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Abstract  

Injectable microsphere-based delivery systems have great potential in tissue engineering, since they 

remove the need for open surgery. Current bone filler systems for non-load bearing applications do 

not fully resorb and only allow regrowth of bone at the implant interface. Within this thesis, a tissue 

engineered injectable bone filler was developed and optimised. This was in the form of polymeric 

microspheres that support human embryonic stem cell-derived mesenchymal progenitor (hES-MP) 

cells for implantation. A polymer high internal phase emulsion (polyHIPE) microsphere fabrication 

system was selected over a range of other fabrication techniques including 2-photon direct write, 

projection based stereolithography and microfluidic particle manufacture. A combination of the 

microfluidic technique and the double emulsion method were selected for further study due to their 

rapid production rate and inclusion of customisable internal microfeatures (porosity). Using a 

EHA/IBOA copolymer system the manufacturing conditions were explored to allow independent 

control over the microspheres external diameter (70 - 1000 µm) and interconnected internal pore size 

(2 – 60 µm). Static culture of hES-MP cells over 30 and 60 days on EHA/IBOA microspheres were 

conducted and increased cell activity was observed. Cell enabled microsphere aggregate formation 

was observed and the steady ingrowth of cells was observed up to day 30. The detection of calcium 

and collagen deposits confirmed the presence of osteoblasts within the pores of the microspheres. 

Osteocyte like cell morphology was observed within the pores of the microspheres after 60 days in 

culture. A biodegradable PCL polyHIPE system was used to repeat the key experiments performed with 

the non-degradable EHA/IBOA system and similar results were observed. Injection studies found 

superior cell survival on porous PCL microsphere compare to non-porous microspheres. A 

Chorioallantoic membrane assay was used to determine angiogenic potential of both seeded and 

unseeded microspheres. An increased angiogenic response was observed for pre-seeded microspheres. 

This research began with initial selection of micro-particles for a tissue engineering injectable scaffold 

and successfully progressed to the pre-in-vivo stage, having investigated manufacturing conditions, 

biocompatibility, degradability, injectability and angiogenic potential. 
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PhD by pictures 

1: Different microparticle manufacturing methods trialled (chapter 3). 2: Manufacturing method investigated and optimised (chapter 4). 3) Culture with hES-MP 
cells and cell-microsphere agglomeration (chapter 5 & 6). 4: Measured cell ingrowth and identified cell types present (chapter 5 & 6). 5: Investigated cell survival 
while bound to microspheres during injection (chapter 7). 6: Angiogenic potential assessed using a CAM assay (chapter 7).  
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Chapter 1: Literature review and Introduction 

1.1 Tissue engineering 

1.1.1 Basic principles of tissue engineering 

The combination of a scaffold and cells in an engineered solution to restore, replace or imitate a tissue 

within the body for a regenerative application (figure 1.1). Tissue engineered constructs are being 

engineered to provide a solution for a diverse ranging of regenerative applications from skin patches 

for burns patients [1] to whole organ replacement [2, 3]. In this thesis, the application considered is 

one of bone tissue engineering.  

The common source of cells used for tissue engineering are stem cells [4-6]. Stem cells range from true 

omnipotent stem cells to progenitors of a single cell line. For applications stem cells are usually chosen 

which have their differentiation potential limited to a few different cell types, as this adds additional 

control over the resulting cell type. These cells can be obtained from many sources, although 

autologous stem cells are usually used if the cells are going to be used in a patient. Cells can be taken 

at birth from the placenta and stored [7] or stem cells can be harvested from the adult body [8]. Stem 

cells have been found in almost all tissues in the body, popular sources for future tissue engineering 

are those from the blood [8], fat [9, 10] or bone marrow [11] as these are easier to access and remove 

from the body within minimal surgery. 

The scaffold’s role is to help cells attach to the scaffold, and then proliferate and differentiate in-vivo 

to help restore or replace the surrounding biological tissue. For this they must have suitable 

mechanical stability, biocompatibility, biodegradability, porosity, surface chemistry and surface 

roughness to create an object a surgeon can implant and provide a suitable microenvironment for cells. 

The scaffold must direct cell differentiation to a desired cell type (or to maintain areas of stem cells in 

artificial stem cell niches [12, 13]). This can be done chemically (biologically) or through the use of 

topology and ideally through both. The differentiation of a stem cell is influenced by a wide variety of 

additional factors such as cell to cell and cell to extracellular matrix (ECM) interactions, surface 

chemistry, protein absorption, intracellular and extracellular signalling along with integrin and ligand 

connections [14].  

An ideal scaffold should be able to influence or control these factors to direct the differentiation of 

cells into the desired phenotype. By mimicking the natural structure of the ECM where a cell is found 

within the body it has been shown that this has an effect on the differentiation of cells to that 

phenotype [15, 16]. Controlling the morphology of a cell also has an impact on its phenotype [17], 

forcing a cell to morphologically resemble another cell has been found to exhibit those cells 

phenotypes [18, 19]. The mechanical properties of the scaffold are also linked to cell differentiation 



  Chapter 1: Literature review and Introduction 

16 
 

[15, 16, 20]. Different young’s modulus of a substrate have been shown to alter the differentiation of 

cells on the surface of the material [21, 22]. 

 

Figure 1.1. Diagram for the process of tissue engineering. Cells are extracted from the patient and 
isolated to the target cell type. Cells are then expanded up to the number of cells required. Cells are 
combined with the scaffolds and cultured in a bioreactor along with mechanical stimuli and growth 
factors. The scaffolds are then implanted into the patients. 

1.1.2 Bone tissue engineering 

Despite appearances bone is a living tissue like any other in the body. Bone is a composite of collagen 

and the mineral component hydroxyapatite. Bone is under a constant state of remodelling and can 

react to stimulus and heal damage from trauma. Many cell types and unique architecture form bones, 

along with a complete vasculature system. The skeletal system is not only for locomotion, support and 

protection but also as a reservoir for calcium. This vital tissue can become damaged beyond the ability 

of the bones to heal themselves to their original structure. Complex fractures and cancer can cause 

damage too severe to heal without surgical intervention. Advanced surgical procedures have been 

developed using ceramic fillers [23], titanium pins [24] or entire joint replacements [25] to name but a 

few. These surgical interventions usually remain within the body permanently and can cause biological 

problems such as the generation of non-degradable/removable wear particles, infection or mechanical 

issues such as shear loading. 
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Tissue engineering for bone aims to repair or replace the bone with functioning living tissue, which will 

become part of the patient over time. As bone is constantly remodelling, a biodegradable implant, if 

timed correctly will disintegrate as the natural tissue remodels and takes its place. Combining a scaffold 

with the patient’s own cells allows for the remodelling to begin not only at the interface of the implant, 

but throughout the implant. Many challenges currently exist in this field, many are common to all 

tissue engineering, such as issues of sufficient vascularisation and the need for multi-cell cultures, but 

others are more specific to bone, such as coping with the load bearing nature of bone and the 

comparatively slow remodelling. 

Disease states such as non-union fractures, voids and osteoporosis that require packing with a material 

to treat. The current options range from ceramic fillers, bioactive glasses and autologous bone fillers 

(see table 1). A significant drawback of these techniques is that while there may be fusion and ingrowth 

around the edge of implant there is little to no growth in the centre of the material. A tissue engineered 

solution may allow for complete healing of these wounds by enabling complete regrowth. Complex 

fractures can take months to heal completely, often requiring open surgery and the implantation of 

metal devices to enable full recovery. Tissue engineering is highly unlikely to replace metal implants 

but it could be used to prepare a site within the bone for metal implants where little bone remains, as 

may be found with revision surgery. Voids left within the bone after a cancer is removed could be filled 

with a viable construct to allow full remodelling without needing secondary surgery to harvest 

additional bone tissue [26]. Dental sockets within the jaw also require packing after a surgery to 

remove teeth [27].  

1.1.3 Materials for bone tissue engineering 

A wide range of materials are currently used for bone tissue engineering. Arguably the most prominent 

is metal which is used in joint replacement and pins. This prominence is due to the high stiffness of the 

material (compared to most other materials), along with its fracture toughness and biocompatibility 

for some metals, such as titanium. The development of resorbable bioglass has led to many different 

compositions of glass used for bone applications. Glass is a very strong material, especially under 

compression. The addition of Strontium into bioglass has had many successful applications as 

strontium has been found to cause a high level of bone growth when compared to scaffolds without 

strontium [28, 29].  

The ability to control the precise chemistry of polymers allows high levels of control and tailoring to 

the properties of the scaffold. Many synthetic polymers have been tested for tissue engineering such 

as polystyrene, poly-lactic-co-glycolic acid (PLGA), polylactic acid (PLA), polyglycolic acid (PGL) and 

silicone among many others and are reviewed extensively elsewhere [30]. Other polymers such as 2-

ethyl hexyl acrylate (EHA) and isobornyl acrylate (IBOA) contain a non-degradable carbon backbone 
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which limits their use in-vivo [31]. Thiol-ene polymers are formed by click chemistry of a reaction 

between a thiol and alkene to form an alkyl sulphide. 

Table 1.1. Table of current bone fillers in the literature 

Class Material Degradable Manufacture 
method 

Advantages/ 
disadvantages 

Refs 

Bioglass Lime 
phosphosilicate 
glass 

No Melted at high 
temperatures 

+ Biocompatible 
+ Osteoconductive 
+ strong interface binding 
with bone 
- Brittle 
 

[32] 

 Strontium 
bioglass 

No Melted at high 
temperatures 

+ additional Osteogenic 
effect 
+ Mild antibacterial effect 

[33] 

Bioglass/ 
cement 

Resin modified 
glass ionomer 

No  + Ease of handling 
- Unpolymerised polymers 
leach from material 

[34, 
35] 

Cement Calcium 
phosphate 
cements 

Yes (some) Sintering at high 
temperatures 
with the 
exclusion of 
water 

+ Osteoconductive 
- Exothermic setting 
mechanisms 
 

[36, 
37] 

 Hydroxyapatite Very slow 
(years) 

Various - Slow degradation 
+ Osteoconductive 

[38, 
39] 

 Poly(methyl 
methacrylate) 

(PMMA) 
cement 

No Sintering at high 
temperatures 

- Exothermic setting 
reaction 
- Non-stable interface 
+combined with other 
components have 
improved some issues 
 

[40, 
41] 

 Zinc phosphate 
cement 

 Sintering at high 
temperatures 

- Zinc causes 
encapsulation response 
- Brittle cement 

[42] 

 Zinc 
polycarbonate 

cement 

 Sintering at high 
temperatures 

+ Sets via non-exothermic 
reaction 
- Leaches unreacted metal 
particles 
 

[43] 

Natural 
polymer 

Soybean-Based Yes Thermosetting of 
defatted soybean 
curd 

+ Low immunogenicity 
- Very rapid degradation 

[44] 

 Demineralized 
bone matrix 

Yes Acid extraction of 
mineral content 
of bone 

- Variability in product 
+ Contains relevant bio 
molecules 
 

[45] 

 Autografts Yes Surgery from 
patient 

- Secondary wound site 
+ No immune rejection 

[46] 

 Platelet Gel Yes Platelets 
collected from 

+ No immune rejection  
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patient before 
surgery 

+ no secondary surgery 
site 
- Clinical efficacy not 
established 

Synthetic 
polymer 

Polylactic acid 
& 
hydroxyapatite 

Yes Polymer melted 
and mixed with 
hydroxyapatite  

+Hydroxyapatite 
component  
- Acidic build up on 
degradation 

[23] 

 PLA/PGA/PCL Yes Polycondensation + Biodegradable   
- Undergoes bulk erosion 

[47, 
48] 

 Polyhydroxy-
alkanoates 

Yes 
(generally) 

Produced by 
microorganisms 

+ Minimal inflammation 
- Time consuming 
extraction method 

[49] 

 Polypropylene 
fumarate 

Yes two-step reaction 
of two polymers 

+ Readily removable 
degradation products 
+ Variable mechanical 
properties 
- Not as widely researched 

[50] 

 

1.1.4 Top down and bottom up tissue engineering 

Top down tissue engineering is the traditional approach of creating a bulk scaffold as a single entity 

(figure 1.2).  The scaffold will often require tailoring to fit into the implant location as this will be patient 

and wound site specific. Bulk scaffolds allow for long range design features such as channels to induce 

vascularisation and importantly for bone tissue engineering usually have more robust mechanical 

properties than modular scaffolds. 

Bottom up tissue engineering is where a scaffold is built up out of smaller units in a modular fashion 

[51]. The smaller units are designed and manufactured independently and are then assembled at some 

point in time, up to the implantation of the scaffold. This can be weeks before the implantation or it 

can be during the implantation, depending on how the scaffold is designed. When producing a scaffold 

using the bottom-up approach by combining smaller building blocks, there are several general 

methodologies and more specific techniques which have been reported in the literature [52, 53].  
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Figure 1.2. Two methods of tissue engineering: the top down approach and the bottom-up approach. 
For the top down approach cells are combined with a monolithic scaffold and often encouraged to grow 
throughout the scaffold using a bioreactor. There are multiple methods for producing tissue engineered 
scaffolds by the modular route. These techniques often initially lack the more robust mechanical 
properties that can be engineered into precise and custom scaffolds but can be delivered via minimal 
invasive surgery. Reprinted with permission from Royal Society of Chemistry, journal: Soft matter. [51]. 
Copyright 2009. 

Random packing 

Random packing is where the building blocks are randomly combined without any long-range order. 

The structure can be formed either by packing of the modular units into a confined space, or by 

capillary action. A scaffold formed in this way has very limited mechanical properties as there is an 

absence of any initial interaction between the modular units. This can change over time, especially 

where cells are involved and can produce ECM or remodel the scaffold. Initially the random packing 

arrangement will not recover after shear, and will dissociate easily [54]. This provides a poor structure 

for use as a scaffold under load bearing applications unless further steps are taken. Some groups use 

gels in combination with the modular units to improve mechanical properties and bring rigidity to the 

scaffolds [55-57].  

Self-assembly 

Directed assembly (self-assembly) uses particles which attract and bind to one another, providing the 

structure with some mechanical properties. This allows the scaffold to recover from shear, and it will 

not disperse with agitation. Layer-by-layer techniques which allow for electrostatic interactions are 

examples of this methodology [58]. Microparticles designed to physically fit/slot together are another 
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example [59]. Scaffolds formed this way generally do not have any long-range order but do possess 

some (usually weak) mechanical properties. 

Additive manufacturing/directed assembly 

Additive manufacturing allows modular units to be placed precisely where desired, to build up a 

scaffold [60]. Particles are often linked or bound together in some fashion, such as heating, to provide 

permanent bonding [61]. This gives this manufacturing style the most robust mechanical properties 

under tension and shear when compared to the other methods of modular scaffold assemble. It is 

possible to form long range order in these scaffolds and to design complex 3D architecture. This allows 

for more control over the scaffold, but fabrication requires long time periods. In this it is unlike self-

assembly, which forms quickly irrespective of its scale (i.e. small quantities take as long to form as 

bigger quantities). Rapid manufacturing of scaffolds need to be redesigned for each 

application/patient.  

For the first two techniques either a mould is created or the modular units assemble in-situ, which 

allows then to directly take the shape of the implant site. Rapid prototyping requires imaging 

technologies to determine the dimensions of the target implant site [62]. For most applications, the 

rapid prototyping offer advantages in manufacturing and scaffold design that cannot be matched by 

random packing or directed assemble. For some specific applications, such as voids within the bone or 

even the brain after a stroke [63] (where open surgery is best avoided) it is beneficial to be able to 

deliver the scaffold through a needle which is not possible with additive manufacturing formed bulk 

scaffolds.  
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1.2 Applications for particles in tissue engineering 

1.2.1 Injectable scaffolds 

The main advantages of using particles for tissue engineering is that they can be injected into the body, 

obviating the need for open surgery. This style of key hole surgery is a far less invasive technique than 

open surgery. Once injected, the particles would fill a void of any shape within the body. In contrast a 

traditional scaffold would need to be redesigned based on scans of the patient, during the operation 

or having the patient’s wound altered to fit the shape of the implant. For tissue engineering, particles 

can be utilised in areas that are either difficult to access surgically or in an area where the act of open 

surgery would cause more harm than the scaffold would bring. Injectable scaffolds are however often 

unable to support load immediately once implanted and can therefore only be realistically used in non-

load critical areas. 

This practice is based on the previous methodologies of direct cell transplantation to the damaged 

areas within the body but where it is difficult to track these transplanted cells. Those studies that have 

tracked the cells have found that the majority of the cells do not remain at the site of implantation but 

are often found within the liver [64]. The advantage of utilising particles is the anchoring effect they 

have on cells. When these cells are bound to a substrate they are prevented from dispersing 

throughout the body and remain bound to the microcarrier [65]. Current bone fillers are usually 

formed from fragmented ceramic power or bone cement, designed to set in-situ [66]. A tissue 

engineered approach of cell loaded scaffolds would allow uniform bone formation throughout the 

implant [67]. For injectable gels, problems occur in structuring the scaffold, with it being very difficult 

to engineer any kind of porosity [68]. As self-assembling scaffolds are formed from solid particles, these 

can be made to incorporate pores, channels, cells, biological chemicals, and other functional features. 

1.2.3 Microcarriers for cells/stem cells 

Microparticles have been used to provide enhanced surface area for the expansion of cells in in vitro 

culture [69]. When cells are taken from a patient to expand up to a greater number for re-implanting, 

the standard method is to culture these on flat plastic. A large surface area is required to allow the 

production of the high number of cells required for tissue engineering.  Particles are used in a 

suspension system to greatly increase the area available for the cells to grow. This is especially true for 

porous microspheres which have an extremely high surface area. This idea was first developed in 1967 

by van Wezel and was used to mass produce vaccines for viral infections using mammalian cells [70]. 

The additional surface area for growing depends on the size of the particles, the number of particles 

in the system and the level of porosity in the particles. The materials used for these particles have to 

be denser than the medium the cells are grown in as this allows the particles to remain in suspension 

and not float on the surface.  
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A drawback to this process are that the particles while being stirred are exposed to shear stress. This 

can damage the cells, impede their growth or causes them to change in phenotype into mechano-

induced cells [71]. Collisions between the particles or with the exterior of the flask walls can damage 

or dislodge cells. Also, the retrieval of the cells from the culture is more difficult than flat surfaces, and 

depends on the porosity of the particles. However, for implantation as a delivery system it is not 

necessary to detach the cells from the scaffold. [72]. These cell carriers are consequently used as an 

implantation vehicle to directly implant the cells back into the patient. Porous particles can prevent 

cells being damaged or scrapped off during implantation via injection [73]. Within the body these 

particles can act as artificial (stem) cell niches, which could provide a constant production of 

differentiated cells to populate the wound/organ/tissue [12]. 

1.2.4 Microparticle aggregates 

There are two techniques which are used to aggregate particles into a larger structure. The traditional 

technique is particle sintering where particles are produced and then sintered together either 

thermally or chemically [74]. The newer technique is to allow cells which have been cultured on the 

surface of particles to aggregate together through cell division and ECM production.  

For particle sintering the particles are randomly arranged and are joined to one-another. This produces 

a very highly interconnected structure although with limited total pore volume [61]. Controlling pore 

size is achieved by controlling the size of the particles and thereby engineering the size of the gaps 

between particles. There are however many disadvantages to this technique. The first is that the 

sintering process usually requires an external treatment of heat or chemicals which is highly toxic to 

cells. This results in the cells only being able to colonise the structure after the sintering has taken 

place. It is then difficult to get cells to penetrate deeply with the structure unless elaborate perfusion 

techniques are used. The scaffolds also lose their ability to be directly injected into the body as they 

are now a large solid object unable to flow. If the particles where to be sintered inside the body to get 

around this disadvantage the sintering method would need to be non-toxic to host tissue ruling out 

most chemical treatments [75].  Salem et al. demonstrated biotinylated polymer particle self-assemble 

when avadin was added to the particles in solution, forming an agglomeration of the particles [76]. 

Aggregation through cells relies on cell proliferation and the production of ECM which gradually brings 

adjacent particles together to form a structure. This then allows for the direct injection of cell laden 

particles into wound sites. This avoids the need of open surgery which bulk scaffolds or externally 

sintered particles would require for implantation. This technique is reliant on the number and 

proliferation of the cells on the exterior of the particles. Therefore, the various culture conditions the 

particles and cells are exposed to could vastly alter the success of a cell binding scaffold. Parameters 
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such as duration of culture, particle size, particle porosity, mixing intensity, initial cell number are 

important considerations. 

1.2.5 Bioactive agent releasing scaffolds 

Biomolecules incorporated in the scaffold to be delivered upon implantation are a powerful way to 

enhance a scaffolds bioactivity. Drugs and biomolecules are included to enhance bone growth and to 

control and increase vascularisation. The compounds can be added to the scaffold material to be 

released on degradation; packed into the porosity of a scaffold to leach out over time; or bound to the 

surface of the scaffold. Commonly used biomolecules for bone scaffolds include bone morphogenetic 

protein (BMP) [77], Insulin-like growth factor (IGF) [78, 79], FGF [80], vascular endothelial growth 

factor (VEGF) [79, 81], heparin and transforming growth factor beta (TGF-β). BMP has been shown to 

increase bone formation, endochondral ossification and in low quantities to attract stem cells via 

chemotaxis [82, 83]. VEGF can recruit cells and initiate the formation of blood vessel rapidly but if 

expressed for too long can form ‘leaky’ vessels [84]. 

Drugs that have been previously used in studies include gentamicin, vancomycin, alendronate, 

ibuprofen and methotrexate [85]. Additionally, gene therapy is used to modulate transcription factors 

[86], mesenchymal stem cell (MSC) growth and differentiation [87] or to increase bone formation using 

plasmid encoded VEGF [88].  

1.2.6 Incorporation of polymer microparticles into tissue engineering scaffolds 

The incorporation of polymer microparticles have been included in gels or soft biomaterials to improve 

the mechanical properties of the gel. Even within a solid scaffold, micro-particle additions have the 

same effect as composite systems used widely in material science. Introducing particles within another 

matrix retards the progress of crack propagation through the material. This increases the materials 

toughness and increases the amount of energy required to deform the material. The polymer particles 

also provide a solid structure for cells to grow on. Cells within a high water content material such as a 

hydrogel are not observed forming the morphology typical of cells grown on a solid structure, which 

can affect the differentiation of the cells [69] or prevent cells which require surface binding from 

proliferating. The addition of microparticles is also a mechanism for adding growth factors and 

bioactive agents into a scaffold.  
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1.3 Porosity in scaffolds for tissue engineering 
Here we are considering porosity in general and not specifically in relation to porosity of particles. 

When considering the porosity of a material Bružauskaitė et.al. classified the pores into various classes 

based on scale. Macro-roughness (>100 µm), micro-pore size (100 nm – 100 µm) and nano-roughness 

(<100 nm) [89]. Different sized pores have different effects on cell migration, proliferation and 

differentiation along with more fundamental differences in the ability for nutrients to diffuse through 

the structure. Macropores are important for the formation of vasculature and nanopores can be 

beneficial for cell adhesion and the formation of ECM fibres [90-92]. When considering porosity; the 

extent (percentage) of the porosity within the material, whether it is interconnected, the size of the 

pores, the distribution of pore sizes and pore shape may all have an impact on the cell cultured on the 

material. 

1.3.1 Porosity in bone tissue engineering 

The widely reported ideal pore size for bone tissue engineering is one greater than 100 µm, sometimes 

reported to be 300 µm for in-vivo applications [93]. There is a vast amount of conflicting data to define 

a definitive ideal pore range and factors such as cell line used, age of cells or animals and location of 

implantation may all have different reactions to porosity. Smaller pores are acknowledged as 

increasing the surface roughness allowing the scaffold to perform better. Lee et al. found that when 

cultured on a porous polycarbonate membrane that when pore size was increased from 200 nm to 8 

µm the proliferation of MG63 cells increased and the osteogenic differentiation reduced [94]. The 

increase of expansion room made available by the larger pores may have allowed the MG63 cells to 

continue proliferating which would have prevented differentiation from occurring. When scaffolds 

with larger pores are compared to scaffolds with both large and small pores the ones with both pore 

types induced a superior response [95]. It is hypothesised that the combination of pore sizes combines 

the impact of two length scales and hence more closely mimicking natural ECM. Some groups have 

reported that ordered and disordered pore geometry has an effect on bone regeneration with ordered 

geometry producing compact laminar bone and disordered pores producing anisotropic bone growth 

[96]. Mechanical roughness of a scaffold has the beneficial effect of allowing increased binding 

integration along the boundary of the scaffold and the bone. 

1.3.2 The effect of porosity In-vitro vs In-vivo 

One unified statement from the literature is that the ideal pore size for bone tissue engineering is 

different for in-vitro systems and in-vivo systems. Results observed in in-vitro the lab are often not 

replicated when using an in-vivo animal model and vice-versa. Bone ingrowth into pores is superior in 

larger pores in-vivo and better in smaller pores in-vitro. In in-vivo studies pores around 100 µm tend 

to cause cells to become chondrocyte like before osteogenesis, potentially due to the hypoxic 
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environment [93]. Pores less than 50 µm in in-vivo studies tend to form fibrous tissue [97]. This is 

potentially due to the lower availability of oxygen within the body. Within in-vitro cultures abnormally 

high levels of oxygen are present which increases the diffusion rate into smaller porosity. Within the 

body this would not occur. It is perhaps by this limitation that creates such differences between in-

vivo and in-vitro experiments on pore size. 

1.3.3 Interconnecting porosity and cell migration 

Cells have been observed to migrate through pore sizes far smaller than the cell diameter and to 

extend processes through even smaller gaps. Differences are found between different cell types and 

some cells can pass through smaller gaps when co-cultured with another cell type. The size of the 

interconnections also play an important role in nutrient and O2 diffusion and therefore have an 

influence on hypoxia and diffusion range [98]. Saunders et al. found smooth muscle cells were able to 

pass through pores of 2 µm in diameter [99]. Kim et al. found that feeder cells (MEF and STO fibroblasts) 

were able to migrate through membranes 3 µm in diameter (1.6% cell migration) and far more easily 

through 8 µm pores (9.3% cell migration) but the cells did not pass through 1 µm pores [100]. For all 

the pores sizes trialled, cell body extrusions such as lamella were found to be able to cross the 

membrane and although these were more prominent in 3 µm or above they were still present in 1 µm 

pores allowing interaction between the feeder layer and the human embryonic stem cells the other 

side of the membrane [100].  
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Figure 1.3. SEM image of hES cells separated from feeder cells by a porous membrane. (a – c) pore size 
is 3 µm with cell processes from the hES cells observed interacting with the feeder layer by extending 
through the membrane. (d) The pores in the membrane for this image are 1 µm in diameter and cell 
processes are observed within the channels. Reprinted with permission from John Wiley and Sons, 
journal: Stem cells [100] . Copyright 2007. 

In research more related to bone, Li et al. found that human umbilical cord derived MSC could pass 

through a 3 µm gap in a membrane but could not pass through a 400 nm gap [101]. When comparing 

different pore sizes with MSC migration Peyton et al. found that more cells traverse through the 

smaller 12 µm membrane gap than the larger 17 µm gap [102] suggesting that a larger pore size does 

not always allow for better cell passage. This is also interesting as the group pointed out that 17 µm is 

the same diameter as the cell whereas 12 µm was smaller than the cell meaning that cells passed 

through pores preferentially where they had to restructure themselves to fit through.  

In a recent study Akino et. al found that MSC cells were influenced by co-culture with another specific 

cell type (keloid-derived fibroblasts) which enabled the MSC to migrate more efficiently through 8 µm 

pores than with normal dermal fibroblasts [103]. Here they also found that MSC cells were able to pass 

through 3 µm sized pores when cultured with the keloid derived fibroblasts [103]. Other groups have 

found similar results on cell migration with epithelial cells [104] and neutrophils [105]. This suggests 

that excretory mechanisms, potentially injury related mechanisms, can change the behaviour of cells 

to allow them to respond in ways not possible under normal circumstances. 
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1.3.4 The effect of porosity on mechanical and degradation properties 

Porosity in a material reduces the mechanical strength of the bulk material; but not the mechanical 

properties of which the cells are exposed to when in contact with the material. As porosity is increased 

a reduction in mechanical properties is observed [77]. This often places a limit to the extent that a 

material can include porosity before it becomes too weak to use in the desired application. Metal 

foams tend to be the material most able to include high levels of porosity while still maintaining 

suitable mechanical properties for load bearing application.  

Increasing the porosity of a material, especially if that pore structure is interconnected, vastly 

increased the surface area on which surface degradation can occur. This may limit a materials use or 

may be designed in to speed up the degradation of polymers with longer degradation times. The higher 

amount of degradation may also result in the production of a greater quantity of degradation products. 

For polymers, such as polycaprolactone (PCL) this results in a highly acidic by-product which can be 

very damaging to bone and bone cells. This acidic by-product is released over a much longer time scale 

with PCL than with polymers such as polyglycolide (PGA) and PLA for which the acidic build up occurs 

more rapidly, with less time to dissipate, resulting in a more acid local environment. 

1.3.5 Porous particles 

As described in section 1.2 particles are an excellent way to locally deliver cell therapies however the 

porosity needs, discussed above, are equally necessary for microparticles. Porous particles are able to 

allow cells to bind to both the interior and exterior of the particle[67, 106]. Cells on the inside or in 

surface depressions are better able to resist shear forces [107]. Porous cells also provide a higher 

surface area for cells to grow on, and allow for increased perfusion through particles if the porosity is 

interconnected.  

1.4 Manufacturing methods for particles used in tissue engineering 
Non-porous and porous particles in the order of 10 to 1000 µm, have been manufactured via numerous 

methods reported in the literature. Non-porous particles are generally easier to manufacture than 

their porous counterparts, as a secondary system are often required to produce the porosity within 

the particles. Any method of forming particles should ideally allow control over the size, shape, surface 

characterisation and porosity (if any). Having precise control over particle shape and properties is 

essential in maximising its functionality in various tissue engineering applications. There are many 

methods by which particles can be formed such as emulsion polymerisation [108], precipitation 

polymerisation, spray drying [109-111], hot melt encapsulation [112-115], gelation [116-119], 

grinding/milling [120-122] and electrospraying [123, 124]. Porous particles can formed via supercritical 

CO2 [125-127], thermally induced phase separation [128], freeze thaw cycles [129], solvent 

evaporation [130], particle leaching [131] and polymer high internal phase emulsion (HIPE)/double 
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emulsion formulations [132].  A selection of the techniques frequently used to manufacture particles 

is described in table 1.2 and the more relevant techniques for the thesis are described in more detail 

below. 
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1.4.1 Established particle manufacturing techniques 

Table 1.2. Table of the more common manufacturing methods for producing particles. 

Technique Description Refs 

Grinding/milling 

Potential the simplest method of producing particles of a polymer 
is to grind the material. Increased grinding will decrease the size of 
the particles produced although a polydisperse size distribution will 
always be present. 

[120-122] 

Supercritical 
CO2 

The polymer is dissolved in supercritical CO2 at high pressure and 
then the solution is rapidly decompressed allowing nucleation of 
the polymer, forming microparticles. 

[125-127] 

Solvent 
evaporation 

A polymer is dissolved in a solvent and then this mixture is added to 
a solution in which the solvent in insoluble. Within this solution, the 
polymer forms into spherical droplets. The solvent is left to 
evaporate which leaves behind solid particles of the polymer. This 
technique tends to form a distribution of particles sizes but the 
parameters can be tuned to create a reasonably narrow distribution 
of sizes. 

[130] 

Gelation 

A standard example of gelation is gelatine being exposed to calcium 
ions and solidifying into a solid structure from a viscous liquid. This 
system is often used to encapsulate cells within hydrogels. These 
encapsulated cells can then be used for bio-printing or for hiding 
cells from a body’s immune system. 

[116-118] 

Spray drying 

Polymer is extruded across a heat source, such as heated extrusion 
tip, into a fast flow of hot air and the particle is formed as the 
polymer cools. The high temperatures involved can damage any 
bioactive molecules included in the polymer. 86- 88 

[110, 111, 
132] 

Electrospraying 

Electrospraying is very similar to electrospinning but produces 
particles instead of fibres. Particle size can be altered by altering the 
solvent system used, voltage charge, extrusion rate, polymer 
concentration or environmental parameters such as temperature 
and humidity. 100 -101 

[123, 124, 
129] 

Hot melt 

Hot melt is often used to coat another substance, such as drugs, 
with a polymer coating. The size of the particles formed can be 
easily altered from 1 to 1000 µm in diameter by altering processing 
parameters.  

[112-115] 

Additive 
manufacturing 

A popular technology in recent years that allows the construction of 
objects from computer generated structures. This is discussed in 
greater detail below.  

[133-135] 

Flow 
lithography 

Fluidic channels can be used to turn particle production, which is 
usually a batch process, into a continuous process. Liquid pre-
polymer passes through the channel whilst a light source cures the 
polymer as it passes. This is discussed later in the chapter. 

[136-139] 

Micromoulding 
techniques 

This is a batch manufacturing process where a polydimethylsiloxane 
(PDMS) mould is created which contains shaped holes. Pre-polymer 
solution is poured into this mould and then cured. Particles are then 
ejected from the mould which can be used again. 

[139] 

Emulsion 

Emulsions are a combination of two immiscible solutions, with one 
of the phases forming particles within the other phase. Water in oil 
(w/o) or oil in water (o/w) emulsions can be utilised to form solid 
particles. A polymer high internal phase emulsion is an excellent 
example of an advanced emulsion system and this is discussed in 
detail later in the chapter. 

[108, 132] 
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1.4.2 Additive manufacturing  

Additive manufacturing has great potential in tissue engineering due to its unprecedented ability to 

construct 3D scaffolds with almost absolute freedom and control over microfeatures. One of the 

additive manufacturing techniques used to produce particles is projection based stereolithography, 

this technique incorporates a dynamic mask. A digital micro-mirror device (DMD) is an array of mirrors 

which can be programmed to reflect a specific image, with each mirror acting as a pixel of that image 

(figure 1.4). The DMD allows the projection of a pattern of light onto a surface [133]. This can be 

focused down to produce micron-scale features [134]. A DMD is often used to build 3D structures, with 

a new layer being added after the previous layer has been cured [135].  A DMD can easily make any 

2D shape, but requires time to produce 3D objects. The DMD is significant in that it can mass produce 

particles of any shape and is even able to produce different shapes on the fly during manufacture, 

which can ensure a high degree of mixing between different particle types. 

 

Figure 1.4. DMD set-up showing micro-mirror array projecting light towards either the substrate or the 
light dump depending on the angle of the mirrors on the DMD. Reprinted with permission from Royal 
Society of Chemistry, journal: Analytical Methods [140] . Copyright 2007. 

1.4.3 Microfluidic enabled rapid lithography particle manufacture 

Fluidic channels can be used to turn particle production, which is usually a batch process, into a 

continuous process. Liquid pre-polymer passes through the channel whilst a light source cures the 

polymer as it passes [136-139]. These channels are often formed from polydimethylsiloxane (PDMS), 

a silicone-based organic polymer, and the standard for microfluidics. This material has an advantage 

for photocurable chemistry because it forms a competitive oxygen layer a few microns thick from its 

surface, which prevents free radical polymerisation [136], thus preventing polymer from curing onto 

it. There are many variations of this technique reported in the literature [141]. Such as a single channel, 

which is patterned with selective curing from a Digital Micromirror Device (DMD) [141-144].  
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The main microfluidic technique used in the literature, to produce particles via a laser based system, 

is a process called continuous flow lithography. A similar but more advanced technique is called stop 

flow lithography (figure 1.5). In continuous flow lithography, the monomer is constantly flowing 

through a channel in a microfluidic and photocuring takes place within the monomer flow. In stop flow 

lithography, the velocity of the monomer is controlled, allowing the monomer flow to be halted so 

that photocuring can be applied to a non-flowing area. After photocuring the monomer flow is then 

resumed, allowing formed particles to be carried away from the curing site by the flow. Stop flow 

lithography requires an advanced level of control of the systems pressure, either via a pump or by 

microfluidic switches. The disadvantage to this microfluidic method is that new layers cannot be easily 

added to existing particles, rendering all particles produced 2.5D [137, 142]. The only control over 

particle height is by varying the height of the microfluidic channel [136]. There have been several clever 

solutions to this problem [138, 145], but none which offer complete control over the 3D shape. 

Both 1PP (photon polymerisation) and Two photon polymerisation (2PP) can be adapted for a fast 

throughput by stop flow lithography [136, 146]. This involves the continuous stop and start flow of a 

photocurable medium, controlled around the polymerisation process to create a suspension with 100’s 

of small structures. Recent developments include trapping cells within the photocured resin. PDMS is 

used as the throughput chamber due to its polymerisation inhibition properties at its surface [136, 

146].The same limitations apply as with the majority of 2PP processes. Limited patterning distance to 

the focal volume, slow patterning speeds and long-time scales for producing macro objects [146].  

A common research question directed towards stereolithography applications is their suitability for 

mass production. Stop flow lithography is a viable method for this problem, producing large quantities 

of particles with micro resolution. System outputs of 100 particles/second have been reported [136]. 

There is also an ever increasing requirement to produce micro particles with increasing resolution and 

chemical properties [136]. Increased resolution allows greater customisability of the scaffold and 

allows the control of cells from smaller length scales (such as nano features).  
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Figure 1.5. Shaped microparticles formed using a UV radiation source and a photomask in a PDMS 
channel containing flowing monomer. Reprinted with permission from Macmillan Publishers Ltd: 
Nature Materials [136]. Copyright 2006. 

1.4.4 Micromoulding techniques 

This is a batch manufacturing process where a PDMS mould is created which contains shaped holes. 

Pre-polymer solution is poured into this mould and then cured. Particles are then ejected from the 

mould which can be used again [139]. PDMS can reproduce nanometre sized features so this method 

can reproduce fine details. This can be combined with a flow technique as when monomer is flowed 

in; the channel expands allowing monomer through, once the flow stops the channel contracts forcing 

the mould down into the channel (figure 1.5). 

1.4.5 Emulsion 

Emulsions are a combination of two immiscible solutions, with one of the phases forming particles 

within the other phase (figure 1.6). This can be done in a stirred tank, which is described below, but 

also as a microfluidic device. These microfluidic systems can be fabricated to allow the pre-polymer to 

be encapsulated in an insoluble phase [137, 147-149]. Water in oil (w/o) or oil in water (o/w) emulsions 
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can be utilised to form solid particles. A polymer high internal phase emulsion is an excellent example 

of an advanced emulsion system and this is discussed in detail later in the next section.  

 

Figure 1.6. Diagram of both a water-in-oil emulsion and an oil-in-water emulsion. Discrete droplets of 
one phase are present in another continuous phase, with surfactant molecules surrounding the droplets. 
These molecules have a hydrophilic and hydrophobic section and allow the formation on an emulsion. 

  

Oil-in-water emulsion Water-in-Oil emulsion 

Oil Water 
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1.5 Emulsion templating 
The process of emulsion templating preserves the internal structure of an emulsion when converted 

to a solid material. An emulsion is a solution of two immiscible liquids, such as an oil and a water phase, 

where one phase encapsulates (continuous) the other as droplets (dispersed phase). As an emulsion, 

a HIPE is in a semi-stable state, with some reverting to distinct and separate phases rapidly and others, 

such as mayonnaise, remain in the emulsion state for prolonged periods of time.  The stability of an 

emulsion is dictated by the interfacial energy of the system. A system attempts to minimise the 

interfacial energy by reducing the surface area between the two phases. The ultimate reduction in 

surface area is a complete separation of the emulsion into two distinct phases. This is the end state for 

all emulsions, unless they are fixed by emulsion templating, with the only difference being the time 

required to return to that state. A reduction in surface area is also achieved by having larger droplets 

and therefore the formation of smaller droplets requires energy to be put into the system. The greater 

the energy placed into the system the small the droplets can become as the total surface area between 

the phases increases. The emulsions stability is therefore dependent on the time it can resist the 

destabilisation of the emulsion. 

The solid portion of a polyHIPE is formed from the monomer phase surrounding the droplet, which can 

be polymerised to leave behind a solid shell from which the water phase can be drained. A high internal 

phase emulsion (HIPE) is an emulsion of water and oil which can be formed with up to 99% porosity 

[150] but must contain at least 74% water. When the water content is greater than 74%, water droplets 

start deforming to allow higher porosity [151] (figure 1.7). The droplets are all distinct from each other 

at this stage with a thin layer of the continuous phase surrounding each droplet. Emulsion templating 

involves retaining the internal structure of an emulsion during the solidification process to form a solid 

structure. This is done by substituting a monomer as one of the phases and then curing the monomer. 

When combined with an initiator, the polyHIPE can be used as a curable material, forming structures 

which may include a high level of interconnected porosity. During the curing stage, some combinations 

of polymers and initiators allow the formation on interconnecting voids between the larger pores. This 

allows the easy drainage of the droplet phase from the material in post processing. 
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Figure 1.7. Emulsion template of the co-polymer system 2-Ethyl Hexyl Acrylate/Isobornyl acrylate 
formed from an emulsion via photocuring with 80% water content. As the polymer is formed from a 
HIPE emulsion the pores are interconnected with the neighbouring pores. 

1.5.1 Photocurable polyHIPE: what is it made of? 

Several different initiators exist for curing a polymer, such as a thermal initiator and a photoinitiator. 

polyHIPEs formed from these two classes are very similar in structure and in components used to 

manufacture them with a few noticeable exceptions, such as level of interconnectivity. Photoinitiators 

were used in the thesis so will be highlighted in the literature review. The following components are 

commonly used to formulate a polyHIPE. There are exceptions to those listed below but most polyHIPE 

material contain the following. 

Surfactant 

A surfactant is formed from two regions, one hydrophobic and one hydrophilic and their main function 

is to stabilise an emulsion. The surfactant is dissolved into the continuous phase [152] and resides on 

the interface between the two phases and allows the formation of a boundary between the two 

phases. A well-known example of this is household soap, which allows the emulsification of fat droplets 

inside water. When surfactant is added to the monomer it lowers the interfacial tension of the droplets 

[153] and also increases the likelihood of the formation of interconnected porosity [150]. While 

generally the more surfactant added to a system the more stable it becomes, it is possible to add too 

much surfactant which causes the self-assemble of micelles. Micelles are where the surfactant self-

assembles into a sphere with all the hydrophilic or hydrophobic tails arranged inwards to minimise 

surface energy and thus effectively removing surfactant from the system. The most common 

surfactant is Span 80 [154] although many others exist along with natural surface active materials such 
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as gelatine and starch. The addition of a surfactant decreases the surface tension and viscosity of the 

monomer solution. This causes thinner wall formation between the pores within the scaffold which 

increases the interconnecting pore size of the polyHIPE. The surfactant does not undergo any changes 

during the curing stage and can thusly be removed from the polyHIPE to remove any toxic effect this 

may have on cells. It can be difficult to ensure all surfactant has been removed from the polyHIPE 

during the post processing step although techniques like Soxhlet extraction are widely used [155]. 

Crosslinker 

The degree of crosslinking affects both the mechanical properties and therefore the cell response to 

the material. The crosslinker increases the number of branched connections within the polymer. 

Increasing the stiffness of a material is possible by increasing the crosslinker concentration within the 

monomer solution. Stiffness is well known to have a significant effect on cell differentiation [21, 156] 

and high stiffness materials may cause stress shielding in bone, reducing bone mass and density in 

surrounding areas [157, 158]. Being able to alter the stiffness of a material is highly desirable. It is 

worth noting that the stiffness of a material can be different at scales of magnitude. The materials 

stiffness on the microscopic scale to which cells experience can be different to bulk stiffness which is 

influenced by other factors such as porosity [159]. 

Polymerisation 

PolyHIPE materials can be formed by free radical polymerisation (thermal and photo-initiators), click 

chemistry [160], atom transfer radical polymerisation [161], ring-opening metathesis polymerisation 

[162, 163] and poly-condensation [164]. An interesting rout for producing polyHIPEs is photocuring 

due to the flexible method of deployment possible by optical instruments along with a very rapid curing 

speed. The rapid nature of the photocuring process allows for a greater variety of emulsions to be used 

that would have been unstable over the time required for thermal curing to occur. However, the 

thickness of an entity formed by photocuring is limited by the ability of the light to penetrate a 

material. This places a limit on the curing of large bulk structures that would be possible with thermal 

curing. A workaround exists in additive manufacturing where a larger object is built with the gradual 

addition of material. This approach would allow an entity of any practical size to be formed that would 

not be possible if curing a large volume of material at one.  

The initiator can be situated in either the continuous phase or the droplet phase and this has a 

significant effect on the resulting interconnecting porosity. With the initiator in the continuous phase 

the polyHIPE has an increased likelihood of containing open pores as the curing of the material is 

uniform, allowing shrinkage to occur which produces the interconnections. When the initiator is in the 

droplets the curing of the polymer occurs initially at the boundaries of the discontinuous phase and 

then cures inwards. This inhibits the formation of open porosity as the material is unable to contract 

uniformly to produce the interconnections between pores. 
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Monomer 

A monomer or a combination of monomers is used to form the bulk material of the polyHIPE. To form 

a continuous polymer phase within an oil-in-water emulsion the polymer must by hydrophobic. The 

stronger the hydrophobicity the more stable the emulsion will be. This can be a problem for 

biocompatible polymers as cell attachment is superior on hydrophilic surfaces. Oil-in-water emulsions 

can be formed with hydrophilic polymers but the droplet phase then has to be an oil. This greatly 

increases the post processing time and expense of forming a scaffold.  Hydrophobic surfaces can be 

treated with coatings such as plasma deposited acrylic acid or collagen to increase the cell absorption 

efficiency although this again adds time and expense to the scaffold forming process. A co-polymer 

system allows for the combination of material properties to overcome a shortfall of a particular 

material. The popular materials styrene is often used and produce very effective polyHIPEs although 

they are not biodegradable and are not desirable materials for tissue engineering scaffolds. 

1.5.2 Biodegradable polymers 

Popular biodegradable polymers are difficult to form into polyHIPEs because of the lower level of 

hydrophobicity of the polymers. PCL polyHIPEs have been formed by combining the PCL material with 

a secondary material with very hydrophobic properties. These polyHIPEs are successful however, the 

second polymer is often not degradable so the polymers cannot fully degrade when implanted. 

Polymer such as PCL and PLGA produce acidic by-products when these materials degrade which can 

adversely affect the surrounding biology. 

1.5.3 Porosity in polyHIPEs 

Increasing the volume of porosity in the polyHIPE can be controlled by changing the volume of water 

(discontinuous phase) added to the continuous phase. Increasing the porosity of the material increases 

the mass diffusion of nutrients and oxygen but reduces the bulk stiffness of the scaffold. 

1.5.4 Interconnectivity in polyHIPEs 

There is some debate on the cause of the formation of interconnections between the pores. In a study 

by Cameron et.al. where the transition of pores from the liquid to solid state were imaged, they stated 

that the contraction of the monomer transitioning to a polymer caused the interconnectivity [165]. 

Other groups argue that it is mechanical action, most likely in post-processing, which opens the thin 

polymer walls between the pores having observed the opening of pores during Soxhlet washing [166]. 

It is unlikely to singularly be due to this second method as polyHIPE has been imaged before any post-

processing has occurred still contains interconnected pores but it may be that both techniques can 

contribute to the interconnectivity.  
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1.5.5 Destabilising mechanisms 

Many methods of destabilisation mechanisms exist which cause different effects on the emulsion over 

time (table 1.3 & figure 1.8). They are not mutually exclusive and many can occur in parallel. The main 

effect by which many emulsions eventually collapse is coalescence. This is where the films between 

droplets become so thin that the adjacent droplets merge together into a larger droplet. Increasing 

the concentration of the surfactant in the system can increase the time scale over which this occurs. 

Table 1.3. Table of the different destabilisation mechanisms which can affect emulsions over time. 

Technique Description Refs 

Ostwald 
ripening 

Ostwald ripening results in the increase of the droplet size 
distribution with smaller droplets losing volume to larger droplets. 
This results in a droplet population of many large and many very 
small droplets. Over sufficient time this process will lead to the 
complete collapse of the emulsion. The minimisation of interfacial 
tension is the driver for this phenomenon as surface area is reduced 
as an outcome of the larger droplet formation. 

[167-169] 

Flocculation Droplets may converge and clump together in an emulsion, leaving 
an uneven distribution of droplets throughout the emulsion in a 
process known as flocculation. This is caused by van der Waals 
attraction between the droplets and can be reversed by adding 
shear force the solution, although this will not prevent flocculation 
from reoccurring. 
 

[167, 170] 

Creaming/ 
Sedimentation 
 

A density difference between the two phases of an emulsion will 
lead to either creaming or sedimentation. The greater the 
difference in densities the faster this will occur and the higher the 
viscosity of a solution the slower this will occur. If the droplets are 
denser than the surrounding continuous phase sedimentation 
occurs and the droplets will sink and congregate near the bottom of 
the emulsion. If the droplets are less dense they rise to the surface, 
in this occurrence the effect is called creaming. 

[171, 172] 

Phase 
inversion 

A dramatic destabilisation event can occur whereby the droplet and 
the continuous phase invert and swap roles within the emulsion. A 
source of great frustration when developing new emulsions, this is 
called phase inversion. During the phase inversion, a period of time 
exists where both emulsions exist simultaneously. The process 
occurs by the drive towards minimal surface energy. This effect can 
be capitalised on and induced as an easy method to encapsulate air 
or water and has many applications in the food, cosmetics and 
pharmaceutical industries 

[173] 
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Figure 1.8. Diagram showing the different destabilisation mechanisms described in the table 1.3. 

1.5.6 Pickering HIPEs 

Concerns exist about the inclusion of certain surfactants into a polymer designated for in-vivo use. 

Toxicity may arise from the surface when it leaches out of the polymer or when it is released by the 

degradation of the scaffold. Processing techniques exist to remove these but add additional cost and 

time to the material preparation. Biocompatible surfactants do exist and methods to produce HIPEs 

without surfactants have been developed [174]. Of great interest for surfactant-less emulsions are 

Pickering HIPEs. These Pickering HIPEs are stabilised by (nano-) particles which become situated at the 

interface between the two phases, acting as a surfactant [175]. This often results in a thicker wall 

diameter between the porosity and produces polyHIPEs without interconnected porosity [176, 177]. 

Phase separation 

Phase inversion 

Creaming 
Ostwald ripening 

Flocculation Sedimentation 

Standard Emulsion 
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More recently some groups have overcome this disadvantage and have produced larger 

interconnecting pores [159]. The addition of a nano-particles to stabilise the emulsion offers the 

potential to include bioactive materials such as nano-hydroxyapatite which can have osteoconductive 

effects once implanted [178, 179]. 

1.5.7 PolyHIPE microspheres 

PolyHIPE microspheres can be formed through the formation of a double emulsion (figure 1.9).  This is 

a multiphasic emulsion system whereby droplets of one phase, containing droplets of another phase, 

are dispersed in a continuous phase [180]. Alternatively posed, a double emulsion is hierarchical, it is 

an emulsion of an emulsion resulting in one emulsion being surrounded the same phase as the 

encapsulated initial phase. It is commonly referred to as a water in oil in water emulsion (w/o/w) and 

a counterpart oil in water in oil emulsion (o/w/o) can also be formed. Most techniques are currently 

two step processes, first creating the emulsion and then producing the double emulsion. 

 A few routes are devised to produce mono-disperse microparticles, membrane emulsification and 

microfluidics. Membrane emulsification allows improved control of microsphere production to 

decrease the spread of microsphere diameter, allowing a more monodisperse population (10 – 17 % 

size variation) [181]. A membrane is formed with uniform holes and the HIPE solution is passed through 

this membrane and then solidified [182]. Gokmen et al. used microfluidics to produce particles of 

polyHIPE [183]. This technique encapsulated the primary emulsion in a continuous stream of water 

and then photo-cured the particles. Using this method, they also produced cylindrically shaped 

particles by curing lines of the material in the tubing [183]. Direct write or curing into a stream of 

flowing HIPE is also possible as Dendukuri et.al. demonstrated with their microfluidic for making plugs 

and disks out of a ‘UV sensitive polymer’ [137].  
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Figure 1.9. (a) Standard emulsion with a water phase surrounded by oil with surfactant molecules along 
the interface. (b) Double emulsion with the emulsion from (a) surrounded by a second phase with 
surfactant molecules along the interface. This forms a droplet of an emulsion. (c) Many of the droplets 
of emulsion within a continuous phase resulting in a double emulsion. 
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1.6 Applications of polyHIPEs, polymer particles and porous microspheres in 

tissue engineering 
Cosgriff et.al. have developed an injectable polyHIPE system which cures in-situ within the body [184]. 

This offers a major structural benefit over using microspheres as immediately after curing the material 

has long range mechanical properties and stability. Akay et. al found that polyHIPE scaffolds containing 

100 µm pores resulted in faster osteoblast migration than when compared to scaffolds with pores of 

40 or 60 µm [185]. The pore size of the scaffold did not affect the total migration distance of the 

osteoblasts into the scaffolds (1.4 mm) which must be limited by another independent process such 

as hypoxia. Busby et al. used formed polyHIPE structures containing PCL, which they had to combine 

with another material (styrene, methacrylate or toluene) to allow the reduction in viscosity necessary 

for the PCL to be formed into an emulsion [186]. The group showed that the polyHIPE allowed the 

attachment of human fibroblasts but acknowledged their own lack of data on whether any of the cells 

had penetrated into the porosity. Non-degradable polyHIPEs formed from styrene and coated with 

laminin were shown to support neuronal cells up to 7 days and were superior to the plastic control 

[187]. In other reports it is found that elongated pores proved superior to spherical pores for neuronal 

cell culture [89]. 

Moglia et al. produced porous polyHIPE microspheres through a microfluidic method made from 

ethylene glycol dimethacrylate into which they added Bone morphogenetic protein 2 (BMP-2) into the 

continuous phase [188]. After testing for BMP-2 they found a loading efficiency of 73%. BMP-2 is a 

biomolecule which stimulates bone growth. There was no work with cells included in the paper to 

show the effect of the BMP-2 from their microspheres, however the effect of BMP-2 is well studied. 

Non-porous but highly roughened PCL/THF (tetrahydrofuran) microspheres were formed by Want et 

al. and were assembled into large aggregate structures via the crystallisation of the PCL [189].  

Bone marrow MSC cells were shown to be supported and to show superior osteogenic effects when 

compared to a salt leached scaffold alternative. PLGA microspheres formed by a single water in oil 

emulsion, with pores of 3.4 to 5.1 µm formed by the evaporation of the solvent, were reported on by 

Zhang et. al [130]. The group adapted the microspheres with a further surface coating of type 1 

collagen and could support Ovarian cancer cells in culture over 7 days. Several successful polyHIPEs 

have been formed from various thiol materials which are degradable [160, 190, 191], but the 

degradation products are not necessarily bioresorbable. 
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1.7 Mesenchymal stem cells and their differentiation 

1.7.1 The differentiation process 

Huang et al. divided the process of osteogenic differentiation into 3 stages in terms of the growth 

factors and ECM depositions involved [192]. During the first stage (days 1 – 4) there is increased 

proliferation of the MSC cells. The second stage (days 5 – 14) is one of early differentiation, marked by 

elevated Alkaline phosphatase (ALP) activity and the early deposition of type 1 collagen. VEGF and IGF-

1 are also upregulated during these early stages. The third stage (days 14 – 28) is marked by a fall in 

the ALP activity and a high expression of osteopontin and osteocalcin. The beginning of the bone 

mineral deposition also begins at this stage with calcium, collagen and phosphates being secreted.  
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1.7.2 The role of cells in natural bone 

The role of bone cells within bone (table 1.4) and tissue engineering (table 1.5) are discussed. 

Table 1.4. Table for the role of the major cells found in bone tissue. 

Cell Role in bone 

MSC 

MSC cells are self-perpetuating multipotent stem cells which can differentiate into 
several different cell types. Direct differentiation into osteoblasts, chondrocytes, 
adipocytes and adipocytes is possible and have been widely documented in the 
literature [193, 194]. The morphology of a MSC cell is a small cell body with a few long 
and thin cell processes extending from the cell body. 

Osteoblast 

Osteoblasts are part of the cycle of remodelling bone. These cells produce ECM and 
enable the mineralisation and growth of bone. Active in groups of cells they produced 
crosslinked collagen and hydroxyapatite. Osteoblasts produce bone in response to 
damage through trauma, osteoclast activity and can increase bone mass when the 
bone is under load by producing more bone than the osteoclasts resorb. Osteoblast 
activity can be inhibited to allow for osteoclasts to remove more bone than is 
produced. This can be in response to lack of loading on the bone or if the bone is being 
reduced to increase the amount of calcium available to the body.  

Osteocyte 

Osteocytes are the most common cell type within bone and are responsible for 
maintaining the bone and responding to damage or stress. Bone without osteocytes 
has been shown to be weaker than normal bone [195]. Osteocytes are terminally 
differentiated osteoblasts which become embedded in the bone matrix, after which 
they exhibit a morphological change and alter their genetic expression [196]. The 
formation of an osteocytes has long been considered a passive process of being 
covered by bone matrix [197]. More recent advances have begun to show that this is 
an active process whereby the osteoblast is triggered to burry itself inside the bone 
matrix. Osteocyte morphology is similar to a star like pattern (stellate) with many 
dendritic processes extending from the cell body and connecting to other osteocytes. 
The force applied to bone is thought to be sensed by the cell dendrites which stretch 
from canaliculi from osteocyte to osteocyte in a process known as 
mechanotransduction [195, 197]. There is some debate on whether osteocytes resorb 
bone in a similar fashion to osteoclasts for dynamic calcium release and measuring 
this is reportedly very difficult [198]. Osteoblasts have been shown to be able to 
migrate through porous networks [185]. A more detailed description is highlighted in 
an excellent review of osteocytes by L. Bonewald called ‘the amazing osteocyte’ [197].  

Osteoclast 
Osteoclast cells resorb bone and are differentiated from the haematopoietic lineage. 
They secrete specialised lytic enzymes and acid to degrade bone matrix [199]. 

Lining cells 

Lining cells are osteoblast cells which have flattened onto the surface of non-
remodelling bone. They are connected to one another by gap junctions and send cell 
processes into the bones canaliculi. They are thought to be either dormant 
osteoblasts which will be re-activated with the right chemical signals or dormant 
precursor osteoblasts and a source of osteoblast proliferation [200]. 

Chondrocytes 

Chondrocytes can be found within cartilage and produce mainly collagen and 
proteoglycan ECM. Chondrocytes can survive in highly avascular cartilage and are 
slow in proliferating in response to trauma when under these conditions. 
Chondrocytes are formed by MSC cells encasing themselves in collagen ECM which in 
time becomes the lacunae where the cell resides. Chondrocytes can be found in 
cartilage growth plates in adolescent bones. During human growth they undergo a 
process of endochondral ossification to help transform the surrounding tissue into 
bone [201]. 
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1.7.3 The role of cells in tissue engineering and in-vitro testing of scaffolds 

Table 1.5. Table of the cells used in tissue engineering and cell lines used for testing scaffolds. 

Cell type Role in Tissue engineering and testing in-vitro 

MSC 

Particular attention has been paid to MSCs from adults for regenerative 
technologies, due to their pluripotency [194]. MSC cells can be obtained from 
many sources such as bone marrow, adipose tissue, dental pulp, placenta and 
blood [202]. Problems exist with using MSC cells as it is difficult to observe 
where they migrate to once implanted and it is acknowledged that a large 
percentage die immediately on implantation. However, MSCs are one of the 
sole cell sources, which can be extracted from a patient, that can be used to 
produce large numbers of osteoblast or osteoclast cells. 

Osteoblast 

Osteoblasts cells are naturally non-proliferative once differentiated from a 
precursor cell line. Cancerous osteoblast cell lines such as MG63s are used to 
test scaffolds in-vitro and lay down matrix but these cannot be used for in-vivo 
cell loading [203]. 

Osteocyte 

Osteocytes are by nature non-proliferative and adapted to survive mildly 
hypoxic conditions. Proliferative osteocyte cell lines exist for testing scaffolds 
but these are not a cell line that it is possible to easily extract from a patient to 
use in tissue engineering [204, 205]. 

hES cells 

Human embryonic stem cells (hES cells) were first reliably grown in culture in 
1998 [206]. They have since started a new field of research with their ability to 
expand without any apparent limit in vitro. These cells have raised hopes that 
they could be a source of human cells for tissue engineering applications, where 
autologous cells were unavailable. Human embryonic stem cell-derived 
mesenchymal progenitors (hES-MP) are derived from HES cells by selecting for 
rapidly proliferating cells which proliferated in feeder free culture, over many 
passages [207]. These cell have the advantages of perpetual growth whilst 
removing some of the disadvantages associated with hES cells [207]. Much 
progress has been made in differentiating hES cells into multiple cell types [208-
213] but the risk remains of transplanting undifferentiated hES cells into a 
patient.  

hES-MP cells 

hES-MP cells are differentiated from hES cells and retain their stemness and 
can be continuously differentiated in this state. The cell line has a restricted 
lineage however, differentiation is limited to forming bone, cartilage, and 
adipose tissues. This narrower section allows greater dependency on the 
resultant cell type, which makes their differentiation easier to predict and 
control. This is of great importance for use in tissue engineering. A main feature 
of hES-MPs is that they cannot revert back into hES cells [207]. hES cells can 
cause tumours to form when implanted into rats [207]; Karlsson et al. found 
that a similar injection of hES-MP cells did not appear to cause a teratoma and 
instead formed a homogeneous and well differentiated tissue.   

1.7.4 Supplements used in culture of bone cells 

The following supplements are routinely used in culture to stimulate osteoblastic differentiation [214]. 

β-glycerol phosphate (β-GP) is used as a phosphate donor to enable mineralisation and has an 

additional direct effect on cell differentiation by influencing intracellular signalling.  The presence of 

just β-GP into culture media is still reported to produce mineralised ECM but when combined with 

Dexamethasone (DEX) the cells are able to produce mineralised deposits [214]. Ascorbate increases 

the volume and maturation of collagen deposited. The collagen produced then influences the cell 
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signalling causing increased alkaline phosphatase (ALP) activity. DEX is used in MSC systems to 

stimulate the differentiation of osteoblast cells.  

1.7.5 The effect of hypoxia on cells 

Hypoxia is an area of low oxygen concentration. Within the tissues of the body the level of oxygen is 

already very low, although this does depend on the specific tissue. Some cells are optimised to function 

in hypoxic conditions, like avascular tissues such as cartilage. The effect of hypoxia on cells is often 

dramatic. Many genes are switched on or off and the cell begins to release specific chemicals into the 

surrounding area that are designed to encourage vascularisation. Evidence is conflicted on whether 

hypoxia induces or inhibits osteoblast formation with Hirao et.al concluding from low (5%) O2 culture 

conditions that osteoblasts and osteocytes differentiated preferentially in higher (20 %) O2 

environments [215]. However, Utting et al. documented that hypoxia inhibited the growth of 

osteoblasts in their studies [216]. Reports that hypoxia increases the recruitment and differentiation 

of osteoclasts is well established [217, 218]. 

1.7.6 Cell co-culture impact on differentiation 

MSC cells have been found to become differentiated into osteoblasts, or upregulate osteoblast 

markers, when in the presence of either osteoblasts and osteocytes cells, even in the absence of 

osteogenic media [219-221]. It is not known if there is any contact between osteoblasts and MSC cells 

within the body but this effect has been shown to occur through culture in collected conditioned media 

[220]. Birmingham et al. found that osteocytes appeared to have a stronger osteogenic effect when 

co-cultured with MSC cells, although co-culture with osteoblasts also induced differentiation over a 

longer time frame. The group also found a synergistic relationship when both osteoblasts and 

osteoclasts were cultured with MSC cells [219]. However, there are some contrasting reports that only 

osteocytes can induce osteogenesis in MSC cells and not osteoblasts [222, 223].  
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1.8 Vascularisation of tissue engineered constructs 
Despite appearances bone is a highly vascularised tissue with a high density of blood vessels passing 

through the entire structure. Bone also plays an essential role in blood component formation, with the 

bone marrow residing inside bone responsible for the formation of platelets and red blood cells. The 

ability of a scaffold used for bone tissue engineering can be used to determine the likely success of 

scaffold for bone regrowth [224-227]. A poorly vascularised area will prevent cells within the scaffold 

from acquiring nutrients and oxygen which will lead to cell death[227]. However, even with rapid blood 

vessel formation the time required for the blood vessels to penetrate the scaffold itself often leaves 

the cells without oxygen for too long, resulting in scaffold cell death. This places a limit on the potential 

thickness of scaffold currently used to that of the maximum blood vessel growth over the period cells 

can survive for. The absence of nutrients and oxygen can have a subtler influence on the construct by 

causing non-uniform differentiation of cells or causing cells to differentiate into unplanned cell types 

[228]. Any cell death within the scaffold will release the contents of the cell into the local area which 

has a deleterious effect on the surrounding cells. The inflammatory response of the body when it 

encounters a wound site increases the vascularisation of the area [77]. This response can lead to 

negative consequences if the reaction is severe. 

1.8.1 Necessity for vasculature in tissue engineering  

The main tissue engineering solutions which been used clinically, are for tissues such as cartilage and 

skin patches grown in-vitro [229]. These tissues are either thin or avascular in nature where the supply 

of blood is not critical or can be easily vascularised. Some researchers argue that the largest problem 

facing tissue engineers is that of ensuring a suitable blood supply for an implanted tissue [224]. The 

vessels within the body are usually no more than a few hundred µm apart with the diffusion limit of 

oxygen in tissue calculated to be around 200 µm  

Larger tissues require the formation of rapid vascularisation when implanted in the body or risk 

becoming necrotic. Many strategies have been proposed for tissue engineering of large functional 

tissues and these will be discussed in the table 1.6. Before beginning it is important to define two 

concepts clearly, angiogenesis and vasculogenesis (figure 1.10). Angiogenesis is the sprouting of 

capillaries from existing vasculature [230, 231] whereas vasculogenesis is the spontaneous assembly 

of blood vessels where none existed before [232].  
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Figure 1.10. In vasculogenesis vessels spontaneously form from endothelial progenitors. Angiogenesis 
is the sprouting of vessels from existing vasculature. When vasculogenesis occurs, angiogenesis follows 
and causes the formation of a mature and organised vasculature network. Adapted, with permission 
from Nature Publishing Group, journal: Nature [233]. Copyright 2005. 

1.8.2 Current strategies in vascularisation 

The methodologies described below (table 1.6) describe the current approaches to vascularisation of 

a scaffold. These techniques are not always mutually exclusive and many can be combined for 

enhanced effectiveness. 
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Table 1.6. Table for different methods of vascularising tissue engineering constructs and scaffolds. 

Technique Description Refs 

In-vivo pre-
vascularisation 

 

Scaffolds can be implanted into a second site on a patient to allow 
for ingrowth of vasculature into the scaffold. This can then be 
removed and implanted into the desired site where it can re-
connect with the existing vasculature. This allows for the 
implantation of a fully vascularised and functional scaffold. There 
are some problems with this technique as it requires 3 separate 
surgeries, two more than a standard implantation. One surgery is 
required to implant the scaffold into a secondary site and a second 
to then remove it and finally a third to implant into the actual 
defect/desired site.  

[234, 235] 

Growth factor 
and cytokine 

inclusion 
 

Chemical and biomolecules can be included onto or into the 
scaffold via a variety of techniques that can speed up the 
vascularisation or angiogenic response. These molecules can be 
included within the scaffold if it is designed to degrade and release 
the molecules. They can be bound to the surface or simply 
contained within a porous structure to give rapid release upon 
implantation. Biomolecules such as VEGF are the most popular for 
engineering a vascular response. 

[236] 

Cell based 
vascularisation 

in-vitro 
 

Adding specific cells such as endothelial cells and smooth muscle 
cells which form vasculature in the body can allow the formation of 
vessels in-vitro for pre-implanting. Often a bioreactor is required to 
produce flow that allows the vessels to form. When this technique 
is successful it meets some of the shortfalls associated with in-vivo 
pre-vascularisation although the vasculature formed in-vivo is often 
far superior due to the larger number of cells available and 
biomolecules at the artificial wound site. 

[225] 

Biologically 
derived 

scaffolds 
 

Decellularised tissue preserves the structure of the vasculature and 
allows human cells to re-inhabit the existing vasculature for rapid 
vasculature formation. Both animal and cadaver tissues can be used 
however, there is an issue with reproducibility and the ever-present 
risk of disease transmission. Further problems exist getting 
endothelial cells to fully revascularise the tissue as capillaries are 
often so narrow it is difficult to get new cells to travel down these 
vessels to repopulate them. However, even if only the larger vessels 
are formed it is then much easier to grow new capillaries via 
angiogenesis than it would be to grow the complete vasculature by 
vasculogenesis or to encourage surrounding vessels to grow into 
the scaffold. 

[236, 237] 

Synthetically 
designed 
scaffolds 

 

Taking inspiration from biological structures but removing the 
unpredictable nature and disease risk it is possible to assemble a 
computer design scaffold via additive manufacturing. This 
technique can produce vasculature templates such as channels 
throughout the structure which would then allow nutrients to enter 
the scaffold and allow endothelial cells to form vessels. It is possible 
to use dual headed printers to print both the scaffold and cells at 
the same time. Additive manufacturing can be a very time 
consuming and low yield process but this field is rapidly advancing 
and hold great promise. 
 

[238] 
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1.8.3 Methods for testing vascularisation 

To ensure that a scaffold can provoke an angiogenic response a variety of tests exist (table 1.7). Tests 

for the study of vascularisation can be split into in-vitro and in-vivo testing strategies. Using these 

before implanting a scaffold allows for a greater probability of success and allows the engineer to 

redesign or test additional variable that would not be possible in an in-vivo study.  

Studying the stages of angiogenesis then allow tests to be designed which measure various stages of 

the process [230]. The first step is that endothelial cells break through the basement membrane to 

leave their standard location within the existing blood vessels. The endothelial cells then begin to 

migrate along a chemotactic gradient towards the stimulus of the angiogenic progress. The endothelial 

cells then begin to proliferate rapidly to ensure adequate numbers are available for the new vessels to 

form. The final step is for the endothelial cells to re-organise themselves into tubular structures to 

form blood vessels. With an understanding of these steps it is possible test whether a scaffold can 

stimulate any of these behaviours. 
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Table 1.7. Table for the most common methods for testing the angiogenic potential of a scaffold. 

Technique Description Refs 

Endothelial 
proliferation 

(in-vitro) 

The first technique uses the knowledge of the increased proliferation of the 
endothelial cells during natural vessel formation by testing for this elevated 
proliferation rate. In comparisons with controls it can be observed whether 
endothelial cells proliferate and to what extent. One problem with this 
technique is what source of endothelial cells to use as different cell 
populations can react very differently. 

[239] 

Cell migration 
(in-vitro) 

Cell migration assays demonstrate the ability of a scaffold to produce 
angiogenic factors which encourage the migration of endothelial cells. 
Scaffolds are separated from the endothelial cells by a filter and the 
endothelial cells can migrate through the filter. This allows analysis of the 
filter to analyse the distance of cells, although this can be a very time 
consuming method to analyse. 

[240] 

Vessel 
formation 
(in-vitro) 

Tube formation of the endothelial cells can also be measured in-vitro. The 
cells can be combined with a collagen clot material such as Matrigel which 
emulates the 3D nature of an in-vivo model. Measurement of spontaneous 
vessel formation can then be measured. 

[240] 

Synthetic 
perfusable 

vascular 
network (in-

vitro) 
 

A novel method for investigating angiogenesis is using an artificial network 
construct of endothelial lined electrospun fibres formed over robocast 
sacrificial material. Ortega et al. developed a synthetic perfusable vascular 
network which showed vessel like organisations of endothelial cells over 5 
days. The scaffold being tested for angiogenesis can be added to the areas 
in between the artificial vasculature and vessel formation can be measured 
growing out of the artificial vessels towards the scaffolds. 

[241] 

Organ culture 
assays 

(in-vitro) 
 

Organ culture assays are as close to achieving the complexity of an in-vivo 
system, in-vitro, as it is currently possible to do. The most popular technique 
it to remove and segment the aortic ring from a rat and then measure 
outgrowth and abundance of vessel like growths from this explant towards 
the scaffold. However, the process of angiogenesis usually occurs in 
microvasculature, whereas this technique uses an aorta which therefore 
does not simulate the in-vivo situation as accurately. 

[242] 

Chorioallantoic 
membrane 

(CAM) assay 
(In-vivo) 

A chorioallantoic membrane (CAM) assay involves implanting the scaffold 
under the shell and on the CAM of an embryonic chicken. The 
vascularisation response of the CAM after several days is analysed. We 
discuss this technique in greater detail below. 

[243, 
244] 

Corneal 
angiogenesis 

assays 
(In-vivo) 

Corneal angiogenesis assays are conducted by implanting the scaffold into 
a pocket on a living rat or rabbit cornea. An advantage is that as the scaffold 
is placed on the eye of the animal where it is possible to view the 
development of the vascular response by imaging the eye of the animal. 
The procedure to implant the scaffold requires considerable skill and this 
limits the number of animals which can be prepared at any one time for this 
assay. A further complication arises as it is very difficult to avoid the 
inflammatory response resulting from the implant. 

[240] 

Matrigel plug 
assay (in-vivo) 

The scaffold is combined with matrigel and implanted into the 
subcutaneously. The scaffold-matrigel complex is removed from the animal 
after 7 to 21 days and the measure of vascularisation is analysed. The skill 
required for the surgery is less than that required for the cornea assay. It is 
however difficult to observe the process of vascularisation and requires 
animal subjects. 

[245] 
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A CAM involves implanting the scaffold under the shell and on the CAM of an embryonic chicken (figure 

1.11). The CAM is analogous to the placenta found in mammals and is heavily vascularised. The shell is 

opened and the scaffold is inserted onto the membrane and the shell is then resealed to prevent 

infection. The egg is then allowed to develop over 7 days before the shell is re-opened and the extent 

of vascularisation can be measured.  

The CAM technique is popular as it relatively cheap cost and it is possible to conduct multiple tests on 

one CAM. In addition, the facile method of storage in an egg incubator allows a high number of sample 

testing possible. However, the technique is one which uses a chicken and does not use a mammalian 

species which does not make it ideal for testing. An in-ovo technique of the CAM assay has been 

adapted whereby the embryo is removed from the shell and kept inside a petri dish [246]. This allows 

the monitoring of the vascularisation response over time on the same samples and makes it easier to 

run several samples on one scaffold. While this has the appearance of an in-vitro test it is still utilising 

an entire animal and should be classified as in-vivo.  

 

Figure 1.11. Diagram of the implanted scaffold on an chorioallantoic membrane within a chicken egg. 
This is used as an in-vivo assay to determine the angiogenic properties of a scaffold. 
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1.9 Findings from literature review 
Currently used filler materials do not allow complete remodelling of a wound within the bone. At best, 

they allow minimal infiltration of the surrounding material and integration at the interfacial area 

between the bone and the implant. A tissue engineering solution could provide a superior treatment 

alternative to existing methods. Current tissue engineering solutions are usually monolithic scaffolds 

which require open surgery to implant. To circumvent this injectable scaffolds have been developed 

to obviate the need for surgery. These injectable scaffolds are a promising method to minimally 

invasively fill bones but the majority of these do not include cells, instead relying on cell infiltration 

from the surrounding wound bed. Injectable scaffolds loaded with cells require a rapid formation of 

vasculature to provide the scaffolds internal area with fresh nutrients and oxygen. In this thesis, it is 

proposed that a porous polyHIPE material which can be manufactured as microparticles suitable for 

cell loading and injection delivery has strong potential to meet these challenges. 
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1.10 Main aim:  
1. Produce an injectable cell carrying microparticles system using bone as a model. 

Specific aims: 

1. Choose a fabrication system that will allow the best compromise between particle production 

speed and the ability to include customisable micro-features. 

2. Test the biocompatibility of the materials used for the microparticles and elucidate the cell 

behaviours over long term culture. 

3. Produce a biodegradable system of microparticles and compare biocompatibility and 

osteogenic potential to the non-degradable system. 

4. Measure the injection potential of the microparticles and by assessing if they protect cells from 

the shear forces involved with injection. 

5. Determine the microparticles angiogenic effect using various culture conditions in an in-vivo 

CAM assay. 

The overall aim of the PhD was to produce an injectable particle system which can be used for non-

load bearing tissue applications such as a bone filler material. The was tested up to the stage where it 

would be ready for an in-vivo study. Injectable tissue engineering solutions obviate the need for open 

surgery which will reduce the risk of infections, reduces risk of complications and increase recovery 

time to minimise hospital stay. Voids within bone lead to increased fracture risk and unless treated are 

likely to fill with fibrous tissue which will greatly reduce the ability of the bone tissue to regrow. 

Introducing a tissue engineering solution of MSC cells supported on microparticle scaffold should 

encourage the regeneration of bone. This would support regeneration at the point of contact between 

bone and scaffold and throughout the cell-laden scaffolds. This tissue engineered solution could be far 

more successful than traditional bone packing material due to the inclusion of cells and porosity. To 

determine the functionality of the proposed microparticle system various tests need to be undertaken 

such as the biocompatibility, osteogenic effect and ability to vascularise. 

In Chapter 1 the existing literature will be explored around the research area. In Chapter 3 a variety of 

particle manufacturing methods are investigated and speed of production is compared against 

complexity and customisation of the particles produced. In chapter 4 the flexibility of the technique 

chosen in chapter 5 is evaluated terms of its ability to alter the microsphere size and porosity. In 

chapter 6 the biocompatibility and osteogenic potential of the microspheres are tested using an MSC 

like cell line. During this chapter, it is also found that the microspheres agglomerate together and that 

cells will penetrate the porosity and grow throughout the microsphere. These aspects are examined 

closely and evaluation of which differentiated cell types are present within the structure. In chapter 6 

several biodegradable materials are trialled to determine if the agglomeration, ingrowth and 

biocompatibility occur in this new system. For chapter 7 an in-vivo CAM assay is used to determine 

angiogenic potential of the microspheres and both the degradable and non-degradable systems are 

compared this way. Finally, in chapter 8 the project is discussed in terms of the main milestones and 
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initial aims of project. Included in the appendix is an additional chapter which contains results from 

early experimentation on microspheres seeded with neuronal cells for a potential injectable neuro 

tissue engineering application.  
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Chapter 2: Materials and methods 

2.1 Light based photocuring of monomers: Stereolithography 

2.1.1 Laser based photocuring of monomers using a digital micromirror device 

When combined with a laser source a digital micromirror device (DMD) allows the specific photocuring 

of monomers into a predesigned spatial pattern designated by the computer software. A DMD contains 

micromirrors which reflect incoming light either towards a photocurable monomer or a light block 

depending on their angle.  Polymer particles were manufactured using this principle. A continuous 

wave 473 nm laser (150 mW output power, MBL) was set up with the lens and at distances shown in 

Figure 2.1. All lenses were purchased from Thorlabs (Germany) unless otherwise stated. The initial two 

lens set-up caused expansion and then stabilisation of the beam (Ø18.0 mm N-BK7 Plano-Convex Lens, 

20 mm and 30 mm focal length respectively) before reflecting off the DMD (Texas Instruments 

Incorporated, TX, USA). The beam was focused through a second lens (Ø18.0 mm N-BK7 Plano-Convex 

Lens, 30 mm focal length) to stabilise the beam expansion of the DMD. This laser image was then 

reflected by a mirror (Broadband Dielectric Mirror) towards the monomer bath. A black and white 

image jpeg image created using Microsoft paint is uploaded to the DMD by its proprietary software 

(Vortran Laser Technology Inc, Sacramento, CA, USA) to allow for pattern projection. 

 

Figure 2.1. Schematic of DMD setup used to make the microparticles 

2.1.2 Preparing a monomer solution of polyethylene glycol for photocuring 

Photocurable polyethylene glycol (PEG) was prepared by mixing PEG monomer (MW=258, sigma 

Aldrich) with 4wt% photoinitiator 1:1 blend of Diphenyl(2,4,6-trimethylbenzoyl)phosphineoxide and 

2-hydroxy-2-methylpropiophenone. The photocurable monomer was then kept in a photo-protective 

container (glass vial, 20 ml, wrapped in silver foil (Tesco, UK)). 
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2.1.3 Image design and production for software controlling digital micro mirrors 

Images for the DMD were designed either in Autodesk inventor or Microsoft paint depending on the 

accuracy requirements. Images were formed in absolute black and white values and at 1024 x 768 

resolution before uploading to the DMD. 

2.1.4 Direct laser write of a photocurable monomer using single photon curing 

Single photon (to differentiate from 2-photon) initiators requires the energy of a single photon to begin 

polymerisation. This technique allows the laser to move over a monomer bath causing polymerisation 

directly under its path. A passively Q-switched DPSS microchip laser, (Pulselas P-355-300), with a sub-

nanosecond pulse duration and a variable repetition rate was used with an output wavelength set at 

355 nm with a 0.5 ns pulse width and maximum power of 12 mW, 16.6 kHz repetition rate (Alphalas, 

Gottingen, Germany) was expanded and stabilised before being passed through a 10x Carl Zeiss 1.3A 

microscope objective onto a motorised stage. The motorised stage (ANT130-XY (Aerotech, UK) for xy 

translation & z translationPRO115 (Aerotech, UK) could move in the x, y and z directions and was 

programmable using G-code (A3200 Software-Based Machine Controlled (Aerotech, UK)). A well was 

made on a glass slide, which controlled the depth of the structure, and the photocurable PEG was 

added to the well. The stage was then programmed to write a line 25 mm long in the x direction. The 

size of the y direction changed depending on requirements and was between 300 µm and 2 mm. 

2.1.5 Photo-polymerisation of computer designed objects using 2-photon manufacture  

2-photon initiators require the simultaneous energy of two photons to begin polymerisation, this 

allows the creation of a voxel within the polymer. A 3D computer designed object (via the computer-

aided design [CAD] software Autodesk Maya) was photocured within a monomer bath using this 

technique. A well was formed out of tape, with the centre (1 cm2) removed, and applied onto a glass 

slide. 0.5 ml of PEGd was added to the well. A passively Q-switched DPSS microchip laser, Pulselas P-

355-300, with 0.5 mW pulse duration and a variable repetition rate was used with an output 

wavelength set at 1064 nm and maximum power of 12 mW, 16.6 kHz repetition rate (Alphalas, 

Gottingen, Germany) was set at I = 2.05 and expanded up to fill the aperture of an x20 microscope 

objective (EC-Plan NEOFLUAR 10×, Carl Zeiss Ltd, UK). Using the SCA software and STL file is imported 

and sliced with the following settings slice DZ (0.009 mm), join distance (0.001 mm) and fill spacing 

(0.001 mm).  
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2.2 Microfluidic device manufacture and microsphere manufacture using said 

microfluidic device 

2.2.1 Manufacture of a microfluidic device for fluid encapsulation 

Microfluidic devices allow the manipulation of small volumes of liquid under highly laminar flow. These 

devices were manufactured to allow the fabrication of microparticles via encapsulation of one liquid 

within another. Lines photocured from PEG were formed using the same set up as in 2.1.4 using the 

design in figure 2.2. Lines were cured on a standard glass microscope slide and washed in isopropanol 

immediately after removal from the laser setup to removed uncured monomer.  Polydimethylsiloxane 

(PDMS) (Sylgard 184) was prepared using a ratio of 10:1 of base to initiator, and the resulting mixture 

was stirred and then degassed in a vacuum for 15 minutes. The silanising agent tridecafluoro-

1h,1h,2h,2h-tetrahydrooctyl trichlorosilane was added to the surface by vacuum deposition. The 

PDMS was then poured on the slide in a container, which controlled the total thickness to 14 mm. The 

PDMS was cured at 60°C for 3 hours and then removed from the container. 

A 1 mm biopsy punch was used to create the input/output channels. The PDMS was bound to a glass 

slide by both surfaces being exposed to oxygen in a plasma rig at 50 W for 2 minutes, and then both 

surfaces being pressed together. Flexible silicon tubes (1.5 mm external 0.5 mm internal) were inserted 

into the channels. 

 

Figure 2.2. Schematic for microfluidic chip layout 
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2.2.2 Encapsulation of oil in water using the microfluidic device 

Fluid encapsulation through microfluidics allows the manipulation of one liquid to surround another. 

Within the highly laminar flow of liquid in microfluidics the two liquids can be miscible as a boundary 

is maintained between the two solutions as they will only mix via diffusion. One syringe (50 ml) of dyed 

water and another (20 ml syringe) of mineral oil were prepared and plugged into the microfluidic 

device. The oil went through the central channels and the water from the two intersecting channels. 

A syringe pump (Genie-plus) was set at 5 ml/min for the water and 5 ml/hr for the oil phase. An optical 

microscope was used to record the formation on the encapsulated droplets.  

For the manufacture of PEG microspheres and EHA/IBOA polyHIPE microspheres same method as the 

encapsulation above is used with the photocurable polymer replacing the mineral oil phase. A UV lamp 

(350 mW) was placed downstream on the microfluidic chip to photocure the polymer. EHA/IBOA was 

dispensed at a slower rate of 3ml/hr. 

2.2.3 Iterations of microfluidic device to produce high yield continuous production with 

minimal user input during operation 

The final method of microsphere production went through a few iterations until a continuous 

manufacturing system was produced. Originally a microfluidic chip and syringe system was used to for 

the microspheres (figure 2.3). This was then simplified to a T-junction microfluidic and the requirement 

of a microfluidic chip was removed. Using syringes for the water flow required repeated halting of the 

system to add more water, due to the much higher flow rate (ml/min) of water when compared to the 

flow rate of the monomer (ml/hr). The final iteration was a closed loop system that recycled the water 

used but filtered out the microspheres. A curing chamber was included to allow extra curing time for 

the microspheres which allowed the used of very high flow rates.  
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Figure 2.3. The 3 main iterations of design for microsphere manufacturing. (a) Microfluidic chip device 
used for encapsulation with syringes. (b) Simplified design using T-junction microfluidic design 
principles. (c) Continuous flow T-junction setup not requiring operator interaction during 
manufacturing process. 
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2.3 Polymerising photocurable emulsions into microspheres and thin films 

2.3.1 Water in oil (EHA/IBOA copolymer) mixing to form a high internal phase emulsion 

All the chemicals were purchased from Sigma-Aldrich (Poole, Dorset, UK) and used as supplied unless 

otherwise stated.  

A high internal phase emulsion (HIPE) is an emulsion of two immiscible liquids with a high internal 

phase percentage. If the encapsulating phase is formed from a photocurable monomer, then this HIPE 

can then be polymerised into a solid and highly porous structure. The HIPE was prepared by mixing the 

monomers isobornyl acrylate (IBOA, 3.66 g) and 2-ethylhexyl acrylate (EHA, 1.56 g) with the crosslinker 

trimethylolpropane triacrylate (TMPTA, 1.41 g) using an overhead stirrer. The surfactant Hypermer 

B246 (0.21 g, Croda) was added and the solution mixed until it was dissolved. The photoinitiator 

diphenyl(2,4,6-trimethylbenzoyl)phosphine oxide/2-hydroxy-2-methylpropiophenone blend (0.35 ml) 

was added before the addition of the water. 

As the external phase is a photocurable polymer it is possible to cure the HIPE into a highly porous 

structure and to drain the internal water phase to leave open voids. To prepare a polyHIPE with 80% 

porosity, 28 ml of deionised water was added over 5 minutes in a drop-wise fashion into a 100 ml 

capacity beaker whilst the solution was stirred at a stir speed in between 300 and 1260 rpm using an 

overhead stirrer (IKA Lab Egg). After complete addition of the water, the emulsion was left to stir for a 

further 5 minutes. The specific stir speed used to investigate resulting porosity at different stirring 

rates were 320, 540, 765, 870 and 1260 rpm at room temperature. The emulsion was stored in an 

amber glass vial (Supelco) and used within 6 hours of preparation. The emulsion remained stable for 

48 hours although literature states that the pore size changes over time due to Ostwald ripening. To 

investigate the effect of heat on porosity the waters temperature was kept stable at 4, 15 and 30°C 

before addition to the monomer to form the HIPE at 320 rpm. 

2.3.2 Reaction for polycaprolactone methacrylation to form a photocurable monomer 

Commercial PCL was methacrylated within the lab to form a photocurable PCL monomer which could 

be used in forming polyHIPE structures. Hydroxyl terminated PCL (30.0 g, Sigma Aldrich) was dissolved 

in a solution of dichloromethane and trimethylamine (120 ml and 17.4 g respectively) and cooled in an 

ice bath to 1°C. Methacrylic anhydride (28.2 g) was added dropwise and the reaction was brought to 

room temperature and left to react for 24 h. The excess solvent and unreacted reagents were then 

removed under reduced pressure using a rotary evaporator and the methacrylated PCL was purified 

by in isopropanol and precipitating at -20 °C 3 times. 
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2.3.3 Water in oil (polycaprolactone) mixing to form a high internal phase emulsion 

Photocurable PCL monomer can be used to form the encapsulating phase of a HIPE to produce PCL 

polyHIPE structures after photocuring. Thiol-ene, TMPTA, PCL and the surfactant Hypermer B246 are 

combined in a vessel at 40 °C until the surfactant has dissolved. Once returned to room temperature 

the photoinitiator, chloroform and toluene are added. Water is added in a dropwise fashion over 5 

minutes with the solution stirred at 350 rpm. A more detailed description is given in Dr. Colin 

Sherborne’s thesis (“The development and characterisation of biocompatible emulsion templated 

foams for additive manufacturing”, Sheffield University).  

2.3.4 Water in oil (Thiol-ene) mixing to form a high internal phase emulsion 

Photocurable thiol-ene based monomer can be used to form the encapsulating phase of a HIPE to 

produce thiol-ene based polyHIPE structures after photocuring. Trimethylolpropane tris(3-

mercaptopropionate) (2.33 g) is added to TMPTA (1.74 g) and the surfactant Hypermer B246 (0.23 g, 

Croda). The reactants and then dissolved into 5.2 g of chloroform and stirred. Finally, the photoinitiator 

diphenyl(2,4,6-trimethylbenzoyl)phosphine oxide/2-hydroxy-2-methylpropiophenone blend (0.1 g) 

was added and the solution is protected from light by a foil covering. For 80% porosity 28 ml of 

deionised water is added in a dropwise fashion with a magnetic stirrer bar rotating at 360 rpm over 2 

minutes.  

2.3.5 Photocuring HIPE into porous microspheres using the closed tank stir reactor method 

The first main method employed within this thesis to form a double emulsion (water in oil in water) is 

by that of closed tank stir reactor CTSR (figure 2.4). The HIPE solution is separated by shear within a 

container of water to form droplets of HIPE which can then be photocured, producing polyHIPE 

microspheres. A 100 ml capacity beaker (50 mm diameter, 70 mm height) containing deionised water 

(40 ml) was set stirring at a defined rate using an overhead stirrer (Lab Egg, IKA). HIPE (2 ml) was added 

to the beaker in a drop-wise fashion with continuous stirring. The resulting double emulsion (w/o/w) 

was left to stir for 2 minutes. Stirring was subsequently stopped and the microspheres were cured 

immediately using the UV output of a mercury lamp (Omnicure S1000, 100 Watt) for 60 seconds.  

When the effect of water temperature was investigated, the temperature was set at points between 

5 and 60°C whilst maintaining a stirring rate of 320 rpm. The water temperature was controlled using 

a thermostatically controlled water bath (Stuart hotplate CD162, Stuart equipment) or an ice bath as 

appropriate. Constant temperature was maintained for 5 minutes before addition of the room 

temperature HIPE. For the investigation of how stir rate effects the resulting microsphere size 

distribution different stirring rates were investigated. The stirring rates used were 320, 540, 765, 870, 

1260 and 1500 rpm. After photocuring with UV light the microspheres were removed by filtration, 

washed in water 3 times for 15 minutes and then stored in ethanol. 
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Figure 2.4. Diagram of experimental set-up used to produce polyHIPE microspheres via the double 
emulsion technique. Photocurable HIPE is added to a stirred solution which disperse into spherical 
droplets which are then photocured by UV light into polyHIPE microspheres. 

2.3.6 Photocuring HIPE into porous microspheres using T-junction microfluidics  

The second method employed within this thesis to form a double emulsion (water in oil in water) is by 

that of T-junction microfluidics (figure 2.5). The HIPE solution is injected into a continuously flowing 

stream of water which buds off the HIPE droplets as they leave the needle entry point. The droplets 

are then photocured, producing polyHIPE microspheres. For the T-junction device, a small internal 

diameter (0.15 – 0.51 mm, Nordson EFD) dispensing tip was used to inject the photocurable HIPE into 

a 6 mm diameter silicone tube (Advanced Fluid Solutions) through which a continuous flow of 

deionised water was driven via a peristaltic pump (Masterflex L/S tubing pump, Cole-Palmer). The 

resulting droplets were immediately cured by the UV emission of a mercury lamp (Omnicure S1000) 

which was directed via a liquid-filled light guide (Figure 2.4). The water flow rate was controlled by 

altering the rotation rate of the peristaltic pump. The flow rate of the HIPE was controlled via a syringe 

pump (GeniePlus, Kent Scientific). The system was allowed to run for 30 minutes to stabilise and then 

microspheres were collected. A continuous stream of microspheres were produced, which were then 

collected in a 40 µm sieve (40 µm cell strainer, BD Falcon). 

To investigate manufacturing conditions on resulting microsphere size 3 parameters were altered.  

Monomer flow rate, water flow rate and dispensing tip internal diameter size all influence microsphere 

size. The effect of monomer flow was investigated by keeping other settings constant whilst being 

altered to 1, 3, 5 ml/hr. The effect of water flow was investigated by keeping other settings constant 

and altered from 100 rpm to 600 rpm in 100 rpm increments. The combined effect of these two 

settings was investigated by using 3 different monomer flow rates (1, 3, 5 ml/hr) at each water rpm 

setting (80, 160, 240 rpm). Finally, the effect of the diameter of the dispensing tip was investigated by 

changing the tip to 0.15, 0.25, 0.51 mm whilst keeping the other parameters constant at 3ml/hr HIPE 
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flow and 200 rpm water flow. To produce the smallest microspheres possible, we used a HIPE flow of 

0.25 ml/hr, 600 rpm water flow rate and a 0.15 mm tip size. 

 

Figure 2.5.  Diagram of experimental setup used for microsphere production via the microfluidic 
technique. T-junction microfluidic setup introduces HIPE via a dispensing tip which buds of once 
attaining a certain size, exact size dependent on other properties such as flow rate and viscosity. HIPE 
droplets are carried from the dispensing tip via continuously flowing water and are then cured via UV 
light into polyHIPE microspheres. 

2.3.7 Photocuring HIPE into thin films over glass coverslips 

Thin and flat layers of polyHIPE material was used for initial cell culture work before progressing onto 

culturing on microspheres.  A 500 µl of HIPE/monomer was added to a 13 mm glass coverslip and then 

cured with a mercury lamp for 30 seconds. 80% porosity EHA/IBOA monomer blend was used as was 

a 0% porosity (non-porous) EHA/IBOA monomer. The lack of porosity was caused by not adding the 

water phase to the monomer during stirring.  

  

Water pump 

Dispensing tip UV light source 

Flow direction 
PolyHIPE microsphere 

Uncured HIPE 
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2.4 Imaging of microspheres and analysis of both microsphere and pore 

diameter 

2.4.1 Imaging of porous microspheres using optical microscopy 

To understand how the manufacturing methods influenced the population of microspheres it was 

necessary to capture images of the microspheres so that they could be measured using software. 

PolyHIPE microspheres were imaged using a reflected light optical microscope (Miotic B5 professional 

series) and measured in ImageJ using a calibrated scale from a stage micrometre (imaging apparatus). 

Microsphere diameter was measured using the measure function on ImageJ and excel was used to 

calculate statistics (see 2.14). 

2.4.2 Imaging of porous microspheres using scanning electron microscopy 

To measure the porosity of the microspheres and to observe them at a higher magnification it was 

necessary to image them using a scanning electron microscope (SEM). Samples were mounted on 

aluminium stubs using adhesive carbon tabs and sputter coated with gold (SC500, emscope) with a 15 

mA current for 2 minutes at 0.05 atm. Images were then acquired using a SEM (Philips/FEI XL30 ESEM) 

operating with 15 eV electron beam energy. To determine pore size, microspheres were sectioned 

using a cryostat (Leica CM1860 UV) to 40 µm sections in Tissue Freezing Medium (Leica) which was 

allowed to evaporate for mounting and gold coating.  Pore sizes were measured from the SEM images 

using the inbuilt measurement feature of ImageJ software (NIH, USA), measuring all the pores in four 

fields of view for each condition. 

2.4.3 Methods used to measure microsphere diameters 

Microspheres were imaged under an inverted light microscope and a jpeg saved of the viewed 

microspheres. A stage micrometre was used at the same magnification to set the scale later in ImageJ. 

More than 3 images (for each measured >50 microspheres) were taken of each condition in a 

population.  

2.4.4 Methods used to measure microsphere internal pore size 

Pore sizes were measured from the SEM images using the inbuilt measurement feature of ImageJ 

software (NIH, USA). The scale was set according to the burnt in data bar with ImageJ’s scale 

functionality. A line was then drawn across each pore and the ImageJ function ‘measure’ was used. 

The resulting data table was then exported into excel for further data analysis and comparison. 
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2.4.5 Degradation study of polycaprolactone microspheres with standard and accelerated 

degradation 

A degradation study was required to determine whether the PCL microspheres would degrade and 

over what time scale. For the accelerated degradation study 0.2 g of microspheres were added to a 

glass container and weighed. 1 ml of either 0.1 M Sodium hydroxide (NaOH) or dH2O was added 

depending on the sample. NaOH was used for accelerated degradation and dH2O was used for standard 

degradation. Samples were also kept in air as a control. Samples were kept in a 37 °C dry incubator for 

60 days. The solution was then removed and the samples allowed to dry. Samples were then re-

weighed to determine the material lost over the time period. 

2.4.6 Manufacturing of solid polycaprolactone microspheres 

Solid microspheres were produced in the same manner as the polyHIPE microspheres but without the 

addition of the water during the HIPE step. Solid microspheres were required for both the injection 

study and for the CAM assay study for use in comparison to standard porous microspheres.  Both 

microsphere populations were made via the T-junction microfluidic method (see 2.1.3). The 

photocurable solution used to produce the solid microspheres was formed using the following method. 

Thiol-ene, TMPTA, PCL and the surfactant Hypermer B246 are combined in a vessel at 40 °C until the 

surfactant has dissolved. Once returned to room temperature the photoinitiator, chloroform and 

toluene are added. No water is added as would be used for a polyHIPE, the solid microspheres are 

made up the identical chemical components.  
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2.5 Surface modification through plasma coating 

2.5.1 Plasma coating of polyacrylic acid 

In preparation for cell culture, the surface chemistry of the polyHIPE microspheres was modified by 

inductively coupled plasma polymerisation of acrylic acid. The process was conducted using a custom-

made apparatus consisting of a cylindrical borosilicate glass chamber with stainless steel endplates 

connected to vacuum pump (RV8, Edwards). Chamber pressure was detected by an active Pirani gauge 

(APG-L-NW25 Edwards) and manually controlled by a needle valve regulating the flow of monomer 

vapour (Edwards LV10K). The flow of monomer vapour (acrylic acid) was established through the 

chamber at 2.4 cm3/min. The electromagnetic field was generated by a coil wrapped around the 

chamber connected to a radiofrequency generator (Coaxial power systems limited). The power to the 

coil was manually adjusted to 15 W and the polymerisation occurred- under these conditions for 20 

minutes. Microspheres were spread out evenly on aluminium foil within the chamber. After the power 

to the coil was switched off, the monomer vapour flowed for a further 5 minutes before the flow was 

halted. The chamber was then opened to the atmosphere and the microspheres were removed. 

Previous studies have used plasma polymerisation to encourage cell adhesion [247, 248] to control cell 

differentiation [249]. Plasma deposition allows the binding of chemical groups such as -COOH (acrylic 

acid) to surfaces [250]. Other methods of adding acrylic acid to HIPEs has been achieved by blending 

acrylic acid into the aqueous phase [247]. The deposition of a –COOH group has been shown to 

increase cell attachment and is also a useful substrate for further chemical/surface modification. [248] 

  



  Chapter 2: Materials and methods 

69 
 

2.6 General cell culture techniques 

2.6.1 Freezing cells for storage in liquid nitrogen 

For long term cell storage cells were frozen with a cryoprotectant and stored in liquid nitrogen. The 

freezing solution was prepared by adding 20% Dimethyl sulfoxide (DMSO) to 80% foetal Calf serum 

(FCS). The cells were then centrifuged and counted using a haemocytometer and 1 ml of freezing 

solution was added for every 1 million cells. Cells were then aliquoted into cryo-vials which are inserted 

into controlled freezing devices (Mr. Frosty, Thermoscientific) which regulate the cooling temperature 

change to -1°C a minute. The device was placed in a -80°C freezer for 12 hours before vials were 

removed and placed in a liquid nitrogen dewar. 

2.6.2 Defrosting cells from liquid nitrogen for use in cell culture 

When cells were required they were removed from the stores and thawed before being plated up for 

passaging and then use. Cells in cryo-vials were removed from the liquid nitrogen store and defrosted 

by a water bath set at 37°C. The vial was removed from the water as soon as the media had defrosted 

to preserve cells. Cells were then transferred to a T-75 flask containing 12 ml of media and this was 

placed into the incubator. 24 hours later the media was removed from the flask and exchanged with 

fresh media.  

2.6.3 Supplement inclusion into media for the culture hES-MP cells  

Human embryonic stem-cell derived mesenchymal progenitor (hES-MP) cells (Cellartis, Sweden) are 

an established cell line originally derived from human embryonic stem (hES) cells. hES-MP cells were 

maintained with Alpha Modification of Eagle’s Medium (AMEM, Lonza) supplemented with 100 mg/ml 

penicillin-streptomycin, 10% foetal calf serum (FBS, Labtech, UK) and L-glutamine at 2mM 

concentration (Sigma Aldrich, UK). hES-MP cells were maintained with an additional supplement 

during passaging: human basic fibroblast growth factor (βFGF) at 4 nM (Life technologies) to maintain 

stemness. Further supplements were added for specific media formulations as described in the table 

below. 

Table 2.1. Table of media supplements for cell specific media 

  Media  supplement   

Media 
condition 

FCS/Penstrep/L-
glutamine 

Ascorbate-2-
phosphate 

Β-Glycerol 
Phosphate 

Dexamethasone hFGF 

Growth 10%, 100 mg/ml, 
2mM 

---------- ---------- ---------- 4 nM 

Supplemented 10%, 100 mg/ml, 
2mM 

50 µg/ml 5 nM ---------- ------ 

Osteogenic 10%, 100 mg/ml, 
2mM 

50 µg/ml 5 nM 10 nM ----- 
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2.6.4 hES-MP culture and standard maintenance between passages 

hES-MP were removed from cryo-storage at passage 3 and grown in Alpha MEM (AMEM, Lonza) media 

supplemented with human fibroblast growth factor (hFGF). T-75 flasks were pre-coated with 0.1% 

gelatine solution (porcine, type A) for 5 minutes prior to cell cultivation. Every 2 days, 80% of the cell 

media was replaced and the cells were passaged once every 7 days in a split 1:6.  

2.6.5 Passage technique for hES-MP cell expansion  

Cells were passaged to increase cell number, for hES-MP cells all work done with differentiation 

analysis was conducted on passages less than 10 and for experiments measuring cell viability, passages 

under 15 were always used. Media was removed from the T-75 flask and samples were rinsed once 

with phosphate buffered solution (PBS). Trypsin (0.25%, 2.5 ml) was added to the flask which was then 

kept in incubator and checked regularly for cell detachment. Cells were persuaded to detach from the 

flask with gentle taps to the side of the flask. Once cell detachment was confirmed via a light 

microscope 10 ml of warmed media was added to the flask to block the trypsin from functioning. This 

media was then added to a centrifuge tube and centrifuged at 1000 rpm for 5 minutes. Media was 

then removed via motorised pipette to leave the cell pellet undisturbed at the bottom of the tube. 3 

ml of fresh media was then added and using a 1 ml Gilson pipette the media was resuspended to 

disperse the cells. 
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2.7 Culture of hES-MP cells on microspheres 

2.7.1 Microsphere sterilisation in alcohol before cell culture 

To prevent microbial or fungal infection in the culture it was necessary to sterilise the microspheres 

before beginning the cell culture experiments. Microspheres were sterilised by soaking in 70% ethanol 

for 1 hour. The ethanol was then removed and the microspheres were then washed 3 times in dH20 

for 15 minutes and finally soaked in Alpha Modification of Eagle's Medium (AMEM) media for 1 hour. 

2.7.2 The culture of hES-MP cells on a thin film 

Before working with microspheres, the biocompatibility of the material was tested using a flat surface, 

this increased the attachment of cells as they could land directly onto the material. hES-MP cells 

dispersed above the scaffold when seeding. 20,000 cells per well (24 well plate, Corning) was used. 

Samples were moved to a new well plate before any tests to prevent contamination with other cells. 

2.7.3 Technique used to seed hES-MP cells onto microsphere 

To grow the cells onto the microspheres a method was developed to ensure the greatest opportunity 

for cells to bind to the microspheres. hES-MP cells were detached from T75 flasks with trypsin, which 

was then inactivated with AMEM media. Cells were centrifuged at 1000 rpm for 5 minutes before the 

media was replaced with fresh AMEM media. 100,000 cells were suspended via gentle pipetting and 

added to the 0.2 g of microspheres in media. This cell-microsphere mix was placed on a cell rocker for 

45 minutes at 12 oscillations per minute. Samples were then kept in the incubator for a further 2 hours 

before microspheres were removed and added to a new T25 flask. They were then very gently rinsed 

with PBS to remove unattached cells before adding new media.  

Media was replaced every 2-3 days by removing 80% of the media and replacing it with fresh media. 

This prevented the loss of microspheres associated with attempting to remove all the media and 

prevented any damaging forces experienced by the cells through suction.  

2.7.4 hES-MP culture on microspheres for a time course study of ingrowth 

To understand the behaviour and interaction of cells and microspheres over time in culture, a time 

course study was conducted. For the time course imaging, uniform microspheres were produced to 

keep the diameter of microspheres constant (figure 2.6). Samples were taken at days 1, 4, 7, 11, 15, 

20, 25 and 30 fixed in 3.7% formaldehyde solution for 1 hour and then frozen in optimal cutting 

temperature compound (Fisher) and stored at -80°C. Samples were then sectioned and stained with 

haematoxylin and eosin stain (H&E) or imaged with a confocal microscope. Distance of cell penetration 

was measured using ImageJ and averaged over several microspheres for each condition. Separate 

samples of microspheres were grown in AMEM + beta-glycerol phosphate (βGP), AMEM + ascorbate-
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2-phosphate (A2P) and AMEM + βGP + A2P to determine which supplements supported cell migration. 

These microspheres were fixed and imaged as above at days 15 and 30. 

 

Figure 2.6. Distribution of microsphere diameters used for the time course experiment via microfluidic 
T-junction. 

2.7.5 Survival study: injection of hES-MP cells bound to microspheres from a syringe 

To investigate if porosity in microspheres provided a beneficial effect in cell survival when injected, an 

injection study was conducted. A monodisperse population of PCL microspheres with an average 

diameter of 400 µm were filtered to remove any microspheres with a diameter above 500 µm using a 

fish tank plankton filter mesh. HES-MP cells were cultured on this microsphere population for 4 days 

in growth media in a T-75 culture flask. Each flask was split in half, with half going to a centrifuge tube 

and the remaining half prepared for injection. Microspheres were drawn up slowly into a 20 ml syringe 

before a 510 µm internal diameter microlance was fitted to the syringe. At a steady rate (2 ml/s) the 

syringe contents were dispensed into a centrifuge tube by hand. Both centrifuge tubes (injected and 

control) were treated in the same manner for the rest of the procedure. The centrifuge tube was 

centrifuged at 1000 rpm for 5 minutes and the media was removed and washed with PBS. A second 

centrifuge, under the same conditions, and trypsin was added to the tube. Tubes were left for 5 

minutes to allow all cells to be removed from the scaffold. The suspension was removed from the 

microspheres and centrifuged a final time. The trypsin was removed and the cells suspended in 100 µl 

of media and 100 µl of trypan blue. The number of live to dead cells was measured in triplicate from 

each sample. The number of live cells obtained from the injected microspheres was normalised against 

the control microspheres. n = 3 for each condition. 20,000 hES-MP cells were classed as ‘loose cells’ 

were treated in an identical manner as the microspheres. 
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2.8 Quantitative analysis of cell growth and differentiation on microspheres 

2.8.1 Cell activity measurements using the Resazurin salt assay 

Cell growth was assessed by using an assay to measure cell metabolism at different time points to 

observe any changes in overall cell energy use. The assay chosen to measure cell metabolism was a 

resazurin salt assay. The risk of this assay is that fluorescence from one test may linger to the next to 

give a false reading and that resazurin is toxic to cells and might damage them. Resazurin salt was 

made at 3.8 µg/ml in cell culture medium (AMEM). Individual experiments differed and are described 

in each chapter but the general method was as follows. Resazurin salt in media was added to each 

container or well of cells and left to incubate for between 1 and 4 hours depending on the experiment 

(but kept constant throughout one experiment). After the time had elapsed, the Resazurin salt was 

removed from the cells, which were washed in PBS 3 times before fresh culture media is added. 200 

µl of Resazurin salt was added to a 96 well plate in triplicate (3 wells per sample) and was read by a 

fluorescent plate reader. Excitation was at 535 nm and emission measured at 615 nm. 

2.8.2 Total sample DNA and Alkaline phosphatase production measurements 

Alkaline phosphatase is an early indicator of MSC differentiation to osteoblasts and can be measured 

using an enzymatic ALP detection test. As different quantities of cells would skew the ALP data, all data 

is normalised to the total DNA from a sample. To obtain the activity of ALP in a sample the following 

assay way used. Media was removed and samples washed 3 times with PBS.  Cell digestion buffer was 

made up using 10% TE buffer (10 mM Tris-HCL, 1 mM ZnCl2, 1 mM MgCl2, in distilled water, (pH9)), 1% 

triton X-100 and water. Samples were left at 4 °C for 12 hours in the cell digestion buffer. Samples 

were broken in two using scissors and put in a 1.5 ml micro-centrifuge tube. Samples placed at -80 °C 

for 10 minutes then at 37 °C in a dry incubator for 15 minutes. This step was repeated 3 times. Samples 

were vortexed for 15 seconds and then centrifuged for 5 minutes at 10,000 rpm. Alkaline Phosphatase 

yellow liquid substrate for ELISA Kit (APYLS) was made up with 1ml APYLS and 4ml dH2O and one tablet 

to make up 5 ml solution. 190 µl of APYLS was added to the well of a 96 well plate and 10 µl of cell 

lysate was then added. On a plate reader 30 readings were made at one minute intervals measuring 

absorbance at 405 nm. 

Using the same lysate, a picogreen assay was used to determine DNA quantity within each sample. 

PicoGreen solution was made up in dH2O with picogreen (1:200) and TE buffer (TE buffer (10 mM Tris-

HCl, 1 mM ethylenediaminetetraacetic acid (EDTA), pH 7.5, 1:20). 180 µl of picogreen working solution 

and 180 µl of cell lysate were added to a 1.5 ml centrifuge tube and wrapped in foil. Samples were 

vortexed for 5 seconds and incubated at room temperature for 10 minutes. 100 µl was added to a well 

in a black 96 well plate in triplicate for each sample. The well plate was read using a spectrofluorometer 

using an excitation wavelength of 480 nm and reading the emission at 520 nm. 
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2.9 Cell cultured microsphere sample preparation and sectioning 

2.9.1 Fixing cells 

When using fluorescence or SEM on biological samples, they can be ‘fixed’ to increase the mechanical 

robustness of the samples. To ‘fix’ a sample the cells are killed and the proteins within the sample are 

crosslinked. Microsphere samples were washed 3 times in PBS for 1 minute and fixed in 3.7% 

formaldehyde solution for 50 minutes and then washed again with PBS thrice. The elongated time 

period was to allow for the fixation agent to diffuse into the centre of the microspheres to ensure the 

whole structure was fixed. Thin samples were treated as above but were left in 3.7% formaldehyde for 

15 minutes. 

2.9.2 Cryostat microtome 

For imaging thin slices of samples, they must be sectioned finely using a microtome. Samples were 

frozen in tissue freezing medium (Leica) by dipping in liquid nitrogen. Samples were then stored in a -

80°C freezer for a minimum of 24 hours. Sections were obtained from a cryostat (Leica CM1860 UV) at 

-24°C with at 6, 10, 15 or 40 µm thickness. Samples were stained with haematoxylin and eosin (H&E) 

or alizarin red and imaged under an optical microscope (B5 professional series, Miotic). Microspheres 

not seeded with cells were embedded in wax and cut in 6 µm slices with a microtome (Leica RM2145) 

at room temperature. 

2.9.3 Hexamethyldisilazane treatment of samples for imaging of cells using scanning 

electron microscopy 

For imaging samples using an SEM it must first be treated with hexamethyldisilazane (HMDS) to 

remove any water from the sample. After samples were sectioned and placed on 12 mm glass 

coverslips PBS was used to remove the tissue freezing media. Samples were then treated with the 

following solutions to dehydrate the sample for SEM. 15 minutes in each solution of 35%, 60%, 80%, 

90% and 100% ethanol in distilled water. HMDS and ethanol (1:1 weight concentration) for one hour 

then 100% HMDS for 5 minutes twice. The HMDS is then removed and the samples allowed to air-dry 

for 1 hour. Samples were then gold coated and imaged with an SEM as in 2.4.2. 
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2.10 Fluorescent microscopy of cell cultured microsphere samples 

2.10.1 Cell wall permeabilization using detergent  

Once a sample is fixed the cell wall must be permeabilised using a detergent if the target proteins for 

staining at within a cell membrane. After fixing, the samples were soaked for 15 minutes in a solution 

of PBS and 0.1% triton X-100 and then washed 3 times with PBS.  

2.10.2 Staining of f-actin filaments using a phalloidin-fluorescein isothiocyanate stain 

Imaging actin filaments provides detailed information on cell structure and compliments DNA/nuclei 

staining in 2.10.3. Phalloidin- Fluorescein isothiocyanate (FITC) stains were made up at 1000:1 dilution 

in PBS and added to the samples in PBS for 1 hour at 4°C whilst covered. Samples were washed with 

PBS to then stored in PBS and imaged within 48 hours. FITC is a green fluorescing stain. FITC Phalloidin 

was excited using a 488 nm laser (4% transmission) and emission detected above 505 nm. 

2.10.3 Staining of cell nuclei filaments using a 4',6-diamidino-2-phenylindole stain 

Imaging DNA/nuclei is an effective way of observing every cell within a sample and acts as control to 

compare against cells stained with other markers. 4',6-diamidino-2-phenylindole (DAPI) was added via 

two methods depending on the experiment. 3D scaffolds were immersed in 1:1000 dilution DAPI in 

PBS for 20 minutes before being rinsed three times. This was often in combination with other stains. 

DAPI staining for sectioned samples was added via the ProLong antifade fixing mountant, of which one 

drop was added and the coverslip was then mounted. DAPI is a stain for nuclear material and stains 

both live and dead cells. DAPI was excited using a 760 nm laser (16% transmission) and emission 

detected between 435 and 485 nm. 

2.10.4 Confocal/fluorescent microscope set-up for imaging 

Images of 1756×1756 and 1024×1024 pixels were obtained using a Zeiss LSM 510META upright 

confocal microscope with either a 10× objective (Achroplan 10x/0.3 W, Carl Zeiss ltd, UK), 20x objective 

(20x/0.45 W, Car Zeiss ltd, UK) and a 40x objective (Achroplan 40×/0.75 W, Carl Zeiss Ltd, UK). 

2.10.5 Imaging of Live & dead cells on a microsphere through staining 

Live/dead imaging allows the fluorescent live imaging of whether a specific cell has membrane integrity 

or not (which indicating cell death). Media was removed from the samples and incubated for 20 

minutes with fresh media containing Ethidium homodimer-1 (1:1000) and Calcein AM (1:250) at 37 °C. 

Following incubation samples had fresh media added once the media containing the dyes had been 

removed. Samples were imaged using an upright Zeiss LSM 510 confocal microscope with an argon ion 

laser (488 nm) for Calcein AM (488 nm, 12% power and emission collected with a LP 505 filter) and a 

helium-neon laser (543 nm, 31 % power, and emission collected using a LP 560 filter) for Ethidium 



  Chapter 2: Materials and methods 

76 
 

homodimer-1 (λex = 536 nm / λem = 617 nm). Images taken at 1024 by 1024 pixels using W N-Achroplan 

10x/0.3 objective with a 1.6 µs pixel dwell time. 

2.10.6 Imaging of mature collagen through Second Harmonic Generation imaging 

Second harmonic generation (SHG) is a fluorescent imaging technique which allows the imaging of 

mature collagen fibre within a biological sample. Samples were cut at 40 µm thickness from frozen 

sections of day 30 microsphere cultures from the time-lapse experiment. Sectioned samples from 

microspheres cultured in growth media, supplemented media and osteogenic media. No previous 

staining had been administered to samples before SHG work. dH2O was added to samples and a 

coverslip was added (ensured that there were no bubbles). A drop of oil added to top of coverslip for 

use of an oil immersion lens (x40). Excited with 2-photon at 950 nm and accepted filter light at 469 – 

480 nm (light where SHG/mature collagen should emit). In addition, two filters were set either side of 

target wavelength to make sure the light received in key filter region was not overspill from another 

source such as auto-fluorescence (SHG light should only be in that narrow range). The other filters sets 

used were at 447 – 469 & 480 – 501 nm. Images were taken at 512 by 512 pixels. 
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2.11 Staining of cell cultured microsphere samples for optical microscopy 

2.11.1 Haematoxylin and Eosin staining 

Staining with Haematoxylin and Eosin (H&E) allows the identification of cell nuclei, cell structure and 

the presence of some ECM. As samples were frozen hydrated samples did not need to undergo the 

rehydration steps typically involved with histology. Slides were rinsed in water to remove remaining 

cryostat optimal cutting temperature compound (OCT) medium for 1 minute. Slides were submerged 

on a rack in haematoxylin for 60 seconds before being placed in a container with a constant flow of 

tap water and left until the flow ran clear. Slides were then submersed in Eosin for 5 minutes and then 

dipped twice in separate tap water containers to remove excess stain. Samples were dipped in 70% 

industrial methylated spirits (IMS), dipped in 95% IMS and left for 30 seconds submerged in 100% IMS 

to dehydrate the sample. Samples was then dipped in two separate containers of xylene before being 

removed for fixing. 

2.11.2 Calcium staining using Alizarin red 

The presence of calcium deposits is a reliable indicator of osteoblast formation and can be detected 

using an alizarin red stain [251]. 1ml of 1mg/ml alizarin red in dH2O, adjusted to pH 4.1 by adding 

ammonium hydroxide, was added to the sample for 20 minutes. The sample was washed with dH2O 

until all unstained dye was removed. Samples were then rehydrated as above (see H&E) and then fixed. 

Alizarin red is a stain for calcium/mineral deposits which in turn is a useful indicator of cell state as only 

particular cells deposit minerals into their surrounding area. 

2.11.3 Collagen staining using Sirius red 

While there are more cell types that produce collagen than which deposit calcium it is an additional 

indicator when detected with calcium of osteoblast differentiation. Sirius red solution was made by 

dissolving 1mg/ml of Sirius red powder in saturated picric acid. 1ml of Sirius red solution was added to 

the samples on the slide via pipette and left for 30 minutes before being rinsed until the water rand 

clear. Samples were then rehydrated as above (See H&E) and then fixed. Sirius red is used to stain 

collagen (red) and other connective tissues (yellow). 

2.11.4 Polysaccharide staining using Toluidine Blue 

The presence of polysaccharides within the sample and can indicate the formation of chondrocyte cells. 

Toluidine blue stain (1g Toluidine blue [1%] and 0.5 g sodium borate [0.5 %] in 100 ml of distilled water) 

is added to the samples using a pipette for 5 seconds. Samples are then rinsed very gently with tap 

water until the water runs clear. 
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2.11.5 Antibody staining for sclerostin using 3,3'-Diaminobenzidine staining for optical 

microscopy imaging 

Sclerostin is present in mature osteocyte cells and is a popular marker for differentiating between 

osteoblast and osteocyte cells. A 3,3'-Diaminobenzidine (DAB) kit was purchased from Abcam - Mouse 

and Rabbit Specific HRP/DAB (ABC) Detection IHC kit (ab64264) and the relevant components were 

used for this study. Sectioned samples of microspheres, cultured for 60 days in osteogenic media, were 

protein blocked for 10 minutes, washed and then submerged in hydrogen peroxide block for 5 minutes 

and then washed again. Rabbit anti-Sclerostin antibody (ab85799, Abcam) was added to buffer (PBS 

and 1% bovine serum albumin) at 1:350 and added to the samples for 12 hours at 4 °C. Samples were 

washed 5 times with PBS for 5 minutes. Biotinylated anti-rabbit goat (ab64256, Abcam) (1:300) in 

buffer was added to the samples for 1 hour before removal and washing 3 times in PBS for 5 minutes. 

The DAB stain was then added to the samples for 5 minutes precisely and then washed off and rinsed 

with PBS 3 times for 5 minutes. Sections of Wistar rat tibia imbedded in paraffin were dewaxed in 

xylene before undergoing the same process as above. Controls with every step except secondary and 

controls with no primary was also processed as above. 
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2.12 In-vivo study of vascularisation response using a Chorioallantoic 

membrane assay  

2.12.1 Preparing the Chorioallantoic membrane model for implantation of scaffolds  

The Chorioallantoic membrane (CAM) assay was used to assess the vascularisation response of the 

microspheres in an in-vivo environment. This assay was performed according the published procedure 

[252]. Fertilised chicken eggs (Gallus domesticus) purchased from Medeggs (UK) were incubated from 

day 2 of fertilisation until day 8 at 37°C in a humidified egg incubator (R-COM Suro20). At day 8 a 

window was cut into the shell of the egg (5 mm2) and the implants was injected into the opening using 

a 5 ml syringe with a 1.1 mm internal diameter needle tip. Masking tape was used to secure sterilised 

(in ethanol, 30 minutes) parafilm over the implantation site to prevent infections. 

2.12.2 Implantation of EHA/IBOA microspheres into a Chorioallantoic membrane model 

for angiogenic potential assessment 

Each egg was implanted with one of the following samples or controls. 0.5g of EHA/IBOA polyHIPE 

microspheres cultured for 3 days in osteogenic media with hES-MP cells were washed and injected in 

PBS for implantation. 0.5g of EHA/IBOA polyHIPE microspheres soaked in osteogenic media for 3 days 

without cells were washed and injected in PBS for implantation. 100,000 hES-MP cells cultured in 

growth media (P4) were injected in PBS into the egg. A control was used where the egg was opened 

and then resealed without the addition of any foreign objects. 

2.12.3 Implantation of polycaprolactone microspheres into a Chorioallantoic membrane 

model for angiogenic potential assessment 

Each egg was implanted with one of the following samples or controls. 0.5g of PCL polyHIPE 

microspheres cultured for 3 days in osteogenic media with hES-MP cells were washed and injected in 

PBS for implantation. 0.5g of non-porous PCL microspheres cultured for 3 days in osteogenic media 

with hES-MP cells were washed and injected in PBS for implantation. 0.5g of PCL polyHIPE 

microspheres cultured for 11 days in osteogenic media with hES-MP cells were washed and injected in 

PBS for implantation. 0.5g of PCL polyHIPE microspheres cultured for 11 days in growth media with 

hES-MP cells were washed and injected in PBS for implantation.  100,000 hES-MP cells cultured in 

growth media were injected in PBS into the egg. A control was used where the egg was opened and 

then resealed without the addition of any foreign objects. 

2.12.4 Scaffold Retrieval from the Chorioallantoic membrane assay and in-situ imaging 

The chicken eggs were incubated until day 14 when the scaffolds were retrieved and the eggs were 

terminated. The chicken eggs were removed from the incubator one by one as they were processed. 

Angiogenesis was quantified by taking light microscope pictures just before scaffold retrieval (Miotic) 
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and using histological images of the retrieved scaffolds. Data on the density and bifurcations of the 

blood vessels was obtained by analysing a 2 cm2 area around the implant over a series of images.  

2.12.5 Staining techniques used on the tissue samples removed from the Chorioallantoic 

membrane 

To view the histological properties of the area around the microsphere implants some of the CAM 

assay was extracted, stained and imaged. The area around the implant was then extracted from the 

egg using tweezers and scissors and placed into 3.7 % formaldehyde for 30 minutes to fix and were 

then washed for 15 minutes in PBS thrice. H&E was used to stain these samples for imaging using an 

optical microscope (Miotic). FITC Phalloidin and DAPI were used to image the samples under confocal 

(see section 2.10.4). Natural red fluorescence of the chicken eggs red blood cells were also used in 

fluorescent imaging (emission: 488 nm 12% transmission, filter low pass 505). 
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2.13 Digital techniques used on images  

2.13.1 Computer generated trace of cells within microsphere sections 

To aid the visualisation of cells within the microspheres a model was created using CAD software. 

Autodesk Maya was used to trace over an image of hES-MP cells inside a section of a microsphere. 

Polygons were created face by face using the ‘Create polygon faces’ tool over first the internal 

structure of the microsphere and then in a separate layer the cells were traced over. The polygon was 

then smoothed (mesh -> Smooth – settings to Exponential and division levels set at 2). 

2.13.2 False coloured scanning electron microscopy images 

To aid the visualisation of cells of images taken using an SEM false colour was manually added using 

Photoshop (Adobe). Layer masks were used for each colour channel and the paintbrush tool was used 

to change these layers to incorporate the desired structures. No automated software was used to 

detect features and all structures are subject to the author’s interpretations of the image. 

2.13.3 Manipulation of image stacks from confocal microscopy: Z-stack 

Images taken on the confocal microscope could be taken at different depths, when these images were 

taken through a sample they were assembled into a z-stack of images. Z-stack images (1024 by 1024 

pixels) were obtained using the same settings as single plane images but repeated images were 

obtained of the same area, translated 11 µm in the z direction after each capture. 

2.13.4 Manipulation of image stacks from confocal microscopy: Stereoscopic image  

A stereoscopic (3D) picture of the microspheres was produced that can be viewed without any 

additional hardware (glasses). Using the software Zeiss image LSM browser a z-stack of images were 

processed with the projection function (number of projections = 64, difference angle =6). Two images 

were selected at a slight difference in rotation between the two. Skytopia software was then used to 

optimise the position of the two images side by side for easy viewing. 

2.13.5 Manipulation of image stacks from confocal microscopy: Z-project 

Combinations of the images taken on a z-stack were often converted into one image to easily display 

all the captured information in a single frame. The z- project function on ImageJ was used on z-stack 

confocal data. With less than 10 layers the average intensity function was used. Above 10 layers the 

max intensity function was used. 
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2.14 Statistical analysis 

2.14.1 Unpaired students T-test 

Unpaired students T-test is a statistical method for comparing two sets of data and to determine 

statistical error. Care must be taken when using this test as the chance of a false positive occurring 

increases quickly with multiple comparisons. It is ideally suited for only comparing two sets of data, 

which is the only times it is used in this thesis, most comparisons were undertaken using an ANOVA 

test. T-tests were conducted using GraphPad Prism 6 using the default T-test settings. 

2.14.2 ANOVA multiple comparison test 

The ANOVA test was used to compare multiple sets of data to determine if significant differences were 

present. This test helps eliminate the risk of false positives being returned as significant. ANOVA tests 

were conducted using GraphPad Prism 6 using the default ANOVA settings with the multiple 

comparisons setting ‘Compare the means of each column with the mean of every other column’. 

Significance was denoted by a * symbol (* p < 0.05, ** p < 0.01, *** p< 0.001, **** p <0.0001). However, 

despite the * denotations, each test was tested only against p = 0.05 and increased significance was 

not directly tested for. 

2.14.3 Microsphere data analysis and method of displaying data on Tukey boxplot 

Data analysis on the physical attributes of the microspheres is shown throughout this thesis as a 

boxplot. It is important to understand that the graphs describe the variance in microsphere size and 

do not denote error or a variance from a specific value. Put another way, if infinite microspheres were 

analysed the data would remain (roughly) identical to what is presented and would not be reduced to 

a single value. 

Microsphere diameter was measure in ImageJ and then transferred to excel. Measurements from each 

microsphere in a condition were added together to form a single data set. These data sets from 

different samples were then compared against one another as either histograms or as boxplots. Tukey 

boxplots were used with the highest datum within 1.5 interquartile range (IQR) of the upper quartile, 

the lowest datum at 1.5 IQR of the lower quartile, first and third quartile making up the box and the 

media making the bar within the box. The upper and lower bars were microsphere diameter values 

closest to the calculated theoretical value of where the bar would lie. 
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Figure 2.6. Explanation of the Tukey boxplots used to visually compare microsphere diameter and 
microsphere pore size. 

2.14.4 Analysis of the SHG data from images captured using the confocal microscope 

The SHG imaging of collagen was analysed to determine any significant difference in the intensity 

between samples (denoting different quantities of collagen). The images used in the analysis of SHG 

had been kept at original intensity so can be compared to each other. Cell fluorescence was measured 

using ImageJ. Regions of interest (of where the microsphere was located) were measured using ImageJ 

and the area, integrated density and the mean grey value were obtained. Three control region was 

obtained from an area with no fluorescent activity and later averaged. The corrected total cell 

fluorescence (CTCF) was calculated by the following formula. 

CTCF = Integrated Density − (Area of selected fluorescence ×Mean fluorescence of background readings) 

The data was then compared using an ANOVA test to determine significance. 

2.14.5 Method used to assemble data on the cell infiltration into microspheres over time 

This is the method used to analyse the cell ingrowth and penetration into microspheres over time 

when cultured in different mediums. To calculate number of cells in each slice a z-stack was taken from 

each slice and combined as a z-project in ImageJ. Particles were only selected for if the diameter was 

great than 170 µm and if largely intact (undamaged). Cells were counted within each particle slice 

when a DAPI nuclei stain was seen. The maximum penetration was found by measuring each cell inside 

the particle from the centre of its nuclei stain the nearest edge using the measure function on ImageJ. 

For each particle slice the 5 particles with the greatest penetration were taken and the mean average 

was taken for the penetration distance. 95% confidence limits were used for both sets of data. The data 

was then compared using an ANOVA test to determine significance. 
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2.14.6 Measurement of cell nuclei alignment on polycaprolactone microsphere 

agglomerations. 

Cell alignment was measured from a z-stack of images of hES-MP cells growing over PCL microspheres 

in an agglomeration. For each image, ImageJ was used to measure the alignment of the elongated 

nuclei to an arbitrary 0° base. The distribution of cell alignment was then plotted on a spider plot on 

excel. 

2.14.7 Techniques use to analyse the vascularisation response to the implants 

Data on the density and size of blood vessels in proximity to the scaffold was obtained from both the 

imaged of the implant in situ and of the sectioned samples of the scaffolds. Data on the density and 

bifurcations of the blood vessels was obtained by analysing a 2 cm2 area around the implant over a 

series of images. Blood vessel diameter was measured using ImageJ and the widest point of vessel was 

imaged. Each bifurcation with the 2 cm2 area was counted, as were and additional bifurcations 

downstream of the same vessel. Blood vessels that left the area and then re-entered were only 

counted once when recording frequency of blood vessels. Samples were compared using an ANOVA 

test.  
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Chapter 3: Fabrication methods for particle manufacture 

3.1 Chapter aims 
1. Evaluate the manufacture of microparticles using photocurable based materials 

2. To investigate methods of structuring microparticles incorporating porosity 

3. Produce a set-up to manufacture a continuous and rapid production of microparticles  

3.2 Introduction 
The initial step of the project involved identifying the microparticles that would be used for the scaffold. 

A variety of stereolithography and photocuring methods were available. Choosing the microparticle 

for the injectable scaffold was a balance of control over the structure of the particle and the speed of 

production. However, no matter the level of detail achievable, if the speed of manufacture is too slow 

to produce an appreciable number of particles the process is not suitable for large scale production. 

Control over the particles shape is a highly desirable feature of the manufacturing process. Being able 

to alter the porosity and shape of the object will allow for greater innovation in both assemble and 

directing/supporting cell growth, differentiation and vascularisation [253]. A brief review of the 

techniques and materials from literature follows. 

3.2.1 Photocuring monomers: Lithography techniques 

Photolithography utilises photocurable materials to rapidly form solid objects from a pre-polymer 

liquid. For a polymer material to be photocurable, a photoinitiator is added. The photoinitiator absorbs 

light, and the resultant loss of an electron results in the formation of a free radical. This then initiates 

free radical polymerisation, causing the monomers around it to solidify.  The use of lasers has allowed 

for rapid and precise triggering of photocurable materials, producing features down to the nano-scale 

[254].  

Photolithography is the direct write with a laser, where the beam is scanned over the surface of a 

photo-curable polymer, which then cures [255]. While this method is slower in making objects than 

photo-mask printing (including DMD projection) methods it is much faster at mid-operation alterations 

to the design of the microfluidic. Changes can be made after each production without the need to print 

out more transparencies or create new moulds. This allows direct write to reduce the waste involved 

with development and removes delays involved with altering traditional production methods [256]. 

This technique is slower than other laser based methods when it comes to producing objects as the 

whole structure is not formed immediately, but built up line by line.  

Two-photon polymerisation relies on the selective photocuring of a voxel within the monomer solution 

[257].  For the free radical formation, the photoinitiator for a two-photon polymerisation requires the 

excitation of two electrons simultaneously. This double arriving of a photon effectively combines two 
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photons, hence with twice the energy (half the wavelength), which is sufficient to liberate an electron 

from its atom and thus begin the polymerisation [258]. This allows the laser to cure features below the 

diffraction limit of light which is the limit of other photocuring techniques [257]. Two-photon printing 

allows nanoscale structures and patterning and can be used to produce high levels of detail and 

structuring [259]. With a two-photon technique it is possible to manufacture true 3D structures. Two-

photon laser polymerisation can be used to produce 3D components for a microfluidic device such as 

micro-porous filters [260] which be used for applications such as filtering components of the blood 

[261]. 

Microfluidic channels can be used to turn what is essentially a batch process of particle manufacturing 

into a continuous process. Liquid pre-polymer passes through the channel whilst a light source cures 

the polymer as it passes [136-139]. These channels are formed from polydimethylsiloxane (PDMS), a 

silicone-based organic polymer, and the standard for microfluidics. This material has an advantage for 

photocurable applications as it forms a competitive oxygen layer a few microns thick from its surface, 

which prevents free radical polymerisation[136]. This prevents the polymers from curing and adhering 

to the channels walls. There are many variations of this technique reported in the literature [141]. An 

example is of a single channel, which is patterned with DMD projection, curing objects within the 

monomer flow [141-144].  

3.2.2 Microparticles: their manufacture and applications in tissue engineering 

Porous particles confer a significant advantage for cell survival, since they allow the cells to bind to the 

interior of the particle, away from external forces during implantation [67, 106]. Cells on the inside or 

in surface depressions are better able to resist shear forces [107]. Porous materials also provide a 

higher surface area for cells to grow on, and allow for increased perfusion through particles if the 

porosity is interconnected [262]. There are many methods available for producing porous particles but 

not all can be combined with microfluidics or laser curing. 

Being able to control the shape and porosity of particles is difficult. To then produce a system which 

requires high numbers of these particles reduces the viable options for particle manufacture. 

Unshaped particles are usually spherical in nature due to the formation of a shape for minimal surface 

tension. There are many techniques for forming spherical particles [69, 263-265], but less alternatives 

exist for forming particles in specific shapes [136]. Being able to design and tailor the shape of each 

particle is important as creating the desired microarchitecture allows us to influence cell behaviour 

[266].  



                                                                                 Chapter 3: Fabrication methods for particle manufacture 

87 
 

3.2.3 Polymers and materials used within chapter 4 

Polymer: Polyethylene glycol 

Polyethylene glycol (PEG) is used for many applications in the medical industry such as for non-fouling 

surfaces and relative bio-inactivity [267, 268]. PEG is a polyether compound and can be modified to 

form a diacrylate (PEGd), for use in free radical polymerisation reactions [269]. When combined with 

a photoinitiator the mixture will react to light by polymerising, as the photoinitiator begins a free 

radical polymerisation reaction. Photo-absorbers can be added to attenuate the polymerisation 

reaction [270]. PEGd is a popular material for 3D printing using lasers (microstereolithography), 

partially due to its transparency and its non-toxicity to biological tissue [262, 271]. 

Emulsion: Polymer high internal phase emulsion 

Polymer high internal phase emulsions (polyHIPE) are an example of a highly porous material which 

can be cured in a particle form [272, 273]. PolyHIPEs are emulsions of water and an hydrophobic 

monomer, which can be formed with up to 99% interconnected porosity [150]. When the water 

content is greater than 70%, waters droplets start deforming to allow higher porosity [151]. A 

surfactant is added to the monomer which lowers the interfacial tension of the droplets, allowing them 

to form interconnected porosity [150]. It has been postulated that when the material dries the polymer 

shrinks, which acts to open interconnecting pores in the thin walls between pores [274]. When 

combined with a photoinitiator, some polyHIPEs can be used as a photocurable material, forming 

structures with high interconnected porosity. 
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3.3 Results 

3.3.1 Photocuring of shaped objects using controlled laser based radiation 

A 407 nm laser was utilised with a digital micromirror device (DMD) to project patterns onto a bath of 

photocurable PEG monomer. Structured/shaped microparticles were produced in a batch style 

processing technique (figure 3.1). Different projections were used to produce microparticles with 

different structures. Incorporation of porosity of different sizes into the microparticle designs were 

successfully manufactured as physical structures. Over-curing is evident in some locations (blue 

arrows), although features are well formed. Over-curing often causes the rounding of corners on 

objects. Particles were formed with internal structuring, demonstrating the versatility of using the 

DMD for image projection. The SEM micrographs reveal the surface topology of the particles (figure 

1d -g). The particles appear micro textured from the micromirrors on the DMD. This can be seen from 

the dimpled surface of the particles. The polymer ‘tail’ on the particles was caused by a slight overspill 

of laser light, it is also visible on the side of the particles (red arrow). The proportions of the hexagon 

in Figure 3.1f appear distorted and are not identical to the image loaded into the DMD software to 

form the shape.  
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Figure 3.1. Particles formed using the DMD setup projecting onto a glass slide containing photocurable 
PEGd. DMD projector used to produce shaped particles, in a batch process. (a-c) Optical micrographs 
of photocured PEG microparticles. Each particle has internal porosity designed into its structure. (a) 
Square particles with small internal porosity. (b) Square particles with large internal porosity. (d-g) SEM 
micrographs of particles formed using the DMD projector and photocurable PEG. (d) Hexagonal particle 
alongside a square particle with large internal pore. (e) Solid square particle. (f) Solid hexagonal particle. 
(g) Hexagonal particle with a large internal pore. Blue arrows denote overcuring and red arrows show 
laser overspill regions. 

3.3.2 Two photon laser photocuring (manufacturing) of CAD designed microparticles 

particle  

Before manufacturing the calibration tests for the 2-photon direct write allowed us to determine the 

power and speed settings required for producing a voxel of a particular size (figure 3.2). While this 

exact data is individual to the specific setup it does illustrate the effect that speed and laser power 

(a) (b) (c) 

(d) (e) 

(g) (f) 

200 µm 200 µm 200 µm 
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have on the voxel area of polymer curing. Increasing the speed had the greatest effect and reduced 

the cured polymer height while increasing the power increased the height of the cured polymer. 

 

 

Figure 3.2. (a) Lines formed by 2 photon polymerisation when photocuring PEGd. For each line the stage 
travelled in both the x and z axis to form a gradient. Each line in a set was at a different stage speed 
and each set was done at a different power. Measuring the size of the resulting photocured feature 
allowed for the creation of a settings library. (b) Data gathered from (a) and displayed onto a graph 
relating laser power and stage write speed to the feature size produced. 0.00 mm = no structure formed. 

Having calculated the voxel size, it was then possible to manufacture a CAD designed micro-particle 

with specific features through 2-photon photocuring (figure 3.3). The internal structure shows the path 

of the laser as it cured the monomer. The complete structure (Figure 3.3d) does not resemble the CAD 

file exactly. The pores in the sides of the microparticle have not been formed. A slight curve over the 

(a) 

(b) 
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upper surface of the microparticle is also observable. Features of 50 µm diameter were successfully 

formed and the pores extended through the structure. Both the large (90 µm) and small pores (35 µm) 

were created in the particle. 

 

Figure 3.3. (a) STL file for particle design containing both large and small pores. (b) Computer generated 
laser path for curing of microparticles by STA software. (c) Aborted attempt at micro-particle showing 
the internal features of the structure. (d) Micro-particle structured via 2-photon polymerisation over 
4.5 hours. 

3.3.3 Producing microspheres through encapsulation of oil phase in water phase using a 

microfluidic device 

Single photon direct write was used to cure the microfluidic template in PEGd. PDMS was used to 

create an imprint of the PEG template and bonded to glass to form a microfluidic chip (figure 3.4). The 

power and speed of the laser changed the width of the cured PEG on the glass slide but did not change 

the height of the polymer. The height could be altered by changing the depth of the monomer inside 

the monomer bath. The images in Figure 3.4 demonstrate the range of channel sizes that could be 

(a) (b) 

(c) (d) 
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produced by this technique. Increased channel diameters further could be achieved by curing two or 

more lines in parallel. 

 

Figure 3.4. (a) CAD design file for the microfluidic channel. Black circles indicate where a hole would be 
punched into the PDMS for input and output feeds. (b) PEG structure of the microfluidic channel on a 
glass slide. (c) PDMS mould of the microfluidic device focusing on the encapsulation area of 160 µm (d) 
Corner of the microfluidic PMDS channel with a channel width of 80 µm. 

Encapsulated oil phase droplets were produced by the microfluidics. Figure 3.5 demonstrates the 

successful application of the microfluidic chips. Dyed water and oil were used to establish the flow 

rates required to produce the microdroplets in two non-miscible solutions. In Figure 3.5a laminar flow 

can be seen when the two differently dyed waters first interact and remain distinct and don’t mix. On 

the left of the image the effect of mixing can be observed as the two flows begin to intermingle (black 

circle, Figure 3.5a).  

(a) (b) 

(d) (c) 
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Figure 3.5. (a) Laminar flow within the microfluidic chip of two inputs of differently dyed water. (b) 
Optical microscope image of oil and dyed water in microfluidic chip producing encapsulated bubbles of 
oil. (c) Same experiment as (b) but showing the setup of the experiment. 

(a) 

(b) 

(c) 

Flows mixing 

via diffusion 

50 µm 
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Using PEG photocurable monomer, water and the encapsulation microfluidic it was possible to form 

spherical microspheres of PEG (figure 3.6). Changing the flow parameters changed the size of the 

microspheres. Decreasing the PEG flow caused small microspheres to form and increasing the flow 

rate of the water had a similar effect. These microspheres were very rapid to manufacture but do not 

include any porosity or structuring. We then combined this method with a materials processing 

method (polyHIPE) to include porosity within the microspheres. 

 

Figure 3.6. PEG microspheres formed by the microfluidic chip. Different flow settings were used to 
achieve the different sized microspheres. (a) 3 ml/hr monomer flow. (b) 10 ml/hr monomer flow. 

3.3.4 EHA/IBOA polyHIPE microspheres manufactured using the microfluidic device, via 

encapsulation and photocuring 

EHA/IBOA polyHIPE microspheres were formed using the encapsulation microfluidic chip (figure 3.7). 

The polyHIPE system will be expanded on and discussed in detail in the following chapter. The HIPE 

used is an oil based emulsion (w/o) and when combined with the microfluidic chip the system becomes 

a double emulsion (w/o/w). Once cured these microspheres were highly porous and formed a 

uniformly sized population. Flow rate alterations had the same effect as those used for PEGd in Figure 

3.7. The microspheres have an open surface porosity (figure 3.7a) which allowed the water used in the 

HIPE formation to leave the microsphere when drying. Production rate of the microspheres was 180 

microspheres per minute. 

 

(a) (b) 

500 µm 250 µm 
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Figure 3.7. polyHIPE EHA/IBOA microspheres formed by the microfluidic chip. Different flow settings 
were used to achieve the different sized microspheres  

  

(a) (b) 

500 µm 300 µm 
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3.4 Discussion 
The DMD system was used to manufacture shaped particles by allowing precise shaping of the laser 

light using the image uploaded to the DMD’s software [275]. Problems with the set-up or irregular 

laser intensity can cause distortions to the projected image which in turn effects the cured polymer 

structure. Scattering from the polymer can cause a wider area to photocure than is desired and the 

corners of objects often cure faster than other areas, leading to over curing. The microtextured 

topology seen on the SEM images of the particles in Figure 4.1 show a dimple effect. This is formed 

from the individual micromirrors or more specifically the gaps between the mirrors [276]. This can be 

reduced by increasing the number of mirrors to make a single structure. However, while this will 

reduce the size of the topology but does not eliminate it. This surface topology may be advantageous, 

as it increases the surface area of the particle and provides a topology for interaction with cells [277], 

both on the micrometre scale and on the nano scale.  

Porosity can be included in particles, both by designing voids into the structures or by designing the 

particles to not fit together seamlessly. When randomly assembled, cross shaped particles will allow 

the formation of a higher percentage of porosity than square particles. Through this method both the 

external porosity and any internal pore size can be controlled. The particles produced in Figure 4.1 

were designed to produce a controlled pore sizes in this way. Controlling pores size is essential for 

controlling cell and blood vessel ingrowth. Too few or small pores can result in low cell/vascularisation 

ingrowth to occur. Whereas when pores become too large the material can become too mechanically 

weak to support load.  

Depending on the photocurable material, some cured objects can only be formed in 2.5D when using 

the DMD system, this can be offset by structuring the particles to form seudo-3D structures through 

interlocking. A void was left in the centre of the particles to allow the particles to slot together, forming 

3D structures. See Figure 3.7 for an example of how these particles are theorised to fit together. In 

materials, which are transparent, the laser light passes all the way through the monomer bath, curing 

the entire depth of the monomer. This allows for the 3D design of the x and y axis but no control in 

independently designing the z axis. An opaque solution, or one with photo-absorbers, can be built up 

in multiple layers using a motorised stage in the z-axis in a similar way to many 3D printing technologies 

[278]. Changing the particle shape can go a long way to overcoming the shortcomings of a 2.5D scaffold. 
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Figure 3.7. CAD generated image of interlocking particles showing the potential open 3D structures of 
particles when mixed together randomly. 

The use of 2-photon polymerisation allows the manufacture of intricate and highly detailed particles 

with a true 3D structure. Using this system, it is possible to fully reproduce the 3D structure designed 

on CAD software. As the object is supported in the liquid during formation it is able to support the 

formation of overhangs without the requirement of a secondary support material. Exact control over 

pore size, distribution and nano-scale topology is possible using the technique which can be utilised to 

guide cell alignment and differentiation [279, 280]. Sub 100 nm resolution has been achieved by the 

research community [281] with many groups such as Misawa et. al. producing structured geometries 

with a high degree of complexity [282]. However, the particle in Figure 4.5 required 270 minutes to 

manufacture. This is approximately 1200 times slower than particles formed with the DMD. This is an 

issue which exists for all freeform fabrication manufacturing methods and is only exacerbated as the 

line width used to lay down material is reduced. 

The speed of particle manufacture is an important aspect for consideration, as a complete implant may 

require tens of thousands of particles [283]. Producing particles slowly in the lab may be possible and 

even translatable to small scale in-vivo experiments but when scaling up for industry this would quickly 

become non-viable. Modifications have been suggested which can be made to increase the production 

rate. Output can be increased by splitting laser beam with mirrors and then focused on different parts 

of the monomer on the stage, so that the particle is built in a parallelised way. Increased levels of 

photoinitiator and increased laser power can be used to increase the write speed and reduce printing 

times. Despite these methods for speed and yield increases the production of highly complex true 3D 

structures is currently very time consuming. If it were possible to increase the output of the technique 
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of the particles sufficiently, the technique would become the gold standard for producing particles for 

bottom up tissue engineering. 

Microfluidic systems can be combined with DMD or direct write manufacturing techniques to 

manufacture particles for tissue engineering [139, 141, 145, 284]. The encapsulation microfluidic chip 

is used in biotechnology to encapsulate biomolecules or cells within a sphere which can then be used 

as a cell carrier [131, 285], micro incubator/reactor [286] or as a printable bio-ink [106, 287, 288]. Using 

a single photon (standard direct write) lithography system to form the microfluidic device was chosen 

due to the reduced manufacturing time. As this microfluidic is designed in 2 axes there was no need to 

control the curing in the z-axis with the laser. The depth could be controlled by the quantity of 

monomer used. Changing the speed and power of the laser changed the width of the microfluidic 

channel. This reduced the complexity of the program required to control the stage. For channels larger 

than the laser could produce, multiple lines were added in parallel next to each other. Once formed a 

template could be used many times to produce PDMS moulds until the templates became damaged 

from repeated use [289].   

Using the microfluidic systems, spherical particles (microspheres) were photocured by combining two 

immiscible solutions within the chip and forcing one to encapsulate the other phase. It is possible to 

use this microfluidic system to form microspheres without photocuring. For example using an alginate 

solution and a aqueous calcium solution, to set the alginate into uniform spherical droplets [290]. Here 

we use a photocurable liquid as the oil phase which can be photocured by a radiation source after the 

droplets have been formed [291]. Microspheres formed from PEGd were the initial microspheres 

formed by the microfluidic device. Similar manufacturing processes have been reported in the 

literature, forming PEGd microspheres down to 40 µm in diameter [292]. There is very little control 

over the structure of the microsphere formed from these devices. The microfluidic tube can be shaped 

to flatten a droplet or to elongate it [272] but the finer control offered by the DMD or the 2-photon 

polymerisation is not currently possible. Where this technique stands out compared to the previous 

methods discussed the rapid speed of microsphere manufacture. The rate of microsphere formation 

was 3 particles per second. This is a substantial speed increase when compared to the DMD production 

rate. 

The microfluidic system allowed for rapid manufacture but confirmed no method to include complexity 

or porosity into the microspheres. The loss of control over the microfeatures and porosity of the 

particles was compensated for using the polyHIPE material. This emulsion based material which 

photocured as a porous polymer, the properties of which could be tuned independently of the 

microfluidic system. This is discussed in detail in the following chapter. The polyHIPE material is full of 

air/water interfaces from the internal liquid droplets which scatters laser light [293, 294]. This is not 

an issue when the suspended spherical HIPE monomer is cured under a UV lamp as the entirety of the 
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microsphere need to be solidified. However, when used with the DMD the scattering nature of the 

material reduced the thickness of the resulting structure. Additionally, with the increased scattering, 

resolution was greatly reduced, as the laser light scattered and cured a larger area of monomer.  
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3.5 Conclusion 
In this chapter, different techniques to produce particles were investigated. An association was found 

with the amount of control over the particles structure, and the time required for fabrication. 

Increasing the customisation required longer manufacturing times. 2-photon polymerisation could 

replicate true 3D objects from CAD files but required many hours per particle. DMD based particle 

fabrication was much more rapid and offered 2.5D control over the particles structure but required 

operator input in a batch process. Both techniques allowed for the design on internal porosity within 

the particle, which is essential. The final method used, the microfluidic device, had very little control 

over the shape of the particles produced but could manufacture hundreds of particles in the same time 

as a single batch of particles from the DMD. This continuous process and the speed of manufacture 

was essential for producing the volume of particles necessary for a scaffold. The use of a polyHIPE 

material allowed for the inclusion of porosity within the particles produced, and allowed us to use this 

final technique for the remainder of the project. 
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Chapter 4: PolyHIPE microsphere production 

4.1 Chapter aims 
1. Produce porous microspheres from the EHA/IBOA polymer blend 

 

2. Investigate effects of processing conditions on both internal porosity and on microsphere size 

distribution. 

 

3. Compare the microspheres produced via two techniques: controlled stirred tank reactor (CSTR) 

and the microfluidic T-junction. 

4.2 Introduction 

4.2.1 Microspheres and their application in tissue engineering 

Porous and non-porous microspheres are utilised for many applications in tissue engineering such as 

microcarriers for cell expansion [295, 296], release of bioactive agents [297], and as building blocks for 

(self-assembled) scaffolds [298, 299]. The advantage of using microspheres for these applications is 

that they can be delivered as injectable materials, thus bypassing the requirement for open surgery. 

Additionally, porous microsphere-based cultures can be used as an ink for 3D cell printing. As a 3D cell 

support matrix for cells, porous microspheres have many advantages over their non-porous 

counterparts; they can provide enhanced nutrient diffusion, a 3D culture environment and greatly 

increased surface area [296, 300]. Many techniques have been used to develop porous microsphere 

systems including supercritical CO2 [126], thermally induced phase separation [128], freeze thaw cycles 

[129], solvent evaporation [130], microsphere leaching [131] and polyHIPE formulations [132]. 

4.2.2 Photocured emulsions: The polyHIPE  

A polyHIPE allows precise control of the degree of porosity within the microspheres as well as control 

over the degree of interconnectivity and to some extent pore size [301]. The defining feature for an 

emulsion to be classified as a HIPE is when the internal phase volume contributes greater than 74% of 

the total volume, corresponding to the maximum packing density of equal sized spheres [150, 302]. If 

the continuous phase is composed of suitable monomers and cross-linker, a highly porous foam 

(polyHIPE) can be produced upon curing of the HIPE. A polyHIPE can have a porosity with 

interconnected pores of up to 99% [150]. This interconnected network of pores  is created by the 

contraction of the thin monomer film surrounding the droplet phase during curing [303]. PolyHIPEs 

are increasingly being used in tissue engineering applications (including bone tissue engineering) and 

as cell culture substrates due to their highly porous nature and interconnectivity [185, 302]. In addition, 

we have recently demonstrated that the mechanical properties of this copolymer system can be finely 

tuned by changing the ratios of the monomer [304]. 
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4.2.3 Turning the emulsion into microspheres: manufacturing techniques 

In this chapter porous microspheres were prepared from a HIPE via photocuring [305]. The 

microspheres were produced by two methods; (i) double emulsion of photocurable HIPEs to produce 

water-in-oil-in-water (w/o/w) emulsions in a continuous stirred-tank reactor (CSTR) which were then 

photocured and dried [302, 306, 307] and (ii) the Gokmen method employing T-junction 

fluidics/droplet microfluidics [132, 147, 263, 308].  These methods produce very different microsphere 

size distributions. The latter method provides the ability to produce a very narrow distribution of 

microsphere size which allows greater control over the scaffold. This is important for delivery as the 

microsphere size will dictate the bore size of the injection needle while a narrow microsphere size 

distribution will ensure no blockages can occur from unexpectedly large microspheres. Additionally, 

controlling the microsphere size allows the control of pore size between microspheres when packed 

together. Controlling this pore size could allow control over nutrient diffusion and could induce or 

inhibit angiogenesis (through lack of large enough spaces for blood vessel formation).  Monodisperse 

spherical microspheres present a maximum packing density of 74% (with hexagonal close packing) 

while a polydisperse microsphere distribution allows for a higher packing density [309]. 

Photocurable HIPEs allow near instant formation of porous microspheres by curing under UV light. In 

the double emulsion technique, the HIPE is added dropwise into rapidly stirred water. The mechanical 

force breaks up the added HIPE into smaller spherical droplets to create a suspension of HIPE droplets 

in a large volume of water to create a w/o/w emulsion. The spherical HIPE droplets are then rapidly 

photocured, and the water removed by filtration and evaporation. For the microfluidic method, HIPE 

is introduced into rapidly flowing water within a silicone tube, via a dispensing tip inserted into the 

side of the tube. The flowing water ‘buds’ off the HIPE feed stock into droplets. The microsphere size 

can be controlled by altering the flow rate of water/HIPE or changing the needle tip diameter [132, 

263]. The two main advantages of this method are that it produces microspheres with a narrow size 

distribution, and that it is a scalable continuous manufacturing process (e.g. by (i) increasing the 

number of silicone tubes and (ii) by adding HIPE injection sites into the tubes) [132, 263, 308] . 
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4.3 Results 

4.3.1 The effect of manufacturing parameters on the internal porosity of the polyHIPE  

The polyHIPE material has both an external porosity and an internal porosity along with 

interconnecting porosity between the pores (Figure 4.1).  The polyHIPE material used for these 

experiments is a blend of the monomers EHA and IBOA. The polyHIPE is expected to be 80% porous as 

the proportion of water added to monomer is 80:20 (by weight) for the HIPE process. The average size 

(mean) of the interconnectivity is 2.0 µm and the median is 1.7 µm. There are both micron scale and 

nano scale interconnecting porosity with the largest pores up to 5.5 µm and the smallest observed 

being 160 nm. This microporous material scatters the light significantly giving the material a white 

appearance (Figure 4.1c) despite the transparent materials used in its formulation. 
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Figure 4.1. EHA/IBOA blend PolyHIPE material with 80% porosity and internal interconnected porosity 
between larger pores. (a) SEM micrograph of polyHIPE surface displaying open porosity with pores up 
to 35 µm in diameter. Scale bar is 20 µm. (b) SEM micrograph of interconnectivity between pores in the 
polyHIPE. Scale bar is 20 µm. (c) Optical micrograph from reflected light microscope of the white 
appearance of the polyHIPE. It is possible to see some of the larger pores on the surface as a rough 
texture. Scale bar is 1 mm. 

Temperature change influenced the size of the pores within the polyHIPE with increasing temperatures 

resulting in the formation of larger pores (Figure 4.2). The water was added to the monomer solution 

at a specific temperature during the w/o emulsion forming stage. The resulting materials were imaged 

using an SEM and the pores were measured using ImageJ. As temperature increased the average pore 

sized increased along with an increased spread of pore sizes. At 30 ºC the largest pores measured were 

up to 70.0 µm in diameter while at 4 ºC the largest was 34.7 µm (≈ 50 % decrease). The average (mean) 

pore size decreased by 55% from 22.3 µm at 30 ºC to 10.0 µm at 4 ºC. 15 ºC was closer to 30 ºC in 

values with a 3 µm decrease in mean average (≈ 15 % decrease) and the largest pore size recorded at 

65.6 µm (≈ 6 % decrease). 

(a) 

(b) (c) 
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Figure 4.2. The relationship between the temperature of the water during the initial HIPE mixing (w/o) 
mixing stage and the resulting pore sizes measured in the polyHIPE material, by SEM images. Increasing 
temperature increases the maximum pores size along with an increase in medium pore size. The 
temperature change does not change the minimum pore size found in the material. This data has been 
show on a Tukey boxplot. A Tukey box plot presents interquartile range with the centre line as the 
median, whiskers represent maximum and minimum microsphere/pore diameter.  The temperature of 
the water added to the monomer is controlled. n > 315. 

Increasing the speed of the paddle stirring the monomer as the water is added to form a HIPE 

decreases the resulting size distribution of pores in the polyHIPE (Figure 4.3). As the rate of stirring 

used to form the material is increased the pore size initially decreases, until it plateaus at 765 rpm. 

After this speed there is very little difference in the pore size distribution at the faster stir rates. This 

effect can be observed in the SEM micrographs (Figure 4.3b) with decreasing pore sizes at higher 

stirring speeds. Between the slowest stir rate, 320 rpm and the fastest rate, 1260 the mean average 

pore size decreased by 70% and maximum pore size decreased by almost 80%. The largest 

interconnected area between pores measured at 320 rpm was 24.1 µm while the largest measured in 

1260 rpm was 8.9 µm. These stir rates were chosen as they were the set speeds on the lab egg stirrer 

used to stir the solution. 
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Figure 4.3. The monomer was stirred at different rates during the water addition process (w/o) and the 
resultant pore sizes was measured. (a) Box plot of pore sizes from each material formed at different 
stir rates. With increasing stirring rate, the median pore diameter within the polyHIPE decreases, along 
with the distribution of pore sizes. After 765 rpm there is little effect on the pore size with each 
increasing stir rate. (b) SEM micrographs of sectioned polyHIPE blocks to show internal porosity. These 
images, among others, were measured to produce the graph (a). (b i) 320 rpm, (b ii) 540 rpm, (b iii) 765 
rpm, (b iv) 870 rpm, (b v) 1260 rpm. The scale bar is 100 µm. n > 384 per condition. 

 

(i) (ii) (iii) 

(iv) (v)

z 

(a) 

(b) 
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4.3.2 Porous microspheres manufactured via double emulsion and the effect of processing 

parameters on resulting microsphere size 

Microspheres produced via controlled stir tank reactor (CSTR) are formed with a wide distribution of 

sizes within a single batch, with interconnected pores throughout the material (Figure 4.4). Porous 

microspheres with a disperse microsphere size distribution were prepared by double emulsion of 

photocurable HIPE to produce a W/O/W emulsion which was then photocured. A large volume of 

water was stirred continuously and the HIPE was added dropwise over several minutes. Micrographs 

in Figure 4.3a-d displays microspheres at different sizes found from a single batch of microspheres 

produced via double emulsion. Porosity can be found throughout the microsphere (Figure 4.4e) in a 

homogeneous state and interconnections are visible between the pores. 
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Figure 4.4. PolyHIPE microspheres formed by the double emulsion technique (w/o/w). EHA/IBOA blend 
PolyHIPE material with 80% porosity and internally interconnected porosity between larger pores. (a –
d) SEM micrographs showing the range of sizes present in a microsphere population produced from this 
technique. (e) Optical micrograph of a 6 µm thick slice of a sectioned microsphere. It is possible to 
observe the interconnectivity between the pores. Scale bar is 100 µm in images. 

Increasing the temperature of the water to which the HIPE was added to widened the distribution of 

microsphere sizes formed (Figure 4.5). Microspheres formed at the lowest temperature of 4°C had an 

IQR of 125 to 285 µm whereas the highest temperature of 60°C has an IQR of 275 to 922 µm (an 

increase of 305%). There appears to be a linear increase in microsphere median size over the observed 

range of temperatures. Figure 4.5d presents the skewed distribution found all microsphere 

populations in histogram form. It is important to note that a higher number of lower diameter 

(a) (b) 

(c) (d) 

(e) 
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microspheres does not correlate to a higher total volume than a lower number of larger diameter 

microspheres. When comparing Figure 4.5b and 4.5c is can be observed the increased in diameters 

found at the higher temperature but the consistent spherical nature of the microspheres at the lower 

temperature. 

 

Figure 4.5. The effect of temperature of the water to which the HIPE is added to, on microsphere size 
distributions from the double emulsion technique. (a) The effect of the water temperature during the 
process microsphere diameter. Higher temperatures resulted in higher microsphere average diameter 
and broader distributions of microsphere size. For all temperatures the stir rate of 320 rpm was used. 
n > 72 particles per condition. (b) Optical micrograph of microspheres formed from double emulsion at 
the 14ºC condition. (c) Optical micrograph of microspheres formed at the 45ºC condition. Scale bar is 1 
mm. (d) Distribution of microsphere diameters formed at the 4°C condition. n = 617 

(b) 

(c) 

(a) 

(d) 
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Temperature of the water to which the HIPE is added to for formation of the double emulsion (w/o/w) 

does not appear to impact the porosity of the resulting polyHIPE (Figure 4.6). The pore diameter 

analysis is conducted on the same microspheres as those analysed in Figure 4.5 for microsphere 

diameter. Figure 4.6a suggests no overall trend of the temperature influencing microsphere porosity. 

Figure 4.6c again shows no observable trend in microsphere pore size between different temperatures. 

 

Figure 4.6. Relation between pore diameter, measured in SEM micrographs of sectioned polyHIPE 
material, formed at different temperatures during fabrication (w/o/w). (a) Tukey boxplot of pore 
diameter with varying temperature. Centre line corresponds to median size, upper and lower box for 
upper and lower quartile respectively, lowest bar for lowest datum still within 1.5 IQR of lower quartile 
and upper bar for highest datum within 1.5 (IQR) of upper quartile. n > 104. (b) SEM micrograph of 
sectioned polyHIPE with porosity formed at 75ºC, scale bar is 50 µm. (c) Same data as (a) but displaying 
the data as a histogram for clearer observation of pore size comparison between different 
temperatures. 

 

(a) 

(c) 

(b) 
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Both the median microsphere size and the width of the size distribution decreased with increasing 

stirring rate (Figure 4.7). At the slowest stirring rate, the median diameter was 408 µm with a large 

interquartile range (IQR) of 276 to 690 µm. At the fastest rate the median microsphere diameter 

decreased to 131 µm (67% decrease) with a much narrower IQR of 81 to 166 µm (80% decrease). At 

the slowest speeds microspheres begin to lose their spherical shape which observed in Figure 4.7bi. In 

Figure 4.7bi-iv the microspheres are spherical in shape and the overall decrease in microsphere size 

can be observed between the images as the stir speed increases from 350 rpm (Figure 4.7i) to 1500 

rpm (Figure 4.7iv). A similar increase in average size can also be observed in the picture series. 
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Figure 4.7. The effect of the stir rate applied to the water, to which the HIPE is added to, on microsphere 
size distributions from the double emulsion technique (w/o/w). (a) Box plot of effect of the stirring rate 
when mixing the double emulsion on microsphere diameter. With increasing rate, the median diameter 
of the microspheres is lower as is the distribution of sizes. n > 800 per condition. (b) Optical micrographs 
of microspheres formed produced at different stirring rates from the double emulsion. The largest 
microspheres (which form at the slower rate) are less spherical. (b i) 350 rpm, (b ii) 540 rpm, (b iii) 1260 
rpm, (b iv) 1500 rpm.  

(b) 

(a) 

(i) (ii) 

(iii) (iv) 

1 mm 
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4.3.3 Porous microsphere manufactured via microfluidics and the effect of processing 

parameters on resulting microsphere size 

A T-junction microfluidic device was devised to produce porous microspheres with a narrow size 

distribution, all of which contained interconnected porosity (Figure 4.8). Uncured HIPE is injected into 

a channel of continuously flowing water. Under stable conditions, droplets of a certain size bud off 

from the injection needle. The droplets then pass under the UV output of a mercury lamp which 

photocures the HIPE. The resulting porous microspheres are then collected. These images also clearly 

show that the exterior of the microspheres is open pored. 

 

Figure 4.8. Microspheres produced by the microfluidic technique. The resulting microsphere population 
is highly monodisperse. (a-c) SEM micrographs of microspheres produced by microfluidic technique, 
microspheres can still be produced in different sizes (compare (b) to (c)) but are monodisperse 
populations. (d) Optical images of a monodisperse microsphere population produced from the T-
junction microfluidic. Here, microspheres vary from 185 µm to 215 µm and average ≈200 µm in 
diameter. All scale bars are 100 µm. 

Increasing the monomer flow into a constant stream of water led to an increase in the microsphere 

diameter (Figure 4.9). Here the flow of HIPE from the needle into a steady stream of water was altered 

and the effect on microsphere populations was observed. The uniformity of the microsphere size can 

be seen in the optical microscope image in Figure 4.8. Increasing the monomer flow increased the 

volume of microspheres produced by the system. A narrower distribution in microsphere size was 

observed at the lower monomer flow rate compared to 5 ml/hr (Figure 4.9b). 

(a) 

(c) (d) 

(b) 
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Figure 4.9. (a) The effect of both water flow rate and monomer flow rate on the resulting size 
distributions of microsphere size formed from a microfluidic T-junction device. Higher monomer 
dispersion rates produce a greater volume of microspheres per unit of time. n > 192 per condition. (b) 
Same data as (a) displayed as a histogram. Microsphere sizes are produced in distinct distributions of 
size.  

Increased flow rate of water, to which the HIPE was injected into, decreased the average microsphere 

diameter dramatically at lower speeds but had diminishing returns as flow rate was increased further. 

The effect of water flow rate on the microsphere size and size distribution is shown in Figure 4.10. 

Except for the slowest water pump rate (125 ml/hr) the range of the microsphere size distribution 

appeared constant irrespective of pump rate. At higher speeds, less variation is observed between the 

size populations, although there is still a slight difference. 745 ml/min was the fastest flow speed the 

pump could achieve with the setup. 

(b) 

(a) 
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Figure 4.10. The resulting microsphere size distributions produced when altering the rate of water flow 
through the microfluidics T-junction while keeping monomer flow rate steady. Increasing the water 
speed reduced the median diameter. Similar microsphere distribution sizes are observed in all speeds 
except for the slowest rate (125 ml/min). n > 63 per condition. 

The combination effect of water speed and HIPE monomer flow rate can be combined to produce 

different microsphere populations. Increasing water rate decreases microsphere size and decreasing 

monomer flow also decreases microsphere size. At 5 ml/hr HIPE flow rate and a water speed of 100 

ml/min a comparatively large microsphere size distribution is observed. Between 3 and 5ml/hr HIPE 

rate at 200 ml/min water speed the two microsphere populations are approximately similar in size 

distribution and median microsphere size.  
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Figure 4.11. The effect of both water flow rate and monomer flow rate on the resulting size distributions 
of microsphere size from a microfluidic T-junction device. Decreasing monomer rate and increasing 
water flow both allow the formation of smaller microspheres with the inverse having an opposite effect. 
n > 118 per condition  

Utilising smaller internal diameter dispensing tips decreased the median microsphere size in 

comparison to larger dispensing tips. The size distribution between 250 and 510 µm is similar whereas 

the size distribution at the smallest tip diameter is larger. Microspheres over 1 mm in size were formed 

from the 510 µm dispensing tip and microspheres down to 400 µm formed from 150 µm dispensing 

tips. 

  

Water rate (rpm) and    monomer rate (ml/hr) 

100 ml/min 300 ml/min 200 ml/min 

1 5 3 1 5 3 1 5 3 
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Figure 4.12. Relationship between altering the internal diameter of the dispensing tip and the resulting 
change in microsphere size distribution of microspheres formed in a microfluidic T-junction device. 
Utilising smaller internal diameter dispensing tips decreased the median microsphere size in 
comparison to larger dispensing tips. It was possible to form very large microspheres with the larger 
dispensing tips. n > 15 per condition 

4.3.4 Direct comparison of both manufacturing techniques on microsphere pore size, 

diameter distribution and structure 

Despite the differences between the two porous microsphere production methods, it has been 

demonstrated that they both produce microspheres containing internal pores of similar size, and 

distribution (Figure 4.13a). SEM images of a thin section of a microsphere prepared using a microtome 

(Figure 4.3b-c), show that the porosity is consistent throughout the whole structure. A small difference 
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in pore size can be observed; the microspheres prepared by double emulsion contain a larger number 

of 4 and 6 μm pores. 

 

Figure 4.13. Comparison of the effect from production techniques on the internal porosity of polyHIPE 
microspheres from the same HIPE monomer batch. (a) Spread of pore diameter of microspheres formed 
from microfluidics and double emulsion compared on a histogram. n > 1474 per condition. (b) SEM 
micrograph of a sectioned microsphere formed via the microfluidic T-junction device. (c) SEM 
micrograph of a sectioned microsphere formed via the double emulsion method. Scale bar is 100 µm 
for both micrographs. 

Microspheres produced by the CSTR technique produce a disperse range of sizes whereas the 

microfluidic technique produces microspheres with a size narrow size distribution (Figure 4.14). SEM 

microscopy was carried out to analyse the overall microsphere shape and microsphere pore size 

(Figure 4.14). The bar plot in Figure 4.14(a) summarises the size distribution. All microspheres exhibited 

open surface porosity along with smaller inter-pore windows connecting larger pores. 

(a) 

(b) (c) 
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Figure 4.14. Comparison of the distribution of microspheres sizes formed from both techniques with a 
similar mean microsphere size. (a) Graph showing the microspheres from the microfluidic technique 
(narrow size distribution) with microsphere sizes from the double emulsion (broad size distribution). n > 
676 per condition (b) SEM micrograph of polydisperse polyHIPE microspheres formed via double 
emulsion. (c) SEM micrograph of microspheres formed via a microfluidic T-junction. Scale bars are 100 
µm. 

  

(a) 

(c) (b) 

(a) 
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4.4 Discussion 
This chapter investigated the parameters and methods that can be used and altered to control 

microsphere median size and size distribution. The use of porous microspheres in tissue engineering 

requires control over the microsphere size and the pore size arising from the method of manufacture. 

This tight control is necessary to produce microsphere-based scaffolds with reproducible properties 

which can be used as injectable scaffolds. Producing microspheres with specific morphological 

properties allows rational design of scaffolds by altering the total available surface area and changing 

the void sizes between microspheres to control substance diffusion. Porosity is required in tissue 

engineering constructs to allow the ingrowth of cells and the diffusion of nutrients into the scaffold 

[93]. The surface porosity of a polyHIPE can also influence the cell attachment and cell differentiation 

of cells, such as hES-MP cells [310]. 

The polyHIPE material contains biologically relevantly micro and nano scale porosity. Nano-scale 

features, including porosity, have been found to increase cell attachment and influence cell behaviour 

[279, 280]. The larger pores found in the polyHIPE material allow cells to grow in a 3D environment. A 

3D environment alters the behaviour of cells when compared to 2D culture of the same material [300]. 

This is due to the biological similarity of 3D environments in-vitro to the actual biological niche of the 

cell in the body and its 3D environment. If a surface feature is too large it will be interpreted by cells 

as a 2D environments [300]. The pores in the polyHIPE are between 2 to 70 µm in size, of which are 

the correct scale to act as true 3D environments.  

The interconnectivity shown in Figure 4.1 would facilitate the exchange of nutrients and waste removal 

for cell culture [262]. Interconnectivity smaller than the size of a cell can still allow passage of the cell 

due to a rearrangement of its cytoskeleton. This process is highly dependent on cell type and on cell 

mobility for example keratinocytes have been reported to squeeze through gaps only 500 nm in 

diameter [311] while osteoblasts are reported to require larger pores (~40 µm) for ingrowth [312]. 

Both temperature and stir rate were found to affect the diameter of pores formed during the initial 

emulsion step (w/o). The effect of stir rate on microsphere size becomes negligible at faster speeds 

and greater at the lower speeds. It is expected that larger changes in speed would be required to 

observe further changes. The effect of water temperature on the pore size distribution was also 

investigated. Lower temperatures formed smaller pores whereas higher temperatures formed larger 

ones (Figure 4.2). Less variation was found between 15 and 30°C than 4 and 15°C in a similar pattern 

to that observed in the stir rate experiment.  

Larger voids and interconnecting windows in the PolyHIPE can be created through a controlled 

destabilisation of the emulsion by increasing the temperature of the droplet phase to 80°C [313]. The 

emulsion stability is dependent on a range of factors including the temperature during both the HIPE 



  Chapter 4: PolyHIPE microsphere production  

121 
 

formulation and polymerisation stage [247]. This elevated temperature will increase the kinetic energy 

of the molecules in both phases. This has a double effect on the emulsion destabilisation to produce 

larger pores within the PolyHIPE. The water molecules will increase their kinetic energy and will be 

more likely to break through the barrier layer. Also, the viscosity of the continuous film will be 

decreased, making it more fluid like and prone to destabilisation.  

Both temperature and stir rate influenced the resulting microsphere size with CSTR microsphere 

manufacturing. Increasing the stir rate reduced both the median pore size and the size distribution of 

the PolyHIPE microspheres (Figure 4.7). At the high stirring rates of 765, 870 and 1260 rpm, there was 

a small decrease in the median microsphere size range. This is attributed to a small increase in stirring 

speed in relation to the total stirring speed, so the observed difference is minimal. Increasing the 

temperature of the water to which the HIPE was added, had a significant effect on the distribution of 

microsphere sizes formed Microspheres formed at 320 rpm at the lowest temperature of 4°C had a 

narrow IQR whereas the highest temperature of 60°C has a much greater IQR (an increase of 305%). 

There appears to be a linear increase in the median size over the observed range of temperatures. 

Microspheres formed at the highest temperature of 60°C were aspherical in shape, this was also 

observed for microspheres produced at the slowest stirring rate (Figure 4.7). This can be clearly 

observed in Figure 4.7 where the microspheres are aspherical in shape. Aspherical shapes formed 

because of the short time frame between the end of mixing where the HIPE is broken up into droplets 

and the rapid photocuring of the monomer. The water was still moving around in the beaker when the 

microspheres were cured causing the resulting distended shape to be formed. 

Microspheres at larger sizes (greater than 800 µm) began to deform in shape regardless of 

temperature or stir rate. This maximum spherical microsphere size has been reported to be dependent 

on the viscosity of the HIPE material [302]. To aid in the formation of microspheres from higher 

viscosity emulsions many labs have reported that water may be replaced with a solution of polyvinyl 

alcohol [273]. 

Pore size remained independent on microsphere size and it can be observed (in Figure 4.4a & b) that 

both the smaller microsphere and larger microsphere appear to contain surface porosity of similar size. 

The pore diameter did not alter significantly within the microspheres, regardless of the stirring rate of 

the water or the water temperature as also been reported by Boo et al [307]. This allows pore size to 

be controlled independently of conditions used to affect microsphere size. It is of note that internal 

pore size distribution can be controlled independently to the conditions used to control the 

microsphere size. There was no significant difference between the internal porosity when the emulsion 

was subjected to different water stirring rates, or water temperature, during the w/o/w fabrication 

process. These observations concur with the results reported by Boo et al [307]. This allows pore size 

to be controlled independently of conditions used to tune microsphere size.  
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While it is more difficult to produce a defined microsphere size distribution via the double emulsion 

method, it is possible to approximately control the median microsphere size. The process is however 

very sensitive to changes in the environment, such as temperature, as well as the nature of the CSTR. 

The microsphere sizes produced at a particular stir rate appear to form a skewed distribution, as also 

noted by Zhang et al [130]. Other groups similarly reported that the average microsphere diameter 

decreased with increasing stirring rate [263, 264]. 

When utilising the microfluidic manufacturing method, it was possible to produce microspheres with 

a narrow size distribution and to control the median microsphere size. All three parameters, monomer 

flow rate, water flow rate and dispensing needle internal diameter all played inter-dependent roles in 

controlling the microsphere size distributions and median size. Both the HIPE monomer flow rate and 

water speed can independently control the PolyHIPE microsphere size. It can be decreased by either 

increasing the water flow rate, or by decreasing the monomer injection rate. From Figure 4.11 it is 

possible to use the combination of parameters to create a microsphere population with a median 

anywhere between 500 and 280 µm. 

The T-junction fabrication technique produced excellent microsphere size distribution for the 

EHA/IBOA polymer blend, however it may not be the best methods for less stable polyHIPE solutions. 

Sung-Wook Choi et al. showed that their HIPE began to separate out into multiple phases soon after 

formation [314] and this phase separation was exploited to produce microspheres with variable pore 

size. Over time the emulsion gradually destabilises as the suspended water droplets merge together 

to form larger ones in a process known as Ostwald ripening [315]. This is less applicable in the CSTR as 

it is a batch process where only small volumes of HIPE are used at any one time, therefore fresh HIPE 

can be made up at regular intervals. 

Changing the water flow rate was the simplest method of altering microsphere size while the most 

difficult was changing the pipette diameter. Changing the monomer flow rate was effective but it took 

the system a longer period of time to regain stability due to the viscoelastic nature of the monomer 

causing a gradual change in the flow rate. Changing the water flow rate had an instantaneous effect 

on the microsphere size. The most difficult parameter to change during an experiment was the 

dispensing tip as this required the experiment to be halted and exposed to light, risking accidental 

photocuring. While changing both water flow rate and dispensing tip diameter the volume of 

microspheres produced is constant. When changing the monomer flow rate the total yield is effected, 

producing smaller microspheres often required low monomer flow rates, greatly reducing the yield 

over a certain period of time. However, these are only of concern when establishing the microsphere 

size. 
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At high monomer injection rate and a slow water speed, a large microsphere size distribution is 

observed. At faster monomer injection flow rate at and faster water speed, the microsphere 

populations are approximately similar in their size distribution. The larger distribution is caused by the 

flow being too slow for the volume of monomer that was being expelled from the dispensing needle. 

Especially at the slower speed the peristaltic pump had a very noticeable (slow) peristaltic flow pattern 

which allowed monomer to bud off from the dispensing tip at greatly different quantities depending 

on the local flow conditions and the volume of monomer waiting to be removed from the dispensing 

tip.  

The narrow distribution of microspheres sizes formed from T-junction microfluidics allows greater 

control over the scaffold as a whole. This is important for delivery as the microsphere size will dictate 

the bore size of the injection needle, and a narrowly controlled microsphere size distribution will 

ensure no blockages will occur from unexpectedly large microspheres during injection or bioprinting. 

Additionally, controlling the microsphere size allows the control of the spacing between microspheres 

when packed together. Controlling this packing arrangement would allow control over nutrient 

diffusion and could induce or inhibit angiogenesis (through lack of large enough spaces for blood vessel 

formation).  Monodisperse spherical microspheres present a maximum packing density of 74% (with 

hexagonal or cubic close packing) while a polydisperse microsphere distribution allows for a higher 

packing density [309]. 

For both techniques, the internal pore size distribution can be independently controlled to the 

conditions used to control the microsphere size. There were small differences between the internal 

porosities when the emulsion was subjected to different water stirring rates, or water temperature, 

during the fabrication process. These observations concur with the results reported by Boo et al [307]. 

The slight difference observed in Figure 4.13 is not of great importance for cells as the pore sizes which 

are different (4 and 6 µm) are unlikely to be colonised by cells. The larger pores which are more 

relevant to cell behaviour are mostly equal in frequency. This statement should not be confused with 

interconnecting porosity in which pores of 4 and 6 µm could be essential for cell passage between 

larger pores. 

There is a clear difference in surface pore architecture of the microspheres produced by the two 

methods. In the CSTR method the emulsion droplets are continuously surrounded by water while in 

the T-junction microfluidic set-up the emulsion is dispensed through a small diameter (0.15-0.5 mm) 

metal syringe which will influence the surface porosity of the HIPE. Both the small diameter of the 

syringe and the contact of the HIPE with the metal can have an effect on the final surface porosity of 

the produced polyHIPE microspheres. Indeed, the surface porosity of polyHIPEs is highly affected when 

curing them on different surface energy materials [150]. 
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Both broad and narrow distribution sizes could desirable depending on the requirements of the 

application. Microspheres produced in a broad distribution of sizes would allow for a higher random 

packing density which could reduce the size of the voids between microspheres, this would reduce the 

space available for vascularisation to occur [316]. For microsphere populations featuring a 

monodisperse size distribution, the lower packing density would allow the engineering of pore 

diameters between the microspheres to best manage the void size between adjacent microspheres. It 

is possible to precisely control the size of the microspheres prepared using the microfluidic device by 

small alterations to the processing conditions.  When increasing the HIPE dispensing rate, the 

microsphere size distribution does increases slightly. This is therefore not the parameter 

recommended for controlling microsphere size as water pump rate and needle tip size provide better 

control with less size variation. It is worth pointing out however that the HIPE dispensing rate is linearly 

correlated with the rate of microsphere production. Increasing the dispensing rate to increase yield of 

spherical microspheres appeared to work only to an upper limit before the size distribution increased 

too much to be considered monodispersed. However Gokmen et al. found that when the monomer 

dispensing rate is very high, long streams of monomer are ejected from the needle leading to rod-like 

elongated shapes [264]. 
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4.5 Conclusion 

Porous microspheres were produced using the EHA/IBOA polymer blend system. Microspheres were 

produced in sizes from 40 µm to 600 µm. CSTR and T-junction microfluidics allow to produce both 

narrow and broad size distribution of microspheres, respectively. Changing the temperature of the 

water after the formulation of the polyHIPE does not greatly affect the pore size but has a dramatic 

effect on the microsphere size in CSTR. This allows porosity to be engineered independently of 

microsphere size, and allows for tailoring of the porosity parameters. Altering the stir rate of the w/o 

emulsion changed the pore size within the polyHIPE and altering the stir rate of the continuous water 

phase in the double emulsion (w/o/w) altered the microsphere diameter. The use of microspheres in 

tissue engineering requires control over the microsphere size and the porosity dimensions. This tight 

control is necessary to produce microsphere-based scaffolds with reproducible properties which can 

be used as injectable scaffolds. Producing microspheres with specific morphological properties, surface 

area, interconnectivity and packing arrangement will allow for customisation over the range of 

porosity parameters towards a tailored porous support structure for cells. 
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Chapter 5: Cell culture on EHA/IBOA polyHIPE microspheres 

5.1 Chapter aims: 
1. Measure cell growth and behaviour when cultured on microspheres. 

 
2. Test for differentiation of osteoblasts when hES-MP cells are cultured on the microspheres. 

 
3. Analyse the cell mediated aggregation of microspheres into a proto-tissue over time. 

 
4. Measure the cell ingrowth into the microspheres and determine the differentiated cell type 

found within the pores. 

5.2 Introduction 

5.2.1 Chapter introduction 

Chapter 5 investigated the manufacture of porous, non-degradable polyHIPE microspheres. A variety 

of median diameters and population size distributions were produced in a controllable manner. The 

polyHIPE microspheres contained small interconnecting windows between the larger pores, allowing 

for completely interconnected porosity within the structure. Within this chapter the potential of these 

microspheres was investigated for bone tissue engineering. 

5.2.2 Human embryonic stem cell-derived mesenchymal progenitor cells 

Human embryonic stem cell-derived mesenchymal progenitors (hES-MP) cells are derived from human 

embryonic stem (hES) cells. These cells were originally derived by multiple passages of hES cells on 

gelatine whilst retaining the adherent cells. They are very similar to mesenchymal stem cells in terms 

of the expression of markers and the cell morphology [207]. hES-MP cells are able to give rise to 

populations of osteogenic [317], chondrogenic [318] and adipogenic [207] cells. In the original paper 

no markers of undifferentiated hES cells were identified in the hES-MP cell population [207]. These 

hES-MP cells have been chosen for this work for a number or reasons. They are of human origin, they 

are a non-cancerous cell line and they express the same markers as MSC cells and exhibit very similar 

behaviour. 

5.2.3 Mesenchymal stem cells and their osteogenic differentiation 

Differentiation along an osteogenic cell lineage can be characterised by the expression of markers, 

composition of the ECM and cell morphology [319]. In vivo mesenchymal cells differentiate to pre-

osteoblast cells, to mature osteoblasts and then to either osteocytes or to lining cells [320]. A more 

detailed review of the cell types can be found in chapter 2. These cells form part of the cycle of bone 

remodelling by producing bone. Osteoblasts lay down collagen and mineral deposits and osteocytes 
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act as monitoring cells and help regulate the remodelling process in response to mechanical 

stimulation or damage [197]. 

5.2.4 Media supplements used in the culture of bone cells 

For this chapter, it is crucial to understand the different media used for the cell cultures. The different 

media will be referred to by their assigned names throughout the chapter without reference to their 

key components. These media formulations are commonly used in the literature, but are sometimes 

referred to by different labels. All the media are formed from a base of AMEM with human fibroblast 

growth factor (hFGF), Penicillin-Streptomycin and L-glutamine. Details of concentrations used can be 

found in the experimental protocols chapter (2.6.3) 

Growth media: Basic media described above with the addition of hFGF. hFGF increases the rate of cell 

proliferation (mitogenic growth factor) and is used to help prevent the hES-MP cells from 

differentiating [207]. 

Supplemented media: Basic media with the addition of βGP and A2P. βGP is used as a phosphate donor 

to enable mineralisation and may have a direct effect on  cell differentiation by influencing intracellular 

signalling [321, 322]. A2P increases the volume and maturation of collagen deposited and increases 

alkaline phosphatase (ALP) activity [323, 324]. 

Osteogenic media: Basic media with the addition of βGP, A2P and DEX. DEX is used in this media to 

stimulate cells along the osteogenic lineage [324, 325]. Osteogenic media is supplemented media with 

the addition of dexamethasone. Dexamethasone is a corticosteroid and is used in MSC systems to 

stimulate the differentiation of osteoblast cells. 
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5.3 Results 

5.3.1 Culture and proliferation of hES-MP cells on EHA/IBOA copolymer  

Cell viability was compared on a flat polyHIPE surface both with and without a coating of acrylic acid 

along with a gelatine coating (figure 5.1). A resazurin assay was used to compare cell viability of hES-

MP cells on flat sheets of material (porous and non-porous). Samples coated with gelatine performed 

similarly to uncoated samples and all samples coated with poly acrylic acid (pAA) were found to have 

a greater cell metabolism reading (figure 5.1a). When comparing coated and uncoated polyHIPE 

topology a significantly difference was observed. Significant increases were observed at each time 

point when comparing polyHIPE coated with pAA (figure 5.1b). There was no significant increase in cell 

metabolism for uncoated samples of polyHIPE, even between day 1 and day 7. Cells can be observed 

growing on flat and porous surfaces using fluorescent microscopy on samples stained with FITC and 

DAPI (figure 5.1c & d). hES-MP cells on the porous material can be observed growing in the pores 

whereas on the flat sample the cells are elongated on the surface. 
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Figure 5.1. hES-MP growth study using thin films with different topologies, of which half were coated 
with pAA, and in which proliferation was measured indirectly via resazurin assay. (a) Graph showing all 
conditions tested at day 7. (b) Same data as (a) graph displaying the results of the polyHIPE samples 
along with the TCP control with growth over 7 days. Significant differences between samples were 
apparent from day 4 and were repeated with the results from day 7. A significant difference was found 
between coated and non-coated samples (ANOVA multiple comparison). (c) Confocal image of hES-MP 
cells growing on a poly acrylic acid coated (pAAc) non-porous surface at 7 days in culture. (d) Confocal 
z-stack of hES-MP cells growing on a pAAc porous (polyHIPE) surface at 7 days in culture. FITC-Phalloidin 
(green – actin) and DAPI (blue – Nuclei) were used as fluorescent stains for these samples. ANOVA < 
0.0001.  n = 4, N = 4 Data is mean ± SD. 

 (a) 

* 

 (b) 

** 

***

**** 

**** 

 (d)  (c) 
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After determining growth on 2D substrates hES-MP cells were then cultured on microspheres coated 

with acrylic acid to determine scaffold viability (figure 5.2a). hES-MP cell growth was measured on 

microspheres over 30 days using resazurin salt to measure cell activity at each time point. Cell activity 

increased to day 11 after which the cell activity remained relatively constant. No continuous statistical 

difference was observed between the two mediums used to culture cells over the 30 days. hES-MP 

cells began forming bridges between microspheres which, over time, bound the microspheres to one 

another (figure 5.2b & c). Figure 5.2c shows a fluorescent image of a 40 µm thick sectioned sample 

showing the cells attached to a microsphere after 30 days in culture. There is both a layer of several 

cell-layers deep surrounding the microspheres and cells within the internal porosity of the microsphere. 
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Figure 5.2. (a) hES-MP cell metabolic activity for 30 days of cell culture on polyHIPE microspheres, 
measured using resazurin salt assay. Cell activity increases until day 11 after which the metabolic 
activity plateaus. Error bars ± standard deviation (b) Confocal image (z-stack) of microspheres and hES-
MP cells at day 11 stained with DAPI (blue) and FITC-phalloidin (green). Microspheres can be seen auto-
fluorescing blue. By day 11 the microspheres were observed to have formed into a several large 
agglomerations within the flask, of a cell-microsphere structure. (c) Microspheres at the day 30 
timepoint and stained as in (b) with microspheres fluorescing green. By day 30 a much larger cell layer 
is visible under microscopy and the microsphere agglomerations are larger than at day 11. n = 3, N =2 
Graph data is mean ± SD. 

Confocal z-stack images show two microspheres, one of which has cells bound to the surface and the 

other does not (Figure 5.3). The auto-fluorescence of the microsphere can be observed and compared 

to a microsphere on which hES-MP cells are attached. The microspheres were imaged alongside each 

other and it is not obvious as to why one has many cells and the other has no cells bound to it. 

(a) 

(b) (c) 
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Interestingly, the presence of green fluorescence on the left most microsphere is absent from the 

microsphere without cells. Villanueva et al. found that cellular debris did non-specifically bind with 

Phalloidin which may explain this [326].  The stereoscopic 3D image in Figure 5.3b provides a simple 

way for a reader to view one of the cell covered microspheres in 3 dimensions. To enable viewing 

stereoscopic glasses are not required. 

 

Figure 5.3. Confocal z-stack image of cells attaching to the outer surfaces of the microspheres after 3 
days in culture. Microspheres & hES-MP cells were stained with DAPI (blue) FITC-phalloidin (green). (a) 
Two microspheres, one without cells and one with hES-MP cells attached to its surface. It is possible to 
see some cells residing inside the surface porosity. (b) Stereo-graphic image of microspheres similar to 
(a). It is possible to resolve (b) into a 3D image by crossing one’s eyes slightly until both individual 
images overlay each other. If visualised correctly the images convey spatial 3D data not easily shown 
using 2D images. More detailed instructions can be found online at 
http://www.instructables.com/id/How-to-view-stereo-graphic-images/?ALLSTEPS. 

5.3.2 Agglomeration of EHA/IBOA microspheres and hES-MP cells which form over time 

Further work was undertaken to examine the agglomeration formation more closely to understand 

what might happen in-vivo. Confocal z-stacks were taken of microspheres forming cell initiated 

aggregations at different time points during the culture (figure 5.4). It is possible to see both the 

(a) 

(b) 
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increasing size of aggregations and the increasing numbers of cells on and around the structures. Initial 

formation of many smaller units, formed from a few microspheres, are observed. These smaller units 

gradually combined to form larger agglomerations. After 30 days in culture only one or two entities 

would be visible within the culture flasks. These agglomerations were robust and could be easily 

handled with tweezers without breaking apart. Cells were observed within the pores of the 

microspheres, especially at day 60. This lead to the following experiments investigating ingrowth of 

cells into the microspheres. 
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Figure 5.4. Microspheres in culture with hES-MP cells over a 60-day time period. Initially many 
aggregations of a few microspheres are found at day 3 and by day 60 all the cells have formed into a 
single larger structure. Increased cell number on the agglomerations can be observed by day 60. Images 
are confocal z-stack images of DAPI (blue) and FITC-Phalloidin (green). Images from the day 60 time 
point are from 50 µm thick sectioned samples. Cells appear to be present within the porosity of the 
microspheres at day 60. 

SEM imagining of a sectioned microsphere agglomeration was examined to understand the structure 

of the surrounding ECM (figure 5.5). ECM build-up between cells and microspheres after 60 days in 

culture can be observed in the SEM images. The red line in Figure 5.5a shows the boundary of ECM 

around the microspheres. The ECM extending between two microspheres together can be observed 

in figure 5.5b and in false colour in figure 5c. The ECM spans the distance between the two 

Day 3 

Day 14 

Day 60 

200 µm 

200 µm 

200 µm 

500 µm 500 µm 

500 µm 200 µm 
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microspheres with a fibrous appearance. It was also possible to see biological material within the 

internal porosity which we further analysed using staining to ascertain its identity. 

 

Figure 5.5. SEM images of 50 µm thick sections of polyHIPE microspheres fixed after 60 days in culture 
with osteogenic media. (a) SEM image of a microsphere on the periphery of the agglomeration. The 
red line indicates where the boundary of the cells/ECM extended to. The black arrow is indicating the 
area imaged for figure 9. The yellow arrow is indicating an area between microspheres containing cells 
and ECM material. The purple arrow is indicating the area outside the agglomeration. The blue arrow 
is indicating a large pore over 60 µm in diameter covered in cells. (b) SEM image of the ECM binding 
two microspheres together along with the cells and ECM extending out beyond the microspheres. (c) 
False colour SEM image of (b). 

H&E stained sections of hES-MP cell culture on microspheres, at different time points, can be seen in 

figure 5.6. The histological stain H&E was chosen to identify cell nuclei to determine if the biological 

material within the pores contained cells. Few cells are observed in the day 3 image and many 

microspheres are still independent. By day 15 cells surround each microsphere many are bound 

together into small clusters (figure 5.6b). By day 30 all the microspheres have combined into one single 

structure and cells appear to have fully inhabited the internal pores of every microsphere (figure 5.6c). 

(a) 

(b) (c) 
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A thick of ECM can be seen building up around the exterior of the agglomeration which increases in 

volume and depth by day 60 (figure 5.6d). At day 60 the cells within the internal porosity take on a 

more osteocyte like morphology and significant numbers of dendrite-like protrusions are observed 

between cells. 

 

Figure 5.6. H&E stains of 15 µm thick sections of microspheres, at different time points, from 
microspheres cultured in osteogenic media. Cells are visible inside the microspheres, especially at the 
later time points (blue arrows). At day 60 the interior of the microspheres appears saturated with cells 
(orange arrow). H&E also highlights the continual build-up of ECM around the microspheres. In the day 
60 section a large area to the right of the microspheres appears to be exclusively ECM.  

One experiment to examine cell survival within the agglomeration is shown in figure 5.7. A live dead 

stain has been imaged with multiple slices using a confocal microscope and assembled into a 3D image. 

The agglomeration is one from 60 days of culture with osteogenic media. The microsphere 

agglomeration has been cut along the right side of the image (green arrows) exposing the internal 

structure. At the external surface of the microsphere there is a higher proportion of living cells than 

dead (red) cells. Within the microsphere, a higher proportion of dead cells are present but there is still 

a high presence of live cells. Microspheres can be seen auto-fluorescing green in the image with one is 

illustrated by the yellow dash-line circle. 

 

Day 3 Day 15 

Day 30 Day 60 

(a) (b) 

(c) (d) 
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Figure 5.7. Live dead confocal z-stack of a microsphere agglomeration at 60 days. The structure was 
cut in half using a scalpel and the edge of the cut section was imaged to capture both interior and 
exterior structure. The white circular dotted line shows the outline of one of the ‘embedded’ 
microspheres. On the left of the red dotted line (blue arrow) is the external surface of the agglomeration 
and to the right of the line (orange arrow) is the inside of the microsphere agglomeration. Green cells 
represent living cells whereas red indicates dead cells. On the surface of the agglomeration there is a 
much higher number of living cells than in the interior. However, living cells are observable within the 
structure along with the dead cells (green arrows indicate some of the living cells visible). 

  

Exterior surface 

Inside the 

agglomeration of cells 

and microspheres 



                                                                           Chapter 5: Cell culture on EHA/IBOA polyHIPE microspheres  

138 
 

5.3.3 Cell growth and migration into EHA/IBOA microspheres from long term culture 

The SEM images (Figure 5.8) offer an additional technique for observing the cells within the porosity 

of the microspheres. Cells and ECM can be seen within the macro-porosity and forming connections 

between pores through the interconnecting porosity. Figure 5.9b shows a false colour image 

highlighting the cells/ECM which can be seen in the original greyscale (Figure 5.9a). The size of the 

interconnecting pores between the macro-porosity in which the cell/ECM has extended through is 

measured in Figure 5.9c. None of the connecting pores are larger than 12 µm wide. It should be noted 

that the process required to prepare samples for SEM requires dehydration of the cells using ethanol 

and HMDS evaporation and may have some effect on the cell structure. However, Braet et al. found 

no difference in structure between samples prepared with the more commonly used Critical Point 

Drying and drying by the evaporation of HMDS [327]. 
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Figure 5.8. SEM images taken of 50 µm thick sections of microspheres cultured with hES-MP cells at the 
day 60 time-point. (a) SEM micrograph showing cells inside the pores, with fibres or cell extrusions 
projecting from one pore to another (red arrow). (b) False coloured SEM image of (a) using photoshop. 
The cells are coloured in orange while the scaffold material is coloured blue to enhance contrast. The 
outlines of the cell were determined by visual inspection. (c) SEM image of pores on the external edge 
of a microsphere. Measurements are included to show the dimensions of all (visible) openings to the 
central pore. 

Cells were found to grow/infiltrate into the porosity of the microspheres over time, with those cultured 

in osteogenic media growing in faster and deeper than those cultured in growth media. Cells were 

found to begin infiltrating the microspheres by the 4th day, when cultured in osteogenic media. There 

was comparatively less penetration depth observed into microspheres cultured in growth media over 

the entire experiment. In growth media, some of the largest pores showed signs of cell infiltration, but 

there was no penetration into the smaller pores as observed with the osteogenic media. Analysis of 

the microspheres showed that the medium microsphere diameter was 200 -205 µm. This standard size 
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allowed us to image all the microspheres at their maximum circumference to ensure we could build 

up a coherent picture at this microsphere size.  

 

Figure 5.9. (a) Confocal image of a scaffold after 30 days, sectioned at 40 µm thickness. Scaffold stained 
with FITC-Phalloidin and DAPI with the microsphere fluorescing green. (b) A H&E stained 10 µm section 
of the in-vitro study at day 30 showing a representative image (of those cultured in osteogenic media) 
of cell ingrowth into the microsphere. Scale bar is 100 µm (c) The maximum penetration of cells into 
the particles of the entire data set. As particles are at most 200 µm wide the greatest penetration is at 
100 µm. The deepest 20 cells were selected from each data set and 95% confidence limits were used. 
(d) Average number of cells within each particle over time using 95% confidence limits. n > 6. N = 2 
Graph data is mean ± SD. 

5.3.4 The effects of media additives on ingrowth of hES-MP cells into microspheres within 

an agglomeration 

Osteogenic media caused the largest increase in ALP production with supplemented media stimulating 

greater ALP than growth media (Figure 5.10). The amount of ALP produced by hES-MPs after 14 days 

in culture was standardised against µg/ml of DNA. There is no significant difference found between 

any of the materials cultured in the same class of media. Significant differences between the different 

media types were observed for each material, except for TCP. There was no statistical relationship 
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between the ALP produced and the quantity of DEX added to the media, when considering similar 

surfaces (data not shown, 10, 20, 50 and 100 nM used). 

Figure 5.10. ALP/DNA assay on day 14 flat samples and cultured in 3 different media compositions. 
Differences in ALP production were observed between different media on the same material; except for 
TCP for which no statistically significant difference was found between any of the media compositions. 
One-way ANOVA (p<0.0001) and multiple comparison, n = 3. N = 1 Graph data is mean ± SD. 

Different levels of cell ingrowth were observed depending on the type of media the microspheres and 

cells were cultured in, with those in osteogenic and supplemented supporting the fastest ingrowth 

rates (figure 5.11). The number of cells within the microspheres were counted and their distance from 

the outer surface of the microsphere was measured. The samples were 40 µm thick and the area 

measured made up 30% of the total microsphere volume. This was used to extrapolate the total 

number of cells per microsphere. From Figure 5.12 it can be observed that the cells within the growth 

media culture did not penetrate in high numbers into the microspheres. The furthest distance the cells 

were found to penetrate was 40 µm. Culture in growth media containing either βGP or A2P appeared 

similar to each other but had significantly more cell infiltration into microspheres than culture in just 

growth media. A huge increase in internal cell numbers was observed when cultured in growth media 

with both βGP and A2P. On average a 100% increase in internal cell number when compared to media 

containing either βGP or A2P. Interestingly the addition of DEX into the media to form osteogenic 

media did not appear to affect this specific phenomenon with no significant differences found between 

osteogenic and supplemented media. No difference was found between growth media and media 

containing only ascorbic acid when measuring number of cells within the microsphere but a difference 

was observed when considering the penetration distance of cells into microspheres. 
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Figure 5.11. Fluorescent images of hES-MP cells penetration into microspheres, after 30 days, when 
cultured in different medium. Monodisperse polyHIPE microspheres sectioned into 30 µm thick slice and 
stained with DAPI and FITC-Phalloidin. Microspheres autofluorescence blue in all images. Scale bars are 
50 µm. Graph (i) Average number of cells per 40 µm slice with 95% confidence limits. Using ANOVA (p 
< 0.001) and multiple comparisons no significant difference was found between ascorbic and βGP or 
between supplemented media with and without DEX. Significant difference was found between growth 
media and all other variables except ascorbic acid.  Supplemented media with and without DEX was 
significantly higher than any other media type when measured by number of cell infiltration. Graph (ii) 
Average maximum penetration (of 5 cells with greatest penetration into each microsphere slice) with 
95% confidence limits. ANOVA (p < 0.001). n > 7. N = 2 Graph data is mean ± SD. 
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5.3.5 The effects of media supplements on the extracellular matrix production of hES-MP 

cell cultured with microspheres 

ECM is visible inside the microspheres, within the pores where the cells have migrated to (Figure 5.14). 

Collagen detected by SHG is in greatest abundance in osteogenic media. There was no significant 

difference between collagen produced with supplemented media and growth media. This in turn 

contains significantly more than cells cultured in growth media. The intensities from the SHG images 

were measured and Figure 5.14b shows a graph of the results. There seems to very little overlap in the 

filters which means that the green that is seen is certainly SHG/mature collagen. Calcium deposited 

can be seen in both media which contained βGP but not in the growth medium. Particularly strongly 

stained areas appear to be around the exterior of the microsphere and inside the microspheres for 

osteogenic media. 
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Figure 5.12. (a - Above) z-stack from confocal microscope converted to a single image by ImageJ z-
project function. Images are of second harmonic generation (SHG) imaging which identifies mature 
collagen. Osteogenic media sample shows large amount of collagen formation in contrast with 
supplemented media. Growth media shows almost no return of the SHG signal. (a - Below) Optical 
images of sectioned microspheres from the day 30 time point. Samples have been stained with alizarin 
red to stain calcium deposits. The samples cultured in growth media show little positive staining 
whereas those cultured in osteogenic media shows a strong positive. The cells cultured in supplemented 
media shows levels of staining similar to those found in the positive control. (b) shows the corrected 
total fluorescence (CTF) within the particle. DEX influences the production of mature collagen. Image 
(c) shows the narrow band filter used to capture the SHG signal and the image (d) shows the two bands 
either side of the SHG region which demonstrates that the majority of the signal within the 469 nm – 
480 nm band is from SHG and not overspill from nearby wavelength regions.  All scale bars are 50 µm. 
ANOVA < 0.0001. n = 8. N = 2 Graph data is mean ± SD. 

Small quantities of collagen staining can be observed in cells cultured in growth media with larger 

deposits of collagen are observed around the samples cultured in supplemented media but the 
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greatest density of collagen is in samples cultured in osteogenic media (figure 5.13). The area around 

the microspheres appears to contain more collagen than the centre of the sample. Collagen is observed 

within the pores on all samples not cultured in growth media. Calcium is less abundant than collagen 

and is only detected strongly on those microspheres cultured in osteogenic media. The strongest 

staining is surrounding the microsphere agglomeration suggesting osteoblast formation. A smaller 

amount of calcium is visible within the pores of the microspheres from osteogenic media culture. The 

presence of glycoproteins, as detected by toluidine blue assay, was observed on the samples. The 

strongest areas of the stain were around the exterior matrix of the agglomeration. Cells within the 

pores of the microsphere were also stained, indicating at least a low level of glycoproteins. In the 60 

day culture the strongest glycosaminoglycan (GAG) signals are detected close to the edge of the 

agglomeration where the nutrient level would be highest. 
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Figure 5.13. Optical images of 15 µm thick sections of polyHIPE samples from the day 60-time point. 
Samples have been stained with Sirius red to stain collagen, alizarin red to stain calcium and toluidine 
blue to stain for glycoproteins. Collagen is visible in all samples but appears most predominantly in 
samples cultured in osteogenic and supplemented media. Calcium is only strongly visible in osteogenic 
media with the brightest area surrounding the microsphere. In osteogenic culture cells within 
microspheres show evidence of Toluidine blue staining.   

5.3.6 Investigation into the identity of cells within pores of the polyHIPE microspheres 

After 60 days in culture thick ECM can be observed around the microspheres and cells can be seen 

within almost every pore of the microspheres (figure 5.14). A higher magnification image (Figure 5.14b) 

shows the morphology of the cells more clearly within the porosity. The dendritic like appendages 

linking cell to cell through the interconnected porosity can also be seen in this image. The images in 

Figure 5.14c and 14d show digitally constructed images which highlight the porosity and the H&E 

stained areas. 
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Figure 5.14. Optical image of a representative 15 µm thick microsphere slice, sectioned on a microtome. 
Sample was stained with H&E staining. It is possible to see cells within the microspheres internal 
porosity, linked cell to cell by cell processes or dendrites.  Large quantities of ECM and cells can be seen 
encircling the microspheres forming a large structure. Section was a day 60 sample cultured in 
osteogenic media. (a) Scale bar is 500 µm. (b) Scale bar is 100 µm. (c & e) Images produced on Autodesk 
Maya via tracing and should be considered a guide only, but demonstrate potential connections 
between cells. 

The biological material visible within the pores of the microspheres as a morphology similar to that of 

an osteocyte cell and contains deposited collagen, calcium and polysaccharides (figure 5.15). Originally 

the H&E staining appeared to show cell morphology similar to that of an osteocyte (Figure 5.17c). 

However later more specific tests such as SHG and Sirius red showed that these structures were at 

least partially formed of collagen (Figure 5.17a & 5.17b). The SEM image in Figure 5.17e shows a 

structure stretched across the pore, anchored to surrounding area. On this supporting structures are 

small granular like materials. This is a 2D like section of a sample and it should be noted that this shape 

existed in 3 dimensions within the pore. The toluidine blue stain indicates that there is the additional 
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presence of proteoglycans within this structure whereas alizarin red indicates the additional presence 

of calcium deposits. 
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Figure 5.15. Images comparing cells/ECM within pores, found within the microspheres. Both (a) and (b) 
are specific collagen stains (SHG and Sirius red respectively) and (c) stains for general ECM material 
(H&E). (d) Toluidine blue stain for proteoglycans. All scale bars are 50 µm. (e) SEM micrograph of the 
effect captured at high magnifications.  
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Sclerostin is a marker found in mature osteocytes located within osteons within the bone. Positive 

staining was observed for Sclerostin within the pores of the microspheres (figure 5.16). The positive 

control showed staining in an adult rate bone where osteocytes are expected to be present. Not all 

cells within the microsphere stained positive for sclerostin. 

 

Figure 5.16. (a) DAB stain for Sclerostin on 15 µm sections of EHA/IBOA microspheres after 60 days in 
culture with osteogenic media. (b) Dab stain for Sclerostin on sections of adult rat bone sections 
showing stained cells where osteocytes would be expected. (c) Control using only primary and 
secondary antibody but no DAB stain. (d) Control using no primary antibody but including secondary 
antibody and DAB staining. 
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5.4 Discussion 
Cells grew preferentially on EHA/IBOA thin films when surfaces were coated with acrylic acid and 

increased levels of metabolism was observed over 7 days in culture. On uncoated and gelatine coated 

samples no increase in metabolic activity over 7 days was observed, indicating limited cell proliferation. 

Gelatine is used successfully to culture the hES-MP cells for passage, and as results were similar to 

uncoated surfaces, it is likely that the coating method failed to adhere gelatine to the surface of the 

material. Viswanathan et al. also found that the attachment of hES-MP cells was dependent on surface 

chemistry [310]. The low cell attachment and growth on uncoated polyHIPEs is likely due to the 

hydrophobicity of these materials while depositing acrylic acid increases the hydrophilicity resulting in 

higher cell growth. Similar effects were observed in a recent study by the Claeyssens group using a 

polyHIPE 3D scaffold built by additive manufacturing show enhanced growth by plasma coating of 

acrylic acid and also demonstrate enhanced osteogenic differentiation on these surfaces [304]. 

Malayeri et al. demonstrates a similar level of enhanced growth of MG63 cells on EHA/IBOA polyHIPE 

surfaces [328]. Acrylic acid coatings are widely used as they are both highly hydrophilic and biologically 

recognisable to cells through protein absorption, and allows greater cell viability on the coating than 

hydrophobic surfaces [247, 329, 330]. No difference in cell metabolic activity was observed on surfaces 

with and without porosity, regardless of coating. This is again consistent with what Viswanathan et al. 

found, with the attachment of hES-MP cells dependent on surface chemistry but independent of 

porosity [310]. Differences in cell morphology were observed however with cells taking a more 

elongated shape on non-porous surfaces. 

The culture of hES-MP cells on microsphere showed an increase in cell activity over the first 11 days 

after which total cell metabolism remained stable. There were no significant differences over the first 

11 days between the different media indicating that early hES-MP proliferation is similar on these 

microspheres with and without differentiation cues in the media. Osteogenic media is used to 

differentiate MSCs into osteoblast like cells. When differentiating into osteoblasts there is usually a 

reduction in metabolic activity after an initial period of 1 - 4 days [192]. This was not observed for the 

culture on microspheres indicating that either the tests were insufficiently sensitive to pick out the 

difference or that most of the cells had not begun to differentiate and were still proliferating. When 

seeding onto microspheres, a lower number of cells attach to the surface as many cells fall past them 

in the culture. This results in greater free area around the cells which then does not induce contact 

inhibition. This lack of inhibition allows cells to freely proliferate instead, perhaps at the expense of 

differentiation. 

Over time it was observed that cells began to form agglomerations incorporating the microspheres, 

until all microspheres were aggregated together in one large mass. The cells and microspheres 

combining after a period of time to form large cell-microsphere aggregates, as was also observed by 
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Zhang et al. [265]. Within the T-flasks, multiple small aggregate nuclei were formed after a few days, 

which then increased in size, as single microspheres and other small aggregates combined. After 30 

days, only a few very large aggregates remained but these would no longer merge without exterior 

intervention in pressing them together. Aggregates forced into contact for a length of time would then 

merge. By day 60 the microspheres are surrounded by a large amount of ECM, in some areas there is 

almost 400 µm of this ECM between the microspheres and the nearest edge of the agglomeration. The 

3B’s group in Portugal have shown that it is possible to form aggregates in a faster fashion by increasing 

the cell and microsphere contact area by growing them within an PCR tube [331]. This suggests that 

forcing microspheres together, such as would occur upon injection into the body, would allow 

aggregate formation to occur more rapidly than we have seen in-vitro. Aggregates remain as a solid 

structure and cells would continue to proliferate on the exterior. Over time, this outer layer increased 

in thickness. Microsphere-cell aggregates were firm enough to be handled and required cutting with a 

scalpel to prepare them for imaging. 

Cells were found within the internal porosity of the microspheres having migrated in from the external 

surface through the interconnected regions. When samples were section and stained, it became 

apparent as to the extent of the infiltration of cells within the microspheres. We were surprised that 

cells did indeed grow into the polyHIPE material due to the small size of the pores, especially the 

interconnecting pores, of the material. Many studies state that the optimal pores size for ingrowth is 

far larger at larger than 100 µm [97, 332] whereas the average porosity of the polyHIPE was around 25 

µm with few interconnecting pores being larger than 7 µm. Lu et.al studied the culture of osteoblasts 

in porous ceramics and found that within their interconnected porous system osteoblasts/bone 

ingrowth required interconnecting pores larger than 20 µm in diameter [333] which is larger than those 

in the polyHIPE material. Internal cell numbers and ECM quantities can be seen increasing within the 

microspheres when comparing two time points indicating cell still viably within the scaffold. MSC 

differentiated cell types which can survive within a low oxygen environment are osteocyte or 

chondrocyte cells. Other groups had observed cell infiltration into porous microspheres with a recent 

study by Huri et al. showing cell ingrowth of adipose derived stem cells into salt leached PCL 

(polycaprolactone) microspheres [334]. Previous studies with hES-MP cell growth on polyHIPEs have 

focussed on scaffolds with larger pore sizes [310], whereas in this study we concentrated on pore sizes 

more comparable to the studies of Cosgriff-Hernandez who studied the growth of hMSCs on similar 

porous microparticles [335]. Pores at the smaller end of the scale (roughly 50 µm) are reported to work 

well in-vitro in producing osteoblast like cells [336]. This pore size was chosen so we could examine 

the effects of osteogenic differentiation in-vitro. 

Culturing cells in osteogenic media caused faster cell ingrowth into the microspheres, when compared 

to non-osteogenic media. We found that in osteogenic media cells had reached the centre of the 
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microspheres by around day 15 in lower numbers, with cell numbers inside increasing up to the end 

of the experiment at day 30. After 60 days cells appeared to inhabit most of the pores within samples 

grown in osteogenic media. In comparison when cultured in growth media cells remained closer the 

external surface than in osteogenic media and fewer cells were observed within the microspheres. 

Most cells within microspheres cultured in growth media were close to surface of the microsphere. 

Osteogenic media is formulated to induce MSC like cells to differentiate into osteoblast cells. Figure 

5.10 shows that osteoblast cells are formed on this material when using osteogenic media, as indicated 

by increased ALP levels. These results could indicate that osteoblast like cells are more inclined to 

migrate into scaffold than the cells found when cultured with growth media. Both MSCs [101, 102] and 

osteoblasts [337, 338] have been shown to migrate and MSC cells have also been known to migrate 

through smaller pores when stimulated by certain chemicals [103].  Therefore, a specific chemical from 

the media may be responsible for the cell ingrowth by causing MSC ingrowth. Osteogenic media is 

formed from the addition of several additives which are absent in growth media. An additional 

experiment was then conducted to examine is a specific additive, or additive combination, within the 

osteogenic media was causing cells in migrate further into the microsphere. 

Different levels of cell ingrowth into microspheres was observed when using media containing 

different combinations of the additives used in osteogenic media, with dexamethasone appearing to 

have no effect on ingrowth. Results showed that both ascorbate-2-phosphate and βGP caused a small 

increase in cell ingrowth when used independently but that they worked synergistically together for 

far greater cell ingrowth. Ascorbate-2-phosphate is known to promote ECM secretion (collagen and 

glycosaminoglycan) from the cells [339]. βGP is reported to promote the formation of mineralized bone 

by providing a surplus of phosphate ions to osteoblasts and stimulates ALP production through surface 

bound activators [340, 341]. Neither effect would suggest a direct reason for cells to grow into 

microspheres. β-GP or ascorbate-2-phosphate could coat the surface of the microsphere or acts on the 

cell to allow/encourage them to enter the microsphere. Ascorbate-2-phosphate and βGP both aid in 

the formation of ECM which could itself enhance cell migration. The presence of DEX appeared to have 

little effect on infiltration. Similar ingrowth was observed for media containing ascorbic acid and β-GP 

with and without dexamethasone. MSC cells have been shown to migrate when stimulated by TGF-β 

[342] and while no TGF-β was added to the media, DEX is reported to enhance TGF-β2 binding in a 

dose dependent manner [343] which may increase the sensitivity of MSC cells to any TGF-β released 

within the system. There is no evidence however that TGF-β enhanced migration would cause MSC to 

migrate into small pore systems. 

The use of the different additive combinations in media resulted in different levels of ECM production 

in both the microspheres themselves and in the agglomeration with dexamethasone having an impact 

on observed composition. ECM is produced by all cells but some cell type produce specific ECM. In this 
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study, we have hES-MP cell and potentially osteoblasts cells within the microspheres. The role of an 

osteoblast is to lay down ECM and to facilitate the production of bone whereas the primary role of the 

stem cell is self-perpetuation. This is why, and as we observed, that ECM deposition and mineralisation 

of a scaffold is an indicator of the presence of osteoblasts [192]. Less calcium is observed in systems 

without cultured without βGP which was predicted as without βGP there are very low levels of mineral 

available to deposit. Increased levels of collagen are observed in media containing ascorbic acid as 

ascorbic acid plays a key role in collagen maturation. When looking at the intensity of the SHG a 

statistical difference was found with the addition of dexamethasone to the culture media. While 

supplemented media formed osteoblasts (due to the presence of calcium) a significant increase in both 

collagen and calcium was observed with the addition of dexamethasone to the media. This is likely due 

to an increased number of osteoblast or more developed osteoblasts as dexamethasone is known to 

promote osteogenesis. From this it appears that the ingrowth of cells into the microspheres is not 

directly related to the formation of osteoblastic cells but from the availability of both βGP and ascorbic 

acid. 

There are many indications that the cells within the porosity of the microspheres are osteocyte cells 

including shape, antibody staining and ECM composition, but it is not possible to rule out the possibility 

of chondrocytes being present. Few cells can survive under hypoxic conditions expected within the 

microspheres pores. This is an indicator that cells have differentiated to a cell type which can survive 

in hypoxic conditions. Osteocyte cells survive and perform in areas distant from blood supplies [344]. 

Osteocytes have been documented preferably differentiating under hypoxic conditions [215] although 

there is still some debate on whether osteoblasts are enhanced or inhibited under those same 

conditions [215, 216]. Another cell type which is often formed under hypoxic conditions is 

chondrocytes [345-347], which have also been reported forming in small pores similar to these, in both 

in-vivo [348] and in-vitro [349] experiments. Literature has shown that hES-MP cells can be 

differentiated into chondrocytes, although usually only in chondrogenic media [207]. Osteocytes have 

a spindly appearance, which is observed within the microspheres, whereas chondrocytes have a more 

spherical appearance. Dendritic like extensions were observed running between pores and cells within 

the microsphere at day 60. The formation of dendrites is observed on osteocytes but not on 

chondrocytes [350, 351]. Both cell types would be surrounded by collagen as we observed from the 

Sirius red staining. The deposition of calcium deposits is usually an indicator of osteoblastic activity but 

chondrocytes can also deposit bone under certain conditions, usually when they are hypertrophic 

[352]. Hypertrophic chondrocytes begin to deposit bone but once surrounded by bone they usually die 

due to the lack of nutrients, leaving behind cavities for bone cells to inhabit [353]. This might explain 

the decreased levels of GAG within internal pores at day 60 indicating that any chondrocytes that were 

formed have been replaced by osteocytes in hypoxic areas. Positive staining for Sclerostin was also 
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found on some of the cells at day 60 within the microspheres. Sclerostin was initially used to determine 

osteocytes from osteoblast as the antibody is only present in osteocytes [354]. Sclerostin inhibits 

osteoblasts and prevents the deposition of new bone and is found to be secreted by osteocytes when 

they first form the osteon [355]. This could therefore indicate that the osteocytes are recognising the 

pore as an artificial osteon.  
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5.5 Conclusion 
From the first results chapter where we looked at manufacturing, this chapter looked at the culture of 

cells (mainly hES-MP cells) with these microspheres. The study was taken further by looking at the 

long-term culture of hES-MP cells upon the microspheres where it was found that the cells assembled 

the microspheres into a large aggregation. The mesenchymal cells grew into the porosity of the 

microspheres and formed anchor points between microspheres. This allows a larger scaffold to self-

assemble, made from numerous microspheres, allowing for the formation of larger pores between the 

microspheres that could enable vascularization. The binding of the microspheres by cells shows that it 

will be possible to create a continuous scaffold from individual microspheres over time. Cells were 

found to penetrate the microspheres when grown in media with containing supplements. The ability 

to create uniform sized microspheres allows us to create a time course to view cell ingrowth into 

microspheres. The supplemented media (βGP and ascorbate-2-phosphate) appear to work 

synergistically to stimulate cell infiltration into the microspheres. Adding Dexamethasone did not 

appear to have any impact on the cells abilities to grow into pores. However, adding dexamethasone 

to supplemented media increased ALP production in cells and greatly increased deposits of collagen 

and mineralisation. All of these factors confirm the presence of osteoblast formation. On balance, from 

looking at cell morphology and sclerostin staining, it appears that osteocytes are also forming within 

the internal porosity although there is some difficulty in differentiating between osteocytes and 

chondrocytes.  
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Chapter 6: Degradable polyHIPE microspheres 

6.1 Chapter aims 
1. Investigate the potential of the thiol-ene material for polyHIPE microsphere applications. 

2. To utilise the new emulsion technique for forming a HIPE using PCL, recently developed in our 

lab, for polyHIPE microspheres  

3. To investigate if the previous results with the EHA/IBOA polyHIPE can be replicated using a 

biodegradable polyHIPE microsphere system. 

6.2 Introduction 
In the previous chapter a non-degradable polyHIPE microsphere system was investigated and positive 

results were found from the cell ingrowth data. As a non-degradable polymer, it would be suited for 

studying cell growth and infiltration in-vitro but could not be used for an injectable implant in the clinic. 

The key to this project was to re-produce these results in a fully degradable system that could then be 

used as an injectable and degradable bone filler. In this chapter, we consider two systems, thiol-ene 

and PCL polyHIPE microspheres that have the potential to meet the requirements of the project. 

6.2.1 Degradable materials and their use within the body 

Degradable materials are an essential aspect of a successful tissue engineered solution [67]. As the 

cells included on and surrounding a scaffold begin differentiating and producing ECM material the 

scaffold should resorb at the same rate as growth, until no scaffold remains. Degradable materials 

should be able to be completely removed by the body’s natural pathways. A non-degradable material 

risks eventual negative immune responses and prevents the formation of a completely natural and 

functional tissue. Sometimes it is possible to remove a non-degradable implant, in situation such as 

nerve regrowth [356], but this is never desirable due to the necessity of a second surgery and 

associated risks and costs. For most tissue engineered solutions the scaffold is an integral part of the 

implant and cannot be removed without removing the newly formed tissue. 

6.2.2 Thiol-ene polymer as a polyHIPE 

Thiol-ene reaction is one between a thiol and an alkene which results in an alkyl sulphide bond. It is 

possible to use a photoinitiator for this reaction [191]. Thiol materials such as trimethylolpropane 

tris(3-mercaptopropionate) (trithiol) are sufficiently hydrophobic to be formed into an emulsion but 

are also able to degrade within the body. Some studies have now been published using this material 

although few investigate the full biodegradability of the polymer [160, 190, 191]. 



  Chapter 6: Degradable polyHIPE microspheres  

158 
 

6.2.3 Polycaprolactone polymer as a polyHIPEs 

PCL is a biocompatible and biodegradable material [357] and is as close to a FDA approved material as 

possible, if the FDA did not operate on a case-by-case approval system. PCL is a polyester with a very 

slow degradation rate (3 – 4 years) that degrades to products which the body can easily remove [357]. 

The mechanical properties of PCL are not suitable for load bearing applications although the polymer 

is very popular in other fields of tissue engineering and also for non-load bearing bone applications [67, 

358, 359]. The polymer itself is very well studied and relatively inexpensive to buy. Until recently the 

only PCL polyHIPEs which could be formulated were formed of PCL blends or with porosities below the 

74 % limit [302]. These materials often had undesirable qualities with the blend polymer often being 

non-degradable [186, 360]. PCL has a comparatively lower hydrophobicity [186] that makes it 

unsuitable for polyHIPE manufacture, coupled with a high viscosity during emulsification. Recently 

Sherborne et al. succeeded in producing a true PCL polyHIPE using a dual solvent system and elevated 

temperatures. This polyHIPE is investigated within the chapter. 
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6.3 Results 

6.3.1 The manufacture of Thiol polyHIPE microspheres and hES-MP cell growth on both 

microspheres and flat sheets 

The thiol-ene based formulation was successfully processed to form a polyHIPE material and this 

material was then formed, using a w/o/w emulsion, in microspheres (Figure 6.1). From Figure 6.1a it 

is possible to see the highly porous nature of the material. The median pore size is around 40 µm and 

very large pores can be observed in the material, some greater than 100 µm in diameter. This high 

porosity is not apparent when looking at the external surface of the thiol polyHIPE microsphere (Figure 

6.1b). On this exterior, the pore size diameter average is around 20 µm, a result repeated in Figure 

6.1c & 1d. A significant proportion of the microspheres surface topology is smooth and lacking in 

surface roughness and pores. 

 

Figure 6.1. Thiol-ene material formed as an emulsion to produce a polyHIPE. (a) SEM micrograph of a 
flat sheet of thiol polyHIPE. (b) Exterior surface of a thiol microsphere. (c) 3oo µm thiol polyHIPE 
microsphere. (d) Auto-fluorescence z-stack image from a confocal microscope showing the exterior of 
the microsphere when wet. 

hES-MP cell growth on thiol microspheres was investigated and cells were found to attach to the 

surface of the material, although no ingrowth was observed (figure 6.2). Cells can be seen binding to 

the exterior surface of the microspheres (Figure 6.2a & 2b) after 3 days in culture. After 10 days in 

(a) (b) 

(c) 
(d) 
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culture significantly more cells can be seen growing on the poly acrylic acid coated (pAAc) thiol 

microspheres (Figure 6.2d) than on the uncoated microspheres (Figure 6.2e). pAAc coated 

microspheres, when cultured with hES-MP cells still formed agglomerations of microspheres. When 

sectioned and stained it was observed that very few cells grew into the internal structure of the 

microspheres. 
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Figure 6.2. hES-MP cell growth on thiol-ene polyHIPE microspheres. All fluorescent images are stained 
with DAPI for cell nuclei and FTIC-Phalloidin for F-actin. (a) Fluorescent image of an uncoated thiol-ene 
microsphere after 3 days in culture with hES-MP cells. A cell can be observed attached to the side of the 
microsphere. (b) Z-stack image from a confocal microscope of a pAAc thiol-ene microsphere after 3 
days in culture. (c) H&E stained imaged of a 15 µm thick section of a thiol-ene microsphere/cell 
agglomeration. (d) Z-stack image from a confocal microscope of a pAAc thiol-ene microsphere after 10 
days in culture. (e) Z-stack image from a confocal microscope of an uncoated thiol-ene microsphere 
after 10 days in culture. 

(a) (b) 

(c) 

(d) (e) 

50 µm 50 µm 
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DNA and ALP recordings of hES-MP cells cultured on flat sheets of thiol-ene polyHIPE showed low levels 

of DNA in all three mediums but an increase in ALP activity for those cultured in osteogenic media 

(Figure 6.3). A slight increase in cell numbers is observed with pAAc when compared to uncoated 

particles, in osteogenic media. There is no significant difference between any of the media used when 

culturing on the thiol-ene polyHIPE. A difference was observed on the TCP between the different media. 

When considering ALP production, the media did have a significant effect. There was no significant 

difference between any of the different surfaces when cultured in the same media. 

  

Figure 6.3. (a) Picogreen assay to detect the quantity of DNA on a flat scaffold after 14 days in culture 
in different media. (b) ALP production per unit of DNA measured for the same materials as in (a). No 
significant variance was found using an ANOVA between any of the materials cultured in a specific 
media. Significant difference was observed between the different media ANOVA. n = 3. N = 2 Graph 
data is mean ± SD. 

** 

** 

** 

*** 

** 
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6.3.2 Manufacturing polycaprolactone based polyHIPE microspheres 

Highly porous microspheres were successfully manufactured from a PCL based polyHIPE material 

(figure 6.4). The PCL microspheres were more difficult to make compared to other polyHIPE systems 

used due to their lower stability. Two distinct surface morphologies were observed in the produced 

PCL microspheres, exhibiting different surface roughness (Fig 6.4d). The rougher morphology appears 

to have a higher degree of surface porosity. The distribution of microspheres formed from the stir 

emulsion manufacturing technique is a similar left leaning skewed distribution observed in chapter 4. 
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Figure 6.4. PCL polyHIPE microspheres formed by w/o/w emulsion. (a) SEM micrograph of surface skin 
of a microsphere. (b & d) SEM of PCL microspheres with different surface morphologies. (c) SEM of PCL 
polyHIPE microspheres. (e) Histogram of the size distribution of microspheres produced using the stir 
tank reactor method (w/o/w). n = 547 

The internal structure of the PCL microsphere is highly porous and can be seen to include 

interconnecting pores between the larger pores (Figure 6.5). A wide distribution of pore size within 

the microsphere is described in Figure 6.5b. The largest pore recorded was 55 µm in diameter, 

although the majority of recorded pore diameter were less than 30 µm. 

(a) 

(c) 

(b) 

(d) 

(e) 
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Figure 6.5. (a) SEM image of 40 µm thick section of a PCL polyHIPE microsphere showing the internal 
porosity of the structure. (b) Pore size diameter distribution from PCL polyHIPE microspheres measured 
from SEM images such as the one in (a). n = 312. 

Internal pore size of the PCL microsphere was very similar to that of the EHA/IBOA microsphere system. 

PCL polyHIPE appears to have a slightly greater number of the smallest pores and significantly less of 

the largest pores recorded in the EHA/IBOA system (those pores greater than 35 µm). When comparing 

SEM micrographs of the microspheres produced from EHA/IBOA and PCL systems (Figure 6.6b & 6c) 

the appearance of both are relatively similar. EHA/IBOA polyHIPE microspheres appear to have slightly 

more open surface than the PCL microsphere which have a slightly more closed appearance.  

 

(a) 

(b) 
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Figure 6.6. Comparison of PCL and EHA/IBOA microspheres. (a) Distribution of internal pore size 
diameters from both PCL and EHA/IBOA microspheres. Microspheres formed from the different 
materials were formed using the same processing conditions (at the same temperature, water content 
and stir rate). (b) SEM micrograph of an EHA/IBOA polyHIPE microsphere. (c) SEM image of a PCL 
polyHIPE microsphere. n = 312. 

6.3.3 Accelerated degradation of polycaprolactone polyHIPE microspheres over a 60 day 

time period 

Over the 60 days the microspheres stored in NaOH lost over 80% of their weight and the ones 

degrading in water lost roughly 25% of their original weight (figure 6.7). Microspheres were stored 

within a glass container for 60 days in designated solution. Degradation of the PCL polyHIPE as 

microspheres was conducted over 60 days, both in an accelerated form using NaOH and at a slower 

rate using distilled water. The microspheres stored in dry air did not reduce in weight over the 60 days. 

 

(a) 

(b) (c) 
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Figure 6.7. Accelerated degradation study of the PCL material as polyHIPE microspheres over 60 days 
at 37°C. Graph is showing remaining mass of the material as a percentage of the total mass. The 
accelerated test (NaOH) resulted in an 80% loss of mass and microsphere submerged in water lost 
around 25% of mass in the same time period. Samples kept dry lost 0% mass over the 60 day experiment. 
n = 4, N = 1. 

6.3.4 Culture of hES-MP cells on polycaprolactone microspheres and the formation of cell 

enabled agglomerations 

hES-MP cells successfully grew on the PCL microspheres and formed agglomerations by day 5 of culture 

(figure 6.8). HES-MP cells were found to form connections between each microsphere and then adhere 

them together. This slowly increased the size of the agglomerations as more and more cell coated 

microspheres met one another. The microspheres were used without any surface treatment. 

Embarrassment  
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Figure 6.8. Confocal z-stack images of uncoated microspheres cultured in two different media at two 
time points. DAPI (blue) stains the cell nuclei and FITC-Phalloidin (green) stains the F-actin of the 
cytoskeleton. Cell initiated microsphere aggregation can be clearly observed at the later time points (c 
& d). 

The cells binding the microspheres together can be seen more clearly in the confocal images using only 

the F-actin stain FITC-Phalloidin to image the cell’s cytoskeleton (Figure 6.9). In Figure 6.9a & 10b it is 

possible to observe the cells growing over the microspheres and the initial stages of bonding between 

the microspheres. In Figure 6.9c cell bodies can be clearly seen extending between microspheres, 

adhering to each other or to an adjacent microsphere. At this early stage in culture it is possible to see 

this supporting structure. At later time periods, it is obscured by high levels of cell proliferation growing 

on the original supporting structure. 

Day 5 in Osteogenic media 

Day 30 in osteogenic media Day 30 in growth media 

Day 5 in growth media 

(a) (b) 

(c) (d) 

200 µm 

200 µm 200 µm 

200 µm 
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Figure 6.9. PCL polyHIPE microspheres cultured for 5 days in media with different additives and imaged 
with a confocal microscope. Only the FITC Phalloidin stain for f-actin (green) is shown here to highlight 
the structure of the cells cytoskeleton as they grow over and bind the microspheres together. 

Day 5 in Growth media 

Day 5 in Osteogenic media 

Day 5 in Supplemented media 
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At the later time point of day 30 large numbers of cells can be observed covering the PCL microspheres 

(Figure 6.10). It is evident from the confocal images that the cells are highly aligned with each other in 

orientation. This is most notable in the deconstructed florescence images in Figure 6.10a & 10b. Even 

the nuclei (blue) have taken an elongated shape that follows that of the cell body (green). The 

histogram in Figure 6.10d shows a high level of alignment in the elongated nuclei from within the cells. 

This has been confirmed by measuring the nuclei orientation which can be observed in Figure 6.10d & 

e. 
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Figure 6.10. Confocal z-stacks of cells cultured on PCL polyHIPE microspheres after 30 days in culture 
and imaged with a confocal microscope. FITC and DAPI stains were used to stain the f-actin and nuclei 
respectively using fluorescence microscopy. (a) Actin filaments of cells growing on the PCL microspheres. 
(b) Nuclei of cells growing on the PCL microspheres. (c) Actin filaments and nuclei of cells growing on 
the PCL microspheres. (d & e) Radial and histogram plot of orientations of the nuclei found in (with 
respect to horizontal axis of image) (b) using cumulative frequency. n = 30. N = 4. 

  

FITC stained actin filaments DAPI stained Nuclei & autofluorescence  

FITC and DAPI staining 

(a) (b) 

(c) 

(e) 
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6.3.5 Cell ingrowth into polycaprolactone polyHIPE microspheres over time  

Cells were found to grow into the PCL microspheres during culture with hES-MP cells (figure 6.11). Cells 

are observed within the microsphere’s porosity by day 30 of culture. The morphology of the organic 

material within the internal porosity appears suspended between the edges of the pores Figure 6.11a 

& 11c). Fibres or cell protrusions can be observed running between pores, connecting the organic 

material within each pore to their neighbours (blue arrows). ECM/cell material which encases the 

microspheres and helps to bind them together into an agglomeration (Figure 6.11c & 11D). Figure 6.11 

e shows an entire section of one of the microsphere-cell agglomerations. The ECM/cell network can 

be seen surrounding the microspheres.  
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Figure 6.11. SEM micrographs of PCL microspheres cultured with hES-MP cells after 30 days in 
osteogenic media. Samples were sectioned to 40 µm thick and then imaged. (a) Cells/ECM is visible 
within the pores of the PCL microsphere. (b) False colour image of (a) with all biological matter coloured 
orange and the PCL material coloured pink. Blue arrows show where there are protrusions between 
porosity connecting cells. (c & d) SEM images showing the ECM build up around the microspheres which 
bound them into the agglomeration. (e) Low magnification image of an entire section of the clump. 
Microspheres can be seen within, surrounded by ECM material (red arrows). In some areas the 
microspheres are close to the surface of the ECM and in other areas there are several hundred microns 
between the microspheres and the edge of the ECM (orange arrow).  

(a) 

(c) (d) 

(e) 

(b) 



  Chapter 6: Degradable polyHIPE microspheres  

174 
 

Cells infiltrated the microspheres over the 30 day culture (Figure 6.12). Samples were removed from 

culture a regular time intervals and the number of cells within the microspheres was measured. The 

different media the cells were cultured in appeared to influence the number of cells and the speed of 

which the cell grew into the microspheres. Cells cultured within growth media had the least cells within 

the microspheres and a significant difference was found between growth media and almost all the 

other media. Osteogenic media was significantly different to media containing ascorbate-2-phosphate 

with growth media. Cells cultured in growth media do not appear to increase significantly in number 

over time (Figure 6.12b). 

 

Figure 6.12. Microspheres were removed from culture at regular time points, sectioned and then the 
number of cells within each microsphere was counted. (a) Culture time point day 25 and investigating 
the effect of media additives on number of cells within the microspheres. ANOVA p < 0.001. n = 6, N = 
2 Graph data is mean ± SD. (b) Cell ingrowth over time when cultured in 3 different mediums ANOVA p 
< 0.001. n = 6, N = 2 Graph data is mean ± SD 
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The culture medium used on the microspheres appears to have less of an effect on penetration 

distance of cells into the microspheres than on cell numbers within the microspheres (figure 6.13). 

Using osteogenic media will force cells to become osteoblasts. Supplemented will provide the minerals 

for osteoblasts but provides no impetus to differentiate. Growth media will hinder osteoblast 

formation due to the lack of minerals needed for that cell type. These 3 mediums are used to compare 

the effects of osteoblast formation on resulting cell migration. The depth of the cells into the 

microspheres did not increase significantly past day 10. This was followed up by investigating the ECM 

produced during cell culture. 

 

 

Figure 6.13. Microspheres taken at regular time points from culture, sectioned and stained with H&E 
to measure the distance of cell ingrowth. Cells were measured from their position within the 
microsphere to the nearest edge. (a) The effect of different media on cell ingrowth distance at 25 days 
in culture. (b) Cell ingrowth distance over time when cultured in three different media conditions. n =6. 
N = 2 Graph data is mean ± SD. 

(a) 

(b) 
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6.3.6 Measure of extracellular matrix within agglomerations of microspheres and cells 

cultured in media with different additives 

H&E staining of the sectioned microsphere agglomerations show the microspheres are both bound by, 

and grown into, by the cells (Figure 6.14). At 30 days in culture it is apparent that most of the pores 

contain a cell/ECM construct. The structure observed in Figure 6.12e is reminiscent of those found 

within the pores of EHA/IBOA microspheres from chapter 5. 

 

Figure 6.14. H&E stains of 10 µm thick sections of the aggregations formed with hES-MP culture on 
microspheres. (a & b) 15 days in culture using supplemented media. (c) Inside a microsphere after 30 
days in culture with osteogenic media. (d) 30 days in culture using growth media containing βGP. (e) 
Higher magnification image of the cell/ECM morphology within the porosity of the PCL microsphere. 

Collagen deposits are most prominent in the sample cultured in osteogenic media and least prevalent 

in those cultured in growth media (figure 6.15). Collagen is detected within every sample, regardless 

(a) (b) 

(c) (d) 

(e) 
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of media condition with the brightest intensities found in 6.15e) High levels of collagen are present 

within the internal porosity of the microspheres (Figure 6.15f). 

 

 

Figure 6.15. Sirius red staining for collagen deposits on sectioned microsphere agglomerations from 
day 30 of cell culture. Sections are 10 µm in thickness. 

The alizarin red staining in shows the presence of calcium strongly in the cells cultured in osteogenic 

media but not in those samples cultured in any other media (Figure 6.16). Some positive staining can 

be observed around the microspheres cultured in osteogenic media (Figure 6.16e) with most of the 
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detected calcium surrounding the microspheres. Calcium can be observed deposited within the pores 

of the microspheres grown in osteogenic media (Figure 6.16f). 

 

 

Figure 6.16. Alizarin red stain of calcium deposits within the microsphere agglomeration removed from 
culture after 30 days. Sectioned samples for 10 µm thick. 

The toluidine blue stain shows that most of the proteoglycans present can be found outside the 

microspheres and it is equally evident for each media condition (Figure 6.17). Far less proteoglycans 

can be detected within the pores, unlike the results found previously with EHA/IBOA microspheres 

where a high intensity was observed within the pores. 
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Figure 6.17. Toluidine blue stain of proteoglycans within the microsphere agglomeration. Samples 
removed from culture after 60 days. Sectioned samples using cryo-microtome at 10 µm thick. 
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6.4 Discussion 
To the best of our knowledge a thiol-ene based polymer has not yet been used to form polyHIPE 

microspheres but the material has been used to form monolithic structures before. The formulation 

of thiol-ene polyHIPE material and its potential use in tissue engineering was first reported on by 

Caldwell et al. in 2012 [191], although a few years previously a 70 % porous material was produced by 

Gong et al. using thiol-ene polymers [361]. Gong et al. used their material to produce microspheres 

with porosity below 70% (and pedantically therefore not a polyHIPE) and without any interconnections 

between the pores [361].  

The material initially looked promising for our application but a combination of difficulty in processing 

the material and inability to fully degrade prevented further use. The emulsion was highly stable, if 

more viscous than the EHA/IBOA material which made processing a little more difficult. This was 

especially true for attempting to form the microspheres with a T-junction microfluidic device. The 

experiment has not been included in this thesis but the resulting microsphere diameter distribution 

was high. The material was highly porous and contained larger pores than we had produced using the 

EHA/IBOA system. The material is also reported to be biodegradable [191], although it was only shown 

to degrade by 19% over 15 weeks. This would make it problematic to build a fully resorbable scaffold 

with the thiol-ene material. The incomplete degradation is an issue with all the photocurable polyHIPE 

materials, even with the PCL material. For while the PCL will completely degrade away it will leave 

behind the crosslinker, photoinitiator and any surfactant that was not removed from the polyHIPE 

during post processing. Biodegradable photo-initiators are available which could be used to replace 

the non-degradable one used in this application [362, 363]. 

Microspheres formed from the thiol-ene emulsion possessed surface topology that did not reflect the 

internal porosity being predominantly smooth skinned with pores occupying the minority of the 

surface area. This topology would make it more difficult for initial cell attachment, as the smooth 

surface could make it harder for the cell to adhere to initially [364, 365]. This surface porosity was also 

very small, with the upper pore size observed not much greater than 20 µm. As we observed in chapter 

5 this would not prevent cell ingrowth but it might make it more challenging for the cells to begin to 

grow into the material. Despite this smaller surface porosity, the pores observed in the microspheres 

when sectioned appears similar to that of monolith polymer.  

The thiol material supported hES-MP cells, when coated with pAAc, but there was no improvement 

over the EHA/IBOA polymer blend material alongside a lack of cell ingrowth. While the material did 

support cells, the results we obtained from the PCL material were superior in terms of cell growth, 

even without a coating. Cells were observed binding to the thiol-ene microspheres and the 

microsphere-cell agglomerations was successfully formed (Figure 6.2). Significant cell growth only 
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occurred on microspheres which had been coated with pAAc, those without a coating only supported 

limited cell growth. A critical finding was the lack of cell ingrowth into the microspheres after 14 days 

in culture, possible due to the reduction of open surface porosity. It is possible that on a longer time 

scale the cells may have grown into the microspheres but further experimental work was not 

undertaken once we began to use the PCL polyHIPE material. 

Less cells were observed attaching initially to the microspheres during early culture which appeared to 

prevent cells from growing on the uncoated microspheres which had shown some success when using 

flat surfaces. When we initially conducted cell culture on the thiol-ene material (on a flat sheet) cells 

adhered to the non-coated scaffold. This result was not repeated when we moved onto culturing with 

microspheres. When culturing on flat sheets cells have longer to attach to the surface when seeding 

than for microspheres. When seeding on a flat sheet the cells fall and rest on the scaffold which gives 

them time to attach to the scaffold. A problem with microsphere culture is that the cells usually only 

have a brief time of contact with the microspheres while seeding. Thus, we often used a great many 

more cells in our 3D cultures than we did for 2D culture (not unexpected). Many other authors using 

3D materials use large numbers of cells and not just for microsphere culture [366].  

When culturing hES-MP cells with osteogenic and non-osteogenic media there was no impact on the 

amount of DNA collected, but the ALP/DNA was strongly impacted by the different media. The control 

showed a standard growth profile, with the slowest growth for the cells in osteogenic media and 

fastest for those in growth media. Conversely there was no difference between the DNA quantity for 

cells cultured in the different medias on the material. However, when we looked at ALP production 

per unit of DNA, we find that the media does have a profound effect on the cells. Cells cultured in 

osteogenic media produced significantly more ALP than those cultured in supplemented media, and 

these had significantly higher ALP production in turn when compared to growth media cultured cells.  

The benefits of using the PCL polymer as a material for the microspheres is in the fully degradable 

nature of the material and its long history of use in the medical device industry [357]. Its degradability 

is especially suitable for bone, due to its long term degradation profile to minimise the quantity of 

acidic degradation products over a period of time and allow the inclusion of a high degree of porosity 

without degrading faster than bone can regenerate [357].  Usually the poor mechanical properties of 

PCLs prevent it from being used in load bearing applications but this does not hinder its use for our 

application. There are few fully degradable polyHIPE materials [367], with those reported on often 

being only partially degradable [360, 368].  

In addition to the biological benefits of the material, PCL can be more easily processed into a polyHIPE 

as it is hydrophobic. This hydrophobicity is required for forming an emulsion with water as the internal 

phase. The opposite to a w/o does exists in an oil-in-water emulsion, where the bulk phase is a 
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hydrophobic oil material and the polyHIPE is formed from hydrophilic materials. Considerable post 

processing is required for these polyHIPEs as large quantities of oil need to be removed from the 

polyHIPE before use. PCL is not an ideal material polyHIPE manufacturing as it forms a far more viscous 

emulsion than those used previously in this study. It is thought that this property made the emulsions 

far more unstable, although it is difficult to pinpoint a definite explanation.  

The microspheres produced from the photocurable PCL emulsion were open pored and the porosity 

extended throughout the entire scaffold. A higher number of pores can be found on the exterior of the 

PCL microspheres than was observed for thiol-ene microspheres. Both CTSR and T-junction 

microfluidics were used to form the microspheres. The emulsion was unstable which made it 

unsuitable for storage greater than an hour and would have made it unsuitable to thermal curing. This 

imposed limitations on the T-junction microfluidic method as fresh emulsion was required regularly. 

The surface topology of the microspheres where not identical within the population, some appear 

smooth, while other are very rough, yet both are highly porous. This was also observed in populations 

of EHA/IBOA microspheres formed from the CSTR method. The difference this could make for cell 

attachment is significant, with the rougher surface providing a greatly increased surface area for cells. 

The difference in surface topology is likely due to the different flow velocities within the CSTR. Solution 

close to the stirrer when compared to that around the edge of the vessel will be traveling at different 

speeds and difference shear forces would therefore occur. However, this should have result in a 

greater number of microsphere’s exhibiting this roughness when the stir rate was increased to get 

smaller microspheres. This has not been observed in previous experiments but it was also never 

directly investigated. If it could be determined how to increase the proportion of microspheres with 

this rough morphology it could allow for an increased surface area and allow interlocking between 

microspheres and the surrounding bone tissue.  

The internal porosity of the PCL microspheres was the smallest of the 3 polymer emulsions used, when 

produced under the same conditions. It would have been expected that the least stable polyHIPE 

would have contained the larger pores due to the material attempting to reduce its surface tension by 

minimising surface area. This might be due to the difference in fabrication for which the PCL was made 

using a magnetic stir plate and a magnetic flea instead of an overhead paddle. The pore size could still 

be tuned by using similar methods to those in chapter 4, although those experiments were not 

repeated with PCL.  

The interconnections between the pores are on a similar scale as those from the EHA/IBOA system and 

appear to not be a barrier to cell migration. SEM images of microspheres in Figure 6.5 show cells 

inhabiting a pore with a diameter of 11 µm in size. Lu et al. found that osteoblasts can only pass through 

interconnections 20 µm or larger, to find cells within pores less than this size is interesting [333]. This 
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might indicate that osteoblasts can indeed move through and inhabit smaller spaces or that the cell 

type involved is not an osteoblast cell or that it may be some stage of pre-osteoblastic cell. The 

histogram in Figure 6.5 indicates that most pores within the material are larger than 11 µm. This means 

the majority of the materials porosity would be accessible to cell ingrowth. In a direct comparison to 

the microspheres formed from the EHA/IBOA system the surface porosity appears very similar (Figure 

6.6).  

The slow degradation of the microspheres ensures that there would be ample time for proliferation, 

mineralisation and remodelling of the new tissue before the scaffold disintegrated. A simple 

degradation study was carried out with the PCL material (Figure 6.7). The documented bulk 

degradation rate for PCL is 3 – 4 years [357]. For a PCL, porous microsphere, the rate is likely to be 

much faster due to the huge surface area of the material in contact with the solution. The PCL used is 

also highly crosslinked, making it more amorphous, and therefore prone to faster degradation. As with 

all tissue engineering utilising degradable scaffolds, the ideal would be for the scaffold to degrade as 

bone tissue replaces the scaffolds. As long as the scaffold did not degrade too rapidly, it would be 

suitable for bone regrowth. After 60 days in water the polymer had degraded by 25% and in the 

accelerating solution which is highlighted by Göpferich’s study to increase the degradation rate by a 

factor of 10 [369] it had degraded by 80%.  

Cultures of hES-MP cells were shown to grow successfully on microspheres not coated in pAAc, in 

contrast to previous materials studied. There is some debate over the suitability of the untreated PCL 

surface material in the literature for bone tissue engineering with many studies finding inferior cell 

growth compared to treated surfaces [370, 371]. Many examples exist of treatments that would only 

improve the biocompatibility further [372]. Previous materials within this thesis required a coating of 

plasma deposited acrylic acid to increase their biocompatibility sufficiently for stable cell growth. Using 

PCL would provide the option of removing this step from the methodology and reduce the cost of any 

potential treatment. 

The culture rapidly formed into agglomerations in a similar fashion to those of the thiol-ene and 

EHA/IBOA polyHIPE microspheres and cells appeared elongated on the surface of the structure. A new 

method of investigating the agglomeration is in Figure 6.9 where only the cytoskeletons of the cells 

have been imaged. This gives a much clear indication of how the cells are positioned on the surface of 

the microspheres and to each other. When growing over a microsphere they appear to spread out into 

a flatter and more circular morphology but when they are binding the microspheres together the take 

on a much thinner and aligned morphology (also observable in Figure 6.10). This structure appears 

similar to that of myofibroblasts or fibroblast cells. This linear formation is likely to reduce later on in 

culture as cells proliferate and the pressure for the shape is no longer so urgent (holding the 



  Chapter 6: Degradable polyHIPE microspheres  

184 
 

microspheres together). Unless the alignment/morphology of cells below influence the new cells 

above the morphologies are likely to become more randomly aligned. 

The bone cells we are aiming to stimulate typically have a more spherical morphology, this morphology 

is present within the pores of the microsphere but is not what is observed outside of the microsphere 

environment. Cell shape plays a very crucial role in cell behaviour and differentiation [373, 374]. Some 

papers claim that a method of differentiating a cell is supported, if not enabled, by forcing the cell to 

assume the morphology of the desired cell type [374]. The stretched appearance of the cells is 

reminiscent of tissue such as muscle or ligaments. It is a possibility these exterior cells could form into 

fibroblast like cells if left without the additional stimulation of dexamethasone from the media.  

Ingrowth of cells into the PCL microspheres can draw many similarities to the cells cultured in the 

EHA/IBOA system although βGP plays a more significant role in cell ingrowth rates. Culture in growth 

media still appears to reduce the ingrowth of cells into the microspheres, although to a lesser extent 

than found in section 6.3.12. For PCL microspheres, only growth media with ascorbate-2-phosphate 

was significantly different to any of the other media with supplements. The addition of ascorbate-2-

phosphate for EHA/IBOA microsphere culture stimulated the lowest level of ingrowth. However, in 

that experiment there was a significant difference between ascorbate-2-phosphate in growth media 

compared to growth media, which was not the case for PCL microspheres. It appears that ascorbate-

2-phosphate contributes the least, out of all the supplements, in terms of allowing cells in grow into 

the microspheres. For this experiment, it appears that βGP by itself as a supplement was just as 

effective as supplemented media, whereas for the EHA/IBOA material they appeared to have a 

synergistic effect on cell ingrowth. The work within this thesis is insufficient to draw any strong 

conclusions on the roles of βGP and ascorbate-2-phosphate, which would require more research to 

determine if the effects are genuine or statistical artefacts. 

The penetration depth of cells does not appear to change significantly after the 15th day in culture but 

the number of cells does increase. Cells reach their deepest penetration depth by day 15 and then cells 

are rarely found deeper after this time point. The number of cells increases within the microspheres 

over most of the experiment (until day 25). As it is possible for osteoblasts to differentiate [375] it does 

not rule out the presence of osteoblasts but it may be that these early cells are a form of pre-

osteoblastic cell which proliferates and then differentiates to osteoblasts within the pores. 

There are indicators that the cells within the microspheres were at osteoblastic in nature and not 

chondrocytes. For osteogenic media both calcium and collagen were detected by staining techniques. 

Interestingly both were strongly detected within the pores of the microsphere, confirming osteoblastic 

activity within the pores. The appearance of the calcium is very granular which concurs with the 

findings of the previous chapter and the SEM images in this chapter which show nodules within the 



  Chapter 6: Degradable polyHIPE microspheres  

185 
 

organic material inside the pores. No calcium was easily detected in supplemented media, although 

day 30 is an early time point and samples from a day 60 time point might have revealed calcium 

deposits. Collagen deposits are visible on microspheres cultured in supplemented media, indicating 

some activity, but none was detected within the internal porosity. Proteoglycans were detected within 

the agglomeration but only at very low levels from within the pores. This indicates that the cells within 

the PCL microsphere are not chondrocyte cells. 
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6.5 Conclusion  
Degradable materials were investigated in terms of both fabrication and biocompatibility and both 

polymers were formed into polyHIPE microspheres through the double emulsion technique. The aim 

was to repeat the experiments from the previous chapter in a degradable material to see if the same 

results would be found. Initial cell growth was positive on the thiol-ene HIPE but the material was not 

used further when the fully degradable PCL was evaluated and compared. The thiol-ene microspheres 

has a more closed surface porosity, with smaller and more sparse pores on the microspheres surface. 

PCL microspheres were found to be degradable in an accelerated study. PCL was found to not only 

support cell growth without acrylic acid coatings, which is superior to the EHA/IBOA polymer. The PCL 

polyHIPE microspheres also allowed ingrowth of cells, cell colonisation within the pores and cell 

mediated aggregation. Less testing was done on the cells within the material than in chapter 6 but 

indicators are consistent for osteocyte presence. A decrease in the quantity of proteoglycans was 

detected when considering the quantity found in the EHA/IBOA polyHIPE. 
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Chapter 7: Assessment of PolyHIPE microsphere’s 

vascularisation potential using chick chorioallantoic membrane 

assays 

7.1 Chapter aims 
1. Measure the vascularisation potential of polyHIPE microspheres within a CAM model 

2. Evaluate the differences between porous and non-porous microspheres in terms of 

vascularisation potential 

3. Compare vascularisation potential of EHA/IBOA polymer to PCL polymer microspheres 

4. Measure cell survival after undergoing an injection study for delivery 

7.2 Introduction 
In this chapter, we take the polyHIPE microsphere system to the next stage of testing, having replicated 

the results of the EHA/IBOA model in PCL microspheres. An injectable tissue engineered solution must 

be able to vascularise the wound bed it is introduced to, otherwise mass cell death will occur within 

the scaffold and the new tissue will fail. In this chapter, we investigate the vascularisation response of 

both PCL microspheres and EHA/IBOA microspheres and compare between the two. The scaffolds 

were being implanted using the in-vivo CAM assay to assess the angiogenic potential of the scaffold. 

The effect of the length of time of pre-culture of the microspheres with hES-MP cells will be 

investigated by analysing the angiogenic response, alongside investigating both materials. 

7.2.1 Vascularisation of tissue engineered scaffolds 

Vascularisation of tissue engineered scaffolds is a major stumbling block in producing full thickness 

tissues or complete organs [224-226, 238, 376]. Currently only thin scaffolds such as bladder, or 

avascular tissues such as cartilage or cornea have found success in the clinics. Cells require a fresh 

supply of both oxygen and nutrients whilst removing waste products such as carbon dioxide and water. 

The diffusion limit for oxygen in a tissue is 200 µm, the distance at which capillaries are spaced 

throughout tissue in the body [228]. When a scaffold is designed for tissue engineering any cells 

beyond this diffusion limit require a blood supply to provide them with the essential nutrients. Without 

this, cells will be unable to survive and end up undergoing necrosis, releasing many chemicals and 

enzymes into the local environment. Even a brief lack of vascularisation can cause hypoxia and cause 

the cells to release hypoxia signalling biomolecules, which may have unintended or unplanned effects 

[216, 217]. Several techniques exist for vascularising a scaffold which are discussed in more detail in 

the literature review. The only practical method for vascularising an injectable scaffold is to use in-vivo 

angiogenesis and to allow room for rapid vessel ingrowth and provide biomolecules to enhance the 

response. 
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7.2.2 Injectable microspheres and vascularisation 

For injectable bone tissue fillers the method of vascularisation is angiogenesis, that is the stimulation 

of new blood vessels from existing vasculature [230, 231]. As this scaffold is injectable it is impossible 

to vascularise in advance and must initiate a rapid response from the local blood supply. This may place 

a limit on the diameter of a void it can be used on in the body. Current engineered solutions for bone 

voids usually avoid using cells, to circumvent this problem and allow cells to encroach from the 

periphery of the implantation site and for the remodelling to begin on the outside and work inwards 

[27, 377]. This method is far slower than if the scaffold was already pre-seeded with cells.  

7.2.3 Chorioallantoic membrane assays as a measure of vascularisation 

The CAM assay is a technique to investigate the in-vivo response of a scaffold or treatment on the 

chorioallantoic membrane of a chicken embryo [378-381]. This is used in tissue engineering as a model 

to test the vascularisation response of scaffolds in a complicated system. Scaffolds are introduced 

through an opening in the shell and then the egg is incubated for 7 days, before the egg shell is 

reopened and the resulting vascularisation can be analysed [381]. The technique less demanding on 

resources to run high sample numbers due to the easy of acquisition and low cost storage 

requirements [379]. The CAM assays allows for very complicated responses and analysis of a multitude 

of cell responses to the implant [380]. However, the animal in question is not mammalian and the 

vascularisation response of the CAM is far greater than would be found in humans beyond the 

embryonic stage of development. This technique still provides valuable information on whether 

further testing in full in-vivo studies in mammals can be justified. 

7.2.4 Major contributors to the chapter 

I would like to acknowledge and thank Giulia Gigliobianco for the work on the implantation and 

retrieval of the implants in all work using the CAM model in this chapter. 
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Figure 7.1. Diagram of the CAM assay. Shell is removed and the implant is positioned onto the CAM, 
after which the shell is re-sealed to prevent infections. 
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7.3 Results 

7.3.1 Vascularisation potential of EHA/IBOA polyHIPE microspheres assessed using a CAM 

assay 

The level of vasculature for microspheres appears far greater than that found in the control samples 

and microspheres without cells appear to have a significantly less angiogenic effect on the CAM than 

those pre-cultured for 21 days before implantation (Figure 7.2). After implantation and incubation for 

7 days the chicken egg was opened to expose the implantation site and the exposed area was imaged. 

Microspheres which had been precultured had formed into the agglomerations discussed in previous 

chapters. Porous microspheres without cells were added to a similar location, although the 

microspheres often moved during incubation. There are high levels vasculature in the area surrounding 

the implant (Figure 7.2a). 
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Figure 7.2. Optical images from a handheld USB microscope of the implant site within the CAM models 
after 7 days incubation. (a) Microspheres were seeded with hES-MP cells for 21 days before 
implantation into the CAM. (b) Microspheres that were not pre-cultured with any cells. (c) Control from 
a CAM which had been opened for implantation and then closed. 

Pre-seeded microspheres had a significantly higher response vascularisation response than the control 

or the microspheres devoid of initial cells (Figure 7.3). The number of blood vessels within the implant 

site were counted along with the number of branches that the blood vessels had. This difference is 

both for the number of blood vessels present and the branches on each vessel. This confirms the 

results observed visually in Figure 7.2. There was no statistical difference in the number or bifurcations 

of the blood vessels between un-seeded microspheres and control CAMs. 

 

Seeded microspheres Unseeded microspheres 

Control 

(a) (b) 

(c) 
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Figure 7.3. (a) Number of blood vessels around the implant were counted over a series of images and 
displayed on the graph. Significant differences in vessel number was found between the pre-seeded 
microspheres when compare to the other two implant types (ANOVA). (b) A measure of the number of 
branches a blood vessel has within a certain area from the implant. Significant differences were found 
between the pre-seeded microspheres and the other implant types. n = 6 N = 1. 

When comparing the cells found within the microspheres a difference in morphology can be observed 

along with delamination between microsphere agglomerations and the surrounding chick tissue 

(Figure 7.4). During sectioning, it appears that these tissues have delaminated from one another, 

suggesting a weak interface or adhesion (Figure 7.4c). For unseeded microspheres, the CAM tissue 

grows around and incorporates the microspheres (Figure 7.4e). In addition, the cells from the CAM 

grow into the unseeded microsphere over 7 days. The hES-MP cells in pre-seeded microspheres show 

the osteocyte like morphology observed in previous chapters (Figure 7.4d), a morphology not observed 

in cells in unseeded microspheres (Figure 7.4f). 

 

* 

* 

*** 
** 

(a) 

(b) 
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Figure 7.4. H&E staining of 10 µm thick sections of scaffolds and tissue extracted from the implant area. 
(a & b) Staining of the implant area of the control CAM assay. (c & d) Images from the seeded 
microspheres, cells can be observed within the pores of (d). (e & f) Images of the unseeded microspheres 
embedded in CAM tissue. Cells can be seen within the pores of (f) after the 7 days in in-vivo. 

For the agglomerate microspheres, the chicken cells can be seen lining up along the interface but with 

very few penetrating into the tissue (Figure 7.5). Chicken egg blood cells autofluorescence red and 

their location can be interpreted from the combined presence of actin, indicating a cell, with the red 

Control – No scaffold  Control – No scaffold 

Pre-seeded microspheres  Pre-seeded microspheres  

Unseeded microspheres  Unseeded microspheres 

(a) (b) 

(c) (d) 

(e) (f) 
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auto-florescence. For the unseeded microsphere, it can be seen that the chicken cells have surrounded 

the microspheres and are present within each of the microspheres. 

 

Figure 7.5. (a) FITC-phalloidin stained actin fluorescent image of microspheres from implant site which 
had been pre-cultured with hES-MP cells for 21 days before implantation. (b) Same sample as (a) but 
capturing the autofluorescence of the chicken eggs red blood cells. This give an indication to the 
location of cells from the CAM. (c & d) Same staining method as (a & b) of the implant site when porous 
EHA/IBOA microspheres were used without the addition of any cells. 

These cells were not introduced before the culture but show native CAM cells growing within the pores 

of the microsphere (figure 7.6). There is a high number of cells within the microspheres, after just 7 

days in culture.  

(a) 

(c) (d) 

(b) 



                                                                       Chapter 7: PolyHIPE microsphere injection and vascularisation 

195 
 

 

Figure 7.6. Confocal z-stack images of a microsphere from the implant site which had been implanted 
into the CAM without the addition of any cells. (a) FITC staining of f-actin. (b) DAPI staining of nuclei 
material. (c) autofluorescence of chicken red blood cells. (d) FITC and DAPI stain combined image. 

7.3.2 Survival of cells when injected from a syringe using porous and non-porous carriers 

An average of 25 % of cells loaded onto the solid microspheres did not survive the injection process, 

which is much higher than for porous microspheres (figure 7.7). Loose cells would experience less shear 

forces due to the relatively large aperture for a cell suspension. The microspheres were much closer in 

size to the internal diameter of the needle and the surface mounted cells could have experienced much 

greater forces. An ANOVA was used to determine statistical differences between loose cells, porous 

microspheres and non-porous microspheres. A statistical difference was observed between non-

porous microspheres and all other conditions. There was no statistical difference between porous 

particles and loose cells. 

(a) (b) 

(c) (d) 
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Figure 7.7. Injection study of cell death when culture on porous and non-porous PCL microspheres and 
injected through a microlance. Cells without a scaffold were used as a control. (a) Graph of cell survival 
after the injection. (b) SEM micrograph of a non-porous microsphere. (c) SEM micrograph of porous 
microsphere. ANOVA p = 0.004. n = 5. N = 2 Graph data is mean ± SD. 

7.3.3 Analysis of CAM assay after the injection of both porous and non-porous 

polycaprolactone polymer microspheres with short and long term pre-culture. 

Both solid and porous microspheres appeared to induce the growth of vasculature when implanted 

having been pre-seeded (figure 7.8). Cells cultured for 3 days before implantation were implanted 

using a microlance dispensing system and were injected onto the CAM. The pre-culture in osteogenic 

media for 11 days would have caused the cells to begin the differentiation to osteoblasts. 

(a) 

(b) 

(c) 
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Figure 7.8. Optical images from the CAM implant site after 7 days of culture. Chicken egg shell was 
removed to view the CAM and the developing embryo. All culture from this figure was performed in 
osteogenic media. 

Statistical differences were found between almost every implant and an hES-MP cell solution control 

when measuring the number of blood vessels, except for 3 days pre-culture in osteogenic media on 

porous PCL microspheres (Figure 7.9). For the bifurcation measurements, every implant was 

Porous PCL microsphere with an 11-day pre-culture 

with hES-MP cells 

Solid PCL microspheres with 3-day pre-culture with hES-MP cells 

Porous PCL microspheres with 3-day pre-culture with hES-MP cells 
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statistically different to the control. The only other difference observed for PCL microspheres was 

between 3 days in culture with osteogenic media and 11 day pre-culture with the same media. Equally 

interesting is the lack of difference between porous and non-porous microspheres for both 

measurements. hES-MP cells cultured in the two different media were also not significantly different 

to one another. 

 

Figure 7.9. (a) Number of blood vessels around the implant were counted over a series of images and 
displayed on the graph. (b) A measure of the number of branches a blood vessel has within a certain 
area from the implant. ANOVA p< 0.001. n = 6 N = 1. Graph data is mean ± SD.  

*** 

*** 
* 

* 

* 

* 

*** 
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Cells can be observed within the pores of each microsphere, although it is impossible to differentiate 

from these images which species the cells originate from (Figure 7.10). PCL microspheres have all been 

integrated into the CAM tissue. Several capillary like vessels are visible next to the PCL microsphere in 

the image Figure 7.11e. An interesting pattern is visible around the solid microspheres in Figure 7.10g 

& 10h. The seeming empty set of repeating voids is also visible in the control tissue section (Figure 7.4). 
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Figure 7.10.  H&E stained 10 µm thick sections of tissue taken from within the implant area. PCL 
microspheres had been implanted to the site and the egg allowed to incubate over 7 days.  

  

Porous PCL microspheres with a 3-day pre-culture of hES-MP cells  

Solid PCL microspheres with a 3-day pre-culture of hES-MP cells  

(a) 

(c) 

(e) 

(g) 

(f) 

(d) 

(b) 

(h) 

Porous PCL microspheres with an 11-day pre-culture of hES-MP cells in growth media  

Porous PCL microspheres with an 11-day pre-culture of hES-MP cells in osteogenic media  



                                                                       Chapter 7: PolyHIPE microsphere injection and vascularisation 

201 
 

7.3.4 Statistical analysis of blood vessels as a method of comparing angiogenic potential of 

both EHA/IBOA and polycaprolactone microspheres in a CAM model 

The PCL microspheres stimulated a superior vascularisation response when compared to the EHA/IBOA 

material by the majority of the metrics used (Figure 7.11). Blood vessel diameter was not statistically 

different between the three samples, with the same distributions of diameter present, even if in 

different quantities. In the measure of vessel bifurcations both EHA/IBOA and PCL microspheres were 

significantly different to the control but not to one another. For the number of blood vessels present 

both materials were different to the sample but the PCL microspheres had significantly more local 

blood vessels than the EHA/IBOA microspheres. 

 

Figure 7.11. Comparison between the two materials as polyHIPE microspheres and their angiogenic 
response using different metrics. (a) Graph of the number of bifurcations of blood vessels close to the 
implant. T-test used for individual comparison statistic work. (b) The diameter of the blood vessels near 
the implant. An ANOVA test found no difference between the 3 implants for blood vessel diameter. (c) 
Number of blood vessels within to the implant site. ANOVA. n = 6 N = 1. Graph data is mean ± SD. 
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7.4 Discussion 
An increased angiogenic response was observed in a CAM model when EHA/IBOA porous microspheres 

pre-cultured with hES-MP cells compared to controls. An increased number of both blood vessels and 

bifurcations were observed when compared to the control. This is supported by both the optical 

images and the statistical data gathered from analysing the vasculature. Without hES-MP cells the 

microspheres did not produce an angiogenic response when compared to the control. This is 

interesting as it also appears that it is not the cells that are responsible for the angiogenic response. 

This can be seen in Figure 7.9 where a control of hES-MP cells added to the CAM did not perform any 

better than the no cell control. The synergistic effect of cells bound to the microspheres appears to be 

the key for angiogenesis. Either the angiogenic response requires the cells to be immobilised in a 

concentrated location or that the hES-MP cells only survive with a surface to bind to.  

We can conclude that while it is not the microspheres themselves which cause the angiogenic response, 

they are essential for enabling the cells to promote blood vessels formation. The microspheres were 

added as an agglomeration, within this structure there are many cells within hypoxic environments. 

These cells will be releasing angiogenic growth factors to encourage the growth of blood vessels as it 

is the biological response for hypoxic cells [382]. When these hypoxic microenvironments are placed 

on the CAM the factors that they release would be expected to greatly increase the angiogenic 

response of the CAM. Early differentiation (days 4 – 14) of MSC cells into osteoblasts is marked by an 

upregulation of VEGF from the cells [192, 383]. This upregulation may be partially responsible for the 

increased vascular response, in addition to any potential hypoxic cells. 

The agglomerations of microspheres and hES-MP cells appears to prevent the entry of native chicken 

cells. Evidence of the absence of chicken cell penetration can be found by observing the different 

morphologies of the cells within the microspheres pores. The cells within the unseeded microspheres 

have a different morphology to those inside the pre-cultured microspheres. Additionally, the 

morphology of the cells within the pores of the agglomeration resemble that of differentiated hES-MP 

cells from the previous two chapters.  

The ECM build-up around the microspheres appear form a distinct boundary between the 

microspheres and the native chicken tissue. This is evidenced by the delamination noted on in Figure 

7.4c. When the bond between two structures is weaker than the structures themselves the interface 

region will fail first under stress, which occurred during the sectioning of the sample. The confocal 

images reinforce the lack of chicken cells within the microsphere agglomeration. As an injectable 

material, this could become an issue if the newly growing tissue does not integrate fully with the 

surrounding wound bed. It is likely the case that with an extended period of time the agglomerations 

would have fully integrated into the surrounding tissue [67, 384]. 
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Microspheres without the addition of pre-cultured cells were found to recruited the native cell 

population to grow into the internal porosity of the microspheres. Within 7 days the cells had fully 

saturated the internal porosity of the microspheres, as opposed to the 30 days we have previously 

found. Initially we assumed that the microspheres, without the pre-culture of cells, were inert. When 

looking at the optical images of the CAM assay after sectioning we observed the ingrowth of native 

cells. In previous chapters we were unsure if only differentiated osteoblast like cells enter the 

microspheres or if the cells that penetrated the microsphere could have been MSCs. These 

experiments show that other cell types are able to move within the microspheres and travel between 

the very small interconnecting porosity. The rate at which this ingress occurred surpassed any of our 

previous in-vitro testing. It appears that this had little angiogenic impact on the CAM assay.  

It might be possible to use larger microspheres to recreate the effect of the hypoxia signalling when 

recruiting native cells by inducing them to grow into hypoxic zones. If a 500 µm wide microsphere was 

used, then the central 300 µm of the microsphere would be beyond the typical diffusion limit of 100 

µm [385]. Any cells which grew into this area would experience hypoxia and would begin to produce 

hypoxia signals to encourage vessel growth. Although untested this could be a potential future avenue 

of research if it was desirable to not combine the patient’s own cells with the microspheres. Despite 

the lack of angiogenic response from the CAMs, it might still be possible to utilise microspheres without 

cells to generate an angiogenic response.  

One (fairly crucial) measure of an injectable cell delivery system success to avoid the cell death of the 

cells being delivered. This study has been performed many times in the literature in various formats to 

test the ability of a scaffold to protect the cells which are bound to it [386-388]. This is due to its 

importance for a successful injectable material. Cell death is undesirable not just because it reduces 

the viably cell number for growth but because the contents of cells released upon cell death. This will 

induce inflammation have many negative and unpredictable effects on the surrounding cells and may 

invoke chronic inflammation and prevent wound healing and tissue regeneration [389, 390]. In 

addition, subjecting cells to forces such as the shear forces can affect the differentiation of the cells 

and may alter the final expected differentiated cell population.  

The increase in survivability of cells on porous scaffolds was significantly higher than that of solid 

microspheres and controls. The survival rate was the same as cells under no shear forces at all, the 

‘loose cell’ control. This is significant in allowing cells to be delivered undamaged into a patient. The 

cells are likely to be within the niches of the porous material, and therefore partly shielded from the 

external forces around the microsphere. Those cultured on solid microspheres are exposed to the 

surrounding shear forces associated with injection rates. The damage to cells could have been reduced 

by performing an injection at very low flow rates. At this high rate, the experiment demonstrates the 

topologies superior nature in aiding cell survival. 
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Having established that EHA/IBOA microspheres without cells had not increased the angiogenic effect 

and it was therefore decided to not repeat this condition for PCL microspheres. This allowed 

experimentation on a larger number of unknown variables and their effect on angiogenesis. Many of 

the conditions had similar angiogenic effects on the CAM.  

Microspheres with cells precultured in different medias (to both induce and not induce osteogenesis) 

did not produce any significant difference in angiogenesis, suggesting osteoblast cells are not 

responsible for the angiogenic response. Pre-culture was conducted in two different media to 

determine the effects of cell differentiation on vascularisation. One implant was cultured with growth 

media to prevent the formation of osteoblasts and the other was cultured in osteogenic media to 

promote osteoblast formation. These were cultured for 11 days to allow the cells to begin 

differentiating. There were no significant differences between the two media on angiogenesis which 

implies that it is not the osteoblastic nature of the cells that is causing the response.  As both cultures 

formed agglomerations, both would have been producing hypoxia signals from cells deep within the 

agglomeration. We can conclude that this was the effect of hypoxia signals, or another cell response 

independent of whether the cells had differentiated.  

Both porous and solid PCL microspheres had a similar angiogenic impact on the CAM, suggesting the 

agglomerations were responsible rather than cells within microspheres. Both had been pre-cultured 

with hES-MP cells for 3 days and had begun to form small agglomerations. It appears that the hypoxia 

signalling if mainly arising from cells within the agglomeration but not within the microspheres 

themselves. This might be because of the large ratio of cells in the agglomeration compared to those 

within pores or because the cells within the pores are acclimatised to hypoxia conditions and are no 

longer producing the signals to increase local nutrient and oxygen levels. Cells which might have this 

response are osteocytes or chondrocytes, cells adapted to survival in environments far from blood 

supply. The impact this finding would have on the injectable scaffold is that cells would not have to be 

pre-differentiated before injecting as angiogenesis would occur regardless of the presence of 

osteocytes or not.  

With non-porous microspheres, a specific structure is observed which does not appear in any other 

implant, a series of circular voids, seemingly too tightly packed together for capillaries. The interesting 

structure was found surrounding the solid microspheres (see Figure 7.11g &11h. This structure has 

been observed elsewhere in the study, the control for an untouched CAM assay (Figure 7.4a), 

suggesting this formation does occur in native tissue. What is unclear is why this structure is 

surrounding the solid microspheres. This finding might call into question as to the necessity of porosity 

in microspheres. It is not impossible that this is coincidence that was not observed in other sectioning 

by chance and is present within all implant systems.  
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Another result which suggests the agglomeration is important on vascularisation was the increased 

angiogenic response of scaffolds precultured for a longer before implanting that resulted in larger 

agglomerations. Once significant difference that was observed in bifurcation formation was that of an 

11-day pre-culture of porous microspheres when compared to a 3-day pre-culture under similar 

conditions. No significance was found between the number of blood vessels when comparing these 

two conditions. Despite this the time in culture does appear to have some effect on vascularisation. It 

is unknown if it is the additional number of cells that would be present but it is likely the increased size 

of the agglomerations. With larger agglomerations, it is possible that the increased hypoxia signals 

being released by the implant would intensify the angiogenic response. No differences were 

discovered between 3-day pre-culture in osteogenic and 11-day pre-culture in growth media (p = 

0.094). While it may have something to do with the differentiation of cells we have evidence to the 

contrary. This is likely to require future work to fully investigate the cause.  

When comparing both PCL and EHA/IBOA several measurements for angiogenesis were similar but a 

higher number of blood vessels were observed around PCL microspheres, despite a shorter pre-culture 

time. Measurements such as at the number of bifurcations in vasculature and vessel diameter in the 

implant area were similar. Differences were observed between the materials when looking at the 

number of blood vessels within the implant location. A significantly higher number of blood vessels 

were found around the PCL material than the EHA/IBOA implant. The implants were not identical in 

pre-culture conditions however. The EHA/IBOA material was cultured for 21 days whereas the PCL 

material was cultured for 11 days. As we have discovered that increased time in pre-culture increases 

the angiogenic effect and it may be that the PCL material would receive an even stronger angiogenic 

effect if cultured for a similar amount of time as the EHA/IBOA. However, we only know that this 

increase occurs between 3 days and 11 days of pre-culture, there is no evidence that this effect could 

be extrapolated between later time points. It appears that vessel diameter is a poor measure of 

angiogenic response (Figure 7.12b). Vessel diameter appears to remain a constant ratio, regardless of 

the level of vascularisation. 
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7.5 Conclusion 
In this chapter, we have investigated microspheres formed from both materials, EHA/IBOA and PCL, 

and their angiogenic properties by testing in a CAM assay. For both porous EHA/IBOA and PCL 

microspheres a significant increase in vasculature was observed when compared to a no scaffold 

control. Without pre-loading of hES-MP cells onto the microspheres there was no difference in 

vasculature between this and the control. However, for these ‘empty’ microspheres sectioning 

revealed a full infiltration of native chicken cells throughout the scaffold. A simple cell delivery without 

scaffolds also produced no significant result and it was concluded that both cells and scaffolds were 

required to stimulate enhanced vasculature formation. Cells cultured for 11 days (and formed into 

aggregates) were found to produce a greater response than those cultured for a shorter period of time 

of 3 days (loose microspheres and small aggregates). It was unsure whether increased 

maturity/aggregation or increased quantity of cells was responsible for this effect. Out of all the 

comparisons between the materials PCL and EHA/IBOA the only difference detected was in the analysis 

of then number of vessels within the implant area for which the PCL was statistically significant. In all 

other areas the scaffolds performed equally. An injection study found cells on porous microspheres 

suffered greater cell death than those loaded onto porous microspheres.  
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Chapter 8: Final discussion on an injectable system for bone 

tissue engineering 

8.1 Chapter aims 
1. To discuss the previous chapters concentrating on the concept of an injectable bone tissue 

engineered solution. 

2. Discuss the different materials used for microspheres, their merits and disadvantages for this 

application. 

3. Present a summary of all the major results from throughout the thesis. 

8.2 Requirements of an injectable scaffold 
Sumita Bose et al. postulated 4 key aspects to produce an ideal scaffold [77], these are biocompatibility, 

mechanical properties, pore size and bioresorbability. To these I will also add manufacturing efficiency, 

vascularisation response, scaffold deployment and biomolecule release potential as key requirements 

to discuss the scaffolds used within the thesis. 

8.3 Manufacturing efficiency 
For a successful scale up to produce products for a commercial replacement product decisions must 

be made at early stages. As we found in the first results chapter it is possible to use advanced additive 

manufacturing technology to produce intricately detailed and highly customised micro-particles. As 

effective as these particles might have been it was not an efficient method of production to form the 

millions of the particles required for successful upscale. One of the particles produced by the 2-photon 

direct write system required roughly 4 hours. Methods exist to speed up the production of direct laser 

write although they are still several orders of magnitude slower than the double emulsion microfluidic 

method. This technique was chosen because it compromises between a greater speed of production 

but also contains complex internal structuring. The internal porosity may lack the customisation of the 

additive manufacturing system but still allows sufficient control to alter the pore sizes and to allow it 

to be tuned to specific applications. The double emulsion allowed a two-step technique that was as 

rapid at forming microspheres as other microfluidic methods but allowed the inclusion of internal 

porosity.  

As mentioned before, EHA/IBOA is a very stable emulsion and could remain in storage for many hours 

before destabilising. The PCL emulsion on the other hand was far less stable, especially at room 

temperature. When it was first developed, the emulsion would destabilise very quickly if allowed to 

cool to room temperature and was only suitable to the CSTR method of microsphere manufacture. 

Later, as the emulsion formulation was improved, it was possible to use the microfluidic method at 

room temperature for 60 minutes before the emulsion would destabilise. This is still a disadvantage 
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when compared to EHA/IBOA emulsion but the benefits brought by using PCL far outweighed any 

disadvantages in increased production time. For additive manufacturing, altering the photocurable 

material used would not have change the curing time significantly unless there was a decrease in 

photosensitivity of the new polymer. 

8.4 Biocompatibility 
A minimum standard for a tissue engineered scaffold is biocompatibility. This is for the material to be 

compatible with living tissues and cells without causing toxicity and ideally to enhance the growth of 

cells and tissues. This includes any degradation products that may be formed by the scaffold and the 

toxicity of any wear debris that may be produced. A scaffold should also be osteogenic, allowing bone 

cells to attach to the scaffold and to differentiate into bone cells. The scaffold should also stimulate 

the deposition of new bone formation. 

8.4.1 Cell toxicity 

Microspheres formed from both materials (EHA/IBOA & PCL) have been shown to support cells and to 

allow ingrowth into their interconnected porosity. The EHA/IBOA polymer required a plasma 

deposition of poly acrylic acid before large numbers of cells were able to attach to the scaffold. Activity 

was measured to be increasing for cells cultured on the microspheres until around day 10, after which 

the cell activity plateaued. While this cannot be used interchangeable with cell numbers it offers a 

good indication that the number of cells is remaining static or that cell activity is reduced in the 

majority of the cells as new cells proliferate. The thiol-ene material did not require a coating for bulk 

flat disks of the material but when it came to culturing on the microspheres it was found that a coating 

was required due to the decreased opportunity cells had to attach to the microspheres. For the PCL 

material there was no need to coat it with pAA as the material supported cells without any additional 

treatment. Other groups have however shown the PCL can be made to support even greater cell 

growth or osteogenic properties with coating that increase the hydrophobicity [391], coating with 

hydroxyapatite [392], coating with collagen [393] among many other techniques [394]. 

8.4.2 Osteoconductivity/Osteogenesis 

Even without the addition of dexamethasone there were still signs of osteoblastic activity in ECM 

deposits within the agglomeration. The quantity observed was much lower than the quantity found 

when cells were cultured in media containing dexamethasone. When the EHA/IBOA material was 

compared to tissue culture plastic it was found that the polyHIPE inhibited or delayed ALP activity. This 

is more likely to be a material chemical property than a result of the topology. Previous experiments 

within our lab have shown that the coating of the EHA/IBOA material does have an effect on ALP 

production which indicates that the response can be altered by changing the material chemistry [395]. 

Deligianni et.al noted that while the surface roughness affected cell attachment they did not find any 
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difference in ALP production [396], has have others [397]. However other authors have found the 

reverse, that of a significant increase in osteoblast differentiation on rougher surfaces [398]. From 

these reports, it is unclear if ALP should be higher on the rougher surface or that the surface makes no 

difference. Either way this supports the conclusion that it is the materials surface chemistry which 

causes the TCP to produce greater amounts ALP per cell than the EHA/IBOA material.  

As the inclusion of DEX does cause osteoblast formation then if an initial dose of DEX is administered 

before injection, enough to begin the formation of osteocytes and osteoblasts then the newly 

differentiated cells will be able to differentiate remaining MSC cells through the releasing of osteogenic 

factors [219]. The in-vivo CAM assays demonstrate the ability of microspheres to recruit local cells. 

When empty microspheres (no pre-cell culture) were added to the CAM it was found that cells were 

fully infiltrated into the microspheres, even after only 7 days in culture. There is no way of 

extrapolating this to a bone model of a mammalian species but it does indicate that there is potential.  

Osteoblasts 

Strong evidence of the formation of osteoblasts was found in both EHA/IBOA and PCL polyHIPE 

microspheres. Initial evidence from ALP tests showed that cells on flat surfaces begun the 

transformation to osteoblasts. After 30 days in culture stains for both collagen and calcium returned 

positive and the stain for calcium after 60 days was stronger than day 30. In addition, mineralised 

deposits could be seen in the SEM images of inside the microspheres for both systems in pores 

inhabited by cells.  

Osteocytes 

Sclerostin positive stains showed that the osteoblast cells had differentiated to osteocytes within the 

pores of the microsphere for EHA/IBOA polymer. The morphology of cells within the pores of this 

material were highly similar to those of osteocytes. This is the same morphology as the cells found 

within the pores of the PCL microspheres exhibited. The expected hypoxia within the system would 

favour the formation of osteocytes as it is similar to the stimulus experienced by osteoblasts when 

they encapsulate themselves in bone during bone remodelling as part of the natural method of 

osteocyte formation [197]. 

Chondrocytes 

It usually requires specialised media to cause MSC to differentiate into chondrocyte cells. When we 

tested for the presence of proteoglycans it was detected both within the microspheres and inside the 

agglomeration. This is often taken as a positive indicator for chondrocyte presence. The pores are not 

only reminiscent of the osteons from bone but also of the lacunae found surrounding chondrocytes in 

cartilage. Cartilage is also an avascular tissue and the centre of the agglomerations were far beyond 

the 200 µm diffusion limit of oxygen and nutrients. Within the pores we also found evidence of 

mineralisation which is usually an indicator of osteoblast activity. Chondrocytes can produce limited 
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amounts of calcium is they are hypertrophic, meaning they are preparing the surround matrix for 

transformation into bone. The cell protrusions between the different pores is not observed on 

standard chondrocyte morphology but only on osteocytes within bone. This is the strongest evidence 

that the cells observed were not chondrocytes. Less glycoproteins were observed in PCL microspheres, 

if chondrocytes are present then PCL appears to have a dampening effect on their formation or on 

their ability to for proteoglycans. An alternative explanation from the GAG staining is that it could be 

staining the cells glycocalyx, the glycoprotein membrane which surrounds the cell membrane. 

8.4.3 Support mineralisation 

The microsphere scaffolds were found to promote the deposition of matrix. For calcium, this was 

mainly observed within the pores of the microspheres with far less observed outside the microspheres 

in the agglomeration. Collagen was observed both inside the microspheres and within the 

agglomeration in very high concentrations. The act of binding the microspheres together required to 

formation of high levels of ECM formation. 

8.5 Mechanical properties 
The ideal mechanical properties of a bone tissue scaffold are dictated by the size and shape of the 

implant along with the location of the defect site within the bone [399]. Bone tissue has different 

material properties with differences caused by type of bone, age of the patient, disease state of the 

bone and diet of the patient to name but a few. Another important distinction is load bearing scaffolds 

vs. non-load bearing scaffolds. The utilisation of non-load bearing scaffolds has a significant role in 

bone tissue engineering, especially if the implantation method allows for injectable delivery. As this 

application is non-load bearing the bulk mechanical properties are of less importance than the 

microscale mechanical properties that the cells experience as this helps influence cell differentiation. 

8.6 Pore size 
Pore size plays a significant role in osteoinduction, with a commonly stated minimum pore size of 100 

µm for in-vivo implantation and with a wide range of ideal pore sizes stated in the literature [67, 77, 

400]. Pores are also valuable to allow the diffusion of nutrients and oxygen into a scaffold and larger 

pores are required to allow for blood vessel ingrowth. Pores also contribute a mechanical roughness 

which is essential for allowing full integration with the surrounding tissue [401, 402]. The pores within 

the polyHIPE microspheres are limited in size to smaller than the diameter of the microspheres 

themselves. The ideal size range of 100 µm or larger is impossible to achieve without using very large 

particles that would greatly reduce the packing density of the implant. In our systems particles were 

formed up to 1 mm in diameter, although porosity was never observed above 70 µm. Porosity was 

roughly similar between all the porous polyHIPE materials and the pore size is highly customisable from 

the processing conditions or from the formulation by altering the level of surfactant. Surprisingly, 
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osteocyte like cells being found in pores below 20 µm in diameter these experiments were conducted 

in-vitro in which smaller pores are able to support MCS differentiation. In-vivo culture with pores of 

this magnitude have been reported to produce fibrous tissue formation. Pore size could be increased 

to compensate but as discussed above this could only be achieved up to a certain size limit. 

8.6.1 Control over construction parameters 

Being able to control pore size gives the scaffold design greater flexibility to provide suitable niches for 

cells to reside. It also gives the system flexibility to meet future needs, either through unknown 

developments in the field or alternative requirements if the system is transferred to treat another 

disease state. It was found that pores could be altered in diameter by controlling the conditions used 

to form the initial emulsion. Stir speed and temperature were used as two separate and complimentary 

systems of altering pore diameter. Interestingly, and of great importance, it was found that processing 

conditions applied to the double emulsion did not affect the size of the pores in the resulting 

microspheres. Once formed the initial emulsion did not change further when new conditions were 

applied to it. This meant that pore size could be chosen irrespective of any processing conditions used 

to effect microsphere diameter. This flexibility was extensively tested for the EHA/IBOA system but 

was not repeated for the other systems as it was decided the limited time and resources would be 

better used to investigate the cell interaction with the material. However, knowing this information 

allowed us to understand which conditions needed to be controlled to preserve the uniformity in all 

the microspheres formed. 

8.7 Bioresorbability 
Controlled degradation of a scaffold is essential for allowing remodelling of the bone or ingrowth from 

the surrounding areas [403]. The degradation products should not cause direct harm to cells through 

toxicity, or damage the formation of new bone through decreasing the local pH. The degradation time 

required for a scaffold is different depending on the type of bone being replaced. Often loading bearing 

scaffolds must ensure that the material properties of the scaffold does not decrease to rapidly while 

resorbing and allow the new bone to take up the increased load. 

8.7.1 Degradation 

Of the three main materials we investigated, two were degradable. EHA/IBOA was used initially due 

to the highly stable nature of the emulsion and the previous experience within the lab using this 

polyHIPE. It allowed us to produce the set-ups required to produce the microspheres in a controlled 

method and to establish methods of cell culture and testing which could then be easily transferred to 

the new degradable microspheres that were available in a more limited quantity. For the thiol-ene 

polymer there were reports in the literature which showed that it had been tested for degradation 

previously. Caldwell et.al. found that the material degraded by 20 – 30% over a 7 week time scale [191]. 



  Chapter 8: Final discussion  

212 
 

As the PCL polyHIPE formulation had never been published on previously and a degradation test was 

conducted. The rate of PCL degradation is usually measured over the time scale of years [357], however 

this is as a bulk structure and not as an extremely high surface area material. The PCL microsphere 

degraded by around 25% over a 60 day time in distilled water.  

This leads to the conclusion that in the 60 day PCL microsphere cultures that the polymers would have 

become noticeably degraded by the end time point and cells would have been exposed to PCL 

degradation products. It is reported that in-vivo the degradation is faster than in-vitro experiments 

[404].  Meredith et.al reported on a comparison of PLGA and PCL degradation products and found that 

the PCL allowed for superior cell viability and angiogenesis compared to PLGA degradation [404]. They 

suggested this was due to the acidic conditions produced by the PLGA degradation and the more rapid 

PLGA degradation releasing an increased volume of degradation products.  

This would mean a further difference between the long term cultures, as with the non-degradable 

EHA/IBOA polymers there would have been no degradation products by day 60. Looking at existing 

literature after 2 month there is already extensive integration within a bone void [348, 405] so this 

degradation rate would be highly suitable. For the polymer PCL there is no straightforward method for 

altering degradation rates, such as changing the blend of the copolymer PLGA system which can alter 

its degradation between weeks and years [406]. One method would be to change the porosity of the 

polyHIPE microspheres. Decreasing the porosity would reduce the total available surface area available 

for degradation. However, this could have serious ramifications for the cell response to this material. 

Reducing the quantity of crosslinker would produce a less branched polymer that would degrade faster, 

or the reverse to increase degradation time. Increasing the volume of crosslinker may have effects on 

cells such as increased toxicity when the polymer degrades. 

8.8 Vascularisation response 
To ensure a healthy and living bone tissue the scaffold must encourage and become fully vascularised. 

This is especially important when cells are implanted within a scaffold, as their ability to survive is 

severely undermined if fresh nutrients and oxygen do not reach them within the first few days. 

Features can be introduced to increase the vascularisation speed such as adding physical channels into 

the scaffold for vessel growth, pre-growing vasculature into the scaffold or by releasing factors such 

as VEGF to increase the speed and quantity of the vascularisation response. 

8.8.1 Vascularisation comparison 

Microsphere which had been pre-cultured with cells had a greater angiogenic effect than those 

without cells. We also found that a longer pre-culture time had a greater angiogenic response than 

those cultured for a shorter period of time. We know from previous chapters that cells formed 

osteoblasts within the microspheres and an increased period of time would have allowed this 
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differentiation to have progressed further. This is significant because during initial MSC differentiation 

VEGF is upregulated by the cells [192], this powerful biomolecule is essential in recruiting blood vessel 

formation in the surrounding area [407, 408]. An increased number of osteoblast cells is likely to 

stimulate an increased angiogenic response from the CAM assay. Very few differences were found 

between PCL and EHA/IBOA materials, possible suggesting the response is more cell based than 

material based. As cells responded similarly to the two materials, forming osteoblasts on both, it is not 

surprising that the materials were equal. The only observed difference was that PCL microspheres were 

found to recruit more blood vessels to the implant area. It therefore appears that the uncoated PCL 

material had a superior effect although there are many coatings and additives reported in the literature 

that could further enhance the vascularisation response [409]. 

8.9 Scaffold deployment 
The method of scaffold implantation is dependent on the type of disease state or injury the tissue 

engineered construct is targeting. For non-invasive scaffold delivery, the size of the particles used is 

essential as it dictates the bore size of the syringe used to inject them. Cells require additional 

protection from the severe shear forces present during the injection process. One fantastic example 

of a deliverable polyHIPE scaffold should be mentioned. Cosgriff-Hernandez et.al. [184] have 

developed a polyHIPE which cures in-situ within the human body. This allows the scaffold to have some 

load bearing properties as while it is deployed through a needle, it forms a bulk scaffold within the 

wound site.  

8.9.1 Injectability 

Microspheres were found to be deliverable through a syringe and were deployed in this manner to the 

in-vivo models. Having a more monodisperse population allowed for a smaller diameter syringe 

without the risk of having microspheres blocking the needle. It was not easy to deliver the 

microspheres and this will require more work in the future to increase the efficiency of delivery. When 

delivering the microspheres in media the liquid would preferentially flow around the microspheres 

when under pressure instead of propelling the microspheres out of the needle. A needle very closely 

matched to the diameter of the microspheres would help prevent this problem, as would increasing 

the viscosity of the solution the microspheres are suspended in. Literature offers many examples of 

different solutions for dispensing and printing such as alginates and other hydrogels [410]. 
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8.10 Final Conclusions 
Within this thesis, a biodegradable, osteogenic, highly porous and injectable microsphere system has 

been developed. At each stage of development different alternatives were considered and the best 

compromise was sought. When considering the manufacturing of the central components a rapid and 

continuous manufacturing system was chosen over an additive manufacturing process. A compromise 

was found between including controlled microfeatures and speed of manufacture by producing 

microspheres with internal interconnected porosity using a double emulsion technique. The 

processing conditions used to form this microsphere were considered and parameters were 

investigated to give rise to different porosities, microsphere diameters and microsphere size 

distributions. Two techniques were investigated, controlled stir tank reactor (CSTR) and T-junction 

microfluidics. CSTR gave rise to a wider range of microsphere size diameters and was a batch process. 

The microfluidic approach gave rise to populations of near monodisperse size distribution and was 

eventually set up as a continuous production method.  

hES-MP cell was used to investigate the effect of MSC culture. Osteoblasts were found to differentiate 

into the pores of the microsphere and what appears to be osteocytes were observed at later time 

points. Cells were found to differentiate throughout the microspheres and by day 60 were present in 

every pore within the microspheres. The microspheres underwent cell enabled aggregation and 

formed cell-microsphere agglomerations, bound together by ECM and several 1000 µm in diameter. 

Having established the system with a non-degradable system (EHA/IBOA) the hES-MP experiments 

were repeated with two biodegradable polyHIPE systems. Polycaprolactone (PCL) and a thiol-ene 

material were emulsified and used to manufacture polyHIPE microspheres. Due to poor cell growth 

experiments and low surface porosity the PCL polyHIPE was chosen over the thiol-ene polyHIPE. PCL 

microspheres were found to re-create the same results found in the EHA/IBOA microspheres with 

osteoblast and osteocyte formations within the porosity. The porous microspheres were found to 

project cells from the shear forces involved in injection and were injected into a CAM model to study 

the vascularisation response.  

Cells precultured on microspheres were found to have a superior angiogenic response to just cells or 

microspheres alone. Microspheres without a preculture of hES-MP cells were found to be fully 

infiltrated with the hosts cells after just 7 days. PCL microspheres were found to recruit a greater 

number of vessels to the implant site than microspheres formed from the EHA/IBOA material. From 

the experimental work in this thesis, the PCL polyHIPE microspheres would be an ideal candidate for 

further testing in vivo to assess their effectiveness within a biological system.  
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8.11 Future work 
Having established a suitable injectable biomaterial which satisfies the requirements of an injectable 

system under its current testing parameters the next step is to explore a full in-vivo model. A rabbit 

bone defect model has been identified as the most suitable candidate for this experiment to be run 

over a 3 and 6 month period. From these time points it would be possible to view the beginnings of 

degradation and to analyse the nature of the replacement tissue and vascularisation. 

Further work is also required in pinning down the cell type found within the pores of the polyHIPE after 

extended periods in culture as it is still not entirely clear that it is not chondrocytes that are present 

instead of the osteocytes that would indicate an excellent biomaterial for bone. 

One final aspect of future work is to explore other tissue systems with this injectable material. As PCL 

is a relatively soft material it would be possible to investigate neural tissue engineering to replace cell 

populations found within voids in the brain caused by stroke. Many of the requirements remain the 

same as for bone such as the need for vascularisation, the requirement to prevent both cell damage 

upon injection and to prevent cells from leaving the target site. Overall this particle system has great 

potential for future research and potential use in patients. 
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