (2.22) with subtraction in place

of addition on the rhs.
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2. SUMMARY OF RESULTS

Discrete spectrum of H̃ (plus conclusion). The following claims hold whenever (2.4)
is in force. In addition to the facts about F above, we have the following completeness
result (Theorems 7.4 and 7.7),

F(Ĉ)
⊥

= span{Ψ(0), . . . ,Ψ(mb−1)} (2.39)

Ψ(m)(b;x) = 2c+(x)w̃(x)1/2Qm(2s+(x)), m ∈ N (2.40)

where mb is the largest integer such that mba− < b; vanishing when b < a−. In the
latter case, the span is empty, corresponding to unitarity of F . The function Qm(b; ·) is
a polynomial of degree m and parity (−)m. It has a close relation to the q-ultraspherical
polynomials in Askey and Wilson’s survey [9] and is discussed in more detail below. For
our discussion of H̃ what is important is that the functions Ψ(m)(x) in (2.39) are mutually
orthogonal and engage in the following eigenvalue equations with the A∆O H̃(x),

H̃(x)Ψ(m)(x) = EmΨ(m)(x), m = 0, . . . ,mb − 1 (2.41)

Em(b) = 2 cos
(
π[b− (m+ 1)a−]/a+

)
(2.42)

The parameter restrictions entail

0 < E0 < E1 < . . . < Emb−1 < 2 (2.43)

We now fix the action of H̃ on the orthocomplement in (2.29) by defining it to act as
real-valued multiplication on the explicit (and orthogonal) basis in (2.39),

H̃Ψ(m) = EmΨ(m), m = 0, . . . ,mb − 1 (2.44)

Main Theorem. For parameters satisfying (2.4), the densely-defined operator in H,

H̃ : F(Ĉ)⊕F(Ĉ)
⊥
→ H (2.45)

with action H̃ac (2.26) on F(Ĉ) and action (2.44) on the orthocomplement is essentially
self-adjoint with absolutely continuous spectrum [2,∞) of multiplicity two, and point spec-
trum (2.42)-(2.43) of multiplicity one. In both cases, this action equals that of the A∆O
H̃(x). The map F (2.22) is an isometry, and thus the closure in (2.45) equals F(Ĥ).

Let us now say more about the functions Qm(b; ·) and Ψ(m)(x) (with (2.4) still in
force). The former is uniquely defined by Q−1 = 0, Q0 = 1 and the recursion,5

Qm+1(u) + uσmQm(u) + ρmQm−1(u) = 0, m ≥ 0 (2.46)

where σm, ρm are b-dependent constants,

σm = sin(π(b− (m+ 1)a−)/a+)/ sin(π(m+ 1)a−/a+) (2.47)

ρm = sin(π(2b− (m+ 1)a−)/a+)/ sin(π(m+ 1)a−/a+) (2.48)

5 In fact, for the degree and parity properties of Qm(b; ·) to follow from this recursion for parameters
(2.3), certain restrictions on the latter are required, cf. Lemma 2.1. These are implied by (2.4), as
discussed in the proof of Theorem 7.7.
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The eigenvalue equation (2.41) can be seen to hold as a result of a relationship that
exists between Ψ(m)(x) and ψ(x, y) (Lemma 2.2),

Res
y=ym

ψ(x, y) ∝ Ψ(m−1)(x), m ∈ N (2.49)

ym = ib− ima−, Ψ(−1) = 0 (2.50)

The m-dependent proportionality constant here is equal to

− s−(y1)(a−/π)c(y1)/c(−ym) (2.51)

Thus the eigenvalues Em arise via the spectral values ym,

Em = 2c+(ym+1) (2.52)

In fact, as one might expect, the transmission coefficient t(·) in the asymptotics of ψ(x, y)
is singular for ym. We have the following ordering, for mb ≥ 1,

a+/2 > Im y1 > Im y2 > . . . > Im ymb
> 0 (2.53)

(We note that without the upper bound, this ordering is true for general parameters.
The upper bound arises from the size restriction on b and, in light of (2.52), we can see
why (2.53) translates into (2.43).)

We also have an expression for the norms of the functions Ψ(m)(x) (Theorem 7.7),6

‖Ψ(k)‖2
H = Nσk

k∏
l=0

(1/ρl), k = 0, . . . ,mb − 1 (2.54)

−N (b) = 2(a+a−)−1/2 sin(πb/a−) sin(πb/a+)
G(2ib− ia)

G(ib+ ia)G(ib− ia)
(2.55)

In light of (2.54), the number Nσ0/ρ0 is non-obviously positive given our parameter
restrictions and mb ≥ 1 (which entails b > a−).

� � �

6 This expression for N (b) is a rewriting of the definition in the main text which uses (1.1) in Chapter
1, and the explicit evaluation G(ia+/2− ia−/2) = (a+/a−)1/2 from e.g. [5].
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A more explicit view. Here we flesh out some of these restrictions and results in a
(slightly) more concrete way. We focus on the case when b ∈ (a−, a− + a+/2)/A− such
that the bound state subspace is non-empty. With this restriction on b, the constant mb

is fixed by the values of a+, a− as follows

a+/a− ∈ mb

(0, 2) 1

(2, 4) 2

(4, 6) 3

(6, 8) 4

...
...

For the purposes of illustration, let us look at the results above explicitly for the case when
a+/a− ∈ (6, 8). Here, the reduced b-interval becomes b ∈ (a−, a− + a+/2) \ {2a−, 3a−}
and we may say the following:

The operator H̃ (2.45) with action H̃(x) (4.7) on its domain is essentially self-adjoint
and has absolutely continuous spectrum [2,∞) of multiplicity two, and point spectrum
of multiplicity one given by

0 < E0 < E1 < E2 < E3 < 2 (2.56)

E0 = 2 cos(π(b− a−)/a+), E1 = 2 cos(π(b− 2a−)/a+) (2.57)

E1 = 2 cos(π(b− 3a−)/a+), E3 = 2 cos(π(b− 4a−)/a+) (2.58)

These points arise as Em = cosh(πym+1/a+) for the spectral values ym = ib− ima−. The
latter are poles of the S-matrix satisfying

a+/2 > Im y1 > Im y2 > Im y3 > Im y4 > 0 (2.59)

We have the completeness result

F(Ĉ)
⊥

= span{Ψ(0),Ψ(1),Ψ(2),Ψ(3)} (2.60)

and polynomials

Q0 = 1 (2.61)

Q1(u) = −σ0u (2.62)

Q2(u) = σ0σ1u
2 − ρ1 (2.63)

Q3(u) = −σ0σ1σ2u
3 + (ρ1σ2 + ρ2σ0)u (2.64)

We also have, e.g.,

‖Ψ(3)‖2
H = Nσ3/ρ0ρ1ρ3 (2.65)
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On the attainment of results. The summary above was designed to be as succinct
as possible. Now, with a little more leg room, we discuss some subtleties concerning the
proofs of the results (which, we recall, are all from Chapter 1).

First, we want to stress one way in which the summary could lead the reader astray.
Above, we stated that the transform F was isometric and used this to conclude that the
operator H̃ac was symmetric. In reality, these two properties are proved in reverse order
(something illustrated in Figure 1 below). Moreover, when we define H̃ac and prove its
symmetry, this is without knowledge that F is even bounded, let alone isometric. Indeed
all that we possess is a well-defined map F : Ĉ → H (Lemma 3.3). This is why we must
use the intertwining definition in the main text, as opposed to (2.26) above.

This also explains why we did not consider rhs of (2.26) on the maximal space D(M̂)
when summarising H̃ac, something which may seem more natural since the corresponding
operator would be a priori self-adjoint in light of explicit unitary equivalence to a self-
adjoint multiplication operator. If we had done this, the departure from how things are
actually proved in the main text would be even greater. (In any case, the rhs of (2.26)
on the maximal space D(M̂) is of course nothing but the unique self-adjoint extension of
H̃ac whose existence we prove in §5.1 of Chapter 1.)7

If this procedure for F and H̃ac seems unusual, that by which we prove the complete-
ness result is more unusual still (both have a precedent in [3]). It rests on our ability
to prove a so-called symmetry formula for the dual operator S, defined by intertwining
the adjoint transform F∗ and multiplication by 2s+(x). This formula can be tied to an
explicit expression for the orthocomplement of F(Ĥ) when F is isometric. Because of
the dual-variable eigenvalue equation in Lemma 1.1, the operator S amounts to a Hilbert
space version of the dual A∆O S(b; y).

These facts, and more, are illustrated in the following two figures which show how
the results in Chapter 1 of this thesis are tied together. We focus on those results that
reveal some fact about ψ(x, y) or its close relatives. Thus we do not include our various
abstract Propositions even though, for example, the symmetry result for H̃ac hinges on
three of them (recall our conventions for the meaning of ‘abstract’ here).

Once the first row of results is in place, i.e. Lemmas 1.1, 1.3 and 1.4, the procedure
by which we arrive at the others in the picture is self-contained. These three lemmas
draw upon facts about the hyperbolic gamma and relativistic conical functions from the
literature.

Figure 1 begins on the next page.

7As it happens, one of the curious facts about the special case studied in Chapter 2 is that isometry
of the eigenfunction transform does in fact come first, as we explain at the start of that chapter.
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Lemmas 1.3 and 3.1
(x-asymptotics and ψ-analyticity)

−−−−→

Lemma 3.3 Lemma 1.1

(Definedness of F± : C∞0 (R+)→ H) (ψ(x, y) as g.eigenfunction of H̃(x))

−−−−→

−−−−−→

Theorem 4.5 ←−−−− Lemma 4.4

(Symmetry of H̃ac) (x-holomorphy of J±(x, y, y′))

−−−−→

Theorem 5.1

(E.s.a. of H̃ac)

−−−−→
Lemma 5.2 −−−−→ Theorem 5.4

(Preliminary result for W−) (Explicit wave operators W±)

−−−−→

Corollary 5.3
(Isometry of F)

Figure 1: Proof of F ’s isometry.
(All references to Chapter 1.)
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Lemmas 1.4 and 3.1
(y-asymptotics and ψ-analyticity)

−−−−→

Lemma 3.4 Lemma 1.1
(Definedness of F∗± � C) (ψ(x, y) as g.eigenfunction of S(y))

−−−−→

−−−−−→

Theorem 6.3 ←−−−− Lemma 6.2

(Symmetry formula for S) (y-poles of Ĵ±(y, x, x′))

−−−−→
Corollaries 7.1 and 7.2 ←−−−− Lemmas 2.2 and 2.3

(Symmetry/symmetry breakdown of S) (ym-specialisations of ψ(x, y))
−−−−−−−−→

Lemma 2.1
(Well-definedness of Qm)−−−−−→

Theorems 7.4 and 7.7 ←−−−− Lemma 3.5
(Unitarity/unitarity breakdown of F) (Orthogonality: F±f ⊥ Ψ(m))←−−−−−

Corollary 5.3 (Isometry of F)

Figure 2: Proof of completeness. (All references to Chapter 1.)
Note the appearance of Corollary 5.3 here, which makes the second chain

dependent on the first.
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3 The system at issue

We now sketch the details of the two-particle hyperbolic Ruijsenaars-Schneider system
[10], and its quantisation, in order to exhibit the connection to the A∆O studied in
this work. We will do this using the conventional quantities of classical and quantum
mechanics. These relate to those in the main text of the thesis as described in the re-
parameterisation at the end. The position variable is unchanged, but to avoid confusion
with later work we nonetheless denote it with a different symbol, r.

Classically, the system is defined by the Hamiltonian,

Hrel ≡ mc2 (cosh (p1/mc) + cosh (p2/mc))U(r1 − r2), m ∈ (0,∞) (3.1)

where pi/mc is a rapidity variable and ri its canonically conjugate partner. The potential
U : R → R is assumed to be smooth and even. To reproduce the Lie algebra of the
Poincaré group,

{Hrel, P} = 0, {Hrel, B} = P, {P,B} = Hrel/c
2 (3.2)

we can take as space translation and boost generators,

P ≡ mc (sinh (p1/mc) + sinh (p2/mc))U(r1 − r2), B ≡ −m(r1 + r2) (3.3)

which are seen to satisfy (3.2) fairly easy; the first reduces to the identity cosh2A −
cosh2B = sinh2A− sinh2B. (This is quite different to the general n-particle case where
insistence on the first, i.e. on space-time translation invariance, leads to a set of functional
equations which is known to be solved iff U is the Weierstrass elliptic function, cf. [11]).

Similar calculations show that (3.1) Poisson commutes with the four involutive (mu-
tually commuting in the Poisson sense) Hamiltonians

{
S±1 ≡ (exp (±p1/mc) + exp (±p2/mc))U(r1 − r2) (3.4)

S±2 ≡ exp (±(p1/mc+ p2/mc)) (3.5)

and thus defines a classically integrable system (we note, once again, that it is not so
straightforward in the n > 2 particle case where one has to consider the involutivity
of 2n Hamiltonians. For ansätze generalising (3.4),(3.5), restrictions on U arise that
encompass those for the space-time translation invariance problem described above; that
these restrictions are satisfied by the Weierstrass function can in turn be encompassed
by the A∆O commutativity problem described below). We also note, importantly,

Hrel = mc2(S1 + S−1)/2 (3.6)

The specialisations of U that interests us are the hyperbolic ones, corresponding to a
same-charge potential and its mixed-charge counterpart obtained by analytic continuation
r → r + iπ/2ν. Respectively,

U(r) =

(1 + sin2 τ/ sinh2(νr))1/2

(1− sin2 τ/ cosh2(νr))1/2
τ ≡ νg/mc (3.7)
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CHAPTER 0. INTRODUCTION

(This sees the introduction of two further parameters, g, ν ∈ (0,∞), akin to a coupling
parameter and an inverse interaction length, respectively.) We also note that each of
these two U(r) functions can be written in the form [V (r)V (−r)]1/2 where, respectively,

V (r) =

sinh(νr − iτ)/ sinh(νr)

cosh(νr − iτ)/ cosh(νr)
(3.8)

Accordingly we now add to (3.1)-(3.6) the assumption that U(r) may always be written
in this form, with V (·) smooth. To define the corresponding quantum systems we must
consider how S±k and Hrel are to be quantised. In the general n-particle case, there is an
ambiguity that arises from the canonical prescription

pj → p̂j ≡ −i~ ∂/∂rj (3.9)

which is resolved by an insistence on mutual commutativity (of the 2n Hamiltonians).
The quantisations that we are going to use are the n = 2 specialisations of the general
solution to this commutativity problem, even though there is in fact no ambiguity in
the n = 2 case, even for general V (these general solutions were first given in [11]). In
anticipation of their promotion to formal operators, the ordering of the symbols on the
rhs of the following definitions is understood to be fixed (until such a time that we set
pi = p̂i, whereupon the resulting operators may be manipulated),

Ŝ±1(r1, r2, p1, p2) ≡ V (±r)1/2 exp(±p1/mc)V (∓r)1/2

+ V (∓r)1/2 exp(±p2/mc)V (±r)1/2, r ≡ r1 − r2 (3.10)

Ŝ±2(p1, p2) ≡ exp (±(p1/mc)) exp (±(p2/mc)) (3.11)

where, as required, we have Ŝ±k = S±k. The quantisation of Hrel is then defined by
setting pi = p̂i in

Ĥrel(r1, r2, p1, p2) ≡ mc2(Ŝ1 + Ŝ−1)(r1, r2, p1, p2)/2 (3.12)

where a routine Taylor series argument convinces us that the action of the exponential
operators is a shift,

exp (±p̂j/mc) = T
rj
±iβ~, β ≡ 1/mc , j = 1, 2 (3.13)

We now define the problem of finding a joint, generalised eigenfunction of the quan-
tised S±k (and so, by implication, of the quantised Hrel) as finding a W such that

Ŝ±k(r1, r2, p̂1, p̂2)W(r1, r2, p1, p2) = M±k(p1, p2)W(r1, r2, p1, p2),

p1, p2 ∈ R, M±k : R2 → R+, k = 1, 2 (3.14)

The nature of A∆Os is such that we do not expect (3.14) to have unique solutions. We
also note that pj now have the role of spectral parameters (with dimension momentum).
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By introducing
R ≡ (r1 + r2)/2 (3.15)

(in addition to r above) the following separation of variables obtains in our A∆Os,

Ŝ±1(r1, r2, p̂1, p̂2) = TR±iβ~/2Hs(r) (3.16)

Hs(r) ≡ [V (r)V (−r + iβ~)]1/2T riβ~ + [V (−r)V (r + iβ~)]1/2T r−iβ~ (3.17)

Ŝ±2(r1, r2, p̂1, p̂2) = TR±iβ~ (3.18)

(where one should explicitly write out the action on functions to see this).
Introducing

p ≡ (p1 − p2)/2, P ≡ p1 + p2 (3.19)

the ansatz

W(r1, r2, p1, p2) = exp(iRP/~)W (r, p) (3.20)

is then seen to satisfy the ±k = 2 equations trivially with M±2(p1, p2) = exp(±βP ) and
so, provided we confine our attention to M±1(p1, p2) = M(p1 − p2), (3.14) reduces to the
1-dimensional problem of finding a W (r, p) such that

Hs(r)W (r, p) = M(p)W (r, p), p ∈ R, M : R→ R+ (3.21)

which in itself can be viewed as the time-independent Schrödinger equation for some
1-particle system. For the first type of V in (3.8) the same-charge function F (b;x, y) we
see later is one such W (r, p), when suitably parameterised. Likewise for the second type
of V and the mixed-charge function ψ(b;x, y). In both cases we have M(p) = 2 cosh(βp).
These claims rest on the fact the A∆Os H(a+, a−, b;x) and H̃(a+, a−, b;x) are nothing
but disguised versions of the two types of Hs(r). We can recover the latter explicitly by
re-parameterising as follows

a+ = π/ν, a− = β~, b = βg, x = r (3.22)

We also use y = βp/2 when required. (These choices are fixed in accordance with
dimension requirements given the scale invariance of the two A∆Os under (a+, a−, b;x)→
(λa+, λa−, λb;λx)).

As a final remark we note how a solution to (3.21) yields the following A∆E (the
combined effect of (3.12), (3.18), (3.20) and (3.21)),

Ĥrel(r1, r2, p̂1, p̂2) exp(iRP/~)W (r, p) = mc2 cosh(β(p1 + p2)/2)M(p1 − p2)

× exp(iRP/~)W (r, p) (3.23)

where we note,

2

mc2
Ĥrel(r1, r2, p̂1, p̂2) = V (r)1/2

(
T r1iβ~ + T r2−iβ~

)
V (−r)1/2

+ V (−r)1/2
(
T r1−iβ~ + T r2iβ~

)
V (r)1/2, r ≡ r1 − r2 (3.24)
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Chapter 1

The case of general b.

1 The generalised eigenfunction ψ(b;x, y).

1.1 Motivation and definition.

In §3 of Chapter 0 we saw how two one-variable analytic difference operators (A∆Os)
arise from the quantisation and reduction of the Hamiltonian of a particular two-particle
system; the two A∆Os correspond to the same- and opposite-charge potentials, and they
are given again below in a re-paramterised form (so that knowledge of these origins is
not required to understand the present chapter). We now face the question of how to
construct suitable generalised eigenfunctions for these A∆Os, i.e. ones with desirable
quantum-mechanical features. In the first instance, this means ones whose asymptotics
display a familiar time-independent scattering picture. Ultimately, it means ones that
serve our method of proving self-adjoint dynamics, and other phenomena, by use of an
eigenfunction transform (for an overview of the goals, see the introduction; also note the
idea of ‘suitable’ construction alludes to the multiplicity issue described earlier.)

For the same-charge case the series of papers [1]-[3] provides a complete answer to
this question. This thesis is concerned with the mixed-charge case, but it is natural to
approach this by building on the material from the same-charge case, as we will see.

Central to this investigation is the relativistic conical function, R(a+, a−, b;x, y). This
is a specialisation of the 8-variable ‘relativistic’ R-function [1] which generalises the hy-
pergeometric 2F1 function. More recently, the relativistic conical function was the subject
of [5] where many essential features were re-derived using new integral representations.
These representations are defined entirely in terms of the hyperbolic gamma function
which is the fundamental building block of all the special functions considered in this
work. We begin with a review of its pertinent features.

Hyperbolic gamma function, G(a+, a−; z). This function was first introduced in [17].
It satisfies two first order analytic difference equations (A∆Es),

G(z + iaα/2)

G(z − iaα/2)
= 2c−α(z), α = +,− (1.1)

c±(z) ≡ cosh(πz/a±) (1.2)
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1. THE GENERALISED EIGENFUNCTION ψ(b;x, y)

In fact it can be uniquely defined as the solution to one of these A∆Es having a particular
minimality property and normalisation G(0) = 1; the second A∆E is then satisfied as
well. (These claims draw upon our standing assumption, a+, a− > 0, and the minimality
property amounts to requiring absence of zeros and poles in a certain | Im z|-strip, and
optimal asymptotics for |Re z| → ∞, cf. [17].) In the strip | Im z| < a it has the integral
representation

G(a+, a−; z) = exp

(
i

∫ ∞
0

du

u

(
sin 2uz

2 sinh(a+u) sinh(a−u)
− z

a+a−u

))
(1.3)

from which one reads off absence of zeros and poles in this strip, as well as the following
properties, all valid for a+, a− > 0,

G(−z) = 1/G(z) (reflection) (1.4)

G(z) = G(−z) (conjugacy) (1.5)

G(a+, a−; z) = G(a−, a+; z) (modular invariance) (1.6)

v ∈ R⇒ G(iv) ∈ R (real-valuedness) (1.7)

(There is also scale invariance under multiplication of all arguments by λ ∈ R+, but we
do not have cause to use this.) The function G(·) has its poles at

− ia− ika+ − ila−, k, l ∈ N, (G-poles) (1.8)

and its zeros at

ia+ ika+ + ila−, k, l ∈ N, (G-zeros) (1.9)

The pole at−ia is simple, and so is the zero at ia. We also note the dominant asymptotics,
as cited for example in Appendix A of [5],

G(a+, a−; z) ∼ exp(∓i(χ+ πz2/2a+a−)), |Re z| → ∞ (1.10)

where

χ ≡ π

24

(
a+

a−
+
a−
a+

)
(1.11)

Relativistic conical function. With this in place, let us now return to the relativistic
conical function [5], R(a+, a−, b;x, y). Again, the parameters a+, a− are taken to be real
and positive throughout. This function is meromorphic in b, x, y and has the following
useful properties,

R(x, y) = R(y, x), (self-duality) (1.12)

R(x, y) = R(αx, α′y), α, α′ = +,− (evenness) (1.13)

R(a+, a−;x, y) = R(a−, a+;x, y), (modular invariance) (1.14)

R(b;x, y) = R(b;x, y), b ∈ R (real-valuedness) (1.15)
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CHAPTER 1. GENERAL CASE

where we have suppressed any dependence on a+, a−, b not relevant to the property at
hand. (The same note about scale invariance also applies.) Furthermore, there are two
known choices of the variables x, y for which the function reduces to a constant in the
other variable, as expressed in

R(b;x,±ib) = 1 (1.16)

In all of the work that follows, we will use a renormalised version,

Rr(a+, a−, b;x, y) ≡ G(ib− ia)

G(2ib− ia)
R(a+, a−, b;x, y) (1.17)

which inherits the properties just listed. In addition, it has the property that all of its
poles are dependent on x or y. Specifically, they are given at (or, more accurately, can
only occur at),

± z = 2ia− ib+ ika+ + ila−, z = x, y, k, l ∈ N (1.18)

a ≡ (a+ + a−)/2 (1.19)

We will also have cause to use its asymptotics. To specify these we need a function not
yet encountered, so we return to this later (cf. (1.55) below). Meanwhile, let us look at
an integral representation of Rr(b;x, y). Of the five presented in [5], the most useful for
us comes from combining [5](1.3) and [5](1.6),

Rr(b;x, y) =
G(ib− ia)
√
a+a−

∫
R
dz

G(z + (x− y)/2− ib/2)G(z − (x− y)/2− ib/2)

G(z + (x+ y)/2 + ib/2)G(z − (x+ y)/2 + ib/2)
(1.20)

which is valid in particular for (b, x, y) ∈ (0, 2a)×R2. With this representation, the prop-
erties of self-duality and invariance under simultaneous negation of x and y can be read
off straight away. Modular invariance follows from that of G(a+, a−; z), while evenness
in x and y follows from (1.4), and real-valuedness from (1.5) and (1.7).

The same-charge generalised eigenfunction, F (b;x, y). Having reviewed these two
functions, we return to the central issue of finding suitable generalised eigenfunctions for
the two physical A∆Os we saw earlier ((3.17) with (3.8) in the Chapter 0, or simply
(1.30) and (1.44) below). We look first at the same charge case, this having already
been treated in the literature. The key fact is the following generalised eigenvalue A∆E
(proved in [5]),

A(a+, a−, b;x)Rr(a+, a−, b;x, y) = 2c+(y)Rr(a+, a−, b;x, y) (1.21)

where
A(a+, a−, b; z) ≡ V (a+, b; z)T zia− + (z → −z) (1.22)

and

V (a+, b; z) ≡ s+(z − ib)
s+(z)

(1.23)

s±(z) ≡ sinh(πz/a±) (1.24)
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1. THE GENERALISED EIGENFUNCTION ψ(b;x, y)

Note that because of the invariance of Rr(a+, a−, b;x, y) under a+ ↔ a− and x ↔ y we
immediately get three more A∆Es for this function by effecting these swaps in (1.21).

The idea is to use (1.21) to crack the issue described above. We look first at the
same-charge case. Clearly A(b;x) does not have the form of the pertinent Hamiltonian.
Nevertheless, by using the defining A∆E for G(a+, a−; z), (1.1), we can construct a sim-
ilarity transform which connects the two. The key here is the Harish-Chandra function,

c(b; z) ≡ G(z + ia− ib)/G(z + ia) (1.25)

Using (1.5) and (1.1) respectively, we find that this satisfies

c(b; z) = c(b;−z), b ∈ R (1.26)

c(b; z) =
s−α(z − ib)
s−α(z)

c(b; z − iaα), α = +,− (1.27)

Thus the following weight function will serve as such a similarity transform,

w(b; z) ≡ 1/c(b; z)c(b;−z) (1.28)

(the relation (1.26) entails manifest reality and non-negativity for real z). Also note that
all the same-charge functions defined here have a manifest invariance under interchange
of the parameters a+, a−, which is not true of their mixed-charge counterparts (this is
also why there is no ambiguity in the definition (1.25)).

To see how the similarity transform works, let us define

H(a+, a−, b;x) ≡ w(b;x)1/2A(a+, a−, b;x)w(b;x)−1/2 (1.29)

and later come back to the question of how these square roots behave. Using (1.27) with
α = −, we see that

H(a+, a−, b;x) = [V (a+, b;x)V (a+, b;−x+ ia−)]1/2 T xia− + (x→ −x) (1.30)

where the term in square brackets equals

s+(x− ib)
s+(x)

s+(x+ ib− ia−)

s+(x− ia−)
(1.31)

Thus H(b;x) has the same form as the same-charge Hamiltonian from earlier (for explicit
equality we just have to specialise the variables appropriately, recall (3.22) in Chapter 0).

Invoking (1.21), we may therefore conclude that the following is a generalised eigen-
function of H(a+, a−, b;x) (1.29),

F (b;x, y) ≡ w(b;x)1/2w(b; y)1/2Rr(b;x, y) (1.32)

with eigenvalue 2c+(y). This is the function that solves the same-charge problem. From
its constituent functions it inherits the properties of modular invariance and evenness, and
by construction is self-dual, given (1.12). As with (1.21), we may use these symmetries
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CHAPTER 1. GENERAL CASE

to obtain three more A∆Es by effecting the swaps a+ ↔ a− and x↔ y in the generalised
eigenvalue equation involving H(a+, a−, b;x).

From [5](2.65), or by using (1.10) and (1.55) below, we have dominant asymptotics

F (b;x, y) ∼ (−u(b; y))1/2eiπxy/a+a− + (−u(b; y))−1/2eiπxy/a+a− , x→∞ (1.33)

where the function
u(b; y) ≡ −c(b; y)/c(b;−y) (1.34)

defined in terms of c(b; z) (1.25) is manifestly a phase for y ∈ R given (1.26). Moreover,
from results going back to [3], it is known that the eigenfunction transform

(Ef)(x) ≡ (2a+a−)−1/2

∫
R+

dy F (b;x, y)f(y) (1.35)

defines a unitary map E : L2(R+, dy) → L2(R+, dx) provided the coupling parameter b
satisfies b ∈ [0, a+ + a−]. Quantum mechanically, this corresponds to a system without
bound states and scattering encoded by u(b; y) (1.34). (See (2.20) in Chapter 0 for an
explicit integral representation of this phase.)

Analysis of w(b;x).When we introduced the A∆O H(b;x) we overlooked analytic com-
plications arising from the square roots. To address this we need to look more closely at
w(b;x) (1.28). We present a detailed picture of this function’s behaviour in the variable
x when b is real (though the claims can be adapted to complex b fairly easily).

From repeated use of (1.1) it follows that

G(x+ ia)/G(x− ia) = 4s+(x)s−(x) (1.36)

and so we may write, recalling (1.4),

w(b;x) = 4s+(x)s−(x)wr(b;x) (1.37)

wr(b;x) ≡
∏

α=+,−

G(αx− ia+ ib) (1.38)

The property (1.5) entails the two terms in this product are conjugates of each other and
so wr(b;x) is manifestly real and non-negative for x ∈ R. Indeed since the zeros of G(·)
are purely imaginary for real b this implies positivity for x ∈ R∗. This can be extended to
R iff all the x-zeros of wr(b;x) that derive from (1.9) are away from the origin. In general
the latter property is neither true nor false but depends on the values of the parameters
b, a+, a−. With our standing assumption that a+, a− > 0, we claim it holds for all real b
except for certain integer combinations of a+ and a−. More specifically, we need

b ∈ R \ S+, S+ ≡ {(k + 1)a+ + (l + 1)a− | k, l ∈ N} (1.39)

(this just follows from careful use of (1.9)).
A similar consideration of the x-poles of wr(b;x), which are all on the imaginary axis

provided b ∈ R, reveals that they are away from the origin provided

b ∈ R \ S−, S− ≡ {−ka+ − la− | k, l ∈ N} (1.40)
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1. THE GENERALISED EIGENFUNCTION ψ(b;x, y)

Thus provided these two restrictions hold, wr(b; ·) is a real-analytic, even function which is
positive on R. The other term s+(x)s−(x) is a non-negative, real-analytic, even function
with a single, immutable zero at x = 0. Thus the product with wr(b;x) has all of these
properties too.

We conclude that the following restriction is sufficient to ensure w(b; ·)1/2 is a real-
analytic, odd function which is real-valued on R and whose only zero is at x = 0,

b ∈ R \ S, S ≡ S+ ∪ S− (1.41)

A notable special case of this is
b ∈ (0, 2a) (1.42)

The mixed-charged generalised eigenfunction, ψ(b;x, y). Almost all that we have
detailed so far is known from [3] and [5]. The question we now address is how to build a
generalised eigenfunction for the other one-variable A∆O from §3 of Chapter 0 (i.e. (1.44)
below). We aim for x-asymptotics displaying a suitable transmission-reflection picture
(time-independent scattering). This function will then be taken forward and used in our
construction of a complete Hilbert space theory (part of which involves time-dependent
scattering). The answer to the asymptotics question was presented in the author’s joint
paper [32]. We proceed to summarise the pertinent results.

As already claimed, the same-charge system provides the best inroad into the mixed-
charge problem. The most important observation is that we can transmute the potential
(1.31) into its mixed-charge analogue by applying either of the shifts x → x ± ia+/2.
Thus straight away we can assert, using (1.21), (1.29) and (1.31), that both

w(b;x± ia+/2)1/2Rr(b;x± ia+/2, y) (1.43)

are generalised eigenfunctions of

H̃(a+, a−, b;x) =

[
c+(x− ib)
c+(x)

c+(x+ ib− ia−)

c+(x− ia−)

]1/2

T xia− + (x→ −x) (1.44)

with eigenvalue 2c+(y) (we give our formal definition of H̃(a+, a−, b;x) below, analogising
(1.29), and we analyse the square roots in due course). For later use, we note that the
term in square brackets here can also be written as

Ṽ (a+, b;x)Ṽ (a+, b;−x+ ia−) (1.45)

which involves a mixed-charge analogue of (1.23),

Ṽ (a+, b;x) ≡ c+(x− ib)
c+(x)

(1.46)

Note that by making the x-shift in Rr(b;x, y), we rob the object of certain symmetries
- namely, self-duality (1.12) and modular invariance (1.14)) - because of the preference
expressed for x and a+. Thus these properties are not inherited by ψ(b;x, y) below.
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We can improve on the functions in (1.43), in the sense of finding ones which are
simpler, by observing that the two shifted weight functions are equal to the same function
multiplied by different ia−-periodic functions. More specifically, using (1.27) with α = +
we find

w(b;x± ia+/2) =
s−(x± ia+/2)

s−(x± i(a+/2− b))
w̃(b;x) (1.47)

where

w̃(b;x) ≡ 1/c̃(b;x)c̃(b;−x) (1.48)

and

c̃(b;x) ≡ c(b;x− ia+/2) = G(x+ ia−/2− ib)/G(x+ ia−/2) (1.49)

Given the ia−-periodicity in x of the quotients in (1.47), we can assert straight away that
both

w̃(b;x)1/2Rr(b;x± ia+/2, y) (1.50)

are generalised eigenfunctions of (1.44) with eigenvalue 2c+(y). Moreover, w̃(b;x) is
necessarily real and non-negative for real x and b, unlike the two shifted weight functions
in (1.43) (to see this, just note that c̃(b;x) retains the property (1.26)). Thus we may
think of it as the mixed-charge counterpart of the weight function in (1.28). The square
root in w̃(b;x)1/2 is always assumed to be positive. Its properties are analysed later in
this section.

We note that (1.44) can be re-interpreted in terms of w̃(b;x) as follows. Using (1.1),
or adapting (1.27), we have

c̃(b;x) =
c+(x− ib)
c+(x)

c̃(b;x− ia−) (1.51)

Thus, to analogise (1.29) we may write (1.44) as

H̃(a+, a−, b;x) ≡ w̃(b;x)1/2Ã(a+, a−, b;x)w̃(b;x)−1/2 (1.52)

where

Ã(a+, a−, b;x) ≡ Ṽ (a+, b;x)T xia− + (i→ −i) (1.53)

The function which will realise our aims is neither of those in (1.50), but rather a
special combination of them. From what we have said so far we know that any function
of the form

w̃(b;x)1/2
[
ϕ1(y)Rr(b;x+ ia+/2, y) + ϕ2(y)Rr(b;x− ia+/2, y)

]
(1.54)

is a generalised eigenfunction of (1.44) with eigenvalue 2c+(y). The question is how to
choose ϕ1(y) and ϕ2(y) such that the x-asymptotics of this function reproduce a familiar
reflection-transmission picture. At the same time, we may hope that these choices also
ensure (1.54) is a generalised eigenfunction of a sensible A∆O in the dual variable y.
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To pursue this we first need the dominant asymptotics of the relativistic conical func-
tion. We extract this from [5](2.71),

Rr(b;x, y) ∼ exp(−πbx/a+a−)
(
c(b; y)eiπxy/a+a− + c(b;−y)e−iπxy/a+a−

)
,

(b, y) ∈ R× (0,∞), Rex→∞ (1.55)

where we recall c(b; y) is defined in (1.25) (also, the limited range of y will not present
any problems for us).

We also need the dominant asymptotics of the weight function (1.48). Using (1.10)
and (1.25) we calculate

c̃(b;x) ∼ φ̃(b)±1 exp(∓πbx/a+a−), Rex→ ±∞ (1.56)

where φ̃(b) ≡ exp(iπb(b− a−)/2a+a−). Thus we have

w̃(b;x) ∼ exp(±2πbx/a+a−), Rex→ ±∞ (1.57)

Then, adapting (1.55), we have

Rr(b;x± ia+/2, y) ∼ e−πbx/a+a−e
∓ib/2
−

×
(
c(b; y)e

∓y/2
− eiπxy/a+a− + c(b;−y)e

±y/2
− e−iπxy/a+a−

)
, Rex→∞ (1.58)

The Rex→ −∞ asymptotics can be obtained from this by invoking the evenness (1.13),

Rr(b;x± ia+/2, y) ∼ eπbx/a+a−e
±ib/2
−

×
(
c(b; y)e

±y/2
− e−iπxy/a+a− + c(b;−y)e

∓y/2
− eiπxy/a+a−

)
, Rex→ −∞ (1.59)

The square root of the exponential in (1.57) will cancel with those in (1.58) and (1.59),
leaving a product with O(1) asymptotics. Even so, it is still far from obvious that they
can be put together in (1.54) to achieve transmission-reflection asymptotics. However,
we claim that this can be done and that the solution is contained in the following,

ψ(a+, a−, b;x, y) ≡ w̃(b;x)1/2 (2s−(ib− y)c(b;−y))−1

×
∑
ν=+,−

νe−(ν(ib− y)/2)Rr(b;x+ iνa+/2, y) (1.60)

(c(b; y) and w̃(b;x) are defined respectively in (1.48) and (1.25)). The asymptotics of
this can be calculated straightforwardly using (1.57)-(1.59). The end result is given in
Lemma 1.2 below. For now, we are going to show that ψ(b;x, y) is also a generalised
eigenfunction of an A∆O in the dual variable y. By construction, we know that it is
a generalised eigenfunction of H̃(b;x), but since it no longer has self-duality we do not
automatically get a dual counterpart (cf. the discussions below (1.23) and (1.46)).

Above we have used the notation from our conventions page,

ez± ≡ e±(z) ≡ exp(πz/a±) (1.61)
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Dual variable properties of ψ(b;x, y). Because Rr(b;x, y) is a generalised eigenfunc-
tion of A(b; y) (1.22) with eigenvalue 2c+(x), the two additive components in ψ(b;x, y),
corresponding to the two choices of ν, are generalised eigenfunctions respectively of

iν
e−(−νy/2)

s−(ib− y)c(b;−y)
A(b; y)

s−(ib− y)c(b;−y)

e−(−νy/2)
, ν = +,− (1.62)

with eigenvalue 2s+(x) (this is just similarity transform combined with the effect of the
x-shift on 2c+(x)). Thus if we are to get a dual, generalised eigenvalue equation for
ψ(b;x, y), then (1.62) must be non-manifestly independent of ν. This is indeed the case;
the claim reduces to the easily-verified operator equation,

e−(−νy/2) T y±ia−e−(νy/2) = ∓iν T y±ia− , ν = +,− (1.63)

Because of its ia−-antiperiodicity, s−(ib−y) will pass through A(b; y) in (1.62), depositing
an overall minus sign. This fact, combined with (1.63), allows us to conclude that (1.62)
equals

1

c(b;−y)

[
V (y)T yia− − V (−y)T y−ia−

]
c(b;−y) (1.64)

and that ψ(b;x, y) is a generalised eigenfunction with eigenvalue 2s+(x). To simplify this,
we use (1.27) with α = − to write down the two A∆Es,

c(b; y + iα̃a−)/c(b; y) =

{
V (y + ia−), α̃ = + (1.65)

1/V (y), α̃ = − (1.66)

(which we can obviously adapt for y → −y as necessary). Thus (1.64) is the A∆O

S(b; y) ≡ V (a+, b; y)V (a+, b;−y + ia−)T yia− − T
y
−ia− (1.67)

where V (a+, b; y) = s+(y − ib)/s+(y) was first seen in (1.23). With this, the coefficient
of T yia− may also be written as

U(y) ≡ s+(y − ib)
s+(y)

s+(y + ib− ia−)

s+(y − ia−)
(1.68)

There is another useful property of ψ(b;x, y) (1.60) that links conjugation to negation
of the dual variable. Using real-valuedness of w̃(b;x) (1.48) and the conjugacy properties
(1.15) and (1.26) we have

ψ(b;x, y) = w̃(b;x)1/2(−2s−(ib+ y)c(b; y))−1

×
∑
ν=+,−

νe−(−ν(ib+ y)/2)Rr(b;x− iνa+/2, y)

= ψ(b;x,−y), (b, x, y) ∈ R3 (1.69)

The final equality is manifest from (1.60) once we recall evenness of Rr(b;x, y) in y.
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Analysis of w̃(b;x). Both H̃(a+, a−, b;x) (1.52) and ψ(b;x, y) (1.60) feature the square-
root function w̃(b;x)1/2 (1.48) which we must study more closely. We present a detailed
picture of its behaviour in the variable x for real b. We will impose conditions on b to
ensure it has no poles or zeros for real x.

Using (1.1) it is clear that we have

w̃(b;x) = 2c+(x)
∏

α=+,−

G(αx− ia−/2 + ib) (1.70)

The property (1.5) entails the two terms in this product are conjugates of each other and
so w̃(b;x) is manifestly real and non-negative for x ∈ R. In fact since the zeros of G(·)
are purely imaginary when b ∈ R, cf. (1.9), we have positivity for x ∈ R∗. This can be
extended to R iff all the x-zeros of w̃(b;x) that derive from (1.9) are away from the origin
(c+(x) has no real zeros). We claim this property is assured provided

b ∈ R \ S̃+, S̃+ ≡ {(k + 1/2)a+ + (l + 1)a− | k, l ∈ N} (1.71)

(this just follows from careful use of (1.9). For an explicit description of the zeros, cf.
(3.4)).

A similar consideration of the x-poles of w̃(b;x), which are all on the imaginary axis
when b ∈ R, reveals that they are away from the origin provided

b ∈ R \ S̃−, S̃− ≡ {−(k + 1/2)a+ − la− | k, l ∈ N} (1.72)

(For an explicit description of the poles, cf. (3.5).) Thus w̃(b; ·) (1.48) is a real-analytic,
even function which is positive on the real line. Its positive square-root inherits these
features provided

b ∈ R \ S̃, S̃ ≡ S̃+ ∪ S̃− (1.73)

A notable special case of this is

b ∈ (0, a− + a+/2) (1.74)

Generalised eigenfunction properties of ψ(b;x, y). Let us summarise some of the
main findings so far. (Further analyticity properties are given later in Lemma 3.1.)

Lemma 1.1. The function ψ(b;x, y) (1.60) is meromorphic in y and its square is mero-
morphic in x. Its branch points in x are away from the real line provided b ∈ R\ S̃, where
the point set S̃ is defined in (1.73). The positive square root function w̃(b;x)1/2 has the
properties described above (1.73) when this b-restriction is in force.

The function ψ(b;x, y) satisfies the following generalised eigenvalue equations with the
A∆Os H̃(b;x) (1.44) and S(b; y) (1.67),

H̃(b;x)ψ(b;x, y) = 2c+(y)ψ(b;x, y) (1.75)

S(b; y)ψ(b;x, y) = 2s+(x)ψ(b;x, y) (1.76)
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Moreover it has the conjugacy property

ψ(b;x, y) = ψ(b;x,−y), b ∈ R (1.77)

and the symmetry

ψ(b;x, y) = ψ(a− − b;x, y) (1.78)

Proof. Most of these claims follow from our discussions above. Cf. in particular: (1.50)
and (1.64) for the eigenvalue equations; (1.69) for the conjugacy property; and (1.73) for
the claims about w̃(b;x)1/2.

The proof of (1.78) is fairly long, and we put it at the end of this subsection.

Asymptotics of ψ(b;x, y). In preparation for the transmission and reflection asymp-
totics which we claim our function exhibits, we introduce the following

t(b; y) ≡ s−(y)

s−(ib− y)
u(b; y) (1.79)

r(b; y) ≡ s−(ib)

s−(ib− y)
u(b; y) (1.80)

where u(b; y) (1.34) is a phase for y ∈ R which we have seen already in the asymptotics
of the same-charge eigenfunction, (1.32). The property

|t(b; y)|2 + |r(b; y)|2 = 1, (1.81)

just reduces to well-known hyperbolic trigonometric identities. The same is true of the
Yang-Baxter equations,

r12t13u23 = t23u13r12 + r23r13t12 (1.82)

and

u12r13u23 = t23r13t12 + r23u13r13 (1.83)

with

sjk ≡ s(yj − yk), s = u, t, r, 1 ≤ j < k ≤ 3 (1.84)

To verify this claim in just one of the cases above, let us look more closely at (1.82).
Here, the product u(y1 − y2)u(y1 − y3)u(y2 − y3) drops out of the equation, and what
remains can be rearranged as

s−(y1 − y3)s−(ib− (y2 − y3))− s−(y2 − y3)s−(ib− (y1 − y3)) = s−(ib)s−(y1 − y2) (1.85)

Using the mixed-angle identity for sinh, one can write out the lhs of this as a multiple of
c−(ib) plus a multiple of s−(ib). The former is seen to vanish, and the latter is found to
equal

s−(y1 − y3)c−(y2 − y3)− s−(y2 − y3)c−(y2 − y3) (1.86)

Using the aforementioned identity in reverse, this equals s−(y1 − y2) as required for
manifest equality with the rhs.
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We are now ready for the following lemma. (The restriction on y is needed because
we have not ruled out the possibility of a pole at the origin.)

Lemma 1.2. The dominant large-|Rex| asymptotics of ψ(b;x, y) (1.60) are given by

ψ(b;x, y) ∼

t(b; y) exp(iπxy/a+a−), Rex→∞

exp(iπxy/a+a−)− r(b; y) exp(−iπxy/a+a−), Rex→ −∞
(1.87)

provided y ∈ R∗. We also have an identity

ψ(b;x, y) = t(b; y)ψ(b;−x,−y)− r(b; y)ψ(b;x,−y) (1.88)

Proof. The asymptotics is just a matter of expanding ψ(b;x, y) using (1.57)-(1.59). The
brute force approach is somewhat messy and unilluminating, so we calculate in a more
systematic way (using the conventions for indices we laid out at the start). First, we note
that (1.58) and (1.59) can be combined as

Rr(x+ iνa+/2, y) ∼ exp(−επbx/a+a−)e−(−iενb/2)
∑
τ=+,−

c(τy) exp(iτεπxy/a+a−)

× e−(−εντy/2), Rex→ ε∞, ν, ε = +,− (1.89)

(where we now suppress implicit b-dependence of functions). Then we substitute this and
(1.57) into ψ(x, y) (1.60) to get

ψ(x, y) ∼ (2s−(ib− y)c(−y))−1
∑
τ=+,−

c(τy) exp(iετπxy/a+a−)uε,τ , Rex→ ε∞,

ε = +,− (1.90)

uε,τ ≡
∑
ν=+,−

νe−(ν(ib− y)/2)e−(−iενb/2)e−(−εντy/2), ε, τ = +,− (1.91)

Introducing the object,

Uε,τ ≡ (2s−(ib− y)c(−y))−1c(τy)uε,τ (1.92)

we thus have the picture

ψ(x, y) ∼

U+,+ exp(iπxy/a+a−) + U+,− exp(−iπxy/a+a−), Rex→∞

U−,+ exp(−iπxy/a+a−) + U−,− exp(iπxy/a+a−), Rex→ −∞
(1.93)

It is then trivial to compute

(ε, τ) uε,τ

(+,+) −2s−(y)

(+,−) 0

(−,+) 2s−(ib)

(−,−) 2s−(ib− y)
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Recombining this with (1.93) and (1.92), the claim follows.
For the identity (1.88), we first use evenness of w̃(b;x) (1.48) and evenness ofRr(b;x, y)

in both arguments to write out (using (1.60)),

ψ(±x,−y) = w̃(x)1/2(2s−(ib + y)c(y))−1
∑
ν=+,−

νe−(ν(ib + y)/2)Rr(x ± iνa+/2, y)

(1.94)

With this we find (sending ν → −ν in the expression for ψ(−x,−y)),

t(y)ψ(−x,−y)− r(y)ψ(x,−y) = −w̃(x)1/2(2s−(ib+ y)c(y))−1

×
∑
ν=+,−

νRr(x+ iνa+/2)
[
e−(−ν(ib+ y)/2)t(y) + e−(ν(ib+ y)/2)r(y)

]
(1.95)

From the definitions of t and r, the term in square brackets equals u(y)/s−(ib − y)
multiplied by

e−(−ν(ib+ y)/2)s−(y) + e−(ν(ib+ y)/2)s−(ib) ν = +,− (1.96)

Expanding the s−(·) terms in terms of exponentials and recombining, one finds this can
be written as

e−(ν(ib− y)/2)s−(ib+ y), ν = +,− (1.97)

Thus the rhs of (1.95) equals

− w̃(x)1/2(2s−(ib− y)c(y))−1u(y)
∑
ν=+,−

νe−(ν(ib− y)/2)Rr(x± iνa+/2, y) (1.98)

Recalling the definition u(y) ≡ −c(y)/c(−y), we thus get manifest equality with ψ(x, y)
(1.60).

1.2 O-asymptotics.

In this section we present a more detailed account of the asymptotics in terms of order
notation, what we will call O-asymptotics (this allows us to handily distinguish between
dominant asymptotics). The discussion is rather technical, but the additional information
is needed for some of our later proofs. In addition we will look at the y-asymptotics of
ψ(b;x, y) which we did not consider previously.

To calculate the asymptotics in the previous subsection we needed those ofG(a+, a−; z)
(1.1) and Rr(a+, a−, b;x, y) (1.20). We took these from elsewhere, as opposed to deriving
them anew. The same is true here. For example, from [5](A.13) we are going to use

G(a+, a−; z) = exp(∓i(χ+ πz2/2a+a−))
(
1 +O(exp(−r|Re z|))

)
, Re z → ±∞ (1.99)
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where the decay constant r can be any positive number satisfying r < 2πmin(1/a+, 1/a−),
and where the bound represented by O is uniform for Im z varying over any compact
subset of R. For illustrative purposes, we can see explicitly how the imaginary part of z
affects the dominant asymptotics by writing out

G(a+, a−; z) = exp(π|u|v/a+a−)
(
1 +O(exp(−r|u|))

)
, u→ ±∞,

u = Re z, v = Im z (1.100)

Using (1.99) we now calculate the following for c(b; z) (1.25),

c(b; z) =
G(z + ia− ib)
G(z + ia)

= φ(b)±1 exp(∓πbz/a+a−)
(
1 +O(e−r|Re z|)

)
, Re z → ±∞

(1.101)
where

φ(b) ≡ exp(iπb(b− 2a)/2a+a−), a ≡ (a− + a+)/2 (1.102)

What we said below (1.99) concerning the decay, holds here also. We can thus use these
asymptotics to get those for c̃(b;x) also,

c̃(b;x) = c(b;x− ia+/2) = φ̃(b)±1 exp(∓πbz/a+a−)
(
1 +O(e−r|Re z|)

)
, Re z → ±∞

(1.103)
where φ̃(b) ≡ exp(iπb(b−a−)/2a+a−). And, again, what we said below (1.99) concerning
the decay, holds here also

To specify the O-asymptotics for the relativistic conical function we must combine
results from [5] and [2]. The end result is that1

Rr(b;x, y) = exp(−πbx/a+a−)
[
Ras(x, y) +O(exp(−ρRex))

]
,

(b, y) ∈ R× (0,∞), Rex→∞ (1.104)

Ras(x, y) ≡
∑
τ=+,−

c(b; τy) exp(iτπxy/a+a−) (1.105)

1Specifically, one starts from [5](2.39),

Rr(x, y) = φ−1r c(y)c(x)E(x, y)

where this function E is a specialisation of the the function E(γ; v, v̂) in [2], obtained by setting (γ, v, v̂) ≡
(γr, x, y/2) and γr ≡ (b − a,−a−/2,−a+/2, 0) , cf. [5](2.38). From Theorem 1.2. in [2] we get the O-
asymptotics,

E(x, y) = Ras(x, y)/c(y) +O(exp(−ρRex), Rex→∞

where ρ > 0 is a constant fixed by a+, a−, and the bound is uniform for Imx varying over any compact
subset of R. With the O-asymptotics established for Rex→∞, by combining the two equations in this
footnote with our asymptotics calculation for c(b; z), those for −∞ follow straight away from evenness
of Rr(·, y). We note that we thus bypass the need to use [5](2.52).
Update: this same result can now be attained independently of [2] in light of [31].
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where ρ > 0 is a constant fixed by a+, a−, and where the bound represented by O
is uniform for Im x and y varying respectively over any compact subset of R and R+.
Because of its plane wave structure, Ras(x, y) will be dominant in (1.104) under Re x→
∞. We note the lack of information about ρ turns out not to be a problem; positivity
alone will suffice in the relevant proofs.

The results just given for G(a+, a−; z) and Rr(a+, a−, b;x, y) enable us to prove the
following stronger version of Lemma 1.2,

Lemma 1.3. For y ∈ R∗, the function ψ(b;x, y) (1.60) satisfies the following

ψ(b;x, y) =

t(b; y) exp(iπxy/a+a−) +O(e−ρRex), Rex→∞

exp(iπxy/a+a−)− r(b; y) exp(−iπxy/a+a−) +O(e ρRex), Rex→ −∞
(1.106)

where ρ > 0 is a constant fixed by a+, a−, and where the bound represented by O is
uniform for Imx and y varying respectively over any compact subset of R and R+. (This
ρ is the same that arises in (1.104).)

Proof. The preceding discussion gives us all the ingredients we need to prove this. The
O-asymptotics for w̃(b;x)1/2 (1.48) follow from (1.103),

w̃(b;x)1/2 = exp(επbx/a+a−)
(
1 +O(e−r|Rex|)), Rex→ ε∞, ε = +,− (1.107)

where the same statements about r and O(·) apply as below (1.99).
Using the asymptotics (1.104) and the evenness property (1.13) we have

Rr(x+ iνa+/2, y) = exp(−επbx/a+a−)e−(−iενb/2)
[
Ras(ε(x+ iνa+/2), y)

+O(e−ρ|Rex|)
]
, Rex→ ε∞, ε, ν = +,− (1.108)

(where we now suppress implicit b-dependence of functions). Plugging these into ψ(x, y)
(1.60) we find

ψ(x, y) = (2s−(ib− y)c(−y))−1
∑
ν=+,−

νe−(ν(ib− y)/2)e−(−iενb/2)Ras(ε(x+ iνa+/2), y)

+O(e−ρ|Rex|), Rex→ ε∞, ε = +,− (1.109)

The dominant term here must be the same as the one we saw earlier in the proof of
Lemma 1.2, and so the result follows. Nonetheless, the anxious reader can use (1.105) to
check explicitly that the first line of the rhs of (1.109) equals∑

τ=+,−

c(τy) exp(iετπxy/a+a−)Uε,τ , ε = +,− (1.110)

where this is the Uε,τ from the proof of Lemma 1.2.
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We are now going to consider the y-asymptotics of ψ(b;x, y) (1.60). We need this
primarily for use in later proofs (for example, in Theorem 6.3). However, one can also
view the asymptotics from the perspective of dynamics associated to the variable y (this
variable, as we explained earlier, has dimension position rather than the more standard
momentum). We return to this perspective again in Appendix B.

First we need the large-|Re y| asymptotics of Rr(b;x, y). Given the self-duality of this
function, this follows straight away from (1.104),

Rr(b;x, y) = exp(−πby/a+a−)
[
Ras(y, x) +O(exp(−ρRe y))

]
,

(b, x) ∈ R× R∗, Re y →∞ (1.111)

where ρ > 0 is a constant fixed by a+, a−, and where the bound represented by O is
uniform for Im y and x varying over any compact subset of R. (Here we have used
evenness in x to replace (0,∞) with R∗.)

The substitution of (1.111) into (1.60) raises extra complications compared with the
analogous situation before, because the x-shift in Ras(y, x+ iνa+/2) implies the latter is
no longer necessarily O(1) as Re y →∞. We can see this by writing out

Ras(y, x+ iνa+/2) =
∑
τ=+,−

c(b; τ(x+ iνa+/2))e−(−τνy/2) exp(iτπxy/a+a−), ν = +,−

(1.112)
The two τ -summands now have substantially different asymptotics. The summand which
dominates is τ = −ν. Thus we have

Ras(y, x+ iνa+/2) = c(b;−(νx+ ia+/2))e−(y/2) exp(−iνπxy/a+a−)

+O(e−(−Re y/2)), Re y →∞, ν = +,− (1.113)

In preparation for the next lemma let us substitute this back into (1.111) (which we must
provisionally extend for x in a suitable strip of the complex plane) to get

Rr(b;x+iνa+/2, y) = exp(−πby/a+a−)
[
c(b;−(νx+ia+/2))e−(y/2) exp(−iνπxy/a+a−)

+O(exp(−ρ̃Re y))
]
, (b, x) ∈ R× R∗, Re y →∞ (1.114)

where ρ̃ ≡ min(π/2a−, ρ) for ρ arising in (1.111). The same statement about the bound
applies as below (1.111).

The final two ingredients we need are

(2s−(ib− y))−1 = −e−((ib− y))
(
1 +O(e−2 Re y

− )
)
, Re y →∞ (1.115)

which follows from elementary calculation, and

c(b;−y)−1 = φ(b) exp(πby/a+a−)
(
1 +O(e−rRe y)

)
, Re y →∞ (1.116)

35



CHAPTER 1. GENERAL CASE

which follows by adapting (1.101). Here, the decay constant r is again any positive
number satisfying r < 2π/max(a+, a−).

We are now ready to prove the following lemma. We note that the term in square
brackets is a phase, as follows from (1.26) and (1.49).

Lemma 1.4. Provided x ∈ R∗, the function ψ(b;x, y) (1.60) satisfies the following

ψ(b;x, y) = φ̃(b)±1

[
c̃(b;x)

c̃(b;−x)

]±1/2

exp(iπxy/a+a−) +O(e−ρ|Re y|), Re y → ±∞ (1.117)

where φ̃(b) ≡ exp(iπb(b− a−)/2a+a−) and the function c̃(b;x) is defined in (1.49). Also,
ρ > 0 is a constant fixed by a+, a−, and the bound represented by O is uniform for Im y
and x varying over any compact subset of R.

Proof. First we note that because of the property (1.77), we only need to prove the
asymptotics for Re y → ∞. It then suffices to send y → −y and conjugate the whole
expression to get the asymptotics for Re y → −∞.

We substitute (1.114)-(1.116) into ψ(x, y) (1.60) to get

ψ(x, y) = −e−(ib− y)w̃(x)1/2 φ(b)
∑
ν=+,−

νe−(ν(ib− y)/2)
[
c(−(νx+ ia+/2))

× e−(y/2) exp(−iνπxy/a+a−) +O(exp(−ρ̃Re y))
]
, Re y →∞ (1.118)

where the same statements about ρ̃ andO apply as below (1.114). The factor e−(ν(ib− y)/2)
has substantially different asymptotic for the two choices of ν = +,−. That which dom-
inates corresponds to ν = −. Thus we have

ψ(x, y) = e−(ib)w̃(x)1/2φ(b)e−(−ib/2)c(x− ia+/2) exp(iπxy/a+a−)

+O(exp(−ρ̃Re y)), Re y →∞ (1.119)

where the same statements about ρ̃ and O apply as below (1.114). It remains to con-
duct some algebraic simplification. Recalling (1.102), we can see e−(ib/2)φ(b) = φ̃(b).
Recalling the definitions c̃(x) ≡ c(x− ia+/2) and w̃(x) ≡ 1/c̃(x)c̃(−x) we have

w̃(x)1/2c(x− ia+/2) =
[
c̃(x)/c̃(−x)]1/2 (1.120)

The lemma is thus proved.

� � �
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1. THE GENERALISED EIGENFUNCTION ψ(b;x, y)

Proof of (1.78). This hinges on a symmetry of the relativistic conical function which
we will extract from [5] without proof. Expressed in terms of

Z(b;x, y) ≡ Rr(b;x, y)/c(b;−y), (1.121)

the symmetry is

Z(a− − b;x, y)

c(a− − b;x)
=
Z(b+ a+;x, y)

c(b+ a+;x)
(1.122)

(cf. (2.39), (2.40) and (2.48) in [5], and recall evenness, (1.13)).
Writing ψ(b;x, y) (1.60) in terms of Z(b;x, y) (1.121) we have

ψ(b;x, y) = w̃(b;x)1/2 (2s−(ib− y))−1
∑
ν=+,−

νe−(ν(ib− y)/2)Z(b;x+ iνa+/2, y) (1.123)

The task is to consider how the terms on the rhs are affected by b → a− − b. It is
straightforward to see that for ν = +,−,

(2s−(ib− y))−1 νe−(ν(ib− y)/2) → (2s−(ib+ y))−1 ie−(−ν(ib+ y)/2) (1.124)

And so,

ψ(a− − b;x, y) = w̃(a− − b;x)1/2 (2s−(ib+ y))−1
∑
ν=+,−

ie−(−ν(ib+ y)/2)

×Z(a− − b;x+ iνa+/2, y) (1.125)

The aim is to show that the rhs of this is equal to the rhs of (1.123). The symmetry
(1.122) is useful to this end because of a known A∆E which describes the effect on the
relativistic conical function of a shift in the parameter b by the parameter a+. Specifically,
from [5](2.88)2 with δ = − we have

Rr(b+ a+;x, y) = (8is−(x)s−(y + ib)s−(y − ib))−1

×
[
Rr(b;x− ia+, y)−Rr(b;x+ ia+, y)

]
(1.126)

(For the more general 8-variable R-function, shift relations of this kind are summarised
in [28], §8.)

Considering what happens when (1.122) is substituted into (1.125) we can see the
usefulness of the following formula, verifiable using (1.1), (1.25), (1.28) and (1.47),

w̃(a− − b;x)1/2 c(a− − b;x+ iνa+/2)

c(b+ a+;x+ iνa+/2)
= −4iνc+(x)w̃(a− − b;x)−1/2

× s−(x+ iν(a+/2 + b)), ν = +,− (1.127)

2We note this equation contains a typo; the explicit aδ on the rhs should be a−δ.
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We also note separately, using (1.1) and (1.48), that

w̃(a− − b;x)1/2 = 2c+(x)w̃(b;x)−1/2 (1.128)

Substituting (1.122) and the latter two equations into (1.125) we thus get

ψ(a− − b;x, y) = w̃(b;x)1/2s−(ib+ y)−1
∑
ν=+,−

νe−(−ν(ib+ y)/2)

× s−(x+ iν(a+/2 + b))Z(b+ a+;x+ iνa+/2, y) (1.129)

We now want to apply (1.126). First we note, using (1.1) and (1.25), that

1/c(b+ a+;−y) = −2is−(ib+ y)/c(b;−y) (1.130)

Substituting this and (1.126) into (1.129) we thus get

ψ(a−− b;x, y) = [1/2s−(ib+y)]w̃(b;x)1/2
(
2s−(ib−y)c(b;−y)

)−1
∑
ν=+,−

e−(−ν(ib+y)/2)

× s−(x+ iν(a+/2 + b))

s−(x+ iνa+/2)
ν
[
Rr(b;x+ iνa+/2− ia+, y)−Rr(b;x+ iνa+/2 + ia+, y)

]
(1.131)

(where the first line has been written with our target (1.60) in mind). We proceed to
look at the second line more closely. It can be written as

s−(x+ iν(a+/2 + b))

s−(x+ iνa+/2)

[
Rr(b;x− iνa+/2, y)−Rr(x+ 3iνa+/2, y)

]
, ν = +,− (1.132)

This allows us to use the fact that Rr(b;x, y) is a generalised eigenfunction of A(b;x)
(1.22) with eigenvalue 2c−(y). In other words,

s−(x+ iν(a+/2 + b))

s−(x+ iνa+/2)
Rr(x+ 3iνa+/2, y) = 2c−(y)Rr(b;x+ iνa+/2, y)

− s−(x+ iν(a+/2− b))
s−(x+ iνa+/2)

Rr(b;x− iνa+/2, y), ν = +,− (1.133)

Plugging this into (1.132) we find the latter equals3

2c−(ib)Rr(b;x− iνa+/2, y)− 2c−(y)Rr(b;x+ iνa+/2, y) (1.134)

3Using s−(x+ iν(a+/2 + b)) + s−(x+ iν(a+/2− b)) = 2s−(x+ iνa+/2)c−(ib), ν = +,−.
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Thus the ν-sum in (1.131) is equal to

∑
ν=+,−

{
2c−(ib)e−(ν(ib+ y)/2)− 2c−(y)e−(−ν(ib+ y)/2)

}
Rr(b;x+ iνa+/2, y) (1.135)

It is now straightforward to check

2c−(ib)e−(ν(ib+y)/2)−2c−(y)e−(−ν(ib+y)/2) = 2s−(ib+y)νe−(ν(ib−y)/2), ν = +,−
(1.136)

Equations (1.135) and (1.136) give an expression for the ν-sum in (1.131) whose effect
is to make the rhs of (1.131) identical to the that of (1.60), the defining expression for
ψ(b;x, y).
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2 Anticipating the bound states (I).
The functions Ψ(m)(b;x) as specialisations of ψ(b;x, y).

In this section we see how for certain values of the spectral parameter y, the function
ψ(b;x, y) (1.60) reduces to a polynomial of the elementary function s+(x) multiplied by
the positive square root weight function 2c+(x)w̃(b;x)−1/2 (for analysis of the latter, cf.
(1.73)). These polynomials are what we call Qm(b;u) below, and the product with the
weight function is denoted Ψ(m)(b;x). The main results in this section (Lemmas 2.2 and
2.3 below) show exactly how this reduction works.

For any given choice of the parameters (a−, b), a fixed number of the functions
Ψ(m)(b;x) are square-integrable. Indeed, the question of integrability recalls how we
can motivate the extraordinary spectral values in an a posteriori way. Following the lore
of non-relativistic systems we can look for values of y for which the transmission coeffi-
cient t(b; y) (1.79) is singular and of the form y = iv with v > 0. For any such value, the
(modified) asymptotics (1.87) are manifestly square-integrable, in the sense that

[
ψ(b;x, y)

t(b; y)

]
y=iv

∼

exp(−πxv/a+a−), x→∞

(s−(ib)/s−(iv)) exp(πxv/a+a−), x→ −∞
(2.1)

Looking at t(b; y) (1.79) we can see very easily that the following values serve this purpose,

ym ≡ ib− ima−, m ∈ N (2.2)

where positivity of the imaginary part obtains iff ma− < b. Moreover, the quotient in
(2.1) reduces to (−)m for these values.

In what follows we introduce functions Qm(b;x) defined by a recursion relation. Under
generic conditions this produces well-defined polynomials of degree m and parity (−)m.
From these properties certain basic facts about Ψ(m)(b;x) follow straight away. After
sketching these we include a subsection which looks at the polynomials more closely.
Specifically, it looks at the precise conditions needed for the recursion to produce the
stated properties of Qm(b;x). It also details the relation that exists between the latter
and the q-ultraspherical polynomials.(In our later applications we work with Qm(b;x)
rather than the q-ultrasphericals because the former has a simpler relation to ψ(b;x, y),
as well as the useful property of real-valuedness.)

In the final subsection we show how any given Ψ(m)(b;x) is related to ψ(b;x, y) by the
spectral values (2.2). From this it follows that Ψ(m)(b;x) are eigenfunctions of H̃(b;x)
(1.44), and thus the integrable subfamily are bound states in the heuristic sense. Later,
once we have introduced the eigenfunction transforms F±, we take the first step in proving
they are the bound states proper, with some orthogonality results. (The proof that they
comprise all the bound states, i.e. the completeness problem, is altogether a different
matter and concerns us in §6 and §7.)
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We define
Ψ(−1) ≡ 0 (2.3)

Ψ(m)(b;x) ≡ 2c+(x)w̃(b;x)−1/2Qm(b; 2s+(x)), m ∈ N (2.4)

where Qm(b;u) is a polynomial in u uniquely defined by Q−1 ≡ 0, Q0(u) ≡ 1 and the
recursion

Qm+1(u) + uσmQm(u) + ρmQm−1(u) = 0, m ≥ 0 (2.5)

where σm, ρm are b-dependent constants,

σm ≡ s+(ib− i(m+ 1)a−)/s+(i(m+ 1)a−) (2.6)

ρm ≡ s+(2ib− i(m+ 1)a−)/s+(i(m+ 1)a−) (2.7)

Or, more intuitively,

σm = sin
( π

a+

[b− (m+ 1)a−]
)
/ sin

( π

a+

[m+ 1]a−

)
(2.8)

ρm = sin
( π

a+

[2b− (m+ 1)a−]
)
/ sin

( π

a+

[m+ 1]a−

)
(2.9)

It is clear from this setup that Qm(b;u) is a polynomial in u of degree m and parity
(−)m (ignoring for the moment any pathologies arising for non-generic parameters). The
function Ψ(m)(b;x) inherits this parity property given evenness in x of the weight function
w̃(b;x) (1.48). Moreover, it is manifestly real-valued for (b, x) ∈ R2.

For later use we note an alternative writing of the ground state, which follows from
(1.128),

Ψ(0)(x) = 2c+(x)w̃(b;x)−1/2 = w̃(a− − b;x)1/2 (2.10)

Using (1.57) we find dominant asymptotics,

Ψ(m)(b;x) ∼ exp(−πx[b− (m+ 1)a−]/a+a−), x→∞ (2.11)

And so square-integrability of the function obtains iff (m+ 1)a− < b.

2.1 A closer look at Qm(b;u).

We now turn to the question of when the recursion for Qm(b;u) (2.5) fails to define a
polynomial Qm(b;u) with the stated properties (i.e. the question of the pathologies).
One way this can happen is if one of the coefficients σ0, . . . , σm−1,ρ0, . . . , ρm−1 is singular.
To exclude this possibility we must ensure that the positive ratio a+/a− must not take
certain values. To this end we introduce the following point set (empty when m = −1, 0),

Am ≡ {(l + 1)/n | l = 0, . . . ,m− 1, n ∈ N∗} (2.12)

As m→∞ this set begins to look like the positive rationals Q+. We define accordingly
A∞ ≡ Q+.
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We would also like to know exactly when Qm(u) has degree m, which means ensuring
all σ0≤l<m are non-zero. (Assuming Ql(u) has degree l and parity (−)l, then a vanishing
ρl will return a Ql+1(u) as desired, so we do not need to concern ourselves about this.
In the extreme case when all ρ0, . . . , ρm−1 vanish, Qm(u) is just a multiple of um.) This
requirement on σm places more restrictive conditions on our parameters. We need two
point sets (empty when m = −1, 0),

Π(+)
m ≡ {(l + 1)a− + ka+ | l = 0, . . . ,m− 1, k ∈ N}, (2.13)

Π(−)
m ≡ {(l + 1)a− − (k + 1)a+ | l = 0, . . . ,m− 1, k ∈ N}, (2.14)

and their union

Πm ≡ Π(+)
m ∪ Π(−)

m (2.15)

We note that Π
(+)
m has a relation to point sets elsewhere,

Π(+)
m ⊂ S+ ∪ A− ⊂ Y (2.16)

(cf. (1.39),(3.1),(3.2) respectively). In fact, it accords with our intuition to define Π
(+)
∞ ≡

S+ ∪ A−. By contrast, Π
(−)
m is unlike any others we have seen.

The point about defining these sets with an index m, is that for given b, only a
finite number of the functions Ψ(m)(b;x) are ever integrable (as we can see from (2.11)).
Accordingly, when we construct our Hilbert space theory it would be overkill to always
work with the m =∞ analogues of the above sets.

Lemma 2.1. Assume the ratio a+/a− does not take values from Am (2.12), and b
not from Πm (2.15). Then the recursion (2.5) gives rise to well-defined polynomials
Q1, . . . , Ql, . . . , Qm in u of degree l and parity (−)l.

Relaxing the restriction on b, (2.5) still gives rise to well-defined polynomials Q1, . . . , Ql,
. . . , Qm in u, but now of degree l or l − 2, and parity (−)l. Moreover, we can say that
at most, two of these polynomials are of the same degree. In fact, in this case, they are
multiples of each other.

Proof. It is not hard to see that all elements in the set {σ0, . . . , σm−1} are non-singular
iff a+/a− /∈ Am. The same is also true of {ρ0, . . . , ρm−1}. Thus all Q1, . . . , Ql, . . . Qm are
well-defined polynomials in u.

These polynomials will have degree l iff all elements in the set {σ0, . . . , σm−1} are
non-zero. This is equivalent to b /∈ Πm. For instance, take a particular σl in this set; it
will vanish iff there exists k0 ∈ Z such that b = (l + 1)a− + k0a+. Thus we see how any
particular l-contribution arises in Πm.

Let us address the second claim in the lemma. When b ∈ Πm we know that at least
one element in {σ0, . . . , σm−1} is zero. The point is that our restriction on a+/a− entails
that, in this scenario, only one of the elements is zero. To see this, suppose σl0 is the
zero element. Then we must have b = (l0 + 1)a− + k0a+ for some k0 ∈ Z. Now consider
l 6= l0 (for l = 0, . . . ,m− 1). σl = 0 reduces to existence of an n ∈ Z such that

a+

a−
=

l0 − l
n− n0

(2.17)
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But letting l range over 0, . . . ,m − 1 and recalling the positivity of a+, a− assumed
throughout, existence of such an n would contradict a+/a− /∈ Am.

Let us now look at how this σl0 = 0 affects the recursion. For all l ≤ l0, Ql(u) will be
well-defined as a a polynomial of degree l and parity (−)l. (2.5) entails

Ql0+1 = −ρl0Ql0−1 (2.18)

Accordingly these two polynomials have the same degree and parity. For l ≥ l0 + 2,
the recursion will proceed as normal but with degree shifted down to l − 2. (We note
the pathological situation in which ρl0 would also vanish in (2.18) is not possible given
a+/a− /∈ Am). This proves the lemma.

In their monograph [9], Askey and Wilson describe a one-coupling specialisation of
their four-coupling polynomials known as the q-ultraspherical polynomials (which go back
to Rogers [6]). We claim that our polynomials Qm(b;u) are effectively the same as these
(the relation is by an m-dependent constant phase multiple). To see this, we first define
functions Q̌m(b;u) by writing

Qm(b;u) = imeimb+ Q̌m(b;u), m ∈ N (2.19)

Q̌−1 ≡ 0 (2.20)

Plugging this into (2.5) we find that Q̌m(b;u) satisfies

iuσmQ̌m(b;u) = eib+ Q̌m+1(b;u)− ρme−ib+ Q̌m−1(b;u) (2.21)

Writing this out using σm (2.6) and ρm (2.7) and then rearranging we get

− iu(1− e−2ib
+ e

2i(m+1)a−
+ )Q̌m(b;u) = (1− e2i(m+1)a−

+ )Q̌m+1(b;u)

= (1− e−4ib
+ e

2i(m+1)a−
+ )Q̌m−1(b;u) (2.22)

In [9], the q-ultraspherical polynomials are functions Cm(z; β|q) defined by the recursion

2z(1− βqm)Cm(z; β|q) = (1− qm+1)Cm+1(z; β|q)
+ (1− β2qm−1)Cm−1(z; β|q), m ∈ N (2.23)

C−1(z; β|q) ≡ 0, C0(z; β|q) ≡ 1 (2.24)

For the choices

z = −iu/2, β = e−2ib
+ e

2ia−
+ , q = e

2ia−
+ (2.25)

we thus see that the recursions (2.22) and (2.23) are equivalent, implying

Cm(−iu/2; e−2ib
+ e

2ia−
+ |e2ia−

+ ) = Q̌m(b;u), m ∈ N ∪ {−1} (2.26)
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2.2 Residue lemmas.

We now return to the main question of how ψ(b;x, y) (1.60) can be connected to these
functions by the spectral values ym (2.2). For reasons that will become clear it is best to
work with a similarity-transformed version of ψ(b;x, y) defined by

ψ̂(b;x, y) ≡ c(b;−y)ψ(b;x, y) (2.27)

where c(b; z) is defined in (1.25). In fact, from (1.60) we see that ψ̂ is actually a reduced
version of ψ,

ψ̂(b;x, y) = w̃(b;x)1/2(2s−(ib− y))−1
∑
ν=+,−

νe−(ν(ib− y)/2)Rr(b;x+ iνa+/2, y) (2.28)

This function inherits all of the properties in Lemma 1.1 except (1.76) and (1.78). To
make better sense of the lemmas below we wager some facts about its poles. The factor of
s−(ib− y)−1 is manifestly singular at the points y = ym (2.2). But we find that ψ̂(b;x, y)
inherits this singularity iff m ≥ 1. In other words, y = y0 turns out to be a regular value.

We are also interested in the points y = −ym. These are regular values of both
s−(ib − y)−1 and Rr(x ± ia+/2, y) (cf. §3.1), and consequently of ψ̂(b;x, y). We do not
know a way to explicitly evaluate ψ̂(b;x, y) for these values (by which we mean writing
it in a simpler form that does not involve the relativistic conical function, Rr(x, y)). But
we do know how to evaluate a particular linear combination of ψ̂(b;±x,−ym). This is
what we present in Lemma 2.3. (The combination arises in a natural way later on, and
plays a role in solving the completeness problem in §7.)

When interpreting these lemmas, recall that Ψ(−1) is simply zero. The restriction on
a+, a− ensures Ψ(m−1)(b;x) is well-defined by the recursion (2.5).

Lemma 2.2. Using ψ̂(b;x, y) (2.27) and the spectral values ym (2.2), define functions

ψ̂m(b;x) ≡ Res
y=ym

ψ̂(b;x, y) (2.29)

Then, provided the positive parameters a+, a− satisfy a+/a− /∈ Am−1 (2.12), we have

ψ̂m(b;x) = η(b)Ψ(m−1)(b;x), m ∈ N (2.30)

where

η(b) ≡ −s−(y1)(a−/π)c(b; y1) (2.31)

and c(b; y) is defined in (1.25).

Lemma 2.3. Using ψ̂(b;x, y) (2.27) and the spectral values ym (2.2), define functions

φ̂m(b;x) ≡ (−)m−1ψ̂(b;x,−ym) + ψ̂(b;−x,−ym) (2.32)

Then, provided the positive parameters a+, a− satisfy a+/a− /∈ Am−1 (2.12), we have

φ̂m(b;x) = c(b; y1)Ψ(m−1)(b;x), m ∈ N (2.33)
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Before proving these lemmas we say a word on how to reconstruct the corresponding
results for ψ(b;x, y). This is fairly straightforward. We just have to pay close attention
to the poles of

1/c(b; y) = 1/G(−y − ia)G(y + ia− ib) (2.34)

In particular we want to know if and when these overlap with ±ym (2.2). The function
G(y) (1.3) has its zeros at y = ia + i(ka+ + la−) for k, l ∈ N. From this we deduce that
none of the points ym is a pole of 1/c(b;−y). And so, we can use (2.27) and ψ̂m(b;x)
(2.29) to write,

Res
y=ym

ψ(b;x, y) = ψ̂m(b;x)/c(b;−ym), m ∈ N (2.35)

We also deduce the point −y0 is a pole of 1/c(b;−y), but the remaining −ym≥1 are not.

As a result we can use (2.27) and φ̂m(b;x) (2.32) to write

Res
y=−y0

[ψ(b;x, y)− ψ(b;−x, y)] = φ̂0(x) Res
y=y0

c(b; y)−1 (2.36)

and

(−)m−1ψ(b;x,−ym) + ψ(b;−x,−ym) = φ̂m(b;x)/c(b; ym), m ∈ N∗ (2.37)

Proofs of Lemmas 2.2 and 2.3. We will employ the same strategy for both of these lem-
mas. This involves first showing that ψ̂m(b;x) and φ̂m(b;x) both satisfy the same recur-
sion as Ψ(m−1)(x). Then, we exhibit (2.30) and (2.33) explicitly for the cases m = 0, 1.
This suffices for the desired results. Until further notice we will suppress all implicit
dependences of functions on b.

The recursion satisfied by Ψ(m−1)(x) is of course the same as that for Qm−1(2s+(x)),
cf. (2.5). We write it as follows

s+(−ima−)

s+(ib− ima−)
Cm+1(x)− s+(2ib− ima−)

s+(ib− ima−)
Cm−1(x) = 2s+(x)Cm(x), m ≥ 1 (2.38)

To show this is satisfied by both ψ̂m(x) (2.29) and φ̂m(x) (2.32), we are going to use
the dual-variable eigenvalue equation satisfied by ψ(x, y), cf. Lemma 1.1. Since (2.27)
just defines a similarity transform we can consider the analogous eigenvalue equation for
ψ̂(x, y). The pleasing fact is that this has a very simple form. To see this we recall that
the A∆O S(y) (1.67) arose as

1

c(−y)

[ s+(y − ib)
s+(y)

T yia− −
s+(y + ib)

s+(y)
T y−ia−

]
c(−y) (2.39)

(cf. (1.64)). Thus we can write down straight away

s+(y − ib)
s+(y)

ψ̂(x, y − ia−)− s+(y + ib)

s+(y)
ψ̂(x, y + ia−) = 2s+(x)ψ̂(x, y) (2.40)
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The three ψ̂-terms that feature here are all singular when y = ym (cf. our remarks below
(2.28)). When we take the residue of the terms in the equation at these points, and
restrict m ≥ 1, we recover (2.38) immediately with Cm(x) = ψ̂m(x) as desired.

We now show this is similarly satisfied for φ̂m(x); in other words, that (2.38) holds
with Cm(x) = φ̂m(x). To achieve this we can just show that it holds for Cm(x) =
(−)m−1ψ̂(x,−ym), since this entails that it also holds for Cm(x) = ψ̂(−x,−ym). To
this end we exploit the dual A∆E (2.40) again. For the three ψ̂-terms in this equation,
y = −ym are regular values (cf. our remarks above below (2.28)). Upon setting y = −ym
and restricting m ≥ 1, (2.40) becomes

s+(−2ib+ ima−)

s+(−ib+ ima−)
ψ̂(x,−ym−1)− s+(ima−)

s+(−ib+ ima−)
ψ̂(x,−ym+1)

= 2s+(x)ψ̂(x,−ym), m ≥ 1 (2.41)

which is indeed just a rearranged version of (2.38) with Cm(x) = (−)m−1ψ̂(x,−ym).

We now prove the two lemmas explicitly for the two cases m = 0, 1, looking first at
Lemma 2.2. This means proving the following two equations,

ψ̂0 ≡ Res
y=y0

ψ̂(x, y) = 0 (2.42)

and

ψ̂1(x) ≡ Res
y=y1

ψ̂(x, y) = η(b)Ψ(0)(x) (2.43)

The key to these explicit evaluations is (1.16) which originates in [5]. Adapting it for
Rr(x, y) and using (1.25) we have

Rr(b;x,±ib) = c(b;−ib), x ∈ C (2.44)

It is clear how this will help us in the m = 0 case, since there we are dealing with y = ib
in (2.28). For the m = 1 case we have y = ib − ia−, for which we have no analogue to
(2.44). Nevertheless the latter can still be exploited in a roundabout way, as we will see.

Looking at the expression (2.28) for ψ̂(x, y) we can see that the y = y0 = ib pole
comes from the s−(ib− y)−1 term, and is simple. When y = y0, the other pertinent term
in (2.28), namely the ν-sum, equals∑

ν=+,−

νe−(ν(ib− y0)/2)Rr(x+ iνa+/2, y0) (2.45)

But because of (2.44) this is just

c(−ib)
∑
ν=+,−

ν = 0 (2.46)

As a result, the simple pole is removed and ψ̂(x, ·) is regular at y0 = ib. This proves
(2.42).
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We now consider (2.43). As explained, (2.44) is of no use when evaluating the residue
of ψ̂(x, ·) at y1 = ib − ia−. However we can cleverly exploit the property (1.78) which
tells us ψ(x, y) is known to be invariant under b→ a− − b. In other words,

ψ(b;x, y) = ψ(b̃;x, y), b̃ ≡ a− − b (2.47)

(note that we now show the implicit dependence on b for obvious reasons!). In terms of
ψ̂(b;x, y) (2.27) this symmetry translates as

ψ̂(b;x, y) =
c(b;−y)

c(b̃;−y)
ψ̂(b̃;x, y) (2.48)

The point is that we have y1 = −ib̃, and so (2.44) does come into play when we take the
residue of the rhs of this equation at y = y1. Moreover, the factor responsible for the
(simple) pole is not ψ̂(b̃;x, y) but rather the function in the denominator in (2.48) (cf.
our remarks below (2.28)). In other words,

ψ̂1(b;x) = Res
y=y1

ψ̂(b;x, y) = c(b; ib̃)ψ̂(b̃;x,−ib̃) Res
y=−ib̃

1/c(b̃;−y) (2.49)

Using (2.28) and (2.44) we have explicitly,

ψ̂(b̃;x,−ib̃) = w̃(b̃;x)1/2c(b̃;−ib̃)

× [2s−(2ib̃)]−1
∑
ν=+,−

νe−(iνb̃) = w̃(b̃;x)1/2c(b̃;−ib̃) (2.50)

This proves that ψ1(b;x) (2.29) is proportional to Ψ(0)(b;x) (2.10). To check that the
proportionality constant is just η(b), we substitute (2.50) back into (2.49) and write the
term multiplying w̃(b̃;x)1/2 as

s−(y1) Res
y=y1

[ c(b;−y)

s−(y1 + y)
c(b̃; y)/c(b̃;−y)

]
(2.51)

This writing allows us to use the following formula, which just follows from the A∆E
(1.1) with a little work,

c(b̃; y)/c(b̃;−y) =
s−(y1 + y)

s−(y1 − y)
c(b; y)/c(b;−y) (2.52)

Recalling y1 = ib− ia−, (2.51) straight away becomes

s−(y1) Res
y=y1

[ c(b; y)

s−(y1 − y)

]
(2.53)

which is manifestly equal to η(b) (2.31) because

Res
y=y1

1/s−(y1 − y) = −a−/π, (2.54)

To prove Lemma 2.3 explicitly for m = 0, 1 means showing
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φ̂0 ≡ −ψ̂(x,−y0) + ψ̂(−x,−y0) = 0 (2.55)

and

φ̂1(b;x) ≡ ψ̂(x,−y1) + ψ̂(−x,−y1) = c(b; y1)Ψ(0)(b;x) (2.56)

Again this will hinge on (2.44). In the case of φ̂0 we are dealing with y = −ib in ψ̂(b;x, y),
which we know from our discussion below (2.28) is a regular value. The vanishing comes
about as a result of the special linear combination of ψ̂ in (2.32). In the case of φ̂1 we
are dealing with y = ib̃ in ψ̂(b̃;x, y) which is also a regular value (this is a non-obvious
fact proved earlier, cf. (2.46)). To handle the two cases, there is a useful way to write
the two pertinent linear combinations of ψ̂. From the expression (2.28) and evenness of
w̃(b; ·) we get straight away

ψ̂(b;x, y)∓ ψ̂(b;−x, y) = w̃(b;x)1/2[2s−(ib− y)]−1∑
ν=+,−

νe−(ν(ib− y/2))[Rr(b;x+ iνa+/2, y)∓Rr(b;−x+ iνa+/2, y)] (2.57)

Because Rr(x, y) is even in x, the ν-sum here can be rewritten as∑
ν=+,−

Rr(b;x+ iνa+/2, y)ν[e−(ν(ib− y/2))± e−(−ν(ib− y/2))] (2.58)

(consider sending ν → −ν in the second term in the square brackets). With the plus sign,
the square brackets are equal to 2c−((ib−y)/2); and with the minus sign, 2νs−((ib−y)/2).
Thus we have

ψ̂(b;x, y)− ψ̂(b;−x, y) = w̃(b;x)1/2[2s−((ib−y)/2))]−1
∑
ν=+,−

νRr(b;x+ iνa+/2, y) (2.59)

and

ψ̂(b;x, y) + ψ̂(b;−x, y) = w̃(b;x)1/2[2c−((ib− y)/2)]−1
∑
ν=+,−

Rr(b;x+ iνa+/2, y) (2.60)

The first of these combined with (2.44) and (2.55) gives

φ̂0(b;x) = −ψ̂(b;x,−ib) + ψ̂(b;−x,−ib) = −w̃(b;x)1/2[2s−(ib)]−1c(b;−ib)
∑
ν=+,−

ν = 0

(2.61)
This proves (2.55). Similarly, if we take b→ b̃ in the second of these and combine it with
(2.48) and (2.56) we get

φ̂1(b;x) =
c(b; y1)

c(b̃; y1)
[ψ̂(b̃;x, ib̃) + ψ̂(b̃;−x, ib̃)] = c(b; y1)w̃(b̃;x)1/2 (2.62)

Recalling (2.10), this is exactly (2.56).
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3 Associated transforms.

This section will be somewhat technical. It provides a precise account of two eigenfunction
transforms, F±, whose primary purpose is ultimately to build a third transform, F (4.1).
The latter transform and its adjoint are central to our Hilbert space theories for the
A∆Os H̃(b;x) (1.44) and S(b; y) (1.67) respectively. Since these theories constitute the
more interesting parts of our story, we help them attain a smoother flow by putting many
technicalities here, and drawing upon them as required.

The final subsection, which looks at the relation between these transforms and the
functions from §2, is more interesting.

3.1 Analyticity properties of ψ(b;x, y).

It is important we have a better grasp of these in order to make precise statements about
the eigenfunction transforms. The casual reader can skip this discussion without losing
the main thread.

In a related context we have already looked at conditions for the square-roots of
w(b;x) (1.28) and w̃(b;x) (1.48) to have certain analyticity properties for (b, x) ∈ R2. We
found it was sufficient to restrict b to the real line whilst omitting certain sets of discrete
points, S (1.41) and S̃ (1.73), in order to ensure no poles or branch points on the real
line. These two sets reappear in the lemma below, along with

A− ≡ {(l + 1)a− | l ∈ N}, (3.1)

In future sections we will have little explicit need for the three parameter sets S, S̃, A−.
More important is their union, S̃ ∪ S ∪ A−. We give this its own symbol and rewrite it
in a more succinct way as follows,

Y ≡ {± [ka+/2 + (l + 1)a−] | k, l ∈ N} ∪ {−ka+/2 | k ∈ N} (3.2)

We note that a special case of the restriction b ∈ R \ Y is

b ∈ (0, a− + a+/2) \ A− (3.3)

The exclusion of A− here is particularly pertinent when a+ � a−; if a+/2 < a− then it
only has the effect of excluding {a−} from the interval.

(The fact that our Hilbert space theory for systems with reflection will not apply for
the values b ∈ A− is neither unproblematic nor surprising, since these are the values for
which the asymptotics (1.87) become reflectionless.)

Below we focus on the case when b is real, though we note that all the results can be
adapted for complex b by simply modifying exclusions of the form b ∈ R\X by replacing
b→ Re b.

The following lemma builds on the meromorphy properties of ψ(b;x, y) (1.60) in
Lemma 1.1 (naturally, any statement about smoothness implicitly involves the restric-
tion of the variables to the real line). The corollary follows immediately. Its importance
underlies the importance of the point set Y (3.2).
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Lemma 3.1. The x-poles of the function ψ(b;x, y) (1.60) do not depend on y, and vice
versa. It is smooth in x provided b ∈ R \ S̃ where the point set S̃ is defined in (1.73). It
is smooth in y provided b ∈ R \ (S ∪ A−) where the point sets S and A− are defined in
(1.41) and (3.1) respectively.

Corollary 3.2. The function ψ(b;x, y) (1.60) is smooth in x, y provided b ∈ R \ Y.

Proof of Lemma 3.1. The claim about independence of x and y poles follows from the
structure of ψ(x, y) (1.60), and the fact this same property is known to hold for the
relativistic conical function, cf. (1.18) in this regard.

Lemma 1.1 tells us ψ(b;x, y) has no x-branch points when b ∈ R \ S̃. Thus the
smoothness claim in x follows once we show its x-poles are away from the real line given
this restriction. This means studying the x-pole locations of the functions that comprise
ψ(x, y) (1.60). In line with our convention for proofs, we suppress implicit dependence of
functions on b.

We have already alluded to the poles of w̃(x) (1.48) in the previous section. When
considering these, we recall that (1.70) is a more useful writing. Using this and the
G-zeros and G-poles, (1.9) and (1.8) respectively, we have

αx =

{
−ib+ ia+/2 + zk,l+1, k, l ∈ N, (w̃-zeros) (3.4)

ib+ ia+/2 + zk,l, k, l ∈ N, (w̃-poles) (3.5)

α = +,−

zk,l ≡ ika+ + ila− (3.6)

Let us now consider the x-poles of the two functions Rr(x± ia+/2, y). Using (1.18), we
can write these as

αx = −ib+ ia+/2 + zk,l+1, k, l ∈ N (3.7)

α = +,−

To be clear, this describes the aggregated poles of the two functions, as opposed to the
shared. To describe their behaviour separately we just need to supplement (3.7) by saying
Rr(x+ iνa+/2, y) does not have poles at ν(−ib+ ia+/2 + z0,l), where ν = +,−.

We can now use these sequences to establish some claims in Lemma 3.1. As in §1, we
need b /∈ S̃− (1.72) to ensure the poles (3.5) are away from the real line. To ensure (3.7)
are away from the real line we need b /∈ S̃+ (1.71). Recalling S̃ ≡ S̃+ ∪ S̃−, this proves
the claim about the x-poles.

(We also note here that the poles (3.7) are identical to the zeros (3.4). Without more
information this does not allow us to conclude that the former are removed by the latter,
however.)

To prove the claim about smoothness in y we study the y-pole locations of the func-
tions that comprise ψ(x, y) and show that b ∈ R \ (S ∪ A−) is sufficient to keep them
away from the real line.

To study the poles for 1/c(−y) we first use (1.25) and (1.4) to write
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1/c(−y) = G(−y + ia)G(y − ia+ ib) (3.8)

The poles of the first term in this product miss the origin by positivity of a+, a− alone.
The poles of the second are at

y = −ib− zk,l (3.9)

The y-poles of Rr(x± ia+/2, y) are of course unaffected by the shift in x,

αy = i(2a− b) + zk,l, k, l ∈ N, α = +,− (3.10)

Finally the poles of 1/s−(ib− y) are at

y = ib± ina−, n ∈ N (3.11)

The restriction needed to keep (3.9) away from Im y = 0 is thus b /∈ S− (1.40). For the
points (3.10) we need b /∈ S+ (1.39). And for (3.11), b /∈ A− ∪ {−la− | l ∈ N}. Recalling
S ≡ S+ ∪ S−, this proves the desired claim.

3.2 The eigenfunction transforms F±
Let us now introduce the two transforms which will be central to everything that follows
(see the note at start of this section). Their action is defined on functions f : R+ → C
by

(Fδf)(x) ≡
∫
R+

dy ψ(b; δx, y)f(y), δ = +,− (3.12)

We find these two transforms to be the same in all essential features. Thus we talk about
Fδ as a single object most of the time (the corresponding statements being understood
to hold for both choices of δ = +,−). The reason for this sharing of features is because,
plainly,

(F+f)(x) = (F−f)(−x) (3.13)

Our first task is to understand the behaviour of Fδ on some suitable space of functions.
A good starting point is the space of smooth, complex-valued functions on the positive
half-line with compact support, denoted C∞0 (R+). For any such function, definedness of
(Fδf)(·) as a meromorphic function whose only poles are the x-poles of ψ(b; δx, y) follows
provided the latter function has no y-poles on [0,∞) (routine convergence argument). As
we have just seen, this latter property holds provided b is real with certain discrete values
omitted. A similar restriction ensures ψ(b; δx, y) has no x-poles on the real line and so
in this case (Fδf)(·) is a bounded function on R (recall the O(1) asymptotics in Lemma
1.87).

For the purposes of quantum mechanics we would like to know when this transform
maps into a suitable Hilbert space, such as H ≡ L2(R, dx). For considerations of this
kind we need to know more about the asymptotic behaviour of (Fδf)(x) (the boundedness
proclaimed above obviously does not suffice). To this end the tools are already in place,
viz. the analyticity and asymptotics properties of ψ(b; δx, y). With these the next lemma
follows fairly easily.
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The lemma involves the space of functions C∞0 (R+) defined below (3.13). We find that
Fδ maps these functions into H, however we do not know for sure whether this mapping
is bounded (with respect to L2-norm). So in particular we do not know whether Fδ can
be extended to the Hilbert space L2(R+, dy) whilst preserving the mapping into H.

Lemma 3.3. Assume b ∈ R \ Y where the point set Y is defined in (3.2). Then, for any
f ∈ C∞0 (R+), the functions (F±f)(x) (3.12) are in H ≡ L2(R, dx).

More generally, with these same restrictions on b and f , the functions (F±f)(x+ iv),
v ∈ R are in H whenever iv is a regular value of ψ(b; ·, y).

Proof. In light of what we said below (3.12), b ∈ R\Y ensures (F±f)(x) are functions in x
whose poles are identical to the x-poles of ψ(±x, y) respectively (note, we are suppressing
implicit dependence of functions on b). With this in mind, let us explain how the two
statements in the lemma relate to each other. The point is that we are able to bound
(F±f)(x + iv) from above by an L2-integrable function as x → ±∞. Thus the only
obstacle to entry into H is the possibility that (Ff±)(·) has a pole on the line R + iv.
Indeed since the x-poles of ψ(x, y) are purely imaginary for real b, this amounts to the
possibility that ψ(·, y) has a pole at the point iv. From Lemma 3.1 we see that the
restriction b ∈ R \ Y is sufficient for the special case of no pole at the origin. Thus both
parts of the lemma are proved by the aforementioned bound.

(In general, we can ensure regularity of any point iv by introducing restrictions on b
generalising those we saw in §3.1. They will of course depend on v, as opposed to just
a+, a−.)

Because of (3.13), it suffices to prove the bound for just one of the transforms. We
will focus on F+. Central to this is Lemma 1.3 which gives us O-asymptotics for ψ(x, y).
This lemma is valid for the b values at hand, and can be encoded as follows,

ψ(x, y) = ψas(x, y) +O(e
−ρ|Rex|
− ), Rex→ ±∞ (3.14)

ψas(x, y) ≡

t(y)eiπxy/a+a− , Rex > 0

eiπxy/a+a− − r(y)e−iπxy/a+a− , Rex < 0
(3.15)

where ρ > 0 and where the bound represented by O is uniform for Im x and y varying
respectively over any compact subset of R and R+.

To make use of (3.14) we first write

1

2

∣∣∣ ∫
R+

dy ψ(x, y)f(y)
∣∣∣2 ≤ ∣∣∣ ∫

R+

dy ψas(x, y)f(y)
∣∣∣2

+

∫
R+

dy |ψ(x, y)− ψas(x, y)|2|f(y)|2, f ∈ C∞0 (R+) (3.16)

(this just uses the elementary identities |A|2/2 ≤ |B|2+|A−B|2 and |
∫
dy X| ≤

∫
dy|X|).

We will now argue that the two integrals on the rhs have L2-asymptotics, first for x ∈ R
and then for x→ x+ iv with x, v ∈ R.

Given x ∈ R, the plane wave structure of ψas(x, y) entails that the first integral on the
rhs is just a Fourier transform (or a sum of two Fourier transforms in the case of x < 0).
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Thus the x-tail of this term is L2 because well-known results about Fourier transforms
imply we will get a map from L2(R+, dy) into H (multiplication by t and r preserves
integrability because of their boundedness on R).

For the second integral we can use (3.14). This tells us that for |x| sufficiently large,
there exists C > 0 such that for all y in the compact set supp(fδ),

|ψ(x, y)− ψas(x, y)| ≤ Ce
−ρ|x|
− (3.17)

Thus the second integral is bounded from above by (Ce
−ρ|x|
− ‖f‖)2, and therefore has

L2-asymptotics. (Note, the fact that Lemma 1.3 only gives us a uniformity claim for
compacts of R, as opposed to the whole of R, is what prevents us from repeating this
argument for all functions in L2(R+, dy), where there is no compact support in general.)

It is straightforward to adapt these arguments to (F+f)(x+ iv) for x, v ∈ R. For the
first integral on the rhs of (3.16), we just have to note that f ’s compact support entails
that the functions exp(±πvy/a+a−)f(y), which arise from x→ x+ iv in (3.15), will still
be in L2(R+, dy). For the second, we just have to note that the bound in (3.17) still holds
for Im x ∈ [0, v], as implied by the uniformity statement that accompanies (3.14).

For later reference we draw some of these arguments together to assert the following.
If f ∈ C∞0 (R+), then the following bound holds for |Rex| sufficiently large,

1

2

∣∣∣ ∫
R+

dy ψ(x, y)f(y)
∣∣∣2 ≤ ∣∣∣ ∫

R+

dy ψas(x, y)f(y)
∣∣∣2 + C e

−2ρ|Rex|
− ‖f‖2 , x ∈ C (3.18)

where C > 0 is some constant fixed by Im x and supp(f), and the function ψas(x, y) is
defined in (3.15). The constant ρ > 0 derives from Lemma 1.3.

3.3 The adjoint transforms F∗±
In the previous subsection we saw that the transform Fδ (3.12) defined a map from
C∞0 (R+) into the Hilbert space H ≡ L2(R, dx) (provided the coupling parameter b is real
with certain discrete values omitted; namely, those in Y (3.2)). This claim was proved
without any reference to a Hilbert space domain for Fδ. However, we must now bring
this into our discussion in order to consider the adjoint of this transform. This can be
done very easily since it is well known that C∞0 (R+) is a dense subspace of L2(R+, dy).

I.e., we may reinterpret Fδ (3.12) as a densely-defined map between Hilbert spaces,

F± : C∞0 (R+) ⊂ L2(R+, dy)→ H, (3.19)

As such we may now consider notions of adjoint. To ensure no ambiguity in what follows,
we note that the inner product on any Hilbert space L2(Ω) is given by

(f, g) ≡
∫

Ω

dz f(z)g(z) (3.20)

For H ≡ L2(R, dx) we give this its own symbol, (·, ·)H.
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For the maps F± (3.19), we say the adjoint element of any f ∈ H exists in L2(R+, dy)
and denote it by F∗±f iff the latter solves the following equation

(F∗±f, g) = (f,F±g)H , g ∈ C∞0 (R+) (3.21)

The density of C∞0 (R+) in L2(R+, dy) ensures any solution is unique. Clearly we will have

(F∗δ f)(y) =

∫
R
dxψ(b; δx, y)f(x), δ = +,− (3.22)

whenever the integral functions on the rhs are in L2(R+, dy). We now ask when might this
be so (analogising the discussion below (3.12)). In general, if f is any smooth function
with compact support then the integral will converge provided y is a regular value of
ψ(b;x, y), and the latter has no x-poles on the real line. As we saw earlier, this latter
property is assured by b ∈ R \ S̃. This entails that the integral functions in (3.22) are
meromorphic in y with poles equal to the y-poles of ψ(b;x, y). Thus they will be smooth
if we strengthen to b ∈ R\Y . Combined with the O(1) y-asymptotics of ψ(b;x, y), we can
then assert this integral function is bounded for y ∈ R+. With the additional information
in Lemma 1.4 we can get a better view on its asymptotics and prove the following lemma.
It involves the space of smooth, complex-valued functions on the real line with compact
support, C∞0 (R). For later use we need the subset with support away from the origin,
which we denote C ⊂ C∞0 (R).

Lemma 3.4. Assume b ∈ R \ Y where the point set Y is defined in (3.2). Then, for any
f ∈ C, the adjoint elements F∗±f exist in L2(R+, dy) and are given by (3.22).

More generally, with these same restrictions on b and f , the meromorphically-continued
functions (F∗±f)(y+iv), v ∈ R are in L2(R+, dy) whenever iv is a regular value of ψ(b;x, ·).

Proof. To make our statements about the integral functions on the rhs of (3.22) more
concise we will assign them their own symbol, (F †δf)(y) where again, δ = +,−. As we

have noted, the restriction b ∈ R \ Y implies (F †δf)(y) is meromorphic in y with poles
equal to the y-poles of ψ(x, y). This is the same restriction that ensures well-definedness
of the map Fδ (3.19) and thus allows us to consider the notion of adjoint elements for
functions in H. For any f ∈ H we have F∗δ f = F †δf iff F †δf ∈ L2(R+, dy). (Note, we are
suppressing implicit dependence of ψ(x, y) on b.)

With these facts in mind let us explain how the two statements in the lemma relate
to each other. The point is that we are able to bound (F †δf)(y + iv) from above by an
L2-integrable function as y →∞. Thus the only obstacle to entry into L2(R+, dy) is the
possibility that (F †δf)(·) has a pole on the line R+ iv. Indeed since the y-poles of ψ(x, y)
are purely imaginary for real b, this amounts to the possibility that ψ(b;x, ·) has a pole
at the point iv. From Lemma 3.1 we see that the restriction b ∈ R \ Y is needed for the
special case of no pole at the origin. Thus both parts of the lemma will be proved by the
aforementioned bound.

Say that for a particular choice of δ = +,− we can prove (F †δf)(y+ iv) is asymptoti-
cally bounded from above by a function in L2(R+, dy) for all f ∈ C, then this is also true
for the other δ (consider invariance of C under f(x) 7→ f(−x)). We will prove the claim
for δ = +. Central to this is the O-asymptotics for ψ(x, y) given in Lemma 1.4. This is
valid for b ∈ R \ Y and x ∈ R∗ and gives us the following
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ψ(x, y) = ψ̂as(x, y) +O(e−ρRe y), Re y →∞ (3.23)

ψ̂as(x, y) ≡ φ̃−1
[
c̃(x)/c̃(−x)

]−1/2
e−iπxy/a+a− (3.24)

where ρ > 0 and where the bound represented by O is uniform for Im y and x varying
over any compact subset of R.

The remainder of the proof is analogous to that of Lemma 3.3. In the same way as
before, we write

1

2

∣∣∣ ∫
R
dxψ(x, y)f(x)

∣∣∣2 ≤ ∣∣∣ ∫
R
dx ψ̂as(x, y)f(x)

∣∣∣2
+

∫
R
dx |ψ(x, y)− ψ̂as(x, y)|2|f(x)|2, f ∈ C (3.25)

Well-known facts about Fourier transforms entail the first integral on the rhs will have

L2-asymptotics for Re y →∞ (we recall φ̃
[
c̃(x)/c̃(−x)

]1/2
is a phase). The same is true

of the second integral, in light of the decay described in (3.23).
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3.4 Anticipating the bound states (II).

The functions Ψ(m) as members of F±(C∞0 (R+))⊥.

Now that we have defined and studied the eigenfunction transforms F±, we look at the
functions Ψ(m)(b;x) introduced in §2 from a different perspective. We have already seen
these functions are bound states in the heuristic sense of being integrable specialisations
(more accurately, residues) of the eigenfunction ψ(b;x, y). In this subsection we take
a step closer to proving they are bound states in the proper time-dependent scattering
theory sense. Of course at this stage, these results cannot be said to establish this because
we have not yet even defined any dynamics, let alone proved existence of a wave operator
(both of which first require the Hamiltonian operator to be introduced in §4). The point
is that once we do have a wave operator, and find that it is related to F+ and F−, these
results instantly take on a new meaning.

The eigenfunction claim is a straightforward consequence of Lemmas 1.1 and 2.2. We
include it here because of its central role in proving the other two claims. The integer mb

plays a central role in later sections.

Lemma 3.5. For generic values of a+, a−, b, the functions Ψ(m)(b;x) (2.4) are well-
defined in terms of Qm(b;x) (2.5) and satisfy the following eigenvalue equations,

H̃(b;x)Ψ(m)(b;x) = EmΨ(m)(b;x), m ∈ N, (3.26)

Em(b) ≡ 2 cos
( π

a+

[b− (m+ 1)a−]
)

(3.27)

Moreover, Ψ(m) is in H ≡ L2(R, dx) iff m ≤ mb − 1 where mb is the largest integer such
that mba− < b.

We can give a more precise condition than genericity: the above statements are true
for Ψ(0), . . . ,Ψ(m) provided a+/a− /∈ Am where Am is the point set defined in (2.12);
empty when m = 0. This condition is also needed for the following claims.

We have

F±f ⊥ Ψ(m), f ∈ C∞0 (R+) (3.28)

provided b does not take values from the point set Y (3.2). We note that b > a− is needed
for at least one of the functions Ψ(m) to be in H.

We have

Ψ(m) ⊥ Ψ(n), m 6= n (3.29)

provided the eigenvalues Em,En are distinct. Such distinction holds for generic values
of the parameters. More precisely, we can say a given set {E0, . . . , Em} has all distinct
elements iff b does not take values from the point set Πm (2.15); empty when m = 0. We
note that b > 2a− is needed for at least two of the functions Ψ(m) to be in H.

Proof. We note first that the eigenvalue equation (1.75) implies the following for ψ̂(x, y)
(2.27),

H̃(x)ψ̂(x, y) = 2c+(y)ψ̂(x, y) (3.30)
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There was nothing about the proof of Lemma 2.2 that required x to be real. Thus we may
take the residue of the shifted functions in the above equation at y = ym+1 and invoke the
lemma to deduce (3.26). (There is nothing substantial about the ability to interchange
the residue and the A∆O; just envisage writing out the lhs of (3.30) explicitly using H̃(x)
(1.44) and then taking the residue.)

The claim about membership of H follows immediately from (2.11).
The proofs for the two orthogonality results anticipate some of the ideas in §4. In

fact we will draw upon two of the propositions in that section (where we think they are
better placed overall).4

For the second orthogonality result we will prove direct vanishing of

Im,n ≡ (En − Em)(Ψ(m),Ψ(n))H (3.31)

for m 6= n ∈ N. Assuming Em, En are distinct for m 6= n (an assumption we return to at
the end), vanishing of Im,n will imply vanishing of the inner product.

By involving the eigenvalues in this way, we will be able to expand the integrand using
the A∆O H̃(x) (1.44). This may seem like a strange step but with more terms to work
with, we can reveal otherwise-hidden features. (This analogises the method in [3].)

Using reality of Ψ(m) for (b, x) ∈ R2 and the eigenvalue equation (3.26) we write out

Im,n = (En − Em)

∫
R
dxΨ(m)(x)Ψ(n)(x) =

∫
R
dx
(
[H̃(x)Ψ(n)(x)]Ψ(m)(x)− (n↔ m)

)
(3.32)

To rearrange this in a more useful form we draw upon Proposition 4.1. The A∆O H̃(x)
(1.44) satisfies the requirements with

U1(x) = [Ṽ (x)Ṽ (−x+ ia−)]1/2 (3.33)

and U2(x) = U1(x+ ia−). Moreover the integrand in (3.32) has the form (4.26) with

Φ1(x) = Ψ(n)(x), Φ2(x) = Ψ(m)(x) (3.34)

Using the proposition we therefore have

Im,n = lim
Λ→∞

∫ Λ

−Λ

dx
(
Jm,n(x)− Jm,n(x+ ia−)

)
(3.35)

Jm,n(x) ≡ [Ṽ (x)Ṽ (−x+ ia−)]1/2
[
Ψ(n)(x− ia−)Ψ(m)(x)− (n↔ m)

]
, m, n ∈ N (3.36)

By breaking up the integral this way, (3.35) is manifestly of the form in Proposition 4.2.
Provided we can argue the residue sum there is empty, we thus have

− Im,n = lim
Λ→∞

∫ Λ+ia−

Λ

dx
(
Jm,n(x)− Jm,n(−x+ ia−)

)
(3.37)

4 The proofs below involve two objects which form a triad with the analogous object in the symmetry
proof of §4. We are talking here about: Im,n, Im,δ(y) and Iδ,δ′(y, y

′). In this order they form a hierarchy
of complexity, which is also true of the three correlates: Jm,n(x), Jm(x, y), Jδδ′(x, y, y

′).
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Invoking the fact Ψ(m)(·) has parity (−)m, this integrand equals Jm,n(x)(1 + (−)n+m).
And so, vanishing when n + m is odd is immediate. For the even case we have to look
more closely at asymptotics.

We know from (1.107) that the decay of w̃(x) is uniform for Imx ∈ [0, a−]. Since
this is also clearly true for the blow-up of 2c+(x) and Qm(2s+(x)) we can revamp the
dominant asymptotics (2.11),

Ψ(m)(b;x) ∼ exp(∓πx[b− (m+ 1)a−]/a+a−), Rex→ ±∞ (3.38)

and assert uniform decay for Im x ∈ [0, a−]. As a result, the limit in (3.37) is vanishing.
It remains to prove that Jm,n(x) (3.36) is holomorphic in the strip Imx ∈ [0, a−] given

the b restriction in the lemma. Using Ψ(m)(x) (2.4) we write out

Jm,n(x) = [Ṽ (x)Ṽ (−x+ ia−)]1/2 w̃(x− ia−)1/2w̃(x)1/2

× (2c+(x))2
[
Qn(2s+(x− ia−))Qm(2s+(x))− (m↔ n)

]
(3.39)

Since the second line is entire, we need only focus on the first. The means to an easy
simplification is already in place, viz. the similarity transform in (1.52). This tells us
precisely that

w̃(x)1/2 Ṽ (x)

w̃(x− ia−)1/2
= [Ṽ (x)Ṽ (−x+ ia−)]1/2 (3.40)

And so the first line of the rhs in (3.39) equals w̃(x)Ṽ (x). Recalling w̃(x) ≡ 1/c̃(x)c̃(−x)
and Ṽ (x)/c̃(x) = 1/c̃(x− ia−) (just (1.51)) we can write it as 1/c̃(x− ia−)c̃(−x). With
the definition c̃(x) (1.49) and the reflection property of G(·), it simplifies further to

G(x− ia−/2 + ib)G(−x+ ia−/2 + ib) (3.41)

Thus Jm,n(x) (3.39) is holomorphic in the desired strip if the same is true of this function.
As noted in §1, the poles of G(·) (1.3) occur at the points

− ia− zk,l, zk,l ≡ ika+ + ila−, k, l ∈ N (3.42)

a ≡ (a+ + a−)/2 (3.43)

And so the x-poles of the two G-functions in (3.41) occur respectively at−ia+/2− ib− zk,l

ia+/2 + ib+ zk,l+1

k, l ∈ N (3.44)

With our standing assumption that a+, a− > 0, we see that all these poles lie outside
i[0, a−] provided b > −a+/2.

Let us now prove the first orthogonality result, based on the strategy for the second
(we note that the added b-restriction is needed for F±f ∈ H, cf. Lemma 3.3).
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Given

(Ψ(m),Fδf)H =

∫
R
dxΨ(m)(x)

∫
R+

dy ψ(δx, y)f(y), δ = +,− (3.45)

it is clear that

(2c+(y)− Em)(Ψ(m),Fδf)H =

∫
R+

dy f(y)Im,δ(y), δ = +,− (3.46)

Im,δ(y) ≡ (2c+(y)− Em)

∫
R
dxΨ(m)(x)ψ(δx, y) (3.47)

(where Fubini’s theorem can be used to interchange the integration order in (3.45), given
f ’s compact support and Ψ(m)’s exponential decay).

Given that Em ≤ 1, (2c+(y) − Em) is positive on the integration region R+. Hence
vanishing of Im,δ(y) will prove vanishing of the inner product. Because Ψ(m)(·) has parity
(−)m it follows that Im,−(y) = (−)mIm,+(y). Thus it suffices to prove vanishing of Im,+(y).

Using the eigenvalue equation (3.26) we write out

Im,+(y) =

∫
R
dx
(
[H̃(x)ψ(x, y)]Ψ(m)(x)− ψ(x, y)[H̃(x)Ψ(m)(x)]

)
(3.48)

We can now use Proposition 4.1 to rewrite this integrand in a more useful way. It has
the form (4.26) with

Φ1(x) = ψ(x, y), Φ2(x) = Ψ(m)(x) (3.49)

And, as noted above, the A∆O H̃(x) (1.44) satisfies the necessary requirements. Thus,

Im,+(y) = lim
Λ→∞

∫ Λ

−Λ

dx
(
Jm(x, y)− Jm(x+ ia−, y)

)
(3.50)

Jm(x, y) ≡ [Ṽ (x)Ṽ (−x+ ia−)]1/2
[
ψ(x− ia−, y)Ψ(m)(x)− ψ(x, y)Ψ(m)(x− ia−)

]
(3.51)

By breaking up the integral this way, (3.35) is manifestly of the form in Proposition 4.2.
Provided we can argue the residue sum there is empty, we thus have

− Im,+(y) = lim
Λ→∞

∫ Λ+ia−

Λ

dx
(
Jm(x, y)− Jm(−x+ ia−, y)

)
(3.52)

Given the O(1) asymptotics of ψ(x, y), the function Jm(x, y) (3.51) inherits the exponen-
tial decay (3.38), and so Im,+(y) vanishes.

It remains to prove that Jm(x, y) (3.51) is holomorphic in the strip Imx ∈ [0, a−]
given the b restriction in the lemma. Using ψ(x, y) (1.60) and Ψ(m)(x) (2.4) we write out

Jm(x, y) ∝ [Ṽ (x)Ṽ (−x+ ia−)]1/2 w̃(x− ia−)1/2w̃(x)1/2

× 2c+(x)
∑
ν=+,−

νe−(ν(ib− y)/2)
[
Qm(2s+(x))Rr(x− ia− + iνa+/2, y)

−Qm(2s+(x− ia−))Rr(x+ iνa+/2, y)
]

(3.53)

where we are of course dealing with proportionality with respect to x (the unimportant
proportionality constant is 1/c(−y)s−(ib− y)).
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The first line of the rhs of (3.53) is exactly the same as for (3.39). We argued this
was equal to w̃(x)Ṽ (x) which has no poles in the critical strip provided b > −a+/2.
We must therefore focus on the poles of the remaining terms in (3.53); specifically, on
the two Rr-functions, since all the others are entire. The surprise is that the poles of
these two functions are removed by w̃(x)Ṽ (x), and so b > −a+/2 suffices for the desired
holomorphy. We can reveal this at the algebraic level in the following way (thus avoiding
the multiplicity question that arises by comparing pole sequences).

It is known that the hyperbolic gamma function G(z) can be written as a ratio of
entire functions, E(z)/E(−z) where E(a+, a−; z) is defined in Appendix A of [1] and
summarised in Appendix A of [5]. Thus recalling (1.70) we have

w̃(x)Ṽ (x) = 2c+(x− ib)
∏

α=+,−

E(αx− ia−/2 + ib)

E(αx+ ia−/2− ib)
(3.54)

The renormalised relativistic conical function Rr(x, y) also has an important relation to
E(z). For our purposes we write this as

Rr(x+iνa+/2, y) = P̂ (x, y)/
∏

α=+,−

E(αx−ia−/2+ib−i(1−αν)a+/2), ν = +,− (3.55)

where P̂ (x, y) is an entire function in x which depends on ν (as well as, of course,
(a+, a−, b). Cf. [5](1.12),(3.33)). We thus see explicitly how the poles of (3.55) arise
as zeros of the two denominator functions. Moreover we see straight away that one of
these (corresponding to α = ν) will cancel with one of the the numerator terms in (3.54)
(also α = ν). A second cancellation also obtains, but to see this we must invoke the A∆E
for E(z),

E(z − iaκ) = E(z) exp(Kκ(aκ − iz))Γ(iz/a−κ + 1/2)/
√

2π, κ = +,− (3.56)

where Kκ ≡ ln(aκ/a−κ)/2a−κ (cf. [5](A.23)). Applying the κ = + A∆E to the α = −ν
term in (3.55) we get cancellation with the numerator term in (3.54). Moreover the A∆E
will not lead to any more poles because the gamma function is famously free of zeros.

The reason for also citing the κ = − A∆E is that we can use this for the other
Rr-function in (3.53) to assert in an analogous way that its poles are removed by w̃(x)Ṽ (x)
(3.54).

Finally, we prove the claim about E0, . . . Em. Elementary identities entail that the
difference El −El′ can be written in terms of the constant σm (2.6) in the following way,

El − El′ =

σ(l+l′)/2, (l + l′ even)

σ(l+l′−1)/2, (l + l′ odd)
l 6= l′ = 0, . . . ,m (3.57)

Thus we see how distinctness of all El,El′ is equivalent to non-vanishing of σ0, . . . , σm−1.
This is exactly the same condition needed for the polynomialsQ1(u), . . . , Ql(u), . . . , Qm(u)
defined by (2.5) to have degree l, and we proved it was equivalent to b /∈ Πm, cf. Lemma
2.1.
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4 The operator H̃ac

Definition and symmetry.

In this section we begin looking at the A∆O H̃(b;x) (1.52) from the perspective of Hilbert
space quantum mechanics. The very first task is simply to understand it as a Hilbert space
operator, since this cannot be done without some deliberation. To promote it as such
in its present form would require specifying a dense domain of L2-functions which yield
other L2-functions under the action of the A∆O. This is an unusual problem which we can
avoid by defining our operator in a different way (i.e. not via the familiar action/domain
specification). In line with previous papers, this involves using an eigenfunction transform
to diagonalize the action of the A∆O. This way, issues like meromorphic continuation of
the domain functions can all be studied at the level of the transform (this explains our
attention to F± in the previous section).

As we will see, the diagonalization process is really just a roundabout way of specifying
a domain for H̃(b;x) (cf. (4.10)), but it confers other advantages. By giving a central
role to the eigenfunction transform, we are able to reduce questions like those concerning
operator symmetry to a series of questions about the transform kernel. The generalised
eigenfunction ψ(b;x, y) is sufficiently special to see each of these through successfully. We
note that domain considerations are no trivial matter because the same A∆O can give
rise to vastly different physics depending on how a domain is chosen.

Our association of a Hilbert space operator to the A∆O H̃(b;x) involves the two
eigenfunction transforms F± introduced in §3.2. For a successful account of the dynamics,
we must glue these together in a particular way to yield a new eigenfunction transform.
This transform acts on function pairs f̂ = 〈f+, f−〉 as follows,

(F f̂)(x) ≡ c
∑
δ=+,−

(Fδfδ)(x)

= c

∫
R+

dy ψ(b;x, y)f+(y) + c

∫
R+

dy ψ(b;−x, y)f−(y), c ≡ 1/
√

2a+a− (4.1)

From the knowledge we have of F± (3.12), various properties of this transform follow
straight away. These all hold provided the coupling parameter b is real and does not take
values from a certain discrete set, Y (3.2). These properties also involve the space of
functions

Ĉ ≡ C∞0 (R+)× C∞0 (R+) (4.2)

whose elements are always written in the form f̂ = 〈f+, f−〉. So if, for example, f̂ ∈ Ĉ, we
can assert that (F f̂)(x) is a function whose only poles are the x-poles of ψ(b;±x, y) (all
of which are purely imaginary). Furthermore, enough is known about the asymptotics of
these integral functions to yield

F : Ĉ → H ≡ L2(R, dx) (4.3)

(a direct consequence of Lemma 3.3).
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Assuming from now on that b has values of the kind described above (4.2), we claim
that we can define a Hilbert space operator H̃ac by the intertwining relation

H̃acF = FM̂ (4.4)

where M̂ denotes multiplication on pairs by the generalised eigenvalue 2c+(y), i.e.

(M̂f̂)(y) ≡ 2c+(y)〈f+(y), f−(y)〉 (4.5)

(This requires not injectivity of F but the weaker condition that if F f̂1 = F f̂2 for distinct
f̂1, f̂2, then FM̂f̂1 = FM̂f̂2, and this follows by considering (4.10) below for f̂ = f̂1− f̂2.)

It is not hard to see that M̂ maps Ĉ-functions to Ĉ-functions. Thus considering (4.4)
on this space of functions we indeed get a Hilbert space operator,

H̃ac : F(Ĉ)→ F(Ĉ) ⊆ H (4.6)

To be sure, the Hilbert space in which this acts as a densely-defined operator is the
closure of F(Ĉ). (The precise nature of the subset relation in (4.6) will be a matter of
later concern, cf. §7.)

Given that 2c+(y) and ψ(b;±x, y) are generalised eigenvalue-eigenfunction pairs of
H̃(b;x) (1.44), it is clear we have constructed is a diagonalization of this A∆O. We
proceed to show explicitly that H̃ac (4.6) reproduces the action of

H̃(b;x) = Ũ(x)T xia− + (x→ −x) (4.7)

Ũ(x) ≡
[
Ṽ (a+, b;x)Ṽ (a+, b;−x+ ia−)

]1/2
=

[
c+(x+ ib− ia−)

c+(x− ia−)

c+(x− ib)
c+(x)

]1/2

(4.8)

First we write out

(H̃acF f̂)(x) = (FM̂f̂)(x) = c

∫
R+

dy
∑
δ=+,−

2c+(y)ψ(δx, y)fδ(y) (4.9)

Then we replace 2c+(y) with H̃(b;x) for the following equation,5

(FM̂f̂)(x) = Ũ(x)(Ff)(x− ia−) + Ũ(−x)(Ff)(x+ ia−), f̂ ∈ Ĉ, x ∈ R (4.10)

Or, simply,

(H̃acF )(x) = H̃(x)F (x), F ∈ F(Ĉ) ⊆ H (4.11)

5There is a subtlety to note here; our standing assumption about b ensures (Ff)(·) has no pole at the
origin, but it does not necessarily ensure no poles at ±ia−. Indeed we claim it is not strong enough to
guarantee this. Thus for certain b values it may be the case that the functions on the rhs of (4.10) are
singular at x = 0, even though the lhs is regular. When this happens there must be a residue cancellation
between the two functions that ensures convergence of the rhs.
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For the remainder of this section we address the question of whether H̃ac (4.4)/(4.6)
is symmetric. We do this by extending the method used in [20] and [3]. Our discussion
culminates in Theorem 4.5, which gives us conditions on the parameters for which the
operator H̃ac is symmetric. The method involves a direct computation of the integrals
implicit in

D(f̂ , ĝ) ≡ (H̃acF f̂ ,F ĝ)H − (F f̂ , H̃acF ĝ)H, (4.12)

If we can show that this vanishes for all f̂ , ĝ ∈ Ĉ, then this clearly implies symmetry of
H̃ac.

From the definitions of H̃ac (4.4) and F (4.1) and linearity of the inner product, it
follows straight away that for f̂ , ĝ ∈ Ĉ,

(H̃acF f̂ ,F ĝ)H = c2
∑

δ,δ′=+,−

(Fδm̂fδ,Fδ′gδ′)H, (4.13)

(F f̂ , H̃acF ĝ)H = c2
∑

δ,δ′=+,−

(Fδfδ,Fδ′m̂gδ′)H (4.14)

where m̂ denotes multiplication by the generalised eigenvalue 2c+(y) (for well-definedness
of the inner products on the rhs, i.e. Fδfδ ∈ H, recall Lemma 3.3). To consider the
difference of the two sums on the rhs, we will focus on

dδ,δ′(f, g) ≡ (Fδm̂f,Fδ′g)H − (Fδf,Fδ′m̂g)H, δ, δ′ = +,− (4.15)

In fact vanishing of D(f̂ , ĝ) (4.12) will follow because we can prove vanishing of these
paired differences for all f, g ∈ C∞0 (R+). We now look at dδ,δ′(f, g) more closely. Our first
round of manipulation takes us to (4.21). We begin by writing out,

(Fδm̂f,Fδ′g)H =

∫
R
dx

∫
R+

dy ψ(δx, y)2c+(y)f(y)

∫
R+

dy′ ψ(δ′x, y′)g(y′) (4.16)

Our first step is to push
∫
dx through the other two integrals in order to isolate an integral

which is independent of f, g. Fubini’s theorem is key here. In order to use it we must first
replace

∫
R dx with limΛ→∞

∫ Λ

−Λ
dx. With this change, we obtain a bounded integration

region in the variables (x, y, y′) on which the integrand is bounded (note,
∫
R+ dy is really

just
∫

supp(f)
dy here; we also invoke absence of real poles for ψ(x, y) from Corollary 3.2).

Hence the rhs of (4.16) equals

lim
Λ→∞

∫
R+

dy 2c+(y)f(y)

∫
R+

dy′ g(y′)

∫ Λ

−Λ

dxψ(δx, y)ψ(δ′x, y′) (4.17)

(by a use of Fubini that takes place entirely under the limit). We can manipulate
(Fδf,Fδ′m̂g)H in a completely analogous way and combine it with (4.17) to get

dδ,δ′(f, g) = lim
Λ→∞

∫
R+

dy f(y)

∫
R+

dy′ g(y′)

∫ Λ

−Λ

dxψ(δx, y)ψ(δ′x, y′)

×
(
2c+(y)− 2c+(y′)

)
, f, g ∈ C∞0 (R+), δ, δ′ = +,− (4.18)
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(the ability to combine these limits is automatic from their well-definedness). A simpli-
fication of the x-integral is possible here due to the “even” integral range [−Λ,Λ]. It
means that the (+,+)-integral will equal the (−,−)-integral, and likewise for (+,−) and
(−,+). Thus we have

d+,+(f, g) = d−,−(f, g), (4.19)

d+,−(f, g) = d−,+(f, g), (4.20)

and we can write

dδ,δ′(f, g) = lim
Λ→∞

∫
R+

dy f(y)

∫
R+

dy′g(y′)Iδδ′(Λ; y, y′) (4.21)

Iσ(Λ; y, y′) ≡
∫ Λ

−Λ

dxψ(x, y)ψ(σx, y′)
(
2c+(y)− 2c+(y′)

)
, σ = +,− (4.22)

This latter integral is independent of f, g, giving us a useful point of study. Motivated
by [3], the idea is to first expand the integrand in (4.22) using the x-A∆E for ψ(x, y),

H̃(x)ψ(±x, y) = 2c+(y)ψ(±x, y) (4.23)

(recall (1.75) and the “evenness” of H̃(x) (4.7)). In other words, we write

Iσ(Λ; y, y′) =

∫ Λ

−Λ

dx
(

[H̃(x)ψ(x, y)]ψ(σx, y′)− ψ(x, y)[H̃(x)ψ(σx, y′)]
)

(4.24)

Such an expansion may seem counterintuitive, but it allows us to implement our main
strategy for vanishing of dδ,δ′(f, g). This breaks down into three main steps, each of
which we present as a proposition below. Their combined effect is to express dδ,δ′(f, g) as
a sum of residues in a particular strip of the complex plane. Finally, by restricting b in a
particular way we can drive the corresponding poles out of the strip and thereby prove
vanishing of dδ,δ′(f, g), and thus symmetry of H̃ac. (Because of this last step, we avoid
seeing the residues explicitly, so the reader will search in vain below.)

In line with our convention, the propositions below are presented in terms of min-
imal assumptions (which are obviously designed with our objects in mind). The first
proposition shows how features of H̃(x) allow the integrand in (4.24) to be rearranged
in particular way. The second proposition shows why this rearrangement is useful; it
allows us to rewrite the integral in terms of a residue sum and boundary integrals. The
third proposition presents a condition on the integrand which secures vanishing of these
boundary integrals under the large-Λ limit when recombined with (4.21).

5We cannot say for sure if the components that arise from writing out the action of H̃(x) in (4.24)
are necessarily integrable when considered separately, because we have not ruled out the possibility that
ψ(·, y) could have poles at ±ia−. Knowledge of such integrability (on [−Λ,Λ]) is not needed for our
argument; what we need is comparable knowledge about the function (4.37), which is established later.
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4. THE OPERATOR H̃ac (DEFINITION AND SYMMETRY)

Proposition 4.1. Suppose we have an A∆O,

h(x) ≡ U1(x)T xia− + U2(x)T x−ia− (4.25)

where Uj(·) are two meromorphic functions. And suppose Φj(x) are two more meromor-
phic functions. Then, the object

[h(x)Φ1(x)]Φ2(x)− Φ1(x)[h(x)Φ2(x)] (4.26)

may be written as

J(x)− J(x+ ia−) (4.27)

J(x) ≡ U1(x)
(
Φ1(x− ia−)Φ2(x)− Φ1(x)Φ2(x− ia−)

)
(4.28)

provided
U2(x) = U1(x+ ia−) (4.29)

Proof. Writing out (4.26) we have

[
U1(x)Φ1(x− ia−) + U2(x)Φ1(x+ ia−)

]
Φ2(x)

− Φ1(x)
[
U1(x)Φ2(x− ia−) + U2(x)Φ2(x+ ia−)

]
(4.30)

Introducing

L−(x) ≡ Φ1(x− ia−)Φ2(x)− Φ1(x)Φ2(x− ia−), (4.31)

it is clear that (4.30) can be written as

U1(x)L−(x)− U2(x)L−(x+ ia−) (4.32)

Thus we can absorb U1(x) into L−(x) such that (4.32) equals (4.27) iff U2(x) = U1(x+ia−).

To see how this proposition connects to Iσ(Λ; y, y′) (4.24), we first note that the
structure of H̃(x) (4.7) entails the “reality” property,

[H̃(x)ψ(x, y)] = H̃(x)ψ(x, y), x ∈ R (4.33)

(the conjugation x is not superfluous because H̃(x) entails any x to the right is shifted).
Furthermore, H̃(x) (4.7) plainly satisfies the the conditions of Proposition 4.1 with

U1(x) = Ũ(x) = [Ṽ (x)Ṽ (−x+ ia−)]1/2 (4.34)

and U2(x) = U1(x+ ia−). The integrand in (4.24) then has the form (4.26) with

Φ1(x) = ψ(x, y), Φ2(x) = ψ(σx, y′) (4.35)

(note we implicitly deal with two choices of Φ2 here since σ equals + or −). In fact this
Φ1 simplifies when when we apply (1.77),
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Φ1(x) = ψ(x,−y), y ∈ R (4.36)

The two corresponding specialisation of J (4.28) are thus

Jσ(b;x, y, y′) ≡ [Ṽ (x)Ṽ (−x+ ia−)]1/2

×
[
ψ(x− ia−,−y)ψ(σx, y′)− ψ(x,−y)ψ(σ(x− ia−), y′)

]
, σ = +,− (4.37)

Ṽ (x) ≡ c+(x− ib)/c+(x) (4.38)

(recall that the eigenfunction ψ(b;x, y) is defined in (1.60)). We have therefore shown, as
relevant to Iσ(Λ; y, y′) (4.24), that

[H̃(x)ψ(x, y)]ψ(σx, y′)− ψ(x, y)[H̃(x)ψ(σx, y′)]

= Jσ(x, y, y′)− Jσ(x+ ia−, y, y
′), σ = +,−, x ∈ R (4.39)

In the next proposition we see explicitly why this rearrangement is useful with regard
to the overall aim of proving vanishing of dδ,δ′(f, g) (4.15). We recall our intentions
sketched below (4.24). (Note, one can envisage attaching a (y, y′)-dependence to the
object in this proposition, as well as the previous one. This does not change anything
important.)

Proposition 4.2. Suppose J(·) is a meromorphic function in the strip i[0, a−]× R with
a finite number of poles which are, furthermore, away from the boundary.

Then, denoting these poles as x1, . . . , xL, we have for Λ sufficiently large,

∫ Λ

−Λ

dx
(
J(x)− J(x+ ia−)

)
= 2πi

L∑
j=1

Res
x=xj

J(x)−
(∫ Λ+ia−

Λ

+

∫ −Λ

−Λ+ia−

)
dx J(x) (4.40)

Proof. This follows almost straight away from Cauchy’s theorem. If we take Λ > max{Rexj}Lj=1

then the theorem entails

(∫ Λ

−Λ

+

∫ Λ+ia−

Λ

+

∫ −Λ+ia−

Λ+ia−

+

∫ −Λ

−Λ+ia−

)
dx J(x) = 2πi

L∑
j=1

Res
x=xj

J(x) (4.41)

Applying the variable change x→ x + ia− to the third integral, we can combine it with
the first to write both of them as∫ Λ

−Λ

dx
(
J(x)− J(x+ ia−)

)
(4.42)

So the result follows.
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Proposition 4.3. Suppose J(x, y, y′) is a function smooth in y, y′ and meromorphic in
x which has asymptotics satisfying

J(x, y, y′) =
∑

τ,τ ′=+,−

Lτ,τ ′(y, y
′) exp(iπx(τy+ τ ′y′)/a+a−) +O(e−(−µRex)), Rex→∞

(4.43)
where: L±,± are smooth functions; µ is a positive constant; and where the bound repre-
sented by O is uniform for (y, y′, Imx) varying over any compact subset of R∗ × R∗ × R.

Furthermore, suppose φ ∈ C∞0 (Ω) where Ω is equal to R or R+. Then,

lim
Λ→∞

∫
Ω2

dydy′ φ(y, y′)

∫ Λ+ia−

Λ

ds J(x, y, y′) = 0 (4.44)

Proof. Vanishing of the O(e−(−µRex)) contribution is fairly immediate from uniformity
of the bound. To see this define the compact set K ≡ supp(φ). Then the uniformity
statement entails that for Re x sufficiently large, there exists C > 0 such that for all
y, y′ ∈ K and Imx ∈ [0, a−] we have|J(x, y, y′)| ≤ Ce−(−µRex). Thus the modulus of
the contribution to (4.44) that comes from O(e−(−µRex)) is bounded above by

Ce−(−µΛ)a−

∫
K

dydy′ |φ(y, y′)| (4.45)

and subsequently vanishes under Λ→∞.
Vanishing of the plane wave contribution is a little less immediate but still straight-

forward. Unlike in (4.45), the y, y′ integral is now central. The x-integrand clearly has
a primitive and, with this, we get for each (τ, τ ′) a contribution to the integral in (4.44)
equalling

∫
K

dydy′ φ(y, y′)Lτ,τ ′(y, y
′)
e+(−τy + τ ′y′)

τy + τ ′y′
exp(iπ(τy + τ ′y′)/a+a−)), τ, τ ′ = +,−

(4.46)
From our assumptions, this integrand is bounded on the compact set K ⊂ Ω2 (true when
τ ′y′ = −τy because of the basic fact limu→0(e−u − 1)/u = 1). Thus the integrand is
in L1(Ω2) and we can invoke the Riemann-Lebesgue lemma to procure vanishing under
Λ→∞.

As explained below (4.24), the idea is to apply Proposition 4.2 to Iσ(Λ; y, y′) (4.24).
The boundary integrals produced by this will then vanish under recombination with
dδ,δ′(f, g) (4.21) because of Proposition 4.3, provided we can show J±(x, y, y′) (4.37) have
the necessary asymptotics. The overall result of these steps is to reduce dδ,δ′(f, g) to a
sum of x-residues of Jσ(x, y, y′) in the strip Im x ∈ [0, a−]. However, from the next lemma
we learn that by restricting b in a particular way, we can drive the corresponding poles
out of the strip. With no poles in the strip, vanishing of dδ,δ′(f, g), and thus D(f̂ , ĝ)
(4.12), follows immediately. The holomorphy claim is not at all trivial because there is a
large number of poles to consider, and we relegate the proof to the appendices.
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We note that the restriction on b in the lemma below is a special case of b ∈ R\Y (3.2)
from earlier. Indeed when proving the lemma we begin with the latter, but to achieve
the desired holomorphy we have to pinch the endpoints from infinity and limit them to
the interval below.

Lemma 4.4. The functions J±(b;x, y, y′) (4.37) are smooth in y, y′ and holomorphic in
x in the strip Imx ∈ [0, a−] provided b satisfies b ∈ (−a+/2, a− + a+/2) and is not a
Z-integer multiple of a−.

Theorem 4.5. Assume the coupling parameter b has the range of the previous lemma,
then the Hilbert space operator H̃ac : F(Ĉ)→ F(Ĉ) ⊆ H defined by (4.4) is symmetric.

Proof of 4.5. We recall that symmetry of H̃ac is manifestly equivalent to vanishing of
D(f̂ , ĝ) (4.12) for all f̂ , ĝ ∈ Ĉ (4.2). From (4.12)-(4.15) we have

D(f̂ , ĝ) = c2
∑

δ,δ′=+,−

dδ,δ′(fδ, gδ′) (4.47)

The claim is that each dδ,δ′(f, g) vanishes for all f, g ∈ C∞0 (R+). We recall that the
relationship between dδ,δ′(f, g) and the intermediary object Iσ(Λ; y, y′) (4.22) is given by

dδ,δ′(f, g) = lim
Λ→∞

∫
R+

dy f(y)

∫
R+

dy′g(y′)Iδδ′(Λ; y, y′), f, g ∈ C∞0 (R+) (4.48)

(this is just (4.21) again). Plugging our result (4.39) into (4.24) we have

Iδδ′(Λ; y, y′) =

∫ Λ

−Λ

dx [Jδδ′(x, y, y
′)− Jδδ′(x+ ia−, y, y

′)], δ, δ′ = +,− (4.49)

We are now in a position to apply Proposition 4.2 to this integral. The resulting residue
sum will be empty because of the holomorphy of J±(x, y, y′) described in Lemma 4.4
(moreover this clearly encompasses the meromorphy requirement in the proposition).
Thus we get

Iδδ′(Λ; y, y′) = −
(∫ Λ+ia−

Λ

+

∫ −Λ

−Λ+ia−

)
Jδδ′(x, y, y

′), δ, δ′ = +,− (4.50)

The final step is to use Proposition 4.3 to argue for vanishing of these boundary integrals
under recombination with (4.48). Applying the variable change x → −x + ia− to the
second integral, the rhs becomes

−
∫ Λ+ia−

Λ

dy
(
Jδδ′(x, y, y

′)− Jδδ′(−x+ ia−, y, y
′)
)

(4.51)

Thus we see that the task is to prove the four functions J±(x, y, y′) and J±(−x+ia−, y, y
′)

(4.37) have asymptotics of the form (4.44). This concerns us for the remainder of the
proof. The key here is the O-asymptotics for ψ(x, y) in Lemma 1.3 Specifically we can
extract from the latter the following
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ψ(αx, y) =

t(y)eiπxy/a+a− +O(e−ρRex
− ), α = +

e−iπxy/a+a− − r(y)eiπxy/a+a− +O(e−ρRex
− ), α = −

Rex→∞ (4.52)

where ρ > 0 is a constant fixed by a+, a−, b and the bound represented by O is uniform
for Imx varying over any compact subset of R. Because of this latter fact we can shift x
to yield

ψ(α(x−ia−), y) =

t(y)e−y+ eiπxy/a+a− +O(e−ρRex
− ), α = +

ey+e
−iπxy/a+a− − r(y)e−y+ eiπxy/a+a− +O(e−ρRex

− ), α = −
Rex→∞

(4.53)
where the same statements about ρ and O hold.

Before applying these to the problem at hand we also need the the large-Rex asymp-
totics of Ṽ (x) (4.34). We can use the easily-verified

(2c+(x+ iϕ))±1 = e±x+ e±iϕ+ +O(e−Rex
+ ), Rex→∞, ϕ ∈ R (4.54)

to see straight away that

Ṽ (x) = 1 +O(e−Rex
+ ), Rex→∞ (4.55)

where, as with (4.54), the bound represented by O is uniform for Imx ∈ R.
With (4.52), (4.53) and (4.55) in place, we substitute them into (4.37) to get straight

away

J+(x, y, y′) = t(−y)t(y′)eiπx(y′−y)/a+a−
(
ey+ − e

−y′
+

)
+O(e−κRex), Rex→∞ (4.56)

J−(x, y, y′) = t(−y)e−iπx(y+y′)/a+a−
(
ey+ − e

y′

+

)
− eiπx(y′−y)/a+a−t(−y)r(y′)

(
ey+ − e

−y′
+

)
+O(e−κRex), Rex→∞ (4.57)

where κ ≡ πmin(ρ/a−, 1/a+) > 0, and where the bound represented by O is uniform for
(y, y′, Imx) varying over any compact subset of R∗ × R∗ × R.

For the other two functions specified above (4.52), we use the fact Ṽ (x) is invariant
under x→ −x+ ia− to write

Jσ(−x+ ia−, y, y
′y) = Ṽ (x)

[
ψ(−x,−y)ψ(−σ(x− ia−), y′)

− ψ(−(x− ia−),−y)ψ(−σx, y′)
]
, σ = +,− (4.58)

Using (4.52), (4.53) and (4.55), we get equations analogous to (4.56) and (4.57) in exactly
the same way, with κ unchanged.
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5 Self-adjointness and dynamics.

5.1 Nelson’s theorem.

(Continuous spectrum of H̃ac.)

In the previous section we introduced an operator H̃ac (4.4) in the Hilbert space F(Ĉ)
whose action on its dense domain F(Ĉ) is that of the A∆O H̃(b;x) (closure here is
taken with respect to the ambient space H). We found this operator was symmetric
provided the coupling parameter b satisfied certain conditions. The symmetry result can
be supplemented fairly easily to establish that H̃ac is essentially self-adjoint (i.e. has a
unique self-adjoint extension). The argument hinges on Nelson’s analytic vector theorem.
The statement of this theorem (which can be found in its full glory in, e.g., [8]) simplifies
considerably because of certain properties enjoyed by the objects at hand.

As noted already, multiplication M̂ (4.5) maps the set of functions Ĉ (4.2) into itself.
But it is also onto, as can easily be seen. As a result we can iterate the intertwining (4.4)
(which produces a well-defined operator provided b ∈ R \Y (3.2)) to yield H̃n

acF = FM̂n

with H̃n
ac having the same domain as H̃ac, namely F(Ĉ). Because of this, Nelson’s theorem

gives us a sufficient condition for symmetry of H̃ac to imply essential self-adjointness,

∞∑
n=0

‖H̃n
acF f̂‖H/n! <∞, f̂ ∈ Ĉ (5.1)

(in other words, that all F ∈ F(Ĉ) are analytic vectors). This holds whenever H̃ac is
defined because for each f̂ ∈ Ĉ we have a bound

‖FM̂nf̂‖H ≤ ĉn‖F f̂‖H, n ∈ N (5.2)

where ĉ depends only on a+ and supp(f̂) ⊂ R+× R+. To see this we recall F f̂ =
c(F+f+ + F−f−) and use the definition Fδ (4.1) to assert

‖Fδm̂f‖H ≤ 2c+(ymax)‖Fδf‖H, f ∈ C∞0 (R+), δ = +,− (5.3)

where ymax ≡ max(supp(f)).
Theorem 4.5 gives conditions on b for which H̃ac is symmetric. Thus in light of the

above, this theorem can be immediately strengthened to the following.

Theorem 5.1. Assume the coupling parameter b satisfies b ∈ (−a+/2, a− + a+/2) and
is not a Z-integer multiple of a−. Then, the Hilbert space operator H̃ac : F(Ĉ) → F(Ĉ)
defined by (4.4) is essentially self-adjoint in the closure of F(Ĉ). It has absolutely con-
tinuous spectrum [2,∞) of multiplicity two.
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5.2 Wave operators for H̃.

Having found conditions on the coupling parameter b for which the operator H̃ac : F(Ĉ)→
F(Ĉ) defined by (4.4) is essentially self-adjoint, we may consider the one-parameter uni-
tary group on the closure of F(Ĉ) encoding the associated dynamics. We could do this,
but we are not going to. Instead, we are going to define a new operator which extends H̃ac

to the orthocomplement of this closure. On this new space we take it to have (initially)
the action of an arbitrary bounded self-adjoint operator. The corresponding operator is
denoted H̃ and clearly it inherits essential self-adjointness under the same conditions on
b, i.e. those in Theorem 5.1. From this definition it is densely-defined in H,

H̃ : F(Ĉ)⊕F(Ĉ)
⊥
→ H (5.4)

From Lemma 3.5 we know that this orthocomplement is at least mb-dimensional. In fact,
because of this lemma there is a natural way to fix the action of H̃ on this space, but we
do not discuss this until our reappraisal in the next subsection. This is because we wish
to stress that the results in this subsection are independent of the choice of extension (we
find that it drops out of the proofs as irrelevant). The point of introducing it here is that
it enables us to consider a one-parameter unitary group on the physical space H,6

exp(itH̃), t ∈ R (5.5)

(which still encodes the dynamics of the pre-extended system in the sense that, for any
f ∈ F(Ĉ), the vector exp(−itH̃)f solves the time-dependent Schrödinger equation for
H̃ac, and remains in the closure of this set). Whenever exp(itH̃) is present, the parameter
restrictions in Theorem 5.1 are understood to be in effect.

As usual, we need some free dynamics with which to compare this interacting motion.
This involves the operator H0 for which we need Fourier transform on pairs f̂ = 〈f+, f−〉,

J : Ĥ → H (5.6)

(J f̂)(x) ≡ c
∑
δ=+,−

∫
R+

dy exp(iπδxy/a+a−)fδ(y), c ≡ 1/
√

2a+a− (5.7)

We then define

H0 = J M̂ J−1 (5.8)

where, again, M̂ (4.5) denotes unbounded multiplication on pairs by 2c+(y). Given J is
unitary, we can consider (5.8) on any space up to J (D(M̂)) where D(M̂) is the maximal
domain of all functions f ∈ Ĥ such that M̂f̂ ∈ Ĥ. Thus we have a densely-defined
operator in H,

H0 : J (D(M̂))→ J (Ĥ) (5.9)

6 Wherever this evolution operator is present, implicitly or explicitly, it is understood that the H̃ in
the exponent stands for its own closure, i.e. the unique self-adjoint extension that follows from essential
self-adjointness. This should not cause any confusion because in all applications our interest lies with
the core in (5.4).
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Unitarity of J and manifest self-adjointness of M̂ on D(M̂) entail H0 is self-adjoint. Thus
we may consider the following one-parameter unitary group on H,

exp(itH0), t ∈ R (5.10)

Finally, we note that H0 reproduces the free, relativistic action because we have

2c+(y) exp(iδπxy/a+a−) = H0(x) exp(iδπxy/a+a−), δ = +,− (5.11)

H0(x) ≡ T xia− + T x−ia− (5.12)

(recall our convention wherein formal A∆Os are written with an explicit variable; this
helps to distinguish them from their Hilbert space counterparts).

We are now in a position to consider the following wave operators on H,

W± ≡ s·lim
t→∞

exp(±itH̃) exp(∓itH0) (5.13)

These limits are defined in the strong operator topology on H. If they exist, they are
necessarily isometries. We will see not only that they exist, but that they are expressible in
terms of the eigenfunction transform F (4.3). (Keep in mind that W± have a dependence
on b that enters through H̃.)

In practice, we determine a wave operator by positing an ansatz and proving vanishing
of the corresponding limit. For instance, we expect one of the wave operators to be very
closely related to F . Straightforward equality is not possible, however, because this
transform has a domain in Ĥ rather than H. The next closest relation would involve F
composed with some kind of identification between the two Hilbert spaces. The adjoint
Fourier transform J ∗ : H → Ĥ seems like a suitable candidate. Indeed, we are led to the
following lemma (whose proof is given at the end of this subsection).

(We also note here one way in which the extension H̃ actually simplifies matters. Say
exp(itH̃) was only defined on the closure of F(Ĉ) then we could still prove an analogue
to the lemma below, and moreover in exactly the same way. However it would only hold
for functions f ∈ J (Ĉ) ∩ F(Ĉ).)

Lemma 5.2. Suppose b satisfies b ∈ (−a+/2, a− + a+/2) and is not a Z-integer multiple
of a−. Then, the following holds for any f ∈ J (Ĉ) ⊂ D(H0),

lim
t→∞

exp(−itH̃) exp(itH0)f = FJ ∗f (5.14)

where F is the eigenfunction transform defined in (4.1) and J is Fourier transform (5.7).

Corollary 5.3. Suppose the coupling parameter b satisfies the conditions of the previous
lemma. Then the map F : Ĉ ⊂ Ĥ → H with action (4.1) extends to an isometry on Ĥ.
Moreover, we have existence of the wave operator W− defined in (5.13) and W− = FJ ∗.

Proof of Corollary 5.3. Given Lemma 5.2, this proof is fairly routine. We introduce

ω−f ≡ lim
t→∞

e−itH̃eitH0f (5.15)
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such that the result in the previous lemma may be expressed as

ω−f = FJ ∗f, f ∈ J (Ĉ) (5.16)

It follows from one-parameter unitary group properties that

‖ω−f‖H = ‖f‖H, f ∈ J (Ĉ) (5.17)

Writing f = J f̂ and using unitarity of J , (5.17) becomes

‖F f̂‖H = ‖f̂‖Ĥ, f̂ ∈ Ĉ (5.18)

With this we learn that F is bounded on the dense subspace Ĉ ⊂ Ĥ and so has a
unique linear extension to Ĥ. Moreover, since such an extension preserves operator
norm, F : Ĥ → H will be an isometry. Further still, since (5.16) expresses equality of
bounded operators on a dense subspace, their extensions are obviously equal too. This
proves existence of W− and equality with FJ ∗ as claimed.

We claim that this result for W− allows us to deduce the analogue for W+ with relative
ease. This involves first getting a good idea of what we want W+ to be.

With the transmission and reflection coefficients from earlier, (1.79) and (1.80), we
define

S(b; y) ≡

(
t(b; y) −r(b; y)
−r(b; y) t(b; y)

)
(5.19)

Multiplication by this matrix on functions in Ĥ gives rise to a well-defined operator which
we denote Ŝ. It is plainly unitary given probability conservation, (1.81).

The hope is that this Ŝ will feature in the S-operator for the system, W ∗
+W−. With

Fourier transform as the likely identification map between Ĥ and H, we speculate that
W ∗

+W− will be given by J ŜJ ∗. Since we know W− = FJ ∗, this gives us an expectation

for W+. It should equal F Ŝ∗J ∗.
Let us now link this expectation to what we can glean from the time-reversal operator

(T f)(x) ≡ f(x) (5.20)

The role that this has in reversing time for non-relativistic systems can be analogised
here. To see this we need the notion of meromorphic conjugation T ′,

(T ′f)(x) ≡ f(x) (5.21)

Using the A∆Os H̃(b;x) (4.7) andH0(x) (5.12) one can easily verify the following operator
equations on D(H̃) and D(H0) respectively,

T H̃ = H̃ T ′ (5.22)

T H0 = H0T ′ (5.23)
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(It may seem superfluous to involve T ′ here given these identities are considered on spaces
of functions in the real variable x. The point is that the A∆O shifts this variable into
the complex plane.)

Using one-parameter unitary group properties the upshot is that, on H,

T exp(itA) = exp(−itA)T ′, t ∈ R, A = H̃,H0 (5.24)

Since T and T ′ are involutive, this implies a priori

W+ = TW−T ′ (5.25)

This relation is pleasing but there is in general no reason for thinking it will be of any
practical use in arriving at a more explicit expression for W+. However in our case, an
identity satisfied by the transform kernel ψ(b;x, y) will ensure this is so.

From Lemma 5.2 and (5.25) we have that

W+ = T FJ ∗T (5.26)

(T ′ can now be discarded because there is no A∆O to the left of it). Let us now combine
(5.26) with our expectation for W+ above. First we should intertwine the map J ∗ and
the operator T . Writing out

(J ∗T f)δ(y) = c

∫
R
dx exp(−iδπxy/a+a−)f(x), f ∈ H (5.27)

we see that this can be written as (T̂ J ∗f)δ(y) where

(T̂ f̂)δ(y) ≡ f−δ(y), f̂ ∈ Ĥ (5.28)

or, equivalently,

(T̂ f̂)(y) =

(
0 1
1 0

)
f̂(y) (5.29)

In other words, (5.26) is equivalent to

W+ = T FT̂ J ∗ (5.30)

We can now see what must be true of the transform F if W+ is to equal F Ŝ∗J ∗,

T FT̂ = F Ŝ∗ (5.31)

This equation can be proved explicitly using algebraic properties of ψ(b;x, y), as we will
see in the proof of the next theorem.7

We note that our discussion of W+ could have proceeded without motivating an
expected result. From (5.26) one could write down and prove (5.31). The problem

7 Note how this shows F is not intertwined by T and T̂ in the same was as J . This contrasts to the
analogous situation in §B where F∗ and J ∗ do intertwine the parity operators P and P̂ in the same way.
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is that: it is not at all clear how one would conjure up such an identity without an
expectation for the S-operator based on physics and scattering.

There is another angle here: with an expected result for W+, one could try to confirm
it explicitly with an analogue to Lemma 5.2. Assuming this can be done, the role of
the time-reversal discussion would be to establish that (5.31) must be true. We see how
our method, rooted in an independent proof of (5.31), essentially cuts out the need for a
W+-analogue of Lemma 5.2.

Theorem 5.4. Suppose the coupling parameter b satisfies b ∈ (−a+/2, a−+a+/2) and is
not a Z-integer multiple of a−. Then, the wave operators W± (5.13) exist on H and are
given by

W− = FJ ∗ (5.32)

W+ = F Ŝ∗J ∗ (5.33)

This entails that the S-operator W ∗
+W− is equal to J ŜJ ∗, where J is Fourier transform

(5.7), and Ŝ is the operator on Ĥ ≡ L2(R+, dy)⊗ C2 defined by matrix multiplication by
S(b; y) (5.19).

Proof of Theorem 5.4. Given Lemma 5.3 and all we have said, it remains to prove the
identity (5.31). First we write out

(F Ŝ∗f̂)(x) = c
∑
δ=+,−

∫
R+

dy ψ(δx, y)(Ŝ∗f̂)δ(y) (5.34)

where Ŝ∗ acts on f̂ as the Hermitian conjugate of the matrix (5.19),

(Ŝ∗f̂)δ(y) = t(y)fδ(y)− r(y)f−δ(y), δ = +,− (5.35)

We focus on ∑
δ=+,−

ψ(δx, y)
(
t(y)fδ(y)− r(y)f−δ(y)

)
(5.36)

Using the property ψ(x, y) = ψ(x,−y) (which holds for real x, y) we may write this as∑
δ=+,−

fδ(y)
[
ψ(δx,−y)t(y)− r(y)ψ(−δx,−y)

]−
(5.37)

(where superscript ‘−’ denotes conjugation of the brackets). The term in the square
brackets simplifies immediately to ψ(−δx, y) because of the identity in Lemma 1.2. We
therefore have

(F Ŝ∗f̂)(x) = c
∑
δ=+,−

∫
R+

dy ψ(δx, y)f̂−δ(y) (5.38)

which we can write using T (5.20) and T̂ (5.28) as

(T FT̂ f̂)(x) (5.39)
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Proof of Lemma 5.2. It is more natural to tackle directly the equivalent claim,

lim
t→∞

e−itH̃eitH0J f̂ = F f̂ , f̂ ∈ Ĉ (5.40)

(we now suppress implicit dependences on b). In concrete terms this means

lim
t→∞
‖F f̂ − e−itH̃eitH0J f̂‖H = 0, f̂ ∈ Ĉ (5.41)

Using one-parameter unitary group properties of eitH̃ we may write the norm here as

‖
(
eitH̃F − eitH0J

)
f̂‖H (5.42)

Given (4.4) and (5.8), the functional calculus for self-adjoint operators gives us two in-
tertwining relations on Ĉ,

eitH̃F = FeitM̂ , t ∈ R (5.43)

eitH0J = J eitM̂ , t ∈ R (5.44)

(in fact this is where the arbitrary extension drops out as irrelevant: H̃F = H̃acF on Ĉ).
Accordingly, (5.41) amounts to

lim
t→∞
‖(F − J )eitM̂ f̂‖H = 0, f̂ ∈ Ĉ (5.45)

To prove this we first write out

‖(F − J )eitM̂ f̂‖2
H =

∫
R
dx |((F − J )eiM̂f f̂)(x)|2 (5.46)

From F (4.1) and J (5.7) we have

((F − J )f̂)(x) = c
∑
δ=+,−

∫
R+

dy
(
ψ(δx, y)− eiδπxy/a+a−

)
fδ(y) (5.47)

The vanishing in (5.45) is therefore implied by

lim
t→∞

∫
R
dx |(Iδeim̂tf)(x)|2 = 0, f ∈ C∞0 (R+), δ = +,− (5.48)

where m̂ denotes multiplication by 2c+(y), and

(Iδf)(x) ≡
∫
R+

dy
(
ψ(δx, y)− eiδπxy/a+a−

)
f(y), f : R+ → C (5.49)

In fact, because (I−f)(x) = (I+f)(−x) we only have to prove (5.48) for one choice of δ.
We will focus on δ = +.

From the Riemann-Lebesgue lemma8we already have a pointwise vanishing

lim
t→∞

(I+e
im̂tf)(x) = 0, x ∈ R, f ∈ C∞0 (R+) (5.50)
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Clearly, then, it is a question of dominated convergence; to interchange the limit and
integral in (5.48) we need a dominating function F (x) ∈ L1(R, dx) (which may depend
on f) and a t0 ∈ [0,∞) such that

|(I+e
im̂tf)(x)|2 ≤ F (x), x ∈ R, t ∈ [t0,∞) (5.51)

This dominating function will be a piecewise construction on three different x-intervals,
(−∞,−R), [−R,R] and (R,∞), where R > 0 is to be fixed in due course.

On the middle interval it is enough to write

|(I+e
im̂tf)(x)| ≤

∫
R+

dy |ψ(x, y)− eiπxy/a+a−| · |f(y)| (5.52)

and observe that the smoothness of ψ(x, y) in both variables (ensured by the b-interval
under consideration; recall (3.3)) implies the integral is defined and bounded on [−R,R]
as a function of x. The function on the rhs of the inequality can thus be used as the
dominating function on this interval.

In the far reaches of R, this argument is of no use because we need decay in x rather
than boundedness. The O-asymptotics in Lemma 1.3 are crucial here. For real x they
may be encoded as follows,

ψ(x, y) = ψas(x, y) +O(e
−ρ|x|
− ), x→ ±∞ (5.53)

ψas(x, y) ≡

t(y)eiπxy/a+a− , x > 0

eiπxy/a+a− − r(y)e−iπxy/a+a− , x < 0
(5.54)

where ρ > 0 and where the bound represented by O is uniform for y varying respectively
over any compact subset of R+.

To make use of this we first write

1

2
|(I+e

im̂tf)(x)|2 ≤
∣∣∣∣ ∫

R+

dy
(
ψas(x, y)− eiπxy/a+a−

)
e2itc+(y)f(y)

∣∣∣∣2
+

∫
R+

|ψ(x, y)− ψas(x, y)|2 · |f(y)|2 (5.55)

(this is just a trivial rearrangement based on a judicious choice of B in the elementary
identity |A|2/2 ≤ |B|2 + |A−B|2).

The asymptotics (5.53) tells us that there exist C, x0 > 0 such that for all y ∈ supp(f),

|ψ(x, y)− ψas(x, y)| ≤ Ce
−ρ|x|
− , |x| > x0 (5.56)

Thus the second integral in (5.55) is bounded from above by (Ce
−ρ|x|
− ‖f‖L2)2, a function

which is plainly L1. Setting R = x0 we are therefore “halfway” to finding dominating
functions on the intervals (−∞,−R) and (R,∞).

8To be precise, we are applying Riemann-Lebesgue to an integral of the form
∫
R+ dy e

−i2c+(y)tF (x, y)
This works because we can consider a variable change y → u ≡ 2c+(y) which is well-defined because the
increasing function 2c−(·) : [2,∞)→ R+ is a bijection.
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It remains to analyse the first integral in (5.55). This is the only case where t plays a
vital role, and we cannot afford to erase it by taking the modulus into the integral. For
x > R we are dealing with∫

R+

dy
(
t(y)− 1

)
eiπxy/a+a−e2itc+(y)f(y) (5.57)

and x < −R,

−
∫
R+

dy r(y)e−iπxy/a+a−e2itc+(y)f(y) (5.58)

The task of finding a dominating function for (the square-modulus of) these can be
generalised to finding one for ∫

R+

dy eiπwy/a+a−e2itc+(y)Y (y) (5.59)

for w ∈ [R,∞) where Y ∈ C∞0 (R+).9 To achieve this we write

eiπwy/a+a−e2itc+(y) = (a+a−/πi)[w + 2a−ts+(y)]−1∂y
(
eiπwy/a+a−e2itc+(y)

)
(5.60)

Plugging this into (5.59) and performing integration by parts we get

(−a+a−/πi)

∫
R+

dy ∂y
(
Y (y)[w + 2a−ts+(y)]−1

)
eiπwy/a+a−e2itc+(y) (5.61)

where the intermediate term in the integration vanishes because of Y ’s compact support
on (0,∞) (crucially, the square-bracketed term is positive because w, a−, t, y > 0). At
this point we can safely take the modulus into the integral, bounding (5.61) and thus
(5.59) from above by

(a+a−/π)

∫
R+

dy |∂y
(
Y (y)[w + 2a−ts+(y)]−1

)
| (5.62)

This can in turn be bounded from above by

2ta2
−[w + 2a−ts+(y0)]−2

∫
R+

dy c+(y)|Y (y)|

+ (a+a−/π)[w + 2a−ts+(y0)]−1

∫
R+

dy |Y ′(y)|, y0 ≡ min(supp(Y )) (5.63)

which makes unambiguously clear that, for any t > 0, we can find a Y -dependent, L1-
integrable function in w that bounds (5.59) from above, and indeed one whose square is
L1-integrable (the integration region here can be replaced by the compact set supp(Y )).

9The functions t(y) and r(y) are smooth and bounded on [0,∞) provided b is not an integer multiple
of a−, and so multiplication of f(y) by (t(y)− 1) and r(y) preserves membership of C∞0 (R+).
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5.3 Reappraisal.

Continuous and discrete spectrum of H̃.

We are going to think more carefully about the extension of H̃ac which we introduced
in the last subsection, paving the way for the next two sections. We recall that initially
(in §4) this operator was defined on F(Ĉ) by the intertwining (4.4). We showed it was
symmetric and, later, essentially self-adjoint given certain restrictions on b. In §5.2 we
saw that we could extend H̃ac to an arbitrary bounded self-adjoint operator on the ortho-
complement of the closure of F(Ĉ) in H without changing anything substantial about the
proof of the existence and form of the wave operators. We called this extension H̃, and
we are now concerned with the question of how to fix its action on the orthocomplement.

Most of this discussion is valid whenever H̃ac is defined. Only (5.68) requires essential
self-adjointness of H̃ac, which in turn requires we take b ∈ (−a+/2, a− + a+/2) \ A−, cf.
Theorem 5.1. In light of Corollary 5.3 we know that H̃ has a contribution to its absolutely
continuous spectrum of multiplicity two given by [2,∞) for these parameters.

In symbols, the above description of H̃ gives us

D(H̃) = F(Ĉ)⊕F(Ĉ)
⊥

(5.64)

which is dense in H ≡ L2(R, dx) by construction. We know that on F(Ĉ) it has the
unbounded A∆O action

(H̃F f̂)(x) = H̃(x)(F f̂)(x), f̂ ∈ Ĉ (5.65)

(recall (4.11)). But on the orthocomplement in (5.64), its action is yet to be fixed. Our
choice is based on the desire for a Hilbert space theory for H̃(b;x) motivated by physics.

The orthocomplement in (5.64) is not completely mysterious to us. In §3.4, we proved
that all L2-integrable members of the family of functions Ψ(m)(x) (2.4) are orthogonal to
F(Ĉ) (as well as to each other), and so to its closure too. These members are described
by the count 0, . . .mb − 1 where mb is the largest integer such that mba− < b (vanishing
if b < a−). As a result,

span{Ψ(0), . . . ,Ψ(mb−1)} ⊆ F(Ĉ)
⊥

(5.66)

Given that Ψ(m)(x) are eigenfunctions of the A∆O H̃(x) (1.44) with eigenvalue Em (3.27),
it is clear how we should fix the action of H̃ on this span (given H̃ is intended as our
Hilbert space version of H̃(b;x)),

H̃Ψ(m) ≡ EmΨ(m), m = 0, . . . ,mb − 1 (5.67)

with mb defined as above.

As it stands, there is still a part of Hilbert space we have not accounted for. This is the
gap that potentially exists between the two sides of the subset relation in (5.66). Closing
this gap is the main challenge of the next two sections. Indeed this is the problem
of completeness as it manifests in our construction. In this regard we already know
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from Theorem 5.4 that, independently of the choice of extension, the scattering states
(intersection of the ranges of the wave operators) are given by

F(Ĉ) = F(Ĥ) (5.68)

where this equality follows because of F ’s isometry. With this in mind, we can appreciate
the significance of Theorem 7.7 which §6,7 are dedicated to proving.

80



6. THE DUAL OPERATOR S

6 The dual operator S.
Definition and symmetry formula.

The primary aim of this section is to help complete our account of the dynamics associated
to the operator H̃ (4.4). This means showing that the orthocomplement of the space F(Ĉ)
is spanned by (a particular subfamily of) the mutually-orthogonal functions Ψ(m) of §2
and §3.4. Following the precedent in [20] and [3], this will be done in a very indirect
way. It involves focusing on the A∆O S(b; y), for which we know ψ(b;x, y) (1.60) is
also a generalised eigenfunction (and whose b-dependence we frequently suppress). This
generalised eigenvalue equation in the dual variable allows us to naturally associate a
Hilbert space operator to S(y) by intertwining the adjoint of F (4.1) with the eigenvalue,
2s+(x). The surprise is that symmetry of this operator, and indeed symmetry breakdown,
are closely related to F(Ĉ). The precise details of this relation are the concern of the
next section.

For now we focus on associating a Hilbert space operator to the A∆O S(y) and
considering when it is symmetric. We do this by mimicking the procedure in §4. In
practice this means that (from (6.17) onwards) the present section is an analogue of §4
but with H̃(x) replaced by S(y), and the roles of x and y reversed. We also note that
the results here can be alternatively viewed from the perspective of dynamics associated
to S below, the so-called dual dynamics.

We recall how the Hilbert space operator H̃ac (4.4) was defined using the eigenfunction
transform F (4.1). As part of this procedure we used the fact that functions in Ĉ ≡
C∞0 (R+)2 get mapped by F into H ≡ L2(R, dx) (provided b ∈ R \ Y (3.2) which we
assume throughout this section). At no point did we need to talk about a Hilbert space
domain for F . But now we must, because we wish to consider the adjoint of this map.
A natural choice presents itself, namely

Ĥ ≡ L2(R+, dy)⊗ C2 (6.1)

The point is that Ĉ is dense in this Hilbert space, allowing us to reinterpret F (4.1) as a
densely-defined map between Hilbert spaces,

F : Ĉ ≡ C∞0 (R+)2 ⊂ Ĥ → H (6.2)

(Note, since this aims to be a self-contained account of the operator S, we forget the
results from §5.2 where we established isometry of F for very restricted b). Consistent
with our earlier convention, functions in Ĥ will always be written in the form f̂ = 〈f+, f−〉.
To ensure no ambiguity in what follows, let us note that the inner products in these Hilbert
spaces are given by

(d, e)H ≡
∫
R
dx d(x)e(x) (6.3)

(f, g)Ĥ ≡
∑
δ=+,−

∫
R+

dy fδ(y)gδ(y) (6.4)
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For the map F (6.2), we will say the adjoint element of f ∈ H exists in Ĥ, and denote it
by F∗f , iff the latter solves the following equation

(F∗f, g)Ĥ = (f,Fg)H , g ∈ Ĉ (6.5)

The density of Ĉ in Ĥ ensures any solution is unique. The collection of all adjoint elements
defines the adjoint map. Clearly we will have

(F∗f)δ(y) = c

∫
R
dxψ(b; δx, y)f(x), δ = +,− (6.6)

c ≡ 1/
√

2a+a− (6.7)

whenever these integral functions are in L2(R+, dy). The question raised by this is exactly
the same as that for the transforms in §3.3 - which is unsurprising given we have F f̂ =
c(F+f+ +F−f−). Thus we can use the answer presented in Lemma 3.4 to assert that the
adjoint element exists for all f ∈ C ⊂ C∞0 (R) and is given by (6.6). In other words, we
have (a restriction of) the adjoint map

F∗ : C ⊂ H → Ĥ (6.8)

with action given by (6.6) and C representing the functions in C∞0 (R) with support away
from the origin. (This is restricted in the sense we are not claiming C constitutes the
natural adjoint domain of all functions in H that have adjoint elements in Ĥ).

Now that we have F∗ (6.8) we claim we can define a Hilbert space operator S by the
intertwining relation

SF∗ = F∗M (6.9)

where M denotes multiplication by the generalised eigenvalue 2s+(x). It is not hard to
see that M maps C-functions to C-functions. Thus (6.9) does indeed define a Hilbert
space operator,

S : F∗(C)→ F∗(C) ⊂ Ĥ (6.10)

To be sure, the Hilbert space in which this acts as a densely-defined operator is the closure
of F∗(C) (moreover, (6.10) does not require injectivity of F∗ for reasons analogous to to
those below (4.5)).

We know that 2s+(x) and ψ(b;x, y) are a generalised eigenvalue-eigenfunction pair of
the A∆O S(y) (1.67), thus it is clear from (6.6) and (6.9) that the action S should be
closely related to S(y). To find it explicitly we use (6.6) and the intertwining (6.9) to
write out the two components of SF∗f ∈ Ĥ as follows,

(SF∗f)δ(y) = (F∗Mf)δ(y) = c

∫
R
dxψ(b; δx, y)2s+(x)f(x) (6.11)

We may now take 2s+(x) into the conjugation and replace it with δS(y) (the extra δ
accounts for oddness of 2s+(·)). Invoking the fact (F∗f)δ(y) are meromorphic functions
in y (which follows from what we said below (3.22)), we therefore have

(SF∗f)δ(y) = δS(b; y)(F∗f)δ(y), f ∈ C (6.12)
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Or, simply,

(SF̂ )δ(y) = δS(b; y)Fδ(y), F̂ ∈ F∗(C) (6.13)

Here we are dealing with the conjugated A∆O,10

S(b; y) = U(b; y)T y−ia− − T
y
ia−

(6.14)

U(b; y) ≡ V (y)V (−y + ia−) (6.15)

where from earlier, V (a+, b; y) = s+(y − ib)/s+(y). Thus,

U(y) =
s+(y − ib+ ia−)

s+(y + ia−)

s+(y + ib)

s+(y)
(6.16)

With this in place, the present section begins to analogise §4. The main result of this
chapter is the formula in Theorem 6.3 which allows us to determine if and when S (6.9)
is symmetric. The formula arises from a direct manipulation of the integrals implicit in
the following object

D̂(f, g) ≡ (SF∗f,F∗g)Ĥ − (F∗f,SF∗g)Ĥ (6.17)

Clearly, vanishing of this for all f, g ∈ C is equivalent to symmetry of S. However, as
we have already suggested, the cases when this fails to vanish for all f, g ∈ C - what we
call symmetry breakdown - will be of interest too. In general, (6.17) is found to equal
a sum of residues in a particular strip of the complex plane. Unlike the analogous case
for H̃ac, these cannot be driven out of the strip by imposing a restriction on the coupling
parameter b. This is why we take up the issue of residue analysis in the next section.
Symmetry is eventually established for certain parameter values in Corollary 7.1.

Let us now look at one of the two terms in (6.17) more closely (from now on we
suppress implicit dependence of functions on b),

(SF∗f,F∗g)Ĥ =
∑
δ=+,−

∫
R+

dy (F∗Mf)δ(y)(F∗g)δ(y)

= c2
∑
δ=+,−

∫
R+

dy

∫
R
dxψ(δx, y)2s+(x)f(x)

∫
R
dx′ψ(δx′, y)g(x′), f, g ∈ C (6.18)

Our first step is to push
∫
R+ dy through the other two integrals in order to isolate an

integral which is independent of f, g. Fubini’s theorem is key here. In order to use it
we must first replace

∫
R+ dy with limΛ→∞

∫ Λ

0
dy. With this change, we obtain a bounded

integration region in the variables (y, x, x′) on which the integrand is bounded (note,∫
R dx is really just

∫
supp(f)

dx here; we also invoke absence of real poles for ψ(x, y) from

Corollary 3.2). Hence the rhs of (6.18) equals

10For a precise notion of conjugated A∆O we should define S(y) as the A∆O that solves S(y)ϕ(y) =
S(y)ϕ(y) where is ϕ(y) is an arbitrary meromorphic function. This is a straightforward algebraic exercise,
the solution of which agrees with our “naive” (6.14).
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c2 lim
Λ→∞

∫
R
dx 2s+(x)f(x)

∫
R
dx′ g(x′)

∫ Λ

0

dy
∑
δ=+,−

ψ(δx, y)ψ(δx′, y′) (6.19)

We can manipulate (F∗f,SF∗g)Ĥ in a completely analogous way and combine it with
(6.19) to get

D̂(f, g) = c2 lim
Λ→∞

∫
R
dx f(x)

∫
R
dx′ g(x′)

∑
δ=+,−

Îδ(Λ;x, x′), f, g ∈ C (6.20)

Îδ(Λ;x, x′) ≡
∫ Λ

0

dy ψ(δx, y)ψ(δx′, y′)
(
2s+(x)− 2s+(x′)

)
, δ = +,− (6.21)

At this point we analogise the strategy pursued in §4. In other words, we are going to
expand this integrand using the A∆Es,

δS(y)ψ(δx, y) = 2s+(x)ψ(δx, y), δ = +,− (6.22)

(this is just the eigenvalue equation (1.76) with oddness of 2s+(·)). We get

Îδ(Λ;x, x′) = δ

∫ Λ

0

dy
(

[S(y)ψ(δx, y)]ψ(δx′, y)− ψ(δx, y)[S(y)ψ(δx′, y)]
)

(6.23)

The point of this expansion is that it will allow us to rearrange the integrand in a way
that makes it (almost) amenable to Proposition 4.2 with x → y. This proposition will
re-express the integral in terms of residues and boundary integrals. The catch is that the
proposition requires an integral range [−Λ,Λ] which we do not have at present. We will
get around this because of a non-obvious evenness in y, which will allow us to replace∫ Λ

0
dy with

∫ Λ

−Λ
dy/2 (this step is detailed in the proof of Theorem 6.3).

To rearrange the integrand in (6.23) such that it has the form J(y) − J(y + ia−),
Proposition 4.1 will not be of any use (not least because S(y) does not have the “reality”
property analogous to (4.33); we can see this explicitly in (6.14)). However if we switch
from ψ(x, y) to the reduced version

ψ̂(x, y) = c(y)ψ(x, y) (6.24)

(to see why this is reduced, recall (2.28)) we can make some progress.
Introducing a similarity-transformed A∆O

Ŝ(b; y) ≡ c(b;−y)S(b; y)
1

c(b;−y)
(6.25)

we can use the property c(−y) = c(y), y ∈ R to write (6.23) as

Îδ(Λ;x, x′) = δ

∫ Λ

0

dy
([
Ŝ(y)ψ̂(δx, y)

]
ψ̂(δx′, y)− ψ̂(δx, y)

[
Ŝ(y)ψ̂(δx′, y)

])
w(y) (6.26)

84



6. THE DUAL OPERATOR S

where, recall, w(y) = 1/c(y)c(−y), cf. (1.28). At this point we recall that the A∆O S(y)
arose as

1

c(−y)

[
V (y)T yia− − V (−y)T y−ia−

]
c(−y) (6.27)

where V (y) = s+(y − ib)/s+(y), cf. (1.64). Thus we can write down straight away

Ŝ(y) =
s+(y − ib)
s+(y)

T yia− −
s+(y + ib)

s+(y)
T y−ia− (6.28)

(in fact we have seen this already in (2.40)). Unlike S(y), this now has a definite
real/imaginary parity, since

Ŝ(y)ϕ(y) = −Ŝ(y)ϕ(y), y ∈ R+ (6.29)

where this holds for an arbitrary meromorphic function ϕ(y) (the conjugation y is not
superfluous here because Ŝ(y) entails any y to the right is shifted).

Thus we have

Îδ(Λ;x, x′) = δ

∫ Λ

0

dy
([
Ŝ(y)ψ̂(δx, y)

]
ψ̂(δx′, y) + ψ̂(δx, y)

[
Ŝ(y)ψ̂(δx′, y)

])
w(y),

δ = +,− (6.30)

Now we propose

Proposition 6.1. Suppose we have an A∆O,

S(y) ≡ V1(y)T yia− − V2(y)T y−ia− (6.31)

where Vj(·) are two meromorphic functions.
And suppose Φj(y) are two more meromorphic functions. Then the object

[S(y)Φ1(y)]Φ2(y) + Φ1(y)[S(y)Φ2(y)] (6.32)

may be written as

J(y)− J(y + ia−) (6.33)

J(y) ≡ V1(y)
[
Φ1(y − ia−)Φ2(y) + Φ1(y)Φ2(y − ia−)

]
(6.34)

provided

V2(y) = V1(y + ia−) (6.35)

Proof. Writing out (6.32) we have

[
V1(y)Φ1(y − ia−)− V2(y)Φ1(y + ia−)

]
Φ2(y)

+ Φ1(y)
[
V1(y)Φ2(y − ia−)− V2(y)Φ2(y + ia−)

]
(6.36)
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Introducing
L+(y) ≡ Φ1(y − ia−)Φ2(y) + Φ1(y)Φ2(y − ia−), (6.37)

it is clear that (6.36) can be written as

V1(y)L+(y)− V2(y)L+(y + ia−) (6.38)

Thus we can absorb V1(y) into L+(y) such that (6.38) equals (6.33) iff V2(y) = V1(y + ia−).

It is fairly clear how this will apply to the integrand in (6.30) (however, as we will see,
the requirement on Vj(y) requires us to invoke the A∆Es (1.65)-(1.66)).11 First, we view

the product w(y)Ŝ(y) in (6.30) as an A∆O in itself (i.e. the function w(y) just multiplies
the coefficients in Ŝ(y) (6.28)). Then, the integrand in in (6.30) has the form (6.31) with

V1(y) = w(y)s+(y − ib)/s+(y), V2(y) = w(y)s+(y + ib)/s+(y) (6.39)

and

Φ1(y) = ψ̂(δx, y), Φ2(y) = ψ̂(δx′, y) (6.40)

(note we implicitly deal with two choices of Φ1 and Φ2 here since δ equals + or −). In
fact because of (1.26), the conjugacy property (1.77) passes on to ψ̂(x, y), meaning this
choice of Φ2 simplifies to

Φ2(y) = ψ̂(δx′,−y) (6.41)

Finally, to see that these choices of V1(y) and V2(y) satisfy (6.35), we recall w(y) =
1/c(y)c(−y) and use the A∆Es for c(y), (1.65)-(1.66), to write

w(y + ia−)
s+(y + ia− − ib)
s+(y + ia−)

= w(y)
s+(y + ib)

s+(y)
(6.42)

Thus we have shown the two integrands in (6.30), corresponding to the two choices of
δ = +,−, are amenable to Proposition 6.1. The two corresponding specialisations of J(y)
(6.34) are

Ĵδ(b; y, x, x
′) ≡ w(b; y)

s+(y − ib)
s+(y)

[
ψ̂(δx, y− ia−)ψ̂(δx′,−y) + ψ̂(δx, y)ψ̂(δx′,−y+ ia−)

]
,

δ = +,− (6.43)

where ψ̂(x, y) = c(y)ψ(x, y) is the reduced version of ψ(x, y) (to see why this is reduced,
recall (2.28)). The conclusion is that

([
Ŝ(y)ψ̂(δx, y)

]
ψ̂(δx′, y) + ψ̂(δx, y)

[
Ŝ(y)ψ̂(δx′, y)

])
w(y)

= Ĵδ(y, x, x
′)− Ĵδ(y + ia−, x, x

′), δ = +,− (6.44)

11This is one argument in favour of not switching to ψ̂(x, y) after (6.23). One can still arrive at (6.53),
but then in place of Proposition 6.1 we would get a proposition which loses its manifest (anti)symmetry

with Proposition 4.1. Moreover, ψ̂(x, y) is more conducive to residues and eases the analysis in §A.2.
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As sketched below (6.23), the purpose of this rewriting is that when substituted into
(6.30) it will give us a way to apply Proposition 4.2 (with x → y) to the resulting
integral (recalling our remarks about integrand evenness below (6.23)). In other words,
it allows us to re-express Îδ(Λ;x, x′) (6.21) in terms of boundary integrals and residues.
The former will vanish provided we can meet the conditions of Proposition 4.3 (with
(x, y, y′) → (y, x, x′)). For the residues we need to know about the pole structure of
Ĵδ(b; y, x, x

′) (6.43). The relevant facts are given in the following lemma whose proof
we relegate to an appendix. With the lemma in place we can launch straight into the
theorem.

Lemma 6.2. Suppose b satisfies b ∈ (0, a+ + a−) and is not: a positive integer multiple
of a−; or a+/2 plus a positive integer multiple of a−. Then, the functions Ĵ±(b; y, x, x′)
(6.43) are smooth in x, x′ and have two y-poles in the strip Im y ∈ [0, a−]. These poles
are: simple; away from the boundary; and given at ymb

and −ymb
+ ia− where

ym ≡ ib− ima−, m ∈ N (6.45)

and where mb is the uniquely defined integer ensuring Im ymb
∈ (0, a−).

Theorem 6.3. Suppose the coupling parameter b is given as in the previous lemma.
Then, for functions f, g ∈ C (6.8), the object D̂(f, g) (6.17), which measures symmetry
violation of the operator S (6.9), is equal to

D̂(f, g) =
πi

a+a−

∫
R
dx f(x)

∫
R
dx′ g(x′) Res

y=ymb

∑
δ=+,−

δĴδ(b; y, x, x
′) (6.46)

where the functions Ĵ±(b; y, x, x′) (6.43) are defined in terms of ψ̂(b;x, y) (6.24) and where
ymb

is as described in the previous lemma.

Proof. This is mostly just a matter of bringing together arguments we have already
made. We recall that the relationship between D̂(f, g) (6.17) and the intermediary object
Îδ(Λ;x, x′) (6.21) is given by

D̂(f, g) = c2 lim
Λ→∞

∫
R
dx f(x)

∫
R
dx′ g(x′)

∑
δ=+,−

Îδ(Λ;x, x′), f, g,∈ C (6.47)

(this is just (6.20) again). Plugging our result (6.44) into (6.30) we have

∑
δ=+,−

Îδ(Λ;x, x′) =

∫ Λ

−Λ

dy

2

∑
δ=+,−

δ
[
Ĵδ(y, x, x

′)− Ĵδ(y + ia−, x, x
′)
]

(6.48)

Here we are making the claim that this integrand is non-obviously even in y, allowing us
to replace

∫ Λ

0
dy with

∫ Λ

−Λ
dy/2. We will prove this shortly. For now we use Proposition

4.2 (with x→ y) and Lemma 6.2 to get
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∑
δ=+,−

Îδ(Λ;x, x′)

=

[
πi
(

Res
y=ymb

+ Res
y=−ymb

+ia−

)
−
(∫ Λ+ia−

Λ

+

∫ −Λ

−Λ+ia−

)dy
2

] ∑
δ=+,−

δĴδ(y, x, x
′) (6.49)

At this point we make a further claim, that∑
δ=+,−

δĴδ(y, x, x
′) = −

∑
δ=+,−

δĴδ(−y + ia−, x, x
′) (6.50)

This subsumes the evenness assumption above but, more importantly, it grants an imme-
diate simplification to the residues and boundary integrals in (6.49) (consider the variable
change y → −y + ia−),

∑
δ=+,−

Îδ(Λ;x, x′) =

[
2πi Res

y=ymb

−
∫ Λ+ia−

Λ

dy

] ∑
δ=+,−

δĴδ(y, x, x
′) (6.51)

Accordingly, if we can argue that this remaining boundary integral vanishes when recom-
bined with (6.47), the theorem follows (recall, c2 = 1/a+a−).

We establish such vanishing by using Proposition 4.3 with (x, y, y′) → (y, x, x′) and
Ω = R. As required, we will show that Ĵ±(y, x, x′) (6.43) have O-asymptotics in y of the
form (4.43). To this end it obviously helps to use Lemma 1.4, but first we need to rewrite
Ĵ±(y, x, x′) (6.43) in terms of ψ(x, y).

Two of the ψ̂-terms in (6.43) can be written in terms of ψ straight away (recall that
w(y) = 1/c(y)c(−y) and ψ̂(x, y)/c(y) = ψ(x, y)), leaving

Ĵδ(y, x, x
′) =

s+(y − ib)
s+(y)

[
ψ̂(δx, y − ia−)

c(y)
ψ(δx′,−y) + ψ(δx, y)

ψ̂(δx′,−y + ia−)

c(−y)

]
,

δ = +,− (6.52)

For the other two ψ̂-terms here we can rewrite c(y) as c(y − ia−) using (1.65); and for
the second, c(−y) as c(−y − ia−) using (1.66). The end result it

Ĵδ(y, x, x
′) = ψ(δx, y−ia−)ψ(δx′,−y)+U(y)ψ(δx, y)ψ(δx′,−y+ia−), δ = +,− (6.53)

where U(y) = V (y)V (−y + ia−), cf. (6.15).
To consider the large-Re y O-asymptotics of this function we first extract the following

from Lemma 1.4,

ψ(x, αy) =

φ̃
[
c̃(x)/c̃(−x)]1/2 eiπxy/a+a− +O(e−ρRe y

− ), α = +

φ̃−1
[
c̃(−x)/c̃(x)]1/2 e−iπxy/a+a− +O(e−ρRe y

− ), α = −
Re y →∞ (6.54)
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Since the bound represented by O is uniform for Im y varying over any compact subset
of R, cf. the lemma, we can shift y to yield

ψ(x, α(y−ia−)) =

φ̃
[
c̃(x)/c̃(−x)]1/2 ex+ e

iπxy/a+a− +O(e−ρRe y
− ), α = +

φ̃−1
[
c̃(−x)/c̃(x)]1/2 e−x+ e−iπxy/a+a− +O(e−ρRe y

− ), α = −
Re y →∞

(6.55)
Moreover, the statement about O still holds here.

We also need the asymptotics for U(y) in (6.15). From the easily-verified

(2s+(y + iϕ))±1 = e±y+ e±iϕ+ +O(e−Re y
+ ), Re y →∞, ϕ ∈ R (6.56)

we get straight away that

U(y) =
s+(y − ia− + ib)

s+(y − ia−)

s+(y − ib)
s+(y)

= 1 +O(e−Re y
+ ), Re y →∞ (6.57)

where the bound represented by O is uniform for Im y ∈ R.
Putting this all together we have

Ĵδ(y, x, x
′) =

[
c̃(δx)

c̃(−δx)

c̃(−δx′)
c̃(δx′)

]1/2

eiδπy(x−x′)/a+a−
(
eδx+ + e−δx

′

+

)
+O(e−ρ̃Re y), Re→∞, δ = +,− (6.58)

where ρ̃ > 0 and with a uniform bound, as required by (4.43).
It now remains to prove (6.50). We can make this property seem less baroque if we

write it in terms of

`(y) ≡
∑
δ=+,−

δĴδ(y + ia−/2, x, x
′) (6.59)

since, now, (6.50) is equivalent to oddness of the function `(·). We also have

(
2s+(x)− 2s+(x′)

) ∑
δ=+,−

ψ(δx, y)ψ(δx′, y) = `(y − ia−/2)− `(y + ia−/2) (6.60)

where this links up our starting point in (6.20) with (6.48). Moreover this makes it clear
how oddness of `(·) implies evenness of the lhs. It also suggests a possible alternative
way of proving this oddness. This would involve finding some minimal assumptions for
when evenness of F implies oddness of ϕ in the following

F (y) = ϕ(y − ia−/2)− ϕ(y + ia−/2) (6.61)

(of course these should be simple assumptions satisfied by the objects at hand). This
approach would be preferable because proving evenness of the lhs function in (6.60) is a
simpler task than proving oddness of `(·). However at the time of writing we do not know
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whether this is possible, and so instead we provide a brute force approach to (6.50). To
this end we help ourselves to the expression for Ĵδ(y, x, x

′) in the proof of Lemma A.2,
namely (A.26). The only δ-dependent terms in this expression are the two exponentials
in the ν, ν ′-sum. Under

∑
δ δ these equal µνν′(y) where

µα(y) =

2c−(ib), α = +

2c−(y), α = −
(6.62)

And so

∑
δ=+,−

δĴδ(y, x, x
′) ∝ ŵ(y)(s−(ib−y)s−(ib+y))−1

∑
ν,ν′=+,−

µνν′(y)
[
ν ′Rr(x+iνa+/2, y−ia−)

×Rr(x
′ + iν ′a+/2, y)− (x, x′, ν, ν ′)→ (x′, x, ν ′, ν)

]
(6.63)

where

ŵ(y) ≡ s+(y − ib)
s+(y)

w(y) (6.64)

(the unimportant proportionality constant is given by (A.27)). We now argue that the
expression on the rhs yields a sign flip under y → ia−−y. The function (6.64) is invariant
under this variable change because of (6.42), and likewise for the reciprocal term in (6.63)
because of ia−-antiperiodicity of s−(·). Applying y → ia− − y to the square-bracketed
term gives

ν ′Rr(x+ iνa+/2,−y)Rr(x
′ + iν ′a+/2, ia− − y)− (x, x′, ν, ν ′)→ (x′, x, ν ′, ν) (6.65)

for fixed ν, ν ′ = +,−. Because of evenness of Rr(x, ·) this equals the original square-
bracketed term multiplied by −νν ′. The claim follows then follows because we have
µνν′(−y + ia−) = νν ′µνν′(y).
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7 Residue analysis.
Completing the spectrum of H̃ using symmetry formula for S.

In this section we roll out the consequences of Theorem 6.3, seeking to determine if and
when the operator S : F∗(C)→ F∗(C) (6.9) is symmetric. The work in §2 will be pivotal
here.

The main reason for doing this is to shed light on F (6.2), which we know has the role
of wave operator for the dynamics described by H̃ (4.4). More specifically, symmetry and
symmetry-breakdown of S can be tied to the range of F , and thus to the bound states.
In the simplest case, symmetry of S implies surjectivity and thus unitarity of F . Before
exploring this connection, the first task is to get a better grip on the issue of symmetry
and symmetry breakdown of S. This means returning to the expression for D̂(f, g) (6.17)
in Theorem 6.3 and studying the residue featuring therein. The aim is to get a more useful
expression for D̂(f, g) whose vanishing, we recall, is manifestly equivalent to symmetry
of S. This first discussion culminates in the two corollaries below. At issue is

Res
y=ym

∑
δ=+,−

δĴδ(b; y, x, x
′), (7.1)

ym ≡ ib− ima−, m ∈ N (7.2)

where the function Ĵδ(y, x, x
′) (6.43) is given by

Ĵδ(b; y, x, x
′) = ŵ(b; y)

[
ψ̂(δx, y − ia−)ψ̂(δx′,−y) + ψ̂(δx, y)ψ̂(δx′,−y + ia−)

]
, δ = +,−

(7.3)

ŵ(b; y) ≡ s+(y − ib)
s+(y)

w(b; y), w(b; y) ≡ 1/c(b; y)c(b;−y) (7.4)

Here, c(b; y) is defined in (1.25) and ψ̂(x, y) is a reduced version of the eigenfunction
ψ(x, y), cf. (2.28) (we suppress the implicit dependence of these latter two functions on b
for easier viewing). Well-definedness of (7.3) as a function meromorphic in y and smooth
in x, x′ follows for b ∈ R \ S̃ (1.73). Thus the latter is the only assumption we need to
analyse the properties of (7.3) and is assumed from now on. (If we want well-definedness
of F∗ (6.8) we require the stronger b ∈ R \ Y (3.2) which entails smoothness of ψ(x, y)
in y. This does not imply smoothness of (7.3) because of the y-shifts in ψ̂(x, y).)

To express (7.1) in a more useful form we are going to draw heavily upon the results
in §2 which showed that for the spectral values ±ym, the functions ψ(x, y) could be linked
to Ψ(m)(x) (2.4).

Before processing the residue of Ĵ±(b; ·, x, x′) (7.3) at ym we note a couple of things.
First, the the y-shift present in (7.3) will entail y = ym → ym+1. Second, from §2 we
know that ym≥1 are simple poles of ψ̂(x, ·), whereas y0 and −ym are regular values. Thus
we may write
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Res
y=ym

Ĵδ(b; y, x, x
′) = ŵ(b; ym)

[(
Res

y=ym+1

ψ̂(δx, y)
)
ψ̂(δx′,−ym)

+
(

Res
y=ym

ψ̂(δx, y)
)
ψ̂(δx′,−ym+1)

]
, δ = +,−, m ≥ 0 (7.5)

And thus we encounter the functions ψ̂m(x) from Lemma 2.2. Specifically, the two
residues here are equal to ψ̂m+1(x) and ψ̂m(x), respectively. With the restriction a+/a− /∈
Am (2.12) in force, the same lemma tells us that ψ̂m(x) is proportional to Ψ(m−1)(x) (with
proportionality constant η(b) (2.31)). The rhs of (7.5) therefore equals

η(b) ŵ(b; ym)
[
Ψ(m)(δx)ψ̂(δx′,−ym) + Ψ(m−1)(δx)ψ̂(δx′,−ym+1)

]
(7.6)

When we reconsider this under
∑

δ=+,− δ, the remaining ψ̂-functions can be written in

terms of φ̂m(x) which we introduced in Lemma 2.3. To see why, we recall that Ψ(m)(x)
has parity (−)m in x. Thus the δ’s can be pulled out of the Ψ-terms in (7.6) to give

η(b) ŵ(b; ym)
[
Ψ(m)(x)δmψ̂(δx′,−ym) + Ψ(m−1)(x)δm−1ψ̂(δx′,−ym+1)

]
(7.7)

The connection to φ̂m(x) is now manifest because the definition (2.32) can be rearranged
as ∑

δ=+,−

δm+1ψ̂(δx,−ym) = (−)m−1φ̂m(x), m ∈ N (7.8)

And so

∑
δ=+,−

δ Res
y=ym

Ĵδ(b; y, x, x
′) = η(b)ŵ(b; ym)(−)m−1

[
Ψ(m)(x)φ̂m(x′)−Ψ(m−1)(x)φ̂m+1(x′)

]
(7.9)

Lemma 2.3 tells us φ̂m(x) are similarly proportional to Ψ(m)(x) (now with proportionality
constant c(b; y1)). The rhs of (7.9) therefore equals

η(b) ŵ(b; ym)c(b; y1)(−)m−1
[
Ψ(m)(x)Ψ(m−1)(x′)−Ψ(m−1)(x)Ψ(m)(x′)

]
, m ∈ N (7.10)

For one thing, this expression for the residue (7.1) exhibits vanishing when m = 0 (recall,
Ψ−1 ≡ 0). Thus we have a sufficient condition for symmetry of S (6.9), namely mb = 0
(recall, A0 is empty). Recalling how the constant mb was defined in Theorem 6.3, this
condition amounts to b ∈ (0, a−). (We note that b ∈ (0, a−) is compatible with all the
conditions in Lemma 6.2.)

We draw these observations together into the following two corollaries. The first is
immediate given what we have just said. The second, which gives us a new expression
for symmetry breakdown of S, is almost immediate and just requires us to handle some
constants.
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Corollary 7.1. Suppose the coupling parameter b satisfies b ∈ (0, a−). Then the operator
S : F∗(C)→ F∗(C) (6.9) is symmetric.

Corollary 7.2. Suppose b is as described in Lemma 6.2 but with lower limit b > a−. And
suppose a+, a− satisfy a+/a− /∈ Amb

(2.12). Then, for functions f, g ∈ C (4.2), the object

D̂(f, g) (6.17), which measures symmetry violation of S (6.9), satisfies

D̂(f, g) = N (b)Pmb

∫
R
dx f(x)

∫
R
dx′ g(x′)

×
[
Ψ(m)(x)Ψ(m−1)(x′)−Ψ(m−1)(x)Ψ(m)(x′)

]∣∣∣
m=mb

(7.11)

where Ψ(m)(b;x) (2.4) are the functions studied in §2 and where mb ≥ 1 is the largest
integer satisfying mba− < b. We have also introduced the constants

N (b) ≡ i

a+

s−(y1)
c(b; y1)

c(b;−y0)
(7.12)

and

Pm ≡
m−1∏
l=0

(1/ρl) (7.13)

which feature the function c(b; z) (1.25), the spectral values ym (7.2) and the b-dependent
constant, ρl (2.9).

Proof of Corollary 7.2. First we note the description of mb in this corollary is equivalent
to the definition in Lemma 6.2 given the b-interval under consideration.

Plugging (7.9)\(7.10) into Theorem 6.3, we see straight away how the x, x′-dependent
part of (7.11) arises. It just remains to consider the constants. Specifically, we have to
compute

πi

a+a−
η(b)ŵ(ym)c(y1)(−)m−1, m ∈ N∗ (7.14)

From (7.4) we have

ŵ(ym) =
s+(ym − ib)
s+(ym)

w(ym) (7.15)

where w(ym) = 1/c(ym)c(−ym). Unless otherwise stated, equations in this proof hold for
m ∈ N∗ (necessary because c(y0) = ∞ generically). Recalling ym ≡ ib − ima−, we can
treat c(±ym) recursively using the A∆E for c(y), (1.66). Setting y = ym in this we get

c(ym)

c(ym+1)
=
s+(ym − ib)
s+(ym)

= −1/σm−1 (7.16)

and y = −ym+1,

c(−ym)

c(−ym+1)
=

s+(−ym+1)

s+(−ym+1 − ib)
= σm/ρm, m ∈ N (7.17)
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where σm\ρm are the constants defined in (2.6)\(2.7) (and which feature implicitly in
Ψ(m)(x)). Thus

w(ym+1)/w(ym) = −σm/ρmσm−1 (7.18)

Since the quotient in (7.15) may be written as (−1/σm−1) this implies

ŵ(ym) = (−)mw(y1)
1

σ0

m−1∏
l=1

(1/ρl) (7.19)

By using (7.17) with m = 0 we have w(y1) = σ0/ρ0c(y1)c(−y0). Putting this together
with (7.19), and recalling η(b) = −s−(y1)(a−/π)c(y1) from (2.31), we see that (7.14)
equals

i

a+

s−(y1)(c(y1)/c(−y0))Pm (7.20)

This proves the claim.

We now begin our discussion of the connection between the range of the transform
F (6.2), which has the the role of wave operator for the dynamics described by H̃ (5.4),
and the symmetry analysis of S : F∗(C) → F∗(C) (6.9). Isometry of F (6.2) is critical
to establishing this connection. From Corollary 5.3 we have an explicit description of
certain conditions under which this property obtains.

As usual we present our propositions in terms of minimal assumptions. We have
designed these so that the relationship to our concrete objects should be obvious (all the
same, it can be found explicitly in, e.g., the proof of Theorem 7.4).

Proposition 7.3. Let J : Ĥ → H be an isometry and λ(x) a real-valued function which,
as a multiplication operator on H, maps some dense subspace D into itself. With these
objects we may define an operator S : J∗(D)→ J∗(D) by the intertwining relation

SJ∗ = J∗λ (7.21)

Furthermore, suppose that for some κ ≥ 0, 1/(λ + iκ) is a bounded function. We also
need the assumption that at least one function in J(Ĥ) has support on R. Then, if S is
symmetric, J is surjective (and thus unitary).

Proof. We first note that isometry of J implies J∗ exists and is bounded on H. Thus the
operator S is well-defined.

Symmetry of S (7.21) is equivalent to vanishing of

D̂S(f, g) ≡ (SJ∗f, J∗g)Ĥ − (J∗f, SJ∗g)Ĥ (7.22)

for all f, g ∈ D. Using (7.21) we can write this as

(J∗λf, J∗g)Ĥ − (J∗f, J∗λg)Ĥ = (J∗(λ− iκ)f, J∗g)Ĥ − (J∗f, J∗(λ+ iκ)g)Ĥ (7.23)
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where the functions f̃ ≡ (λ− iκ)f and g̃ ≡ (λ+ iκ)g are in H provided f, g,∈ D. Writing
(7.23) in terms of these two functions gives

(J∗f̃ , J∗(λ+ iκ)−1g)Ĥ − (J∗(λ− iκ)−1f̃ , J∗g̃)Ĥ

= (f̃ , JJ∗(λ+ iκ)−1g̃)H − (f̃ , (λ+ iκ)−1JJ∗g̃)H = (f̃ , [JJ∗, (λ+ iκ)−1] g̃)H (7.24)

Since J is an isometry we have automatically that

JJ∗ = 1H − projJ(Ĥ)⊥ (7.25)

where projX denotes orthogonal projection onto X ⊆ H, and X⊥ denotes the orthocom-
plement of X in H. Consequently,

D̂S(f, g) = (f̃ , [(λ+ iκ)−1, projJ(Ĥ)⊥ ] g̃)H (7.26)

Since the functions (λ(x)± iκ) are non-zero everywhere, the subspaces (λ± iκ)D arising
for f̃ , g̃ are clearly dense in H. Thus if we now let D̂S(f, g) vanish, (7.26) is strong enough
for us to conclude

[(λ+ iκ)−1, projJ(Ĥ)⊥ ] = 0 (7.27)

We now invoke the well-known result that the algebra of the bounded multiplication
operators is equal to its own commutant. Since these operators are generated by 1 and
(λ+ iκ)−1, there must exist a function µ(x) ∈ L∞(R, dx) such that

projJ(Ĥ)⊥ = µ(·) (7.28)

We need only consider this operator equation on a function f ∈ J(Ĥ) supported on R to
conclude that µ = 0, and so the projection is just the zero operator for all functions in
H.

We note that without the assumption involving κ, we can still show [λ, projJ(H)⊥ ] = 0

(and moreover we do not need to use f̃ , g̃). But without assuming boundedness of λ(x)
we could not invoke the commutant result cited above.

Theorem 7.4. If the coupling parameter b satisfies b ∈ (0, a−) then the map F : Ĥ → H,
which extends (4.3) with action (4.1), is unitary.

Proof. For b in this interval we know that F : Ĥ → H (6.2) is an isometry, cf. Corollary
5.3. Thus we can apply Proposition 7.3 with

J = F , λ(x) = 2s+(x), D = C, κ = 1 (7.29)

The operator S (7.21) corresponding to these choices is clearly just S : F∗(C) → F∗(C)
(6.9). We know from Corollary 7.1 that this is symmetric given b ∈ (0, a−), and so the
theorem follows.
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We now look at the far less obvious relationship that exists between F(Ĥ) and sym-
metry breakdown of S, building on the precedent in [3]. In Corollary 7.2 we presented
an expression for D̂(f, g) (6.17) - the object measuring symmetry violation - which was
more illuminating than the original in Theorem 6.3. To cement the relationship, we must
re-express it again.

This can be loosely motivated by the observation that two of the Ψ(m)-functions in
(7.11) are not in themselves integrable (recall from §2 that Ψ(m) ∈ H iffm = 0, . . . ,mb − 1).12

Thus we might consider taking the index of these two problem terms down a notch by us-
ing the recursion for Ψ(m), (2.5). When we do this we realise the whole square-bracketed
term in (7.11) has its own recursion which is first order and allows for a closed-form
solution. The result is a Christoffel-Darboux identity which we present in the following
lemma.

Lemma 7.5. As relevant to the integrand in (7.11), we have

Pm
[
Ψ(m)(x)Ψ(m−1)(x′)−Ψ(m−1)(x)Ψ(m)(x′)

]
=
(
2s+(x′)− 2s+(x)

)m−1∑
k=0

Pk+1σkΨ
(k)(x)Ψ(k)(x′), m ∈ N∗ (7.30)

which sees the reappearance of the constant (2.6),

σk ≡ s+(ib− i(k + 1)a−)/s+(i(k + 1)a−) (7.31)

As suggested, we may also weaken the a±-restriction in Corollary 7.2 to a+/a− /∈ Amb−1.

Proof. We start by writing the object on the lhs of (7.30) as Dm(x, x′) and allow m ∈ N
such that D0(x, x′) = 0 (recall Ψ(−1) ≡ 0). From (2.5) we know that Ψ(m)(x) satisfies the
recursion

Ψ(m+1)(x) = −2s+(x)σmΨ(m)(x)− ρmΨ(m−1)(x), m ≥ 0 (7.32)

so that

Dm+1(x, x′) = −Pm+1

[(
2s+(x)σmΨ(m)(x) + ρmΨ(m−1)(x)

)
Ψ(m)(x′)− (x↔ x′)

]
(7.33)

If we rewrite the rhs as

Pm+1

[(
2s+(x′)σmΨ(m)(x)Ψ(m)(x′) + ρmΨ(m−1)(x′)

)
Ψ(m)(x)− (x↔ x′)

]
(7.34)

then we can see straight away

Dm+1(x, x′)−Dm(x, x′)

=
[
2s+(x′)Pm+1σmΨ(m)(x)Ψ(m)(x′) +

{
Pm+1ρm − Pm

}
Ψ(m−1)(x′)

)
Ψ(m)(x)− (x↔ x′)

]
(7.35)

12Though of course, the integrand as a whole still is.
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From the form of Pm (7.13) alone, this curly-bracketed term is manifestly vanishing. Thus
we have the first order recursion,

Dm+1(x, x′)−Dm(x, x′) = Pm+1σmΨ(m)(x)Ψ(m)(x′)
(
2s+(x′)− 2s+(x)

)
, m ∈ N (7.36)

and the claim follows.

Envisioning how this lemma recombines with Corollary 7.2 we can understand the
significance of the following proposition. Straight away it leads to our completeness
theorem, which is the final result of this section (in our summary in introduction, we saw
how it looks under more concrete conditions).

(The assumption in the proposition that γk are merely ‘constants’ may sound a bit
wishy washy. The point is that depending on how a formula like (7.37) arises, it may not
be obvious that γk are positive, or even real. In this case, the positivity implied by (7.39)
is a result in itself.)

Proposition 7.6. Let S : J∗(D)→ J∗(D) be defined as in Proposition 7.3, and D̂S(f, g)
as in (7.22). Then, if the following formula holds for f, g ∈ D,

D̂S(f, g) =

∫
R
dx f(x)

∫
R
dx′ g(x′)[λ(x′)− λ(x)]

L∑
k=0

γk ϕk(x)ϕk(x′), (7.37)

where L ≥ 0 is some integer, γk are constants, and ϕk ∈ J(Ĥ)⊥ are mutually orthogonal
functions at least one of which has support on R, we have

J(Ĥ)⊥ = span{ϕ0, . . . ϕL} ⊂ H (7.38)

and
1/γk =‖ϕk‖2

H , k = 0, . . . L (7.39)

Theorem 7.7. Suppose the coupling parameter b satisfies b ∈ (a−, a−+ a+/2) and is not
a positive integer multiple of a−. Then, the map F : Ĥ → H, which extends (4.3) with
action (4.1), is an isometry which partakes in the following orthogonal decomposition of
Hilbert space,

H = F(Ĥ)⊕ span{Ψ(0), . . . ,Ψ(mb−1)} (7.40)

where Ψ(m)(b;x) are the mutually orthogonal functions defined in (2.4), and mb is the
largest integer satisfying mba− < b. The polynomial Qm(b; ·) (2.5) on which a given Ψ(m)

depends has degree m and parity (−)m.
Furthermore, we have function norms given by

1/N (b)Pk+1σk = ‖Ψ(k)‖2
H, k = 0, . . . ,mb − 1 (7.41)

where the b-dependent constants on the lhs are defined respectively by (7.12), (7.13) and
(7.31).
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Proof of Theorem 7.7. We consider Proposition 7.6 with

J = F , λ(x) = 2s+(x), D = C, κ = 1 (7.42)

(noting the restriction on b in the theorem ensures F is an isometry, cf. Corollary 5.3).
The operator S (7.21) arising for these choices is clearly S : F∗(C)→ F∗(C) (6.9) and we
have accordingly,

D̂S̄(f, g) = D̂(f, g) (7.43)

By combining Corollary 7.2 and Lemma 7.5 we thus realise the form of (7.37) for the
choices

L = mb − 1, γk = N (b)σkPk+1, ϕk = Ψ(k) (7.44)

where we also have that the functions Ψ(k)(b;x) are real-valued. From Lemma 3.5 we
know they satisfy Ψ(k) ∈ F(Ĉ)⊥ (recall (3.3)) and are mutually orthogonal provided
b /∈ Πmb−1. It automatically follows that Ψ(k) are orthogonal to

F(Ĉ) = F(Ĥ) (7.45)

where this equality holds when F is an isometry. Accordingly, all the conditions are met
for us to deduce the statements in the theorem via Proposition 7.6. It just remains to
reconcile various claims about restrictions on the parameters.

First, it is easy to see that the restrictions on b in the theorem are compatible with
those in Corollary 7.2. Second, it is less obvious, but true, that the former are compatible
with b /∈ Πmb−1 (2.15), mb ≥ 1. Because of (2.16) and (3.3) we already know the b-

restriction in the lemma implies b /∈ Π
(+)
mb−1. However, dealing with Π

(−)
m is a little more

complicated. The issue is seeing that, for mb ≥ 2,

(l + 1)a− − k′a+ /∈ (a−, a− + a+/2), l = 0, . . . ,mb − 2, k′ ∈ N∗ (7.46)

which is not obvious at first glance. A sufficient condition for (7.46) is

a+/a− > mb − 1 (7.47)

(since this implies all the numbers on the lhs of (7.46) are negative). When b ∈ (a−, a−+
a+/2) there is a manifest relation between the ratio a+/a− and the integer mb (by defi-
nition the largest such that mba− < b); namely,

a+/a− > 2mb − 2 (7.48)

Thus (7.47) clearly holds for mb ≥ 2 as required.
As regards the restriction on the ratio a+/a−, the point is that

a+/a− /∈ Amb−1, mb ≥ 1 (7.49)

holds in general for the b-interval at issue. To see this we note from (2.12) that maxAm =
m when m ≥ 1. Then, it is a matter of invoking (7.48) again to see that (7.49) is plainly
true.
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Proof. Proof of Proposition 7.6 The aim is to establish equality in the subset relation

span{ϕ0, . . . ϕL} ⊆ J(Ĥ)⊥ (7.50)

(which itself follows immediately from the assumptions on ϕk). The argument we use,
adapted from [3], throws out the function norms (7.39) as a highly desirable and non-
trivial by-product.

From (7.26) we know that D̂S(f, g) (7.22) can be written as

D̂S(f, g) = (f̃ , [(λ+ iκ)−1, projJ(Ĥ)⊥ ] g̃)H (7.51)

where f̃ ≡ (λ− iκ)f and g̃ ≡ (λ+ iκ)g. The aim is to re-express the rhs of (7.37) in such
a way that it can be fruitfully combined with (7.51). First we write it as

L∑
k=0

γk
[
(f, ϕk)(ϕk, λg)− (λf, ϕk)(ϕk, g)

]
, (7.52)

meanwhile suppressing the H-subscript on the inner product (·, ·)H. The term in square
brackets may then be rewritten as

(f, ϕk)(ϕk, (λ+ iκ)g)− ((λ− iκ)f, ϕk)(ϕk, g) (7.53)

Using f̃ , g̃ above, and the fact the bounded adjoint of (λ− iκ)−1 is (λ+ iκ)−1, this equals

(f̃ , (λ+ iκ)−1ϕk)(ϕk, g̃)− (f̃ , ϕk)(ϕk, (λ+ iκ)−1g̃)

= (f̃ , (ϕk, g̃)(λ+ iκ)−1ϕk − (ϕk, (λ+ iκ)−1g̃)ϕk) = (f̃ , [(λ+ iκ)−1, ϕk ⊗ ϕk]g̃) (7.54)

where (F ⊗G)H ≡ (G,H)F . And so, introducing

Q ≡
L∑
k=0

γk ϕk ⊗ ϕk, (7.55)

we may write (7.52) as

(f̃ , [(λ+ iκ)−1, Q ]g̃) (7.56)

Combining this with (7.26), our assumption (7.37) may be written as

(f̃ , [(λ+ iκ)−1, Q− projJ(Ĥ)⊥ ] g̃)H = 0, f, g ∈ D (7.57)

As noted earlier, the subspaces (λ ± iκ)D arising for f̃ , g̃ are clearly dense in H. Thus
(7.57) is strong enough for us to conclude

[(λ+ iκ)−1, Q− projJ(Ĥ)⊥ ] = 0 (7.58)

Repeating the argument below (7.27), there must consequently exist a function µ(x) ∈
L∞(R, dx) such that

Q− projJ(Ĥ)⊥ = µ(·) (7.59)
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Considering this operator equation on ϕl, l = 0, . . . , L, and using mutual orthogonality,
we get

[γl(ϕl, ϕl)− 1]ϕl(x) = µ(x)ϕl(x), x ∈ R (7.60)

Now if we choose ϕl with support on R, it follows that µ must be a constant function.
Now reconsider (7.59) on any non-zero function in J(Ĥ) (unproblematic since J is an
isometry) then the lhs vanishes and so µ must be zero. Consequently, (7.59) becomes

projJ(Ĥ)⊥ = Q (7.61)

and (7.60),

(ϕl, ϕl) = 1/γl (7.62)

With the former, we get a complete expression of the orthocomplement J(Ĥ)⊥ as claimed.
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A Appendix. Proof of Lemmas 4.4 and 6.2.

A.1 Proof of Lemma 4.4.

At issue is the function

Jσ(x, y, y′) = Ũ(x)
[
ψ(x− ia−,−y)ψ(σx, y′)− ψ(x,−y)ψ(σ(x− ia−), y′)

]
, σ = +,−

(A.1)
where all the objects here have an implicit dependence on the parameters (a+, a−, b), and

Ũ(x) =
[
Ṽ (x)Ṽ (−x+ ia−)

]1/2
=

[
c+(x+ ib− ia−)

c+(x− ia−)

c+(x− ib)
c+(x)

]1/2

(A.2)

which derives from the A∆O H̃(x) (1.52). Throughout this appendix we will suppress
implicit dependence on these parameters.

From Lemma 3.1 it is clear that (A.1) is smooth in y, y′ for both choices of σ given
the restriction b ∈ R \ Y (3.2) (this also ensures well-definedness of the square root in
(A.1)). With this restriction in force we proceed to consider the analyticity properties in
x of (A.1). We claim that for both choices of σ, the function (A.1) is holomorphic in x
in the strip Imx ∈ [0, a−] provided b ∈ (−a+/2, a− + a+/2). If we extract the Z-integer
multiples of a− from this interval, then it lies inside R \ Y . Hence the condition on b in
Lemma 4.4.

We break up the holomorphy claim into the following two lemmas. The first isolates
the algebraic aspect, the second the analytic.

Lemma A.1. Any x-pole of J±(x, y, y′) (A.1) is an x-pole of one of the four products

G(x− ia−/2 + ib)

G(x− ia−/2− ib)
Rr(x− ia− + iνa+/2, y)Rr(x+ iν ′a+/2, y

′), ν, ν ′ = +,− (A.3)

Lemma A.2. For y, y′ any non-singular values, the four products (A.3) are holomorphic
in x in the strip Imx ∈ [0, a−] provided b ∈ (−a+/2, a− + a+/2).

Proof of Lemma A.1. The first task is to write out (A.1) using ψ(x, y) (1.60). Recalling
evenness of w̃(x) and Rr(x, y) in both variables we get, for σ = +,−,

ψ(σx,±y) = w̃(x)1/2c(∓y)−1(2s−(ib∓ y))−1
∑
ν=+,−

νe−(ν(ib∓ y)/2)Rr(σx+ iνa+/2, y)

= w̃(x)1/2c(∓y)−1(2s−(ib∓ y))−1
∑
ν=+,−

σνe−(σν(ib∓ y)/2)Rr(x+ iνa+/2, y) (A.4)

By shifting x in this we also get

ψ(σ(x− ia−),±y) = w̃(x− ia−)1/2c(∓y)−1(2s−(ib∓ y))−1

×
∑
ν=+,−

σνe−(σν(ib∓ y)/2)Rr(x− ia− + iνa+/2, y), σ = +,− (A.5)
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Substituting these last two equations into (A.1) we get straight away

Jσ(x, y, y′) ∝ Ũ(x)w̃(x)1/2w̃(x− ia−)1/2
∑

ν,ν′=+,−

νν ′e−(ν(ib+ y)/2)e−(σν ′(ib− y′)/2)

×
[
Rr(x− ia− + iνa+/2, y)Rr(x+ iν ′a+/2, y

′)− (y, y′, ν, ν ′)→ (y′, y, ν ′, ν)
]

(A.6)

where we are of course dealing with proportionality with respect to x. We note that the
unimportant proportionality constant is

σ/4c(y)c(−y′)s−(ib+ y)s−(ib− y′) (A.7)

We thus see how any x-pole of (A.6) must come from one of the four functions

Ũ(x)w̃(x)1/2w̃(x−ia−)1/2Rr(x−ia−+iνa+/2, y)Rr(x+iν ′a+/2, y
′), ν, ν ′ = +,− (A.8)

This combination of Ũ and w̃ has been seen before. It arose in a related context in
§3.4. There we showed it was equal to w̃(x)Ṽ (x) and thence to G(x− ia−/2 + ib)
G(−x+ ia−/2 + ib), cf. (3.41). And the latter is just a rewriting of the quotient in
the lemma (recall (1.4)).

Proof of Lemma A.2. The x-poles of the quotient in (A.3) have already been analysed in
the proof of Lemma 3.5. There we saw they could all be banished from i[0, a−] × R by
taking b > −a+/2.

As a result, we need only study the x-poles of the Rr-functions in (A.3). To banish
these from the strip would require inequalities on b more restrictive than the ones pro-
posed. Instead we proceed on the basis of a crucial observation, namely that the poles of
these Rr-functions are removed by x-zeros of the quotient term in (A.3). In fact we know
already this must be true from what we saw in the proof of Lemma 3.5 (where the same
functions appeared in a related context). It is corroborated again by the pole analysis
below.

The bottom line is that we need only be concerned with the double poles that arise
when those of the twoRr-functions in the product in (A.3) overlap - with no corresponding
overlap of the zeros of the quotient term in (A.3). Such poles will not be removed by the
zeros. It is these that can be banished from the strip by imposing b ∈ (−a+/2, a−+a+/2).

As noted in §1, the zeros of G(·) (1.3) occur at the points

ia+ zk,l, zk,l ≡ ika+ + ila−, k, l ∈ N (A.9)

And so the x-zeros of the quotient term in (A.3) (recalling 1/G(z) = G(−z) are given byx = −ib+ ia+/2 + zk,l+1

−x = −ib+ ia+/2 + zk,l
k, l ∈ N (A.10)
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To consider the poles of the Rr-functions in (A.3) it helps to recall (3.7) which tells us
the aggregated poles of the two functions Rr(x + iν ′a+/2, y

′) (corresponding to the two
choices ν ′ = +,−) are given by

± x = −ib+ ia+/2 + zk,l+1, k, l ∈ N (A.11)

We can adapt this straight away to assert that the aggregated poles of the other two
functions Rr(x+ iνa+/2− ia−, y) are given byx = −ib+ ia+/2 + zk,l+2

−x = −ib+ ia+/2 + zk,l
k, l ∈ N (A.12)

Thus we can see the pole sequences (A.11)-(A.12) are manifestly encompassed by the
zeros (A.10). This in itself does not establish that the poles are removed (because we
have not addressed multiplicity) but we know this is true at the algebraic level from
(3.54)-(3.56).

With these sequences in place, we now ask for a restriction on b which will ensure
that the following four products have no double poles in i[0, a−] (with no corresponding
double zeros from (A.10)),

Rr(x− ia− + iνa+/2, y)Rr(x+ iν ′a+/2, y
′), ν, ν ′ = +,− (A.13)

This amounts to ensuring no overlap of the upwards poles of the two constituent functions,
and similarly no overlap of the downwards. To simplify this problem we can make a
“worst case scenario” assumption wherein we assume that, regardless of the choice of ν ′

in Rr(x+ iν ′a+/2, y
′), the latter has poles at all the points (A.11), even though we know

this is not the case (cf. the text below (3.7)). We make the analogous assumption for
Rr(x− ia−+ iνa+/2, y) and (A.12). Under these assumptions we will see that the upper
bound b < a− + a+/2 is sufficient for no overlap.13

Writing down all the upwards poles that are shared between (A.11) and (A.12) we
get a sequence,

− ib+ ia+/2 + zk,l+2, k, l ∈ N (A.14)

and for the downwards,

ib− ia+/2− zk,l+1, k, l ∈ N (A.15)

From these sequences we pick out the poles,

− ib+ ia+/2 + z0,2 (A.16)

ib− ia+/2− z0,1 (A.17)

The first of these has the property that when its imaginary part is > a−, the same is true
of all the other poles in (A.14). Analogously, when the second has imaginary part < 0, the

13We claim that by studying each of the cases (ν, ν′) separately without this assumption - a task which
is somewhat tedious - one does not improve on this restriction, so there is no shrinking of the b interval
because of it.
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same is true of all the other poles in (A.15). Thus by ensuring these two restrictions we
drive out all the shared poles from i[0, a−]. It is not hard to see they are both equivalent
to b < a− + a+/2.

A.2 Proof of Lemma 4.4.

At issue is the function

Ĵδ(y, x, x
′) = ŵ(y)

[
ψ̂(δx, y − ia−)ψ̂(δx′,−y) + ψ̂(δx, y)ψ̂(δx′,−y + ia−)

]
, δ = +,−

(A.18)
where all the objects here have an implicit dependence on the parameters (a+, a−, b), and
where

ŵ(y) ≡ s+(y − ib)
s+(y)

w(y) (A.19)

Here, w(y) is the weight function (1.28); ψ̂(x, y) (6.24) is the reduced version of ψ(x, y)
(1.60); and the quotient term derives from the A∆O S(y) (1.67).

From Lemma 3.1 it is clear that (A.18) is smooth in x, x′ for both choices of δ given
the restriction b ∈ R \ S̃ (1.73), (which is implied by the stronger b ∈ R \ Y we were
assuming throughout §6 for definedness of the maps F (6.2) and F∗ (6.8)). The only
points in S̃ that can lie in b ∈ (0, a+ + a−) are (l+ 1)a− + a+/2, l ∈ N which is why they
are excluded in the lemma. With b ∈ R\ S̃ in force we proceed to consider the analyticity
properties in y of (A.18).

We claim that for both choices of δ, the only y-poles of (A.18) in the strip Im y ∈ [0, a−]
arise from the two functions

s−(ib± y)−1, (A.20)

provided b ∈ (0, a+ +a−). The poles of these functions are simple and given, respectively,
at

± y = ib+ ina−, n ∈ Z (A.21)

We can see there are precisely two points in these sequences that lie in the strip Im y ∈
[0, a−]. Provided b is not a positive integer multiple of a− these are away from the
boundary, and are exactly those described in the lemma.

The claim described above can be broken up into two further lemmas. The first
isolates the algebraic aspect, the second the analytic.

Lemma A.3. Any y-pole of Ĵ±(y, x, x′) (A.18) is a y-pole of one of the three functions,

s−(ib± y)−1, (A.22)

ŵ(y)Rr(x, y − ia−)Rr(x
′, y) (A.23)

Lemma A.4. For x, x′ any non-singular values, the function (A.23) is holomorphic in
y in the strip Im y ∈ [0, a−] provided b ∈ (0, 2a).
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Proof of Lemma A.3. Adapting (A.4) for ψ̂(x, y) (6.24) we have, for δ = +,−,

ψ̂(δx,±y) = w̃(x)1/2(2s−(ib∓ y))−1
∑
ν=+,−

δνe−(δν(ib∓ y)/2)Rr(x+ iνa+/2, y) (A.24)

By applying a shift in y we then get, using antiperiodicity of s−(·) in ia− and e−(±iδνa−/2) =
±iδν,

ψ̂(δx,±(y−ia−)) = w̃(x)1/2(−2s−(ib∓y))−1
∑
ν=+,−

(±i)e−(δν(ib∓y)/2)Rr(x+iνa+/2, y−ia−)

(A.25)
Substituting these last two equations into (A.18) we get straight away, for δ = +,−,

Ĵδ(y, x, x
′) ∝ ŵ(y)(s−(ib− y)s−(ib+ y))−1

∑
ν,ν′=+,−

δe−(δν(ib− y)/2)e−(δν ′(ib+ y)/2)

×
[
ν ′Rr(x+ iνa+/2, y − ia−)Rr(x

′ + iν ′a+/2, y)− (x, x′, ν, ν ′)→ (x′, x, ν ′, ν)
]

(A.26)

where we are of course dealing with proportionality with respect to y. The unimportant
proportionality constant is

− iw̃(x)1/2w̃(x′)1/2/4 (A.27)

The shifts on x, x′ in the square brackets in (A.26) do not affect the structure of the
y-poles. Since the exponentials in (A.26) are entire, we see that the y-poles can only
come from the functions claimed (which we note are ν, ν ′-independent).

Proof of Lemma A.4. It is natural to analyse the poles of ŵ(y) (A.19) and those of the
product of Rr-functions separately. As regards the former, we use (1.37) to write

ŵ(y) = 4s+(y − ib)s−(y)
∏

α=+,−

G(αy − ia+ ib) (A.28)

Using (3.42) we can see the y-poles of the G-product in (A.28) are given by

± y = ib+ zk,l (A.29)

However, the l = 0 terms in the upwards sequence (+y) will be removed by the zeros of
s+(y − ib) at ib+ ina+, n ∈ N, such that those of ŵ(y) (A.28) are given by+y = ib+ zk,l+1

−y = ib+ zk,l
k, l ∈ N (A.30)

With our standing assumption that a+, a− > 0, we see that all these poles lie outside
i[0, a−] provided b > 0.
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Dealing with the product of Rr-functions in (A.23) is not so straightforward. Like
in the previous subappendix, if we tried to banish all of its y-poles directly, this would
lead to an inequality on b more restrictive than the one proposed. We get around this
by observing that all these poles are y-zeros of ŵ(y). This does not in itself imply these
poles are removed, but one can see this algebraically level by analogising (3.54)-(3.56).
As a result we need only be concerned with the double poles that arise when those in the
product overlap - with no corresponding overlap of the zeros of ŵ(y). We find that these
can be banished from the strip by imposing b < 2a.

We first prove the claim that the y-poles of the two Rr-functions in (A.23) are y-zeros
of ŵ(y) (A.28). Using (A.9) we can see that the b-dependent y-zeros of the G-product in
ŵ(y) are given by

± y = i(2a− b) + zk,l (A.31)

As noted in §1, the y-poles of the function Rr(x, y) are given at

± y = i(2a− b) + zk,l, k, l ∈ N (A.32)

And so those of Rr(x, y − ia−) by

{
+y = i(2a− b) + zk,l+1 (A.33)

−y = i(2a− b) + zk,l (A.34)

− y = −ib+ ia+ + zk,0 (A.35)

for k, l ∈ N. The pole sequences (A.32)-(A.34) are all encompassed by the zeros (A.31).
Those in (A.35) are removed by the zeros of s+(y − ib) at y = ib − ina+, n ∈ N∗. Thus
all of these poles are removable in (A.23).

The upwards poles that are shared by Rr(x
′, y) and Rr(x, y− ia−) give rise to double

poles of the product of Rr-functions in (A.23) which will not be removed by the zeros,
and similarly for the downwards. To establish the claim in the lemma, we have to show
that these can be banished from the strip Im y ∈ [0, a−] by imposing b < 2a.

We can see that (A.33) is contained in (A.32) and thus the former describes all the
shared upwards poles. We can also see that (A.34) is contained in (A.32), whereas the
a−-independent (A.35) has no overlap with (A.32). Thus (A.34) describes all the shared
downwards poles. From amongst these shared poles we pick out for special attention

+ y = i(2a− b) + z0,1 (A.36)

− y = i(2a− b) (A.37)

The significance of the first is that whenever its imaginary part is > a−, the same is true
of all the other poles in (A.33). Analogously for the second, when its imaginary part is
< 0, this is also true for all the other poles in (A.34). It is not hard to see that both of
these conditions are equivalent to b < 2a.
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B Appendix. Dual dynamics.
A different perspective on S.

The main motivation for a Hilbert space theory of the A∆O S(b; y) (1.67) was to complete
our account of the dynamics associated to H̃, the Hilbert space version of the A∆O
H̃(b;x) (1.67). At the same time, the results we proved for S (6.9) in §6 and §7 portend a
quantum mechanical interpretation of their own. This is what we call the dual dynamics,
and it can be viewed completely independently of the dynamics in the main text. Indeed
in an alien world with no knowledge of the Ruijsenaars-Schneider system, the function
ψ(b;x, y) could be of interest primarily for its role in the dynamics outlined here.

We recall that Corollary 7.1 tells us S is symmetric on its domain F∗(C), given a
restriction on the coupling parameter: b ∈ (0, a−). It is not hard to see from (6.6) and
(6.9) that the necessary bound exists for us to strengthen this using Nelson’s theorem;
for any f ∈ C there is a constant c such that

‖S nF∗f‖Ĥ ≤ cn‖F∗f‖Ĥ, n ∈ N (B.1)

(cf. §5.1 for details). Thus we have straight away

Theorem B.1. Assume the coupling parameter b satisfies b ∈ (0, a−). Then, the operator
S : F∗(C)→ F∗(C) ⊂ Ĥ defined by (6.9) is essentially self-adjoint in the closure of F∗(C).

By mimicking the procedure in §5.2, we can prove the existence and form of the wave
operators associated to this system fairly easily. In doing so we find the system to be
reflectionless and without bound states, i.e. Ĥ consists entirely of scattering states. With
the wave operators in place, there are two routes to the latter claim; one of them uses
the results in §5.2 (and in doing so, makes the dual dynamics dependent on the dynamics
for H̃) whilst the other is self-contained and analogises the argument in §7 (making it
dependent on symmetry of H̃ but not its dynamics).14

Before using Theorem B.1 to define a one-parameter unitary group for S, we should
make a provisional extension of the latter to the orthocomplement of the closure of F∗(C),
where it is formally undefined. With the extension defined as an arbitrary, bounded self-
adjoint operator (and denoted by the same symbol) we thus have a unitary one-parameter
group on Ĥ,

exp(itS), t ∈ R (B.2)

We will later prove that F∗ is isometric and onto for this range of b.15 It follows that
F∗(C) is dense in Ĥ, and so S is densely-defined in this Hilbert space and, as an essentially
self-adjoint operator, has absolutely continuous spectrum (−∞,∞) of multiplicity one.
Thus the extension happens to be unnecessary, but we cannot claim to know this yet.

As usual we need a free motion with which to compare this interacting motion. This
involves a dual Hamiltonian Ĥ0 analogous to H0 (5.8) for which we need the adjoint
Fourier transform J ∗ : H → Ĥ,

14 We omit the details of this. The point is that Proposition 7.1 can easily be adapted for H ↔ Ĥ and
applied to S = H̃.

15In fact, from Corollary 5.3 we “know” this already. However, this knowledge rests on the dynamics
in §5.2 which we are forgetting here.

107



CHAPTER 1. GENERAL CASE

(J ∗f)δ(x) = c
∑
δ=+,−

∫
R
dx exp(−iπδxy/a+a−)f(x), c ≡ 1/

√
2a+a− (B.3)

The operator Ĥ0 is defined by

Ĥ0 = J ∗MJ (B.4)

where, again, M (6.9) denotes unbounded multiplication onH by 2s+(x). We can consider
(B.4) on any space up to D(M) where D(M) is the the maximal domain of all functions
f ∈ H such that Mf ∈ H. Thus we have a densely-defined operator in Ĥ,

Ĥ0 : J ∗(D(M))→ J ∗(H) (B.5)

Unitarity of J ∗ entails Ĥ0 is self-adjoint and so we may consider the unitary one-parameter
group,

exp(itĤ0), t ∈ R (B.6)

Finally, Ĥ0 (B.5) has an A∆O action,

(Ĥ0f̂)(y) =

(
Ĥ0(y)f+(y)

−Ĥ0(y)f−(y)

)
(B.7)

Ĥ0(y) ≡ T yia− − T
y
−ia− (B.8)

which follows because

2s+(x)e−iπδxy/a+a− = δĤ0(y)e−iπδxy/a+a− , δ = +,− (B.9)

We are now in a position to define wave operators on Ĥ,

Ŵ± ≡ s·lim
t→∞

exp(±itS) exp(∓itĤ0) (B.10)

Our expectation for what these will be involves the following square-root phase function

θ(b;x) ≡ φ̃(b) [c̃(b;x)/c̃(b;−x)]1/2 (B.11)

where we recall c̃(b;x) is defined in (1.49), and φ̃(b) ≡ exp(iπb(b− a−)/2a+a−) has been
seen already in Lemma 1.4. Because of (1.26), we have |θ(b;x)|2 = 1 for (b, x) ∈ R2, as
well as

θ(b;−x) = φ̃(b)−2 θ(b;x) (B.12)

The significance of θ(b;x) derives from its role in the large-y asymptotics of the function
ψ(b;x, y). This asymptotics, given in Lemma 1.4, may be written as

ψ(b;x, y) = θ(b;x)−1e−iπxy/a+a− +O(e−ρy), y →∞ (B.13)

108



B. APPENDIX. DUAL DYNAMICS

where ρ > 0 is a constant fixed by a+, a−, and the bound represented by O is uniform for
x varying over any compact subset of R. (We are interested in the conjugated function
here because of its appearance in the transform kernel of F∗, (6.6)).

We are now ready for the first result and its corollary. Having chosen the above
definitions carefully, we are able to use exactly the same ideas as in Lemma 5.2 (with the
roles of x and y reversed). The corollary is fairly intuitive and we omit the details (they
are virtually the same as those in the proof of Corollary 5.3 but with relevant objects
interchanged).

Lemma B.2. Suppose b ∈ (0, a−). Then, the following holds for any f̂ ∈ J ∗(C) ⊂ D(Ĥ0),

lim
t→∞

exp(−itS) exp(itĤ0)f̂ = F∗θ+J f̂ (B.14)

where: θ+ denotes multiplication by θ(b;x) (B.11) on functions in H ≡ L2(R, dx); the
map F∗ : C → Ĥ is a restriction of the adjoint of F (4.1) with action (6.6); and J is
Fourier transform (5.7).

Corollary B.3. Suppose the coupling parameter b satisfies the condition of the previous
lemma. Then the adjoint map F∗ (6.5) is bounded on H with action (6.6) and is, fur-
thermore, an isometry. Moreover, we have existence of the wave operator Ŵ− defined in
(B.10) and Ŵ− = F∗θ+J .

Let us now discuss the a priori relationship that exists between Ŵ− and Ŵ+. With
this in place, we will be able to obtain the latter from the former by means of an identity
satisfied by the transform F∗.

To express this relationship we need the notion of multiplication on function 2-tuples
in Ĥ by

P̂ ≡

(
0 1
1 0

)
(B.15)

In other words,

(P̂ f̂)δ(y) = f̂−δ(y), f̂ ∈ Ĥ (B.16)

Recalling that the action of S is given by (6.13) we have straight away that

(P̂S f̂)δ(y) = (S f̂)−δ(y) = −δS(b; y)f−δ(y) = −(SP̂ f̂)δ(y), f ∈ F∗(C) (B.17)

I.e.,

P̂S = −SP̂ (B.18)

(In fact this property follows more generally from the intertwining (6.9) whenever F∗ is
an isometry; this also involves (B.23) and (B.24) below.) Thus whenever S is essentially
self-adjoint it follows that

P̂eitS = e−itSP̂ , t ∈ R (B.19)
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Thus we see that an intimate connection exists between P̂ and time reversal. Adapting
this argument we also have

P̂eitĤ0 = e−itĤ0P̂ , t ∈ R (B.20)

Before exploring the consequences of this for the wave operators, let us look at P̂
from a different perspective. This is as the dual-level counterpart of the familiar parity
operator on H,

(Pf)(x) ≡ f(−x), f ∈ H, (B.21)

P and P̂ engage in the following intertwining relations,

PJ = J P̂ (B.22)

F∗P = P̂F∗ (B.23)

(which follow from the forms of the transforms alone; i.e. (B.22) still holds with J → F
and vice versa for (B.23).16We have presented these specific versions because they are
needed in various places below.)

Oddness of s−(·) entails that on H,

PM = −MP (B.24)

and so 9
PeitM = e−itMP , t ∈ R (B.25)

In fact whenever F∗ is an isometry, this property is equivalent to (B.19) (this involves
(B.23) and (B.39) below).

As a result of (B.19) and (B.20) it follows straight away that

Ŵ+ = P̂Ŵ−P̂ (B.26)

Thus using Corollary B.3 and (B.22) we have

Ŵ+ = P̂F∗θ+PJ (B.27)

A more explicit expression for Ŵ+ follows because of a transform identity that we can
prove explicitly for the term on the rhs of (B.27) (cf. the proof of Theorem B.4 below).
This gives a desirable form to the S-operator.

16The form we are talking about here is that seen in

(Kf̂)(x) =
∑
δ=+,−

∫
R+

dyΨ(x, y)fδ(y)

and its formal adjoint,

(K∗f)δ(y) =

∫
R
dxΨ(δx, y)f(x), δ = +,−
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Theorem B.4. Suppose the coupling parameter b satisfies b ∈ (0, a−). Then, the wave
operators Ŵ± (B.10) exist on Ĥ ≡ L2(R+, dy)⊗ C2 and are given by

Ŵ− = F∗θ+J (B.28)

Ŵ+ = F∗θ−J (B.29)

where θ± denotes multiplication by θ(b;±x) (B.11) on functions in H ≡ L2(R, dx) This
entails an S-operator,

Ŵ ∗
+Ŵ− = J ∗(−ũ(b; ·))J (B.30)

ũ(b;x) ≡ −c̃(b;x)/c̃(b;−x) (B.31)

where: J is Fourier transform (5.7); c̃(b;x) is the function in (1.49); and ũ(b;x) has
been defined to analogise u(b; y) (1.34). ũ(b;x) differs from θ(b;x)2 by a constant phase
multiple and in (B.30) it is used for multiplication on H ≡ L2(R, dx).

Proof of Theorem B.4. (B.28) is already given in Corollary B.3. Because of what we said
above, circa (B.27), the result for Ŵ+ follows because of the following transform identity
on C,

P̂F∗θ+P = F∗θ− (B.32)

This follows straightforwardly from the form of F∗ alone, (6.6); we write out

(F∗θ+Pf)δ(y) =

∫
R
dxψ(δx, y) θ(x)f(−x)

=

∫
R
dxψ(−δx, y) θ(−x)f(x) = (F∗θ−f)−δ(y), f ∈ C (B.33)

and so (B.32) follows as claimed (note we have suppressed implicit dependences on b).
Now for the S-operator. From (B.28) and (B.29) we have

Ŵ ∗
+Ŵ− = J ∗θ−FF∗θ+J (B.34)

From Corollary (B.3) we know that F∗ is an isometry for the b-interval under considera-
tion. This implies FF∗ = 1H and so (B.30) follows because of (B.12). To see this with
explicit variables we can write out (B.34) as follows,

(Ŵ ∗
+Ŵ−f̂)δ(y) =

∫
R
dx e−iδπxy/a+a−

[
θ(−x) θ(x)](J f̂)(x), δ = +,− (B.35)

Then, from θ(x) (B.11),[
θ(−x) θ(x)] = φ̃−2 θ(x)2 = c̃(b;x)/c̃(b;−x) (B.36)
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Proof of Lemma B.2. This is mostly just a matter of adapting the proof of Lemma 5.2.
We aim to prove the following equivalent statement to (B.14),

lim
t→∞

exp(−itS) exp(itĤ0)J ∗f = F∗θ+f, f ∈ C (B.37)

In concrete terms this means

lim
t→∞
‖(F∗θ+ − e−itSeitĤ0J ∗)f‖Ĥ = 0, f ∈ C (B.38)

(we are now suppressing implicit dependences on b). Unitary one-parameter group prop-
erties entail the following two intertwining relations on Ĥ,

eitSF∗ = F∗eitM (B.39)

eitĤ0J ∗ = J ∗eitM (B.40)

Using these we may write the norm in (B.38) as

‖(F∗θ+ − J ∗)eitMf‖Ĥ (B.41)

Since

‖f̂‖2
Ĥ =

∑
δ=+,−

∫
R+

dy |fδ(y)|2 (B.42)

(recall (6.4)) we see how (B.38) is equivalent to

lim
t→∞

∫
R+

dy |(ÎδeitMf)(y)|2 = 0, f ∈ C, δ = +,− (B.43)

(Îδf)(y) ≡
∫
R
dx,
(
ψ(δx, y)θ(x)− e−iδπxy/a+a−

)
f(x), f : R→ C (B.44)

(which is such that cÎ±f = ((F∗θ+ − J ∗)f)±).
From the Riemann-Lebesgue we already have a pointwise vanishing

lim
t→∞

(Î±e
iMtf)(y) = 0, y ∈ R+, f ∈ C (B.45)

Thus it is a question of dominated convergence; to interchange the limit and integral in
(B.45) we need two dominating functions F±(y) ∈ L1(R+, dy) and a t0 ∈ [0,∞) such that

|(ÎδeiMtf)(y)|2 ≤ Fδ(y), y ∈ R+, t ∈ [t0,∞), δ = +,− (B.46)

These dominating functions will be piecewise constructions on two different intervals,
(0, R) and (R,∞), where R > 0 is to be fixed in due course. (Unlike in the proof of Lemma
5.2 these two functions are qualitatively different for different choices of δ = +,−.)

As a result of smoothness of ψ(x, y) in both variables (recall (3.3)) the integral func-
tions in (B.44) are defined and bounded on (0, R), and so a dominating functions is trivial
to write down.
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For the second interval we require decay rather than boundedness. For this the asymp-
totics (B.13) are central. They entail that

ψ(±x, y) θ(x) = ψ±as(x, y) +O(e−ρy), y →∞ (B.47)

ψδas(x, y) ≡

{
e−iπxy/a+a− , δ = + (B.48)

(θ(x)/θ(−x)) eiπxy/a+a− , δ = − (B.49)

where the bound represented by O has the properties described below (B.13). Telescoping
as in (5.55) we thus have

1

2
|(ÎδeiMtf)(y)|2 ≤

∣∣∣∣ ∫
R
dx
(
ψδas(x, y)− e−iδπxy/a+a−

)
e2its+(x)f(x)

∣∣∣∣2
+

∫
R
dx |ψ(δx, y)θ(x)− ψδas(x, y)|2 · |f(x)|2, δ = +,− (B.50)

From (B.47) it is immediately clear that the second of these integrals can be bounded
from above by a function integrable on (y0,∞) for some y0 ≥ 0. Thus setting R = y0

we are “halfway” to finding a dominating function on (R,∞) for both choices of δ; it
remains to analyse the first integral on the rhs.

For δ = +, the first integral in (B.50) has a vanishing integrand, and so we are in fact
“the whole way” to finding a dominating function for this choice of δ.

For δ = −, we must look at the first integral in (B.50) more closely,∫
R
dx
(
(θ(x)/θ(−x))− 1

)
eiπxy/a+a−+2its+(x)f(x) (B.51)

We can bound (the modulus squared of) this from above by an integrable function on
(R,∞) for any t0 > 0 by employing an argument analogous to (5.59)-(5.62) (with the
roles of x and y reversed). This hinges on the fact we can rewrite the exponential in
(B.51) as

(πi/a+a−)−1[y + 2a−tc+(x)]−1∂x
(
eiπxy/a+a++2its+(x)

)
(B.52)

The term in square brackets is non-zero because we have y, a−, t, c+(x) > 0. Thus per-
forming integration by parts (with an intermediate term which vanishes because of f ’s
compact support away from the origin) we can readily find a bound as described.
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Chapter 2

The special case b = (N + 1)a+.

1 Introduction

In this part of the thesis we look at how a Hilbert space theory can be constructed
independently of the previous results for a special case of the coupling parameter b. This
is the case when b equals an integer multiple of a+,

b = bN ≡ (N + 1)a+, N ∈ N ≡ {0, 1, . . .} (1.1)

The theory that follows will still be based on the function ψ(b;x, y) that was central
to our earlier work. But now, we can exploit some very different properties that it has
under the specialisation (1.1). For one thing, its component parts become elementary. In
addition, it can be broken up into two components which have quasiperiodicity in x and
y. This may seem like an obscure property, but it enables a totally different approach to
the construction of a Hilbert space theory. (The idea to look for quasiperiodicity comes
from [20], where it exists for reflectionless eigenfunctions and plays a crucial role in the
isometry proof of the corresponding eigenfunction transforms.)

Our goal is once again to prove self-adjoint dynamics, complete with a description
of Hilbert space in terms of scattering and bound states (i.e. continuous and discrete
spectrum). But now, the process by which we arrive at these things is reversed. Let
us expand on what we mean by this. In Chapter 1, the eigenfunction transform F
played a central role in the Hilbert space theory. It was used to define the Hilbert space
version of H̃(b;x), namely H̃ac, which we proved was symmetric and, later, essentially
self-adjoint. This was done without knowledge that F was isometric, or even bounded.
These properties were proved eventually, but only by exhibiting F ’s relationship to the
wave operators (any consideration of which requires self-adjointness).

For the bN -specialised versions of F , which we call FN , we are able to prove isometry
directly (with no mention of an A∆O). This is the main preoccupation of Section 3.1.
For the bN -specialised versions of H̃ac, which we call H̃ac,N , symmetry and self-adjointness
follow easily once we have isometry. This is because the intertwining satisfied by H̃ac,N can
then be read as an explicit rendering of unitary equivalence to the unbounded self-adjoint
multiplication operator M̂ (cf. §3.3 for details).

The proof of orthogonality and completeness is also different in the specialised setting.
It exploits the fact we can also tackle directly the isometry properties of the adjoint
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eigenfunction transform. More specifically, isometry breakdown of the adjoint is connected
to the presence of bound states (we find there can be at most one bound state in this
regime). In fact we can give an illuminating description of how isometry breaks down for
both FN and F∗N , cf. §5 (something which we cannot do in the general b case).

We note that isometry of the specialised eigenfunction transforms FN is not proved for
all values of the parameters a+, a−. These must be restricted in a way that corresponds
exactly with the parameter restrictions in Chapter 1, and summarised in Chapter 0.
Thus, the physics that derives from the new approach is no more than what we get from
Part I.

An important feature about A∆Os, which we have alluded to already, can be seen
explicitly in the special case. If we look at how H̃(b;x) specialises for (1.1) we see that

H̃N(x) ≡ H̃(bN ;x) = T xia− + T x−ia− (1.2)

In other words, this appears to be a free A∆O. Accordingly, the claim that we are going
to build a Hilbert space theory with non-trivial dynamics, bound states, scattering and
so on, may seem surprising. The point is that these things all flow from the special choice
of operator domain (which comes by way of the intertwining definition of H̃ac)).

In §3.1 and §4.1 (which address isometry of FN and F∗N respectively) we break up
the critical steps into a series of propositions. As per our convention, these are presented
in terms of minimal assumptions (which are satisfied by the objects at hand). This has
the practical advantage of isolating the conceptual core of any given step (which is useful
not least because the eigenfunctions ψN(x, y) are somewhat unwieldy). But beyond this,
it opens up the possibility that other eigenfunction transforms might be found that also
satisfy the assumptions. Indeed this was realised in the author’s joint paper [32].

This part of the thesis is intended to be as self-contained as possible, which is why we
have reset the section numbers. Any references to Chapter 1 will be clearly indicated.

Let us make one technical remark about certain constants that feature in this chapter
(though not explicitly until §5). In Chapter 1, an important role was played by the con-
stant mb defined to the largest integer such that mba− < b. This reappears in the present
chapter as mN+1. In addition there are other constants m1, . . . ,mN and n0, . . . , nN , for
any given N . These are all fixed by the value of the ratio a+/a− in a particular way,
and they do not have an analogue in Chapter 1. The nj-kind arise here because the
x-integrand of the following object, which is the focus of study in §3.1,

(FN f̂ ,FN ĝ)H (1.3)

is found to have 2(N + 1) intractable poles in the strip Imx ∈ [0, a−] at points x+
j

depending on nj, cf. (5.1). This contrasts to the situation for

(H̃ac,NFN f̂ ,FN ĝ)H − (FN f̂ , H̃ac,NFN ĝ)H (1.4)

(manifestly relevant to symmetry of H̃ac,N) which was studied for general b in §4 of
Chapter 1. The x-integrand implicit in this object was found to have no poles in the
strip for certain parameter restrictions (corresponding here to nN = 0). Thus we see that
the task of showing (1.3) equals (f̂ , ĝ)Ĥ involves residue concerns that are not present in
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showing that (1.4) vanishes. This is one way in which the present chapter is more difficult
than the previous one; the extra difficulty is captured in the comparison of Proposition
3.1 in this chapter to Proposition 4.2 in Chapter 1.

The constants m1, . . . ,mN+1, defined circa (5.51), arise analogously in the calculation
of

(F∗Nf,F∗Ng)Ĥ (1.5)

In short, {0, . . . , 0} corresponds to unitarity of FN , and {0, . . . , 0, 1} to a one-dimensional
bound state subspace, i.e. FN(Ĥ)⊥ as one dimensional. Isometry of FN hinges on {nj}
and requires {0, . . . 0}. (The fact that 0 is the most important value of these constants is
why we can suppress their explicit appearance until §5.)
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2 The specialised functions ψN(x, y).

Definition and evaluation.

We write the b = bN ≡ (N + 1)a+ specialisations of ψ(b;x, y) from Chapter 1 as follows

ψN(x, y) ≡ ψ(bN ;x, y), N ∈ N ≡ {0, 1, . . .} (2.1)

To compute the rhs of this we need various formulas from Chapter 1, as well as a formula
for the corresponding specialisation of the relativistic conical function (which we take
directly from [5]). Once we have obtained our working expression for ψN(x, y), references
to Chapter 1 are minimal. Indeed, one does not need to know how this family of functions
derives from ψ(b;x, y) in order to follow the story. Accordingly, the reader can skip to
(2.6).

As claimed already, the component parts of ψ(b;x, y) become elementary under this
specialisation. Central to this is the A∆E for the hyperbolic gamma function, (1.1) in
Chapter 1, which gives us the following

G(z + ibN) = G(z)
N∏
j=0

2c−(x+ i(j + 1/2)a+), N ∈ N (2.2)

With this we can see (recalling (1.25), (1.48) and (1.49) from Chapter 1),

1/c(bN ;−y) =
G(y − ia+ ibN)

G(y − ia)
=

N∏
j=0

(−2i)s−(y + ija+) (2.3)

w̃(bN ;x) =
G(x+ ia−/2)

G(x− ia−/2)

G(x− ia−/2 + i(N + 1)a+)

G(x+ ia−/2− i(N + 1)a+)

=
N∏
j=0

4s−(x+ i(j + 1/2)a+)s−(x− i(j + 1/2)a+) (2.4)

From [5](4.8)-(4.12) we then have

Rr(bN ;x, y) = (−i)N+1
(
ΣN(x, y) exp(iπxy/a+a−)

− ΣN(x,−y) exp(−iπxy/a+a−)
)/ N∏

j=−N

4s−(x+ ija+)s−(y + ija+) (2.5)

where ΣN(x, y) is an entire function defined and discussed below.
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Bringing (2.1)-(2.5) together we have

ψN(x, y) = (−)N iN+1wN(x)1/2vN(y)

×
∑
ν=+,−

2νs−(x− iν(N + 1/2)a+)e−(ν(ibN − y)/2)

×
(

exp(iπxy/a+a−)e−(−νy/2)ΣN(x+ iνa+/2, y)− (y → −y)
)

(2.6)

where

wN(x) ≡ 1/
N∏
j=0

4s−(x+ i(j + 1/2)a+)s−(x− i(j + 1/2)a+) (2.7)

vN(y) ≡ 1/
N+1∏
j=1

2is−(y − ija+) (2.8)

We note these are the only non-entire x, y-functions on the rhs of (2.6). We also have

ΣN(x, y) ≡
N∑

k,l=0

c
(N)
k,l e−((N − 2k)x)e−((N − 2l)y) (2.9)

where the coefficients c
(N)
k,l are Laurent polynomials in e−(ia+) with integer coefficients (cf.

[18] for a full definition). Relevant to us is the fact they satisfy c
(N)
k,l = c

(N)
l,k = c

(N)
N−k,N−l =

(−)Nc
(N)
k,N−l, which entail respectively

ΣN(x, y) =


ΣN(y, x) (2.10)

ΣN(−x,−y) (2.11)

(−)N ΣN(x,−y) (2.12)

These coefficients are also such that

N∑
l=0

c
(N)
0,l e−((N − 2l)z) =

N∏
l=1

2s−(z + ila+) (2.13)

(The lhs of this appears in the lead asymptotics of ΣN , cf. §2.3.)
When studying ψN(x, y) it is useful to write it in a form which isolates the plane wave

structure,

ψN(x, y) = wN(x)1/2vN(y)
∑
τ=+,−

exp(iτπxy/a+a−)`τN(x, y) (2.14)

where

`τN(x, y) ≡ (−)N iN+1 τ
∑
ν=+,−

2νs−(x− iν(N + 1/2)a+)

× e−(ν(ibN − y)/2)e−(−ντy/2)ΣN(x+ iνa+/2, τy), τ = +,− (2.15)
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This entire function has several important properties which can all be verified from the
definitions with a little work,

`τN(x, y) = `τN(x,−y) (2.16)

`τN(x+ ia−, y) = (−)N+1`τN(x, y) (2.17)

`τN(x, y + ia−) = τ(−)N+1`τN(x, y) (2.18)

Indeed it these quasiperiodicity properties combined with (2.14) which are key to the
direct isometry proof.

In the course of the proofs it will be useful to write ψN(x, y) in terms of

KN(x, y) ≡ exp(iπxy/a+a−)ΣN(x, y) (2.19)

This function inherits the properties (2.10) and (2.11),

KN(x, y) = KN(y, x) (2.20)

KN(x, y) = KN(−x,−y) (2.21)

In addition we know from [18] that it satisfies the A∆E,

s−(x− iNa+)KN(x+ ia+, y) + s−(x+ iNa+)KN(x− ia+, y)

= 2s−(x)c−(y)KN(x, y) (2.22)

From [18] we also get the very important specialisations,

KN(±ija+, y) = iNB
(N)
N−j(c−(y)), j = 0, . . . , N (2.23)

KN(x,±ija+) = iNB
(N)
N−j(c−(x)), j = 0, . . . , N (2.24)

Here B
(N)
k (·) is a polynomial of degree k and parity (−)k with real coefficients. (For

completeness we note that the degree-k property is in fact only valid if

ja+/a− 6= {1, 2, . . .}, ∀j = 1, . . . , 2N (2.25)

We also note that with just one of the four formulas in (2.23) and (2.24), the other three
follow from (2.20) and (2.21).) We note the special case

iNB
(N)
0 (·) =

2N∏
j=N+1

2s−(ija+) (2.26)

We proceed to illustrate why it can be advantageous to work with KN instead of ΣN .
From the definition (2.19) it easily follows that

KN(x+ iνa+/2, τy) = exp(iτπxy/a+a−)e−(−ντy/2)ΣN(x+ iνa+/2, τy), ν, τ = +,−
(2.27)
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This means that if we define

λτN(x, y) ≡ exp(iπτxy/a+a−)`τN(x, y), τ = +,− (2.28)

then comparison of (2.27) with (2.15) makes it clear that

λτN(x, y) = (−)N iN+1 τ
∑
ν=+,−

2νs−(x− iν(N + 1/2)a+)

× e−(ν(ibN − y)/2)KN(x+ iνa+/2, τy) (2.29)

which is a little simpler than the corresponding expression for `N . All the same, there
are occasions when we choose to work with ΣN rather than KN , because the formulas
involved are more intuitive when the plane waves are visible rather buried in KN . We
note here the λ±N -analogue of (2.14),

ψN(x, y) = wN(x)1/2vN(y)
∑
τ=+,−

λτN(x, y) (2.30)

2.1 The functions MN and ΛN

The reader is advised to skip this subsection on a first reading. It introduces and studies
an entire function MN , and its close friend ΛN . First,

M τ,τ ′

N (x, x′; y, y′) ≡
∑
α=+,−

`ατN (αx, y)`ατ
′

N (αx′, y′), τ, τ ′ = +,− (2.31)

This function has several “surface” symmetries that can be read off straight away, as well
as several “deep” symmetries that derive from properties of the components of `τN(x, y).
Two examples of the former are

M τ,τ ′

N (x, x′; y, y′) =

M τ ′,τ
N (x′, x; y′, y) (2.32)

M−τ,−τ ′
N (−x,−x′; y, y′) (2.33)

To find the “deep” symmetries there is a way to express (2.31) using (2.15) which is
particularly useful. We begin with the following expression, which is just (2.31) with
(2.15) substituted in,

(−)N+1ττ ′
∑

α,ν,ν′=+,−

4νν ′s−(αx− νηN)s−(αx′ − ν ′ηN)e−(ν(ξ − y)/2)e−(ν ′(ξ − y′)/2)

×e−(−νατy/2)e−(−ν ′ατ ′y′/2)ΣN(αx+iνa+/2, ατy)ΣN(αx′+iν ′a+/2, ατ
′y′), τ, τ ′ = +,−

(2.34)

ηN ≡ i(N + 1/2)a+, ξ ≡ i(N + 1)a+ (2.35)

If we now relabel ν → αν, ν ′ → αν ′, as permitted under
∑

ν,ν′ , and use oddness of s−(·)
and the symmetry (2.11) we find
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2. THE SPECIALISED FUNCTIONS ψN(x, y)

M τ,τ ′

N (x, x′; y, y′) = (−)N+1ττ ′
∑

ν,ν′=+,−

4νν ′s−(x− νηN)s−(x′ − ν ′ηN)µνν′(y, y
′)

× e−(−ντy/2)e−(−ν ′τ ′y′/2)ΣN(x+ iνa+/2, τy)ΣN(x′ + iν ′a+/2, τ
′y′), τ, τ ′ = +,−

(2.36)

where

µνν′(y, y
′) ≡


∑

α=+,− e−(α(y + y′)/2)e−(−iαbN), νν ′ = +∑
α=+,− e−(α(y − y′)/2), νν ′ = −

(2.37)

The only part of this rewriting which is not manifest is

∑
α=+,−

e−(αν(ξ − y)/2)e−(αν ′(ξ − y′)/2) = µνν′(y, y
′), ν, ν ′ = +,− (2.38)

but this is seen to be true with a little thought .
Since the above is a little dense, let us we expand on what has happened in the pas-

sage from (2.31) to (2.36) (the indices τ, τ ′ are considered fixed throughout). We learn
from our starting expression (2.34) that each of the α-summands in (2.31) consists of four
additive components, corresponding to the four choices of ν, ν ′ = +,−. What is not clear
in (2.34), but revealed by s−(·)’s oddness and the ΣN -symmetry, (2.11), is that for the
two choices of α = +,− these four components are actually very similar. By relabelling,
we bring the similar terms together and factorise; these similar terms differ only in the
α-summand in (2.38).

The point of (2.36) is to find symmetries of MN not manifest from its definition,
(2.31). The first of these is

M τ,τ ′

N (x, x′; y,−y) = M−τ,−τ ′
N (x, x′;−y, y), τ, τ ′ = +,− (2.39)

This follows because with y′ = −y in (2.36), the y variable occurs only in the pairs τy,
τ ′y, as well as in µνν′(y,−y). The latter equals

µνν′(y,−y) =

2c−(i(N + 1)a+), νν ′ = +,

2c−(y), νν ′ = −
(2.40)

which is manifestly even as a function of y.
As a consequence of (2.39), we get a further two,

M τ,τ
N (x, x;−y, y) = M τ,τ

N (−x,−x;−y, y), τ = +,− (2.41)

M τ,−τ
N (x,−x;−y, y) = M τ,−τ

N (−x, x;−y, y), τ = +,− (2.42)

The first of these arises by applying (2.32), (2.33) and (2.39) sequentially. And the second
by applying (2.32) and (2.39). They will be significant later on.
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In our later analysis of the “residue functions”, the proofs are aided by using the
`N → λN modification of MN ,

Λτ,τ ′

N (x, x′; y, y′) ≡
∑
α=+,−

λατN (αx, y)λατ
′

N (αx′, y′), τ, τ ′ = +,− (2.43)

It readily follows from the definition of λN (2.28) that

λατN (αx, y)λατ
′

N (αx′, y′)

= exp(iπτxy/a+a−) exp(iπτ ′x′y′/a+a−)`ατN (αx, y)`ατ
′

N (αx′, y′), α, τ, τ ′ = +,− (2.44)

And so

Λτ,τ ′

N (x, x′; y, y′) = exp(iπτxy/a+a−) exp(iπτ ′x′y′/a+a−)M τ,τ ′

N (x, x′; y, y′) (2.45)

From this we can see that ΛN inherits all the symmetries ofMN listed above. Furthermore,
we can adapt (2.36) to yield an analogous expression for ΛN . Specifically, by combining
(2.27), (2.36) and (2.45) we get straight away

Λτ,τ ′

N (x, x′; y, y′) = (−)N+1ττ ′
∑

ν,ν′=+,−

4νν ′s−(x− νηN)s−(x′ − ν ′ηN)µνν′(y, y
′)

×KN(x+ iνa+/2, τy)KN(x′ + iν ′a+/2, τ
′y′), τ, τ ′ = +,− (2.46)

2.2 The functions wN(x) and ŵN(y)

We first take a closer look at the function wN(x) (2.7). It immediately follows from
oddness and ia−-antiperiodicity of s−(·) that it is even and ia−-periodic in x. We can
also show that it is real-valued and positive for real x by writing it as

wN(x) ≡ 1/
N∏
j=0

|2s−(x− i(j + 1/2)a+)|2 (2.47)

If x̃ is a pole of this function, then so are −x̃ and x̃ ± ia− by evenness and periodicity
respectively. Clearly all poles lie on the imaginary axis.

To examine the poles more closely let us zone in on s−(x− i(j+ 1/2)a+)−1 and define
x+
j to be the unique x-pole of this function in the period strip Imx ∈ [0, a−).

Here, j runs from 0 to N . Since the x-poles of this function are at

x = i(j + 1/2)a+ + ina−, n ∈ Z, (2.48)

we know x+
j will be one of these. In fact, since a+, a− are positive, it will correspond to

a particular n ≤ 0.
Defining x−j to be the unique x-pole of s−(x + i(j + 1/2)a+)−1 in Imx ∈ [0, a−),

we can now express all the poles of wN(x) in the period strip as {x+
j , x

−
j }Nj=0. Provided
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x+
j is away from the origin, then clearly x−j = ia− − x+

j . This is the case iff the number
(j + 1/2)a+/a− is non-integer.

We now address the question of pole order. Specifically, we want an iff condition for
all the poles x+

j , x
−
j to be simple. Given that the poles of sinh(·)−1 are themselves simple,

non-simplicity can arise for wN(·) only by the overlap of poles from different product
terms. Hence it is this possibility that we want to exclude. From (2.48), we see that the
pole x+

j is going to be simple iff the only solution to the following equation is the trivial
one, ± = +, j′ = j and n′ = n,

i(j + 1/2)a+ + ina− = ±i(j′ + 1/2) + in′a− (2.49)

where we take j′ = 0, . . . , N and n′ ∈ Z on the rhs in order to express all the poles of
wN(·). This is solved by a fixed j′ iff

[(j + 1/2)∓ (j′ + 1/2))]a+/a− ∈ Z (2.50)

Since

{(j + 1/2)∓ (j′ + 1/2)
∣∣ j, j′ = 0, . . . , N} = {−2N − 1, . . . , 0, . . . , 2N + 1}, (2.51)

we conclude that the poles {x+
j } are simple iff the numbers ka+/a− are non-integer for

all k = 1, . . . , 2N + 1. This also ensures {x+
j } are away from the origin (this is clear from

what we said above but also a priori, since if x+
j = 0 then x−j = 0. But this would be a

case of overlap, of the kind we have just excluded).
We summarise and expand on this in the following lemma.

Lemma 2.1. The function wN(x) (2.7) has all simple poles iff the ratio a−/a+ is not in
the following point set,

EN ≡
{k
n

∣∣∣ k = 1, 2, . . . , 2N + 1, n ∈ N
}

(2.52)

This condition also ensures that all poles are away from the lines Imx/a− ∈ Z.

Proof. This follows largely from what was said above. We just have to note that the
argument above can be easily adapted for x−j and that simplicity of {x±j } is clearly
equivalent to simplicity of all poles (because of wN(·)’s ia−-periodicity). Likewise, {x±j }
away from the origin is equivalent to all poles away from the lines Im x/a− ∈ Z.

We now introduce the dual weight function ŵN(y). Although this is yet to appear in
our story, we define and study it here because of the obvious similarities to wN(x). It is
defined in terms of vN(y) (2.8) as follows

ŵN(y) ≡ vN(y)vN(−y) = |vN(y)|2 = 1/
N+1∏
j=1

4s−(y + ija+)s−(y − ija+) (2.53)

To understand the second equality here, note from the definition of vN that
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vN(y) = vN(−y) (2.54)

The properties of evenness and real-valuedness and positivity for real y are all manifest
from (2.53). As before, ia−-periodicity in y follows from ia−-antiperiodicity of s−(·).

All the properties we listed above for a generic pole of wN(·) also hold for a generic
pole of ŵN(·). Furthering the analogy, we formalise our study of the poles by defining y+

j

to be the unique y-pole of s−(y− ija+)−1 in the strip Im y ∈ [0, a−). Clearly y+
j will

be given by

y = ija+ + ima−, m ∈ Z, (2.55)

for a particular m ≤ 0. We also define y−j similary for s−(y − ija+)−1. Here, j runs
from 1 to N + 1. We have y−j = ia− − y+

j whenever y+
j is away from the origin. This is

the case iff ja+/a− is non-integer. On the matter of pole order, the argument above can
be easily adapted, arriving at the following analogue to (2.51),

{j ∓ j′
∣∣ j, j′ = 1, . . . , N + 1} = {−2N − 2, . . . , 0, . . . , 2N + 2} (2.56)

With this we conclude that the poles {y+
j } are simple iff the numbers ka+/a− are non-

integer for all k = 1, . . . , 2N + 2. This also ensures that {y+
j } are away from the origin.

We summarise and expand on this in the following lemma.

Lemma 2.2. The function ŵN(y) (2.53) has all simple poles iff the ratio a−/a+ is not
in the following point set,

ÊN ≡
{k
n

∣∣∣ k = 1, 2, . . . , 2N + 2, n ∈ N
}

(2.57)

This condition also ensures that all poles are away from the lines Im y/a− ∈ Z.

Proof. This follows largely from what was said above. We just have to note that the
argument there can be easily adapted for y−j and that simplicity of {y±j } is clearly equiv-
alent to simplicity of all poles. Likewise, {y±j } away from the origin is equivalent to all
poles away from the lines Im y/a− ∈ Z.

We note one phenomenon here whereby the poles of the weight functions might unex-
pectedly turn out to be regular values of ψN(x, y). This is evident in the case of ψ0(x, y)
in §6 which becomes equal to a plane wave for the exceptional values a−/a+ ∈ N∗ (cf.
[32] for more on this).
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2.3 Asymptotics.

Here we catalogue the x and y asymptotics of the functions wN(x), wN(y), ΣN(x, y) and
`±N(x, y) that were introduced in §2. In each case, the dominant and subdominant terms
are powers of e−(. . .). To keep the formulas a little more compact, we will write these
terms as e...−. All the results here follow by elementary calculations from the definitions
in §2.

We look first at the x asymptotics. The results below assume x ∈ R. For x ∈ C and
Rex → ±∞, they can all be adapted by just replacing x with Rex when this occurs
inside O(·). The implied bound is then uniform for Im x ∈ R.

wN(x) = e
−2(N+1)|x|
− +O(e

−2(N+3)|x|
− ), x→ ±∞ (2.58)

ΣN(x, y) = e
N |x|
− sN(±y) +O(e

(N−2)|x|
− ), x→ ±∞ (2.59)

Here

sN(y) ≡
N∏
j=1

2s−(y + ija+) (2.60)

arises due to (2.13). It is closely related to the reciprocal of vN(−y). In fact,

2(−)N iN+1sN(y)vN(αy) =

{
uN(y)/s−(y − i(N + 1)a+), α = + (2.61)

1/s−(y + i(N + 1)a+), α = − (2.62)

With (2.59) we can deduce

`τN(x, y) = (−)N iN+1τsN(τy)e
(N+1)x
−

∑
ν=+,−

νe−(−ν(1 + τ)y/2)

+O(e
(N−1)x
− ), x→∞, τ = +,− (2.63)

and

`τN(x, y) = (−i)N+1τsN(−τy)e
−(N+1)x
−

∑
ν=+,−

νe−(iν(N + 1)a+)e−(−ν(1 + τ)y/2)

+O(e
−(N−1)x
− ), x→ −∞, τ = +,− (2.64)

We now consider the y asymptotics, The results below assume y ∈ R. For y ∈ C
and Re y → ±∞, they can all be adapted by just replacing y with Re y when this occurs
inside O(·). The implied bound is then uniform for Im y ∈ R.

ŵN(y) = e
−2(N+1)|y|
− +O(e

−2(N+3)|y|
− ), y → ±∞ (2.65)
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Because of the symmetry (2.10), the y-asymptotics for ΣN are just those in (2.59) with
x↔ y. In preparation for the `±N asymptotics we note the adaptation,

ΣN(x+ iνa+/2, τy) = e
N |y|
− sN(ετ(x+ iνa+/2)) +O(e

(N−2)|y|
− ),

y → ε∞, ε, ν, τ = +,− (2.66)

The `±N asymptotics is best expressed for τ = + and τ = − separately. For τ = +, the
ν = −ε term in the sum in (2.15) gives the dominant y → ε∞ asymptotics,

`+
N(x, y) = (−i)N+12εs−(x+ iε(N + 1/2)a+)e−(−iε(N + 1)a+/2)e

(N+1)|y|
−

× sN(εx− ia+/2) +O(e
(N−1)|y|
− ), y → ε∞, ε = +,− (2.67)

For τ = −, it comes from ν = ε. All we need to know about these asymptotics is

`−N(x, y) = O(e
N |y|
− ), y → ε∞, ε = +,− (2.68)

2.4 Defining the eigenfunction transform FN
We now use the functions ψN (2.6) to define a special class of integral transforms. These
act on function pairs of the form f̂ = 〈f+, f−〉, according to

(FN f̂)(x) ≡ (2a+a−)−1/2

∫ ∞
0

dy
∑
δ=+,−

ψN(δx, y)fδ(y) (2.69)

or equivalently, in terms of F from (4.1) in Chapter 1,

FNf = F((N + 1)a+)f (2.70)

The coefficient upfront in (2.69) is necessary to secure certain properties of this transform
such as isometry. In general, properties of the transform may depend on the parameters
a+, a− implicit in ψN , in the sense that a property may only hold when the parameters
are restricted in some way. Indeed this is what we find in the case of isometry.

Next, we want to consider how this transform acts on functions in the Hilbert space
Ĥ ≡ L2(R+, dy)⊗ C2. Provided ψN(·, ·) has no poles on R2, the integral function in (2.69)
is manifestly convergent if we restrict f to Ĉ ≡ C∞0 (R+)2 ⊂ Ĥ. However, if we want to
render FN as a map from Ĉ into L2(R, dx), more is required. Concretely, we need to know
that (FN f̂)(·) has L2-asymptotics. This, and more, follows because FN is essentially a
weighted sum of Fourier transforms, in the sense that we now explain.

From the definitions (2.9) and (2.15) we can see that separation of variables obtains
in `±N . In other words, it has the form

∑
k `

τ
k(x)ˆ̀τ

k(y) for τ = +,− for k in some suitable

subset of N. By writing out ψN using (2.14), (FN f̂)(x) thus equals

wN(x)1/2
∑
k

∑
δ,τ=+,−

`τk(δx)
(
F ˆ̀τ

k(·)vN(·)fδ
)
(τx) (2.71)
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where F : L2(R+)→ L2(R) is the Fourier transform,

(Fg)(x) ≡ c

∫ ∞
0

dy eiπxy/a+a−g(y), c ≡ (2a+a−)−1/2 (2.72)

Whenever the poles of wN(·) and vN(·) are off the real axis, the O(1) asymptotics of ψN
and entirety of `±N imply that wN(·)1/2`τk(·) and vN(·)ˆ̀τ

k(·) are bounded functions on R.
Consequently, (2.71) represents a sum of products of three bounded maps, and is thus
bounded.

We will formalise this result in the theorem below. But first we note an important
fact about ψN which has implications for how we think about FN . Suppose we introduce
some dimensionless variables r, k. Then, by writing out ψN(a−r, a−k) using (2.6), one
sees that the parameters a+ and a− always occur together in the ratio a+/a−. Thus if
we consider

(FN f̂)(a−r) = c

∫ ∞
0

dk a−
∑
δ=+,−

ψN(δra−, ka−)fδ(ka−) (2.73)

we can see that there are grounds for viewing FN as a one-parameter family in the space
of bounded maps from Ĥ to H. In the symbols of functional analysis: FN(·) ∈ L(Ĥ,H).

Lemma 2.3. Provided the positive parameters a+, a− satisfy a−/a+ /∈ EN (2.52), the
transform FN defined by (2.69) is a bounded map from Ĥ into H.

Proof. The crux of this argument has been given already. Excluding the EN values ensures
wN(·) has no pole at the origin, cf. §2.2.
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3 Isometry of FN
3.1 Isometry formula

The eigenfunction transform FN , (2.69), defines a bounded map from Ĥ into H. In this
subsection we present a formula, Theorem 3.3, that allows us to determine if and when
FN is an isometry. The question of isometry reduces to an analysis of residues, which is
what we take up in the next subsection. We first sketch some basic steps on the way to
the theorem and then prove two propositions that carry this forward.

Using the definition (2.69) we write out

(FN f̂ ,FN ĝ)H = c2

∫
R
dx

∫
R+

dy
∑
δ=+,−

ψN(δx, y)fδ(y)

×
∫
R+

dy′
∑

δ′=+,−

ψN(δ′x, y′)gδ′(y
′), c ≡ (2a+a−)−1/2 (3.1)

The aim is to directly compute the rhs of this and find conditions under which it equals
(f, g)Ĥ. Invoking Fubini’s theorem we may rewrite it as1

c2
∑

δ,δ′=+,−

lim
Λ→∞

∫
R+

dy fδ(y)

∫
R+

dy′ gδ′(y
′)

∫ Λ

−Λ

dxψN(δx, y)ψN(δ′x, y′). (3.2)

The rightmost integral here is independent of f and g, giving us a useful point of study.
The “even” integral range [−Λ,Λ] means we can write it as∫ Λ

−Λ

dxψN(x, y)ψN(δδ′x, y′), δ, δ′ = +,− (3.3)

and so the four x-integrals that arise in (3.2) (corresponding to the four choices of δ, δ′)
reduce to two essential kinds,∫ Λ

−Λ

dxψN(x, y)ψN(σx, y′), σ = +,−. (3.4)

Now we recall from §2 that ψN can be written as

ψN(x, y) = wN(x)1/2vN(y)
∑
τ=+,−

eiτπxy/a+a−`τN(x, y). (3.5)

And so, invoking evenness of wN(·) and the conjugacy relations (2.54),(2.16), we get

ψN(x, y)ψN(σx, y′) = wN(x)vN(−y)vN(y′)

×
∑

τ,τ ′=+,−

e−iτπxy/a+a−eiτ
′πxy′/a+a−`τN(x,−y)`στ

′

N (σx, y′), σ = +,−, x, y, y′ ∈ R. (3.6)

A primitive for this is obviously out of the question but it turns out we can integrate it over
[−Λ,Λ] using contour methods. Since wN(·) has poles that extend along the imaginary

1 Cf. §4 in Chapter 1 for more on this.
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axis in both directions, a semi-circular contour is unsuitable. However, particular features
of the integrand, revealed by (3.6), make it amenable to a rectangular contour of fixed
height, a−. These are: periodicity of wN(·) and quasiperiodicity of the τ, τ ′-summand.
The latter picks up a multiplier e+(τy)e+(−τ ′y′) when shifted by ia− due to its plane
wave structure and (2.17). We abstract these properties in the following proposition,
which will enable us to rewrite (3.4) in terms of a residue sum and boundary integrals.
(The proposition is phrased in terms of a variable s in order to avoid ambiguity when we
later apply it to an integral in y. This way we can set s = x or s = y at leisure.)

Proposition 3.1. Suppose W (·) is an even and ia−-periodic function which has simple
and finitely many poles in the period strip i[0, a−]×R which are away from the boundary;
and suppose we have four entire functions J±,±(·) satisfying

Jτ,τ
′
(s+ ia−) = M τ,τ ′Jτ,τ

′
(s), τ, τ ′ = +,− (3.7)

where M τ,τ ′ ∈ R \ {0, 1} satisfies M−τ,−τ ′ = 1/M τ,τ ′.
Then, W (·) has an even number of poles in i[0, a−] × R which can be ordered as

s1, s2, . . . , s2L such that sL+j = ia− − sj, j = 1, . . . , L. For any such ordering, define Wj

to be the residue of W (·) at sj. Then, for Λ > 0 sufficiently large,

∫ Λ

−Λ

dsW (s)
∑

τ,τ ′=+,−

Jτ,τ
′
(s) =

∑
τ,τ ′=+,−

(1−M τ,τ ′)−1
[
2πi

L∑
j=1

Wj[J
τ,τ ′(sj) +J−τ,−τ

′
(−sj)]

−
(∫ Λ+ia−

Λ

+

∫ −Λ

−Λ+ia−

)
dsW (s)Jτ,τ

′
(s)
]

(3.8)

Proof. We observe that if s̃ is any pole of W (·) then so is ia− − s̃ by evenness and ia−-
periodicity. Furthermore by these same properties, the corresponding residue is minus
that at s̃. Thus we have an even number of poles which we may order as the proposition
suggests. With this ordering we obtain the useful relation

Wj+L = −Wj, j = 1, . . . , L. (3.9)

Next, we take Λ > max{Re sj}Lj=1 and apply Cauchy’s theorem for the rectangular con-
tour with vertices at Λ,Λ + ia−,−Λ + ia−,−Λ in order to deduce

(1−M τ,τ ′)

∫ Λ

−Λ

dsW (s)Jτ,τ
′
(s) = 2πi

2L∑
j=1

WjJ
τ,τ ′(sj)

−
(∫ Λ+ia−

Λ

+

∫ −Λ

−Λ+ia−

)
dsW (s)Jτ,τ

′
(s). (3.10)

It remains to focus on the residue sum. Using sL+j = ia− − sj, (3.7) and (3.9) we have

2L∑
j=1

WjJ
τ,τ ′(sj) =

L∑
j=1

Wj[J
τ,τ ′(sj)−M τ,τ ′Jτ,τ

′
(−sj)]. (3.11)
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The reflection property of M τ,τ ′ entails −(1−M τ,τ ′)−1M τ,τ ′ = (1−M−τ,−τ ′)−1 and so

−
∑

τ,τ ′=+,−

(1−M τ,τ ′)−1M τ,τ ′Jτ,τ
′
(−sj) =

∑
τ,τ ′=+,−

(1−M τ,τ ′)−1J−τ,−τ
′
(−sj) (3.12)

Thus dividing (3.10) through by (1−M τ,τ ′) and applying
∑

τ,τ ′ , the claim follows.

We need one more proposition before we can prove the first theorem of this section.
This tells us how the boundary integrals that arise from Proposition 3.1 when it is applied
to (3.4) will behave when substituted into (3.2). Like the previous proposition, it is
expressed in terms of some minimal assumptions. These may seem baroque but they are
all satisfied for the choices W (x) = wN(x), mτ

1(x, y) = vN(−y)`τN(x,−y) and mτ ′
2 (x, y′) =

vN(y′)`στ
′

N (σx, y′) arising from (3.6). (The Jτ,τ
′

in this proposition is of the same type as
in the previous one.)

Proposition 3.2. Suppose we have a function

Jτ,τ
′
(x, y, y′) = exp(−iπτxy/a+a−) exp(iπτ ′xy′/a+a−)mτ

1(x, y)mτ ′

2 (x, y′), τ, τ ′ = +,−
(3.13)

where: m±j (x, y) are entire in x and smooth in y ∈ R; the product mτ
1(x, y)mτ ′

2 (x, y′) is
ia−-periodic in x for both τ = +,−; and the following function is even in x,∑

τ=+,−

mτ
1(τx, y)mτ

2(τx, y), x ∈ C. (3.14)

Suppose, furthermore, that W (·) satisfies the conditions of the previous proposition and,
in addition, satisfies the following asymptotics relation with m±1 and m±2 for Rex→ ε∞,

W (x)mτ
1(x, y)mτ ′

2 (x, y′) =Mτ,τ ′

(ε) (y, y′) +O(e−(−η|Rex|)), ε, τ, τ ′ = +,− (3.15)

where η > 0 is some constant, Mτ,τ ′

(ε) is smooth in y, y′ ∈ R. Also, the bound represented

by O(·) is uniform for Imx, y, y′ in compact subsets of R. The function represented by
O(·) is smooth in y, y′ ∈ R and may depend on ε, τ, τ ′. The y′-partial derivative of this
function is assumed to inherit these same asymptotics properties.

Then, ∑
α,τ=+,−

αMτ,τ
(ατ)(y, y) = 0 (3.16)

And, for functions f, g ∈ C∞0 (R+),

(2a+a−)−1 lim
Λ→∞

∫
R+

dy f(y)

∫
R+

dy′ g(y′)
∑

τ,τ ′=+,−

(1− e+(τy)e+(−τ ′y′))−1

×
(∫ Λ+ia−

Λ

+

∫ −Λ

−Λ+ia−

)
dxW (x)Jτ,τ

′
(x, y, y′) = −

∫
R+

dy f(y)g(y)
∑
τ=+,−

Mτ,τ
(τ)(y, y)

(3.17)
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Proof. The first claim follows straightforwardly from (3.15) and the evenness of (3.14) in
x. (Note that it means we could equally use

∑
τM

τ,τ
(−τ)(y, y) on the rhs of (3.17).)

For the main claim, we will study separately the τ ′ = τ and τ ′ = −τ terms in the sum.
Those for which τ ′ = −τ are by far the simplest since for this choice, the reciprocal term
in (3.17) equals (1 − e+(τ(y + y′))−1, which is non-singular on the pertinent integration
region (recall, f, g have compact support away from the origin). At issue is

∫
K

dydy′
f(y)g(y′)

1− e+(τ(y + y′))

(∫ Λ+ia−

Λ

+

∫ −Λ

−Λ+ia−

)
dxW (x)Jτ,−τ (x, y, y′), τ = +,−

(3.18)
where we have introduced the compact set K ≡ supp(f) × supp(g) ⊂ R+ × R+ away
from the origin. We proceed to break up the x-integrand using (3.15), where the function

represented by O(·) is now given the symbol ρτ,τ
′

(ε) (x, y, y′). For the
∫ Λ+ia−

Λ
dx integral, we

are interested in ε = +. The O(1) x-integrand term can be integrated directly, leading
to a contribution proportional to∫

K

dydy′ f(y)g(y′)Mτ,−τ
(+) (y, y′)

exp(−iπτΛ(y + y′)/a+a−)

−iπτΛ(y + y′)/a+a−
(3.19)

Under our assumptions, the y, y′-integrand is bounded on K and so (3.19) vanishes under
Λ→∞ by the Riemann-Lebesgue lemma. TheO(e−(−ηRex)) term cannot be integrated
directly but its contribution to (3.18) has the form∫

K

dydy′
∫ Λ+ia−

Λ

dx φ(x, y, y′)ρτ,−τ(+) (x, y, y′) (3.20)

where φ(x, y, y′) is some function bounded for (y, y′) ∈ K as well as for Rex ∈ R and Imx
in compacts of R. (These properties readily follow from the assumptions.) Estimating in
the obvious way, the modulus of (3.20) is, for Λ sufficiently large, found to be less than
or equal to

e−(−2Λ)C|K|a− sup
(x,y,y′)∈ i(0,a−)×K

|φ(x+ Λ, y, y′)| (3.21)

where C > 0 is some fixed number deriving from the uniform x-asymptotics of ρτ,−τ(+) (x, y, y′).

The three properties of φ(x, y, y′) stated below (3.20) ensure that this supremum is finite
under Λ → ∞ and so, overall, the limit procures vanishing. We have thus shown the
contribution to (3.18) deriving from

∫ Λ+ia−
Λ

dx vanishes. The analogous argument can

easily be made for
∫ −Λ

−Λ+ia−
dx, using ε = −.

We now consider the τ ′ = τ terms. For this choice, the reciprocal term in (3.17)
equals (1 − e+(τ(y − y′)))−1 which is singular right along y = y′. To deal with this, we
proceed to write these terms in a way which makes them amenable to Proposition A.1
(this isolates the tricky part of the argument). With vanishing established for τ ′ = −τ ,
we know the lhs of (3.17) equals
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(2a+a−)−1 lim
Λ→∞

∫
K

dydy′ f(y)g(y′)
∑
τ=+,−

(1− e+(τ(y − y′)))−1

×
(∫ Λ+ia−

Λ

+

∫ −Λ

−Λ+ia−

)
dxW (x)Jτ,τ (x, y, y′) (3.22)

To prepare the way for the proposition we first note that for any objects B+ and B−,

∑
τ=+,−

(1−e+(τ(y−y′)))−1Bτ = (2s+((y−y′)/2))−1
∑
τ=+,−

(−τ)e+(−τ(y−y′)/2)Bτ (3.23)

We also note that by changing variables x→ x+ ia−/2 and x→ −x+ ia−/2, and using
W (·)’s evenness and periodicity, we can write the second line in (3.22) in terms of just
one contour, ∫ Λ+ia−/2

Λ−ia−/2
dxW (x+ ia−/2)

∑
α=+,−

αJτ,τ (αx+ ia−/2, y, y
′) (3.24)

Recalling (3.13), we can see that the two Jτ,τ terms corresponding to α = +,−, both
contain a factor of e+(τ(y−y′)/2). Thus combining (3.23) and (3.24) we can write (3.22)
as

(2a+a−)−1 lim
Λ→∞

∫
K

dydy′ f(y)g(y′) (2s+((y − y′)/2))−1

∫ Λ+ia−/2

Λ−ia−/2
dxW (x+ ia−/2)

×
∑
α=+,−

(−α) exp(−iπαx(y − y′)/a+a−)
∑
τ=+,−

mτ
1(ταx+ ia−/2, y)mτ

2(ταx+ ia−/2, y
′)

(3.25)

(where we have taken the τ -sum into the integral and relabelled α → τα, as permitted
under

∑
α). We now show this connects to Proposition A.1 for the obvious choice

G−α(x, y, y′) = W (x+ia−/2)
∑
τ=+,−

mτ
1(τα(x+ia−/2), y)mτ

2(τα(x+ia−/2), y′), α = +,−

(3.26)
The equality G+(x, y, y) = G−(x, y, y) (A.4) is a straightforward consequence of the
evenness assumption on (3.14) and the ia−-periodicity in x of mτ

1(x, y)mτ ′
2 (x, y′). For the

asymptotics, assumption (3.15) and evenness of W (·) means that

W (x)mτ
1(ταx, y)mτ

2(ταx, y′) =Mτ,τ
(τα)(y, y

′)+O(e−(−ηRex), Rex→∞, τ, α = +,−
(3.27)

and so, exploiting the ia−-periodcity properties of the functions involved,

132



3. ISOMETRY OF FN

G−α(x, y, y′) =
∑
τ=+,−

Mτ,τ
(τα)(y, y

′) +O(e−(−ηRex)), Rex→∞ (3.28)

(given the convention introduced below (3.18), the O(·) term here can be explicitly ren-
dered as

∑
τ ρ

τ,τ
(τα)(τα(x+ia−/2), y, y′) for α = +,−). Thus the connection to Proposition

A.1 is complete because of assumption (3.16). Explicitly, we must set (s, t, t′) = (x, y, y′),
Ω = R+ and φ(y, y′) = f(y)g(y′) in (A.7). Because of (3.28), we have A±(y, y) =∑

τ=+,−M
τ,τ
(τ)(y, y) and so by Proposition (A.1), (3.25) equals

−
∫
R+

dy f(y)g(y)
∑
τ=+,−

Mτ,τ
(τ)(y, y) (3.29)

We are now ready for the theorem that expresses (3.1) in a form manifestly conducive
to questions of isometry. It involves residues of the function wN analysed in §2.2,

wj ≡ Res
x=x+j

wN(x), j = 0, . . . , N (3.30)

as well as the following function, which we call a residue function because of its depen-
dence on the pole locations x+

j (2.48),

R(j)
σ (y, y′) ≡

∑
τ,τ ′=+,−

(1− e+(τy)e+(−τ ′y′))−1 exp(−iτπx+
j y/a+a−) exp(iτ ′πx+

j y
′/a+a−)

×
[
`τN(x+

j ,−y)`στ
′

N (σx+
j , y

′)+`−τN (−x+
j ,−y)`−στ

′

N (−σx+
j , y

′)
]
, j = 0, . . . , N, σ = +,−

(3.31)

The formula we present is valid only when all the poles of wN(·) are simple, a property
that hinges on the values of the underlying parameters a+, a−. More precisely, we know
from Lemma 2.1 that the ratio a−/a+ cannot take values from the point set EN if this
property is to hold. The theorem applies to functions in Ĉ ≡ C∞0 (R+)2, a set which is
dense in Ĥ.

Theorem 3.3. For the map FN : Ĥ → H defined by (2.69), the following is true for
functions f, g ∈ Ĉ whenever a−/a+ /∈ EN ,

(FN f̂ ,FN ĝ)H = (f̂ , ĝ)Ĥ

+
πi

a+a−

∑
δ,δ′=+,−

∫
R+

dy fδ(y)

∫
R+

dy′gδ′(y
′)vN(−y)vN(y′)

N∑
j=0

wjR
(j)
δδ′(y, y

′) (3.32)

Moreover, this integral is absolutely convergent.

133



CHAPTER 2. SPECIAL CASE

Proof. Denoting the integral function in (3.4) as Iσ(Λ, y, y′), we already know from (3.1)-
(3.4) that

(FN f̂ ,FN ĝ)H = (2a+a−)−1
∑

δ,δ′=+,−

lim
Λ→∞

∫
R+

dy fδ(y)

∫
R+

dy′ gδ′(y
′)Iδδ′(Λ, y, y

′) (3.33)

The idea is to apply Proposition 3.1 to Iσ(Λ, y, y′) for σ = + and σ = −, and then let
the resulting boundary integrals be handled by Proposition 3.2. We need the choices
mτ

1(x, y) = vN(−y)`τN(x,−y) and mτ ′
2 (x, y′) = vN(y′)`στ

′
N (σx, y′) for which the function

(3.13) in Proposition 3.2 equals

Jτ,τ
′
(σ;x, y, y′) ≡ vN(−y)vN(y′) exp(−iτπxy/a+a−) exp(iτ ′πxy′/a+a−)

× `τN(x,−y)`στ
′

N (σx, y′), σ, τ, τ ′ = +,− (3.34)

(where we have made the σ dependence explicit). This function connects with Iσ(Λ, y, y′)
because, multiplied by wN(x), it is just the rhs of (3.6) and, moreover, because of the
quasiperiodicity relation (2.17), it satisfies

Jτ,τ
′
(σ;x+ ia−, y, y

′) = e+(τy)e+(−τ ′y′)Jτ,τ ′(σ;x, y, y′), σ, τ, τ ′ = +,− (3.35)

This means it is a candidate for Proposition 3.1 with s = x, W (x) = wN(x) and M τ,τ ′ =
e+(τy)e+(−τ ′y′) (for the required properties of wN(·), cf. §2.2). The support of f̂ , ĝ
in (3.33) means y, y′ ∈ (0,∞), and so a problem arises for this multiplier when y = y′

and τ = τ ′. This ceases to be a problem, however, when (3.8) is considered under
limΛ→∞

∫
K
dydy′ for K compact and away from the origin, like we have in (3.33). The

divergence affecting the residue term is handled by our absolute convergence claim (to be
proved shortly), and that affecting the boundary integrals is handled by Proposition 3.2,
assuming that the m±1 , m±2 introduced above satisfy the various criteria of the proposition.
Applying Proposition (3.1) we thus have

(FNf,FNg)H =
πi

a+a−

∑
δ,δ′=+,−

∫
R+

dy fδ(y)

∫
R+

dy′gδ′(y
′)vN(−y)vN(y′)

N∑
j=0

wjR
(j)
δδ′(y, y

′)

− (2a+a−)−1 lim
Λ→∞

∑
δ,δ′=+,−

∫
R+

dy fδ(y)

∫
R+

dy′gδ′(y
′)

(∫ Λ+ia−

Λ

+

∫ −Λ

−Λ+ia−

)
dx

×
∑

τ,τ ′=+,−

(1− e+(τy)e+(−τ ′y′))−1wN(x)Jτ,τ
′
(δδ′;x+ ia−, y, y

′) (3.36)

(concerning the poles, we have made the obvious choice sj+1 = x+
j , j = 0, . . . , N). For

the first line of the rhs we have used

Jτ,τ
′
(σ;x+

j , y, y
′) + J−τ,−τ

′
(σ;−x+

j , y, y
′) = vN(−y)vN(y′) exp(−iτπx+

j y/a+a−)

× exp(iτ ′πx+
j y
′/a+a−)

[
`τN(x+

j ,−y)`στ
′

N (σx+
j , y

′) + `−τN (−x+
j ,−y)`−στ

′

N (−σx+
j , y

′)
]

(3.37)
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(which follows straight away from the definition (3.34)). If we now apply Proposition 3.2
to (3.36), it follows that the term constituting the second and third lines of (3.36) equals

+
∑

δ,δ′=+,−

∫
R+

dy fδ(y)

∫
R+

dy′gδ′(y
′)
∑
τ=+,−

Mτ,τ
(τ)(δδ

′; y, y) (3.38)

(where we have made explicit the σ = δδ′ dependence ofMτ,τ ′

(ε) (y, y′) that enters through

our choice of m±2 ). Let us now confirm that the various criteria of Proposition 3.2 are
met, and compute this τ -sum.

Entirety of `τN(x, y) in both variables means that mτ
j (·, y) is entire in x and mτ

j (x, ·)
is smooth on R when the poles of vN(·) are off the real axis, which we know from §2.2
is secured by a−/a+ /∈ EN . Periodicity follows from (2.17). We can prove the evenness
property by writing (3.14) in terms of the function MN in §2.1, which we have studied in
detail. For this choice of m±j , (3.14) equals

vN(−y)vN(y)
∑
α=+,−

`τN(τx,−y)`στN (στx, y), σ = +,− (3.39)

Comparing with (2.31) we see this is just

vN(−y)vN(y)M+,σ
N (x, σx;−y, y), σ = +,− (3.40)

For σ = +, evenness in x is thus immediately given by the symmetry (2.41), and for
σ = − by (2.42).

To realise the asymptotic form (3.15) for these choices of mτ
1 and mτ

2, we need the
asymptotics (2.58),(2.63) and (2.64). The ν-sum in the latter two equations can be
rewritten using

φτ(+)(y) ≡

2s−(y), τ = +

0, τ = −
φτ(−)(y) ≡

2s−(i(N + 1)a+ − y), τ = +

2s−(i(N + 1)a+), τ = −
(3.41)

With these functions the two equations in question become

`τN(x, y) = (−i)N+1τsN(±τy)e
(N+1)|Rex|
− φτ(±)(y) +O(e

(N−1)|Rex|
− ), Rex→ ±∞ (3.42)

Recalling, (2.58),

wN(x) = e
−2(N+1)|Rex|
− +O(e

−2(N+3)|Rex|
− ), Rex→ ±∞ (3.43)

we then get the following, for fixed ε, σ = +,−,

wN(x)`τN(x,−y)`στ
′

N (σx, y′)

= (−)N+1σττ ′sN(−ετy)sN(ετ ′y′)φτ(ε)(−y)φστ
′

(εσ)(y
′) +O(e

−2|Rex|
− ), Rex→ ε∞ (3.44)

With this we recall our choices of m±j above (3.34) and read off,

Mτ,τ ′

(ε) (σ; y, y′) = vN(−y)vN(y′)(−)N+1σττ ′sN(−ετy)sN(ετ ′y′)φτ(ε)(−y)φστ
′

(εσ)(y
′),

ε, σ, τ, τ ′ = +,− (3.45)

135



CHAPTER 2. SPECIAL CASE

As a check, we note that for this Mτ,τ ′

(ε) , the vanishing property (3.16) reduces to∑
τ=+,−

φτ(τ)(−y)φστ(στ)(y) =
∑
τ=+,−

φτ(−τ)(−y)φστ(−στ)(y), σ = +,− (3.46)

which should be satisfied for both σ = + and σ = −. Indeed in the second case both
sides of the equation vanish, meaning

∑
τ=+,−M

τ,τ
(τ)(−; y, y) = 0, and in the first case

both sides are found to equal

4s−(i(N + 1)a+ − y)s−(i(N + 1)a+ + y) (3.47)

Because of (2.62), and its y → −y counterpart, this means∑
τ=+,−

Mτ,τ
(τ)(+; y, y) = 1 (3.48)

And so, with regard to (3.36),

∑
δ,δ′=+,−

∫
R+

dy fδ(y)gδ′(y)
∑
τ=+,−

Mτ,τ
(τ)(δδ

′; y, y) =
∑
δ=+,−

∫
R+

dy fδ(y)gδ(y) (3.49)

We now deal with the absolute convergence claim. First we note that the poles of
wN(·) are off the real axis when a−/a+ /∈ EN , cf. §2.2. Recalling that `τN(·, ·) is entire, it is
therefore clear that the only threat can come from the τ ′ = τ terms in (3.31); specifically,
from the reciprocal term which is singular right along y = y′ (there is no threat at the
origin for τ ′ = −τ because f, g have compact support away from the origin). Suppose we
can argue that for both choices of σ = +,−, the square bracketed term in (3.31) is in fact

independent of the value of τ whenever τ ′ = τ and y′ = y. Then, finitude of R
(j)
± (y, y′)

follows because of the limit

lim
y′→y

∑
τ=+,−

Lτ (y, y′)

1− e+(τ(y − y′))
= L+(y, y) + (∂1L

+ − ∂1L
−)(y, y) (3.50)

which can be established by a routine Taylor series argument for generic smooth functions
L±(y, y′) satisfying L+(y, y) = L−(y, y) (∂1 denotes partial derivative with respect to the
first argument).

In fact, this supposition holds as a consequence of the evenness in x of (3.39) that
we have just exhibited (in other words, convergence of the residue function integral and
vanishing of the boundary integrals are secured by the same fact). On a more abstract
level this is due to the fact that evenness in x of (3.14) is automatically equivalent to
τ -independence of ∑

α=+,−

mατ
1 (αx, y)mατ

2 (αx, y), τ = +,− (3.51)
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3.2 Residue analysis.

We first restate the definition of our residue function (3.31),

R(j)
σ (y, y′) ≡

∑
τ,τ ′=+,−

(1− e+(τy)e+(−τ ′y′))−1 exp(−iπτx+
j y/a+a−) exp(iπτ ′x+

j y
′/a+a−)

×
[
`τN(x+

j ,−y)`στ
′

N (σx+
j , y

′)+`−τN (−x+
j ,−y)`−στ

′

N (−σx+
j , y

′)
]
, j = 0, . . . , N, σ = +,−

(3.52)

and recall that: `τN(·, ·) is an entire function defined in (2.15); x+
j is one of the 2(N + 1)

poles of the weight function wN(x) in the strip Imx ∈ i(0, a−), cf. §2.2; and the residue
of this function at x = x+

j is denoted by wj.
With this restated, we can make sense of the following corollary of Theorem 3.3, which

serves as the focal point of this subsection. The restriction a−/a+ /∈ EN is simply there
to ensure the validity of the formula (3.32). Whenever this formula holds, the claim is
immediate and there is no need for further proof,

Corollary 3.4. Provided a−/a+ /∈ EN , the map FN : Ĥ → H defined by (2.69) is an

isometry iff the residue sums
∑N

j=0 wjR
(j)
σ (y, y′) vanishes for both σ = + and σ = −.

In all the examples we are going to see, vanishing of the residue sum comes about
because of vanishing of each individual summand. (Indeed in §5 we prove that for fixed
N and σ, the residue functions are linearly independent.) To provide some guidance for
the general case we will run through the N = 0 case explicitly before returning to general
N in Lemma 3.5. An important observation to make is that the square bracketed term
in (3.52) is just the x = x+

j specialisation of

M τ,στ ′

N (x, σx;−y, y′), σ, τ, τ ′ = +,− (3.53)

where MN is the function we introduced in §2.1, and about which a great deal is known.
When N = 0 there are only two residue functions to consider, corresponding to σ = +

and σ = −. Focusing first on σ = +, we use (2.36) and Σ0 = 1 to write out

M τ,τ ′

0 (x, x;−y, y′) = −ττ ′
∑

ν,ν′=+,−

4νν ′s−(x− iνa+/2)s−(x− iνa+/2)

× µνν′(−y, y′)e−(ντy/2)e−(−ν ′τ ′y′/2), τ, τ ′ = +,− (3.54)

where

µνν′(−y, y′) =

2c−((y − y′)/2 + ia+), νν ′ = +

2c−((y + y′)/2), νν ′ = −
(3.55)

We see that if we set x = x+
0 = ia+/2 in (3.54), then all terms vanish except ν = ν ′ = −,

leaving
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M τ,τ ′

0 (x+
0 , x

+
0 ;−y, y′) = −ττ ′s−(ia+)2µ+(−y, y′)e−(−τy/2)e−(τ ′y′/2) (3.56)

Noting that the plane wave term in (3.52) just equals e−(τy/2)e−(−τ ′y′/2) when x+
0 =

ia+/2, we conclude that

R
(0)
+ (y, y′) = −s−(ia+)2µ+(−y, y′)

∑
τ,τ ′=+,−

(1− e+(τy)e+(−τ ′y′))−1ττ ′ (3.57)

In fact this sum vanishes outright due to the simple identity

1

1− A/A′
+

1

1− A′/A
− 1

1− AA′
− 1

1− 1/AA′
= 0 (3.58)

Rerunning the process for σ = − we find

R
(0)
− (y, y′) = s−(ia+)2µ−(−y, y′)

∑
τ,τ ′=+,−

(1− e+(τy)e+(−τ ′y′))−1ττ ′ (3.59)

And so, for N = j = 0 and x+
0 = ia+/2,

R
(0)
+ (y, y′) = R

(0)
− (y, y′) = 0 (3.60)

In Lemma 3.5 we learn that this vanishing extends to all (N, j) when a+, a− are
suitably restricted. Above we simply assumed that x+

0 = ia+/2, but in general x+
j (2.48)

only has the form

x+
j = i(j + 1/2)a+, j = 0, . . . , N (3.61)

if (j + 1/2)a+ < a−, cf. §2.2. When a−/a+ is sufficiently small such that this latter
inequality is no longer satisfied, we must subtract some multiple of ia− from the rhs of
(3.61) to obtain the correct expression for x+

j . This change spoils the vanishing argument,
as we will see in §5. The restriction in Lemma 3.5 thus ensures a given x+

j has the form
(3.61).

Comparing to the N = 0 vanishing argument, the main difference in the general N
case is that ΣN(·, ·) is no longer unity. In fact each argument of this function corresponds
to an even polynomial of exponentials of degree 2N , cf. (2.9). Because of this increasing
degree, a brute force approach like we gave for N = 0 is simply not possible. The proof
will hinge on an important fact about these polynomials that is proved in [18]. The
end-goal is again to isolate the τ, τ ′-sum in (3.57)

Lemma 3.5. If the positive parameters a+, a− satisfy a−/a+ > j + 1/2 for a fixed j =

0, . . . , N , then the residue functions R
(j)
± (y, y′) (3.52) vanish.

Theorem 3.6. If the positive parameters a+, a− satisfy a−/a+ > N + 1/2, and a−/a+ /∈
EN (2.52), then the map FN : Ĥ → H defined by (2.69) is an isometry.
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Proof of Theorem 3.6. Follows from Corollary 3.4 and Lemma 3.5.

Proof of Lemma 3.5. We first rewrite R
(j)
σ (y, y′) in terms of

λτN(x, y) = exp(iπτxy/a+a−)`τN(x, y), τ = +,− (3.62)

for which we have the explicit expression (2.29). It is best to conduct this rearrangement
with x+

j → x in (3.52), and then to set x = x+
j at the end. This is straightforward because

from (3.62) we have

e−(−iπτxy/a+a−)e−(iπτ ′xy′/a+a−)
[
`τN(x,−y)`στ

′

N (σx, y′)+`−τN (−x,−y)`−στ
′

N (−σx, y′)
]

=
[
λτN(x,−y)λστ

′

N (σx, y′) + λ−τN (−x,−y)λ−στ
′

N (−σx, y′)
]
, σ, τ, τ ′ = +,− (3.63)

and so

R(j)
σ (y, y′) =

∑
τ,τ ′=+,−

(1− e+(τy)e+(−τ ′y′))−1
[
λτN(x+

j ,−y)λστ
′

N (σx+
j , y

′)

+ λ−τN (−x+
j ,−y)λ−στ

′

N (−σx+
j , y

′)
]
, j = 0, . . . , N, σ = +,− (3.64)

The four λN -functions that feature here are all variants of

λατN (αx+
j , z), α, τ = +,− (3.65)

and so we proceed to study this function more closely. From (2.29) and (2.21) we learn
that its τ -dependence hinges on

KN(x+
j + iανa+/2, τz), α, ν, τ = +,− (3.66)

in the sense that (3.65) equals

τφKN(x+
j + iαa+/2, τz) + τϕKN(x+

j − iαa+/2, τz) (3.67)

where φ, ϕ are some j, α-dependent entire functions in z.
We now look at (3.66) more closely. Since the restriction in the lemma ensures x+

j =
i(j + 1/2)a+, its first argument equals ika+, k ≤ N whenever j < N , or whenever j = N
and αν = −. Accordingly for these cases, (2.23) tells us that (3.66) equals

iNB
(N)
N−j−(1+αν)/2(c−(z)) (3.68)

which, crucially, is independent of τ . For the one remaining case, j = N and αν = +,
(2.23) cannot be applied. However, for j = N , the function φ in (3.67) contains a
multiplicative factor of

s−(x+
N − iαν(N + 1/2)a+) (3.69)

(as (2.29) makes clear), and this clearly vanishes for αν = +.
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We have thus shown that in all cases, (3.65) is straightforwardly proportional to τ
with respect to the variable τ (i.e. λατN (αx+

j , z) = τΨj,α(z), τ = +,− for some function
Ψj,α(z) ). As a result, (3.64) equals some j-dependent entire function in y, y′ multiplied
by ∑

τ,τ ′=+,−

(1− e+(τy)e+(−τ ′y′))−1ττ ′ (3.70)

This is the function we saw in (3.57) and we know it vanishes due to (3.58).

3.3 Dynamics and wave operator. (Inc. Main Theorem)

So far we have made only a cursory reference to the A∆O which it is the purpose of
the present sections to serve. Although we know the function ψN(x, y) is a generalised
eigenfunction of H̃N(x), we have not needed this fact at any time. Thus we are in the
strange situation of being able to prove the existence of some non-trivial self-adjoint
dynamics without any invocation of an explicit operator action. This is the dynamics for
the operator defined by intertwining FN and M̂ , where the latter denotes multiplication
on pairs in Ĥ by 2c+(y). Such a definition amounts to a diagonalisation of H̃N(x).

To connect with H̃ac in Chapter 1 we define

H̃ac,N ≡ H̃ac((N + 1)a+), N ∈ N (3.71)

where H̃ac is the operator on F(Ĉ) defined by (4.4) in Chapter 1 (we have made its b-
dependence manifest in (3.71)). Although this is our chosen definition of H̃ac,N , it can be
equivalently defined by the intertwining relation,

H̃ac,NFN f̂ = FNM̂f̂ , f̂ ∈ Ĉ (3.72)

which employs the eigenfunction transform FN (2.69) and the set of functions Ĉ ≡
C∞0 (R+)2. Indeed (3.72) is preferable if one wishes to view the present section as self-
contained. Because M̂ maps Ĉ-functions into Ĉ-functions, we have

H̃ac,N : FN(Ĉ)→ FN(Ĉ) ⊂ H (3.73)

When we introduced FN in §2.4 we employed a simple argument to establish its
boundedness on Ĥ. (By contrast, there was no such argument for F .) This entails
that we can immediately extend the intertwining (3.72) to all functions in the maximal
multiplication domain of M̂ on Ĥ, denoted D(M̂). Thus whenever FN is an isometry it
readily follows that the extension of H̃ac,N to FN(D(M̂)) will be self-adjoint (because of

explicit unitary equivalence to the self-adjoint M̂). Indeed this is nothing but the unique
self-adjoint extension which we know exists from Theorem 5.1 in Chapter 1.

The intertwining above combined with Theorem 3.6 gives us the following result. (We
omit the argument that strengthens symmetry to essential self-adjointness since this is
identical to that in §5.1 in Chapter 1.)
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Theorem 3.7. If the parameters a+, a− satisfy a−/a+ > N + 1/2, and a−/a+ /∈ EN
(2.52), then H̃ac,N (3.72) is essentially self-adjoint in the closure of FN(Ĉ) with abso-

lutely continuous spectrum [2,∞) of multiplicity two. This closure equals FN(Ĥ), and
the unique self-adjoint extension of H̃ac,N is described below (3.73).

In preparation for our look at dynamics, we note down the dominant asymptotics of
ψN(x, y) (which can just be understood as a specialisation of Lemma 1.2 in Chapter 1,
but an explicit computation using the formulas in §2.3 is also not difficult),

ψN(x, y) ∼

tN(y) exp(iπxy/a+a−), x→∞

exp(iπxy/a+a−)− rN(y) exp(−iπxy/a+a−), x→ −∞
(3.74)

where

tN(y) ≡ s−(y)

s−(ibN − y)
uN(y), rN(y) ≡ s−(ibN)

s−(ibN − y)
uN(y) (3.75)

and where we have the phase

uN(y) ≡ u(bN ; y) =
N∏
j=1

s−(ija+ + y)

s−(ija+ − y)
(3.76)

(the latter equality just follows from (2.3)).
At this point we do not know whether FN(Ĉ) is dense in H (recall, we are “forgetting”

results from Chapter 1), and so to consider dynamics on H we will extend H̃ac,N to an
arbitrary bounded self-adjoint operator on

FN(Ĉ)
⊥

(3.77)

We call the resulting densely-defined operator H̃N (cf. (3.82) below). Clearly it inherits
self-adjointness under the same conditions as H̃ac,N . This extension procedure is the same
as that in §5.2 of Chapter 1. Thus we are just going to apply the results of the latter
directly to H̃N .2 This involves the wave operators3

W±(bN) = s·lim
t→∞

exp(±itH̃N) exp(∓itH0) (3.78)

for which Theorem 5.4 in Chapter 1 tells us

W−(bN) = FNJ∗, W+(bN) = FN Ŝ∗NJ∗ (3.79)

where J : Ĥ → H is Fourier transform and ŜN is matrix multiplication on Ĥ by(
tN(y) −rN(y)
−rN(y) tN(y)

)
(3.80)

2 We claim there isnothing novel about an independent proof of this same result in the special b case.
3It is understood that the H̃N in the exponent stands for its own closure, i.e. the unique self-adjoint

extension which we have discussed.
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It follows that the scattering states (intersection of the ranges of the wave operators) are
given by

FN(Ĉ) = FN(Ĥ) (3.81)

(where this fact about the closure is an immediate consequence of FN ’s isometry).

When it comes to fixing the arbitrary action on FN(Ĉ)
⊥

in accordance with the
desired physics the situation is somewhat different to before. We recall that in §3.4
of Chapter 1 we showed explicitly that a particular family of functions Ψ(m)(b;x) lived in
the orthocomplement of F(Ĉ). This result is of course still applicable here. However, we
are going to “forget” about it, because the same fact can be obtained by different, and
more satisfactory, means.

It turns out that isometry, and isometry breakdown, of the adjoint F∗N has a non-
obvious connection to the range of FN , and thus to the bound states. This connection
is stronger than the one that exists between the range of FN and symmetry breakdown
of the dual operator S (which we explored in §6-7 of Chapter 1) because it procures a
complete description of the orthocomplement of this range with no prior knowledge of
any of its elements.

(Let us assess our expectations from Chapter 1 with regard to the parameters. We
recall that a given Ψ(m)(b;x) was integrable iff (m + 1)a− < b, cf. (2.11). And we know
that isometry of FN requires a−/a+ > N + 1/2. Thus we can see that m = 0 will
procure the only integrable member of the family of Ψ(m)-functions. Our independent
exhibition of the orthocomplement of F(Ĥ) should therefore yield something at most
one-dimensional. This is indeed the case, as we will see in Theorem 4.7.)

We finish the story of H̃N by combining Theorem 3.7 above with Theorem 4.7 from
the next section. What we get does not improve on the results of Chapter 1 (those sum-
marised in Chapter 1). The pertinent difference is that the theorem below hinges on our
direct isometry proof of FN which does not invoke the A∆O H̃N(x) at any time.

Main Theorem of Chapter 2. For positive parameters a+, a− satisfying a−/a+ ∈
(N+1/2, N+1) and a−/a+ /∈ EN , ÊN , (2.52) and (2.57), we may define a densely-defined
operator in H,

H̃N : FN(Ĉ)⊕FN(Ĉ)
⊥
→ H (3.82)

with action equal to H̃ac,N (3.72) on FN(Ĉ) and multiplication by 2 cos(πa−/a+) on the
one-dimensional orthocomplement in (3.82) which is spanned by

ΨN(x) ≡ 2c+(x)wN(x)1/2 (3.83)

This is the ground state defined using the weight function (2.4). In both cases, this action
equals that of the A∆O H̃N(x). The map FN (2.22) is an isometry, and thus the closure
in (3.82) equals FN(Ĥ).

It follows that H̃N is essentially self-adjoint with absolutely continuous spectrum [2,∞)
of multiplicity two, and point spectrum 2 cos(πa−/a+) of multiplicity one. Its unique self-
adjoint extension was described below (3.73).

We note that Theorem 4.5 of the next section tells us the extension H̃N is redundant
when a−/a+ > N + 1, and so in this case there is no improvement on Theorem 3.7.

142
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4 Isometry of F∗N
4.1 Isometry formula

In this subsection we apply the same treatment to the adjoint transform, F∗N : H → Ĥ.
We know that this exists and is bounded because Lemma 2.3 established that FN (2.69)
was a bounded map from Ĥ into H provided a−/a+ /∈ EN (2.52), and so these properties
follow automatically. Clearly the action is given by

(F∗Nf)δ(y) = c

∫
R
dxψN(δx, y)f(x), δ = +,− (4.1)

What we seek, then, is a formula analogous to (3.32) that will allow us to deduce the
isometry properties of F∗N . Because the roles x and y are now reversed, this amounts to
a wholly different problem and we stress our target theorem is not simply an adaptation
of its analogue in §3.1. It is the special nature of ψN that makes this possible.

Although the end-goal is the same, our motives are somewhat different. The main
reason for wanting such a formula for F∗N is to shed light more light on FN . For instance,
if there is a range of a+, a− for which F∗N and FN are both isometries, then clearly FN
is unitary for this range. More generally we find there is a connection between isometry
breakdown of F∗N and the range of FN . (We say the ‘main’ reason because it is also the
case that F∗N can be used to describe a dual dynamics, cf. B in Chapter 1.)

From (4.1) we have

(F∗Nf,F∗Ng)Ĥ = c2
∑
δ=+,−

∫
R+

dy

∫
R
dxψN(δx, y)f(x)

∫
R
dx′ ψN(δx′, y)g(x′) (4.2)

The aim is to directly compute the rhs of this with the aim of finding conditions under
which it equals (f, g)H. Due to Fubini’s theorem we may rewrite it as

c2 lim
Λ→∞

∫
R
dx f(x)

∫
R
dx′ g(x′)

∫ Λ

0

dy
∑
δ=+,−

ψN(δx, y)ψN(δx′, y) (4.3)

Once again we will focus on the rightmost integral here and show that it is amenable to
Proposition 3.1 with s = y. First we recall the expression for ψN that isolates its main
structural features, (2.14),

ψN(x, y) = wN(x)1/2vN(y)
∑
τ=+,−

eiτπxy/a+a−`τN(x, y). (4.4)

Invoking reality and evenness of wN(·), as well as (2.54) and (2.16), this entails

ψN(δx, y)ψN(δx′, y) = ŵN(y)wN(x)1/2wN(x′)1/2

×
∑

τ,τ ′=+,−

eiτπxy/a+a−e−iτ
′πx′y/a+a−`δτN (δx, y)`δτ

′

N (δx′,−y), δ = +,− x, x′, y ∈ R (4.5)

(to make the connection with (4.4) more transparent, relabel τ → δτ and τ ′ → δτ ′, as
permitted under

∑
τ,τ ′). When this is plugged back into (4.3), the δ-dependence gets

confined to the following entire function,
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Lτ,τ
′

N (y, x, x′) ≡
∑
δ=+,−

`δτN (δx, y)`δτ
′

N (δx′,−y), τ, τ ′ = +,− (4.6)

This object has a non-obvious symmetry which is of critical importance; namely,

Lτ,τ
′

N (y, x, x′) = L−τ,−τ
′

N (−y, x, x′), τ, τ ′ = +,− (4.7)

Proved later, it implies that the y-integrand in (4.3) is even in y. This implies we can
write the y-integral in (4.3) as

wN(x)1/2wN(x′)1/2

∫ Λ

−Λ

dy

2
ŵN(y)

∑
τ,τ ′=+,−

eiτπxy/a+a−e−iτ
′πx′y/a+a−Lτ,τ

′

N (y, x, x′) (4.8)

This change in integral limits is crucial since ŵN(·) (2.53) has its poles along the imaginary
axis which would frustrate an attempt to tackle the original integral by a rectangular
contour. Now, however, (4.8) is a candidate for Proposition 3.1 with s = y. To see this
we just have to note that the quasiperiodicity relation (2.18) means the integrand picks
up a multiplier ττ ′e+(−τx)e+(τ ′x) when y is shifted by ia−. Like before, the use of this
proposition leaves us with boundary integrals which have to be looked at more closely.
This is done abstractly in the following proposition, which connects to (4.3) via the choice
mτ (x, y) = wN(x)1/2`τN(x, y). (We note that this proposition is very similar in form to
its analogue, Proposition 3.2 - even more so if we negate the indices τ, τ ′ in one of them.
Despite this, however, we claim they are not simply adaptations of each other.)

Proposition 4.1. Suppose we have a function

Jτ,τ
′
(y, x, x′) = exp(iπτxy/a+a−) exp(−iπτ ′x′y/a+a−)Iτ,τ

′
(y, x, x′) (4.9)

Iτ,τ
′
(y, x, x′) ≡

∑
δ=+,−

mδτ (δx, y)mδτ ′(δx′,−y), τ, τ ′ = +,− (4.10)

where: m±(x, y) are entire in y and smooth in x ∈ R; m+ is ia−-periodic in y; and m−

is ia−-antiperiodic in y.
Suppose, furthermore, that W (·) satisfies the conditions of Proposition (3.1) and, in

addition, satisfies the following asymptotics relation with Iτ,τ
′

for Re y → ε∞,

W (y)Iτ,τ
′
(y, x, x′) = Lτ,τ

′

(ε) (x, x′) +O(e−(−η|Re y|)), ε, τ, τ ′ = +,− (4.11)

where η > 0 is some constant and Lτ,τ
′

(ε) is smooth in x, x′. Also, the bound represented by

O(·) is uniform for Im y, x, x′ in compact subsets of R. The function represented by O(·)
is smooth in x, x′ and may depend on ε, τ, τ ′. The x′-partial derivative of this function is
assumed to inherit these same asymptotics properties.
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Then, for functions f, g ∈ C,

(2a+a−)−1 lim
Λ→∞

∫
R
dx f(x)

∫
R
dx′ g(x′)

∑
τ,τ ′=+,−

(1− ττ ′e+(−τx)e+(τ ′x′))−1

×
(∫ Λ+ia−

Λ

+

∫ −Λ

−Λ+ia−

)
dyW (y)Jτ,τ

′
(y, x, x′) =

∫
R
dx f(x)g(x)

∑
τ=+,−

Lτ,τ(+)(x, x) (4.12)

Proof. The proof proceeds in a similar way to Proposition 3.2. Again, the τ ′ = −τ
terms in the sum are by far the simplest to handle since the reciprocal term in (4.12) is
non-singular on the pertinent integration region. At issue is∫

K

dxdx′
f(x)g(x′)

1 + e+(−τ(x+ x′))

(∫ Λ+ia−

Λ

+

∫ −Λ

−Λ+ia−

)
dyW (y)Jτ,−τ (y, x, x′), τ = +,−

(4.13)
where we have introduced the compact set K ≡ supp(f)× supp(g). With the O(·) term

in (4.11) represented by the symbol ρ̂τ,τ
′

(ε) (y, x, x′), the reasoning is now identical to that

below (3.18), with (x, y, y′) → (y, x, x′), M→ L and ρ → ρ̂. We can thus be sure that
the τ ′ = −τ terms on the lhs of (4.12) vanish under Λ→∞.

Before proceeding to consider the τ ′ = τ terms, we note that the function in the
proposition has the following easily verified properties

Iτ,τ
′
(y + ia−, x, x

′) = ττ ′ Iτ,τ
′
(y, x, x′) (4.14)

Iτ,τ
′
(y, x, x) = Iτ

′,τ (−y, x, x) (4.15)

The latter entails, furthermore,

Lτ,τ
′

(+)(x, x) = Lτ
′,τ

(−) (x, x) (4.16)

(meaning the rhs of (4.12) could equally be expressed in terms of Lτ,τ(−)(x, x)).

With the vanishing established for the τ ′ = −τ terms, we know the lhs of (4.12) equals

(2a+a−)−1 lim
Λ→∞

∫
K

dxdx′ f(x)g(x′)
∑
τ=+,−

(1− e+(−τ(x− x′)))−1

×
(∫ Λ+ia−

Λ

+

∫ −Λ

−Λ+ia−

)
dyW (y)Jτ,τ (y, x, x′) (4.17)

This is almost identical in form to its analogue, (3.22). Indeed we can easily adapt the
formulas (3.23) and (3.24) in order to write it as

(2a+a−)−1 lim
Λ→∞

∫
K

dxdx′ f(x)g(x′) (2s+((x− x′)/2))−1

∫ Λ+ia−/2

Λ−ia−/2
dyW (y + ia−/2)

×
∑

α,τ=+,−

α exp(iπαy(x− x′)/a+a−)Iτ,τ (ατy + ia−/2, x, x
′) (4.18)
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For a fixed τ = +,−, the connection with Proposition A.1 is then given by

Gα(y, x, x′) = W (y + ia−/2) Iτ,τ (ατy + ia−/2, x, x
′), α = +,− (4.19)

To see that this satisfies the necessary assumptions we note that ia−-periodicity of
Iτ,τ (·, x, x′), cf. (4.14), means we can write it as

W (y + ia−/2) Iτ,τ (ατ(y + ia−/2), x, x′) (4.20)

The property G+(y, x, x) = G−(y, x, x), (A.4), is then an immediate consequence of the
symmetry (4.15). For the asymptotics (A.1), we use (4.11), (4.16) as well as evenness
and ia−-periodicity of W (·) to get

Gα(y, x, x′) = Lτ,τ(τα)(x, x
′) +O(e−(−ηRe y)), Re y →∞ (4.21)

(As a rather technical point, note how it is not necessary for our choice of Gα to include
a sum over τ , unlike in Proposition 3.2.)

To make the connection to Proposition A.1 explicit we must set (s, t, t′) = (y, x, x′),
Ω = R, φ(x, x′) = f(x)g(x′) and ± = + in (A.7). Because of (4.21), we have A(x) =
Lτ,τ(+)(x, x) and so, summing over τ , (4.18) equals∫

R+

dx f(x)g(x)
∑
τ=+,−

Lτ,τ(+)(x, x) (4.22)

We are now ready for the theorem that expresses (4.2) in a form manifestly conducive
to questions of isometry. It involves residues of the function ŵN(·) (2.53),

ŵj ≡ Res
y=y+j

ŵN(y), j = 1, . . . , N + 1 (4.23)

as well as the following residue function, so-called because it depends on y+
j (2.55),

R̂(j)(x, x′) ≡
∑

τ,τ ′=+,−

(1−ττ ′e+(−τx)e+(τ ′x′))−1 exp(iπτxy+
j /a+a−) exp(−iπτ ′x′y+

j /a+a−)

× Lτ,τ
′

N (y+
j , x, x

′), j = 1, . . . , N + 1 (4.24)

The formula we present is valid only when all the poles of ŵN(·) are simple, a property
that hinges on the values of the underlying parameters a+, a−. More precisely, we know
from Lemma 2.2 that the ratio a−/a+ cannot take values from the point set ÊN (2.57) if
this property is to hold. The theorem applies to functions in C∞0 (R) with support away
from the origin. This set is dense in H and denoted C.
Theorem 4.2. For the map F∗N : H → Ĥ with action (4.1), the following is true for
functions f, g ∈ C whenever a−/a+ /∈ ÊN

(F∗Nf,F∗Ng)Ĥ = (f, g)H

+
πi

a+a−

∫
R
dx f(x)

∫
R
dx′ g(x′)wN(x)1/2wN(x′)1/2

N+1∑
j=1

ŵjR̂
(j)(x, x′) (4.25)

Moreover, this integral is absolutely convergent.
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Proof. Denoting two times the integral function in (4.8) as I(Λ, x, x′) we already know
from (4.2)-(4.6) that

(F∗Nf,F∗Ng)Ĥ =
c2

2
lim

Λ→∞

∫
R
dx f(x)

∫
R
dx′ g(x′)I(Λ, x, x′) (4.26)

The idea is to apply Proposition 3.1 to I(Λ, x, x′), and then let the resulting boundary
integrals be handled by Proposition 4.1. For the choice mτ (x, y) = wN(x)1/2`τN(x, y),
evenness of wN(·) means that the function (4.9) in Proposition 4.1 equals

Jτ,τ
′
(y, x, x′) = wN(x)1/2wN(x′)1/2eiτπxy/a+a−e−iτ

′πx′y/a+a−Lτ,τ
′

N (y, x, x′), τ, τ ′ = +,−
(4.27)

This function connects with I(Λ, x, x′) because, multiplied by ŵN(y)/2, it is just (4.8)
and, moreover, because of the quasiperiodicity relation (2.18), it satisfies

Jτ,τ
′
(y + ia−, x, x

′) = ττ ′e+(−τx)e+(τ ′x′)Jτ,τ
′
(y, x, x′), τ, τ ′ = +,− (4.28)

This means it is a candidate for Proposition 3.1 with s = y, W (y) = ŵN(y) and M τ,τ ′ =
ττ ′e+(−τx)e+(τ ′x′) (for the required properties of ŵN(·), cf. §2.2). Since we have x, x′ ∈
R, a problem arises for this multiplier when x = x′ and τ = τ ′. This ceases to be a
problem, however, when (3.8) is considered under limΛ→∞

∫
K
dxdx′ for K compact and

away from the origin, as we have in (4.26). The divergence affecting the residue term
is handled by our absolute convergence claim (to be proved shortly), and that affecting
the boundary integrals is handled by Proposition 4.1. Assuming therefore that m±,
introduced above satisfy the various criteria of Proposition 4.1, the two propositions
combine to reveal that the rhs of (4.26) equals

1

2

πi

a+a−

∫
R
dx f(x)

∫
R
dx′ g(x′)

∑
τ,τ ′=+,−

(1− ττ ′e+(−τx)e+(τ ′x′))−1

N+1∑
j=1

ŵj

×
[
Jτ,τ

′
(y+
j , x, x

′) + J−τ,−τ
′
(−y+

j , x, x
′)
]
− 1

2

∫
R
dx f(x)g(x)

∑
τ=+,−

Lτ,τ(+)(x, x) (4.29)

(concerning the poles, we have made the obvious choice sj = y+
j , j = 1, . . . , N + 1). We

note two immediate simplifications of this that follow from the symmetry (4.7). In the
first case, this same symmetry gets passed onto Jτ,τ

′
(y, x, x′) in the same form, simplifying

the residue term. In the second, it entails via (4.11) that the τ -sum in the integral equals
2L+,+

(+) (x, x), as a result of

Iτ,τ
′
(y, x, x′) = wN(x)1/2wN(x′)1/2Lτ,τ

′

N (y, x, x′), τ, τ ′ = +,− (4.30)

Thus the rhs of (4.26) equals
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πi

a+a−

∫
R
dx f(x)

∫
R
dx′ g(x′)

∑
τ,τ ′=+,−

(1− ττ ′e+(−τx)e+(τ ′x′))−1

N+1∑
j=1

ŵjJ
τ,τ ′(y+

j , x, x
′)

−
∫
R
dx f(x)g(x)L+,+

(+) (x, x) (4.31)

The second line in (4.25) then follows immediately from (4.27).

We now show that these m±(x, y) satisfy the criteria of Proposition 4.1. Entirety of
`τN(x, y) in both variables means that mτ (x, ·) is entire and mτ (·, y) is smooth on R when
the poles of wN(·) are off the real axis, which we know is the case if a−/a+ /∈ ÊN , cf. §2.2.
Periodicity follows from (2.18).

The tricky criteria are those concerning (4.11). We first use the asymptotics (2.67),
(2.68) and (2.65) to shed some light on ŵN(y)`τN(x, y)`τ

′
(x′,−y). These equations tell us

that this object is O(e−(−|Re y|)) whenever τ or τ ′ is −. Indeed from this asymptotics
we see that only τ = τ ′ = + gives a non-decaying O(1) term,

ŵN(y)`+
N(x, y)`+

N(x′,−y) = (−)N4s−(x+ εηN)s−(x′ − εηN)sN(εx− ia+/2)

× sN(−εx′ − ia+/2) +O(e
−2|Re y|
− ), y → ε∞, ε = +,− (4.32)

In order to realise (4.11) we must consider what this means for ŵN(y)Lτ,τ
′

N (y, x, x′), (4.6).
We can see that only the τ ′ = τ terms will feature a specialisation of the kind (4.32),
which will come from the δ = τ term in the sum. In other words, we have

ŵN(y)Lτ,−τN (y, x, x′) = O(e
−|Re y|
− ), Re y → ±∞, τ = +,− (4.33)

ŵN(y)Lτ,τN (y, x, x′) = (−)N4s−(τx+ εηN)s−(τx′ − εηN)sN(ετx− ia+/2)

× sN(−ετx′ − ia+/2) +O(e
−2|Re y|
− ), Re y → ε∞, ε, τ = +,− (4.34)

From this we can read off

Lτ,−τ(ε) (x, x′) = 0, ε, τ = +,− (4.35)

and

Lτ,τ(ε) (x, x′) = wN(x)1/2wN(x′)1/2(−)N4s−(τx− εηN)s−(τx′ + εηN)sN(−ετx− ia+/2)

× sN(ετx′ − ia+/2), ε, τ = +,− (4.36)

(as a check one can see that these satisfy (4.16)). The symmetry (4.7) means that the
sum on the rhs of (4.12) equals 2L+,+

(+) (x, x). Accordingly we compute,

L+,+
(+) (x, x) = wN(x)(−)N4s−(x+ ηN)s−(x− ηN)sN(x− ia+/2)sN(−x− ia+/2) (4.37)
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The result follows because from (2.7) and (2.60) we have

(−)N4s−(x+ ηN)s−(x− ηN)sN(x− ia+/2)sN(−x− ia+/2) = 1/wN(x) (4.38)

We now deal with the absolute convergence claim. First we note that the poles of
ŵN(·) are off the real axis when a−/a+ /∈ ÊN , cf. §2.2. Since the functions `τN(·, ·) that
compose LN are entire, it is thus clear that the only threat of divergence can come from
the reciprocal term when τ ′ = τ . Suppose we can argue that the LN term in (4.24) is
in fact independent of the value of τ whenever τ ′ = τ and x′ = x. Then R̂(j)(x, x) will
be finite because of the limit (3.50) with (y, y′)→ (x, x′). The supposition holds because
the symmetries (4.7) and (4.43) together imply

L+,+
N (y, x, x) = L−,−N (y, x, x) (4.39)

We now take a closer look at the entire function LN , which we recall is defined by

Lτ,τ
′

N (y, x, x′) ≡
∑
δ=+,−

`δτN (δx, y)`δτ
′

N (δx′,−y), τ, τ ′ = +,− (4.40)

In particular we want to prove the symmetry which we have assumed throughout this
section,

Lτ,τ
′

N (y, x, x′) = L−τ,−τ
′

N (−y, x, x′) (4.41)

(cf. (4.7)). To do this we will connect it to the function MN in §2.1 which we have studied
in detail. Comparison of the definitions reveals

Lτ,τ
′

N (y, x, x′) = M τ,τ ′

N (x, x′; y,−y), τ, τ ′ = +,− (4.42)

Thus (4.41) follows immediately from the “deep” symmetry (2.39). In addition we have
the “surface” symmetries, which can either be read off from (4.40) or viewed as special
cases of (2.32) and (2.33),

Lτ,τ
′

N (y, x, x′) =

Lτ
′,τ
N (−y, x′, x) (4.43)

L−τ,−τ
′

N (y,−x,−x′) (4.44)

(these are also satisfied for Iτ,τ
′

(4.10) since this has the same form). There is also the
quasiperiodicity property which we have been using implicitly, which follows straightfor-
wardly from (2.18),

Lτ,τ
′

N (y + ia−, x, x
′) = ττ ′Lτ,τ

′

N (y, x, x′) (4.45)
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4.2 Residue analysis

As we explained at the start of the previous subsection, the main reason for studying F∗N
is to learn more about FN . In particular we are interested in the behaviour of F∗N for the
polytope of a+, a− described by a−/a+ > N + 1/2. These are the values for which FN
is isometric and thus pertinent to quantum mechanics. Suppose we can show that F∗N
is also an isometry for some subset of this polytope, then we learn that FN is onto and
thus unitary. This is a consequence of the following general equality

ker(T ∗) = T (H2)⊥ (4.46)

which holds for any bounded map T : H2 → H1 and its adjoint T ∗ : H1 → H2 (which is
necessarily bounded). In the quantum mechanical picture, the implication of RanFN = H
is that the Hilbert space H is made up entirely of scattering states - provided of course
that we can prove FN is indeed the wave operator (forgetting the results from Chapter 1
this is just an expectation).

The following corollary gives us grounds for assessing isometry of F∗N . The restriction
a−/a+ /∈ ÊN is simply there to ensure the validity of the formula (4.25). Whenever this
formula holds, the claim is immediate and there is no need for further proof,

Corollary 4.3. Provided a−/a+ /∈ ÊN , the map F∗N : H → Ĥ with action (4.1) is an
isometry iff the residue sum

∑N+1
j=1 ŵjR̂

(j)(x, x′) vanishes.

We recall that the residue function here is defined by

R̂(j)(x, x′) ≡
∑

τ,τ ′=+,−

(1−ττ ′e+(−τx)e+(τ ′x′))−1 exp(iπτxy+
j /a+a−) exp(−iπτ ′x′y+

j /a+a−)

× Lτ,τ
′

N (y+
j , x, x

′), j = 1, . . . , N + 1 (4.47)

Lτ,τ
′

N (y+
j , x, x

′) = `τN(x, y+
j )`τ

′

N(x′,−y+
j ) + `−τN (−x, y+

j )`−τ
′

N (−x′,−y+
j ) (4.48)

and recall further that: `τN(·, ·) is an entire function defined in (2.15); y+
j is one of the

2(N + 1) poles of the weight function ŵN(y) in the strip Im y ∈ i(0, a−), cf. §2.2. The
residue of this function at y = y+

j is denoted ŵj.

In all the examples we are going to see, vanishing of the residue sum comes about
because of vanishing of each individual summand. (Indeed in §5 we prove that for fixed
N , the residue functions (4.47) are linearly independent.) To provide some guidance, we
run through the N = 0 case explicitly, before turning to the general case in Lemma 4.4.
Exploiting the connection in (4.42), we use (2.36) and Σ0 = 1 to deduce,

Lτ,τ
′

0 (y, x, x′) = M τ,τ ′

0 (x, x′; y,−y) = −ττ ′
∑

ν,ν′=+,−

4νν ′s−(x− iνa+/2)s−(x′ − iν ′a+/2)

× µνν′(y,−y)e−(−ντy/2)e−(ν ′τ ′y/2) (4.49)
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We have seen the function µνν′(y,−y) already in (2.40). Indeed from the latter we have
that µ±(y+

1 ,−y+
1 ) = 2c−(ia+). Setting y = y+

1 = ia+ in (4.49), we isolate

∑
ν=+,−

2νs−(x− ia+/2)e−(−iντa+/2) =
∑
ν=+,−

ν
(
ex−e

−iνa+/2
− − e−x− e

iνa+/2
−

)
e
−iντa+/2
−

= −e−(τx)s−(ia+), τ = +,− (4.50)

Accordingly,

Lτ,τ
′

0 (y+
1 , x, x

′) = −8ττ ′c−(ia+)s−(ia+)2e−(τx)e−(−τ ′x′) (4.51)

Noting that for y = ia+, the plane wave product in (4.47) is just e−(−τx)e−(τ ′x′) we
therefore have

R̂(1)(x, x′) = −8c−(ia+)s−(ia+)2
∑

τ,τ ′=+,−

(1− ττ ′e+(−τx)e+(τ ′x′))−1ττ ′ (4.52)

In fact this sum vanishes outright because of the simple identity

1

1− A′/A
+

1

1− A/A′
− 1

1 + 1/AA′
− 1

1 + AA′
= 0 (4.53)

Thus F∗0 is an isometry when y+
1 = ia+.

In Lemma 4.4 we learn that this vanishing extends to all N, j when a+, a− are suitably
restricted. Above we simply assumed that y+

1 = ia+, but in general y+
j only has the form

y+
j = ija+, j = 1, . . . , N + 1 (4.54)

if ja+ < a−, cf. §2.2. When a−/a+ is sufficiently small such that this is no longer
satisfied, we must subtract some multiple of ia− from the rhs of (4.54) to obtain the
correct expression for y+

j . This change spoils the vanishing argument, as we will see in
Lemma 4.6. The restriction in Lemma 4.4 thus ensures y+

j has the form (4.54), and that
in Theorem 4.5 ensures all y+

j have the form (4.54).
With regard to how the general N argument differs from the N = 0 vanishing argu-

ment, the main difference in the general N case is the same as that which we described
before Lemma 3.5. The end-goal is again to isolate the same τ, τ ′-sum in (4.52).

Lemma 4.4. If the positive parameters a+, a− satisfy a−/a+ > j for a fixed j = 1, . . . ,
N + 1, then the residue function R̂(j)(x, x′) (4.47) vanishes.

Theorem 4.5. If the positive parameters a+, a− satisfy a−/a+ > N+1, and a−/a+ /∈ ÊN
(2.57), then the adjoint F∗N : H → Ĥ with action (4.1) is an isometry. Equivalently,
FN : Ĥ → H is an isometry onto H, i.e. unitary.

Proof of Theorem 4.5. Because a−/a+ > N+1/2, we know from Theorem 3.6 that FN is
an isometry. Corollary 4.3 and Lemma 4.4 establish that F∗N is an isometry for a−/a+ >
N + 1 and a−/a+ /∈ ÊN .
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Proof of Lemma 4.4. We first rewrite R̂(j)(x, x′) in terms of

λτN(x, y) = exp(iπτxy/a+a−)`τN(x, y), τ = +,− (4.55)

for which we have the explicit expression (2.29). It is best to conduct this rearrangement
with y+

j → y in (4.47), and then to set y = y+
j at the end. This is straightforward because

from (4.55) it follows that

exp(iπτxy/a+a−) exp(−iπτ ′x′y/a+a−)Lτ,τ
′

N (y, x, x′)

= λτN(x, y)λτ
′

N(x′,−y) + λ−τN (−x, y)λ−τ
′

N (−x′,−y), τ, τ ′ = +,− (4.56)

And so

R̂(j)(x, x′) =
∑

τ,τ ′=+,−

(1− ττ ′e+(−τx)e+(τ ′x′))−1
[
λτN(x, y+

j )λτ
′

N(x′,−y+
j )

+ λ−τN (−x, y+
j )λ−τ

′

N (−x′,−y+
j )
]
, j = 1, . . . , N + 1 (4.57)

The four λN -functions that feature here are all variants of

λτN(x, αy+
j ), α, τ = +,− (4.58)

and so we proceed to study this function more closely. From (2.29) we learn that its
τ -dependence hinges on

KN(x+ iνa+/2, ατy
+
j ), α, ν, τ = +,− (4.59)

in the sense that (4.58) equals

τ φ̂KN(x+ ia+/2, ατy
+
j ) + τϕ̂KN(x− ia+/2, ατy

+
j ) (4.60)

where φ̂, ϕ̂ are some j, α-dependent entire functions in x.
We now look at (4.59) more closely. Since y+

j = ija+, we can use (2.24) whenever
j ≤ N . This tells us that (4.59) equals

iNB
(N)
N−j(c−(x+ iνa+/2)) (4.61)

which is independent of α and, more crucially, of τ . It implies that when j ≤ N , (4.59)
is proportional to τ (with respect to the variable τ , cf. note below (3.69)). As a result,
(4.57) equals some j-dependent entire function in x, x′ multiplied by∑

τ,τ ′=+,−

(1− ττ ′e+(−τx)e+(τ ′x′))−1ττ ′ (4.62)

This is the function we saw in (4.52) and we know it vanishes due to (4.53).
Thus we have shown that R̂(j)(x, x′) = 0 when y+

j = ija+ and j ≤ N . It remains to
establish vanishing when j = N + 1. It turns out this is much trickier because (2.24) can
no longer be used.
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Looking first at the α = + term in (4.58), it follows from (2.29) that

λτN(x, y+
N+1) = 2(−)N iN+1τ pN (4.63)

where we have isolated for special attention

pN ≡
∑
ν=+,−

νs−(x− iν(N + 1/2)a+)KN(x+ iνa+/2, τξ) (4.64)

ξ ≡ i(N + 1)a+ (4.65)

We have attached neither x nor τ dependence to the symbol pN because we claim it is
in fact independent of these variables, i.e. constant. Assuming this for the moment, we
turn to the α = − term in (4.58). The analogous sum one finds is∑

ν=+,−

νs−(x− iν(N + 1/2)a+)e−(νξ)KN(x+ iνa+/2,−τξ) (4.66)

But for this, the argument that we will apply to the rhs of (4.64) does not work. To get
around this we should stop studying the α = +,− terms separately, and consider the
whole square-bracketed term in (4.57). We note that the latter is just the y = y+

N+1 = ξ

specialisation of Λτ,τ ′

N (x, x′; y,−y) where ΛN is the function we introduced and studied
in §2.1. Amongst the things we have for ΛN is the partially evaluated expression (2.46).
From this we learn that

Λτ,τ ′

N (x, x′; ξ,−ξ) = 2c−(ξ)(−)N+1ττ ′
∑

ν,ν′=+,−

4νν ′s−(x− νηN)s−(x′ − ν ′ηN)

×KN(x+ iνa+/2, τξ)KN(x′ + iν ′a+/2,−τ ′ξ) (4.67)

ηN ≡ i(N + 1/2) (4.68)

The nuisance term in (4.66), namely e−(νξ), has passed outside the sum as part of
µνν′(ξ,−ξ) = 2c−(ξ). In fact (4.67) is now manifestly equal to

8c−(ξ)(−)N+1ττ ′p2
N (4.69)

Thus the square bracketed term in (4.57) is again straightforwardly proportional to ττ ′

(cf. note below (3.69)) and so vanishing follows due to (4.53).

It remains to prove that the rhs of (4.64) is indeed independent of x and τ (there is
no need to compute pN until Theorem 4.7). From (2.19) and 2ia−-periodicity of ΣN , we
deduce

KN(x+ 2ia−, y) = e+(−2y)KN(x, y) (4.70)

Thus KN(x, y) is 2ia−-periodic in x when y = ±i(N + 1)a+. It is therefore clear that the
rhs of (4.64) is 2ia−-periodic overall. Denoting the rhs of (4.64) as S(x), we compute
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S(x+ia+/2)−S(x−ia+/2) =
[
s−(x−iNa+)KN(x+ia+, ξ)+s−(x+iNa+)KN(x−ia+, ξ)

]
−KN(x, τξ)

(
s−(x+ ξ) + s−(x− ξ)

)
(4.71)

The term in square brackets is just the lhs of the A∆E, (2.22), and so we know it
equals 2s−(x)c−(ξ)KN(x, ξ). In addition, s−(x + ξ) + s−(x − ξ) = 2s−(x)c−(ξ), and so
(4.71) vanishes. This implies S(·) is both 2ia− and 2ia+-periodic. Thus whenever a+/a−
is irrational, S(·) is constant. This constancy extends to all a+/a− ∈ (0,∞) because
S(a+, a−;x) is made up from functions that are smooth in a+, a−, x.

So far we have established that F∗N is an isometry when a−/a+ > N + 1, and
subsequently that RanFN = H. It is now natural to ask what happens in the range
a−/a+ ∈ (N+1/2, N+1). Here we know that FN is an isometry, but we do not yet know
anything about the behaviour of F∗N , i.e. about the residue sum in Corollary 4.3. We will
find that the sum is non-vanishing in this range, meaning that F∗N is not an isometry.
Furthermore we will find that its kernel is non-zero. Recalling (4.46), this entails that
FN is no longer onto. In the quantum mechanical picture, this corresponds to existence
of bound states. To describe these explicitly we need to know RanFN explicitly. It turns
out that Theorem 4.2 allows us to do this, and the findings are presented in Theorem 4.7.
The picture is then complete once we show that these bound states are eigenfunctions of
the Hamiltonian.

Let us return to a study of the residue function, (4.47). As we discussed circa (4.54),
a consequence of a−/a+ dropping below N + 1 is that the pole y+

N+1 no longer has the
form i(N + 1)a+. The latter exceeds the strip i[0, a−) and so we must subtract some
multiple of ia−. In the case of N ≥ 1 we can fix a−/a+ ∈ (N,N + 1) to get

y+
N+1 = i(N + 1)a+ − ia− (4.72)

(which is now guaranteed to live in the pertinent strip). For this choice of interval, all the
remaining y+

j≤N still have the form ija+. In the case of N = 0 the latter consideration
does not apply. Instead we fix a−/a+ ∈ (1/2, 1) to get

y+
1 = ia+ − ia− (4.73)

Let us run through the computation of the N = 0 residue function explicitly to offer
some guidance for the general case. The quasiperiodicity relation (4.45) tells us that

Lτ,τ
′

0 (y+
1 , x, x

′) = ττ ′Lτ,τ
′

0 (ia+, x, x
′) (4.74)

The L0 term on the rhs here is now identical to that in (4.51) (where we were dealing
with y+

1 = ia+). For y+
1 = ia+, the plane wave term in (4.47) reduces to to e−(−τx)

e−(τ ′x′)e+(τx)e+(−τ ′x′) and so

R̂(1)(x, x′) = −8c−(ia+)s−(ia+)2
∑

τ,τ ′=+,−

(1− ττ ′e+(−τx)e+(τ ′x′))−1ττ ′ (4.75)
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Unlike with (4.62), the sum here does not vanish outright. Indeed, setting A ≡ e+(x)
and A′ ≡ e+(x′) it equals

A

A′
1

1− A′/A
+
A′

A

1

1− A/A′
+ AA′

1

1 + 1/A′A
+

1

AA′
1

1 + AA′

=
A′

A
+
A

A′
+ A′A+

1

A′A
= 2c+(x− x′) + 2c+(x+ x′) = 4c+(x)c+(x′) (4.76)

(Doubtless there are many ways to get from the first line to the second, but one is to
make use of the identity

B

1∓ 1/B
+

1/B

1∓B
= B +

1

B
± 1 .) (4.77)

Returning to (4.25), what this implies is that

(F∗0f,F∗0 g)Ĥ = (f, g)H − c0(f,Ψ0)H(Ψ0, g)H (4.78)

where c0 = − sin(πa+/a−)/a+ and Ψ0(x) = 2c+(x)w0(x)1/2 (in the process we have
computed ŵ0 = −ia− sin(2πa+/a−)/4π). Note that the sign of c0 is positive for the range
of this formula’s validity, a−/a+ ∈ (1/2, 1). The implications of (4.78), and its general
N analogue, are explored in Theorem 4.7 below. This theorem involves the point set ÊN
(2.57) and the weight function wN(x) (2.53). First we give the lemma that generalises
the above N = 0 calculation.

Lemma 4.6. If for N > 0, the positive parameters a+, a− satisfy a−/a+ ∈ (N,N + 1)
then the j = N + 1 residue function (4.47) is given by

R̂(N+1)(x, x′) = 8 cos(π(N + 1)a+/a−)c+(x)c+(x′)
2N+1∏
j=N+1

[2 sin(πja+/a−)]2 (4.79)

Theorem 4.7. If the positive parameters a+, a− satisfy a−/a+ ∈ (N + 1/2, N + 1) \ ÊN
then the map FN : Ĥ → H defined by (2.69) is an isometry which partakes in the following
orthogonal decomposition of Hilbert space,

H = RanFN ⊕ span {ΨN} (4.80)

where ΨN(x) ≡ 2c+(x)wN(x)1/2 satisfies the A∆E

ΨN(x− ia−) + ΨN(x+ ia−) = 2 cos(πa−/a+)ΨN(x) (4.81)

and has norm

‖ΨN‖2 = (−)N+1a+

∏N
j=1 sin(πja+/a−)∏2N+1

j=N+1 sin(πja+/a−)
(4.82)
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Proof of Lemma 4.6. As explained above (4.72), the restriction in the lemma entails
y+
N+1 = i(N + 1)a+− ia−. In the proof of Lemma 4.4 we dealt with this residue function

for the case when y+
N+1 = i(N + 1)a+. Much of the material there can be recycled due to

the ia−-quasiperiodicity properties of some of the terms in the residue function, (4.47).
Specifically, the plane wave product picks up a multiplier e+(τx)e+(−τ ′x′) when y is
shifted by −ia−, and the LN term picks up ττ ′, cf. (4.45). Thus we get

R̂(N+1)(x, x′) =
∑

τ,τ ′=+,−

(1− ττ ′e+(−τx)e+(τ ′x′))−1e+(τx)e+(−τ ′x′)ττ ′

× exp(iπτxξ/a+a−) exp(−iπτ ′x′ξ/a+a−)Lτ,τ
′

N (ξ, x, x′) (4.83)

ξ ≡ i(N + 1)a+ (4.84)

The second line here is now identical to the square-bracketed term in (4.57) for y+
j =

y+
N+1 = ξ. In other words, it equals Λτ,τ ′

N (x, x′; ξ,−ξ), cf. (4.67). Above we learned that
this object is independent of x, x′ and proportional to ττ ′ (cf. note below (3.69)). Thus
R̂(N+1)(x, x′) equals some constant multiplied by∑

τ,τ ′=+,−

(1− ττ ′e+(−τx)e+(τ ′x′))−1e+(τx)e+(−τ ′x′) (4.85)

We have seen this sum already in (4.75) and we know it equals 4c+(x)4c+(x′). Further-
more, from (4.69) it is clear that the constant just mentioned is 8c−(ξ)(−)N+1p2

N , and
so

R̂(N+1)(x, x′) = 32c−(ξ)(−)N+1p2
Nc+(x)c+(x′) (4.86)

It remains to determine the constant pN , (4.64), explicitly. We can set x and τ on the
rhs of (4.64) to be anything we want. For example x = ηN and τ = + gives

pN =
∑
ν=+,−

νs−(ηN − νηN)KN(ηN + νη0, ξ) = −s−(2ηN)KN(ηN − η0, ξ) (4.87)

This enables us to now use (2.23), since ηN − η0 = iNa+. With this we find

pN = −1

2

2N+1∏
j=N+1

2s−(ija+) (4.88)

Proof of Theorem 4.7. The point about a−/a+ > N + 1/2 is that it ensures FN is an
isometry, cf. Theorem 3.6. We recall the general fact that if a map T : H2 → H1 is an
isometry then

T ∗T = 12, TT ∗ = 11 − projP (4.89)

where: 11/12 denotes identity on H1/H2; projX denotes orthogonal projection onto X ⊆
H1; and P ≡ (RanT )⊥ is the orthogonal complement of RanT .
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From (4.89) we therefore have

FNF∗N = 1H − proj(RanFN )⊥ (4.90)

By using the residue result in Lemma 4.6 and the formula in Theorem 4.2 we will show
that

(F∗Nf,F∗Ng)Ĥ = (f, g)H − cN(f,ΨN)H(ΨN , g)H (4.91)

where cN is some constant. Rewriting this as

(FNF∗Nf, g)Ĥ = (f, g)H − cN((ΨN , f)HΨN , g)H (4.92)

and invoking the fact f, g are arbitrary elements of a dense subspace of H, it is clear that
we get the operator equation

proj[RanFN ]⊥ = cN(ΨN , · )HΨN (4.93)

From this we learn that [RanFN ]⊥ = span{ΨN}. Furthermore, with knowledge that the
rhs is a projection, it necessarily follows that

cN(ΨN ,ΨN)H = 1 (4.94)

We now exhibit (4.91) and find cN . With vanishing of the N functions R̂(j≤N)(x, x′)
secured by Lemma 4.4 for a−/a+ > N , formula (4.25) becomes

(F∗Nf,F∗Ng)Ĥ = (f, g)H

+
πi

a+a−

∫
R
dx f(x)

∫
R
dx′ g(x′)wN(x)1/2wN(x′)1/2ŵN+1R̂

(N+1)(x, x′) (4.95)

Already it is clear from Lemma 4.6 that this residue function has the separability of
variables needed to realise (4.91). But to provide an explicit, elementary expression for
cN , and thus for the norm of ΨN , we must also calculate ŵN+1.

The restriction a−/a+ /∈ ÊN ensures simplicity of the pole at y+
N+1. Furthermore,

because of ia−-periodicity of ŵN(·), the residue is equal to that at i(N + 1)a+. The
substantial part of the calculation is

Res
y=i(N+1)a+

s−(y − i(N + 1)a+)−1 = (a−/π) (4.96)

with which we find

ŵN+1 = (a−/π)i sin(π(N + 1)a+/a−)(−)N+1
[ 2N+2∏

j=1

2 sin(πja+/a−)
]−1

(4.97)

And so, using Lemma 4.6 for N > 0 and (4.75) for N = 0, we get

πi

a+a−
ŵN+1R̂

(N+1)(x, x′) =
(−)

a+

N

4c+(x)c+(x′)

∏2N+1
j=N+1 sin(πja+/a−)∏N
j=1 sin(πja+/a−)

(4.98)
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Recalling that ΨN(x) ≡ 2c+(x)wN(x)1/2 we realise (4.91) with

cN ≡
(−)

a+

N+1
∏2N+1

j=N+1 sin(πja+/a−)∏N
j=1 sin(πja+/a−)

(4.99)

We note how it is not even obvious that this number is positive for a−/a+ > N + 1/2,
but we know this must be so from (4.94).

Finally, the A∆E (4.81) is a trivial consequence of ia−-periodicity of wN(·) and the
fact c+(x− ia−) + c+(x+ ia−) = 2c+(x)c+(ia−).

158



5. ISOMETRY BREAKDOWN

5 Isometry breakdown.

We now look more closely at the situation when isometry of FN and F∗N breaks down.
We have already seen an instance of F∗N isometry breakdown in the emergence of the
ground state in Theorem 4.7 (and for this reason, Theorem 5.7 in this subsection is fairly
immediate). Now we put aside our interest in quantum mechanics and study the matter
in a purely mathematical light, looking first at FN and then returning to F∗N .

5.1 Breakdown for FN
As we explained earlier, the pole x+

j (cf. §2.2) is no longer given by i(j + 1/2)a+ when
the ratio a−/a+ drops below j + 1/2. In the most general case, x+

j is given by

x+
j = i(j + 1/2)a+ − inja− (5.1)

where the precise value of the integer nj ≥ 0 is fixed by the requirement that x+
j be

in Imx ∈ [0, a−), and hence depends on a−/a+. We know already that when a−/a+ >
N + 1/2, all the poles have the simple form i(j + 1/2)a+ and this procures isometry of
FN . Below this value, the relationship between a−/a+ and the constants {nj} is fairly
complicated. For example, the first breakdown interval is given by

a−/a+ ∈ (N − 1/2, N + 1/2), N ≥ 1 (5.2)

(and a−/a+ ∈ (1/4, 1/2) for N = 0). In this interval, the poles have the formx+
N = i(N + 1/2)a+ − ia−
x+
j = i(j + 1/2)a+, j = 0, . . . , N − 1

(5.3)

which corresponds to the choice of constants nN = 1 and nj<N = 0. As a−/a+ moves
further below N − 1/2, the breakdown intervals become increasingly difficult to specify.
Each fixes the constants {nj} in a different way (indeed this is what defines an interval
as such). For any set of constants other than {0, . . . 0} we will see that the residue sum in
(3.32) is non-vanishing. This is what gives us the notion of breakdown, and the formula
(3.32) allows us to express it in precise terms. As the intervals approach the origin, the
constants grow and the complexity of this breakdown increases. This increase can be
encoded in terms of an operator of increasing rank, cf. Theorem 5.4.

In the following lemma we learn that when nj > 0 in (5.1), the argument used for
vanishing in Lemma 3.5 breaks down. This alone does not mean that the residue sum in
Corollary 3.4 is necessarily non-vanishing. But this is indeed also the case as established
in the second part of the lemma. The corollary to the lemma is an immediate consequence
of Corollary 3.4 and needs no further proof. (We must exclude the point set EN , (2.52),
as part of the ‘only if’, since we know that for some of these a−/a+-values, FN reduces
to Fourier transform and in this case is obviously an isometry.)

Lemma 5.1. If the positive parameters a+, a− satisfy a−/a+ < j + 1/2 for a fixed j =

0, . . . , N , then the residue function R
(j)
σ (y, y′) (3.31) is generically non-vanishing for both

σ = +,−. Moreover, when a−/a+ < N+1/2, the N+1 residue functions corresponding to
a choice of σ are linearly independent, and so the sum in Corollary 3.4 is non-vanishing.
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Corollary 5.2. Assume the positive parameters a+, a− satisfy a−/a+ /∈ EN . Then the
map FN : Ĥ → H defined by (2.69) is an isometry iff a−/a+ > N + 1/2.

Proof of Lemma 5.1. In Lemma 3.5 we established that the residue function vanishes
when x+

j = ηj ≡ i(j + 1/2)a+. In the present case, the restriction in the lemma means
that x+

j = ηj − inja− where nj > 0, cf. (5.1). Because of the quasiperiodicity of certain
terms in (3.52) it turns out the present case can be linked to the one in Lemma 3.5.

First we note that the rewriting of the residue sum, (3.64), is still valid since it is not
tied to any particular form of x+

j ,

R(j)
σ (y, y′) =

∑
τ,τ ′=+,−

(1− e+(τy)e+(−τ ′y′))−1
[
λτN(x+

j ,−y)λστ
′

N (σx+
j , y

′)

+ λ−τN (−x+
j ,−y)λ−στ

′

N (−σx+
j , y

′)
]
, j = 0, . . . , N, σ = +,− (5.4)

The square-bracketed term here emerged from the function Jτ,τ
′
(σ;x, y, y′) in the proof

of Theorem 3.3. Specifically it was equal to the x = x+
j specialisation of[

Jτ,τ
′
(σ;x, y, y′) + J−τ,−τ

′
(σ;−x, y, y′)

]
/vN(−y)vN(y′) (5.5)

(cf. (3.37)). A fundamental requirement of that proof was that this J be ia−-quasiperiodic
in x. The quasiperiodicity relation took the form

Jτ,τ
′
(x− ia−) = e+(−τy)e+(τ ′y′)Jτ,τ

′
(x), τ, τ ′ = +,− (5.6)

(cf. (3.7) and (3.35)), which is equivalent to

J−τ,−τ
′
(−x+ ia−) = e+(−τy)e+(τ ′y′)J−τ,−τ

′
(−x), τ, τ ′ = +,−, (5.7)

and so we can conclude straight away that (5.5) picks up a multiplier e+(−τy)e+(τ ′y′)
when x is shifted by −ia−.

Accordingly when we set x+
j = ηj − inja− in (5.4) it becomes

R(j)
σ (y, y′) =

∑
τ,τ ′=+,−

(1− e+(τy)e+(−τ ′y′))−1e+(−τnjy)e+(τ ′njy
′)

×
[
λτN(ηj,−y)λστ

′

N (σηj, y
′) + λ−τN (−ηj,−y)λ−στ

′

N (−σηj, y′)
]

(5.8)

This square-bracketed term is now identical to the one in the proof of Lemma 3.5 which we
argued was “proportional to ττ ′” (i.e. equal to ττ ′ times something τ, τ ′-independent).

Thus we can deduce that R
(j)
σ (y, y′) equals some j-dependent entire function in y, y′

multiplied by the n = nj specialisation of

Jn(y, y′) ≡
∑

τ,τ ′=+,−

(1− e+(τy)e+(−τ ′y′))−1 e+(−n(τy − τ ′y′))ττ ′, n ∈ N (5.9)

We have already seen this function for n = 0 and we know that it vanishes, cf. (3.58).
More generally, if we write out the four summands and rearrange we find
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Jn(y, y′) =
s+((n+ 1/2)(y − y′))

s+((y − y′)/2)
− s+((n+ 1/2)(y + y′))

s+((y + y′)/2)
(5.10)

Using the identity

s+((n+ 1/2)z)− s+((n− 1/2)z) = 2s+(z/2)c+(nz) (5.11)

we then get the following recursion relation(
Jn − Jn−1

)
(y, y′) = −4s+(ny)s+(ny′) (5.12)

for which we can write down the closed-form solution straight away,

Jn(y, y′) = −4
n∑
k=0

s+(ky)s+(ky′) (5.13)

Since this is generically non-vanishing for all n > 0, the first claim in the lemma is
established once we argue that the entire function mentioned above (5.9) is also non-
vanishing. This function is just the square-bracketed term in (5.8) divided through by

ττ ′. We can write it as [Λτ,στ ′

N (ηj, σηj;−y, y′)/ττ ′], where ΛN is the entire function defined
in §2.1. Amongst the things we have for ΛN is the partially evaluated expression (2.46).
This gives us

Λτ,στ ′

N (ηj, σηj;−y, y′) = (−)N+1σττ ′
∑

ν,ν′=+,−

4νν ′s−(ηj − νηN)s−(σηj − ν ′ηN)µνν′(−y, y′)

×KN(ηj + iνa+/2,−τy)KN(σηj + iν ′a+/2, στ
′y′), σ, τ, τ ′ = +,− (5.14)

When j = N the situation is much simpler because the four s−(·)-products (corresponding
to the four choices of ν, ν ′) all vanish except for (ν, ν ′) = (−,−σ). In other words,

Λτ,στ ′

N (ηN , σηN ;−y, y′) = (−)N+1σττ ′4s−(2ηN)2µσ(−y, y′)
×KN(ηN − ia+/2,−τy)KN(σηN − iσa+/2, στ

′y′) (5.15)

Because of (2.21), the σ’s drop out of the second KN , meaning that in all cases we are
dealing with KN(iNa+, z). Subsequently we learn from (2.23) that (5.15) equals

− σττ ′[2s−(2ηN)B
(N)
0 (·)]2µσ(−y, y′) (5.16)

All the terms in this product are non-vanishing for generic parameters a+, a−.
For j < N we relabel ν ′ → σν ′, as permitted under

∑
ν′ , to obtain

Λτ,στ ′

N (ηj, σηj;−y, y′) = (−)N+1σττ ′
∑

ν,ν′=+,−

4νν ′s−(ηj − νηN)s−(ηj − ν ′ηN)µσνν′(−y, y′)

×KN(ηj + iνa+/2,−τy)KN(σηj + iσν ′a+/2, στ
′y′), σ, τ, τ ′ = +,− (5.17)
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Again, (2.21) means the σ’s drop out of the second KN . Because of (2.23), we have

KN(ηj + iνa+/2, z) = iNB
(N)
N−j−(1+ν)/2(c−(z)), ν = +,−, j < N (5.18)

And so

Λτ,στ ′

N (ηj, σηj;−y, y′) = −σττ ′
∑

ν,ν′=+,−

4νν ′s−(ηj − νηN)s−(ηj − ν ′ηN)µσνν′(−y, y′)

×B(N)
N−j−(1+ν)/2(c−(y))B

(N)
N−j−(1+ν′)/2(c−(y′)), σ, τ, τ ′ = +,−, j < N (5.19)

Each ν, ν ′ summand is proportional to

µσνν′(−y, y′)B(N)
N−j−(1+ν)/2(c−(y))B

(N)
N−j−(1+ν′)/2(c−(y′)) (5.20)

where, recalling (2.37),

µσνν′(−y, y′) =

e
(y−y′)/2
− eξ− + e

−(y−y′)/2
− e−ξ− , σνν ′ = +

e
(y+y′)/2
− + e

−(y+y′)/2
− , σνν ′ = −

(5.21)

Since B
(N)
k (·), §2, is a polynomial of degree k, it follows that for a fixed j and σ, the four

ν, ν ′ summands in (5.19) are linearly independent and non-vanishing for generic param-
eters a+, a−.

We have thus established that when nj > 0, the residue function R
(j)
σ (y, y′) is generi-

cally non-vanishing for all j = 0, . . . , N and σ = +,−. We now turn to the second part
of the lemma. For this it is useful to write

R(j)
σ (y, y′) = Jnj

(y, y′)[Λτ,στ ′

N (ηj, σηj;−y, y′)/ττ ′] (5.22)

(this equation is well-defined because we have just seen that this quotient term is in fact
τ, τ ′-independent). We recall that the set of constants {nj} arising in (5.1) is fixed by the
value of a−/a+. We will argue for linear independence of (5.22) for fixed σ and arbitrary
{nj} (this will save us the non-trivial task of describing how the set is actually fixed by
a particular a−/a+), The restriction a−/a+ < N + 1/2 means that at least one of the
constants is non-zero, namely nN , and so at least one of the residue functions is non-
vanishing. Since Jnj

(y, y′) = Jnj′
(y, y′) is readily attainable under our assumptions, it is

necessary that (5.16) and the N functions in (5.19), corresponding to j = 0, . . . , N − 1,
are linearly independent (the latter functions are thought of monolithically, with regards
to
∑

ν,ν′). This linear independence is also sufficient because Jn(y, y′) is built from
powers of e+(y) and e+(y′), whereas the N + 1 functions just described are built from
e−(y) and e−(y′). Specifically, the max/min powers of e−(y) and e−(y′) in (5.16) are ±1,
respectively. And, as follows from inspection of (5.20), the (actually attained) max/min
powers of e−(y) and e−(y′) in (5.19) are ±(N − j + 1) respectively. The j-dependence of
the latter establishes the claim.
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We now return to the matter of isometry breakdown and the claim that it can be
encoded in terms of a finite rank operator. A suitable definition for such an operator is

RN ≡ F∗NFN − 1Ĥ (5.23)

which we note is a priori self-adjoint on Ĥ (manifestly symmetric and bounded due
to FN ’s boundedness). We can see explicitly how RN captures the notion of isometry
breakdown by writing

‖FN f̂‖2
H − ‖f̂‖2

Ĥ = (f̂ , RN f̂)Ĥ (5.24)

Clearly then, isometry of FN is equivalent to vanishing of RN . Thus from Corollary 5.2
we can be sure that RN 6= 0 when a−/a+ < N + 1/2.

Now, say we have an equation of the form

(FN f̂ ,FN ĝ)H = (f̂ , ĝ)Ĥ +
∑

δ,δ′=+,−

∫
R+

dy fδ(y)

∫
R+

dy′ gδ′(y
′)

L∑
l=1

λl(Θ
l
a)δ(y)(Θl

b)δ′(y
′)

(5.25)
where Θl

a,Θ
l
b ∈ Ĥ, λl ∈ C and L is some positive integer, then a priori,

RN =
L∑
l=1

λl Θ
l
a ⊗Θl

b (5.26)

where, formally,

(F ⊗G)H ≡ (G,H)F (5.27)

We note that the rhs of (5.26) is manifestly self-adjoint if λl ∈ R and Θl
b = Θl

a (because

((Θa ⊗Θb)f̂ , ĝ) = (f̂ , (Θb ⊗Θa)ĝ). Under these conditions the rhs of (5.24) equals

L∑
l=1

λl|(f,Θl
a)Ĥ|

2 (5.28)

The potential to realise (5.25) is clearly given to us by Theorem 3.3. We achieve
this, and more, in the following two theorems. The first deals with the first breakdown
interval (5.2) for N > 0 (it also applies to N = 0 provided we change the lower interval
limit, N − 1/2 → 1/4). The second encompasses all breakdown intervals for generic N .

We recall that vN(y)/wj are defined in (2.8)/(3.30) respectively, and that B
(N)
k (·) is a

polynomial of degree k, equalling a constant given by (2.26) when k = 0. The polynomial
drops out as unity when N = 0. We exclude the point set EN (2.52) to ensure the poles
of wN(·) are simple.

Theorem 5.3. Let the positive parameters a+, a− satisfy a−/a+ ∈ (N−1/2, N+1/2)\EN .
Then for N > 0, the operator RN , (5.23), has the manifestly self-adjoint form,

RN = λN
(
Γ

(N)
1 ⊗ Γ

(N)
1 − Π

(N)
1 ⊗ Π

(N)
1

)
(5.29)
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where

λN ≡
2πi

a+a−
wN ∈ R, (5.30)

Γ
(N)
k ≡

(
γ

(N)
k

γ
(N)
k

)
, Π

(N)
k ≡

(
π

(N)
k

−π(N)
k

)
, (5.31)

γ
(N)
k (y) ≡ 4vN(−y)s+(ky)s−(2ηN)s−((y + i(N + 1)a+)/2)B

(N)
0 (·), (5.32)

π
(N)
k (y) ≡ 4vN(−y)s+(ky)s−(2ηN)c−((y + i(N + 1)a+)/2)B

(N)
0 (·), (5.33)

and

ηj ≡ i(j + 1/2)a+ (5.34)

Theorem 5.4. Let the positive parameters a+, a− satisfy a−/a+ ∈ (0, N + 1/2) \ EN .
Then the operator RN , (5.23), can be written in the manifestly self-adjoint form,

RN = λN

nN∑
k=1

(
Γ

(N)
k ⊗ Γ

(N)
k − Π

(N)
k ⊗ Π

(N)
k

)
+

N−1∑
j=0

λj

nj∑
k=1

((
Γ

(N,j)
k ⊗ Γ

(N,j)
k − Π

(N,j)
k ⊗ Π

(N,j)
k

)
(5.35)

where

λj ≡
2πi

a+a−
wj ∈ R, (5.36)

Γ
(N,j)
k ≡

(
γ

(N,j)
k

γ
(N,j)
k

)
, Π

(N,j)
k ≡

(
π

(N,j)
k

−π(N,j)
k

)
, j < N (5.37)

γ
(N,j)
k (y) ≡ 4vN(−y)s+(ky)

× s−((y + i(N + 1)a+)/2)
∑
ν=+,−

s−(ηj − νηN)B
(N)
N−j−(1+ν)/2(c−(y)) (5.38)

π
(N,j)
k (y) ≡ 4vN(−y)s+(ky)

× c−((y + i(N + 1)a+)/2)
∑
ν=+,−

νs−(ηj − νηN)B
(N)
N−j−(1+ν)/2(c−(y)), (5.39)

and where {nj}Nj=0 is the set of constants fixed by the value of a−/a+ according to (5.1)
and the definition of x+

j .
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Proofs of Theorems 5.3 and 5.4. We first note λj are real because wj is the residue of a
real-valued function at an imaginary pole.

Next, we catalogue the residue functions for the most general form of the poles (5.1),
i.e. x+

j = ηj − inja− where ηj ≡ i(j + 1/2)a+. The argument in the previous proof
brought us close to an explicit expression for these. Indeed from what was said below
(5.13) we have

R(j)
σ (y, y′) = Jnj

(y, y′)[Λτ,στ ′

N (ηj, σηj;−y, y′)/ττ ′], σ = +,−, j = 0, . . . , N (5.40)

(this equation is well-defined because the quotient term is known to be τ, τ ′-independent).
And so, with the computations (5.16) and (5.19),

R
(N)
δδ′ (y, y′) = −JnN

(y, y′)δδ′[2s−(2ηN)B
(N)
0 (·)]2µδδ′(−y, y′), δ, δ′ = +,− (5.41)

R
(j)
δδ′(y, y

′) = −Jnj
(y, y′)δδ′

∑
ν,ν′=+,−

4νν ′s−(ηj − νηN)s−(ηj − ν ′ηN)µδδ′νν′(−y, y′)

×B(N)
N−j−(1+ν)/2(c−(y))B

(N)
N−j−(1+ν′)/2(c−(y′)), δ, δ′ = +,−, j < N (5.42)

At this point we note a subtlety (which the reader may ignore). For almost all of this
chapter, the decision to transfer the δ, δ′ dependence of the integral in (3.2) onto just
one of the terms in the integrand, à la (3.3), has been a good one (giving birth to the σ
index, which became our stand-in for δδ′ and thus reduced the overall number of indices,
simplified formulas and so on). Now, however, in wanting to rebuild the inner product
form, we are forced to undo this transference and find expressions for (5.41) and (5.42)
of the form

∑
k A

δ
kB

δ′

k . This form is achieved with the objects in the theorem.
Using Theorem (3.3) and what was said about (5.25), the claims in the theorem follow

because

πi

a+a−
vN(−y)vN(y′)wNR

(N)
δδ′ (y, y′)

=

nN∑
k=1

λN
(
γ

(N)
k (y)γ

(N)
k (y′)− δπ(N)

k (y)δ′π
(N)
k (y′)

)
, δ, δ′ = +,− (5.43)

and

πi

a+a−
vN(−y)vN(y′)wjR

(j)
δδ′(y, y

′)

=

nj∑
k=1

λj
(
γ

(N,j)
k (y)γ

(N,j)
k (y′)− δπ(N,j)

k (y)δ′π
(N,j)
k (y′)

)
, δ, δ′ = +,−, j < N (5.44)
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To see that these hold, we use reality of the coefficients of the polynomial B
(N)
k (·) and the

fact η̄j = −ηj, ξ̄ = −ξ, to write out the k-summand in (5.43) as (πi/a+a−)wN multiplied
by

2vN(−y)vN(y′)[2s−(2ηN)B
(N)
0 (·)]2(−4s+(ky)s+(ky′))

×
{
s−((y + ξ)/2)s−((y′ − ξ)/2)− δδ′c−((y + ξ)/2)c−((y′ − ξ)/2)

}
(5.45)

ξ ≡ i(N + 1)a+ (5.46)

From elementary manipulation of, e.g., (5.21) it follows that

s−((y + ξ)/2)s−((y′ − ξ)/2) =
1

4

(
µ− − µ+

)
(−y, y′) (5.47)

and

c−((y + ξ)/2)c−((y′ − ξ)/2) =
1

4

(
µ− + µ+

)
(−y, y′) (5.48)

And so we obtain the following identity, which is exactly what we need to prove (5.43)
(recall (5.41) and (5.13)),

s−((y + ξ)/2)s−((y′ − ξ)/2)− δδ′c−((y + ξ)/2)c−((y′ − ξ)/2)

= −δδ
′

2
µδδ′(−y, y′), δ, δ′ = +,− (5.49)

Similarly, the k-summand in (5.44) equals (πi/a+a−)wj multiplied by

2vN(−y)vN(y′)(−4s+(ky)s+(ky′))
∑

ν,ν′=+,−

4s−(ηj−νηN)s−(ηj−ν ′ηN)B
(N)
N−j−(1+ν)/2(c−(y))

×B(N)
N−j−(1+ν′)/2(c−(y′))

{
s−((y+ξ)/2)s−((y′−ξ)/2)−δδ′νν ′c−((y+ξ)/2)c−((y′−ξ)/2)

}
(5.50)

And so (5.44) again reduces to the identity (5.49) (recalling (5.42) and (5.13)).

5.2 Breakdown for F∗N
As we explained earlier, the pole y+

j (cf. §2.2) is no longer given by ija+ when the ratio
a−/a+ drops below j. In the most general case, y+

j is given by

y+
j = ija+ − imja− (5.51)

where the precise value of the integer mj ≥ 0 is fixed by the requirement that y+
j be in

Im y ∈ [0, a−), and hence depends on a−/a+. When a−/a+ > N + 1 all the poles have
the simple form ija+, and this is synonymous with isometry of F∗N . Below this value,
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the relationship between the a−/a+ and the constants {mj} becomes fairly intricate. For
example, the first breakdown interval for F∗N is given by

a−/a+ ∈ (N,N + 1) (5.52)

(and a−/a+ ∈ (1/2, 1) for N = 0). In this interval, the poles have the formy+
N+1 = i(N + 1)a+ − ia−
y+
j = ija+, j = 1, . . . , N

(5.53)

which corresponds to the choice of constants mN+1 = 1 and mj<N = 0. There is a one-to-
one relationship between intervals and constants {mj}. In the lemma below we confirm
that isometry exists only for {0, . . . 0}. For all other sets, i.e. for a−/a+ < N + 1, the
formula (4.25) allows us to express breakdown in precise terms. As a−/a+ approaches the
origin, the constants get larger and complexity of the breakdown increases. This increase
can be reflected in the increasing rank of an operator, cf. Theorem 5.8.

The corollary to the following lemma is an immediate consequence of Corollary 4.3
and needs no further proof. (We must exclude the point set EN , (2.52), as part of the
‘only if’, since for some of these a−/a+-values, FN reduces to Fourier transform and so
is obviously an isometry.)

Lemma 5.5. When a−/a+ < j, the residue function R̂(j)(x, x′), (4.47), is non-vanishing
for fixed j = 1, . . . , N + 1. Moreover, when a−/a+ < N + 1, the N + 1 residue functions
are linearly independent, and so the sum in Corollary 4.3 is also non-vanishing.

Corollary 5.6. Assume the positive parameters a+, a− satisfy a−/a+ /∈ ÊN . Then the
map F∗N : H → Ĥ with action (4.1) is an isometry iff a−/a+ > N + 1.

Proof of Lemma 5.5. In Lemma 4.4 we learned that the residue function vanishes when
y+
j = ξj ≡ ija+. Now, the restriction in the lemma means that y+

j = ξj − imja− where
mj > 0, cf. (5.51). We can connect with the earlier work because of the quasiperiodicity
of certain terms in (4.47). Specifically, the plane wave product picks up a multiplier
e+(τx)e+(−τ ′x′) when y is shifted by −ia−, and the LN term picks up ττ ′, cf. (4.45).
Thus we get

R̂(j)(x, x′) =
∑

τ,τ ′=+,−

(1− ττ ′e+(−τx)e+(τ ′x′))−1e+(mjτx)e+(−mjτ
′x′)(ττ ′)mj

× exp(iπτxξj/a+a−) exp(−iπτ ′x′ξj/a+a−)Lτ,τ
′

N (ξj, x, x
′), j = 1, . . . , N + 1 (5.54)

Recalling (4.56), the second line here is now identical to the square-bracketed term in
(4.57) for y+

j = ξj, namely[
λτN(x, ξj)λ

τ ′

N(x′,−ξj) + λ−τN (−x, ξj)λ−τ
′

N (−x′,−ξj)
]

(5.55)

In the proof of Lemma 4.4 we argued that this was “proportional” to ττ ′, and thus we
may conclude from (5.54) that R̂(j)(x, x′) equals some j-dependent entire function in x, x′

multiplied by the m = mj specialisation of
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Km(x, x′) ≡
∑

τ,τ ′=+,−

(1− ττ ′e+(−τx)e+(τ ′x′))−1e+(m(τx− τ ′x′))(ττ ′)m+1, m ∈ N

(5.56)
We have already seen this for m = 0 and m = 1, cf. (4.53) and (4.76) respectively. More
generally, if we write out the four summands and rearrange we find

Km(x, x′) =
s+((m+ 1/2)(x− x′))

s+((x− x′)/2)
+ (−)m+1 c+((m+ 1/2)(x+ x′))

c+((x+ x′)/2)
(5.57)

which, for one thing, shows that K0(x, x′) = 0. Setting z = x − x′ and z = x + x′

respectively in the following identities

s+((m+ 1/2)z)− s+((m− 1/2)z) = 2s+(z/2)c+(mz) (5.58)

c+((m+ 1/2)z) + c+((m− 1/2)z) = 2c+(z/2)c+(mz) (5.59)

we get the recursion relation

(
Km −Km−1

)
(x, x′) =

{
−4s+(mx)s+(mx′) (m even)

4c+(mx)c+(mx′) (m odd)
(5.60)

for which we can write down the closed-form solution straight away,

Km(x, x′) = 4
m∑
k=1

(−)k−1Q̃k(x)Q̃k(x
′) (5.61)

where

Q̃k(x) ≡

{
s+(kx), (k even)

c+(kx), (k odd)
k ∈ N∗ (5.62)

Now we must check that the entire function mentioned below (5.54) is also non-
vanishing. This function is just (5.55) divided through by ττ ′. Recalling (4.56), we can

write (5.55) as Λτ,τ ′

N (x, x′; ξj,−ξj), where ΛN is the function we introduced in §2.1. We
are already familiar with this for j = N + 1, cf. the proof of Lemma 4.4. Indeed we know
from (4.69) that

Λτ,τ ′

N (x, x′; ξN+1,−ξN+1) = 8c−(i(N + 1)a+)(−)N+1ττ ′p2
N (5.63)

where pN is a non-zero constant, cf. (4.88) (note that as elsewhere we use the shorthand
ξ ≡ i(N + 1)a+).

We now consider the j ≤ N case. Amongst the things we have for ΛN is the partially
evaluated expression (2.46). From this we learn
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Λτ,τ ′

N (x, x′; ξj,−ξj) = (−)N+1ττ ′
∑

ν,ν′=+,−

4νν ′s−(x− νη)s−(x′ − ν ′η)µνν′(ξj,−ξj)

×KN(x+ iνa+/2, τξj)KN(x′ + iν ′a+/2,−τ ′ξj)

= −ττ ′
∑

ν,ν′=+,−

4νν ′s−(x− νη)s−(x′ − ν ′η)µνν′(ξj,−ξj)B(N)
N−j(c−(x+ iνa+/2))

×B(N)
N−j(c−(x′ + iν ′a+/2)), j = 1, . . . , N, η ≡ i(N + 1/2)a+ (5.64)

To reach the second equality we have used (2.24). Since B
(N)
k (·), §2, is a polynomial

of degree k, it follows that for a fixed j, the four ν, ν ′ summands in (5.64) are linearly
independent and non-vanishing for generic parameters a+, a−.

We have established that when mj > 0, the residue function R̂(j)(x, x′) is generically
non-vanishing for all j = 1, . . . , N + 1. The second part of the lemma claims that these
N + 1 functions are also linearly independent. This follows using arguments analogous to
those given at the end of the proof of Lemma 5.1. One just has to make the appropriate
modifications (nj → mj, J → K etc.).

Now we consider the matter of isometry breakdown for F∗N . The analogue of RN ,
(5.23), is

R̂N ≡ FNF∗N − 1H (5.65)

which is a priori self-adjoint on H. It equals the zero operator iff F∗N is an isometry.
Say we have an equation of the form

(F∗Nf,F∗Ng)Ĥ = (f, g)H +

∫
R
dx f(x)

∫
R
dx′ g(x′)

L̂∑
l=1

λ̂lΘ̂
l
a(x)Θ̂l

b(x
′) (5.66)

where Θ̂l
a, Θ̂

l
b ∈ H, λ̂l ∈ C and L̂ is some positive integer, then a priori,

R̂N =
L̂∑
l=1

λ̂l(Θ̂
l
a ⊗ Θ̂l

b) (5.67)

Moreover, if λ̂l ∈ R and Θ̂l
b = Θ̂l

a then (5.67) is manifestly self-adjoint and we have

‖F∗Nf‖
2
Ĥ −‖f‖

2
H =

L̂∑
l=1

λ̂l|(f, Θ̂l
a)H|2 (5.68)

The potential to realise (5.66) is clearly given to us by Theorem 4.2. We achieve
this, and more, in the following theorems. The first deals with the first breakdown
interval (5.52) for N > 0 (it also applies to N = 0 provided we change the lower interval
limit, N → 1/2). The second encompasses all breakdown intervals for general N and
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thus subsumes the first theorem. We recall that wN(x)/ŵj are defined in (2.53)/(4.23)

respectively, and that B
(N)
k (·) is a polynomial of degree k. We exclude the point set ÊN

(2.57) to ensure the poles of ŵN(·) are simple.

Theorem 5.7. Let the positive parameters a+, a− satisfy a−/a+ ∈ (N,N +1)\ ÊN . Then
for N > 0, the operator R̂N , (5.65), can be written in the manifestly self-adjoint form,

R̂N = −cNΨN ⊗ΨN (5.69)

where ΨN is the ground state function from Theorem 4.7,

ΨN(x) ≡ 2c+(x)wN(x)1/2, (5.70)

and cN is the constant (4.99) which we know equals 1/‖ΨN‖2.

Proof. Since FN is an isometry in this range (cf. Theorem 3.6 or Corollary 5.2) we know
a priori that

FNF∗N = 1H − proj[RanFN ]⊥ (5.71)

(cf. (4.89)), and so R̂N = −proj[RanFN ]⊥ . We established in Theorem 4.7 that [RanFN ]⊥ =

span{ΨN}, and so R̂N is as given in the theorem.

The next theorem involves a family of real functions that generalises ΨN , defined
below (4.80), according to

Ψ
(k)
N (x) ≡ Q(k)(x)ΨN(x), k ∈ N (5.72)

where

Q(k)(x) ≡

{
c+((k + 1)x)/c+(x), (k even)

s+((k + 1)x)/c+(x), (k odd)
k ∈ N (5.73)

This function is a Chebyshev polynomial in s+(x) of degree k. This can be seen explicitly
by noting that Q(k) satisfies the recursion relation

Q(k+1)(x) = 2s+(x)Q(k)(x) +Q(k−1)(x), k ≥ 1 (5.74)

Since Q(0)(x) = 1, we have Ψ
(0)
N = ΨN . (In general, these relate to the functions in §2 of

Chapter 1 by a sign change, Ψ
(m)
N (x) = (−)NmΨ(m)(bN ;x), m ∈ N.)

Theorem 5.8. Let the positive parameters a+, a− satisfy a−/a+ ∈ (0, N + 1) \ ÊN . Then
the operator R̂N , (5.65), can be written in the manifestly self-adjoint form,

R̂N = cN

mN+1∑
k=1

(−)kΨ
(k−1)
N ⊗Ψ

(k−1)
N

+
N∑
j=1

mj∑
k=1

(−)k
(
λ̂j Γ̂

(N,j)
k ⊗ Γ̂

(N,j)
k − λ̂′j Π̂

(N,j)
k ⊗ Π̂

(N,j)
k

)
(5.75)
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where

λ̂j ≡
2πi

a+a−
ŵj s−(i(N + 1± j)a+/2) ∈ R, j ≤ N, (5.76)

λ̂′j ≡
2πi

a+a−
ŵj c−(i(N + 1± j)a+/2) ∈ R, j ≤ N, (5.77)

(f(±u) ≡ f(u)f(−u)),

Γ̂
(N,j)
k (x) ≡ Ψ

(k−1)
N (x)

∑
ν=+,−

2s−(x− νηN)B
(N)
N−j(c−(x+ iνa+/2)) ∈ R, (5.78)

Π̂
(N,j)
k (x) ≡ Ψ

(k−1)
N (x)

∑
ν=+,−

2νs−(x− νηN)B
(N)
N−j(c−(x+ iνa+/2)) ∈ iR, (5.79)

ηN ≡ i(N + 1/2)a+, (5.80)

and where {mj}N+1
j=1 is the set of constants fixed by the value of a−/a+ according to (5.51)

and the definition of y+
j .

Proof. We first note λ̂j are real because ŵj is the residue of a real-valued function at an

imaginary pole. (5.78)/(5.79) are real/imaginary because Ψ
(k−1)
N is real and the coeffi-

cients of the polynomial B
(N)
k (·) are real, i.e.

B
(N)
k (u) = B

(N)
k (ū) (5.81)

Next, we catalogue the residue functions for the most general form of the poles (5.1),
i.e. y+

j = ξj − imja− where ξj ≡ ija+. The argument in the previous proof brought us
close to an explicit expression for these. Indeed from what was said circa (5.55)-(5.56)
we have

R(j)(x, x′) = Kmj
(y, y′)[Λτ,τ ′

N (x, x′; ξj,−ξj)/ττ ′], j = 1, . . . , N + 1 (5.82)

(this equation balances because the quotient term is known to be τ, τ ′-independent). And
so, with the computations (5.63) and (5.64),

R̂(N+1)(x, x′) = KmN+1
(x, x′)8c−(ξN+1)(−)N+1p2

N (5.83)

R̂(j)(x, x′) = −Kmj
(x, x′)

∑
ν,ν′=+,−

4νν ′s−(x− νη)s−(x− ν ′η)µνν′(ξj,−ξj)

×B(N)
N−j(c−(x+ iνa+/2))B

(N)
N−j(c−(x′ + iν ′a+/2)), j = 1, . . . , N, η ≡ i(N + 1/2)a+

(5.84)

Using Theorem (3.3) and what was said about (5.66), the claims in the theorem follow
because

171



CHAPTER 2. SPECIAL CASE

πi

a+a−
wN(x)1/2wN(x′)1/2ŵN+1R̂

(N+1)(x, x′) = cN

mN+1∑
k=1

(−)kΨ
(k−1)
N (x)Ψ

(k−1)
N (x′) (5.85)

πi

a+a−
wN(x)1/2wN(x′)1/2ŵjR̂

(j)(x, x′)

=

mj∑
k=1

(−)k
(
λ̂jΓ̂

(N,j)
k (x)Γ̂

(N,j)
k (x′)− λ̂′jΠ̂

(N,j)
k (x)Π̂

(N,j)
k (x′)

)
, j ≤ N (5.86)

The first of these holds because, writing Km (5.61) in terms of Q(k) we have

Km(x, x′) = 4c+(x)c+(x′)
m∑
k=1

(−)k−1Q(k−1)(x)Q(k−1)(x′) (5.87)

such that, as features in the lhs of (5.85) via (5.83),

wN(x)1/2wN(x′)1/2Km(x, x′) =
m∑
k=1

(−)k−1Ψ
(k−1)
N (x)Ψ

(k−1)
N (x′) (5.88)

(keep in mind m is just some arbitrary integer whereas mj is a particular integer fixed by
the value of a−/a+). The constants balance as required because from (4.88) and (4.97)
we find

πi

a+a−
ŵN+18c−(ξN+1)(−)N+1p2

N = −cN (5.89)

To see that (5.85) holds, we use (5.81) and the fact η̄ = −η, ξ̄j = −ξj, to write out
the k-summand on the rhs as (πi/a+a−)ŵj multiplied by

2(−)kΨ
(k−1)
N (x)Ψ

(k−1)
N (x′)

∑
ν,ν′=+,−

4s−(x− νη)s−(x′ − ν ′η)B
(N)
N−j(c−(x+ iνa+/2))

×B(N)
N−j(c−(x′ + iν ′a+/2))

{
s−(i(N + 1± j)a+/2) + νν ′c−(i(N + 1± j)a+/2)

}
(5.90)

To connect with the lhs of (5.86) we specialise (5.49) in the obvious way to get

s−(i(N + 1± j)a+/2) + νν ′c−(i(N + 1± j)a+/2)

=
νν ′

2
µνν′(ξj,−ξj), ν, ν ′ = +,− (5.91)

and then invoke (5.88).
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6 Summary theorem for N = 0

We now bring together various results for the special case N = 0. For this choice of N , the
formulas in the previous two sections simplify considerably. This allows us to highlight
some of the important concepts more easily. However, the reader should be aware that
the N = 0 case is a poor guide to the general N case. The latter involves complications
not found below.

The transform at issue here acts on pairs f̂ = 〈f+, f−〉,

(F0f̂)(x) = (2a+a−)−1/2

∫ ∞
0

dy
∑
δ=+,−

ψ0(δx, y)fδ(y) (6.1)

which we know from §2.4 defines a bounded map from the Hilbert space Ĥ ≡ L2(R+, dy)⊗
C2 into H ≡ L2(R, dx). The writing of ψN that we have been using throughout, namely
(2.14), now looks like

ψ0(x, y) = w0(x)1/2v0(y)
∑
τ=+,−

exp(iτπxy/a+a−)`τ0(x, y) (6.2)

where the functions

w0(x) = 1/4s−(x+ ia+/2)s−(x− ia+/2), (6.3)

v0(y) = 1/2is−(y − ia+) (6.4)

have poles on the imaginary axis, and `±0 are entire,

`τ0(x, y) = iτ
∑
ν=+,−

2νs−(x− iνa+/2)e−(ν(ia+ − y)/2)e−(−ντy/2), τ = +,− (6.5)

Written out fully, we have

`+
0 (x, y) = 2i[s−(x− ia+/2)e−y− e

ia+/2
− − s−(x+ ia+/2)ey−e

−ia+/2
− ]

= −2i[s−(y)ex− + s−(y − ia+)e−x− ] (6.6)

and

`−0 (x, y) = −2i[s−(x− ia+/2)e
ia+/2
− − s−(x+ ia+/2)e

−ia+/2
− ] = 2ie−x− s−(ia+) (6.7)

A detailed account of the poles of (6.3)-(6.4) has already been given in §2.2. Of
relevance here is the complex number x+

0 , defined as the unique x-pole of 1/s−(x− ia+/2)
in the strip Imx ∈ [0, a−). Clearly,

x+
0 = ia+/2− in0a− (6.8)

for some uniquely defined, positive integer n0. It is this integer which features explicitly
below, fixed by the value of a−/a+. To ensure all the poles of w0(x) are simple we must
restrict the positive parameters a+, a− according to
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a−/a+ /∈ E0 = {1, 1/2, 1/3, 1/4, . . .} (6.9)

Similarly, y+
1 is defined as the unique y-pole of 1/s−(y−ia+) in the strip Im y ∈ [0, a−).

Clearly

y+
1 = ia+ − im1a− (6.10)

for some uniquely defined, positive integer m1. It is this integer which features explicitly
below, fixed by the value of a−/a+. To ensure all the poles of the function v0(y)v0(−y)
are simple we must take

a−/a+ /∈ Ê0 = E0 ∪ {2, 2/3, 2/5, 2/7, . . .} (6.11)

Now we return to F0 : Ĥ → H. It has a bounded adjoint

F∗0 : H → Ĥ, (6.12)

(F∗0f)δ(y) = (2a+a−)−1/2

∫
R
dxψ0(δx, y)f(x), δ = +,− (6.13)

where

ψ0(x, y) = w0(x)1/2v0(−y)
∑
τ=+,−

exp(−iτπxy/a+a−)`τ0(x,−y)

= ψ(x,−y), x, y ∈ R (6.14)

This uses the easily verified properties v0(y) = v0(−y) and `τ0(x, y) = `τ0(x,−y).
The operator on Ĥ given by

R0 = F∗0F0 − 1Ĥ (6.15)

is closely linked to isometry of F0 in the sense that it satisfies a priori

‖F0f̂‖2
H − ‖f̂‖2

Ĥ = (f̂ , R0f̂)Ĥ (6.16)

We can thus see that vanishing of R0 is equivalent to isometry of F0. For F∗0 we define
analogously on H,

R̂0 = F0F∗0 − 1H (6.17)

In our summary theorem below we draw upon many of our earlier results in order to
present explicit expressions for R0 and R̂0 for (almost) the whole range of positive pa-
rameters a+, a−. (We must exclude a countable number of non-intersecting lines from the
a+, a−-plane corresponding to the ratios a−/a+ ∈ Ê0. These ratios are those for which
some of our earlier theorems do not hold.)

The following table lays out how the constants n0,m1 that feature in the theorem are
fixed by the values of a+, a−. We switch to the ratio a+/a− which is preferable in the
N = 0 case.
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a+/a− ∈ m1 n0

(0, 1) 0 0

(1, 2) 1 0

(2, 3) 2 1

(3, 4) 3 1

(4, 5) 4 2
...

...
...

Theorem 6.1. Assume the positive parameters a+, a− satisfy a−/a+ /∈ Ê0. Then,

R0 =
sin(πa+/a−)

2a+

n0∑
k=1

(
Γ

(0)
k ⊗ Γ

(0)
k − Π

(0)
k ⊗ Π

(0)
k

)
(6.18)

and

R̂0 =
sin(πa+/a−)

a+

m1∑
k=1

Ψ
(k−1)
0 ⊗Ψ

(k−1)
0 (6.19)

where

Γ
(0)
k =

(
γ

(0)
k

γ
(0)
k

)
, Π

(0)
k =

(
π

(0)
k

−π(0)
k

)
, (6.20)

γ
(0)
k (y) = s+(ky)/c−((y + ia+)/2), (6.21)

π
(0)
k (y) = s+(ky)/s−((y + ia+)/2), (6.22)

Ψ
(k)
0 (x) = 2c+(x)Q(k)(x)[s−(x+ ia+/2)s−(x− ia+/2)]−1/2 (6.23)

where Q(k)(x), (5.73), is a Chebyshev polynomial in s+(x) of degree k and parity (−)k;
unity when k = 0. Empty sums are defined to vanish. Indeed these are the only cases
when R0 and R̂0 vanish.

Proof. This is virtually immediate from Corollaries 5.2 and 5.6 and Theorems 5.4 and 5.8
upon specialising to N = 0. We simply note the residue calculations w0 = a−/4πs−(ia+)
and ŵ1 = a−/4πs−(2ia+).
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A Appendix. Boundary proposition

The proposition in this appendix addresses two problems that arise in the main text. In
each, a different set of variables is at issue; either (x, y, y′) or (y, x, x′). Below we opt
for a neutral set of variables (s, t, t′) so that the proposition can be readily adapted with
minimal confusion. The variables (t, t′) range over either R2 or R+× R+; the symbol Ω
is used to denote either of these sets. Most of the ideas we use to prove the proposition
originate in [20].

Suppose G±(s, t, t′) are two C-valued functions on {Re s > 0}×Ω, which are analytic
in s and smooth in t, t′. And suppose they satisfy

Gα(s, t, t′) = Aα(t, t′) + ρα(s, t, t′), α = +,− (A.1)

where

ρ±(s, t, t′) = O(exp(−ηs)), Re s→∞, η > 0 (A.2)

(∂3ρ±)(s, t, t′) = O(exp(−ηs)), Re s→∞, η > 0 (A.3)

with bounds that are uniform for (Im s, t, t′) in compacts of R×Ω. Furthermore suppose
that G± satisfy

G+(s, t, t) = G−(s, t, t) (A.4)

and that

A+(t, t) = A−(t, t) (A.5)

We are now prepared for the proposition.

Proposition A.1. Let φ(t, t′) ∈ C∞0 (Ω) with Ω equal to R2 or R+× R+, and

IΛ ≡
∫

Ω

dtdt′ φ(t, t′)
BΛ(t, t′)

2s+((t− t′)/2)
, Λ > 0 (A.6)

where

BΛ(t, t′) ≡
∫ Λ+ia−/2

Λ−ia−/2
ds
∑
α=+,−

α exp(iαπs(t− t′)/a+a−)Gα(s, t, t′) (A.7)

Then,

lim
Λ→∞

IΛ = −2a+a−

∫
Ω

dt φ(t, t)A+(t, t) (A.8)

Proof. We will break up BΛ(t, t′) into four subsidiary integrals using two expansions:

exp(iαπs(t− t′)/a+a−) = cos(πs(t− t′)/a+a−) + iα sin(πs(t− t′)/a+a−), α = +,−,
(A.9)

and the asymptotics (A.1). In other words we consider,
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BΛ(t, t′) =
4∑
j=1

∫ Λ+ia−/2

Λ−ia−/2
ds bj(s, t, t

′) (A.10)

b1 ≡ i sin(πs(t− t′)/a+a−)A(+)(t, t′) (A.11)

b2 ≡ i sin(πs(t− t′)/a+a−)ρ(+)(s, t, t′) (A.12)

b3 ≡ cos(πs(t− t′)/a+a−)A(−)(t, t′) (A.13)

b4 ≡ cos(πs(t− t′)/a+a−)ρ(−)(s, t, t′) (A.14)

where

A(±)(t, t′) ≡ A+(t, t′)± A−(t, t′) (A.15)

ρ(±)(s, t, t′) ≡ ρ+(s, t, t′)± ρ−(s, t, t′) (A.16)

Clearly, b1,b2 vanish when t = t′. The same is also true of b3,b4 in light of our assumptions
(A.4) and (A.5). It follows that each of the four summands in (A.10) is a smooth function
in t, t′ that vanishes when t = t′ (analyticity of ρ± in s follows from that of G±) . This
same vanishing confirms that our integral IΛ is well-defined, and will play a crucial role
in neutralising the problem denominator in (A.6).

On the basis of this break-up we have

IΛ =
4∑
j=1

Ij(Λ) (A.17)

Ij(Λ) ≡
∫

Ω

dtdt′
φ(t, t′)

2s+((t− t′)/2)

∫ Λ+ia−/2

Λ−ia−/2
ds bj(s, t, t

′), j = 1, . . . , 4 (A.18)

The result follows because we will show

lim
Λ→∞

I1(Λ) = −2a+a−

∫
Ω

dt φ(t, t)A(t) (A.19)

lim
Λ→∞

Ij(Λ) = 0, j = 2, 3, 4 (A.20)

The nature of these computations divides naturally along the lines of the Re s-asymptotics
of b1-b4. The argument we use for j = 2, 4 requires decay of the integrand as Re s → ∞
and so it cannot encompass j = 1, 3. In the latter cases however, a direct evaluation of
the s-integral is readily available, unlike for j = 2, 4, and this turns out to be useful. To
see what these are, and why they help, we note∫ Λ+ia−/2

Λ−ia−/2
ds sin γs = 2iγ−1 sin γΛ sinh(γa−/2) , γ ∈ R (A.21)

∫ Λ+ia−/2

Λ−ia−/2
ds cos γs = 2iγ−1 cos γΛ sinh(γa−/2) , γ ∈ R (A.22)

Applying the first of these to the j = 1 s-integral in (A.18) we have
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I1(Λ) = −
∫

Ω

dtdt′φ(t, t′)
sin(πΛ(t− t′)/a+a−)

π(t− t′)/a+a−
A(+)(t, t′) (A.23)

Thus the problem denominator s+((t− t′)/2) has been replaced with (t− t′). To handle
this in the large-Λ limit we can invoke the tempered distribution

lim
Λ→∞

γ−1 sin γΛ = π∆(γ), γ ∈ R (A.24)

where ∆ is the Dirac delta function, with which we find

I1(Λ) = −a+a−

∫
Ω

dt φ(t, t)A(+)(t, t) (A.25)

We have A(+)(t, t) = 2A+(t, t) by assumption, and so (A.19) follows.
By applying (A.22) to the j = 3 s-integral in (A.18) we have

I3(Λ) = i

∫
Ω

dtdt′φ(t, t′) cos(πΛ(t− t′)/a+a−)
A(−)(t, t′)

π(t− t′)/a+a−
(A.26)

This quotient is bounded when t = t′, and indeed on all of Ω, because of the vanishing
of A(−)(t, t). Since φ has compact support on Ω by assumption, we may thus invoke the
Riemann-Lebesgue lemma to procure vanishing.

The problem for I2(Λ) is bounding the s-integral by a function which decays in Λ,
whilst still having a t, t′-dependence that maintains convergence of the t, t′-integral (which
at present is ensured by the sine term). To solve this we write

I2(Λ) = i

∫
Ω

dtdt′φ(t, t′)
π(t− t′)/a+a−
2s+((t− t′)/2)

∫ Λ+ia−/2

Λ−ia−/2
ds

sin(πs(t− t′)/a+a−)

π(t− t′)/a+a−
ρ(+)(s, t, t′)

(A.27)
where the first quotient is once again bounded on Ω. We then use the estimate∣∣∣sin γs

γ

∣∣∣ =
1

2

∣∣∣ ∫ s

−s
du exp(iγu)

∣∣∣ ≤ |s| exp |γ Im s|, γ ∈ R (A.28)

and the fact that the assumption about the asymptotics of ρ±(s, t, t′) entails that for
sufficiently large Λ there exists a C > 0 such that for all (t, t′) ∈ supp(φ),

|ρ(+)(s, t, t′)| ≤ C exp(−ηΛ), Re s = Λ (A.29)

These two equations imply that the s-integral in (A.27) can be bounded from above by,
for example,

2Ca−Λ exp(−ηΛ) exp |π(t− t′)/a+| (A.30)

From this fact, I2(Λ) plainly vanishes under the large-Λ limit, recalling the compact
support of φ on Ω.

We face the same problem for I4(Λ), but now if we insert a factor of unity in the
same way the quotient cos(πs(t− t′)/a+a−)/(t− t′) is not at all convergent along t = t′.
However, ρ(−)(s, t, t′)/(t − t′) is convergent along t = t′, because the assumptions (A.1)
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and (A.4) entail ρ(−)(s, t, t) = 0. Thus it remains to find an analogous bound for this
quotient which will ensure vanishing of I4(Λ) under the large-Λ limit. This is where the
assumptions made about ∂3ρ± come in. First we construct

|ρ(−)(s, t, t′)| =
∣∣ ∫ t′

t

du (∂3ρ
(−))(s, t, u)

∣∣
≤ |t− t′| max

u∈[t,t′]
|(∂3ρ

(−))(s, t, u)|

= |t− t′| max
θ∈[0,1]

|(∂3ρ
(−))(s, t, t+ θ(t′ − t))| (A.31)

such that we get the following bound on the t, t′-integration region,∣∣∣ρ(−)(s, t, t′)

(t− t′)

∣∣∣ ≤ max
(t,t′,θ)∈supp(φ)×[0,1]

|(∂3ρ
(−))(s, t, t+ θ(t′ − t))| (A.32)

From (A.16), the rhs inherits large-Re s exponential decay with the same uniformity
properties. With this we have addressed the hard part of the problem. It is then just
a matter of constructing some elementary bounds like those we gave for I2(Λ) above in
(A.30) to prove that I4(Λ) vanishes under the large-Λ limit.
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We shall not cease from exploration, and the end of all our exploring will be to arrive
where we started and know the place for the first time.

T.S. Eliot
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