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Abstract

Abstract of Real time estimation of multivariate stochastic volatil-

ity models

Author: Jian Wang

Date: September 2016

Keywords: multivariate volatility, sequential Monte Carlo, Bayesian

inference, Wishart autoregressive process, Newton-Rapshon method

This thesis firstly considers a modelling framework for multivariate volatil-

ity in financial time series. As most financial returns exhibit heavy tails and

skewness, we are considering a model for the returns based on the skew-t

distribution, while the volatility is assumed to follow a Wishart autoregres-

sive process. We define a new type of Wishart autoregressive process and

highlight some of its properties and some of its advantages. Particle filter

based inference for this model is discussed and a novel approach of estimating

static parameters is provided. Furthermore, an alternative methodology for

estimating higher dimension data is developed.

Secondly, inspired from the idea of Ulig’s Wishart process, a new Wishart-

Newton model is developed. The approach combines conjugate Bayesian

inference while the hyperparameters are estimated by a Newton-Raphson

method and here an online volatility estimate algorithm is proposed.

The two proposed models are compared with the benchmarking GO-

GARCH model in both function execution time and cumulative returns of
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different dimensional datasets.
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Chapter 1

Introduction

1.1 Financial time series and volatility

Financial time series analysis aims to evaluate assets over time using sta-

tistical theory and practice. It has drawn huge attention recently. In the

fields of, for example, stochastic volatility and high frequency finance, finan-

cial time series analysis has grown fast. Besides the mathematical analysis,

it is also believed to be a very empirical subject, meaning that there are

stylised facts which are assumed based on experience and long-term observa-

tion. For example, the heteroskedasticity and non-linearity of financial time

series data.

As an important factor of modern financial time series analysis, volatility

has been used to describe the variation or fluctuation of financial instru-

ment. Volatility generally has a crucial contribution in portfolio construc-
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tion and asset management. For example high volatility is usually associ-

ated to increased uncertainty. Sometimes this can be exploited to construct

market-neutral arbitrage opportunities, such as short selling and prices trad-

ing. Nowadays it is also possible for investors to trade volatility directly by

using derivative securities, for example options and variance swaps.

In the famous Black-Scholes option price formula Black and Scholes (1973),

volatility is one of the parameters in the function, however it is treated as a

constant due to the fact that it is not directly observable and hard to eval-

uate. With further research, people now begin to believe that volatility is

not constant, but a parameter changing over time Tsay (2002). As a time-

varying parameter, time series theories and methods can play an important

role in both describing and forecasting volatility behaviour.

There are well-established time series models for univariate volatility, for

example, ARCH Engle (1982) and GARCH Bollerslev (1986) models. Both

models are performed under the assumption of a Gaussian distribution of re-

turns and they are often estimated by offline methods, such as the Maximum

Likelihood method and Markov Chain Monte Carlo method.

1.2 Aims of the thesis

In real-world scenarios, challenges are emerging for volatility modelling. Firstly,

univariate modelling of volatility is plain and simple but does not investigate

the correlation between different components. The correlation coefficient
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contains important information of correlation and dependence; it can re-

veal positive or negative relationships between different assets. Lack of such

information could cause serious damage for investors and decision makers.

Therefore multivariate volatility and return estimation and forecasting is at-

tractive.

Secondly, online estimation methods has been developed rapidly in the

past decade. In comparision to the offline estimation which requires all in-

put data, online estimation methods can estimate the model whenever new

observation is available using only current measurements and previous pa-

rameter estimates. Since online methods always involve recursive algorithms,

they are efficient in terms of memory usage and also require smaller compu-

tational effort. This efficiency makes them suited to online and embedded

applications. Offline estimation methods are often not efficient enough for

real traffic flow of time series data. For example, modern high frequency

financial data are usually collected over 10 minutes or even shorter time in-

terval. This makes offline estimation algorithms practically unsuitable for

such kind of data, particular in modern automated financial systems which

implement algorithmic trading. For these systems online estimation proce-

dures, such as these proposed in this thesis, are attractive alternatives to

their offline counterparts.

Therefore, there is a desire to study and explore multivariate volatil-

ity models with online estimation methods. In this thesis we will focus on

developing multivariate volatility models. We will then estimate both the
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volatility matrix and unknown parameters using sequential Monte Carlo and

other online methods. We hope our work can push multivariate volatility

modelling forward to medium and high data dimensions. We will also com-

pare our models with the established benchmarking model in both function

execution time and application performance. We would expect our models

to have relatively shorter function execution time and similar or even better

performance in application, especially for medium or high data dimensions.

The rest of the thesis has the following structure:

Chapter 2 is the literature review; it introduces basic concepts of time

series, financial time series and modern portfolio theory, together with the

introduction of volatility and well-known volatility models. Estimation meth-

ods including MCMC, MLE and SMC are also mentioned.

In Chapter 3, we develop a series of multivariate volatility models, in-

cluding the Gaussian, student-t and skew-t Wishart autoregressive models.

We integrate the estimation of unknown parameters into the process of SMC

so that both the autoregressive parameter and the volatility matrix can be

estimated within the algorithm. Furthermore, we simplify the autoregres-

sive parameter to be a diagonal matrix and carry out the estimation. The

application and results are shown with both real and simulated data.

In Chapter 4, we develop another multivariate volatility model, the Wishart-

Newton model. We were able to estimate both the volatility matrix and the

unknown parameter (as a diagonal matrix) sequentially using the Newton-

Raphson method. The application and results are shown with real data.
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Chapter 5 compares each model through their application. Firstly we

compare the efficiency of the Wishart autoregressive model, Wishart-Newton

model and GO-GARCH model by their function execution time. Secondly,

the performance of the three models are compared by their cumulative re-

turns on 3, 5 and 10-dimensional real data. Finally, the performance of both

the Wishart autoregressive model and Wishart-Newton model are compared

by their cumulative returns on high dimensional Dow Jones 30 data.
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Chapter 2

Literature Review

2.1 Time series and financial time series

2.1.1 Time series

The definition of time series can be found in many time series books, for

example, Hamilton (1994) and Brockwell and Davis (2009). They define the

time series as ‘a sequence of numerical data points in successive order, usually

occurring in uniform intervals’. Put simply, it is a sequence of data collected

at regular intervals over time.

Since time series data are collected in time space, time series are often

demonstrated via line charts. Figure 2.1 shows an example of a common time

series plot: it shows the daily stock prices of IBM and Microsoft collected

from 2 January 2008 to 31 December 2009. According to Fuller (2009), time

series can be used in many areas, such as statistics, econometrics, mathemat-
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Figure 2.1: Time series plot of IBM and Microsoft stock prices
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ical finance, weather forecasting, control engineering, signal processing and

earthquake prediction.

Time series data

Time series data track information through time, showing trends of what

has happened from one time to another. Time series data are different from

other types of data simply because of their natural ordering property, see

Lutkepohl (2006). For example, stock prices can only be input and studied

in time sequence, rather than doing so in a random time line. Figure 2.2,

details see Brillinger and David (2000), shows an instance of different types

of time series data. They can be seasonal or have increasing or decreasing

trending, random noise, etc.

Time series analysis

Time series analysis consists of models and estimation methods for analysing

time series data in order to extract meaningful statistics and other prop-

erties of the data, see Wei and William (1994). The usage of time series

analysis is twofold: ‘one is to obtain an understanding for the underlying

forces and structure that produced the observed data, the other one is to fit

a model and proceed to forecasting, monitoring or even feedback and feed-

forward control.’, see Pham and Hoang (2006). In the first category are, for

example, exploratory analysis (Shumway and Stoffer, 2000), autocorrelation

analysis (Hamilton, 1994), statistical classification (Michie et al., 1994) and
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Figure 2.2: Different types of time series data
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spectrum analysis (Kay et al., 1981). Examples of the second category in-

clude regression analysis, which is mainly based on the pioneered Box-Jenkins

methodology (Box and Jenkens, 1970), prediction and forecasting (Weigend

and Andreas, 1994) and signal estimation (Poor and Vincent, 1988).

In another perspective, time series analysis can also be divided into two

sides, a theoretical side and an applied side. According to Brillinger and

David (2000), ‘the former side is part of the theory of stochastic process

(representations, prediction, information and limit theory for instance), while

the application side often involves extensions of techniques of “ordinary”

statistics (for example regression, analysis of variance and sampling).’

2.1.2 Financial time series

Econometrics is one of the most important application areas of time series

analysis. One of the reasons is that there are lots of time-varying financial

data, for example, the stock price, option price, interest rate and gross do-

mestic product (GDP), see Taylor and Stephen (2008). Furthermore, Tsay

(2002) advocates that both financial theory and empirical time series contain

an element of uncertainty and in order to monitor the uncertainty, statistical

theory and methods play an important role in financial time series analysis.

It should be noted that financial time series have some characteristics

that are different from other time series data. Most of the characteristics are

prescribed as stylised facts. According to Sewell (2011), the term stylised

facts is often used in economics to refer to empirical findings that are so
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consistent that they are accepted as truth.

Distribution assumption

It is known that in economics, most of the pioneering studies, including the

famous Box-Jenkins methodology, see Box and Jenkens (1970), which ap-

plies autoregressive moving average (ARMA) models to time series analysis,

the models rely heavily on the assumption of normality. However, this as-

sumption is often violated for financial time series. See for instance Ball

et al. (1972), Jondeau et al. (2007). They believe that as a stylised fact, the

distributions of asset data have tails that are much heavier than a normal

distribution and the distribution is also negatively skewed. The negative

skewness indicates there are more extreme negative values than positive val-

ues, which has a very serious implication for risk management and portfolio

selection, for details see Peiro and Amado (1999). The skew-t distribution,

see Azzalini and Capitanio (2003) and Appendix for details, are becoming

more and more popular in financial time series analysis. Figure 2.3 shows an

example of a negatively skewed t-distribution with simulated data.

Heteroskedasticity

According to Lux et al. (2000) and Krawiecki et al. (2002), asset returns are

time dependent. Furthermore, squared returns, absolute returns and all mea-

sures and proxies of volatility exhibit strong serial correlation. Engle (1982)

named this property volatility clustering or conditional heteroskedasticity.
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Figure 2.3: Density plot of negative skewed t-distribution

The details of volatility are discussed in later sections.

2.1.3 Modern portfolio theory

According to Muller and Heinz (1988), modern portfolio theory (MPT) in-

dicates a thoery of finance that either, for a given portfolio risk, tries to

maximise the portfolio return, or for a given level of portfolio return, tries

to minimise the risk by selecting the proportions of various assets. Lubatkin

et al. (1994) believe that MPT is a form a diversification. Under certain

assumptions and for specific definitions of risk and return, MPT shows how

to get the best diversification strategy in asset allocation.

Specifically, MPT uses the normal distribution to model assets’ returns

and it uses the standard deviation of assets’ returns as the definition of risk.
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It models the return of a portfolio as a weighted combination of the assets’

returns. Then by combining different assets, MPT attempts to find the lowest

total variance of total portfolio return.

MPT was first proposed by Markowitz in his article Markowitz (1952)

and following book Markowitz (1959). MPT is a widely used theory in the

finance industry and a Nobel memorial prize was even awarded to Markowitz

for his contribution on MPT.

Some important assumptions about both markets and investors are made

as follows for MPT:

• Assets’ returns are assumed to be normally distributed.

• Correlations between assets are considered to be constant.

• Market information is shared by all investors at the same time.

• No tax or transaction fee for each trade.

• Unlimited amounts of money can be borrowed by all investors at the

risk free rate of interest.

• Volatility is known in advance and it is assumed to be a constant.

• All investors are believed to be rational and risk-averse.

• All investors are aiming to make as much money as possible, which is

also known as economic utility maximisation.

• No actions from investors will affect market prices.
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However, both theoretical and practical criticisms against these assumptions

have been raised since MPT has been proposed. In fact, almost all the as-

sumptions above are now believed to be inaccurate or untrue. For example,

Jondeau et al. (2007) suggest there is evidence supporting the fact that fi-

nancial returns do not follow the normal distribution. Furthermore, they

argue that the distribution of financial returns is not even symmetric. Also,

Elton et al. (1997) propose that correlations between assets are not constant

over time. For instance, in a financial crisis, all assets appear to be positively

correlated since they all go down together with the whole market.

Although MPT has been shown to have some restrictions, it is still a very

useful tool in the financial area and it was the first theory that used variance

to quantify risk. It is a pioneering framework for financial mathematics and

there are many extensions of MPT, for details see post-modern portfolio

theory (Rom and Ferguson, 1994) and the Black-Litterman model (Black

and Litterman, 1992). Applications to asset allocation will be demonstrated

in later chapters.

2.2 Volatility and popular volatility models

2.2.1 Notations

The notations that are used throughout the thesis are introduced as follows:

• The p-dimensional vector of stock prices at time t are defined as P1t, . . . , Ppt.

14



• rt is the return of the data and yt is the log-return of the data, i.e.

rt = Pt/Pt−1 and yt = log rt.

• σ is the volatility in univariate model and Σ is the volatility in multi-

variate model.

• a’s are the parameters in univariate volatility model and A’s are the

parameters in multivariate volatility model.

• p is the dimension of the data.

• k is the degree of freedom of Wishart distribution; v is the degree of

freedom of Inverse Wishart distribution; vst is the degree of freedom of

skew-t distribution.

• µ is the mean of the distributions.

• α is the skewness coefficient of the skew-t distribution.

2.2.2 Volatility

Tsay (2002) states that volatility is the conditional variance of a financial

instrument over time. This is an important study direction in econometrics

because it can affect decision making in finance, for example options trading.

Also, in risk management, such as Value at Risk (VaR): one of the simple

approaches to calculating the VaR of a financial position is by using volatility

modelling. For more information about VaR, see Jorion (1997). Finally, in
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time series inference and forecasting, volatility modelling can improve both

forecast efficiency and forecast accuracy.

It should be noted that in the well-known Black-Scholes option price

formula Black and Scholes (1973), volatility was assumed to be a constant,

which has proved to be untrue in most cases. Volatility is now believed to

be a time-varying parameter.

Properties of volatility

• Volatility is believed to be unobservable. Jacquier et al. (2002) suggest

this property makes it difficult to evaluate model forecasting perfor-

mance.

• There exist volatility clusters. This property is noted by Mandelbrot

(1963): ‘large changes tend to be followed by large changes, and small

changes tend to be followed by small changes.’ which means in some

time periods, volatility can be low, while in other time periods, it can

be high.

• Generally, time-varying volatility is believed to continuously evolve. It

is quite rare to see volatility jumps.

• As a stylised fact, if we see volatility as a stochastic process, then it

is always assumed to be a stationary process with fixed unconditional

mean and variance. Because volatility quite often varies within some

fixed range, it is rarely to see volatility breaks the limit and reaches
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extremely small or large values. However, there are some studies dis-

cussing non-stationarity of the volatility, such as Cavaliere et al. (2007).

• According to Tsay (2002), volatility seems to be asymmetric, that is,

volatility is higher in falling markets than in rising markets. This might

be because investors are more afraid of losing money than gaining it,

so that they are more likely to sell when the market goes down and

this selling behaviour makes the market goes down even more.

2.2.3 Volatility models

ARCH model

Many models have been set up for volatility and it has become a popu-

lar research direction in recent times. However, it was the autoregressive

conditional heteroscedastic (ARCH) model that first provided a systematic

framework for the study of volatility modelling. It was proposed by Engle

(1982).

The ARCH model assumes that the mean-corrected asset return rt is

serially uncorrelated, but it can be dependent with its past values. Then

Engle (1982) uses a quadratic function of its lagged values to imply the

dependence. Assume the return rt follows a normal distribution with zero

mean and σ2
t volatility. The mathematical description of the ARCH model
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is demonstrated as follows:

rt = σtεt

σ2
t = a0 + a1r

2
t−1 + · · ·+ amr

2
t−m (2.1)

where εt is set up to be a sequence of independent and identically distributed

(iid) random variables with mean zero and variance one, the parameters

a0 > 0 and ai ≥ 0 for all i > 0. It should be noted that in most cases εt is

assumed to a normal or a student-t distribution.

Tsay (2002) suggests the ARCH model implies that a large shock tends to

be followed by another large shock because variance σ2
t is related to squared

shocks {r2
t−i}, and the current return rt is related to variance σ2

t . This prop-

erty indicates the volatility clustering feature in assets returns. Furthermore,

the tail distribution of an ARCH process is heavier than that of a normal

distribution, which reflects the fact of the heavy tail of volatility.

There are also some drawbacks to the ARCH model, such as it is likely to

over-estimate volatility, and it responds equally to both positive and negative

shocks.
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GARCH model

The GARCH model is an extension to the ARCH model. It was proposed

by Bollerslev (1986). The model is given by:

rt = σtεt

σ2
t = a0 +

m∑
i=1

air
2
t−i +

s∑
j=i

bjσ
2
t−j (2.2)

where, similarly to ARCH model, {εt} is a sequence of iid mean zero and

variance one random variables and it is always assumed to be a normal or

student-t distribution, the parameters are set to be a0 > 0, ai ≥ 0, bj ≥ 0

and
∑max(m,s)

i−1 (bj + ai) < 1.

The main difference from the ARCH model is that GARCH takes the past

information of variance, {σ2
t−j}, into consideration when it models current

variance σ2
t .

From equation (2.2), we can see that either a large shock rt−i or past

variance σ2
t−j might lead to a large variance σ2

t , and it is similar to the

clustering property of volatility.

However, GARCH has almost the same disadvantages as ARCH. For

instance, both positive and negative shocks have same influence on volatility.

Ghose et al. (1995) believe the tail distribution of the GARCH process is still

too short even with the assumption of εt having a student-t distribution.
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Stochastic volatility model

Generally speaking, the difference between GARCH and Stochastic Volatility

model is that, for GARCH model, it is a determinist function, if given the

parameters, volatility is fixed. However for the stochastic volatility, volatility

is assumed to be a random variable, mostly be described by probability

distribution function.

The stochastic volatility (SV) model is an alternative method of mod-

elling volatility by adding another innovation to the conditional variance

equation. This model was developed by Melino and Turnbull (1990), Harvey

et al. (1994) and Jacquier et al. (1994). The mathematical model is given as

follows:

rt = σtεt

log(σ2
t )− a0 = (1− a1B − · · · − amBm)−1ht

where εt are i.i.d N(0, 1), ht are i.i.d N(0, σ2
v) and normally it is assumed

that the two innovations εt and ht are independent. B is called back-shift

operator such that B log(σ2
t ) = log(σ2

t−1). Also, it should be noted that a0 is

a constant and all zeros of the polynomial 1−
∑m

i−1(aiB
i), are greater than

1 in modulus.

Tsay (2002) thought that adding an additional innovation ht to the model

gave more flexibility for the model to illustrate the evolution of volatility σ2
t .

However, introducing another term, especially a random variable into the
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model increases the difficulty of model parameter estimation dramatically.

Jacquier et al. (1994) believed that a SV model needed a quasi-likelihood

method via Kalman filering or a MCMC method to estimate the parameters.

They used both methods and gave a comparison in their research.

Furthermore, relatively recently, sequential Monte Carlo (SMC) meth-

ods, also known as particle filtering, have been developed. Thes methods

have been proved to be fairly efficient and accurate for solving the optimal

estimation problems in non-linear and non-Gaussian scenarios. For more

details see Liu (1991), Doucet et al. (2001) and Cappe et al. (2005).

2.2.4 Multivariate GARCH model

The constant conditional correlation (CCC)-GARCH model (Bollerslev (1990))

is the simplest multivariate volatility model which is nested in other condi-

tional correlation models. As a natural extension of univariate GARCH, the

return and volatility matrix of a CCC-GARCH(m,s) in a vector form can be

described as follows:

rt = Σtεt

Σt = A0 +
m∑
i=1

Air
2
t−i +

s∑
j=i

BjΣ
2
t−j

where εt follows multivariate normal distribution, A0 is a vector, Ai and Bj

are diagonal matrix with positively definite diagonal elements.

With further extension to treat parameter matrix Ai and Bj as full ma-

21



trix instead of diagonal matrix, extended CCC (ECCC)-GARCH was intro-

duced by Jeantheau (1998). As another extension of CCC-GARCH, En-

gle (2002) also developed dynamic conditional correlation (DCC)-GARCH

model, which has a dynamic volatility structure.

2.2.5 Rotated Baba-Engle-Kraft-Kroner(RBEKK) model

The RBEKK model is an extension from famous Baba-Engle-Kraft-Kroner

(BEKK) model(see Engle and Kroner (1995)). RBEKK model added an

extra term, rotated log-return ỹt, as:

yt = Σ
1/2
t εt

ỹt = H−1/2yt = PΛ−1/2P ′rt

where H is the unconditional covariance of yt and PΛ−1/2P ′ is the spectral

decomposition of H−1/2. εt is a i.i.d process with zero mean and identity

covariance matrix.

With the rotated returns defined, the conditional covariance matrix of yt

can be defined as:

Σt = (Ip − AA′ −BB′) + Aỹtỹ
′
tA
′ +BΣt−1B

′

where (Ip − AA′ −BB′) > 0. A and B are two parameters.

In the later chapter, the data simulation is carried out by setting A = B and
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they are diagonal matrix with diagonal elements equal to 0.6 and Σ0 = Ip.

2.2.6 GO-GARCH model

VanDerWeide (2002) developed generalized orthogonal GARCH (GO-GARCH)

as an extension of orthogonal GARCH model, with having the log-return yt

as:

yt = H
1/2
t εt

where Ht is a diagonal matrix with Ht = diag(h1i, . . . , hpt), p is the dimension

of the data. εt are a sequence of i.i.d. random variable with zero mean. Then

have the covariance matrix and the diagonal elements of Ht as:

Σt = ZHtZ
′

hit = (1− αi − βi) + αiyi(t−1) + βihi(t−1)

where Z is a non singular matrix.

Silvennoinen and Terasvirta (2009) think GO-GARCH is one of the most

popular and advanced model in GARCH family and Noureldin et al. (2014)

suggests that the GO-GARCH model has better performance than RBEKK

model on medium dimensional data.
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2.2.7 Wishart autoregressive process

The Wishart autoregressive process is a newly developed method to esti-

mate the multivariate stochastic volatility by Gourieroux et al. (2009) and

Triantafyllopoulos (2012). The model is given as follows:

rt =
K∑
k=1

xktx
′
kt

xk,t+1 = Mxkt + εk,t+1, εk,t+1 ∼ N(0,Σ)

where N(0,Σ) denotes a multivariate Gaussian distribution with mean zero

and covariance matrix Σ. M is a autoregressive parameter which links be-

tween xt and xt+1.

From the model, we can see that {xkt} follow AR(1) processes hence

they have multivariate Gaussian distributions. The main idea is that, in

the univariate case, we have the property that the sum of the square Gaus-

sian distributions follows a gamma distribution, then its multivariate exten-

sion can be used here and the log-return yt follows a Wishart distribution,

Wn(K,MΣM ′).

The model provides an alternative to the standard GARCH and stochas-

tic volatility models. It shows flexibility in the way of changing the autore-

gressive lags and providing factor representation. Furthermore, the idea of

using Wishart distribution to describe the covariance matrix is inspiring, and

further work will be introduced in later chapters of the thesis.
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2.3 Estimation and inference

2.3.1 Markov chain Monte Carlo

The Markov chain Monte Carlo space (MCMC) method is a widely used

simulation based algorithm for calculating numerical approximations, for ex-

ample in Bayesian inference, computational biology and physics. It samples

from a constructed Markov chain which has the target distribution as its

equilibrium distribution. After steps of simulations, the chain converges and

the current state of the chain is used as a sample of the target distribution.

So that the more steps or simulations the Markov chain runs, the closer it

gets to the desire distribution, therefore the better result will get. For details

see Gilks (2005).

The famous Metropolis algorithm of MCMC was first invented by Metropo-

lis et al. (1953), when they tried to simulate a liquid in equilibrium with its

gas phase. They realised that the simulation does not need to have the

exact dynamics: it is sufficient for the Markov chain to share the same equi-

librium distribution. Then decades later, Hastings (1970) generalised the

algorithm and formed the so-called Metropolis-Hastings algorithm. Geman

and Geman (1984) introduced a special case of the Metropolis-Hastings al-

gorithm without knowledge of the previous work; the simulation is called the

Gibbs sampler. Further work was also done by Gourierouxa et al. (1987) and

Gelfand and Smith (1990).

It was not until the 1990s that people realised most Bayesian inference can
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be done by the Metropolis-Hastings algorithm and the Gibbs sampler. Since

then, both research and applications have grown rapidly. Further work has

been done by Geyer (1994) and Green (1995), adaptive rejection Metropo-

lis sampling by Gilks et al. (1995) and the acceptance-rejection Metropolis-

Hastings algorithm was developed by Tierney (1994) for sampling in MCMC.

Asai (2006) believes that the acceptance-rejection Metropolis-Hastings algo-

rithm is one of the most efficient algorithm at the time.

2.3.2 Maximum likelihood estimation

Maximum likelihood estimation (MLE) is probably the most well-known es-

timation method in statistics. Although MLE has been used in other articles,

Fisher (1925) vastly popularised this method.

Assume that we have x1, . . . , xn as n independent and identically dis-

tributed data. The method requires the joint density function of all obser-

vations conditional on the parameter θ:

f(x1, x2 . . . , xn|θ) = f(x1|θ)× f(x2|θ)× · · · × f(xn|θ),

then the observations are considered to be fixed ‘parameters’ and the likeli-

hood function is shown as:

l(θ;x1, . . . , xn) = f(x1, x2 . . . , xn|θ) =
n∏
i=1

f(xi|θ)
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The MLE works by finding the θ that maximises the likelihood. For example,

the log-likelihood function for the ARCH model is shown as follows:

l(σ; rm+1, . . . , rT ) = −
T∑

t=m+1

[
1

2
ln(σ2

t ) +
1

2

r2
t

σ2
t

]

where l is log-likelihood, σt is the volatility and rt are the return of data.

Then by maximising the function, we can obtain the estimators for σ.

MLE has proved to be useful in many cases because it can deliver an

explicit function of the estimators. However, in some situations, a close-

formed solution may not be possible for the likelihood function, there might

be multiple solutions available to maximise the likelihood, or no maximum

likelihood estimates may exist (Hamilton, 1994).

2.3.3 Sequential Monte Carlo

The SMC method, which is also known as particle filtering, was first named

by Moral and Pierre (1996) in the application to fluid mechanics. The par-

ticle filter technique was actually developed as early as 1955, in molecular

chemistry, see Rosenbluth et al. (1955). The method was not widespread at

that time due to its computationally expensive mechanics. However, with

the rapid development of computational power these days, SMC has become

a popular numerical estimation method, especially for solving non-linear and

non-Gaussian problems. It is widely used in such fields as chemical engineer-

ing, computer vision, financial econometrics and robotics, see Doucet and
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Johansen (2009).

Arulampalam et al. (2002) suggests that the main advantage of SMC is

its sequential property. As the data are received at each time point they can

be used to estimate the model sequentially instead of being used as a batch.

In this way, the whole data set does not need to be stored and reprocessed

every time. The current state can be updated based only on knowledge of

the new data by using Bayes theorem.

There are many different available algorithms in SMC, for example the

bootstrap filter method, sequential importance sampling, sequential impor-

tance resampling, the hybrid method and auxiliary particle filter (see Ap-

pendix for details).
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Chapter 3

Multivariate Stochastic

Volatility Estimation Using

Particle Filter

3.1 Introduction

This chapter mainly focuses on developing Wishart autoregressive models

for multivariate volatility estimation. The model is inherited from Philipov

et al. (2006)’s factor stochastic volatility model. However we neglect the

mean term and scalar parameter in the model and push the model for high

dimension data. Furthermore, we also added student-t and skew-t into our

model to describe both symmetric and heavy-tailed asymmetric observations.

The factor stochastic volatility model is estimated by an offline MCMC,
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while we estimate the volatility matrix and autoregressive parameter with

an online SMC algorithm. Then our model is further simplified by treating

the autoregressive parameter as a diagonal matrix so that higher dimensional

data can be applied. The applications on both real-world data and simulated

data are shown in the end.

3.2 Naive model

3.2.1 Gaussian Wishart autoregressive model

Let us consider a p-dimensional time series vector {yt}, which usually is the

log-return of the asset prices or stock prices or any other financial instrument.

The log-return of the prices can be interpreted as, for example, if we have

the p-dimensional vector of stock prices (P1t, P2t, · · · , Ppt), then:

yit = log(Pit)− log(Pi(t−1)) = log

(
Pit

Pi(t−1)

)

where i = 1, ..., p.

There are several reasons that we use log-return instead of raw data in

this research. The first reason is that log-return can normalization the data,

which means measuring all variables in a comparable metric. The second

reason is that log-return data can often prevent serial correlation both for

the series and error terms. The third reason is that log-return data can often

stationary which is vital for autoregressive models. The fourth reason is that
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when returns are very small, the log-returns ensures they are close to the raw

returns.

For the basic model, we inherit the classical idea from econometrics that

conditional on the volatility matrix Σt, {yt} is believed to follow a multivari-

ate normal distribution, i.e.,

yt|Σt = µ+ Σ
1/2
t εt, εt ∼ Np(0, Ip), (3.1)

where µ is the expectation vector of the observations and {εt} is a sequence

which follows a normal distribution with zero means and diagonal variances

matrix, also known as white noise.

Given the properties of the normal distribution, equation (3.1) can also

be written as:

yt|Σt ∼ Np(µ,Σt) (3.2)

It should be noted that the volatility matrix Σt, is usually assumed to be a

strictly positive-definite and p× p symmetric matrix.

Then we assume the evolution of the volatility precision matrix Σ−1
t as:

Σ−1
t |Σt−1, A ∼ Wp

(
k,

1

k
Σ
− 1

2
t−1AΣ

− 1
2

t−1

)
(3.3)

where W denotes a Wishart distribution, which is the multivariate extension

of the gamma distribution (details in Appendix). k is the degree of freedom

parameter and is defined to be greater than p− 1.
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The reasons equation (3.3) is proposed are:

• By the definition of volatility, Σt is a positive-definite symmetric ma-

trix. As an extension of the gamma distribution, the Wishart distribu-

tion also inherits the positive-definite symmetric property.

• The Wishart distribution is well-known as a conjugate distribution.

This property proves very convenient in the Bayesian inference later

on.

• The scale matrix of the Wishart distribution 1
k
Σ
− 1

2
t−1AΣ

− 1
2

t−1 is motived

by the autoregressive model, i.e. the conditional expectation of the

volatility E(Σ−1
t |A,Σt−1) = Σ

− 1
2

t−1AΣ
− 1

2
t−1 which matches the mean of

the AR(1) model. A is the autoregressive coefficient in the model, it

interprets the relation between current volatility state with its past.

So that the closer eigenvalue of A to 1, the more dependence in the

volatility and we don’t expect the eigenvalue close to 0. Therefore it is

our interest to develop a way of estimating A.

Given equation (3.2) and equation (3.3), the basic mean-volatility model we

propose is:

Σ−1
t |Σt−1, A ∼ Wp(k,

1

k
Σ
− 1

2
t−1AΣ

− 1
2

t−1)

A ∼ IW (v0, β0)

yt|Σt ∼ N(µ,Σt), (3.4)
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where p(A) is the prior distribution of A and follows an inverse Wishart

distribution (for details see Appendix).

The advantage of this model set-up is that, first, in this model the descrip-

tion of the volatility matrix is focussed on the single autoregressive parameter

matrix A, while other stochastic volatility models, for example, the ARCH

and GARCH models, have two or more parameter matrices. The reduc-

tion of parameters makes a huge difference in the fight against the curse of

dimensionality with possible sacrifice of accuracy; furthermore, A is a sym-

metric matrix by definition, which further reduces the number of unknown

parameters in high dimensions by nearly a half. Second, the model structure

depends on the Wishart distribution; the conjugate property makes it much

easier to adapt and facilitate Bayesian inference in the estimation process.

In later sections (3.2.3 and 3.2.4), we will derive the posterior distribution

for both the optimal importance function and the parameter matrix A of the

model.

3.2.2 Extended models

However, in real-world scenarios, financial time series are believed not to

be normally distributed (see Literature Review): financial forecasters report

returns exhibiting heavy tails. Therefore, the basic model defined above

should be extended to describe data with heavy-tailed distributions. A naive

approach to achieving this would be to use a student-t distribution to reflect
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the heavy-tailedness:

Σ−1
t |Σt−1, A ∼ W (k,

1

k
Σ
− 1

2
t−1AΣ

− 1
2

t−1)

A ∼ IW (v0, β0)

yt|Σt ∼ t(v,Σt), (3.5)

where t(v) is a student-t distribution with v degrees of freedom.

In equation (3.5), the volatility function and the prior function remain

the same. A student-t distribution is used instead of a normal distribution

to describe the heavy-tailed returns.

However, recent finance literature suggests that skewness can be found in

most financial time series data. So in order to reflect not only the heavy-tailed

returns but also the skewness, we propose the skew-t distribution(details in

Appendix). The student-t model (equation (3.5)) can be further extended as

follows:

Σ−1
t |Σt−1, A ∼ W (k,

1

k
Σ
− 1

2
t−1AΣ

− 1
2

t−1)

A ∼ IW (v0, β0)

yt|Σt ∼ St(µ,Φ(Σt), α, vst), (3.6)

where St(µ,Φ, α, vst) stands for a skew-t distribution with vst degree of free-

dom. It should be noted that µ is defined as a ‘location’ parameter instead of

the expectation and Φ is defined as a ‘shape’ parameter, which is a function
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of the variance Σt of the skew-t distribution. α is the skewness factor. The

mean (E(X)) and variance (Σt) of the skew-t distribution can be related to

µ and Σ as follows:

µ = E(X)− α(
vst

vst − 2
)

Φ =
(
Σt − α2 2v2

st

(vst − 2)2(vst − 4)

) vst
(vst − 2)

(3.7)

In equation (3.6), the volatility function and prior function again remain

unchanged, and the skew-t distribution is used to reflect the properties of

heavy-tailedness and skewness of the data.

3.2.3 Bayesian inference for the autoregressive param-

eter, A

We have defined the naive volatility model and its extended models with

heave tails and skewness in the previous subsection. Since our model follows

a wishart autoregressive process and we neglect the mean term to further

simplified the model, the autoregressive parameter matrix A is the most

important parameter matrix in all our three models, used to describe the

relationship between present and past volatility. In this case, based on the

proposed models and the fact that the Wishart distribution is the conjugate

prior for the Wishart likelihood function, Bayesian inference can be applied

to derive the posterior probability function of A for the Gaussian model, the
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student-t model and the skew-t model:

p(A|Σ−1
t ,Σt−1) =

p(Σ−1
t |Σt−1, A)p(A|Σt−1)

p(Σ−1
t |Σt−1)

∝ p(Σ−1
t |A,Σt−1)p(A|Σt−1)

= W (k,
1

k
Σ
− 1

2
t−1AΣ

− 1
2

t−1)IW (vt−1, βt−1)

= |1
k

Σ
− 1

2
t−1AΣ

− 1
2

t−1|−
k
2 |Σ−1

t |
k−p−1

2

e−
1
2
tr(( 1

k
Σ
− 1

2
t−1AΣ

− 1
2

t−1)−1Σ−1
t )|βt−1|

v
2A−

v+p+1
2 e−

1
2
tr(βt−1A−1)

∝ |A|−
k+v+P+1

2 e−
1
2
tr((kΣ

1
2
t−1Σ−1

t Σ
1
2
t−1+βt−1)A−1)

= IW (k + vt−1, kΣ
1
2
t−1Σ−1

t Σ
1
2
t−1 + βt−1)

= IW (vt, βt)

vt = v0 + tk

βt =
t∑
i=1

(kΣ
1
2
i−1Σ−1

t Σ
1
2
i−1) + β0 (3.8)

where vt and βt are the degree of freedom and scale matrix parameters for

A.

Since we have derived the posterior probability function of unknown pa-

rameter A to be an inverse Wishart distribution. We treat A as a fixed term

in the model but we would like to estimate A sequentially, because in this

way we can integrate the estimation process of A into the estimation process

of SMC, the details will be shown in later algorithms. We will have to use the

idea of Storvik (2002). which is treating the posterior probability function of

A at previous time t − 1 as the prior probability function at current time t
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so that at time point t, the Bayesian inference can be performed and we can

obtain the posterior probability function of A sequentially.

3.2.4 Bayesian inference for importance function

Recall that the SMC has been introduced in the literature review and the

details of SMC algorithms can be found in the Appendix. We know that

the selection of the importance function is a crucial part of SMC estimation.

A good choice of importance function can lead to minimal variance of the

importance weights, which results in better particle generation for the next

time point and a better estimation at the current time point. The optimal

importance function of SMC can be defined as p(Σ−1
t |Σt−1, yt).

It should be noted that the optimal importance function is often difficult

to obtain. This is because firstly, the calculation may involve complex high

dimensional integrations of Σt, which most of time it is rather tedious or

impossible to perform. Secondly, it may also be impossible to directly sample

from the derived complex importance function.

But for the Gaussian model (equation(3.4)), based on the conjugation

property of the Wishart distribution, Bayesian inference can also be applied
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directly to derive the optimal importance function as follows:

p(Σ−1
t |Σt−1, yt) =

p(yt|Σ−1
t ,Σt−1)p(Σ−1

t |Σt−1)

p(yt|Σt−1)

∝ p(yt|Σ−1
t )p(Σ−1

t |Σt−1)

∝ N(µ,Σt)W (k,
1

k
Σ
− 1

2
t−1AΣ

− 1
2

t−1)

∝ |Σ−
1
2

t |e−
1
2
tr(yty′tΣ

−1
t )|Σt|−

k+p+1
2 e−

1
2
tr(( 1

k
Σ
− 1

2
t−1AΣ

− 1
2

t−1)−1Σ−1
t )

∝ |Σt|−
k+1+p+1

2 e−
1
2
tr((yty′t+( 1

k
Σ
− 1

2
t−1AΣ

− 1
2

t−1)−1)Σ−1
t )

∝ W

(
k + 1,

(
(yty

′
t) + (

1

k
Σ
− 1

2
t−1AΣ

− 1
2

t−1)−1

)−1
)
, (3.9)

where p is the dimension of the data. Equation (3.9) gives us a closed-formed

optimal importance function of SMC. It is also rather easy to directly sample

from such a Wishart distribution.

It should be noted that, for the student-t and skew-t model, although

equation (3.9) is not the optimal importance function for them, it is still

believed to be a promising choice of importance function for their SMC al-

gorithms.

3.2.5 Exponentially weighted moving average for skew-

ness coefficient α

Recall equation (3.6): we have four parameters, µ, Φ, α, v, in the skew-t

distribution. The plan is to estimate these parameters within the frame-

work of the SMC method. The most nature idea is that we can perform full
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Bayesian Inference on all the parameters in the skew-t distribution, however

that would be further complicated the algorithm and adding more compu-

tation. Our interest is in pushing the model onto high-dimensional data so

that we choose to simplify the algorithm and reduce the computation.

• The location parameter, µ, can be interpreted as a function of the

expectation of the data. Since typically the log-return of a financial

instrument is used as data, either the historical mean of the data or

even simply value zero can be used as the estimation of the expectation.

• The shape parameter, Φ, is a function of the volatility matrix, which

will be estimated by the SMC method at each time.

• The degrees of freedom parameter, v, can be easily determined from

the shape of the density of the data. If the data distribution has heavy

tails, then a small value (e.g. 3 or 5) can be used. However if the data

show no sign of heavy-tailedness, then a large value (e.g. 20 or 30) can

be used.

• The skewness coefficient, α, is the parameter used to describe the skew-

ness of the data, which is one of the most important parameters in the

skew-t distribution. The definition of the skewness α in univariate

statistics is:

α =
E(y −m)3

V ar(y)3
=
E(y3)−m3 + 3m2E(y)− 3mE(y2)

Σ3
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Here m is the expectation of the log-return of the data, normally it is

close to zero; Σ is the variance of the data. Therefore the terms with

m can be neglected and the skewness can be rewritten as:

α =
E(y3)

Σ3

In order to integrate the estimation of the skewness coefficient into the SMC

method, the estimation process has to be sequential. Therefore we propose

the exponential moving average (EMA) (for details see Lawrance and Lewis

(1977)) to estimate the skewness coefficient at each time point:

α̂t = λα̂t−1 + (1− λ)
E(y3

1:t)

Σ3
t

, (3.10)

where 0 < λ < 1 is the coefficient that represents the degree of weighting

decrease and it affects the results of the moving average. λ < 0.5 means

skewness is more related to the
E(y3

1:t)

Σ3
t

at each time, while λ > 0.5 makes the

previous α̂t−1 more important in the estimation.

However, in the multivariate scenario, in order to deal with the curse of

dimensionality, further simplify the calculation and reduce the number of

unknown parameters as much as possible, the equation (3.10) is replaced by:

α̂t = λα̂t−1 + (1− λ)yt (3.11)

Compared to equation (3.10), equation (3.11) is reduced from a cubic func-
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tion to a linear function. It simplifies the calculation dramatically, especially

for the high dimensional matrix calculation. We link the skewness coefficient

with the observation is because we think observations have great influence

on the parameter. For example, when the observations are mostly positive

and large, it is very likely to lead the distribution to a positive skewness co-

efficient. Inevitably, there are losses in estimation accuracy, but that is the

tradeoff we have to make to deal with the curse of dimensionality.

3.2.6 Algorithms

Algorithm 1 shows the application of the SMC method for the initial model

(equation (3.4)). At each time point, we update the posterior probability

function for the autoregressive coefficient matrix A and the optimal impor-

tance function. Then the updated information can be used to calculate the

particle weights. After that the weights can be normalised which leads to an

estimation of the volatility matrix.

Algorithm 2 is the application of the SMC method for the skew-t model

(Equation (3.6)) with the two unknown parameters: autoregressive coefficient

A and skewness coefficient α. In the same way as algorithm 1, the posterior

function of A is updated at each time, then the updated information can

be used to estimate the skewness coefficient. With the estimated skewness

coefficient, we can calculate the particle weights and finally move on to the

estimation of the volatility matrix.
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Algorithm 1 Algorithm of SMC for normal model with A

1: When t = 0, Σ0 and A can be simulated from their prior distributions:

p(Â0) = IW (v0, β0)

and
p(Σ−1

0 ) = W (k0, B0)

2: For t=1, Σ−1
1 can be simulated from its own distribution using the sim-

ulated parameters from time 0 and A1 can also be derived:

p(Σ−1
1 |Σ0, Â0) = W (k,

1

k
Σ
− 1

2
0 Â0Σ

− 1
2

0 )

p(Â1|Σ−1
1 ,Σ0) ∝ IW (k, kΣ

1
2
0 Σ−1

1 Σ
1
2
0 + β0)

3: for t = 2, . . . , T do
4: The unknown parameter At is updated at every time point t as:

p(Ât|Σ−1
t ,Σt−1) ∝ IW (k + (t− 1)v, φt−1)

φ1 = kΣ
1
2
0 Σ−1

1 Σ
1
2
0 + β0

φt = kΣ
1
2
t−1Σ−1

t Σ
1
2
t−1 + φt−1

After obtaining the unknown parameter A at time t, the SMC method
can be applied as follows:

5: for i = 1, . . . , N do
6: Draw Σi

t from pt|t−1(Σt|Σt−1, yt−1, A).
7: Set

ŵit =
p(yt|Σt)p(Σ

i
t|Σt−1, A)

g(Σi
t|Σt−1, yt, A)

ŵit−1

8: Normalise the weights:

wit =
ŵit∑N
j=1 ŵ

j
t

9: end for
10: Compute:

Σ̂t =
N∑
i=1

witδΣit

where δΣ denotes the Dirac delta mass located at Σt.
11: end for
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Algorithm 2 Algorithm of SMC for skew-t model with A and α

1: At t = 0, X0 and A can be simulated from their prior distributions:

p(Â0) = IW (v, β) p(Σ−1
0 ) = W (k,B)

2: At t=1, Σ−1
1 can be simulated from its own distribution using the simu-

lated parameters from time 0 and A can also be derived:

p(Σ−1
1 |Σ0, Â0) = W (k,

1

k
Σ
− 1

2
0 Â0Σ

− 1
2

0 ) and p(Â1|Σ−1
1 ,Σ0) ∝ IW (k, kX

1
2
0 Σ−1

1 Σ
1
2
0 +β)

Also the initial value for α̂t can be set up to be α̂1.
3: for t = 2, . . . , T do
4: The unknown parameter A is updated at every time point t as:

p(Ât|Σ−1
t ,Σt−1) ∝ IW (k + (t− 1)v, φt−1)

φ1 = kΣ
1
2
0 Σ−1

1 Σ
1
2
0 + β

φt = kΣ
1
2
t−1Σ−1

t Σ
1
2
t−1 + φt−1

After obtained the unknown parameter A at time t, then the SMC
method can be applied as follows:

5: for i = 1, . . . , N do
6: Draw Σi

t from pt|t−1(Σi
t|Σt−1, yt−1, A).

7: The unknown parameter α is updated as:

α̂it = λα̂it−1 + (1− λ)yt

8: Set

ŵit =
p(yt|Σt, α̂

i
t)p(Σ

i
t|Σt−1, A)

g(Σi
t|Σt−1, yt, A)

ŵit−1

9: Normalise the weights:

wit =
ŵit∑N
j=1 ŵ

j
t

10: end for
11: Compute:

Σ̂t =
N∑
i=1

witδΣit

where δΣ denotes the Dirac delta mass located at Σt.
12: end for
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3.3 Estimation and applications

3.3.1 Data analysis

In this section, the proposed Gaussian Wishart autoregressive model and

the extended skew-t-Wishart autoregressive model were applied to real data

by using the SMC method. It should be noted that for the purposes of

demonstration, two-dimensional data were used. The data set was selected

from the stock prices of Cairn Energy and Anglo American over the period

from 2006 to 2008 at daily frequency. The set of stock prices consisted of 500

observations in total. The dataset can be found in the appendix document

‘CairnEnergy and AngloAmerica data.txt’. A time series plot of the data

is shown in Figure 3.1. From the plot, though each stock seems to follow

a random walk, the overall trend of the two stock prices are quite opposite.

Cairn Energy starts off high and goes down in the middle and ends up going

up, while Anglo American starts off low, goes up in the middle and ends up

in a relatively high position. It is natural for us to assume that the two stock

prices share more negative correlations than positive.

We haven’t use simulated data to fit our model is because the main struc-

ture of our model is set to be an autoregressive structure. However in order to

push the model to higher dimensions, reduce the number of parameters and

overall calculation, we neglect the volatility mean term in our model, which

causes the problem that when we simulate the data, the volatility converges

to zero very quickly after certain numbers of simulation. It should be noted
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that even with the mean term, it just shift the trend but the degeneration

dose not change. Therefore we are not able to simulate a long term dataset.

The density plot of log-returns of the data is shown in Figure 3.2. Firstly,

both panels of the plot indicate heavy-tailed distributions. Second, we sus-

pect that Cairn Energy shows a slight negative skewness and Anglo American

seems more symmetric. We expect such information can be obtained from

the estimation of the skewness coefficient vector of the skew-t distribution.

We are mainly interested in revealing the volatility changes over time

given the time series data and showing the estimation of the unknown param-

eters autoregressive coefficient, A and skewness coefficient, α. The starting

values for the parameters were set to be: the number of iterations N = 500,

the number of time periods T = 500, the degrees of freedom of the inverse

Wishart of the volatility k = 5, the degrees of freedom of the inverse Wishart

of the autoregressive coefficient v = 5, the degrees of freedom of the skew-t

distribution df = 5. We think 5 is a moderate choice for degree of freedom

because it assumes the distribution neither has extreme heavy tails nor shows

no evidence of heavy tails at all. The mean µ = (0.001, 0001)′ is because the

log-return of the data are very close to 0, the starting value of the scale ma-

trix β = I and the starting value of the skewness coefficient vectorα0 = (0, 0)′

is because this start value has little impact on the estimation. The R code

can be found in the appendix document ‘Wishart-naive.R’.
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Figure 3.1: Stock prices of Anglo American and Cairn Energy
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Figure 3.2: Density plot of log-returns of the data
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Figure 3.3: Log-return of the data vs. estimated volatility (Gaussian)
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Figure 3.4: Estimation of autoregressive coefficient A

3.3.2 SMC on Gaussian model

We start from the naive set-up and the SMC method shown in algorithm 1

is used on the Gaussian Wishart autoregressive model. Figure 3.3 shows the

log-returns of the data and the estimation of the volatility for each stock

price. From the plot we see that the estimated volatility can capture the

fluctuation pattern of the data. For example, the low value of the returns of

Cairn Energy at 2007.3 is reflected by a high volatility estimation and the

high fluctuation of Anglo American at 2008.0 is demonstrated well by the

high volatility estimations in the end. However, we do notice that there might

be an overreaction of the volatility estimation at around 2006.5. The peak

of the estimation appears to be too high to interpret the data fluctuation at

that time.
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The estimation for the unknown autoregressive coefficient A is shown in

Figure 3.4. The four plots represent the four elements of matrix A respec-

tively. We can see from the plots that after a short time at the beginning,

the estimations start to stay much more stable. However there are some ev-

idences that they don’t converge, especially the A22 estimation. Also, if we

look at the off-diagonal elements, they have influence on volatility matrix as

well. A relatively large value on the off-diagonal elements can be a concern

of the estimate since that could cause large eigenvalues of A and it could

suggest that the volatility is not stationary. Then we fitted the model for

much longer data(increased from 500 datapoint to 1000 datapoint, still Carin

Energy and Anglo America data). The estimation of A shows in Figure 3.5

with a closer scale. We can see that same as before, after a short time at the

beginning, the estimation start to stay stable but doesn’t seem to converge.

Then we are fitting the model to artificial data, which are simulated from

RBEKK model(details see section 3.5.3). We have 1000 datapoint and the

estimation of A shows in Figure 3.6. It is clear that after around 500 data,

the estimation starts to converge with a noisy trend.

It is believed that the reasons that estimation of A does not seem to

converge on Cairn Energy and Anglo America data are firstly, the log-return

transformation makes the data much more smaller(close to 0) so that the

algorithm takes much longer time and effort to adapt the information and

make the estimate. Within 1000 points of time, the estimate of A is still

unstable exhibiting a monotonic increase. However the artificial data has a
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much larger scale, so that the estimation process adapts much quicker(takes

around 500 data) and starts to converge after that. Secondly, in some cases,

the behaviour of A might be as a time varying variable so that we should

treat and estimate it in a time vary fashion. It is an interesting object that

we could focus in the future and we will discuss in the future work section.

3.3.3 SMC on skew-t model

In order to further interpret the heavy-tailedness and the potential skewness

of the given data, the SMC method shown in algorithm 2 is used on the

skew-t Wishart autoregressive model. The R code can be found in appendix

document ‘Wishart-skewt.R’.

Figure 3.7 shows the log-returns of the data and the estimated volatility

for the stock prices. The volatility can capture the fluctuation pattern of the

data just fine. For example, it reflects the very low value of Cairn Energy at

2007.3 to have a high volatility estimation. Especially compared to Figure

3.3, the estimation of the high value of Anglo American at 2006.5 is an

improvement. It reflects on the fluctuation of the returns but there is no

clear evidence of overreaction this time.

The estimation for the unknown autoregressive coefficient A is shown in

Figure 3.8. The four plots represent the four elements of matrix Ā respec-

tively. We can see from the plots that after a short time at the beginning, the

estimations start to converge to certain values and stay stable afterwards.

The top plot of Figure 3.9 is the estimated skewness coefficient for Cairn
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Figure 3.7: Log-return of the data vs. estimated volatility (skew-t)
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Figure 3.8: Estimations for autoregressive coefficient A
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Energy and the bottom plot shows the estimated skewness coefficient for

Anglo American. As we expected, the estimations of α change dramatically

over time and should not be treated as a constant.

Figure 3.10 shows the estimated cross-correlation coefficient of the two

returns. Notice that all the estimated values are ranged within the [−1, 1]

interval, which suits the properties of correlation coefficients. Also from the

figure we can tell that there are more negative values than positive ones,

which indicates the fact that the two stock prices are more often negatively

related than staying in a positive relation. From the given two dimensional

data, we can calculate the overall correlation coefficient is −0.448 and the

mean of our estimated correlation coefficient is −0.349 which is close to the

real value.

Figure 3.11 gives density plots for both the estimated volatility and the

correlation coefficient at different random dates. The dates were chosen as

23 February 2007 for the top panel, 28 July 2006 for the middle panel and 19

May 2006 for the bottom panel. The figure shows that, first of all, none of

the densities are normally distributed. Secondly, most only have one peak.

Thirdly, most seem to have heavy tails. Then finally, most of the densities

are believed to be asymmetric.

Overall, this subsection shows that the performance of the proposed mod-

els are good at reflecting the fluctuation of the data. Both the volatility

and correlations can be estimated by the extended particle filter. The au-

toregressive coefficient matrix can be valued sequentially too. Due to the
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Figure 3.11: Density plots for covariance matrix at different dates
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heavy-tailedness and skewness of the data, the skew-t autoregressive model

shows a better performance over the Gaussian autoregressive model.

3.4 Gaussian Wishart autoregressive model

with diagonal autoregressive coefficient

The Gaussian and skew-t Wishart autoregressive models in the last sub-

section have plausible performance over two-dimensional financial time se-

ries data. However, as the dimensionality of the data increases, the matrix

computation involved in the estimation gets complicated, especially for the

skew-t Wishart model. In order to deal with the curse of dimensionality, the

proposed models need further parameter reduction, from which however a

sacrifice of estimation accuracy is also expected.

We consider the volatility function in the Gaussian Wishart autoregressive

model: p(Σ−1
t |Σt−1, A) = W (k, 1

k
Σ
− 1

2
t−1AΣ

− 1
2

t−1). In the two dimensional case,
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the conditional mean of the precision is as follows:

E(Σ−1
t |Σt−1, A) = Σ

− 1
2

t−1AΣ
− 1

2
t−1

=

x1 x2

x2 x3


a1 a2

a2 a3


x1 x2

x2 x3


=

a1x1 + a2x2 a2x1 + a3x2

a1x2 + a2x3 a2x2 + a3x3


x1 x2

x2 x3


=

 a1x
2
1 + a2x1x2 + a2x1x2 + a3x

2
2 a1x1x2 + a2x

2
2 + a2x1x3 + a3x2x3

a1x1x2 + a2x1x3 + a2x
2
2 + a3x2x3 a1x

2
2 + a2x2x3 + a2x2x3 + a3x

2
3


=

 a1x
2
1 + 2a2x1x2 + a3x

2
2 a1x1x2 + a2(x2

2x1x3) + a3x2x3

a1x1x2 + a2(x1x3 + x2
2) + a3x2x3 a1x

2
2 + 2a2x2x3 + a3x

2
3

(3.12)

In order to simplify equation (3.12), we assume A to be a diagonal matrix,

i.e. a2 = 0. Then the conditional mean of the precision is:

E(Σ−1
t |Σt−1, A) = Σ

− 1
2

t−1AΣ
− 1

2
t−1

=

 a1x
2
1 + a3x

2
2 a1x1x2 + a3x2x3

a1x1x2 + a3x2x3 a1x
2
2 + a3x

2
3

 (3.13)

Compare equation (3.13) to equation (3.12): the parameter calculation is

reduced by nearly a half. This will hugely decrease the complexity of the

parameter estimation and the time consumption of the calculation. However,

with less parameters describing the volatility, the accuracy of the estimation
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will be slightly compromised.

Based on the Gaussian and skew-t autoregressive Wishart model, we pro-

pose a simplified model, which assumes A to be a diagonal matrix:

Σt|Σt−1, A ∼ IW (k, (k − n− 1)AΣt−1A
′)

aii ∼ Gamma(ci, di), i = 1, · · · , n

yt|Σt ∼ N(µ,Σt) or St(µ,Σ, α, v), (3.14)

where aii is the i-th diagonal element of A, n is the dimension of the data

and Gamma(ci, di) is the prior density for the diagonal elements. IW is an

inverse Wishart distribution, for details see Appendix.

It should be noted that, firstly, we focus on the volatility matrix instead

of its precision here, therefore it follows an inverse Wishart distribution. Sec-

ondly, compared to the previous Gaussian Wishart model (equation (3.6)),

the scale matrix has changed from Σ
− 1

2
t−1AΣ

− 1
2

t−1 to AΣt−1A
′. The change of

positions between Σ and A is because AΣt−1A
′ is a natural autoregressive

structure. Σ
− 1

2
t−1AΣ

− 1
2

t−1 was used before for the purpose of obtaining a close-

formed optimal importance function.

The proposed model inherits the autoregressive Wishart set up from the

previous model (equation (3.6)) and the data can be demonstrated by either

a Gaussian distribution or a skew-t distribution. We also assume the prior

distribution for the diagonal elements of A to follow a gamma distribution,

which is a conjugate distribution so that Bayesian inference can be applied
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to derive the posterior distribution of aii. As before, SMC will be used to

estimate the volatility and the autoregressive coefficient A.

3.4.1 Estimation of A

Firstly, we introduce a lemma (for details see Johnson et al. (2002)):

If X ∼ IW (k, S),

then xii ∼ IG(
k − 2n

2
,
sii
2

),

where xii is the i-th diagonal elements of matrix X. IW is the inverse Wishart

distribution and IG is the inverse gamma distribution.

Recall the volatility equation (3.14), where the conditional volatility fol-

lows an inverse Wishart distribution, then we apply the lemma and have:

xii(t)|aii ∼ IG

(
k − 2n

2
,
(k − n− 1)a2

iixii(t−1)

2

)
, (3.15)

where xii(t) is the i-th diagonal element of the volatility matrix Σt at time t.

It should be noted that both diagonal elements and off-diagonal elements

of covariance matrix give information on aii, however in order to reduce the

calculation and simplify the estimation process, we think it is better to ne-

glect the off-diagonal element and focus on the diagonal element. With the

density function of xii(t)|aii, xii(t−1), and a prior for aii, then using the conju-

gate property of the inverse gamma distribution, we can apply the Bayesian
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rule and derive the posterior distribution of aii|xii(t), xii(t−1):

P (aii|xii(t), xii(t−1)) =
P (xii(t)|xii(t−1), aii)P (aii|xii(t−1))

P (xii(t)|xii(t−1))

∝ P (xii(t)|aii, xii(t−1))P (aii|xii(t−1))

∝ IG(
k − 2n

2
,
(k − n− 1)a2

iixii(t−1)

2
) ·

Gamma(ct−1, dt−1)

∝
(

(k−n−1)a2
iixii(t−1)

2
)
k−2n

2

Γ(k−2n
2

)
x
− k−2n

2
−1

ii(t) e
−

(k−n−1)a2
iixii(t−1)
2

xii(t)

1

Γ(ct−1)d
ct−1

t−1

a
ct−1−1
ii e

− aii
dt−1

∝ a
k−2n

2
+ct−1−1

ii e
aii(

1
dt−1

+
(k−n−1)xii(t−1)

2xii(t)
)

∝ Gamma(
k − 2n

2
+ ct−1,

1

1
dt−1

+
(k−n−1)xii(t−1)

2xii(t)

)

∝ Gamma(ct, dt) (3.16)

Algorithm 3 shows the estimation process of SMC on the Wishart au-

toregressive model with diagonal A. At each time point, the posterior dis-

tribution of the diagonal elements aii and the skewness coefficient α can be

estimated using past information and observations. Then we calculate the

particle weights with the help of the estimated unknown parameters, and

finally estimate the volatility matrix.
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Algorithm 3 Algorithm of SMC for model with diagonal A

1: At t = 0, Σ0 and A can be simulated from their prior distributions:

p(âii(0)) = Gamma(c0, d0) p(Σ0) = IW (k,B)

2: At t=1, Σ1 can be simulated from the inverse Wishart distribution using
the simulated parameters from time 0 and A1 can also be estimated:

p(Σ1|Σ0, A) = IW (k, (k−n−1)A0Σ0A) and p(â11|Σ1,Σ0) ∝ Gamma(c1, d1)

3: for t = 2, . . . , T do
4: âii(t) is updated at every time point t as:

p(âii(t)|Σt,Σt−1) ∝ Gamma(ct, dt)

where ct = k−2n
2

+ ct−1 and dt = 1

1
dt−1

+
(k−n−1)xii(t−1)

2xii(t)

After obtaining the unknown parameter A at time t, the SMC
method can be applied as follows:

5: for i = 1, . . . , N do
6: Draw Σi

t from pt|t−1(Σi
t|Σt−1, yt−1, A).

7: The skewness coefficient α is updated as:

α̂it = λα̂it−1 + (1− λ)yt

8: Set

ŵit =
p(yt|Σt, α̂

i
t)p(Σ

i
t|Σt−1, A)

g(Σi
t|Σt−1, yt, A)

ŵit−1

9: Normalise the weights:

wit =
ŵit∑N
j=1 ŵ

j
t

10: end for
11: Compute:

Σ̂t =
N∑
i=1

witδΣit

where δΣ denotes the Dirac delta mass located at Σt.
12: end for
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3.5 Application

3.5.1 Data analysis

In this section, the proposed diagonal autoregressive coefficient model will be

applied to the data using the SMC method. Compared to the former sections,

the data used in this section are higher 6-dimensional currency exchange rate

data. The data consist of 700 data points of the currency exchange rate

between Canadian dollar (CAD) and US dollar (USD), Japanese yen (JPY)

and USD, Euro (EUR) and USD, Australian dollar (AUD) and USD, pound

sterling (GBP) and USD and New Zealand dollar (NZD) and USD, from 2008

to 2012, which is collected at daily frequency. The dataset can be found in

appendix document ‘Currency exchange rate data.txt’.

The time series plots of these data are shown in Figure 3.12. The plot

shows that most of the currency exchange rate are correlated. For example

the CAD and EUR share a similar pattern, especially after 400 time points.

We will explore more of their correlations after the estimation. Secondly, the

time series are not stationary, therefore the log-return of the data was used.

The time series plots of the log-return are shown in Figure 3.13. Finally,

we investigate the normality and skewness of the data. The density plot

log-return and the quantile-quantile (Q-Q) plot of the log-return of the data

are shown in Figures 3.14 and 3.15, respectively. The density plots suggest

the data has skewness, for example JPY and AUD. The Q-Q plot indicates

that most of the data are not normally distributed, especially JPY, AUD and
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Figure 3.12: Currency exchange rate data
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NZD. Therefore, the skew-t distribution will be used to describe the data.

The starting values for the parameters were set to be: the number of

iterations N = 500, the number of time periods T = 700, the degrees of

freedom of the inverse Wishart of the volatility k = 5, the degrees of freedom

of the inverse Wishart of the autoregressive coefficient v = 5, the mean

µ = (0.001, 0001), the degrees of freedom of the skew-t distribution df = 5,

the starting value of the scale matrix β = I, the starting value of the shape

parameter of the gamma distribution c0 = 10, the starting value of the scale

parameter of the gamma distribution d0 = 0.1 and the starting value of

the skewness coefficient α0 = (0, 0). The R code can be found in appendix

document ‘Wishart-diagonal.R’.

3.5.2 Estimation

We apply algorithm 3 of the SMC method on the diagonal autoregressive

coefficient Wishart autoregressive model given the currency exchange rate

data.

Figure 3.16 shows the log-return of the data on the top panel and the

estimated volatility on the bottom. The estimated volatility follows a similar

pattern as the log-return data. For example the log-return of CAD indicates

a high volatility at around 80 time points at the beginning and at around 380

time points at the end. The estimated volatility captures the high fluctuation

of the data and shows high value in the corresponding positions.

The estimation of the diagonal autoregressive coefficient is illustrated
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Figure 3.15: QQ-plot of returns for each currency

Log−Return of USD/CAD

Time

U
S

D
/C

A
D

0 100 200 300 400

−
0.

01
0

−
0.

00
5

0.
00

0
0.

00
5

0.
01

0
0.

01
5

Log−Return of USD/EUR

Time

U
S

D
/E

U
R

0 100 200 300 400

−
0.

01
0

−
0.

00
5

0.
00

0
0.

00
5

0.
01

0
0.

01
5

0.
02

0

Log−Return of USD/GBP

Time

U
S

D
/G

B
P

0 100 200 300 400

−
0.

01
0

−
0.

00
5

0.
00

0
0.

00
5

0.
01

0
0.

01
5

0.
02

0

Log−Return of USD/JPY

Time

U
S

D
/J

P
Y

0 100 200 300 400

−
0.

01
0.

00
0.

01
0.

02

Log−Return of USD/AUD

Time

U
S

D
/A

U
D

0 100 200 300 400

−
0.

05
−

0.
04

−
0.

03
−

0.
02

−
0.

01
0.

00
0.

01
0.

02

Log−Return of USD/NZD

Time

U
S

D
/N

Z
D

0 100 200 300 400

−
0.

04
−

0.
02

0.
00

0.
02

Estimated Volatility of USD/CAD

Time

E
st

im
at

ed
 V

ol
at

ili
ty

0 100 200 300 400

0.
00

2
0.

00
3

0.
00

4
0.

00
5

0.
00

6
0.

00
7

0.
00

8

Estimated Volatility of USD/EUR

Time

E
st

im
at

ed
 V

ol
at

ili
ty

0 100 200 300 400

0.
00

1
0.

00
2

0.
00

3
0.

00
4

0.
00

5
0.

00
6

Estimated Volatility of USD/GBP

Time

E
st

im
at

ed
 V

ol
at

ili
ty

0 100 200 300 400

0.
00

2
0.

00
4

0.
00

6
0.

00
8

Estimated Volatility of USD/JPY

Time

E
st

im
at

ed
 V

ol
at

ili
ty

0 100 200 300 400

0.
00

2
0.

00
4

0.
00

6
0.

00
8

0.
01

0

Estimated Volatility of USD/AUD

Time

E
st

im
at

ed
 V

ol
at

ili
ty

0 100 200 300 400

0.
00

2
0.

00
3

0.
00

4
0.

00
5

0.
00

6

Estimated Volatility of USD/NZD

Time

E
st

im
at

ed
 V

ol
at

ili
ty

0 100 200 300 400

0.
00

3
0.

00
4

0.
00

5
0.

00
6

0.
00

7
0.

00
8

0.
00

9

Figure 3.16: Log-return vs. estimated volatility
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in Figure 3.17. The coefficient is a 6-dimensional diagonal matrix in this

case, therefore the 6 diagonal elements are shown. The estimations have a

decreasing trend, but it should be noted that the drop occurs over such a

small scale (from 0.9986 − 0.9974). It could mean that the process is still

adapting in a slow pace. We have discussion about the monotonic behaviour

of A in earlier section (section(3.3.2)).

The estimation of the volatility matrix allows us to look into the corre-

lation between each currency exchange rate. For example, the correlation

coefficient between CAD and EUR is shown in Figure 3.18. We can see that

all the estimated values are ranged within the [−1, 1] interval, which meets

the requirements for a correlation coefficient. Also there are more positive

values than negative values, which indicates the fact that the two currency

exchange rates are more often positively related than negatively related.

Overall, this subsection demonstrates the performance of the estimation

of the SMC on the diagonal autoregressive coefficient model. The volatility

estimation is good at reflecting the fluctuation of the data, the autoregressive

coefficient estimation is solid and the correlations between each currency

exchange rate reveals extra information.

3.5.3 Comparison with multivariate GARCH

This subsection is joint work with Farhat Iqbal (Department of Statistics,

University of Balochistan).

The comparison is between the Wishart autoregressive model with diago-

69



Estimation  of  A11

Time

A
11

0 100 200 300 400

0.
99

74
0.

99
76

0.
99

78
0.

99
80

0.
99

82
0.

99
84

0.
99

86

Estimation  of  A22

Time

A
22

0 100 200 300 400

0.
99

74
0.

99
76

0.
99

78
0.

99
80

0.
99

82
0.

99
84

0.
99

86

Estimation  of  A33

Time

A
33

0 100 200 300 400

0.
99

74
0.

99
76

0.
99

78
0.

99
80

0.
99

82
0.

99
84

0.
99

86

Estimation  of  A44

Time

A
44

0 100 200 300 400

0.
99

74
0.

99
76

0.
99

78
0.

99
80

0.
99

82
0.

99
84

0.
99

86

Estimation  of  A55

Time

A
55

0 100 200 300 400

0.
99

74
0.

99
76

0.
99

78
0.

99
80

0.
99

82
0.

99
84

0.
99

86

Estimation  of  A66

Time

A
66

0 100 200 300 400

0.
99

76
0.

99
78

0.
99

80
0.

99
82

0.
99

84
0.

99
86

Figure 3.17: Estimation for aii

The Correlation Coefficient Between CAD and EUR Over Time
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Figure 3.18: Estimated correlation coefficient between CAD and EUR
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Wishart-RMSE RBEKK-RMSE Wishart-MAE RBEKK-MAE
Mean 0.36 0.14 0.32 0.13

Variance 0.2 0.023 0.16 0.020

Table 3.1: Mean and variance of RMSE and MAE between simulated and
estimated covariance matrix of Wishart autoregressive model and RBEKK
model

nal autoregressive coefficient (section 3.5.1) and the multivariate generalised

autoregressive conditional heteroscedastic model (MGARCH), more specif-

ically, the rotated Baba-Engle-Kraft-Kroner model (RBEKK) – see Iqbal

and Triantafyllopoulos (2016), Engle and Kroner (1995) and Noureldin et al.

(2014), more details see Introduction. The RBEKK model is an extension

of the MGARCH model for medium dimensional data by exploiting returns

rotation and covariance targeting. The estimation method of RBEKK is

carried out by MCMC for reasons of extra accuracy and stability.

The data are simulated from RBEKK model, the simulated return and

volatility can be found in appendix document ‘Simulated return.txt’ and

‘Simulated Volatility.txt’. We cannot simulate data from Wishart model

is because the main structure of our model is set to be an autoregressive

structure. However in order to push the model to higher dimensions, reduce

the number of parameters and overall calculation, we neglect the volatility

mean term in our model, which causes the problem that when we simulate

the data, the volatility converges to zero very quickly after certain numbers

of simulation. It should be noted that even with the mean term, it just shift

the trend but the degeneration dose not change. Therefore we are not able
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to simulate a long term dataset.

The simulated data are used for both models and the covariance matrix

are estimated by SMC and MCMC for the Wishart autoregressive model

and RBEKK model, respectively. In order to obtain the distance between

the simulated variance matrix and estimated variance matrix, mean absolute

error (MAE) and root mean squared error (RMSE) are used to calculate the

matrix norm. The definitions of MAE and RMSE are as follows:

MAE =
1

n

n∑
i=1

n∑
j=1

|eij|

RMSE =

√√√√ 1

n

n∑
i=1

n∑
j=1

|eij|2

eij = (aij − bij), (3.17)

where aij and bij are the ijth element of matrix A and B.

In order to make the comparison more stable and accurate, we use a

Monte Carlo approach, i.e. we simulated 100 sets of bivariate data with 1000

data points each using a standard RBEKK model, details see Appendix.

Because of the convergence of MCMC and SMC, we neglect the first 300

data points and only count the last 700. Then both models were applied

to the simulated data and both MAE and RMSE between simulated and

estimated covariance matrix calculated. The comparison R code can be found

in appendix document ‘Comparison-Wishart and REBBEK.R’.

The mean and variance of MAEs and RMSEs of 100 data sets for both
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models are shown in Table 5.2. From the table, we can see that the mean

and variance of both MAEs and RMSEs of the RBEKK model are smaller

than for the Wishart model. However, the differences are not significant.

The RBEKK model outperformed the Wishart autoregressive model by a

small margin. Figure 3.19 shows the first set of simulated data vs. simulated

volatility and estimated volatility of both models. The RBEKK has close

estimations to the simulations; the Wishart autoregressive presents less close

but still acceptable estimations.

Overall, taken into account that firstly the data are simulated from RBEKK

model, secondly the GARCH family models are much more well developed,

thirdly the well-known accurate and stable MCMC was performed on RBEKK

model, the Wishart autoregressive model with online SMC estimation method

achieves an inferior but close enough performance on the simulated data.
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Figure 3.19: Simulated data and simulated volatility (black) vs. Wishart
(red) vs. RBEKK (blue)
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Chapter 4

Wishart-Newton Model

4.1 Introduction

Inspired by Uhlig’s (Uhlig (1997)) Wishart autoregressive process, a Wishart-

Newton model is developed. The hyperparameter is treated as a diagonal

matrix and is estimated by the Newton-Raphson method. We manage to

integrate parameter estimation into an online volatility estimation algorithm

and the application is shown at the end of the chapter.

4.2 Model definition

In the same way as for the Gaussian Wishart autoregressive model (see Sec-

tion 3.2.1), in this chapter we consider the p-dimensional time series data

{yt}, which is the log-return of the prices of any financial instrument. The
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data can be described by a multivariate normal distribution with a mean

vector µ and a p-dimensional covariance matrix Σt:

yt|Σt ∼ N(µ,Σt)

Our main interest is to estimate the covariance matrix Σt under the assump-

tion that its p × p precision matrix Φt = Σ−1
t exists, i.e. Σt is a strictly

positive defined matrix. First, Uhlig’s (Uhlig, 1997) proposed Wishart pro-

cess as follows:

Φt = kU(Φt−1)′BU(Φt−1)

However the process has a random walk structure which results the esti-

mation go wild sometimes.Therefore we decided to add another parameter

matrix A in order to restrict the behaviour of the model and makes the model

follows a more stable autoregressive structure, the precision matrix can be

described as follows:

Φt = kAU(Φt−1)′BU(Φt−1)A′

B ∼ Betap(a/2, b/2), (4.1)

where k is a constant to keep the autoregressive property of the model – it

needs to be determined later on. A is the autoregressive parameter matrix

which we will estimate. It should be noted that in our model, we treat autore-

gressive coeffcient A as the main parameter. It represents the relationship
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between current volatility state and its past. Since we treat A as a diagonal

matrix, the diagonal elements have major impact on the model. We would

expect the diagonal elements have range from 0 to 1. The closer the diago-

nal elements are close to 1, the more dependence between current volatility

with its past state. U(Φt−1) is the upper triangular matrix of the Choleski

decompostion of the precision matrix Φt−1. B, assumed to be independent

from Φt−1, follows a singular multivariate beta distribution with two positive

shape parameters a/2 and b/2, both of which will be decided later.

If we look at the expectation of the precision matrix:

E(Φt|Φt−1) = kAE(U(Φt−1)′BU(Φt−1))A′

= k
a

a+ b
A(U(Φt−1)′U(Φt−1))A′

= k
a

a+ b
AΦt−1A

′ ,

the expectation has the same structure as a autoregressive model of order one,

which ensures the stationarity and the accuracy of the volatility estimation.

4.2.1 Inference conditional on A

Although the expectation of the volatility suits our purpose, the proposed

model in equation (4.1) is still too complicated to estimate, especially with

the upper triangular matrix structure and the singular beta distribution.

(It should be noted that in this subsection, we consider the autoregressive

coefficient A to be known; the estimation of A will be discussed in the next
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subsection.)

We shall exploit the conjugacy of the multivariate beta and Wishart dis-

tributions to facilitate computationally efficient inference; here we introduce

a lemma: If we have Φ ∼ Wp(a + b, F ), where a > p + 1 and b is a positive

integer, and B ∼ Bp(a/2, b/2), where B is independent from Φ, then we

have:

Φ∗ = U(Φ)′BU(Φ) ∼ Wp(a, F ) (4.2)

for details of the lemma, see Uhlig (1997). The lemma combines the multi-

plication of the upper triangular matrix of the Wishart distribution and the

singular beta distribution into a Wishart distribution which helps us greatly

with model simplification and calculation.

With the help of the lemma, we can work on the details of the model

parameters. Assume the posterior distribution for the precision volatility

matrix at t− 1 is Φt−1|A,Dt−1 ∼ Wp(n+ p− 1, Ft−1), where Dt = (y1, ..., yt)

denotes the available information and the data at time t and n > 0. Here

we set n = 1
1−δ , where 0.67 < δ < 1 is a discount factor to make sure that

n > 3, i.e. the degrees of freedom of the Wishart distribution as:

n+ p− 1 =
1

1− δ
+ p− 1 = (

1

1− δ
− 1 + p− 1) + 1 = (

δ

1− δ
+ p− 1) + 1

Then we specify a = δ
1−δ + p− 1 and b = 1 and apply the lemma, the prior

78



for Φt given A and Dt−1 can be derived as:

k−1A−1ΦtA
′−1|A,Dt−1 ∼ Wp(a, Ft−1)

Φt ∼ Wp(a, kAFt−1A
′)

= Wp(
δ

1− δ
+ p− 1, kAFt−1A

′)

= Wp(δn+ p− 1, kAFt−1A
′) (4.3)

Since the model is set up to be an autoregressive model, therefore the autore-

gressive property need to be satisfied by: E(Φt|A,Dt−1) = AE(Φt−1|A,Dt−1)A′.

From the posterior distribution of Φt−1 and equation (4.3) we have:

E(Φt|A,Dt−1) = (δn+ p− 1)kAFt−1A
′

AE(Φt−1|A,Dt−1)A′ = (n+ p− 1)AFt−1A
′

(δn+ p− 1)kAFt−1A
′ = (n+ p− 1)AFt−1A

′

(δn+ p− 1)k = (n+ p− 1)

k =
n+ p− 1

δn+ p− 1
(4.4)

Thus k in equation (4.4) can ensure the autoregressive property of the model.

Now we have the prior distribution of Φt|A,Dt−1 following Wp(δn + p −

1, n+p−1
δn+p−1

AFt−1A
′), we can derive the posterior distribution of Φt|A,Dt based

on Bayes’ theorem and the conjugate property of the Wishart distribution
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as follows:

p(Φt|A,Dt) ∝ p(yt|Φt, A,Dt−1)p(Φt|A,Dt−1)

= N(µ,Φ−1
t )Wp(δn+ p− 1,

n+ p− 1

δn+ p− 1
AFt−1A

′)

=
1√

2π|Φt|−1/2
e−

1
2
tr((yt−µ)(yt−µ)′Φt) ×

|Φt|
δn+p−1

2 e−
1
2
tr((kAFt−1A′)−1Φt)

∝ |Φt|
δn+p−1+1

2 e−
1
2
tr(((yt−µ)(yt−µ)′+(kAFt−1A′)−1)Φt)

= Wp(δn+ 1 + p− 1, ((yt − µ)(yt − µ)′ + (kAFt−1A
′)−1)−1)

= Wp((1−
1

n
)n+ 1 + p− 1, Ft)

= Wp(n+ p− 1, Ft) (4.5)

Ft = (ete
′
t + (kAFt−1A

′)−1))−1

et = yt − µ

With the posterior distribution of p(Φt|Dt, A) derived, we can redefine our

model as follows:

Σt|Σt−1, A, yt ∼ IW (n+ p− 1, Ft)

A ∼ MVN(M,V )

yt|Σt = N(µ,Σt), (4.6)

where IW is an inverse Wishart distribution and the prior distribution for the

autoregressive parameter A is a diagonal matrix and its diagonal elements
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follow a multivariate normal distribution with meanM and covariance matrix

V .

4.3 Estimation of hyperparameter matrix A

From the proposed model (equation (4.6)), it is clear that the autoregressive

coefficient matrix A is the most important unknown parameter. Since our

purpose for the model is to estimate high dimensional data, therefore the

autoregressive coefficient is treated as a fix diagonal matrix, as before, which

can simplify the calculation and reduce the estimation time.

4.3.1 Estimation of A

Let us consider the joint prior distribution of Φt and A given Dt−1; applying

the joint distribution definition we have:

f(Φt, A|Dt−1) = f(Φt|Dt−1, A)f(A|Dt−1) (4.7)

Then we have the posterior joint distribution of Φt and A given Dt and apply

Bayes theorem as follows:

f(Φt, A|Dt) = f(Φt, A|Dt−1)f(yt|Φt, A) = f(Φt, A|Dt−1)f(yt|Φt) (4.8)
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Taking equation (4.7) into equation (4.8), we have:

f(Φt, A|Dt) = f(yt|Φt)f(Φt|Dt−1, A)f(A|Dt−1)

In order to obtain the density function of f(A|Dt), we can integrate Φt out

of the joint distribution of Φt and A given Dt as follows:

f(A|Dt) ∝ f(A|Dt−1)

∫
f(yt|Φt)f(Φt|Dt−1, A)dΦt (4.9)

From last section we have yt|Φt ∼ N(µ,Φ−1
t ) and Φt|Dt−1, A ∼ Wp(δn +

p− 1, kAFt−1A
′), therefore we can integrate the factor by conjugacy and the

integral of equation (4.9) is:

f(A|Dt) ∝ f(A|Dt−1)

∫
f(yt|Φt)f(Φt|Dt−1, A)dΦt

∝ f(A|Dt−1)|ete′t + (kAFt−1A
′)−1)|−(δn+p)/2

Then for each time, we can repeat the calculation of the integration:

f(A|Dt) ∝ f(A|Dt−2)
t∏

j=t−1

|eje′j + (kAFj−1A
′)−1)|−(δn+p)/2

∝ · · · · · ·

∝ · · · · · ·

∝ f(A)
t∏

j=1

|eje′j + (kAFj−1A
′)−1)|−(δn+p)/2 , (4.10)
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where f(A) is the prior density of A which is defined in the model and follows

a multivariate normal distribution.

We are interested in estimating the mode of A. However, it is clearly diffi-

cult or even impossible to obtain a closed-form solution of the first derivative

for f(A|yt); therefore we apply the Newton-Raphson method to approximate

the mode, Â. According to the method, at each time point t, for iteration

i = 1, 2, . . . , the estimation of the mode Â can be computed as follows:

vec(Âi) = vec(Âi−1) +

∂ log f(A|yt)
∂vec(A)

∂2 log f(A|yt)
∂vec(A)∂vec(A)′

|A=Âi−1 , (4.11)

where the initial value of Â0 will be given and vec(′) is the column stacking

operator of an unrestricted matrix. It has been proved that, under some

restrictive conditions, the estimation Âi will finally converge to the true value

of the mode A.

From equation (4.10) we have:

log f(A|Dt) = log(c) + log f(A)− δn+ p

2

t∑
j=1

log |eje′j +

(kAFj−1A
′)−1| (4.12)

Equation (4.11) shows that, in order for the Newton-Raphson method to

work, we need to calculate the first and second derivatives of log f(A|yt).
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From equation (4.12) we have:

∂ log f(A|yt)
∂A

=
∂ log(f(A))

∂A
− δn+ p

2

t∑
j=1

∂ log |eje′j + (kAFj−1A
′)−1|

∂A
(4.13)

and

∂2 log(A|yt)
∂A∂A′

=
∂2 log(f(A))

∂A∂A′
− δn+ p

2

t∑
j=1

∂2 log |eje′j + (kAFj−1A
′)−1|

∂A∂A′
(4.14)

The equation (4.13) is the first derivative of log(A|yt) and the equation (4.14)

is the second derivative of log(A|yt). In the following subsections, these two

derivatives will be calculated.

4.3.2 First derivative of log f(A|yt)

Here we focus on obtaining the first derivative for log |eje′j + (kAFj−1A
′)−1|

∂ log |eje′j + (kAFj−1A
′)−1|

∂A
=

∂ log |eje′j + (k−1(A−1)′F−1
j−1A

−1)|
∂A

(4.15)

Since A is a diagonal matrix, we have A = A′.

We assume that eje
′
j = K, k−1 = c, A = X and F−1

j−1 = B, so that:

∂ log |K + cX−1BX−1|
∂xi

=
∂ log |K + cX−1BX−1|

∂x−1
i

∂x−1
i

∂xi

= −∂ log |K + cX−1BX−1|
∂x−1

i

1

x2
i

(4.16)
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We have a lemma as follows (for details see Johnson et al. (2002)):

∂ log(detF (x))

∂xi
= tr(F (x)−1∂F (x)

∂xi
) (4.17)

So that:

∂ log |K + cX−1BX−1|
∂x−1

i

= tr((K + cX−1BX−1)−1∂(K + cX−1BX−1)

∂x−1
i

)

= tr((K + cX−1BX−1)−1c
∂(X−1BX−1)

∂x−1
i

) (4.18)

We have a lemma as follows (for details see Johnson et al. (2002)):

∂F (x)G(x)

∂xi
=
∂F (x)

∂xi
G(x) + F (x)

∂G(x)

∂xi
(4.19)

Therefore equation (4.18) becomes:

tr((K + cX−1BX−1)−1c(
∂X−1

∂x−1
i

BX−1 +X−1B
∂X−1

∂x−1
i

))

= tr(cBX−1(K + cX−1BX−1)−1∂X
−1

∂x−1
i

)

+ tr(c(K + cX−1BX−1)−1X−1B
∂X−1

∂x−1
i

)

= tr(µ′icBX
−1(K + cX−1BX−1)−1µi)

∂X−1

∂x−1
i

+ tr(µ′ic(K + cX−1BX−1)−1X−1Bµi)
∂X−1

∂x−1
i

= tr
(
µ′icBX

−1(K + cX−1BX−1)−1µi + µ′ic(K + cX−1BX−1)−1X−1Bµi

)∂X−1

∂x−1
i

(4.20)
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where µi is defined as:

µi =
∂X

∂xi

It represents the ith partial derivatives of vector X. In a matrix notation,

ijth partial derivatives of matrix X is ∂X
∂xij

= µiµ
′
j. One of the important

properties of µi is the free position switch i.e. tr(Aµiµ
′
j) = tr(µ′jAµi) = aij,

details see Johnson et al. (2002)

Because of the property and all the metric are symmetric, we have:

tr(µ′icBX
−1(K + cX−1BX−1)−1µi) = tr(µ′ic(K + cX−1BX−1)−1X−1Bµi) =

tr(µiZµ
′
i) = zii, so that equation (4.16) becomes:

∂ log |K + cX−1BX−1|
∂xi

= −2zii
1

x2
i

, (4.21)

where Z = cBX−1(K + cX−1BX−1)−1 and zii is the ith diagonal element of

Z.

Note that f(A) follows a multivariate normal distribution, therefore the

first derivatives of log(f(A)) can be derived as follows:

∂f(log(A))

∂A
=

∂(−p
2

log(2π)− 1
2

log |V | − 1
2
(A−M)′V −1(A−M))

∂A

=
∂(−1

2
(A−M)′V −1(A−M))

∂A

= −1

2
((A−M)′V −1 + V −1(A−M))

(4.22)

Due to the fact that matrices A, M and V are symmetric matrices, the
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equation (4.22) becomes:

∂f(log(A))

∂A
= −1

2
(2V −1(A−M)) = −V −1(A−M) (4.23)

4.3.3 Second derivative of log f(A|yt)

Here we focus on obtaining the second derivative for log |eje′j+(kAFj−1A
′)−1|.

First, introduce the lemma (for details see Johnson et al. (2002)):

∂2 log det(F )

∂xi∂xj
= tr(F−1 ∂2F

∂xi∂xj
)− tr(F−1 ∂F

∂xi
F−1 ∂F

∂xj
) , (4.24)

where F = K + cX−1BX−1.

From equation (4.24), we need to calculate ∂2F
∂xi∂xj

, ∂F
∂xi

and ∂F
∂xj

respectively.

∂2F

∂xi∂xj
=

∂2(K + cX−1BX−1)

∂xi∂xj
=
∂2(cX−1BX−1)

∂xi∂xj
=
∂2(c−1XB−1X)−1

∂xi∂xj

=
∂2G−1

∂xi∂xj
, (4.25)
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where G = (c−1XB−1X)−1.

Then we have the lemma as follows (for details see Johnson et al. (2002)):

∂2G−1

∂xi∂xj
= −G−1 ∂2G

∂xi∂xj
G−1 +G−1 ∂G

∂xi
G−1 ∂G

∂xj
G−1

+ G−1 ∂G

∂xj
G−1 ∂G

∂xi
G−1

∂2G

∂xi∂xj
=

∂2(c−1XB−1X)

∂xi∂xj
= c−1∂

2(XB−1X)

∂xi∂xj

= c−12bij , (4.26)

where bij is the ith row, jth column element of B.

∂G

∂xi
=

∂(c−1XB−1X)

∂xi
= c−1∂(XB−1X)

∂xi

= c−1(X
∂B−1X

∂xi
+
∂X

∂xi
B−1X)

= c−1(XB−1uiu
′
i + uiu

′
iB
−1X)

∂G

∂xj
= c−1(XB−1uju

′
j + uju

′
jB
−1X)

∂F

∂xi
=

∂G−1

∂xi
= −G−1 ∂G

∂xi
G−1

= −cG−1(XB−1uiu
′
i + uiu

′
iB
−1X)G−1

∂F

∂xj
=

∂G−1

∂xj
= −G−1 ∂G

∂xj
G−1

= −cG−1(XB−1uju
′
j + uju

′
jB
−1X)G−1 (4.27)
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Therefore we have:

∂2F

∂xi∂xj
= −cX−1BX−1c−12bijcX

−1BX−1 + cX−1BX−1c−1(XB−1uiu
′
i + uiu

′
iB
−1X)

× cX−1BX−1c−1(XB−1uju
′
j + uju

′
jB
−1X)cX−1BX−1

+ cX−1BX−1c−1(XB−1uju
′
j + uju

′
jB
−1X)

× cX−1BX−1c−1(XB−1uiu
′
i + uiu

′
iB
−1X)cX−1BX−1

= −2cbijX
−1BX−1X−1BX−1 + cX−1BX−1(XB−1uiu

′
i + uiu

′
iB
−1X)

× X−1BX−1(XB−1uju
′
j + uju

′
jB
−1X)X−1BX−1

+ cX−1BX−1(XB−1uju
′
j + uju

′
jB
−1X)

× X−1BX−1(XB−1uiu
′
i + uiu

′
iB
−1X)X−1BX−1 (4.28)

Finally from equation (4.27) and equation (4.28), we have:

∂2logdet(F )

∂xi∂xj
= tr(c−1XB−1X

∂2F

∂xi∂xj
)− tr(c−1XB−1X

∂F

∂xi
c−1XB−1X

∂F

∂xj
)

= tr
(
− 2bijX

−1BX−1 + (XB−1uiu
′
i + uiu

′
iB
−1X)

× X−1BX−1(XB−1uju
′
j + uju

′
jB
−1X)X−1BX−1

+ (XB−1uju
′
j + uju

′
jB
−1X)X−1BX−1(XB−1uiu

′
i + uiu

′
iB
−1X)X−1BX−1

)
− tr

(
c2(XB−1uiu

′
i + uiu

′
iB
−1X)cX−1BX−1(XB−1uju

′
j + uju

′
jB
−1X)cX−1BX−1

)
(4.29)
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Also the second derivative of log(f(A)) can be calculated based on equation

(4.23):

∂2 log(f(A))

∂A∂A′
=
∂(−V −1(A−M))

∂A′
= −V −1 (4.30)

4.3.4 Algorithm

The algorithm of the Newton-Raphson method is shown in algorithm 4. The

idea of Storvik (2002) has been used: at each time, we can estimate Ft and A

based the information at previous time and then use the estimated Ft and A

to estimate the volatility Σt and Ft+1. As the time moves forward, we repeat

the process above.
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Algorithm 4 Algorithm of Newton-Raphson method

1: At t=1, Σ1 and F2 can be calculated using the start value F1 and Â1:

p(Σ1|F1) = IW (n+ p− 1, F1) and p(F2) = (e2e
′
2 + (kÂ1F1Â

′
1)−1)−1

2: for t = 2, . . . , T do, Ât is updated at every time point t by employing
the Newton-Raphson method.

3: Repeat:

vec(Âjt) = vec(Âj−1
t ) +

∂logf(A|yt)
∂vec(A)

∂2logf(A|yt)
∂vec(A)∂vec(A)′

|A=Âj−1
t

where ∂logf(A|yt)
∂vec(A)

and ∂2logf(A|yt)
∂vec(A)∂vec(A)′

can be calculated from equation (4.21),

(4.23), (4.29) and (4.30) respectively. Âjt is the estimated j-th iteration
of mode of f(A|yt)

4: Until:
|Âjt − Â

j−1
t | < φ

where φ is a certain threshold that is close to 0.
5: After obtaining the estimation for the unknown parameter A at time t,

we can calculate the volatility from its posterior distribution:

p(Σt|Σt−1, A, yt) = IW (n+ p− 1, Ft)

6: Update Ft+1 as:

Ft+1 = (et+1e
′
t+1 + (kÂtFtÂ

′
t)
−1)−1

7: end for
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4.4 Application

4.4.1 Currency exchange rate data

In this subsection, the proposed Newton method will be applied to currency

exchange rate data. The dataset is the currency exchange rates between

Canadian dollar and US dollar, and between Euro and US dollar. The data

were collected at daily frequency from 2010 to 2012 with 400 data points in

total.

The starting values for the parameters were set to be: the number of

time periods T1 = 400, the coefficient δ = 0.9, the starting value of A is an

identity matrix, the starting value of F is also an identity matrix, the mean

of the observation is µ = (0.001, 0.001), the degrees of freedom of the inverse

Wishart distribution n = 10, the threshold of the norm between {Âjt}, is set

to be φ = 0.01.

4.4.2 Estimation

We apply algorithm 4 of the Newton-Raphson method to the proposed Wishart

Autoregressive model (equation (4.6)). The R code can be found in appendix

document ‘Newton.R’.

The estimated volatility and the log-return of the data is shown in Fig-

ure 4.1. It indicates that the estimated volatility reflects the fluctuation of

the log-return of the data well. For example, both the CAD and the EUR

have big swings at the beginning, around 60 to 80 data points; the estimated
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Figure 4.1: Log-return vs. estimated volatility
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volatility captures the above movements and responds with high estimated

volatility values at the corresponding times.

The estimations of the diagonal elements of the Wishart autoregressive

coefficient A is shown in Figure 4.2. We can see that both a11 and a22

are converge after time 50 and the converging values are 0.9999 and 0.9999

respectively.

One of the advantages of estimating the covariance matrix as a whole is

that we can learn the correlations between each component. The correlation

coefficient between CAD and EUR is shown in Figure 4.3. First of all, as ex-

pected, all the estimated correlation coefficients are within the range [−1, 1].

Then there are more positive correlation coefficients than negative correla-

tion coefficients in the plot, which means that most of time the exchange rate

of CAD/USD and EUR/USD are positively correlated.

Figure 4.4 shows the change of norm between the matrices {Âj}s under

each iteration at time point 2. We can see that the norm of the matrices starts

at around 0.1; as the number of iterations increases, the norm decreases and

so does the rate of decrease. Eventually, after around 9000 iterations, the

norm reaches the threshold 0.01 which means that the {Âj}s have converged

so that the estimation has been made.
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Chapter 5

Portfolio Returns and

Applications

5.1 Introduction

In this chapter, we will use the previously established Wishart autoregressive

model (Section 3.2) and Wishart-Newton model (Section 4.2) and then com-

pare them with the generalised orthogonal (GO) GARCH model (for details

see VanDerWeide (2002)). The GO-GARCH model is a well-known multi-

vairate GARCH family model and it has proved to be a standard multivariate

volatility model with accuracy and efficiency in fairly low and medium di-

mensions. We choose GO-GARCH over RBEKK model is because according

to Noureldin et al (2014), GO-GARCH model has silghtly better perfor-

mance than RBEKK model on medium dimensional data. The comparison
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includes: firstly, the function execution time in R of each model; secondly,

the cumulative returns of each model; thirdly, the Dow Jones Industrial

30 portfolio selection and returns of the Wishart autoregressive model and

Wishat-Newton models. Throughout the comparisons, we will be able to see

the efficiency and performance of each of the models in different dimensions.

5.2 Function execution time

The function execution time can be affected by different factors:

• The complexity of the algorithm. This includes the amount of calcu-

lation, the number of iterations and the different types of operation

involved in the algorithm.

• The programming language, for example the C++ or Java languages

are believed to be more efficient in coding and calculation compared to

R; however R is more statistics-friendly.

• Code optimisation. Optimisation of the code can make it more efficient

so that functions use less resources and time during the calculation.

• Computer hardware. A good computer with high performance CPU,

large memory capacity and fast disk can boost the speed of the function

calculation.

• Operating system. There are certain OS which are designed for pro-

grammers, such as Ubuntu and Linux, that are more flexible and faster
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for running code and complex calculations than Windows systems.

So, by fixing the elements above, the time consumption of each program

then reflects the complexity of each method. It is very important that the

method is simple and takes little time to operate, especially in real-world

situations.

We run the optimised code for the Wishart autoregressive model, the

GO-GARCH model and the Newton model in the programming language

R on the same computer and the same operating system. The execution

time of the three models for 400 data points in dimensions 3, 5 and 10 is

shown in Table 5.1. The 3 and 5 dimensional data are the currency exchange

rate data and the 10 dimensional data are FTSE stock prices. It should be

noted that the Wishart autoregressive mode is estimated by the hybrid SMC

method and the GO-GARCH model is by default estimated by the offline

ML method. In most practical situations, new data arrive in fixed intervals

and at each interval we estimate the volatility from the given data.

From Table 5.1, we can see that the Wishart autoregressive model has the

shortest execution time, and that increase in the dimensionality of the data

has the least impact on its time. The Wishart-Newton model, conversely,

has the longest execution time of the three by a large margin, and increase

in the dimensionality of the data also has the largest impact on its execution

time. The GO-GARCH model lies in the middle on both comparisons.
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Method 3-dimensional data 5-dimensional data ratio 10-dimensional data ratio
WIS 16.54 sec 24.19 sec 1.46 36.42 sec 2.20

GO-GARCH 37.32 sec 46.48 sec 1.24 82.67 sec 2.21
Newton 746.39 sec 1072.43 sec 1.43 1891.91 sec 2.54

Table 5.1: Execution time of the methods for 400 data points in different
dimensions

5.3 Portfolio allocation and cumulative return

The volatility model comparison is normally made by dynamic portfolio al-

location, which involves the one-step forecast of both the volatility of the

returns Qt = V ar(yt|Dt−1) and the mean of the returns ft = E(yt|Dt−1).

Dynamic portfolio allocation means the the allocation decisions can be made

sequentially. At time t− 1, the investor can calculate the optimal allocation

vector at for time t, with the help of forecasting Qt and ft, and then real-

locate the investment accordingly. For reasons of simplicity, we assume no

transaction costs in the trade, and the reallocation of the portfolio happens

instantaneously both on long and short positions.

The task of dynamic portfolio allocation is to find the allocation vector or

the optimal weight, wt, at each time, which can balance the two ends of both

high return and low risk. Here we implement the Markowitz mean-variance

optimisation allocation to determine wt.

The basic idea of Markowitz mean-variance optimisation is that either

(1) by fixing the expected return m = w′tft, we can find at that minimises

the variance of the realised portfolio return rt = w′tyt, that is minimising the

portfolio volatility w′tQtwt; or (2) by fixing the portfolio volatility w′tQtwt =
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φ2, we can find the same at that maximises the expected portfolio return m.

The wt that suits the dual property above can be calculated as follows:

wt =
mQ−1

t ft

f ′tQ
−1
t ft

(5.1)

It should be noted that here we use an unconstrained portfolio strategy

which indicates that the allocation can be chosen freely without regard to

resources, permitting arbitrary long or short positions across the suitable

financial instruments.

With the optimisation portfolio allocation, we can perform volatility

analysis by applying the Wishart autoregressive, Wishart-Newton and GO-

GARCH models, and compare the cumulative returns, (RT =
∑T

t=1 rt), of

each model. Obviously, we are expecting the best performing model should

have the largest cumulative returns. The selection of the returns portfolio is

done online, i.e. we estimate Σt based on past state of volatility Σt−1 and

observation yt−1 only then, at each time we choose a portfolio to hold until

new observation yt come in and then we repeat for each time t = 1, . . . , T and

work out the overall return. For the WIS and Newton model, since we have

developed online estimate algorithm for them, so that it is straightforward

to estimate the volatility online and make one-step forecast. However for the

GO-GARCH model, for each time t = 1, . . . , T , we use all the past observa-

tions y1, . . . , yt−1 for the model to estimate and make one-step forecast.

Since the data that we used are financial data, so that I’ve taken the log-
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return of the data and therefore the mean of the log-returns were set to be

zero for all methods.The cumulative returns of WIS (green), Newton (blue)

and GO-GARCH (red) models estimating the 3-dimensional data is shown

in Figure 5.1, 5-dimensional data is shown in Figure 5.3 and 10-dimensional

data is shown in Figure 5.5. The portfolio allocation of the 3-dimensional

data is shown in Figure 5.2, 5-dimensional data is shown in Figure 5.4, 10-

dimensional data is shown in Figure 5.6. The 3-dimensional data and the

5-dimensional data are currency exchange rates and the 10-dimensional data

are FT-500 stock prices.

From Figure 5.1, we can see firstly that all three models give positive cu-

mulative returns in the end. Secondly, GO-GARCH has the highest cumu-

lative returns most of the time, WIS has lower cumulative returns but it

is relatively close to GO-GARCH, while Newton has the lowest cumulative

returns, especially over the time period 300 to 400. Figure 5.3 shows that

GO-GARCH still has the highest cumulative returns, WIS is in the middle

and the performance of Newton has improved. Figure 5.5 illustrates that

WIS has the best performance of the three, Newton catches up to second

place and GO-GARCH is the one with the lowest cumulative returns. We

can see that as the dimensionality of the data increases, the performance

of the WIS and Newton models is getting better, and both eventually out-

perform GO-GARCH on 10-dimensional data. The dataset can be found in

appendix document ‘FTSE data.csv’.

It should be noted in the portfolio weight figures, the weights are mostly
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stable but occasionally erratic. For example in Figure 5.6, the erratic oc-

curred from time 260 to 280. After checking the estimated volatility, we

found the large estimated volatility on the same period of time. I think the

large volatility could cause the unstable behaviour of the portfolio weights.

Also given the optimal weight, see equation (5.1), we calculated the mini-

mized variance of return for each portfolio. It should be noted that the lower

the minimized variance means the better estimated volatility it is to the port-

folio and we also want the minimized variance close to the average variance

of the data as much as possible. They are shown in table 5.2 along with the

simple average variance of the data. We can see that for 3-dimensional data,

GO-GARCH has the lowest minimized variance while Newton method has

the highest. The minimized variance for each method are fairly close to the

average variance of the data which suggests the estimate are accurate. For

the 5-dimensional data, Wishart method has the lowest minimized variance

and historical variance has the highest. However all the minimized vari-

ance are quite far from the average variance of the data which could lead to

the conclusion of poor estimate. For 10-dimensional data, Wishart method

again has the lowest minimized variance and historical variance has the high-

est. It is also good to see that the minimized variance for each method are

close to the average variance which suggests the estimate are accurate for

10-dimensional data.
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Figure 5.1: The cumulative return of Historical volatility(black), GO-
GARCH(red), Wishart(green) and Wishart-Newton(blue) of 3-dimensional
data
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Figure 5.2: The allocated weight for each column of 3-dimensional data
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Figure 5.3: The cumulative return of Historical volatility(black), GO-
GARCH(red), Wishart(green) and Wishart-Newton(blue) of 5-dimensional
data
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Figure 5.4: The allocated weight for each column of 5-dimensional data
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Method/ Min var 3-dimensional data 5-dimensional data 10-dimensional data
WIS 0.0061 0.0099 0.0401

GO-GARCH 0.0050 0.0092 0.0577
Newton 0.0121 0.0128 0.0493

Historical 0.0074 0.0143 0.0742
Average variance 0.0046 0.0047 0.0319

Table 5.2: Minimized variance of the portfolio on different dimensions

Figure 5.5: The cumulative return of Historical volatility(black), GO-
GARCH (red), Wishart (green) and Wishart-Newton (blue) of 10-
dimensional data
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Figure 5.6: The allocated weight for each column of 10-dimensional data
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5.4 Dow Jones 30 portfolio dimension reduc-

tion and allocation

The size of portfolios is growing larger and larger nowadays. One of the rea-

sons that large size portfolio strategy is popular in investment is that it can

reduce risk by diversifying the investment target. Diversification includes

portfolio spread into different investment vehicles, choice of securities with

varying risk, and spread of securities in different industries to minimise unsys-

tematic risk. Most of the time, the size of the portfolio is much larger than

10, sometimes even larger than 100. Such large dimensions cause various

problems: for example, it is difficult to track down all the performance and

potential of the stocks; it takes a long time to collect and analyse the data;

the transaction cost of the trade is relatively high. So the key here would

be portfolio dimension reduction. It would save a lot of time and money

if we can describe a high dimension portfolio with a lower-dimensional one

without much loss of information.

Here we take the Dow Jones 30 industrial average (DJIA) for example; the

data are collected from 2013 to 2014 – 256 trading days in one year. Since the

data has 30 dimensions, we will reduce the dimensions to 20, then apply the

WIS and Newton model to estimation the data and forecast the cumulative

returns. The dataset can be found in appendix document ‘DowJones-30

data.xlsx’.
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The mathematic definition of DJIA is:

DJIAt =

∑30
i=1 pit
d

,

where pit are the prices of component stocks and d is called the Dow Divisor,

which is a dynamic number changing with the prices. d was equal to 0.146

at the time the data was collected.

According to this definition, the DJIA is a price-weighted index, which

is criticised a lot because it gives stocks with high prices more influence

than low prices stocks. However, the DJIA is still the most cited and used

stock market index. Given its price-weighted property, we can choose its

top 20 priced stocks and reduce the dimensions with the least cost. Then

the Wishart autoregressive and Wishart-Newton models can be applied to

the data and the cumulative returns are shown in Figure 5.8. Both methods

delivered positive cumulative returns and the results are almost the same

in the end. The Wishart-Newton model has better returns by a very small

margin. The Dow-Jones 30 Index at the same period of time has bee shown in

Figure (5.7). We can see that the Index has a similar trend as the cumulative

returns, however the returns of the Index over the year is much smaller than

the cumulative returns of Wishart and Newton method.

It should be noted that for the 20-dimensional data, we did not include

GO-GARCH as a comparison simply because for high dimensional data, the

GARCH family models are known to have relatively poor and unstable per-
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formance (for details of arguments see Bauwens et al. (2006) and Silvennoinen

and Terasvirta (2009)), but recently there is composite likelihood estimation

of large dimension GARCH model, details see Engle et al. (2016) which has

been developed to deal with large dimensional data.
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Chapter 6

Conclusions and Future Work

6.1 Conclusions

In this thesis we developed two different sets of models. The first is Wishart

autoregressive models which can describe both Gussian returns and returns

with heavy tails and skewness. Then we simplified the model by treating

the autoregressive parameter A as a diagonal matrix. This makes a huge

reduction in the number of parameters and estimate computation. Both the

parameter and the volatility matrix can be estimated by the SMC algorithm,

which is an online estimation method. The applications show that both

the original model and the simplified model have plausible volatility and

parameter estimates.

The second model used is the Wishart-Newton model with a diagonal

hyperparameter. This model is inspired by Uhlig’s Wishart autoregressive
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process but improved with an autoregressive structure. The estimation of

the hyperparamter is carried out by the Newton-Raphson method and inte-

grated into an online volatility estimation algorithm. The application shows

reasonable volatility and parameter estimates.

We compare the two developed models with a well-established multi-

variate volatility model, GO-GARCH. The comparison of function execu-

tion time shows that the Wishart autoregressive model use least time and

is also least impacted by the dimensionality of the data. Then given 3, 5

and 10 dimensional data, we compare the cumulative returns of the three

models. The GO-GARCH model has the best cumulative returns in 3 and 5

dimensional data but it is outperformed by the Wishart autoregressive and

Wishart-Newton models in 10 dimensional data. Furthermore, we reduce

30-dimensional Dow Jones 30 industrial index data to 20 dimensions and ap-

ply both Wishart autoregressive model and Wishart-Newton model to them.

The cumulative returns show that both models have similar returns, and the

Wishart-Newton model has the better performance by a small margin.

Overall, both models show reliable estimates for volatility and unknown

parameters in a multivariate set-up using online algorithms. The dimension-

ality of the data is improved to medium or high level (20 to 30 and even

more). The comparison reveals that the performance of both models im-

proves as the dimensionality of the data increases, and the benchmark model

is outperformed by both models in medium and high dimensional data.
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6.2 Future work

The methodology proposed in this thesis can be extended and expanded in

various directions. Below we outline a few of those.

In the thesis so far we assumed that A the matrix of coefficients of

the inverse Wishart process used to generate the volatility process, is time-

invariant. This assumption aids the support of the autoregressive Wishart

process as a means of generating the volatilities which are mean-stationary.

Indeed, this assumption on similar Wishart processes is adopted in the lit-

erature, see e.g. Philipov and Glickman (2006). However, as this thesis

demonstrates there might be financial returns for which this assumption is

weak or even invalid. There might be a case for an evolution of A, in par-

ticular considering an application over a long time-span. A future direction

in research can be devoted to extending the models by considering a process

for A. One possibility is to assume a relatively smooth evolution of A, con-

sidering that it is generated by some random walk process with low variance.

Another possibility is to consider a jump process of A which can allow of

structural changes on the volatility. The latter approach can be seen as a

threshold AR model for covariance matrices and hence it will generalize the

well known threshold autoregressive models for the mean.

A second direction of research involves inference around the mean of the

returns. In this thesis (Chapters 3 and 5) a time-invariant mean is used

and this is estimated just as the mean of historical returns. The rationale
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of this set-up is that this mean should be close to zero and it is rather

common to set it equal to the historical mean, see e.g. Aguilar and West

(2000) and references therein. However, as new data come in, it is expected

that structural changes of the volatility process may well affect the return

process. Hence it is appropriate to consider a more structural model for

the returns. The methodology proposed in this thesis can be extended by

considering a state-space evolution of the returns, typically consisting of a

vector autoregressive component. This will allow simultaneous inference of

the returns (inference around the mean) and the volatility (inference around

the covariance and correlation structure). Computationally, this approach

will be more expensive and the challenge will be to retain as much as possible

of the complexity without compromising too much on the efficiency, e.g. by

introducing some sparsity in the autoregressive structure.

A third line of future research involves the extension of the proposed

methodology in order to cater for higher dimensional data. In recent years big

data have dominated the finance industry, in particular provided the automa-

tion of data collection in hedge funds and investment boutiques. Nowadays

portfolio and asset management require the consideration of a large number

of assets, sometimes from different markets. The models proposed in this

thesis, provide an advantage to traditional MCMC inference for stochastic

volatility, which is slower and not adaptive. However, the particle-based fil-

tering is still slow when considering a large number of assets. The proposed

methodology can be extended by considering sparsity on the parameters in
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order to cater for higher dimensional financial data. For example a factor

model or a model with sparse components may be developed.
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Chapter 7

Appendix

7.1 Sequential Monte Carlo methods

SMC method is developed to solve space-state-structure or hidden Markov

chain and nonlinear filtering models. These models often show the proper-

ties of nonlinear, non-Gaussian and with hidden variables (latent variable).

Firstly, assume we have the following models:

• We have the observation data yt and we assume Xt as the latent vari-

able.

• Observation model: f = p(yt|Xt), where p(yt|Xt) could be a non-

Gaussian function.

• Latent variable model: π = p(Xt|Xt−1), where p(Xt|Xt−1) could be

both nonlinear and non-Gaussian.
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• Initial state: p(X0)

In this setup, the observable variables are the observations and they are

related to the latent variable by p(yt|Xt), the latent variables are also de-

scribed by the dynamical system p(Xt|Xt−1). The object is to approximate

the posterior distribution for latent variable given the observations. The

SMC algorithm provides the sequential estimate of Xt given the data yt at

any time t.

7.1.1 Importance sampling

Basically, we can regard SMC as an extension of importance sampling (IS).

So we will recall the IS method first as follows:

• Assume we are interested in approximating an integral:

I =

∫
f(x)π(x)dx = E[f(x)]

• If we can sample x1, x2, . . . , xn from π(x), then we can approximate I

by a Monte Carlo estimate:

Î =
1

n

n∑
i=1

f(xi)

• However, usually it is difficult to directly sample from π(x).

• If we can sample from another function g(x), then we can rewrite the
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integral as:

I =

∫
f(x)π(x)dx =

∫
f(x)g(x)

π(x)

g(x)
= Eg[f(x)w(x)],

where w(x) = π(x)
g(x)

, g(x) is known as an importance density function

and w(x) is the weight.

• then we will have:

Î =
1

n

n∑
i=1

f(xi)w(xi)

• However, in Bayesian statistics, the target distribution π(x) is usu-

ally evaluated up to a normalising constant. Thus we can rewrite the

expectation integral as

I =

∫
f(x)π(x)dx∫
π(x)dx

=

∫
f(x)π(x)

g(x)
g(x)dx∫ π(x)

g(x)
g(x)dx

• Then we can sample N times x(i) from g(x) and define the weights as:

wi =

π(xi)
g(xi)∑N
i

π(xi)
g(xi)

and we can get:
N∑
i=1

wi = 1
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• The importance sampling provides pairs Xit and wit so that integrals

Î are allowed. Finally we have:

Î =
N∑
i=1

wif(xi).

7.1.2 SIS and hybrid method

Now applying importance sampling to the model, we have the weight to be

calculated as follows:

•

wt =
p(Σ0:t|y1:t)

gt(Σ0:t|y1:t)
(7.1)

• Because of the definition of the conditional probability distribution,

equation (7.1) can be written as:

wt ∝
p(Σ0:t, yt)|y1:t−1)

gt(Σ0:t|y1:t)
(7.2)

• Recall the Bayesian rule:

p(x|y1, y2, . . . , yt) =
p(yt|xt)p(xt|y1, y2, . . . , yt−1)

p(yt|y1, y2, . . . , yt−1)

122



• Applying the Bayesian rule above to equation (7.2), we have:

wt ∝
p(Σt, yt|Σ0:t−1, y1:t−1)p(Σ0:t−1|y1:t−1)/p(yt|y1, . . . , yt−1)

gt(Σt, yt|Σ0:t−1, y1:t−1)gt(Σ0:t−1|y1:t−1)/gt(yt|y1, . . . , yt−1)

∝ p(Σt, yt|Σ0:t−1, y1:t−1)p(Σ0:t−1|y1:t−1)

gt|t−1(Σt|Σ0:t−1, y1:t−1)gt|t−1(Σ0:t−1|y1:t−1)

∝ p(Σt, yt|Σ0:t−1, y1:t−1)

gt|t−1(Σt|Σ0:t−1, y1:t−1)
wt−1 (7.3)

• Again we can apply the definition of the conditional probability distri-

bution to equation (7.3):

wt ∝
p(yt|Σt)p(Σt|Σt−1)

gt|t−1(Σt|Σ0:t−1, y1:t−1)
wt−1

∝ p(yt|Σt)p(Σt|Σt−1)

g(Σt|Σt−1, yt)
wt−1 (7.4)

Equation (7.4) shows that the current weight, wt, can be derived from the

past weight wt−1, using Σt, which is drawn from importance density g(Σt|Σt−1, yt)

and the data yt.

With this weight updating process, we can have the sequential importance

sampling (SIS) algorithm: However, SIS is proved to be not an efficient

method in practice. This is because, after performing a certain numbers

of updating processes, some points will have relatively large weights and

other points will have almost no weight at all. This situation will lead to a

deterioration in the follow-up Monte Carlo estimation.

In order to solve this problem, effective sample size (ESS) has been created
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Algorithm 5 Seqential Importance Sampling algorithm

1: Initialise: Draw Σ1
0, . . . ,Σ

N
0 independently from π(Σ0) and set:

wi0 =
1

N

2: for t = 1, . . . , T do
3: for i = 1, . . . , N do
4: Draw Σi

t from gt|t−1(Σt|Σ0:t−1, y1:t−1).
5: Set

ŵit =
p(yt|Σt)p(Σt|Σt−1)

g(Σt|Σt−1, yt)
ŵit−1

6: Normalise the weights:

wit =
ŵit∑N
j=1w

j
t

7: end for
8: Compute:

π̂t = ΣN
i=1w

i
tδΣi0:t

where δx denotes the Dirac delta mass located at x.
9: end for
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as a criterion. ESS is defined as follows:

NESS =
1∑N

i=1(wit)
2

When the value of ESS is below a certain threshold, say N0, then a re-

sampling step will be performed among {Σi
t} and the weights will also be

reset to 1/N , which forces all the re-sampled points to have same weight

again. It should be noted that in practice, the threshold N0 is often set up to

be N/2. This method is called hybrid sequential Monte Carlo method and

the algorithm is demonstrated in algorithm 6.

7.1.3 Bootstrapping filter

The bootstrapping filter, which is also known as condensation, is probably

the simplest particle filter.

The main idea of this filter is that we set the importance density function

to be:

g(Σt|Σt−1, yt) = p(Σt|Σt−1)

so that the weight function becomes:

ŵit =
p(yt|Σt)p(Σt|Σt−1)

g(Σt|Σt−1, yt)
ŵit−1

= p(yt|Σt)ŵ
i
t−1

In this way it is obvious that the particles are drawn from the observed model
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directly and the information provided from the latent variable model does

not affect the particles. Therefore, Petris et al. (2009) suggest that ‘most of

the time the generated particles will fall in regions of low posterior density.’

This leads to an inaccurate posterior density and high Monte Carlo variance

for the simulated particles.

7.2 Probability distribution

7.2.1 Skew-t distribution

The skew-t distribution was invented to describe data with both heavy tails

and skewness. It should be noted that there is no ‘standard’ version of

the skew-t distribution. There are some popular definitions of the skew-t

distribution which are proposed by Azzalini et al. (2003), Aas and Ingrid

(2006) and Carmen and Steael (1998). In my research I chose Azzalini et al.

(2003)’s distribution for two reasons. Firstly, they used the same idea as a

skew-normal distribution to define a skew-t distribution, which makes it easy

to understand and operate during my research. Secondly, there is a whole

R package, package sn, supporting this definition so that it is convenient to

code and calculate later on.

st(µ,Φ, α, v) stands for the skew-t distribution with four parameters,

where µ is defined as a ‘location’ parameter related to the expectation, Φ

is defined as a ‘shape’ parameter related to the standard variance, α is the

skewness factor and v is the degrees of freedom. The probability density
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Algorithm 6 Hybrid algorithm

1: Initialise: Draw Σ1
0, . . . ,Σ

N
0 independently from π(Σ0) and set:

wi0 =
1

N

2: Set N0 = N/2
3: for t = 1, . . . , T do
4: for i = 1, . . . , N do
5: Draw Σi

t from gt|t−1(Σt|Σ0:t−1, y1:t−1).
6: Set

ŵit =
p(yt|Σt)p(Σt|Σt−1)

g(Σt|Σt−1, yt)
ŵit−1

7: Normalise the weights:

wit =
ŵit∑N
j=1w

j
t

8: end for
9: Compute:

NESS =
1∑N

i=1(wit)
2

10: If NESS < N0, then re-sample:

• Sample from previous {Σi
t} with probabilities equal to normalised

weights {wit}
• Reset the weight to be wit = 1/N

11: Compute:
π̂t = ΣN

i=1w
i
tδΣi0:t

where δx denotes the Dirac delta mass located at x.
12: end for
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function of the skew-t distribution is as follows:

f(x|µ,Φ, α, v) =
Γ(v+p

2
)

|Φ| 12 (πv)
p
2 Γ(v/2)

(1 +
Q

v
)−( v+p

2
),

where p is the dimensionality of the data and Q = (x−µ)−1Φ−1(x−µ). The

mean and variance of a skew-t distribution can be calculated as follows:

E(X) = µ+ α(
v

v − 2
)

var(X) =
v

v − 2
Φ + α2 2v2

(v − 2)2(v − 4)

7.2.2 Gamma distribution

The gamma distribution is a commonly used two parameter probability dis-

tribution; the well-known exponential distribution and chi-squared distribu-

tion are special cases of it. The probability density function of the gamma

distribution is as follows:

f(x|k, θ) =
1

Γ(k)θk
xk−1e−

x
θ ,

where k is the shape parameter and θ is the scale parameter.

The mean of the distribution can be calculated as E(X) = kθ. The variance

of the distribution can be calculated as V ar(X) = kθ2. One of the most

important properties of the gamma distribution is that it can be a conjugate

prior distribution in Bayesian inference.
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7.2.3 Wishart distribution

The Wishart distribution is the multivariate extension of the gamma distribu-

tion. It has two parameters. Anderson (1962) believes it is a very important

distribution for estimation of covariance matrices for multivariate statistics

study. Assume we have a matrix X follows a Wishart distribution, then the

probability density function of the Wishart distribution is as follows:

f(X|k,Σ) =
|X|n−p−1

2 e−
tr(Σ−1X)

2

2
np
2 |Σ|n2 Γ(n

2
)

,

where n is the degrees of freedom, p is the dimensionality of the data and Σ

is the scale matrix.

The mean of the distribution can be calculated as E(X) = nΣ. The covari-

ance matrix is complex so it will not be discussed here. As an inheritance

from the gamma distribution, the Wishart distribution also has the conjuga-

tion property and it is a suitable conjugate prior for the precision matrix in

Bayesian statistics.

7.2.4 Inverse Wishart distribution

The inverse Wishart distribution is the multivariate extension of the in-

verse gamma distribution. The inverse Wishart distribution is related to

the Wishart distribution: if we have X ∼ W (k,Σ), then X−1 ∼ IW (k,Σ−1).

It is a conjugate prior for the precision matrix of the multivariate Gaussian

distribution in Bayesian statistics. The probability density function of the
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Inverse Wishart distrbution is as follows:

f(X|k,Σ) =
|Σ| v2

2
vp
2 Γp(

v
2
)
|X|

v+p+1
2 e−

1
2
tr(ΣX−1) ,

where p is the dimensionality of the data. The mean of the inverse Wishart

distribution is E(X) = Σ
v−p−1

and the mode is M(X) = Σ
v+p+1

.

newpage
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