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Abstract

The connective K-theory of elementary abelian
p-groups for odd primes

by
Mohammad Kazi Dakel Al-Boshmki

For an odd prime p, we aim to do some calculations of connective K -theory of
elementary abelian groups V(r), where V(r) denotes an elementary abelian p-group
of rank r. The methods involve a combination of Adams spectral sequence (ASS)
calculations together with local cohomology calculations. The overall plan builds on
and takes its inspiration from work of Prof. J.P. C. Greenlees and Prof. R.R. Bruner.

As a step towards the Gromov-Lawson-Rosenberg (GLR) conjecture for V(r), the
thesis calculates the complex connective K -cohomology, ku*(BV(r)), for r < 3, and
the complex connective K -homology, ku.(BV (r)) for p=3 and r < 2.
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Chapter 0

§0.1 Introduction

The connective K -theory of finite groups is of central importance in the Gromov-
Lawson-Rosenberg (GLR) conjecture; see the relevant description in Greenlees-Bruner
[10]. In particular, Greenlees and Bruner have given a detailed analysis of the connective
K -cohomology, ku*(BV(r)), and connective K -homology, ku.(BV (r)), of elementary
abelian groups V(r) for only p = 2.

The main aim of this thesis is to treat the corresponding problem at odd primes, and
to emphasize commutative algebra in this work. This can be obtained by extending
the main results from p = 2 to the case of an odd prime.

The calculation at the prime 2 is arranged as follows: First, use the Adams spectral
sequence to calculate the cohomology ring ku*(BV (r)) for V(r), by studying the mod
p cohomology ring of the classifying space of V(r) over the exterior algebra E(1) and
periodic K -theory. Quillen [34] proved that the mod p cohomology ring has Krull
dimension equal to the rank of V(r), whilst periodic K -theory is 1-dimensional. It
follows that ku*(BV(r)) has dimension equal to r if V(r) is nontrivial. Ossa [32]
proved that the Adams spectral sequence for ku*(BV(r)) collapses. Next, there is a
short exact sequence [10, Chapter 4]

0—TU — ku™(BV(r)) — QU — 0

of ku*(BV (r))-modules, where T'U is the p-torsion, and QU is the image of ku*(BV (r))
in K*(BV(r)), and therefore has no v-torsion.

Furthermore [10], the ring homomorphism
ku*(BV (r)) — K*(BV(r)) x H*(BV (r);Fp)

is injective. This allows us to obtain by calculation the multiplicative structure of
ku*(BV(r)).

To calculate ku.(BV(r)) for p =3 and r < 2, we use the argument above and apply
the local cohomology Theorem [10].
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§0.2 The structure of the thesis

The thesis is structured as follows: In Chapter [1} we introduce some fundamental
materials in periodic K -theory and connective K -theory. We use the Adams spectral
sequence to calculate the complex connective K -cohomology, ku*(BG), for a finite
group G [10]. We also give some brief background on the Adams splitting of connective
K -theory at odd primes p. We also collect some information about a splitting of BC),.

In Chapter 2| we begin to calculate lu*(BV (r)) for V(r),r < 3, as a module over
the exterior algebra E(1), where lu is the Adams summand of kug,. The main
tool for calculating lu*(BV (r)) is the Adams spectral sequence [10]. This is done by
taking periodic K -theory and mod p cohomology. In all calculations we fix the odd
prime p, and we give explicit calculations for (u*(BV (r)), r < 3 . In other words, we
first calculate H*(BV (r);F,) as an E(1)-module and then apply the Adams spectral
sequence to calculate lu*(BV (r)).

This work involves considering the following short exact sequence [10]:
0 —TU — lu*(BV(r)) — QU — 0,

where TU is the v-power torsion module of [u*(BV(r)) and QU is the image of
lw*(BV(r)) in LU*(BV(r)). We are interested in calculating TU as it is annihilated
by (p,v), and the natural transformation lu*(BV (r)) — H*(BV (r);F,) embeds TU
in H*(BV (r);F,), (see Section . This means it is appropriate to introduce, for
any rank r, the PC-module structure on TU, where PC = Fply1,y2,...,y,] is the

polynomial ring on the generators y; = c{mp (a;) for the generating representations
a1,02,...,0.. Here the generator y; € H2(BV(r);F,) is the image of cf%(a;) €
ku?(BV (r)). All calculations of TU focus completely on the PC-module structure.
We will also consider the subring PP = F,[Y1,Ys,...,Y;], where V; = yf_l and the
PP-module structure obtained by restriction.

In more detail, we aim to identify explicit PP ® E(1)-submodules of H*(BV (r);F,) so
that one of them is a free F(1)-submodule and the other has no free E(1)-summand.
Through the Adams spectral sequence, the non free summand gives the module QU .
We then find an FE(1)-basis of the free summand which is a PC-submodule of the
cohomology H*(BV (r);F,).

After that, we give a summary of our calculations of TU for V(r), r < 3, and our
expectations for V(r), r > 4. To do that, we introduce a PC-submodule TU C
H*(BV(r);F,) which agrees with TU for r < 3, and Conjecture [2.10.2] is that it is

isomorphic to TU in general.

The additive structure of {u*(BV(r)) can be read from an Adams spectral sequence and
the multiplicative structure can be obtained from the mod p cohomology together with
representation theory. We finish the Chapter by displaying a table of the ku*(BV (r))-
calculations for p = 3,5,7 for V(r), r < 3 by considering the relation between the
modules TU and QU , where TU is the kernel of ku*(BV(r)) in K*(BV(r)) so that

TU =TU X TU L™ TU @ --- @ 22T,
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and QU is the image of ku*(BV(r)) in K*(BV (r)).

In Chapter |3 we define certain PC-submodules TU, C H*(BV(r);F,). We then
construct a free resolution for the submodule TU,, over the polynomial ring PC =
Fplyt,y2, ..., yr]. We observe that TU can be expressed as a sum

TU =TU,®TU3®---®TU,,

as PC-modules [10, page 95]. We start to give some pictures for a free resolution of
TU,, when r = 4. To start with,

TU' =TU, & TU3 & TU,.

First, ﬁ: is a free PC-module. Second, we construct a length one free resolution for
ﬁ:_l for any odd prime p. We introduce the main result in general to establish a free
resolution for TU, over PC and prove it, (Section . The key idea in constructing
the resolution is a truncation of the double Koszul complex for the regular sequences
vertically and horizontally. Indeed, we construct the resolution as a truncation of an
exact sequence.

Chapter [4| deals with the calculation of the local cohomology of the PC-module WZ
in degrees r and ¢. The main tool for calculating the local cohomology of ﬁ: is
local duality [25]. At the beginning, we define a stable Koszul complex to calculate the
local cohomology of TU" and give some examples to describe Koszul complexes. After
that, we use the free resolution from Chapter [3|to give precise calculations of the local
cohomology of the module TU by using local duality.

We display a description for the general behaviour of the local cohomology of TU". The
main result is in Section [4.3] (see Theorem [4.3.1)), which gives in Part(2) the dual of the
top local cohomology and in Part(3) the Hilbert series of the other nonzero cohomology.
It turns out that W: is extremely close to being a Cohen-Macaulay module, and TU
is very close to being Gorenstein.

We close this Chapter by discussing the Hilbert series of Noetherian modules over the
polynomial ring PC and calculating the dual local cohomology modules H: (TU,;)" .

In Chapter [5] we introduce some examples to explain our results from the previous
Chapter to calculate the local cohomology of the PC-modules m for r <5, which
is defined using H*(BV (r);F,) as an E(1)-module in Chapter 3] To do that, we start
to explain the organization of our calculations and give a general pattern with the
consequences for ﬁ;

We consider directly the main result, Theorem [4.3.1| in Chapter |4 the calculation of
the local cohomology of the PC'-modules W; for r <5.

In Chapter@7 we calculate the complex connective K -homology, ku.(BV(r)) for p =3
and r < 2, as a module over ku*(BV(r)). The main tool for calculating ku.(BV(r))
is the local cohomology Theorem. This is done by calculating the local cohomology of
QU and TU and then using the short exact sequence

0—TU — ku™(BV(r)) — QU — 0,
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where TU and QU have already been defined in Chapter [2| First, we introduce the
strategy to calculate H7;,;(QU), which is to replace the augmentation ideal JU, the
radical of the principal ideal (y*) (i.e., JU = /(y*)). After that, we need to calculate
ideals JUy, for r < 2, and then display our calculations for H, E“y*)(QU ) on the F, 1 -term,
which is formed by taking homology of TU and QU , by Proposition [10]. To
obtain the Fs-term, there is only one differential coming from the long exact sequence
which follows from the fact that ku.(BV(r)) is connective (i.e., ku(BV(r)) = 0, for
t < 0), together with the module structure, (see Section . It turns out that
FEy = E-term without any extension problems. We finish the Chapter by displaying
our result for ku,(BV(r)) as a table for V(2) depending on Conjecture of rank
2.

§0.3 Main results

The main results from our calculation in this thesis are as follows:
e ku*(BV(r)), for an elementary abelian p-group V(r), for r < 3;

e construction of a free resolution in general of T'U,, over the polynomial ring PC
(Proposition [3.4.1));
e the local cohomology of TU,, and a calculation of the Hilbert series of the dual local

cohomology modules (Theorem [4.3.1));
e some examples of the local cohomology of TU,, for V(r), r <5;

e detailed information about ku,(BV (r)) for p=3 and r < 2.

§0.4 The conclusions:

The Bruner-Greenlees method for the calculation of connective K -theory for finite
groups is a powerful gadget. We have used this machine for calculations of ku*(BV (1))
and ku,(BV (r)) in low rank for odd primes. These calculations show that the methods
applied for p = 2 continue to apply for odd primes when combined with the splitting
results. Our calculations provide the basis for verifying the GLR conjecture in the cases
for which we have calculated ku.(BV(r)).
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Chapter 1

Preliminaries

The main purpose of this Chapter is to introduce some useful elementary materials
about equivariant K -theory. For our purposes, G is a compact Lie group and we
consider equivariant cohomology theories on G-CW complexes.

§1.1 Periodic K-theory

Convenient references for this section are [4, [6l 14], 37] and the reader may refer to
[5] for further details.

The aim of this section is to introduce some ideas of periodic K -theory. It is important
for our purposes (connective K -theory of elementary abelian p-groups) to study G-
equivariant periodic K -theory, Kg(X), and group cohomology. Given any compact
group G and a finite G-CW complex X, we note that by definition [37],

_ Z{[n]| n a G — vector bundle on X'}
- ([m & m2] = [m] + [n2])

Kg(X):

)

where 71,12 are two G-vector bundles on X. A G-vector bundle is a G-map 7 2 X
so that for each # € X, the fibre 7, := p~!(x) is a complex vector space and for
g € G, the translation g : 7, — 74, is linear, and p is locally trivial [14]. This theory
is representable, and hence extends to arbitrary G-CW complexes.

The tensor product of G-vector bundles induces the structure of a commutative ring
on Kg(X). If X is a locally compact based G-space, then

K%(X) = ker(Kg(X) — Ka(pt), KH(X)=K&(S'AX),

and
K&(X) = RU(X) @2, KL(X)= K5(X).

If X is a point, then K¢ (X) = RU(G), the complex representation ring of G, and we
apply Bott Periodicity Theorem, to find [37]

K&(X) 2 KZ(X) = RU(G)[v, v,

1



where v is the Bott element of degree 2. Now if G acts freely on X, then

KL(X) = K*(X/G).

It will be useful to state the Atiyah—Segal completion Theorem [4].

Theorem 1.1.1. The equivariant K -theory of EG is given by

K2(EG) = K°(BG) = RU(G)); and KL(EG)= K'(BG) =0,
where RU(G)’); is the JU-adic completion of RU(G) with JU = ker(RU(G) — Z).

Proof. Details can be found in [4]. O

Remark 1.1.2. In homotopy theory, we notice that EG is a terminal free G-space.
This means for any free G-space X, there is a G-map v¥x : X — EG, unique up to
homotopy. Indeed, EG is a free contractible G-space with BG = (EG)/G. From this,
and our argument above, we find

K*(BG) = K*(BG/G) = K4(EG) = RU(G))ylv, v 1.

Generally, if G is a finite p-group, then we have that the JU -adic and (p)-adic topology
coincide on JU so that [6]

RU(G))y 2 Z& JU(G))y 2 Z® (Z) © JU(Q)).

Furthermore, if G is a finite group, then the JU-adic completion RU(G) — RU(G)};,
is injective if and only if G is a p-group [14].

§1.2 Connective K-theory

Our sources here are [4, 10, [I7] and the reader may refer to [16] for further details.

In this section, we need only consider the complex connective K -theory ku for an
arbitrary compact Lie group G [I7]. In fact, ku is a commutative and associative ring
spectrum up to homotopy, and it is complex orientable. The connective K -cohomology
ring, ku*(BG@), is a Noetherian ring for a finite group G [10], and

ku* = ku*(pt) = ku.(pt) = Zv].

The following cofibre sequence gives the relationship between connective K -theory ku
and ordinary integral cohomology HZ [10],

Y2ku — ku — HZ,

and there is an equivalence
K ~ ku[l/v].



SCHAPTER 1. PRELIMINARIES 3

Lemma 1.2.1. For any space X we have (ku*X)[1/v] = K*(X).

Now, let I = ker(kuf, — ku*) be the augmentation ideal. For any compact Lie group
G, the completion Theorem holds for ku [17],

ku*(BG) = kuly(EG) = (kul)).

In this thesis, the Adams spectral sequence (see Section 1.5) is used to calculate the
cohomology ring ku*(BV (r)), [10],

Extiye (H* (ku), H*(BV (r); F,)) = ku(BV (r))).

More precisely, our calculations of ku*(BV(r)), start from the ordinary complex rep-
resentation ring of V(r) and the mod p cohomology of BV (r). The representation

ring RU(V (r)) gives the periodic K -theory
K*(BV(r)) = RU(V (r))jylv,v™"],

where RU(V (7))’ denotes the JU-adic completion of RU(V(r)).

The additive structure and partial multiplicative information can be obtained from an
Adams spectral sequence, and to determine additive and multiplicative extensions we
apply representation theory. In fact, the Atiyah—Segal completion Theorem [4] states
K*(BG) = RU(G)[v,v71], so that the map ku*(BG) — K*(BG) gives good details
about additive and multiplicative structure.

§1.3 The splitting of ku,

Our source here is [10] and the reader may refer to [32] for further details.

In this section, to calculate the Adams spectral sequence, we need to introduce the
Adams splitting of ku(,) . At odd primes p, if lu is the principal Adams summand, we
have the Adams splitting [I],

kugy = luv SHu V- v S, (1.1)

Indeed, lu is a ring spectrum and the map lu — ku,) is a map of ring spectra. The
direct sum formula for H*(ku) is given by

H*(ku) = H*(lu) ® H*(X%lu) @ - - @ H* (2?4 u). (1.2)

Remark 1.3.1. It is necessary to refer to lower indices as degrees and upper indices
as codegrees; v € Ky = K2 has degree 2 and codegree —2.

Corollary 1.3.2. [10, page 84] The natural maps induce an injective ring homomor-
phism
ku*(BV(r)) — K*(BV(r)) x H*(BV (r);F,).



§1.4 The Steenrod algebra

A good reference for this material is [41, Chapter VI] and the reader may refer to
[23, page 496] for further details.

One of the main aims in homotopy theory is to compute the homotopy groups of the
sphere 7, (S°). An important tool is the mod p Steenrod algebra A and its cohomology
Exti{* (Fp,Fp), which forms the Ea-term of the Adams spectral sequence converging to
the p component of 7¢(SY).

In this section, we define the mod p Steenrod algebra A for odd p, to be the graded
associative algebra over F, formed by polynomials in the noncommuting variables
B,PL,P? ... modulo the Adem relations and the relation %> = 0, where 3 is of
codegree 1 and P? is of codegree 2i(p — 1).

Thus for every space X, H*(X;F,) is a module over A for all primes p. Furthermore,
the dual of A, A, , is a commutative Hopf algebra over [F,,. From the structure theorems
for Hopf algebras proved in [§] and [31] and the known action of A on certain test spaces,
[30] computed the structure of A,.

Remark 1.4.1. We denote the monomial in A by
zpl — 5607731 ﬁq o ’])Skﬁﬁk7

where I = (eg, $1,€1,52,...,Sk,€,0,0...), with ¢; € {0,1} and s; € N. Now if I is a
finite sequence of non-negative integers, (e, s1,€1,S2,..., Sk, €x), then I is admissible
if s; > psjr1+¢€;, for k > ¢ > 1, which means that no Adem relation can be applied to
the monomial. Of course, if I is admissible, we call P! admissible.

Theorem 1.4.2. The admissible monomials form a basis for A as a vector space over

F,.

Proof. Details are given in [41]. O

The theorem implies that {P!: I admissible} forms a spanning set for A.

Theorem 1.4.3. The Steenrod algebra A is a Hopf algebra for each p.

The theorem entails that A has a comultiplication map A: A — A® A. It has the
following effect on the operations

k
APF)=>"P'@P"" and AB)=108+8®1
1=0

One can calculate H*(K(Cp,n);Fp) as a graded module over E(1) = A(Qo, @1), where
Qo = S is the Bockstein homomorphism of codegree 1 and Q; = P'3 — SP! is the first
higher Milnor Bockstein of codegree 2p — 1. This information can then be utilized in
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determining the relations among cohomology operations. Since P’ raises dimension by
2i(p — 1), the Bockstein [ associated with the exact coefficient sequence

0—>Zpﬁ>sz — Lp — 0
is not in the algebra generated by the operations P?.

Theorem 1.4.4. (/38]) As an algebra, A, is isomorphic to the tensor product of an
exterior and a polynomial algebra

A(To,Tl,...) ®Fp[§1,£2,...],

where |1;] = 2p’ — 1 and || = 2(p’ — 1). As a coalgebra, the comultiplication on A.
is given by

k ] k ‘
Alg) =Y &, @& and Am)=n®l+> &  omn
=0 i—0

Remark 1.4.5. In our case, the mod p cohomology of V(r) is given by Qo = 8 (of
codegree 1) and Q1 = P! — BP! (of codegree 2p — 1), where Qg and @i act as
derivations (i.e., Qr(zy) = Qr(z)y + 2Qx(y)).

Now, we define the exterior algebra F(1) = A(Qo, Q1) as described on the preceding
page, generated by Qg and Q1 to be the subalgebra of A, and A; = (3,P!) the
subalgebra of A generated by Qg and the first Steenrod power P!. From this, we find
some relations in A;

QoQo =0, @1Q1 =0, QuQ1 = —Q1Qo, (PP =0, P'Q1 = QP

The mod p Steenrod algebra A is a free F(1)-module [31I]. By a change of rings, we
obtain

Extz*(H*(k:u), H*(BV(r);F,)) = Extz’a)(Fp, H*(BV(r);F,)) = ku*(BV(r))TA,.

§1.5 The Adams spectral sequence

Our sources here are |29, Chapter 9] and the reader may refer to [28] for further
details.

The Adams spectral sequence is an important tool for computing stable homotopy
groups of spheres, and more generally the stable homotopy groups of any space.

In this section, we need to give some information about the Adams spectral sequence
in detail as it is the main tool to calculate the complex connective K -cohomology in
this thesis.

First, to compute the set {X,Y} of stable homotopy classes of maps X — Y one
could consider induced homomorphisms on homology. This gives a map {X,Y} i)



Hom(H,.(X),H.(Y)). The first interesting instance of this is the notion of degree
for maps S™ — S™, and the degree then computes {S™,S™}. For maps between
spheres of different dimension we obtain no information this way, however, so it is
useful to look for more progressing structure. For a start we can replace homology
by cohomology since this has cup products and their stable counterparts, Steenrod
squares and powers. Since we are now applying a contravariant functor of X and
Y, we then have a map {X,Y} — Homu(H*(Y), H*(X)), where A is the mod p
Steenrod algebra and cohomology is taken with I, coefficients.

Since cohomology and Steenrod operations are stable under suspension, it will help
to change our viewpoint and let {X,Y}; = hﬂ[EkHX , YY), the direct limit under
suspension of the set of maps ¥¥X — ¥*Y . This has the advantage that the map
{X,Y} — Hom4(H*(Y),H*(X)) is a homomorphism of abelian groups, where coho-
mology is now to be interpreted as reduced cohomology since we want it to be stable
under suspension.

Note that Hom4(H*(Y), H*(X)) is a subgroup of Hom(H*(Y), H*(X)). Now to use
the A-module structure, recall that Hom 4 is the n = 0 case of a whole sequence of
functors Ext’j. Since A has such a complicated multiplicative structure, these higher
Ext’y groups could be nontrivial and might have more information than Homy4 by
itself. Consider the functor Ext}4.

This measures whether short exact sequences of A-modules split. For a map S* Ry gt
with k& > ¢ one can form the mapping cone C},, and then associated to the pair (Cy, Sé)
there is a short exact sequence of A-modules

0 — H*(SF*) — H*(Cy) — H*(S*) — 0.

Additively this splits, but whether it splits over A is equivalent to whether A acts
trivially in H*(C},) since it acts trivially on the two adjacent terms in the short exact
sequence. Since A is generated by the squares or powers as in the previous Section,
therefore, we are asking whether some S¢* or P? is nontrivial in H*(C).

For p = 2 this is the mod 2 Hopf invariant question, and for an odd prime it is the mod
p analog. The answer for p = 2 is the theorem of Adams that Sq¢’ can be nontrivial
only for i = 1,2,4,8. For odd p the corresponding statement is that only P! can be
nontrivial.

Thus Exth does indeed detect some small but nontrivial part of the stable homotopy
groups of spheres. One could hardly expect the higher Ext”; functors to give a full
description of stable homotopy groups, but the Adams spectral sequence says that
they give a reasonable first approximation. In the case that X is a sphere, the Adams
spectral sequence states

Ey' = BxtS (H*(Y;F,),Fp) = {S°, Y} = m(Y)).

Note that the second index ¢ in Ext‘j‘it denotes just a grading of Ext% arising from the
usual grading of H*(Y).
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Theorem 1.5.1. (/28])For X and Y bounded below of finite type, there is a spectral
sequence, converging to {X,Y}Q, with Ey-term given by

Byt = BxtS (H*(Y;Fp), H(X;Fp)),

and differentials d,: ES' —s BT of bidegree (r,r — 1). If {X,Y} is finitely
generated, then {X,Y}) = {X,Y} ® Z).

Remark 1.5.2. The Adams spectral sequence is compatible with composition and
hence multiplicative, but we will not make use of this.

Taking X = SY gives the earlier case, which suffices for the more common applications,
but the general case illuminates the formal machinery, and is really no more difficult
to set up than the special case. For a space X, the hypothesis needed is that X be a
CW-complex with finitely many cells in each dimension.

Note that the Adams spectral sequence breaks the problem of computing stable homo-
topy groups of spheres up into three steps. First, there is the purely algebraic problem
of computing Extfit(Fp,]Fp). After this has been done through some range of values
for s and ¢ there remain the two problems one usually has with a spectral sequence,
computing differentials and resolving ambiguous extensions.

The Adams spectral sequence for a point reads

Fplao, u] = EXthFl) (Fp, Fp)

= Ext’{"(H*(lu), H*(S°)) = W*)) = Z)[ul,

where ag € Ext]léél)(Fp,Fp) detects the map of degree p and u € Extg?f)_l(Fp,Fp)

detects u = vP~ 1.

§1.6 The splitting of BC,

Our sources here are [10, [42] and the reader may refer to [32] for further details.

When p > 2, we have a stable splitting of BC),. The aim of this section is to display a
splitting of BC),, and in order to treat the rank r case we shall work in the category
of the p-local spectra.

Theorem 1.6.1. There is a stable splitting of BC,, described by the formula

BcpﬁBl\/BQ\/”-\/Bp_l,

where H*(B;;F)p) is nonzero only in degrees congruent to 2i and 2i —1 modulo 2p—2.

The following Lemma will be used in connective K -theory.

Lemma 1.6.2 (Ossa [10]). There is a homotopy equivalence of spectra ku A Bjy1 ~
ku AY2B; for 1 <i<p-—1, and, as an E(1)-module, H*(B;;F,) = Y%L,



where L is a certain module starting in degree 0 (we will explain that clearly in the
next Chapter).

In fact, we shall focus primarily on B,_;.

Lemma 1.6.3 ([42]). Suppose
1—N-—G—Q—1

is a short exact sequence with N 4G and p1{|Q|. Then H*(BG) = (H*(BN))¥,

where the coefficients are p-local.
We are going to explain this in detail. Let I' = C, x Cp_1 = F, xF )\, where C),_1 = (g)
so that F)\ = (6) = C,—1. We apply Lemma m to obtain

H*(BT) = H*(BC,)“.

We show how the Adams spectral sequence computation goes for cyclic groups. We
have H*(BCp) = Fply] ® A(7) with |7| = 1 and |y| = 2, and suppose the group
Aut(C,) = (g) acts via g -7 =07 and g-y = 0y.

Then we obtain ‘ ‘ ' o
g-(y")=(g9-y) = (0y) ="y
and

g-(ry") = (g7)(g - y)" = (67)(0y)" = 6"y’

Hence
H*(BT) = H*(BC,)%t = Fply? @ A(ry? ™) = F,[Y] @ A(T),

where Y = yP~! (of degree 2p —2) and T = 7yP~2 (of degree 2p — 3).

Now, one may check that the calculation of the Adams spectral sequence [10, page 35]

EXtEZ)(FpaH*(Bl)) = [By,lu]" = lu"(By)

works exactly as in the 2-primary case.



Chapter 2

Complex connective
K-cohomology

The main aim of this Chapter is to calculate the cohomology of elementary abelian
p-groups V(r), H*(BV(r)), for r < 3 explicitly for input to the Adams spectral
sequence. In all of the calculations and diagrams in this Chapter, we will fix the odd
prime p . The tool for calculating lu*(BV (r)) is the Adams spectral sequence

Extz{*(H*(lu), H*(BV(r);F,)) = lu*(BV(T)),;\.
At odd primes p we have already seen that as in (1.1)),

kugp) ~ lu Vv Y2u v XHu v - v B,

where [u = BP(1) can be realized as a homotopy ring spectrum, with coefficient ring
Lp) [v1] and a map lu — kug,y taking v1 to vP~1. Accordingly, we will focus on

TU = ker(lu*(BV (r)) — LU*(BV(r))),
so that
TU =TU X TU @ --- @ X" ?HTU.

We note that if G is a p-group, then Z/J*(BG) is already p-complete by Atiyah-Segal
completion Theorem, so the Adams spectral sequence gives the precise calculation we
need. We find [I],

H*(lu) =A ®E(1) Fp,

where E(1) is the exterior algebra generated by Milnor elements Qo =  (of codegree
1) and Q1 = P'3—BP! (of codegree 2p—1). With change of rings the Adams spectral
sequence becomes

Extyl)) (Fy, ' (BV (1) Ey)) — W' (BV (1))}
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§2.1 The modules QU and QU

The target of this section is to define the modules QU and QU of elementary
abelian p-groups.

Definition 2.1.1. The module QU is the image of connective K -theory ku*(BV (r))
in periodic K-theory K*(BV(r)) [10, Chapter 4] (ie., QU = im(ku*(BV(r)) —
K*(BV(r)) = RU)y;[v,v7'])). It is proved in [I0] that for abelian groups this is
the Rees ring of the completed representation ring for the augmentation ideal JU =
ker(ku*(BV (r)) — ku*), where the Rees ring is defined as follows.

Rees(RU, JU) = (PJU* ™" & DRUV",
k>1 k>0

where v is the Bott element of degree 2.

Definition 2.1.2. The module QU is the image of lu*(BV(r)) in LU*(BV(r)) (i.e.,
QU = im(lu*(BV (r)) — LU*(BV(r)))).

Remark 2.1.3. It will help to have the following notes.

1. In concrete terms QU is
., JU3,0,JUs,0,JU,,0, RU,0, RU,0, RU, ...,

with \J/@] = —2k, where jﬁk is the completion of JUF for all k and RU is
the completed complex representation ring. In fact, QU has no v-torsion and is
equal to the completed Rees ring Rees(RU, JU).

2. QU is generated as an algebra over the coefficient ring Z;,\ by the first Chern
classes ci(a) € QU = ku*{ci(a) | a € Rep;(V)) C RU[v,v"1], where « is

nontrivial simple (« runs through 1-dimensional representations).

§2.2 Elementary abelian p-groups

Recall that
V(r) = (Cp) =Cp xCp x---xCp

r—times

is the elementary abelian group of rank r > 1. It is useful preparation to study some
properties of linear representations of finite groups.

Proposition 2.2.1. Let V' be a complex vector space of dimension n and G be a finite
group. If x is the character of a representation (p : G — GL(V)) of degree n i.e.,
Xp(9) = tr(p(g)) for each g € G, we then have

1. x,(1) =n if p has degree n.



SCHAPTER 2. COMPLEX CONNECTIVE K-COHOMOLOGY 11

2. The number of irreducible representations of G (up to isomorphism) is equal to
the number of conjugacy classes of G.

3. The degree of an irreducible representation of G divides the order of G. Moreover,
it also divides |G: Z(G)|, where Z(G) is the centre of G.

4. Two representations are equivalent if and only if they have the same character.

5. The character rg of the regular representation is given by rg(l) = |G| and
ra(g) =0 for g #1.

Proof. Details can be found in [39]. O

§2.3 The character of V(r)

In this section, we need only display the character of V(1) and V(2).
Let V(1) = {1,x,2%, ...,2P7!} be the elementary abelian p-group of rank 1. The
natural representation « of this group is

11— 1, 2—w, 22— w?, ..., 2P h— WPl

where w = €2™/P. The nontrivial irreducible representations of V(1) are the tensor
powers of «. The jth tensor power o/ is

1—1, xr—>wj, R pr—L
We denote their characters by x1,x2,- .., Xp—1-

Example 2.3.1. If we have V(1), and choose a faithful 1-dimensional representation
«, then we may write the complex representation ring as RU(V (1)) = Z[a]/(a? — 1).

Example 2.3.2. If we have V(2) = V(1) x V(1), since V(1) and V(1) are represented
by p1 and py with characters y; and y2, then the direct product V(1) x V(1) is repre-
sented by representation p given by the tensor product of matrices, and the character
of the product V(1) x V(1) is x1-x2. This product is irreducible if and only if both x1
and yo are irreducible. We may thus describe the nontrivial irreducible representations
of

V(2) ={e,ux,... ,mp_l,y, ... ,yp_l,:):y, .. ,:Byp_l,:rQy, - xzyp_l,xp_ly, e (my)p_l}.

The complex representation ring for this group is RU (V' (2)) = Z[aq, as]/(of —1,ab—1).

§2.4 The cohomology of BV (r) and L

The purpose of this section is to calculate H*(BV (1)) as an E(1)-module. The key
idea is that H*(BV(r)) is more than just a graded abelian group, and even more than
a graded ring (via the cup product). The representability of the cohomology functor
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makes H*(BV(r)) a module over the algebra of its stable cohomology operations, the
Steenrod algebra A. Now, by the Kiinneth formula we find

H*(BV(r)) = H*(BC,) ® H*(BC,) ® - - ® H*(BC,).

r—times

We begin by describing the answer for the cyclic group of order p. When p is odd we
have a ring isomorphism

H*(BCp) = Fply] @ A(71),

where |7| =1 and |y| = 2. In this case y is the Bockstein Qo(7). This cohomology
is determined as an FE/(1)-module by the fact Qo(7) =y and Q1(7) = yP, and we see
that we have a direct sum decomposition

H*<Bcp) :]FP@LO@LI @"'@Lp—27

where
Li =Fp(ry®,y*™ |a=i modp—1) =F,(ry’", y" " H[Y],

where Y = y?~! and () denotes vector spaces on specified bases. Thus we have
L; = %% Lg. From this we can give the definition of the module L as follows.

Definition 2.4.1. The string module L, is a type of ‘lightning flash’ module as in [,
page 341] and is defined by desuspending Lo = F(ry’, 4" | i =0 mod p — 1), i.e.,
if we introduce formal basis elements ¢ (of codegree 0) and Qo (of codegree 1), and
consider the vector space Fp (12, Qo) with this basis, then

L= E_ILO = Fp(“ Q0>[Y]’

so that it starts in degree 0. Pictorially L may be illustrated as in Figure [2.1

Remark 2.4.2. Since 7 = 7 and Qo(7) = v, it is reasonable to write LT = Lg. Note
that L is not an unstable algebra, and the @Q); do not act as derivations on it.

Now the reduced mod p cohomology H *(BC,p) for any odd prime is given by

Ly
Ao I

HY(BCp) =L, 2 Lo® L1 @@ Ly o = (

where 7 is a placeholder of codegree 2. This expression is very useful for us when we
take tensor powers in the next Section.

§2.5 The tensor powers of L

The aim of this section is to find the tensor powers of L. In detail, let E(1) be
the exterior algebra over F, on odd degree generators Qo and Q7. Since V(r) is the
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L=%"1L,

Figure 2.1: The string module L.

product of r copies of C),, we find

H*(BV(r))=H"(BCp)® --- @ H*(BC))

=Fp® L)@ (Fp® Ly)

Ly] L[yl
=Fp® o T (Fp® o 7), (L= Lo =XL)
P T
L[] L[y
Fr & ) @@ e )
L[]
=, ® ——17)"
SR
This expresses H*(BV(r)) as the sum of p" terms. Each of the p” terms in the tensor
product is determined by choosing a subset S C {1,2,...,r} of non-basepoint terms
and then choosing one of the (p — 1) terms, where n = |S| by choosing numbers

0<isz<p—2forses.

Now let us write 7¢ = [[7s and 3/ = [[%%. In fact, this choice gives a term of the
seS s€S

form
L®|S| T, sgl.

In order to determine the tensor powers of L as an E(1)-module, where E(1) acts by
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the Cartan formula on a tensor product here, we prove the following important Lemma.

Lemma 2.5.1. There is an isomorphism of E(1)-modules
Lo L=XYL®E(1)[Y,Ys].

More precisely, L ® L is the internal direct sum of the E(1)-module L @ Qo(1) (iso-
morphic to ¥L ) and the E(1)- module generated by F,[Y1,Ys] (which is E(1)-free with

basis given by the monomials in Y1 and Ya ), with |Y1| =2p — 2,|Ya| = 2p — 2.

Proof. First of all, we need to show that L ® Qy(z) = X L. The essential fact is that
Q; vanishes on Qq(z) for i =0, 1.

Since Lo Cp1y H*(BCp) and L =%"1Lg, 1 = ¥~ '7 and

Qo(2) =27y =371Qo(7)
i.e., Qo(z) € L. Let £ € L, then we see
Qi(L® Qo(r)) = (Qif) ® Qo(1) + (—1)110 ® Qs Qo (2).
Since Q;Qo(z) = 0, then we get Q;(¢ @ Qp(2)) = (Qif) @ Qo(2).
Therefore XL =gy L® Qo(2) € L ® L.
Next, we prove that for any monomial YfYQj, YfYQj(z(Xm) generates a free F(1)-module
QoY1 ® Y31) = (QoY{r) ® Y1+ Vi1 (QoY1)
=Y Qo) ®Y{1+ Y1 © Y] - Qo(1)
= YiY{  [Qo(r) @1+ 19 Qo).
Similarly,
Q1Y ® Yzjz) = (Q1Y71) ® Ysz +Y® (QlYsz)
=Y Qi) @ Y51+ V1@ Y] - ()
=YY3  [Qi() @1 +19 Qi)

QoQ1(Y{1 ® Y1) = (Qo@Q1Y17) ® Y51 + Y{1 @ (QoQ1Y351)
=Y/ QuQ1(1) ® Y1+ Y1 @ Yy - QoQ1(1)
=YY - [QoQ1(2) @ 1+ 1 ® QoQ1(2)].

Since every one of these elements is a multiple of YfYQJ , we see any pair of the modules

Fij == E(1) - YfYQJ intersect trivially, and Y F;; = @F;; intersects L ® Qo trivially.
Ry 17.7

L®Q0+FjFij :L®Q0€B@Fz‘j-
’ i’j

Then
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QOQl(Yli & YQJ)

Q1 (Y ®Yy)

Qo(Yi ® YY)

Yievs
Figure 2.2: E(1) = A(Qo = 3,Q1 = P'3 — BPY).
To show that we get all of L ® L we use a Hilbert series calculation.

The Hilbert series of L is [L] = 1%L, and [E(1)] = (1 +¢)(1 + Tt), where T = t?P~2.
Now, we find [L ® L] = [L] - [L] = (£1%)?. On the other hand,

- t(1+t) "
YL 'Y . = vt
[ @@YlYQE(l) (@) = +‘ZT (1+t)(1 +Tt)
1,520 4,J20
t itj
=+ t)[;—F + Z T (1 + Tt)]
4,720
t1-7T) @(Q+1Tt)
=(1+t¢
OOl * a2
1+t
=———t-Tt+ 14Tt
= T)2[ + 14Tt
14t
Since these two Hilbert series agree, L ® Qo & @” F;j = L ® L as required. ]

Definition 2.5.2. Let PC be the polynomial ring Fy[y1,v2,...,yr] with generators
in codegree 2, and PP be the polynomial subring F,[Y1,Y>,...,Y;] with generators in
codegree 2p — 2, where Y; = ¢ ~! 50 that

FP@I?@Q? s 7@7"}

1 7p—1)’

PC:FP[H,YQ,...,Y;«] X (—p—l -
yl 7y2 7"‘7y1”

as a PP-module, where 7; is of codegree 2 for 1 <4 < r. In fact, PC is the subring
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of H*(BV(r);F,) generated by the Chern classes y; = c{m" (cvi), which are the images
of k() € ku?(BV (r)).

In this Chapter, we want to introduce for any rank r, the PC-module structure on
TU . All calculations of TU focus entirely on the PC'-module structure.

§2.6 Calculation of [u*(BV (1))

The target of this section is to calculate (u*(BV (1)) by using the Adams spectral
sequence. We find for rank 1 group, lu*(BV(1)) is a subring of LU*(BV (1)), so
that once we have identified the generators of lu*(BV (1)) using the Adams spectral
sequence, we can use RU (via equivariant K -theory) to determine the relations.

2.6.1 FE5-TERM

In this section, we want to calculate (u*(BV (1)) by using the FEs-term of the
Adams spectral sequence. First, we have

H*BV(1)=2F, & Ly®L1® - DLy 2=F,® 55[‘7{})
The Adams spectral sequence for lu*(BV (1)) reads
Extp (Fp, H*(BV(1);Fp)) = lu*(BV (1)), (2.1)
Next, we find
Extga)(lﬁ‘p, H*(BV(1);Fp)) = Extg’("l) (Fp,Fp & ij_[z{]))
— Exty (B Fy) @ Extiy (Fy, (ny_@))
= Fylao, u] ® pé »2hHl Exty(y) (Fp, L), (2.2)
k=0

where ag is of bidegree (1,1), and u is of bidegree (1,2p —1). Now, we want to calcu-
late Extga)(lﬁ‘p, L) by taking a projective resolution of F, over E(1) and calculating

H*(Hompgyy(Ps, L)) as follows.

Consider the projective resolution of [F,

d d d d d
i Py Py = Py -5 P By 5 F, — 0,

where the Py are projective modules over F, and the differentials d, are defined as
follows. dg: Ps —> Ps_1, for s > 0, where

k=s
P, =@ xtr2kE(1), s>0. (2.3)
k=0
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If we name the generators of Py, ag, ag_lu, a8_2u2, e a(l)usfl, u®, then

ds(agu’) = Qo(af 'v’) — Qi (ajuw’ 1),
where the term is interpreted as zero if ¢ — 1 or j — 1 is negative.

Then, we have a long exact sequence

= YE) e 2PTPE1) o SPE(1) @ X9 2E(1) @ X% 1E()
Py
— YE1)eSPTE1) e X 1E(1) @ 2P 3E(1)
Ps
— Y?E() o SPEQ1) o 2% 2E(1) — SIEQ) @ 2P 1E(1)
;Dg P
— E(1) — F, — 0.
N———

Py

Now, we apply Hom%t(l)(PS, L), for s >0, we get

0 — Hom?%!

iy (E(1), L) o, Homp(,) (B! E(1) & 27 E(1),

(
Hom3,,(S°E(1) @ Z¥E(1) & T 2E(1
Hom(y( ) (S E(1) @ S E(1) @ S E(1) @ % B(1
Homy(,) (S'E(1) & S E(1) © S7E(1) & 5P *E(1) & 3 E(1), L
Taking homology of this chain complex at stage s gives us the Ext groups.

Since Hompg1)(E£(1),L) = L,
HomE(l) (P57 L) — Zst @ 2787(2]7*2)[/ @ 278*(417*4)‘[/ @ . @ 27878(2]772)_[/‘
Then

HOIHE(1)(P3+1, L) — E_(8+1)L D E_(S+1)_(2p_2)L D E—(S+1)—(4p—4)L
@@y H)=(s+1)(2p-2)

o If s =0, then

Ext%t (Fp, L) = HO(HomE(l)(P" L))

(1)
— ker(Hom{y, (E(1), L) — Homy, (S'E(1) & 2% 'E(1), L))

Ceer(n(Q0_Q)s1p g i
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o If s=1, then

EXt}é%)(Fpa L) = H'(Homgy)(Ps, L))
- ker(dl)
~ im(dp)

ker(ST'Low WL R Lo N ¥Lo R P2
a im(L — 71L& X-2r+1]))

Qo O
ker | Q1 —Qo
0 @

im (Qo Q1)

o If s =2, then

EXtéEl)(va L) = H2(HomE(1)(P,, L))
ker(dsz)
B im(d,)
ker(X 2L S PLo N PL — N3 Lo XN 1L o NPT L @ 0P T3L)
B im(SILe N2t — 2L o N-2PL @ L +2])

Qo 0
Q1 —Qo
ker Q1 —Qo
_ 0 @
Qo O
im Q1 —Qo
0 @
o If s =3, then
Extyi,, (Fp, L) = H*(Hompy) (P, L))
_kel‘(dg)
~ im(dp)
Qo O
Q1 —Qo
ker | Q1 —Qo
Q1 —Qo
_ 0 @
Qo 0
Q1 —Qo
MO —Qo

0 @
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o If s =4, then

Exty,, (Fp, L) = H*(Hompy)(Ps, L))
B ker(dy)
Qo O
Q1 —Qo
Q1 —Qo
ker Q1 —Qo
Q1 —Qo
_ 0
Qo O
Q1 —Qo
im | Q1 —Qo
Q1 —Qo
0 @

Note that (Figure on the next page gives us the Es-term of the Adams spectral
sequence for (u*(BV (1)), where each bullet in this Figure denotes an [F,,. This is the

sum of

(1) Extzfgl)(Fp,IFp) =IFplao, u] (in red).

(2) Extg’(‘l)(m’p,z%—?’L) (in black).

(3) Extg?l)(Fp, Y2R+1LY for k=0,1,...,p — 3 (in green).
Note that

(1) gives the Fs-term of the Adams spectral sequence for lu*(pt).

(2) gives the Es-term of the Adams spectral sequence for l/fz;‘(Bp_l), and (1) and
(2) give the Es-term of the Adams spectral sequence for (u*(Bp_1).

2.6.2 QU

In this section, we want to calculate the module QU . We focus on the part of the
Es-term of (2.2]) given by

3
[N}

IR e

E(1) (Fpa L).
0

=
Il

Note that Fplag, u] also contributes to QU .
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-6p+6 -4p+4 -2p+2 0 2p-2 4p-4 6p-6

Figure 2.3: The Adams spectral sequence for lu*(BV (1)).

By definition QU D lu*(c*(a) | a € Repy(V)). One may check from the general
theory of complex oriented cohomology theories that

()] | (o)
W="0n) ~ Pllcife)’

where c/*(a™) = [n];,(c) is the power series p-typification of [n]x, and « is the natural
representation of V(1).

26.3 TU

*, %

If we have V(1), then vy acts injectively on ExtE(l)(IFp,L) [10, page 32], and
TU =0.

Consider the short exact sequence of [u*(BV(1))-modules
0 — TU — lu*(BV (1)) — QU — 0. (2.4)

Since TU =0, lu*(BV (1)) = QU.

§2.7 PP-module TU.

We are now considering a general r again. In this section, we want to look at the
module TU as a PP-module. We need only assemble the pieces.
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The following Lemma, which is a consequence of Corollary will be used.

Lemma 2.7.1. The v-power torsion module TU is annihilated by (p,v), and the
natural transformation lu*(BV (r)) — H*(BV (r);F,) embeds TU in H*(BV (r);F,).

In order to see TU is a PP-module, we discuss as follows.

Consider the following diagram

0 TU lu*(BV(r)) LU*(BV (r))
|
H*(BV (r); IFp)
First, TU is a module over Z[ct*(aq), i (), ..., (o)) = POzly1,y2, - - -, yr]. Since

p=0onTU, the PC7- module structure comes from PCyy, = PC =Z/ply1,y2;-- - Yr]-
Second, we have a map PP = Z/p[Y1,Ya,....Y:] — Z/ply1,v2,...,y:] = PC,
(Y — o 71), and hence TU is a module over PP by restriction.

To see d: TU — H*(BV (r);F,) is a PP-module map, note that there are compatible
orientations on lu, ku, HFF,,. Note that d is a monomorphism by the Adams spectral

sequence [10]. Therefore, PP-module structure on TU follows from the image of d.

Similarly, we can do the same argument as above for PC'-module structure on TU with
PC =TFyly1,92,...,Yr], where y; = c{m”(ai) is the image of c}%(;) € ku?(BV (r)) in
codegree 2 of the representations «; in H*(BV(r);F,).

Suppose g; are given and define the PP-submodule M by

M :=PP{g;|jeJ} CH(BV(r)).

Our aim is to show that M is a PC-submodule.

Remark 2.7.2. Suppose PP =5 C R= PC and V is an R-module, W C V is an
S-submodule. If R = S{p1,...,pn} as S-module and p;,W C W forall i =1,2,...,n,
then W is an R-submodule.

Lemma 2.7.3. Let I = {(ai,a2,...,a,)|0<a; <p—2} for M =PP{g;|jeJ}C
H*(BV(r)) as above, if y%g; € M for all a€ I,j € J then M is a PC-submodule of
H*(BV(r)), where PC and PP are given as in definition[2.5.9

Proof. Since PC is a ring and V is a PC-module, and W C V| then W is a PC-
submodule of V if

(1) wy,we € W then wy +we € W.
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(2) weW,\e PC,then A\weW.

In fact, in our case we may take V = H*(BV (r)),and W = PP{g; | j € J} C V. Now,
we verify (1). Given wy,ws € W ie., w; = Zy}gj and we = Zyjzgj, (vj € PP).
J J

Then

wy + wy = Zl/}gj + Zyjzgj = Z(V]l + V?)gj €W, (since 1/]1 + 1/]2 € PP).
J J J

For (2), given w € W and A € PC = PP ® By U1 s, ]

@ e
Let us say w =) vjg; and A = > wvp7p. Then
7 TC{L2,0 7}

Aw = ZVT T Z vigj = Z vrvjtrg; € M, (since Ixj1 + VJZ € PP).
T J T,

By Remark we find 7rg; € M as required. O

§2.8 Calculation of [u*(BV(2))

The purpose of this section is to calculate (u*(BV(2)) by the Adams spectral

sequence. If we have V(2), then we will find TU = TU® = Wé is a free module of
rank 1 over PC = Fly;,y2| with |y;| = 2 on a generator of degree —2p — 2.

2.8.1 FE5-TERM.

In this section, we apply the Adams spectral sequence to calculate lu*(BV(2)).
The calculation is complicated by the presence of (p,v)-torsion; although the Adams
spectral sequence does not give the complete answer, it shows that there is no v-torsion
in positive Adams filtration. Accordingly, ordinary mod p cohomology together with
representation theory determines the multiplicative structure.

First, we need to calculate H*(BV(2))

H*(BV(2)) = (H*BV (1))%?
=(Fp®Lo® L1 & D Ly_9)®?

_ YL[Y] \ w2

- (FP & (yp—l))

_ YL[y] Y L[]
= (e (mp—l)) @ e (%p—l))

BLlg] o L[] S2L ® L{y1, )
P (Y o bt

=F,®
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We apply Lemma to the last expression above. Then H*(BV(2)) becomes
LLp] o EL[] 33 L[g1, 7] © S2E)[Y1, Yal[71, 3]
@) @) @) @ ")

Y2
Since the spectral sequence collapses at Fs-term, see [10, Th. 4.2.4], Gr(lu*(BV (2))) =
Ext. As in rank 1, we calculate

H*(BV(2)) = F, ®

. SLp] . EL[p] . XLy, 7]
EXtE(l)(FpaH (BV(2);IF,,)) = EXtE(l) (Fpan ® (mpfl) (@pq) (Epfl’@pfl)

S2E(1) (Y1, Ya)[y1, 72 )
@ P

e o SLI . SLFE
= Exty(y) (Fp, Fp) ® Exty ) (Fp, ) ® &)
S3L[gt, v S2E(1)[Y1, Yal[y1, 72

® Extyr, (Fp
T T

T T ) 1
(2.5)

282 QU.

In this section, we remark that QU consists of the coefficient ring, coming from
Fplao, u] together with the part of the Ep-term of (2.5)),

YLyl  XL[ya) . YL{yL, ]
Xt (Fp’ Y (Ph (W—l,@p—l))'

Since we are aiming to calculate the module QU , which is known already (see Remark

2.1.3), we will not make QU explicit here.

2.8.3 PP-MODULE TU .

In this section, we want to explain TU as a PP-module and find submodules A;;
and B;j in H*(BV(2)) as PP ® E(1)-modules, where B;; is a free E(1)-module.

Now, we have L; C H*(BV(1)) for all 0 <i¢ <p—2, then L; ® L; C H*(BV (1)) ®
H*(BV(1)) = H*(BV(2)), for all 0 <i,j <p— 2.

Our aim at rank 2 is to show for all 0 < 4,5 < p — 2, that we can realize the abstract
isomorphism o o
L'L' ® Lj [ E2Z+2‘]+3L @ 221+2J+2E(1)[Y]_, YQ]

by actual submodules. Thus we aim to find submodules A;;, B;; C L; ® L; so that
Li® L= Ai; ® Byj
(internal direct sum), and A;; & L2203 B, & $2HF2T2E(1)[Y7, Ya).

We must choose A = A;j, B = B;; C H*(BV(2)) sothat ANB =0 and A+ B =
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Lemma 2.8.1. We may take
A=Ay =Ly,
and A '
B = Bij =PP® E(l) . yiﬁ X y%TQ,

where A;j is an E(1)-submodule and B;j is a free PP -module.
Proof. We need only prove the following things.

(1) AnB=0.

2) A+B=L;®L;

First, for all 0 < i,j < p — 2, we define a PP-module generator g;; := yim ® ygTz,
with |11| =1 and |m| = 1.

For (1) we obtain explicit vector space basis for B. In fact, B is a free PP-module on
4-elements.

gij = yiﬁ ® y%Tz-
‘ : ‘ -
Qolgij) =y @ ydm — yin @y
Q1(gij) = y" V1 @ yhm — yin @ ) Ya.

: o . -
QoQ1(gij)) =y @b 'Y — iy @yt

A general element of B is a linear combination of Y*® Y times these generators. We
observe that no such combination lies in A.

For (2), by definition, A C L; ® L; is true since y%ﬂ € Lj,and BC L; ® L; is also
true since vt yim € Ly, 3 yhm € L.

Since L; ® L; is finite dimensional in each degree, it is suffice to show that dim (L; ® L;)
is correct. We can do this by Hilbert series calculation.

The Hilbert series of L;, L; is given by

[L;] = L - #2F1 and [L;] = L - #%F1 ) where T = ?P~2.

Then

L;®Lj| = (—— ) - t¥120+2,
[ ® ]] (1—T)

The Hilbert series of A, B is given by
: L4t oiiise;
+1
A =[Lioy"] = —F T

and
(1+t)(1+Tt) 20142541

[B] = [E(1) ® PP - yiT1 @ yjmo] = 177
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Since AN B =0 by (1), then

A+ B = (4] + [B] = 2L pivivs , LEDUHTH oiajy

C1-T (1-T)2
42042542
t2i+2j+2 1+t
— L+t )2 g2t
1-T
= [Li ® Ly].
Since these two Hilbert series are equal, A+ B = L; ® L; as required. ]

2.8.4 PC-MODULE STRUCTURE OF TU .

The purpose of this section is to introduce PC-module structure of TU for rank
2.

Define B, = > B;;. We want now to show that B, is a PC-submodule of
0<i,j<p—2
H*(BV(2)). As above, we know that B;; is a free PP-module on 4-generators g;;,

Qo(gij), Q1(gij), and QoQ1(gij) and given 4, j.
We note

Y1gi = Ji+1j> 1+1<p-2
Y YlQOj? 1+ 1 =pP— 17

and
yagis = 4 T+ j+1l1<p-2
(3 - .
7 Yagoy,  jFl=p—1.

Applying Lemma we obtain B, is a PC-submodule of H*(BV(2)). As an
E(1) ® PC-module it is generated by goo = 71 ® 72, and furthermore it is a free module
on goo. Finally, we calculate

Ext’", (Fp, Biw) = Homp(y)(Fp, B

E(1)
= QoQ1(Bxx)
= PC - [QoQ1(goo0)]
=TUs,

where

QoQ1(900) = QoQ1(T1 ® )
=11 @ y2Yo — y1Y1 @ yo.
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This calculation gives TU = ﬁg = PC(—2p—2) is a free module of rank 1 generated
by goo over PC = F,[yi1,y2] shifted up —2p — 2.

Therefore, the v-power torsion part of lu*(BV (2)) is TU (i.e., lu*(BV(2))tors = TU =
WQ = Wﬁ), where the new notation tors as a subscript here denotes the v-power
torsion part.

Using the short exact sequence of (2.4), our calculation at rank 2 records

o~
s |
N
T
—_
~
—~
Ss!
<
—~
\V)
S~—
S~—
=
Q
3
»
|
3

where p* on the right hand side denotes an elementary abelian p-group of rank k.

§2.9 Calculation of [u*(BV(3))

The aim of this section is to calculate lu*(BV(3)). If we have V(3), then TU
ﬁg &) Wiﬁ, and we will see ﬁg is a free module of rank 1 over PC = Fy[y1, y2, y3]
with |y;| = 2 on a generator of degree —2p — 3, whilst ﬁg is not free.

2.9.1 FE5-TERM

In this section, we use the Adams spectral sequence to calculate [u*(BV (3)). First,
we calculate H*(BV (3)) as follows.



SCHAPTER 2. COMPLEX CONNECTIVE K-COHOMOLOGY 27

H*(BV(3)) = H*(BV(1))®3
=Fp@®Lo®L1® DLy 9)®

- (F,0 )™
-0 5 o (7,0 22T o (7,0 220

=F,® {(IF o (EL[‘W])) ® (Fp, ® (EL[yi’g)} o ((Eyjp[yi]))

@ [0 gol) © (ool
B L SLE re L[ )\ L]
=F,® (FPEB @) © @) @ LyP D) ) ((mp—l))

(IF & Y L[y3] Y L[y3] 2L ® L[yg,gg])

) ) L)

L)  EL[we] Lyl YL © Ly ¥°L® Ly, 73]
Y @Y ) L e o L mth)
Y2L® L[z, 3] ¥3L® L ® Ly, v, 3
(2P~ L, 7P ) R e = B

=F,®

As we can see from the last expression above, we need to apply Lemma and use
the definition of L =g, F,[Y {70, 71} with |y =0 and |y1| =1 to calculate L®L®L

Now, we do the tensor product of L ® L ® L.

LeL®L= (XL E(1)[Y,Y:])® L
= (EL® L) ® (E1)[Y1,Ys] @ Fp[Y3]{70,711})
=Y Lo XE()[Y, Y] @ E(1)[V1, Y2, Y3l {y0, 11}, (2.6)

where this isomorphism comes from rank 2. Using the terms as in (2.6)), then H*(BV(3))
becomes

) N SLip] o ZL) ) SL[E) Y3 L[y1, ) Y3 L[y1, s
HABVED =5 © ey © ) © ) © oL D) © G L i)
E3L[y2, 73] ¥5 LIy, 42, 53] S2E(1)[Y1, Yol [71, 3]

(7 7 I (LN TN e (Pt

SPE()[V1, Yol[y1, 58] . EPE(1)[V1, Ya][42, 3]

(rr 5P (2P~ L, P )

@E4E(1)[Y1,Y3Hﬁa@,%]

(' mr )
@23]5( )[Y1>Y2,Y3Hyl y27y3]{707’71}
(P Lyt yzP )
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Now, we apply the same formula (2.1]) as before to calculate

SLl] . ILp] L[
P Y " wPh (Y
Y3 L[y, 3] 33 L[y1, ys) 33 L[y, 5]
G-t @ttt Y

S5 LIy, 12, Y3 @EQE(l)[Yl,YQ][m@]

Bt (B, H'(BV (3 ) = Extigy (B, Fy) @ Bty (Fy,

(Pt P ) (gL Pt
(P~ Ly (y2P~ 1,y h)

SB[, Ya] [, ¥s, 78]
(Pt Pyt
@EgE(l)[Yh Yo, Y3 (71, 72, i3]{ o0, 71}>
(PPt gt '
(2.7)

292 QU.

In this section, we remark that QU consists of the coefficient ring, coming from
Fplao, u] together with the part of the Ep-term of (2.7)),

Bxty, (7 SLly] o EL@p] o BL@E] o TLlnwe] o XL
PONE @) " @) - @) @t w)

3 L[y, y3] S°LYt, 2, V3] )
(y2r~LgsP~t) (P L Ly Y)

Since we are aiming to calculate the module QU , which is known already (see Remark
2.1.3)), we will not make QU explicit here.

2.9.3 PP-MODULE TU.

In this section, we need to explain TU as a PP-module. In fact, we aim to obtain
explicit submodules A;j; and B;j in H*(BV(3)) as PP ® E(1)-modules, where Bjjy,
is a free F(1)-module.

We begin first to describe the abstract isomorphism by the following Lemma so that
L; ® Lj ® L = Aijk D Bijk-

Lemma 2.9.1. There is an abstract isomorphism for all 0 < i,j,k <p—2
Li®L;® Ly = 224245 T o (E2i+2j+2k+4E(1)[Yh Ys)
SRR E(1) V], Yo, Val{20,m}),

so that
~ vV2i+2j+2k+5
AZ]k’ >~ 1T2) l ,
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and

Bz]k,‘ o~ <22i+2j+2k‘+4E(1) [Y17 YS] @ 22i+2j+2k+3E(1) [}/17 YQ, )/'3]{’,>/07 71}) ,

where Bjjj, is a free E(1)-module and A;j;, is an E(1)-submodule.

Proof.

Li® Lj® Ly = (E2i+2j+3L & XTI E(1)[v, Y2]) L

(S2H243 L [) @ (S22 B[V, Y] @ L)

2i+2j+2k+4L ® L) ® (22i+2j+2k+3E(1)[Y1’ Y2] ® L)
HRATHHL @ L) @ (SHPH TR B(1) (Y7, Ya] @ Fp[Yal {70, 11 })

(2

(2

N 2i+2j+2k45 [ o <22i+2j+2k+4E(1) V1, Y]
)

N2H2H2RE3 B (1) (Y1, Ya, Ya] {70, 71}) :

O]

It is important to realise the abstract isomorphism by actual submodules as follows.
We have H*(BV (1)) =F,® Lo® L1 ® --- ® Ly—2, then

H*(BV(3)) = H*(BV (1)) ® H*(BV (1)) ® H*(BV (1)) = D PL®P,® Py
P;e{Fy,Lo,...,.Lp—2}

i.e., we must choose explicit submodules A(Pi, Py, P3), B(P1, P2, P3) C H*(BV (3)) so
that
PL@ P,®@ Py = A(P, P2, P3) © B(P1, P2, P3),

as PP ® E(1)-modules with B(P1, Py, P3) a free E(1)-module, and A(Py, P2, P3) hav-
ing no free summand.

It is sufficient to analyse P; ® P, ® P for P; € {Fp, Lo, ..., L,—2} as follows.
1. If 3 of P1, P, P3 are I, then F, @ F, ® IF, = F,,.

2. If 2 of P, P2, Ps are Fp, then F, @ F, ® L, 2 X[ F,® L; @ F, = 22+,
and L; @ F, @ F, & X2+,

3. If 1 of Pl,PQ,Pg is Fp, then

a. Fp ® L] ® L/c ~ 22j+2k+3L D EQj-f—Qk-l—QE(]_)[Y'Q7 YB],
b. L; ® Fp ® Li & $2i4+2k+3 1 ey Z2i+2k+2E<1)[YI’ }/3]7
c. Li®L; @F,xS2HUH3L ¢ n2+t2+2F(1)[Y, Y.

4. If 0 of P, P, P3 is IF),, then L; ® L; ® Ly becomes
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Li® Lj ® Ly = ¥ @ (E%HH%HE(U[YM ¥3]
& DR ()Y, Vo, Vil {70, } ).

Now, we must choose A = A;j;, = A(L;, Lj, Ly,), B = Byji, = B(L;, Lj, L) € H*(BV (3)),
sothat ANB=0and A+ B=L; ® L; ® Ly,.

Lemma 2.9.2. We may take
A= Aijk =L;® yé“ ® y§+1,

and
B = Bijk = BOd(Li, Lj, Lk) @ Bt (LZ‘, Lj, Lk) @ B2 (Li, Lj, Lk),

where B°Y(L;, L, L) = E(1)@ PP -yin ® y%rg ® y&73 with generators in odd degree,
and

B (L’La Lja Lk) = E(l) ® PP - yziTl ® 9572 & y§+17
B*(Ly, Ly, L) := E(1) ® PP - yim @ y} ™ @ y57s,
together with ‘
B.jx == E(1) ® PP - 1® y}rs @ yb7s,
Bk = E(1) @ PP - yim1 © 1 @ y¥rs,
and ' ‘
Bij* = E(l) Q PP - yiﬁ X y%TQ ® 1

with generators in even degrees.

Proof. We want to prove the following things.

(1) ANB =0.
(2) A+B=L;®L; ® Ly.

First, for all 0 <4, j, k < p—2. Define a PP-module generators g;;i := y%ﬁ@yéﬁ@y’gm
in odd degrees, and gilijrl =yin® Y52 @ y§+1, gizjﬂk =yin® y%“ ® y’§73, Gxjk =
1 @y @ yh7s, gk = ¥im ® 1 ® yh73, and Gij« = YiT1 @ Y372 ® 1 in even degrees
with |7| =1, || =1 and |13| = 1.

For (1) we obtain explicit vector space basis for B. In fact, B is a free module over
PP ® E(1) on 4-elements respectively,

Gijk = Z/iﬁ ® yéTz ® ylg’rg.
Qolgizn) = ui™ @B @i — Yin ©1 O YT + yin @ g @ yst.
Qi(gir) = ¥ Vi @ Y @ b — yin @ BT Ve @k + yin @ yhn @ yitYs.

: e . - . i
QoQ1(gijx) =y @yl @ity — v @y T e @i T + it @yl @ yh T,
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and
giljk+1 = yiﬁ & yé?z & y§+1-
Qolghrer) =y @y @it — yin oyt @yt
Qu(gijr) =y M@ B @yt — yin @yt e yhth
QuQ1(ghirs) =y @ a @yt — gt i@yt @ i,
and

4 .
91'2]‘+1k =yin® y%+ ® y]ysz-
A - 4 .
Qolgh) = v @yl @Yl — yin oy T @it
] j+1 1 j+1 k
Qughiw) =y i@y @it — yin @y @yt Y.

] j+1 k ] +1 k
QuQ1(g; ) =ity @yt — i oy @yt

A general element of B is a linear combination of Y?® Yy ® Y times these generators.
We observe that no such combination lies in A.

For (2), by definition, A C L; ® L; ® Ly, is true since ygﬂ ® y§+1 C L; ® Ly, and
B C L;®L;®Ly is also true since yi“,yiﬁ eL;, ygﬂ,yng € L;,and y’3“+1, y§7'3 € Ly.
Since L; ® L; ® Ly, is finite dimensional in each degree, it is suffice to show that
dim(L; ® Lj ® Ly,) is correct. We can do this by Hilbert series calculation.

The Hilbert series of L;, L;, Lj is given by

[Li] = ll_i% 2L L) = 11_% 2+ Dand [Ly] = ll_i% 2k +1 where T = 272,
Then

163 o .
[Li® L ® Ly = (%) 242+ 2k+3

The Hilbert series of A is given by
; 1+t me
+1 k+1 k
A =[Lioy" @y = (;—7)
On the other hand, the Hilbert series of B°*(L;, L;, Ly), B®*(L;, L;, Ly,), and B®2(L;, L;, Ly,)
are given by
[B*(Li, Ly, L)) = [E(1) ® PP - yimi ® yh7o ® y373]

_(A+8A+Tt) (20+25+2k+3
(1-1)3 ’

[BE(1) @ PP -yim @ yim @ yi

_ AH)A+TE) piiojionta
(1-1) ’

[B(Li, Ly, L)) = [E(1) @ PP - yim @ g3 @ yim)

_(A+8(A+T) (20 2j+2k-+4
(1-1)2 .

(B (Li, Lj, Ly)]



32

Since AN B =0 by (1), then

[A—I-B} — [A—F(BOd—i-Bevl +Bev2)]
= [A] + [B*] + [B*"] + [B**]
y 1+t ) . (242 2K45 A+)A+TY sipojioess

-7 (1-T)3
. (1+t)A1+Tt) (204242044 (1+t)(1+Tt) (204274 2k+4
(1-17) (1-17)2
1+t o
= (W) APFPETIRE( —T)HE 4 (1+T) + (14 Tt + (1 —T)(1 + Tt)t]
1+t "y
= ((1+T)3) AR o2 4 THE 4 1 4 Tt 4+t + Tt +t + Tt — Tt — T?1?
L+t 2i42j4+2k+3(,2
_ (ﬁ)?’ 222k 43
1-T
= [Lz & Lj ® Lk]
Since these two Hilbert series agree, A+ B = L; ® L; ® Lj, as required. O

2.9.4 PC-MODULE STRUCTURE OF TU .

In this section, we want to deduce the PC-module structure over TU from the
PP-module structure.

It is reasonable to write

B = Z Biji, + Z Bijk + Z Biu, + Z Bij

0<4,5,k<p—2 0<j,k<p—2 0<i,k<p—2 0<i,j<p—2
d
= E B°“(L;, Lj, L) + E B (L;, Lj, Ly,) + E B2(L;, Lj, Ly,)
0<4,5,k<p—2 0<i,j,k<p—2 0<4,5,k<p—2
+ E Bk + g Bk + g Bijs.
0<j,k<p—2 0<4,k<p—2 0<4,5<p—2

Our aim here is to show that By is a PC-submodule of H*(BV(3)), and has PC-
generators gooo := T123 = TI T2 ® T3, G400 := To3 = QT2 RT3, Goxo := T13 = TI R 1R® T3,
and goox ;= T12 =TI TR 1.

Lemma 2.9.3. Forall 0 <i,5,k <p—2. We note that

rgi = 4 Tk i+1<p—2
Y Y19i—prijk; i+1=p—1

yagin = 4 Tk JH1<p-2
N Yogi—p+1jks Jjrl=p—1
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YsGiik = Jijk+1s k+1< p— 2
Y Y39i—piijk; k+1=p—1,
and
1 .
Gitqs 1+1 < p— 2
ylgiljk—H — i+15k+10 '
Y19i—pt1jk +1=p—1
Gt 1hs1s J+1<p-—2
y29z]k+1 R .
}/291 —p+1jk, ]+1 =P—- 1
Jag Gijhsas k+1<p—2
ijk+1
Y Y})gl —p+1jk> k+1= b— 17
and
v1g2 gz+1]+1k’ i+l <p—2
i1k .
ur Y19i— —p+1jk> +1=p—1
y2-gz_7+1k U+2 .
Yagi—p+1jks Jjtrl=p—1
2
Y301 = 9ij+1k+1 k+1<p—2
ur Y39i—pt1jks k+1=p—1,
and
Y19xjk = Qo(gojk) + Joj+1k — Gojk+1,
where
Qo(g0jx) = Qo(T1 @ Yoo @ y5T3)
=y QYR YL -1 @y @Ykn 41 @ yin @yt
= Y19xjk — 90j+1k + G0jk+1,
Yagaip = 4 JEi 1k Jj+1<p—2
* - .
’ Yogior,  j+1=p-—1,
Yagein = Gxjki1, k+1<p—-2
ik =
’ Yagwor,  kt1=p—1,
and

i — Git1xks i+1<p—2
197 - .
” YlgO*ka i+1=p— 1,

YoGisk = Ji+10k + Giok+1 — Qo(giok ),
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where
Qo(gior) = Qo(yimi @ 72 ® y5T3)
=y eneyln —yYin @peyin+yin@mneyit!
= Ji+10k — Y29ixk + Ji0k-+1,
Ysginn = 4 JEEHL k+1<p-2
" Yigowr,  k+1=p—1,
and
Y1gim = 4 91T i+1<p—2
v legOkﬂw Z+Z =p— 17
Yagiin = 4 Tt J+1<p-2
17% — .
! Yogoks,  j+1=p-—1,
Y3Gijx = Qo(gijo) — gi+1j0 + Gij+10,
where

Qo(9ij0) = Qo(yim @ Yy @ T3)
= yiﬂ QYhT2 ® T3 — yiﬁ ® y%“ @713+ yiﬁ R y5T2 ® Y3

= 0i+150 — Gij+10 T Y37Jijx-

Now, we discuss to describe the PC'-submodule in odd and even degrees of Bi.s by
the appropriate sums as follows. By definition, B°Y(L;, Lj, L), the odd part of By,
is a free PP-module on 4-generators g;ji, Qo(gijk), Q1(gijk), and QoQ1(gijr). We
may thus describe the PC'-submodule in odd degrees

TU: = > BLi, Ly, Ly).
0<i,j,k<p—2
For the even part of B***, B (Lu Lj, Lk), Bev2 (L“ Lj, Lk), B*jka Bi*lm and Bij*7 we
note that the first generator y1g.jr € By (since PP-E(1)-gojr € Biss), and similarly
for the other two generators y2g;.«; and y3g;j«. Accordingly, there are only three even
generators of Bi... We may now describe the PC-submodule in even degrees by the
appropriate sums

ﬁg = Z Bt (Li,Lj,Lk) + Z Bew(Li,Lj,Lk) + Z B*jk
0<4,5,k<p—2 0<4,j,k<p—2 0<j,k<p—2
0<4,k<p—2 0<i,j<p—2

We use Lemma to obtain By, is a PC-submodule of H*(BV (3)). Asan E(1)®
PC-module it is generated by goog = T123 = 71 ® T2 ®73 for the odd part, and by 3 types
of generator g.00 = T3 =1R 773, §gos0 =T13 =TI R1RX® 73, goox = T2 =TI QT2 ® 1
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for the even part, and furthermore it is a free module on generators gooo, 9«00, 90x0,
and goox -

Now we calculate
Extiyf) (Fy, Buss) = Hompy) (Fp, Bus)
= QoQ1(Bixs)
= [PC - QoQ1(g000)] ® [PC - QoQ1(gs00) + PC - QoQ1(gox0)
+ PC - Qle(goo*)]

—TU. & TU,,

where

QoQ1(9000) = QoQ1(T1 ® T2 ® T3)
=WY1Qyp —pYo@y)@m - WY1 ®ys —13Y30y1) @ 2
— (13Y3 @ y2 — 12Y2 ® y3) @ 71,

and

QoQ1(g+00) = QoQ1(1 ® T2 ® 73)
=y2 ®YsY3 — y2Y2 ® y3.

QoQ1(g0+0) = QoQ1(T1 ® 1 ® 73)
=y1 ®ysYs —11Y1 @ ys.

QoQ1(goox) = QoQ1(11 ® T2 ® 1)
=11 @y2Ys — Y1 ® y2.

This calculation gives us TU =2 TU® = ﬁg @ Wﬁ so that Wg = PC(—2p—3)isa
free module of rank 1 over PC = Fp[y1,y2,y3] on a generator gopo of degree —2p — 3,
whilst ﬁ‘;’ has 3 types of generator g.o0, gox0, goos over PC of degree —2p — 2 (we
will see that clearly in Chapter [5]).

0703 () PO-@o+2) () IPC(-(20+ ) © PO(-(ap+ 2)] .

Therefore, the odd part [u°(BV(3)) of lu*(BV(3)) is ﬁg (ie., BV (3))) =
ﬁg =~ PC(—2p—3)), and
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The v-power torsion even part (u®’(BV (3)) of lu*(BV (3)) is ﬁg (i.e., lw(BV(3))tors =
ﬁg), and is calculated by the Hilbert series

[TT3) = 3[PC(—(2p +2))] - [PC(~(2p +4)) + PC(~(4p + 2))]
3t2p+2 t2p+4 t4p+2
(1—123 (1-12)3 (1—-12)3
3t2p+2 _ t2p+4 _ t4p+2
S -y
PR3 — 2 — 1?P)
B (1—1t2)3

If we have p = 3,5,7, then Wﬁ is calculated at even degree torsion by

Degree | TU, (p =3) | TU, (p=5) | TU, (p=7)
—2p —2 p’ p’ p’
—2p—4 » » »
-6 plo plo plo
—9p—8 p?3 p P!
_2p —10 p32 p35 p35
_2p —12 p42 p47 p48
_2p — 14 p53 p60 p63

Figure 2.4: ﬁg

§2.10 Summary of rank < 3 and expectations for rank >4

The target of this section is to give a summary of our calculations for V(r), r <3
and expectations for rank r > 4. If we have V(r), r < 3, then TU,, is a free PC-
module, and TU,_; is not a free module, but this module will admit a free resolution
of length one, and we will prove that as a result in the next Chapter.

If we have V(r), r > 4, then we expect TU,. = PC(—2p —r) is a free PC-module of
rank 1 over PC = F,ly1,92,...,yr] on a generator of degree —2p — r, and in general
TU, has a free resolution of length 7 —i.

Definition 2.10.1. TU was defined as the v-power torsion module in lu*(BV(r)).
Analogous to [10, page 95|, we define

TU" = PC{gs | || > 2} € H*(BV (r): F,),
to be the PC-module generated by the elements ¢g,

where
g5 = QoQ1(7s) = > (=) *(ysyf — v2u) 78\ (st}

s<t
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for subsets S C {1,2,...,r} with |S| > 2, and 79 = [] 7s. It was proved in [2.8.4] and
ses

2.9.4 that TU 2 TU' for r < 3.

Conjecture 2.10.2. The v-power torsion TU is the PC -module generated by elements
qs, for |S| > 2. Accordingly

r
r

TU =TU,®TU;&---dTU.

where TU, is generated by the elements s with |S| = s.

The idea of the proof depends on the complementary part of H*(BV (r);F,) which is
in the E(1)-free submodule, and has basis the 7 with |S| > 2. Each factor E(1) in
the sum gives rise to X%F, = Homp1)(Fp, E(1)), and is generated by QoQ1 times the
generator of the free module, giving QoQ1(7s) from the submodule generated by 7g.

The directness of the sum follows since the number of elements 75 in every monomial
in gg is precisely |S| — 2, so that every term in every element of 77U is a monomial
involving precisely the product of n — 2 of the 5.

§2.11 Calculation of ku*(BV(r)) for r <3

In this section, we want to calculate ku*(BV(r)), for » < 3. This can be done by
calculating the QU -module together with T'U-module.

e If we have V(1), then TU = 0, and also TU = 0.

Consider the short exact sequence
0 —TU — ku*(BV(1)) — QU — 0. (2.8)
Since TU =0,

ku*(BV (1)) = QU
=QUoXQUa X' QU --- @ 2 1QU
= lw*(BV (1)) ® X% (BV (1)) @ 2w (BV(1)) @ - -- @ 2P~ Hu*(BV(1)).

e If we have V(2), then TU = TU® = Wg = PC(—2p —2), with PC = Fply1, 2],
and

TU =TU, & S 2 TU, o X TU, @ - @ X270,
= PC(—2p—2)® PC(—2p —4) ® PC(—2p — 6) @ --- & PC(—4p + 2).

By definition QU := im(ku*(BV(2)) — K*(BV(2)) = RU)y[v,v7']), and
QU = ku*{c1(a;) | @ € Repy(V)). Then

K*"(BV(2)) =Z® JU)
=Z& (c1(og) i =1,2), for n > 0.
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Degree | PC(—2p—2) | PC(—2p—4) | PC(—2p —6) PC(—4p +2) TU
—2p —2 p! 0 0 0 p!
—2p—4 P’ p' 0 0 P’
~2p—6 P’ v’ Pt 0 P
—2p—8 pt 3 P> 0 pio
—4p +2 - P2 pr? P! p(?
p+1\_
~dp P P! P |l
P —
—4p —2 prt! P P! P pls)—3

and for n >1

Figure 2.5: TU for rank 2

QU "(BV(2)) = (JUM™.

Note that the final column as in Figure only gives the torsion part of ku*(BV(2))
which is TU. Now, the whole calculation of QU and TU together gives ku*(BV(2))

as follows.

If p =3, we then have

If p=>5, we then have

If p=7, we then have

o If we have V/(3), then TU ~TU = ﬁg @ﬁg,
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where ﬁg = PC(—2p —3) with PC =TFy[y1,y2,y3], and
TUs =TU & X 2TUs @ X TUS & - - & 270,
=PC(-2p—3)®PC(—2p—5)@PC(-2p—T7)®--- & PC(—4p+1).
Degree | PC(—2p—3) | PC(—2p—5) | PC(—2p—T) PC(—4p+1) TUs
—2p—3 pl 0 0 0 p!
—2p—5 p3 p 0 0 pt
—2p—7 p° p? pt 0 pl0
-9 pl0 P i 0 p20
_4p + 1 p(g) p(pgl) p(p;2) pl p(pgl)
_4p -1 pgl)_l p(g)_l p(pgl)_l p2 p(p-;2)_p
—4]9 -3 p;2)73 p(p;rl)fg p(g)fg p3 p(p;rg)*(?’erl)

Figure 2.6: TUs for rank 3

Note that the final column as in Figure[2.6|only gives the odd degree part of ku*(BV (3))
which is TUs, and

)

)
ku?PTT(BV(3)) =p
ku*P(BV (3)) = p.

kT (BV(3)) = p*.
ku*P T3 (BV(3)) = p™.
ku?PT15(BV (3)) = p.

As in rank 2, the module QU can be done by calculating

and for n >1

—2n _ A
K™(BV(3)) =Z® JU,

=Z& (c1(aq) i =1,2,3)7, for n > 0.

QU *™(BV(3)) = (JU))".

We can now describe the whole of ku*(BV(3)) as follows.

The odd degree part is TUs as described above, while the even degree part is the sum
of QU , also described above, and TUs. Combining the splitting of ku in (1.1]) with the
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values given in Figure [2.4]for [u’(BV(3))tors = Wi’, gives the values of TU below by
summing p— 1 shifts of TU . For small values of p, for example, we have the following :

If p =3, we then have

ku?*2(BV(3)) = JUPTL @ p®

ku®t4(BV (3)) = JUPT2 @ p!!

ku*tO(BV (3)) = JUPT? @ p*®

ku?PT8(BV(3)) = JUPT @ p

If p =15, we then have

ku* T2 (BV(3)) = JUP & p?

ku?*t4(BV (3)) = JUPT2 @ pH!

ku?t5(BV (3)) = JUPTS @ p?0

ku?t8(BV (3)) = JUPT @ p™°
ku?t10(BV (3)) = JUPT® @ p®?
ku?t12(BV (3)) = JUPTE @ p'H

If p =7, we then have

ku?t2(BV(3)) = JUPT & p®

ku®t(BV(3)) = JUPT2 @ p!!

ku?*6(BV (3)) = JUPT3 @ p*°

ku?*8(BV (3)) = JUPT @ p™°
ku?Pt19(BV (3)) = JUPTS @ p®°
ku®t2(BV(3)) = JUPTS @ p'33

(BV(3))
(BV(3))
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Degree | Rank 1 Rank 2 Rank 3 (p=3) | Rank 3 (p=>5) | Rank 3 (p=7)
4 RU RU RU RU RU
3 0 0 0 0 0
2 RU RU RU RU RU
1 0 0 0 0 0
0 RU RU RU RU RU
-1 0 0 0 0 0
-2 JU JU JU JU JU
-3 0 0 0 0 0
-4 JU? JU? JU? JU? JU?
5 0 0 0 0 0
-6 JU3 JU3 JU3 JU3 JU?3
-7 0 0 0 0 0
-8 JU* JU* JU* JU* JU*
-9 0 0 0 0 0
—2p JuUp JUP JUP JUP JUP
—2p—2 | JUPTL | Jurtigp! | JUPH @p? JUPtt @ p? JUPtt @ p3
—2p—3 0 0 p' p! p'
—2p—4 | JUPT2 | JUrt2@pd | JUrt2@p'l | JUurt2gptt | JUrt? g plt
-2p—5 0 0 p? p p
—2p—6 | JUPTS | JUP @pS | JUPS @p? | JUPHS @ p* | JUPHS g p%o
_2p -7 0 0 p10 pIO plo
—2p—8 | JUPt | JUPrtt @ pl0 | JUurttgp’® | JUurttgp®0 | Jurttg p®0
_2p -9 0 0 p20 p20 p20
—2p—10 | JUPTS | JUPTS @ pl® : JUPHS @ p%2 | JUPTS @ p®
—2p—11 0 0 p35 p35
—2p—12 | JUPTE | JUPTE g p?! JUPtE @ pl2l | Jurts g p!3s
—2p —13 0 0 p°6 Pk
—2p—14 | JUPTT | JUPTT @ p28 : JUPHT @ pt93
—2p—15 0 0 p¥ p*
—2p—16 | JUPTS | JUPTS @ p36 : JUPH8 @ p264

The symbol p* denotes an elementary abelian p-group of rank k.

Figure 2.7: ku*(BV(r)) for r =1,2,3.




Chapter 3

Free resolution of TU,,

First, recall that TU  is the PC-submodule of H*(BV (r);F,) generated by

qs = QoQ1(7s) = Z(—l)t_s(ysyf — YY) TS\ (5,4}

s<t

for subsets S C {1,2,...,r} with |S| > 2, and 7¢ = [] 75, and that this is isomorphic
seS
to the v-power torsion module TU in lu*(BV (r)) for r < 3 (and conjecturally for all

).
In this Chapter, we will work entirely with the purely algebraic object TU . Next,
recall the PC-submodules TU .

The purpose of this Chapter is to create a free resolution for the submodule ﬁ;
over the polynomial ring PC. This will in turn feed in to the calculation of the local
cohomology of TU' and show that it is very close to being Gorenstein.

Definition 3.0.1. The PC-submodule TU, is defined as [I0, page 95]
TU, := PC{qs | |S| = s} C H*(BV(r);F,),
and is generated by the elements gg with |S| = s.

Since gg is a sum of monomials each involving exactly s — 2 exterior generators, the
. . . T . .

same is true for every monomial in a term of TU . Hence, in particular, the submodules

==l o . . .

TU, have trivial intersection, and

TU = @ TU..
s=2

r
n

We will need to consider modules ( > PC(—d), where (2) is the binomial coefficient

counting n-element subsets of a set with r elements. The notation <:L> PC(—d)

42
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indicates the free PC-module of rank (2) on generators of degree —d. The principle

is that a direct sum of n copies of PC(—d) should be represented by a square:

PC

§3.1 Pictures for resolutions

In this section, we want to display some pictures for free resolutions of 7U using
the following example.

Example 3.1.1. Considering rank 4 for definiteness, the resolutions of Wﬁ,ﬁg,
and W‘; are as follows, where we have indicated the names of the generators in the
appropriate box. The letters ), X, Y, and Z are the names of the generators of the
free modules in the boxes defined as follows. @ = Q;;, X = Xi234,Y = Yi234, and
Z = Z1934 are as given in Figure|3.3

2p+4

21234

Figure 3.1: ﬁi
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2p+5

X1234

2p+3

Qijk Y1234

1

4p+3

Figure 3.2: ﬁg
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2p+6
X1234
1
2p+4 4p+4
Xz’jk’ Y1234
4 1
2p+2 4p+2 6p+2
Qij Yijk Z 1234
6 4 1

Figure 3.3: TU,

§3.2 The structure of TU

In this section, we need only recall the structure of TU, and, by Definition m
that TU, is the PC-submodule generated by elements g5 = QoQ1(7s) with |S| = s.
In fact, ﬁ: is a free module of rank 1 over PC' on a generator of degree —2p —r. All
other modules require more detailed analysis.

As we proved in Chapter [2| we obtain the following results.

Rank 1: If we have V(1), then TU = 0.
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Rank 2: If we have V(2), then TU = TU = ﬁ; =~ PC(—2p —2) is a free module of
rank 1 over PC' on a generator of degree —2p — 2.

Rank 3: If we have V/(3), then TU = TU® = ﬁ; @ﬁg, where ﬁg ~ pPC(—2p—3)
is a free module of rank 1 over PC' on a generator of degree —2p — 3.

Rank r: More generally, if we have V(r), r > 4, then

r
r

TU =TU,&TU;®---dTU.

where TU,. = PC(—2p—7) is a free module of rank 1 over PC' on a generator of degree
—2p—r.

§3.3 A length one free resolution for 7U,_;

The aim of this section is to introduce a free resolution for TU,_; for any odd
prime p. We do this separately so as to give full details in the first nontrivial case.

The following Proposition will be used.

Proposition 3.3.1.

(Q1Q0) — ann(H*(BV (r))) = im(Qo) + im(Q:) + PC + @) PO,

i=1
where for any E(1)-module M,
(QoQ1) — ann(M) = {x € M| QoQ1x = 0}.
Proof. Details are given in [I0, Proposition 4.2.11, page 86]. O

Proposition 3.3.2. The PC-module W:A has a free resolution of the form

0+ TU. | <& Fy <X 1«0, (3.1)

where

FO = <r i 1> PC(—(2p+T — 1)),
with generators @ for 1 <i <r where Q= {1,2,...,7}\ {i}, and
I = (:) [PC(—2p+7+1))® PC(—(4p+1r —1))]

with generators X and Y , and w is defined by

(@) = ¢
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2p+n+2

X12345

2p+n 4p+n

Qijkl i 12345

n+1 1

Figure 3.4: TU,_,4

and d is defined by

d(X)=> (-1)13Q; and d(Y) =) (-1)1"yFQ.

i€l i€l
We write il for the position o of i € I, where I =igiy...1...1, with i = i,.
Proof. First of all, by Deﬁnitionm TU,_, is the PC'-module generated by elements

gs = QoQ1(rs) with |S| = 7—1. This gives exactness at TU,. ;. Here, we write qg = @
when S U {i} = {1,2,...,7}. Then we have ¢; = QoQ1(7;).

For exactness at Fy, we first notice that w od = 0. We calculate

mod(X) =Y (-1)'"Qu(r)q;

icl
= (-1)4:QoQ1 ()
iel
= QoQ1 (Z(—l)illyﬂ;)
iel

= QoQ1 (Qo(7an))
=0.
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Similarly, we obtain

modY) =Y (-1)"Q: ()

el
=> (=1 QoQ: (%)
iel
= Qo (Z(—l)iuyfﬁ)
iel
= QoQ1 (Q1(7an))
=0.

Suppose

W(Z 5SQS> = Bsm(Qs)
S 5
= Bsgs
S

=0

for suitable elements 8g € PC. By PC-linearity of Q1Qq, the last equality is of the
form

0=">Bsqs
S
= BsQoQ1(7s)
S
= Q1) _ BsTs).
S

Since the action of Q1@ is PC-linear, the exactness at the next step comes from this
action together with Proposition that

ker(Q1Qo) = im(Q1) + im(Qo) + PC + P PCr.

i=1

Since ) ¢ fs7s lies in the part of H*(BV (r);FF,) spanned as a PC-module by 7g with
|S| =i > 2, we see that

D Bsts = Qulto) + Qi (tr),
S
for some tg,t1. Let us take T'= all. Then we find

Qo(7an) = Qo(7r)
= (=1)1Tyrp g4y

teT
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Next, we write to,¢1 in terms of the PC basis {77}, so that to = > 187r, t1 = > vhrr
T T
with the sums over T with |T| =i+ 1, and V%, vk € PC.

Then
Bs= 3 (=) (g + yiuh),

T=SU{t}

and

(y%d(X) + V%d(Y))

d (ZT: (V2X + %Y))

(V%(Z(—l)i'lyt%)+V%(Z( 1) pC}))

el el

(-1 t|T< Z ytVT+ytVT>@

T=SU{t}

=[] HM =1 =M

BsQs-

Finally, we prove that the first map of (3.1)) is a monomorphism.

Suppose d(fX + gY) = 0, where fX + gY is the smallest codegree for which this
happens. Then

= d(fX +gY)
= f(Z(—l)iIIQO(Tz’)Qz) + Q(Z(—l)illQﬂﬁ)Qﬁ
icl iel
= Z Z|IQA yzf + yz ]
i€l

e., yif +yPg =0 for all i, so f+yf_1g =0, and f € ﬂi(yf_l). Now N;(y?~ 1) =

1 -1 . .
(yy""...yF" "), since y; and y; are coprime.

Therefore,

Now we obtain

and

1 —1 —1-
Hence, geﬂ(y;) -1 (yf R ),80 g = (y1-..yr)P 19-

Let us define (y1...%,)?~! = A. Then we obtain

= dAFX +\gY) = M(fX + gY)
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Since \ is regular, we get 0 = d(fX +gY). But codeg(fX +gY) = codeg(fX +gY) —
2(p —1). This is a contradiction.

The proposition is completely proved. O

Now we have the start of a resolution visibly related to the Koszul complexes for the
regular sequences y1,y2, ...,y and yi, vy, ... Yk,

3.4 A free resolution for TU. in general
§ p I g

In this section, we are going to construct a free resolution of TU,, over the poly-
nomial ring PC = Fply1,y2,...,y].

The key result in this Chapter is given as follows.

Proposition 3.4.1. There is a resolution of W; by free PC -modules as follows:

0+ TU, +— (2) PC(—(2p+n)) +— (n i 1) PC(—(2p+n+2)) ® PC(—(4p + n))

— (n i 2) PO(—(2p+n+4)) & PC(—(dp+n+2)) & PC(—(6p+n)) «— -

Thus the hth syzygy is

Fy = <n + h> [PC(~(2p+n-+2h))® PC(~(4p-+n+2h—2))@- --® PC(~ (2p+n-+2ph))].

We name generators as follows. In homological degree h, for each subset R C {1,2,...,r}
with (n+h) elements, there are generators Q%, Qh, . .. ,Q’]‘%, with Q% in degree —(2p(i+
1) +n+2(h—1)).

In homological degree 0, the generator Qg = QOS maps to qs, and for higher syzygies
we think of Q' as the ith letter in a sequence.

In positive homological degree, there are two differentials, dy and di, defined as
do(QR) =D _(—1)" Qo (7) Q)
reR

and

di(Qr) = Y (1" Qi) Qi g

reR
and the differential d is defined as the sum of the two differentials dy and dy :
d(Qk) = do(Q) + d1(Qr),

where r|R is the position of r in R, counting from 0.
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QY
do
Qp Qi
do
Q7 Qp Q%
do
Q% Qr Qf Qv

dy dy dy
Figure 3.5: The double complex resolution for TU,_5 in rank 7.

Now we have the ingredients to construct a diagram (Figure [3.5) exactly analogous
to the one for the stable Koszul complex. To explain this diagram, let us take the
following free resolution of TU,_5:

0+ TU. 3¢~ Fy<L R« B +L Ry,

We note that Fy = PC{Q% | S C {1,2,...,r}, |S| =r — 3} with deg(Q%) = 2p + n,
Fy = PC{Q% QL | T C{1,2,...,r}, |T| = r — 2} with deg(Q%) = 2p +n + 2, and
deg(QL) = 4p +n.

Similarly for Fy, F3, we find that F» = PC{QY,Q}.Q% | U C {1,2,...,r}, |U| =
r—1} with deg(QY) =2p+n+4, deg(QL) = 4p+n+2, and deg(Q%) = 6p+n, and
Fy = PC{QY,,QV,,Q%,Q% | V C {1,2,...,r}, |V| =r} with deg(Q),) =2p+n+6,
deg(QY) =4p +n+4, deg(Q%) = 6p+n + 2, and deg(Q3) = 8p +n.

For the differential, with, for example, Qllj € Iy, we have
d(Qy) = do(QY) + di(Qp)
= > (D"5Qpn g + D (DR -

uelU uelU

Similarly, with Q%/ € F3 we have

d(QY) = do(Q7) + da (QF)
=20V @Qb g + D (D Qi -

veV veV
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Now we return to the proof of Proposition [3.4.1

Proof. The proof is based on the idea that the resolution is a truncation of the double
Koszul complex based on the sequences yi1,y2,...,y, (vertically) and vi,vb, ... o
(horizontally). In other words, we construct the above resolution as a truncation of
an exact complex. We form the double Koszul complex K as the free PC-module on
generators {Q’}é} of homological degree 0 < i < h. Here, h indicates the homological
degree.

First of all, we have to show that d? =0, d% =0, and dyd; = —didy.

Qi) = do (dr(Q}) = do(z<—1>r'RQo<n>QfR\{r})

reR
= (-1)"My,dy Q)
reR
= SRy, SO () I Qo (r) QL)
reR sF#T
= Z Z yrys T|R )SlR\{T}( R\{r s})
r€R s#r
= Wat = 96%a) Qi ray)
a#b
=0.

Similarly,

d}(QR) = d1 (1(QR)) = da < Z(_l)ﬂRQl(Tr)Qi{\l{r})

reR
=> (-1 (@riry)
reR
— Z(_ TIR pz SIR\{T}Ql( )(QR\{rs})
reR s#r
= Z Z yPyP (— TIR )S\R\{T}( R\{T S})
reR s#r

We notice that yFy% occurs twice, for r =i, s = j and r = j, s = 4, and that these
have opposite signs. Then

Q) = 5 (T O Qi
T£S
= > i — ) Qs
a#b
—0.
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Finally, we calculate

doc Qi) = do(Z(—l)T'RQme;;\l{r})

reR

= Z d(] QR\%{T})

reR
— Z(_ 1)rHyp Z 1)* M Qq () 33_\2%,3})

reR s#T

7” R s|R\{r

_ZZyT | ~1) [R\{ }< R\{rs})

reR s#r
_ Z < r|R+s\R\{r} + ( )s|R+r|R\{s}>y£ys(Q§{\2{ })

r#s 7
= Wiy — a¥h) (Qptasy)

a#b
= —d1do(QR)-

Since dody = —didy, d = dy + di is a differential. Now, the homological degree of
t is |R| — i, and it is convenient to display K as a double complex with Q%
(2¢ — |R|,2|R| — 3i¢). This means that dyp moves down one step and d; moves left one

step as in Figure

For definiteness, we give the rest of the argument for s even. The modifications for s
odd are as given in [10, Proposition 4.6.3, page 96-98].

This suggests introducing a filtration by left half-planes :

CKiCKip1 CKi2C...CK

Y

where

=(QR | 2i—|R| <t).

This gives rise to a homological type spectral sequence of modules (E] ,d") converging

to Hy(Ky), i.e

p,q’
E), = Hpq(Ky, K1),

standard in the homological grading, so that the differentials dg and d; defined above
are named so as to fit the standard spectral sequence notation.

Note that by construction K;/K; 1 is the Koszul complex for the sequence y1,...,¥y,.
Accordingly, since y1, 2, ..., ¥y, is a regular sequence in PC', it follows that dy is exact
except in the bottom nonzero degree in each column. Since this is in homological degree
0, there are no other differentials. We conclude that (K,d) is exact everywhere except
in the Oth row.

Now, the proposed resolution S = S(TU,) of TU, is the quotient complex of K
represented in the plane by the first quadrant with bottom corner generated by Q%
with |R| = s (i.e., at (2 —s,2s — 2)). By Proposition we know that the bottom
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homology of S is TU, and it remains to show that S is exact except at the bottom.
We deduce this from the acyclicity of K.

We claim that H,.(S) = Hy(S)=TU,.
Now, consider the filtration of S, which is coming from the one on K,
"'QSSQSS-f—l gSs+2 C gS’/‘:‘Sv
where '
Ss = (Qr |20 —|R| <s).
Then we find

H, (H*(Gr(S.), Qo). Ql) - hr*(col<er(1<H Ky, Ql).

Since S;/S¢—1 is a truncation of a Koszul complex, F;(S) is a chain complex C' con-
centrated at the bottom edge, and a diagram chase establishes that d; is exact on C
except at the bottom.

Suppose t € C' is a d;-cycle not in the bottom degree, we show that ¢ is a d;-boundary.
By definition of C, t = [{] for some #, where [.] denotes dy-homology classes. Since t
is a cycle, there is § so that dy(f) = 7 and do(§) = 7.

As we proved above, d = dy + dy; we then obtain

d(t+ q) = (do + d1)(E+ q) = do(t) + da(9).

Since do(t) and di(q) are d-cycles, and we are above homological degree 0, there are
two elements s, v with ds = ¢ and du = §. By the definition above and previous
discussion, we find

dt —G+s—u)=(do+d1)(t—G+s—u)
=do(t—G+s—u)+di(ft—G+s—u)
= do(t) — do(§) + dos — dou + d1(t) — d1(§) + d1s — dyu
=0—7Ff+dys—dou+7—04+dis —diu
= (do + d1)(s) = (do + d1)(u)
=ds—du

t—g
0.

Hence there is an element z with dz =¢ —§ + s — u. Resolving z into its components
we find £ = do(£) + dy (%), and so

t=[i] = [t + do(2)] = [da(2)] = du[4]

as required. O

We are going to investigate the local cohomology of W; in the next Chapter.



Chapter 4

Local Cohomology of T_U;

This Chapter discusses the local cohomology of ﬁ: We will introduce the main
theorem as an important result and prove it in Section which describes that the
PC-module W: has depth ¢ and only has local cohomology in degrees r and .
Furthermore, the dual of H:(TU,) is only 1-dimensional rather than i-dimensional.

Therefore for any odd p, W is extremely close to being Cohen-Macaulay, and it
turns out that TU' is very close to being Gorenstein. Indeed, we are working over a
commutative local ring (R, m, k), where R = PC =TF,[y1,y2,...,yr], m is the maximal
ideal of PC, and k = R/m which is the field F).

The principal tool we use in this calculation is local duality [25], which states that for
any finitely generated R-module M,

HL(M) = Exth (M, PC)Y (—d),

for some d independent of M.

Working with the dual of local cohomology allows us to measure the significance of
local cohomology modules by their dimension.

§4.1 Koszul complexes and Local cohomology

For further details of this section see [25, page 6]. In this section, we define and
use a stable Koszul complex to calculate the local cohomology of TU . In fact, it
calculates the right derived functors of the J-power torsion functor on graded ku*-
modules M — I'j(M), where

T'y(M) = {m € M]|for some s > 0, J°m = 0}

on ku*-modules M.

Before dealing with the local cohomology of TU , we need to equip ourselves with
Koszul complexes.

55
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Definition 4.1.1. Let R be a commutative ring with unity and let J = (x1,...,2y,)
be an ideal of R. The stable Koszul complex K of R at J is

K*®(z1,29,...,2n; R) = K®(z1; R) ®r K*°(22; R) ®Rr - - - @ K™ (zp; R),

the tensor product of cochain complexes, where K°°(z,; R) is the cochain complex
(R — R[;Tlr])’ (t — %), for each r € {1,2,...,n}. The local cohomology of a module
M over the ring R at J is as follows.

H}(R; M) := H* (K™ (x1,22,...,x0; R) @ M),
where H*(C') is the homology of a chain complex C'.
In particular, we define
Hj(R) := H}(R; R).
Observe that from the definition that H%(R; M) = 0, for r > n.

Remark 4.1.2. Let R be a ring and (a) be an R-ideal. The cochain complex
K*(a) = (R — R[2]) has a natural map o : K*°(a) — R. More precisely, there is
a commutative diagram;

L

K>* = (R —=R[1])
R = (R —_— O).

Hence, for any ideal J = (x1,22,...,2;) and I = (y1,y2,...,y;) of R, there exists a
map of chain complexes

10! : K®(J+1)=K>®(J)@p K*(I) — K®(J) = K*(J) @ R.

When we are applying @ pM, M is an R-module, and taking homology, we obtain the
map
p: Hyy (R M) — H3(R; M).

We now give some examples to describe a Koszul complexes.

Example 4.1.3. If R=7 and J = (2), we then have K*(2;Z) = (Z — Z[%]) It is
clear that the map in this cochain complex is monomorphism and also the cokernel is
not hard to calculate. That is,

- Z)2%°, if r=1
H(z)(Z) = {0

otherwise,

where Z/2° = Z[3]/Z.

Example 4.1.4. Let R = k[x] be a polynomial ring over a field k£ with indeterminate
z of degree r and J = (z), we have K*°(z; R) = K*°(z;k[z]) = (k[z] — k[z][2]).

The calculation of H (Zx)(k[:v]) is easier if we look at the picture on the next page.
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R R[4]
$3 7777777777777 3 .1‘3
$2 7777777777777 s x2

e * T

I 11
21
=2
23

Figure 4.1: Koszul complex of k[z]| at (x).

This means the kernel of i is zero and the cokernel of i is H}(R) & R[z!]/R =
k[z,r~1])/k[x] which is ¥7"(k[z]"), dual vector space of k[x] shifted up by degree —r,
where k[x]Y := Homy(k[z], k). It follows that

; 277 (k[2]Y) = Kz, a7 /kl2], if i=1
H(x)<k[x]> = .
0, otherwise.
Example 4.1.5. Let R = k[z,y| be a polynomial ring over a field k with indetermi-
nates x, y of degrees r, s and J = (x,y), we have

L riL),

K*(J; R) = K*(2: R) & K*(y: B) = (R — R[1] & R -

As in an Example we illustrate the picture of Koszul complex for this ring as
below.

{i.i}

(7:77@')
R—"——R[}]® R[}|

R[L]

From the Figure as given in page 67, it is easy to see that this cochain complex is
exact at the first and second term. Hence, H)(R) and H}(R) are zero. For the third
term, the cokernel of (i, —¢) map is all the circle points in the third quadrant, which is
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isomorphic to X+ (k[z,y]"). Therefore

0, if  i=0;
Hi(R) = 0, if =1

S koY), if =2

0, otherwise.

The other definition of the local cohomology for a module M over a commutative ring
R (with unity) with ideal J, is given by using functor I';(—), [25].

Definition 4.1.6. Let R be a Noetherian ring and let J C R be an ideal. For an
R-module M and a submodule N C M. Let

(N:pJ):={me M| Jme N,VJ}

Observe that, (N :ps J) is a submodule of M and that N C (N :pr J).

Definition 4.1.7. The J-torsion submodule of an R-module M is defined by

Ty(M):= |0 J*) ={me M|3seN:.J"m =0},
seN

where

(0 :pr J®) = Homp(R/J*, M).

In fact, H'(.) is defined to be the rth right derived functor of I'; (i.e., it can be
calculated by taking an injective resolution of M, applying I'; and taking cohomology).
It is simple to show that I';(—) is an additive left exact covariant functor and thus,

RTY(M) =T ;(M).

One can show that this definition and the previous definition coincide for a module
over Noetherian ring (see, e.g., [25, page 7).

Remark 4.1.8. If M is an R- module, then H}(M) = H5(R; M) and H}(R) =
H3(R;R).

This applies in our case, since ku*(BG) is a Noetherian ring for a finite group G [10].
Elementary properties of this construction are the following:

Proposition 4.1.9. Let R be a commutative Noetherian ring with unity, J < R, and
M is an R-module. The following holds.

1. If K and N are R-modules such that 0 — K — M — N — 0 is a short
exact sequence, then we have an induced long exact sequence

0 — HYK) — HYM) — HY(N) — HYK) — H}(M) — HYN) — ---.
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2. For I an R-ideal, if VI = /J, then H(M) = HY(M) for all r > 0 and for all
R-modules M.

3. For a Noetherian ring F';, & : R — F' a ring homomorphism and N an F'-
module, H}(N) = H(N) for each r as F-modules.

4. Let A be a directed set and {M)}ren a direct system of R-modules. Then

lim H (M) = H5(lim M)y).
—A —A

5. If F' is an R-flat module, then H}(M) ®gr F = H} (M Qg F).

6. If (R, m) is local, then H[ (M) = H;E(§®RM) which is isomorphic to H;E(M\)
if M is finitely generated.

Proof. Details can be found, for example, in [25]. O

§4.2 Local duality

The aim of this section is to use the resolution in Proposition to give an exact
calculation of the local cohomology of the PC'-module TU , using local duality [25].
Since PC is a polynomial ring,

H:(PC) = HL(PC) = PC(2r),

where (.)¥ denotes graded vector space duality.

This immediately gives the answer for any finitely generated free module F', and noting
the functoriality and behaviour of suspensions, this is

H(F) = H',(F) = Hompc(F, PC)Y (2r).

This means that a free resolution gives rise to a complex for calculating local cohomol-
ogy.

Lemma 4.2.1. (Local duality)If we have a free resolution
O— M<—Fy+— - +— F,_1+— F.+— 0,
of the PC -module M, we obtain a complex
0«— HJ(Fo) «— -+ «— Hy(Fr—1) «— H(F,) «—0
whose cohomology is the local cohomology of M :

HL (M) = Extp (M, PC)Y(—2r).
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Proof. Let R = k[x1,...,z,] be a polynomial ring over a field k£ with the maximal
ideal m = (x1,...,2,). Then

RY(=2r), ifr=i

Hi(R) = {o it £

Now we have a free resolution of M

O0— M<+—Fy+— - «—F, 1 +— F.+— 0.

Taking the local cohomology of this sequence gives us

Hiy(M) = Hy—i (Hyp(Fy) «— Hp(F) — - e— Hy(F))
— Hy—i( Hompo(Fy «— Fy «— -+ «— Fy, PC)" ) (=21)
= Extoi (M, PC)Y (=2r)

as required. ]

Since we are working with Noetherian graded-commutative local ring of dimension r,
there are two types of Noetherian rings which are important in understanding, and
using local cohomology. These are Cohen-Macaulay and Gorenstein rings. Goresnstein
rings are Cohen-Macaulay, and both properties are defined using local cohomology.

We need to deal with modules M that are zero above a certain degree; the dual MY
of such a module will therefore be zero below a certain degree. It is reasonable to write

Start(i)M"

for the suspension of M"Y whose lowest nonzero degree is i.

The following remark helps to recognize the dual Koszul complex for our calculations
in the next Chapter.

Remark 4.2.2. If F' and F” are finitely generated free PC'-modules and © : I — F’
is represented by the matrix © (of elements of PC'), then

Hp(0)" : Hyy(F')" — Hy,(F)",

is represented by ©! (the transpose of ©).

More precisely, we know that the Koszul complex is exact except in homological degree
0, and the original resolution which is proved as in Proposition [3.4.1] was a truncation
of a double Koszul complex is represented by the map ©. By local duality, we find the
map H(©)" occurs in the dual of a double Koszul complex which is again a double
Koszul complex. Thus we find the matrix ©! also occurs in a double Koszul complex.
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§4.3 General behaviour of the local cohomology of TU"

Further details are given in [I0] page 87]. In this section we will describe the general
behaviour of the J-local cohomology H%(M) of an R-module M , and then impose the
conditions giving the best behaviour. The local cohomology modules vanish above the
dimension d of the module M ( i.e., above the Krull dimension of the ring R/ann(M)).
On the other hand, the local cohomology H%(M) vanishes up to the J-depth of M,
so that if there is an M -regular sequence of length ¢ in J we find H%(M) = 0 , for
i < £, and the potentially non-zero modules are

HS(M), HST Y (M), ..., HY(M).

We are going to give a description for the general behaviour of the local cohomology of
TU . We recall that

TU =TU,TU;@---®TU,.

The following theorem is the main result of this section. In fact, this result gives us
detailed and remarkable behaviour about the PC-module TU .

Theorem 4.3.1. The local cohomology of the modules ﬁ: is as follows.

(1) Wf only has local cohomology in degrees r and i.
(2) Fori=2,3,...,7r—1
Hy(TU;) = (TUr—i+2)V(7“ — 2p),

and
HN(TU.) = PCY(r — 2p).

(3) The module HE(TU;)V is 1-dimensional if i <1, and has Hilbert series

[(1+y+ Y 4 ypfl)r _ Yr7i+1]
(1-Y) ’

(HL(TT)") = 2y
where y = t2,Y = yP~1 =?P=2 qnd t is of degree -1.

Here, we wish to explain the dual of the Figure (see Chapter . This explanation
is useful for our Figures in the next Chapter. Its dual is given by

0 — HL(TU,_3)" — Hy(Fy)Y — Hy(F)Y — Hy(F)Y — Hy(Fs)Y
— HI73(TU,_5)Y — 0.
We note that
Hiy(Fo)Y = PC{(Q%)" | S € {1,2,...,7}, |S| =7 -3},
with deg((Q2)*) = 2p —n — 2, where {(Q%)*} is dual to the basis {Q%} of Fpy, and

Hi(F)Y = PC{QP)", (Qp)" | T C{L,2,...,r}, |T|=r—2},
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with deg((Q%)*) =2p—n, and deg((Q%ﬂ)*) =4p—n—2, where {(Q%)*}, {(Q%ﬂ)*} are
dual to the basis {Q%} , {QL} of F.

Similarly for H.(F2)Y, HL(F3)Y, we find that
Hyy(Fy)Y = PC{(QY)", (Q1)", (Qp)" |U €{1,2,...,r}, [U|=r—1},

with deg((Q{)*) = 2p —n, deg((Q(,)*) = 4p —n — 2, and deg((QF)*) = 6p —n — 4,
where {(Q%)*}, {(Qp)*}, {(QF)*} are dual to the basis {Q} , {Qp}, {QF} of Fa,

and
H&(F?))V = PC{(QQ/)*v (Q%/yk? (Q%/)*ﬂ (Q:\g/)* ’ VC {17 2,... ’f‘}, |V‘ = 7“},

with deg((QY)*) = 2p —n, deg((Q})*) = 4p — n — 2, deg((Q})*) = 6p —n — 4, and
deg((Q)*) = 8p —n — 6, where {(QV)*}, {(@y)"}, {(Q%)*}, and {(Q},)*} are dual
to the basis {Q%} , {QL}, {Q%}, and {Q}} of F3 respectively.

dy dy dy
@) | @) | @p)* | (QY*
do
@) | (@p) | (@)
do
@) | @)
do

(@)

Figure 4.2: The double complex for the local cohomology of TU,_5 in rank r.

Remark 4.3.2. Since the dual of the local cohomology below the top degree is of
dimension 1, TU, is extremely close to being Cohen-Macaulay. Furthermore, if we

take TU = @g;é ﬁzil, then
HL(TU) = (TT)" (r — 2p),

so that TU is quasi-Gorenstein. Since the difference between TU, and PC (as mea-
sured by PC/ TU;) is similarly very small, TU is very close to being Gorenstein.

Proof. The strategy to calculate the local cohomology of T'U, is as follows. We consider
the resolution S = S(TU,) from the proof of By Lemma we need only
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reverse the direction of the arrows and change the suspensions to obtain a complex
SY = (S(TU,))Y calculating the local cohomology. This will give an algorithm for
calculating it.

Lemma 4.3.3. The extreme local cohomology modules of TU; are described as follows.

(i) The bottom local cohomology H:(TU,)" has a presentation as follows (where we
write ¢ =2p —2):

rPC(2p—i—-2)®rPC2p—i—-24+q) @ - OrPC2r—i—-2+(r—i—1)q) —
PC(2p—i)@PC(2p—i+q) @ ---®PC(2p—i+ (r—i)q) — HL(TU,)" — 0;

In particular, it is generated by elements in degrees 2p —1,2p—i+q,...,2p— i+
2(r —i)q.

(i) The top local cohomology lies in an exact sequence

r

0 — HL(TUT)Y - (Z) PC(2p—2r+1i) — <Z +1

>PC’(2p—2r+2+i)

T .
® (z n 1> PC(4p — 2r + 1),

where the map © is described by

Qs — (=115 (Qo(m) X5 + Qi (7)Y3),

r¢S

where Q% are the generators in degree 2p — 2r 4+ i with (r — i) -elements and X3, YE
are the generators in degrees 2p — 2r + 2 +1i, 4p — 2r + i with r — (i + 1) -elements.

To see that Wf only has local cohomology in degrees r and i, we have seen that
m has a free resolution given by a truncation of the double Koszul complex in the
previous chapter. Applying Hompc (-, PC) we obtain another truncated double Koszul
complex, since the dual of a Koszul complex is again a Koszul complex, see the terms
of module as in Figure The subquotients are truncated Koszul complexes for the
regular sequence y1, 2, - . ., yr, and so they have homology only at the truncation point,
giving a chain complex for the dual local cohomology which only has homology at the
top and bottom [10} 4.7.3]. This completes the proof of Part(1).

~

Since TU] = PC(—r — 2p), the statement about its local cohomology is immediate
from H.(PC)= PCY(2r).

Part (2) is therefore a consequence of the following Lemma.

Lemma 4.3.4. There is a short exact sequence, for 2 <i<r—1,

r

S— j r .
0—TU,_ ;10— (r—i) PC(i—r) — <r—i—1

> [PC(2+i—r)®PC(2p+i—r)],
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where the map j is described by

(1) — > (-8 (Qo(Tt)ﬁT\{t} + Ql(Tt)UT\{t}>,

teT

where (,7;)PC(i —r) has basis {7(T) | |T| = r —i}, and (,_i_1)PC(2+i—7r),
(r—i=1)PC(2p+i —r) are generated by the elements Ep\ g4y, M\ 0 degrees 2 + i —
r,2p + ¢ — r respectively.

Proof. First, observe that (for p odd) H*(BV (r);F,) = PC® A(r; | 1 <i <r), and
then consider the PC-submodule A,_; of H*(BV(r);F,) generated by the elements
77, with |T| = r—i, and note that it is a free PC-module isomorphic to (,~; )PC(i—r).
This explains the naming of the generators 7(7") in the statement.

Now, TU,_ ;.5 is the PC-submodule of H*(BV(r);F,) generated by the elements
gs = QoQ1(7s) with |S| =r —i+ 2. Since

QoQ1(7s) = Z:(—l)t_s(ysy%7 — YY) TS\ (s, € No—is

s<t

we see that TU,. ; 12 € Ay, We claim that TU, 1o is precisely the kernel of the
above map. Indeed, under the correspondence 7(7') = 7p, the first summand is Qg
and the second is ()1. The exactness of the sequence now follows exactly as in Propo-
sition It is a O-sequence since Qo(gs) = Qo(Q1Qo(7s)) = 0 and Qi(gs) =
Q1(Q1Qo(7s)) = 0. Thus, the exactness states that TU, ;. = ker(Qo) N ker(Q1).
We find containment from the definition of the generators ¢g. Our calculation of the
E(1)-module structure showed ker(Qo) Nker(Q1) = im(QoQ1) + PC, from which the
desired result follows. O

It remains to calculate the Hilbert series of HZ(TU), which we do in the next Section.
O

§4.4 Hilbert series

Our goal in this section is to calculate the Hilbert series for H%(TU.). We shall
be discussing Hilbert series of Noetherian modules over the polynomial ring PC'. For
a finitely generated [PC]-module M, the Hilbert series of M is written [10],

[M] = thdim(M_y),
k
where t is of degree -1. We let y = t2, and Y = P!, so that yY = yP.

In any case, [PC] = 1/(1 —t*)" = 1/(1 — y)", and it is then immediate by taking a
resolution of M that the Hilbert series takes the form [M] = t*p(t)/(1 —y)" for some
integer s and polynomial p(t).
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Definition 4.4.1. For 0 <i <r, we define truncations of the polynomial (1—y)" by

=y = (5) o+ () ot (D) o

The identity (—y)"(1 — (1/y))" = (1 —y)" gives a duality property we need.

Lemma 4.4.2. The truncated polynomials have the following duality property.
(1=y)" =" 1-1/y)y+ T -9y O

It is now rather straightforward to translate our structure results into statements about
Hilbert series.

Lemma 4.4.3. The Hilbert series of TU, is given by

(1- y)fi] -y - Z/Y)@]

TN  (__4)\2p—1t
[TUZ]_( t)p (1_y)r(1_y)

Proof. The resolution of Proposition [3.4.1} gives
(1 o y)r[ﬁﬂ — (;)t2p+i _ (zj;l )(t2p+2+i + t4p+i) + (i£2)(t2p+4+i + t4p+2+i + t6p+i) .
= (—t)~ [(2)(_@1’ — () EYTAFY) + () () PO+ Y + Y2 — -
—¢)2p—i ) ) .
= CO 0 @ - V) = ()0 (- YD) 4 () (-0)?
(1-— y3) _ .. }

as required. ]

From this, local duality and Theorem [4.3.1] we may deduce the Hilbert series of the
dual local cohomology modules.

Lemma 4.4.4. For 2 <i<r—1, we have
[Hy(TU;)Y] = (-1)'[TU;](1/t) — (=1)" " [Hy (TT;) "]

Proof. We take aresolution F, of TU, (for example that given in Proposition(3.4.1)). As
in the proof of Lemma we have [TU;] = x([F.]). By local duality, the cohomology
of the 2r-th desuspension of the PC'-dual of Fj is the dual local cohomology. Theorem
states that the local cohomology of TU is only in degrees r and i, so
[Hn(TU)Y] + (1) HW(TT;)"] =y x([Hom(F,, PC)])
D"™x([F:])(1/1)
V'TT;](1/1)

= (_
(_

as required. ]
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As a consequence, the Hilbert series of H:(TU;)Y now follows from Lemma m

Corollary 4.4.5. For 2 <+ <r —1, we have

[(1 _ yy)r _ YT‘*’L'+1(1 _ y)r:|

Hi W: vV — ti*Q}/i*T‘*l
100 T-V0-
oy gty -y
— f2yier—
: 1-v)

Remark 4.4.6. We find that the first form is more compact, but the second shows
the pattern more clearly. Most importantly, it is apparent that the dimensions are
bounded.

Proof. By combining Part(2) of Theorem with Lemma we find

(=) Hy(TU;)Y] = (1) [TT;)(1/t) = 77 [TU, ).

By Lemma [4.4.3]
r i—r—1
T, ) = (-1 72 (0= Wiy =Y T =)y
r—i+2 (1 _ )T(l _ Y)
= (—1)i? (= 9y =Y T O )iy
(1-y)r(1-Y) '

Now we use Lemma and Lemma to deduce

(1 TTN/) = (<17 (=72 [ = 1y = Y 0= 1/ V)| /(0 =1/ (0= 1/7)
e (S e ACE VAR G (RS VA @) M DACEIMCE S
= ()21 = ) = (= ] - Y
(1= yY) = (L= 9V)f iy | /(1= (1 =)
= ()= 2] - ) =Y (- YY)

[ = Yoy~ YT =Y ) g]] /0 Y)

By subtracting ¢"~?P[TU, _,,,] we obtain the required result.
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Figure 4.3: Koszul complex of k[z,y] at (z,y).



Chapter 5

Examples

The main aim of this Chapter is to illustrate our results on the PC-submodule
TU,, as defined, purely algebraically using H*(BV (r);F,) as an E(1)-module, inm
and its local cohomology in ranks r = 2,3,4,5 for all odd primes. First, by Proposition
we recall there is a resolution of m by free PC-modules in general.

Second, by Theorem TU; only has local cohomology in degrees r and 7 with
HL(TU.) = PCY(~-2p+ )

and
=y

Hy(TU;) = (TUT,i+2)V(—2p+ r)
fort=2,3,...,r—1.

§5.1 The general pattern

The purpose of this section is to explain the organization of our calculations and
give a general pattern with the consequences for TU . We begin with the PC-module
==l =r=18 . . .

TU,, we have TU, = PC(—2p —r), as in Section is a free module of rank 1 over
PC on a generator of degree —2p — r.

We apply Theorem Part(2). Its local cohomology is given by

H'(TU,) = PCY(=2p +r).

For the PC-module TU,_, . First, by Proposition the module TU,_; has a free
resolution of the form

0 TU _, «— (") PC(—(2p+ 1 — 1) “C™ () [PC(—(2p + 1+ 1) @
QZ X
PC(—(4p+r—1))] «— 0.
Y

68
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The generators @ are of (. )PC(—(2p+r —1)). The differential is given by

do(X) =D (-D)MyiQ; and da(Y) = (-1} Qs
icl iel
for 1 <i<r, where i={1,2,...,7}\ {i}.

By Remark we can represent the map (dp,d;): Fi — Fy with respect to the
chosen generators by a matrix ©.

ol

Next, for local cohomology of TU,_,, we obtain an exact sequence

0 +— H&(ﬁ:—l) — (LOPCY(=2p+1+1) «— (D) [PCY(=2p+7 - 1)
PCY(~4p+r+1)] «— Hy \(TU,_;) +— 0.

Dualizing, we obtain an exact sequence

(@) X* y*

— v — ot
0 — (HR(TU, 1)) — (,21)PC2p—71—1) — (;)[PC2p—r+ 1) & PC(4p — 1 — 1)]

— (HI’,”l_l(T*""UT_l))v — 0.

Here, the indicated generators (Q;)* of (., )PC(2p—r —1), where Pi={1,2,...,r}\
{i}, are dual to the generators (); of Proposition under local duality and similarly
for X* Y*.

By using local duality, the dual map H[(Fp)Y <— HL(Fy)Y is represented with respect
to the dual generators by a matrix ©°.

Finally, in order to get the results in this calculation, we know that the Koszul complex
is exact except in homological degree 0, and since the dual of a Koszul complex is again
a Koszul complex, then we find that the matrix ©! also occurs in the dual Koszul
complex.

By using Theorem [4.3.1] our calculations give two things at any rank r:
(Hn(TU,_1))" = ker(0") = (TU,_;,5)(2p — 1), (5.1)

and
(Hy, {(TT,_,))" = coker(6) (5.2)

is generated in degrees 2p —r + 1 and 4p —r — 1. From the above exact sequence, its
Hilbert series satisfies

[(Ho {(TU,-1))"] = [(Ho(TU, 1)) + [PC(2p — 7 + 1)] + [PC(4p — 7 — 1)]
—r[PC(2p—r—1)]. (5.3)

Similarly, we do the same calculation as above for the PC-modules TU, o, TU, .
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For the PC-module TU, _,, we find by Proposition that it admits a resolution

04— TU,_y ¢— (,72) PC(=(2p + 1 —2)) «— (,"1)[PC(~(2p + 1)) & PO(—(4p +r — 2))

@ X ¥
 (1)PC(—(2p+ 7 +2)) @& PO(—(dp + 1)) & PC(—(6p + 1 — 2))] +— 0,
X Y Z

The generators Q; are of (,25)PC(—(2p+r—2)), and X3, ¥; are of (,21)PC(—(2p+
r)), (»21)PC(—(4p + r — 2)) respectively.

To see that d?> = 0 as given on (page 52) of Chapter

2(x) =Y ((_1)i\l+j|1\{i} + (_1)j|I+i|I\{j})yiijiAj -0,

i

(V) = 3 (=1 I 4 (i I 00 — 0,
i

@(2) =3 ((~)IHIN 4 (1IN )2 — 0.
i

Now, we use the same argument by apply Theorem this calculation records
(HQ(W:Q))V = ker(0') = (WLHQ)@P =), (5.4)

and
(H2(TU,_,))" = coker(©) (5.5)

is generated in degrees 2p —r + 2, 4p — r, and 6p — r — 2. Its Hilbert series satisfies

(20051 = " po(@p - v - 2]+ [PC(p — v+ 2)] + [PC(ap — r)
+[PC(6p — r —2)] ~ [(HL(TU, )] = r([PC(2p ~ 7)]
+ [PC(4p —r —2))). (5.6)

Finally, the PC-module TU,_5 has a free resolution of the form by Proposition m

0¢—TU. 5+ (,73) PC(—(2p+1—3)) +— (,72)[PC(—(2p + 7 — 1))

Q5w X5
@ PC(—(4p+1-3)] +— (+21)[PC(—2p+r+1)ePC(—(4p+r—1)) &
G X ¥
PC(—(6p+1r—3))] +— (71)[PC(—2p+r+3)®&PC(—(4p+r+1))
Z X Y

Z @®PC(—(6p+r—1)@PC(—8p+1r—3))] +— 0.
z w
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The generators Q- are of (r23)PC(=(2p+r—3)), X5, Y are of (,22)PC(—(2p+
r—1)), (;L2)PC(=(4p+r—3)), and X5, Y3, Z: are of (,21)[PC(=(2p+7r+1))®

PC(—(4p+1r—1)) @ PC(—(6p+r — 3))], respectively.
To see that d?> = 0 as given on (page 52) of Chapter

dz(X?) _ Z ((_1)j|J+k|J\{j} + (_1)k\J+jIJ\{k})yjka@ =0, for all

k#j
d2(Y[) _ Z ((_1)j|J+k|J\{j} + (_1)ku+J|J\{k})y§ka{ﬁe =0, for all ¢
py
dQ(Zg) _ Z ((_1)j|J—|—kIJ\{J} + (_1)k\J+j|J\{k})y§?yZ =0 for all <.
py
As before, by Theorem this calculation gives us
(Ho(TU, _3)" = ker(0') = (TU, _4;5)(2p — 1), (5.7)
and
(HL=3(TU,_3))" = coker(©") (5.8)

is generated in degrees 2p —r+3, 4dp—r+1, 6p—r —1, and 8p —r — 3. Its Hilbert
series satisfies

(T )] = (@) + Y (po —r 1) + POUp —r — 3))

—r([PC2p—r+1)]+[PC(4p —r —1)] + [PC(6p —r — 3)])
+[PC(2p—7r+3)]+ [PC(4p—r+1)]+ [PC(6p —r — 1)]

+[PC(8p—1—3)] — W[PC(Q}) —r—3) (5.9)

§5.2 Rank 2

If we have V(2), then TU® = ﬁ; =~ PC(—2p —2) and ﬁg is a free module of
rank 1 over PC' on a generator of degree —2p — 2. Its local cohomology is given by

HY(TU.) = HA(TU.) = PCY (~2p + 2).

§5.3 Rank 3

If we have V(3), then we want to calculate the local cohomology of the PC'-modules
TUs, TUs. We have TU® =TUs & TU..
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531 TU,

The PC-module Wg = PC(—2p—3) is a free module of rank 1 over PC' on a generator
of degree —2p — 3. Its local cohomology is given by

H(TU.) = H3(TU:) = PCY(~2p + 3).

532 TU,

By Proposition the PC-module Wﬁ has a free resolution

0T} (3) PC-+2) ' (3) (PC-Cp+ )0 PC(-(ip + D)) o
%# vV Vv
(Q12,Q13,Q23) X=X123 Y=Y123
2p+4

2p+2 4p+2

Qij Y123

3 1

Figure 5.1: The double complex resolution for ﬁg
When i < j, the generator Q;; maps to ¢;; = y'y; — yiy;? . The generators satisfy the
relations
Y3qi2 — Y2q13 + y1g23 = 0 and  do(X) = y3Q12 — ¥2Q13 + y1Q23-
Similarly,

vhqi2 — vhqis + yiges =0 and  di(Y) = yhQ12 — yh Q13 + ¥ Qas.
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We calculate

q12 = QoQ1(m12) = Yy — y19b.
q13 = QoQ1(m13) = Yy — y1yh.
q23 = QoQ1(m23) = Yhys — ya1uh.

For calculational purposes, we observe that

Y3qi2 — Y213 + Y1g23 = y3(Uiy2 — v1ys) — v2 (Ui ys — viyh) + v (Yhys — vauh)

—1 —1 —1 —1 —1 —1
=yys[( —vy ) - —us )+ W v )]
—0.

Similarly, we find

yha12 — vhais + ¥ aes = vh (Wve — vivh) — vh (W ys — viyh) + U5 (Yhys — y2u5)
1 1 1 1 1 1
b, P, D
:y1ygy3[( -1 71)_( -1 71)"’_( -1 71)]
yh b i yy s s

=0.

We can now represent the map (dy, dy): Fi — Fy with respect to the chosen generators
by a matrix

X Y

Q2 [ y3 b
O= Qus| —v2 —v
Qs \ v W

For local cohomology of ﬁg, we obtain an exact sequence

0+— H3(TU;) +— 3PCY(=2p +4) «— PCY(=2p+2) & PCY(—4p + 4)
«— H2(TT;) «— 0.

The original resolution was a truncation of a Koszul complex, and the same is true
here.

Dualizing, we obtain an exact sequence
(Q127Q>{37Q;3) X* Y*
0 — (H2(TT3))" — 3PC(2p — 4) 25 PC(2p — 2) & PC(4p — 4) —
(H2(TT3))" — 0.

Here, the indicated generators Q7y, Q35, Q45 of 3PC(2p—4) are dual to the generators
Q12, Q13, Q23 respectively of Proposition [3.3.2] under local duality, and similarly for
X*Y*.
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2p - 2 op -4

X, Q,
123 ij

Y,
123

1

Figure 5.2: The double complex resolution for the local cohomology of ﬁg

By local duality, the map HJ(Fp)Y <— H2(Fy)Y is represented with respect to the
dual generators by a matrix

Qi Qi3 Q33
o - X < Y3~y U )
V*\ vy —vh o)

By Theorem and ((5.1)), we deduce

3 (T = ker (y3 —Y2 y1>
(Hn(TU3)) B P
eers]
= (TU3)(2p - 3)

and by using (5.2)),

H? ﬁg V' = coker (y3 92 yl)
(Hn(T0>)) A

is generated in degrees 2p — 2 and 4p — 4. Its Hilbert series can be read off from the
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exact sequence (5.3)),

[H2(TT3)"] = [PC(~6)] + [PC(2p — 2)] + [PC(dp — 4)] — 3[PC(2p — 4)]
t6 t—2p+2 t—4p+4 3t—2p+4
= + + —
-ep T @2 1-ep ([1T-e)p
t—4p+4(t4p+2 + t2p—2 4+1— 3t2p)
(1—1¢2)3
_ y—2p+2(y2p+1 4 yp—l +1 - 3yP)
(1—-y)?
Y A(PYE - 3yY 4+ Y +1)
(1-y)? ’

where y = t2,Y = =1 = ?27=2 with t is of degree -1, and yY = yP.
Yy

§5.4 Rank 4

If we have V(4), then we calculate the local cohomology of the PC'-modules
ﬁj,ﬁg,ﬁg by applying Theorem m Part(2). We have

TU' =TU, © TU4 & TU,.

541 TU,

The PC-module ﬁi =~ PC(—2p—4) is a free module of rank 1 over PC' on a generator
of degree —2p — 4. Its local cohomology is given by

H'(TU.) = HA(TU,) = PCY (~2p + 4).

542 TU,

By Proposition the resolution of PC-module ﬁé is the short exact sequence

/

~~

(Q123,Q124,Q134,Q234) X=X1234 Y=Y1234

0+ TU; — <§) PO(~(2p+3)) ‘@ @ [PC(—(2p +5)) & PC(—(4p +3))] «— 0.
—— —

4

The generators Q123, Q124, Q134, Q234 Of <3

) PC(—(2p + 3)) satisfy the relations

Yaq123 — Y3q124 T Y2q134 —y1q234 = 0 and  do(X) = yaQ123 —y3Q124 + y2Q134 — Y1 Q234.

Similarly,

Yiqi2s —yhqiaatybqisa—yiqesa =0 and  di(Y) = y§ Q123 — y5 Q124+ y5 Q134 — v Q234.
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2p+5

2p+3 4p+3

Qijk i 1234

4 1

Figure 5.3: The double complex resolution for ﬁg.

We now calculate

q123 = QoQ1(m123) = (Yiy2 — y1y5)73 — (WY — y1y3)72 + (Y5y3 — Y2ys)T1
Q124 = QoQ1(T124) = (W2 — 1195)7a — (Wya — v1yh) ™2 + (Yhya — v2uh) T
qi34 = QoQ1(m134) = (Wys — y1y5)ma — (Wya — v} ™3 + (Vhya — ysyh) 71
@234 = QoQ1(7234) = (Yhys — y2ys) 14 — (Yhya — y2ul) T3 + (Vhya — y3yh ) 7o

We can represent the map (dp,dy): Fy — Fy with respect to the chosen generators
by a matrix

X Y

Qu2z [ ya Y4
o @ia| —us —31/)5

Qua| 2 v

Q234 \—y1  —U}

For local cohomology of ﬁg, we obtain an exact sequence

0 «— HA(TU,) +— APCY(=2p+5) +— PCY(=2p + 3) & PCY (—4p + 5)

—— H3(TU,) «— 0.
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Dualizing, we obtain an exact sequence
(Q123,Q124:Q734:@334) X Y*
4 rrd o\ V —_—~ ot N
0 — (Hn(TU3))  — 4PC(2p—5) — [PC(2p—3)®PC(4p—5)] —
(H3(TT3))" — 0.

The indicated generators Q7a3, Qios, @134, @534 of 4PC(2p —5) are dual to the gener-

ators 123, Q124, Q134, Q234 respectively of Proposition under local duality, and
similarly for X™*, Y™*.

2p-3 2p-5

X, Q
1234 ijk

Y,
1234

1

Figure 5.4: The double complex resolution for the local cohomology of ﬁg.

By local duality, the map Hg(Fp)Y «+— Ha(F1)V is represented with respect to the
dual generators by a matrix

Qlaz Qiaa @iza @iz
of — X*< yi o —Ys W —y1>
v \uh - ow -
This calculation, by Theorem and (5.1]), records
HYTTYY = ker <y4 ~y3 y1>
(Ha(TUs) vi —Y3 Yo Ul
e
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and by (5-2),

3 (T = coker <y4 ~Y3 Y y1>
(Hn(TUs)) vi Y5 vy

is generated in degrees 2p — 3 and 4p — 5. Its Hilbert series can be read off from the
exact sequence ((5.3)),

——4 ——4
(Ha(TU3))"] = [TU;(2p — 4)] + [PC(2p = 3)] + [PC(4p — 5)] — 4[PC(2p - 5)]
4t7 _ t9 _ t2p+7 + t—2p+3 + t—4p+5 _ 4t—2p+5
- (1—12)3

t—4p+5 (4t4p+2 _ t4p+4 _ t6p—|—2 + t2p—2 +1-— 4t2p)
(1—12)4

tY—2(4y2p+1 o y2p+2 . y3p+1 4 yp—l +1— 4yp)
(1—y)t

tY 2(—y'Y3 — V2 4PV —4yY +Y + 1)

(1—y)*

543 TU,

By Proposition the PC'-module ﬁg has a free resolution

0 TTL — @ PC(—(2p +2)) ‘Tt (g) [PC(—(2p + 4)) @ PC(~(4p + 2))]
Q= X v

— (i) [PC(=(2p+6)) & PC(—(4p+4)) & PC(—(6p +2))] «— 0.

X=X1234 Y=Y1234 Z=21234

The generators Q3 = @34, Q3 = Qa24, Q3 = Q23, Q33 = Qua, Qg3 = Q13, Qg3 = Q12
are of (3) PC(—(2p +2)), and the generators X7 = Xo34, X5 = X134, X3 = X124,

4
XZ = X123, Yl\ = }/2347 Y/Q\ = Y134, Yg\ = Y124’ YZ = Y123 are of <3> PC(*(2P+ 4)),

(;l) PC(—(4p + 2)) respectively.
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2p+6
X1234
1
2p+4 4p+4
X—ijk Y1234
4 1
2p+2 4p+2 6p+2
QZ] Yijk Z1234
6 4 1

Figure 5.5: The double complex resolution for ﬁg.

We may verify d?> =0 as given on (page 52) of Chapter

d*(X) = d*(X1234)
= (1y2 — 1211)Qp — (V1ys — ysy1)Qp + (Y1va — vay1)Qp
— (v2y3 — y3y2) Qg3 + (y2y4 — yay2)Qgy — (Y3y4 — Yay3)Qs; = 0,
d*(Y) = d*(Y1234)
= (Yly2 — n1y5) Qi — Wys — n1y3) Qs + (Wva — ) Qp
— (s — y2uh) Q3 + (Vhya — v2u) Qg7 — (Whya — ysy)) Q3 = 0,
d*(Z) = d*(Z1934)
= (b — b)) Q1 — (Wl — v5uh) Qs + (Wil — vhyh)Qny
— (yhyh — yhyh) Qs + (Wbl — yhyh)Qsp — (Wl — viyh) Q1 = 0.

Note that the differentials do(X7) = Z(—l)juij;j and di(¥3) = Z(—l)juyﬁ-’ij are
J#i J#i
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given by
do(X7) = do(X234) = 12073 — ¥3Q73 + 4l
do(X5) = do(X134) = y1Q75 — y3Qg3 + Yalg;-
do(X3) = do(X124) = y1Q73 — 12Q53 + Yalgy-
do(X7) = do(X123) = 1 Q3 — ¥2Q3; + y3Q53-
di(Yg) = d1(Yasa) = 15Qp3 — ¥5Q7 + ¥4 Q-
di(Ys) = d1(Y134) = 1 Q5 — v5Q53 + ¥4 Q7
d1(Y3) = d1(Y124) = 11 Qp3 — ¥5Q5; + ¥4 Qg5
dy(Y7) = d1(Yi23) = ¥ Qp; — 15 Qg5 + ¥5Qs5-

Notice that

434 = QoQ1(734) = Yhya — Y3y}
@24 = QoQ1(T24) = Yhys — Y21}
q23 = QoQ1(723) = Y5y3 — Yoy
q1a = QoQ1(T14) = Yiya — Y19}
q13 = QoQ1(m13) = Y1ys — Y15
q12 = QoQ1(T12) = Yy2 — y1vh

We can now represent the first map F} — Fj with respect to the chosen generators
by a matrix

55 X5 X5 Ko Bo¥Bon

Q[ v2 0 ¥o Ut
Q| —ws Y1 —yh Yy
Q| wa no Yk Yy
5 —y3  —Y2 —ys  —Uh
54 Ya —Y2 yff —y’rj
Q5 Ya 3 vi Y

We can also represent the second map F» — F} with to respect to the chosen gener-

ators by a matrix

X Y A
Xs /v W
X5 =y —f

Xl 3w

—Yi —Yy
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For local cohomology of Wé, we obtain an exact sequence,

4

0« HA(TT,) +— (;) PCY(=2p+6) +— <3> [PCY(=2p + 4) & PCY(—4p + 6)] +—

G) [PCY(~2p +2) ® PC (~4p + 4) & PC" (~6p + 6)] «— H2(TU,) +— 0.

Dualizing, we obtain an exact sequence,

(@) ()" ()"
4 ATV ’ \ ot
0 — (Hy(TU,))Y — 6PC(2p — 6) — 4[PC(2p — 4) ® PC(4p — 6)] —
X* y* zZ*

(PC2p—2) & PC(p D)@ P06 — 6)] — (HA(TT) — 0.

2p - 2 2p -4 2p-6

X, X, Q.
1234 ijk ij

dp -4 dp - 6

Y,
1234 *
l .

2

6p -6

Z,
1234

1

Figure 5.6: The double complex resolution for the local cohomology of ﬁ;.
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The indicated generators (Qg)* of 6PC(2p — 6) are dual to the generators @ so
that (Qp)" = Q34, (@) = Q, Q)" = @, (@x) = QL, Q)" = Qs
(Q5z)" = Q-

Also, the generators (X5)*, (Y;*) of 4PC(2p—4), 4PC(4p—6) are dual to the generators
X5, Y5 so that (X3)" = X5, (Y7)" = Vouq, (Xp)" = Xiyy, ()" = Vigy, (Xg)" =
Xiog, (Y3)" = YTy, (X3)* = X{ps, (Y3)* = Y 53 of Proposition under local duality,
and similarly for X*, Y* Z*.

By local duality, the map Hg(F1)Y «+— Hi(F»)V is represented with respect to the
dual generators by a matrix

(Xp)" (Xp) (Xz)* (Xp) (p)° (Vg (3" (¥p)"

X Y1 —12 Y3 —4
o'=v*| o -5 W =i owm -y ys -
zx T S S VA

Hence, by Theorem and (b.4)), the first result is

PRIy Yy —Y2 Yz —Ya
(Hm(TU2)) = ker y]f *Z/IQD yfé,’ *yf Yyr —Y2 Ys —Y4

Yl —Yh Yy —Yi
= (T 4)(2p 4)
= (PC(-2p—4))(2p—4)
PC(&

and by (b.5)), the second result
p— Y1 —Y2 Yz —Ya
Hy(TU,)Y =coker [ 47 —v5 45 —y§ v —¥2 Y3 —ua
T BT A

is generated in degrees 2p — 2, 4p — 4, and 6p — 6. Its Hilbert series can be read off

from the exact sequence ,
[H2(TU,)"] = 6[PC(2p — 6)] + [PC(2p — 2)] + [PC(4p — 4)] + [PC(6p — 6)] — [PC(~

—4([PC(2p — 4)] + [PC(4p - 6)])
R e A i e A | (e S A

1— )
§OPHO (6P AP 4202 ] gOp+2 _ 4(pip=2 4 42
(12
y POy +y P P 1y Ay 4 yP))
B (1—y)*
y—3p+3(_y3p+1 + 6y2p _ 4y2p—1 + y2p—2 _ 4yp 4 yp—l + 1)
B (1-y)*

Y3 (= Y3 +6y2Y2 —4yY2 + Y2 —4yY +Y + 1)
(1 -y ‘

8)]
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§5.5 Rank 5

If we have V(5), we want to calculate the local cohomology of the PC-modules
ﬁg,ﬁi,ﬁg,ﬁg by applying Theorem Part (2). We have

TU® =TUS & TU, ® TU, & TU..
=70
55.1 TU,

The PC-module ﬁ? =~ PC(—2p—5) is a free module of rank 1 over PC' on a generator
of degree —2p — 5. Its local cohomology is given by

H'(TU") = H3(TU) = PCY(~2p +5).

552 TU,

By Proposition the PC'-module Wi has a free resolution

= ) do,d1) (4
0+ TU; +— <4) PC(—(2p+ 1)) ©2 <4> [PC(—(2p+6))® PC(—(4p +4))] +— 0.
| ~
> X=X12345 Y=Yi2345
2p+6
X12345
1
2p+4 4p+4
Qijkl Y12345
5 1

Figure 5.7: The double complex resolution for ﬁi.
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The generators @ of (i) PC(—(2p +4)), where i = {1,2,3,4,5} \ {i} satisfy the

relations

Y5q1234 — Y4q1235 + Y3q1245 — Y2q1345 + Y1q2345 = 0,

and
do(X) = do(X12345)
= y5Q1234 — YaQ1235 + Y3Q1245 — Y2Q1345 + Y1Q2345.
Similarly,
y§Q1234 - yZ(J1235 + y§Q1245 - ng1345 + ny2345 =0,
and

di(Y) = di(Y12345)
= yP Q1231 — Y4 Q1235 + Y5 Q1245 — Y5 Q1345 + Y] Qa3a5.

We calculate

q1234 = Q0Q1(7—1234)
= (YYy2 — y1y5)T3a — (Wys — y1yh) mea + (Y — v1vh) 23 — (Y3 — youh)T1a
+ (Y5ya — youl) 13 — (Y5ya — y3yy)Tie-
q1235 = QoQ1(T1235)
= (yfyz - y1y§)7-35 - (?/]103/3 - y1y§)725 + (y;’fy5 - y1y§)723 - (ygy:s - y2y§)715
+ (Yys — youb)mis — (Yhys — ysyl) o
q1245 = QoQ1(T1245)
= (Wy2 — y195)7as — (Wya — yayl)mes + (W ys — v1y8)moa — (Yhya — y2ul)Ti5
+ (YBys — yout)Tia — (Vhys — yayt)mia.
q1345 = QoQ1(T1345)
= (Wys — y1v5)as — (W ya — yayl) 735 + (W ys — v1y8) s — (Vhya — ysyl)Tis
+ (Yhys — ysyl) 14 — (Yhys — yayb)mis.
q2345 = QoQ1(T2345)
= (Yhys — 2y ) a5 — (Uhya — youh )35 + (Yhys — yaus )34 — (Yhya — ysyh) a5
+ (Y5ys — y3yh ) Toa — (Y4ys — Yays ) To3.

We can now represent the map (do, dy): F; — Fy with respect to the chosen generators
by a matrix

Qu23a [ U5 Y5
Q235 | —y14 —uy
O= Quass | ys V4
Qi3a5 | —y2  —
Q2345 \ Y1 Y
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For local cohomology of Wi, we obtain an exact sequence
0+— Hﬁ(ﬁi) — (i) PCY(—2p +6) +— <g> [PCY(—2p +4) ® PCY(—4p + 6)]
— HATT,) «— 0.
Dualizing, we obtain a short exact sequence

(@) X+ y*
5 FTTON\V y AT 4 (FRTFON\V
0 — (Ha(TU,))" — 5PC(2p—6) — [PC(2p—4)® PC(4p — 6)] — (Ha(TU,))" — 0.

The indicated generators (Q;)* of 5PC(2p — 6) are dual to the generators Q; so that

(@) = Q3345, (Q3)" = Qlzys, (@3)" = Qlass, (Q7)" = Qlags, (Q5)" = Qlggy of
Proposition under local duality, and similarly for X*, Y™*.

2p - 4 2p-6

X, Q.
12345 ijkl

4p -6

Y,
12345

1

Figure 5.8: The double complex resolution for the local cohomology of Wi.

By local duality, the map HJ (Fp)Y <— HJ(Fy)Y is represented with respect to the
dual generators by a matrix

Q>{234 QT235 QT245 QT345 Q§345
of — X*< ys Y1 ¥s Y2 U )
N B S
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Therefore, by Theorem and (5.1)), we deduce

H5 WB Vo ker <y5 —Y4 Y3
(Hn(TU)) ve =i U

and by (5-2),

(HA(TT,))" = coker @2
5

—Y2 Y1 o
=(TU3)(2p — b5),
_yg y117> ( 3)(2p )

—Yi Y3 —Y2 m)
T T

is generated in degrees 2p — 4 and 4p — 6. Its Hilbert series can be read off from the

exact sequence (j5.3)),
] T d)
[(Hn(TUY))Y] = [TU3(2p — 5)] + [PC(2p — 4)] + [PC(4p — 6)] — 5[PC(2p — 6)]
1088 4 ¢12 4 29 H10 4 ¢dpt8 _ 5410 _ 5y2p 48 4 = 2pd 4 y—dpH6 _ 5p—2p 6
B (1—t2)°
PO (10442 4 (APH6 | 4O | y8pH2 _ mpdptd _ 5y0pt2 4 y2p=2 4 | _ 542p)
B (1—12)5
y*2p+3<10y2p+1 4 2P H3 g3t y4p+1 — 5y?Pt2 5t gl ] 5yP)
(1—y)°
y72p+3(y4p+1 4 y3p+2 _ 5y3p+1 4 y2p+3 _ 5y2p+2 + 10y2p+1 _ 5yp + ypfl + 1)
(1—y)°
yY 2(1PY* 4 PY3 — 59Y3 4 9°Y2 — 5Y2 4 10y3Y2 — 5yY + Y + 1)
(1—y)° '
e )
5.5.3 TU,

By Proposition the PC-module Wg has a free resolution

5

0 ¢ TUs ¢— <3> PC(~(2p +3)) €2 @ [PC(~(2p +5)) & PC(—(4p + 3))]

ij

5

X Y-

(3 k3

— < ) [PC(—=(2p+T7))® PC(—(4p+5)) ® PC(—(6p+ 3))] <— 0.

5

V
X=X12345

Y=Yi2345

Z=2712345

The generators Qp = Qs5, Q = Qus, Q = @35, Qp = Q4, Q5 =

Quas, Qg = Qizs, Rz = Quza, Qgp =

Qi25, Qg = Qi24, Qp = Q123 are of

<g> PC(—(Qp + 3)), and the generators X/l\ = X2345, X’Q\ = X1345, ng; = X1245,
X3 = X935, Xz = Xuo3a, Y7 = Yosus, Y5 = Yisas, Y5 = Y1245, Y3 = Yio35, Y5 = Yiogs

5

are of (Z) PC(—(2p + 5)), < 4) PC(—(4p +3)) respectively.
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2p+7
X12345
1
2p+5 4p+5
Xijkl Y12345
5 1
2p+3 4p+3 6p+3
Qijk Yijkl Z12345
Lo 5 1

Figure 5.9: The double complex resolution for ﬁg

We may verify d?> =0 as given on (page 52) of Chapter
d*(X) = d*(X12345)
= (1192 — ¥211)Qp — (V1y3 — Y3y1)Qpz + (W1ya — yay)Qp — (1y5 — ¥sy1) Qs
+ (Y2ys — y3y2) Qg3 — (Y2ya — Yay2)Qgz + (Y2us — Ysy2)Qgz — (Y3ya — yay3) Qg
+ (Y3ys — y5Y3) Qg5 — (Yays — Ysy4) Qi = 0,
d*(Y) = d*(Yi2s45)
= (Wy2 — 1) Qs — (Wys — 11y Qs + (Wya — 19h) @y — (Whys — 18) Rz
+ (Yhys — y2u3) Qg3 — (Yhya — yauh) Qs + (Yhys — Y2us) Qs — (Y5ya — Y3yy ) Qsy
+ (Y5ys — y3ys)Qgz — (Yhys — yayh)Q = 0,
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)

Z(_l)jl‘]y?@(\ are given by

i

)

Y-
7

=2
j#i

The differentials do(X5)

35
Zg.
15
15

= &
S
2Rk E 3w
[
& & & &8 =
SO C
e I
S DD DD S
+ o+ o+ F
2R 8 & & @=
SO
=S
o
& E eS8 E@
S
e
IR
FEE NI
21111%
<P S

(— (N (N (0
—
S
Tranxs
°© 2 .2 .2 .25
T T

35.

di(Yi24s) = ¥} Q3 — 16 Q3 + ¥4 Q51 — ¥5Q
d1(Yi235) = y1 Q3 — ¥5 Qg + Y5 Q51 — ¥5Q
d1(Yi234) = 41 Q73 — ¥5 Q5 + ¥5Q5 — 4 Q

(en
S~
~—

i
]

13.

—~

(
S~
~
—
s

4
di(Y3)

ZB'

We now calculate

(Y5ya — y3yy)™s — (Y35 — y3ys)Ta + (Y4ys — yays )73
(Yhya — y2uys)Ts — (Yoys — y2ys)Ta + (Y4ys — Yays) T2
(Y53 — y2ub)Ts — (Y5us — yauk )73 + (Y5ys — y3ys ) T2
(W53 — y2ub)Ta — (Y5ya — youy )73 + (Y5ya — Y3y ) T2

QoQ1(7345)

4345

QoQ1(7245)

4245

QoQ1(T235)
@234 = QoQ1(7234)

4235

QOQI (7_135)

q135

(WWy2 — y1v5) s — (Yys — yivt) e + (Yhys — vy

q125 = QoQ1(7125)
124 = QoQ1(7124)
q123 = QoQ1(7123)

(Wy2 — n1y8)1a — (Wys — 1yl + (Yhys — vay

(Wy2 — 1vh) s — (Vys — yivh) ™ + (Yhys — yoy

We can now represent the first map F; — Fy with to respect to the chosen generators

by a matrix

5

1

3

2

QA IS
ISH IS¥ap]
ISHa\l 0
SH ISH
s TS 7
ISHa\| Q0
ISH SRSl
S T ST
ISHap) Qo
=9
IS¥0] ISHtel
(— Q™ Q<
P~ y_yy_uu
= _ =
= | = |
— g + X
= _ =
— 8+ X
= =
o Rz 3
S
EEEERRREH
cleleieieiecieleie e
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We can also represent the second map Fy — F} with respect to the chosen generators
by a matrix

X Y A

Xs /o W
X5 —y2 —h
Xl 3
X5 -y~

o— 3| ¥ ys
Y; (TR
Y5 —y2  —Vh
Y; ys s
Y; —ys  —Yh
Yz ys  yb

For local cohomology of Wg, we obtain an exact sequence

)
4

5

3 > [PCY(—2p +5)® PCY(—4p +7)] +—

0 «— H3(TU3) +— ( > PCY(=2p+T7) +— <

<§) [PCY(—2p +3) @ PCY(—4p +5) ® PCV(—6p + 7)] +— Hﬁ(ﬁg) «— 0.

Dualizing, we obtain an exact sequence

Q5)" ()" (¥)"
I e A AL
0 — (H2(TTU3))Y — 10PC(2p — 7) — 5[PC(2p — 5) ® PC(dp — 7)] —>
X* Y* z*

(PC(2p — 3) & PC(4p — 5) @ PC(6p — 7)) — (H3(TTU3))Y — 0.

The indicated generators (Q;j)* of 10PC(2p — 7) are dual to the generators ij SO
that (Qp)" = Q5 (QE)" = @54, (Qm)" = @335, (Q)" = @4, (Q53)" = Qlus,
(Q@I)* = QT35, (Qig)* = Q’{34, (ng)* = Qf%a (Qgg)* = QTQ@ (ng)* = QT23-

Also, the generators (X7)*, (Y;)* of 5PC(2p — 5), 5PC(4p — 7) are dual to the gen-
erators X and Y so that (X3)* = X335, (Y7)" = Y5, (X5)" = X{g5, (¥5)" = Y15,
(Xﬁ)* = Xious; (Yg)* = Y5, (XZ)* = XTa35 (YZ)* = Y35, (XB)* = X34, (Yg)* =
Y534 of Proposition under local duality, and similarly for X*, Y™, Z*.

By local duality, the map HJ(F1)Y «+— HJ(F,)V is represented with respect to the
dual generators by a matrix

(X" (X)) (Xz)© (Xp)* (Xz)r (Y9 (¥3)" (Y3)© (Y3 ()
X* [ wn —Y2 Y3 —Y4 Ys
' =v | of -5 b v o—Y2 Ys —Ys Ys
z* T S T S T/ S
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2p-3 2p-95 2p-7

X, X, Q.
12345 ijkl i j

ijk

Y.,

6p -7

Z,
12345

1

Figure 5.10: The double complex resolution for the local cohomology of ﬁg

The calculation by Theorem and (5.4) gives us

5 5 Y —Y2 Y3 —Ys Y5
(Hm(TU3))v:ker ?Jf *yg y§ —yﬁ y§ Yyr —Y2 Y3 —Y4 Ys
yi vy s i ub

——=5
=TT - 5),
and by (53),
I Y1 —Y2 Y3 —Ys Ys
(H3(TU3))Y =coker [ of —v5 o5 —v] 2 w1 —v2 ys —wys us
yi—uh b —uh b

is generated in degrees 2p — 3, 4p — 5, and 6p — 7. Its Hilbert series can be read off
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from the exact sequence (j5.6]),

[(H3(TTU3))V] = 10[PC(2p — 7)] + [PC(2p — 3)] + [PC(4p — 5)] + [PC(6p — T)]
— [TU3(2p - 5)] - 5([PC(2p — 5)] + [PC(4p — 7))
B 10t—2p+7 + t—2p+3 + t—4p+5 + t—6p+7 o 5t9 + 2511 4 t2p+9 o 5(t—2p+5 + t—4p+7)

1—e)p

t—6p+7(10t4p + 2€4p—4 4 t2p—2 +1— 5t6p+2 + 756;1)—‘,—4 + t8p+2 _ 5(t4p—2 + t2p))
= 1— 2y

t—6p+7(10y2p 4 y2p—2 4 yp—l 41— 5y3p+1 4 y3p+2 4 y4p+1 - 5y2p—1 o 5yp)
B (1-y)°

ty—3<y4p+1 + y3p+2 o 5y3p+1 + 1Oy2p _ 5y2p—1 + y2p—2 _ 5yp 4 yp—l 4 1)
a (1—y)®

tY 3 (y5Y 1 + 453 — 5yt Y3 4+ 10y%Y? —5yY2 + Y2 — ByY +Y +1)
a (1—y)s '

554 TU,

Finally, we calculate the local cohomology of the PC'-module WS . By Proposition

the module ﬁg has a free resolution (see Figure )

)
2

5
3

0 TU) +— < )PC(—(2p—|—2)) Rilicy < ) [PC(—(2p + 4)) & PC(—(dp + 2))] «+—

— X~ Y~
ijk 3 3

(i) [PC(—(2p+6)) ® PC(—(4p +4)) ® PC(—(6p + 2))] +—

X~ Y- Z~

7 k3 k3

5

<5> [PC(—(2p+8))® PC(—(4p+6))® PC(—(6p+4)) & PC(—(8p+2))] «— 0.

X=X12345 Y'=Y12345 Z=712345 W=W1i2345

The generators Qzz = Qus, Qg = @35, Q@ = @34, Qzp = Q25, Q@ = Qu,

5
Qiz = Q23, Q533 = Q15, Qs3z = Qua, Qgz = Qu3, Q353 = Q12 are of <2> PC(—(2p+

2)), and the generators Xﬁ = Xayus, Xﬁ = Xoys, Xﬁ = Xo3s, Xﬁ = Xo34, Xég =

Xias, X3 = Xuzs, X5z = Xz, X553 = Xuos, Xg5 = X, Xz = Xugs, Y3 = Yaus,
Yi5 = Yoas, Yi3 = Yass, Yoz = Yoz, Yo3 = Yias, Y55 = Yiss, Yz = Yisa, Y53 = Yios,

5 5 .
Y3z = Yio4, Yz = Y123 are of <3> PC(—(2p+4)), <3) PC(—(4p + 2)) respectively.
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We may verify d? =0 as given on (page 52) of Chapter

d*(X5) = (y2y3 — Y3y2) Qs —

(Y2ya — Yay2) Q33 +

(Y2y5 — Ys592) Q135 —

(Y3ya — yay3) Qg

+ (y3ys — y5Y3)Qzz — (Yays — ysya) Qs + (Y3ya — Yay3)Qszq —
+ (yays — Ysya)Qspz — (Yays — Y5y4)Qgz = 0, for all 4
d*(Y5) = (yhys — v2u}) Qs — (Wha — v2ul) Qs + (Whvs — v2ul) Qs —
+ (Y55 — y3y8) Qrzs — (Yays — Yays)Qizs + (Vhya — y3ys)Qs3z —
+ (Yhys — yayh)Qszz — (Ways — yayt)Qzz =0, for all i
d2(%) (yzy:s - y3y2)Q123 (ygyi - Z/Zyg)QﬁZ (yz?/5 - y5yz)Q125
+ (y395 — ysys)Qras — (Whvs — yays) Qi + (V3Yh — Y4y3) Qa1 —
+ (yhvE — y5y)Qszs — (Vhve — y5vh)Qqps = 0, for all 4.
The differential do(Xl.Aj) = Z '(—1)k‘Kkal.]A.k is given by
k#j,j7#i
do(X33) = do(X345) = y3Q133 — ¥4Q133 + ¥5Q15:-
do(X13) = do(Xa45) = y2Q753 — ¥4Q133 + s Q13-
do(X1z) = do(Xa235) = y2Q35 — ¥3Q131 + ¥ Q11
do(X1z) = do(X234) = 12Q155 — ¥3Q135 + Y4Q1-
do(X53) = do(X145) = y1Q135 — ¥4Qs35 + Y5Qs35-
do(X53) = do(X135) = y1Q133 — ¥3Qs31 + ¥5Q55-
do(Xzz) = do(X134) = y1Q755 — ¥3Qs35 + Y4Qsp
do(Xgz) = do(X125) = y1Q735 — ¥2Qs35 + Vs Qs
do(Xgz) = do(X124) = y1Q735 — ¥2Qq3z + VaQspz-
do(X7z5) = do(X123) = 1 Qizz — ¥2Q55 + ¥3Q35-
Similarly for the differential dl(ij) = Z (—1)kIEyP i
k#5574
d1(Yiz) = d1(Yaas) = ¥4 Q153 — ¥4 Qo1 + Ve Q1zz-
di(Ygz) = di(Yaas) = y5 Q133 — ¥4 Q131 + ¥4 Q135
di(Yqz) = d1(Yass) = ¥5 Q17 — Y3 Q131 + Ve Q1
di(Ygz) = d1(Yasa) = 15 Q155 — v5Q135 + ¥4 Q15
di(Ysz) = d1(Y1as) = ¥} Q135 — ¥4 Q31 + ¥E Qs3z-
di(Ysy) = d1(Yiss) = ¥ Q157 — ¥3 Q31 + ¥E Qs
di(Ygz) = di(Y134) = y] Q135 — ¥5Qs35 + ¥4 Q55
d1(Yg) = d1(Yi2s) = ¥} Q131 — ¥5 Q31 + ¥E Q35
d1(Ygz) = d1(Yi24) = 9] Q35 — v5 Qa5 + ¥4 Q5
di(Y) = di1(Y123) = y1 Qs — ¥5 Qs + ¥5Q355-

(Y3ys — ¥5Y3) Qg5
(Y5ya — y3uy) Q13
(Y55 — y3uh ) Qy3z

(Ysvh — v4y3)Qiza
(Y58 — vBuh) Qzz
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We now calculate

We can now represent the first map (dp,d;):

I35 = Qa5 = QoQ1(7a5) =
G351 = B35 = QoQ1(735) =
I35 = 934 = QoQ1(
G351 = 25 = QoQ1(
U35 = @24 = Q0Q1(724

(

(

(

(

(

T34

725

G = 423 = Qo1
U331 = @15 = Qo1
U535 = Q14 = QoQ1(714
= QoQ1(m13
QoQ1(T12

723

T15

G555 = 413

—_— — — — — — — — — —

I35 = Q12 =

generators by the two matrices

Q133
Q131
Q135

Q131
Q3

X X Xy X Xz

Y3 Y2 Y1

24 25

Yyys — Yayl).
Yhys — y3yk).
ym—wﬁ-
D
D).

)
)
)
)
P)_
)
)
)
)
)

<
<
ot
|
<
™
<

4
D).
y%—m%.
ym—mﬁ~
D

Y3 — Yi1ys)-

Y1Y2 —ylyg .

s Rt R = A RS R N B s B BN S RN
<L
W
[
<
NN
<

34

Y4
Ys
—Ya
Ys

Y2
Y2
—Y3
—Y3

Y1

U1

Y1

35

Y1

45

Fy — Fy with respect to the chosen

Qi Ys Y4 (7
Qg1 —Y1 —Ys3 —Y2

Qg Y5 —Ys3 —Y2

Qs Ys Y4 —Y2
Qs Ys Y+ Y3

and

23
Q3 [ Y3 Y1
Q| —v4 Yo Y1

Qs | 5 Yh Y1

Qi ~vi v yY

Q33 Ys —Y3 Y1

Qs Y5 Yi Yl
Qz31 Y1 Y3 Y2

Qg5 Y5
Q375 ys Yy Yy
Q333 ys Yy

35 45
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The generators X7 = Xogys, X5 = Xisas, X3 = X145, X7 = Xi235, X5 = X234,
Y; = Yosas, Y5 = Yisas, Y5 = Yioas, Y3 = Y15, Yz = Yiosa, 247 = Zosus, Z5 = Z13as,

5
Zg = Z12a5, L3 = Z1235, Lz = Z1234 are of < > PC(—(2p+6)), <4> PC(—(4p + 4)),

<Z> PC(—(6p + 2)) respectively.

The differential do(X;) = Z'(—l)j‘Jijfj is given by

J#i
do(X3) = do(X2345) = 12 X135 — ¥3 X3 + vaX13 — vs X135
do(X3) = do(X1345) = 11 X135 — ¥3 X535 + vaXgg — ys X5z
do(X3) = do(X1245) = 11 X3 — ¥2 X553 + vaXgg — ¥s X5z
do(X3) = do(X1235) = y1 X3 — ¥2 X5y + 3 X5 — U5 X5
do(Xz) = do(Xi234) = 11 X3 — y2 Xgz + ys Xz — vaXg5

For the differential d(Y;). Since d = di + dp as we proved in Chapter

d(¥3) = (dy + do)(¥3)

=d1(¥5) + do(¥5)
J J
= 2 MG £ ) ()Y
J#i J#i
=D (VNG £ y,Y).
J#i

We now calculate

d(Y3) = d(Ya345)
= (d1 + do)(Ya345)
= di(Yazss) + do(Ya345)
= (5 X33 + v2Yp) — (Y5 X3 + ysY3) + (Vi X1y +ya¥p) — (vs X5 + y5Y75)-

d(Y3) = d(Y1345)
= (d1 + do)(Y1345)
= d1(Y1345) + do(Y1345)
= (W X5 + 1Y) — (s Xsz + u3Yaz) + (Wi Xgp + vaYap) — (W X5 + ysYa).

d(Y3) = d(Y1245)
= (dy + do)(Y1245)
= d1(Y1245) + do(Y1245)
= WX+ V) — (B Xg +Ys) + (WiXg +yaVe) — (5 X5 +ysYe)-
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d(Y3) = d(Yi235)
= (d1 + do)(Y1235)
= d1(Y1235) + do(Y1235)
= (i X5z + 1Y) — (X5 + 1Y) + (Y5 Xgg + ysYay) — (UE X35 +usV5).

d(Yz) = d(Y1234)
= (d1 + do)(Y1234)
= d1(Y1234) + do(Y1234)
= (nyﬁ +un1YE) — (ngQE +y2Y5z) + (nggg +ysYss) — (yZX;B +yaYz)-

Similarly, di(Z;) = Z(—l)juyﬁY;j is given by

J#i
d1(Z7) = d1(Za3a5) = Y5 Y75 — Y5 Y13 + Y Y11 — UE Y15
di1(Z3) = d1(Z1345) = Y Y3 — y5 Y3 + U4 Yoy — Y5 Yss.
di1(Z3) = di(Z1245) = 1 Y3 — Vb Yz + U4 Y1 — U5 Yaz-
di1(Z;3) = di1(Z1235) = Y1 Y13 — Y5 Y1 + Y3 Ya1 — U5 Y15
d1(Zz) = di1(Z1231) = Y1 Y15 — Y5 Y5 + Y3 Yo — Y4 Y15

We can also represent the second map Fy — F} with respect to the chosen generators
by a matrix

X5 X5 X3 X3 Xe V5 Y, Y3 Y3 Y2 4y Zy Zy 73 Zs
X/ v2 0 ¥y Yy
Xg | v y1 —u5 W
Xo| w Y vi v
Xz | —vs o~y i
X5 —y3  —y2 717/)5 —ih ,
Xﬂ Y4 —Y2 Yy —Ys
X5z ~Ys —12 —uh v
X5 ys Y3 /T4
X5 —Ys 3 —u5 s
X5 —ys —Ua -5 =k
Y vy v
Y —ys U1 —u5 yr
Yo Ya y1 Yy Yy
Y s vy —yk Yy
Y3 —y3 Y2 —uh —yh
Yo o —y4 vi —y5
Yz —ys —y2 - -y
Yai Ys Y3 (/A
Y ~Ys Y3 —uh Ys
Y& —ys —ua —y5 —uh

IS
g
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We represent the third map F3 — Fy with respect to the chosen generators by a
matrix

X(wn W

X5 | 2 —v5

X5 3 b

X5 —ya —f

Xz ys b

Y; noy

Y5 —y2  —uyh
©O=1Y; ys b

Y; —ys —Yy

Yz ys b

Z3 vy

3 Y5 —y2 Y

Z3 vs o oys oy

1 b —uya —Yh

= voooys oy

For local cohomology of TUs, we obtain an exact sequence

5

0 +— H3(TU3) «— (g) PCY(=2p+8) +— (3

> [PCY(—2p +6) ® PCY(—4p + 8)] +—

(Z) [PCY(—2p +4) & PC(—4p + 6) ® PCY(—6p + 8)] «+—

(g) [PCY(—2p+2) & PCY(—4p +4) & PCY(—6p + 6) & PCY(—8p + 8)]

«— H2(TTU;) «— 0.
Dualizing, we obtain a short exact sequence (see Figure [5.12))
Q)" (X5 (Y5)*

0 — (H2(TU3))Y — 10PC(2p — 8) —» 10[PC(2p — 6) & PC(4p — 8)] —

(X" ()" (2" X+ ¥
5(PC(2p — 4) & PC(4p — 6) @ PC(6p — 8)] 25 [PC(2p — 2) @ PC(dp — 4) @
z* w*

PC(6p — 6) ®PC(8p — 8)] — (HA(TTS))Y — 0.

Here, the indicated generators (QwAk)* of 10PC(2p—8) are dual to the generators Qlfﬁg,
so that (Ql/2\3)* = szn (Q@)* = Q§5a (Qfg\g,)* = Q§4a (Qm)* = Q§5a (Qf5\5)* = Q§4a

Q)" = @3, (Qgz1)" = Qs (Qg)" = Q1yy Q)" = Qs (Q)" = @y of
Proposition [3.3.2] under local duality.
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Also, the indicated generators (Xg)*, (Y3)* of 10PC(2p — 6),10PC(4p — 8) are
dual to the generators X, Y, so that (X3)" = X3, (YR)" = Y35, (Xp)" =
X§457(Yf§)* = Yous, (Xﬁ)* = X535’(Yﬁ)* = Yo35, (ng)* = X5‘34,(YT5)* = Yo34,
(Xg3)" = Xius, (V3)" = Yiis, (Xgp)" = Xizs, (V5p)" = Y5, (Xgp)" = Xiy, (Vip)" =
Y134, (ng)* = X5, (Yﬁ)* = Yios, (ng)* = X (Y{;S)* = Yo, (ng)* = Yio3, (ng i

*
Yios-

The generators (X3)*, (Y;)*, (Z;)* of 5PC(2p—4), 5PC(4p—6), 5PC(6p—8) are dual to
the generators X,Y, 7, so that (X5)* = X3345, (Y7)" = Yoiys, (£3)" = Z33y5, (X3)* =
Xf3457(Y§)* = Y1§457(Z§)* = Zik345a (Xg)* = XT245:(Y§)* = Y1*245>(Z§)* = Zik245’
(XZ)* = Xf235v(YZ)* = Y1*235, (ZZ)* = Zik235a (Xg)* = Xf234’(Y5)* = Y1*234,(Z§)* =
ZT234-

Similarly for X*, Y* Z* W*.

By local duality, the map HJ(Fy)Y <— HJ(F3)V is represented with respect to the
dual generators by a matrix

1 3

X" [y —Y% ¥z —vyi Y5
o - ¥ YooYy Ys Yy Y5 Y1 —Y2 Y3 —Y4 Us
- Z* D D D D D

Yo Y Ys —Yyp Ys Y1 Y2 Y3 —Ya
w* i Y Y5 Y

This calculation by Theorem and (5.7) gives us

Y1 —Y2 Y3 —Y4 Ys
P p , P p , P
5 TN V . Y1 —Ya2 Y3 —Yy Ys Y1 —Y2 Y3 —Y4 Y5
(Hy(TU,))" = ker ( yb —uh uh —yh vE y1 —y2 Y3 —va ys
vy —vh vl —yh vl

= (TU:)(2p - 5)
= (PC(~2p —5))(2p — 5)
= PC(-10),

and by (53).

Yi —Y2 Y3 —Y4 Ys

D p D D P
2 (TN Y1 —Y2 Ys —Yg Ys Y1 —Y2 Y3 —Y4 Y5
(Hu(TU3))" = coker ( Y —Y5 Y5 —Y4 Y Y1 —Y2 Y3 —Wa y5>

vy —vb b —vl o

is generated in degrees 2p — 2, 4p — 4, 6p — 6, and 8p — 8. Its Hilbert series can be

AXﬁAXZAYTYiYgYZYAAZiZZZ

*

Ys
Ys
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read off from the exact sequence ([5.9)),

(H2(TU3))Y] = [PC(-10)] + 10[PC(2p — 6)] + 10[PC(4p — 8)] — 5([PC(2p — 4))
+[PC(4p = 6)] + [PC(6p — 8)]) + [PC(2p — 2)] + [PC(4p — 4)]
+ [PC(6p —6)] + [PC(8p — 8)] — 10[PC(2p — 8)]
B th + 10t72p+6 + 10t74p+8 _ 5(t72p+4 4 t74p+6 4 t76p+8) 4 t72p+2

(1—12)5
p4p+4 | 4—6pt6 | p—8p+8 _ 1(p—2p+8
(1—12)5
$SPES (13042 | 10#6P2 4 1044 — 5(#0P—4 4 ¢4—2 4 42p) 1 606
- (1—#2)p
=4 #2724 1 — 10t%)
(1—2)°
y*4p+4(y4p+1 + 10y3p71 + 1Oy2p _ 5(y3p72 + y2p71 + yp) + y3p73
B (1-y)°
yP 24yt 41— 10y°%)
(I—y)®
Y—4(y4p+1 _ 1Oy3p + 10y3p—1 _ 5y3p—2 + ySp—3 + 10y2p _ 5y2p—1
a (1-y)°
y?P 2 =5y -y 4 1)
(I—y)P
Y44 — 10533 + 1042Y3 — 5yY3 + Y3 +10y2Y2 — 5yY2 4+ Y?2)
- (1-y)°
SyY +Y +1

(1—y)
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: (-12345

2p+8

2p+6 4p+6
Xz‘jkl Y12345
5 1
2p+4 4p+4 6p+4

Xz‘jk» Yijk:l Z12345

10 5 1
2p+2 4p+-2 6p+2 8p+2
Qij Yijk Zijkl W12345

10 10 5

Figure 5.11: The double complex resolution for Wi
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2p - 2 2p -4 2p -6 2p -8
12345 Xijkl Xijk Qz’j
10 10
4p -4 4p -6 4p - 8
* Y, Y,
12345 ijkl ijk
) 10
6p - 6 6p - 8
Z12345 Zijk’l
1 )
8p -8

1

A%

*

12345

Figure 5.12: The double complex resolution for the local cohomology of Wg




Chapter 6

Calculating connective
K-homology using Local
Cohomology

The local cohomology Theorem states that there is a spectral sequence
ES? = HY(ku*(BG)) = ku.(BG) p,q >0, (6.1)

for all finite groups G, where the differential d,.: EF'? — EPTT7 g of the cohomo-
logical bidegree (r,—r+1), r > 1, and JU = ker(ku*(BG) — ku*). In this Chapter,
we apply it for p =3 and r < 2 to calculate the connective K -homology ku.(BV(r)).

§6.1 The strategy

The strategy to calculate ku.(BV (r)) is as follows. First, we begin with calculating
the local cohomology of QU , H7;,;(QU). The local cohomology of QU is 0 except in
degrees 0 and 1 (i.e., Hy;;(QU) = 0 for i > 2), [10]. To do this, by definition we
recall that QU is the image of ku*(BV (r)) in K*(BV(r)), and is therefore for abelian
groups the Rees ring of the completed representation ring for the augmentation ideal
JU. The idea here involves defining a special element y* in the representation ring
RU so that the principal ideal (y*) is a reduction of JU. The notation y* is chosen by
analogy with [10, 4.4.3, page 89]. Since local cohomology only depends on the radical
of the ideal, we may replace JU by a convenient smaller ideal (y*) C JU which is a
reduction of it. The central point of calculating H7,;,(QU) is that if (y*) is a reduction
of JU, then H7,;(QU) = H(*y*)(QU).

Second, we then apply the local cohomology Theorem as given in (6.1)).

Definition 6.1.1. Let R be a commutative ring, and let J be an ideal with the
filtration by subideals
R2JDJ*DJ3D...DJ%

101
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We say an ideal I is a reduction of J, if I C J, there exist ky and s such that
IJk = Jkts for k> k.

Remark 6.1.2. In all calculations, H7};(QU) can be obtained as H(*y*)(QU) for an
element y* € JU, and JU is the radical of the principal ideal (y*) (i.e., JU = /(y*)).
We need to give a formal definition of the element y*.

Definition 6.1.3. For any rank r and odd primes p, we define y* in the representation
ring RU as follows.

y* = Z e(a) = Z (1—a)=p" —peJU,
acV(r)vV acV(r)v

where e(a) := (1 — «) is the Euler class in RU, and p is the regular representation of
V(r) given by

aeV(r)v
== ) (-a)
aeV(r)v
= Y ver(a),
acV(r)V

where ejy () := =% is the Euler class in ku*(BV(r)), and v is the Bott element of
degree 2. This makes the element y* take the value 0 at the identity and p" at the
other elements (i.e.,y* =0 p" p" --- p" € JU?).

This defines an element of K*"(BV (r)). We will see in our cases that this lies in JU?"
and hence here it comes from ku"(BV(r)).

Proposition 6.1.4. The local cohomology of QU 1is calculated by

ku* - p ifi=0
Hiy(QU) = S QU1 /y*|/QU if i=1
0 otherwise,

and HY;(QU) has an element of order p"=, so that in all cases H};(QU) is non-zero
m some negative degree.

Proof. Details can be found in [10, page 91-93]. O

From here on we specialise to the prime p = 3.

§6.2 Rank 1

The aim of this section is to calculate ku.(BV (1)), and we start first to calculate
H(ly*)(QU)‘
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6.2.1 IDEALS JUy

In this section, we need only calculate the augmentation ideals JUg, & > 1 for
V(1).

It will help to use the following Lemma for calculational purposes [16].

Lemma 6.2.1. For each n € Z

RU if nis even and >0

(QU)n = (QU)™" = {j@ if n=—2k <0,

where RU is the completed complex representation ring and J/l?k is the p-adic com-
pletion of JUy for all k, the augmentation ideal generated by the Chern classes of
k-dimensional representations, so that if G is a p-group, then

JU, 2 Z) ® JU,

where JUy, = (JUL¥, for k > 1. Note that JU, is the augmentation ideal generated
by the first Chern class c1(a), where « is a 1-dimensional representation of G .

Remark 6.2.2. Here, we now consider p = 3 and write v =1 —w and v = 1 — w?,

where w = e2m/3,

To start with, jﬁl There are two characters u,us generating jﬁl over Zj , where
up = e(T) =17, ug = e((7)?) = 1—(2)? so that 7 indicates a natural representation
of the quotient by (z). This means if V(1) = {e,z, 2}, then

2

(& X X
(QU)_QgJUI%ZQ®JU1—Z§< wi( 0 m )>-
u: (0 v 1 )

Next, J/U\g By definition, JUs := JU;-JU; = (JUp)?, an ideal generated by c1(a)ci(5)
for each pair «, 8 of 1-dimensional representations. Using a straightforward calculation
to obtain a 2 x 2 matrix excepting e-column. This calculation shows us y* € (JU;)? =
ku*(BV (1)) = ku_4(BV (1)), and it is in degree -4.

e x x
(QU)_4%ﬁ§ZQ®JU2:ZQ< vi:( 0 3w 3w? ) >
va: (0
where v1 = uqui, v2 = UjUs.
Now, JUs. Asabove, JUs := JU1-(JU1)? = (JUp)3, an ideal generated by c1(a)c1(8)c1(7)
for each «, 3,7 of 1-dimensional representations. We find
- e = 2
(QU)_¢ = JU3 = Zé\ ® JUs = Z§\< wr:( 0 3y 3y ) >,
wa:( 0 3y 3y )
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where w1 = y* - uy, wo =y* - us.

From this, we obtain JUs = 3JU;, and y* - JU; = JUs. This means our calculations
for the rest of the work give us

y* - JUy = JUy = JU;y - (JUL)? = JU; - 3JUy = 3(JU)2

Thus, we obtain

e T x
(QU)ngzZQ®JU4:ZQ< tr:( 0 9w 9uw? )>,
ta:( O

where t; = y* - v, to = y* - va.

Similarly
y* - JUs = JUs = JU; - (JU* = JUy - 3(JUL)? = 3(JUL)? = 9JU;.

We find
o e xr 552
(QU)_H)%JU5§ZQ®JU5=ZQ< ?”1:( 0 9v1 9ve ) >,
T : ( 9’)/2 9’)/1 )

[an}

where r = (y*)2 cul, T2 = (y*)2 TU2.

Finally, we find that the general formula for V(1) is calculated by (y*) - (JUy)¥ =
(JU)F+2, for k> 1.

6.2.2 HY,(QU)

In this section, we want to calculate H 9U(QU ). To do this, we know that QU has

no v-torsion, and TU has v-torsion, QU C K*(BV (1)) — ku*(BV(1))[1/v]. Hence
HY,(QU) is the submodule of HY;,(K*(BV(1))) = K* - p consisting of elements from
ku*(BV(1)). This proves HY;(QU) = ku* - p.

6.2.3 HY(QU)

The purpose of this section is to calculate H}U (QU) by using the principal ideal
(y*).
By definition y* = p" — p. Since we have V(1), TU = 0 and then TU = 0,

it is not hard to calculate HJ}, (QU) = H(ly*)(QU), and see that H(ly*)(QU) = 0 for
negative degrees.

The main point here is that H ly*)(QU) = 0 below degree —2r and the order of its
Z-torsion increases with degree. To prove this, it will be helpful to use Proposition

%)
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Definition 6.2.3 ([36]). Let R be a ring. Let (M,)n,en be a sequence of R-modules.
A direct system consists of modules M,,, n € N and module maps a, , : M, — M,
for each m,n € N with m < n such that the following holds:

(1) apy is the identity mapping of M,, for all n € N;

(2) amn is the composite of ap—1p0n—2n-1 - - - Gmm+1-

Remark 6.2.4. If D is the direct sum of M, and each module M,, is identified by
its canonical image in D, and E is the submodule of D generated by all elements of
the form x,, — amn(zy) for z, € M,, then the direct limit of (M, ap, ) is defined by
hﬂMn =D/FE.

Proposition 6.2.5 ([36]). Let (M, am,n) be a direct system of R-modules over N. If
A € N such that a(aqr)(a+k+1) @ an R-isomorphism for all k > 0, then coligMn =
My.

Consider the exact sequence

0 — Hjy(QU) — QU — QU[L/y*] — H{,.,(QU) — 0.

Since QU is a graded module, so both QU[1/y*| and H(1 )(QU) are graded. We aim

y*
to calculate H(ly*)(QU) in degree n as

H(ly*)(QU)n = coker(QU, — (QU[1/y*])n).

Note that
*\a *\a *\a g
h%ITI(QUn (y—)> QUn74ar (y—)> QUn—2(4a'r’) (y—)> o ) = (QU[l/y*])m

where 29 is an isomorphism given by the natural map ¢, and a is the least number
so that n —4ar < 0.

In fact, this filtered direct system is constant at QU_,, = JU g, if n=2k, for 2<k <
5. Applying Proposition we see that JU = (QU[1/y*])n, for k € {2,3,4,5}.

Therefore

—~

y*a/\

H{y(QU), = coker(QU, — JUy),

Now, it is easy to see that H(ly*)(QU)n =0, for n < —2r = —4.
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If n> —4 and k > 2. We have
(QU) 4—JU5/y JUQ.
. —

(QU 2:JU5/y* JU1
H(ly*)(QU)o = JU,4/y* - RU
H,(QU)2 = JU3/y" - RU.

H{\ (QU)s = JUs/(y")* - RU.
H}, (QU)s = JUs/(y")* - RU.
H,o (QU)s = JU4/(y")* - RU
Hiy (QU)1o = JUs/(y")* - RU.

From this discussion, we find H, ! (QU )—on =0, for n > 1, and

) (QU)12n = coker(RU QUn dar), for n —4ar <0.
We start to calculate H ! (QU ) for positive degrees.

o If n.=0, then H},.,(QU)o = JUs/y" - RU.

First, we need to write y* - RU as a matrix so that RU = Z + JU.
2

x
=y*-1:( 3 3 )
Y 3<y1:y-u1:( 3 32 )
ya=y " uz:( 0 372 3n )
Next, we can now express y* - RU as a linear combination from JU,. It is easy to see
JUs/y* - RU = 0, and by direct calculation, we obtain

H],(QU)o 2 JU/y* - RU 0.

S O

o If n=2, then H! () (QU)2 = JUs/(y*)? - RU.

Now, we want to represent (y*)?- RU by a matrix

2

e X X
02 A zo=@W)-1:( 0 9 9 )>
-RU =7
") 3<$1=(y*)2'uli( 0 9% 972 )
o= (y*)? u2:( 0 9y 971 )

As above, we write (y*)? - RU as a linear combination from JUs, and we see

wy w2
i) ‘ 1 0 |
T2 ‘ 0 3 ‘
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By direct row operations

Wy Wo
zo:| 1 0 |
T2 ‘ 0 3 |

Therefore
Hy (QU)2 = TUs/(y")? - RU = Z./3.
o if n =4, then H} . (QU)s= JUs/(y*)*- RU.
We have obtained (y*)2- RU, as in degree 2, is represented by a matrix

2

e X X
*\2 A IE():( 0 9 9 )>
-RU =7
) 3< z1:( 0 99 9y )
3322( 0 9’)/2 9’)/1 )

Now, we write (y*)?- RU as a linear combination from JUs, and we see

U1 U2
zo:| 0 3 |
I ’ -3 3 ’
X9 | -3 3 |

Again, it is not hard to see the matrix JUs /(y*)? - RU, and we do direct operation to
obtain

V1 V2
X1 | 0 3 ’

Hence

H\,(QU)s = JUz/(y*)* - RU = Z/3 & 1/3.
e if n =06, then H(ly*)(QU)g ~ JUs/(y*)® - RU.
We can represent (y*)3 - RU by a matrix

2

e x
*\3 A =) -1:( 0 27 27 )>
RU =7
(y") 3< =W)P ur:( 0 2Ty 27y )
2= (P uas( 0 20 20 )

wy w2
20 - | 3 0 ’
zi:] 9 0 |
Z9 | 0 9 ’
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We do row calculations to obtain JUs /(y*)3 - RU,

w1 w2
20 | 3 0 |
Z9 | 0 9 ’

Therefore, -
H,(QU)s = JUs/(y*)* - RU = Z/3 & 1/9.

Finally, we use the same argument for the rest of this work of positive degrees because
all calculations rely on (y*)?- RU, for a > 0. The results are displayed in Figure

H(ly*)(QU) H?y*)(QU) degrees
81] & [243] 7 18
0 0 17
[81]? Z 16
0 0 15
[27] & [81] Z 14
0 0 13
[27)? Z 12
0 0 11
9] ® [27] Z 10
0 0 9
[0]2 z 8
0 0 7
3] @ [9] Z 6
0 0 5
3] Z 4
0 0 3
3] Z 2
0 0 1
0 Z 0
0 0 -2

Figure 6.1: H?y*)(QU) and H(ly*)(QU).
The symbol [n] denotes a cyclic group of order n.

6.24 ku (BV(1))

If we have V(1), then there are no differentials in negative degrees and the local
cohomology spectral sequence obviously collapses.

Now, we have
ku*(BV(l)) = kuev(BV(l)) D kuod(BV(l))a
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where

kue,(BV (1)) = HYy (ku*BV (1)) = ku* - p,
and

kuoa(BV (1)) = £ (3" H oy (ku*(BV (1)) = £ H{yy (QU).

§6.3 Rank 2

The aim of this section is to calculate ku.(BV(2)). This can be done by using the
local cohomology Theorem. Since the local cohomology vanishes above the rank of the
group V'(2), the local cohomology spectral sequence is a finite spectral sequence.

6.3.1 IDEALS JUy
In this section, we want to calculate JUg, k > 1 for V(2). We have ker(a) =
(y), ker(8) = (z), and (y*) C JU C RU C Z[w]”, where «,f are 1-dimensional

representations of V' (2). Again, the notation Z,y as given in Figure indicates a
)

natural representations of the quotient by (z), (y) respectively.

V(2) = el x| 22|y |y | ay | 2%% | 29® | 2%y

e(x)=1-2 0 N[ 2 | e | m
e(@?)=1-@?2 0] 0|0 [%|v|2|m |7 |m»

e(y) =1-y 0l |72 |0 [0 | m| %2 | | »

e(zy) =1 — (zy) Ol || m|72|2| m 0 0

(@) =1-@)?%F [0|m|2|2|/m|0| 0 | % | m

e((®)?) =1-(9)? Ol |m |00 | %2 | 72 |mn

(@@ =1-@)@)? |0 |7 |[n|2| 0| 0 | | 7%
(@@ =1-@)* [0 | | m|v2 | n|n| » [ 0]oO0

Figure 6.2: The augmentation ideal, JU;.

Lemma 6.3.1. If a, 3 are 1-dimensional representations of V(2), then we have

e(af) = e(a) + e(B) — e(a)e(B),
where e(a) =1 —a, e(f) =1— 3, and e(af) =1—af.

Proof. To prove this, we note that

e(a)e(f) = (1 —a)(1 - f)
=l—-a-pF+af
—(1—a)+(1-8) - (1-aB)
= e(a) + e(8) — e(af).



110

Remark 6.3.2. From Figure[6.2] note that the first augmentation ideal JU; is defined
by an 8 x 8 matrix with complex entries 74 = 1 —w and 75 = 1 — w? excepting

the e-column, which is 0. Since x(z~!) = x(z), we need only display the values on
z,y, zy, xy?. Hence we just display an 8 x 4 matrix.

We start first to calculate JU, with the augmentation ideal JU; = Z{e(di) | 1<

i < 8}. We note that (y1,72) is an ideal in Zlw|, but JU; is an ideal in RU,

then the character values of elements of JU; all lie in the ideal (y1,72). In Re-
mark we find (e vy zy xy? 7! oyt (ay)t (xyz)_l) for the char-
acter up: (0 0 1 1 2 0 31 7 %) In abbreviated form we work with
(w Yy xy xy2), for wy: (0 1 M ’yg), and similarly for the other characters.

2

r 'y ry xy
ur:( 0 o o2 )
ug:( 0 2 v M)
- us: (0 0 mom )
(QU)—ngU1gZ§®JU1=ZQ< ug:( o o2 0) >7
us:( 1 o2 0 v )
ug:( 2 0 v 2 )
ur:( 2 m 0 m)
ug:( 2 2 m 0 )

where u; = e(Z) 9 =ce

1—(2y),us = 5255 2i/) =1-(@)°7,us = e((9)*) = 1-(§)*,ur = e(2(F)*) = 1 - (@) ()7,
Y

Next, (JU;1)?. By definition,

JUs := JU; - JUy = (JU;)? = = Z{e(éi)e(éj) 11<d,j< 8} - Z{row reduced},

where e(d;)e(d;) € (JU1)? because by Lemma [6.3.1) e(o)e(d;)e(d;) = (e(a) +e(d;) —
e(a&i))e(éj) € Z{e(éi)e(éj)}. Therefore there are 31 products -e(d;)e(d;) for 1 <

i,j < 8. This means (JUp)? is generated as an abelian group by 31 characters.

One may then use row reduction to obtain an 8 x4 matrix for JUy so that the character
values of elements of JUs all lie in the ideal (vy1,72). Thus

xr Yy Yy wY
vp:( 3w 0 3w 3w )
vp:( 3 0 3 3 )
- v3:( 0 3w 3w 3w? )
(QU)_4§JU2§Z§\®JU2=ZQ< ve:( 0 3 3 3 ) >,
vs:( 0 0 3w 3 )
w:( 0 0 3w 3 )
vr:( 0 0 3 3w )
vg:( 0 0 3 3w )
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where the generators from vy to vg come from calculation of the 31 products in (JU7)2.

Next, (JUp)3. By definition, JU3 := JU;y - (JU1)? = (JU;)® . As a result, we find
this ideal is generated as an abelian group by 64 characters since it comes from the
product of JU; with (JU;)?. We do some row calculation to obtain an 8 x 4 diagonal
non-singular matrix

r Yy xy xY
wi:( 3y 0 0 0 )
wy ( 3’}’2 0 0 0 )
wg:( 0 3y 0 0 )
(QU)_6§m%ZQ®JU3_Zé\< ’U)4:< 0 37 0 0 ) >,
ws:( 0 0 3y 0 )
We - ( 0 0 3’)’2 0 )
wr:( 0 0 0 3y )
ws : ( 0 0 0 3’)/2 )

where the generators from w; to wg come from calculation of the 64 products of JU;
with (JU7)2.

As before, we note that the character values of elements of JUs all lie in the ideal
(71,72). On the other hand, our calculations after this ideal gives a diagonal non-
singular matrices to all the other augmentation ideals.

We carry on with (JU;)%. By definition, JUy := JU; - (JU;)3 = (JU;)*. The character
values of elements of JU, all lie in the ideal (v1,72). From this calculation, note
that y* € (JUp)* = ku®(BV(2)) = ku_g(BV(2)), and it is of degree -8. We do row

calculation

[

T Yy Ty TY
ti:( 9 0 0 0 )
ta:( 9w 0 O 0 )
- ts:( 0 9 0 0 )
(QU)ggJU4§Z§®JU4=ZQ< ty: (0 9w O 0 ) >,
ts:( 0 0 9 0 )
te:( 0 0 9w 0 )
tz:( 0 0 O 9 )
ts:( 0 0 0 9w )
where t1 = w1 +wo, ty = —%w%, ts3 = w3z +wyg, t4 = —%w%, ts = w5 +we, tg = —%wg,

tr = w7 + wg, and tg = —éw%.

Next, (JU;)5. This is by definition JUs := JU; - (JU;)* = (JU;)? so that the character
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values of elements of JUjs all lie in the ideal (7y;,72). We see

[

T Yy ooy xy
T : ( 9’71 0 0 0 )
ro:( 9y O 0 0 )

- rs: (0 9y 0 0 )

(QU)_lo%JU5%ZQ®JU5:ZQ< ra:( 0 9% 0 0 ) >
rs:( 0 0 9y 0 )

Te : ( 0 0 9’)/2 0 )
7t ( 0 0 0 9’}/1 )
Ty ( 0 0 0 9’)’2 )

where r1 = 3wy, r9 = 3wa,r3 = 3wz, 1y = 3wy, r5 = 3ws,rg = 3wg, r7 = 3wy, and
rgs = 3w8.

Now, (JU1)%. By definition, JUg := JU; - (JU1)® = (JU;)® so that the character values
of elements of JUs all lie in the ideal (y1,7v2). We see

)

x Y Ty Y
2:( 27 0 0 0 )
zo:( 27w 0O 0 0 )
- z:( 0 27 0 0 )
(QU)12§JU6%Z§®JU6:Z§< z:( 0 2w 0 0 ) >
(0 0 2T 0 )
z:( 0 0 2w 0 )
(0 0 0 27T )
zg:( 0 0 0 27w )

where zZ1 = 3t1,22 = 3t2,Z3 = 3t3,24 = 3t4,Z5 = 3t5, Z6 — 3t6,Z7 = 3t7, and zZ8 — 3t8.

We deduce JU; = y* - (JU;)? = (JUp)" so that the character values of elements of JU;
all lie in the ideal (~y1,72). We obtain

T Yy Ty Ty
pr:( 271 0O 0 0 )
p2:( 272 O 0 0 )
- ps:( 0 27y 0 0 )
(QU)14%JU7%Z§®JU7=ZQ< pa:( 0 272 0 0 ) >,
ps:( 0 0 27y 0 )
pe:( 0 0 279 0 )
pr:( 0 0 0 277 )
ps:( 0 0 0 27y )

where p1 = y* - w1, p2 = y* - we,p3 = Y w3, p4 = Y w4, p5 = Y -ws,p6 = Y* - we, pr =
y* - wr, and pg = y* - ws.

Furthermore, JUs = y* - (JU;)* so that the character values of elements of JUs all lie
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in the ideal (7y1,72). We find

r Yy Yy Ty

a:( 88 0 0 0 )

@2:( 8lw 0 0 0o )

- G:( 0 8 0 0 )
(QU)lﬁgJU8gZZ/S\®JU8:ZQ< g:( 0 8w 0 0 ) >7

:( 0 0 8 0 )

%:( 0 0 8lw 0 )

gr:( 0 0 0 81 )

g:( 0 0 0 8lw )

where ¢ = 3p1,q2 = 3p2,93 = 3p3,q4 = 3p4, g5 = 3ps, g6 = 3pe, @7 = 3p7, and gg = 3ps.

Finally, we deduce the general formula to calculate the ideals JUy, for V(2) is given by
(y*) - (JUL)F = (JUy)FF4, for k > 3.

6.3.2 H1 ,(QU)

In this section, we aim to calculate H ! (QU ) with negative and positive degrees

We begin first to calculate H ! (QU) for negatlve degrees. By Proposition we
find

o If n.=—4, then H}. (QU) 4 = JUs/y* - JUs.
First, we need to express y* - JUs U, by a matrix.

€T Y Y Ty

yi=y"v:( 2w 0 2w 27w )
yo=y* - ve:( 27 0 27 27 )
- ys=y"vg:( 0 20w 27w 27w? )
y*-JUQ—Zé\< ya=y " vg:( 0 27 27 27 )>
ys=y"-vs:( 0 0 2w 27 )
ye=vy*-vg:( O 0 27w? 27 )
yr=y*-vr:( 0 0 27 27w? )
ys=y*-vg:( O 0 27 27w )

Next, we write y* - JUs as a linear combination from the matrix J Us (see Section

, and we can now represent J/U\G Jy* - jﬁg

21 29 23 24 25 2z 27 28
w:l 01 0 0 0 1 0 1 |
y:/ 1 0 0 0 1 0 1 0 |
y3:] 00 0 1 0 1 -1 —1 |
il 000 1 0 1 0 1 0 |
ys:] 000 0 0 0 1 1 0 |
w:l 00 0 0 -1 -1 1 0 |
y7:/ 0 0 O O 1 0 -1 -1 |
w:l 000 0 1 0 0 1 |
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We do direct row calculation

1 22 k3 24 &5 26 <7 28
y2:/] 1.0 0 0 1 0 1 0 |
y1:] 0 1.0 0 0 1 0 1 |
y2:] 0 0 1 0O 1 O 1 0 |
y3:] 0 0 0O 1 0 1 -1 —1 |
ys:] 0 0 0 O 1 O 0 1 |
ys:] 0 0 0 0O 0 1 1 0 |
y7:/ 0 0 0 0 0 0 1 2 |
ye:] 0 0 0 0 0O 0 0 3 |

where y§ = y7 —ys and yd = ys + ys + Y5 + 2y7 .

Doing column operations

21 Z9 23 Z4 R 25 A7 23
yp2:/] 1.0 0 0 0 0 0 0 |
yp:l 010 0 0 0 0 0 |
ye:] 0 0 1 0 -1 0 -1 0 |
y3:] 0 0 0O 1 0O -1 1 1 |
w:l 0 0 0 0 -1 0 0 -1 |
ys:] 0 0 0 0O 0 -1 -1 0 |
y7:] 00 0 0 0 0 -1 -2 |
Ye:/ 0 0 0 0O 0O 0 0 -3 |

where 25 = 21 — 25, 25 = 22 — 26, 27 = 21 — 27, and 2§ = 22 — 23.

Again, we do column operations to obtain the required matrix

N
S
N
no
N
w
N
N
N
ot
N
o4
N
~4
N
w4

Y2 |
y1:|
Ya |
y3:|
ys |
y5:|
y7 ¢ |
Yg |

OO OO O OO
OO OO O o+ Oo
[lielelalal o)
OO OO+ O OO
OO O OO oo
OO OO O oo
O R O OO o oo
WO OO oo oo

where 2 = 23427, 2§ = za+28, 28 = 2§ +2a—(23+23), and 2 = 228 — (2 +24—23).

Thus, we deduce m/y* - JU, = Z/3 is generated by zg + (y* - ﬁ), and therefore
the result is
Hi,(QU) -4 = Z/3.

e If n = —2, then H(ly*)(QU)_g ~ JU;/y* - JUL.
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We need to represent y* - j(?l by a matrix

T =y"-

T2 =Y" -

- r3=y"-
y*-JU1:Z§\< T4 =y*-
x5 =y" -

r6 =Y" -

7=y

rg =Y" -

uj -
ug :
us :
Uyg -
Uus
Ug -
(Vg
ug -

AN N AN N S N S

T
0
0

I

M

M

92

972

972

Y
M
9y2

0
M
92

0
971
92

Ty
M
92
M
92
0
92
0

I

Ty

972
I
I

972
92
IM

~— — e e e e e

We use JUs = (971, 972), and express y* - jU\l as a linear combination from JUs, and
we do JUs/y* - JU;

T T2
z1:] 0 O
.IQZ‘ 0 0
zz:| 1 0
$4Z‘ 1 0
zs:] 1 0
.%'6:‘ 0 1
z7:] 0 1
$82| 0 1

We do direct row calculations

where ZL‘ér:l‘(g—ZL‘?-{—a?l, szx4—x5—x1+m2+mz{, T

+
xs—

=
fuy

=
)

S o oo oo o
[=NeloloBoNol e

:cg—m7—|—ar1—a;2—2a:g+xi.

<

<
w

(= ieleloNoll S ol

O =R OO = OO

w
<
i

—_ O Ok OO ~=O

<
W

SO OO OO

=
ot

=
[=>)

— OO OO+~ O
SO O ORKRO

=
ot

=<
=)

SO O RO~ OO
OO WL PRk OOoOOo

<
-

O R OO O~ F=O

r7

—_ O =

o w o

-
co

OO = = OO O =

+

3 = X3 — T5+ T2

—xér, and
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Doing column operations

ﬂ
S
<
[\V)
<
Wt
<
4
<
ot
<
>4
<
~4
<
o0}

[=NeleloBoNoBol S
[=NeloloBoNol e
S o oo o~ OoO o
S o oo O OO
SO o+, OO oo
OO WwWo oo oo
O W oo oo oo
W o oo oo oo

where 75 = ro — 13, rf =11 —rg, v8 =rF 45, g =0rd — (rf +16), I =

r;—i—ri—rg—i—m,and 7“;:7’;—(7'2—7“3—1—27“5—1—7"1—7"8).

This calculation records
JUs)y* - JUL = 7/307/3 7/3

is generated by r¢d + (y* - ﬁ), r+ (" J/\Ul) and rg + (y* - jﬁl) respectively, and
hence the result follows

Hi(QU) 2 =Z/3®L/30L/3.

This completes calculating of H (ly*)(QU ) for negative degrees. For positive degrees, let
us begin with n = 0, and we find H(ly*)(QU)o = m/y* - RU.

First, we need to write y* - RU as a matrix so that RU =Z + JU .

2

e T Yy xy TV
z=y"-1:( 0 9 9 9 9 )
zZ1 = y* cUuUt - ( 0 0 9")/1 9’)/1 9’}/2 )
zo=y"uz:( 0 0 9y 9y 91 )
N oon] =y ruz: (0 9y 0 9y 9y )

4 RU_Zg<Z4=y*'U4I( 0 9m In 92 O )>
zz=y"us:( 0 991 992 0 9y )
=y us:( 0 9% 0 992 979 )
zz=y*ur:( 0 9% 91 0 9y )
=y " ug:( 0 9% 9% 9 0 )

Next, we can now to express y* - RU as a linear combination from JUs. We compute
JU4/y* - RU
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t1 to t3 tg ts tg t7 g
o:] 1 0 1 0 1 0 1 0 |
4: 0 0 1 -1 1 -1 2 1 |
z:] 0 0 2 1 2 1 1 -1 |
zz:] 1. -1 0 0 1 -1 1 -1 |
4 1 -1 1 -1 2 1 0 0 |
i 1 -1 2 1 0 0 2 1 |
%:] 2 1 0 0 2 1 2 1 |
i 2 1 1 -1 0 0 1 -1 |
s:] 2 1 2 1 1 -1 0 0 |

In this calculation, we have obtained an matrix 9 x 8 matrix, and in order to reduce it
to an 8 x 8 matrix. We do some row calculations

~
—
~~
[N}
~
w
~
N
~~
ot
<+~
)
~
oo

IOO

—_

—_ o &
—_

(== e e B en B s B an Bl an B
[l ololNoNoNel e
OO OO O ===
OO O WO O
WO OO —=FEO

|
|
+:|
|
|

O O OO W
OO W o w
o w o o

_ + _ + + _ +
where z;—z;;—zo, 27 = 27 — 220 + z3 + 221, 25 —z5—(z0—|—z§f+2z1)+z7,

e =25 =220+ 23 +21, 28 =2 — (20+25 +21)+ 29, and 2 =20 — 221 + 2.

Doing some column operations

~
S
~
[N}
o~
wi
~
w3
~
o
~
S
~
~3
~
o}

20 ¢ |
+:‘

OO OO O oo
(= eloloNoNel e
W oo oo oo

282

where t§ =to+t1 —t3, tf =13 —ts , t7 =t5 —t1+t5, t§ =tf — (L3 +t2 —t5),
th=tf — (2t —t1 +t7), and tg =3 —to + 5.

Thus, we obtain

JUu)y" - RUZ/30Z/30L/3DL/30 L3
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is generated by tf +(y*-RU), t3 +(y*-RU), tf +(y*-RU), tT +(y*-RU), tg +(y*-RU)
respectively. Therefore

Hi(QU) =Z/30L/30L/3OL/I3DL/3.

o If n =2, then H}. (QU)> = JUs/y* - RU,

where JUsz = (371, 372), and we use the above matrix to calculate H(ly*)(QU)g.

We can now express y* - RU as a linear combination from JUs, and we compute
JUs/y* - RU to obtain

wp w2 W3 W4 W5 W Wy W8
1 1 1 1

—_

Z():’
21|
ZQ:’
23 ¢ |
Z4:’
25 ¢ |
Z6:’
27|

|

O OO W W wo o
W wwo oo oo
O W OO WoO oW
WO O wWo o wo
WO OO Wo w
OO WO wWwo wo
O WO OO WwWwWwoH
OO W W o oo w

Z8 ¢

As before, we do row calculations to obtain an 8 x 8 matrix

wp Wy w3 W4 Wy Weg W7 WS
1 1 1 1 1 1

OO OO O oo
OO OO OO W
OO O OO WwWWw
OO OO wo o
O OO W o wo
OO O W w oo
O W WO wow

where 23 = 25 — 320+ 27, 2] = (24— 320+ 27) — 21+ 20— 225, 2f = 26— 27+ 21+ 27,

and zg:(28—Z7—|—21—z2+2z;r)+zjf+zg.

We do some column operations
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g
s
S
“t
g
=4
g
o
g
St
g
~t
S
o}

coococoococorEg
coocococowo
cCooc oo wo o
cCocowo oo
cCocwo oo o
cCowvwoo oo o
cCwoooooo
cCooc oo o oo

where w; = w1 — wy, w; :w;—(wl—wg), w}f = w1 — W4, wg’ :w;—i-wl—wg,,

wg = wi +wf — (w1 —we), wi = w +wy — (w1 —wr) — 1/3wd, and wg =

6/9(wg — (wy + w1 —ws) —wy).

Hence, we deduce
JUs/y* -RUXZ/307/30L/30L/30ZL/9®Z/3DZ/9

is generated by wy + (y* - RU), wy + (y* - RU), wj + (y* - RU), wi + (y* - RU),
wd + (y* - RU), wi + (y* - RU), wg + (y* - RU) respectively.

Therefore

Hy(QU): = Z/30Z/3OL/3OL/3OL/IDL/3DL)9.

Since we work to calculate the local cohomology of QU for positive degrees, all cal-
culations are available in (y*)® - RU for a > 1. We continue to have the following
results.

o If n=4, then H.. (QU)s= JUs/(y")> - RU.

We can represent (y*)? - RU by a matrix

e x Y xy xy2
so=(y*)?-1:( 0 8 8 8 81 )
s1=(y*)? ur:( 0 0 8ly 8ly 8ly )
82=(y*)z‘uzr( 0 0 8ly 8ly, 8ly )

)2 nf s3=(y) ruz:( 0 8y 0  8lyr 81y )
(y)'RU_Z3<S4—(y*)2-u4 (0 81y 81y 8lye O )>

ss=(y)?-us:( 0 8ly; 8lyg 0 8ly )

se=(y)? - ug:( 0 8lyg 0 8ly 8lyp )

st=(y)? - ur:( 0 8lyp 8lyy 0  8ly )

(v") (0 )

81’)/2 81’)/2 81’}/1 0

As before, we can write (y*)2- RU as a linear combination from JUg
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Z1 Z2 23 24 25 Z¢ 27 28
so:] 3 0 3 0 3 0 3 0 |
s;:] 0 0 3 -3 3 -3 6 3 |
sp:] 0 0 6 3 6 3 3 -3 |
ss:] 3 =3 0 0 3 -3 3 -3 |
s;s:] 3 =33 =36 3 0 0 |
ss:] 3 -3 6 3 0 0 6 3 |
ss:] 6 3 0 0 6 3 6 3 |
s;7:] 6 3 3 -3 0 0 3 -3 |
ss:] 6 3 6 3 3 -3 0 0 |

We do some row calculations

Z1 Z9 z3 z4
so:] 3 0 3
sg:] 0 -3 -3
S1 . ‘ 0

@)
N
ot
N
=)
N
)
N
00

OO O OO

OO OO oo
OO OO O W
OO OO © [an)
OO DO VWO WwWow
o © O O

where sg = s$] — S3, S;F 287—280+S§_+281, s; = 85—80—83_—281-1—8;_, sg =
58—250—1—5;—1—51, SI = 54—50—S§—s1+8§, and sgr = (86—2804-8;4-381)—8;_4-81—4-8;.

Doing column operations

I
R
N
o}
I\
Wt
N
4
N
ot
N
>4
N
~t
I3
o4

So:|
s3 1|

OO OO OO oW
OO OO o woo
OO OO v o oo
OO oo Vv oo oo
OO OO oo oo
O © OO O o oo
O O OO oo oo

Sy ¢

+ OO OO OO wo

+ _ + _ + o+ + _ o+ +
where 257 = 204+ 21— 23, 2] =24 —2u, 25 =23 —(21—25), 24 =2 — (23 + 22— 26),

vf = 2f — (22 — 21+ 27), and 2y = 2z — (20 — 2s).

Thus, we deduce
TUs/(y")? RUSZ/3GL/3DLI3CL)IDTLIIC LIS LIS L)

is generated by z1+((y*)*- RU), 22+ ((y*)*-RU), z3 +((y*)*- RU), 2 +((y*)*- RU),
z3 +((y")? RU), 24 +((y)*- RU), 27 +((y*)*- RU), 25 +((y*)* - RU) respectively.
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Therefore,

H QU)W = Z/3SL/3SL/3SL/ISL/I DL/ D L/I S L/9.

o If n =06, then H(ly*)(QU)G = =7I75/(y*)2 - RU.

As in degree of 4, we have obtained (y*)? - RU. We now compute jﬁ5/(y”‘)2 - RU to
obtain

<
—
<
N
<
w
<
N
<
ot
<
o
<
-
<
o0

[e>B en e BiNe BiNe BN M e BN e BV
O © © OO OO o Ww
O O OO VOO v wWw
O© O O © OO v oW
O© O O OO0 Vo wWwWw
[esBlen Ve Bl en BN B en BN B e BV
O O O OO VO o w
OO OV O OO O VW

a
|
d
|
Sq |
|
|
|
d

We do row calculations to obtain an 8 x 8 matrix

T T9 T3 T4 Ty Te r7 rs
so:] 3 3 3 3 3 3 3 3 |
st;:] 09 9 0 0 0 9 0 |
si;:] 00 9 0 9 0 0 9 |
s9:] 0 0 0 9 0 9 9 0 |
s§:/ 0 000 -9 -9 0 0 |
s;:] 00 0 0 0 27 9 -18 |
s/ 0 00O O 0 0 -9 18 |
sg:/ 0 00O 0O 0 0 0 =27
where s3 = s5— 350+ s7, s; = (54— 350+ 57— 81+ 52) — 253, s¢ = 86— s7+51+ 547,

and sg238—37+51—32+2s;—|—si—s§.

After doing column calculations, we find

1 7"; ’I“; 7’4+ T;r Tér T; ’I“g
so:] 3 0 0 0O O O 0O O |
s7:] 09 0 0O O O 0 0 |
s;:) 0 0 9 0 0O 0O 0 0 |
s9:) 0 0 0O 9 0O 0O 0 0 |
s/ 0 0 0 0 9 0 0 0 |
sf:/ 0 0 0 0 0 27 0 0 |
s/ 0 0 0 0 0 0 9 0 |
s/ 0 0 0 0 0 0 0 27 |
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+ _ + _ .t + _ + _ .t + _
wjlereJer =1r —r%_, T3 N rgr —(r1 —r3), r4+— 71 —+7“4, 7“5+— T3 ——trl —+7“57 Te =
ra 41y —(ri—re), r7 =ri+ry —(ri—r7)—1/3rd ,and rg = 2r7 —2/3rg —(r3 +ri—73).

Hence,

JUs/(y*)? - RU=Z/3BL/IBTLIIDL)I® LI ® /2T ® /9 S 7/21.

is generated by r1+((y*)*-RU), 5 +((y*)*-RU), 3 +((y*)*-RU), r§ +((y*)*- RU),
ry +((y*)? - RU), rg +((y*)*- RU), r7 + ((y*)*- RU), r§ + ((y*)*- RU) respectively.

Therefore, the result is

Hio(QU)s X Z/3OL/ISL/IG LIS L/ ®L/2T ® L/ D L/2T.

e If n =28, then H(ly*)(QU)B = m/(y*)Q - RU.

As in degree of 6, we have already calculated a matrix (y*)? - RU, and we need only
compute JUy/(y*)? - RU. We obtain

t ty ty ti ts te tr ts
sot] 9 0 9 0 9 0 9 0 |
s;:] 00 9 -9 9 -9 18 9 |
st 0 0 18 9 18 9 9 -9 |
s3:] 9 -9 0 0 9 -9 9 —9 |
sit] 9 -9 9 -9 18 9 0 0 |
ss:] 9 -9 18 9 0 0 18 9 |
sg:|] 18 9 0 0 18 9 18 9 |
st 18 9 9 -9 0 0 9 -9 |
sst] 18 9 18 9 9 -9 0 0 |,

t1 ta oty tyg ts tg tr s
so:] 9 0 9 0 9 0 9 0 |
+

ss:/ 0 -9 -9 0 0 -9 0 -9 |
st;:] 00 9 -9 9 -9 18 9 |
st:/ 0 0 0 -271 0 -—27 27 0O |
s/ 0 0 0 0 =27 0 0o 0 |
sg:/ 0 0 0 0 0 27 0 0 |
syl 00 0 0 0 0 27 0 |
s 0 0 0 0 0O 0 0 27 |

where s:}f = 51 — S3, 87+ = (87—280)4-8;—1—281, 55+ = (85 — s0 —s;{) — 281 —I—S;F,
sq = (ss—2s0+53)+ 81, 55 = (54— 80— 55) —s1+5sg,and s§ = (s¢ — 250 + 55 +
351)—5;F+SI+$5+.

We do column operations to obtain the required matrix
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t1 to 3 ot ot otd tfotd
so:] 9 0 0 0 0 0O 0 0O |
s§:/ 0 9 0 0 0 0 0 0 |
s;:] 00 9 0 0 0 0 0 |
st/ 0 0 0 27 0 0 0 0 |
s§:/ 0 0 0 0 21 0 0 0 |
s§:] 0 0 0 0 0 27 0 0 |
sf:] 00 0 0 0 0 27 0 |
s/ 0 0 0O 0O 0 0 0 27 |

where t5 =ty +t1 —t3, tf =t5 —ts, t3 =15 — (t1 —t5), t& =t§ — (t5 +t2 —t5),
th=tf — (2tF —t1 +t7), and t =t —to + 3.

Thus
JU/(y*)? RU=Z)IS LIS LIS ZL)2T S L)2T & L)2T & L,/27 & T,/ 27.

is generated by t1 4 ((y*)*- RU), ta+ ((y*)?- RU), t5 + ((y*)*- RU), t{ +((y*)*- RU),
tf +((y*)? RU), t§ + ((y*)*- RU), t + ((y*)? - RU), t§ + ((y*)*- RU) respectively.

Therefore, the result is

H(QU)s =Z/9S LIS L/ISL/2T S L/2T S L/2T S L/2T & L/27.

e Finally, if n = 10, then H},.,(QU)1o = JUs/(y*)* - RU.

Again, we have (y*)?2 - RU, and we want to express it as a linear combination from
JU3 = (371, 372)

wp w2 W3 W4 W5 W W7 W8

sot] 9 9 9 9 9 9 9 9 |
s;:] 0 0 27 0 27 0 0 27 |
sot] 0 0 0 27 0 27 27 0 |
s3t] 27 0 0 0 27 0 27 0 |
sgt] 27 0 27 0 0 27 0 0 |
sst| 27 0 0 27 0 0 0 27 |
se:] 0 27 0 0 0 27 0 27 |
s;t|] 0 27 27 0 0 0 27 0 |
ss:] 0 27 0 27 27 0 0 0 |

We do row calculations
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w; w2 w3 W4 Ws We wy ws

so:] 9 9 9 9 9 9 9 9 |
sp:] 0 207200 0O 0O 27 0 |
sg;:] 0 0 20 0 27 0 0 27 |
s9:] 0 0O 0 27 0 271 27 0 |
s§:) 0 0 0 0 -27 -271 0 0 |
sf:] 0 0 0 0 0 8 27 -54 |
s§:] 00 0 0 0 0 —27 54 |
s§:] 0 0 0 0 0 0 0 81 |,

where s3 = (s5—380)+57, 5§ = (54—3s0+87) —81+852—253 , s = (s6—s7)+51+57,
and sg = (ss — 87) + 81 — 82 + 285 + s — s¢ .

Doing column operations

w1 w; w; w;f ’w;_ U)g_ w;_ w{;
s:] 9 0 0 0 0 0 0 0 |
s7:) 0 27 0 O 0O O O 0 |
si:) 0 0 27 0 0O O O 0 |
s9:] 0 0 0 20 0 0O 0 0 |
s/ 0 0 0O 0 27 0 0O 0O |
s/ 0 0 O O O 8 0 O |
s:) 0 0 0 O 0 0 27 0 |
ss:/ 0 0 0O 0O 0O 0 0 81 |

where w; = wy — wo, w; :w;—(wl—wg), w]f = w1 — Wy, ng :w;+w1—w5,

wg = wi +wf — (w1 —we), wi = w +wy — (w1 —wy) — 1/3wd, and wg =
2w —2/3wg — (wg +wy — ws).

Therefore
JUs/(y*)? - RU 2 Z)9BL)2T B L)2T B L)2T S L)27T S L)81 & 7,27 & Z,/81.

is generated by wi+((y*)*-RU), wy +((y*)*-RU), w3 +((y*)*-RU), wy +((y*)*-RU),
wd +((y*)2-RU), wg +((y*)?-RU), wi+((y*)?-RU), wg + ((y*)? RU) respectively.

Hence, we obtain

Hi(QU)10 = Z/9DL/2T D L/2T D L/2T D L/2T D L/81 ® Z/2T ® Z/81.

One may check in a similar way for the rest of the work by apply Proportion to

calculate H (1y*) (QU).

6.3.3 E,1-TERM
2

The Es-term is the local cohomology of the extension of QU by TU. The E,1-
2
term is formed by taking local cohomology of TU and QU. The Fj-term is then
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obtained by including the effect of the connecting homomorphism of the short exact
sequence

0 —TU — ku*(BV(2)) — QU — 0, (6.2)

which we view as a late di, and call it d;1 since it is a map on the E|1-term. Thus
2 2
dy1 : Hjy(QU) — HZ(TU).

We refer to this display as the E,1-term. In rank 1 there is no differential in negative
2
degrees. In rank 2 there is only a differential d,1 and it is forced by the fact that the
2
FE-term of the spectral sequence must be on the 0,1 and 2 line.

Our results of H (ly*)(QU ) on the F, 1 -term display as in Figure

6.3.4 FE5 -TERM

The goal of this section is to calculate H}, (ku*(BV(2))) and H?%,(ku*(BV (2))).
In fact, we need only find ker(d, 1 ) and coker(dl% ), where

dy1 : Hyp(QU) — Hy(TU).

The differential d,1 is of bidegree (1,0), and the Es-term consists of the d;1 cycles on
2 2
the 0-line and the d;1 homology on each higher line. Since d;1 preserves the torsion
2 2

subgroup, the sequence ([6.2)) is an exact sequence of chain complexes. It is suitable to
pass from E;1 to Ea-term.
2

Now, by Proposition QU only has local cohomology in degrees 0 and 1, and TU
has local cohomology is given by

Hi(TU) = H(TU) @ Hy(2°TU) @ Hy(2TU) @ - - @ HLy(S?7'TU).

This is enough to find the structure of (H}(QU)/3HY;(QU))Y as a module over
PC = Fs[y1,y2] with |y;| = 2. In this Chapter, we calculate H}U(QU) as an
abelian group, and in order to obtain Fs-term we will show that the PC-module
(H},(QU)/3H},,(QU))Y is generated by its elements in degrees > 0.

The following Conjecture will be used to find ker(d;1) and coker(d;1) on the E-term.
2 2

Now, consider an exact sequence
dy1
0 — Hby(ku*(BV(2))) — Hiy(QU) —2 H2(TU) — H2y(ku*(BV(2))) — 0.

Since the codomain of the map d;1 is dual of a free module on a generator of degree 4,
2
d, 1 is determined by its effect in degree -4. Since HY;(QU) is 1-dimensional in degree

-4, it is enough to show it is non-trivial. Since the local cohomology spectral sequence
collapses and ku,(BV(r)) is connective, we will prove that H32; (ku*(BV(2))) = 0
below degree 4 (see Figure .
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Conjecture 6.3.3. The PC-module (H};(QU)/3H},(QU))Y is generated by degrees
4 and 2 over PC.

Remark 6.3.4. For a proof of the analogue for prime two see [10, 4.5.2, page 93-94].

6.3.5 ku,(BV(2))

In this section, we aim to calculate the complex connective K -homology by using
the local cohomology of V' (2) for p = 3. This is done by applying (6.1]), and note that
differentials are all forced by the fact that ku.(BV(2)) is in degrees > 0.

We note that local cohomology is a covariant functor of ku*(BV(2)), so our calculation
of ku,(BV(2)) is also covariant. Thus the local cohomology Theorem shows that
ku*(BV(2)) is isomorphic to a type of dual of itself, and we obtain a duality property
for the commutative ring ku*(BV(2)) closely related to Gorenstein duality. In fact,
the appropriate commutative algebra shows that ku*(BV (2)) and ku.(BV(2)) contain
the same information up to duality.

Again, we consider the short exact sequence
0 —TU — ku*(BV(2)) — QU — 0.

Then we have an exact sequence

0 —— Hyy(TU) — Hjy (ku*(BV(2))) — Hjy, (QU)

1
15

C—> Hjy(TU) —— Hjy (ku”(BV(2))) — Hjy, (QU)

1
13

1
13

C—> Hjy(TU) —= Hjy (ku*(BV (2))) — Hjy (QU) )

L H3y(TU) — By (ku*(BV(2))) — Hi, (QU) — ...

The cohomology H7;;(QU) appears as the Oth and 1st columns of the Es-term of the

local cohomology spectral sequence, where H9;,(.) is in the sth column.

If 7 = 2, then the spectral sequence also collapses, and HY,(ku*BV (2)) = ku* - p.

For p = 3, we have TU = T = ﬁ; ~ PC(-8), and TU = PC(-8) @& PC(-6).

As above, we have only one differential which is d,1. The differential d,1 is surjective
2 2

with ker(d;1) =3 HY,(QU).

We have s s

ku.(BV(2)) = kusx @ ku.(BV(2)) = Z[v] ® ku.(BV(2)).

This means there is no non-zero differential on the FEs-term, and therefore Fo = E.
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In our case, we have kug) >~ luV Y2lu, and

ku*(BV(2)) = [BV(2), ku]* = [BV (2), lu]*®[BV(2), ¥2lu]* = lu*(BV (2))®X2lu*(BV(2)).

The Adams spectral sequence for p = 3 reads

Exty? (Fs, H*(BV(2);Fs)) = lu*(BV/(2)).

Since TU = TU (lu) = ker(lu*(BV (2)) — LU*(BV(2))) = PC(-8), its local coho-
mology is given by
H3,(TU (1)) = HA(PC(~8)) = PCY(~8)(4) = PCY (~1),

and X2TU(lu) = ¥2PC(-8) = PC(-8)(2) = PC(—6). Its local cohomology is given
by
H} (S*TU(lu)) = Ha(PC(—6)) = PCY(—6)(4) = PCV(-2).

Now, we have

TU = ker(ku*(BV(2)) — K*(BV(2))) = PC(-8) @ PC(~6).

For local cohomology of T'U, we obtain

H2(TU) = H2(TU (lu)) @ H2(X*TU (lu)) = PCY (—4) ® PCY(-2).

Dualizing, we obtain

(HZ(TU))Y = PC(4) @ PC(2).

In fact, the codomain of each differential is annihilated by 3, and so the kernel of each
differential includes all multiples of 3. We now apply note that

dy,: Hy(QU)/3H},(QU) — HE(TU) = PCY(—4) & PCY(-2),

and the dual differential

/

(dy))": (Hju(QU)/3H]y(QU))Y «— (HL(TU))Y = PC(4) & PC(2).
d1
HZ(TU) —— Hjy(QU)

<
~
~
~
~
d ~
~

P (QU)/3HY,(QU)
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Since the local cohomology spectral sequence converges to ku.(BV(2)), and from the
above discussion, it is clear to identify the abelian group in each degree, and the action
of GL(V), and there is no additive extension problem. Therefore, ku,(BV(2)) can be
read from F,, = E5, and the main results are as follows.

As a module over ku*(BV(2)), we have

I{ZU*(BV(2)) = kuev(BV(2)) S kuod(BV(Q))a

where
Ktey(BV (2)) = ltey (BV(2)) @ X2lue, (BV (2)),
where
ltey(BV (2)) = lu, @ PCY(2)
and

2 lue, (BV (2)) = PCY (4).
From this, we find kue,(BV (2)) satisfies

kuey(BV (2)) = ku, & PCY(2) ® PCY(4)
=Z[v] & Coker(dlé)

= Z[v] ® H2(ku* BV (2)).
We record our results below, assuming Conjecture [6.3.3

BV (2
BV (2
BV (2

|I2

1

(BV(2))
(BV(2)=Zo3.
(BV(2)) = Z® 33
(BV(2)) = Z & 3°.
kug(BV(2)) = Z & 3.
kuyo(BV (2) = Z @ 3°.
(BV(2)) =
(BV(2)) =
(BV(2)) =
(BV(2)) =
(BV(2)) =

Sy

BV(2)) 2 Z ¢ 3.
kui4(BV(2)) = Z & 3'3.
kuig(BV(2)) = Z & 3.
kuig(BV (2)) = Z & 3'7.

kuspo(BV (2)) = Z & 3%+ for k > 0,

kuqo
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H3 (ku*(BV(2))) | H(TU) H,.(QU) H{ (ku*(BV(2))) | degrees
0 312 @ 31 | [81] @ [243)° @ [729)? Z 18
0 0 0 0 17
0 31 @ 310 [81)% @ [243)° Z 16
0 0 0 0 15
0 310937 | [27) @ [81)° @ [243)? yA 14
0 0 0 0 13
0 33t [27]3 & [81]° 7 12
0 0 0 0 11
0 3@ 37 9] @ [27]° @ [81)? 7 10
0 0 0 0 9
0 37 36 9] @ [27]° y/ 8
0 0 0 0 7
0 30 3° [3] @ [9)° @ [27)? y/ 6
0 0 0 0 5
0 3P o3t [3]2 @ [9]° 7 4
0 0 0 0 3
0 3t 33 [1] @ [3]° @ [9)? 7 2
0 0 0 0 1
0 3 @32 [1] & [3]° Z 0
0 0 0 0 -1
0 3203 3] 0 -2
0 0 0 0 -3
0 3 3] 0 -4
0 0 0 0 -5
0 0 0 0 -6

Figure 6.3: The E|1-term of the local cohomology spectral sequence for ku.(BV(2)).
2

The symbol [n] denotes a cyclic group of order n, and 3" denotes an elementary abelian
group of rank r.
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Hy (ku*(BV(2)))izs | Hy(ku*(BV(2))) | Hy(ku*(BV(2)) | Hy(ku*(BV(2))) | degrees
0 315 [27] @ [81)° & [243]? Z-p 18
0 0 0 0 17
0 313 (273 & [81]° Z-p 16
0 0 0 0 15
0 3t 9] & [27]° @ [81)? Z-p 14
0 0 0 0 13
0 39 9] @ [27]° Z-p 12
0 0 0 0 11
0 37 [3] @ [9)° @ [27)? Z-p 10
0 0 0 0 9
0 35 [3]3 @ [9)° Z-p 8
0 0 0 0 7
0 33 [3]° @ [9)? Z-p 6
0 0 0 0 5
0 3 3] Z-p 4
0 0 0 0 3
0 0 3] Z-p 2
0 0 0 0 1
0 0 0 Z-p 0
0 0 0 0 -1
0 0 0 0 -2
0 0 0 0 -3
0 0 0 0 -4
0 0 0 0 -5
0 0 0 0 -6

Figure 6.4: The FEs-term of the local cohomology spectral sequence for ku.(BV(2)).

The symbol [n] denotes a cyclic group of order n, and 3" denotes an elementary

abelian group of rank r.
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