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Abstract

Tensor C∗-categories are the result of work to recast the fundamental theory of

operator algebras in the setting of category theory, in order to facilitate the study

of higher-dimensional algebras that are expected to play an important role in a

unified model of physics. Indeed, the application of category theory to mathemat-

ical physics is itself a highly active field of research. C∗-categories are the ana-

logue of C∗-algebras in this context. They are defined as norm-closed self-adjoint

subcategories of the category of Hilbert spaces and bounded linear operators be-

tween them. Much of the theory of C∗-algebras and their invariants generalises

to C∗-categories. Often, when a C∗-algebra is associated to a particular structure

it is not completely natural because certain choices are involved in its definition.

Using C∗-categories instead can avoid such choices since the construction of the

relevant C∗-category amounts to choosing all suitable C∗-algebras at once.

In this thesis we introduce and study C∗-categories for which the set of objects

carries topological data, extending the present body of work, which exclusively

considers C∗-categories with discrete object sets. We provide a construction of

K-theory for topological C∗-categories, which will have applications in widen-

ing the scope of the Baum-Connes conjecture, in index theory, and in geometric

quantisation. As examples of such applications, we construct the C∗-categories of

topological groupoids, extending the familiar constructions of Renault.
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Introduction

A C∗-category is the natural generalisation of a C*-algebra where instead of con-

sidering the bounded linear operators on a fixed Hilbert space we consider all

bounded linear operators between all Hilbert spaces simultaneously. A C∗-category

is thus a horizontal categorification of a C∗-algebra, and therefore the theory of C∗-

categories fits into the framework of the groupoidification program led by Baez,

Yetter et al [5], [14]. Much of the elementary theory of C∗-algebras carries over to

C∗-categories, as shown originally in [28] and then developed further in [43]. The

category of all (small) C∗-categories is in some sense nicer than the category of

C∗-algebras. For example, the collection of structure preserving homomorphisms

between any two C∗-categories is itself a C∗-category. This observation leads to

two important lines of research in which C∗-categories may be used: Firstly, if

A and B are C∗-algebras, which we may think of as C∗-categories each having

just a single object, then the collection of C∗-algebra homomorphisms {f :A→ B}
forms a C∗-category C∗(A,B) (this is almost never a C∗-algebra). Since C∗-algebra

homomorphisms define Kasparov cycles in bivariant K-theory, such C∗-categories

provide a natural setting in which to characterise KK-theory using the ostensi-

bly simpler invariant K-theory, as in [34]. Secondly, we may consider the C∗-

categories Rep(A) with all *-representations of a fixed C∗-algebra A on separable

Hilbert spaces as objects and all unitary intertwiners of these representations as

morphisms. This and related applications to von Neumann algebras are the theme

of the original paper concerning C∗-categories [28]. A similar line of research has

also been instigated by Bos to study continuous representations of groupoids via

the representations of certain C∗-categories [9].

C∗-categories are also relevant to the study of quantum mechanics, where they

are used to describe various aspects of duality related to algebraic quantum field

theories. An early application of C∗-categories in this line of research was to what

is now known as Doplicher-Roberts duality, in which Tannaka-Krein duality is gen-

eralised. This led to the celebrated Doplicher-Roberts Reconstruction Theorem

that allows one to reconstruct a group G from its C∗-category of finite-dimensional
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unitary representations [20].

Finally, C∗-categories play an increasingly important role in the study of iso-

morphism conjectures. In [16] Davis and Lück use C∗-categories to give a unified

approach to both the Farrell-Jones Isomorphism Conjecture on the algebraic K-

and L-theory of integral group rings and the Baum-Connes conjecture on the topo-

logical K-theory of reduced group algebras. In doing so they introduce the notion

of the reduced groupoid C∗-category, analogous to the reduced group C∗-algebra.

In the body of research described above, all of the C∗-categories considered

have a discrete, countable (often finite) set of objects. Informally, a topological

C∗-category is a C∗-category for which the collection of objects is no longer a

discrete set, but instead is a topological space. Furthermore, the collection of all

morphisms should be a topological space with a topology that is compatible with

the norm-topology that is defined on each hom-set, and the structure maps of the

category should all be continuous. In the formal language of internal categories,

a topological C∗-category is therefore an internal category in the category Top of

topological spaces and continuous maps. This is analogous to the definition of a

topological groupoid as introduced by Ehresmann [22].

Topological C∗-categories provide a convenient language for studying topolog-

ical groupoids, Fell bundles and dynamical systems that is not offered by existing

algebraic methods. If one wishes to study the representations of a topological

group, a well established technique is to form a convolution algebra of contin-

uous functions on that group and complete it with respect to a C∗-norm. The

*-representations of this group C∗-algebra are then in one-to-one correspondence

with the continuous representations of the underlying group. By associating to

a topological groupoid a topological C∗-category one has a number of analytic

tools available with which to further study the groupoid and its representations.

The development of the theory in this direction is mostly due to Bos [9], who

has developed a theory of continuous representations of a topological groupoid

(as opposed to the measurable representations studied by Renault [49]) such that

these representations are in one-to-one correspondence with those of a particu-

lar C∗-category constructed in a similar fashion to the group C∗-algebra. In this

thesis, we will show that this is in fact a topological C∗-category and specify the

topologies involved.

The main aim of this thesis is to develop a formal theory for topological C∗-
categories in order to provide a framework for the examples already present in the

wider literature and to facilitate the development of further applications. Central
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to our considerations is the question of norm continuity: It is well established

that the correct notion of C∗-bundle in the decomposition theory of C∗-algebras

is that of either a continuous or an upper semicontinuous bundle of C∗-algebras.

Indeed, the very definition of a bundle in the sense of Fell [25] and Hofmann

[31] forces the norm function to be at least upper semicontinuous. Furthermore,

it is also known that upper semicontinuous bundles of C∗-algebras correspond

precisely to both C0(X)-algebras and to the sheaves of C∗-algebras as developed

by Ara and Mathieu [3]. Conversely, there are important examples of bundle-

type objects that are lower semicontinuous. Consider, for example, the fibrewise

minimal tensor product of two non-exact continuous C∗-bundles [4], [37], or a

strongly continuous representation of a topological groupoid on a continuous field

of Hilbert spaces [9].

In general, and as noted in [51], upper semicontinuous bundles tend to arise

from universal constructions, whereas lower semicontinuous bundles tend to arise

from families of (faithful) representations. In the latter case, this is largely due

to the presence of the *-strong topology, with respect to which the norm function

is lower semicontinuous. This has important consequences in the general theory.

For example, our generalisation of the Gelfand-Naimark Representation Theorem

is only defined for continuous C∗-categories. From the category theorist’s point of

view, this dichotomy serves to emphasise the important role played by universal

constructions.

In Chapter 1 we present the preliminary material on internal categories and

groupoids that we shall use in the sequel. The basic idea of an internal cate-

gory is to replace the sets of objects and morphisms and the structure maps of

a small category with objects and morphisms from some other ambient category.

The ambient category of interest in this thesis is of course the category Top of

topological spaces and continuous maps. Our approach in Section 1.1 differs from

classical treatments of internal categories to take into account both the ostensibly

non-unital nature of C∗-algebras and the additional operations that occur when

considering enriched internal categories. In Section 1.2 we give a summary of

some of the main results concerning topological groupoids, including the general-

isation of the Haar measure from the topological group setting. We also consider

an important example of a smooth groupoid introduced by Connes [13]. In con-

trast with the preceding section, our treatment of topological groupoids is entirely

classical.

Chapter 2 contains an overview of the main definitions and results relating to
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bundles of C∗-algebras, Banach spaces and Hilbert spaces that we will make use

of later in this thesis.

In Chapter 3 we introduce the main object of study in this thesis. We provide

a formal definition of a topological C∗-category and develop the basic theory of

topological C∗-categories, continuous C∗-functors and continuous bounded natu-

ral transformations. Significant results include a method for constructing a suit-

able topology for the morphism set of a C∗-category given that the collection of

objects has a preordained topology, and that the category of small unital topolog-

ical C∗-categories is a fibred category over Top in the sense of Grothendieck and

later Benabou [7].

In Chapter 4 we then introduce the notion of a concrete topological C∗-category.

The natural topology for these categories is a version of the *-strong-topology, for

which the norm-function is only lower-semicontinuous. These C∗-categories are

therefore distinct from the topological C∗-categories that we study in Chapter 3,

but are still essential for later constructions. In the second half of the chapter we

generalise the famous Gelfand-Naimark Representation Theorem to the setting of

topological C∗-categories, via a construction that strongly resembles the Yoneda

embedding for ordinary categories.

Chapter 5 contains a number of further constructions to develop our theory

of topological C∗-categories. We construct both the full and reduced topological

C∗-categories associated to a topological groupoid and show that these construc-

tions are functorial with respect to the class of continuous C∗-categories generated

by open embeddings and quotients with compact kernels. We also construct the

maximal and minimal tensor products of two continuous topological C∗-categories

and generalise the notion of Hilbert-module to our setting.

In Chapter 6 we define the K-theory for continuous topological C∗-categories

using a classifying algebra approach derived from Hilbert-modules for topological

C∗-categories. We then prove that our definition produces a family of functors

satisfying the defining features of C∗-algebraic K-theory: stability, homotopy in-

variance, half-exactness and Bott periodicity.
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Chapter 1

Topological Categories and Groupoids

In this chapter we establish the language of topological categories, in the sense

of internal categories in Set. In particular, we provide a number of preliminary

results that we shall require in the sequel. Whilst the content is largely expository,

our initial definition of category differs from the classical one in that we don’t

require the existence of identity arrows. We will instead call a category equipped

with identity arrows a unital category. Since our constructions in Chapter 3 are

to be thought of as the horizontal categorifications of C∗-algebras, this approach

seems more natural from the point of view of an operator algebraicist. We also we

review some of the basic theory of locally compact groupoids that we require for

Section 5.1.

A good general reference for the first part of this chapter is [39]. Our discussion

of topological groupoids is based on ideas coming from [9], [46] and [49].

§1.1 Topological Categories

Let S be a fixed ambient category admitting finite products.

Definition 1.1.1. An internal category C in S consists of an object of objects C0 in

S, and an object of morphisms C1 in S, together with source and target morphisms

sC, tC :C1 ⇒ C0 in S and a morphism mC :C1 ×C0 C1 −→ C1 in S where

C1 ×C0 C1 := { (b, a) ∈ C1 × C1 | s(b) = t(a) }

is the pullback of sC along tC in S, such that mC defines an associative composition

on C.

In particular, the structure maps sC, tC and mC are such that the following dia-
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gram expressing the associativity law for mC commutes in S:

C1×C0C1×C0C1

mC×idC0 //

idC0 ×mC

��

C1×C0C1

mC

��
C1×C0C1 mC

// C1

Definition 1.1.2. A unital category in S is a category in S together with an injection

ıC : C0 −→ C1 in S that assigns to each object x ∈ C0 an identity morphism 1x ∈
C(x, x) such that the following diagram commutes in S:

C1×C0C0
1×ıC //

p1
))

C1×C0C1

m

��

C0×C0C1
ıC×1oo

p2
uu

C1

In the sequel we will suppress the composition morphism mC and write either

ba or b ◦ a for mC(b, a). Where no confusion is likely to occur we will also omit the

subscripts from the structure maps sC, tC and ıC.

Example 1.1.3. A small (unital) category is a (unital) internal category in Set.

Definition 1.1.4. A topological category consists of a locally compact, second count-

able Hausdorff space of objects C0 and a topological space of morphisms C1 to-

gether with continuous maps s, t and m. That is, a topological category is an

internal category in Top.

The notion of a structure preserving morphism between categories can also be

expressed internally within Top:

Definition 1.1.5. Let C and D be topological categories. A continuous functor
F :C −→ D consists of a pair of continuous maps F0 :C0 −→ D0 and F1 :C1 −→ D1

such that the Fi commute with the structure maps of C and D in Top:

C1

sC

��

F1 // D1

sD

��
C0 F0

// D0

C1

tC

��

F1 // D1

tD

��
C0 F0

// D0

C1 ×C0 C1
F1×F1 //

mC

��

D1 ×D0 D1

mD

��
C1 F1

// D1

6
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We will frequently identify the pair (F0, F1) with F itself. It follows from the

preceding definition that the well established properties of functors in ordinary

category theory (that is, for internal categories in Set) hold for topological cate-

gories. In particular, if C and D are unital topological categories then the commu-

tativity of the above diagrams ensures that F1(1x) = 1F0(x).

Remark 1.1.6. Continuous functors are sometimes also called strict homomorphisms
to distinguish them from weaker notions of morphism such as Morita morphisms

and bimodules that are often used in the topological setting.

Definition 1.1.7. Let F, F ′ :C −→ D be continuous functors between topological

categories. A continuous natural transformation F =⇒ F ′ consists of a continuous

map θ : C0 −→ D1 such that s ◦ θ = F0, t ◦ θ = F ′0, and such that the following

diagram expressing naturality commutes in Top:

C0

(F ′1,θ◦s) //

(θ◦t,F1)

��

D1×D0D1

m

��
C1×C0C1 m

// D1

(1.1)

If C,D are topological categories and F, F ′ are continuous functors then it follows

from the commutativity of the above diagrams that the map θ defines a family of

morphisms

{θx :F (x) −→ F ′(x)}x∈C0

that varies continuously over C0, and such that for every morphism b ∈ C(x, y) the

familiar naturality square commutes in Top:

F (x)
θx //

F (b)

��

F ′(x)

F ′(b)

��
F (y)

θy
// F ′(y)

(1.2)

If D is a unital topological category then denote by Diso
1 the object of Top

consisting of the invertible morphisms in D1. A continuous natural transformation

θ : F =⇒ F ′ of continuous functors between unital topological C∗-categories is

called a continuous natural isomorphism if the map θ factors through the object

7
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Diso
1 as follows:

C0
θ // Diso

1

(−)−1

// Diso
1
� � // D1

Write θ̃ for the composition of the maps above. Then the diagram (1.1) commuting

is equivalent to the following diagram commuting:

C0×C0 C1 ×C0 C0
θ̃×F1×θ //

∼=

��

D1×D0D1×D0D1

mD

��
C1

F ′1

// D1

It follows that if θ is a continuous natural isomorphism then each of the component

maps θx is an isomorphism.

Definition 1.1.8. A continuous strong equivalence between topological categories

C and D consists of a pair of continuous functors F :C −→ D and F ′ :D −→ C such

that there exist continuous natural isomorphisms F ′◦F =⇒ IdC and F ◦F ′ =⇒ IdD.

Topological categories, distinguished up to continuous strong equivalence, to-

gether with continuous functors and continuous natural transformations form a

2-category denoted Top(Cat). The subcategory of unital topological categories is

denoted Top(Cat1).

§1.2 Topological Groupoids

A groupoid is a category in which every morphism is invertible. They are useful

for encoding local symmetry and describing noncommutative quotient spaces, as

in [13]. A groupoid with just one object is (equivalent to) a group.

Definition 1.2.1. A topological groupoid is a unital topological category G equipped

with a continuous involutive map

inv :G1 −→ G1, g 7−→ g−1

such that m (g−1, g) = 1s(g) and m (g, g−1) = 1t(g) for all g ∈ C1.

A topological category is called a dagger category if there exists a continuous

map † :C1 −→ C1 such that † ◦ † is the identity map on C1 and such that for every

8
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b ∈ C(x, y) there exists a morphism b† ∈ C(y, x). Dagger categories include topo-

logical groupoids, where the dagger structure is the inverse map, and the category

of Hilbert spaces, where the dagger structure is derived by taking adjoints.

Example 1.2.2. To every topological dagger category C we can associate a topological
groupoid called the orbit equivalence groupoid of C, denoted Orb(C). This has object
space C0 and morphism space

(
Orb(C))1, the image of C1 under the continuous map

(t, s). This groupoid has precisely one morphism x −→ y if and only if C(y, x) is
non-empty.

A special case of the preceding example is the following:

Example 1.2.3. Let X be a topological space. Then the pair groupoid on X is the
topological groupoid P(X) with object space X and morphism space X × X, where
the source and target maps are the projections onto either factor.

If C is a topological dagger category and C is transitive — that is, C(x, y) is

non-empty for every pair of objects x, y — then Orb(C) is isomorphic to the pair

groupoid P(C0).

Example 1.2.4. Let G be a topological group acting continuously on a locally com-
pact Hausdorff space X via α. The action groupoid of α is the locally compact
groupoid G that has object space G0 = X and morphism space G1 = G × X. The
structure maps are given by s(g, x) = x, t(g, x) = g.x and ı(x) = (eG, x), where eG is
the identity element of the group.

The next example allows us to treat topological spaces as a type of topological

groupoid. We will make use of this extensively later in the thesis.

Example 1.2.5. LetX be a locally compact topological space. ThenX is a topological
groupoid with object and morphism space X, where all the structure maps are the
identity.

Definition 1.2.6. If G is a topological groupoid then a topological subgroupoid H is

a subcategory of G such that H0 ⊆ G0 and H1 ⊆ G1 are subspaces. A subgroupoid

H ≤ G is called wide if H0 = G0 and is called full if H(x, y) = G(x, y) for all

x, y ∈ H0.

Associated to every topological groupoid G are two canonical topological sub-

groupoids: The identity subgroupoid of G is the topological groupoid Id(G) with

the same object space as G consisting of only the identity morphisms of G. The

9
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structure maps for Id(G) are all the identity map. The isotropy subgroupoid of G

is the topological groupoid Iso(G) with the same object space as G and morphism

space (
Iso(G)

)
1
:=
⋃
x∈G0

G(x, x).

Definition 1.2.7. Let G be a topological groupoid, and N a wide topological sub-

groupoid. Then N is called normal if for all x, y ∈ G0 and given any g ∈ G(x, y)

and any k ∈ Iso(G)(x, x) then gkg−1 ∈ N1.

From the preceding definition we observe that a wide topological subgroupoid

is normal if and only if N(x, x) is a normal subgroup of G(x, x) for every x ∈ G0.

Definition 1.2.8. A homomorphism of topological groupoids is a continuous func-

tor F :G −→ G′.

A continuous functor G −→ G′ is called an embedding if it is both faithful and

injective on objects. If F : G −→ G′ is a continuous functor between topological

groupoids then the kernel of F is the wide topological subgroupoid kerF ≤ G

with

kerF1 := { g ∈ G | F (g) ∈ ı(G′0) } .

Clearly kerF is a normal subgroupoid of G.

Proposition 1.2.9. Let F :G −→ G′ be a continuous functor that is full and surjective
on objects. Then

F : G
/
kerF −→ G′ [g] 7→ F (g)

defines an isomorphism of topological groupoids such that F = Q ◦ F where Q is the
canonical quotient functor.

Recall that a continuous map f :X −→ Y is called perfect if it is closed, surjec-

tive and such that the preimage f−1(y) of every point y is compact.

Lemma 1.2.10. Let G be a topological groupoid, and N E G a normal topological
subgroupoid such that N1 is compact. Then the quotient functor

Q :G −→ G
/
N

is perfect.

In particular, if F :G −→ G′ is a continuous quotient functor with compact kernel

then

Q :G −→ G
/
kerF ∼= G′

10
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is perfect.

§1.3 Haar Systems and Topological Amenability

For analysis on a locally compact group, it is essential to have a left Haar mea-

sure. The groupoid version of a left Haar measure is a continuous family of mea-

sures called a left Haar system. Let X, Y be locally compact, Hausdorff spaces

and p :X −→ Y a continuous map. A continuous field of measures on Y over X

with momentum map p is a family of positive Radon measures {µx}x∈X such that

supp(µx) ⊆ Yx := p−1({x}) and such that for all ϕ ∈ Cc(Y ) the function

µ(ϕ) :X −→ C, x 7→
∫
y∈Yx

ϕ(y) dµx(y) (1.3)

belongs to Cc(X). A continuous field of measures is called faithful if supp(µx) = Yx

for each x ∈ X.

Definition 1.3.1. Let G be a locally compact groupoid. A left Haar system for G is

a faithful continuous field of measures {λx}x∈G0 with momentum map tG such that

if g ∈ G(x, y) and ϕ ∈ Cc(G1) then∫
Gx

ϕ(gh) dλx(h) =

∫
Gy

ϕ(h) dλy(h) (1.4)

The expression in (1.4) characterises left-invariance in the groupoid setting.

Unlike the left Haar measure on a locally compact group, a left Haar system need

not exist, and when it does exist it is not necessarily unique.

Example 1.3.2. If G is a discrete groupoid then the counting measure on each Gx

defines a left Haar system for G.

Example 1.3.3. Let X be a locally compact Hausdorff space and µ a positive Radon
measure on X with full support. For x ∈ X, let δx denote the Dirac measure given by

δx(A) =

0 x 6∈ A

1 x ∈ A

Then there is a left-Haar system defined by

λx (A× {x}) = µ(A)

11
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for every Borel subset A ⊂ X. Furthermore, every left Haar system on P(X) is of this
form for some positive Radon measure µ on X.

The existence of a continuous field of positive measures has topological im-

plications for the momentum map. An immediate consequence of the preceding

result is that if G admits a left Haar system then the structure maps tG, sG are

necessarily continuous.

12



Chapter 2

Preliminaries on Bundles of C∗-Algebras and
Banach Spaces

In this chapter we introduce elements of the theory of Banach and C∗-algebra

bundles that will underpin constructions later in this thesis. There are numerous

different definitions of Banach and C∗-algebra bundle appearing throughout the

literature, from the early notion of a continuous field as introduced by Dixmier

and Douady [19] to the more recent bundle-type decomposition of Kasparov that

is C0(X)-algebras [36]. Under fairly modest conditions these various definitions

are essentially equivalent.

Arguably the most modern approach is the one used by Ara and Mathieu to

relate upper semicontinuous C∗-algebra bundles to sheaves of C∗-algebras [3].

The distinctive feature of this definition is that the topology on the total space

of the bundle is specified as part of the definition. We adopt this approach and

take it a step further by dropping the analytical properties of the classical defini-

tion by Fell [25] and characterising a bundle entirely in terms of the topological

data. This enables us to give a single, unified definition of both upper and lower

semicontinuous bundles.

Most of this chapter is concerned with with giving an account of how the stan-

dard properties of Banach and C∗-algebra bundles can be derived from this def-

inition, in order to conveniently reference established results in the sequel. The

content is therefore mostly expository in nature. Details of the material presented

can be found in [26] and [27] in the case of continuous Banach and C∗-algebra

bundles. A good account of continuous C∗-algebra bundles and their relationship

to C0(X)-algebras can be found in Appendix C of [58].
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§2.1 Banach and C∗-Algebra Bundles

Throughout this section let X be a locally compact Hausdorff space. We first recall

some basic definitions about semicontinuity: A real-valued function f :X −→ R is

called upper semicontinuous if the set

{x ∈ X | f(x) < ε }

is an open set in X for every ε > 0. It is called lower-semicontinuous if the set

{x ∈ X | f(x) > ε }

is an open set (equivalently if the set {x ∈ X | f(x) ≤ ε } is closed) for every

ε > 0. A function that is both upper semicontinuous and lower semicontinuous is

continuous. In what follows, we suppose that that A is either the category Ban or

the category C∗-Alg.

Definition 2.1.1. An A-bundle over X is a triple (A, p,X) consisting of a topolog-

ical space A and a continuous surjection p :A −→ X with each fibre Ax := p−1(x)

an object of A and such that:

i. All algebraic operations are continuous functions on A.

ii. If Γb(A) denotes the set of all bounded continuous sections α :X −→ A of p

then for each x ∈ X we have

Ax = {α(x) | α ∈ ΓbA }.

iii. For all U ⊂ X open , α ∈ Γb(A) and ε > 0 the set

Ω(U, α, ε) := { a ∈ A | p(a) ∈ U and ‖a− α (p(a))‖ < ε }

is an open subset of A and these sets form a sub-base for the topology on A.

We call an A-bundle continuous if the norm function ‖·‖ : A −→ R defined by

a 7−→ ‖a‖p(a) is continuous. We call it upper/lower semicontinuous if the function

a 7−→ ‖a‖p(a) is upper/lower semicontinuous.

If A = Ban then by property (i) the operation + is a continuous function

A ×p A −→ A, where A ×p A = { (a1, a2) ∈ A× A | p(a1) = p(a2) } and fibrewise

14
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scalar multiplication is a continuous function ·C : C × A −→ A. If A = C∗-Alg

then we also have that multiplication is a continuous function · :A×p A −→ A and

involution is a continuous function ∗ :A −→ A.

The justification for specifying the topology in the definition of an A-bundle

comes from the following result of Fell ([26], Proposition II.13.18. See also [58],

Theorem C.20).

Proposition 2.1.2. Suppose that (A, p,X) consists of a locally compact Hausdorff
space X, an untopologised set A and a surjection p :A −→ X, such that each fibre
Ax := p−1(x) is an object in A. Let ∆ be the *-algebra of all bounded sections (not a
priori continuous) of p such that:

1. For each α ∈ ∆ the map x 7−→ ‖α(x)‖ is upper semicontinuous.

2. For each x ∈ X the set {α(x) | α ∈ ∆ } is dense in Ax.

Then there exists a unique topology on A making (A, p,X) an upper semicontinuous
A-bundle such that ∆ = Γb(A).

We wish to relate our definition of an upper semicontinuous A-bundle with the

classical definitions of Ban-bundle and C∗-Alg-bundle of Fell. Recall the follow-

ing:

Definition 2.1.3. An upper semicontinuous Fell-Hofmann Ban-bundle over X con-

sists of a continuous open surjection p :A −→ X, together with linear operations

and norms defined fibrewise so that each Ax is a Banach space, such that:

i. The map a 7−→ ‖a‖ is upper semicontinuous from A to R.

ii. The map (a, b) 7−→ a+ b is continuous from A×p A to A.

iii. The map (λ, a) 7−→ λa is continuous from A to A.

iv. If {ai} is a net in A such that ‖ai‖ −→ 0 and p(ai) −→ x in X then ai −→ 0x,

where 0x is the zero element in Ax.

An upper semicontinous Fell-Hofmann C∗-Alg-bundle is an upper semicontinuous

Fell-Hofmann Ban-bundle such that each fibre Ax is a C∗-algebra and such that in

addition to (i.) to (iv.) above, the following also hold:

v. The map (a, b) 7−→ ab is continuous from A to A.

15
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vi. The involution a 7−→ a∗ is continuous from A to A.

If (A, p,X) is an upper semicontinuous A-bundle then we recover the properties

of an upper semicontinuous Fell-Hofmann bundle.

Lemma 2.1.4. Suppose that (A, p,X) is an upper semicontinuous A-bundle.

1. The sets of the form Ω(U, α, ε) for U ⊂ X open, α ∈ Γb(A) and ε > 0 form
a basis for the topology on A such that p : A −→ X is a continuous open

surjection.

2. If {ai} is a net in A such that ‖ai‖ −→ 0 and p(ai) −→ x in X then ai −→ 0x,
where 0x is the zero element in Ax.

Proof. The proofs of these two statements are contained within the proofs of [26],

Proposition II.13.18 in the continuous Ban-bundle case and [58], Theorem C.20

in the upper semicontinuous C∗-Alg-bundle case.

The following is an easy consequence of the preceding lemma:

Proposition 2.1.5. Every upper semicontinuous A-bundle is an upper semicontinu-
ous Fell-Hofmann A-bundle.

Given an upper semicontinuous A-bundle (A, p,X), the set Γ(A) of all continu-

ous sections of p has the following local closure property:

Lemma 2.1.6. Let (A, p,X) be an upper semicontinuous Ban-bundle, and let ξ be
a (not a priori continuous) section. Suppose that for each x ∈ X and each ε > 0

there exists a continuous section α ∈ Γ(A) and a neighbourhood U of x such that
‖α(u)− ξ(u)‖ < ε for all u ∈ U . Then ξ ∈ Γ(A).

Proof. Let ξ be as stated in the hypothesis and let {xi} be a net converging to

x ∈ X. We show that ξ(xi) −→ ξ(x). Let α ∈ Γ(A). Since α is continuous it

follows that {α(xi)} is a net in A converging to α(x) ∈ A. Moreover for each index

i we have p(ξ(xi)) = p(α(xi)) = xi. By assumption, for each ε > 0 there exists a

neighbourhood U such that ‖α(u)− ξ(u)‖ < ε on U , hence for sufficiently large i

we have xi ∈ U . Therefore

‖α(xi)− ξ(xi)‖ < ε and ‖α(x)− ξ(x)‖ < ε

and so by Lemma 2.1.4 we have ξ(xi) −→ ξ(x). Therefore ξ is continuous.
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§2.2 Continuous Hilbert Bundles

In this section let A = Hilb, the category of Hilbert spaces and bounded linear

maps.

Definition 2.2.1. A continuous Hilb-bundle over X is a triple (H, p,X) consisting

of a topological space H and a continuous surjection p :H −→ X with each fibre

Hx := p−1(x) a Hilbert space and such that:

i All algebraic operations are continuous functions on A.

ii The function (a, b) 7−→ 〈 a, b 〉 is a continuous function from H to C.

iii If Γb(H) denotes the set of all bounded continuous sections α :X −→ H of p

then for each x ∈ X we have

Hx = {α(x) | α ∈ ΓbH }.

iv For all U ⊂ X open , α ∈ Γb(H) and ε > 0 the set

Ω(U, α, ε) := { a ∈ H | p(a) ∈ U and ‖a− α (p(a))‖ < ε } ,

where ‖·‖ is the inner-product norm, is an open subset of H and these sets

form a base for the topology on H.

A simple polarisation argument shows that a continuous Hilb-bundle is neces-

sarily a continuous Ban-bundle in the sense of Definition 2.1.1.

Now let (H, p,X) and (K, q, Y ) be continuous Hilb-bundles. For each x ∈ X

and y ∈ Y form the Hilbert space tensor product Hx ⊗ Ky. Define a topological

space H⊗ K to be the disjoint union of all such Hx ⊗ Ky.

Definition 2.2.2. Define (H⊗ K, p× q,X × Y ) to be the tensor product Hilb-bundle
of (H, p,X) and (K, q, Y ), with

Γb(H⊗ K) = Span { (x, y) 7−→ α(x)⊗ β(y) | α ∈ Γb(H) and β ∈ Γb(K) } .

We shall utilise this construction in Chapter 4.
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Chapter 3

Topological C∗-Categories

In this chapter we introduce the main objects of study in this thesis: Topological

C∗-categories. Our approach is to mimic as closely as possible the constructions of

Fell [24], [25] and Hofmann [31] in forming continuous and upper semicontin-

uous Ban- and C∗-Alg-bundles, using our generalised definition of bundle from

Chapter 2. This approach allows us to simultaneously consider both upper and

lower semicontinuous topological C∗-categories, which is necessary since a fun-

damentally important class of examples — the concrete topological C∗-categories

— are naturally lower semicontinuous. They therefore fall outside of traditional

bundle theory for Banach spaces and C∗-algebras.

We start with a review of C∗-categories in Set, summarising the main results

about C∗-categories developed by Ghez et al [28] and Mitchener [43], and about

multiplier C∗-categories as detailed by Vasselli [56]. The content of this section

is largely expository in nature, and so we omit a number of details and refer the

reader to the articles referenced above. One exception to this practice is Proposi-

tion 3.1.19 — in [56] some important details are omitted from the proof of this

result, which we rectify by including them here.

In Section 3.2 we give an abstract characterisation of a topological C∗-category,

and develop some of the basic theory of topological C∗-categories and their asso-

ciated homomorphisms. We prove that our definitions are consistent with the es-

tablished notion of topological category in both the non-unital (Proposition 3.2.3)

and unital case (Proposition 3.2.5). We also give criteria under which a *-functor

between topological C∗-categories is in fact an internal functor in Top (Proposi-

tion 3.2.8).

We conclude the chapter by studying the various categories of topological C∗-

categories. This section is structured towards proving that the category of all
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unital topological C∗-categories is a fibred category over Top in the sense of

Grothendieck [29] and Bénabou [7].

§3.1 Review of C∗-Categories in Set

Let C be a small category with countable set of objects. We call C a C-linear

category if each hom-object C(x, y) is a complex vector space and composition is

given by a family of bilinear maps

mxyz :C(y, z)× C(x, y) −→ C(x, z).

If A,B are Banach spaces we write A � B for their tensor product as vector

spaces, and refer to this as the algebraic tensor product of A and B. An element of

A � B may be written (not necessarily uniquely) as a formal sum of elementary

tensors,

x =
∑
i

αi ai ⊗ bi, ai ∈ A, bi ∈ B, αi ∈ C.

Definition 3.1.1. The projective tensor product A⊗pr B of A and B is the comple-

tion of A�B with respect to the projective cross norm

‖x‖ = inf

{∑
i

|αi| . ‖ai‖A . ‖bi‖B | x =
∑
i

αi ai ⊗ bi

}
.

A C-linear category C is called a Banach category if each C(x, y) is a Banach

space with composition given by a family of linear maps

mxyz :C(y, z)⊗pr C(x, y) −→ C(x, z)

satisfying ‖b ◦ a‖ ≤ ‖b‖ . ‖a‖.

In the formal language of enriched category theory we say that C is a small

category enriched over the closed monoidal category (Ban,⊗pr,C). If C is a C-

linear category then an involution on C is a functor ∗ : Cop −→ C given by a family

of antilinear isometries

∗x,y :C(x, y) −→ C(y, x)

such that ∗0 : C0 −→ C0 is the identity and ∗ ◦ ∗ = idC, the identity functor on C.

We write b∗ for the image of b under ∗, and call this morphism the adjoint of b. A

Banach category equipped with an involution is called a Banach *-category.
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Definition 3.1.2. A C∗-category in Set is a Banach *-category in Set such that:

i For every morphism b ∈ C1 the C∗-identity ‖b∗b‖ = ‖b‖2 is satisfied;

ii For every morphism b ∈ C(x, y) there exists a ∈ C(x, x) satisfying b∗b = a∗a.

A C∗-category in Set is called unital if each C(x, x) is a unital C∗-algebra.

It follows from axiom (ii) that for every morphism b ∈ C(x, y) the morphism

b∗b is a positive element of the C∗-algebra C(x, x). Whilst this is automatically true

for C∗-algebras it is not so for C∗-categories, as shown by the following example

by Schick (seen in [43]):

Example 3.1.3. Let C be a unital C∗-category with set of objects C0 = {x, y} and
C(x, x) = C(x, y) = C(y, x) = C(y, y) = C. Composition is given by multiplication of
complex numbers and the norm is given by ‖b‖ = |b|. Define an involution on C by

b∗ =

b if b ∈ C(x, y) for x = y

−b if b ∈ C(x, y) for x 6= y.

It follows that for non-zero b ∈ C(x, y) with x 6= y we have

Spec(b∗b) = { z ∈ C | (b∗b− zI) 6∈ GL(C) } = {−bb} 6⊂ R≥0.

Thus b∗b is not a positive element of C(x, x), and C is unital Banach *-category that
does not satisfy axiom (ii).

Definition 3.1.4. A *-functor between C∗-categories is a functor F :C −→ D such

that each

Fxy :C(x, y) −→ D(F (x), F (y))

is a C-linear map and such that F (b)∗ = F (b∗) for all b ∈ C1. If C and D are both

unital C∗-categories then F is a unital *-functor if in addition we have F (1x) =

1F (x) for each object x ∈ C0.

In [43] it is shown that *-functors exhibit a number of properties possessed by

*-homomorphisms between C∗-algebras:

Proposition 3.1.5. Let F :C −→ D be a *-functor. Then ‖F (b)‖ ≤ ‖b‖ for all b ∈ C1

and F is therefore continuous with respect to the norm topology. Furthermore if F is
faithful then it is isometric.
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Proof. We give the proof of the first statement only, the second statement is proved

similarly: Let b ∈ C(x, y). Then by definition there exists a ∈ C(x, x) such that

b∗b = a∗a, and it follows that

‖F (a∗a)‖ ≤ ‖a∗a‖ =⇒ ‖F (b∗b)‖ ≤ ‖b∗b‖

=⇒ ‖F (b)∗F (b)‖ ≤ ‖b∗b‖

=⇒ ‖F (b)‖2 ≤ ‖b‖2

by the C∗-identity.

From the above Proposition we deduce that the norm on a C∗-category is unique:

Suppose that ‖·‖,‖·‖′ are two norms making C a C∗-category. Then the identity

functor Id : (C, ‖·‖) −→ (C, ‖·‖′) is faithful, and hence isometric.

Example 3.1.6. Every C∗-algebra A can be thought of as a C∗-category A with
A0 = {pt} and A ∼= A.

Example 3.1.7. Let A be a C∗-algebra and let Rep(A) denote the category consist-
ing of non-degenerate representations of A on Hilbert spaces as objects and inter-
twining operators between these representations as morphisms. Then Rep(A) is a
C∗-category.

Example 3.1.8. The category Hilb of Hilbert spaces and bounded linear operators is
a C∗-category, with composition given by composition of linear operators and involu-
tion defined by taking adjoints. More generally, if A is a C∗-algebra then the category
HilbA of Hilbert A-modules and bounded A-linear operators forms a C∗-category.

Example 3.1.8 above gives rise to an important and distinguished class of *-

functors:

Definition 3.1.9. Let C be a C∗-category. A representation of C is a *-functor

C −→ Hilb.

We obtain further examples of C∗-categories by associating to an algebraic ob-

ject a C-linear category with involution, and then constructing a representation of

this C-linear category into the category Hilb. The closure of the image of this rep-

resentation is then a C∗-category. This approach to constructing C∗-categories is

demonstrated in the examples, where the algebraic object in question is a groupoid

in Set.
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Let G be a groupoid in Set and denote by CG the unital C-linear category with

set of objects G0 and with each hom-object CG(x, y) the free complex vector space

on G(x, y). Composition is defined on generators by

g2g1 =

g2 ◦ g1 if g2 ◦ g1 is defined in G

0 otherwise

and involution by αg.g 7−→ αg.g
−1. There are two C∗-categories that can be con-

structed from CG, the first of which is due to Davis and Lück [16] and the second

is due to Mitchener [43].

Example 3.1.10. The reduced C∗-category of G is the unital C∗-category C∗r(G)

obtained by completing each hom-object of CG with respect to the norm

‖−‖r := sup
{∥∥`2(w,−)

∥∥ | w ∈ G0

}
where `2(x, y) denotes the Hilbert space of square summable sequences in G(x, y) and
the bounded linear map `2(w,−) : `2(w, x) −→ `2(w, y) is left-composition.

Example 3.1.11. The full C∗-category of G is the unital C∗-category C∗(G) obtained
by completing each hom-object of CG with respect to the norm

‖−‖max := sup { ‖ρ(−)‖ | ρ is a representation of CG } .

The defining feature of C∗-categories is that they can be represented faithfully

on the concrete category Hilb via a functor that is similar to the G.N.S. construc-

tion for C∗-algebras. Details of this construction for C∗-categories in Set can be

found in [43].

Proposition 3.1.12. Let C be a C∗-category. Then there exists a faithful representa-
tion ρ : C −→ Hilb, where ρ is given by the direct sum

⊕
ρσ over all states σ of all

endomophism sets C(x, x).

Now let C,D be C∗-categories and let F,G : C −→ D be *-functors. There are

two notions of transformation F =⇒ G that we consider. First we recall the notion

of a unitary morphism in C.

Definition 3.1.13. If C is a unital C∗-category then a morphism u ∈ C(x, y) is

called unitary if u∗u = 1x and uu∗ = 1y.

Lemma 3.1.14. Let b ∈ C(x, y) be an isomorphism. Then there exists a unitary
u ∈ C(x, y) such that u = br for some self-adjoint morphism r ∈ C(x, x).
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Proof. Let b ∈ C(x, y) be an isomorphism in C. Define using the functional calculus

a morphism r = (b∗b)−1/2 and let u = br. Then u is the desired unitary morphism.

Definition 3.1.15. Let C,D be C∗-categories and let F,G : C −→ D be *-functors

between them. A bounded natural transformation θ : F =⇒ G is a family of

bounded linear maps { θx :F (x) −→ G(x) | x ∈ C0 } in D1 such that for every

b ∈ C(x, y) the following diagram commutes,

x

b

��

F (x)
θx //

F (b)

��

G(x)

G(b)

��
y F (y)

θy
// G(y)

and such that the value ‖θ‖ := sup { ‖θx‖ | x ∈ C0 } is finite. If C and D are unital

C∗-categories then a unitary transformation is a bounded natural transformation

such that each component map θx is a unitary morphism in D.

Definition 3.1.16. Two unital C∗-categories C, D are said to be unitarily equivalent
if there exists a pair of *-functors F : C −→ D and F ′ : D −→ C together with

unitary transformations F ′ ◦ F =⇒ idC and F ◦ F ′ =⇒ idD.

The collection of all (small) C∗-categories, *-functors between them and bounded

natural transformations as 2-morphisms form a 2-category denoted C∗-Cat. The

2-category with the same objects and *-functors but with unitary transformations

as 2-morphisms is denoted C∗-CatU.

The largest embedding of a non-unital C∗-algebra A as an essential ideal of

a unital one is the multiplier algebra of A. Following Vaselli [56] we review the

analogous construction for C∗-categories.

Let C be a C∗-category. Each C(x, y) is a Hilbert-C(y, y)-C(x, x)-bimodule. If

a ∈ C(x, x), c ∈ C(y, y) and b, b′ ∈ C(x, y) then the left and right actions are

respectively given by

(c, b) 7−→ c ◦ b and (b, a) 7−→ b ◦ a

and the inner products are given by

〈 b′, b 〉y := b′ ◦ b∗ and 〈 b, b′ 〉x := b∗ ◦ b′.
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We observe that each C(x, y) is complete with respect to the norm

‖b‖2 := ‖< b, b >x‖ = ‖< b, b >y‖ .

A bounded linear map m :C(w, x) −→ C(w, y) is called a right-C(w,w)-module op-

erator if m(b◦a) = m(b)◦a. Similarly, a bounded linear map m :C(x, z) −→ C(y, z)

is called a left-C(z, z)-module operator if m(c ◦ b) = c ◦m(b).

Definition 3.1.17. Let x, y ∈ C0. A multiplier from x to y is a pair m = (mL,mR)

such that:

1. mL :C(x, x) −→ C(x, y) is a right C(x, x)-module operator;

2. mR :C(y, y) −→ C(x, y) is a left-C(y, y)-module operator;

3. c ◦mL(a) = mR(c) ◦ a ∈ C(x, y), for all a ∈ C(x, x), c ∈ C(y, y).

We write MC(x, y) for the collection of all multipliers from x to y.

Remark 3.1.18. We will write cm = mR(c) and ma = mL(a), and hence the com-

patibility axiom above can be thought of as the associativity condition c(ma) =

(cm)a.

We define the norm of a multiplier m to be ‖m‖ :=
∥∥mL

∥∥. Note that we could

have equivalently declared that ‖m‖ :=
∥∥mR

∥∥ since for each a such that ‖a‖ ≤ 1

we have

∥∥mL
∥∥ = sup

{∥∥mL(a)
∥∥ | ‖a‖ ≤ 1

}
= sup

{∥∥c ◦mL(a)
∥∥ | ‖a‖ ≤ 1, ‖c‖ ≤ 1

}
= sup

{∥∥mR(c) ◦ a
∥∥ | ‖a‖ ≤ 1, ‖c‖ ≤ 1

}
≤ sup

{∥∥mR(c)
∥∥ | ‖c‖ ≤ 1

}
=
∥∥mR

∥∥ .
The converse is proved similarly, and therefore

∥∥mL
∥∥ =

∥∥mR
∥∥. If l ∈ MC(x, y)

and m ∈MC(y, z) are multipliers we define the composition

MC(y, z)×MC(x, y) −→MC(x, z), (m, l) 7−→ m ◦ l

by

(m ◦ l)L(a) = lim
i

(
(meyi ) ◦ la

)
and (m ◦ l)R(c) = lim

i

(
cm ◦ (eyi l)

)
,
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where (eyi )i∈I is an approximate unit in C(y, y). If m ∈ MC(x, y) then we define

m∗ ∈M(y, x) by the formulae m∗c := (c∗m)∗ and am∗ := (ma∗)∗.

We write M(C) for the unital category of all multipliers between the objects of

C. This has set of objects M(C)0 = C0 and for x, y ∈ C0 a hom-object

M(C)(x, y) = MC(x, y).

Composition and involution are defined as above, which (from the compatibility

axiom for multipliers) makes composition necessarily associative. The identity

morphism in each M(C)(x, x) is given by the identity multiplier m1 = (mL
1 ,m

R
1 )

which is defined by the formulae mL
1 (a) = a and mR

1 (c) = c. We claim that this is

a C∗-category.

Proposition 3.1.19. Let C be a C∗-category. Then M(C) is a C∗-category.

Proof. For each m = (mL,mR) ∈ M(C)(x, y) we have mL ∈ L
(
C(x, x),C(x, y)

)
and mR ∈ L

(
C(y, y),C(x, y)

)
, hence each M(C)(x, y) is a C-vector space under

pointwise operations. Now if l ∈M(C)(x, y) and m ∈M(C)(y, z) then

‖m ◦ l‖ =
∥∥(m ◦ l)R

∥∥ = sup
{∥∥(m ◦ l)Ra

∥∥ | ‖a‖ ≤ 1
}

= sup
{∥∥∥lim

i
(meyi ) ◦ la

∥∥∥ | ‖a‖ ≤ 1
}

≤
∥∥∥lim

i
(meyi )

∥∥∥ . sup { la | ‖a] ≤ 1‖ }

≤ ‖m‖ . ‖l‖

and therefore composition is submultiplicative. Thus, M(C) is a C-linear category.

For completeness of hom-objects, let (mn) be a Cauchy sequence in M(C)(x, y).

Then (mL
n) and (mR

n ) are Cauchy sequences in the Banach spaces L
(
C(x, x),C(x, y)

)
and L

(
C(y, y),C(x, y)

)
respectively, and hence converge to uniformly to limits mL

and mR respectively. If a ∈ C(x, x) and c ∈ C(y, y) then

c ◦mL(a) = lim
n−→∞

c ◦mL
n(a) = lim

n−→∞
mR
n (c) ◦ a = mR(c) ◦ a.

Therefore m = (mL,mR) = limn−→∞mn ∈MC(x, y), hence M(C)(x, y) is complete.

Thus, M(C) is a Banach *-category.

It remains to prove that the C∗-identity and positivity axioms hold. For every
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m ∈M(C)1 we have

‖m‖2 = sup
{
‖ma‖2 | ‖a‖ ≤ 1

}
= sup { (ma)∗(ma) | ‖a‖ ≤ 1 }

= sup { ‖a∗m∗ma‖ | ‖a‖ ≤ 1 }

≤ sup { ‖c∗m∗ma‖ | ‖a‖ ≤ 1, ‖c‖ ≤ 1 }

= ‖m∗ma‖ .

It follows that ‖m‖2 ≤ ‖m∗m‖, and hence by submultiplicativity of composition

the C∗-identity is satisfied. Finally, let a ∈ C(x, x). Then a∗a is a positive element

of the C∗-algebra C(x, x), and

(m∗m)L(a∗a) = m∗(lim
i
meyi ◦ a∗a)

= lim
i

(meyi ◦ a∗a ◦ (eyi )
∗m∗)

= lim
i

(meyi ◦ a)(a ◦ (eyi )
∗m∗)

= lim
i

(a ◦ (eyi )
∗m∗)∗(a ◦ (eyi )

∗m∗),

which is a positive element of C(x, x). A similar calculation shows that (m∗m)R(a∗a)

is a positive element of C(x, x), and so m∗m sends positive elements to positive el-

ements. It follows that there exists l ∈M(C)(x, x) such that m∗m = l∗l.

Definition 3.1.20. Let C be a C∗-category in Set. The multiplier C∗-category of C
is the unital category M(C).

Example 3.1.21. Let C be the subcategory of Hilb such that for every H,H ′ ∈ C0

we have C(H,H ′) = K(H,H ′), the set of all compact operators from H to H ′. Then
MC(H,H ′) = B(H,H ′), and M(C) = Hilb.

§3.2 Topological C∗-Categories

Let C be a C∗-category such that the collection of objects C0 is a locally compact,

Hausdorff space.

Definition 3.2.1. A vector field for C is a function α : C0 × C0 −→ C1 such that

α(x, y) ∈ C(x, y) for every x, y ∈ C0. Call a vector field α norm-continuous (resp.

norm- upper/lower semicontinuous) if the numerical function (x, y) 7−→ ‖α(x, y)‖
is continuous (resp. upper/lower semicontinuous) with respect to the product

topology on C0 × C0 and the standard topology on R.
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We identify vector fields with sections of the anchor map (s, t) :C1 −→ C0×C0. The

support of a vector field α is the set

supp(α) = { (x, y) ∈ C0 × C0 | α(x, y) 6= 0 }

which we equip with the subspace topology relative to C0 × C0. We say that a

vector field α is compactly supported if supp(α) is a compact subset. Let AC be a

*-algebra of compactly supported vector fields with product given by convolution

and involution by the formula α∗(x, y) := α(y, x)∗. Since α, β are compactly sup-

ported vector fields it follows that supp(β ? α) ⊆ supp(β) supp(α) is compact, and

hence this product is well-defined on AC. We say that AC is dense in each fibre if

for every x, y ∈ C0 the set {α(x, y) | α ∈ AC } is dense in the hom-object C(x, y).

Definition 3.2.2. An upper semicontinuous (resp. lower semicontinuous) topological
C∗-category is a pair (C, AC) where C is a C∗-category with C0 a locally compact,

Hausdorff space and AC is a *-algebra of norm-upper semicontinuous (resp. norm-

lower semicontinuous) compactly supported vector fields for C that is dense in

each fibre, such that the collection of morphisms C1 is equipped with the topology

generated by sets of the form

Ω(U, α, ε) :=
{
b ∈ C1 | (s, t)(b) ∈ U,

∥∥b− α((s, t)(b))∥∥ < ε
}
, (3.1)

where U ⊆ C0 × C0 is an open subset, ε > 0 and α ∈ AC. A continuous topological
C∗-category is a pair (C, AC) that is both an upper semicontinuous topological C∗-

category and a lower semicontinuous topological C∗-category.

Where no confusion is likely to occur we will often omit reference to AC and

identify a topological C∗-category (C, AC) by its underlying C∗-category C.

Let C be an upper semicontinuous topological C∗-category. It follows from

Proposition 2.1.4 that the collection of sets of the form Ω(U, α, ε) as given in (3.1)

forms a basis for the topology on C1, and this topology is the unique topology for

C1 making AC the set of compactly supported continuous sections of the anchor

map (s, t) :C1 −→ C0 × C0. Moreover, we claim that Definition 3.2.2 is consistent

with the notion of a topological category as described in Chapter 1. An essentially

equivalent result for Fell bundles over étale groupoids was proven independently

by Takeishi [55]. We first consider the case of non-unital topological C∗-categories:

Proposition 3.2.3. Let C be a non-unital upper semicontinuous topological C∗-
category. Then C is an internal category in Top.
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Proof. The *-algebra AC satisfies the hypotheses of Proposition 2.1.2 and therefore

the topology on C1 generated by the sets Ω(U, α, ε) as given in (3.1) makes the

triple (C1, (s, t),C0 × C0) an upper semicontinuous Ban-bundle. In particular, the

anchor map (s, t) is a continuous open surjection with respect to this topology, and

hence the structure maps s and t are continuous. Furthermore, addition on each

hom-object defines a continuous map

+:C1 ×C0×C0 C1 −→ C1

and scalar multiplication on each hom-object defines a continuous map

· :C× C1 −→ C1.

For composition in C, let {ai} and {bi} be nets in C1 such that for each index i

we have ai ∈ C(xi, yi) and bi ∈ C(yi, zi) and such that ai −→ a and bi −→ b where

a ∈ C(x, y) and b ∈ C(y, z). We prove that biai −→ ba. If either of a, b is the zero

morphism then ‖biai‖ ≤ ‖bi‖ . ‖ai‖ −→ 0 and hence biai converges to 0 = ba. Now

assume that neither a nor b are the zero morphism and let ε > 0. Since AC is dense

in each fibre there exist α, β ∈ AC such that

‖a− α(x, y)‖ < ε

2 ‖β(y, z)‖
and ‖b− β(y, z)‖ < ε

2 ‖a‖
.

By Proposition 2.1.4, the vector fields α, β are continuous, and hence for suffi-

ciently large i we have

‖ai − α(xi, yi)‖ <
ε

2 ‖β(yi, zi)‖
and ‖bi − β(yi, zi)‖ <

ε

2 ‖ai‖
.

Let U1 ⊆ C0 × C0 be an open neighbourhood of (x, y) and U2 ⊆ C0 × C0 be

an open neighbourhood of (y, z). Let Ki ⊆ Ui, i = 1, 2 be compact subsets, and

define U := U2U1 ⊆ C0 × C0 and K := K2K1 ⊆ U . Let f ∈ C0(C0 × C0) be such

that f ≡ 1 on K and f ≡ 0 outside of U . Since AC is closed under the pointwise

action of C0(C0 × C0) it follows that η := f · (β ∗ α) is a continuous vector field for

C. Therefore, for sufficiently large i,

η
(
(y, z) · (x, y)

)
= β(y, z)α(x, y)

and

η
(
(yi, zi).(xi, yi)

)
= β(yi, zi)α(xi, yi),
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and hence on K we have

∥∥ba− η((y, z).(x, y)
)∥∥ ≤ ‖ba− β(y, z)α(x, y)‖

≤ ‖b− β(y, z)‖ · ‖a‖+ ‖β(y, z)‖ · ‖a− α(x, y)‖

≤ ε

2 ‖a‖
· ‖a‖+ ‖β(y, z)‖ · ε

2 ‖β(y, z)‖
= ε.

Similarly, for sufficiently large i,

∥∥biai − η((yi, zi).(xi, yi))∥∥ ≤ ‖biai − β(yi, zi)α(xi, yi)‖

≤ ‖bi − β(yi, zi)‖ . ‖ai‖+ ‖β(yi, zi)‖ . ‖ai − α(xi, yi)‖

≤ ε

2 ‖ai‖
. ‖ai‖+ ‖β(yi, zi)‖ .

ε

2 ‖β(yi, zi)‖
= ε

on K. Therefore biai −→ ba by Lemma 2.1.4 and hence composition for C defines

a continuous map

m :C1 ×C0 C1 −→ C1.

Finally, for involution, let {bi} be a net in C1 such that for each index i we have

bi ∈ C(xi, yi), and such that bi −→ b where b ∈ C(x, y). Since AC is dense in each

fibre it follows that for each ε > 0 there exists a vector field α ∈ AC such that for

sufficiently large i

‖b− α(x, y)‖ < ε and ‖bi − α(xi, yi)‖ < ε.

Involution is isometric, and therefore

‖b∗ − α∗(y, x)‖ = ‖b∗ − α(x, y)∗‖

=
∥∥(b− α(x, y)

)∗∥∥
= ‖b− α(x, y)‖

≤ ε.
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Similarly, for sufficiently large i,

‖b∗i − α∗(yi, xi)‖ = ‖b∗i − α(xi, yi)
∗‖

=
∥∥(bi − α(xi, yi)

)∗∥∥
= ‖bi − α(xi, yi)‖

≤ ε.

Therefore b∗i −→ b∗ by Lemma 2.1.4, and hence ∗ :C1 −→ C1 is continuous.

To extend the preceding result to the unital case we first need the following

closure property of the space of continuous vector fields:

Lemma 3.2.4. Let C be an upper semicontinuous topological C∗-category and let η
be a norm-upper semicontinuous vector field. Suppose that for every x, y ∈ C0 and
each ε > 0 there exists a compactly supported continuous vector field α ∈ AC and a
neighbourhood U of (x, y) such that ‖β(u, v)− η(u, v)‖ < ε for all (u, v) ∈ U . Then
the vector field η is continuous.

Proof. Let η be as stated in the hypothesis and let {(xi, yi)} be a net in C0 × C0

converging to objects (x, y). We show that η(xi, yi) −→ η(x, y). Let α ∈ AC. Then

since α is continuous {α(xi, yi)} is a net of morphisms converging to α(x, y) in C1,

and for each i we have

(s, t)(η(xi, yi)) = (s, t)(α(xi, yi)) = (xi, yi).

By assumption, for each ε > 0 there exists a neighbourhood U such that

‖α(u, v)− η(u, v)‖ < ε

on U , and hence for large enough i we have (xi, yi) ∈ U . Therefore,

‖α(xi, yi)− η(xi, yi)‖ < ε and ‖α(x, y)− η(x, y)‖ < ε,

and hence by Lemma 2.1.4 we have η(xi, yi) −→ η(x, y) and thus η is continuous.

Proposition 3.2.5. Let C be a unital upper semicontinuous topological C∗-category.
Then C is an internal category in Top.

Proof. We prove that the identity map ı :C0 −→ C1 is continuous. Let η be a vector
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field for C such that

η(x, y) =

1x if x = y

0 otherwise.

We claim that η is continuous at every point (x, x). Denote by D the diagonal

space of C0,

D = { (x, x) | x ∈ C0 }

and let U ⊂ D be an open neighbourhood of (x, x), and α ∈ AC a continuous

vector field for C. For each ε > 0 consider the set

Wε := (s, t)
(
Ω(U, α, ε)

)
.

By Proposition 2.1.2, the map (s, t) is open, whence it follows that Wε is an open

neighbourhood of (x, x), and on Wε we have ‖η(w,w)− α(w,w)‖ < ε. Hence by

Lemma 3.2.4, η is continuous at each (x, x). The diagonal defines a continuous

map D :C0 −→ D(C0) and therefore the unit map ı = η ◦D is continuous.

Now let C be a unital topological C∗-category and let EndC denote the subcat-

egory of C with the same space of objects as C and morphisms given by

EndC(x, y) =

C(x, x) if x = y

{0} otherwise.

From EndC we obtain a C∗-Alg-bundle (E, (s, t), D) where D is the diagonal space

of C0 and

E :=
∐
x∈C0

C(x, x).

Lemma 3.2.6. Let C be a topological C∗-category. Then C is a continuous (resp. up-
per/lower semicontinuous) topological C∗-category if and only if the triple (E, (s, t), D)

is continuous (resp. upper/lower semicontinuous) C∗-Alg-bundle.

Proof. Let b ∈ C1 be a morphism in C(x, y). The norm function b 7−→ ‖b‖ factorises

into maps

b 7−→ (b∗, b) 7−→ b∗b 7−→ ‖b∗b‖1/2 = ‖b‖ . (3.2)

By Definition 3.1.2, there exists an endomorphism a ∈ C(x, x) such that a∗a =

b∗b, and therefore b 7−→ ‖b‖ is continuous (resp. upper/lower semicontinuous)

if and only if a 7−→ ‖a‖ is continuous (resp. upper/lower semicontinuous) on

(E, (s, t), D).
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Our development of topological C∗-categories thus far only considers them

as isolated objects. In order to develop a meaningful theory of topological C∗-

categories we need to consider them as objects of some category, and investigate

the structure-preserving morphisms between them.

Definition 3.2.7. A continuous *-functor between topological C∗-categories C and

D is a *-functor F : C −→ D on the underlying categories such that the object

component F0 : C0 −→ D0 and the morphism component F1 : C1 −→ D1 are both

continuous maps. If C and D are unital topological C∗-categories then F must

also satisfy ıD ◦ F1 = F0 ◦ ıC. We write [C,D] for the collection of all continuous

*-functors between topological C∗-categories.

The following result provides a criterion for a *-functor F :C −→ D between upper

semicontinuous topological C∗-categories to be continuous:

Proposition 3.2.8. Let C and D be upper semicontinuous topological C∗-categories
and let F : C −→ D be a (not necessarily continuous) *-functor such that the object
map F0 :C0 −→ D0 is continuous. If the map F1 ◦ α :C0 × C0 −→ D1 is continuous
for every α ∈ AC then F is a continuous *-functor.

Proof. Let {bi} be a net in C1 such that for each index i we have bi ∈ C(xi, yi)

and such that bi −→ b for some b ∈ C(x, y). Let ε > 0 and choose α ∈ AC such

that ‖α(x, y)− b‖ ≤ ε. By continuity it follows that for sufficiently large i we have

‖α(xi, yi)− bi‖ ≤ ε. Since F is norm-decreasing we have

‖(F ◦ α)(x, y)− F (b)‖ = ‖F (α(x, y)− b)‖ ≤ ‖α(x, y)− b‖ ≤ ε

and for sufficiently large i we also have

‖(F ◦ α)(xi, yi)− F (bi)‖ = ‖F (α(xi, yi)− bi)‖ ≤ ‖α(xi, yi)− bi‖ ≤ ε.

By assumption the composite F1 ◦α is a continuous map C0×C0 −→ D1 and there-

fore (F◦α)(xi, yi) −→ (F◦α)(x, y) in D1. Then F (bi) −→ F (b) by Lemma 2.1.4.

If C is a unital topological C∗-category we write U(C1) for the subspace of C1

consisting of unitary morphisms of C. Let C and D be topological C∗-categories

and F,G :C −→ D continuous *-functors.

Definition 3.2.9. A continuous natural transformation F =⇒ G consists of a con-

tinuous map θ :C0 −→ D1 such that sD ◦ θ = F0 and tD ◦ θ = G0 and such that the
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following diagram commutes in Top:

C1
(G1,θ◦sC) //

(θ◦tC,F1)

��

D1 ×D0 D1

m

��
D1 ×D0 D1 m

// D1

(3.3)

A continuous natural transformation is bounded if ‖θ‖ := sup { ‖θ(x)‖ | x ∈ C0 } is

finite. It is called a continuous unitary transformation if θ(x) ∈ U(C1) for all x ∈ C0.

If b ∈ C(x, y) then the commutativity of the diagram in (3.3) implies that[
G(b) ◦ θ(x) :F (x) −→ G(x) −→ G(y)

]
=

[
θ(y) ◦ F (b) :F (x) −→ F (y) −→ G(y)

]
and therefore we recover a the usual commutative diagram of a natural transfor-

mation:

x

b

��

F (x)
θx //

F (b)

��

G(x)

G(b)

��
y F (y)

θy
// G(y)

The collection of all topological C∗-categories forms a 2-category C∗-Cat(Top)

with continuous *-functors as 1-morphisms and continuous bounded natural trans-

formations as 2-morphisms. We write C∗-CatU(Top) for the 2-category with the

same objects and 1-morphisms but with continuous unitary transformations as

2-morphisms.

In the remainder of this section, we prove that the category C∗-Cat1(Top)

of unital topological C∗-categories and continuous *-functors is fibred over the

category of topological spaces. First we must translate the concept of a carte-

sian morphism into the language of continuous *-functors between topological

C∗-categories.

Definition 3.2.10. Let P : C∗-Cat1(Top) −→ Top be a functor. A continuous uni-

tal *-functor F :C −→ D between topological C∗-categories is called strongly carte-
sian if for every topological C∗-category E ∈ C∗-Cat1(Top), for every continuous

unital *-functor Q :E −→ D and for every continuous map k :P (E) −→ P (C) such

that P (Q) = P (F )◦k there exists a unique continuous unital *-functor K :E −→ C
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such that Q = F ◦K and k = P (K):

E

∃!K
$$

P

��

∀Q // D

P

��

C

P

��

F

66

P (E)

k ##

P (Q) // P (D)

P (C)
P (F )

77

Write C( , ) for a hom-object in Top. Then we may equivalently characterise

a continuous unital *-functor F : C −→ D as strongly cartesian if for every unital

topological C∗-category E ∈ C∗-Cat1(Top) the map

C∗-Cat1(Top)[E,C] −→ C∗-Cat1(Top)[E,D]×(P (E),P (D)) C(P (E), P (C))

given by K 7−→ (F ◦K,P (F )) is a bijection.

Now let F :C −→ D be a continuous *-functor between topological C∗-categories.

Define a category F ∗D with the same space of objects as C and with the space of

morphisms

F ∗D1 := { ((x, y), b) ∈ C0 × C0 ×D1 | s(b) = F (x), t(b) = F (y) } ,

which we equip with the subspace topology relative to C0 × C0 × D1. The hom-

objects of F ∗D are defined as F ∗D(x, y) := D(F (x), F (y)) from which it follows

immediately that F ∗D is a topological C∗-category. The category F ∗D is unital,

with unit map

ı(F ∗D) :C0 −→ F ∗D1, x 7−→
(
(x, x), idF (x)

)
if and only if the topological C∗-category D is unital. Furthermore, it is a contin-

uous (resp. upper/lower semicontinuous) topological C∗-category if and only if D

is. There is a canonical continuous *-functor F ∗ :F ∗D −→ D with object compo-

nent F ∗0 :F ∗D0 −→ D0 given by F0 and morphism component F ∗1 :F ∗D1 −→ D1

given by projection onto the final factor.
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Now if F : C −→ D is a fully faithful continuous *-functor between unital

topological C∗-categories and F ∗ : F ∗D −→ D is the canonical projection func-

tor then there exists a unique (up to natural isomorphism) continuous *-functor

K :C −→ F ∗D such that F = F ∗ ◦K, implementing an isomorphism C ∼= F ∗D. Let

Obj: C∗-Cat1(Top) −→ Top

be the functor that sends a unital topological C∗-category to its space of objects

C0 and sends a continuous *-functor F : C −→ D to the object component of F ,

F0 :C0 −→ D0.

Lemma 3.2.11. Let F : C −→ D be a fully faithful continuous *-functor between
unital topological C∗-categories. Then F is strongly cartesian with respect to Obj.

Proof. Let E be a topological C∗-category and k0 : E0 −→ C0 a continuous map.

Then we have a continuous *-functor k∗0 : k∗0C −→ C with object component k0 and

hence a continuous *-functor

F ◦ k∗0 : k∗0C −→ D

with object component k0 ◦ F0. Since F is fully-faithful it follows that k∗0 ◦ F is

also fully-faithful, and therefore there exists a unique (up to natural isomorphism)

continuous *-functor

K ′ :E −→ k∗0C

such that F ◦ k∗0 ◦ K ′ = Q. Define a continuous *-functor K by k∗0 ◦ K ′, then

Obj(K) = k0 and F ◦K = Q, thus proving existence.

Now suppose that K,H : E −→ C are two continuous unital *-functors such

that K0 = H0 = k0 and such that F ◦ K = Q = F ◦ H. Then for every x ∈ E

we have K(x) = H(x), and therefore the map x 7−→ idK(x) defines a continuous

natural isomorphism K =⇒ H.

We conclude with the main result of this section.

Definition 3.2.12. A functor P : C −→ S is called a fibration if given any x ∈ C0

and (f : a −→ P (x)) ∈ S1 there exists a strongly cartesian morphism φ : x −→ y

such that P (φ) = f . The morphism φ is called a lifting of f and we say that C is

fibred over S.

Proposition 3.2.13. The category C∗-Cat1(Top) of topological C∗-categories is fi-
bred over Top.
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Proof. We prove that functor the Obj: C∗-Cat1(Top) −→ Top is a fibration. Let C

be a topological C∗-category, and let f :X −→ C0 be a continuous map from X, a

locally compact Hausdorff space. Then there exists a continuous *-functor

f ∗ : f ∗C −→ C

such that Obj(f ∗) = f . By construction, f ∗ is fully-faithful, and hence by Lemma 3.2.11

f ∗ is cartesian. Therefore, Obj is a fibration.

37



38

38



Chapter 4

Concrete Topological C∗-Categories

In Chapter 3 we introduced topological C∗-categories by defining them axiomat-

ically. In this chapter we construct a concrete characterisation of a topological

C∗-category as a category with a locally compact Hausdorff space of objects and

whose hom-objects are spaces of bounded linear maps between Hilbert spaces.

This is precisely the topological C∗-category analogue of a concrete C∗-algebra.

Crucially, however, the collection of all Hilbert spaces (even all separable Hilbert

spaces) forms a proper class as opposed to a set, and so a characterisation of Hilb

as an internal category in Top is not possible. Our approach is therefore to con-

struct (small) topological categories that are in some sense equivalent to Hilb.

These are C∗-categories associated to continuous Hilb-bundles.

The content of this chapter falls naturally into two sections. In the first sec-

tion we provide a construction of a C∗-category from a continuous Hilb-bundle by

considering the topological multiplier C∗-category of the category of compact op-

erators (Definition 4.1.5). We consider two topologies on the set of morphisms of

such categories. For the strict topology we regard the construction simply as a cat-

egory of multipliers, whereas for the *-strong operator topology we acknowledge

that the hom-objects are in fact spaces of operators. These are both analogous

to the corresponding topologies on operator algebras. The C∗-category obtained

by equipping the morphism set with the *-strong operator topology is essentially

the same as the lower semicontinuous Fell bundle constructed independently by

Bos [9], although we approach the construction of the topology in a different (but

equivalent) way.

In Section 4.2 we are concerned with proving a generalisation of the Gelfand-

Naimark Theorem for topological C∗-categories. This section contains two of the

main results in this thesis: Firstly, we assert that every continuous topological C∗-
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category can be embedded into a functor category in a manner analogous to the

Yoneda embedding (Theorem 4.2.5). We then use this result and reason as in [43]

to prove that every topological C∗-category can be faithfully and continuously

represented as a concrete topological C∗-category associated to some continuous

Hilb-bundle over its object space. Furthermore, we show that if C is a topological

C∗-category with faithful representation then C is necessarily continuous (Theo-

rem 4.2.8).

§4.1 Concrete Topological C∗-Categories

Throughout this section letX be a locally compact, Hausdorff space and let (H, p,X)

be a continuous Hilb-bundle. We start by constructing the analogue of the algebra

of compact operators in the context of topological C∗-categories.

Definition 4.1.1. Define a category K(H) with space of objects X and for each

x, y ∈ X a hom-object K(H)(x, y) := K(Hx, Hy), where Hx and Hy are fibres of

H. Composition in K(H) is defined as composition of operators and involution is

given by the usual adjoint of linear operators.

For each pair of continuous bounded sections α, β ∈ Γb(H) define a vector field

θα,β for K(H) by the formula

Θα,β(x, y)(−) := 〈 β(x),−〉α(y) ∈K(Hx, Hy).

Denote by AK(H) the set {
∑

i θαi,βi | αi, βi ∈ Γb(H) } of all finite sums of such θα,β.

Proposition 4.1.2. The pair
(
K(H), AK(H)

)
form a continuous topological C∗-category.

Proof. The set K(Hx, Hy) is defined as the closure of the set of all finite rank

operators Hx −→ Hy. Therefore each K(H)(Hx, Hy) is a closed linear subspace of

Hilb(Hx, Hy) and hence the underlying category K(H) is a C∗-category. Moreover,

AK(H) is dense in each fibre and for each α, β ∈ Γb(H) the map

(x, y) 7−→ ‖〈 β(x), h 〉α(y)‖

is continuous. It follows that
(
K(H), AK(H)

)
forms a continuous topological C∗-

category.

We now extend this construction to a category with hom-objects consisting of

all bounded linear maps between fibres of a continuous Hilb-bundle (H, p,X).
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Recall that if H,H ′ are Hilbert spaces then B(H,H ′) = MK(H,H ′).

Definition 4.1.3. Let (H, p,X) be a continuous Hilb-bundle. Define the category

B(H) to be the multiplier C∗-category M (K(H)), which has space of objects X,

and for every x, y ∈ X a hom-object B(H)(Hx, Hy) := M (K(H)) consisting of all

bounded linear maps from Hx to Hy.

We consider two distinct topologies on the set of morphisms B(H)1. The first

is a generalisation of a natural topology on multipliers.

Definition 4.1.4. Let C be a topological C∗-category and let M(C) be the multiplier

C∗-category of C. The strict topology on M(C)1 is the topology generated by the

family of seminorms { ‖−‖sα | α ∈ AC } where

‖m‖sα :=
∥∥mα(s(m), s(m)

)∥∥+
∥∥α(t(m), t(m)

)
m
∥∥ .

It follows that a net of morphisms {mi} in M(C), where mi ∈ M(C)(xi, yi) for

each index i, converges strictly to m ∈M(C)(x, y) if and only if

miα (xi, xi) −→ mα (x, x) and α (yi, yi)mi −→ α (y, y)m

for all α ∈ AC. In particular, a net {Ti} of operators such that Ti ∈ B(Hxi , Hyi)

converges strictly to T ∈ B(Hx, Hy) if and only if

Tiθα,β (xi, yi) −→ Tθα,β(x, y) and θα,β(xi, yi)Ti −→ θα,β(x, y)T

in B(H)1 for all α, β ∈ Γb(H).

A vector field µ for M(C) is called strictly continuous if the maps

(x, y) 7−→ µ(x, y)α(x, x) and (x, y) 7−→ α(y, y)µ(x, y)

are continuous on X × X −→ C1 for every α ∈ AC. Write AsM(C) for the set of

strictly continuous vector fields for M(C). Then a sub-base for the strict topology

on M(C)1 is given by the collection of sets of the form

Ω(U, µ, α, ε) =
{
m ∈M(C) | (s, t)(m) ∈ U,

∥∥(s, t)(m)− µ
(
(s, t)(m)

)∥∥s
α
< ε

}
,

for U ⊆ C0 × C0 an open subset, α ∈ AC, µ ∈ AsM(C) and ε > 0.

Definition 4.1.5. Let C be a topological C∗-category. Then
(
M(C), AsM(C)

)
is called

the topological multiplier C∗-category of C.
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Example 4.1.6. The category
(
B(H), AsM(K(H))

)
is the topological multiplier C∗-

category of (K(H), AK).

Since the morphisms of B(H) are linear maps we can also equip B(H)1 with an

operator topology. For each α ∈ Γb(H) define a seminorm

‖T‖ωα :=
∥∥T(α (s(T ))

)∥∥+
∥∥T ∗(α (t(T ))

)∥∥ ,
where the norms

∥∥T(α (s(T ))
)∥∥ and

∥∥T ∗(α (t(T ))
)∥∥ are the inner-product norms

on Hs(T ) and Ht(T ) respectively.

Definition 4.1.7. The ∗-strong operator topology on B(H)1 is the topology gener-

ated by the family of seminorms { ‖−‖ωα | α ∈ Γb(H) }. A net of morphisms {Ti}
in B(H) such that Ti ∈ B(Hxi , Hyi) converges to T ∈ B(H) if and only if

Ti (α(xi)) −→ T (α(x)) and T ∗i (α(yi)) −→ T ∗ (α(y)) .

A vector field Θ for B(H) is called ∗-strongly continuous if the maps

(x, y) 7−→ Θ(x, y)α(x) and (x, y) 7−→ Θ(x, y)∗α(y)

are continuous on X ×X −→ B(H)1 for every α ∈ Γb(H). Let AB(H) be the set of

all strictly continuous vector fields for B(H).

Lemma 4.1.8. For each pair of objects x, y ∈ X the set
{

Θ(x, y) | Θ ∈ AB(H)

}
is

dense in B(H)(x, y).

Proof. Let x0, y0 ∈ X be objects, T ∈ B(H)(x0, y0) be a morphism and let ε > 0.

Let α1, . . . , αn and β1, . . . , βm be such that∥∥∥∥∥h−
n∑
i=1

〈αi(x0), h 〉αi(x0)

∥∥∥∥∥ < ε and

∥∥∥∥∥h′ −
m∑
j=1

〈 βj(y0), h′ 〉αj(y0)

∥∥∥∥∥ < ε

for any h ∈ Hx0 and h′ ∈ Hy0. Define a vector field Θ by the formula

Θ(x, y)(h) :=
n∑
i=1

m∑
j=1

〈αi(x), h 〉〈 βj(y0), T (αi(x0)) 〉βj(y)

for h ∈ Hx0 . By continuity of the inner-product function it follows that Θ ∈ AB(H).
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Furthermore

‖(T −Θ(x, y))h‖ = ‖T (h)−Θ(x, y)h‖

≤

∥∥∥∥∥T (h)−
n∑
i=1

〈αi(x), h 〉T (αi(x))

∥∥∥∥∥
+

∥∥∥∥∥∥
n∑
i=1

〈αi(x), h 〉T (αi(x))−
n∑
i=1

m∑
j=1

〈αi(x), h 〉〈βj(y0), T (αi(x0)) 〉βj(y)

∥∥∥∥∥∥
≤

∥∥∥∥∥T (h)−
n∑
i=1

〈αi(x), h 〉T (αi(x))

∥∥∥∥∥+ ‖ε‖

and∥∥∥∥∥T (h)−
n∑
i=1

〈αi(x), h 〉T (αi(x))

∥∥∥∥∥ ≤
∥∥∥∥∥T
(
h−

n∑
i=1

〈αi(x), h 〉αi(x)

)∥∥∥∥∥ ≤ ‖T‖ ε.
Therefore ‖(T −Θ(x, y))h‖ ≤ (‖T‖+ 1) ε, and hence

{
Θ(x, y) | S ∈ AB(H)

}
is

dense in B(H)(x, y).

A sub-base for the ∗-strong operator topology on B(H)1 is given by the col-

lection of all sets of the form Ω(U,Θ, α, ε) where the set Ω(U,Θ, α, ε) is defined

as

Ω(U,Θ, α, ε) =
{
T ∈ B(H)1 | (s, t)(T ) ∈ U,

∥∥T −Θ
(
(s, t)(T )

)∥∥ω
α
< ε

}
,

for U ⊆ X × X an open subset, Θ ∈ AB(H), α ∈ Γb(H) and ε > 0. A base for a

topology is the finite intersection of all such sets, and hence a base for the ∗-strong

operator topology on B(H)1 is given by the collection of all sets of the form

Ω(U,Θ,α, ε) =

{
T ∈ B(H)1 | (s, t)(T ) ∈ U,

k∑
i=1

∥∥T −Θ
(
(s, t)(T )

)∥∥ω
αi
< ε, k ∈ N

}
,

where α = (α1, . . . , αk) such that αi ∈ Γb(H) for each index i, and where U , Θ and

ε are as above.

We claim that the category
(
B(H), AB(H)

)
is a lower semicontinuous C∗-category.

We use a similar line of argument to that used in Section 5.2 of [9].

Lemma 4.1.9. For every Θ ∈ AB(H) the map (x, y, h) 7−→ ‖Θ(x, y)h‖ is continuous
on {X ×X × H | h ∈ Hx } −→ R≥0.

Proof. Let (x, y, h) ∈ {X ×X × H | h ∈ Hx } and let α ∈ Γ(H) be such that
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α(x) = h. Let (xi, yi, hi) be a net in {X ×X × H | h ∈ Hx } such that (xi, yi, hi)

converges to (x, y, h). By continuity we have, for sufficiently large i,∣∣∣∣ ‖Θ(xi, yi)hi‖ − ‖Θ(xi, y)hi‖
∣∣∣∣ ≤ ε

2

and ∣∣∣∣ ‖Θ(xi, yi)α(xi)‖ − ‖Θ(x, y)h‖
∣∣∣∣ ≤ ε

2
.

It follows that∣∣∣∣ ‖Θ(xi, yi)hi‖ − ‖Θ(x, y)h‖
∣∣∣∣ ≤ ε+

∣∣∣∣ ‖Θ(xi, y)hi‖ − ‖Θ(xi, y)α(xi)‖
∣∣∣∣+ ε

≤ (2 + ‖Θ(xi, y)‖) ε

and therefore (x, y, h) 7−→ ‖Θ(x, y)h‖ is continuous.

Lemma 4.1.10. For every Θ ∈ AB(H) the map (x, y) 7−→ ‖Θ(x, y)‖ is lower semicon-
tinuous.

Proof. Fix ε > 0. Let (xi, yi, hi) be a net in {X ×X × H | h ∈ Hx } such that

(xi, yi, hi) converges to (x, y, h) where h is such that

∣∣ ‖Θ(x, y)h‖ − ‖Θ(x, y)‖
∣∣ ≤ ε

2
.

By continuity, for sufficiently large i we have

∣∣ ‖Θ(xi, yi)hi‖ − ‖Θ(x, y)h‖
∣∣ ≤ ε

2
,

and therefore

‖Θ(xi, yi)‖ ≥ ‖Θ(xi, yi)hi‖ ≥ ‖Θ(x, y)h‖ − ε

2
≥ ‖Θ(x, y)‖ − ε,

hence the map (x, y) 7−→ ‖Θ(x, y)‖ is lower semicontinuous for every Θ ∈ AB(H).

Proposition 4.1.11. With respect to the strong*-bundle topology on B(H)1, the norm
function ‖−‖ :B(H)1 −→ R≥0, T 7−→ ‖T‖ is lower semicontinuous.

Proof. We prove that the level sets Qδ := {T ∈ B(H)1 | ‖T‖ > δ } are open. Let

δ > 0 and take T0 ∈ Qδ with (s, t)(T0) = (x0, y0). Choose Θ ∈ AB(H) such that

Θ(x0, y0) = T0. and pick δ′ > 0 such that δ < δ′ < ‖T0‖. Define a subset of X ×X

44



45

by

U := { (x, y) ∈ X ×X | ‖Θ(x, y)‖ > δ′ } .

By Lemma 4.1.10 the function (x, y) 7−→ ‖Θ(x, y)‖ is lower semicontinuous, and

therefore U is open. Let ε > 0 be such that ε < δ′− δ, then for T ∈ Ω(U,Θ, α, ε) we

have

‖T‖ ≥
∥∥Θ
(
(s, t)(T )α(s(T ))

)∥∥− ∥∥Θ
(
(s, t)(T )α(s(T ))

)
− T

∥∥ > δ′ − ε > δ.

Therefore T0 ∈ Ω(U,Θ, α, ε) ⊆ Qδ, and hence Qδ is open.

The ∗-strong operator topology does not, in general, make B(H) an internal

category in Top, since composition of morphisms m :B(H)1 ×X B(H)1 −→ B(H)1

is only separately ∗-strongly continuous. We do, however, have the following:

Proposition 4.1.12. Consider the category
(
B(H), AB(H)

)
equipped with the ∗-strong

operator topology. The involution map ∗ :B(H)1 −→ B(H)1 is ∗-strongly continuous.

Proof. Let (Ti) be a net of morphisms in B(H) converging to T . Then for every

α ∈ Γb(H) we have

Ti
(
α
(
s(Ti)

))
−→ T

(
α
(
s(T )

))
and T ∗i

(
α
(
t(Ti)

))
−→ T ∗

(
α
(
t(T )

))
.

Now

Ti
(
α
(
s(Ti)

))
−→ T

(
α
(
s(T )

))
⇐⇒ (T ∗i )∗

(
α
(
t(T ∗i )

))
−→ (T ∗)∗

(
α
(
t(T ∗)

))
and

T ∗i
(
α
(
t(Ti)

))
−→ T ∗

(
α
(
t(T )

))
⇐⇒ T ∗i

(
α
(
s(T ∗i )

))
−→ T ∗

(
α
(
s(T ∗)

))
and therefore T ∗i −→ T ∗.

Definition 4.1.13. A concrete topological C∗-category is a *-category C with a lo-

cally compact, Hausdorff space of objects C0 such that each C(x, y) is a norm-closed

linear subspace of B(H)(x, y) for some continuous Hilb-bundle (H, p,C0).

§4.2 Representations

An extension of the GNS construction to C∗-categories appeared in the original

article by Ghez, Lima and Roberts [28], and was used to prove that every C∗-
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category can be faithfully represented as a norm-closed subcategory of Hilb. The

details of this construction were then explored in greater detail in [43]. We now

look to prove an analogue of this result for topological C∗-categories.

Definition 4.2.1. Let C be a topological C∗-category. A representation of C is a

*-functor R :C −→ B(H) where:

i (H, p,C0) is a continuous Hilb-bundle,

ii The object map R0 :C0 −→ B(H)0 is continuous,

iii The map b 7−→ R(b)
(
α
(
s(b)

))
is continuous on C1 −→ H for every α ∈ Γb(H).

Recall that a state on a unital C∗-algebra A is a linear functional σ :A −→ C
such that σ(1) = 1 and σ(a∗a) ≥ 0 for all a ∈ A. Given a unital topological C∗-

category C and a state σ on C(x, x) we define the σ-null space of C(x, y) to be the

set

N(x, y;σ) = { a ∈ C(x, y) | σ(a∗a) = 0 } .

This is a vector space and hence we may form the quotient

H0(x, y;σ) := C(x, y)
/
N(x, y;σ) .

We write [a] for the class of the morphism a ∈ C(x, y) under the quotient mapping.

From the properties of σ the map 〈−,−〉 : C(x, y) × C(x, y) −→ C given by the

formula 〈 a, b 〉 = σ(a∗b) is positive and sesquilinear, and therefore the induced

map on the quotient space H0(x, y;σ) is a well-defined inner product.

Definition 4.2.2. For each x, y ∈ C0 and each σ a state on the C∗-algebra C(x, x)

define H(x, y;σ) to the be Hilbert space obtained by completing H0(x, y;σ) with

respect to the inner-product norm. Define

H(x, y) :=
⊕
σ

H(x, y;σ),

taking the Hilbert space direct-sum over all states on C(x, x).

In order to proceed we require some technical lemmas. The first is a standard

result about C∗-algebras that we state without proof.

Lemma 4.2.3. Let A be a unital C∗-algebra, and let a ∈ A. Then there exists a state
σ on A such that σ(a∗a) = ‖a‖2.
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We also require the following result by Mitchener [43], the proof of which we

reproduce here.

Lemma 4.2.4. Let C be a unital topological C∗-category, x ∈ C0 and σ a state on
C(x, x). Let a ∈ C(x, y) and b ∈ C(y, z). Then ‖[ba]‖ ≤ ‖b‖ ‖[a]‖ where ‖[ba]‖ denotes
the norm of the class [ba] in H(x, z) and ‖[a]‖ denotes the norm of the class [a] in
H(x, y).

Proof. The result is immediate when b is the zero morphism, so assume that b 6= 0.

Define a morphism d ∈ C(y, y) by

d :=
b∗b

‖b‖2
.

Since C is a C∗-category the endomorphism d is positive, and ‖d‖ = 1. Therefore

the endomorphism 1y − d is positive, and hence by the functional calculus there

exists a positive element e ∈ C(y, y) such that e2 = 1y − d.

Observe that (ea)∗(ea) = a∗(1 − e)a, and therefore the morphism a∗(a − d)a is

positive. Moreover, σ (a∗(1y − d)a) ≥ 0. Therefore

σ(a∗da) ≤ σ(a∗a) =⇒ σ

(
a∗b∗ba

‖b‖2

)
≤ σ(a∗a)

=⇒ σ(a∗b∗ba) ≤ ‖b‖2 σ(a∗a)

=⇒ ‖[ba]‖ ≤ ‖b‖ ‖[a]‖ .

For each y ∈ C0 define a map on objects by Hy(u) : = H(u, y) and for each

b ∈ C(u, v) define a map Hy(b) :Hy(v) −→ Hy(u) by the composition [a] 7−→ [ab].

Then Hy defines a *-functor Hy :Cop −→ Hilb.

Theorem 4.2.5. The assignment y 7−→ Hy extends to a faithful *-functor

H• :C ↪→ [Cop,Hilb] ,

where [Cop,Hilb] denotes the category of contravariant *-functors (in Set) from C to
Hilb.

Proof. On objects we write H•(y) = Hy. Let b ∈ C(y, z), then b determines a
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transformation H•(b) :Hy =⇒ Hz with components

(H•(b))x :Hy(x) −→ Hz(x), [a] 7−→ [ba].

If d : x −→ w is a morphism in C(x,w) then for each object y ∈ C0 there is a

contravariantly induced linear map Hy(w) −→ Hy(x) given by the assignment

[a] 7−→ [ad], hence by the associativity of composition in C the diagram

Hy(w)
(H•(b))w //

[−◦d]

��

Hz(w)

[−◦d]

��
Hy(x)

(H•(b))x

// Hz(x)

commutes for every d ∈ C(x,w). The transformation H•(b) is therefore natural.

Moreover, by Lemma 4.2.4 we have

‖(H•(b))x‖ = sup
‖[a]‖=1

‖[ba]‖ ≤ ‖b‖ ‖[a]‖

for each x ∈ C0. Therefore ‖H•(b)‖ = supx∈C0
‖(H•(b))x‖ is finite, and hence H•(b)

is a bounded natural transformation – that is, a morphism in [Cop,Hilb].

Now we prove that H• is a faithful *-functor. If b ∈ C(y, z) and c ∈ C(z, w) then

for each x ∈ C0 we have

H•(c)x (H•(b))x [a] = H•(c)x[ba] = [cba] = H•(cb)[a].

Therefore H• is a functor. Define

H•(b)
∗
x :H(x, z) −→ H(x, y), [a] 7−→ [b∗a],

then H•(b)
∗
x = H•(b

∗)x, making H• a *-functor. To see that H• is faithful, observe

that if x ∈ C0 is such that C(x, y) = {0} then (H•(b))x must be the zero map, hence

‖(H•(b))x‖ = 0. Now suppose that x ∈ C0 such that C(x, y) 6= {0}, and choose

a ∈ C(x, y) such that ‖a‖ = 1. Then by the positivity axiom of Definition 3.1.2

there exists an endomorphism e ∈ C(x, x) such that (ba)∗ba = e∗e, and hence

‖e‖2 = ‖ba‖2. It follows that by Lemma 4.2.3 there exists a state σx on C(x, x) such

that

σx ((ba)∗ba) = ‖ba‖2 .
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Therefore, letting ‖[ba]‖σ denote the norm of the image of ba in H(x, z;σ), we

have,

‖(H•(b))x‖ = sup { ‖[ba]‖σ | ‖a‖ = 1, σ a state on C(x, x) }

≥ sup { ‖[ba]σx‖ | ‖a‖ = 1 }

= sup { ba | ‖a‖ = 1 }

= ‖b‖ .

Therefore, H• is faithful.

To complete the construction of a faithful *-functor we require a topological

analogue of the direct-sum of Hilbert spaces. Let X be a locally compact Haus-

dorff space equipped with Borel structure and positive Radon measure µ, and let

(H, p,X) be a continuous Hilb-bundle. Denote by L2(X,H) the set of all continu-

ous sections α ∈ Γb(H) such that the integral∫
x∈X
‖α(x)‖2 dµ(x)

is finite. The set L2(X,H) is an inner-product space under pointwise linear opera-

tions with inner-product given by

〈α, β 〉 :=
∫
x∈X
〈α(x), β(x) 〉 dµ(x).

Since each continuous section α, β ∈ Γb(H) is square integrable this inner-product

is well-defined.

Definition 4.2.6. If (H, p,X) is a continuous Hilb-bundle with fibres Hx then the

topological direct integral ∫ ⊕
x∈X

Hx dµ(x)

is the completion of L2(X,H) under the inner-product norm.

Now for each y ∈ C0 define

H(y) :=

∫ ⊕
C0

H(x, y) dµ(x)

where H(x, y) =
⊕

σH(x, y;σ) as above. The collection {H(y)}y∈C0 form the fibres

of a Hilb-bundle (HC, t,C0) where t is the target map of C. Furthermore, each
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compactly supported continuous section α ∈ Γc(C) determines a section

α̃ :C0 −→ HC, α̃(y) =
[
α|X×{y}

]
where

[
α|X×{y}

]
denotes the image of α(−, y) in Hy(−). From the vector-valued

Tietze Extension Theorem, the topology on HC is then determined by the set

{ α̃ | α ∈ Γc(C) }, making HC a continuous Hilb-bundle. Denote by H•(C) the im-

age of C under the faithful *-functorH• :C ↪→ [Cop,Hilb] and write
(
B(HC), AB(HC)

)
for the concrete topological C∗-category associated to HC.

Proposition 4.2.7. Let C be a continuous, unital topological C∗-category. Then there
exists an isometric *-functor R :H•(C) −→ B(HC).

Proof. Define a map R0 :H•(C)0 −→ B(HC) by

Hy 7−→
∫ ⊕
x∈C0

H(x, y) dµ(x).

On morphisms, let H•(b) be the bounded natural transformation defined above.

Then each x ∈ C0 determines a bounded linear operator

H•(b)x :Hy(x) −→ Hz(x)

defined by composition [a] 7−→ [ba]. Since H•(b) is bounded there exists a constant

M > 0 such that ‖H•(b)x‖ ≤M for all x ∈ C0. Define a map

R1 :H•(C)1 −→ B(HC)1

on morphisms by sending H•(b) to the bounded linear map∫ ⊕
x∈C0

H•(b)x dµ(x) :

∫ ⊕
x∈C0

H(x, y) dµ(x) −→
∫ ⊕
x∈C0

H(x, z) dµ(x).

We claim that R = (R0, R1) is a faithful *-functor: First let

H•(b) ∈ [Cop,Hilb]
(
Hy, Hz

)
and H•(c) ∈ [Cop,Hilb]

(
Hz, Hw

)
be bounded natural transformations. Then R1 (H•(c) ◦H•(b)) is defined on fibres

by H•(c)x ◦ H•(b)x which, by the *-functoriality of H•, is equal to H•(cb)x. The
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family {H•(b)x} is uniformly bounded by M , therefore∫
x∈C0

‖H•(b)xα̃(y)‖2 dµ(x) ≤M2

∫
x∈C0

‖α̃(y)‖2 dµ(x) <∞

and hence R (H•(c) ◦H•(b)) = R (H•(c)) ◦ R (H•(b)). Now define R(H•(b))
∗ to be

the linear map ∫ ⊕
x∈C0

H(x, z) dµ(x) −→
∫ ⊕
x∈C0

H(x, y) dµ(x)

given fibrewise by linear operators H•(b∗)x :Hz(x) −→ Hy(x), [a] 7−→ [b∗a]. By

*-functoriality of H• we have R(H•(b))
∗ = R(H•(b))

∗, and hence R is a *-functor.

Finally,

‖R(H•(b)‖ =

∥∥∥∥∫ ⊕
x∈C0

H•(b)x dµ(x)

∥∥∥∥ = sup
x∈C0

‖H•(b)x‖ = ‖H•(b)‖ ,

and therefore R is isometric.

Theorem 4.2.8. Let C be a continuous, unital topological C∗-category. Then there
exists a faithful representation ρ : C −→ B(HC). Moreover if C is a topological C∗-
category with any faithful representation C −→ B(H) then C is necessarily (at least)
lower semicontinuous.

Proof. Define ρ to be the composition R ◦ H•. By Propositions 4.2.5 and 4.2.7

both R and H• are faithful *-functors, whence ρ is also. For the final claim, let C

be a topological C∗-category with faithful representation ρ :C −→ B(H) for some

continuous Hilb-bundle (H, p,C0). Finally, since ρ is faithful we have

b 7−→ ‖b‖ = ‖ρ(b)‖ ,

and ρ(b) 7−→ ‖ρ(b)‖ is lower semicontinuous.

Corollary 4.2.9. Let C be a non-unital, continuous topological C∗-category. Then
there exists a faithful representation ρ :C −→ B(HC+) where C+ is the unitisation of
C.

Proof. There exists an isometric embedding of C into its unitisation C+. The result

then follows by applying Theorem 4.2.8 to the unital continuous topological C∗-

category C+.
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Chapter 5

Further Constructions

In this chapter, we introduce three further constructions associated with topologi-

cal C∗-categories.

The first construction is an extension of the notion of a groupoid C∗-category

to the setting of topological groupoids. This combines the work of Davis and

Lück [16] and Mitchener [43] with the earlier work on groupoid C∗-algebras by

Renault [49]. We construct both a reduced topological groupoid C∗-category (Def-

inition 5.1.8) and a full topological groupoid C∗-category (Definition 5.1.10) by

taking appropriate completions of a category whose hom-objects are spaces of

compactly supported continuous functions on the underlying groupoid hom-set.

Composition in this category is given by convolution of continuous functions, giv-

ing rise to the general term convolution category. A closely related convolution

category L1(G) was introduced independently by Bos [9]. We then show that these

constructions are functorial with respect to a certain class of groupoid morphisms

(Proposition 5.1.12).

In Section 5.2 we define tensor products of two continuous topological C∗-

categories. Our constructions rely on the observation from Chapter 3 that the

family of endomorphism sets {C(x, x)}x∈C0 of a continuous topological C∗-category

form a continuous C∗-Alg-bundle. We therefore extend the definitions contained

in [4], [37] and [41] of tensor-product C∗-Alg-bundles to form the minimal ten-

sor product (Definition 5.2.2) and maximal tensor product (Definition 5.2.7) of

two continuous topological C∗-catgories. We also prove that these tensor-product

topological C∗-categories possess the same continuity properties exhibited by con-

tinuous C∗-Alg-bundles.

The final construction studied in this chapter is that of a Hilbert module over

a topological C∗-category. Hilbert modules over C∗-categories in Set have been
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considered by both Joachim [33] and Mitchener [43], in the study of K-theory

and KK-theory respectively. The definitions used by the two authors are not

equivalent. We adopt a definition similar to that of Joachim and define a Hilbert

module over a topological C∗-category as a contravariant functor satisfying cer-

tain properties. The main observation in this section is that the set of all bounded

natural transformations from a Hilbert module to itself forms a C∗-algebra (Propo-

sition 5.3.3)

§5.1 Groupoid C∗-Categories

Let G be a locally compact, second-countable Hausdorff groupoid endowed with

a left Haar system {λx}G0
, such that there exist continuous families of measures

{λyx}(x,y)∈G0×G0 and {µx}x∈G0 satisfying

λy =

∫
x∈s(G(−,y))

λyx dµy(x)

(c.f. Chapter 1). Define a C-linear category Cc(G) with space of objects G0 and for

each pair of objects x, y ∈ G0 a hom-object

Cc(G)(x, y) := Cc(G(x, y)),

the space of compactly supported continuous functions on G(x, y). Define compo-

sition by

(ψ ? ϕ) (g) :=

∫
h∈G(x,y)

ψ(gh−1)ϕ(h) dλyx(h) (5.1)

for ψ ∈ Cc(G(y, z)), ϕ ∈ Cc(G(x, y)) and g ∈ G(x, z), and involution by

ϕ∗(g) := ϕ(g−1)

for ϕ ∈ Cc(G(x, y)) and g ∈ G(y, x).

Proposition 5.1.1. The category Cc(G) is a well-defined C-linear involutive category.
It is non-unital unless G is compact.

Proof. The function (ψ ? ϕ) is non-zero at g ∈ G(x, z) if and only if there exists

h ∈ G(x, y) such that ψ(gh−1) and ϕ(h) are both non-zero. Therefore,

supp(ψ ? ϕ) ⊆ (suppψ) (suppϕ)
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which is compact. Moreover, for g ∈ Cc(G(x, z)) we have

|ψ ? ϕ(g)| ≤
∫
h∈G(x,y)

∣∣ψ(gh−1)ϕ(h)
∣∣ dλyx(h)

≤
(∫

h∈G(x,y)

∣∣ψ(gh−1)
∣∣ dλyx(h)

) 1
2
(∫

h∈G(x,y)
|ϕ(h)| dλyx(h)

) 1
2

by Hölder’s inequality, and therefore the function (ψ ? ϕ) is continuous on

G(y, z) · G(x, y) ⊆ G(x, z),

hence (ψ ? ϕ) ∈ Cc(G(x, z)).

Now let φ ∈ Cc(G)(w, x), ϕ ∈ Cc(G)(x, y) and ψ ∈ Cc(G)(y, z). Then

(ψ ? ϕ) ? φ(g) =

∫
h∈G(w,x)

(ψ ? ϕ)(gh−1)φ(h) dλxw(h)

=

∫
h∈G(w,x)

∫
k∈G(x,y)

ψ(gh−1k−1)ϕ(k)φ(h) dλyx(k) dλxw(h). (5.2)

By left-invariance of the Haar system, we have∫
k∈G(x,y)

ψ(gh−1k−1) dλyx(k) =

∫
γ∈G(w,y)

ψ(gγ−1 dλyw(γ)

and ∫
k∈G(x,y)

ϕ(k) dλyx(k) =

∫
γ∈G(w,y)

ϕ(γh−1) dλyw(γ)

where γ = kh. Therefore (5.2) may be written as∫
γ∈G(w,y)

ψ(gγ−1)

∫
h∈G(w,x)

ϕ(γh−1)φ(h) dλxw(γ) dλyw(γ)

=

∫
γ∈G(w,y)

ψ(gγ−1)(ϕ ? φ)(γ) dλyw(γ)

= (ψ ? (ϕ ? φ)) (g)

and hence composition is associative. Furthermore, composition is bilinear and is
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compatible with involution, since for g ∈ G(y, x) we have

(ψ ? ϕ)∗(g) = (ψ ? ϕ)(g−1)

=

∫
h∈G(x,y)

ψ(g−1h−1)ϕ(h) dλyx(h)

=

∫
h∈G(x,y)

ψ(h−1)ϕ(gh) dλyx(h)

=

∫
h∈G(x,y)

ψ∗(h)ϕ∗(g−1h−1) dλyx(h)

= (ϕ∗ ? ψ∗)(g).

by left-invariance of the Haar system.

For the final statement, let ı denote the unit map for Cc(G). Clearly supp(ı) is

compact if and only if G is.

The category Cc(G) is in fact a category enriched in normed vector spaces, with

topology given by the family of norms ‖ϕ‖x,y := sup { |ϕ(g)| | g ∈ G(x, y) }. Since

this supremum is 0 if and only if ϕ(g) = 0 for all g ∈ G(x, y), this is a well defined,

non-degenerate norm.

Lemma 5.1.2. The fibrewise operations of composition and involution are continu-
ous with respect to the norm topology.

Proof. Let {ϕi} be a net of morphisms in Cc(G) such that ϕi ∈ Cc(G)(xi, yi) for

each index i, and such that ϕi −→ ϕ in Cc(G)(x, y). Similarly, let {ψj} be a net

of morphisms in Cc(G) such that ψj ∈ Cc(G)(yj, zi) for each index j, and such

that ψj −→ ψ in Cc(G)(y, z). Then there exist compact sets K1, K2 such that for

sufficiently large i, j we have supp(ψj ? ϕi) ⊆ K2 ·K1, which is compact. Then

|(ψj ? ϕi)(g)− (ψ ? ϕ)(g)| ≤
∫
h∈G(x,y)

∣∣ψj(gh−1)ϕi(h)− ψ(gh−1)ϕ(h)
∣∣ dλyx(h)

≤
∫
h∈G(x,y)

∣∣ψj(gh−1)− ψ(gh−1)
∣∣ · |ϕi(h)| dλyx(h)

+

∫
h∈G(x,y)

∣∣ψ(gh−1)
∣∣ · |ϕi(h)− ϕ(h)| dλyx(h),

and therefore (ψj ?ϕi) −→ (ψ?ϕ) uniformly on K2 ·K1. It follows that composition

is continuous. Similarly, |ϕ∗i (g)− ϕ∗(g)| =
∣∣∣ϕi(g−1)− ϕ(g−1)

∣∣∣, hence ϕ∗i −→ ϕ∗

uniformly and therefore involution is continuous.
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For each f ∈ Cc(G1) define a vector field f̃ for Cc(G) by f̃(x, y) := f |G(x,y). Let

ACc(G) be the set
{
f̃ | f ∈ Cc(G1)

}
of all such vector fields.

Proposition 5.1.3. There exists a topology on the set of morphisms Cc(G)1 generated
by basic open sets of the form

Ω(U, f̃ , ε) :=
{
ϕ ∈ Cc(G)1 | (s, t)(ϕ) ∈ U,

∥∥∥ϕ− f̃((s, t)(ϕ))
∥∥∥ ≤ ε

}
,

where U ⊆ G0 × G0 is an open set, f̃ ∈ ACc(G) and ε > 0, making Cc(G) an internal
C-linear *-category in Top.

Proof. By Lemma 5.1.2 composition and involution on Cc(G) are fibrewise contin-

uous with respect to the norm topology. Moreover, for every continuous function

f ∈ Cc(G1) the map f 7−→ supg
∣∣f |G(x,y)(g)

∣∣ is continuous, and since G(x, y) is a

closed subspace of G1 the set{
f̃(x, y) | f ∈ Cc(G1)

}
is dense in Cc(G)(x, y) for each x, y ∈ G0. The result then follows from arguing

as in Proposition 3.2.3, noting that the set ACc(G) satisfies the hypotheses required

there and that the proof of that result does not rely on the completeness of the

hom-objects.

The assignment G 7−→ Cc(G) is not a functor, for if such a functor F were to

exist then we would require, for each g ∈ G1, that F (g) be a continuous function

(with compact support) such that

F (g)(h) = δg(h) =

1 if g = h,

0 otherwise

and no such continuous function exists. We are, however, able to functorially

induce morphisms for certain classes of groupoid morphism.

Proposition 5.1.4. Let F :G −→ G′ be an embedding. Then there exists a functorially
induced continuous *-functor F̃ :Cc(G) −→ Cc(G

′) given by the (trivial) pushforward
F̃ (ϕ)(g′) := ϕ(F−1(g′)).

Proof. We first note that since F is an embedding the maps

Fxy :Cc(G)(x, y) −→ Cc(G
′)(F (x), F (y))
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are all injective, and hence F−1(g′) consists of just a single morphism in G1, g say.

Therefore F̃ is well-defined. Furthermore it is clearly continuous, and the support

supp(F̃ (ϕ)) = F (supp(ϕ))

is compact. Now if ϕ ∈ Cc(G)(x, y) and ψ ∈ Cc(G)(y, z) then

F̃ (ψ ? ϕ)(g′) = (ψ ? ϕ)(F−1(g′))

=

∫
h∈G(x,y)

ψ(F−1(g′)h−1)ϕ(h) dλyx(h)

=

∫
k∈G(F (x),F (y))

ψ(F−1(g′k−1))ϕ(F−1(k)) dλ
F (y)
F (x)(k)

=

∫
k∈G(F (x),F (y))

F̃ (ψ)(g′k−1)F̃ (ϕ)(k) dλ
F (y)
F (x)(k)

= (F̃ (ψ) ? F̃ (ϕ))(g′).

Therefore, F̃ is a functor. Moreover,

F̃ (ϕ∗)(g′) = ϕ∗(F−1(g′)) = ϕ(F−1((g′)−1)) = F̃ (ϕ)∗(g′)

and for all x, y ∈ G0 and all f ∈ Cc(G1), the map (x, y) 7−→ F̃ ◦ f̃ is continuous.

Therefore, by Proposition 3.2.8, the functor F̃ is a continuous *-functor.

Finally, we prove that the induced continuous functor is functorial with respect

to embeddings of topological groupoids. Let F : G −→ G′ and F ′ : G′ −→ G′′ be

embeddings. Then

˜(F ′ ◦ F )(ϕ)(g′′) = ϕ((F ′ ◦ F )−1(g′′))

= ϕ((F−1 ◦ (F ′)−1)(g′′)

= (F̃ ′ ◦ F̃ )(ϕ)(g′′)

thus proving functoriality.

We also have functoriality with respect to quotient functors with compact kernels.

Proposition 5.1.5. Let F :G −→ G′ be a continuous quotient functor with compact
kernel. There exists a functorially induced continuous *-functor F̃ :Cc(G) −→ Cc(G

′)

given by the pushforward

F̃ (ϕ)(g′) :=

∫
k∈F−1(g′)

ϕ(k) dλyx(k).
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Proof. By Lemma 1.2.10 the map F1 : Cc(G)1 −→ Cc(G
′)1 is perfect, and therefore

the set { k ∈ G | k ∈ [g] } is compact, hence F̃ (ϕ) is well-defined. Furthermore,

supp(F̃ (ϕ)) ⊆ supp(ϕ)

and therefore F̃ (ϕ) ∈ Cc(F (x), F (y)). Let ϕ ∈ Cc(G)(x, y) and ψ ∈ Cc(G)(y, z), then

(F̃ (ψ) ? F̃ (ϕ))(g′) =

∫
h′∈G(F (x),F (y))

F̃ (ψ)(g(h′)−1)F̃ (ϕ)(h′) dλ
F (y)
F (x)(h

′)

=

∫
h∈G(x,y)

∫
k∈F−1(g′)

ψ(kh−1)ϕ(h)dλzx(k) dλyx(h)

=

∫
k∈F−1(g′)

∫
h∈G(x,y)

ψ(kh−1)ϕ(h) dλyx(h) dλzx(k)

=

∫
k∈F−1(g′)

(ψ ? ϕ)(k) dλzx(k)

= F̃ (ψ ? ϕ)(g′)

and so F̃ is a functor. Furthermore

F̃ (ϕ∗)(g′) =

∫
k∈F−1(g′)

ϕ∗(k) dλzx(k) =

∫
k∈F−1(g′)

ϕ(k−1) dλzx(k) = F̃ (ϕ)∗

for all x, y ∈ G0, and therefore F̃ is a *-functor. Moreover, for all f ∈ Cc(G1) the

map

(x, y) 7−→
(
F̃ ◦ f̃

)
(x, y)

is continuous and hence by Propositoin 3.2.8 the functor F̃ is continuous. The

fact that F̃ is functorial with respect to groupoid homomorphisms follows from

the standard properties of functors.

For each x, y ∈ G0 denote by L1(G(x, y)) the space of continuous functions

ϕ :G(x, y) −→ C such that the integral∫
g∈G(x,y)

|ϕ(g)| dλyx(g)

is finite. Construct a category L1(G) with object space G0 and for each x, y ∈ G0 a

hom-object

L1(G)(x, y) := L1(G(x, y))

with composition as given by the continuous extension of (5.1). We claim that

L1(G) is a Banach *-category. Indeed, by construction each L1(G)(x, y) is a complex
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Banach space. For ϕ ∈ Cc(G(x, y)) and ψ ∈ Cc(G(y, z)) we have

‖ψ ◦ ϕ‖L1(G(x,y)) =

∫
g∈G(x,y)

|(ψ ◦ ϕ)(g)| dλzx(g)

=

∫
g∈G(x,y)

∫
k∈G(y,z)

|ψ(k)| .
∣∣ϕ(k−1g)

∣∣ dλzy(k) dλyx(g)

≤
(∫

k∈G(y,z)
|ψ(k)| dλzy(k)

)(∫
γ∈G(x,y)

|ϕ(γ)| dλyx(γ)

)
= ‖ψ‖L1(G(y,z)) ‖ϕ‖L1(G(x,y)) .

It follows that the continuous extension of (5.1) exists and that composition satis-

fies the triangle inequality. Therefore, L1(G) is a Banach category. Furthermore, it

is a Banach *-category when equipped with involution defined by the continuous

extension of ϕ∗(g) = ϕ(g−1) for ϕ ∈ Cc(G(x, y)) and g ∈ G(y, x).

Now write L2(G(x, y)) for the space of continuous functions ϕ : G(x, y) −→ C
such that the integral ∫

g∈G(x,y)
|ϕ(g)|2 dλyx(g)

is finite. For each x, y ∈ G0 the set L2(G(x, y)) is a Hilbert space with inner product

given by

〈ϕ1, ϕ2 〉 :=
∫
g∈G(x,y)

ϕ1(g)ϕ2(g) dλyx(g).

Fix an object w ∈ G0 and define a map Iw :G0 −→ Hilb0 by Iw(x) = L2(G(w, x)).

Proposition 5.1.6. There exists a continuous Hilb-bundle (HG, t,G0) where the total
space is HG =

∐
x∈G0

Iw(x) and t is the target map of the topological groupoid G.

Proof. We have an untopologised surjection with fibres in Hilb, so it suffices to

show that there exists a set of norm-continuous vector fields for (HG, t,G0). Con-

sider the *-algebra of compactly supported functions on G. Define a norm on Cc(G)

by

‖f‖ := sup
x∈G0

∥∥f |G(w,x)∥∥L2(G(w,x))

where ‖−‖L2(G(w,x)) is the usual L2-norm. By construction, this supremum is finite.

Then for every x ∈ G0 the map f 7−→
∥∥f |G(w,x)∥∥ is continuous. Moreover the set{

f |G(w,x) | f ∈ Cc(G)
}

is dense in L2(G(w, x)).

For the same fixed object w ∈ G0 and ϕ ∈ Cc(G(x, y)), define Iw(ϕ) to be the linear

map

I(w)(ϕ) :L2(G(w, x)) −→ L2(G(w, y)), φ 7−→ (ϕ ? φ).
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Lemma 5.1.7. The linear map I(w)(ϕ) is bounded.

Proof. By the construction of L1(G), we have ‖ϕ ? φ‖ ≤M ‖φ‖ where

M =

∫
g∈G(x,y)

|ϕ(g)| dλyx(g) <∞.

It follows that Iw defines a C-linear map

L1(G)(x, y) −→ Hilb
(
L2(G(w, x)), L2(G(w, y))

)
.

We define (I(w)(ϕ))∗ to be the linear map L2(G(w, y)) −→ L2(G(w, x)) defined by

the composition φ 7−→ ϕ∗ ◦ φ, which is necessarily bounded. Then

(I(w)(ϕ))∗ = I(w)(ϕ∗)

and therefore Iw defines a *-functor Cc(G) −→ B(HG). Furthermore,

‖Iw‖ = sup { ‖Iw(ϕ)‖ | ‖ϕ‖ = 1 } = 1

in the operator norm, hence each *-functor Iw is faithful. We can therefore define

a C∗-norm on Cc(G) by writing

‖ϕ‖r := sup
w∈G0

‖Iw(ϕ)‖ , ϕ ∈ Cc(G)(x, y).

Definition 5.1.8. Define the reduced topological C∗-category of G to be the con-

tinuous topological C∗-category
(
C∗r(G), ACc(G)

)
obtained by completing each Cc(G)

with respect to ‖−‖r.

We define the maximal norm on Cc(G) by defining ‖ϕ‖max to be the supremum

sup {‖ρ(ϕ)‖} taken across all continuous bounded representations ρ of Cc(G).

Lemma 5.1.9. The function ‖−‖max is a well-defined C∗-norm.

Proof. For each continuous bounded representation ρ we have

‖ρ(ϕ)‖op ≤ ‖ρ‖ . |ϕ| ≤ |ϕ| <∞

since ρ is a (necessarily norm non-increasing) *-functor. Therefore the supremum

sup {‖ρ(ϕ)‖} is well-defined. Note also that ‖ρ(ϕ)‖op is the operator norm. It
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therefore follows from the properties of the operator norm and of suprema that

‖−‖max is indeed a C∗-norm.

Definition 5.1.10. Define the full C∗-category of G to be the continuous topological

C∗-category
(
C∗(G), ACc(G)

)
obtained by completing each Cc(G)(x, y) with respect to

the norm ‖−‖max.

Proposition 5.1.11. The topological C∗-categories
(
C∗r(G), ACc(G)

)
and

(
C∗(G), ACc(G)

)
are internal C∗-categories in Top.

Proof. By Proposition 5.1.3, the category
(
Cc(G), ACc(G)

)
is an internal category in

Top. The result then follows by extending continuously to
(
C∗r(G), ACc(G)

)
and(

C∗(G), ACc(G)

)
.

Proposition 5.1.12. The assignments G 7−→ C∗r(G) and G 7−→ C∗(G) are functorial
with respect to the class of continuous functors between groupoids generated by all
embeddings and all quotient functors with compact kernels.

Proof. Let F :G −→ G′ belong to the stated class of continuous functors. By Propo-

sitions 5.1.4 and 5.1.5, there exists a functorially induced continuous *-functor

F̃ :C∗r(G) −→ C∗(G′). The result follows by extending continuously to the comple-

tions.

§5.2 Tensor Products

Let (H, p,X) and (K, q, Y ) be continuous Hilb-bundles, and let (H⊗ K, (p, q), X × Y )

be the associated tensor product bundle. Let C and D be continuous topological

C∗-categories and construct a C-linear *-category C � D with space of objects

C0 ×D0 and for each x, x′ ∈ C0 and y, y′ ∈ D0 a hom-object

(
C�D

)
((x, y), (x′, y′)) := C(x, x′)�D(y, y′)

where � denotes the algebraic tensor product of the underlying vector spaces.

Define composition on elementary tensors by

(c2 ⊗ d2) ◦ (c1 ⊗ d1) := c2c1 ⊗ d2d1 (5.3)

and involution by

(c⊗ d)∗ := c∗ ⊗ d∗ (5.4)
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and extend these by linearity. Define AC�D to be the set of vector fields

(
(x, x′), (y, y′)

)
7−→

n∑
i=1

αi(x, x
′)⊗ βi(y, y′)

where αi ∈ AC and βi ∈ AD for each index i.

Now suppose that C and D have faithful strongly continuous representations

ρ : C −→ B(HC) and τ :D −→ B(HD) as in Proposition 4.2.8. Since C and D are

both continuous such representations always exist.

Lemma 5.2.1. Let x, x′ ∈ C0 and y, y′ ∈ D0. Then there exists a natural inclusion

C(x, x′)�D(y, y′) �
� // Hilb(ρ(x)⊗ τ(y), ρ(x′)⊗ τ(y′)),

where � denotes the algebraic tensor product of the underlying vector spaces and ⊗
is the usual tensor product of Hilbert spaces.

Proof. We define an injection

f1 : C(x, x′)�D(y, y′) −→ Hilb(ρ(x), ρ(x′))�Hilb(τ(y), τ(y′))

by

f1

(
n∑
i=1

ci ⊗ di

)
=

n∑
i=1

ρ(ci)⊗ τ(di)

and an injection

f2 : Hilb
(
ρ(x), ρ(x′)

)
�Hilb

(
τ(y), τ(y′)

)
−→ Hilb

(
ρ(x)⊗ τ(y), ρ(x′)⊗ τ(y′)

)
by

f2

(
n∑
i=1

(ρ(ci)⊗ τ(di))(h⊗ k)

)
=

n∑
i=1

ρ(ci)(h)⊗ τ(di)(k).

Set f := f2 ◦ f1 and extend by linearity.

We define C(x, x′)⊗min D(y, y′) to be the closure of C(x, x′)�D(y, y′) in the space

Hilb(ρ(x)⊗ τ(y), ρ(x′)⊗ τ(y′)).

Definition 5.2.2. Let C and D be continuous C∗-categories. Define the minimal
tensor product of C and D to be the topological C∗-category C ⊗min D with space

of objects C0 ×D0 and for every x, x′ ∈ C0 and y, y′ ∈ D0 a hom-object

(
C⊗D

)
((x, y), (x′, y′)) := C(x, x′)⊗min D(y, y′)
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defined as above. Composition and involution are defined as the continuous ex-

tensions of the corresponding operations in (5.3).

We call a continuous topological C∗-category C exact if for every short exact

sequence

0 //A
F //A′

G //A′′ //0

of continuous topological C∗-categories and all x, x′ ∈ C0 and w,w′ ∈ A0 we have

a short-exact sequence:

0 // C(x, x′)⊗A(w,w′) // C(x, x′)⊗A′
(
F (w), F (w′)

)
��

C(x, x′)⊗A′′
(
G
(
F (w)

)
, G
(
F (w′)

))
// 0

In particular, if C is exact then so is every endomorphism hom-object C(x, x). We

recall the following result from [37]:

Proposition 5.2.3. Let (A, p,X) be a continuous C∗-Alg-bundle, and let B be a
C∗-algebra, thought of as a trivial C∗-Alg-bundle (B, q, {pt}). Then

1. The minimal tensor product A⊗minB is lower semicontinuous. It is continuous
if and only if B is exact.

2. The maximal tensor product A⊗maxB is upper semicontinuous. It is continuous
if and only if B is nuclear.

Write EC and ED for the endomorphism bundles of C and D respectively. It follows

from Proposition 5.2.3 that if D is an exact continuous topological C∗-category

then the endomorphism bundle EC ⊗ ED is continuous.

Proposition 5.2.4. Let C,D be continuous topological C∗-categories such that D is
exact. Let α1, . . . , αn ∈ AC and β1, . . . , βn ∈ AD. Then the map

(
(x, x′), (y, y′)

)
7−→

∥∥∥∥∥
n∑
i=1

αi(x, x
′)⊗ βi(y, y′)

∥∥∥∥∥
is continuous.
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Proof. For each αi ∈ AC and βi ∈ AD the maps

(x, x) 7−→ αi(x, x)∗αi(x, x)

(y, y) 7−→ βi(y, y)∗βi(y, y)

are continuous. By assumption the categories C,D are continuous, and hence

by Lemma 3.2.6 the endomorphism bundles EC and ED are continuous C∗-Alg-

bundles over C0 and D0 respectively. Moreover, since D is exact it follows that for

each y ∈ D0 the C∗-algebra D(y, y) is exact, hence by Proposition 5.2.3 the tensor

product C∗-Alg-bundle EC ⊗ ED is continuous. The map

(
(x, x), (y, y)

)
7−→

∥∥∥∥∥
n∑
i=1

αi(x, x)⊗ βi(y, y)

∥∥∥∥∥
is thus continuous. By axiom (ii) of Definition 3.2.2 there exists some collection

α̃i ∈ AC and some collection β̃i ∈ AD such that

α̃i(x, x)∗α̃i(x, x) = αi(x, x
′)∗αi(x, x

′)

and

β̃i(y, y)∗β̃i(y, y) = βi(y, y
′)∗βi(y, y

′)

and hence the map

(
(x, x′), (y, y′)

)
7−→

∥∥∥∥∥
n∑
i=1

αi(x, x
′)⊗ βi(y, y′)

∥∥∥∥∥
=

∥∥∥∥∥
n∑
i=1

αi(x, x
′)∗α(x, x′)⊗ βi(y, y′)∗βi(y, y′)

∥∥∥∥∥
1/2

=
∥∥∥α̃i(x, x)∗α̃i(x, x)⊗ β̃i(y, y)∗β̃i(y, y)

∥∥∥1/2

is continuous.

Corollary 5.2.5. The category C ⊗min D is a lower semicontinuous topological C∗-
category. If D is exact then it is a continuous topological C∗-category.

Proof. Since D is exact it follows from Proposition 5.2.3 that the C∗-Alg-bundle

HC ⊗min HD is continuous, hence by Lemma 3.2.6 the tensor product C⊗minD is a

continuous topological C∗-category.
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We now construct the maximal tensor product. Let A,C and D be continuous

topological C∗-categories, and let [C � D,A] be the set of continuous *-functors

C�D −→ A. Consider the norm defined by

‖f‖max := sup { ρ(f) | ρ ∈ [C�D,A], A ∈ C∗-Cat(Top) } .

where f ∈
(
C � D

)
((x, y), (x′, y′)) and A varies across all continuous topological

C∗-categories. We call this the supremum norm on C�D.

Lemma 5.2.6. The supremum norm on C�D is finite.

Proof. First assume that C and D are unital, and let x ∈ C0 and y ∈ D0. Define

continuous *-functors Jx : D −→ C � D and Iy : C −→ C � D on objects by the

continuous inclusions C0 ↪→ C0 ×D0 and D0 ↪→ C0 ×D0 and on morphisms by the

assignments

Iy :

[
c :x −→ x′

]
7−→

[
(c⊗ 1y) : (x, y) −→ (x′, y)

]
Jx :

[
d : y −→ y′

]
7−→

[
(1x ⊗ d) : (x, y) −→ (x, y′)

]
.

Let A be a unital topological C∗-category and let F :C�D −→ A be any continuous

*-functor into A. Then F ◦ Iy and F ◦ Jx are continuous *-functors and are hence

norm-decreasing. Furthermore, we know that

(x, y)
ci⊗1y //

ci⊗di

""

(x′, y)

1x′⊗di

��
(x′, y′)

commutes in C�D and therefore for every f =
∑n

i=1 αi ci⊗di in
(
C�D

)
((x, y), (x′, y′))

we have ∥∥∥∥∥F
( n∑

i=1

αi ci ⊗ di
)∥∥∥∥∥ ≤

n∑
i=1

|αi| ‖F (ci ⊗ di)‖

=
n∑
i=1

|αi| ‖F (1x′ ⊗ di ◦ ci ⊗ 1y)‖

66



67

=
n∑
i=1

|αi| ‖F (1x′ ⊗ di) ◦ F (ci ⊗ 1y)‖

≤
n∑
i=1

|αi| ‖F ◦ Jx′(di)‖ . ‖F ◦ Iy(ci)‖

≤
n∑
i=1

|αi| ‖di‖ . ‖ci‖

independently of F . Therefore ‖f‖max is finite. Now if C and D are non-unital

then there exist isometric continuous C∗-functors UC :C −→ C+ and UD :D −→ D+

into unital topological C∗-categories. The result then follows by composition of UC

and UD with F above.

Definition 5.2.7. If C and D are topological C∗-categories then we define the max-
imal tensor product of C and D to be the topological C∗-category (C⊗max D, AC�D)

with space of objects C0 ×D0, and for each x, x′ ∈ C0 and y, y′ ∈ D0 a hom-object

(
C⊗max D

)
((x, y), (x′, y′))

defined as the completion of
(
C�D

)
((x, y), (x′, y′)) with respect to the supremum

norm.

Consider the comparison functor C :C⊗max D −→ C⊗min D. A topological C∗-

category C is called nuclear if C is a continuous isomorphism for every topological

C∗-category D.

Proposition 5.2.8. The category C ⊗max D is a continuous topological C∗-category
if and only if D is nuclear.

Proof. If D is nuclear then for every y ∈ D0 there exists an isomorphism of C∗-

algebras

B ⊗max D(y, y) ∼= B ⊗min D(y, y)

for every C∗-algebra B. By Proposition 5.2.3, the endomorphism bundle HD is

therefore continuous. Hence, by Lemma 3.2.6, the C∗-category C ⊗max D is con-

tinuous. The reverse implication is proved similarly.

§5.3 Hilbert Modules over Topological C∗-Categories

Let C be a topological C∗-category. We define a (non-internal) functor from C

into the category Ban as a C-linear functor E : C −→ Ban such that the family
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{E(x)}x∈C0 forms the fibres of a Ban-bundle (E, p,C0).

Definition 5.3.1. A topological HilbC-module is a functor E :Cop −→ Ban together

with a C0 × C0-indexed family of sesquilinear forms

〈 , 〉x,y :E(x)× E(y) −→ C(y, x)

such that for all objects x, y, z ∈ C0 and morphisms a, b ∈ C(x, y),

1. 〈u, v 〉∗x,y = 〈 v, u 〉y,x for all u ∈ E(x) and v ∈ E(y),

2. 〈w,E(b)v 〉z,x = 〈w, v 〉z,y ◦ b for all v ∈ E(y) and w ∈ E(z),

3. 〈u, u 〉x,x ≥ 0 in C(x, x) for all u ∈ E(x) and 〈u, u 〉x,x if and only if u = 0

and such that each E(x) is complete with respect to the norm given by ‖u‖x :=

‖〈u, u 〉x,x‖1/2.

If E is a HilbC-module and b ∈ C(x, y) then E(b) is a linear map E(y) −→ E(x),

u 7→ E(b)u. We denote by u.b the action of E(b) on u. The family of sesquilinear

forms induce a left pre-HilbAC
-structure on Γb(E) with action

AC × Γb(E) −→ Γb(E), (α, η) 7−→ η · α

where η · α(x) = E(α(x, x))η(x), and AC-valued inner-product

〈 , 〉 : Γb(E)× Γb(E) −→ AC, (η, ξ) 7−→ 〈 η, ξ 〉

where 〈 η, ξ 〉(x, y) = 〈 η(x), ξ(y) 〉x,y ∈ C(y, x).

Definition 5.3.2. Let E,F :Cop −→ Ban be topological HilbC-modules. A HilbC-
operator is a natural transformation T :E =⇒ F for which there exists a natural

transformation T ∗ :F =⇒ E such that

〈Tη, ξ 〉(x, y) = 〈 η, T ∗ξ 〉(x, y)

for all x, y ∈ C0 and all η, ξ ∈ Γb(E).

For each x ∈ C0, the components of T and T ∗ at x are bounded linear maps

Tx :E(x) −→ F (x) and T ∗x : F (x) −→ E(x) respectively. By applying the Riesz
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Representation Theorem to each component map it follows that the natural trans-

formation T ∗ is uniquely determined by T . We call T ∗ the adjoint transformation.

A HilbC-operator T :E =⇒ F is called bounded if

‖T‖ := sup
{
‖Tx‖B(E,F ) | x ∈ C0

}
<∞, (5.5)

and we denote the set {T :E =⇒ F} of all bounded HilbC-operators by B(E,F ).

This is a Banach space with respect to the norm (5.5) above, with addition (T +

S)x = Tx + Sx and scalar multiplication (λT )x = λTx defined on components Tx,

Sx for each x ∈ C0.

Proposition 5.3.3. If E and F are topological HilbC-modules such that E = F then
the set B(E,E) = B(E) has the structure of a C∗-algebra.

Proof. The set B(E) is a Banach space with respect to the norm (5.5). For T, S ∈
B(E) we define the product TS component-wise by

(TS)x = Tx ◦ Sx

for each x ∈ C0. Since ‖Tx ◦ Sx‖ ≤ ‖Tx‖ · ‖Sx‖ for each x ∈ C0 it follows that

‖TS‖ ≤ ‖T‖ · ‖S‖. For each T ∈ B(E) there is a natural adjoint T ∗, so it remains

to check that the C∗-identity holds. But

‖T‖2 = sup
{
‖Tx‖2 | x ∈ C0

}
,

= sup { ‖T ∗xTx‖ | x ∈ C0 } ,

= sup { ‖(T ∗T )x‖ | x ∈ C0 } = ‖T ∗T‖

and therefore B(E) is a C∗-algebra.
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Chapter 6

K-Theory for Topological C∗-Categories

In this final chapter, we define K-theory groups Kn for continuous topological C∗-

categories. Our approach is to first construct a topological HilbC-module E and

a faithful *-homomorphism AC ↪→ B(E), allowing us to take the closure of AC in

B(E). By Proposition 5.3.3, this forms a C∗-algebra that we call the classifying

algebra for C. This classifying algebra is thought of as a noncommutative ana-

logue of a classifying space. We then show that this construction is functorial with

respect to a certain class of continuous *-functors (Proposition 6.1.8).

In the final section we define the K-theory group Kn of a continuous topologi-

cal C∗-category to be the composition of the classifying algebra construction with

the K-theory functor Kn for C∗-algebras (Definitions 6.2.1 and 6.2.7) and show

that the defining properties of K-theory — namely stability, homotopy invariance

and half-exactness — hold (Theorem 6.2.6). These properties follow easily from

previous results on the classifying algebra. We conclude the thesis by proving Bott

Periodicity for topological C∗-category K-theory (Theorem 6.2.9).

§6.1 A Classifying Algebra for K-Theory

Let C be a continuous topological C∗-category with C0 equipped with a Borel struc-

ture, and µ a positive Radon measure on C0. It follows from Proposition 3.2.3 that

if α, β ∈ AC then (β ? α) ∈ AC, and AC is a topological *-algebra with respect to

the inductive limit topology. For each x ∈ C0 we define E(x) to be the topological

direct integral ∫ ⊕
z∈C0

C(x, z) dµ(z),
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which is complete with respect to the canonical inner-product

〈α, β 〉x,x =

∫
z∈C0

α(x, z)∗β(x, z) dµ(z), α, β ∈ AC.

To every morphism b ∈ C(x, y) we can associate the right-composition operator

Rb :E(y) −→ E(x) that is bounded in the L2-norm. Therefore, the assignments

x 7−→ E(x) and b 7−→ E(b), where E(b) = Rb, define a functor E :Cop −→ Ban.

Lemma 6.1.1. For every α, β ∈ AC the map x 7−→ 〈α, β 〉(x) is continuous. Further-
more, there exists a continuous Ban-bundle (E, ν,C0) such that for each α ∈ AC the
map x 7−→ α(x,−) is a continuous section of (E, ν,C0).

Proof. The norm function x 7−→ ‖α(x,−)‖ is defined as

‖〈α, α 〉x,x‖1/2 =

∥∥∥∥∫
z∈C0

α(x, z)∗α(x, z) dµ(z)

∥∥∥∥
C

and is the composition of α with the norm on C. Both of these are continuous,

and hence the norm function x 7−→ ‖α(x,−)‖ is continuous. By the vector-valued

Tietze Extension Theorem the set {α(x,−) | α ∈ AC } is dense in E(x) for each

x ∈ C0, from which the result follows.

Proposition 6.1.2. The functor E :Cop −→ Ban defines a topological HilbC-module.

Proof. For each pair of objects x, y ∈ C0 define a sesquilinear form

〈−,−〉x,y :E(x)× E(y) −→ C(y, x)

by the formula

〈α, β 〉x,y =

∫
w∈C0

α(x,w)∗β(y, w) dµ(w)

where α(x,−) ∈ E(x) and β(y,−) ∈ E(y). Then for α ∈ E(x), β ∈ E(y), η ∈ E(z)

and b ∈ C(x, y) we have

〈 η, E(b)β 〉z,x =

∫
w∈C0

η(z, w)∗E(b)β(y, w) dµ(w)

=

∫
w∈C0

η(z, w)∗β(y, w) ◦ b dµ(w)

= 〈 η, β 〉z,y ◦ b.
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Furthermore,

〈α, β 〉∗x,y =

(∫
w∈C0

α(x,w)∗β(y, w) dµ(w)

)∗
=

∫
w∈C0

β(y, w)∗ (α(x,w)∗)∗ dµ(w)

= 〈 β, α 〉y,x.

Finally

〈α, α 〉x,x =

∫
w∈C0

α(x,w)∗α(x,w) dµ(w)

is a positive element in C(x, x), and this integral is 0 if and only if α(x,w) = 0 for

all w ∈ C0. The result then follows from Lemma 6.1.1.

For each x ∈ C0, left-multiplication by elements ofAC induces a *-representation

πlx :AC −→ B(E) where πlx(α) is the map β(x,−) 7−→ (α ? β)(x,−) for β ∈ E(x).

Definition 6.1.3. Define A(C) to be the completion of AC with respect to the norm

defined by

‖α‖ := sup
{∥∥πlx(α)

∥∥
op
| x ∈ C0

}
,

where
∥∥πlx(α)

∥∥
op

is the operator norm on B(E(x)). We call A(C) the classifying
algebra of C.

We observe that if C0 is non-compact then the C∗-algebra A(C) is necessarily

non-unital, since the unit map x 7−→ 1x is supported on all of C0. In fact, the

classifying algebra A(C) is unital if and only if both of the following criteria are

satisfied:

1. C is a unital topological C∗-category, and

2. C0 is compact.

In the remainder of this section we explore some of the functoriality and sta-

bility properties of the classifying algebra. We start with the classifying algebra

of the tensor product of a continuous topological C∗-category with a commutative

C∗-algebra:

Let C be a continuous topological C∗-category andA a commutative C∗-algebra.

Form the tensor product C ⊗min A. Since A is commutative it is nuclear, and

therefore C ⊗min A is a continuous topological C∗-category. It follows that the
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endomorphism bundle EC ⊗min A is a continuous C∗-Alg-bundle. The following

result is due to Kirchberg and Wassermann [37].

Proposition 6.1.4. Let A be a continuous C∗-Alg-bundle and B a nuclear C∗-
algebra. Then A⊗min B is a continuous C∗-Alg-bundle and

Γc(A⊗min B) = Γc(A)⊗min B.

From the preceding Proposition it follows that Γc (EC ⊗min A) = Γc(EC)⊗minA, and

hence Γc(EC)⊗min A is a C∗-subalgebra of A(C⊗min A).

To proceed, we require a basic result concerning conditional expectations, the

proof of which can be found in [55].

Definition 6.1.5. Let A be a C∗-algebra and B ⊆ A a C∗-subalgebra. A conditional

expectation is a surjective bounded linear map P :A −→ B such that:

1. P is a projection with ‖P‖ = 1,

2. P (a∗)P (a) < P (a∗a) and P (a∗a) > 0 for every a ∈ A,

3. P (bac) = bP (a)c for every a ∈ A and every b, c ∈ B.

Lemma 6.1.6. Let A and B be C∗-algebras and C a common C∗-subalgebra. Let
A0 and B0 be dense *-subalgebras of A and B respectively, and let f :A0 −→ B0 be
a surjective *-homomorphism. Suppose there exist faithful conditional expectations
PA :A −→ C and PB :B −→ C such that the following diagram commutes:

A0
f //

PA   

B0

PB~~
C

Then f extends to an isomorphism f̃ :A
∼=−−→ B.

Proposition 6.1.7. Let C be a continuous topological C∗-category, and A a commu-
tative C∗-algebra. Then A(C⊗ A) ∼= A(C)⊗ A.

Proof. Let Γc(EC)⊗minA be the common C∗-subalgebra of A(C⊗minA) and A(C)⊗min
A. Also let

P :A(C⊗min A) −→ Γc(EC)
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be the faithful conditional expectation arising from the restriction of A(C⊗min A)

to Γc(EC), and let

Q⊗ id :A(C)⊗min A −→ Γc(EC)

be the faithful conditional expectation obtained from the restriction Q of A(C) to

Γc(EC). Then the following diagram commutes,

AC � A id //

P ''

AC � A

Qww
Γc(EC)⊗min A

and hence by Lemma 6.1.6 the identity map AC � A −→ AC � A extends to an

isomorphism A(C⊗min A)
∼=−−→ A(C)⊗min A.

Let C,D be continuous topological C∗-categories, and let F : C −→ D be a

continuous *-functor. We call F an open inclusion if the object component

F0 :C0 −→ D0

is an injective, open continuous map. If F :C −→ D is an open inclusion then the

image of F is the continuous topological C∗-category F (C) with object space

F (C)0 = F0 (C0)

an open subset of D0, and hom-objects F (C)(x, y) = D(F (x), F (y)). We identify

F (C) with the continuous topological C∗-category with the same object space as

D by declaring

F (C)(x, y) =

D(x, y) if x, y ∈ F0(C0),

{0} otherwise,

for x, y ∈ D0.

Proposition 6.1.8. The assignment C 7−→ A(C) is functorial with respect to open
inclusions.

Proof. Let F :C −→ D be an open inclusion. Then F induces a map

A(F ) :AC −→ AD

by sending α ∈ AC to its image in AF (C) and extending by zero. For x, y ∈ D0 the
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continuous section A(F )(α) is therefore given by the formula

A(F )(α)(x, y) = F1αF
−1
0 (x, y),

and since supp(α) ⊂ C0 × C0 and F is open it follows that

supp
(
A(F )(α)

)
⊂ F (C)0 × F0(C)0 ⊂ D0 ×D0.

Therefore, the support of A(F )(α) is compact in D0 ×D0, and A(F )(α) ∈ AD.

Now, suppose that F :C −→ D and G :D −→ E are open inclusions. Then for

x, y ∈ E0 we have

(
A(G) ◦ A(F )

)
(α)(x, y) = G1

(
A(F )(α)

)
G−10 (x, y)

= G1

(
F1αF

−1
0

)
G−10 (x, y)

= G1F1αG0F
−1
0 (x, y) = A(GF )(α)(x, y)

and therefore A is functorial with respect to open inclusions.

Now let C be a continuous topological C∗-category and let J E C be an ideal

of C. We may form the quotient topological C∗-category C/J with object space C0

and for each x, y ∈ C0 a hom-object

C/J(x, y) = C(x, y)
/
J(x, y) .

Since C is a continuous C∗-category, so are J and C/J. Since C0 = J0 = (C/J)0, the

canonical inclusion and quotient functors i : J −→ C and q :C −→ C/J respectively

are open inclusions. We have a short-exact sequence of continuous topological

C∗-categories

0 // J
i // C

q // C/J // 0 .

By Proposition 6.1.8, there exists a functorially induced sequence of C∗-algebras

0 // A(J)
A(i) // A(C)

A(q) // A(C/J) // 0 .

Proposition 6.1.9. For C a continuous topological C∗-category and JE C an ideal,

0 //A(J)
A(i) //A(C)

A(q) //A(C/J) //0 .

is a short-exact sequence of C∗-algebras.
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Proof. Consider the following short-exact sequence of continuous topological C∗-

categories,

0 // J
i // C

q // C/J // 0 .

There is a canonical injection i∗ :AJ −→ AC from which we obtain

AJ
i∗ // AC

//B(E) ,

where E is the topological HilbC-module defined in Section 5.3. This embeds AJ

into B(E) as a *-subalgebra. Hence, by taking the closure of AJ in B(E) we obtain

an injective *-homomorphism A(i) : A(J) −→ A(C). We also have a canonical

surjection q∗ :AC −→ AC/J. The set { q(α) | α ∈ AC } is a dense subspace of AC/J

in the inductive limit topology, and hence q∗ (AC) is dense in A(C/J). Therefore, q∗
extends continuously to a surjective *-homomorphism A(q) :A(C) −→ A(C/J).

To prove exactness in the middle, observe that A(J) is a C∗-ideal of A(C), and

therefore we have a short-exact sequence of C∗-algebras as follows,

0 //A(J)
A(i) //A(C)

q̃ //A(C)
/
A(J) //0 .

Therefore ker q̃ = ImA(i). In particular, ker q̃ ⊆ ImA(i). Now, let α ∈ kerA(q).

Then α(x, y) ∈ J for all x, y ∈ C0. Therefore α = 0 in A(C)/A(J), and hence

α ∈ ker q̃. We therefore have

kerA(q) ⊆ ker q̃ ⊆ ImA(i).

Conversely, if α ∈ A(J) then α(x, y) ∈ J for all x, y ∈ C0. Therefore q(α)(x, y) = 0

for all x, y ∈ C0, and hence α ∈ kerA(q). We thus have ImA(i) ⊆ kerA(q), and

hence kerA(q) = ImA(i). Therefore, the sequence

0 //A(J)
A(i) //A(C)

A(q) //A(C/J) //0

is exact.

§6.2 K-Theory and Properties

Let C be a continuous topological C∗-category, and A(C) its classifying algebra as

defined in Section 6.1.
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Definition 6.2.1. Define the Abelian group K0(C) by

K0(C) := K0(A(C)),

where K0(A(C)) is the C∗-algebra K-theory group of A(C).

Let X be a locally compact, Hausdorff topological space, equipped with a Borel

structure, together with a positive Radon measure µ. We treat X as a (trivial)

topological groupoid G := X ⇒ X and form its associated continuous topological

C∗-category C∗(X) as in Section 5.1. The category C∗(X) has object space X and

for each x, y ∈ X a hom-object

C∗(X)(x, y) =

C if x = y,

{0} if x 6= y.

Proposition 6.2.2. Let X be a locally compact Hausdorff space as above. Then

K0(A(X)) = Ktop
0 (X),

where Ktop
0 (X) is the topological K-theory of X.

Proof. By construction, AC∗(X) can be identified with the set of compactly sup-

ported continuous functions Cc(X). Consider the topological HilbC∗(X)-module

E. Then for each x ∈ X we have E(x) = C and therefore the family {E(x)} forms

the fibres of a trivial C∗-Alg-bundle over X. It follows that B(E) ∼= C0(X). We

thus have an injective *-homomorphism Cc(X) −→ C0(X), and from the unique-

ness of C∗-norms it follows that A(C∗(X)) ∼= C0(X). Therefore,

K0(C
∗(X)) ∼= K0(C0(X)) ∼= Ktop

0 (X).

Now consider the case of a topological C∗-category C with a single object,

C0 = {pt}. We denote the C∗-algebra C(pt, pt) by A.

Proposition 6.2.3. Let A be a C∗-algebra, thought of as a topological C∗-category
as above. Then K0(C) is the C∗-algebra K-theory group of A.

Proof. A compactly supported section pt × pt −→ C(x, x) is a choice of element

a ∈ A. Furthermore, any such function is continuous. For the HilbC-module E we
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have E(pt) = A, and so we have an isometry

A ∼= AC −→ B(E) ∼= B(A)

given by sending a ∈ A to the left-multiplication operator La. Therefore, A(A) is

isomorphic to the C∗-algebra A, and hence

K0(C) = K0(A(C)) = K0(A).

The K-theory of C∗-algebras is an invariant with respect to C∗-algebra homo-

topies. To fully characterise the K-theory of continuous topological C∗-categories

we require a corresponding notion of homotopy between continuous *-functors.

Definition 6.2.4. Let C and D be continuous topological C∗-categories and let

F,G : C −→ D be continuous open inclusions such that F0(x) = G0(x) for all

x ∈ C0. A homotopy between F and G is a continuous *-functor

H :C −→ D⊗ C([0, 1])

such that ev0 ◦H = F and ev1 ◦H = G. We call F and G homotopic if there exists

a homotopy from F to G and write F ' G.

Lemma 6.2.5. Let C and D be continuous topological C∗-categories, and let F,G :C −→ D

be continuous open inclusions. Suppose that there exists a homotopy

H :C −→ D⊗ C([0, 1])

from F to G. Then H induces a homotopy A(H) :A(F ) =⇒ A(G) on the classifying
algebras of C and D.

Proof. Since H0 = F0 = G0 and F,G are both open inclusions it follows that H

must also be an open inclusion. By Proposition 6.1.8, it follows that there exists a

functorially induced *-homomorphism

A(H) :A(C) −→ A(D⊗ C([0, 1])),

which is isomorphic to A(D)⊗ C([0, 1]). Furthermore, for each t ∈ [0, 1] we have

A(evt ◦H) = evt ◦A(H)
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and so ev0 ◦A(H) = A(F ) and ev1 ◦A(H) = A(G), making A(H) a homotopy of

C∗-algebras.

Theorem 6.2.6. The K-theory group K0(C) defines a functor K0 from the category
of continuous topological C∗-categories with open inclusions as morphisms to the
category of Abelian groups, such that the following properties are satisfied:

1. (Stability): If K is the C∗-algebra of compact operators and C⊗K is the tensor
product topological C∗-category then there exists an isomorphism

K0(C) ∼= K0(C⊗K);

2. (Homotopy invariance): If F,G :C −→ D are homotopic open inclusions then
the induced maps on the K-theory groups,

K0(F ) :K0(C) −→ K0(D) and K0(G) :K0(C) −→ K0(D),

are equal;

3. (Half-exactness): If JE C is an ideal of C then the short-exact-sequence

0 // J
i // C

q // C/J // 0

of topological C∗-categories lifts to an exact sequence

K0(J) // K0(C) // K0(C/J)

of Abelian groups.

Proof. By Proposition 6.1.8, we know that the assignment C 7−→ A(C) defines

a functor from the category of continuous topological C∗-categories with open

inclusions as morphisms to the category of C∗-algebras. This extends to a functor

into the category of Abelian groups by composition with the K-theory functor

K :C∗-Alg −→ Ab.

For stability we note that the algebra K of compact operators is nuclear and

hence exact. We may therefore form the continuous topological C∗-category tensor

product C⊗K. There exists an isomorphism A(C⊗K) ∼= A(C)⊗K, and therefore

K0(C⊗K) = K0(A(C)⊗K) ∼= K0(A(C)) = K0(C)
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by the stability of C∗-algebra K-theory.

Now, let C,D be continuous topological C∗-categories and suppose that we

have homotopic open-inclusions F,G : C −→ D. Then by Lemma 6.2.5, the in-

duced *-homomorphisms A(F ) and A(G) are homotopic, and therefore by ho-

motopy invariance of C∗-algebra K-theory the group homomorphisms K0(F ) =

K0

(
A(F )

)
and K0(G) = K0

(
A(G)

)
are equal.

Finally, let JE C be an ideal of C and

0 // J
i // C

q // C/J // 0

its associated short-exact sequence. This lifts to a short-exact sequence

0 // A(J)
A(i) // A(C)

A(q) // A(C/J) // 0

of C∗-algebras and hence, by the half-exactness of C∗-algebraK-theory, to an exact

sequence

K0(J) // K0(C) // K0(C/J)

of Abelian groups.

To complete our description ofK-theory for continuous topological C∗-categories,

we define the higher K-theory groups Kn(C) for n ≥ 1. Let C be a continuous

topological C∗-category and for each n ≥ 1 form the tensor product topological

C∗-category C⊗ C0(Rn).

Definition 6.2.7. For n ≥ 1 define the higher K-theory groups

Kn(C) := K0(C⊗ C0(Rn)).

Proposition 6.2.8. If C is a continuous topological C∗-category then there exists an
isomorphism Kn(C) ∼= Kn(A(C)).

Proof. It follows from Proposition 6.1.7 that for each n ∈ N there exists an isomor-

phism A(C⊗ C0(Rn)) ∼= A(C)⊗ C0(Rn). Therefore,

Kn(C) = K0(C⊗ C0(Rn)) ∼= K0(A(C))⊗ C0(Rn) ∼= Kn(A(C).

The K-theory of C∗-algebras exhibits Bott Periodicity. To conclude this thesis
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we prove that the same result holds for the K-theory of continuous topological

C∗-categories.

Theorem 6.2.9 (Bott Periodicity). For each n ∈ N there exists an isomorphism
Kn(C) ∼= Kn+2(C).

Proof. It follows from Proposition 6.2.8 that for each n ∈ N there exists an isomor-

phism Kn(C) ∼= Kn(A(C)). Therefore,

Kn(C) ∼= Kn(A(C)) ∼= Kn+2(A(C)) ∼= Kn+2(C),

where the middle isomorphism is given by the Bott map in the C∗-algebra K-

theory of A(C).
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