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Abstract

The atomic and spin-electronic structure of interfaces and extended structural

defects in the Co-based full Heusler alloys is studied. Interfaces between a half-metallic

Heusler alloy and metal or semiconductor are fundamental and determine the

performance of spintronic devices such as spin-valves or devices for spin-injection

applications. It is shown that for the Co2MnSi/Ag bulk-like terminated interfaces, the

interfacial spin-polarisation significantly depends on the atomic plane termination. In

addition, on the example of experimentally realised interface, part of a spin-valve, it is

demonstrated that there is an additional monolayer at the interface, which as shown by

the density functional theory calculations can create significantly negative local

spin-polarisation, detrimental for the device performance. It is demonstrated that the

interfaces between the Heusler alloy and Si, suffer from large interfacial interdiffusion

which leads to a gradual decrease of magnetic moment over 2-3 nm region in which the

spin-polarisation is also significantly affected. It is shown that even sharp interfaces are

not desirable since they lead to reversed spin-polarisation. However, it is demonstrated

that the addition of thermodynamically stable Si-Co-Si monolayer provides very high

spin-polarisation across all interface layers. An ideal candidate for spin-injection

applications is found to be the Co2FeAl0.5Si0.5/Ge interface which shows very minor and

atomic plane selective interdiffusion that does not affect film’s half-metallic properties,

absence of formation of any secondary phases and almost no interfacial strain. Based on

models derived from electron microscopy observations, it is demonstrated that this

interface retains very high interfacial spin-polarisation. Finally, the atomic structure of an

extended structural defect observed in Co2FeAl0.5Si0.5 thin film is revealed by electron

microscopy. The performed density functional theory modelling shows that these

boundaries reverse the sign of spin-polarisation, hence their presence has to be

minimised in order to achieve films with better properties.
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1 Motivation and thesis overview

1.1 Motivation of the thesis

The field of spintronics, in which the main functionality is due to the spin of the

electron, attracts significant research interest among scientists. It has been revolutionised

by the discovery of the giant magnetoresistance effect, where there is a huge change in

resistivity of a heterostructure upon applying external magnetic field. Since the efficiency

of any spintronic device depends on the degree of current spin-polarisation, the

halfmetals - materials which can in principle produce 100% spin-polarised current are of

great interest.

One of the most promising materials for spintronic applications are the Co-based

full Heusler alloys. Many of them have been theoretically predicted as 100%

spin-polarised at the Fermi-level. The big potentials of these materials have been also

experimentally confirmed; for example, by implementing them as a part of real spintronic

devices showing outstandingly high magnetoresistance values [1].

Although their ideal bulk structures are predicted to have halfmetallic electronic

properties, their spin-electronic structure can be drastically affected by a presence of

disorder, variations from stoichiometry, strain etc. All these factors can reduce or even

reverse the spin-polarisation of the half-metallic Heusler alloys, as discussed in the next

chapters.

Very important for all spintronic devices are the interfaces between the

halfmetallic electrodes and the neighbouring layers. At these interfaces, first of all the

atomic structure may significantly differ from that in the bulk-like part, which often is the

case for interfaces between a Heusler alloy and semiconductor. Also, even if the atomic

structure is itself not significantly affected, i.e. the interface is abrupt, the interfacial

electronic structure may not be at all desirable due to the presence of states in the band

gap, which can in some cases even reverse the sign of spin-polarisation. Since the

spin-polarised current of the half-metallic electrode has to be transported between the
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layers independent of device geometry and application, the interfacial electronic

structure drastically affects the spin-transport and can cause partial or full current

depolarisation.

Although there have been studies on interfaces with half-metals, these studies

have been so far mainly purely theoretical based on either ideal bulk-like terminations or

assuming very simplistic models both of which often are not experimentally observed. On

the other hand, in other studies, a general overview of the structure at some of these

interfaces has been given, mainly without revealing their exact interfacial atomic

structure.

The motivation of this thesis is to bridge these two approaches: the experiment

and theory, in order to provide a detailed insight into the influence of such interfaces on

the device performance. By employing atomic resolution electron microscopy imaging,

the atomic structure of selected interfaces crucial for spintronics will be revealed. The

constructed models will be used to perform first-principles calculations in order to

determine their spin-electronic structure. Combining the experimentally derived atomic

structure of the studied interfaces with first-principles modelling will give not only a

complete picture of these interfaces, but also will guide future experiments in tailoring

heterostructures with much better performances.

The same approach will be used to reveal the influence of extended structural

defects, which have been extensively studied in other half-metallic materials, but their

presence has not been so far reported in the Co-based Heusler alloys. The presence of an

extended structural defect will be demonstrated in the half-metallic Co2Fe(Al0.5,Si0.5).

Taking into account that structural defects can have significant influence on the thin film’s

properties, this is a big motivation to study its atomic and electronic structure.

1.2 Overview of the thesis

The thesis contains eight chapters. Chapter 1 and Chapter 2 give the motivation

and a brief introduction into the subject of study. The atomic and electronic structure of

the studied Co-based full Heusler alloys will be given in details. The importance of many

factors that can affect their half-metallicity will be explained with particular focus on

interfaces and structural defects. It will be discussed why these half-metallic materials are
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crucial for spintronic applications and explained why they are an ideal solution to the

well-known issue of conductivity mismatch preventing efficient spin-injection. The

challenges related to the formation of secondary interfacial phases or interfacial

intermixing will be addressed and correlated with the spin-electronic structure of the

interfaces. In addition, the importance and influence of structural defects on the

spin-electronic structure in the half-metallic Heusler alloys will be discussed.

In Chapter 3, the methodology used during the thesis will be discussed. This

includes both the experimental and the theoretical part. The experimental part is mainly

related to electron microscopy, starting from detailed description of the procedure for

specimen preparation, then discussing conventional transmission electron microscopy

(TEM), and finishing with the basics of the frequently used state-of-the-art high angle

annular dark field (HAADF) scanning transmission electron microscopy (STEM). The

second part discussed the computational methodology with focus on density functional

theory which will be used to reveal the spin-electronic structure of the studied interfaces

and extended structural defects.

In Chapter 4, first, density functional theory calculations will be performed on

ideal bulk-like terminated Co2MnSi/Ag interfaces. Then, the exact atomic structure of

experimentally realised interfaces will be revealed and a presence of an additional

monolayer at the interface will be demonstrated. The calculations will show that this

monolayer in some cases can be very detrimental to the spin-electronic structure of these

interfaces.

Chapter 5 is focussed on interfaces between a Heusler alloy and Si. It will be

shown that due to the interfacial interdiffusion, the magnetic moment gradually

decreases over a 2 - 3 nm region in the interface vicinity and that the spin-polarisation is

also drastically affected due to the intermixing of the atomic species. In the second part

of this chapter, it will be shown that even if the interdiffusion is not present, the

atomically sharp interface causes spin-polarisation reversal. It will be also shown that the

addition of a Si-Co-Si monolayer prevents this reversal and creates very high

spin-polarisation across all interface layers. Finally, both computationally and

experimentally by electron microscopy, will be shown that such CoSi2 layers are

thermodynamically stable to exist at the interface.
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Co2FeAl0.5Si0.5/Ge interface atomic and electronic structure will be studied in the

Chapter 6. It will be demonstrated that this interface outperforms the interface between

a Heusler alloy and Si since it does not form any secondary phases and have minor

interfacial intermixing. It will be demonstrated that this minor intermixing in selective, i.e.

the outdifussed Ge substitutes Fe-Si/Al in the Co2FeAl0.5Si0.5 (CFAS) film. This minor and

selective outdiffusion does not affect the interfacial spin-electronic structure, as shown

by the performed calculations. It will be shown that to a good approximation this

interface can be modelled with an atomically sharp termination which in turn does not

show any significant loss of spin-polarisation. Hence, this heterostructure is an ideal

candidate for spin-injection applications.

In Chapter 7 it will be shown that antiphase boundaries are present in

Co2FeAl0.5Si0.5 thin films. Their exact atomic structure will be revealed by electron

microscopy and by performing density functional theory calculations it will be shown that

these extended structural defects can locally even reverse the sign of the

spin-polarisation, hence their presence has to be minimised in order to achieve films with

better properties.

In Chapter 8 a brief summary of the results obtained in the thesis will be given and

an outline of future related work will be discussed.
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2 Introduction

2.1 Spintronics and its importance

Spintronics is a scientific field that studies spin-based electronics, in which the

main functionality emerges from the spin degrees of freedom. The continuous

advancement of the conventional electronics has enabled continuous increase of the

number of transistors per unit area of an integrated circuit, and for years this dependence

has followed the Moore law [2], which states that the transistor density doubles in

approximately two years.

However, it is very challenging for such trend to continue unless the ‘working

mechanism’ of the electronic devices is drastically changed. The basic constituents of the

integrated circuits e.g. metal oxide semiconductor field effect transistor (MOSFET) will

reach the size when further reduction will be practically impossible due to the whole

spectra of effects that emerge at nano-level. For example, reducing the thickness of the

insulator which is between the metallic gate and the channel, at some point will cause

tunnelling of electrons through this layer, hence undesired leakage currents.

In order to overcome these inevitable challenges, fundamentally different

approaches are required. Spintronics is a very promising candidate for these purposes. In

contrast to the conventional electronics, here the electron spin is the one which carries

the information. The spin-based electronics can therefore enable low power and high

speed devices. In order to achieve such spin-based devices, several elementary functions

have to be included, such as: to be able to generate spin-polarised current, to

manipulate/control this spin-polarised current, and to detect it. The first model for such

device was the spin field effect transistor (FET), proposed by Datta and Das [3].

The field of spintronics has been revolutionised by the discovery of the giant

magnetoresistance (GMR) effect [4, 5] by the groups of A. Fert and P. Grünberg

independently, and since then it attracts an enormous interest among scientists. The

importance of this discovery has been recognised by the Nobel Prize in Physics, 2007. By
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considering Fe/Cr superlattices, it has been demonstrated that such structures

(Figure 2.1) show a drastic change (by about factor of two [4]) in resistance upon applying

external magnetic field. The thin Cr layers antiferomagnetically couple the neighbouring

Fe layers [4]. Hence, in absence of an external magnetic field, neighbouring Fe layers have

opposite magnetisation directions. The measurements shown in Figure 2.1b have

demonstrated [4] that without a magnetic field the resistance of such superlattice can be

about twice higher than the resistance measured when an in-plane magnetic field is

applied. The effect can be explained as following. Electrons in a given Fe layer are spin-

polarised with a spin direction determined from the layer magnetisation. Without an

external field, they will experience additional resistance on entering the neighbouring Fe

layer since it has the opposite magnetisation direction, hence a high resistance state is

observed.

Figure 2.1 a) Schematic of a Fe/Cr superlattice used to demonstrate the GMR effect; b)

Figure taken from Ref. [4] showing magnetoresistance measurements for three different

samples. The three samples shown in (b) are all Fe/Cr superlattices where the thickness of

each Fe and Cr layer is given in the parentheses, while the number of Fe/Cr layers in a

given sample is given as a subscript. The superlattice with 60 Fe/Cr layers shows very big

resistance change when the magnetic field is applied.
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On the other hand, when an in-plane field is applied at given strength, this field

switches the oppositely oriented magnetisation and makes Fe layers all with a same

magnetisation direction. In such case, the electrons do not experience the additional

resistance and travel in the same way in all Fe layers, hence a low resistance state is

measured.

The huge potential of this effect was immediately obvious. With simple resistance

measurements, we can very efficiently detect binary states (e.g. state up/down;

equivalent to state 1/0) of magnetic field orientations. Before this discovery, the

anisotropic magnetoresistance (where the resistance of a material depends on the angle

between the electric current and the magnetisation direction) has been used as a

magnetic field sensor in many applications including read heads in data storage

technologies [6]. However, the effect is considerably smaller than the GMR. This has led

to the development of GMR-based read head devices which are currently implemented in

many data technologies e.g. hard disks in computers. These read heads have enabled

much faster readout of information as well as significant decrease in their dimensions.

Typical heterostructures used in GMR-based devices, in addition to the

superlattices originally used to demonstrate this effect, are the spin-valves and magnetic

tunnelling junctions (MTJs), both schematically shown in Figure 2.2. Both of them show

high magnetoresistance values; for example, a CoFeB/MgO/CoFeB based MTJ, reported in

Ref. [7], shows magnetoresistance (MR) of even ~600% at room temperature and

~1100% at 5 K. Such MR values make these devices outstanding for many applications in

magnetoelectronics.

Figure 2.2 Schematic of: a) spin-valve; b) magnetic tunnelling junction [19].

In spin-valves, the functional part consists of two ferromagnetic layers separated

by a non-magnetic metallic spacer (for example Ag or Cu). The purpose of the
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non-magnetic layer is to separate the ferromagnetic layers and prevent ferromagnetic

coupling between them, so that their magnetisations can easily transform from parallel

alignment to antiparallel alignment when an external magnetic field is applied. As the

Figure 2.2a shows, one of the ferromagnetic layers has a pinned magnetisation, i.e.

regardless whether a field is applied or not, it has a magnetisation with a certain direction

which can be regarded as a fixed at the fields in which the spin-valve operates. Such

pinning is done through an antiferromagnetic layer (such as IrMn) [8]. Alternatively, we

can use ferromagnets with drastically different coercivities; in this case the layer with high

coercivity will have a fixed magnetisation in fields sufficient to change the magnetisation

direction of the other electrode (i.e. the free layer). Spin-valves (SV) can operate in two

geometries: current-perpendicular-to-plane (CPP) or current-in-plane (CIP). In CPP SV the

current flows perpendicular to the thin films layers, while in CIP SV in-plane.

On the other hand, in magnetic tunnelling junctions, the spacer is insulating

oxide (e.g. MgO, Al2O3). In this case, the current through the heterostructure is not

diffusive as in spin-valves but tunnelling since the spacer is an insulator. Detailed

treatment shows that bands matching between the electrode and barrier oxide is crucial

for efficient spin dependent tunnelling and achieving very high tunnelling

magnetoresistance (TMR), as demonstrated in Ref. [9] for the case of

Fe/MgO/Fe based MTJ.

A very promising application of MTJs is in spin-transfer-torque magnetoresistive

random access memory (STT –MRAM). A spin-polarised current which enters into a

ferromagnetic layer can transfer spin-angular momentum to this layer, and for some

critical current the transferred spin-torque can switch to opposite the magnetisation

orientation of this ferromagnet which acts as a free layer electrode [10]. This mechanism

gives the possibility to write digital information by spin current instead of using an

external magnetic field, a property highly desirable for applications in novel type universal

memories. STT-MRAM is a very promising candidate for this purpose. Unlike dynamical

RAM (DRAM) memories which store information in capacitors experiencing low leakage

currents and using constant power to refresh the bit state, taking into account the

principle of work of STT-MRAM they will need power only during the writing, hence

showing superior properties in terms of energy consumption and non-volatility.
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2.2 Spin-polarisation and Jullière formula

For both spin-valves and MTJs, the GMR increases with the spin-polarisation of the

ferromagnetic electrodes. Spin polarisation (SP) is defined (Eq. 2.1) as:

ܵܲ =
↑݊ − ↓݊

↑݊ + ↓݊
Eq. 2.1

where ↑݊ and ↓݊ are the density of states (DOS) for spin-up and spin-down electrons at

the Fermi-level. The density of states at the Fermi-level is a very important quantity for

materials, since it determines for example whether the studied material is an

insulator/semiconductor, or metal. For some materials, such as ferromagnets (e.g. bulk

Fe), the DOS for spin-up and spin-down electrons are non-equivalent, such materials are

called spin-polarised materials and for them ܵܲ ് Ͳ (Figure 2.3). In the limiting case, ܵܲ

can be ±1 i.e. ±100% which means that there is a band gap at the Fermi-level for the

spin down/up electrons, respectively. Such materials are called half-metals and they are

studied in this thesis.

Figure 2.3 Schematic of DOS for metal, ferromagnet, half-metal and semiconductor.

Figure taken from Ref. [19].

Using a simple model, Jullière [11] derived the following expressions (Eq. 2.2)

which correlate GMR with the spin-polarisations of the two electrodes ሺܵ ଵܲǡଶ):

ܴ௔ − ܴ௣

ܴ௔
=

2(ܵܲ ଵ)(ܵܲ ଶ)

1 + (ܵܲ ଵ)(ܵܲ ଶ)
; Eq. 2.2
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ܴܯܩ =
ܴ௔ − ܴ௣

ܴ௣
=

2(ܵܲ ଵ)(ܵܲ ଶ)

1 − (ܵܲ ଵ)(ܵܲ ଶ)

where ܴ௔ and ܴ௣ are the resistance of the GMR device in antiparallel and parallel

configuration respectively. These equations show that highest GMR is realised with fully

spin-polarised electrodes, as expected. If both electrodes have the same structure, by

measuring GMR, the spin-polarisation can be easily calculated. This is a widely used

method to indirectly estimate the spin-polarisation of ferromagnetic electrodes [1, 12].

The derivation of these expressions is relatively straightforward. We label the

proportion of electrons (at the Fermi-level) with spins oriented along the magnetisation

direction as ଵܽ and ଶܽ for the first and second ferromagnetic electrode respectively. First,

a parallel magnetisation alignment between the two electrodes is considered. The

conductivity of the whole device in this case is proportional to:

௣ܩ = ଵܽ ଶܽ + (1 − ଵܽ)(1 − ଶܽ) Eq. 2.3

The first term gives the contribution from the electrons aligned parallel to the

magnetisation. In other words from ଵܽ spins with this direction in the first electrode, only

a fraction ଶܽ will manage to tunnel into the second electrode since that is the fraction of

available states with spins along the same direction. The same applies for the opposite

spins, a (1 − ଶܽ) fraction out of the (1 − ଵܽ) fraction in the first electrode will manage to

tunnel. These two contribution give the parallel alignment conductivity coefficient .௣ܩ

Similar considerations can be made in the case of opposite alignment. In this case

the conductivity is proportional to:

௔ܩ = ଵܽ(1 − ଶܽ) + ଶܽ(1 − ଵܽ) Eq. 2.4

Note that ௣ܩ + ௔ܩ = 1. Taking into account the definition of spin-polarisation

(Eq. 2.1), the fractions ௜ܽcan be expressed (Eq. 2.5) in term of spin-polarisation:

௜ܽ= (1 + ܵܲ ௜)/2 Eq. 2.5

By substituting these expressions into the Eq. 2.3 and Eq. 2.4, the Eq. 2.2 can be

easily obtained.

Direct measurements of spin-polarisation are very challenging and careful

interpretation is required [13]. Point-contact Andreev reflection [14] and spin-resolved

photoemission spectroscopy [15, 16] have been used to measure SP for several materials.
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We shall note that both techniques are surface sensitive, which has to be taken into

account during results interpretation. Although indirect, a very convenient method to

reveal the spin-polarisation of materials is by measuring GMR, TMR of the whole device,

and then computing SP using the Jullière relation (Eq. 2.2). Such analysis is performed

quite often in literature, for example in Ref. [17] ~ 1800% TMR is observed for a

La2/3Sr1/3MnO3/SrTiO3/La2/3Sr1/3MnO3 MTJ, which is equivalent to a higher than 95% SP of

the La2/3Sr1/3MnO3 electrode. Similarly, in [18] spin-polarisation has been estimated using

non-local spin-valve measurements.

2.3 Half-metals

From the above discussion it is clear that for any application in spintronics,

materials that have as high as possible spin-polarisation are required. Hence, the search

for half-metals, which are 100% spin-polarised materials at the Fermi-level, and revealing

their atomic structure and functional properties, is of fundamental importance in

spintronics.

Density of states for a half-metal are illustrated in Figure 2.3 and compared with

the DOS of metal, ferromagnet and semiconductor. In half-metals, in addition to the

non-symmetrical DOS for spin up and spin down observed in ferromagnets, here there is

a band gap for one of the channels. This band gap prevents any current flow for the

corresponding spin channel.

Among number of predicted halfmetals, the Co-based full Heusler alloys are of

special interest. They have very high Curie temperatures (~1000 K) - well above the room

temperature, low coercivity, and are made of earth-abundant elements (e.g. Co, Fe, Si

etc.). Before discussing their atomic and electronic structure as well as functional

properties in details, some other known halfmetals are outlined here.

Diluted magnetic semiconductors are semiconductors which are doped with

magnetic species. Some of these materials, such as Mn-doped Ge, have been predicted as

half-metals [20]. Oxides such as magnetite (Fe3O4) or CrO2 are also predicted theoretically

and experimentally as half-metallic [14, 21]. A disadvantage of CrO2 is that it has a very

low Curie temperature (390 K). Although magnetite has a very high Curie temperature

similar to that of the Co-based Heusler alloys, there are significant challenges to grow
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stoichiometric thin films of magnetite without defects. There are many other forms of

iron oxides such as FeO, Fe2O3 etc. The phase diagram for this system is very complex and

pure magnetite can be grown only in a very narrow region in the phase diagram. Small

deviations from ideal growth conditions always lead to variations in stoichiometry.

Additional disadvantage is the presence of extended structural defects such as twin

defects [22] and antiphase boundaries [23] which have rather low formation energies,

hence they are abundant in thin films. In addition, it has been shown that there is an

antiferromagnetic coupling at these boundaries that change the film electronic and

magnetic structure. These properties make the incorporation of magnetite in spintronic

devices extremely challenging.

La0.7Sr0.3MnO3 is in the class of manganese perovskites, and it has been one of the

first materials that has been experimentally demonstrated to have halfmetallic properties

[24]. We note that these materials have very low Curie temperature making them not

suitable for a number of applications [1]. Another class of materials that have been also

predicted to be halfmetallic are pnictides such as CrAs [25] and other zinc-blende

compounds of transition elements (V, Cr) with As, Sb, Te, Se [26]. The materials

mentioned here are pointed out as a representative; further reviews of candidate

materials and spintronics in general are given in [1, 27-29].

2.4 Heusler alloys

The first theoretical prediction of half-metallicity of a Heusler alloy was performed

by de Groot et al [30]. By using first-principles calculations they showed that the

half-Heusler compound NiMnSb is a 100% spin-polarised material. However, it has been

demonstrated that this material suffers from Mn-segregation at surfaces/interfaces [31,

32] which in turn significantly reduce its half-metallicity. Devices based on this material

have also shown very low GMR [33].

On the other hand, many full Heusler alloys have been successfully implemented

in spin-valves or MTJs which show outstanding values of GMR. The very first

growth/synthesis and basic characterisation studies on these materials are reported in

Ref. [34, 35]. These materials have also attracted theoretical interest and many studies on

electronic structure and half-metallicity have been reported [1, 36, 37]. Co-based full
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Heusler alloys have been shown to be one of the most promising candidates from this

group of materials. Examples of practical implementation in MTJs are given in Ref. [38]

and [39] with Co2FeAl and Co2MnAl electrodes respectively, with Co2MnSi electrodes in

Ref. [40] and with CFAS electrodes in Ref. [41, 42] which achieve very high TMR. High MR

values have been also reported in spin-valves based on Co-based full Heusler alloy

electrodes [43, 44]. Significantly better spin-injection efficiency using Co-based Heusler

alloys compared to conventional ferromagnetic electrodes in lateral spin-valves is shown

in Ref. [45]. Taking into account these big potentials, the studied materials in this thesis

are Co-based full Heusler alloys.

2.4.1 Atomic structure

In this section, the detailed atomic structure of Co-based full Heusler alloys will be

explained. These materials are of the form Co2YZ, where Y is d-block element such as

Mn, Fe, while Z is a p-block element such as Si, Ge, Al etc. Their lattice is cubic, with space

group 225 ݉ܨ) 3ത݉ ). The lattice parameter for Co2FeSi is 5.66 Å; but also the other

materials belonging to this group (i.e. Co2(Mn,Fe)(Si,Al,Ge)) have very similar lattice

parameters. As can be seen from their chemical formula, they are intermetallic

compounds which include Co. Their lattice can be considered as four interpenetrating

face-centred cubic sublattices.

Two of these sublattices are populated by Co atoms, one by atoms of the element

Y, and the fourth by atoms of the element Z. The relative shift vectors between these

sublattices with respect to one of the Co-sublattices are given by (in lattice parameter

units): 1st Co - (0, 0, 0); 2nd Co - (0.5, 0.5, 0.5), Y element - (0.25, 0.25, 0.25), Z

element - (0.75, 0.75, 0.75). The two interpenetrating face-centered cubic Co-sublattices

can be viewed as a simple cubic Co-sublattice, as illustrated in Figure 2.4 for the

conventional 16 atoms unit cell of Co2FeSi. Once the atomic structure of one of these

materials is known for example that of Co2FeSi, it is straightforward to construct the

structure of for example Co2MnSi, by simply substituting all Fe atoms with Mn. Similarly,

Co2FeAl can be obtained by substituting all Si from Co2FeSi with Al.

As discussed below, in some cases, the alloying of two Heusler alloys gives a

Heusler alloy with better properties. In this case, two atomic species can occupy the same
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sublattice. For example, for the case of CFAS, which is very frequently used in this thesis,

the Z sublattice is occupied by both Si and Al with an equal concentration. The advantage

of this alloy over the ternary Co2FeSi (CFS) and Co2FeAl (CFA) is that it has a mid-gap

Fermi level [46], hence more robust properties against temperature effects or small strain

fields. Another example is Co2(Fe,Mn)Si (CFMS) where Fe and Mn with an equal

concentration share the Y sublattice [47].

Figure 2.4 a) Bulk CFAS specimen; b) Atomic structure of the conventional 16 atoms cubic

unit cell of Co2FeSi; colour coding: Co - blue, Fe - yellow, Si - red.

It should be noted here that for ternary fully ordered Heusler alloys, the cubic cell

shown in Figure 2.4b is not the primitive unit cell; it can be reduced to four atoms, two

Co, one Y and one Z, however such cell is non-orthogonal, and not very desirable for

modelling purposes.

2.4.2 Atomic plane stacking sequence along the [001] and [111] crystallographic
directions

The studied Heusler alloy films in this thesis have been grown along the [111] and

[001] crystallographic directions. The growth direction is directly determined from the

substrate orientation and the epitaxial relationships between the film and substrate.

The atomic plane stacking sequence along both [111] and [001] directions will be

illustrated here on the example of CFS. Along the [001] direction, as can be seen from the

Figure 2.5 there are alternating Co-(Fe/Si) atomic planes. Four such planes are required to
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get the repeat unit (Co-Fe/Si-Co-Fe/Si) along this direction. On Figure 2.5a the [001]

stacking is shown as seen along the [100] projection, while in Figure 2.5b along the [110]

projection. Along the [110] projection, these materials contain atomic columns which

consist of only one element. In other words, one atomic column is fully occupied by Co,

other one with Si, some other with Fe. This property is particularly useful when

performing Z-contrast (HAADF STEM) electron microscopy imaging (which is discussed in

Chapter 3) since in many cases a straightforward compositional identification can be

made based on such images. For this reason, the specimens in this thesis are prepared so

that they are along such zone axis when analysed with an electron microscope.

Figure 2.5 Repeat unit of CFS: a) along the [001] growth direction (the vertical direction in

this figure) and [100] projection; b) along the [001] growth direction and [110]

projection; c) along the [111] growth direction and [110] projection; d) along the [111]

growth direction and [112] projection. Colour coding follows the Figure 2.4b.

Along the [111] crystallographic directions the stacking sequence is different. It

consists of …Co-Fe-Co-Si… stacking. In total twelve atomic planes are required to get a

repeat unit along this direction. The lattice parameter along the [111] direction is √3 ,ܽ

where ܽ is the lattice parameter of the conventional cubic cell. [112] and [110] are

orthogonal to the [111] crystallographic direction, and both of them are convenient for

electron microscopy for the same reasons as discussed above. The atomic structure in

these projections is shown in Figure 2.5c,d. It can be seen that along the [112] projection,

the lattice is much closer packed, hence although [112] contains columns with single

elements is less desirable than the ͳൣͳͲ൧direction, in which the atomic columns are more

separated and therefore can be better resolved by electron microscopy.
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2.4.3 Origin of the band gap in the full Heusler alloys

In this section, a more detailed understanding of the minority (spin-down

electrons) band gap formation will be provided. The theory of the origin of band gap in

full Heusler alloys, as discussed here, has been developed by Galanakis et al. [37]. As an

example, the Co2MnZ will be analysed, however the same considerations can be easily

generalised to the other Heusler alloys belonging to this class.

It has been observed that for these compounds, their magnetic moment ܯ) ) per

formula unit is directly correlated (Eq. 2.6) with the number of valence electrons (ܸ) via

the relation:

ܯ = ܸ − 24 Eq. 2.6

First-principles calculations as well as measurements have shown that Co2MnAl

and Co2MnGa have moment of ,஻ߤ�4 Co2MnSi and Co2MnGe moment of ,஻ߤ�5 and ஻ߤ�6

per formula unit for Co2FeSi (Table 2.1). All of these compounds, taking into account their

number of valence electrons satisfy the rule stated above. This is so called Slater-Pauling

behaviour which is also observed for the halfmetallic half-Heusler alloys, though the exact

relationship contains different free term (18 instead of 24) [37].

material V/form. unit M /࡮ࣆ) form. unit)

Co2MnSi 29 5.0

Co2(Fe,Mn)Si 29.5 5.5

Co2Fe(Al,Si) 29.5 5.5

Co2FeSi 30 6.0

Table 2.1 Number of valence electrons and magnetic moment per formula unit

(computed by density functional theory calculations) for full Heusler alloys which will be

most frequently used in this thesis. It can be noticed that the alloyed CFMS and CFAS also

follow the Slater-Pauling behaviour, as expected.

Such behaviour suggests that the number of valence electrons in a spin-down

state is fixed for all these materials within the given class (e.g. full Heusler alloys). An

additional valence electron always goes to the spin-up state. If we assume that the

number of valence electrons is 24 - then the magnetic moment is zero according to

the Eq. 2.6, hence there are an equal number of spin-up and spin-down electrons. This
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means that there are 12 electrons in spin-down state and this number is fixed among the

considered Co-based full Heusler alloys.

If the material has for example 28 electrons, 12 spin-up electrons compensate the

12 spin-down electrons and the remaining 4 will be in a spin-up state resulting in a total

magnetic moment of Ͷߤ�஻. This Slater-Pauling behaviour fits very well with the presence

of a band gap for the minority (spin-down) electrons; 12 bands are fully occupied so they

do not cross the Fermi-level, hence a band-gap emerges.

For Co2MnZ there are four atoms per formula unit; two Co, one Mn and one Z

such as Si, Al, Ge. Co and Mn are d-block elements while Z is a p-block element. For the

element Z there are only s and p occupied bands. One of these is an s-band while three

are p-bands. In total, these bands can accommodate 8 electrons. But the Z atoms may

have for example 3 (e.g. when Z = Al) or 4 (e.g. when Z = Si, Ge) valence electrons.

By plotting the band structure it has been obtained [37] that all these four bands

belonging to the Z element are not only below the Fermi-level but also below the d-bands

of Mn, Co. Hence the s, p bands should be fully occupied i.e. in total 8 electrons are

accommodated in them. The additional number of valence electrons required to fully fill

these s, p bands comes from the d-electrons of Co and Mn.

Figure 2.6 a) Visualisation of the six Co first nearest neighbours and four Mn second

nearest neighbours to a Co atom in Co2MnSi (CMS); b) Interatomic distances between

nearest Co-Mn and Co-Co pairs.
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In other words, when Z = Si, 4 electrons from Si and 4 from Co and Mn provide the

8 electrons occupying these s, p bands. Therefore, the number of d-electrons is effectively

reduced ultimately affecting the magnetic moment of the compound which is determined

by the number of uncompensated d-electrons [37]. This gives the possibility to effectively

tailor their magnetic moment by choosing an appropriate valence of the Z element.

The d-bands are the ones which are closest to the Fermi-level. Due to the

presence of a band gap for the minority spin, some of the spin-down bands are fully

occupied by electrons while some are entirely empty. Below, we discuss how many of the

d-bands are occupied in these materials and what determines the width of the minority

band gap.

As can be concluded from Figure 2.6 each Co atoms has 8 nearest neighbours

which 4 of them are Mn and four Z element. The interatomic distance to these first

nearest neighbours is 2.45 Å. The next nearest neighbours are 6 Co atoms to which the

interatomic distance is 2.83 Å, hence comparable to Co-Mn distances. One atom from the

pair Co-Co nearest neighbours belongs to one Co-sublattice, while the other one to the

other Co sublattice. Hence, such interactions are typical for the full Heusler alloys and

absent for the half-Heusler alloys for which one of the Co sublattice is empty. Although

these Co-Co interactions are second nearest neighbours hence weaker than the Mn-Co

interactions, they are very important in determining the width of the minority band gap,

as discussed below.

The d-bands from one Co atom hybridise with the d-bands from the other Co atom

(its nearest neighbour, belonging to the other Co-sublattice), and also with the d-bands of

the nearest Mn atom [37]. Before going further and analyse this hybridisation, it should

be noted that there are five types d-orbitals labelled as: ௫݀௬, ௫݀௭, ௬݀௭, ௫݀మି௬మ, and

ଷ݀௭మି௥మ; for simplicity we will label them as ଵ݀, ଶ݀… ହ݀, respectively. The first three

orbitals: ଵ݀, ଶ݀ and ଷ݀ have the same symmetries, while ସ݀ and ହ݀ also have the same

symmetries but different than those of the first three orbitals. The symmetry relations are

important and determine the hybridisation; d-orbitals with same symmetries are allowed

to hybridise [37], but they cannot hybridize with the d-orbitals with the other type

symmetry.
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First, the Co-Co hybridisation will be analysed. In Figure 2.7a, the two Co atoms

from a Co-Co nearest neighbour interaction pair are shown together with their d-states.

Due to the difference in symmetry the d-states slightly split in energy in two levels. One

level is triple degenerate, while the other one is double degenerate. The triple

degenerate d-states ଵ݀, ଶ݀ and ଷ݀ can only hybridise with their counterparts ( ଵ݀, ଶ݀ and

ଷ݀) from the other Co atom. These six orbitals after the hybridisation give six hybridised

states; triple degenerated bonding orbital t2g (the symbol reflects the symmetries of these

orbitals) and triple degenerated antibonding orbital t1u, which is higher in energy. On the

other hand, the ସ݀ and ହ݀ orbitals from the Co-Co pair give double degenerated eg

bonding and double degenerated antibonding eu orbital. This Co-Co hybridisation is

schematically illustrated in Figure 2.7a. The factors in front of the orbital labels, refer to

the degeneracy, for example ‘2 x eg‘ means two eg orbitals with the same energy.

Figure 2.7 Band gap analysis on the example of Co2MnGe. a) Schematic of Co-Co

hybridisation; b) Schematic of hybridisation between the Co-Co and Mn states. The

dashed line outlines the position of the Fermi-level; c) Density of states projected on eg,

eu and t2g, t1u for both Mn and Co atom. The partial density of states (PDOS) plots in c) are

for the Co2MnGe Heusler alloy [37].

Now, these Co-Co orbitals hybridise with the d-orbitals of Mn, as illustrated in

Figure 2.7b. The two eg orbitals of Co-Co hybridise only with the ସ݀ and ହ݀ of Mn since

they are of the same symmetry. After this hybridisation, two bonding and two



Chapter 2. Introduction

31 | P a g e

antibonding eg states emerge. The antibonding states are well above the Fermi-level,

hence unoccupied. Taking into account same symmetry arguments as above, the three t2g

Co-Co orbitals hybridise with the three ଵ݀, �݀ ଶ and ଷ݀ of Mn leading to three bonding and

three antibonding t2g orbitals, where the antibonding orbitals are again above the

Fermi-level.

The remaining five Co-Co orbitals, two of which with eu symmetry and three with

t1u, have different symmetries than those of Mn d-orbitals, hence a hybridisation is not

possible. Therefore, 5 out of total 15 are Co-Co hybrid orbitals, while the others 10 have

emerged from Co-Co-Mn hybridisation, Figure 2.7b.

First-principles calculations [37] have shown that the Fermi-level is positioned

between the Co-Co states that do not bond with Mn, as shown in Figure 2.7b. In

Figure 2.7c the projected spin-polarised density of states are shown again on the example

of Co2MnGe. First that can be noticed is that the states which have projections on the Mn

orbitals lead to much wider minority band gap, compared to that of Co.

Before discussing the hybridisation, it was mentioned that Co-Co bonding is much

weaker since these atoms are second nearest in comparison to Mn-Co which are nearest

neighbours. Due to the weak bonding, the splitting between the Co-Co states is small,

they are very close each other, and are located in between the Mn-Co hybridised orbitals.

This causes the small band gap when projecting on Co, compared to Mn. As seen in

Figure 2.7c, there are two distinctive peaks in the Co minority states near the Fermi-level,

both positioned where the Mn-projected states have a band gap. These are the Co-Co

hybridised orbitals; it can be seen that one peak is below the Fermi-level (these are due

to the t1u orbitals), while the other one above the Fermi-level (from the eu orbitals). These

Co-Co orbitals reduce the width of the band gap for the full Heusler alloys; in half-Heusler

alloys such Co-Co bonding does not exist (since only one Co sublattice is occupied, the

other one is empty), hence larger minority band gap is in principle to be expected.

Therefore, the analysis performed above demonstrated that for the considered

full Heusler alloys, eight minority d-bands are populated, and seven are empty. In

addition to the one s and three p-bands from the Z-element, that gives in total 12 fully

occupied spin-down bands per formula unit.
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This result is fully consistent with the Slater-Pauling behaviour which taking into

account that the free term is 24, implies 12 fully occupied minority bands. By increasing

the number of valence electrons, the number of populated majority d-states increases

which in turn leads to higher magnetic moment, Table 2.1. In the limiting case, when all

majority d-states would be completely filled, the magnetic moment per formula unit

would reach the value of ͹ߤ�஻ , since 7 minority d-bands will be empty and

uncompensated.

2.4.4 Total density of states and the importance of alloying for the Fermi-level
position

In this section, the total spin-polarised density of states is presented for bulk CFAS,

the Co-based full Heusler alloy which is most frequently used in this thesis. In Figure 2.8

the DOS are shown for the Heusler alloys CFA, CFAS and CFS. It can be noticed that all

three of them are half-metallic with minority spin band gap of order of 1 eV.

Figure 2.8 Total spin-polarised density of states for bulk: a) CFA; b) CFAS and c) CFS.

Spin-up/down states are plotted in the top/bottom part of the figures, respectively.

Details of these calculations are given in Chapter 3.

Figure 2.8 shows that both CFA and CFS have Fermi-level positioned very close to

either the top of the valence band or the bottom of the conduction band, respectively.

Although the spin-polarisation is still 100%, they are expected to suffer a loss in

spin-polarisation as the temperature increases. In other words, any small thermal

activities will effectively introduce (i.e. broaden) some density of states near the

boundaries of the band-gap, hence for such Fermi-level positions that can affect the
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half-metallicity. It has to be mentioned that not only temperature can affect their

half-metallicity but also due to their Fermi-level position they are expected to be very

sensitive, in terms of half-metallicity, to any other small variations for example structural

due to strain. This has been also experimentally verified where they have been used as

electrodes in MTJs reaching significantly lower TMR compared to the ones with CFAS

electrodes [46, 48].

The positions of the Fermi-level in CFA and CFS (Figure 2.8) suggests that the

alloying i.e. creating a Heusler alloy where the Z sublattice is populated by an equal

amount of Si and Al, will position the Fermi-level close to the middle of the minority spin

band-gap. The spin-polarised DOS shown in Figure 2.8b for bulk CFAS confirm this initial

hypothesis [46].

In Ref. [46], the existence of the minority band gap in CFAS has been

experimentally confirmed by measuring the differential conductance of MTJ with a CFAS

electrode. Even at room temperature, the spin-polarisation has been demonstrated that

is above 90%. In addition, this desirable Fermi-level position makes CFAS to have the

weakest temperature dependence among the other full Heusler alloys, which is a big

advantage for practical implementation in a real spintronic device. Due to the huge

potentials of CFAS, it is the most frequently studied material in this thesis.

2.4.5 Factors that can affect the Heusler alloys half-metallicity: ordering, strain, point
defects

The previous sections focused on the Heusler alloys structure and functional

properties in the bulk. The implementation of the Heusler alloys in a real device requires

thin film deposition, which in turn requires control of stoichiometry and

structural/chemical ordering on an atomic level. One of the most common defects in

these materials is the chemical disorder; for example Co atoms might populate some of

the Fe lattice sites and vice versa.

These phenomena in turn can lead to decreased, completely destroyed or even

reversed spin-polarisation. Similar behaviour can arise due to presence of strain in these

structures. When these films are grown they have epitaxial relationship with the

substrate/neighbouring layer. As those two lattices are lattice mismatched, there is a
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strain emerging at the interface. Such strain is usually relieved away from the interface

through the formation of misfit dislocations. Another very important factor is the atomic

structure of the interfaces. The interfacial bonding can lead to opposite spin-states which

affect the device performance, as discussed later.

In Ref. [47], the influence of atomic disorder on the half-metallicity has been

studied on the example of the full Heusler alloy Co2FexMn1-xSi. If we label the Co lattice as

X, (Mn,Fe) as Y and Si as Z, there are XY, XZ and YZ possible atomic swaps that can occur

as illustrated in the Figure 2.9. It has been shown that a high spin-polarisation remains

preserved when there is a YZ disorder. On the other hand, disorder related to the

X-sublattice can be very detrimental to the spin-polarisation, for both XY and XZ type

disorder in the best case the spin-polarisation is drastically reduced, but it can be also

even reversed [49].

Figure 2.9 Possible atomic swaps in a Co-based full Heusler alloy: a) YZ disorder;

b) YX disorder; c) XZ disorder.

However, the same calculations have shown that the Co-sublattice is much more

resistant to a disorder compared to Y and Z. In other words, YZ is the dominant type

disorder. These results show that the disorder can affect the half-metallicity but for

relatively good films only YZ disorder can be expected (which can also be avoided by

proper annealing) which in turn does not change their properties.

The lowest energy configuration for the studied full Heusler alloys is the L21,

where Co atoms occupy two face-centred cubic sublattices, Y one, and the fourth

occupied by Z element, as described in above sections. Very frequently however, the
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grown films have B2 ordering, where a full intermixing between the atoms on Y and Z

sublattice is present. Films that have a B2 phase can be converted to L21, by appropriate

annealing at around 500 ℃ [50]. It has been verified experimentally that this phase has

also half-metallic property [46]. Also, the half-metallicity of the B2 phase of CFMS has

been theoretically demonstrated in Ref. [51]. Furthermore, the calculations performed in

Section 5.4 on the example of CFAS also demonstrate the half-metallic character of the

B2 phase, and the unaltered magnetic moment per formula unit compared to the L21

ordering. Hence, both L21 and B2 ordering are desirable for spintronic applications.

The influence of point defects [52, 53] as well as variations from stoichiometry

[54, 55] has been also intensively studied. Regarding the strain effects, as discussed in the

beginning of this section, large positive or negative strain can drastically affect the film’s

spin-polarisation. For example, in Ref. [56] it has been shown on the example of CFMS

that under compression (negative strain) the spin-polarisation decreases and at -10%

strain the material loses completely its spin-polarisation. Further compressive strain even

reverses the spin-polarisation. Effects are similar for a positive strain but in this case the

spin-polarisation is lost at 5% strain.

2.5 Interfaces

Spintronic devices consist of several layers of thin films. Even though the goal in

most of the cases is to have structurally/chemically sharp interfaces between the layers,

number of grown heterostructures have a very broad (order of nm) interfaces. For some

heterostructures with special care a sharp transitions between the layers can be

achieved. In these interfacial regions the behaviour can be significantly different

compared to that in the bulk-like part of the layers. The atomic structure can be

drastically altered which leads to different functional properties. But also, even for

atomically sharp interfaces (as shown in the following chapters) the interfacial bonding

can itself cause undesirable effects for the spintronic device.

For all heterostructures studied in this thesis, there is an epitaxial relationship

between the Heusler film(s) and the layer(s) which are its nearest neighbours. Both the

Heusler and the nearest layers are crystalline and they either have very similar lattice

parameters (for example a Heusler alloy with Si, Ge) or the lattice parameters along
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different directions are similar in value (for example Heusler alloy with Ag), which

promotes the epitaxial crystallographic orientation between these layers.

For the case of a Heusler alloy on Si and Ge, as studied in Chapter 5 and Chapter 6,

both Si and Ge are [111] oriented and due to the lattice match with the Heusler alloy, the

half-metallic CFAS film becomes oriented along the same [111] direction. In contrast, for

the CMS/Ag interfaces presented in Chapter 4, there is an in-plane 45o rotation between

the Heusler alloy and Ag spacer. Their lattice parameters are ~5.65 Å (for CMS) and

~4.09 Å, respectively; the in-plane rotation will transform the Heusler lattice parameter

to 5.65 Å/√2 ( = 4.00 Å) and almost match with that of Ag (4.09 Å). Hence, for this

heterostructure, the Ag [100] direction is parallel to the [110] of the Heusler alloy. The

understanding of these epitaxial relationships is very important since many of their

properties significantly depend on the orientations of the thin films.

2.5.1 Injection of a spin-polarised current across interfaces

As outlined previously, since the proposal of the spin-transistor model [3], it has

been clear that both the spin-injection from a spin-polarised source into e.g.

semiconductor and the spin manipulation during the transport in the semiconductor play

a fundamental role for the hybrid spintronic devices. For these devices, it is crucial that

the injected electrons travel long distances in the semiconductor before they are

spin-depolarised. It has been already experimentally demonstrated that in

semiconductors the spin diffusion length (the distance along which the electron current

keeps its spin-polarisation) is very large (e.g. ~4 µm for GaAs [57] and for Si it is even

larger ~350 μm [58]).

Since the spin diffusion length is rather large, the main challenge is the injection of

a spin-polarised current into the semiconductor. Conventional ferromagnetic materials

such as Fe have relatively good spin-polarisation, however, devices that involved such

ferromagnets as a spin source and semiconductor as a channel have not demonstrated

any considerable spin-injection (at most few percent spin-polarisation of the injected

current [59]).

The electric type spin-injection therefore has been a rather elusive goal. The

experiments for spin-transport in semiconductors have been mainly based on an optical
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spin-injection instead. In those devices, a circularly polarised laser pulse creates

electron-hole pairs with preferential spin-direction, due to the circular polarisation of the

incoming radiation [57]. These generated spin-polarised electrons are then traveling

through the semiconductor and finally are captured by a quantum-well, where they

recombine which results in emission of a polarised light. The high circular polarisation of

the emitted light demonstrates that the spin generation is successful but also that the

spin diffusion length in some semiconductors is relatively large.

For any large scale practical implementation, however an electrical injection of

spin-polarised current is required. The very low spin injection from standard

ferromagnets suggests that there has to be a fundamental issue that makes the current

from spin-polarised in the ferromagnet to basically unpolarised in the semiconductor

even though the length of the semiconductor is chosen smaller than the spin diffusion

length. In Ref. [59] this fundamental obstacle has been addressed. It has been found that

the conductivity mismatch that exists between the ferromagnet and semiconductor

prevents an efficient spin-injection. In Ref. [60, 61] possible solutions to this issue are

discussed.

Here, it will be briefly explained why the conductivity mismatch prevents efficient

spin-injection, following the discussion in Ref. [60]. Consider an interface between a

ferromagnet and semiconductor where the interface plane is the plane =ݖ 0, and the

current flows perpendicular to this interface plane. We also assume for simplicity that

both the ferromagnet and semiconductor are semi-infinite and they terminate at the

interface.

The resistivities of the spin-up and spin-down channels in the ferromagnet can be

written as:

(↓)↑ߩ = 2[1 − ிߩ[(ߚ±)
∗ Eq. 2.7

where [1 − ிߩ[ଶߚ
∗ is the total resistivity (both channels) of the ferromagnet. It is

straightforward to show that ߚ is the spin-polarisation of the ferrromagnet at the

Fermi-level, since for the conductivities from Eq. 2.7 we obtain (↓)↑ߪ = ߪ ↑݊(↓) ( ↑݊ + ↓݊)⁄ ,

as expected; ߪ is the total conductivity of the ferromagnet. Both spin channels are

treated as independent, hence the total resistance can be computed as a resistance of
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two (spin-up and spin-down) resistors connected in parallel. Similarly, for the

non-magnetic semiconductor:

(↓)↑ߩ = ேߩ2
∗ Eq. 2.8

since ߚ = 0 for the semiconductor.

At each position of this heterostructure, the following equations [60] are valid:

(↓)↑ܬ =
1

(↓)↑ߩ݁

(↓)↑ߤ߲

ݖ߲
Eq. 2.9

=ܬ ↑ܬ + ↓ܬ Eq. 2.10

߲ଶ(ߤ↑ − (↓ߤ

ଶݖ߲
=

↑ߤ) − (↓ߤ

௦݈
ଶ

Eq. 2.11

where (↓)↑ܬ and (↓)↑ߤ are the current densities and electrochemical potentials

respectively;�݁ - the charge of electron, isܬ the total current, while ௦݈ is the spin diffusion

length. The Eq. 2.11 is a diffusion equation for the difference of electrochemical

potentials between the spin-up and spin-down electrons and describes the spin flipping

processes which occur with a characteristic spin diffusion length ௦݈. For ferromagnets, this

length is small e.g. 59 nm for Co [60]; for non-magnetic metals is much larger, for example

for Cu is 1 µm; for some semiconductors as stated previously it can be very large.

The coupled Eq. 2.9, Eq. 2.10 and Eq. 2.11, are relatively straightforward to be

solved; the full solutions are given in Ref. [60]. Here the procedure will be briefly

explained. If we consider a region far away from the interface, then the electrochemical

potential should be a linear function of the distance z. This holds both in the ferromagnet

and semiconductor. The requirement of linearity is due to the constant currents away

from the interface. Also, the electrochemical potential should be the same for spin-down

as it is for spin-up electrons. If this is not the case from Eq. 2.11, we would have spin-flips

until both electrochemical potentials become equal.

On the other hand, at the interface region there should be spin-flips occurring.

This is because the current from spin-polarised has to become depolarised far from the

interface. How large is the region in which the depolarisation occurs, will be considered

later. First, taking into account that there are spin-flips around extended interface region,

we can state that there is a non-zero solution to the Eq. 2.11. It can be easily seen that

the decaying solutions of the Eq. 2.11 are exponentially decaying functions, with
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parameters ௦݈which are different on both sides of the interface. Taking into account the

previous discussion (on the difference in ௦݈), the decay is faster in the ferromagnet

compared to the semiconductor.

Since all three equations are linear the full solutions for (↓)↑ߤ and (↓)↑ܬ are linear

combination of the linear bulk-like terms and the exponentially decaying terms which

emerge due to the spin-flipping at the interface. The unknown constants in this linear

combination (the full solutions are given in Ref. [60]) can be found by using the boundary

conditions discussed above (far away from the interface a recovery towards the bulk

properties) as well as the continuity of both (↓)↑ߤ and (↓)↑ܬ at the interface.

Once the constants are determined, we can compute the spin-polarisation of the

current at each position along the heterostructure. It is of particular interest to determine

this quantity exactly at the interface plane. It can be shown [60], that the

spin-polarisation at the interface is given by:

(ܵܲ )ூ=
ߚ

1 +
ேݎ
ிݎ

Eq. 2.12

where

ி,ேݎ = ி,ேߩ
∗

௦݈
ி,ே Eq. 2.13

is the product of the resistivity with the spin diffusion length for both ferromagnet and

semiconductor/non-magnetic metal. For example, in the case of interface between Co as

a ferromagnetic electrode and Cu as a non-magnetic metal the ratio
௥ಿ

௥ಷ
is slightly bigger

than one, hence the spin-polarisation of the current is reduced for more than twice at the

interface plane.
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Figure 2.10 Spin-polarisation of the current is plotted as a function of the distance z.

Curve (1) is for Co/Cu interface, curve (2) for Co/semiconductor (parameters of the

semiconductor are given in [60]) and curve (3) is for a Co/semiconductor interface with

additional interfacial resistance. Figure taken from Ref. [60].

The situation is drastically more dramatic for the case of transport across a

ferromagnet/semiconductor interface where the
௥ಿ

௥ಷ
ratio is extremely high (e.g. 106 for an

interface between ferromagnet such as Co, and GaAs as a semiconductor). By substituting

the value of this ratio in Eq. 2.12, we find that the current is practically completely

depolarised before it enters into the semiconductor. This conductivity/resistivity

mismatch is the reason that prevents a spin injection into the semiconductor.

Curve (2) in Figure 2.10 shows the dependence of the current spin-polarisation

across a ferromagnet/semiconductor interface. The complete depolarisation occurs in the

ferromagnet as mentioned previously.

From Eq. 2.9, Eq. 2.10 and Eq. 2.11, it can be easily shown that:

߲

ݖ߲
↑ܬ] − [↓ܬ =

1

2 ி,ேݎ݁

↑ߤ) − (↓ߤ

௦݈
ி,ே Eq. 2.14

which holds for both ferromagnet and semiconductor, by replacing the values of ிǡேݎ and

௦݈
ிǡே for each material, respectively. Taking into account the previous discussion:
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↑ߤ) − (↓ߤ = ↑ߤ) − /ݖ±)ூexp(↓ߤ ௦݈
ி,ே) Eq. 2.15

↑ߤ) − ூ(↓ߤ is the difference of electrochemical potentials calculated at the interface

plane. The sign ± depends on which part of the heterstructure is considered, and is to

ensure a decaying electrochemical potential difference at ∓∞, respectively. In the

positive part of the axisݖ is the semiconductor, while in the negative part is the

ferromagnet. Substituting the Eq. 2.15 into Eq. 2.14 and integrating from 0 to +∞ for the

semiconductor and from −∞ to 0 for the ferromagnet we obtain:

↑ܬ]∆ − ி,ே[↓ܬ =
1

2 ி,ேݎ݁
↑ߤ) − ூ(↓ߤ Eq. 2.16

The left part of this equation is proportional to the number of spin flips in both

ferromagnet and semiconductor separately. From this equation follows that the number

of spin-flips is proportional to
ଵ

௥ಷ,ಿ
. Taking into account that ேݎ ≫ :ிݎ

↑ܬ]∆ − ி[↓ܬ ≫ ↑ܬ]∆ − ே[↓ܬ Eq. 2.17

Hence, this expression shows that the number of spin flips in the ferromagnet is much

bigger than that in the semiconductor, i.e. the current depolarisation occurs near the

interface but in the ferromagnetic part, preventing any spin-injection into the

semiconductor.

One way to overcome this issue is adding a thin insulating barrier which will act as

an additional spin-dependent resistance [60] at the interface. Such spin-dependent

resistance will create a discontinuity of the electrochemical potential difference (between

spin-up and spin-down) at the interface. This in turn will make a balance between the spin

flips, so that a comparable number of spin-flips occur in the semiconductor and

ferromagnet. Curve (3) in Figure 2.10 shows the current spin-polarisation dependence as

a function of distance when such interface resistance is present (details of this approach

are given in [60]). Such resistance can be provided for example by using a thin Al2O3 layer

where the spin asymmetry of the interfacial resistance reaches value of 0.5 [60].
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Figure 2.11 a) Hanle geometry used for measuring spin-injection from a spin-polarised

electrode into semiconductor; b) Voltage measured in this setup as a function of the

applied magnetic field (in-plane along the electrodes longitudinal axes). The arrows

indicate the magnetisation directions of current and voltage electrodes [62].

This approach was successfully demonstrated in Ref. [63]. By using Fe as a

spin-polarised electrode and Al2O3 thin layer as a tunnel barrier, it has been shown that

spin-polarised current is injected into the Si substrate. Similar measurements were

performed in Ref. [64] on the case of Fe/MgO/Si based device. The measurement setup is

schematically shown in Figure 2.11, and has a lateral transport geometry. A constant

current flows through two electrodes while the other two serve as voltage electrodes.

This is so called Hanle four probe setup and is frequently used to estimate the

spin-injection for these devices [62].

The electrode on the right in the voltage circuit is several spin diffusion lengths

apart from the other voltage electrode so that electrons near this electrode are

completely depolarised. However, they are polarised below the other voltage electrode

since it is very close to the current electrode. This spin-accumulation ↑ߤ) െ (↓ߤ present

below this electrode but absent near the other voltage electrode will cause a difference in

potentials V between these two electrodes, proportional to the spin-accumulation.

It can be seen in Figure 2.11 that there is a clear distinction in measured voltage

between the parallel and antiparallel magnetisation orientation, which can only be

possible in case of spin-polarised injected current. The detected voltage can be also
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modulated by applying magnetic field perpendicular to the junction. This causes decrease

of the spin-accumulation due to the spin-precession in a magnetic field [65].

Although this approach overcomes the conductivity mismatch issue, the efficiency

of the injected current depends significantly on the tunnelling barrier parameters

particularly its spin-tunnelling asymmetry coefficient, hence injecting completely

spin-polarised current is again challenging. In addition, the device fabrication in this case

is significantly more complex [66], and also such devices have higher power consumption

[67].

Spin-injection has been achieved across interfaces where the conductivity

mismatch is not as significant, such as from ferromagnetic semiconductor into

non-magnetic semiconductor [68]. In Ref. [69], a spin-injection from magnetic

semiconductor into non-magnetic semiconductor has been also demonstrated. We shall

note however that although these devices are very useful conceptually, the spin-polarised

sources have in these cases very low Curie temperatures.

2.5.2 Half-metals as ideal candidates for efficient spin-injection

If we consider again the Eq. 2.12, it can be noticed that when ߚ = 1, i.e.

half-metallic electrode, then the spin-polarisation of the current at the interface plane is

1, i.e. the injected spin-current is completely spin-polarised. This is because ிݎ becomes

much higher than ேݎ as ߚ → 1 , since ிߩ
∗ ~ 1 (1 − ⁄(ଶߚ → ∞ . This makes (ܵܲ )ூ→ 1 .

Hence, half-metallic materials in contrast to conventional ferromagnets do not suffer

from the conductivity mismatch issue. Moreover, there is no any need of introducing

tunnelling insulating layer at the interface. Therefore, the half-metallic materials are very

important and an ideal candidate for spintronic applications particularly for devices that

involve spin-injection.

The Co-based full Heusler alloys as mentioned before due to their half-metallicity

and very high Curie temperature (e.g. ~1100 K for CFS [70]), are very desirable for

applications in spin-based devices.
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2.5.3 The influence of interfacial atomic and electronic structure on the
half-metallicity

From the previous discussion it becomes clear that the Co-based Heusler alloys

have huge potentials for applications in spintronics. For any device, besides the quality of

the Heusler electrodes which includes proper ordering, stoichiometry, absence of defects

etc., it is crucial to retain the structural and electronic integrity at the interface vicinity. In

other words, even if the Heusler electrodes are perfectly ideal and achieve 100%

spin-polarisation, these spin-polarised electrons have to be transported through the

interface for any functionality to be achieved. In some cases, however, the interface

atomic structure is different than that of the bulk, due to presence of intermixing or

formation of interfacial secondary phases.

Figure 2.12 a) TEM image of a reacted area of Co2FeSi film grown at 250 ℃ on GaAs;

b) BF-TEM for growth temperature of 400 ℃ [71].

In other cases, the interfaces may be atomically sharp, but the bonding itself

between the layers may significantly alter the spin-electronic structure, e.g. destroy the

half-metallicity. In both cases, despite the full spin-polarisation of the electrode, the

current may become drastically affected (due to the arguments discussed above), i.e.

partially or fully depolarised as it flows through the interface.

There are many studies that report on the issues related to interfacial intermixing

of the atomic species or even formation of secondary interfacial phases [66]. For

CFS/Si(111) these challenges were addressed in Ref. [72]. It was shown that there is a
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temperature dependent interfacial diffusion between the Heusler electrode and Si

substrate. For the case of CFS grown on GaAs [71] the situation is even more dramatic. As

seen in Figure 2.12 there are large areas where secondary interfacial phases (in this case

CoAs) are formed. Interfacial issues have been also observed for CMS/GaAs in Ref. [73,

74] and in Ref. [75] for Co2MnGa/GaAs. Low spin-injection efficiency has also been

observed when the electrode is Co2MnGe [76] and as a possible issue the interface

electronic structure has been pointed out. The study performed in Ref. [77] has showed

16% spin-injection efficiency for the hybrid device based on CFS/GaAs. In Ref. [78]

although some interfacial intermixing has been observed, a promising value (about 50%)

of spin-injection efficiency with CFS electrode on GaAs has been measured.

Hence, these results demonstrate that the atomic structure of the interface can be

particularly important for the performance of the whole device. For some systems, the

atomic structure at the interface can be completely altered preventing efficient

spin-injection.

On the other hand, many other studies have focused on purely theoretical

investigation of the electronic structure at interfaces with half-metal [53, 79, 80]. For

example, in Ref. [81] it has been shown that the half-metallicity is lost at Co2MnGe/GaAs

interfaces. Similar studies have been performed for Co2CrAl/InP where decrease of

interfacial spin-polarisation has also been demonstrated [82]. There are also theoretical

studies which show that local disorder at Co2MnSi/Ag interfaces can significantly destroy

the half-metallicity [83]. CFS/GaAs(001) interfaces including intermixing have been also

shown to lose the local half-metallicity [84]. On the other hand, there are some studies

which report on retaining very high spin-polarisation at some interfaces, for example in

the case of (110) interfaces between a full Heusler alloy and GaAs [85]. Similarly, high

spin-polarisation for some Co2MnSi/semiconductor interfaces has been reported in Ref.

[86].

As a summary, all these studies have shown that the spin-polarisation can be

drastically affected at interfaces between a half-metallic full Heusler alloy and

semiconductor/metal. This effect is sensitive on the exact atomic structure which is

determined by the direction of growth and also by disorder/intermixing at interfaces.

Majority of these studies are either for very ideal bulk-terminated interfaces or simplistic
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models for interfacial disorder. Modelling based on direct observation of the atomic

structure at these interfaces is still lacking.

In this thesis, a full correlation between the atomic structure, revealed by

state-of-the-art electron microscopy, and spin-electronic structure, calculated by density

functional theory (DFT), will be established. It will be demonstrated that such approach is

crucial in order to fully address the reduction of device performance due to interface

effects as well as suggest possible solutions for further improvement of their

performance.

2.6 Influence from extended structural defects: antiphase boundaries

Most of this thesis will be focused on studies of the influence of interfaces

(between a Co-based full Heusler alloy and metal/semiconductor) on the half-metallicity.

In addition, in Chapter 7 the presence and influence of extended structural defects in the

full Heusler alloy CFAS will be studied.

Although point defects and disorder in the Co-based full Heusler alloys have been

already studied, a presence of anti-phase boundaries, which are extended structural

defects, has not been so far reported. Anti-phase boundaries have been however

reported in other Heusler alloys. It has been shown [87] that locally they have altered

magnetisation and are pinning sites for magnetic domain walls.

On the other hand, antiphase boundaries have been extensively studied in other

half-metallic materials. They are very abundant in thin films magnetite (Fe3O4), where due

to the superexchange interactions across the antiphase boundaries (APBs) they

significantly alter their magnetic properties i.e. drastically increase the fields required to

saturate the magnetisation [88]. Strong antiferromagnetic bonds across these APBs make

these boundaries pinning sites which affect the spin-polarised transport. Due to the

preference for antiferromagnetic alignment across the APB, the film’s conductivity

decreases compared to that of the bulk and also a MR effect is observed [89, 90]. Some of

these APBs have very low formation energy [91] which explains their abundance in thin

films magnetite.

In this thesis, a ¼a[111] APB will be studied which is observed in CFAS thin film

deposited on Ge(111) substrate. In contrast to the APBs in magnetite, the APBs in Heusler
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alloys are not very abundant as observed experimentally by electron microscopy and

predicted theoretically by DFT calculations which show about an order of magnitude

higher formation energy compared to the lowest energy APB in magnetite. In addition, it

will be shown that this APB reverses the spin-polarisation locally, hence their presence is

very detrimental for the thin film properties. DFT calculations will also show that the

exchange interactions across the APB still favour ferromagnetic alignment, though they

are significantly weakened. By using atomistic magnetic modelling, it will be shown that

this weakening of the exchange constants reduces the width of the magnetic domain wall

for about 20-30 nm.
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3 Methodology

The results in this thesis are obtained by using both theoretical and experimental

methods. In this chapter, the techniques and methodologies employed in this thesis are

presented. All analysed samples have been grown and supplied by our collaborators Prof

Kohei Hamaya and Dr Shinya Yamada from Osaka University, Japan and

Dr. Mikihiko Oogane from Tohoku University, Japan. Molecular Beam Epitaxy (MBE) has

been used to grow CFAS thin films on both Si and Ge, while sputtering for the

CMS/Ag/CMS spin-valve structure grown on MgO. For more details in general about these

growth methods we refer to Ref. [92, 93].

We aim to reveal their atomic structure particularly in the vicinity of the interfaces

between the half-metal and metal/semiconductor as well as across the defects. In order

to achieve this goal various experimental techniques have been used, mainly HAADF

STEM microscopy but also the conventional TEM and selected area electron diffraction

(SAED) as well as spectroscopic techniques such as energy dispersive x-ray spectroscopy

(EDXS) and electron energy loss spectroscopy (EELS). Once the atomic structure is

determined and realistic models are constructed based directly on these observations,

DFT calculations are performed by using the plane wave pseudopotential code CASTEP.

The results reveal the effects the atomic structure causes to the spin-electronic structure

of these systems, which in turn determine their overall performance.

3.1 Specimen preparation for transmission electron microscopy (TEM)

In this section, the conventional method for preparing cross-sectional specimens

for electron microscopy measurements is described. This procedure consists of: preparing

a structure which is to be polished, followed by mechanical polishing and then finishing

with ion milling until a small hole is created in the thinnest part of the specimen [94]. Only

the region around the hole is thin enough and suitable for electron microscopy

measurements. The rule of thumb is that the thinner the specimen is, the better it is for

electron microscopy measurements.
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The whole process is relatively straightforward in principle; however, it can be a

very challenging one to be delivered in practice. It requires in average about 12 hours

devoted work, this depends on the type of the substrate (Si/Ge require less time while

oxides such as MgO/SrTiO3 significantly more time), age of the polishing equipment etc.

In addition to the fact that it is a lengthy process, it is also a destructive technique. From

about 8 (mm)2 film surface required for specimen preparation, only about several (µm)2

can be used for performing electron microscopy; the rest of the initial material is

completely useless, it is either destroyed by polishing, cutting, ion-milling etc. or remains

thick (regions far away from the hole). Hence, specimen preparation requires significant

and continuous attention to details at each stage, especially when the available material

is very limited which can often be the case.

Figure 3.1 a) example of CFAS thin film deposited on a (10 mm x 10 mm x 0.5 mm) Ge

substrate; the shaded area is used to mark the substrate crystallographic orientations; b)

a rectangular piece with dimensions ~(4 x 1 x 0.5) mmଷ is the basic constituent of the

structure shown in c) which is a schematics of the specimen ready to be mechanically

polished; d) side view of the structure is c).

All specimens analysed in this thesis are either a thin film (half-metallic) or several

layers of thin films deposited on a substrate which usually is with dimensions:

(10 mm x 10 mm x 0.5 mm), as shown in Figure 3.1a. The properties of the whole

structure may significantly depend on the crystallographic orientation (i.e. growth
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direction) of the substrate. Also, since in electron microscope we look at the material in

projection along certain crystallographic direction, we additionally need to know the in-

plane orientations of the substrate.

In other words, for [111] oriented substrates (the normal of the deposited surface

is along the substrate’s [111] crystallographic direction), which are frequently used in this

thesis, the in-plane orientations are [110] and [112]. If we cut the substrate parallel to

the edges, then the prepared specimen will be either in [110] or [112] zone axis (the

viewing direction in an electron microscope). Both of them are suitable for performing

electron microscopy. However for [001] oriented substrates, the in-plane directions can

be [100] and [010] and both of these zone axes are not suitable for performing electron

microscopy on the Heusler alloys studied in this thesis. This is because the atomic

columns would contain atoms from different elements, making the analysis of their

atomic structure practically impossible. Substrates directions are usually marked

(Figure 3.1a) with shaded areas or with small cuts at the corners.

The sample preparation starts by cutting two equal pieces with dimensions

(4 x 1 x 0.5) mm3 from the sample (Figure 3.1b). In order to get the desired zone axis, we

should take into account that these pieces will be glued in a structure which when is

ready to be analysed in a microscope has substrate oriented as the edge with dimension

1 mm from the initial piece. The substrate during the cutting is glued on a glass slide

(Figure 3.1a) using a ‘crystal bond‘ glue which is very suitable for specimen preparation

purposes as it can be melted at low temperatures (and again solidified at room

temperature) or completely removed with acetone.

The cutting is done with a machine which has a thin diamond blade using very low

angular velocity and very low pressure in order to reduce any damage on the specimen.

Brittle substrates such as MgO easily cleave and break if we are not very careful during

the cutting. After the cutting, the two pieces are unglued from the glass slide by heating.

It takes only couple seconds to melt the crystal bond glue. These (substrate+film) pieces

are then cleaned by leaving them for about three minutes first in acetone, then ethanol

and finishing with isopropanol. For some specimens, an additional cleaning using

ultrasonic bath is required.

The next step is preparing a glue which is about 1:10 mixture of hardener and

resin. This gives a resultant glue mixture which can be solidified by heating at about
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100 oC for 1-2 minutes. In contrast to the crystal bond, once solidified this glue mixture

cannot be reversed back to liquid phase (at least not at the low temperatures used for

specimen preparation). Also, once solidified, it can resist acetone, ethanol and

isopropanol; hence this mixture is suitable to be used as a permanent glue into the

structure which after the polishing has to be additionally heated, cleaned etc. Before

using this glue, we shall always check it several times, whether we have achieved the right

mixture, by pressing it hard with a wooden cocktail stick. If the cocktail stick breaks

without making any damage to the solidified glue, then we know that the glue is ready to

be used for gluing the cut pieces. Additional empirical indication of a right glue mixture is

the dark-orange/red colour of the solidified glue. We shall always make sure that the

prepared glue is of a good quality. Otherwise, if we have not properly tested it, after

several hours polishing when the very thin (several microns) specimen has to be unglued

from the glass slide by heating, the glue might fail and the whole structure breaks apart.

Once a right glue mixture is ready, we take the two cleaned (substrate+film)

pieces and glue them together; with the film’s surfaces of both pieces face-to-face. We

leave these glued pieces on a hot plate for 1-2 minutes allowing the glue mixture to

solidify. We need to make sure that we have pressed them together hard enough, in

order to obtain as thin ‘glue line’ (the space between the film surfaces filled with glue) as

possible. Thinner glue lines are important for two main reasons: the sample contaminates

less when measured in an electron microscope, and also the ion-milling is much more

effective and always gives thinner specimens.

Figure 3.2 a) Polishing equipment; b) precision ion polishing system (PIPS) machine.
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In order to provide an additional mechanical stability during the polishing, we glue

two Si pieces which have the same size as the (substrate+film pieces), one at each side of

the current structure. Besides this main purpose of the Si ‘supports’ they serve as a

thickness guide in the final stage of the polishing. In other words, at that stage the

structure becomes very thin and brittle, so it is not recommendable to measure its

thickness with the conventional mechanical instrument. In such situation we can judge

whether the specimen is thin enough or has to be further polished by the colour of the Si

supports when we look at them using optical microscope in transmission mode. They

become first reddish and when they are very thin turn to yellowish colour.

Hence, the specimen so far looks as outlined schematically in Figure 3.1c-d. After

gluing it on a glass slide using a crystal bond (so we can easily remove it when the

polishing is done) it is ready to be mechanically polished.

For polishing (Figure 3.2), we use four different polishing papers labelled as

1, 3, 6 and 15 µm. These values are related to the size of the particles within the paper

which make the polishing possible. We use 15 µm paper for the rough polishing in the

beginning while 1 µm in the final stage to make the specimen as thin as possible without

breaking it. The polishing is performed manually by hand, since we have better control on

the specimen compared to using a polishing machine, especially in the final stage.

Constant water flow is applied during the polishing which makes the polishing paper

always covered with water for cooling purposes. During the polishing, specimen thickness

has to be occasionally checked. When certain thickness is reached we change the

polishing paper for example from 15 µm to 6 µm. In addition to the thickness, we always

have to check the quality of the sample by using optical microscope; whether the sample

is broken, whether we have scratches which may further expand and damage the sample

etc.

Both sides of the specimen have to be polished. We start from one side, and keep

polishing until the specimen surface becomes everywhere uniformly polished, and then

when the desired thickness is reached change the paper and do the same. Usually after

the polishing of the first side, specimen thickness is about 500 µm. For the first side of the

specimen is not much important what is the final thickness as long as is not too thick or

too thin, as we have to flip it and glue a TEM grid to it. Hence, a thickness of about

0.5 mm is ideal.
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Once the polishing of the first side of the specimen is finished we put the

specimen on a hot plate, remove it from the glass slide and perform a cleaning. After this

step, we glue (using the glue mixture) a TEM copper ring (~3 mm diameter) to the

polished side of the specimen (Figure 3.3). This ring provides an additional and crucial

mechanical support in the final stage of the polishing and also holds the specimen after

the preparation is finished. Making the ‘glue line’ between the TEM ring and the rest of

the specimen as thin and uniform as possible is very important. Almost always specimens

break in the final stage of the polishing if we have not glued the TEM ring properly.

Figure 3.3 a) TEM rings; b) specimen once the TEM ring is glued; c) shows the colour of

the Si supports when the specimen is very thin and ready to be ion-milled. This image is

recorded by an optical microscope in transmission mode.

Once the TEM grid is glued, we flip the whole structure and glue it (using crystal

bond) on the glass slide. We are now ready to polish the second side of the specimen. We

start with 15 µm polishing paper and change to 6 µm when the specimen thickness is

200 µm. When the thickness becomes 130 µm we change to 3 µm polishing paper, while

the final polishing step is performed with 1 µm paper for thicknesses below 100 µm. All

specimen thicknesses referred above include the TEM ring (~50 µm) as well as the glue

line (which is much thinner, at most few microns) between the TEM ring and the

specimen.

The polishing with 1 µm paper in the final stage is the most crucial step in the

specimen preparation procedure. As briefly mentioned above, in this stage the specimen

is very thin and extremely sensitive. We no longer use the mechanical thickness

instrument, but judge the specimen thickness by the colour of the Si supports. In the

beginning of this stage they are dark (in transmission mode). When the specimen
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thickness (only the specimen not including the ring) becomes several microns, the Si

supports transmit light and we see them as reddish/yellowish in transmission

(Figure 3.3c). When we notice yellowish colour we stop polishing.

Once the polishing is done we cut the material outside the copper ring by using a

sharp tip cutting pen. We then heat the glass slide and remove the specimen which is

now only within the copper ring. We perform again cleaning with acetone, ethanol and

isopropanol to remove completely any crystal bond leftovers and the specimen is ready

to be ion-milled using PIPS machine.

The PIPS machine sputters material from the sample by using two focused

Ar-beams; the Ar atoms can be accelerated up to 6 keV. For the specimens prepared in

this thesis we use a value of ~3.5 keV. Schematic of the ion-milling is shown in

Figure 3.4a. The Ar-beams are hitting the specimen under ~6o angle (the PIPS machine

can be operated at angles up to 10o) while the sample is rotating around a vertical axis

with angular speed of 3 rpm (revolution per minute). The beams are hitting the centre of

the specimen and at some point they will drill a small hole. The whole idea of the

ion-milling is to create a very small hole so that obviously in the vicinity of that hole we

would have an area with a gradually decreasing thickness. The hole has to be small;

otherwise, if we keep ion-milling we would lose the thinnest and best region of our

specimen. Hence, it is important to periodically check the condition of the specimen using

an optical microscope.

At the beginning of this process we run the machine for ~15 minutes and then

check the glue-line by using an optical microscope. After couple such iterations (normally

for nicely polished specimens on Si substrate the whole process takes about an hour;

when the substrate is MgO it takes about 2-3 hours) we start seeing the formation of a

thickness valley around the glue line. When we notice such features, we still keep running

the ion-milling but we reduce the milling time for the next iteration.

At some point, the central region of the valley will start showing thickness fringes

(Figure 3.4c) which indicates that the region has become very thin. When such fringes

emerge we shall reduce the milling time for the next iteration to at most 5 minutes. The

hole is just about to appear at this stage and milling for more time might lead to

‘over-pipsed’ sample i.e. creation of a very big hole and useless specimen. When we

notice a small dark hole in the optical microscope (in reflection mode) surrounded by
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fringes we know that the hole has appeared and we stop the milling process. We shall

only clean the specimen using the standard procedure described above and the specimen

is ready to be put in an electron microscope.

Figure 3.4 a) Schematic of the milling process; b) the specimen looked at in optical

microscope (using reflection mode) during the final stage of polishing; c) shape of the glue

line after the ion-milling is finished; we can see the formation of a small hole surrounded

by thickness fringes.

Finally, it is worth to mention that TEM specimens can also be prepared by using

Focused Ion Beam (FIB) machine. An advantage of the FIB method is that it requires very

small amount of material and also it is an automatic procedure, but disadvantage is that it

is a very expensive technique. Also, the quality of a sample nicely prepared by the

conventional procedure described in this section quite often is much better (i.e. thinner

and cleaner specimens) compared to the ones prepared by FIB.

3.2 Electron microscopy

Electron microscopy is a very powerful and widely used technique for materials

characterisation at atomic/nanoscale. The development of electron microscopes has been

inspired by the need to improve the resolution that can be achieved by using a
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conventional optical (light) microscope. Couple years after the discovery of the wave

properties (proposed by de Broglie) of particles including electrons and the experimental

confirmation of this principle by the groups of Davison and Germer as well as Thomson

and Reid, the idea of an electron lens has been developed and implemented in the first

electron microscope designed by Knoll and Ruska (1932) [95].

There are two main reasons for using electrons, the first is obviously they can have

very small wavelength but in addition, an equally important factor is that they can be

easily and efficiently controlled/manipulated by lenses which is crucial for achieving high

resolution in a microscope. This is the case because they are charged particles in contrast

to for example small wavelength X-rays which in principle should enable very high

resolution, but the issue in this case is that due to their charge neutrality building efficient

lenses for them is very challenging. They also practically do not refract in glass, which in

turn is the main working mechanism of the visible light lenses.

The equation which enables to compute the electron wavelength can be

straightforwardly derived by using the de Broglie formula (Eq. 3.1), which gives the

relationship between the momentum (p) and wavelength (λ): 

λ =
ℎ

݌
Eq. 3.1

(where ℎ is the Planck’s constant), combined with the relativistic equation that correlates

the particle momentum with its energy. Taking into account that the kinetic energy which

the electron has obtained when it leaves the electron gun (operating at voltage ܸ) is

equal to ܸ݁ , the following expression, (Eq. 3.2) for the wavelength of electron accelerated

in potential difference ܸ , is obtained:

λ =
ℎ

ቆ2݉ ଴ܸ݁ ൬1 +
ܸ݁

2݉ ଴
ଶܿ൰ቇ

ଵ/ଶ
Eq. 3.2

where ݉ ଴ and ݁are the mass and charge of the electron respectively while ܿis the speed

of light.

Since the image in an electron microscope is formed by the transmitted (through

the sample) electrons, very thin specimens (~50 nm) are required, which can sometimes

be challenging to achieve especially when atomic resolution imaging or spectroscopy is

needed. An additional important factor which has to be taken into account when

analysing specimens by electron microscopy is the possible ‘beam damage’ that can affect
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the specimen. Due to the very high energy of the incoming electrons, some specimens

e.g. biological specimens can be partially or fully destroyed. However, the specimens

analysed in this work are resistant to the beam and a careful specimen preparation

enables both successful imaging and spectroscopy.

An electron microscope is a very expensive and complex machine. In order to

record atomic resolution images, obviously we need a very sophisticated machine which

includes many functional parts. In a simplified picture, we can regard the microscope as a

machine that: i) generates high energy electrons (usually 100-200 keV), ii) have a complex

system of electron lenses which focus the electron beam on the specimen, iii) after the

electrons have interacted and transmitted through the specimen they are collected and

manipulated again by lenses until a magnified image is obtained on the viewing screen.

The electrons in these microscopes are equivalent to the light in optical microscopes.

They are generated and accelerated by the electron gun (which is the source of high

energy/small wavelength electrons), deflected/focused along the microscope column

using magnetic lenses and detected either by charge-coupled-device (CCD) cameras or

directly on a fluorescent viewing screen. One of the most crucial parts of an electron

microscope are its lenses.

3.2.1 Lenses in an electron microscope and their imperfections

In contrast to conventional optical lenses (Figure 3.5a), where the light is focused

due to refractions at the lens, in an electron (magnetic) lens, the focusing is achieved by

using strong magnetic fields generated by the electric current that flows in the Cu – coils

(Figure 3.5b). The mechanism responsible for deflection of the electrons as they travel

through such lens is the Lorenz force. Due to the presence of both parallel and normal

component of the electron’s velocity, the electron travels along a spiral path within the

lens. These spiral trajectories are the reason that causes the images recorded with

electron microscopes to rotate in-plane when we change magnification during the

measurements.
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Figure 3.5 Schematic of a) conventional optical lens and the image formation mechanism;

b) cross-section of a magnetic lens [95].

Although the magnetic fields within the lens provide a controllable mechanism to

modify the trajectories of the electrons, the electromagnetic lenses are much more

imperfect compared to optical lenses. The reason are obviously the challenges to create a

desired magnetic field within the lens so that the lens acts in the same way for all

electrons e.g. paraxial and off-axis, the challenges to create ideally cylindrically symmetric

fields etc. The minimisation of these imperfections can drastically improve microscope

resolution. Spherical aberrations, chromatic aberrations and astigmatism are the most

significant factors related to the lenses that ultimately affect the ability to achieve even

higher resolutions [95].

Figure 3.6 Imaging a point object with electromagnetic lens which has a) Cs > 0; b) Cs = 0.

The lens in (a) generates blurred disk at the imaging plane, which is due to the difference

in focus between the paraxial and off-axis ‘rays’.
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Spherical aberrations are caused by the inability of the electromagnetic lens to act

in the same way for the off-axis electrons as it does for the paraxial electrons [95]. In

other words electrons that are coming at the lens ‘far away’ from the optical axis will be

focused at a different distance from the lens compared to the paraxial electrons. When

we image a point object, some electrons travel near the optical axis but some are at

larger angles, hence the image created by such lens is not a point but a blurred disk

(Figure 3.6).

Therefore, spherical aberrations decrease the microscope resolution. Many

microscopes today have ௦ܥ correctors ௦ܥ) is the spherical aberrations coefficient); these

are complex systems of lenses (quadrupole, hexapoles, octapoles) in which the currents

are interdependent and controlled automatically by computer. The correctors are

designed to modify the electron beam so that any electron whether it travels under

paraxial condition or far away from the optical axis it will be focused in the same point.

Microscopes with ௦ܥ correctors have significantly improved spatial resolution, some of

them reaching values even below 1 Å.

Another type aberration is the chromatic aberration which is caused by the

difference in wavelength of the electrons. Such difference appears due to the energy

spread of the electrons coming out of the electron gun. The electrons with lower energy

will be deflected more i.e. they will have shorter focal length which taking into account

the same arguments as above, will create blurred disk at the imaging plane rather than a

point. The modern microscopes however, have quite good electron sources (based on

field emission i.e. cold field emissions gun) which can achieve electron beam with energy

spread of ~0.3 eV. Further improvement nowadays is achieved by using monochromators

which can provide an electron beam with energy spread of ~0.15 meV. Besides the

energy dispersion due to the source, an additional contribution can arise due to the

energy losses after the electrons have interacted with the specimen. The solution to this

issue is to apply energy filtering which is practically implemented in energy filtered

(EF)TEM.

In addition, astigmatism is another imperfection which worsens the microscope’s

spatial resolution. This effect arises due to inhomogeneities of the magnetic field around

the microscope optical axis. Main contribution is within the lens, but some might appear

also due to charged contaminations when the microscope apertures are not perfectly
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clean [95]. These magnetic field non-uniformities can be corrected with stigmators, which

are octapoles generating small compensating magnetic fields.

3.2.2 Imaging and diffraction modes in conventional TEM

In this section, it will be explained how the whole system of lenses can be easily

transferred from one to another setup giving several imaging/diffraction modes, all

providing some particular information about the specimen structure.

Figure 3.7 Schematic of a) diffraction, b) imaging mode in conventional TEM [95]. By

changing the lenses strength and using apertures we are able to easily transfer between

diffraction and imaging mode. Note that the schematic is simplified and illustrates the

basic principles of work. The practical implementation involves many more lenses.

The system of lenses between the electron gun and the specimen is called

illumination system. As the name suggests, the functionality of these lenses is to collect

the electrons coming out of the source and ‘focus’ them on the specimen either as a
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parallel beam (required for example for collecting diffraction patterns) or convergent

beam (as it is the case in STEM mode).

Next, the imaging system in conventional TEM will be considered. Once we have

illuminated the specimen and the electrons have interacted with the specimen, another

complex system of lenses is used to record either an image or a selected area electron

diffraction (SAED) pattern. Although the real implementation is more complex and

involves more lenses, in the Figure 3.7 a simplified schematic of the microscope operation

in imaging and diffraction mode is given. In simple approximation, the system of lenses

below the specimen consists of objective, intermediate and projector lens. Below the

objective lens two optical planes are of particular interest, the back focal plane and the

image plane both belonging to the objective lens. After the electrons have interacted with

the specimen, its bottom (exit) surface acts as an object for the objective lens. The

objective lens creates an image of this object in its imaging plane, while in the back focal

plane a diffraction pattern is formed.

In the diffraction mode (Figure 3.7a), the strength of the intermediate lens is

chosen so that it takes the back focal plane (of the objective lens) as its object, while in

the imaging mode (Figure 3.7b) the image plane (of the objective lens) acts as an object

for the intermediate lens [95]. First let consider the diffraction mode. As described above,

in the back focal plane of the objective lens we have the diffraction pattern of the

illuminated area of the specimen which for crystalline specimens is a pattern of very

bright diffraction spots, which arise as a result of scattering from the corresponding sets

of atomic planes. If we consider one such reflection (the blue point in Figure 3.7a), then

this point is imaged by the intermediate lens into a point at the image plane of the

intermediate lens where we form an intermediate image. This image is then magnified by

the projector lens and focused on the screen. Hence this setup gives a magnified image of

the back focal plane of the objective lens i.e. a diffraction pattern. In many cases, it is

proving very useful to get a so called selected area diffraction pattern, i.e. the diffraction

pattern that comes from specific region of the specimen. In order to achieve this, we

insert a SAED aperture in the image plane (objective lens), as shown in Figure 3.7a. Since

in this plane an image of the specimen is formed, by moving the aperture we can choose

only the area which we are interested in. Hence by using an aperture any contribution

from the rest of the specimen will be avoided in the resulting SAED pattern.



Chapter 3. Methodology

62 | P a g e

In the imaging mode, (Figure 3.7b) the intermediate lens strength is chosen so

that it takes the image plane (of the objective lens) as its object, and then this image is

further magnified by the projector lens [95]. We can operate in this mode without the

SAED and objective apertures, however sometimes it is very useful to insert the objective

aperture. This aperture is at the back focal plane of the objective lens and has the

purpose to select the desired area of the diffraction pattern. If we put the aperture at the

centre it will transmit only the central spot from the diffraction pattern and the final

image on the screen in such case is called a bright field (BF) image. We can also choose

another i.e. non-central diffraction spot, in which case we form so called dark field (DF)

image [95]. This is illustrated in the Figure 3.8; by choosing the central reflection with the

objective aperture we get a BF image, while if we shift the aperture so that it transmits

the [h1, k1, l1] diffraction spot we get the corresponding DF image. BF and DF TEM images

give very useful information about the specimen structure, since the contrast in these

images depends on the scattering properties of given specimen area; these are diffraction

contrast imaging modes. For example, if we have a polycrystalline specimen and perform

a DF imaging we will see very bright the grains which are oriented in a way to satisfy the

Bragg condition to produce the diffraction spot chosen for the DF imaging.

We can also operate in another imaging mode, so-called high resolution

transmission electron microscopy (HRTEM). In this case, we do not use a particular

diffraction spot(s) from the back focal plane, but remove the objective aperture so that

the whole diffraction pattern is transmitted. In this mode, we get much more

information about the specimen since we have allowed all diffraction spots to participate

in the resultant image on the screen. Each of this diffraction spots give useful information

about the corresponding atomic planes. Hence, for the HRTEM imaging the final image is

actually a complicated interference pattern [95]. This imaging mode can give us some

useful information about the specimen e.g. lattice fringes, but each such image has to be

carefully interpreted. The HRTEM contrast for crystals is a periodic pattern however the

atomic columns cannot be straightforwardly determined from such patterns since the

contrast depends on the imaging conditions and specimen thickness.

In other words, if we want to extract useful information from such images,

developing atomistic models and performing image simulations on such models are

required. Most of the electron microscopy images in this thesis are HAADF STEM images,
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which allow us to extract much more reliable information from the specimen, as the

contrast in these images is more straightforward to be interpreted [95, 96]. TEM imaging

in this thesis is used to obtain overall information such as film thickness, but not for

analysis of the specimen structure at the atomic level, where the HAADF STEM imaging is

more suitable.

Figure 3.8 Schematic of a) HRTEM; b) BF; c) DF TEM imaging. It is shown how by using the

objective aperture we can switch between these three complementary imaging modes.

Note that [h, k, l] are the Miller indices for the corresponding atomic planes.

Note that the electron microscopes design is now advanced so that the switching

between imaging (BF, DF, HRTEM) and diffraction modes is simple and takes just couple

seconds.

3.2.3 Scanning Transmission Electron Microscopy (STEM)

The STEM technique is very frequently used in this thesis to extract information

about the atomic structure of the film, interfaces or defects. This microscopy technique is

widely used in material sciences since it can provide us with sub-angstrom resolution

information about the specimen [21, 96], which makes this method very attractive.

Obviously, achieving such high-resolution is not a trivial problem. We need to successfully

implement two challenges, the first is finding an appropriate method, and the second is

to reach the level in technology when the instrument design is so advanced so that such

practical implementation can be achieved. The HAADF STEM imaging is one of the

outstanding achievements of physics in general, both conceptually and practically. Taking

into account that a STEM microscope is a complex system of macroscopic objects, the
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careful design has enabled outstanding stability in order atomic resolution imaging to be

possible.

As the name suggests, the STEM mode operates by scanning/rastering a

sub-angstrom probe across the specimen surface [96]. The lenses above the specimen

which include the condenser and objective lens have the purpose to create a convergent

beam which is focused to a sub-angstrom region called the ‘probe’ [96, 97]. The

specimen is positioned along the optical axis so that its position matches with the position

where the beam converges and the probe is formed. Hence, in contrast to the

conventional TEM imaging, in the STEM imaging we have point-like illumination. By

having a point-like illumination we are able to obtain local information of the specimen

structure on angstrom scale. In STEM the probe is scanned across the specimen, stopping

at each point for a certain time (microseconds), in order to obtain information for an

extended region. Hence, pixel-by-pixel we generate information for certain specific area

of interest. In order to perform the required scanning, we need to be able to shift the

probe across the specimen surface. This positioning of the probe is done by using system

of scanning coils (Figure 3.9a) which create controlled magnetic fields required to deflect

the probe from the central to a desired (x, y) position [96].

The scanning makes the STEM images to be serial mode images i.e. obtained

pixel-by-pixel compared to the parallel mode TEM images where the whole image is

generated at once. There are enormous advantages of the STEM mode. We obtain a

pixel-by-pixel information about the specimen, and in this way a resultant image which

not only that contains more information but is also much more straightforward for

interpretation (if the collection angles of the scattered electrons are large) [96, 98]. The

images are formed by a sub-angstrom probe (in recent microscopes) and the underlying

mechanism for the image formation in STEM is the scattering of electrons from the

specimen/atomic columns [98].

Imaging in STEM can be performed by using different modes. It is crucial for the

STEM imaging, to be able to get a proper probe; all important probe forming lenses are

above the specimen plane. Below the specimen, in contrast to TEM mode, here we do not

use lenses to magnify/construct an image. This is another fundamental difference

compared to TEM. We only need detectors to record either a BF STEM or HAADF STEM

image [95, 96].
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The scattering of electrons at the specimen, produces electrons which are

travelling under different angles, some of them at very low angles but some of them at

‘very high’ angles. Obviously, we can form two types of images depending which

electrons we have chosen to work with. The low angle electrons (up to several mrad)

form so called BF STEM images while the electrons scattered at high angles form

HAADF STEM images [96]. There are also middle-angle-annular-dark-field (MAADF) STEM

images where the detector is also annular but collects the electrons scattered under

medium range angles, although these are less frequently used for analysis. The geometry

of the BF STEM and HAADF STEM detectors is illustrated in the Figure 3.9b. The HAADF

detector is of annular type i.e. it has a hole at the centre and it is sensitive only at certain

high angle range typically in the interval (70 - 200 mrad).

Figure 3.9 STEM imaging. a) Schematic of the scanning mechanism. The scanning coils

generate magnetic fields required to obtain the desired shift (x,y); b) Schematic of the

geometry of imaging detectors. The electrons are scattered from the specimen’s atomic

columns; the ones travelling under high angle are collected by the annular type HAADF

while the low angle electrons are transmitted through the hole of the HAADF detector

and collected by the BF detector.
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The electrons travelling under low angles go through the centre of the HAADF

detector and are detected by the BF detector. The images obtained in BF STEM mode are

again challenging for interpretation as these images are still phase contrast images.

Annular BF STEM (where the electrons traveling under very small angles with respect to

the optical axis are not included) has been used to image light elements [99, 100]. On the

other hand, the high angle electrons are incoherent making the resulting signal more

straightforward to be interpreted [98]. A bright pixel in HAADF images corresponds to

scattering centre, the more intensity is collected at given pixel the heavier are the

elements along that atomic column. This straightforward correlation between the atomic

number and the intensity in the HAADF images is the reason why this imaging mode is

widely used in the scientific community, and quite frequently throughout this thesis.

Before explaining the HAADF STEM imaging mode, we should mention another important

fundamental difference between the STEM and TEM, which is the image magnification

mechanism.

In a TEM we magnify the images produced by the electrons at the specimen exit

surface in a way similar to that in conventional optical microscope, i.e. by carefully setting

the focal lengths of the system of lenses so that the final image dimensions are much

bigger that those of the object [95]. In STEM imaging, taking into account that there are

no lenses below the specimen, the concept of magnification has to be carefully explained.

In this case, the image dimensions are defined by the so called scanning window, which is

the region of the specimen surface being scanned by the beam [96].

The microscope is programmed so that this window is sampled equidistantly in

both dimensions and at each ‘pixel’ of this area the beam scans for a very short time

interval. If we work at very high magnification the distance between these pixels is very

small (in many modern STEM this is much smaller than the interatomic distances). On the

other hand, in the case of low magnification these pixels are far away, making impossible

for example to reveal the specimen atomic structure. Therefore, the magnification in

STEM images is directly determined by the dimensions of the scanning window [96].

The probe is fundamentally important for the STEM imaging mode, for example,

its size determines the image resolution, while its shape is directly related to the quality

of the probe forming lenses and determines the quality of the final image [96]. Since the

probe is an image of the electron source (the active part of the gun), first of all we need
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sources that are point-like i.e. produce highest brightness (current density per solid angle)

possible. In other words, with smaller source active area we get smaller probe size. In

addition, by simple optical considerations, it can be shown that the probe diameter can

be controlled by the convergence semi-angle of the beam below the objective lens [97].

With bigger convergence semi-angles we can get smaller probes. However, the

aberrations at the objective lens start to dominate and set a limit on the probe size [97].

Hence, in order to further reduce the probe size, a reduction of the spherical

aberration coefficient is required. In the modern dedicated STEM instruments such

correction is performed with Cs correctors which are complex systems of lenses modifying

the beam before it enters the objective lens [101]. Manufacturing an ideal

electromagnetic lens which does not create aberrations is proving very challenging. As

mentioned before, the off-axis rays are deflected more which makes them focus closer to

the lens than the paraxial rays. What the Cs corrector does is that it diverges the off axis

rays so that this additional angle would compensate for the over-deflection caused by the

objective lens [101]. Such correctors have enabled sub-angstrom probe size, which in turn

leads to a very high spatial resolution of the final STEM image.

Finally, a simplistic schematic of the functional parts of a dedicated STEM

microscope is shown the Figure 3.10. We shall note that in many modern dedicated STEM

microscopes the whole column is reversed so that the gun is at the bottom and the

detectors are at the top (Figure 3.10). It is designed this way, since the gun is the heaviest

part and provides better mechanical stability of the whole system when is installed at the

bottom part of the microscope.
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Figure 3.10 Simplified schematic of a dedicated STEM microscope [102].

3.2.4 High Angle Annular Dark Field (HAADF) STEM

In contrast to the coherent HRTEM, the HAADF STEM images are formed by

incoherent electrons since they are scattered under very high angle. These high angle

electrons have experienced Rutherford scattering (proportional to the atomic number (Z)

as ~Z2) at the specimen, which occurs when the electron travels very close to the

positively charged core of given atom [96]. Hence, an image recorded in this mode is not

a phase contrast/interference image. Due to the incoherency, the intensity recorded by

the annular HAADF detector can be represented as a sum of all scattering intensities

coming from the specimen’s ‘scattering centres’ which have interacted with the probe

[97]. This allows the atoms from the specimen to be treated mainly as independent

scattering centres and certainly enables more straightforward interpretation of the

resultant images [97].

Taking into account the size of the probe for modern dedicated STEM microscopes

(for example ~0.9 Å for the Nion UltraSTEM 100 microscope at SuperSTEM, Daresbury,

UK), when we operate at very high magnification, the probe can visit several pixels all
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positioned in-between two neighbouring atomic columns. For specimens with small

thickness along the zone axis, and in the case of low-index zone axes, these conditions

make the signals coming from two neighbouring atomic columns practically independent.

Hence, atomic columns that contain elements with higher atomic number Z appear

brighter in the image compared to lower Z elements, as the intensity is ~Z2 due to the

Rutherford alike scattering [97]. Also, an atomic column will appear brighter even if it has

the same Z as some other column which contain less number of atoms in that projection.

These properties can be very useful for compositional identification of the atomic

columns when the specimen is imaged along appropriate zone axis. For example, some

half-metallic materials such as magnetite have neighbouring columns which contain only

Fe but different number of Fe atoms in different atomic columns [21, 23]. In such case,

we will observe brighter/darker contrast in the resulting HAADF image, which can be used

to judge whether the desired atomic ordering is achieved. On the other hand, for some

other materials, such as the Heusler alloys analysed in this thesis, neighbouring atomic

columns can have the same number of atoms, but in column ‘1’, there are only atoms

from the element Z1, while in column ‘2’, only atoms from the element Z2 [50]. In such

case, taking into account the Z2 contrast dependence, we can perform chemical

identification, and in some case straightforwardly reveal the atomic structure of the

specimen. These properties of the HAADF STEM imaging illustrate its usefulness as well as

potentials and explain the wide applicability of this technique in physical sciences.

Moreover, this imaging can be performed simultaneously with EELS and EDXS so that with

one acquisition we get both structural and chemical information of the specimen [21,

103, 104].

As discussed above, advantages of this imaging mode are enormous. We should

be aware however, that due to the extremely small probe size, some specimens may

suffer a damage when exposed with the beam [95]. The samples analysed in this thesis

are in general resistant to beam exposure. Also, the strong probe may easily attract any

contaminations present at the specimen surface, and very quickly make the imaging

impossible. In addition, thickness here plays a very important role; in general thinner

specimens are required compared to those for HRTEM imaging. Hence, with the

HAADF STEM imaging we can obtain very useful insights at the atomic level however, we

should be aware that we face some challenges which can be to a good extent avoided for
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very well-prepared specimens. We shall also be aware that this technique is not that

sensitive for low Z elements, due to the Z2 contrast dependence.

During practical operation, there is always a possibility that the probe’s axis is

slightly misaligned with respect to an atomic column or slightly off from ideal convergent

beam etc. All these effects would effectively reduce the spatial resolution of the acquired

HAADF STEM image. However, such small effects are to some extent compensated by the

phenomenon called channelling, which plays a very important role for the HAADF STEM

images quality [97]. The physics behind this phenomenon is that the atomic columns are

positively charged and attract the negatively charged electrons from the probe more

compared to the interstitial region. Hence, the atomic columns can be regarded as a

channel which the probe electrons tend to follow as they travel through the specimen,

hence reducing the beam broadening i.e. improving the spatial resolution [97]. Some

details about the channelling are presented in the following paragraph.

We label the potential energy (with respect to vacuum) of the probe electron as

U0 when this electron is in the interstitial region, then along the atomic columns this

energy is U0 + U, where U is the potential energy difference between the atomic columns

and interstitial region. Taking into account that the total energy of the electron is

conserved when the electron from vacuum enters into the specimen, due to the presence

of lower potential energy along the atomic columns, its kinetic energy is increased in this

region. That means that the module of the wave vector is bigger in the atomic columns

compared to the interstitial region; which implies that the wavelength is smaller. This

difference in electron wavelengths between atomic columns and interstitial region will

cause total reflection of the electron which travels under angle smaller than the critical

angle (߮). The corresponding geometry is illustrated in Figure 3.11. It can be easily shown

[97] that the critical angle can be estimated using the relationship:

߮ =
ට−

2ܷ݉
ħଶ

ට2݉ ܧ) − ܷ଴)
ħଶ

≈ ඨ−
ܷ

ܧ
Eq. 3.3
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Figure 3.11 An electron with wave vector k1 travels under critical angle ߮ with respect to

the hypothetical interface between an atomic column and interstitial region. For this

angle and any other smaller, the electron will be reflected from the interface (dashed

vector) and the column in such case acts as an optical fibre channelling the electrons

through the sample [97]. The potential energies (with respect to the vacuum) of the

probe’s electron are labelled with U0 + U and U0 for the atomic column and interstitial

region respectively.

where E is the electron total energy equal to eV (100 or 200 keV for the microscopes used

in this thesis). Typical values for this angle are several miliradians. The numerator and

denominator of the first ratio in Eq. 3.3 are the components (i.e. normal and parallel

component with respect to the atomic column/interstitial region interface) of the wave

vector k1. These expressions for the components can be derived using the relationship

between kinetic energy and wave-vector as well as the fact that the tangential

component of the wave-vector is not modified when crossing the interface. Taking into

account these considerations, simple calculations lead to the Eq. 3.3.

These results mean that the imaging is to some extent resistant to small

deviations of the incident angle up to the critical angle. Electrons coming to the specimen

under smaller angle will travel all the way down the column similarly as the light in optical

fibre, hence improving the spatial resolution of the HAADF image [97].
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Another important factor worth to be mentioned is the tunnelling of electrons

between neighbouring atomic columns. It was shown above that the electron which

travels along the atomic column is effectively confined in that region due to the

channelling effects. It experiences an energy barrier at the interstitial region, but next to

it there is another atomic column which is another potential well. From quantum

mechanics is known that as long as the distance between such two atomic columns is

small there is a considerable probability for the electron to tunnel from the initial atomic

column to the neighbouring one. The process is probabilistic, hence the likeliness of

realisation increases with the specimen thickness along the beam direction [97]. As a

result, for very thick specimens the intensity coming from given atomic column contains

some contributions from its neighbours. This phenomenon is one additional reason why

the HAADF STEM imaging requires very thin specimens.

3.3 Software for analysis of microscopy images and visualisation of
atomistic models

Digital Micrograph is a software which communicates between user and

microscope. Besides this primary function required during the measurements, this

software has implemented many post-processing tools and is widely used in the

microscopy community and in this thesis. Digital Micrograph is used in this thesis for

several elementary purposes such as image rotation, measuring distances, plotting

intensity profiles but also for some more specific tasks such as calculations of Fourier

transform of images, Bragg filtering, image alignment etc. Many additional tools can be

found in [105].

Several HAADF STEM images presented in this thesis are constructed by series of

images. In order to improve the quality of the image, often, instead of acquiring a single

image, quick acquisition of several (~30) images is performed. This procedure reduces

the exposure on the specimen. The specimen can also drift during this acquisition; hence

the collected series of images has to be aligned. In this thesis, such acquisitions were

performed and the alignment done in Digital Micrograph which already has a spatial drift

correction script [106] that, based on statistical correlations, aligns the images. This

algorithm takes a reference image and calculates the amount of shift along (x, y) for each

image of the series, with respect to the reference. After this step, a final image is



Chapter 3. Methodology

73 | P a g e

constructed as an average of the drift-corrected images from the series. Digital

Micrograph will be also used to plot the element specific maps using the EELS

measurements. Some images were also analysed with ImageJ [107], which is freely

available software for image processing in general.

Very useful tool for material scientists are also the software packages which can

help us to create and visualise atomistic models such as VESTA [108], JEMS [109],

CrystalKit [110] etc. Majority of the atomistic models presented in this thesis are

visualised in VESTA. We also often need information about material structures. There are

many databases available online such as ICSD which is freely available [111].

3.4 Simulations of microscopy images

Image simulations are required for some systems in order to check the validity of

the proposed model. Due to the interference origin of the HRTEM, these images usually

require performing image simulations which should explain the observed phase contrast

and ultimately reveal the underlying atomic structure of the specimen. Although the

contrast is much more straightforward to be interpreted, HAADF STEM image simulations

are also in some cases required. In the Section 5.4, HAADF STEM image simulations are

performed in order to demonstrate the contrast differences between B2 and L21 ordering

of the Co-based Heusler alloy CFAS [112].

The method which majority of computer codes for simulating images have

implemented is called multislice approach [113]. The idea is to divide the specimen along

the beam direction in many slices ideally each of them containing one atomic plane. Let

us assume that one such slice is illuminated with a plane wave electron function. As the

electron travels, the phase of this plane wave changes as .ߣ/ݖߨ2 Since in the specimen an

electron experiences additional energy (potential energy), this modifies its kinetic energy

i.e. momentum which ultimately affects the electron wavelength. This change of

wavelength in turn causes additional phase difference. Simple calculations show [113]

that this additional phase difference can be written as ߪ ௣ܸݖ, where ߪ = ݉ߨ2 ℎଶ/ߣ݁ is so

called interaction parameter (݉ - the electron relativistic mass, ℎ - Planck constant), ௣ܸ is

the electrostatic potential in the specimen, ݖ is the travelled distance. As a result, the exit

wave function is a product of the incident wave function multiplied by the so called

specimen transmission function t(x):
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)ݐ )࢞ = exp[ )௭ݒߪ݅ )࢞] ;

)௭ݒ )࢞ ≡ (ݕ,ݔ)௭ݒ = න ௣ܸ (x, y, z)dݖ
Eq. 3.4

with a phase which depends on the projected potential .(ݕǡݔ)௭ݒ These arguments are

valid only for a very thin slice; the method itself is called weak-phase object

approximation, and is the starting point for multi-slice calculations. The electrostatic

potential is the sum of the potentials of the atoms in the considered slice, which are

already computed and tabulated for each element. Hence, the specimen transmission

function can be determined as a function of the position (x, y). Calculations show that the

transmission function is strongly localised to the nuclei of the atoms within the slice.

Figure 3.12 Schematic of the multislice approach. The wave-function at point ሺݔǡݕǡݖ൅

οݖ) is a sum of all spherical waves originating from ሺݔԢǡݕԢǡݖ) where ൌݖ ݊ܿ݋ Ǥisݐݏ the

position of the previous slice. The amplitude of each such secondary spherical wave is

proportional to the transmission function.

Using the result that the transmission function is localised to the slice, in order to

compute the electron’s wave function that is incident on the next slice, the multislice

method does the following [113]. First, it takes the wave function incident on the ith slice

(with coordinate z, as shown in Figure 3.12), and calculates the transmitted wave function

through this slice (i.e. the incident wave function is multiplied by the specimen

transmission function). Then using the Huygens principles, the wave function incident on

the next slice (with coordinate ൅ݖ οݖ) can be determined as a sum of all spherical

secondary waves originating from the previous slice (after they have been transmitted

through that slice i.e. multiplied by the specimen transmission function). This can be

written [113] mathematically as:
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+ݖ,ݕ,ݔ)௜ାଵߖ (ݖ∆ = (ݖ,ݕ,ݔ)݌ ∗ [(ݖ,ݕ,ݔ)௜ߖ(ݖ,ݕ,ݔ)ݐ] Eq. 3.5

where (ݖ,ݕ,ݔ)݌ is so called propagator function and ‘∗’ stands for a convolution over the

in-plane coordinates .(ݕ,ݔ) The propagator is directly related to a spherical wave

originating from the previous slice. Applying such procedure N times, where N is the total

number of slices, the wave function at the specimen exit surface can be easily obtained. It

should be mentioned that the practical implementation of these algorithms is often much

easier in Fourier space; the convolution becomes a simple multiplication. Taking the

Fourier transform of the exit wave function we obtain the wavefunction at the position of

the objective lens aperture (diffraction plane).

All this discussion applies if the lenses are ideal however, as discussed previously,

imperfections (such as spherical aberration) are often present. The lenses introduce

additional phase difference (described by the so called transfer function of the lens) to

the incoming ray, and this is dependent on the angle under which they enter the lens.

Hence, for each k vector the lens transfer function give the additional phase difference.

Taking this into account, we need to multiply the Fourier transform of the electron exit

wave function by the transfer function of the lens [113]. By doing so, we obtain the final

image in Fourier space; remains only to inverse-transform this function to get the final

image observed at the imaging plane.

For HAADF STEM simulations there are differences; the objective lens in this case

focuses the beam into a probe before it enters the specimen. Hence instead of a plain

wave we shall work with a probe incident wave function which is ultimately determined

by the microscope parameters, such as objective lens convergence angle, aberrations etc.

Also, after the multislice calculations have been performed we take as a signal only the

electrons scattered under high angles as defined by the HAADF detector. This means

using the Fourier transform of the exit wave function, we first calculate the intensity (the

modulus squared) and then integrate it in diffraction space over the area defined by the

detector geometry (collection angles range) [113].

The programs for HAADF STEM simulations such as QSTEM [114] used in this

thesis, also implement algorithms to deal with temperature effects i.e. to include the

thermal diffuse scattering (TDS) [113, 115]. These codes create small displacements of the

atoms from their original positions according to the thermal distribution function. Several
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such configurations are generated and for each of them an image is simulated then the

final image is the average of each of these constituents.

3.5 Spectroscopic techniques: Energy Dispersive X-ray Spectroscopy
(EDXS) and Electron Energy Loss Spectroscopy (EELS)

Additional benefit of the STEM microscopy, besides the ability to give atomic

resolution structural information, is that it can be easily coupled i.e. simultaneously

performed with spectroscopy measurements [96]. In other words, the extremely small

STEM probe size enables to reveal the local chemistry either by detecting the generated

X-rays (EDXS) or by analysing the energy losses of the transmitted electrons (EELS) [95].

These two techniques will be employed in Chapter 6 where it will be revealed what is the

spatial distribution of the outdiffused Ge into the CFAS film. In this section, both EELS and

EDXS STEM are briefly introduced.

Figure 3.13 Schematic of the EDXS geometry in a STEM microscope.

EDXS is based on the analysis of the X-rays generated by the high energy

convergent electron beam incident on the specimen, as shown schematically in the

Figure 3.13. These X-rays are collected by the EDXS detector which can vary in design; Si

drift detector was used in our measurements. The principle of work of these

semiconductor based detectors is that the incoming high energy X-ray is absorbed and

the energy is transferred to an electron which is in turn transferred from the valence

band into the conduction band and accordingly a hole in the valence band is created. Due

to the much higher energy of the X-rays (~keV) compared to the energy required to

create electron-hole pair (~eV) one incoming X-ray typically generates thousands such

pairs [95]. This charge is collected on the detector electrodes and transformed into a
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voltage as a representative signal. Obviously, the detected voltage is proportional to the

energy of the X-ray, which is the basic mechanism utilised to produce the spectra of the

generated X-ray radiation [95]. Taking into account the mechanism of work of the

detector, it is very important such detectors to be able to process the X-ray signal in a

very short time interval. In other words, the detectors implemented in modern

microscopes have high efficiency which means they can process completely one X-ray,

before the next one enters the detector.

By scanning the probe across the desired area of the specimen, at each position,

an X-ray spectrum is collected; all these spectra are unified in a so called spectrum image.

Such images give the X-ray energy distribution at each beam position. This energy

distribution in turn is directly related to the local chemistry [96]. Besides the continuous

braking X-ray radiation, each of these spectra contains characteristic X-ray peaks [96];

these emerge due to the electron transitions from one to another energy level within

given atom releasing the energy in a form of X-ray. These transitions occur as the high

energy electron ejects a core electron from given atom, and the vacant state is occupied

by other electron from some upper energy state. These peaks are characteristic for each

element; hence chemical identification can be performed [95]. The recent developments

in this field particularly the fact that the detectors are significantly improved, makes EDXS

vary desirable technique which is already reaching the ability of atomic resolution [104].

Another useful technique is EELS which can achieve even better spatial resolution,

and can give much more insights regarding specimen chemical composition and bonding

environment [95]. In contrast to EDXS, here the energy losses of the transmitted

electrons are used to form the energy spectrum which is again directly related to the local

chemistry of the specimen. While traveling through the specimen the electron can

experience scattering events or transmit without being affected. The electrons which

have not lost energy form the most intense contribution of the whole energy spectra. This

peak is huge compared to the others present in the collected spectra and is called

zero-loss peak. Although the zero-loss peak is not of crucial importance when doing EELS,

it can be used to determine the specimen thickness. Each material has a typical scattering

length which measures the average distance between two scattering events. Thicker

specimens will increase the number of scattering events all of which reduce the intensity

of the zero loss peak, hence providing a method for thickness determination [95].
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In the so called low loss region (energy losses below ~50 eV) most emphasised is

the plasmon peak. It emerges as a result of energy lost which is transferred to excite a

plasmon (collective oscillatory mode for the weakly bounded electrons). These peaks are

characteristic for different materials giving an opportunity to identify the compound by

comparing with standards available in literature. More importantly, in the low loss region

there are other features which give an opportunity to determine finer details such as

interband transitions, band gaps etc. [95].

Figure 3.14 a) Oxygen K-edge for several Mn oxides, showing that the shape of the edge is

different in each oxide which can be utilised to distinguish them [97]; b) EELS spectra

collected at Fe3O4/SrTiO3 interface showing the characteristic edges for Ti, O and Fe and

the power-law decaying background [21].

For chemical identification more important is the so called core-loss region, which

shows characteristic features for each element, in addition to the power law decaying

background. These features emerge due to energy losses of the incoming electron; the

energy lost is transferred to ‘ionise’ the atom by ejecting an electron from the core shells.

Here, in contrast to EDXS, we detect the primary process i.e. the energy loss; in EDXS we

detect the secondary process, i.e. the atom goes back to the ground state either by

emitting X-ray or Auger electron. The ratio between emitted X-rays and scattering events

is not always close to one, particularly for the light chemical elements, in which case EELS

is much more efficient technique. An example of EELS spectra is shown in the Figure 3.14.
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Similar as in EDXS, these characteristic edges can be used to perform chemical

identification [21, 116, 117]. In this work, EELS was used in addition to EDXS to confirm

the HAADF conclusions about the spatial distribution of Ge into a CFAS thin film. Co and

Fe L2,3 edges appear at ~ 790 eV and 710 eV respectively, while the Ge L2,3 at ~ 1200 eV,

hence making possible to easily distinguish their signal without any post-processing which

is often required for elements which give core-edges very close in energy e.g. those of Si

and Al.

There are variants of the instrumentation which measures the electron losses and

record the EELS spectra. Modern dedicated STEM microscopes (as the one used in this

thesis) have so called post-column EELS detector. The acquisition can be made

simultaneously with HAADF STEM imaging. While the electrons scattered at high angles

are detected by the HAADF detector, majority of the electrons (including both those who

suffered or not energy losses) travel under very small angle and go through the hole of

the HAADF detector. They are then directed to a spectrometer (system of magnetic

lenses) which can spatially separate them into different channels according to their

energy, and using electronics produce a digital signal shown on screen. This EELS setup is

very convenient since it does not affect the imaging mode. Taking into account that EELS

spectra is formed by the transmitted electrons very high spatial resolution can be

achieved. In Ref. [21] for example is demonstrated that EELS achieves atomic resolution

and in combination with HAADF STEM gives unprecedented insight into the atomic

structure of magnetite.

Finally, we would like to note that EELS can provide more insightful analysis and

better spatial resolution compared to EDXS, however much thinner specimens are

required for such analysis [95].

3.6 First-principles calculations

The previous sections showed that the electron microscopy and spectroscopy can

provide us with detailed information of the atomic structure of materials. Although the

atomic structure is of particular importance, its knowledge has to be always accompanied

with appropriate modelling i.e. what such particular structure brings as (un)desired

property. In order to obtain such further insights into the considered heterostructures,
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first-principles calculations are employed to reveal how the atomic structure of the

considered half-metallic materials affects their spin-electronic structure particularly in the

vicinity of interfaces and structural defects. By using this approach, it is possible to make a

full correlation between the atomic structure of these systems and their functional

properties which is the ultimate goal for successful implementation of these materials in

real spintronic devices.

The most widely used approach to model electronic properties of materials at

atomic level is density functional theory calculations. Many DFT computing codes are

nowadays available; in this thesis the CASTEP code [118] will be used. CASTEP is a

plane-wave, pseudopotential parallel code capable to perform variety of calculations

including total energy calculations, constrained or unconstrained geometry optimisation,

band-structure calculations, generate pseudopotentials, molecular dynamics calculations

etc. Due to its parallelisation/optimisation it can perform first-principles calculations on

systems with large number of atoms very efficiently. Below, the DFT basics will be

summarised with focus on the calculations involved in this thesis.

3.6.1 Density functional theory (DFT) – general concepts

The discovery of the wave nature of particles and the formulation of the quantum

mechanics has enabled a big progress in the understanding of the nature at/below the

nanoscale. Although it is in the foundation of the quantum mechanics, the approach

which involves solving Schrödinger equation becomes increasingly inefficient as the

number of electrons in the system increases. The next huge step forward into the field

was the formulation of the DFT by Hohenberg and Kohn [119]. The underlying principles

of this theory are that: the external potential which in turn determines the total energy of

the system is a unique functional of the electron density; the electron density which

minimises this total energy functional describes the ground state of the system. This

general concept is in fact a reformulation of the quantum mechanics from Schrodinger

equations approach into electron density approach. It is exact in principle; however, the

difficulty here is that the DFT does not specify the exact form of the total energy

functional (i.e. the exchange-correlation contribution to this functional). The total energy

functional (Eq. 3.6) can be written [120] as:
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[ߩ]ܧ = [ߩ]ܶ + න )ߩ )௘௫௧ݒ࢘( )࢘dଷ࢘+ ுܧ [ߩ] + [ߩ]௫௖ܧ Eq. 3.6

where the terms are the kinetic energy, energy due to the external field (all external

potentials including the electron-nuclei interactions), the Hartree term (Coulomb

interactions between electrons), and the exchange-correlation term (which does not have

a classical equivalent), respectively. The exchange functional is not explicitly known,

although there are expressions which can very accurately describe this contribution for

many systems. The total energy functional assumes an equivalent set of totally

independent ‘electrons’ which do not interact each other, but only with an effective field

(in which they also contribute). Taking this into account the electron density (Eq. 3.7) has

the form [120] :

)ߩ )࢘ = ෍ )௜ߔ| )࢘|ଶ
ே

௜ୀଵ

Eq. 3.7

where )௜ߔ )࢘ are the wave functions occupied by the system of N independent

‘electrons’. On the other hand, the first and third term in Eq. 3.6 are given [120] as:

[ߩ]ܶ = ෍ න ∗ߔ
௜( )࢘ቆ−

ħଶ

2݉
∆ቇߔ௜( )࢘dଷ࢘

ே

௜ୀଵ

ுܧ [ߩ] =
1

2

݁ଶ

଴ߝߨ4
න dଷ ′࢘ න dଷ࢘

)ߩ )ߩ࢘( ′࢘)

|࢘− ′࢘|

Eq. 3.8

Using Eq. 3.6, Eq. 3.7 and Eq. 3.8, by employing calculus of variations one can

show [120] that the solution of the following equations (Eq. 3.9) (called Kohn-Sham

equations [121]) minimises the total energy functional i.e. determines the ground state of

the system:

ቆ−
ħଶ

2݉
∆ + =௜ߔ௘௙௙ቇݒ ௜ߔ௜ߝ ;

௘௙௙ݒ = +௘௫௧ݒ
݁

଴ߝߨ4
න dଷ ′࢘

)ߩ ′࢘)

|࢘− ′࢘|
+
[ߩ]௫௖ܧߜ

ߩߜ

Eq. 3.9

Hence the problem is now transformed to solving a system of differential

equations describing N particles experiencing an effective potential (௘௙௙ݒ) (determined

self-consistently).

The first approximation that has to be made in this Kohn-Sham approach is to

propose a functional that will describe the exchange-correlation energy. That is not a

trivial problem and it does not yet exist an exact functional, but several approximations
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are developed in literature. The most widely used approaches to this problem are the

local density approximation (LDA) [122] and generalised gradient approximation (GGA)

[123]. The LDA approach assumes that the local contribution to the exchange-correlation

functional is equal to that of the uniform electron gas with same local electron density

[120]. In other words, the exchange-correlation energy can be written (Eq. 3.10) as:

[ߩ]௅஽஺௫௖ܧ = න )ߩ ௫௖ߝ࢘(
୳୬୧୤[ߩ↑( )↓ߩ,࢘( )࢘]dଷ࢘ Eq. 3.10

where ௫௖ߝ
୳୬୧୤is the exchange correlation energy per particle for uniform electron gas [124].

This approximation prefers smoothly varying electron density. The functional produces

satisfactory results for many systems however improvements are required [120]. Another

approach is GGA which goes beyond and assumes that the exchange-correlation

functional is not only dependent on the local electron density but also on its gradient,

with the aim to correct for the in-homogeneities of the electron density, which are

emphasised for example at chemical bonds. Hence [120],

[ߩ]஺௫௖ீீܧ = න )↑ߩ݂] )↓ߩ,࢘( )࢘, )↑ߩ∇ )࢘, )↓ߩ∇ )࢘]dଷ࢘ Eq. 3.11

There are many proposals for the function f (Eq. 3.11) [120]; the most widely used

is the PBE (Perdew–Burke–Ernzerhof) [123] functional which was also employed in all DFT

calculations performed in this thesis.

There is another approximation which is employed in majority of density

functional codes. Such codes effectively model only the valence electrons, while the core

electrons together with the nuclei are neglected and replaced with pseudopotentials

[120, 125]. In other words, core electrons are assumed to not in any way be affected by

the valence electrons and together with the nuclei generate an effective potential which

is then experienced by the valence electrons.

The potential in close proximity of atoms cores is very strong which makes the

wavefunctions have lot of nodes (highly oscillatory functions) in these regions, which is

not desirable when the wavefunctions are represented as a linear combination of plane

waves. However, a majority of the properties depends basically on the electron

wavefunctions outside the atomic cores, not within them. In order to avoid the highly

oscillatory behaviour of the wavefunctions in the core region, the pseudopotential

approach is used; the core electrons and nuclei are replaced with softer effective

potential. Such pseudopotentials are required to reproduce the same valence
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wavefunctions outside the atoms cores (defined by cut-off radius) as those calculated

from all-electron calculations [125].

An additional requirement on the pseudopotentials is that they should be

transferable. In other words, although they are generated in an ‘atomic’ environment,

they need to reproduce the accurate valence wavefunctions (outside the core region) in

other (i.e. in solids) environments as well [126]. Therefore, this pseudopotential approach

has many benefits; it reduces the number of electrons quite significantly which in turn

greatly reduces the cost of the computations and replaces the rapidly changing

wavefunctions at the core region with smoother ones which also improves the

efficiency/speed of the calculations. More details on the pseudopotential approach in

general and practical construction of pseudopotentials are available in Ref. [126-130]. In

CASTEP there are implemented algorithms which can generate on-the-fly

pseudopotentials for each chemical element, but there are also libraries with already

computed pseudopotentials.

Now, once the potential experienced by the valence electrons is known, the

Kohn-Sham equations can be solved. For crystals, taking into account the Bloch theorem

[120], the wavefunctions from (Eq. 3.9) can be expanded (Eq. 3.12) as:

)௜ߔ )࢘ = ෍ ௜ܿ,݁ࡳ
୧(ࡳା࢑)࢘

ࡳ

Eq. 3.12

where the sum is over the G vectors of the inverse lattice, k is a wave vector with values

determined from the boundary conditions of the whole system. For systems with large

dimensions k is a ‘continuous’ variable, with Ntot (the number of unit cells in the systems)

possible values. This plane wave expansion is particularly convenient mathematically

compared to working with some other basis sets. By inserting Eq. 3.12 into the

Kohn-Sham equations (Eq. 3.9), the eigenstates and energy eigenvalues can be

determined.

We shall note that the coefficients of the plane-wave expansion (Eq. 3.12) rapidly

decrease as G increases, meaning that accurate description can be made even if the sum

is truncated up to the plane wave with kinetic energy Ec, which is called cut-off energy

[126]. Hence, in any numerical computations the expansion is not to infinity, but up to a

certain cut-off energy. This cut-off energy depends on the material which is being studied;

for the Co-based Heusler alloys studied in this thesis the cut-off energy is 500-600 eV, as
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demonstrated in Figure 3.15. Materials with more delocalised wavefunctions can be

described using lower cut-off, while ones with strong bonding need larger cut-off energy.

Figure 3.15 Convergence test for the cut-off energy on the example of CMS. a) Total

energy is plotted as a function of the cut-off energy; it shows that the cut-off energy

region of (500-600) eV provides well-converged total energy. DOS plots for cut-off energy

of b) 250 eV; c) 500 eV; d) 600 eV. The almost identical plots in (c) and (d) further confirm

the validity of the chosen cut-off energy.

It is also worth mentioning that many subroutines during the computations are

performed in Fourier space due to the convenient form of the basis set, which in turn

significantly improves the efficiency of the calculations. Since the Kohn-Sham equations

contain potentials which themselves depend on the wavefunctions (indirectly through the

electron density), the procedure for finding the solutions of these equations is

self-consistent and many iterative steps are performed until a convergence is achieved

[126].

This procedure [126] is schematically illustrated in Figure 3.16. First, the crystal

pseudopotential is calculated knowing the atomic numbers and their positions
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(contributions from all atoms pseudopotentials are added up). The cut-off energy is

chosen and the wavefunctions are expanded as a series of plane waves truncated at the

cut-off energy. Then, some initial trial electron density is chosen (arbitrary, but

reasonable). With this density the Hartree and exchange-correlation potentials are

calculated. Once this is done, the Kohn-Sham equations are solved, for example by matrix

diagonalisation. This gives us the wavefunctions which can be used to compute the

electron density. This (output) electron density is compared with the initial (input)

electron density; if these differ within predefined allowed error, then the solution is

accepted and other properties such as total energy are computed. If they differ more, the

output density is used as an input for the new iteration and so on, until the convergence

is achieved. Note that many codes use linear combination of the input and output density

as an input for the new iteration, which achieves faster convergence [120, 126].

Figure 3.16 Schematic of the computational procedure to calculate the total energy of

given material. Figure taken from Ref. [126].

3.6.2 Brillouin zone sampling

By solving the equations for a given k vector, the energy levels can be determined.

As discussed above k is quasi-continuous variable, hence ‘full characterisation’ should

involve performing calculations for the huge amount of possible k points in the first

Brillouin zone. Certainly, such calculations for each k-point are neither practically possible
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nor particularly required. Instead, the Brillouin zone is usually sampled with a k-points

grid, and calculations are performed only at the sites of such grid. Such sampling

facilitates the calculations, yet provides desired accuracy to compute many materials

properties [120]. There are many properties/parameters of materials, which are defined

as an integral of a function over the whole Brillouin zone. The simplest such example is

the electron density [120]. Not only the electron density, but also the total energy and

many other properties, are defined as integrals of the form [120]:

݂= න ࢑݂dଷ࢑
஻௓

Eq. 3.13

We shall note here that the integrand is a periodic function, i.e. invariant to shifts

which are integer number of G vectors. The main idea of introducing k-points grids is to

be able to accurately compute such integrals by sampling the Brillouin zone with carefully

selected grids. In some very special cases computing ࢑݂ only at one ‘special’ k-point gives

us the value of the integral as discussed in Ref. [131], or at several special points weighted

appropriately [132]. While these methods require analysis of the crystal and its

symmetries in order to be able to identify which k points are special, there is a general

scheme introduced by Monkhorst and Pack [133] which works for any crystal. The

proposed grid is equally spaced and defined by:

࢑௡భ,௡మ,௡య = ෍
2 ௜݊− ܰ௜− 1

2ܰ௜

ଷ

௜ୀଵ

௜ࡳ Eq. 3.14

where ௜݊= 1,2, … ,ܰ௜; and ܰ௜are integers; they are parameters that characterise the

density of the Monkhorst-Pack grid. These parameters also determine how many Fourier

components should have the function f so that the averaging over the Monkhorst-Pack

grid leads to the exact value (the one computed using the integral over the whole

Brillouin zone) [120]. Exact integration up to certain Fourier component is the reason why

such specific expression for the grid has been chosen. Denser grids produce more

accurate results but decrease the speed of the calculations. Hence a trade-off between

these two parameters is required. Standard convergence tests are usually applied to find

out how dense our grid is required to be. It is worth noting that majority of first-principles

codes have algorithms which can find the symmetries of the studied system, i.e. identify

the equivalent k-points. This procedure significantly reduces the number of k-points
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which are actually used during the calculations [120]. For example, (5 x 5 x 5) grids when

symmetries are present can be reduced to only few non-equivalent k-points.

In this thesis, grids with k‐points spacing of (0.03 ‐ 0.04) 2π Å-1 have been used;

which together with the (500 – 600 eV) cut-off energy produce well converged results.

Taking into account the symmetries in the Co-based Heusler alloys, the calculations

involved in this thesis usually include about ten k-points (e.g. 8, 12, 16 or similar).

Majority of the calculations have been performed on the national supercomputer

ARCHER, using parallel computing environment. CASTEP tends to be most efficient when

the number of cores used is a multiple of the number of k-points, so that each core

calculates integer number of k-points, in the same time other cores calculate another set

of k-points, and then the results are unified.

3.6.3 Band structure, Density of States (DOS), Partial Density of States (PDOS)

By plotting the energy levels for ‘all’ k vectors in the Brillouin zone, so called band

structure is produced. ‘Bands’ are usually plotted in 2D by projecting the band structure

along certain desired paths in the k-space. Lines (i.e. bands) with very complex shapes are

obtained; by following some band (say the ith energy band) we actually move along the ith

energy level states of all k-values along the chosen path. By analysing the band structure

for given material, we can tell for example whether the valence electrons can be

modelled by using the free electron approximations (which is the case for mainly

parabolic bands), or they are more localised (which is the case for more flat bands).

By counting all states in infinitesimally small energy interval around energy E, the

density of states can be calculated. DOS are extensively used throughout this thesis. In

general, very useful information can be obtained by analysing the density of states. Their

behaviour is crucial in particular at the Fermi-level. In other words, no states around the

Fermi-level is a characteristic for semiconductors/insulators, while states at the

Fermi-level are present in the case of metals. In half-metals for one spin-channel there

are states, but for the other one there is a band gap. Hence, plotting spin-polarised DOS is

of prime importance for the analysis of half-metallic materials. The spin-polarised DOS

(number of states, per unit energy and per unit volume) can be calculated by the

following expression [120]:
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(ܧ)↓,↑ߩ =
1

ଷ(ߨ2)
න ࢑,௜ߝ൫ߜ

↑,↓ − ൯dଷ࢑ܧ
஻.௓.

Eq. 3.15

where ࢑,௜ߝ
↑,↓ is the ith spin-up/down(↑, ↓) energy level at given wave-vector�࢑; ߜ stands for

the Dirac delta function.

As discussed above, it is impossible to computeߝ�௜,࢑
↑,↓ for all possible ࢑, so they are

computed at the sites of the Monkhorst-Pack grid. In order to get the real band

dispersion, and not delta-like features (which arise artificially from the discretisation) a

smearing i.e. Gaussian broadening is applied which in fact does the following

transformation [134]:

࢑,௜ߝ൫ߜ
↑,↓ − →൯ܧ

1

ଶ߱ߨ2√
expቌ−

൫ߝ௜,࢑
↑,↓ − ൯ܧ

ଶ

2߱ଶ
ቍ Eq. 3.16

where ߱ is called fixed-broadening (smearing) parameter. Hence, the smearing actually

transforms from Gaussian with zero to Gaussian with variance equal to ߱ଶ. Obviously,

extremely small smearing parameter would introduce undesirable delta features, but also

extremely large smearing parameter would introduce states where there are no states for

example, hence a mid-range smearing needs to be chosen. This fixed smearing scheme is

implemented in OPTADOS [135], a code which can calculate and plot DOS, PDOS, and

many other functionalities. The OPTADOS code is linked with CASTEP; i.e. the already

computed wavefunctions and energy levels from CASTEP are used as inputs in OPTADOS.

OPTADOS has been used in this thesis for all DOS/PDOS plots.

So far, the so called total DOS were discussed. This quantity includes all

contributions from all the species in the unit cell. Such analysis is appropriate for bulk

systems. For supercells which contain for example two interfaced materials the total DOS

usually do not provide any valuable information. What is required in such cases is to

‘project’ the density of states, i.e. to expand them onto contributions from e.g. atoms,

regions, orbitals and so on. These requirements have led to the development of codes

(such as OPTADOS used in this thesis) which can calculate projected (partial) density of

states. Such calculations in fact involve expansion of the wavefunctions into a new basis

set which is a linear combination of atomic orbitals. Hence, for example, if the density of

states which emerge due to a given atom are required, from the expansion only the terms

which contain the atomic orbitals belonging to that atom are kept. This idea is generalised

so that PDOS can be calculated not only atom-by-atom but also layer-by-layer (which is
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often much more useful), or projected by specific orbitals etc., by constructing the

corresponding projector operators [134, 136].

In this thesis, taking into account that interfaces and defects are studied, PDOS are

extensively used. Layer-by-layer PDOS will be plotted to explore how these interfaces and

defects affect the half-metallicity.

3.6.4 Hubbard-U term

The approximations that are made during DFT calculations sometimes can cause

difficulties in getting more accurate values for some quantities in some materials. For

example, conventional DFT calculations predict that a class of strongly correlated

materials called Mott-insulators should be conductive, but they are in fact insulators at

low temperatures. These issues emerge due to the very strong exchange-correlation

effects present at these materials caused by the strongly localised ‘d’, ‘f’ orbitals [125].

The strong on-site repulsive interactions between, for example, the localised

d-electrons are more properly modelled by inclusion of the so called Hubbard-U term

[125, 137]. This idea originates back from the Hubbard model [138] which explains the

presence of band gap in the Mott-insulator [139]. The Hubbard model is based on the

tight-binding approximation where the electrons are basically occupying orbitals of given

atom and electron hopping between atoms/orbitals can explain the conductivity. In

addition to the ‘hopping’ part of the Hamiltonian, the model has so called ‘U’ part which

adds an additional energy U for electrons located at the same site (atom), which

effectively reduces the hopping mechanism. As this term gets bigger, the transfer of

electrons from one atom to another becomes less likely; i.e. band gap emerges/increases.

The successfulness of these ideas in treating strongly correlated materials has

been the motivation to add to the DFT Hamiltonian such term in order to improve the

contributions from the localised electron-electron interactions. Such algorithms are

already embedded in CASTEP and have been employed in this thesis.

It has been shown that for the Co-based Heusler alloys adding the Hubbard-U

leads to more accurate band-gaps [47]. Ab-initio computation of the Hubbard-U

parameter is not straightforward and there is no general scheme since these

contributions are also correlated with the quality of the exchange-correlation functionals

used during the calculations. Usually, this term is determined empirically, i.e. a U
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parameter should be found so that it recovers some expected features for given material,

such as the band gap. For the d-states in Co-based Heusler alloys this term is (2-3) eV and

it has also been demonstrated that the results are not very sensitive to the precise value

of U [47]. For the calculations involved in this thesis a value of 2.1 eV for ‘U’ has been

used [47, 140] for all d-elements (Co, Fe and Mn) which are present in the studied Heusler

materials.

3.6.5 Geometry optimisation

Often, for example for supercells which contain interfaces between two materials,

defects or even bulk materials, we do not know the exact positions of the atoms neither

the precise value of the supercell lattice parameters. In other words, for example, if an

interface is studied then we know to a good approximation the positions of the atoms far

away from the interface since they behave as the bulk. However, in close proximity of

interfaces or defects, the bonding environment (distances between atoms, angles, etc.) is

altered.

Hence, prior to doing fine calculations and obtain the electronic structure, the

coordinates of all atoms need to be optimised. In the optimum position, forces on all ions

as well as stresses on the supercell vanish. In order to find the optimised positions many

DFT codes including CASTEP have implemented already developed geometry optimisation

algorithms. For example, CASTEP implements the Broyden-Fletcher Goldfarb-Shanno

(BFGS) algorithm [141]. Geometry optimisation algorithms are iterative, so that at each

step they compute forces and displace the system to a new lower energy state.

The optimisation in general can be classified as unconstrained (where atoms are

allowed to occupy any position) or constrained where some of the atoms positions are

fixed or they depend on the other atoms positions through some constraints. Both

methods are available in CASTEP and they are used for the calculations presented in this

thesis. For example, for interfaces between two materials related with an epitaxial

relationship and small lattice mismatch, the in-plane (interface plane) lattice parameters

are usually fixed to some mid-value (with respect to the bulk lattice parameters of the

two materials) since even if these parameters are optimised there will be a strain in both

materials which is in reality quite often relieved through the formation of for instance

misfit dislocations.
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We shall also mention that the geometry optimisation is not a trivial task and still

there is an ongoing research for construction of optimisers which would find the ground

state in less iterative steps. The geometry optimisation part of the calculations is almost

always by far the longest compared to for example the time required to compute

spin-electronic structure using known atomic positions. Even on supercomputers such as

ARCHER with many cores running in parallel it took days for some of the supercells

studied in this thesis. Hence construction of clever initial configuration particularly at the

interface region can significantly reduce the time needed for computations. The

convergence criteria in CASTEP can be set as required by the user; for all calculations in

this thesis the default values have been used [141]; hence the force on each atom is

converged to less than 0.05 eV/Å.

3.7 Atomistic magnetic simulations

In Chapter 7 where an APB structural defect present in CFAS thin film will be

analysed, in addition to the DFT calculations, we perform atomistic magnetic simulations

to reveal how this defect influences the magnetic domain wall width. DFT calculations are

first-principles method and they are very convenient and efficient as long as the analysed

system does not contain large number of atoms. As the number of atoms increases such

calculations are computationally very expensive, and cannot be effectively used to

simulate properties on a macroscale. Macroscale calculations include for example

simulations of hysteresis loops in magnetic materials [142]. In such cases, usually a

two-stage approach is employed. First, some local characteristics/parameters are

computed by first-principles calculations, and then these are used as input parameters for

a large-scale code.

Many magnetic properties are dependent on the exchange interactions in a

magnetic material. In other words, neighbouring atoms may prefer ferromagnetic or

antiferromagnetic alignment of their magnetic moments. An exchange interaction

constant is defined as the energy required to switch the magnetic moment in opposite

direction. Exchange interactions have been already computed from first-principles for

some simple systems i.e. bulk half-metallic materials such as magnetite [143] and CMS

[144]. Once the exchange interactions are known, we can use them as already known
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input parameters to perform ‘classical’ macro-scale calculations in order to estimate

many useful magnetic properties [142].

By employing such an approach, in Chapter 7 atomistic magnetic calculations

using the VAMPIRE code [142] are performed. First, we calculated the average exchange

interactions at the APB defect and then using the VAMPIRE code, the magnetic domain

wall width for bulk and APB models was computed. The VAMPIRE code is a parallel code,

which can run very big supercells in an efficient way.

The code requires as input the magnetic moments of all atomic sites (which were

calculated by DFT) as well as the exchange constants (௜,௝ܬ) between pairs of atoms. The

Hamiltonian of the system contains the exchange term, but also can include anisotropies

and the interaction with an external magnetic field (Zeeman term):

ܪ = ௘௫௖௛௔௡௚௘ܪ + ௔௡௜௦௢௧௛௥௢௣௬ܪ + .௘௫௧ܪ ௙௜௘௟ௗ Eq. 3.17

with

௘௫௖௛௔௡௚௘ܪ = −෍ ௝ࡿ௜ࡿ௜,௝ܬ
௜ஷ௝

Eq. 3.18

where ௜ࡿ is the magnetic moment direction for a given site. Knowing the explicit form of

the Hamiltonian, by using the Landau-Lifshitz-Gilbert equation [142], the dynamic of each

magnetic moment can be numerically simulated. By allowing the system to relax, after

enough simulation steps the system converges in the lowest energy configuration, which

was used to estimate the domain wall width; it will be shown (Chapter 7) that the domain

wall width in presence of APB defects is reduced by 20-30 nm compared to the one for

bulk Heusler alloy.
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4 Correlation between the atomic and
spin-electronic structure of Co2MnSi/Ag interfaces

4.1 Introduction

In this chapter, the atomic and electronic structure of the interface between the

full Heusler alloy CMS electrodes and Ag as a spacer will be studied. This interface is a

functional part of a grown spin-valve structure. The discussion will be limited to the (001)

interfaces between CMS and Ag. In the beginning, the properties of ideal i.e.

bulk-terminated interfaces will be explored.

Two possible ideal bulk-like termination of the (001)-oriented Co2MnSi electrode

can be identified, these are Co-Co/Ag and Mn-Si/Ag. In other words, along the [001]

direction the CMS electrode can terminate on either a Co-Co or Mn-Si atomic plane. By

performing DFT calculations it will be shown that these two interfaces have significantly

different interfacial spin-polarisation, which in principle gives an opportunity to tailor the

spin-valve overall performance.

While the interface with Mn-Si/Ag termination shows greatly reduced but still a

spin-polarisation with the same sign as the bulk-like Co2MnSi part, the spin-polarisation of

the Co-Co/Ag interface has reversed sign. In addition to Co2MnSi electrodes, the case of

Co2FeSi electrodes will be also considered, and it will be demonstrated that the Co-Co/Ag

interface is again worse in terms of spin-polarisation compared to the one at the Fe-Si/Ag

interface.

The majority of the studies reported so far, have focused either on the

experimental performance of spintronic devices [145-150] or on purely theoretical

studies of the role of interfaces on the local spin-electronic structure [53, 83, 151], as

discussed before. Here, these two approaches are combined. It will be shown that a

correlation between the experimentally determined atomic structure and theoretical

modelling based on the revealed atomic structure, is necessary and crucial for performing
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studies which will explain the measurements but also guide how to improve the

performance of the spintronic devices.

Hence, in addition to studying ideal bulk-like terminated interfaces, we go beyond

and explore the real atomic structure at these interfaces, which are part of a spin-valve

device. By employing the state-of-the-art aberration-corrected atomic resolution HAADF

STEM microscopy we reveal the exact interface atomic structure. It will be demonstrated

that the atomic structure is different from a bulk-like terminated interface yet the

interface is atomically abrupt.

A presence of an additional interfacial monolayer is detected between the

Co2MnSi electrode and Ag spacer. By analysing the structure of both interfaces, i.e.

between the top-electrode/spacer and between bottom-electrode/spacer, it will be

shown that this layer is present at both interfaces suggesting that its formation is

thermodynamically favourable. Then interfacial models will be built based on the HAADF

STEM observations and by using DFT calculations it will be analysed how this additional

layer affects the interface performance.

It will be calculated that this layer can bring reversed spin-polarisation with

significant negative values, hence causing spin-scattering processes at the interface.

Therefore, even though the bulk-like Co2MnSi electrodes are perfect with a L21 ordering, a

significant decrease of the magnetoresistance can be expected, due to the presence of

this layer. Finally, it will be shown that the intermixing at this interface is very minor and

that any minor intermixing will not further deteriorate the device performance.

The results obtained during this study are published in Ref. [50] .

4.2 Methods and details of the DFT calculations

In order to provide an insight into the interface electronic properties, DFT

calculations using the CASTEP code [118] will be performed. An illustration of CASTEP

input files is provided in the Appendix 1. The modelling of the interfaces between the

Heusler electrode and Ag spacer requires the construction of supercells. All constructed

supercells in this work have two identical interfaces per supercell and are fully repetitive

along the three orthogonal directions. Each supercell consists of three Ag unit cells and

three Heusler unit cells along the [001] direction.
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During the geometry optimisation, the two lateral (in-plane with respect to the

interface) lattice parameters were fixed to a value of 4.02 Å, while both the third lattice

parameter and the fractional coordinates of all atoms were fully geometrically optimised,

as described in the methods chapter. The value of 4.02 Å is in between the lattice

parameter of Ag and a/√2 where a is the lattice parameter of the Co2MnSi Heusler

electrode. Hence both the Heusler alloy and Ag spacer are only slightly strained (~1%).

In reality, neither the spacer nor the electrode is strained since the strain is relieved

through the formation of misfit dislocations at the interface [56].

For all calculations, the PBE+U exchange-correlation functional was used with the

Hubbard-U term set to 2.1 eV for the d-block elements Co, Mn and Fe. The plane wave

cut-off energy was set to 600 eV. The Brillouin zone is sampled using Monkhorst-Pack grid

with k-points sampling spacing of 0.035 ∙ 2π Å-1, which corresponds to 8x8x1 grid size.

After the first step of the calculations i.e. the geometry optimisation task, the resulting

optimised structures were used to calculate layer-by-layer PDOS. The PDOS were

computed and analysed by using the OPTADOS program with ‘fixed broadening’ scheme,

where the ‘fixed broadening’ parameter was set to 0.1 eV.

Figure 4.1 Spin-polarised DOS for bulk: a) Co2MnSi and b) Co2FeSi. The states from spin-up

electrons are presented with blue solid line (shown in the upper half of the figures), while

red solid line (shown in the lower half of the figures) is for the states from spin-down

electrons. Vertical axes (DOS) are in units of states/eV per unit cell.
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Spin-polarised DOS calculations for bulk CMS and CFS using their conventional 16

atoms cubic cells are shown in Figure 4.1. These calculations are performed with the

parameters and conditions discussed above. The half-metallic character is observed in

both presented spin-polarised DOS; this is a necessary quality check for the validity of the

chosen parameters, which are then used to model the influence of the interfaces

between the Heusler electrode and the Ag spacer.

4.3 DFT study of ideal bulk-like terminated Co2MnSi/Ag interfaces

We start with presenting the electronic properties of bulk-like terminated CMS/Ag

interfaces. The lattice parameters of the conventional cubic CMS (5.66 Å) and Ag (4.09 Å)

unit cells are different; however they are related via √2 relationship, which gives only 2%

lattice mismatch. Hence, in order to achieve epitaxy between these two structures a

rotation (of either CMS or Ag) of 450 around the [001] direction is required. This means

that the crystallographic orientations between the electrode and spacer are given by the

following relationships: CMS(001)||Ag(001) and CMS[110]||Ag[100]. The interfaces

considered in this work are parallel to the (001) planes of CMS (or equivalently to the

(001) planes of Ag).

Figure 4.2 Structural models of the ideal bulk-like terminated CMS/Ag interfaces: a) with

Co-Co terminated CMS, b) with Mn-Si terminated CMS. The black rectangles outline the

supercell size.
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It is worth noting that along the considered [001] direction, the atomic planes

stacking sequence of CMS consists of alternating Co-Co and Mn-Si planes. There are two

Co atoms within the unit cell in a Co-Co plane, while one Mn and one Si for the Mn-Si

atomic plane. This means that the interface for the case of bulk-like termination can be

created by joining either a Co-Co or Mn-Si with a Ag plane.

Hence, the CMS electrode can terminate on either Co-Co or Mn-Si plane leading to

two possible bulk-like terminated interfaces. For simplicity in notation, the interface

where the CMS part terminates on a Co-Co plane will be referred to as Co/Ag interface,

while the interface where the CMS part terminates on Mn-Si plane will be referred to as

Mn-Si/Ag interface. In Figure 4.2 the structural models for both interface terminations are

shown after the performed geometry optimisation.

Figure 4.3 A top-view of the interface atomic planes (nearest planes from both CMS and

Ag part of the supercell), viewed along the [001] direction, for: a) Co/Ag and b) Mn-Si/Ag

interface. The rectangles represent the repeat unit. Colour coding is the same as in the

Figure 4.2.

Before we proceed to a discussion of the results, it should be mentioned that

another important factor which was taken into account while building the models is the

relative in-plane positioning between the CMS and Ag interface planes. There are

certainly an infinite number of mathematically possible relative in-plane shifts between

the CMS and Ag lattice, however from symmetry principles one can easily conclude that,

for an example, for the Co/Ag interface, Co atoms can sit on top of Ag atoms or in the

centres of the Ag lattice, as illustrated in Figure 4.3. The same applies to the Mn-Si/Ag

interface. The lower energy position was checked by performing energy calculations for
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the two different cases. As expected, the results showed that the centred position has

lower energy compared to the case when atoms sit on top.

The observations and analysis of the optimised coordinates shows that for the

Co/Ag interface, the nearest Co-layer to the interface shows 13% out-of-plane relaxation

(relative to its bulk-like position) towards the Ag spacer. In contrast to the Co/Ag

interface, when the interface is terminated on a Mn-Si atomic plane, it can be seen that

the distance Si-Ag (projected) is significantly different compared to that between Mn and

Ag (projected). In this case, the atomic relaxed coordinates show that Si is 18% further

from Ag compared to Mn. This significant difference, suggests that the bulk-like Mn-Si

termination is likely to transform into other more energetically favourable termination.

Figure 4.4 Spin-polarised PDOS (electrons/eV) for the first three atomic layers of the CMS

electrode in the case of: a) Co/Ag and b) Mn-Si/Ag interface. Solid, dashed and dotted

lines represent the PDOS for the first, second and third CMS atomic layer respectively.
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Layer-by-layer PDOS for both interfaces are shown in Figure 4.4. These results

were used to calculate the spin-polarisation (SP) at the Fermi-level for both Co/Ag and

Mn-Si/Ag interfaces. The presented plots are the spin-polarised PDOS from the first three

atomic planes of the CMS electrode. In both models, the SP at the interface is significantly

different compared to the bulk-like region (which is 100% positively spin-polarised) of the

CMS electrode. The SP value of the first layer is: -31% and +14% for the Co/Ag and

Mn-Si/Ag models, respectively. These results show that the Co/Ag interfacial SP becomes

inverted i.e. negative SP, while at the Mn-Si/Ag interface the SP is positive, however it is

significantly reduced. By following the layer-by-layer SP from the interface towards the

bulk-like part, it can be noticed that for both interfaces the SP fully recovers after the first

3-4 atomic planes.

4.4 Comparison with the ideal bulk-like terminated Co2FeSi/Ag
interfaces

It is interesting to note that the trend observed for ideal bulk-like terminated

CMS/Ag interfaces does not change when Mn is fully substituted by Fe. The SP value in

this case i.e. for CFS/Ag interfaces, for the first atomic layer is as following: -50% and -39%

for Co-Co/Ag and Fe-Si/Ag terminations, respectively.

The layer-by-layer PDOS for both models are shown in Figure 4.5. Note that for

these CFS/Ag bulk-like terminated interfaces, independent of the interface atomic plane

termination, the SP of the interface layer is inverted. However, the recovery towards

positive 100% SP occurs within 3-4 atomic planes, similarly to the case of CMS/Ag

interfaces. Hence, these results show that in both cases, i.e. for CFS and CMS electrodes,

the bulk-like Co-Co termination is undesirable since it brings inverted SP at the interface.
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Figure 4.5 a) Structural model of the Co-Co terminated model for the case of a CFS

electrode, where the PDOS for the first three atomic layers of CFS are presented in: b), c)

and d) respectively. e) Structural model of the Fe-Si terminated model for the case of a

CFS electrode, where the PDOS for the first three atomic layers of CFS are presented in:

f), g) and h) respectively. Colour coding of the structural models is as follows: Ag - grey,

Co - blue, Fe - brown and Si - yellow.

4.5 The structure and growth methods for the spin-valve device

The spin-valve heterostructure used in this thesis was grown by

Dr. Mikihiko Oogane at Tohoku University, Japan, on MgO(001) oriented substrate. This

spin-valve device has the following layers:

MgO(substrate)/Cr(40 nm)/Ag(50 nm)/CMS(20 nm - bottom electrode)/Ag (5 nm -

spacer)/CMS (5 nm - top electrode)/Ru(10 nm - capping layer).

Both Co2MnSi electrodes have been deposited by sputtering technique using a

Co–Mn–Si (Co: 43.7%, Mn: 27.95%, Si: 28.35%; all given as an atomic-%) alloyed target

which gives stoichiometric Co2MnSi composition. After the deposition of both bottom and

top CMS electrodes, the structure has been annealed at 500 oC and 350 oC respectively in
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the sputtering chamber in order to improve the ordering. Overview electron microscopy

images of the spin-valve device are presented in the Figure 4.6.

Figure 4.6 a) BF-STEM; b) HRTEM overview images of the spin-valve. The layers which are

part of the device are labelled.

4.6 HAADF STEM and DFT study of experimentally realised Co2MnSi/Ag
interface

Cross-sectional specimens were prepared by the conventional methods described

in Chapter 3 i.e. thinning by mechanical polishing and finishing with low energy

(3.5 kV) Ar-ion milling. The atomic level HAADF STEM microscopy measurements were

performed using an aberration-corrected JEOL ARM microscope operating at 200 kV (at

the University of Warwick), and JEOL 2200-FS microscope operating at 200 kV (at JEOL

Nanocentre at York).

Figure 4.7 shows overview images of the functional part of the studied spin-valve

structure, showing the overall ordering of the CMS electrodes and the abruptness of the

interfaces with the Ag spacer.

Since the contrast of the HAADF STEM images depends on the atomic number (Z)

as ~Z2, this enables to distinguish uniquely chemical elements. The microscopy here is

performed along the [110] crystallographic direction of the CMS electrodes. In this

direction, as discussed in Section 2.4.2, along the atomic columns different elements are
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distributed, i.e. Co, Mn, Si are all in different atomic columns, hence they can be easily

identified.

Figure 4.7 HAADF STEM overview images of a) the functional part of the spin-valve

CMS (top electrode) / Ag (spacer) / CMS (bottom electrode); b) magnified view of the

CMS(bottom electrode)/Ag(spacer) interface; c) magnified view of the CMS(top electrode

)/Ag(spacer) interface. All images are taken along the [1-10] crystallographic direction.

The yellow arrows are to outline the existence of an additional layer at the both

interfaces, between the CMS electrodes and Ag spacer.

It can be noticed that both electrodes have very good structural ordering. The

bottom electrode shows an ideal L21 ordering while the top electrode shows mainly L21

but regions with B2 ordering are also present. The reason for this is the difference in

annealing temperatures for the top and bottom electrodes. The top electrode has been

annealed at lower temperature (350 oC) which resulted in partial L21 ordering with

inclusions of B2 ordering. The bottom electrode has been annealed at 500 oC which

results in an ordered L21 structure. Lower annealing temperature for the top electrode is

required in order to keep the structural integrity of the CMS/Ag interfaces after the

deposition of the thin Ag metallic spacer.
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Figure 4.8 a) HAADF STEM image of the bulk-like part of the bottom CMS electrode

showing perfect L21 ordering. The intensity profiles shown in b), c) and d) are taken along

the yellow rectangles (averaged along the smaller dimension) labelled in (a) with the

corresponding letter. The colour coding of the overlaid structural model is as following:

Co – blue, Mn – red, Si – yellow.

Figure 4.8a is an atomic resolution HAADF STEM image of the bulk-like part of the

bottom CMS electrode. This image shows the characteristic atomic planes stacking

sequence along the [001] direction which consists of alternating Co-Co and Mn-Si planes.

The intensity profile given in Figure 4.8b demonstrates that even though Co and Mn have

very similar atomic number, the distinctive Co-Mn-Co pattern can be distinguished.

However, due to the intensity variations coming from the background or thickness effect

it can be very challenging only from the absolute intensities to conclude if an atomic

column is Co or Mn. This is particularly the case at the interface regions as shown in the

discussion below. Figure 4.8c,d show both uniform distribution of intensity coming from

the Co atomic columns at a (001) Co-Co atomic plane as well as alternating low-high

intensity pattern along the Mn-Si (001) plane which is a characteristic for the L21 ordering.
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Figure 4.9 HAADF STEM images of the CMS (bottom electrode)/Ag and CMS (top

electrode)/Ag (given as inset) interface, with overlaid structural models. Dashed

rectangles indicate the extra layer present at both interfaces.

Knowing the atomic structure of the bulk-like part of the CMS electrodes, next we

focus on the atomic structure in the interface vicinity. Once the atomic structure at the

interface is determined, that will allow us to construct realistic models and by DFT

calculate how the spin-polarisation changes towards the interface.

Atomic resolution HAADF STEM images of both CMS (top electrode, shown as an

inset)/Ag and Ag/CMS (bottom electrode) interfaces are presented in Figure 4.9. If we

follow the bulk-like atomic layer-by-layer stacking sequence, the second nearest layer to

the interface can be identified as a Co layer. The additional layer above the Co layer (for

the bottom electrode), following the bulk-like atomic stacking is expected to be a Mn-Si

atomic plane. However, the intensity contrast of the HAADF STEM image clearly shows

that Mn-Si atomic plane as an interface termination is not present. Hence, the interface is

not determined by a bulk-like termination. It can be noticed that exactly the same atomic

plane stacking is observed for both interfaces, top and bottom. This phenomenon

indicates that the formation of this structurally non-bulk layer (additional atomic plane) is
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energetically favourable over the bulk-like terminations considered in the beginning of

this chapter for the ideal interfaces.

Figure 4.10 Structural models for a) Mn-Mn/Ag, b) Mn-Co/Ag c) Co-Co/Ag interface. d)

Spin-polarised PDOS (electrons/eV) for the first (i.e. the non-bulk-like) atomic interface

layer shown with: blue solid curve for Co-Co/Ag, black dotted curve for Mn-Co/Ag and red

dashed for Mn-Mn/Ag. e) (100) atomic plane viewed along the (100) direction for the

Co-Co/Ag supercell, with the net spin f) up, g) down density plots for this atomic plane;

red colour represents maximum while blue minimum density.

As discussed above, for the Mn-Si/Ag interface there is a large relaxation (at the

interface) of the Si atoms geometrical positions towards the bulk CMS part. This

phenomenon suggests that there will be a driving force to substitute Si at the interface

plane with other element, explaining the formation of the observed structurally

non-bulk-like layer. Hence, the formation of this additional interface layer can be

correlated with the buckled structure at the ideal Mn-Si/Ag interface.

Comparing the atomic column intensities of the interface layer with the bulk-like

Mn and Co atomic columns (Figure 4.9), indicates that this additional layer could be
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either single Mn or Co, or mixed Co-Mn atomic plane. Due to the very bright contrast

from Ag and very dark from Si, these two elements can be excluded as possible to form

this layer.

Figure 4.11 a) Structural model and b) layer-by-layer PDOS for the Mn-Mn/Ag interface

model. The spin-polarisation at the Fermi-level is given for the first two layers. The labels

L1-L6 in (a) stand for Layer 1 – Layer 6, respectively. Colour coding follows previous

figures.

Due to the very similar atomic number of Mn and Co, they cannot be uniquely

distinguished from the HAADF STEM images, at the interface region. Therefore, in order

to provide insight into the influence of this additional non-bulk layer on the interface

spin-electronic properties, three representative interface models are built. These

correspond to an additional layer of: a) Mn, b) Mn-Co and c) Co (referred to as

Mn-Mn/Ag, Mn-Co/Ag and Co-Co/Ag, respectively). All these models are shown in the

Figure 4.10 after the performed geometry optimisation.

Figure 4.10d shows the PDOS of the additional interface layer for all three models.

The calculated SP values are -7%, -68% and -73% for Mn, Mn-Co and Co extra layer,

respectively. It can be noticed that the SP has reversed sign for all three models and has

increasing trend with the increase of concentration of Co.
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These results clearly show that the formation of the additional structurally

non-bulk layer can significantly modify the SP at the interface, by changing its sign as well

as the magnitude, as strikingly observed for the Co terminated interfaces. This result is

somehow expected because the Co-Co/Ag model has two monolayers of Co at the

interface, hence Co bulk-like electronic structure at the interface can be expected. Note

that the bulk Co is strongly negatively spin polarised (-71%).

Figure 4.12 a) Structural model and b) layer-by-layer PDOS for the Co-Mn/Ag interface

model. The spin-polarisation at the Fermi-level is given for the first two layers. The labels

L1-L6 in (a) stand for Layer 1 - Layer 6, respectively. Colour coding follows previous

figures.

In Figure 4.10f,g, the net spin density (up/down) at (100) plane (Figure 4.10e) for

the Co-Co/Ag model, are plotted. It can be seen that the net spin-up density does not

significantly change at the interface compared to the bulk one. On the other hand, there

is localisation of spin-down density around the Co layer. Due to the existence of this

almost inversely spin polarised layer, the interface can act as an additional scattering

centre for the positively spin-polarised current of the CMS electrode.

For completeness, layer-by-layer PDOS for all three considered structural models

are presented in Figure 4.11, Figure 4.12 and Figure 4.13. The first interface layer in all

models is labelled as ‘Layer 1’, and PDOS for the next five atomic planes are also

calculated and plotted. Since there is a recovery of the spin-polarisation towards the bulk
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value after about two atomic planes, the spin-polarisation values only for the first two

layers are shown in the figures. The other atomic planes give bulk-like spin-polarisations.

Figure 4.13 a) Structural model and b) layer-by-layer PDOS for the Co-Co/Ag interface

model. The spin-polarisation at the Fermi-level is given for the first two layers. The labels

L1-L6 in (a) stand for Layer 1 - Layer 6, respectively. Colour coding follows previous

figures.

4.7 The influence of minor Ag out-diffusion into the Co2MnSi electrode

Finally, the role of outdiffusion of Ag into the CMS electrodes on the SP of the

interface will be addressed. Due to the very high atomic number of Ag compared to Co

and Mn, significant inter-mixing at the interface would be easily distinguishable in the

HAADF STEM images. Detailed analysis of the interface images shows that only very small

amount of Ag outdiffuses and almost exclusively to the first interface layer of CMS. An

example of an interface region where clearly a presence of Ag is observed is shown in the

Figure 4.14.
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Figure 4.14 Diffusion of Ag into the first CMS layer. a) HAADF STEM image at the CMS/Ag

interface. b) Vertical intensity profile of the dashed area in (a) showing small diffusion of

Ag in the first CMS layer. c) Mn-Ag/Ag structural model used to estimate the influence of

the Ag out-diffusion. The Co-Ag/Ag model is constructed in the same way, the only

difference is that the Mn from the first interface atomic plane is replaced with Co.

Figure 4.15 Layer-by-layer PDOS for the Mn-Ag/Ag structural model. The spin-polarisation

at the Fermi-level is given for the first two layers.

In order to understand the effect of Ag diffusion on the interface electronic

structure, we create two interface models that incorporate Ag within the first interface

layer corresponding to a diffusion of Ag into the Mn-Mn/Ag or Co-Co/Ag interface layer.
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These will be labelled as Mn-Ag/Ag and Co-Ag/Ag, respectively. The atomic structure after

the geometry optimisation for the Mn-Ag/Ag interface model is shown in Figure 4.14c.

The spin-polarised layer-by-layer PDOS for the interface layers for both Mn-Ag/Ag

and Co-Ag/Ag models are shown in Figure 4.15 and Figure 4.16, respectively. The results

show that the trend of the spin-polarisation is not considerably affected when Ag atoms

out-diffuse into the first interface layer. In other words, Mn-Ag/Ag shows similar

spin-polarisation at the Fermi-level to that of Mn-Mn/Ag interface model, while Co-Ag/Ag

similar to that of the Co-Co/Ag interface model.

Figure 4.16 Layer-by-layer PDOS for the Co-Ag/Ag structural model. The spin-polarisation

at the Fermi-level is given for the first two layers.

It should be also noted that the modelled out-diffusion is quite high (50%) as the

first interface plane contains two atoms in the considered supercell, one of which is Ag.

Note that the experimental images show very low out-diffusion. In order to model such

low out-diffusion it is required to create a very big supercell which in turns requires huge

amount of computer time. However, this is not required since even for large out-diffusion

of Ag, the spin-electronic structure at the Fermi-level is not significantly affected. These

findings show that as long as the presence of Ag is within the interfacial layer, which was

experimentally showed to be the case, the properties of the interface are not significantly

affected.
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4.8 Conclusions

In summary, by density functional theory calculations bulk-like terminated

CMS/Ag interfaces were studied and it was shown that the interface spin-polarisation of

these interfaces strongly depends of the interface atomic structure. The bulk-like Co/Ag

termination creates negatively spin-polarised interface. In contrast to the Co/Ag

terminated interface, the ideal bulk-like Mn-Si/Ag interface keeps the character of the SP

of the CMS electrode, but with significantly reduced value of 14%.

Atomic level structural analysis of sputtered CMS/Ag/CMS layers, part of a

spin-valve, shows that the CMS/Ag interface is terminated with an additional structurally

non-bulk-like Co/Mn layer, observed for both CMS(top)/Ag and Ag/CMS(bottom)

interfaces. Independently of its chemical nature, this additional interface layer reverses

the spin polarisation, with the highest negative SP value calculated for the Co-Co/Ag

interface. This study showed that although the electrodes are ideally ordered and the

interface is abrupt, significant decrease of the performance can be expected due to the

formation of the additional layer.

Finally, the DFT calculations for models describing Ag out-diffusion into the first

interface layer: Mn-Ag/Ag and Co-Ag/Ag showed that Ag presence within the first

interfacial layer of CMS does not significantly affect the spin-electronic structure.

We can conclude that the interfacial spin-polarisation which in turn determines

the performance of the CMS based spin-valve heterostructures, is strongly correlated

with the interface atomic structure. This property can be potentially exploited to engineer

a heterostructured spin-valves showing better performance.
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5 Correlation between the atomic and
spin-electronic structure of Heusler alloy/Si(111)
interfaces

5.1 Introduction

In this chapter, the atomic and electronic structure of Heusler alloy/Si(111)

interfaces is studied. The detailed knowledge of the atomic structure of these interfaces is

very important for the integration of Co-based half-metallic materials with the current

large scale integrated circuits technologies i.e. for the development of Si-based spintronic

devices. In contrast to the interfaces with metals as discussed previously,

half-metal/semiconductor interfaces can suffer from the formation of secondary

interfacial phases which are detrimental for the spin-electronic structure in the interface

vicinity and ultimately determine the spin-injection efficiency into Si.

Here, the atomic structure at the interface with Si(111) is studied on the example

of the CFAS Heusler alloy. First, by combining EELS and HAADF STEM imaging, it is

determined how the chemical composition changes as we approach the interface. The

results show that even though the growth has been performed at room temperature

there is an intermixing of the atomic species in the interface vicinity.

Although EELS shows an interdiffusion at the interface, HAADF STEM images will

demonstrate that the underlying Heusler structural lattice does not change even at the

interface, which is due to the substitutional nature of the interdifussion. This will be used

to construct atomistic models of the interface atomic structure and estimate the local

magnetic moment as well as spin-polarisation. DFT calculations will show that the

changes in local chemical structure bring gradual decrease of the magnetisation over

~3 nm thick region at the interface.

The second part of this chapter is a theoretical study on how using indirectly the

out-diffusion one can improve the spin-electronic structure at the interface. Taking into

account the substitutional nature of the diffusion, the nominal terminating plane of the
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CFAS film is determined, i.e. the atomic plane stacking sequence in the interface vicinity.

In case of minimised out-diffusion of Si into the CFAS film, such sharp interface model is

becoming representative model of the interface.

Hence, it will be studied how the interface would behave in terms of its

spin-electronic structure, in case the growth method is further optimised and gives even

narrower region of out-diffusion. It will be shown that although such an interface would

be experimentally very challenging to realise, it is not even the desirable one. In other

words, in the limit of a sharp interface between Si and CFAS, there are interface states

which reverse the spin-polarisation at the interface, making this atomic structure

undesirable for applications.

An interfacial atomic structure that gives very high spin-polarisation across all

interface layers is proposed. By adding a monolayer of CoSi2, it is shown that such

structure will significantly improve the interfacial properties, and also such layer is

thermodynamically stable to exist at the interface. This will be further confirmed by direct

observations of such layers at the interface by employing HAADF STEM. Finally, it will be

demonstrated that the monolayer not only would improve the spin-electronic structure

across the interface but also pin the Fermi-level near the conduction band edge, both

desirable for efficient spin-injection into the Si substrate.

The results obtained during this study are published in Ref. [152] and Ref. [112].

5.2 Growth and microscopy methods

The CFAS/Si heterostructure has been grown by Dr Shinya Yamada at Osaka

University, Japan. A 25 nm-thick CFAS film has been prepared by co-deposition of

Co, Fe, Si and Al using molecular beam epitaxy, on a cleaned 10 x 10 mm2 Si (111)

substrate at room temperature [153, 154].

Cross-sectional TEM samples were prepared by the conventional methods that

include mechanical thinning and finishing with Ar ion-milling. TEM imaging and SAED

were performed using JEOL 2011 microscope operating at 200 kV. Atomic level imaging

and EELS were performed on a Nion UltraSTEM 100 microscope at SuperSTEM Laboratory,

Daresbury UK with the help from Dr Demie Kepaptsoglou. The microscope was operated
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at 100 kV, with a convergence angle of 30 mrad; the inner detector angle for HAADF

STEM imaging and the EELS collection angle were 76 mrad and 31 mrad, respectively.

5.3 Low magnification imaging and selected area electron diffraction

We start with an overview TEM imaging of the sample as shown in Figure 5.1. The

low magnification image presented in Figure 5.1a shows that the grown CFAS film has a

uniform thickness of 25 nm and that it forms an abrupt (structurally) interface with the Si

substrate. The film/substrate interface abruptness is also observed at the high

magnification TEM image presented in Figure 5.1b, which additionally shows the atomic

planes contrast fringes.

Next, a SAED pattern is recorded in order to reveal the crystallinity of the film and

the epitaxial relationships with the substrate. The SAED pattern is presented in the

Figure 5.2a, recorded from a region which covers Si substrate and CFAS film. This figure

demonstrates a single crystal nature of the CFAS film and the epitaxy with the substrate.

Taking into account the relatively small lattice mismatch between CFAS and Si

of ~4%, in case of a simple cube-on-cube epitaxy we would expect observation of two

very similar i.e. almost overlapping diffraction patterns in the recorded SAED pattern.

However, the recorded SAED shows a specific epitaxial relationship between the CFAS

and Si, which is not the standard ‘cube-on-cube’ epitaxy.

Figure 5.1 a) Low magnification and b) high magnification TEM image showing that the

film is uniform and that the interface with the substrate is structurally abrupt.
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In order to determine the exact epitaxial relationship SAED simulations are

performed using the CrystalKit software package [110]. The case of simple epitaxy is

shown in Figure 5.2b. By twinning the film with respect to the substrate i.e. when these

are related by the following relationships: Si(110) ||CFAS(110) and Si(111)||CFAS(111),

we get the SAED pattern shown in Figure 5.2c. This pattern is exactly what is observed

experimentally, i.e. the comparison between the experimental diffraction pattern and the

simulated SAED in Figure 5.2c demonstrates that the film/substrate epitaxy is determined

by a twinned epitaxial relationship.

Figure 5.2 a) SAED pattern recorded along the [110] zone axis from an area that includes

both film and substrate. The unit cell of the diffraction pattern is labelled with blue solid

for the film and orange dashed rectangle for the Si substrate. b) and c) are simulated

SAED patterns along the: b) [110] viewing direction for both CFAS and Si; c) [110] viewing

direction for CFAS and [110] viewing direction for Si.

5.4 HAADF STEM analysis of the Co2FeAl0.5Si0.5 (CFAS) film atomic
structure and ordering

Next, we shall focus on the atomic structure of the grown film. In Figure 5.3 a

sub-Å resolution HAADF STEM image from the bulk-like part of the CFAS film, recorded

along the [110] crystallographic direction, is presented. As discussed before, this zone

axis allows us to determine the atomic ordering of the film. For a B2 ordered film, we

would observe alternating high-low atomic columns intensity contrast along the [001]

direction, while for L21 ordering additional intensity variations would appear along a

(001) Fe-Si/Al atomic plane due to the significant difference between the atomic number

of Fe and Si/Al.
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Using the QSTEM software package (an example of QSTEM input file is given in

Appendix 2), HAADF STEM image simulations are performed for the two structural phases

of CFAS. The result for L21 ordering is presented in Figure 5.3b and in Figure 5.3c for a B2

ordered CFAS. For the L21 structural ordering, both Co and Fe can be easily distinguished

from the Al/Si sites. The image simulation for a B2 ordered CFAS (Figure 5.3c) shows the

same atomic column intensities along a Fe-Al/Si plane due to the full intermixing. By

comparing the intensity profiles along the [001] crystallographic direction between the

simulated images and the recorded HAADF STEM image, it can be concluded that the film

has predominantly B2 ordering.

Figure 5.3 a) HAADF STEM image (recorded along the [110] zone axis) from the CFAS

bulk-like part showing its structural ordering. This image is rotated by ~54° in order to

get [001] along the vertical direction. Simulated HAADF STEM images for CFAS with: b) L21

and c) B2 ordering. Insets in (a), (b) and (c) are vertical intensity profiles (averaged along

the horizontal dimension of the rectangles) from the areas outlined with the dashed

rectangles. By comparing the intensity profile in (a) with those in (b) and (c) we can easily

conclude that the film has predominately B2 ordering. The colour coding of the overlaid

structural models: Co - blue; Si/Al - red; Fe – dark green; Fe-Si/Al - yellow.
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Hence, the film has a B2 ordering, and this structural phase, as discussed

previously, has very similar properties compared to the ones of L21. In order to further

illustrate this point, DFT calculations are performed and presented in Figure 5.4. This

figure shows the spin-polarised DOS for both structural phases. Even though there are a

small number of states in the vicinity of the Fermi-level for the minority spins, the B2

ordering still keeps very high spin-polarisation. In addition, these calculations also show

that the value of the magnetic moment remains the same in both structural phases and

equal to 5.5 µB/formula unit.

Figure 5.4 Spin-polarised DOS for: a) L21 and b) B2 - ordered CFAS. The DOS from spin-up

electrons are presented in the top part, while for spin-down in the bottom part of the

plots.

5.5 HAADF STEM and EELS at the interface

Once the atomic structure of the film away from the interface is determined, we

next proceed to reveal if and how the CFAS atomic structure changes when we approach

the interface. Figure 5.5 is a HAADF STEM image of the interfacial region. It can be clearly

seen that the underlying face centered cubic lattice is unaltered even at the interface,

however significant changes of the intensity are observed which suggests to possible

intermixing between the atomic species. In order to reveal the intermixing, EELS

measurements were performed. The measurements presented in the Figure 5.6 were

performed at SuperSTEM, Daresbury, UK by Dr Demie Kepaptsoglou.

Figure 5.6a shows an overview HAADF STEM image, while in Figure 5.6b-e the

EELS maps generated using the Fe L2,3, Co L2,3, Si K and Al K EELS edges are shown. These



Chapter 5. Heusler alloy/Si(111) interfaces

118 | P a g e

maps show that due to intermixing between the atomic species, the chemical

composition does not abruptly change when we move from the film into the substrate; a

2 – 3 nm diffusion region emerges. The profiles in Figure 5.6f show that there is a gradual

decrease of the Fe signal over ~3 nm, while the Co atoms are slightly less affected by the

diffusion process; Co signal shows a shoulder at the interface. In other words, Co/Fe

composition ratio increases as we approach the interface.

Figure 5.5 Atomic resolution HAADF STEM image of the interface recorded along the

[1-10] zone axis.

Figure 5.6 EELS analysis of the CFAS/Si interface [112]. a) HAADF STEM image recorded

simultaneously with the EELS. Spatially resolved EELS intensity of b) Fe L2,3; c) Co L2,3;

d) Si K and e) Al K edge signal; f) Intensity profiles across the interface for each of the

atomic species. The dashed line is a guide for the eye.
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5.6 DFT study on the origin of the interfacial phases and their influence
on the magnetic moment and spin-electronic structure

The results from the previous section showed that the outdiffused Si is more likely

to substitute Fe than Co. In order to explain this phenomenon, starting from the

conventional Co2FeSi 16 atoms cubic unit cell, we create two configurations. In the first,

one Si replaces one Fe atom (i.e. Co8Fe3Si5), while in the second one, Si replaces a Co

atom (Co7Fe4Si5).

Total energy calculations show that the formation energy of the Co7Fe4Si5

is -0.14 eV/atom, while for Co8Fe3Si5 is -0.25 eV/atom. The lower formation energy when

Si replaces Fe, indicates that it is more likely the out-diffused Si to substitute Fe than Co,

fully consistent with the observations.

For simplicity, and taking into account the similarities between CFS and CFAS, Al

was omitted in these calculations; also the EELS profiles show very high Si/Al composition

ratio in the interface vicinity, hence this approximation is valid at the interface. These

results that Si is predominantly substituting Fe are not surprising because these two

elements are very likely to intermix even in the bulk-like CFAS region, resulting in a B2

ordering.

Table 5.1 Influence of structural disorder on the magnetic moment [M (µB/unit cell)] and

spin-polarisation at the Fermi-level. The CFS conventional 16 atoms cubic unit cell is

chosen as a reference. C
Fe

and C
Co

refer to the concentration (i.e. number of Fe/Co atoms

in a considered configuration divided by number of Fe/Co atoms in the CFS bulk unit cell)

of Fe and Co, respectively.

The calculations were performed using the CASTEP code with Hubbard-U term set

to 2.1 eV for both Co and Fe; plane wave cut-off energy of 600 eV; and Monkhorst-Pack

Label CFe(%) CCo(%) M SP(%) Label CFe(%) CCo(%) M SP(%)

CFS 1 1 24 100 c5 0 0.875 4.6 4

c1 0.75 1 20 100 c6 0 0.75 2.7 -17

c2 0.5 1 16 89 c7 0 0.625 1.7 -75

c3 0.25 1 11.6 41 c8 0 0.5 0 0

c4 0 1 7 -22
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grid with k-points sampling spacing of 0.03∙2π Å-1. For all considered configurations, the

lattice parameters and atoms fractional coordinates were fully geometrically optimised.

Next, it is studied how the atomic structure at the interface affects the magnetic

and electronic properties of the CFAS. Taking into account that the CFAS type lattice is

unaltered despite the interdiffusion, several atomistic configurations are built all with a

Heusler lattice but different chemical composition, Table 5.1.

For each of these interfacial phases, constructed using the knowledge of the

chemical composition at the interface which was obtained from the EELS measurements,

DFT calculations are performed to compute their magnetic moment and spin-polarisation

at the Fermi-level. Al is again omitted in this analysis since as discussed above its

presence in the interface region is very low, compared to Si.

The first four configurations labelled as c1, c2, c3 and c4 (Table 5.1) are

constructed by gradually replacing the Fe atoms from the CFS conventional cubic unit cell

with Si atoms. This is consistent with the EELS elemental profiles which showed that the

outdiffused Si is much more likely to replace Fe atoms. The results show that the

magnetic moment gradually decreases from 24 µB/unit cell in CFS to 7.0 µB/unit cell for

the configuration c4. As shown in the Table 5.1, the spin-polarisation also suffers

significantly by this out-diffusion.

Not only Fe but also the Co signal decreases up to a shoulder value where the

signal is about half of that in the bulk-like CFAS region. Such phase which is characterised

by half of the CFS’s Co species being populated, is the CoSi2 structure, which exists as a

stable bulk phase, it is not spin polarised and has no magnetic moment. In one of the next

sections it will be demonstrated that the formation of such a phase is energetically

favourable at the interface.

The next four configurations are constructed according to the discussion in the

previous paragraph, i.e. the concentration of Co is gradually decreased until we reach the

CoSi2 structure. This series of configurations further decreases the magnetic moment

reaching zero for the c8 configuration. These conclusions obtained by the DFT modelling

that the magnetic moment gradually decreases across the interface have been also

experimentally confirmed (work in preparation) by polarised neutron reflectivity (PNR)

measurements [112]. The spin-polarisation of these phases is even worse and it is often
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reversed, as shown in the Table 5.1. Spin-polarised DOS for all considered configurations

are presented in Figure 5.7.

To summarise, these calculations show that the increased Si incorporation in the

film leads to a gradual decrease of magnetic moment as well as significant reduction of

spin-polarisation in the vicinity of the interface. Therefore, besides the structural integrity

of the CFAS/Si interface, the interfacial intermixing has to be fully addressed in order to

make use of the CFAS film’s half-metallicity.

Figure 5.7 Structural models and spin-polarised DOS for: a) bulk CFS; b) - i) c1-c8

configurations. Colour coding: Co - blue; Fe - brown; Si - red.
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5.7 The spin-electronic structure of atomically abrupt
Heusler alloy/Si(111) interfaces

So far we studied the correlation between the atomic and electronic structure of

the experimentally realised CFAS/Si heterostructure. This growth method has given an

interface which is rich in Si, and creates a 2 – 3 nm region with significantly reduced

spin-polarisation and gradually decreasing magnetic moment. Even though this growth

method has provided a relatively narrow interdiffusion region, further optimisation is

certainly required in order to create atomically sharp CFAS/Si interfaces.

However, as discussed before, even atomically abrupt interfaces sometimes do

not lead to an interfacial electronic structure desirable for spintronic devices. Therefore,

it is important to study the interface atomic structure’s influence on the SP and

consequently determine interface atomic configurations which retain a high SP. In this

section, the electronic structure of an atomically sharp CFS(111)/Si(111) interface will be

studied. By employing DFT calculations, it will be shown that this interface gives reversed

interfacial SP. This SP reversal will be demonstrated that is present also for CFAS and CMS

films.

First, the atomically sharp CFS/Si(111) interface is considered. Both the CFS film

and Si substrate, are oriented along the [111] crystallographic direction. In addition to the

shared [111] direction, the following epitaxial crystallographic relationships are satisfied:

CFS(110) ||Si(110) and CFS(112) ||Si(112). A twinned epitaxial relationship is chosen

since it corresponds to the experimental observations, i.e. the results from the SAED

analysis. We shall mention that such twinning is also observed at CFAS/Ge(111) interfaces

studied in the next chapter. Moreover, it will be demonstrated, by creating two models:

twinned and non-twinned, that there is a relatively big energy difference between these

two interface models, which is why we consistently observe twinned CFAS/Si(Ge)

interfaces.

In contrast to the CMS/Ag interfaces, the lattice matching (only small lattice

mismatch) between the Heusler alloy and Si, allows construction of a supercell model

with in-plane lattice parameters equal as the Si (111) and CFS (111) in-plane lattice

parameters. DFT calculations are performed using a periodically repeating supercell

consisting of six Si and eight CFS unit cells along the [111] direction. The CFS lattice can be
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regarded as two superimposed zinc-blende (GaAs type) sublattices, Co-Si and Co-Fe,

shifted by half of the [111] diagonal of the conventional cubic unit cell.

This together with the epitaxy with respect to the Si substrate, gives a shared

Si (111) interface plane between the film and substrate. Hence, the interface plane in our

model is the shared Si (111) plane from the Co-Si zinc-blende sublattice. The validity of

such interface termination is confirmed below by the HAADF STEM image from the

interface region. Recalling that CFS along [111] crystallographic direction consists of

… Co|Fe|Co|Si … atomic plane stacking sequence, the atomic plane stacking in the

CFS/Si(111) interface vicinity is …Co|Fe|Co|Si|Si|Si|Si... , as shown in Figure 5.8 after

performed DFT geometry optimisation.

Figure 5.8 a) Structural model of the abrupt CFS/Si interface viewed along the [110]

crystallographic direction. Colour coding: red - Si, blue - Co, brown - Fe;

b) - g) Spin-polarised PDOS for the regions outlined in (a) and labelled as (s1) - (s6).

Spin-up states are plotted in the top part while spin-down in the bottom part of the plots;

h) Atomic resolution HAADF STEM of the CFAS/Si interface imaged along the [110] zone

axis, with overlaid structural model.

During the optimisation, the supercell’s in-plane (interface plane) lattice

parameters were fixed to a value in-between the CFS and Si lattice parameters but closer

to the CFS one, in order to minimise the effects of artificial strain on the CFS electronic

structure. The perpendicular lattice parameters as well as the fractional coordinates for
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all atoms were fully geometry optimised. Cut-off energy was set to 600 eV, while the

k-point sampling spacing was 0.03∙2π Å-1.

Figure 5.8h is an atomically resolved HAADF STEM image that shows the atomic

structure of the CFAS/Si(111) interface. The EELS measurements discussed above have

shown that Al is supressed from the interface region, hence it is to be expected that

CFS/Si(111) interface would show the same interface structure. Even though a sizeable

intermixing of the atomic species across the interface is observed, it is possible to reveal

the atomic plane stacking sequence at the interface. Analysis of the atomic stacking

sequence from the experimental image clearly shows that the interface is determined by

the shared Si(111) atomic plane. This allows us to create a model of an atomically sharp

CFS/Si(111) interface, and calculate its spin-electronic structure.

The analysis of the atomic positions after the DFT geometry optimisation shows

that the first two Co atomic planes (region s4 in Figure 5.8a) at the interface retain their

bulk-like positions, while the nearest Fe plane to the substrate shows ~33% relaxation

(towards the substrate) compared to its bulk-like position. This relaxation suggests to

strong interactions between Fe and Si atoms in the interface region.

Figure 5.9 PDOS by atomic species for the sharp CFS/Si(111) interface model, calculated

for: a) Co; b) Fe and c) Si interfacial atoms (region s4 in Figure 5.8a) (shown with red solid

curves) and compared with PDOS for the corresponding atom in the bulk-like CFS

environment (black dotted curves).

In Figure 5.9, the DOS are projected by atomic species, and shown for the Co, Fe

and Si atoms at the interface compared to those in the bulk-like environment, i.e. away

from the interface region. The interface states reflect the interactions between the
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atomic species at the interface region; significant presence of states can be seen for Fe

and Si which is expected taking into account their relaxed geometric positions at the

interface.

Next, we proceed to the analysis of the layer-by-layer PDOS for the sharp

CFS/Si(111) interface model. Spin-polarised PDOS for the layers in the interface vicinity

are shown in Figure 5.8b-g. Since the model is along the [111] crystallographic direction,

where 12 atomic planes of CFS are required to get a unit cell, for simplicity we divide the

interface into six regions, labelled as s1-s6 (Figure 5.8a) for which spin-polarised PDOS

will be computed. Starting from the bulk-like CFS region we can see that its bulk-like

electronic structure extends up to the first third of the CFS unit cell i.e. regions labelled as

s5 and s6 are essentially not affected by the interface.

However, significant changes emerge into the regions s3 and s4 due to the

interfacial interactions. Using these PDOS curves, the SP values for s3 and s4 regions are

calculated and they are: -45% and +6%, respectively. This means that the first third of the

CFS unit cell (region s4) is basically non-polarised, while the first dumbbell layer from the

Si substrate (region s3) has induced spin-polarisation with the opposite sign to that of

bulk CFS, due to the specific bonding with the film.

Figure 5.10 DFT study of an atomically sharp CFAS/Si interface. a) Structural model shown

along the [110] viewing direction. Colour coding: red - Si, white - Al, blue - Co, brown – Fe;

b) - g) Spin-polarised PDOS for the regions outlined in (a) and labelled as (s1) - (s6).
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These states coming from the spin-down electrons are localised to the interfacial

Si (s3 region) and CFS (s4 region) layers (Figure 5.8d,e). Therefore, although the

experimentally realised interface has disadvantages due to the intermixing, even if the

outdiffusion is completely absent, such interface will not be desirable since it has a

reversed SP.

The results from these DFT calculations show that the magnetic moment is also

changing near the interface; for the interfacial Fe (region s4) is reduced to 3.2 µB from the

bulk value of 3.3 µB; while for Co the magnetic moment decreases from 1.3 µB in the bulk

to 1.0 µB at the interface, gradually over three Co (111) atomic planes.

The reversal of the SP observed at the atomically sharp CFS/Si(111) interface is

also present at CFAS/Si (Figure 5.10) and CMS/Si (Figure 5.11) interfaces. This shows that

the observed effect is independent of the exact chemical nature of the Co2(Fe,Mn)(Al,Si)

electrode.

Figure 5.11 DFT study of an atomically sharp CMS/Si interface. a) Structural model shown

along the [110] viewing direction. Colour coding: red - Si, blue - Co, yellow – Mn;

b) - g) Spin-polarised PDOS for the regions outlined in (a) and labelled as (i) - (vi).
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5.8 Thermodynamically stable structures at the Co2FeSi/Si(111)
interface

From the discussion above, it is clear that further tailoring of the interfacial atomic

structure is required in order to avoid the detrimental SP reversal. One way to achieve

this aim is to modify the interface atomic structure by adding additional layers between

the film and substrate which would be thermodynamically stable to exist as such at the

interface. Such layers would be required to have a similar lattice to that of the film and

substrate and also would be ideal if they have similar chemical composition with them.

An addition of layers from the experimentally observed interfacial silicide phases would

satisfy both requirements, i.e. it is expected these to be stable and fit with the film and

substrate lattices.

The exact atomic structure at the interface depends strongly on the kinetic effects

during the growth, however we can estimate which silicide structure is most energetically

favourable to exist at the interface. From the family of all Co and Fe silicides, CoSi2 and

Fe3Si are of particular interest due to their crystal lattice match to that of CFS. The CoSi2

silicide can be obtained starting from the CFS structure, if we remove one of the two Co

sublattices and replace the Fe sublattice by Si. Similarly, by replacing the two Co

sublattices in CFS with Fe, the Fe3Si silicide is obtained. A visualisation of these structures

is shown in the Figure 5.12.

Figure 5.12 Visualisation of the crystal structures of: a) Fe3Si; b) CoSi2. Colour coding:

Fe - brown, Si - red, Co – blue; c) Spin-polarised DOS for bulk CoSi2.

DFT calculations on the following bulk structures: Co2FeSi, Si, Fe3Si and CoSi2 give:

(in units: eV/formula unit): -2767.75; -162.70; -2450.37; -1247.50, respectively, for their
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total energies. If we add up the energies of 3 Co2FeSi + 10 Si and compare with the energy

of 6 CoSi2 + Fe3Si, we get an energy difference of 5.1 eV in favour of silicide’s formation.

Although this is an estimate which ignores the interface contributions, these results are in

agreement with the observations that at the CFS/Si interface formation of interfacial

silicides phases is more favourable compared to preserving atomically abrupt interface.

Additional calculations show that the formation energy of CoSi2 is -0.37 eV/atom,

while for Fe3Si is -0.35 eV/atom, which means that amongst the silicide phases which

share similar lattice structure with that of the film and substrate, CoSi2 is the most likely

phase to be formed. These formation energies of CoSi2 and Fe3Si were obtained by

calculating the total energies of bulk Co, Fe, Si, Fe3Si, and CoSi2 per formula unit, followed

by comparison of: i) the energies of Co + 2 Si with CoSi2 to get the formation energy of

CoSi2; and ii) comparing 3 Fe + Si with Fe3Si to get the formation energy of Fe3Si.

In addition to this formation energy analysis suggesting a likely formation of CoSi2

phase at the interface, the relative chemical composition between the film and substrate

would also favour CoSi2 compared to Fe3Si. In other words, the Co composition would

gradually increase from zero in Si, one sublattice in CoSi2, to two sublattices in Co2FeSi, in

contrast to the Fe3Si stoichiometry which would require a peak of the Fe concentration

within several atomic planes at the interface. These conclusions for the stability of CoSi2

as an interfacial phase were further confirmed by experimental verification of a formation

of CoSi2 nano-islands with thicknesses of 1 - 2 monolayers at the CFAS/Si interface, as

shown in Figure 5.13. It is also worth noting that the stability of the interface between

CoSi2 and Si has been already experimentally verified by the growth of thick CoSi2 films on

Si [155].
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Figure 5.13 Structural models for bulk: a) CFS; b) CoSi2 (in [110] projection) along the

[111] direction. Dashed rectangles correspond to the red dotted line in (c) and outline

that every second CFS’s Co (111) plane is not present in the CoSi2 structure; c) HAADF

STEM image of the CFAS/Si interface showing the presence of CoSi2 nano-islands, outlined

by the yellow dashed rectangle; d) Intensity profile along the red line in (c) demonstrating

the absence (in the region outlined by the yellow rectangle) of every second CFS’s Co

atomic column, as expected for a CoSi2 structure. Blue arrows outline the Co atomic

columns positions, while red the positions of the missing Co atomic columns. This profile

shows the ‘h’ and ‘2h’ periodicity of Co atomic columns in the Heusler film and CoSi2,

respectively; e) and f) more HAADF STEM images of the CFAS/Si interface showing CoSi2

nano-islands with thicknesses of 1 - 2 layers, outlined by the yellow dashed rectangles.

5.9 Improvement of the spin-electronic structure by adding a Si-Co-Si
monolayer

The formation of CoSi2 layers at the interface motivates to investigate the effects

of such layers on the interfacial SP. Along the [111] direction, the CoSi2 unit cell contains

three Si-Co-Si monolayers (Figure 5.13b). The atomic stacking of this characteristic

Si-Co-Si monolayer is similar to Co-Fe-Co-Si layers in CFS with Fe planes replaced by Si and

every second Co plane vacated (Figure 5.13a,b).
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Figure 5.14 a) Structural model of the CFS/Si-Co-Si/Si interface shown along the [110]

viewing direction. Region ‘n4’ represents the Si-Co-Si monolayer. Colour coding: red - Si,

blue - Co, brown - Fe. b) - g) Spin-polarised PDOS for the regions outlined in (a) and

labelled as (n1) - (n6).

First we consider an interface model with a single Si-Co-Si monolayer between Si

and CFS, presented in Figure 5.14. This figure shows that the addition of a Si-Co-Si

monolayer has a profound effect on the SP across the interface, with the most striking

feature being the recovery of the positive SP in all interface layers. In contrast to the

abrupt interface, the first interface layers of the CFS (region n5) show only a slight

reduction of SP while the Si-Co-Si monolayer has an induced positive spin-polarisation

(~45%). Note that the first two Si interfacial bilayers (n3 and n2 regions) also have a small

positive spin density of states, which makes them positively spin-polarised at the

Fermi-level (~75%).
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Figure 5.15 DFT study of a CFS/SiCoSi-SiCoSi/Si interface, i.e. with two Si-Co-Si monolayers

(regions (iv) and (v)). a) Structural model shown along the [110] projection. Colour coding

follows previous figures. b) - g) Spin-polarised PDOS for the regions outlined in (a).

Hence, in contrast to the abrupt CFS/Si, the insertion of a Si-Co-Si monolayer fully

recovers the positive SP of CFS in the interface region. The inclusion of a Si-Co-Si

monolayer is also affecting the recovery of the bulk magnetic moment. While the sharp

interface requires several CFS’s Co(111) atomic planes to recover the bulk magnetic

moment of 1.3 µB on the Co sites, the magnetic moment on Co atoms when the Si-Co-Si

layer is introduced, immediately reaches the bulk value except for the Co atoms in the

first interface plane, where it has the value of 1.0 µB. This together with the significantly

improved SP, demonstrates a significant impact of the Si-Co-Si monolayer, which

essentially provides an electronically and magnetically sharper interface in comparison to

the structurally sharp CFS/Si interface.

In addition to the model with a single Si-Co-Si monolayer, calculations for a double

monolayer are performed and shown in Figure 5.15. The results show that the SP values

for the regions (iii), (iv), (v) and (vi) are: -17%, -3%, +17% and +44%, respectively, which

demonstrates that the interfacial Si bilayer (region (iii)) as well as interfacial CFS layers

(region (vi)) still have much better SP compared to those at the abrupt interface.
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However, as the number of Si-Co-Si monolayers increases, these monolayers would

gradually recover their bulk-like metallic structure which is non-magnetic and has no

spin-polarisation.

Hence, any practical implementation would require tailored growth of the

naturally occurring CoSi2 in order to achieve continuous coverage with a single

monolayer.

Figure 5.16 DFT study of a CFAS/Si-Co-Si/Si interface; Si-Co-Si monolayer is in the region

‘n4’. a) Structural model shown along the [110] projection. Colour coding: red - Si,

white - Al, blue - Co, brown – Fe; b) - g) Spin-polarised PDOS for the regions outlined in

(a).

Calculations are also performed for CFAS and CMS electrodes. The results

(Figure 5.16 and Figure 5.17) demonstrate continuously high positive SP confirming that

the beneficial effect of the Si-Co-Si monolayer holds also for CFAS and CMS electrodes.
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Figure 5.17 DFT study of a CMS/Si-Co-Si/Si interface; Si-Co-Si monolayer is in region (iii).

a) Structural model shown along the [110] projection. Colour coding: red - Si, blue - Co,

yellow – Mn; b) - g) Spin-polarised PDOS for the regions outlined in (a).

5.10 Band offsets

In addition to the importance of the interfacial SP, another factor which

contributes to the spin injection efficiency is the position of the Fermi-level with respect

to the semiconductor conduction band edge. The spin transport from the conduction

band of CFS to the conduction band of Si will be more efficient if the difference between

these two characteristic energies is smaller.

Figure 5.18 shows the averaged potentials for both interface models: abrupt

CFS/Si and CFS/Si-Co-Si/Si. The plotted potential is a sum of the local part of the pseudo

potential, Hartree term and exchange term. These potentials were averaged in-plane (i.e.

planes parallel to the interface plane) followed by double averaging along z over the unit

cells of Si and CFS, and plotted along the direction normal to the interface plane.
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Figure 5.18 Average potentials across the: a) abrupt CFS/Si and b) CFS/Si-Co-Si/Si

interface models; blue curve - average potential for spin-up, red for spin-down electrons.

Band alignment schematic for the: c) abrupt CFS/Si and d) CFS/Si-Co-Si/Si interface. Solid

black and solid red line stand for the average potentials and valence band edges for the

minority spins, respectively. The Fermi-level is outlined by the dashed black line. Note

that in (c) the energy difference between Ef and Ev is less than 0.1 eV.

Valence band edges are calculated separately for bulk Si and CFS with respect to

their averaged potential, and then offset for the calculated potential difference across the

interface [156]. The results (Figure 5.18a,b) show that the potential difference for the

majority (respectively minority) electrons between the film and substrate is 2.8 eV

(respectively 2.3 eV) for the abrupt CFS/Si interface, while for CFS/Si-Co-Si/Si they are

2.3 eV (respectively 1.8 eV).

Therefore, the presence of a Si-Co-Si monolayer lowers the average potential

difference between the film and substrate by 0.5 eV. By using the calculated potential

difference, the band alignment for the two interface models is plotted in Figure 5.18c,d.

This figure shows that for the sharp interface model the Fermi-level is positioned just next

to the valence band for Si (<0.1 eV energy difference). However, the energy shift of the

bands by 0.5 eV when the Si-Co-Si monolayer is included, positions the Fermi-level in the

substrate band gap, far away from its valence band edge. This decreases the energy

difference required to be overcome in order to transfer the carriers from the film into the

substrate, hence improving the spin injection efficiency.
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5.11 Conclusion

In this chapter it was shown that in the experimentally realised CFAS/Si(111)

interface there is a 2 - 3 nm intermixing region, in which the magnetic moment and

spin-polarisation gradually decrease. Hence, an improvement of the growth is required in

order to be able to utilise the half-metallic properties of the electrode. By DFT

calculations however, it was demonstrated that even the sharp (i.e. atomically sharp with

an ideal bulk-like termination) Co2(Fe,Mn)(Si,Al)/Si(111) interfaces are not desirable for

spintronic applications since they bring reversed SP in the interface vicinity.

An alternative atomic interface structure was proposed which is favourable

energetically and fully removes the SP-reversal. It was shown that the addition of a

Si-Co-Si monolayer recovers the positive spin-polarisation of the Heusler/Si interface and

creates more desirable interface due to the much higher spin-polarisation and preserved

magnetic moment, which is the ultimate goal for efficient spin injection into Si; even

though such an interface is not atomically sharp due to the presence of an additional

Si-Co-Si monolayer. Moreover, it was demonstrated that such monolayer shifts the

Fermi-level from the valence band edge (abrupt interface case) towards the conduction

band edge of Si. The significantly improved spin-polarisation and smaller energy

difference between the conduction band edge of Si and Heusler film, make this interface

highly desirable for device applications.
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6 Co2FeAl0.5Si0.5/Ge(111) as an ideal candidate for
efficient half-metal/semiconductor interface

6.1 Introduction

Creating atomically abrupt interfaces between Heusler alloys and semiconductors

which provide high interfacial spin-polarisation is essential for the development of

spintronic devices. However, as discussed previously, this can be a rather challenging task.

Important parameters which determine the quality of these interfaces are the

lattice matching between the film and substrate as well as the chemical stability in terms

of minimal intermixing in the interface region and absence of formation of any interfacial

secondary phases. Hence it is important to find a system which will satisfy these

requirements and in addition have a particular atomic interfacial structure which does not

decrease/reverse the local spin-polarisation.

In this chapter, on the example of the CFAS/Ge(111) interface, it is demonstrated

that almost atomically sharp half-metal/semiconductor interfaces are achievable. It will

be shown that this heterostructure does not form any interfacial secondary phases and

provides fully coherent interface due to the excellent lattice match between CFAS and Ge.

By using electron microscopy, the exact atomic structure at the interface will be

determined and used to construct a realistic interface model. DFT calculations will

demonstrate that this interface preserves high spin-polarisation and also retains the CFAS

magnetic moment up to the interface with the semiconductor.

Finally, by employing atomic resolution chemical mapping it will be demonstrated

that the intermixing between the atomic species at the interface is minor and limited to a

very narrow ~ 1 nm region at the interface. Moreover, these spectroscopic EELS/EDXS

measurements show that the minor Ge outdiffusion into the film is selective i.e. Ge

outdiffuses along the Fe-Si/Al atomic planes of the film. Further DFT calculations show

that this atomic plane selective diffusion neither affects the structural integrity nor the

spin-electronic structure of the interface.



Chapter 6. Co2FeAl0.5Si0.5/Ge(111) interface

137 | P a g e

The results obtained during this study are published in Ref. [157].

6.2 Overview images of the heterostructure and epitaxial relationships

The CFAS/Ge(111) specimen was grown by Dr Shinya Yamada at Osaka University,

Japan, employing the same growth methods as described in the previous chapter for the

CFAS/Si(111) interface. Cross-sectional transmission electron microscopy samples were

prepared by FIB (performed by Mr Arsham Ghasemi). SAED patterns and HRTEM images

were recorded using a JEOL-2011 TEM microscope and aberration-corrected JEOL JEM-

2200FS microscope both operating at 200 keV.

Figure 6.1 High resolution TEM microscopy on the CFAS/Ge(111) heterostructure. a) Low

magnification image showing a uniform CFAS film with a thickness of ~18 nm and abrupt

interface with the substrate. HRTEM images from: b) the top region of the CFAS film and

c) the interface region.

Figure 6.1 shows HRTEM images of the CFAS/Ge(111) heterostructure. It can be

seen that the film is uniform with a thickness of ~18 nm. Although further advanced

electron microscopy imaging is required in order to make conclusions about the ordering

of the CFAS film, these HRTEM images show a sharp interface between the film and
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substrate as well as a uniform intensity pattern throughout the film characteristic for

Heusler type lattice.

In Figure 6.2a, a SAED pattern is shown from an area that includes both film and

substrate. This figure demonstrates the single crystal structure of the CFAS film and the

epitaxial relationship with the substrate. Taking into account the excellent lattice

parameter matching between CFAS and Ge (only 0.2% mismatch), in a case of a simple

epitaxy one would expect an overlap of the film’s and substrate’s diffraction reflections,

as shown in Figure 6.2c.

However, the diffraction pattern reveals that the epitaxy with the substrate is

different. There is a twinned epitaxy determined by the following epitaxial relationships:

CFAS(111)||Ge(111) and CFAS(110) ||Ge(110). The simulated diffraction pattern shown

in the Figure 6.2b calculated assuming a twinned epitaxial relationship shows an excellent

correspondence with the experimental diffraction pattern.

Hence, the twinning phenomenon is also observed for the CFAS/Ge(111) interface

in addition to the CFAS/Si(111) case discussed in the previous chapter. Later in this

chapter, by DFT calculations it will be shown that the twinned interface is much lower in

energy compared to the interface with a simple epitaxy, hence it is not surprising why

such twinning phenomenon is consistently observed at these interfaces.

Figure 6.2 a) SAED pattern from an area that includes both film and substrate, showing

the single crystal nature of the grown film and the epitaxial relationship with the

substrate; b) Simulated SAED diffraction pattern assuming twinned epitaxy with respect

to the substrate which shows excellent agreement with the observations. c) Simulated

SAED diffraction pattern assuming simple epitaxy with respect to the substrate. Colour

coding: red – film, blue - substrate. The reflections shown in grey colour appear due to

double diffraction in the substrate.
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6.3 Structural ordering of the CFAS film

In this section, the atomic ordering of the CFAS film is revealed by using atomic

resolution HAADF STEM imaging performed along the [1-10] crystallographic direction as

shown in Figure 6.3a,b. As discussed in the previous chapters, performing HAADF

microscopy along the [110] crystallographic direction is beneficial since the atomic

species are in separate atomic columns, which makes the chemical identification in the

bulk-like region of the film relatively straightforward.

In other words, for a B2-ordered film one expects alternating high (Co

planes) - low (Fe-Si/Al planes) intensity contrast for the atomic columns along the [001]

crystallographic direction. Such intensity profile is presented in Figure 6.3d from which it

can be easily concluded that the film has a B2 ordering.

Figure 6.3 a) Overview HAADF STEM image along the [110] zone axis, showing the

abruptness of the CFAS/Ge interface at atomic level. The white scale-bar corresponds to

0.7 nm; b) HAADF STEM image from the bulk-like film region showing the distinctive

Co-(Fe-Si/Al) atomic planes repeat pattern along the [001] crystallographic direction

characteristic for B2 ordered CFAS. The line profile along the white dashed rectangle is

given in (d); c) HAADF STEM image from the interface region showing that the distinctive

Co-(Fe-Si/Al) atomic planes repeat pattern is lost due to out-diffused Ge atoms from the

substrate; with the corresponding line profile shown in (e). These STEM images are

obtained by registration of a stack of images recorded in quick succession which gives

precision in the image; g) - j) Kα edge EDXS maps for: Co, Fe, Si and Al, respectively, from

the area outlined in (f) located in the bulk-like region of the film. The dashed arrows are

along a Co(001) plane, shown as a guide to the eye.
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The film’s B2 ordering extends up to the interface with the substrate except for

~1 nm region in the vicinity of the interface, as shown in Figure 6.3c. The distinctive

pattern characteristic for B2 ordering observed away from the interface is lost in this

region. These structural changes are clearly seen in the intensity profile taken along the

[001] direction from a region in the vicinity of the interface, as shown in Figure 6.3e.

This profile shows an increase in intensity of the columns identified as Fe-Si/Al in

the bulk-like part of the film. Such intensity increase on these atomic columns can appear

if Ge atoms (brighter than all other CFAS’s atomic species in HAADF STEM images) diffuse

into the CFAS film. This initial conclusion will be confirmed later in this chapter by

performing EDXS analysis at the interface region.

Next, in Figure 6.3g-j EDXS maps are shown from the bulk-like region of the CFAS

film, which are constructed using the Kα edges for each element. The clear separation

between Co and Fe-Si/Al atomic planes is confirmed by these maps in addition to the

observations of the HAADF STEM images, as discussed above.

These STEM and EDXS measurements were performed on an ARM200F

microscope at the University of Warwick with help from Dr Ana Sanchez. The microscope

was operated at 200 kV and has JEOL annular field detector in the range 70 - 280 mrad.

6.4 Analysis of the atomic structure at the interface

Next, in order to reveal the exact interfacial atomic structure, a chemical analysis

is performed by using atomic resolution EDXS simultaneously with STEM imaging. EDXS

line profiles are presented in Figure 6.4, which show that the region of

outdiffusion/intermixing for this interface is very narrow (~1 nm).

These intensity profiles are recorded using the Kα edges for each of the atomic

species of CFAS and Ge. The Figure 6.4 clearly shows a sharp decrease of the Co signal,

compared to the more gradual decrease of that of Fe, Si and Al. In addition, the Ge signal

gradually decreases across the interface, due to the small outdiffusion of Ge into the CFAS

film over a ~1 nm region, which is fully consistent with the initial conclusions from above

based on the STEM imaging observations. In order to reveal the spatial distribution of the

outdiffused Ge into the film and confirm the initial conclusions that Ge atoms outdiffuse

in the Fe-Si/Al atomic planes, an EDXS chemical mapping is performed.
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Figure 6.4 EDXS analysis at the CFAS/Ge(111) interface. b) Intensity signal from the

Kα edge of Ge - blue curve, Co - red, Fe - yellow, Si - dark green, Al - light green; all

simultaneously recorded during an EDXS linescan along the white line in (a); c) HAADF

STEM image at the interface acquired simultaneously with the EDXS Kα edge maps. The

scale-bar corresponds to 0.7 nm; d) Ge Kα edge map showing the selective outdifussion of

Ge across the reference interface plane (white dashed line); e) Co Kα edge map showing

the abrupt decrease of the Co signal across the interface. Yellow arrows are inserted as a

guide to the eye; f) Ge and Co overlaid map clearly showing the out-diffused Ge atoms in

the Fe-Si/Al atomic planes.

Figure 6.4c is a HAADF STEM image in the vicinity of the CFAS/Ge interface

acquired simultaneously with the EDXS maps shown in Figure 6.4d-f and serves as a

reference image for the EDXS maps. Figure 6.4d is the EDXS map formed from the

Ge Kα edge, while the Co Kα edge map is shown in the Figure 6.4e. Above the reference

interface plane which is labelled with a dashed white line as a guide to the eye, there is a

decaying Ge intensity signal which confirms the presence of Ge out-diffusion into the

CFAS film over a ~1 nm region.

This map reveals the spatial distribution of the Ge outdiffusion; it shows that the

out-diffusion is constrained along the (001) Fe-Si/Al planes. On the other hand, the

Co Kα edge map shown in the Figure 6.4e confirms that Co remains on its original lattice

i.e. the increased intensity of the Fe-Si/Al planes in the HAADF STEM images cannot be

attributed to a Co-related disorder. The described phenomenon of selective diffusion is
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clearly summarised in the map presented as Figure 6.4f which is constructed by

overlaying the Co and Ge elemental maps.

The specific localisation of Ge and Co was also confirmed by acquiring

atomically-resolved EELS maps, as shown in the Figure 6.5. This measurement was

performed at SuperSTEM Laboratory, Daresbury UK, with help from

Dr Demie Kepaptsoglou. The same microscope conditions as for the CFAS/Si(111)

interface were used.

Figure 6.5 a) EELS spectrum from the region shown in (b). L2,3 EELS edges (labelled in (a))

were used to construct the maps in (c) and (d). Using an energy window before each edge

a power-law curve (coloured in red in (a)) which models the background is fitted;

b) HAADF STEM image acquired simultaneously with the EELS maps; c) Co L2,3 edge map

showing the abrupt decrease of the Co signal across the interface; d) Ge L2,3 edge map

showing the selective out-diffusion of Ge across the reference interface plane (white

dashed line). Yellow arrows are inserted as a guide to the eye.

6.5 The origin of the selective out-diffusion and its influence on the
half-metallicity

It should be emphasised that Co2FeGe exists as a bulk full Heusler alloy and has a

lattice parameter very similar to the one of Co2Fe(Si,Al) (only ~0.9% mismatch). Hence, it

is not surprising, taking into account the similarities between Co2FeGe and CFAS

structures, that substitution of Si/Al by Ge atoms from the substrate can emerge in a

narrow interfacial region.



Chapter 6. Co2FeAl0.5Si0.5/Ge(111) interface

143 | P a g e

Due to the B2 ordering of the film which makes the L21’s Fe and Si/Al sites

undistinguishable, once Ge is incorporated in the CFAS lattice it remains localised on the

Fe-Si/Al planes. Next, total energy DFT calculations are performed to compute the

substitutional energies for Ge-Fe as well as Ge-Co swaps. The results show that swapping

Ge with Fe costs 0.5 eV, while a Ge-Co swap requires an energy of 2.5 eV. This result

shows that there is a very high energy barrier for Ge to move on the Co-sublattice

explaining why a selective diffusion is observed.

Figure 6.6 Structural models for the configurations c1-c8. Colour coding: Ge – blue, Co –

red, Fe – yellow, Si – dark green, Al - light green.

Next, the influence of the out-diffused Ge on the interfacial spin-electronic

structure is studied. DFT calculations are performed on selected configurations

(Figure 6.6) constructed when Ge atoms substitute Fe and Si/Al in the bulk CFAS unit cell,

as shown in the Table 6.1. The results show that even a rather large concentration of Ge

into the CFAS unit cell does not significantly affect its spin-polarisation, while the

magnetic moment is only slightly changing.
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label n(Fe) n(Si/Al) n(Ge) M SP label n(Fe) n(Si/Al) n(Ge) M SP

CFAS 4 4 0 22 100 c5 3 0 5 20 100

c1 4 3 1 22 100 c6 2 0 6 15.8 69

c2 4 2 2 23 100 c7 1 0 7 11.2 88

c3 4 1 3 24 100 c8 0 0 8 7 24

c4 4 0 4 24 100

Table 6.1 Magnetic moment [M (µB/unit cell)] and spin-polarisation [SP (%)] of

configurations c1-c8 obtained when Ge atoms gradually substitute the Fe-Al/Si atoms in

the bulk CFAS unit cell. ‘n’ stands for the number of atoms per unit cell for each of the

atomic species.

In the limiting case when all Fe-Si/Al sites are populated by Ge, which is the ‘c8’

configuration in Table 6.1, the spin-polarisation and magnetic moment are significantly

reduced. However, such an environment is hugely rich with Ge and do not correspond to

the real chemical structure obtained using the EDXS measurements, which showed

considerable presence of Fe in the interface region compared to zero in the case of ‘c8’

configuration. Hence, at the observed small incorporation of Ge into the film, there are

practically no any detrimental effects on the spin-electronic structure.

It should be mentioned that in contrast to the observed Ge in Fe-Si/Al columns

which keeps very high spin-polarisation, Ge - Co substitutions would drastically affect the

electronic structure; disorder related to the Co-sublattice can locally even reverse the sign

of the spin-polarisation as shown in Ref. [49]. However, as discussed above, the energy

required for this disorder is rather large, hence such disorder is neither expected nor

observed in the chemical mapping analysis.

In the previous chapter, it was predicted by DFT and demonstrated experimentally

that at the CFAS/Si(111) interface secondary phases i.e. Fe and Co silicides do form. This is

not the case for the CFAS/Ge(111) heterostructure, which in turn as shown above is very

stable without any formation of secondary phases. In addition to the absence of strain

between Ge and CFAS which can affect the interfacial atomic structure, Ge is also much

heavier element hence it is likely to diffuse in a much narrower region compared to Si.
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Furthermore, there are no Co-Ge compounds with a structural lattice which can

match that of the Heusler alloy. Hence, it would cost much more energy for such phase to

be accommodated at the interface compared to the, for an example, CoSi2 phase

observed at the CFAS/Si heterostructure, which in turn has a compatible lattice structure

to both Si and CFAS. On the other hand, from the Fe-Ge compounds, Fe3Ge has

Heusler-like lattice, however as discussed in the previous chapter the presence of such

phase at the interface would mean a peak in Fe concentration in a very narrow interfacial

region which is thermodynamically less likely to happen.

Similarly as for the CFAS/Si(111) interface, DFT calculations were performed in

order to provide an additional argument for the structural stability of this interface. The

formation energies of bulk Co2FeGe + bulk Ge are compared with the formation energies

of Fe3Ge + Co2Ge, which are representatives of stable Ge compounds with Fe and Co.

The energy difference between 3 Co2FeGe + Ge and Fe3Ge + 3 Co2Ge

(secondary-phases) is 0.12 eV/atom, which indicates that a formation of secondary

Ge-Co/Fe phases at the interface is not likely. It is worth noting that these calculations

ignore the additional energy required to incorporate the Co2Ge structure at the interface

due to the different type of lattice; this additional factor makes the formation of

secondary phases even less likely. These results are different from the results obtained

for the CFAS/Si interface, where it was demonstrated that the energy difference between

(3 Co2FeSi + 10 Si) and (Fe3Si + 6 CoSi2) is -0.23 eV/atom, i.e. there is a thermodynamic

drive to form silicides at the interface between Si and CFAS.

6.6 Atomistic model of the CFAS/Ge interfacial structure and
spin-polarised partial density of states

As discussed in previous chapters ideally we need interfaces which retain very

high spin-polarisation. However, it was demonstrated on the example of CMS/Ag and

CFAS/Si that the interfacial spin-polarisation can drastically differ compared to the one in

the bulk-like part of the material. It can be significantly reduced or even reversed which

leads to spin-scattering phenomena detrimental to the spin-injection efficiency into the

semiconducting substrate. In this section, by using HAADF STEM microscopy, the
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interfacial atomic structure will be revealed and atomistic model of the interface will be

constructed which will be later used to perform DFT calculations.

Figure 6.7 a) HAADF STEM image of the interface showing that the CFAS film terminates

on a Co(111) atomic plane. This image is obtained by registration of a stack of images,

recorded at SuperSTEM. The white scale-bar corresponds to 0.7 nm. The tilt angle of the

Ge dumbbells from α = 37°  in the bulk‐like region increases to β = 51° for the interfacial

Ge bilayer; b) Structural model of the CFAS/Ge interface viewed along the [110]

crystallographic direction; c) Spin-polarised PDOS for the regions labelled as (i) - (v) in (b).

Colour coding: Ge - blue; Co - red; Si/Al - green, Fe - yellow, Fe-Si/Al - grey (columns

present in B2 phase).

In Figure 6.7a an atomic resolution HAADF STEM image of the interface is shown.

The dashed white line is a guide to the eye and outlines a reference interface plane which

separates the film from the substrate. Starting from the bulk-like CFAS region (above the

reference interface plane) when approaching the substrate, the atomic plane stacking

sequence: …-Co-(Fe-Si/Al)-Co-(Fe-Si/Al)-… characteristic for bulk B2 ordered CFAS is

observed. It can be noticed that the nearest (111) atomic plane to the substrate is a Co

(111) plane. Hence, the CFAS film terminates on this plane.

The bilayer below the reference interface plane is a Ge dumbbell layer. It can be

observed that due to the interface bonding the dumbbells of the Ge interface bilayer are
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tilted by an additional angle of (β‐α)~15°, as illustrated in the Figure 6.7a. Note that the

bulk Ge dumbbells in [110] projection are under an angle of α = 37° with respect to the

[112] direction.

In the previous sections, it was shown that there is a small outdiffusion of Ge into

the film along specific atomic planes. However, it was also demonstrated that this process

does not affect the Heusler-fcc structure of the film neither does it change its electronic

structure. Using the atomic plane stacking sequence at the interface obtained from the

HAADF microscopy, we build an interface model neglecting the presence of small

intermixing. Taking into account the above discussion, such model is well representative

for the atomic/electronic structure of the CFAS/Ge interface.

The interface model is shown in Figure 6.7b after the performed DFT geometry

optimisation. For clarity, the interface is divided into five regions labelled as (i) - (v) and

for each of them spin-polarised PDOS are computed and presented in Figure 6.7c. In the

regions away from the interface i.e. layer (i) and layer (v) the bulk-like features of the

CFAS and Ge, respectively, are recovered.

The interfacial CFAS region (ii) shows that near the Fermi-level there is a small

number of spin-down interfacial states; however, this does not significantly affect the

spin-polarisation at the Fermi-level which is still very high. Similarly, due to the interface

bonding a small number of states emerge into layer (iii); yet this layer is significantly

positively spin-polarised. In other words, this sharp interface preserves the very high

spin-polarisation of the CFAS in the interface vicinity, a property that is highly desirable

for spintronic applications.

Finally, we demonstrate that the sharp atomic interface model reproduces the

distances and angles of the interfacial Ge dumbbell bilayer with respect to the interfacial

Co layer from the CFAS film. Figure 6.7b shows the relaxed coordinates of the atomic

layers in the interface region. As in the experiment, the interface Ge bilayer shows the

same tilting angle in comparison to the angle in the bulk Ge dumbbells, hence confirming

that the effect of the small interdiffusion on the interfacial structure is negligible.
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Figure 6.8 Spin-polarised PDOS of Co2FeGe/Ge(111) interface. Regions labelled as (i) - (v)

are chosen exactly in the same way as in Figure 6.7b; the only difference is that all Al/Si

sites in the supercell are fully substituted with Ge.

The DFT calculations were performed with the CASTEP code using a periodically

repeating supercell which contains two equivalent interfaces. The supercell is large

enough (28 Ge and 13 CFAS atomic planes along the [111] direction) so that the CFAS and

Ge bulk-like electronic structure is recovered in the regions away from the interfaces.

Similar as in the previous chapters, the following parameters were used: Hubbard-U term

of 2.1 eV for both d-block elements Co and Fe; plane wave cut-off energy of 600 eV;

k-point sampling spacing of 0.03 ∙ 2π Å-1. All atomic coordinates as well as the

perpendicular (with respect to the interface plane) lattice parameter were geometry

optimised. PDOS were calculated with the OPTADOS code using the fixed Gaussian

broadening scheme.

In Ref. [157], PNR measurements have been performed for this heterostructure

and the results show an abrupt decrease of the magnetic moment at the interface, hence

confirming the validity of the constructed interface model.

It was shown above that the small Ge outdiffusion does not have any significant

effect on the electronic structure. The analysis was performed on bulk-structures. For
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completeness, and in order to provide an additional quality check, here are also shown

(Figure 6.8) the PDOS across a Co2FeGe/Ge(111) interface, where all Si/Al atoms are

substituted with Ge. The results show again a presence of very high spin-polarisation in all

interfacial regions, i.e. the same behaviour as for the model of abrupt CFAS/Ge

heterostructure.

6.7 DFT study of a CFAS/Ge model with a simple epitaxial relationship

The atomistic model for the interface studied in the previous section was

constructed taking into account the twinning phenomenon. Since twinning at these

interfaces is consistently observed, we should expect the twinned structure to be lower in

energy compared to the non-twinned one. In this section, for completeness, a

computational study is performed for a model with a simple epitaxial relationship

between the film and substrate, i.e. non twinned CFAS/Ge interface.

The results presented in the Figure 6.9, show that this interface completely

destroys the local spin-polarisation. In other words, the spin-polarisation values for the

interfacial regions (ii) and (iii) are -12% and +2%, respectively. The buckled atomic

positions in the interface vicinity are an initial indication that this interface atomic

structure is very likely high in energy (i.e. metastable). This indication is confirmed by

total energy calculations for both type interfaces: twinned and non-twinned.



Chapter 6. Co2FeAl0.5Si0.5/Ge(111) interface

150 | P a g e

Figure 6.9 DFT study of a non-twinned CFAS/Ge(111) interface. a) Structural model

viewed along the [110] crystallographic direction; b) Spin-polarised PDOS for the regions

labelled as (i) - (v) in (b). Colour coding is the same as in Figure 6.7.

Taking into account that the twinned and non-twinned supercell models have the

same number of atoms we can easily compute the energy difference which arises due to

the interfacial twining. By using the total energies for the twinned and non-twinned

supercell models, an energy difference of 0.3 J/m2 is obtained in favour of formation of a

twinned interface, which agrees with the observations.

It should be emphasised that these results demonstrate that it is always beneficial

to create atomistic models directly from observations; although the atomic plane stacking

sequence is identical for the twinned and non-twinned interface, they significantly differ

in their spin-electronic structure.

6.8 Conclusion

In this chapter, it was shown that a CFAS film forms an abrupt interface with the

Ge(111) substrate. By combining atomic resolution imaging and spectroscopy, it was

demonstrated that there is a minor out-diffusion of Ge, limited to a very narrow 1 nm

interfacial region. By performing EDXS chemical mapping, the spatial distribution of the
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diffusion was revealed, i.e. it was shown that the Ge atoms outdiffuse into the Fe-Si/Al

atomic planes of the CFAS film. In addition, DFT studies showed that due to this selective

behaviour, the outdiffusion does not affect the film’s structure and properties.

By using the information obtained from electron microscopy a realistic interface

model was constructed and used to compute the PDOS across the interface layers. The

calculations showed that this particular interface structure preserves very high

spin-polarisation. This study demonstrates that the half-metallic Heusler alloy CFAS can

form atomically and magnetically sharp interfaces with Ge which preserve high interfacial

spin-polarisation. Therefore, this heterostructure outperforms the CFAS/Si(111)

heterostructure and provides a model of ferromagnet/semiconductor interface which is

highly desirable for spintronic applications as well as fundamental spin injection studies.
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7 The atomic structure of an antiphase boundary
in Co2Fe(Al0.5,Si0.5) and its influence on the
electronic and magnetic properties

7.1 Introduction

So far, the atomic and electronic structure of interfaces between a full Heusler

alloy and metal or semiconductor was studied. As mentioned in the introduction, the

influence on the half-metallicity from several factors including ordering, point defects,

strain, variations from stoichiometry etc. has been extensively studied. Many of these

factors have been shown to drastically affect the film’s half-metallic properties. While

extended structural defects have been studied in detail in other half-metallic materials

such as magnetite [91], their presence has not so far been reported in the Co-based full

Heusler alloy. The understanding of their atomic structure and how they influence the

film’s properties is crucial for guiding the development of devices with better properties.

Figure 7.1 Schematics of an APB defect in a lattice with two elements A and B. The

boundary plane is outlined with the dashed line.

In this chapter, the presence of antiphase boundaries (APBs), which are extended

structural defects (Figure 7.1), in thin films of CFAS will be demonstrated. By employing

aberration-corrected HAADF STEM imaging, their exact atomic structure will be revealed.
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We find that the observed APB can be described with the shift vector ¼a[111], where a is

the CFAS lattice parameter. Based on these atomic resolution images, an atomistic model

of the APB is created and used to perform both DFT and atomistic magnetic calculations.

The results from the DFT calculations show that these structural defects do not

affect the preference for ferromagnetic (FM) ordering. In other words, the grains across

the boundary are still ferromagnetically coupled. However, even though the interactions

across the APB keep the FM preference, it will be shown that their strength is significantly

reduced which in turns leads to slightly shorter magnetic domain wall width compared to

that in the bulk, as computed by the atomistic magnetic calculations.

In addition, by computing the layer-by-layer spin-polarised PDOS across this APB,

it will be demonstrated that the local spin-polarisation is reversed i.e. electronic states

that are negatively spin-polarised emerge at the Fermi-level and determine the electronic

properties of the boundary. Finally, the low presence of these extended structural defects

will be correlated with their relatively high formation energy. In other words, by DFT

calculations it will be shown that the formation energy of the experimentally observed

APB is 0.9 J/m2, which is almost an order of magnitude higher compared to that of the

APB in Fe3O4 [91].

The results obtained during this study are published in Ref. [158].

7.2 Methods

The APB analysed in this chapter was observed in the CFAS film grown on Ge, i.e.

the same specimen from the Chapter 6. Hence, both growth and microscopy methods are

the same and details can be found in the Chapter 6.

DFT calculations were performed with the CASTEP code using periodically

repeating supercells which contain two equivalent APBs. The PBE+U exchange-correlation

functional was used, where the Hubbard-U term was set to 2.1 eV for all d-block

elements: Co, Fe and Mn. The plane wave cut-off energy was set to 600 eV, while the

Brillouin zone was sampled using a Monkhorst-Pack grid with a k-point sampling spacing

of 0.03∙2π Å-1. The atomic coordinates were fully geometry optimised. Spin-polarised

PDOS were calculated with the OPTADOS code using fixed Gaussian broadening scheme.
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Atomistic spin dynamics simulations were performed using the VAMPIRE code

[142] with Heisenberg exchange and uniaxial anisotropy energy. The uniaxial anisotropy

constant is set to 20 kJ/m3 [159], while the uniaxial anisotropy axis is set along the [11-2]

crystallographic direction of CFAS, as discussed in Ref. [160]. The values of the exchange

interaction constants in the bulk, are taken from ab-initio calculations performed in Ref.

[144]. These are Mn-Co(0.43) = 2.80 mRy; Co-Co(0.50) = 0.75 mRy;

Mn-Mn(0.70) = 0.35 mRy; Co-Co(0.86) = 0.30 mRy. Here, the values in parenthesis are the

distances between the pair of interacting atoms given in lattice constant units, while Ry

stands for Rydberg (1 Ry = 13.6 eV). These four nearest neighbour interactions are the

strongest; the others are becoming very low as the interatomic distance increases. Since

their contribution is very small, they are omitted in the performed magnetic calculations,

for simplicity. The constructed supercells for the atomistic magnetic simulations have

dimensions of ~16 nm x 16 nm x 280 nm. More details regarding some of the scripts used

during this study and input files are provided in Appendix 3.

7.3 Atomic structure of the antiphase boundary

Figure 7.2a shows an atomic resolution HAADF STEM image of the film region that

contains the structural defect. The defect is in the middle of this image and the boundary

plane is labelled with the white dashed line. On either side of the boundary plane, left or

right, this HAADF STEM imaging shows a distinctive bright-dark contrast for the atomic

planes along the [001] direction.

The bright contrast from this pattern corresponds to Co atomic columns, while the

darker to Fe-Si/Al atomic columns. This is expected for a B2 ordered film, as discussed in

the previous chapters. In other words, for a B2 ordering, we would expect the following

atomic plane stacking sequence … Co-(Fe-Si/Al)-Co-(Fe-Si/Al)… along the [111]

crystallographic direction, which is exactly as observed in Figure 7.2a.
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Figure 7.2 a) An atomic resolution HAADF STEM image at the APB defect performed along

the [110] zone axis. The defect plane is labelled with dashed white line. The dashed white

rectangle is along a (111) plane, while dashed yellow rectangle along a (001) atomic

plane. The colour coding of the overlaid structural model is shown in the legend. A fast

Fourier transform of the area within the yellow dashed square, is shown as an inset and

used to construct the filtered images in (b) using the spot marked with a black circle and

(c) using the spot marked with a yellow circle; both of them are [001] type diffraction

spots.

As it can be seen from this figure, the distinctive atomic column stacking pattern,

characteristic for the bulk-like part of the film, is disrupted at the boundary plane. This

can be easily noticed by following the atomic columns of the (001) plane outlined by the

yellow dashed rectangle.

In other words, by considering these (001) atomic planes, across the boundary it

can be observed that the positions of Co atomic columns switch to Fe-(Si/Al) atomic

columns. The same observations apply for the (111) atomic planes, i.e. by following the

atomic plane outlined by the white dashed rectangle, the Fe-(Si/Al) atomic columns are

switched to Co columns across the APB.

This discontinuity of Co and Fe-Si/Al columns, occurring at the APB, is further

demonstrated by the Fourier filtered images shown in Figure 7.2b,c. It can be noticed

from Figure 7.2c that the atomic planes shift along the [111] crystallographic direction. In

other words, from Figure 7.2c can be seen that, left of the defect the dashed rectangle is
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between the filtered planes, while on the right of the defect boundary plane the yellow

dashed rectangle includes the plane.

Since this filtered image gives every second (001) atomic plane, the observed shift

correlates well with the fact that Co atomic columns switch to Fe-Si/Al and vice versa

across the APB. On the other hand, structurally, ignoring the chemistry, the (001) atomic

planes are continuous across the APB as observed in Figure 7.2b. The same holds for the

(111) atomic planes.

By observing the atomic column stacking in Figure 7.2a, we can notice that if we

start from an arbitrary atomic column, we need to move three (111) atomic planes in

vertical direction (i.e. [111] direction) to get to another atomic column. If the starting

atomic column is Co, then the first column that we meet along the vertical direction

would be Fe-Si/Al; or alternatively starting from Fe-Si/Al the first one would be Co.

Such shift of three atomic planes along the [111] crystallographic direction occurs

at the APB, and this results in switching of Co with Fe-Si/Al atomic columns and vice

versa. As discussed in Section 2.4.2, along the [111] crystallographic direction there are

12 in total atomic planes per repeat unit, hence the observed APB can be described with a

shift vector of ¼a[111], where a is the lattice constant of CFAS.

7.4 Spin-polarisation in the boundary vicinity

In this section, the influence of the APB on the local SP will be discussed.

Figure 7.3a shows the atomistic model constructed based on the atomic resolution

HAADF STEM imaging (Figure 7.2a). This model consists of two bulk-like CFAS regions

shifted relative each to other by the APB vector ¼a[111], i.e. a shift of three (111) atomic

planes along the [111] crystallographic direction. For simplicity, only the region in the APB

vicinity is shown in this figure, the supercell however is larger and contains another

equivalent APB at the end.
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Figure 7.3 a) Structural model of the APB viewed along the [110] projection. The vertical

direction corresponds to [111]; (001) plane is along the black dashed rectangle. The

boundary plane is labelled with the double solid line, while the dashed lines are used to

separate the supercell into seven blocks. These are used to compute and plot the

spin-polarised PDOS shown in (b) where spin-up states are shown in the top part and

spin-down in the bottom part of the plot.

In order to compute and plot the spin-polarised PDOS, the region shown in this

figure is divided into seven blocks labelled as L3’, L2’, L1’, L0, L1, L2, L3, as illustrated in

Figure 7.3a. The corresponding spin-polarised PDOS at the boundary (region L0) and for

the next three neighbouring bilayers (L1, L2 and L3) are shown in Figure 7.3b. Due to the

symmetries present in the supercell, the spin-polarised PDOS from the regions L1’, L2’
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and L3’ do not differ from those of L1, L2 and L3, hence only the PDOS for the region right

of the boundary plane are shown in the figure.

The first that can be noticed is that the effect of the APB on the SP is localised to

the first two-three bilayers. At the APB (layer L0), there are significant number of

spin-down states which make this region inversely spin-polarised (compared to the

bulk-like part of the electrode) with spin-polarisation value of -44%.

Figure 7.4 Spin-polarised PDOS across the APB in a) CFS and b) CMS. Both, labels and

colour coding follows from Figure 7.3.

Away from the structural defect, the spin-polarisation recovers gradually towards

the bulk value. The first bilayer L1 has spin-polarisation of +4%, i.e. practically

depolarised, while from the bilayers L2, L3 onwards the properties become bulk-like. It

should be noted that the layers L2 and L3 already show proper band gap ~1 eV for the

minority (spin down) electrons, as expected for bulk CFAS.

The experiment and modelling so far were performed on APBs in CFAS. However,

for completeness and in order to find out whether the spin-polarisation reversal is

dependent on the exact chemical composition of the Co-based full Heusler alloy, APBs in

both CMS and CFS are considered. The results from the corresponding DFT calculations

are shown in the Figure 7.4. As seen in this figure, the effect of the APB is considerable in

both cases.
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For the case of APB in CFS, the situation is very similar to that of APB in CFAS, as

expected, i.e. the spin-polarisation at the Fermi-level becomes reversed. On the other

hand, in CMS the spin-polarisation remains with a positive sign at the Fermi-level,

however the band gap becomes hugely reduced.

All these calculations performed for three different Co-based full Heusler alloys

show that the APBs in these materials can be very detrimental for the spin-electronic

structure of the electrode. In other words, the transport of a spin-polarised current may

become drastically affected, in particular for spintronic devices operating in planar

geometry, where the APBs will act as extended regions for spin-scattering events.

7.5 Strength of exchange interactions at the antiphase boundary

In this section, the strength of the exchange interactions across the APB is studied.

The exchange constants are proportional to the energy required to transform the

ferromagnetic alignment into antiferromagnetic, and in Co-based full Heusler alloys these

interactions are between two atoms.

In order to illustrate this concept, we can consider the Heusler alloy CMS. The

exchange interactions are between the magnetic species, i.e. they can be Co-Co, Mn-Co

and Mn-Mn. All these interactions have a characteristic value of the exchange interaction

constant and determine the magnetic behaviour of these materials, their Curie

temperature, coercivity etc.

Material ௕௨௟௞ܧ
஺ிெ - ௕௨௟௞ܧ

ிெ (J/m2)ܧ஺௉஻
஺ிெ - ஺௉஻ܧ

ிெ (J/m2)ܧ௙௢௥௠ (J/m2)

CFAS 0.73 0.49 0.90

CFS 0.62 0.30 0.92

CMS 0.53 0.18 1.14

Table 7.1. Energy differences for CFAS, CFS and CMS models. ௙௢௥௠ܧ stands for the APB

formation energies, ௕௨௟௞ܧ
஺ிெ - ௕௨௟௞ܧ

ிெ is the energy difference between the AFM and FM bulk

models; while ஺௉஻ܧ
஺ிெ - ஺௉஻ܧ

ிெ is the same quantity but for APB supercell models.
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First-principles calculations of exchange constants is not a trivial problem. It has

been done so far only for simplistic systems, including the bulk CMS [144]. In this study,

the bulk values for the exchange interactions computed in Ref. [144] will be used. By

using these bulk values and performing further DFT calculations for the energy

differences between the antiferromagnetic and ferromagnetic states in presence of APB,

the strength of the exchange interactions at the APB defect will be calculated.

Figure 7.5 a) Curie temperature simulation showing the dependence of the normalised

magnetisation as a function of temperature. This simulation was performed on a bulk

CMS using a supercell with dimensions 8 x 8 x 8 nm. Analysis of the bonds for a) bulk CMS,

b) across APB in CMS. The bond distribution is shown as a function of the interatomic

distance given in lattice constant (labelled with ‘a’) units.

First, the following calculations are performed. Four supercells with the same size

and number of atoms, equal to those of the supercell which was used for PDOS

calculations, are created. The first two are bulk CFAS supercells; one of them has all of the

magnetic moments aligned along the same direction, while the other one is divided into

two halves having an opposite magnetic moment alignment. Total energy DFT

calculations are performed for all four supercells.
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As expected, the antiferromagnetically coupled supercell has higher total energy

by 0.73 J/m2 with respect to the ferromagnetically aligned supercell. The same two sets

calculations performed on a supercell with an APB defect in the middle, separating the

two halves, show that the ferromagnetic alignment between the two halves is still

favoured, but with smaller energy difference between the antiferromagnetic and

ferromagnetic configuration. The energy difference in this case is 0.49 J/m2.

Figure 7.6 The energy difference between AFM and FM configuration for the APB

supercell model as a function of the exchange constant J.

The results from these calculations demonstrate that the exchange interactions

are significantly weakened across the APB defect. Table 7.1 shows the total energy

differences between antiferromagnetic (AFM) and FM configurations for the considered

supercells.

For completeness, the same analysis is performed for APBs in CFS and CMS. As can

be seen from the Table 7.1, the reduction of exchange interactions strength across the

APB is most pronounced for the case of CMS. For this Heusler alloy, the strength of

ferromagnetic coupling between the grains across the APB is reduced by a factor of ~3,

compared to the bulk.
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The weakened exchange interactions across the APB can affect the width of the

magnetic domain wall in Heusler alloys films. One can estimate this effect once the

average exchange constants across the APB are known.

Exchange interactions are strongly localised and decay very fast as the

inter-atomic distance increases, as shown for the bulk CMS in Ref. [144]. In Figure 7.5b,c

an overview of the bond types across the APB defect as a function of the inter-atomic

distance is presented. Curie temperature atomistic magnetic simulation performed for

the bulk CMS using the known bulk exchange interactions, shows that a good value of the

Curie temperature (slightly above 900 K) is obtained (the measured one is 985 K) even by

taking into account only the first four shortest interactions, as demonstrated in

Figure 7.5a.

Figure 7.7 Schematics of a) initial b) final magnetic configuration used to calculate the

width of the magnetic domain wall for both bulk and APB models as shown in c) where

the relative magnetisation is plotted as a function of the distance along the longest

dimension of the supercell.
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Next, in order to obtain an estimate value of the shortest (and strongest) range

exchange interactions across the APB, the following method is used. To the shortest three

interactions an equal value of average J, which is to be determined, is assigned.

By varying this J value in a given range, for each value of J the energy difference

between the antiferromagnetic and ferromagnetic state is calculated and the results are

plotted in Figure 7.6. This energy difference was computed using the Heisenberg term of

the Hamiltonian in the VAMPIRE code (Section 3.7). Since from the previously performed

DFT calculations we already know that the energy difference between AFM and FM

configuration is 0.9 eV, using the curve in Figure 7.6, it can be seen that to this energy

difference value corresponds J = 0.6 mRy.

By using the obtained J value, magnetic atomistic simulations are performed.

These magnetic domain wall calculations presented in Figure 7.7 show that there is a

slight change of the width of the magnetic domain wall in a presence of an APB.

These calculations are performed using the VAMPIRE code on large supercells (size

details are given in Section 7.2). The magnetic moments are initially set in opposite

directions at each half of the large supercell model (the APB is in the middle of the

supercell). The whole system is then allowed to relax until a convergence is obtained. The

converged configurations from these calculations are shown in the Figure 7.7.

Figure 7.7 shows that the effect of the APB is small but noticeable. The relative

magnetisation (Mz), where z is the longest axis of the supercell, in the presence of APB

decreases slightly faster in comparison to the bulk case. The domain wall width for the

bulk (all parameters used during the simulations are given in Section 7.2) is ~150 nm. The

presence of the APB reduces the domain wall width by about ~25 nm, as a result of the

weakened exchange interactions.

These results demonstrate that the APB’s influence on the overall magnetic

properties of Co-based full Heusler alloys is not as dramatic as in materials systems with

super-exchange interactions, for an example in magnetite, where the nature of the

bonding changes from ferromagnetic in the bulk to strong antiferromagnetic at the APB.
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7.6 Formation energy and likely origin of antiphase boundary formation

In this section, the formation energies of the ¼a[111] APBs in CFAS, CMS and CFS

are computed by comparing the total energies of APB and bulk supercells. For the case of

CFAS, the APB formation energy is computed to be 0.9 J/m2. As shown in the Table 7.1,

the formation energy values are very similar in the case of APB in CFS or CMS, where we

obtain 0.92 J/m2 and 1.14 J/m2, respectively. All these values are order of magnitude

higher compared to the formation energy of the APB present in magnetite [91]. These

relatively high formation energies explain the low APB presence in Co-based Heusler alloy

thin films.

Figure 7.8 Low magnification HAADF STEM image at the APB (outlined by the white

interpenetrating lines) vicinity. The step at the Ge surface is outlined by the yellow line.

The inset is magnified view of the CFAS bulk-like part shown for better visualisation of the

crystallographic directions.

Finally, it should be mentioned that the observed APB is located just above a step

in the Ge surface, as shown in the Figure 7.8. The close proximity of the step in the

substrate surface and the APB in the film, suggests that Ge(111) surface steps can act as

nucleation centres for APB formation. This could be used as a mechanism to control their

abundance in the thin films.
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7.7 Conclusion

It this chapter it was demonstrated that APBs can form in Co-based full Heusler

alloys thin films. By performing DFT calculations, it was shown that these extended

structural defects lead to a significant density of states in the minority spin band gap

which for the case of CFAS reverse the local spin-polarisation. In addition, these

calculations also showed that the ferromagnetic alignment still remains favoured when

an APB is introduced, however the exchange interactions across the defect are

significantly weakened.

Moreover, by performing atomistic magnetic simulations, it was shown that this

weakening of the exchange interactions across the APB causes a slight reduction of the

magnetic domain wall width compared to that of the bulk. This study has demonstrated

that the APBs have considerable effects on the spin-electronic structure. Although their

presence is low in the analysed thin films of CFAS, it has to be further minimised, possibly

by avoiding steps in the Ge surface, in order to fully exploit the half-metallic character of

the electrode in particular for planar type spintronic devices.
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8 Conclusion

In this work it was shown that by combining state-of-the-art electron microscopy

imaging with first-principles calculations a full correlation between the atomic and

spin-electronic structure of interfaces and extended structural defects in the Co-based full

Heusler alloys can be established. The electron microscopy imaging demonstrated that

their atomic structure can drastically differ from that in the bulk-like part of the thin film

which often may be very detrimental for the overall device performance.

It was shown that for Co2MnSi/Ag the interface atomic structure is not an ideal

bulk-like terminated; a presence of an additional monolayer was demonstrated. This

additional monolayer as shown by the density functional theory calculations can create

huge negative spin-polarisation which will significantly affect the spin-polarised transport

across this interface.

The interface between the Heusler alloy and Si which is quite important for

spin-injection applications, was demonstrated that can suffer from considerable

interfacial intermixing which has significant impact on both spin-polarisation and

magnetic moment. It was also shown that the corresponding abrupt interface, in case the

interdiffusion can be completely avoided, will not give a desirable interfacial

spin-electronic structure. The reversal of the local spin-polarisation in the case of a sharp

interface can be fully avoided and very high spin-polarisation across all interface layers

can be obtained, by adding a monolayer of Si-Co-Si which is thermodynamically stable to

exist at the interface.

The interface between Co2FeAl0.5Si0.5 and Ge, which have almost the same lattice

parameter, does not suffer from these challenges, i.e. it does not form any secondary

interfacial phases and also has a very minor and atomic planes selective Ge outdiffusion

into the film. By first-principles calculations it was shown that this minor Ge outdiffusion

does not affect the structural integrity and spin-electronic structure of the interface. It

was demonstrated that this interface is characterised with very high interfacial

spin-polarisation, hence it is an ideal candidate for spin-injection applications.
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It was also demonstrated that extended structural defects are present in the

Co-based full Heusler alloys. Their exact atomic structure was revealed by employing

electron microscopy. The density functional theory calculations showed that these

structural defects can lead even to a reversal of the sign of local spin-polarisation.

Although it was shown that their formation energy is significantly higher compared to the

low energy structural defects in other halfmetals such as magnetite, the presence of

these defects has to be further minimised in order to fully exploit the huge potentials of

the Heusler alloys.

There are many possibilities for further research into this subject. Certainly, there

are plenty of potential interfaces that can be also studied by the same approach

presented here which will potentially reveal all the interfaces with big potentials. Since it

was shown that the spin-polarisation can significantly depend on the exact atomic

interfacial structure, it is worth to also further study the possibility of controlled growth

of interfaces with desired atomic structure. Another potential study is to explore the

possibility to control the structural defects density by controlling the steps of the

substrate surface. Finally, from more fundamental point of view, the twinning

phenomenon observed at many of these interfaces is worth to be studied in details.
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Appendix

Appendix 1

Here the ‘.cell’ CASTEP file for the bulk CMS is given:

%block lattice_abc
5.65 5.65 5.65
90 90 90
%endblock lattice_abc

%block positions_frac
Co 0.250 0.250 0.250
Co 0.250 0.750 0.750
Co 0.750 0.250 0.750
Co 0.750 0.750 0.250
Co 0.250 0.750 0.250
Co 0.250 0.250 0.750
Co 0.750 0.750 0.750
Co 0.750 0.250 0.250
Mn 0.000 0.000 0.000
Mn 0.000 0.500 0.500
Mn 0.500 0.000 0.500
Mn 0.500 0.500 0.000
Si 0.500 0.500 0.500
Si 0.500 0.000 0.000
Si 0.000 0.500 0.000
Si 0.000 0.000 0.500
%endblock positions_frac

%block hubbard_u
Co d: 2.1
Mn d: 2.1
%endblock hubbard_u

symmetry_generate
snap_to_symmetry
kpoint_mp_spacing 0.03

%block cell_constraints
1 1 1
0 0 0
%endblock cell_constraints
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The main section of the ‘.param’ CASTEP file for the same system is given here:

task : geometryoptimisation
PDOS_CALCULATE_WEIGHTS : true
write_cell_structure : true
spin_polarised : true
cut_off_energy : 600 eV
xc_functional : pbe
spin : +20
max_scf_cycles : 100

Appendix 2

An example of a QSTEM input file is given below (only the most important part is shown

here):

mode: STEM
filename: CFAS_L21.cfg
resolutionX: 0.050000
resolutionY: 0.050000
NCELLX: 8
NCELLY: 25
NCELLZ: 8
v0: 200.000000 % beam energy
tds: yes % include thermal diffuse scattering
temperature: 300.000000 % temperature in Kelvin
slice-thickness: 2.005000 % slice thckness in A
slices: 50 % number of different slices per slab
center slices: yes % center slices
slices between outputs: 10 % give intermediate results after every 10 slices
periodicXY: no % not periodic in x- and y-direction
periodicZ: no % not periodic in z-direction

scan_x_start: 5.000000 % X position of top left corner of scan window
scan_x_stop: 25.000000 % X position of bottom right corner of scan window
scan_x_pixels: 200 % number of pixels in X-direction
scan_y_start: 5.000000
scan_y_stop: 25.000000
scan_y_pixels: 200
detector: 85.000000 170.000000 detector1 0.000000 0.000000

% STEM probe parameters
nx: 400 % array size used for probe
ny: 400 % ny = nx, if not specified
Cs: 0.0011000 % Spherical abberation in mm
C5: 1.756000 % C_5 abberation in mm
Cc: 1.600000 % Chromatic abberation in mm
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dV/V: 0.000001 % energy spread in eV (FWHM)
alpha: 24.000000 % Illumination angle in mrad
defocus: 0.000000
astigmatism: 0.000000
astigmatism angle: 0.000000

Appendix 3

In this appendix several selected scripts used during the APB study, all written in

Python, will be provided. For clarity, only the main functional part of the scripts will be

shown.

a) Plotting energy difference between antiferromagnetic and ferromagnetic state

as a function of the exchange constant J.

This script (only the main part of it is shown here) takes a supercell that contains

APB as an input. The reading part is not shown here, however the atom positions and

labels are contained into the variable ‘matr’. The first column contains the name of the

elements, while the next three their fractional coordinates. This supercell has size (a,b,c)

and contains 96 atoms; it is the same supercell used to simulate the PDOS with DFT

calculations. The script uses cutoff distance ‘rc=1’ in lattice constant units. Hence, any

interaction between two atoms which are more than a lattice constant apart is not taken

into account, since it is of negligible strength. More details of the script are shown in

parenthesis/quotations within the code given below.

a=3.9926

b=27.6523

c=9.76878

lat_const=a*2**(0.5)

inv_lat=1/lat_const

rc=1.0

(‘’Here the main exchange interaction constants for the bulk are defined.’’)

MnCo5 = 2.80*10**(-3)*2.1798741*10**(-18)

CoCo5 = 0.75*10**(-3)*2.1798741*10**(-18)

MnMn7 = 0.35*10**(-3)*2.1798741*10**(-18)

CoCo8 = 0.30*10**(-3)*2.1798741*10**(-18)

(‘’The part below creates repeats of the starting supercell, so that the starting supercell is

then surrounded by equivalent neighbours in each direction.’’)



Appendix

171 | P a g e

dt = np.dtype((np.float64))

f=np.array([0,0,0,0,0,0,0,0,0,0],dtype=dt)

for ix in range(-1,2):

for iy in range(-1,2):

for iz in range(-1,2):

f_index=0

for j in range(0,96):

if matr[j,0]=='Co':

number=0

elif matr[j,0]=='Mn':

number=1

else:

continue

(‘’Depending on the atom’s position, i.e. left or right with respect to the defect, different

values for ‘orientation1’ (which gives the moment direction in FM configuration) and

‘orientation2’ (which gives the moment direction in AFM configuration) are allocated.’’)

orientation1 = 1

orientation2 = 1

if matr[j, 2] >= 0.5:

orientation1 = 1

orientation2 = -1

p1 = np.array([number, matr[j, 1] + ix, matr[j, 2] + iy, matr[j, 3] + iz, ix, iy, iz,

f_index,

orientation1, orientation2])

f = np.vstack((f,p1))

f_index=f_index+1

(‘’The expanded supercell which has 27 times more atoms than the starting supercell is

then stored in the variable ‘f’.’’)

(‘’In the code below, the exchange constant J is increasing from 0 with a step ‘delta_J’ and

later on for each step the energy difference between AFM and FM state is computed.’’)

table=np.array([0,0])

mRy=10**(-3)*2.1798741*10**(-18)

delta_J=0.25*mRy

for mm in range(0, 6):

energy_diff = 0
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(‘’From here starts the part which finds all the interactions within the cutoff radius, and if

such interaction has a J value which is not negligible, the interaction is added to the list of

all interactions.’’)

for i in range (1,f.__len__()):

tem=f[i,:]

if (tem[4]*tem[4]+tem[5]*tem[5]+tem[6]*tem[6])==0:

for j in range(1,f.__len__()):

tem1=f[j,:]

distance=inv_lat*(a*a*(tem[1]-tem1[1])**2+b*b*(tem[2]-

tem1[2])**2+c*c*(tem[3]-tem1[3])**2)**(0.5)

if (distance<rc) and (distance>0.0):

dx = tem[4] - tem1[4]

dy = tem[5] - tem1[5]

dz = tem[6] - tem1[6]

ch=0

if (distance > 0.4) and (distance < 0.55):

if (tem[0]+tem1[0])<=2:

J = mm * delta_J

ch = 1

if (distance>0.42) and (distance<0.44) and ((tem[0]+tem1[0])==1):

J=MnCo5

elif (distance>0.48) and (distance<0.51) and ((tem[0]+tem1[0])==0):

J=CoCo5

elif (distance>0.65) and (distance<0.75) and ((tem[0]+tem1[0])==2):

J=MnMn7

elif (distance>0.84) and (distance<0.9) and ((tem[0]+tem1[0])==0):

J=CoCo8

else:

if ch==0:

continue

factor = 0.5

if (dx**2+dy**2+dz**2)!=0:

factor = 1

(‘’For each contributing interaction, the energy difference ‘dE’ between AFM and FM

state is calculated by multiplying J with the product of magnetic moment orientation for

each atom of the pair, and then taking difference between AFM and FM state. This

contribution is then added to the ‘energy_diff’ which contains the total energy difference

from all interactions.‘’)

dE = factor*J*(tem[8]*tem1[8]-tem[9]*tem1[9])

energy_diff = energy_diff + dE
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energy_diff = energy_diff/(1.6*10**(-19))

table=np.vstack((table,np.array([mm*delta_J/mRy,energy_diff])))

(‘’The part below plots the results.’’)

plt.plot(table[1:,0],table[1:,1],'k-o')

plt.ylabel(r'$dE$ [eV]')

plt.xlabel(r'$J$ [mRy]')

plt.title('with APB')

plt.show()

b) Generator of large supercell

This script (only the main part is shown) takes as an input a Heusler cell (in

suitable coordinates so that [111] direction is along ‘c’ axis), with a size (a,b,c) and 96

atoms, the same as the ones used for the PDOS plots, and expands it along the ‘b’

direction ny = 100 times. The fractional coordinates of the initial (a,b,c) cell are stored in

‘matr’ where the first column stores the name of each atom, while the next three their

fractional coordinates. If the ‘b’ fractional coordinate for given atom in the final expanded

cell is greater than 0.5 then a shift along ‘c’ by 0.25 is performed. This shift is to create an

APB in the middle of the large expanded supercell. In the output file a category ‘num’ is

also included; this integer number distinguish the magnetic species Co and Mn, but also

each of them with respect whether they are left or right of the APB. This is to be able to

set different initial direction of magnetic moment required to later on perform magnetic

domain wall calculations.

a=3.9926

b=27.6523

c=9.76878

ny=100

for iy in range(0,ny):

for j in range(0,96):

if (matr[j,0]=='Co'):

if ((matr[j, 2] + iy)/ny) >= 0.5:

num=2

else:

num=0

elif (matr[j,0]=='Mn'):

if ((matr[j, 2] + iy)/ny) >= 0.5:

num = 3
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else:

num = 1

else:

num=4

if ((matr[j, 2] + iy) / ny) >= 0.5:

if (matr[j, 3] + 0.25) >= 1:

sh = matr[j, 3] + 0.25 - 1

else:

sh = matr[j, 3] + 0.25

else:

sh = matr[j, 3]

p1 = np.array([num, matr[j, 1], (matr[j, 2] + iy)/ny, sh])

f = np.vstack((f,p1))

A=pandas.DataFrame(f,columns=['index','x','y','z'])

t=A.to_excel(writer,index=False,sheet_name='SuperCell')

writer.save()

c) A script that generates input files for the atomistic magnetic simulations

Once the large ~280 nm supercell is created with the previous script, the script

below generates all the interactions and list of all atoms in a format required for the code

used for magnetic simulations.

(‘’The part below reads the input large supercell.’’)

data= pandas.read_excel("APB_supercell_280nm.xlsx")

matr = data.as_matrix()

dl = np.dtype((np.float64))

list_atoms=np.array([0,0,0,0,0,0,0],dtype=dl)

(‘’The following part generates the list of atoms in a specific form to which a magnetic

moment is allocated later on in the VAMPIRE code.’’)

k=0

for j in range(0,ny*96):

if matr[j,0]>3:

continue

pt = np.array([k, matr[j, 1], matr[j, 2], matr[j, 3], matr[j,0], matr[j,0], matr[j,0]])

list_atoms = np.vstack((list_atoms,pt))

k=k+1
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atoms =

pandas.DataFrame(list_atoms,columns=['index','x','y','z','number','number','number'])

atoms.to_excel(writer,index=False,sheet_name='atoms_list')

(‘’The list of atoms is stored in ‘list_atoms’ and then transferred to Excel file. The first

column is the index for each atom, then the fractional coordinates, and the final three

columns distinguish the atoms by their magnetic moment. This is important for the

atomistic magnetic simulations.’’)

(‘’The following part creates equivalent neighbours to the initial large supercell.’’)

dt = np.dtype((np.float64))

f=np.array([0,0,0,0,0,0,0,0],dtype=dt)

for ix in range(-1,2):

print(ix)

for iy in range(-1,2):

for iz in range(-1,2):

kk=0

for j in range(0,ny*96):

if matr[j,0]>3:

continue

p1 = np.array([matr[j,0], matr[j, 1] + ix, matr[j, 2] + iy, matr[j, 3] + iz, ix, iy, iz, kk])

f = np.vstack((f,p1))

kk=kk+1

(‘’All magnetic species from this system are stored in the variable ‘f’.‘’)

(‘’The code below finds the interactions between atoms, similarly as shown above, and

calculates the exchange constant for each of them.’’)

interlist=np.array([0,0,0,0,0,0,0])

int_index=0

for i in range (1,f.__len__()):

print(i)

tem=f[i,:]

if (tem[4]*tem[4]+tem[5]*tem[5]+tem[6]*tem[6])==0:

for j in range(1,f.__len__()):

tem1=f[j,:]

distance=inv_lat*(a*a*(tem[1]-tem1[1])**2+b*b*(tem[2]-

tem1[2])**2+c*c*(tem[3]-tem1[3])**2)**(0.5)

if (distance<rc) and (distance>0.1):

dx = tem[4] - tem1[4]

dy = tem[5] - tem1[5]
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dz = tem[6] - tem1[6]

ch = 0

if (distance > 0.4) and (distance < 0.55):

J = 0.6 * mRy

ch = 1

if (distance>0.42) and (distance<0.44) and ((tem[0] % 2 + tem1[0] % 2) == 1):

J=MnCo43

elif (distance>0.48) and (distance<0.51) and ((tem[0] % 2 + tem1[0] % 2) == 0):

J=CoCo50

elif (distance>0.65) and (distance<0.75) and ((tem[0] % 2 + tem1[0] % 2) == 2):

J=MnMn70

elif (distance>0.84) and (distance<0.9) and ((tem[0] % 2 + tem1[0] % 2) == 0):

J=CoCo86

else:

if ch == 0:

continue

new_interaction=np.array([int_index, tem[7],tem1[7],dx,dy,dz,J])

interlist=np.vstack((interlist,new_interaction))

int_index=int_index+1

(‘’The interactions are stored in the list ‘interlist’ and using the code below an output to

Excel is created.’’)

df = pandas.DataFrame(interlist,columns=['int_index','index_1','index_2','dx','dy','dz','J'])

df.to_excel(writer,index=False,sheet_name='exchange_int')

writer.save()

(‘’The interaction list contains all the interactions as rows, and the columns specify: the

first one is the index of the interaction, second and third are the indexes of the two atoms

of the interacting pair, the next three indexes show whether both of the atoms belong to

the same supercell or, one of them is within while the other one belongs to the

neighbouring cell (this is important for the calculations in VAMPIRE) and the last column

gives the exchange constant.’’)

d) A section of the VAMPIRE ‘ucf’ input file provided to illustrate the required

format

# Unit cell size:
3.9926 27.6523 9.76878
# Unit cell vectors:
1.0 0.0 0.0
0.0 1.0 0.0
0.0 0.0 1.0
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(‘’In the next section all atoms are listed; the first row gives the total number of atoms.’’)

# Atoms num, id cx cy cz mat lc hc
72
0 0 0 0.583329 0 0 0
1 0 0 0.333333 1 1 1
2 0 0 0.083337 0 0 0
…………………………………………….

(‘’Here the exchange interactions are listed; the first number gives the total number of

interactions. The meaning of these columns is explained in the previous section.’’)

#Interactions n exctype, id i j dx dy dz Jij
1344 0
0 0 68 1 1 0 6.53962E-22
1 0 70 1 1 0 6.10365E-21
2 0 71 1 1 0 1.63491E-21

e) A section of the VAMPIRE ‘mat’ input file

material:num-materials=4

material[1]:material-name= Co

material[1]:atomic-spin-moment=1.0!muB

material[1]:initial-spin-direction= 0,0,1

material[2]:material-name= Mn

material[2]:atomic-spin-moment=3.0!muB

material[2]:initial-spin-direction= 0,0,1

…………………

f) An example of the VAMPIRE input file

dimensions:system-size-x = 15.630049 !nm

dimensions:system-size-y = 15.9705 !nm

dimensions:system-size-z = 276.524 !nm

create:periodic-boundaries-x

create:periodic-boundaries-y

material:file=APB_CMS.mat

material:unit-cell-file=APB_CMS.ucf

sim:program=time-series
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(‘’This task is for finding an equilibrium configuration; it can be instead

‘curie-temperature’ if curie-temperature simulation is required; many other tasks are also

available.’’)

sim:integrator=llg-heun

sim:temperature=0

sim:total-time-steps=300000

sim:load-checkpoint=restart

sim:save-checkpoint=end

output:time-steps

output:height-magnetisation-normalised
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Abbreviations

2D Two Dimensional

AFM Antiferromagnetic

APB Anti-Phase Boundary

ARCHER name of the used national supercomputer

BF Bright Field

BF STEM Bright Field Scanning Transmission Electron Microscopy

BF TEM Bright Field Transmission Electron Microscopy

BFGS Broyden–Fletcher–Goldfarb–Shanno

CASTEP plane wave pseudopotential code

CCD Charge Coupled Device

CFA Co2FeAl

CFAS Co2Fe(Al0.5,Si0.5)

CFMS Co2(Fe0.5,Mn0.5)Si

CFS Co2FeSi

CIP current-in-plane

CMS Co2MnSi

CPP current-perpendicular-to-plane

CrystalKit a software to create and visualise atomic models

DF Dark Field

DF TEM Dark Field Transmission Electron Microscopy

DFT Density Functional Theory

DOS Density Of States

DRAM Dynamical Random Access Memory

EDXS Energy Dispersive X-ray Spectroscopy

EELS Electron Energy Loss Spectroscopy

EFTEM Energy Filtered Transmission Electron Microscopy

FET Field Effect Transistor

FIB Focused Ion Beam

FM Ferromagnetic

GGA Generalised Gradient Approximation

GMR Giant Magnetoresistance

HAADF STEM High Angle Annular Dark Field STEM

HRTEM High Resolution Transmission Electron Microscopy

ICSD Inorganic Crystal Structure Database

JEMS electron microscopy software

JEOL Electron microscopes manufacturer

LDA Local Density Approximation

MAADF Middle Angle Annular Dark Field
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MBE Molecular Beam Epitaxy

MOSFET Metal Oxide Semiconductor Field Effect Transistor

MR Magnetoresistance

MTJ Magnetic Tunnelling Junction

OPTADOS software for DOS analysis

PBE Perdew–Burke–Ernzerhof

PDOS Partial Density Of States

PIPS Precision Ion Polishing System

PNR Polarised Neutron Reflectivity

QSTEM software for simulation of microscopy images

SAED Selected Area Electron Diffraction

SP Spin Polarisation

STEM Scanning Transmission Electron Microscopy

STT-MRAM Spin-Transfer-Torque Magnetoresistive Random Access Memory

SV Spin Valve

TEM Transmission Electron Microscopy

TDS Thermal Diffuse Scattering

TMR Tunnelling Magnetoresistance

VAMPIRE software for atomistic magnetic simulations

VESTA software for visualisation of atomistic models
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Symbols

∗ convolution
℃ Degree Celsius
Å Angstrom

௜ܽ Proportion of electrons with spins oriented along the magnetisation
B2 type of ordering in Heusler alloys
.ܤ .ܼ Brillouin zone
ߚ Spin-polarisation
ܿ speed of light

௜ܿ,ࡳ expansion coefficients
Cs spherical aberration coefficient

௫݀௬ Type of d-orbital

௫݀௭ Type of d-orbital

௬݀௭ Type of d-orbital

௫݀మି௬మ Type of d-orbital

ଷ݀௭మି௥మ Type of d-orbital

ߜ Dirac delta function
∆ Laplace operator
݁ charge of the electron

eu orbital

eg orbital

E total energy
Ec cut-off energy
Ef Fermi-level
௙௢௥௠ܧ Formation energy

஺௫௖ீீܧ Generalised Gradient Approximation energy functional
ுܧ Hartree energy
௅ௌ஽஺ܧ Local Spin Density Approximation energy functional
Ev Valence band edge
௫௖ܧ exchange-correlation energy
௜ߝ single particle energies

࢑,௜ߝ
↑,↓ Energy levels at given k vector

଴ߝ dielectric constant of vacuum

௫௖ߝ
୳୬୧୤ exchange-correlation energy of a uniform electron gas
߮ critical angle
௜ߔ electron wave-functions
௣ܩ ( ௔ܩ ) Conductivity coefficient for MTJ’s parallel (antiparallel) configuration

ࡳ Inverse lattice unit vectors
ℎ Planck’s constant
ܪ Hamiltonian
௔௡௜௦௢௧௛௥௢௣௬ܪ Anisotropy part of the Hamiltonian
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௘௫௖௛௔௡௚௘ܪ Exchange part of the Hamiltonian

.௘௫௧ܪ ௙௜௘௟ௗ Hamiltonian due to interaction with an external field

ħ h/2π
௜,௝ܬ exchange interaction constants

(↓)↑ܬ Spin-up(down) current density

ܬ Total current density
k wave vector
K Kelvin
Kα EDXS edge

௦݈ Spin diffusion length
L21 type of ordering in Heusler alloys
L2,3 EELS edge
λ wavelength  
݉ mass of the electron

(↓)↑ߤ Spin-up(down) electrochemical potentials

஻ߤ Bohr magneton

ܯ Magnetic moment

↑݊,↓ spin up/down DOS at the Fermi-level

߱ smearing width
p momentum
(ݖ,ݕ,ݔ)݌ propagator
ߖ wavefunction
࢘ position
ேݎ ,ி Product of resistivity and spin diffusion length
ߩ electron density

↓,↑ߩ spin up/down electron density
)↑ߩ∇ )࢘, )↓ߩ∇ )࢘ gradient of spin up and down electron densities

ܴ௔ ( ܴ௣ ) Resistance of MTJ in antiparallel (parallel) configuration

Ry Rydberg

௜ࡿ magnetic moment direction
ߪ interaction parameter
(↓)↑ߪ Spin-up(down) conductivity

t2g orbital
t1u orbital
ܶ kinetic energy
t(x) transmission function
U Hubbard-U energy
U0 potential in interstitial region
ܸ voltage
௘௙௙ݒ effective potential

௘௫௧ݒ external potential

௣ܸ electrostatic potential

(ݕ,ݔ)௭ݒ projected potential
ܸ Number of valence electrons
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(x, y, z) coordinates
Z atomic number
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