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Abstract 

Transcriptional regulation of gene expression is essential for cellular 

differentiation and function, and defects in the process are associated with 

cancer. Transcription is regulated by the cis-acting regulatory regions and trans-

acting regulatory elements. Transcription factors bind on enhancers and 

repressors and form complexes by interacting with each other to control the 

expression of the genes. Understanding the regulation of genes would help us to 

understand the biological system and can be helpful in identifying therapeutic 

targets for diseases such as cancer. The ENCODE project has mapped binding 

sites of many TFs in some important cell types and this project also has mapped 

DNase I hypersensitivity sites across the cell types. 

Predicting transcription factors mutual interactions would help us in finding the 

potential transcription regulatory networks. Here, we have developed two 

methods for prediction of transcription factors mutual interactions from ENCODE 

ChIP-seq data, and both methods generated similar results which tell us about 

the accuracy of the methods. It is known that functional regions of genome are 

conserved and here we identified that shared/overlapping transcription factor 

binding sites in multiple cell types and in transcription factors pairs are more 

conserved than their respective non-shared/non-overlapping binding sites. It has 

been also studied that co-binding sites influence the expression level of genes. 

Most of the genes mapped to the transcription factor co-binding sites have 

significantly higher level of expression than those genes which were mapped to 

the single transcription factor bound sites.  

 The ENCODE data suggests a very large number of potential regulatory sites 

across the complete genome in many cell types and methods are needed to 

identify those that are most relevant and to connect them to the genes that they 

control. A penalized regression method, LASSO was used to build correlative 

models, and choose two regulatory regions that are predictive of gene 

expression, and link them to their respective gene. 

Here, we show that our identified regulatory regions accumulate significant 

number of somatic mutations that occur in cancer cells, suggesting that their 

effects may drive cancer initiation and development. Harboring of somatic 
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mutations in these identified regulatory regions is an indication of positive 

selection, which has been also observed in cancer related genes.  
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Chapter 1 

1 Introduction 
 

This thesis is about transcriptional regulation of human genes, which is more 

complex than prokaryotes and some eukaryotic organisms for example yeast, 

eukaryotic genome contains introns (non-coding region) and large intergenic 

regions, these regions add more complexity to the regulation of genes. However, 

size of genome is not correlated with the genetic complexity for some organisms 

i.e., salamander and lilies. Both these organisms contain ten times more amount 

of DNA than in the human genome but they are not even more complex than 

human [1].  Transcriptional regulation in eukaryotes involves the regulation of 

genes by trans-acting and cis-acting regulatory regions.  Trans-acting elements 

(transcription factors) bind on the cis regulatory regions (enhancers or 

repressors) to control the expression level of genes. However, distant cis 

regulatory regions bend themselves to bind with the promoters of corresponding 

genes [2]. These regulatory regions are short (50-1500bp) regions of DNA and 

can be located up to 1Mbp away from the transcription start site (TSS) [3]. 

Transcription factors (TFs) can mutually interact with each other, though some 

TFs bind directly on cis regulatory regions and some through other TFs (indirect 

binding). For example, transcription factors AP-2 and AP-3 interact with each 

other mutually and bind on the SV40 enhancer [4]. 

 

1.1 Overview of Molecular Biology 

 

1.1.1 Gene regulation 

 

 Gene expression is the process by which information in our DNA is converted 

into a functional product such as protein and non-coding products such as 

transfer RNA (tRNA), small nuclear RNA (snRNA) and others. Diagrammatic 

representation of central dogma is shown in Figure 1.1. This figure contains two 
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important biological processes: transcription and translation. Transcription 

involves synthesis of mRNA from DNA and translation involves synthesis of 

protein using information coded in the mRNA. 

Transcription is the first step of gene expression and can be controlled by 

enhancers, repressors and other factors. Transcription starts with the binding of 

TATA-binding protein (TBP) on the promoter region such as TATA box, this TBP 

is a subunit of Transcription Factor IID (TFIID). After binding of TBP, RNA 

polymerase along with five more TFs bind around the TATA box to form a pre-

initiation complex. Transcription Factor II H (TFIIH) have role in separating 

opposing strand of double stranded DNA to provide the RNA polymerase access 

to the single stranded DNA template. Cis-regulatory regions such as enhancers 

can increase the rate of transcription and repressors can decrease the rate of 

transcription and these regulatory regions can be bound by TFs and also can 

interact with each other through looping as illustrated in Figure 1.2.  

The mRNA is the product of transcription containing introns and exons: introns 

are non-coding regions and exons are coding regions. Transcription is followed 

by a mechanism called alternative splicing that involves removal of introns and 

joining of exons to form a mature mRNA that is ready for translation.  
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Figure 1. 1: Central dogma: This figure shows the different processes from 

transcription to translation. Transcription plays an important role in gene 

regulation and there are control elements that control the expression of genes. 

Transcription occurs in the nucleus producing an mRNA which is then transported 

to the cytoplasm for translation. This whole process is known as the central 

dogma. 
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Figure 1. 2: Transcription: This figure shows the regulators of transcription with 

transcription factors bound to genomic regions. RNA polymerase II (RNAP II) 

initiates transcription by binding on the promoter along with other factors. Distal 

enhancers can interact with other regulatory regions by looping. 

 

1.1.2 Transcription factors 

 

A transcription factor (TF) is a protein that binds to the cis-regulatory regions to 

control the rate of transcription of genes. TFs bind on the DNA in sequence 

specific manner and these sequences are called DNA motifs. Transcription 

factors contain several structural elements which can mediate their binding on 

specific DNA sequences and these structural elements have been used to 

classify factors into families [5]. Transcription factors can bind directly on the DNA 

sequences followed by indirect binding of other transcription factors on the same 

DNA region to form the transcription factor complexes to influence the gene 

expression as shown in Figure 1.2. Combinatorial regulation of transcription can 

partly explain the complexity of gene regulation in higher eukaryotes [6]. Each 

transcription factor can bind to multiple binding sites and also multiple 

transcription factors can bind on the same genomic region. Transcription factor 

binding can help to understand different biological functions, for example several 

regulatory interactions can be inferred from TF binding patterns [7]. This pattern 

of transcription factor binding can help us to identify cis regulatory regions, as 
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Benjamin P. Berman and co-workers identified these regions by TF binding in 

Drosophila [8].TF binding sites can be functional sites, so they are usually 

conserved among different mammals but some studies have shown that TF 

binding sites are divergent in some organisms as they evolved [9].  

There are different ways of representing transcription factor binding motifs, and 

one of them is Position weight matrices (PWM). These type of matrices are also 

known as position specific scoring matrices (PSSM). Position weight matrices are 

obtained from the set of aligned sequences that are functionally related and this 

method has been important for computational motif discovery. As discussed 

above TFs bind on the specific sequences that are motifs.  

PWM construction starts with creation of position frequency matrix, which is the 

number of occurrences of each nucleotide at each position. 2nd step is the 

creation of position probability matrix (PPM) by dividing the nucleotide count at 

each position by the number of sequences. Now the elements in the PWMs can 

be calculated by log2 (Mk,j/bk), and Mk,j are given in the position probability matrix 

(2nd step) as shown in Figure 1.3. While, bk =1/k (1/4), which is 0.25 for 

nucleotides [10]. For example, 1st position of “A” in PWM can be calculated by 

log2 (0.3/0.25), and the result would be 0.26 as shown in Figure 1.3 (3rd step).   
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 Figure 1. 3:  This figure shows the steps in construction of Position weight 

matrices, starting from the calculating position frequency matrix, followed by 

position probability matrix and then the creation of PWMs [11].   

Polymorphisms usually don’t contribute in causing any abnormality, however, 

several polymorphisms collectively can cause abnormality. Mutations are 

different from the polymorphisms, they can drive any abnormality i.e., cancer, 

especially if they are located in binding site of transcription factors that can lead 

to the dis-regulation of genes.  If the highly consensus sequence is mutated in 

the TF binding motif then, it would have more effect on the function than if 

mutation is located in lesser consensus sequence.  

1.1.3 Cis-acting regulatory regions  

 

Cis-acting regulatory regions are regions of non-coding DNA that control the 

transcription of near-by genes. These regions regulate genes by acting as binding 

sites for TFs. Regulatory regions can be located upstream or downstream from 
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the genes that they control, a single region can control more than one gene and 

a single gene can be regulated by more than one regulatory regions. These 

regulatory regions can interact with the promoter of the concerned gene by 

looping and these looping interactions can be identified by the Hi-C technique 

[12].These controlling elements can be enhancers, repressors and silencers of 

the transcription. Enhancers binding on TFs can be seen in Figure 1.2. The 

enhancer trap method is commonly used to experimentally identify cis regulatory 

regions but here, we have identified enhancers from ChIP-seq, DNase-seq and 

RNA-seq data using statistical and machine learning methods.  

 

1.1.4 Chromatin region 

 

Chromatin consists of DNA and protein. DNA is wrapped around histone proteins 

to form nucleosomes. The formation of chromatin 1) allows the DNA to be packed 

into a smaller volume to fit in the cell; 2) strengthens the DNA macromolecule to 

allow mitosis; 3) stops DNA damage; and 4) controls gene expression and DNA 

replication. 

1.1.4.1 Histone modifications 

 

Histone modifications have an important role in transcriptional regulation, so here 

we also discuss histones and their modifications for understanding regulation of 

genes. There are 8 histone proteins wrapped by DNA in nucleosome that is a 

basic unit of DNA packaging. H2A, H2B, H3 and H4 are 4 core histones and each 

has 2 copies that are linked by linker DNA [13]. Histone modification is the 

covalent post-translation modification (PTM) to histone proteins, which can 

influence the gene expression by altering the chromatin structure or recruiting 

histone modifiers. There are at least eight different types of histone modifications 

which include methylation, acetylation, phosphorylation, ubiquitylation,  

sumoylation, ADP ribosylation, Deimination, and Proline isomerization, all these 

modifications have role in transcription [14].  Some examples of histone 

modifications involved in transcriptional regulation is detailed in the Table 1.1.   
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 Table 1. 1: Histone modifications involved in transcriptional regulation 

 

H3k4me3 (trimethylation of histone H3 at lysine 4) modification is mentioned in 

the Table 1.1, this modification loses the chromatin condense structure.  This 

modification recruits chromatin remodelling factors such as CHD1 and BPTF and 

these factors open the chromatin that become accessible for transcription factor 

binding  and this TF binding regulates the transcription of gene [21].  H3K27ac 

(acetylation of histone H3 at lysine 27) modification represents the active 

regulatory region [20]. H3K79me3 (tri-methylation of histone H3 at lysine 79) 

modification activates the transcription in yeast cells but have role of repressor in 

human T cells [16].  

1.1.4.2 Chromatin looping  

  

Genomic regions i.e., promoters and enhancers interact with each other through 

looping. DNA bends itself because of acetylation so that regions of genome can 

interact with each other for regulation of genes. There are factors such as CTCF, 

which harbours insulator activity when they are present between enhancer and 

gene promoter [22].  

 

 

Type of 

modification 

H3K4 H3K9 H3K14 H3K27 H3K79 

mono-

methylation 

Activation 

[15] 

Activation 

[16] 

 Activation 

[16] 

Activation 

[16]   

di-methylation  Repression 

[17] 

 Repression 

[17] 

Activation 

[18] 

tri-methylation Activation 

[19] 

Repression 

[16] 

 Repression 

[16] 

Activation [18], 

Repression[16] 

acetylation  Activation 

[19] 

Activation 

[19] 

Activation 

[20] 
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1.1.4.3 Epigenetic regulation/ DNA methylation 

  

DNA methylation is one of the mechanisms that cells use to regulate genes. DNA 

methylation is a process by which methyl groups are added to the DNA molecule. 

This addition can change the activity of a DNA segment without changing the 

DNA sequence. Usually methylation act as a transcriptional repressor if it is 

located in gene promoter. Methylation occurs at the CpG sites where Cytosine is 

methylated to form 5-methylcytosine [23], dense methylation is known to involve 

in silencing of CpG rich promoters [24]. It has been observed that methylation 

occurs at CpG islands remain consistent between tissues, normal and cancer 

samples. However, differences in methylation events have been observed at a 

short distances from CpG islands [25].  It has been observed that CpG islands 

are less susceptible to change than other regions, therefore, they remain 

conserved. Some of the researchers have identified conserved promoters from 

the CpG islands and they also observed that these CpG islands co-localize with 

the H3K4me3, which suggest their role in gene regulation  [26].  

 

1.2 Available data 

 

1.2.1 ENCODE  

 

Transcriptional regulation involves regulatory elements for example TFs and 

regulatory regions where TFs bind to control the expression of genes as 

discussed above. In order to understand the transcriptional regulation of genes, 

we need TF binding, open chromatin and gene expression data. The ENCODE 

(Encyclopedia of DNA Elements) consortium has generated this data, and that is 

explained below. 

The ENCODE consortium is an international collaboration of research groups 

funded by the National Human Genome Research Institute (NHGRI), this project 

was planned after the completion of Human Genome Project to understand the 

functional elements in the genome. This project involves more than 30 research 

groups and more than 400 scientists. The major aim of this project is to annotate 
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protein coding genes, non-coding regions and pseudogenes. Only 1 percent of 

the human genome encodes for approximately 20,000 genes; scientists expected 

from this project to help us in understanding the functional role of the non-coding 

part of the genome. The purpose of ENCODE project is to link variable expression 

levels with the development of disease. This project has provided data for 

understanding the functioning and regulation of the genes. Data has helped us to 

understand that abrupt level of gene expression is linked with the cancer.  

There are also some controversies over the ENCODE project, specifically 

regarding claim of this project that 80% of genome have function which contradict 

with the perception that 98% of human genome is junk DNA. Several papers have 

been published regarding this controversy [27]. Despite controversies, this 

projected has created impact in molecular biology, helped in understanding 

regulatory mechanism of genes. Still, there is a lot to be mined from this huge 

dataset.  

ENCODE has generated ChIP-seq data, DNase-seq, FAIRE-seq, 5C and RNA-

seq data. DNase-seq, FAIRE-seq, and ChIP-seq have helped us in 

understanding the proximal and distal regulatory regions [28]. A schematic 

diagram showing methods used by ENCODE is shown in Figure 1.4. 

 

 

Figure 1. 4: ENCODE methods: A schematic diagram of major methods that are 

used by ENCODE and their relevance to detect functional elements. Reproduced 

from [28].  
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ENCODE has created a positive impact in molecular biology research. 

Computational biologists have developed several methods [29] and techniques 

from this data, and analysis of this data has led to the discovery of novel 

regulatory elements that can help to identify therapeutic targets for the cancer. 

Development of new methods and analysis of this data have been done by 

bioinformatics would help biologist to target specifically for identification of novel 

elements. Several studies have been performed in wet laboratory and their 

results have been analysed along with the analysis of the ENCODE data to 

produce novel findings. Scientist have also predicted cell type specific expression 

from the ENCODE DHS data [30].  This project has helped us in determining the 

role of biological factors such as replication timing, and gene expression on the 

rate of mutation [31]. 

Below, I have discussed some important methods such as ChIP-seq, DNase-seq 

and RNA-seq used by ENCODE and these techniques also have relevance in 

our study.  

 

1.2.1.1 ChIP-seq  

 

The ChIP-seq technique is chromatin immunoprecipitation followed by 

sequencing [32] and it is used to determine the interaction between proteins and 

DNA in the cell. There is also another technique called ChIP-chip to identify the 

interactions between the DNA and protein, this technology combines ChIP 

(Chromatin Immunoprecipitation) with DNA microarray (chip).  In ChIP-seq, an 

antibody is used to bind to a specific epitope and high throughput sequencing is 

performed on an enriched sample to determine the binding sites in the genome 

most often bound by the protein to which antibody is directed. Antibodies can be 

used to any chromatin-associated protein including transcription factors, specific 

chemical modifications on histone proteins and chromatin binding proteins. After 

the mapping of reads to the genome, ENCODE has used different peak caller 

algorithms such as SPP, PeakSeq and MACs. The output of these callers 

generally ranks regions by absolute signal (read numbers) or by computed 

significance of enrichment (e.g., p values and false discovery rates). Each peak 

calling algorithm rely on different statistical methods to calculate the p values and 
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false discovery rates, hence p values from different algorithms can’t be compared 

[33].  

In the ENCODE project, 119 transcription factor binding sites have been mapped 

using ChIP-seq data on 72 tissue types, of which 87% were sequence specific 

transcription factors [34]. Recently the ENCODE Analysis working group (AWG) 

has re-processed all the ChIP-seq data uniformly using a high quality peak caller 

with irreproducible discovery rate (IDR), and the consortium has re-produced 690 

ChIP-seq datasets representing 161 unique regulatory factors in 91 human cell 

types [35], but it is an ongoing process and probably now they have produced 

more data. 

The ChIP-seq technique adapted in ENCODE is outlined in Figure 1.5. This 

procedure initially involves treatment of cells with the chemical agent, usually 

formaldehyde, for cross linking proteins to DNA. The next step is the disruption 

of cells, sonication or digestion through enzymes to split the chromatin into 

fragments of 100-300bp. This is followed by immunoprecipitation, which is the 

enrichment of the protein bound by DNA with a specific antibody. Cross linking of 

protein to DNA is then reversed after immunoprecipitation and the enriched DNA 

is purified. The DNA is analysed through high-throughput sequencing. ENCODE 

has generated replicates by using different antibodies for certain transcription 

factors [33].  

ENCODE has generated uniform peaks which contain TF binding sites and they 

are in the BED format. There are tools which can be used for the analysis of BED 

files such as BEDOPS, that  is an open source command line toolkit for 

comparing BED datasets with highly efficient and scalable Boolean and other set 

operations [36]. Another efficient tool for the analysis of BED files is the Bed tools 

[37].  
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Figure 1. 5: ChIP-seq experiment workflow: All the steps involved in the ChIP-

seq procedure are described in this figure. ENCODE has also generated 

replicates for certain transcription factors by using different type of antibodies. 

Reproduced from Landt, S.G., et al [33]. 
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1.2.1.2 DNase-seq  

 

DNase-seq technique is used to determine DNase I hypersensitive sites. The 

DNase I enzyme preferentially cuts chromatin preparations at exposed regions 

followed by high throughput sequencing to determine those sites ‘hypersensitive’ 

to DNase I, corresponding to open chromatin [38]. DNA in hypersensitive site is 

less compact and it allows DNA binding proteins such as TFs to bind there.  

ENCODE has mapped 2.89 million DNase I hypersensitive sites by DNase-seq 

technique in 125 cell lines [34].  

A DNase-seq protocol is shown in Figure 1.6.  The procedure for production of 

peaks and signal intensities are discussed in the ChIP-seq technique.  
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 Figure 1. 6: DNase-seq protocol: This procedure starts with the cell lysis 

with detergent to release the nuclei. Then DNase I concentrations are used 

to digest the nuclei and the fragments are embedded in the low melt 

agarose plugs to decrease additional random shearing. Blunt-ended DNA 

strands are generated here, which are then ligated to biotinylated linker 1 

(represented by red bar). This is followed by the removal of excess linker 

and biotinylated fragments by digestion with MmeI, and captured by 

streptavidin coated Dynal beads. Linker 2 (represented by the blue bars) 

is ligated to the overhanging DNA strands, which were generated by MmeI.  

PCR amplified the ditagged 20bp DNAs followed by the sequencing by 

Illumina/Solexa [39].  
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1.2.1.3 RNA-seq  

 

RNA-seq is used to measure transcription and it involves the isolation of RNA 

sequences through different purification techniques followed by high throughput 

sequencing [40]. RNA-seq technique is a cost effective and powerful method for 

transcriptome analysis and this method is helpful in finding novel exons and 

junctions as it does not need probe selection [41]. An overview of the RNA-seq 

method is shown in Figure 1.7. This technique starts with the conversion of a 

population of RNA (fractionated either as poly (A) + or total) into a library of cDNA 

fragments with adapters attached to one or both ends. Each molecule is 

sequenced in a high-throughput manner with or without amplification to achieve 

the short sequences from one or both ends. The read size ranges from 30-400bp; 

these reads are then aligned to the reference transcript or reference genome after 

the sequencing to generate genome scale transcription map; which consists of 

both the level of expression and transcriptional structure for each gene. FPKM 

(Fragments Per Kilobase of exon per Million reads) values are measure of level 

of gene expression and can be calculated from RNA-seq reads.  In FPKM, 

“Fragment” is the fragment of DNA formed by two paired end reads, “Per Kilobase 

of exon” is fragments counts are normalised by dividing with the total length of al 

exons in the gene, “per Million reads” means this value is again normalised 

against the library size [42].   
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Figure 1. 7: RNA-seq: This figure shows the overview of RNA-seq. Reproduced 

from Wang, Z. et al. [42].  It starts with the conversion of mRNA into cDNA that 

followed by EST library and then sequence reads.     
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1.2.2 Conservation data 

 

Functional regulatory regions can be evolutionary conserved and conservation 

data might be helpful in identifying novel regulatory elements that are important 

for controlling expression of genes. Genomic regions shared between cells and 

shared binding sites among transcription factors could be conserved because 

they can be functionally significant.  Functionally important regions remain 

conserved even though living organisms have been evolving for millions of years 

but the rate of evolution is slow and spontaneous. Conservation information can 

be predictive of functional regions from non-coding DNA  [43] and highly 

conserved elements are linked with the function [44]. Organisms share their 

genomic regions as they evolve from the same ancestors, and most of these 

shared regions are significant and necessary for the survival of these organisms. 

These shared regions in different organisms are called conserved regions and 

they can be located in cis regulatory regions. Organisms were grouped together 

according to their biological similarities such as vertebrates, insects, 

Caenorhabditis and Saccharomyces. Human is a vertebrate and conserved 

regions were identified with other vertebrates and other groups of eukaryotes.  

Conserved elements of 46 organisms including vertebrates, insects, and 

Caenorhabditis and Saccharomyces were identified by a computer program 

called phastCons [45] . These conservation scores can help us in identifying 

potential cis-acting regulatory regions but conservation of these regions vary 

depending on the tissue types, for example, enhancers in myocardial cells are 

weakly conserved [46]. Adam et al. identified regulatory regions from conserved 

non-coding elements [47]. Pennacchio et al. have used conservation data for the 

identification of non-coding sequences such as cis-acting regulatory regions [48]. 

There are some known examples of enhancers where genes are controlled by 

conserved enhancers such as homeobox gene Hoxb-1, and this gene express 

earlier because of conserved retinoic acid response element [49]. Therefore, we 

have also used the conservation analysis for filtering the potential enhancers.  
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1.3 Cancer  
 

Alteration in transcriptional regulation can lead to high and low levels of gene 

expression that result in abnormal cell growth, and this unwanted growth in cells 

can cause cancer. Transcriptional regulation works in mechanistic way, 

deregulation of cell proliferation and supressed apoptosis (programmed cell 

death), together can cause cancer [50].  

Studying transcriptional regulation can be helpful in identifying therapeutic targets 

for cancer. This is common disease and it can occur in all age groups. The most 

commonly occurring cancers in men and women are prostrate and breast cancer 

respectively. In United States, this disease  is responsible for 25% deaths [51]. In 

United Kingdom, cancer causes 29% of total deaths in 2011. There are more than 

200 types of cancer and there are five different groups of cancer such as 

carcinomas, Lymphomas, Leukaemia’s, Brain tumours, and Sarcomas, these 

groups are based on the type of cell from cancer starts. In United Kingdom, 

almost of half of all cancer deaths are because of lung, bowel, breast, or prostate 

cancer in 2014.  Cancer can occur because of molecular changes in the cells, 

and usually it starts from a single cell. Mutations disturb the mechanism of cell 

regulation that results in altered gene expression which ultimately leads to the 

cancer, mostly these mutations are somatic. In several studies, it has been 

observed that high level of gene expression is linked with the cancer [52]. Certain 

studies show that cancer somatic mutations are influenced by the certain factors 

such as base pair composition, and replication timing [53].  

There are several databases of cancer somatic mutations such as TCGA (The 

Cancer Genome Atlas) [54], ICGC (International Cancer Genome Consortium) 

[55], and COSMIC (Catalogue of Somatic Mutations in Cancer) [56]. Only 

COSMIC database is manually curated cancer database and this also contains 

genes which are known to involve in cancer.  Most of the ENCODE cell types are 

cancer cells such as Helas3 and Hepg2 that suggest that their data can be used 

for understanding the regulation of genes, specifically cancer genes.  
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1.4 Statistical methods of machine learning  
 

Transcriptional regulation genome wide involves large number of regulatory 

regions and it is challenging to link these potential regulatory regions to their 

target genes. We need to filter those regulatory regions that are predictive of gene 

expression for their respective target genes. Statistical methods of machine 

learning can be helpful in predicting potential regulatory regions.  

Machine learning is a technique to learn for predicting the better results in the 

future based on what they have learned in the past. Machines can be trained with 

the existing information and they can predict on the basis of their training. 

Machine learning generally used in optical character recognition, face detection, 

spam filtering, topic spotting, spoken language understanding, medical diagnosis, 

customer segmentation, fraud detection and weather detection. In addition, this 

technique can be used to predict gene expression. Brown and co-workers used 

support vector machines, a type of machine learning to classify the microarray 

gene expression data [57]. Different cancer outcome such as diffuse large B-cell 

lymphoma can be predicted by machine learning [58]. Machine learning is helpful 

in analysis of genomic datasets including genomic, metabolomic or proteomic 

data. Machine learning can be supervised, semi-supervised and unsupervised 

and each has different applications for different problems. Supervised learning is 

analysing data wherein classes are already assigned. However, unsupervised 

learning involves analysing data wherein classes are not known.  

These machine learning methods can be used to identify splice sites, promoters, 

enhancers and transcription start sites (TSS) [59]. Cross-validation has been 

used to test the performance of machine learning algorithms; a single cross 

validation is equal to one observation to test how our algorithm performs. We 

have used different statistical methods in this Thesis and they are explained in 

the introduction of their respective chapters.  
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1.5 Thesis objectives and structure 
 

Transcriptional regulation involves binding of TFs on cis regulatory regions and 

these TFs form complex to switch on and off the transcription of genes. 

Understanding transcriptional regulation requires study of TFs mutual 

interactions, binding pattern of TFs in different cell types, conservation analysis 

of TF binding sites, influence of TF binding on gene expression level, identifying 

cis regulatory regions (enhancers and repressors) and linking them to their 

respective genes. We have studied all these elements of transcriptional 

regulation in following chapters. (We have used hg19 version of genome across 

this Thesis).  

Chapter 2 

 Transcription factors interact with each other and bind on the DNA. In this 

Chapter, we have developed methods from ENCODE ChIP-seq data for 

prediction of TF-TF mutual interactions using two statistical methods i.e., Poisson 

distribution and randomisation.  

Chapter 3 

We have done conservation analysis of shared (overlapped sites among different 

cell types) TFBS vs. cell type specific TFBS (Transcription Factor Binding Sites); 

and overlapped TFBS vs. non overlapped TFBS within a particular cell type; here 

we also looked for influence of co-bound and single bound TFBS on gene 

expression. 

Chapter 4 

Prediction of cis regulatory regions is significant because this prediction would 

help experimentalists to validate cis regulatory regions and to understand gene 

regulation. Here, we have built linear models by integrating candidate cis 

regulatory regions (CRRs) obtained from ChIP-seq and DNase-seq with RNA-

seq data, and potential regulatory regions were chosen by four methods mostly 

based on genomic features for example TF binding and conservation score.  

 



22 
 

 

 

Chapter 5 

In this Chapter, we have built correlative models using LASSO (Least Absolute 

Shrinkage and Selection Operator) in two different approaches. In 1st approach, 

LASSO built models with all possible CRRs (on average 42) per transcript, and 

in 2nd approach we gave CRRs filtered by higher TF binding and higher 

conservation score. 

Chapter 6 

Regulatory regions predicted in previous chapters can be helpful in 

understanding cancer somatic mutations, knowing that these regions obtained 

from ENCODE cell types and most of these cell types are cancerous. Therefore, 

there is relevance in mapping somatic mutations on these regulatory regions. 

Here, we tested the significant difference in accumulating cancer somatic 

mutations between regulatory regions chosen and rejected by LASSO.    

Chapter 7 

Discussion and future work.  
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Chapter 2 

2 Preliminary studies of potential methods for predicting 

transcription factor interactions by binding site overlap analysis 

 

2.1 Introduction 

 

Transcription factors have an important role in the regulation of genes and their 

role is explained in the 1st chapter. These factors are proteins which bind directly 

or indirectly on cis-acting regulatory regions. Direct binding involves binding of a 

transcription factor directly on the cis regulatory regions, while indirect binding is 

the binding on the cis regulatory regions via other transcription factors. 

Transcription factors mutually interact with each other and form complexes for 

the combinatorial regulation of genes. Therefore, predicting mutual interactions 

is important for understanding the regulation of genes.   

 

2.1.1 TF Co-association  

 

Transcription factors co-associate (mutually interact) in a combinatorial and 

context-specific fashion. Different combinations of factors bind different targets 

and their binding affects each other. Moreover, transcription factors often show 

different co-association patterns in gene-proximal and distal regions [60].  

Gerstein et al., developed a method, where they focus on specific region bound 

by a transcription factors and examined the binding of all other transcription 

factors in that region. They generated a co-binding map by obtaining normalised 

binding signals of overlapping peaks of all TFs [60].  

Similarly, Kazemian and co-workers have predicted transcription factor 

interactions by overlapping the transcription factor binding sites. They assessed 

the significance of co-binding of a TF pair by testing the over representation of 
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particular orientation(one binding site for each TF in a TF pair) using a binomial 

test [61].  

The ENCODE project has systematically mapped regions of transcription, 

transcription factor co-association, chromatin structure and histone modification. 

The project reported co-association involving 114 out of a possible 117 

transcription factors in proximal and distal regions. These include known 

associations, such as Jun and Fos, and some novel associations, such as 

TCF7L2 with HNF4-α and FOXA2 (Figure 2.1). They have also identified regions 

bound by multiple transcription factors representing high occupancy transcription 

factor regions [29].  
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Figure 2. 1: Co-association between transcription factors. a. Co-associations of 

transcription factor pairs across the entire genome in K562 cells. The colour 

intensity shows the extent of association (from red (strongest), orange, to yellow 

(weakest)). b. Three classes of behaviour are shown. The first column shows a 

set of associations between TFs independent of location in promoter and distal 

regions; whereas the second column shows a set of associations in promoter-

proximal regions. Both of these columns are highlighted on the genome-wide 

co-association matrix (a) by the labelled boxes A and B, respectively. The third 

column represents a set of transcription factors that show stronger association 

in distal regions. Reproduced from [29]. (Copyright permission is not required 

for this figure as it is here only for education purposes).  

 

2.1.2 Distinguishing indirect transcription factor occupancy  

 

If two transcription factors have the same binding site then there can be several 

possibilities but main two of them are: 1. they can bind to same site at different 

times, and 2. Co-binding by two TFs when only one has recognised motif in that 

region suggests that other might bind indirectly. Neph and co-workers discovered 
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many known protein-protein interactions such as CTCF-YY1 and TAL1-GATA1 

as well as many novel associations by integrating ChIP-seq and DNase I footprint 

data. ChIP-seq peak containing DNase I footprint motif represents direct binding 

and ChIP-seq without compatible motif shows indirect binding. They also stated 

that transcription factors can be mutually interacting when the frequency with 

which indirectly bound sites of one transcription factor coincide with directly 

bound sites of a second factor is higher than expected by chance [62].  

Gordan and co-workers developed a method to identify direct TF binding and 

indirect TF binding by using TF binding motifs. They concluded that a TF can 

interact directly with the DNA if it has compatible motif in ChIP-chip data 

otherwise it would interact indirectly. When they applied this to yeast ChIP-chip 

data, they found only 48% TF binding directly and 16% binding indirectly. In the 

remaining 36%, none of the motif was able to explain the ChIP-chip data because 

either the motifs set were incomplete or the data were too noisy [63].   

In this chapter, we have developed two statistical methods based on the Poisson 

distribution and randomisation for prediction of TF-TF mutual interactions. 

Several other researchers have also predicted the co-association of transcription 

factors as discussed above but our methodology is different. Here, we have 

discussed results from two cell types i.e., Gm12878 and K562; however this 

method can be applied to other cell types and newly generated data.   

 

2.2 Methods and data 

 

2.2.1 Dataset 

 

Publicly available ChIP-seq data from ENCODE (2012 release) which contains 

information on TF binding sites, was used in this study. This ChIP-seq data 

(uniform peaks) was retrieved and analysed. The data contains biological 

replicates for some transcription factors because it was produced by several 

laboratories sometimes using different antibodies. The ENCODE ‘Analysis 

working group’ has already generated uniform peaks (peak is a TF binding site) 

from these datasets by using the Irreproducibility Discovery Rate (IDR: measures 
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consistency between replicates) [64], and this analysis was used in the work 

reported here. 

All 439 datasets with uniform peaks (ENCODE generated uniform peaks by using 

IDR) were retrieved for five cell types (K562, Gm12878, Hepg2, Helas3, and 

H1hesc). These cell types were selected because significant number of 

transcription factors binding sites were mapped. Table 2.1 shows the number of 

transcription factors mapped by ENCODE in these five cell types along with their 

corresponding tissue types and karyotype. 

Table 2. 1: This table shows the number of transcription factors mapped 
in five cell lines along with the tissue types and karyotype.  

Tissue 

type 

Cells Karyotype No. of TFs 

mapped in 

each cell 

type 

K562 Erythroleukemia/ 

bone marrow 

cancer 100 

Gm12878 EBV transformed B-cell 

lymphoblastoid 

normal 73 

Hepg2 Liver hepatocellular 

cells 

cancer 57 

Helas3 Cervix/adenocarcinoma cancer 54 

H1hesc Human embryonic 

stem cells 

normal 47 

 

 2.2.2 Methods 

 

These datasets also contain binding sites of CTCF, CTCFL, POL2 and POL3, but 

these proteins were not considered for prediction of TF-TF mutual interactions. 

The ENCODE has generated biological replicates using different antibodies for a 

single transcription factor; replicate with highest number of binding sites were 

considered for particular transcription factor.  
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In the next step raw data was processed because chromosomes were not in the 

order so Bedtools sort [37] was used to sort them. Within each dataset binding 

sites that are overlapped by at least one base pair were merged into a single site 

by using Bedtools merge  [37], because they belong from a single binding site.  

Overlapping of TF binding sites was assessed as significantly overlapping TF 

pairs interact with each other. Here sites will be considered overlapping if they 

overlap by at least one base pair.  

A Python program was written to identify overlapping binding between 

transcription factor pairs. 

The fraction of overlaps for transcription factor pairs (i.e., X and Y) was calculated 

using the following formula: 

1. Fraction of X overlaps with Y = Number of overlaps between X and Y / Number 

of peaks in X 

2. Fraction of Y overlaps with X = Number of overlaps between Y and X / Number 

of peaks in Y 

A high percentage of overlaps at the actual peak sizes given by ENCODE were 

found because peaks are much bigger than the actual TF binding site of the 

transcription factor. This is controlled by the size of sequence fragments typically 

~ 200 bases. The binding site is usually located in the centre of the peak and its 

size varies from TF to TF [65]. Therefore, it was decided to fix the size of the 

peaks by extending a set distance on each side from the centre of the actual 

peaks.  

To check the overlaps at fixed sizes, the summit (centre of the peak) was 

calculated by adding chromosomes start of the peak (2nd column) with 

coordinate (10th column) in narrow peak format as shown in Appendix I. 

Subsequently peak sizes were extended using Python program and Bedtools 

slop (i.e., a tool used for extending peak on both sides). We decided to check 

overlaps at peak sizes 20, 50, 74, 150, 350, 600, 800, 1000, 1500 and 2000; and 

also required to finalize the peak size where significant overlaps can be found for 

each TF pair.  
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P values were required to check whether the overlaps are real or by chance. 

Therefore, two statistical methods, randomisation and Poisson distribution, were 

optimised to test the significance of the overlaps.  Here, we set a null hypothesis 

that the transcription factors bind independently to the genome. In this case, we 

would still expect some level of overlapping binding sites where they happen to 

bind on the same place by chance. If there are more overlaps than expected, 

then that is the evidence that TFs tend to bind in the same place. The null 

hypothesis would be rejected and that is the evidence that they might interact in 

some way. So statistical test tells us about significant overlaps and are evidence 

of interaction. There can be some problems with these statistical tests that 

binding might not be equally likely everywhere in the genome and in the extreme 

case if in reality parts of the genome were inaccessible to binding by any TF. To 

tackle such issues, we have considered accessible genome that is derived from 

the TF binding sites and we have optimised it by just considering % of accessible 

genome size.  

 

2.2.2.1 Randomisation 

 

Randomisation is a process of producing a sequence of random variables 

illustrating a process whose result cannot follow a deterministic pattern. 

Randomisation has been used in the clinical trials and in designing experiments. 

Mao et al. used randomisation for significant gene selection using gene 

expression data where they used the partial least squares discriminant analysis 

(PLSDA) models to test the significance of the genes for classification of cancer  

[66]. Randomisation was used here as a significance testing approach. We have 

optimised a method on the basis of randomisation for the prediction of TF-TF 

mutual interactions and overlaps of transcription factors were evaluated either 

they are random by chance or real.  

To assess the probability of chance overlaps between the binding sites of TF1 

and TF2 the peak size S (for example S=20) was first fixed as described above. 

The peaks for TF1 were then treated as reference set. Peaks were considered to 

overlap if the centre of 1 peak lies anywhere within the other peak, and this gives 

a number of actual overlapping peaks for TF1 and TF2. To assess the probability 
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of random overlaps the union set of binding sites for all TFs was used. Sets of 

peaks containing the same number of peaks as the actual TF2 set were then 

randomly selected from this union and the actual overlap with TF1 peaks 

determined. Repeating this for 5000 such random sets allow the calculation (also 

calculation of Mu which is the average number of overlaps in the random sets 

then p values were calculated from Mu and real overlaps) of p value as the 

proportion of random sets having the same or greater overlap as seen in the 

actual set.      

2.2.2.2 Poisson distribution 

 

The Poisson distribution is a discrete probability distribution which applies to any 

process that produces count data from independent events with a fixed average 

count, and it has been used in testing the transcript expression profiles [67] [68]. 

Here, we have used the Poisson distribution to evaluate the overlaps of 

transcription factor pairs. 

 The probability of binding events per region can be calculated by following 

equation 

                                             P(k)     =            

 

K=number of overlapping sites 

λ = It is the expected number of overlapping binding sites based on the null 

hypothesis of independent binding sites to the genome 

  

In the Poisson distribution, expected λ was calculated by following formula: 

 

λ= N1N2/Nag 

Where: 

N1:  number of bases covered by peaks from TF2 ((number of peaks) 

x (peak size)) 

N2:  number of peaks for TF1.  

Nag: Accessible genome size. Nag was estimated from union set of all 

binding sites from all TFs 
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Estimating accessible genome size was challenging and we have discussed it in 

the below subsection.  

 

2.2.2.3 Optimisation of method 

 

Significance of our method will increase if the lambda of Poisson distribution is 

similar to the Mu of the randomisation (lambda and Mu were discussed above). 

Peak sizes are required to fix for each transcription factor pair because ENCODE 

ChIP-seq peak sizes are bigger than the actual TF binding site. Therefore, 

transcription factors were overlapped at 20, 50, 74, 150, 350, 600, 800, 1000, 

1500 and 2000 base pairs. Peak sizes for each transcription factor pair were 

chosen where the overlap significance was highest after multiple testing. Higher 

significance level indicates that transcription factors are overlapping more than 

the expected by chance at chosen peak size.  

Results show that most of the TF pairs have highly significant overlaps. We might 

have over-estimated the size of accessible genome. To reduce over-estimation, 

we considered 75%, 50%, 40%, 30%, 20% and 10% size of accessible genome 

and compared the resulting significant TF-TF interactions. Size of accessible 

genome was optimised at 20% because at this size most of the known TF 

interacting pairs are overlapping significantly and overlaps for novel TF-TF 

interacting pairs can be ranked in order of their significance.  

2.2.2.4 Multiple testing correction 

 

Multiple testing correction is an important step to identify the false positives or to 

identify false significant interactions in this case. As we have discussed above, 

different peak sizes were used such as 20, 50, 74, 150, 350, 600, 800, and1000 

base pairs, and p values were calculated from Poisson distribution for each peak 

size separately. These p values were extremely small, so it was not possible for 

even python float to handle them because the programming language considers 

every extremely small value as a zero but we need to rank actual values for 

multiple testing correction. Therefore, it was decided to take negative log of the p 

values and divide this resultant negative logarithm with 10. These logarithm 
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values were converted into the p values for multiple testing correction. We 

corrected these p values globally and concatenated all the p values from 20, 50, 

74, 150, 350, 600, 800, 1000 base pairs and applied the Benjamini Hochberg test 

[69], a type of multiple testing correction. Again, we took the negative log of 

corrected p values. Peak sizes were then chosen if a particular TF pair has highly 

significant interaction (lowest corrected p value or highest negative log of it).  

 

2.2.2.5 Validation of method 

 

Known protein-protein interaction of TFs were retrieved from Biogrid (V.3.2.114) 

[70] and IntAct (downloaded data on 28th February 2014) [71] databases. In 

addition to that orthologous information on TF-TF mutual interaction in mouse 

was retrieved and all these interactions were unified into a single matrix to 

correlate with the p values calculated from randomisation and the Poisson 

distribution (with significant TF pair overlaps after global multiple testing 

corrections).  

In the last step, p values were correlated with the known protein-protein 

interactions. All these known interactions were checked whether they have 

significant p values or not. We also checked those TF pairs which are not known 

interacting transcription factors but they have significant p values, so that these 

pairs might be novel interacting TF pairs. 

 

2.3 Results  
 

Methods were developed using the Poisson distribution and randomisation to 

predict mutual TF-TF interactions. Here, we have presented result of two major 

ENCODE cell types i.e., Gm12878 and K562.  

2.3.1 Gm12878 cell type 

 

ENCODE categorised Gm12878 cell line as a Tier-1 along with the K562 and H1 

human embryonic stem cells (H1hesc). This lymphoblastoid cell line that 
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represents mesoderm cell lineage was produced from the blood of normal female 

donor. ENCODE has generated 90 datasets of this cell line representing 73 

transcription factors and other regulatory elements.   

2.3.1.1 Intersection (overlapping) of transcription factors 

 

Initially transcription factors were considered with their ENCODE ChIP-seq peak 

sizes, which are usually large (referred to as actual peak size below), and 

subsequently all these transcription factors were overlapped with all possible 

combinations.  Many transcription factors have high percentage of overlaps 

because they are overlapping at actual peak sizes or these overlapping 

transcription factors pairs are likely to interact [62]. These ENCODE actual peak 

sizes are larger than the size of the transcription factor binding site, as these 

transcription factor binding sites size ranges from 5-31 nucleotides, on average 

10 nucleotides in eukaryotes [72].  

We have discussed in the introduction of this chapter that binding sites are 

assumed to be located in vicinity of centre of the peak and it has larger size than 

actual binding site because of resolution of ChIP-seq. Therefore, it was decided 

to fix the size of the peaks to reduce false positives.  

It is hard to decide whether the TF binding sites are overlapping because each 

transcription factor has different binding site size and has a different protein size. 

For example, if the protein size of the transcription factor is big and even if it has 

a small binding site, it will occupy a fragment on the DNA (in case of direct 

binding) that is proportional to the protein size. Gene specific transcription factors 

are smaller in size compared with those transcription factors which recruit 

mediators, RNA polymerases, histone modifiers and nucleosome remodellers. 

The size of gene specific transcription factors is ~50 kDa and size of the recruiters 

(large protein complexes) range from 1 to 3 MDa [73]. Therefore, it is likely that 

each TF pair will overlap significantly at different peak size.  

We overlapped TF1 peak centre with the TF2 with different peak sizes (20, 50, 

74, 150, 350, 600, 800, 1000, 1500 and 2000 base pairs) separately. It 

determines TF1 is lying anywhere in the binding site of TF2. Ultimately statistical 
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significance of the overlap will decide that either the transcription factors would 

interact or not.   

 There are two things which need to be considered: 1) To test the significance of 

overlaps by using statistical tests such as randomisation and the Poisson 

distribution; and 2) To optimize peak size for each transcription factor pair to 

account for the difference in protein size and binding site size.  

2.3.1.2 Statistical significance of the overlaps.  

 

Two statistical tests, randomisation and the Poisson distribution, were performed 

to evaluate the significance of overlaps between transcription factor pairs. 

We started with the randomisation, which is a time consuming process. A large 

number of random sets (5000) were generated from the union of all transcription 

factors binding sites with actual ChIP-seq peak sizes as discussed in the methods 

section.  

However, Poisson distribution is simpler than randomisation and we have 

developed both methods successfully, as lambda of Poisson distribution is similar 

to the Mu of randomisation (Mu is the average number of overlaps in the random 

sets). The Poisson approximation is confirmed by the randomisation process, 

therefore, p values are likely also to be similar. Actually, similar results increases 

the significant of the results as Poisson distribution may have some false 

discovery rate (may have poor fit) [74] or randomisation may result in false 

positives.   

Figure 2.2 shows scatter plot, where Mu of randomisation is plotted against 

lambda of Poisson distribution. Both values are well correlated as shown in the 

Figure.   
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Figure 2. 2: Here Mu of randomisation is plotted against the lambda of Poisson 

distribution and both values are similar as they are well correlated. 

 

2.3.1.3 Optimised results 

 

After correcting p values by multiple testing correction and choosing the particular 

size of the peak for each TF pair as discussed in methods section, then we ranked 

TF pairs by the negative log of corrected p values and by ratio of real and 

expected overlap. A total of 1006 TF pairs with highly significant corrected p 

values were selected (1006 TF pairs have p values<0.01, this p value is a lot 

lesser but was normalised to separate highly significant predicted interacting TF 

pairs). These 1006 TF pairs were ranked by the negative log of corrected p values 

and ratio of real and expected overlap. Ratio of real and expected overlaps and 

logarithm of corrected p values are shown in Figure 2.3 and 2.4, respectively. In 

Figure 2.3, ratio of real and expected overlap was calculated by the real 

overlaps/expected overlaps and these expected overlaps (lambda) were 
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calculated by the Poisson distribution. There are fewer outliers that have 

extremely high ratio of overlaps. For example, Brca1-Zbtb33 TF pair has 124.45 

ratio of overlap as its expected overlap is low (3.83) and real overlap is high (477), 

Brca1-Corestsc has 67.9 ratio, which is the 2nd highest ratio. Only 7 TF pairs have 

ratios of overlap higher than 20. However, a high ratio of real and expected 

overlaps in TF pairs does not mean that these pairs interact with high level of 

significance.   

 

Figure 2. 3: (Only upper triangle). This heat map shows the ratio of real and 

expected overlap for 1006 TF pairs considered for analysis are represented by 

all the colours except blue. TF pairs were ranked by the ratio of real/expected 

overlap and top 300 pairs are represented with the red colour.  
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There are several TF pairs with p values that are highly significant, with high ratio 

of real and expected overlap such as Ets1-Elk1, Cfos-Sp1 and several others 

shown as red squares in the Figure 2.3 and 2.4.  

The top 1006 TF pairs with high negative log of p values are shown in the Figure 

2.4. There are a few cases where the TF pair has significant corrected p values 

but low ratio of real and expected overlap as compared to the p value. Examples 

of such TF pairs are Pax5-Pou2f2 and Atf2-Sp1 transcription factor pairs.  

There are cases where TF pairs have high ratio of real and expected overlap but 

their corrected p values are not low as compared to the ratio of overlap between 

real and expected. Examples of such cases are Rxra-Elk1, Cmyc-Usf1 

transcription factor pairs. Transcription factors such as Jund, Batf, Nfkb, Irf4, 

Bcl11a, Atf2, Foxm1, Nfic, Bcl3, Cebpb, Mta3, Nfatc1, Stat5, Mef2a, Mef2c, and 

Tblr1 form cluster as shown in Figure 2.4. Most of these transcription factors have 

important role in Gm12878 cells. We can find several TF pairs overlapping 

significantly in Figure 2.1 (K562 cell type, predicted by ENCODE) and Figure 2.4 

(Gm12878 cell type, predicted by our method) e.g., TAF1 and YY1. There are 

cases where TF pair is not overlapping significantly in both figures e.g., JUND-

SIX5.  There are also cases, where a TF pair is overlapping significantly in Figure 

2.4, but not in the Figure 2.4 for example SIX5-SP1. This is possibly because, 

some transcription factors have cell type specific functions.  
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Figure 2. 4: This heat map shows the negative log of p values for 1006 TF pairs 

considered for further analysis are represented by all colours except blue. The 

red squares show TF pairs with highest negative log of p values. TF pairs with 

high significance of overlaps are clustered together by hierarchical clustering.   

 

Peak sizes (binding sites of transcription factors) were optimised for each TF pair, 

with the maximum peak size of 350 base pairs. The actual binding sites are short 

ranging from 5-31 nucleotides, but here peak sizes are big because of the 

physical size of the transcription factor protein. As discussed above that some 

transcription factors bind directly on DNA and some bind indirectly [63].  
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Optimised peak sizes of 350, 150, 74, 50 and 20 base pairs are represented by 

white, light blue and red squares as shown in Figure 2.5.  

 

 

Figure 2. 5: This heat map (only upper triangle) shows peak sizes for 1006 TF 

pairs represented by all colours except blue. TF pairs with peak size 350 and 

150 base pairs are represented by red colour. TF pairs with peak size 74 are 

represented by white squares, and pairs with peak size 50 are represented by 

half blue squares. While peak size 20 is represented by light blue squares. 

Scale is also shown on the top of this figure. 
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We plotted the optimal peak size identified by our method against the average 

size of the proteins involved but they did not correlate well possibly because only 

small portion of the proteins bind on the DNA. This plot is shown in Figure 2.6.  

 

 

Figure 2. 6:  Here, chosen (optimal) peak sizes are plotted against the average 

size of protein lengths and there is no correlation between them. This analysis 

was performed on 1006 TF pairs considered for analysis.  

 

2.3.1.4 Validation (Comparison of significant overlaps and known protein-

protein interactions) 

 

Known interactions of transcription factors were retrieved from Biogrid [70] and 

IntAct [71] databases along with orthologous interactions in mouse which were 

also retrieved from IntAct database. Orthologous [75] interactions are also 

important because their proteins share common ancestry, suggesting that 

protein-protein interactions can also be conserved in different organisms [76]. 
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Therefore, we have considered orthologous interactions as known interactions. 

Known and protein–protein interactions by our method are shown in Figure 2.7.  

There are several known interactions and these have also been identified by our 

methods. Examples of such interactions are Cmyc-Pml, Nfya-Sp1, Srf-Elk1, Srf-

Sp1, Rxra-Sp1, Rxra-Pou2f2, Srf-Elk1, Srf-Sp1 transcription factor pairs. There 

are several novel interacting transcription factor pairs that were predicted by our 

method, examples of such interactions are Cmyc-Elk1, Ebf1-Bcl3, Ebf1-Sp1, 

Ebf1-Mta3, Ets1-Elk1, Ets1-Sp1, Stat3-Elk1, Cmyc-E2f4, Runx3-Sp1 and Pax5-

Elk1 transcription factor pairs. Statistics of all predicted and known interactions 

are detailed in Table 2.2. Those interactions which are predicted by our method 

and also known to interact are limited. Therefore, we got insignificant results 

when we applied hypergeometric distribution on known, not known, predicted and 

not predicted interactions. Result is not significant because several known 

interactions are might be cell type specific.  

 

Table 2. 2: This table shows the summary of predicted, not predicted, 
known to interact and not known to interacting TF pairs- These known TF 
pairs are not enriched.  

 Predicted  Not predicted 

Known to interact  95 168 

Not known to interact  911 1454 
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Figure 2. 7: This heat map (only upper triangle) shows known TF-TF 

interactions along with novel interactions predicted by our method. Red squares 

represent the predicted known interactions. White squares represent novel 

interactions predicted by our method. There are 1006 known and novel TF pairs 

shown in this figure. Blue squares (in upper triangle) represent the non-

interacting transcription factor pairs.  
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2.3.2 K562 cell type 

 

ENCODE has mapped 100 transcription factors in this cell type [34]. This is one 

of the cell types considered for identifying transcription factor mutual interactions.  

K562 cells are erythroleukemia type cells that were derived from a 53 year old 

female CML (chronic myelogenous leukemia) patient [77]. These cells have the 

ability to develop characteristics similar to early stage granulocytes, erythrocytes 

and monocytes [78].  

2.3.2.1 Optimised results for K562 cell type 

 

The same procedure used to evaluate Gm12878 data was adopted to identify the 

possible interactions between the transcription factors in the K562. There were a 

total of 4950 TF pairs from which very few TF pairs are known to interact. 

Therefore, computational methods need to be developed for prediction of 

transcription factor mutual interactions. Here we present the results after multiple 

testing correction (Benjamini and Hochberg) as all other procedures are similar 

to method used in the Gm12878 cell line. After global multiple testing correction 

(where we mixed all pairs overlapped at different peak sizes such as 20, 50, 74, 

150, 350, 600, 800, 1000 base pairs), peak sizes with overlap that is highly 

significant than other peak sizes were chosen (significant interactions are those 

where real overlaps are higher than the average number of overlaps in random 

set). All the transcription factor pairs at their optimal peak sizes were ranked by 

negative log of their corresponding corrected p values. Only 1804 TF pairs have 

less than 0.01 corrected p value (Actual value is extremely low as the initial log 

was divided by 10) and they were considered for further analysis (We increased 

these values so that we can rank them. Otherwise large number of highly 

significant TF pairs have zero p value as python can’t handle extremely low 

values).The negative log of corrected p values, the ratio of real and expected 

overlap and the optimal peak sizes for these 1804 transcription factors are shown 

in Figure 2.8, 2.9 and 2.10, respectively.  

In Figure 2.8, top 500 TF pairs with highly significant interactions are represented 

by red squares, and the TF pairs with similar pattern of overlap significance are 

clustered together by hierarchical clustering. Examples of predicted known TF 
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interactions are Cfos-Chd2, Cfos-Sp1 and Gata2-Tead4. There are transcription 

factors whose interaction are not significant in this set of 500 TF pairs, for 

example Egr1, Cebpb etc. Transcription factors such as Sirt6, Hdac2, Pml, Nrsf, 

Trim28, Egata2, Gata1, Gata2, Stat5, Nr2f2, Tead4, Tal1, P300, and Tblr1 form 

cluster in the Figure 2.8 (K562 cells). There is interesting observation in Gm12878 

and K562 cells (Figure 2.4 & 2.8), that Smc3, Rad21, and Znf143 cluster together 

in right bottom of both figures. There are several TF pairs whose significant 

overlap is predicted by ENCODE method (Figure 2.1) and by our method (Figure 

2.8) in K562 cells, examples of such pairs are MYC-ATF3, and HDAC2-ETS1. 

There are cases where a TF pair is overlapping significantly in our method (Figure 

2.8), but not in ENCODE method e.g., SMC3-JUND and BCLAF1-TAF1. There 

are also TF pairs which are not overlapping significantly in both methods e.g., 

BCLAF1-RAD21.  
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Figure 2. 8: This figure shows the negative logarithm of p values for K562 

transcription factor pairs. Red squares show the highly significant transcription 

factor pairs, and remaining TF pairs from 1804 set (1304=1804-500) are 

represented with white, and light blue squares. Blue squares represent TF pairs 

with low level of significance and they are not part of 1804 set. TF pairs with 

similar pattern of overlap significance are clustered together by hierarchical 

clustering.   

In Figure 2.9, top 500 TF pairs by highest ratio of real and expected overlap are 

represented with the red squares. Examples of such cases are Cfos-Chd2, Tal1-

Tead4, Atf3-Ejun. Examples of TF pairs which are not included in the top 500 set 

are Cfos-Tead4, Elf1-Chd2, Zbtb33-Tead4. 
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Figure 2. 9: This figure (only upper triangle) shows the ratio of real and 

expected overlap for 1804 TF pairs represented by all colours except blue. The 

red squares represent 500 TF pairs with highest ratio of real and expected 

overlap, and light red squares represent remaining1304 TF pairs (1804-500) 

from 1804 TF pairs set.   

There are several TF pairs that are included in top 500 pairs in both sets (negative 

log of corrected p values and ratio of real and expected overlap). Examples of 

such cases are Cfos-Chd2, Gata2-Rad21 and Sp2-Ch2 TF pairs.  
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In below Figure (Figure 2.10) most of transcription factors have 74 base pairs 

peak size. There are also several transcription factors that interact mutually at 

peak sizes of 600, 350 and 150 base pairs.  
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Figure 2. 10: This heat map (only upper triangle) shows peak sizes for 1804 

transcription factor pairs with corrected p values lower than 0.01 (actually, this p 

value is extremely low in reality as initial log was divided by the 10). Red 

squares represent peak sizes of 600, 350, and 150 bases. Light red squares 

represent 74 peak size, white squares represent 50 and light blue squares 

represent 20 bases peak size. Blue squares represent TF pairs other than 1804 

(3146=4950-1804). 

 

Here, we also plotted the chosen peak sizes against the average length of the 

proteins but there is no correlation between them as shown in Figure 2.11. This 
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is because only small portion of protein binds on the DNA and there is no 

relationship between the size of protein and size of TF binding site. 

 

Figure 2. 11: This figure shows the plot where chosen peak sizes are plotted 

against the average protein lengths but there is no correlation between them.  

 

2.3.2.2 Validation (Comparison of significant overlaps and known protein-

protein interactions) 

 

As mentioned in the method section, known protein-protein interactions were 

retrieved from Biogrid [70] and IntAct [71] databases. Orthologous interactions in 

mouse were also considered as evolutionary conserved transcription factors can 

interact with similar transcription factors in different organisms [76].  

Known and novel transcription factor interactions predicted by our method are 

shown in Figure 2.12.  
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Several of our identified transcription factor interactions are known and they are 

represented with the red squares in Figure 2.12. Examples of such interactions 

are Cfos-Atf3, Egr1-Sp1, Nrf1-Chd2, Nfya-Sp1, Tal1-Sp1, Cmyc-Sp1 and Cfos-

Jund TF pairs.  

Most of our identified interactions are not known to interact and they are 

represented with white spots in Figure 2.12, these identified interactions can be 

considered as novel interactions. Examples of such cases are Atf3-Tead4, Tblr1-

Chd2, Cmyc-Rad21, Mxi1-Chd2, Bcl3-Srf, Znf274-Tead4 transcription factor 

pairs.  

Statistics of predicted and known interactions are shown in Table 2.3.  Those 

interactions which are predicted by our method and also known to interact are 

limited, therefore, we got insignificant results when we applied hypergeometric 

distribution on known, not known, predicted and not predicted interactions. Result 

is not significant because several known interactions are might be cell type 

specific. 

Table 2. 3: This table shows the summary of predicted, not predicted, 
known to interact and not known to interacting TF pairs. These known TF 
pairs are not enriched.   

 Predicted  Not predicted 

Known to interact  149 232 

Not known to interact  1655 2914 
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Figure 2. 12: This figure (only upper triangle) shows known TF-TF interactions 

along with the interactions identified by our method. Red squares represent the 

predicted known interactions. White squares represent novel interactions 

predicted by our method. Blue squares (in upper triangle) show the non-

interacting transcription factor pairs (not predicted by our methods).  
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2.4 Discussion 
 

Methods for prediction of transcription factor interactions were optimised using 

two statistical methods: randomisation and the Poisson distribution. Here we 

have presented results using data from two cell types (Gm12878 and K562), 

however our method can also be applied to data from other cell types. Binding 

sites for each transcription factor were also optimised, with binding sites (peak 

sizes) ranging from 20 to 350 base pairs. However, actual binding sites are small 

range from 5 to 31 nucleotide, but here transcription factor binds directly and 

indirectly on DNA i.e., transcription factor A sits on transcription factor B or vice 

versa and transcription factor protein size is bigger.  

There are several transcription factors which are predicted by our method and 

they are also known to interact, examples of such pairs are Cmyc-Max, Cfos-Atf3 

TF pairs. Table 2.2 and 2.3 show the statistics of predicted, not predicted 

interactions and known interacting TF pairs. In Gm12878 cell type, we have 

predicted 1006 interactions, 95 of them are known to interact. However, 1006 

interactions number came because of setting a threshold, and that was difficult 

to adjust. It was difficult to set a threshold for size of the accessible genome. 

Therefore, we tried different percentages of accessible genome sizes, and then 

we chose size of accessible genome, where large number of predicted 

interactions are known.   

There are approximately 168 known interacting TF pairs that were not predicted 

by our method, because they might interact in other cell types. Interactions of c-

Myc (Cmyc) with 10 other transcription factors are known but our method didn’t 

predicted them because c-Myc has a different pattern of binding in different cell 

types as this TF has different regulation mechanism in each cell type [79].   

ENCODE has also identified co-associations between transcription factor pairs in 

K562 cell type. We compared few well associated TF pairs in Figure 2.1 

(ENCODE method:K562 cells) with our results from Gm12878 cell type in Figure 

2.4 and found many TF pairs overlapping significantly in both methods, even 

though cell types were different. However, all TF pairs in both methods and in 
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both cell types didn’t behave similarly possibly because of their cell type specific 

function.  

In K562 cell type (Table 2.3), our methods have predicted 1804 TFs interactions, 

and 149 of them are known to interact. However, there are approximately 232 

known interacting TF pairs that were not predicted by our method possibly 

because their interactions are cell type specific. If we look at the same case of c-

Myc as discussed for Gm12878 cell type, there are 21 interactions are known for 

c-Myc in K562 cell type, 18 of them are predicted by our method. We compared 

our method results in the Figure 2.8 with the ENCODE results in Figure 2.8, both 

results are from the same cell type (K562). We found several TF pairs overlapping 

significantly in both methods.  

There are several transcription factor pairs, which were predicted to interact in 

one cell type but not in other cell type. Example of such cases is the Cfos-Jund 

pair which was predicted to interact in K562 cells and this is also a known 

interaction. However, Cfos-Jund pair interaction was not predicted in the 

Gm12878 cells. Examples of TF pairs, which were not predicted to interact in 

both cell types are Cebpb-Cmyc, Cebpb-Gabp.  

There are existing methods for predicting association of TF pairs and one of them 

by ENCODE [34] is discussed above. Researchers have also predicted TF 

interactions from the primary sequence of transcription factor protein [80], though 

it is different from our method. There are existing methods for predicting protein-

protein interactions which combine other biological features with the primary 

sequence. Asa et al., developed a kernel method, which combines protein 

sequences, gene ontology annotations, local properties of the network, and 

homologous interactions in other species for predicting protein-protein 

interactions [81].    

Further, overlapping binding sites between TF pairs might have some functional 

role, and it is also possible that these overlapping sites are more conserved than 

the unique sites. We have done conservation analysis on overlapping binding 

sites and non-overlapping binding sites between TF pairs and cell types in the 

next chapter.   
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Chapter 3 

3 Conservation analyses of transcription factor binding sites 

and effect of co-binding sites on gene expression 
 

There are many binding sites for each TF, so many in fact that we suspect many 

of them do not have biological significance. Therefore, how might we determine 

which sites are biological interesting? Conservation possibly is one of indicators 

of functional TF binding site, as functional TF binding sites are less susceptible 

to change; hence, they might be evolutionary conserved [82]. Researchers have 

identified the binding sites for several TFs on the basis of conservation, and they 

suggest role of TFs in regulation of genes which are involved in prostate cancer 

[83]. In another study, it was observed that functional TF binding sites have higher 

conservation score than those TF binding sites whose function is not yet identified  

[84]. In addition, correlation of gene expression with the co binding of TFs can be 

the indication of biological importance.  

This chapter has two parts, the first part contains the results of conservation 

analysis of transcription factor binding sites and the second part contains the 

analysis of effect of transcription factor binding sites and co-binding sites on gene 

expression.  

 

3.1 Conservation analysis of transcription factor binding sites 
 

Conservation data (phastCons) for 46 organisms were downloaded from the 

human genome browser at UCSC [85]. In phastCons files, conservation score 

was calculated using phylogenetic hidden Markov models [86]. The wiggle-

formatted data were processed and conservation score for each base pair of 

transcription factor binding sites were retrieved. Shared binding sites for each TF 

in multiple cell types and overlapped binding sites for a TF pair may have some 

biological significance and conservation analysis of such sites with unique and 

non-overlapped sites would help us to understand their biological significance. 

Therefore, we aimed to answer the following hypothetical questions: 1) Are 

shared binding sites for a transcription factor in multiple cell types more 
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conserved than unique binding sites?; and 2) Are overlapping binding sites more 

conserved than non-overlapping binding sites in a TF pair within a particular cell 

type? 

 

3.1.1 Are shared binding sites for a transcription factor in multiple 

cell types more conserved than cell type specific binding sites?  

 

3.1.1.1 Methods 

 

Shared binding sites among cell types for single transcription factors have 

biological importance and they might be conserved [87].  

Common transcription factors in five cell types (K562, Gm12878, Hepg2, Helas3, 

and H1hesc) were identified but not enough transcription factors are common in 

these five cell types; therefore, we looked into a set of three cell types.  There are 

29 common transcription factors between K562, Gm12878 and Hepg2 cell types 

(i.e., Atf3). Binding sites for Atf3 in K562, Gm12878, and Hepg2 were divided into 

those shared (overlapping) between all cell types, and those unique (specific) to 

one cell type. This exercise was also repeated for the other 28 transcription 

factors.  

As a result, we now have two data sets (i.e., shared and unique binding sites) for 

each transcription factor. The conservation median values (median of 

conservation score) of these two data sets were then compared, and plotted as 

box plots.  The significance of difference between the two data sets were tested 

by the Kruskal-Wallis test [88]. This test assumes that these data sets came from 

population with the same distribution, so the null hypothesis is the median values 

for both data sets are same. If the p values from Kruskal-Wallis test turned out to 

be significant (p value <0.01) then the null hypothesis will be rejected. Data sets 

with higher median and significant p values would be considered more conserved 

than the other data sets. 
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3.1.1.2 Results 

 

There are 29 common transcription factors from K562, Gm12878 and Hepg2 cell 

types were analysed and their shared and unique binding sites were identified. 

Statistics of shared, unique/cell type specific binding sites in three cell types and 

known motifs for 29 transcription factors are shown in the Table 3.1. These motifs 

were retrieved from the JASPAR database [89]. This database contains a curated 

non-redundant set of profiles, derived from published collections of 

experimentally defined transcription factor binding sites for eukaryotes. The 

number of binding sites for a particular TF between cell types vary a lot (i.e., Mxi1-

highlited in yellow in Table 3.1), which might indicates the functional difference of 

TF in different cell types. Other important observation is that, shared binding sites 

are smaller in number than cell type specific binding sites. This is evident even 

for those transcription factors with similar number of binding sites in all three cell 

types.  

Two transcription factors (Ezh2 and Znf274-highlighted in dark yellow in Table 

3.1) do not have any shared binding sites, therefore, they cannot be compared 

with unique binding sites. With the exception of Tr4, Ezh2 and Znf274 have small 

number of binding sites across all three cell types as compared to other 

transcription factors, hence, they have less chance of overlap. In addition, with 

no motif has been identified so far for these TFs, binding sites found in specific 

cell types are of less confidence binding sites. Ezh2 is the Enhancer of Zeste 

Homolog2/ Enhancer of Zeste 2 Polycomb Repressive Complex 2 Subunit.  This 

TF protein functions as an oncogene and it is involved in cell cycle, cell invasion 

and glioma stem cell maintenance [90]. Znf274 (Zinc Finger Protein 274) is a 

global transcriptional repressor [91]. All other transcription factors (27) have 

higher conservation score median for the shared binding sites and the 

significance of difference between shared and cell type specific binding sites was 

tested by Kruskal-Wallis test (see Table 3.2). Shared binding sites are 

significantly more conserved in all 27 transcription factors than cell type specific 

binding sites.   
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Table 3. 1: This table provides numbers of shared, unique/cell type specific 
binding sites in three cell types and motifs for 29 transcription factors are 
mentioned here 

TFs 
Number of TF binding sites 

Motifs 
K562 Gm12878 Hepg2 Shared Unique 

Tr4 587 1263 2953 61 526  

Srf 4717 8544 5314 416 4301 TGACCATATATGGTCA 

Smc3 23598 30517 30797 4488 19110  

Atf3 16011 1677 3291 275 15736  

Nrsf 15849 6906 12828 1364 14485  

Jund 40052 2472 32275 35 40017 
1.GGTGACTCATCC 
2. tatGATGATGTCATC 

Usf1 18521 9778 21890 1482 17039 gtCACGTGACC 

Mxi1 6711 17735 20371 335 6376  

Taf1 15246 14278 16659 473 14773  

Yy1 24059 30994 17876 1655 22404 CAAgATGGCgGC 

Elf1 27780 23008 18001 1735 26045 AACCCGGAAGTg 

Nrf1 4211 5683 1902 483 3728 GCGCtTGCGCA 

P300 25881 17461 27913 34 25847  

Rfx5 2201 4341 6017 193 2008 GTTgCCATGGcAAC 

Cebpb 38715 5786 56629 60 38655 aTTGCGCAAT 

Chd2 7797 15597 5169 540 7257  

Gabp 14393 6566 10109 1211 13182  

Sp1 7206 18248 25477 459 6747 gCCCCgCCCCc 

Usf2 3083 9022 6291 519 2564 gtCAtGTGACc 

Sin3a 12700 10392 16459 202 12498  

Cmyc 31092 3690 4413 85 31007 gAgCACGTGGT 

Max 46171 12542 11854 535 45636 atCACGTGt 

Tbp 17558 14893 13806 599 16959 gTATAAAAggtgg 

Bhlhe40  22497 13986 14628 912 21585 atCACGTGAc 

Zbtb33 3285 2144 2879 290 2995 TCTCGCGagactg 

Rad21 34725 40019 54315 12977 21748  

Maz 33323 18952 12090 607 32716  

Ezh2 1685 2472 3286 0 1685  

Znf274 1997 233 245 0 1983  
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Table 3.2 contains p values and median for shared and unique binding sites. 

There are transcription factors with extremely low p values for example Smc3, 

Nrsf, Yy1, Rad21, Maz and Usf1. This analysis shows that shared binding sites 

across different cell types are more conserved than unique binding sites for most 

transcription factors. Here Jund transcription factor have higher p value than 

others but it is still significant. This TF is the functional component of the AP1 

transcription factor complex and encoded by the intron less gene and it has two 

known binding motifs as shown in Table 3.1. This transcription factor has been 

known to protect cells from p53-dependent senescence and apoptosis [92]. AP1 

(Activator protein 1) regulates gene expression in response to several stimuli for 

example bacterial and viral infections and it is a heterodimer protein complex 

which composed of Fos, Jun, Atf and JDP protein families [93].  
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Table 3. 2: This table shows the p values calculated by the Kruskal-Wallis 
test for shared and unique binding (cell type specific) sites of common 
transcription factors in K562, Gm12878 and Hepg2 cell line. All shared sites 
are significantly evolutionary conserved than the unique binding sites. 
Shared and unique median are also mentioned here.  

TFs P values Shared 

median 

Unique 

median 

TFs P values Shared 

median 

Unique 

median 

Tr4 1.725e-37 0.335 0.015 Cebpb 1.815e-77 0.123 0.004 

Srf 6.505e-80 0.272 0.06 Chd2 0.0 0.544 0.009 

Smc3 0.0 0.786 0.013 Gabp 4.249e-33 0.096 0.007 

Atf3 2.11e-213 0.403 0.01 Sp1 0.0 0.267 0.008 

Nrsf 0.0 0.618 0.004 Usf2 1.088e-75 0.466 0.004 

Jund 7.095e-16 0.051 0.006 Sin3a 1.676e-203 0.815 0.008 

Usf1 0.0 0.082 0.003 Cmyc 4.657e-120 0.806 0.004 

Mxi1 3.661e-264 0.592 0.007 Max 0.0 0.558 0.003 

Taf1 0.0 0.942 0.01 Tbp 0.0 0.436 0.006 

Yy1 0.0 0.955 0.01 Bhlhe40 0.0 0.231 0.003 

Elf1  0.0 0.436 0.005 Zbtb33 5.415e-213 0.336 0.013 

Nrf1 0.0 0.314 0.003 Rad21 0.0 0.602 0.008 

P300 8.459e-59 0.962 0.006 Maz 0.0 0.4525 0.007 

Rfx5 5.490e-202 0.515 0.007     

 

As shown in the Table 3.2, conservation scores median for unique binding sites 

in three cell types are extremely small for all 27 TFs. On the contrary, 

conservation scores median for shared binding sites in three cell types are large 

except for few TFs (i.e., Jund, Usf1, and Gabp).  
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3.1.1.3 Discussion 

 

Conserved regions of genome are important in understanding the shared 

functional role of transcription factors in multiple cell types. Therefore, we carried 

out an analysis on the shared and unique binding sites in three cell types for 29 

common transcription factors. A total of 27 TFs shared binding sites are 

significantly more conserved than their respective unique binding sites which 

indicates that the functional regions (shared binding sites) are subject to purifying 

selection [94].  Ezh2 and Znf274 transcription factors have lesser binding sites in 

three cell types as compared to other transcription factors, therefore, they have 

less chance to share binding sites. DNA binding motifs are also not known for 

both these transcription factors, hence probably they would not bind on specific 

sequences. 

Jund shared sites are less conserved than other TFs shared sites but still more 

significantly conserved than unique binding sites. This is may be because Jund 

has two different binding motifs. For all 27 TFs, medians of conservation scores 

for unique binding sites are extremely small which shows that unique sites 

evolved to specify the specific function of the cell types. Some TFs bind on the 

specific segment of DNA (motif) and these factors are called sequence specific 

TFs. Sequence specific TFs and their motifs are mentioned in the Table 3.1. 

Sequence specific TFs mostly bind directly on their DNA motifs and non-

sequence specific TFs might bind anywhere on the DNA or indirectly on DNA 

through tethering  [95].  
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3.1.2 Are shared sites more conserved than the non-shared sites in 

a TF pair within a particular cell type? 

 

Conservation analysis for overlapping binding sites between transcription factors 

within a particular cell type may help us in understanding the biology behind the 

conservation, which will give indication about the transcription patterns in different 

organisms. Overlapping binding sites represent possible combinatorial regulation 

of genes and they are more likely to be functional.  

 

3.1.2.1 Methods 

 

We used the intersect function from bedtools [37] to find the binding sites that are 

occupied by TF pairs in the same cell type. Then, we divided the binding sites of 

TF pairs in the same cell type into those sites that overlap (are occupied by both 

TFs) and those that do not overlap (are occupied by only one TF). Conservation 

score for each base pair for overlapped and non-overlapped sites were calculated 

and subjected to the Kruskal-Wallis test [88] to determine the significance in 

median difference between the  two data sets. This difference can be tested by 

Kruskal-Wallis test because our both samples are independent and have different 

sizes and this test is suitable for such samples. Null hypothesis is satisfied when 

both median values are the same. The p values from Kruskal-Wallis test were 

corrected by Benjamini & Hochberg test. If the corrected p value for a TF pair is 

significant then the null hypothesis will be rejected and both samples will be 

considered different although one of them is more dominant than other one. We 

applied this method to the K562, Gm12878, Hepg2, Helas3 and H1hesc cell types 

separately. 

 

3.1.2.2 Results 

 

Here, we have considered five cell types as discussed in the methods section.   

All the number of overlapping (shared) and non-overlapping (non-shared) binding 

sites for a pair of TF were separated and their conservation scores were 

compared and separated into following two sets for five cell types separately.  

 

1. TF pairs where shared (overlapping) binding sites are more conserved than 
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the non-shared (non-overlapping) binding sites. 

2. TF pairs where non-shared (non-overlapping) binding sites are more 

conserved than the shared (overlapping) binding sites.  

 

In the K562 cell type, the ENCODE project mapped 100 transcription factors, so 

the total possible TF pairs are binding sites of 4950. A total of 3877 TF pairs have 

higher conservation score in shared binding sites than non-shared binding sites, 

while 1073 TF pairs have higher conservation score in non-shared binding sites 

than shared binding sites. Shared binding sites are significantly more conserved 

than non-shared sites in 2926 TF pairs (corrected p value<0.01), while non-

shared binding sites are significantly more conserved than shared binding sites 

in 264 TF pairs. Distribution of corrected p values for shared and non-shared 

binding sites are shown in Figure 3.1 A and B respectively. Statistics of this 

analysis are mentioned in the Table 3.3. It is worth looking for distributions of 

conservation scores in shared binding sites and unique binding sites in TF pairs. 

Two examples of conservation distribution from K562 cell type: CEBPB-ATF3 and 

CFOS-EGR1 are shown in Figure 3.2 A and B respectively. These density plots 

show bimodal pattern of distribution with large number of zero conservation 

scores for unique binding sites. 

 

In the Gm12878 cell type, ENCODE has mapped 73 transcription factors, the 

possible TF pairs are binding sites of 2628. A total of 2205 TF pairs have higher 

conservation score in shared binding sites than non-shared binding sites, while 

423 TF pairs have higher conservation in non-shared binding sites than shared 

binding sites. Shared binding sites are significantly more conserved in 1834 TF 

pairs than non-shared sites, while non-shared binding sites are significantly more 

conserved than shared binding sites in 79 TF pairs. Distribution of corrected p 

values for shared and non-shared binding sites are shown in Figure 3.1 C and D 

respectively. Statistics of this analysis are mentioned in the Table 3.3. It is 

important to understand that how conservation is distributed in shared and unique 

binding sites. Here, we have given two examples of conservation distribution from 

Gm12878 cell type: cMYC-ELF1 and ETS1-PAX5 are show in Figure 3.2 C and 

D. They also show bimodal pattern of distribution.  
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In the Hepg2 cell type, 57 transcription factors have been mapped by ENCODE, 

possible number of TF pairs are binding sites of 1596. A total of 1294 TF pairs 

have higher conservation score in shared binding sites than non-shared binding 

sites, while 302 TF pairs have higher conservation in non-shared binding sites 

than shared binding sites. Shared binding sites are significantly more conserved 

in 1070 TF pairs than non-shared sites, while non-shared binding sites are 

significantly more conserved than shared binding sites in 40 TF pairs. Distribution 

of corrected p values for shared and non-shared binding sites are shown in Figure 

3.1 E and F respectively. Statistics of this analysis are mentioned in the Table 

3.3. Conservation distribution examples from this cell type are MAFK-BHLHE40 

and NRSF-MAX that are shown in Figure 3.2 E and F. These two sub figures also 

show similar pattern to four other sub figures. It can be seen from Figure 3.2 that 

shared binding sites are highly conserved than unique binding sites.  
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Figure 3. 1:  (A) shows p values (p value <0.01) distribution for TF pairs where shared 

binding sites are more significantly conserved than non-shared binding sites in K562 

cell type. (B) Shows p values distribution for TF pairs where non-shared binding sites 

are more significantly conserved than shared binding sites in K562 cells. Similar 

comparison is given in (C and D) for Gm12878 cell type and in (E and F) for Hepg2 cell 

type. In most of the TF pairs shared binding sites are more significantly conserved than 

unique binding sites.        
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Figure 3. 2: This figure shows the density plots for conservation distribution in 

shared and unique binding sites between TF pairs. Here six examples are given 

from K562, Gm12878 and Hepg2 cell types, each example is represented by 

the single figure panel.  Shared and unique distributions are shown in each 

density plot, suggesting bimodal pattern of distribution.  
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In the Helas3 cell type, ENCODE has mapped 54 transcription factors, so 

possible TF pairs are binding sites of 1431. A total of 960 TF pairs have higher 

conservation score in shared binding sites than non-shared binding sites but 

shared binding sites are significantly more conserved in 692 TF pairs than non-

shared sites, while 471 TF pairs have higher conservation score in non-shared 

sites than shared sites but non-shared sites are significantly more conserved in 

81 TF pairs than shared sites.  

Distribution of corrected p values for shared and non-shared binding sites are 

shown in Figure 3.3 A and B respectively. Statistics of this analysis are detailed 

in Table 3.3.  

 

In the H1hesc cell type, ENCODE has mapped 47 transcription factors, so 

possible TF pairs are binding sites of 1081. A total of 896 TF pairs have higher 

conservation score in shared binding sites than non-shared binding sites but 

shared sites are significantly more conserved in 698 TF pairs than non-shared 

binding sites, while 185 TF pairs have higher conservation score in non-shared 

sites than shared sites but non-shared sites are significantly more conserved in 

25 TF pairs than shared sites. Distribution of p values for shared and non-shared 

binding sites are shown in Figure 3.3 C & D respectively. Statistics of this analysis 

are detailed in Table 3.3. 
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Figure 3. 3: (A) shows p values (p value <0.01) distribution for TF pairs where 

shared binding sites are significantly more conserved than non-shared binding 

sites in Helas3 cell type. (B) Shows p values distribution for TF pairs where non-

shared binding sites are significantly more conserved than shared binding sites 

in Helas3 cells. Similar comparison is given in (C and D) for Gm12878 H1hesc. 

In most of the TF pairs shared binding sites are more significantly conserved 

than unique binding sites.        
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Table 3. 3: This table shows statistics about the significantly conserved 
shared and non-shared TF binding sites. In most of TF pairs, shared binding 
sites are more significantly conserved than the non-shared sites.  

Cell lines Total 

number 

of TF 

pairs 

Number of TF 

pairs, where 

shared 

binding sites 

are more 

conserved 

than unique 

binding sites   

Number of TF 

pairs, where 

shared binding 

sites are 

significantly more 

conserved than 

unique binding 

sites  (corrected p 

values <0.01) 

Number of TF 

pairs, where 

unique 

binding sites 

are more 

conserved 

than shared 

binding sites 

 Number of TF 

pairs, where 

unique binding 

sites are 

significantly 

more conserved 

than shared 

binding sites  

(corrected p 

values <0.01) 

K562 4950 3877 2926  1073  264  

Gm12878 2628 2205 1834  423 79  

Hepg2 1596 1294 1070 302 40  

Helas3 1431 960 692  471 81  

H1hesc 1081 896 698  185 25 
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3.1.2.3 Discussion 

 

Two questions have been answered in this section of the chapter. Firstly, are the 

binding sites for a particular transcription factor shared in multiple cell types are 

significantly more conserved than the unique binding sites? We have found that 

shared binding sites in K562, Gm12878 and Hepg2 are more conserved than 

unique binding sites in 27 transcription factors out of 29 transcription factors. Only 

Ezh2 and Znf274 transcription factors don’t have any shared binding in these cell 

types. Conserved shared binding sites in multiple cell types indicate that they may 

share biological function in these cell types and may also be in different 

organisms [96].  Some transcription factors have ubiquitous roles so this might 

be a reason that their shared binding sites are conserved. Transcription factors 

form Transcriptional Regulatory Module (TRMs) by co-binding on DNA directly 

and indirectly through tethering. Transcription factor binding sites could be 

conserved among different organisms and there is an evidence for combinatorial 

regulation [97]. This evidence supports the idea that functional elements remain 

conserved across the cell types. Conservation of shared binding sites between 

cell types indicate about the direct and indirect binding of TFs on DNA. Several 

TFs are sequence specific factors as they bind specifically on specific sequence 

motifs and they may bind directly on the DNA and these sites were least evolved 

and they remain same in multiple cell types. However, TFs lack DNA motifs may 

be binding indirectly on an open chromatin region through tethering or bind on 

non-specifically on the DNA.  

 

 Secondly, are shared (overlapped binding) sites for a particular TF pair more 

conserved than the non-shared (non-overlapped) binding sites in particular cell 

type? This question was also answered with our finding that shared (overlapped 

binding) sites for a particular TF pair are more conserved than the non-shared 

(non-overlapped) binding sites in a particular cell type, and this pattern was 

observed in K562, Gm12878, Hepg23, Helas3 and H1hesc cells. Detailed result 

is mentioned in the Table 3.3. These shared sites are involved in the mutual 

interactions of transcription factors and their interactions have important role in 

the transcription of genes. There are also several TF pairs whose non-shared 

binding sites are significantly more conserved than shared binding sites (i.e., 
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Cfos-Atf3, Cfos-Ehd, and Bcl3-Ets1 in K562 cells). Though shared as well as 

conserved sites have biological importance as they were least evolved because 

of their functional importance.  

Shared binding sites between cell types for a particular TF and shared binding 

sites between TF pairs have functional importance and it is likely that these 

shared regions are GC regions possibly located in the CpG islands. These islands 

can be located in the promoter regions  [98]. CpG islands are less susceptible to 

the mutations than other nucleotides [99]. Therefore, regions in the regulatory 

elements have higher chance to be conserved. Further, we have discussed CpG 

islands and DNA methylation in Chapter 1.  
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3.2 Mapping of transcription factors co-binding sites and single 

binding sites and their correlation with the gene expression 

 

We asked the question whether the genes mapped near the genomic regions 

bound by a transcription factor pair have higher expression level than the genes 

mapped near the regions bound by single transcription factor. 

 

Transcription factors binding events have an impact on regulation of genes. Large 

number of transcription factors would have chance to bind on open chromatin if 

it is large. Transcription factors interact with each other and bind directly or 

indirectly on DNA to form Transcription Regulatory Modules (TRMs). Binding of 

TFs on the cis regulatory regions leads to regulation of genes. The number of 

TFs binding events occurred at the particular region indicates the influence of that 

region on the regulation of nearby genes and that region is considered as a 

promoter or proximal enhancer [100]. There are also cis regulatory regions where 

large number of TF binding events are occurring and specific TFs bind there, and 

such regions are known as super enhancers as they enhance gene expression 

to a higher level [101]. Here, we have analysed how regions bound by two TFs 

and regions bound by single TF influence the expression of genes located within 

the distance of 2kb, 4kb, 6kb, 8kb, 10kb and 20kb.  

 

3.2.1 Methods 

 

Genomic regions bound by TF pair (overlapping sites) and regions bound by 

single TF (non-overlapping sites) were separated by using bedtools intersect [37]. 

Transcription factors were overlapped in such a way that TF1 with optimised peak 

size (Peak sizes were optimised by randomisation and the Poisson distribution in 

chapter 2) was overlapped with TF2 with peak size of 1bp (centre of the peak). If 

centre of TF2 binding site lies anywhere in the TF1 binding site then that site was 

considered as a co-bound site, otherwise sites from both TFs were considered 

as a single bound sites.  

Both set of sites were mapped to the genes within 2kb, 4kb, 6kb, 8kb, 10kb and 

20kb distances. Now we have to compare the expression levels of transcripts 

which were mapped to overlapping (bound by TF pair) binding sites with the 
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expression levels of transcripts which were mapped to the non-overlapping 

(bound by single TF) sites. It was assumed that the expression levels in both sets 

are the same and this assumption was tested by the Kruskal-Wallis test. P values 

from this test were converted into logarithm. If the expression median of non-

overlapped sites mapped genes was higher than the expression median of 

overlapped sites mapped genes then the logarithm was multiplied with the “–

“ (minus sign) to convert that logarithm into positive value just to differentiate from 

the logarithm of overlapped sites mapped genes. 

Now these values can be differentiated by the signs. Negative values are for the 

significantly higher expression of genes mapped to the overlapping sites than 

expression levels of genes mapped to the non-overlapped sites, while positive 

values are for the significantly higher expression of genes mapped to the non-

overlapped sites than expression levels of genes mapped to the overlapped sites. 

 

3.2.2 Results 

 

This method was applied to the transcription factors from the K562 and Gm12878 

cell lines. Although, this method can be applied to transcription factors from any 

cell line.   

 

3.2.2.1 K562 cell type 

 

We set a hypothesis that both data sets (genes from co-bound and single bound 

sites) are similar, but this hypothesis was rejected. It was found that genes 

mapped to the overlapping sites (co-bound) have higher expression levels than 

the genes mapped to the non-overlapping (unique) sites. It shows that 

combinatorial binding can enhance the expression level but some time these 

pairs act as a repressor when genes mapped to the sites bound by single 

transcription factor have higher expression than the genes mapped by sites 

bound by TF pair. Figure 3.4 shows the logarithm of p values calculated by 

Kruskal-Wallis test in 4950 TF pairs, and these sites were mapped to the genes 

within 2kb distance. 
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Figure 3. 4: In upper triangle, blue spots show the significantly higher expression level 

of genes mapped to the co-bound (overlapping) sites, while light blue squares 

represent same category but with less significance. The red squares show significantly 

higher expression level of genes mapped to the single bound sites (non-overlapping). 

Blue squares are large in number, which shows that co-bound sites enhance gene 

expression. These TF binding sites were mapped within the 2kb. While grey colour 

represents those pairs where there was no significant difference in expression levels of 

genes mapped to the co-bound sites and single bound sites. 

 

There are some transcription factors which act as repressors in some cases when 

they co-bind with other transcription factors such as Pml (Promyelocytic 

Leukemia). TF pairs were considered as repressors of transcription when genes 

mapped to the sites bound by TF pair have lower expression level than the genes 
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mapped to the sites bound by single transcription factor. Gene codes for Pml 

transcription factor involves in a wide range of cellular processes such as 

apoptosis, transcriptional regulation, DNA damage response and tumor 

suppression. This transcription factor co-bind with Trim8, Arid3, Stat2, Atf1, 

Gata1, Nr2f2, Tblr1, Hdac2, Znf274, Stat5 and with P300 (P300 is not a 

transcription factor but regulates transcription through chromatin remodeling). 

These TF pairs act as repressors of transcription as shown in the Figure 3.4 (red 

spots in Pml row) [102].  We have found that when Pml co-bound with Sp1, Tbp, 

E2f4, Corest, Phf8, Irf1, Plu1, Taf1, Hmgn3,  Tal1, Mxi1, Nelfe, Taf7, Ejun, Sin3a 

and Gtf2b then these TF pairs act as enhancers of transcription [103].  

Other transcription factors such as Gata1, Ets1 and Brg1 also pairs with other 

transcription factors and act as enhancer and repressor of transcription. Majority 

of transcription factor pairs act as enhancer as shown in Figure 3.4 (blue spots).  

 

As mentioned above these co-bound and single bound TF sites were mapped to 

the genes within the 2kb, 4kb, 6kb, 8kb, 10kb and 20kb distances.  

Here, we have found that number of repressive pairs are dependent on the 

mapping distance. Consider the case of Pml, where10 other transcription factors 

forming a pair with Pml and act as a repressor when binding sites were mapped 

to the genes within 2kb. This number of TFs was decreased from 10 to 5 when 

binding sites were mapped with genes within 4kb distance.  

When mapping distance was increased from 4kb to 6kb, number of TF pairs 

acting as repressors were decreased, again Pml pairs acting as repressors were 

decreased from 5 to 3 but Gata1 pairs remain same (three TF pairs were acting 

as repressor in 4kb). However, four Gata1 pairs were acting as repressor when 

sites were mapped within 2kb.  

When mapping distance was increased from 6kb to 8kb, number of repressors 

were again decreased. Only one TF pairing with Pml (Pml-Stat2) was acting as 

repressor, while two TFs pairing with Gata1 (Gata1-Irf1 and Gata1-Taf1) acting 

as repressor. 

When mapping distance was increased from 8kb to 10kb, number of repressors 

are again decreased to only few TF pairs such as Bcl3-Sp1, Brg1-Sp1, Brf1-

Thap1 and Gata1 pairs remain same (Gata1-Irf1 and Gata1-Taf1) as they were 

in 8kb set. However, none of Pml pairs acted as repressor. Gata1-Irf1 and Gata1-
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Taf1 along with the other TF pairs mentioned in 10kb set, they are constantly 

acting as repressors and may have some biological importance.  

 

Finally when co-bound and single bound TF sites were mapped to the genes 

within 20kb, only Bcl3-Sp1 and Brf1-Thap1 pairs were acting as repressors, while 

most of the TF pairs were acting as enhancers represented in blue colour squares 

in Figure 3.5 heat map.  
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Figure 3. 5: (Only upper triangle). When the co-bound and single bound TF sites 

were mapped with the genes within 20kb distance, most of the TF pairs was found 

acting as enhancers spotted in blue colour, while light blue colour represents the 

enhancers but with less significance. Only two TF pairs was found acting as 

repressors. While grey colour means that for those pairs where there was no 

significant difference in expression levels of genes mapped to the co-bound sites 

and single bound sites.  

 

3.2.2.2 Gm12878 cell line 

 

ENCODE has mapped 73 transcription factors in this cell type, so the total 



77 
 

 

number of possible TF pairs are 2628. Here we followed the same procedures as 

we did for K562 cell type. All these sites were mapped to the genes within 2kb, 

4kb, 6kb, 8kb, 10kb and 20kb distances. It was assumed that genes mapped with 

the genomic regions bound by TF pair have higher expression level than the 

genes mapped with the genomic region bound by single transcription factor. This 

assumption was tested by the Kruskal-Wallis test. Figure 3.6 shows the heat map 

representing gene expression significance levels, significantly higher expression 

of genes mapped to the co-bound sites  are represented with blue squares and 

significantly higher expression of genes mapped with the single bound sites are 

represented with red squares, while other colours do not show significant 

dominance, these sites were mapped to the genes within 2kb.  
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Figure 3. 6: (Only upper triangle). This heat map (here, sites were mapped to the 

genes within 2kb) shows the blue spots representing significantly higher 

expression levels of genes mapped to the genomic regions bound by TF pair, 

while light blue colour represent the same category but with less significance. 

Red squares show the significantly higher expression levels of genes mapped to 

the regions bound by the single transcription factor. While grey colour means that 

for those pairs where there was no significant difference in expression levels of 

genes mapped to the co-bound sites and single bound sites.  

 

Genes mapped to the sites bound by TF pairs have higher expression level than 

the genes mapped to the sites bound by single transcription factor as shown in 

Figure 3.6 but there are some TF pairs where genes mapped to the single 
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transcription factor have higher expression level. Jund binding sites overlap with 

other transcription factors such as Mta3, Stat5, Nfatc1, Mef2c, Foxm1, Cebpb, 

Nfkb, Pml and these TF pairs act as repressors of transcription because genes 

mapped to the sites bound by single transcription factor have higher expression 

level than the genes mapped to the sites bound by TF pair [104]. Other 

transcription factors such as Atf2 and Bl11a binding sites pairs with other 

transcription factors and act as repressors of transcription as shown in Figure 3.6.  

 

Number of repressors are dependent on the mapping distance as we have also 

observed similar pattern in the K562 cells. Now only one pair of Jund (Jund -Sp1) 

act as repressors. In this set, repressors of Pml and co-factors were increased 

from 2 to 4. Pml and co-factors also involved in the repression of gene expression 

as shown in Figure 3.4. 

When the mapping distance was increased from 4kb to 6kb, overall repressors 

were decreased and enhancer were increased but we have observed that Pml 

overlap with 6 other transcription factors and act as repressor [105], although 

Jund overlap with only two transcription factors and act as  repressor of  the 

transcription. 

When mapping distance was increased from the 6kb to 8kb, similar trend with 

previous increment was observed where overall repressors were decreased as 

usual by increasing the mapping distance. Now Pml overlapped with only 5 

transcription factors to repress the transcription as genes. Sp1 also co-bound with 

other transcription factors and act as repressor in this set, as well as in 4kb and 

6kb sets. 

When the mapping distance was increased from the 8kb to 10kb, number of 

repressors was decreased again as expected. Now Pml overlapped with the 4 

other transcription factors to repress the transcription and Sp1 overlapped with 

other 4 transcription factors to repress the transcription. 

Finally when the mapping distance was increased from 10kb to 20kb, number of 

repressors were reduced to only five TF pairs and they are involved in repression 

of transcription. Pml overlapped with other 4 transcription factors to repress the 

transcription and Chd2 overlapped with Stat3 to repress the transcription 

(5=4+1). Heat map of these TF pairs shown in Figure 3.7.   
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Figure 3. 7: Only upper triangle. (Binding sites were mapped to the genes within 

20kb).  Blue squares represent TF pair co-bound sites (bound by two transcription 

factors) mapped to the genes have significantly higher expression levels, light 

blue colour represent the same category but with less significance. Red squares 

show single bound (binding sites of single transcription factor) mapped to the 

genes have higher expression levels, while grey colour means that for those pairs 

there was no significant difference in expression levels of genes mapped to the 

co-bound sites and single bound sites.  
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3.2.3 Discussion 

 

Transcription factor plays an important role in transcription of genes. They interact 

with each other and bind on the DNA to form a complex to regulate genes in 

combinatorial manner. We know that there are number of transcription factor 

binding events that occurred at certain region and has some influence on rate of 

gene expression. We expected that if TF pairs bind on the cis regulatory region 

then that region would have more influence on the gene expression level than 

the regions bound by single TF possibly because TFs complexes influence the 

expression level than the individual TF binding [106].  

  

It was found that genes mapped to the sites bound by transcription factor pair 

have significantly higher expression than the genes mapped to the sites bound 

by single transcription factor, for majority of the cases; which supports the idea 

that quantity of transcription factors influence the rate of gene expression [107]. 

There are some transcription factors such as Pml, when they co-bound with other 

transcription factor such as Sp1 played a role of repressor because genes 

mapped to these overlapping sites have lower expression levels compared to the 

non-overlapping sites which have higher expression levels. This pattern was 

observed in both cell types (K562 and Gm12878) and other cell types might follow 

the similar pattern. Number of TF pairs acting as repressor is dependent on the 

mapping distance as number of repressors were decreased when mapping 

distance was increased from the 2kb to 20kb as mentioned in the results. 
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Chapter 4 

4 Predicting cis-regulatory regions by using linear regression 

 

4.1 Introduction 

 

Genetic regulation is important for development and function of eukaryotic cells, 

and some principles of genetic regulation are already studied, however, the 

regulatory process of most of the genes is not known yet. On the genome scale 

our understanding of genetic regulation is poor, and we need to study the 

mechanisms of genetic regulation in multiple cell types.  

 Cis-regulatory regions are an important component of genetic regulation and 

these regions can be enhancers or repressors. Enhancers are cis-acting short 

regions (5-1500bp) of DNA that can be bound by transcription factors to activate 

the transcription of genes. They can be located up to 1Mbp (1,000,000 bp) away 

from transcription start site (TSS) of the gene and can be found upstream or 

downstream from the TSS. It is estimated that hundreds of thousands of 

enhancers are present in the human genome [108]. Some cis-regulatory regions 

repress the transcription of genes, and they are known as repressors of 

transcription. Enhancers and repressors are discussed in the 1st chapter.  

There are several research studies which suggest that TF binding and 

conservation scores can be helpful in identifying potential CRRs (Candidate cis-

Regulatory Regions). Mendelson [109] studied the expression of SP-A gene and 

it was observed that SP-A gene expression was increased as TTF-1 transcription 

factor binding was increased. Some studies [110] suggest that there is 

relationship between conservation of transcription factor binding events and the 

conservation of target gene expression. Previous studies [110] also suggested 

that genomic regions with extreme conservation can act as regulators of 

transcription but this is not always the case; regions with less conservation can 

also act as regulators. A few studies also suggested histone modifications and 

Pol II occupancy can identify the role of regulatory regions [111].  

Several computational studies have been done to understand the gene regulation 

in different organisms, Wilczynski and co-workers built a probabilistic model that 

predicts certain aspects of gene expression by integrating TF occupancy and the 
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chromatin state [112].  

Some methods for the identification of enhancers have already been published, 

and they have identified enhancers using different methods, which are different 

from our method. 

Shen et al. [113] have developed a method to create CRMs (Cis Regulatory 

Modules) that uses the presence of H3k4me1 and absence of H3k4me3 to predict 

enhancers in mouse embryonic stem cells. They used p300 binding sites to train 

the model as proxies for the enhancers. Some other studies also showed that 

H3K4me1 and P300 binding site are the signatures of active enhancers [114].  

Yip et al. [115] also created a cis-regulatory map linking their predicted CRMs 

with the genes whose expression they might control. To achieve that they 1st 

predicted CRMs in five cell types and merged all the CRMs that overlapped 

across the cell types. They computed correlation between signals of histone 

modification and transcript expression levels through Pearson correlation within 

1Mbp (million base pairs).  

Anderson et al. [116] used CAGE (cap analysis of gene expression) data to 

identify the CRMs and their target genes; CRMs were identified from short 

genomic regions with balanced, bi-directional and divergent transcription of short 

RNA molecules, as bi-directional capped RNA is signature of active enhancer. 

They have identified target genes for enhancers by correlating transcriptional 

activity at the CRMs and transcriptional activity at putative gene transcription start 

site (TSS) across a diverse set of human cells. 

 O'Connor et al. [117] identified the tissue specific CRMs; their model predicts the 

RNA expression level of gene from the TF binding events occurred at the CRMs 

associated with the gene. 

 

There are also experimental methods for assessing enhancer activity, for 

example reporter genes. In this method, a reporter construct comprised of 

reporter gene and regulatory region can randomly be integrated into the genome; 

expression of gene would increase if it integrates near enhancer.  Reporter gene 

usually encode for fluorescent protein such as gene encodes green fluorescent 

protein (GFP) and used as the marker for successful uptake of the gene of 

interest [118].  

Computational and statistical methods can be developed to identify the 
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enhancers from sequencing data. Statistical methods such as linear regression 

and LASSO linear regression can be used to identify features relevant to 

enhancers [119].  

 

In previous chapter we showed that sites bound by multiple TFs (co-bound sites) 

in the ENCODE data are associated with high expression genes. This suggests 

that the ENCODE data might provide a way to identify cis-control elements (cis-

regulatory elements) for specific genes, by examining correlations between 

activity at those elements and the expression of nearby genes. We set out to 

investigate the hypothesis in this chapter. We might identify potential cis-

regulatory regions from ENCODE data-genomic regions that are DHSs (DNase I 

hypersensitivity sites), that bind TFs, that bind multiple TFs, and that are 

conserved. We have discussed in the last chapter that how functional TF binding 

sites are evolutionary conserved.  Therefore, we assume that evolutionary 

conserved regions would help us to predict the potential cis regulatory regions. 

There can be several challenges and problems in predicting cis regulatory 

regions. The fact that the enhancers/repressors may be located at long distance 

from their genes, the fact that there are many candidate regulatory regions and it 

is difficult to identify the important ones and link them to the genes, and the fact 

that regulation might be cell type dependent.  

 

 Possible Candidate cis Regulatory Regions (CRRs) can be obtained from the 

ChIP-seq and DNase-seq data. ENCODE has mapped approximately 119 

transcription factors in multiple cell types as discussed in chapter 2. We choose 

5 major ENCODE cell types as most of the 119 Transcription factors were 

mapped in these cells. The number of mapped TFs in each cell type is shown in 

Table 4.1. Some transcription factors binding sites were mapped in multiple cell 

types. 
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 Table 4. 1: This table shows number of TFs mapped in five cell lines 

S.No Cell types Number of TFs mapped 

1 K562 100 

2 Gm12878 73 

3 Hepg2 57 

4 Helas3 54 

5 H1hesc 47 

 

 

4.2 Methods 

 

The following three points are the basic idea of method.  

1. CRRs were identified from the ENCODE data (2012 release) on TF 

binding and DNase I hypersensitivity with some fixed distances of a gene 

TSS.  

2. The idea is to use correlations between measures of activity at CRRs and 

the expression of nearby genes to identify relevant cis regulatory regions. 

3. DHSs signal intensities at CRRs were adopted as an appropriate measure 

of activity.  

Candidate cis regulatory regions (CRRs) were obtained from ChIP-seq data by 

taking the union of all the Transcription factor binding sites from 5 cell types (Table 

4.1) followed by merging of overlapping sites. TF binding data for these regions 

were retrieved for each cell type separately (hg19 genome version was used 

here). In the 2nd step, DHSs signal intensities for each region were extracted 

from bigwig file by using bw tools [120] for 10 cell types (5 more cell lines were 

added). In last step, all these CRRs were allowed to map to all transcripts within 

a certain distance (distance from CRRs to TSS of transcript: 20Kb, 40kb and 

100kb distances were considered).    

If these CRRs mapped close to the particular transcript and DHSs signal 

intensities of these regions are highly correlated with the gene expression then 

these regions could be predicted to be cis regulatory regions.  
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4.2.1 Multiple Linear Regression 

 

Linear regression is a statistical method to model the relationship between the 

dependent variable and several independent or explanatory variables. Linear 

regression can either be simple with one independent variable, or multiple with 

more than one independent variables. Here, we have used multiple linear 

regression, because, we have several independent variables for single 

dependent variable.  

We based our model on DHS data (signal intensities) and RNA-seq data (FPKM), 

and assumed a simple linear relationship between transcript expression and 

DHSs signal intensities. Log (FPKM) values for dependent variable, and log 

(DHSs signal intensities) for independent variables for each transcript were given 

as input to the multiple linear regression R function which is mentioned below.  

 

Stats=lm(Y ~ X1 + X2…Xn, data) 

Here lm is the linear model, Y is the dependent variable and X1, X2 up to 

Xn are dependent variables and data is the input matrix containing all 

these variables.  

Most of the transcripts were mapped to many CRRs; and we have just 10 

expression data points, one for each cell type. The statistics of CRRs mapping to 

the nearby transcripts (genes) are detailed in the Table 4.2. There are several 

predictors (CRRs) for each transcript, with only 10 data points it is unreasonable 

to build models on more than a few predictors and therefore methods are needed 

to select predictors e.g., two well correlated chosen/selected CRRs per transcript.  

Table 4. 2: Statistics of CRRs (Candidate cis Regulatory Regions) 
mapping with the transcripts within 20kb and 40kb distance 

 20kb mapping 

distance 

40kb mapping 

distance 

Average CRRs per transcript 11.8 22.4 

Minimum CRRs per transcript 1 1 

Maximum CRRs per transcript 37 62 
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To achieve large number of significant (highly correlated) models; we chose to 

limit ourselves to genes expressed in reasonable number of cell lines (4 or more) 

since such data is more suited to regression modelling.   

 

 

4.2.2 Fold changes 

 

Fold change is a measure of changes from initial to a final value.  If the initial 

value is A and final value is B then the fold change will be B/A, a change from 40 

to 20 would be 0.5. The disadvantage of this method is that it is biased and may 

miss differentially expressed genes with large differences (B-A) [121]. This 

method can be used for analyzing gene expression data in RNA-seq data [122].  

Here, we used regression to model the relationship of expression fold changes 

to DHS signal fold changes. These 10 data points were converted into 45 data 

points by applying fold change method. 

 

4.2.3 Methods for choosing the Candidate cis Regulatory Regions 

(CRRs) 

 

4.2.3.1 Method 1: Choosing CRRs according to high TF binding 

 

Transcription factor binding on cis regulatory elements have important role in 

regulation of the genes, such as binding of c-Myc and its heterodimeric partner 

Max on cis regulatory region promotes the malignant transformation in Burkitt’s 

lymphoma cells [123].  

CRRs were mapped to all transcripts within the window of 20kb and 40kb 

distances. Only two CRRs were chosen according to highest ratio of TF binding 

events occurring in 1 of 5 cell types, ratios were considered because each cell 

type has different number of mapped transcription factors.  

 

4.2.3.2 Method 2:  Choosing CRRs by position in promoter region 

 

CRRs were mapped to all transcripts within the 20kb distance. 1st CRR was 

chosen from within the 1kb of TSS (Transcription start site) of target gene 

(transcript) and 2nd CRR was chosen on the basis of ratio of TF binding events 
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occurred (excluding the surrounding 1kb regions of TSS). Here we are 

considering both proximal and distal regulatory regions. Region surrounding TSS 

is the promoter such as TATA box which is located 25-35 base pairs upstream 

from the transcription start site [124]; and this promoter along with the distal cis 

regulatory regions control the transcription of genes.  

 

4.2.3.3 Method 3: Choosing CRRs by closest distance 

 

In this method, CRRs were mapped to all transcripts within the 20kb distance. 

Two closest CRRs to the TSS were chosen if they are at equal distance from the 

TSS otherwise only single closest CRR was chosen. 

 

4.2.3.4 Method 4: Choosing CRRs according to high conservation score 

 

Cis regulatory regions can be conserved in evolution as evidenced by genes such 

as Hox4 [125]. Here, the conservation score for each tag (here tag is basically a 

sequencing read, each CRR contain several tags; certain regions of CRR are 

highly conserved and they may have some role in controlling regulation of genes) 

in candidate regulatory elements was calculated. One way is to consider the 

maximum score of any tag in CRR or take the mean of all tags score in a CRR.  

CRRs were mapped to the transcripts within the 20kb and only two CRRs were 

chosen on the basis of their higher mean conservation score and higher 

maximum conservation score.  

 

4.3 Results 

 

4.3.1 Choosing CRRs by method 1: High TF binding  

 

Here, CRRs were mapped to the transcripts within 20kb and then we increased 

the distance just to analyze that how increase in mapping distance would affect 

the model building? CRRs for each transcript in 40kb are more than CRRs per 

transcript in 20kb as mentioned in the Table 4.2. 

Here, 558 models have adjusted R-square >0.65 (adjusted R-square is modified 

form of R-square and can be calculated by comparing explanatory power of 

repression models) and 1680 models have adjusted R-square > 0.5 at the 20kb 
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mapping distance, and statistics of this model building are detailed in the Table 

4.3. Two CRRs were chosen for each model (transcript) because we have only 

10 predictors, therefore it is better to limit chosen control elements (independent 

variables) as discussed in the method section.  

 

RHOB transcript (ENST00000272233.4) is the example of 20kb set and one of 

best correlated model shown in Figure 4.1 (A). Two chosen CRRs are highly and 

positively correlated with the transcription fold changes, this indicates that both 

these chosen regions might enhance the transcription in RHOB gene. Expression 

fold changes are increasing with the increase in regulatory inputs fold changes 

(from left bottom to right top) as shown in Figure 4.1(A).  

 

When CRRs were mapped to transcripts within the 40kb, only 481 models have 

adjusted R-square >0.65, and statistics of model building are given in Table 4.3. 

Numbers of correlated models were decreased from when CRRs were mapped 

to transcripts within the 20kb because in 20kb, proximal regulatory regions have 

higher chance to be selected on the basis of TF binding and have higher 

probability to be correlated with the actual expression fold change of transcript.   

One of the best correlation model example is SF3B1 (ENST00000470268.1) 

shown in Figure 4.1 (B). In this model (transcript), both chosen CRRs have 0.932 

and 0.754 correlations between DHSs signal intensities fold change and gene 

expression fold change as shown in Figure 4.1 (C&D) respectively. 
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Figure 4. 1: (A) Well correlated model of RHOB showing correlation between 

predicted expression fold change and gene expression fold change. (B) SF3B1 

example for 40kb showing correlation between predicted expression fold change 

and gene expression fold change.  (C&D) Panels show chosen CRRs (CRR1 and 

CRR2) correlation between DHSs signal intensities fold change and gene 

expression fold change for SF3B1 gene.   

 

A large number of models are not well correlated possibly because all chosen 
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CRRs according to high TF binding are not predictive of gene expression, ETS1 

and LRP8 are example of not well correlated model are shown in Figure 4.2 (A) 

and (B) respectively.  

 

 

 

Figure 4. 2: (A) shows the correlation between gene expression fold change and 

predicted expression fold change in ETS1 gene, this is not well correlated model. 

(B) Shows the correlation between gene expression fold change and predicted 

expression fold change in LRP8 gene model where adjusted R-square is less 

than 0.2 (0.187). (C) 337 transcripts (models) have adjusted R-square>0.65 in 

both sets (When CRRs were mapped to transcripts within the 20kb and 40kb 

distance, hence they are two different sets).  

 

A total of 337 models (These are same transcripts in both sets and have adjusted 
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R-square >0.65) have adjusted R-square >0.65 when CRRs were mapped to the 

transcripts within the 20kb and 40kb distance. There are unique models (models 

which don’t have adjusted R-square>0.65 in both sets) and have adjusted 

square >0.65 as shown in Figure 4.2 (C).  

 

4.3.2 Choosing CRRs by method 2: position in promoter region 

 

Statistics of model building for this method are detailed in the Table 4.3. Here, 

lesser number of models have adjusted R-square>0.65 than method 1 (20kb 

mapping distance) (558-537=21). CCT7 (ENST00000464397.1) is one of the 

example of well correlated models, adjusted R-square for CCT7 gene is 0.914 

and its correlation between gene expression fold change and predicted 

expression fold change is shown in Figure 4.3 (A), its high adjusted R-square is 

indication that CRRs chosen by this method are predictive of gene expression.    

 

Table 4. 3: Statistics of model building by multiple linear regression for all 
4 methods 

   Method 1 

 

Method 2 

  (20kb) 

Method 3 

   (20kb) 

  Method 4 

    (20kb) 

20kb 40kb Max Mean 

Number of models 

attempted 

20380 20512 20380 20380 20380 20380 

Number of models 

built 

19110 18828 18995 7041 17150 15811 

Models with 

adjusted R-

square>0.65 

558 481 537 150 352 299 

Models with 

adjusted R-

square>0.5 

1680 1513 1622 448 1096 901 
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Figure 4. 3: (A) shows the correlation between gene expression fold change and 

predicted expression fold change in CCT7 gene (p value: 1.45e-23) from method 

2. (B) Shows the correlation between gene expression fold change and predicted 

expression fold change in COL1A2 (p value: 1.25e-21) from method 3. (C) Shows 

the correlation between gene expression fold change and predicted expression 

fold change in ACIN1 (p value: 7.35e-24) from method 4 (maximum conservation 

score). (D) Shows the correlation between gene expression fold change and 

predicted expression fold change in PPM1H (p value: 3.139e-22) from method 4 

(mean conservation score). 

 



94 
 

 

4.3.3 Choosing CRRs by method 3: Closest CRRs  

 

In this method, 150 models have adjusted R-square>0.65, which is a smaller 

number than other methods according to adjusted R-square parameter, and 

statistics of model building are detailed in Table 4.3. This shows that just by 

choosing one or two closest CRRs won’t help us to build well correlated models. 

COL1A2 (ENST00000297268.6) is one of the example of well correlated models, 

its correlation between gene expression fold change and predicted expression 

fold change is shown in Figure 4.3 (C).  

 

4.3.4 Choosing CRRs by method 4: Conservation score 

 

 A total of 352 models have adjusted R-square>0.65 when CRRs were 

chosen on the basis of higher maximum conservation score. However, only 299 

models have adjusted R-square>0.65 when CRRs were chosen according to 

higher mean conservation score, and statistics of this model building are detailed 

in the Table 4.3. A total of 250 models from 352 (maximum conservation score) 

and 299 (mean conservation score) sets are same, which is indication that both 

ways of choosing CRRs don’t differ much; however, we have more well correlated 

models when we choose models according to the higher maximum conservation 

score than by choosing higher mean conservation score. ACIN1 

(ENST00000473758.1) is one of best well correlated example of choosing CRRs 

according to higher maximum conservation score and PPM1H 

(ENST00000228705.4) is one of best well correlated example of choosing CRRs 

according to higher mean conservation score are shown in Figure 4.3 (C) and (D) 

respectively.  

202 models have adjusted R-square> 0.65 in this method (high maximum 

conservation score) and in method 2, 213 models have adjusted R-square>0.65 

in this method (high maximum conservation score) and in method 1 as shown in 

Figure 4.4.  
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Figure 4. 4: This Venn diagram represents shared models which have adjusted 

R-square>0.65 from method 1, method 2 and method 4 (where maximum 

conservation score considered). A total of166 transcripts (models) have adjusted 

R-square in all three methods, and 387 transcripts have adjusted R-square> 0.65 

in method 1 and method 2. A total of 213 models in method 1 and method 4, and 

202 models in method 2 and method 4 have adjusted R-square >0.65.  
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4.3.5 Gene ontology enrichment analysis  

 

We performed gene ontology enrichment analysis using DAVID [126] for the 

shared and unique gene sets linked to good models of expression in Figure 4.2 

(C) and Figure 4.4. Figure 4.2 (C) contains comparison between models built in 

20kb and 40kb mapping in 1st method.   Similarly Figure 4.4 shows the 

comparison between method 1, 2 and 4. In gene ontology enrichment analysis, 

we have considered two ontology terms i.e., Biological process and Molecular 

function. Table 4.4 contains all enrichment analysis results for shared and 

unique models between methods. None of the gene set lies significantly in any 

biological process possibly because our genes are diverse and they are 

involved in different biological processes. However, almost all of the gene sets 

are involved in protein binding and poly (A) RNA binding molecular function.  
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Table 4. 4: This table shows the gene ontology enrichment analysis for the 
shared and unique gene sets linked to good models of expression built in 
method 1, 2 and 4.  

 Biological process Molecular function 

Method 1: 20kb-40kb 

shared 

None is significant Protein binding (2.7E-5) and 

poly (A) RNA binding (2.6E-3) 

Method 1: 20kb-40kb 

unique 

None is significant  Protein binding (2.4E-5) and 

poly (A) RNA binding (3.3E-6) 

Shared between method 1 

& 2 

None is significant poly (A) RNA binding (9.3E-8) 

and protein binding (2.3E-6) 

Unique in method 1 & 2 None is significant Protein binding  (2.3E-4) and 

identical protein binding 

(2.7E-2) 

Shared between method 1 

&4 

None is significant Protein binding (8.1E-6) and 

poly (A) RNA binding (4.8E-3) 

Unique in method 1 &4 None is significant Protein binding (6.0E-4) , poly 

(A) RNA binding (3.6E-3) and 

electron carrier activity (4.7E-

2) 

Shared between method 2 

& 4 

None is significant Protein binding (3.2E-4) and 

poly (A) RNA binding (5.8E-4) 

Unique in Method 2 & 4 None is significant Protein binding (1.5E-5) and 

poly (A) RNA binding (1.9E-5) 

Shared between method 

1,2 and 4 

None is significant Protein binding (9.6E-5) and 

poly (A) RNA binding (3.0E-4)  

 

Unique in method 1, 2 and 

4 

None is significant Protein binding (2.2E-7) and 

poly (A) RNA binding (3.2E-4) 
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4.4 Discussion 

 

In this chapter, we have investigated the question what is the best way to choose 

CRRs that predict gene expression and may regulate genes? Method 1 has the 

highest number of models with an adjusted R-square >0.65 as detailed in the 

Table 4.3, which indicates that TFs binding information is more predictive of gene 

expression than other parameters. In other studies, scientist had used TF binding 

sites for prediction of cis regulatory regions e.g., Benjamin et al., identified cis 

regulatory modules through TF binding sites clusters in Drosophila [8]. 

Researchers have also studied TF binding in different way, Theresa et al., 

estimate the activity of transcription factors at regulatory region by their collective 

effects on the gene expression levels [127]. There are other existing studies 

which suggest the association between transcription factors and gene expression 

levels. Chao et al., developed a method which can determine the TF activity 

changes from microarray expression profiles, and they evaluated the significance 

of TF activity changes by permutation tests [128]. Here, we have chosen 

regulatory regions on the basis of highest TF binding believing that highest TF 

binding is linked with the expression level of genes.     

 

A total of 537 models have adjusted R-square>0.65 in method 2, which indicates 

that CRRs can be located in the proximal regions and also in distal regions, here 

the 2nd CRR was chosen according to highest amounts of TF binding, this again 

supports the previous argument that TF binding is helpful in choosing CRRs. Our 

analysis also supports the existing knowledge that large number of cis regulatory 

regions/promoters are located in the proximal regions [129]. 

 

 Method 3 does not have large number of models with an adjusted R-

square >0.65, which indicates that it is not necessary for genes to be regulated 

by their closest cis regulatory regions, as cis-regulatory regions can be located 

up to 1mb away from the TSS [130]. This method also suggest that choosing only 

one CRR won’t lead to building better models (adjusted R-square>0.65). Here, 

our purpose is to choose regulatory regions which can predict gene expression. 

Therefore, regions which have significant role in regulation of genes can be 

present anywhere within the bracket of 1mb, and by limiting our method to only 



99 
 

 

closest CRR, we are losing important distance cis regulatory regions that lead to 

less number of well correlated models. Therefore, this method would not helpful 

in identifying cis regulatory regions.  

  

Cis-regulatory regions can be conserved, hence we investigated that the 

conservation scores might be helpful in predicting cis-regulatory regions. In 

method 4 (maximum conservation score), 352 models have adjusted R-

square>0.65, which shows that conservation can also be used to choose the 

CRRs. Both the maximum conservation score and the mean conservation score 

are considered here in choosing CRRs but according to the adjusted R-square, 

it is better to consider the maximum conservation score.   

 

We performed gene ontology enrichment analysis using DAVID tool [126] on the 

well correlated shared and unique models between method 1, 2 and 4. All these 

set of genes were investigated for their significant involvement in biological 

process but none of genes set was involved in any biological process. This 

indicates that these genes are diverse and involved in several biological 

processes However, most of the genes set are involved in protein binding and 

poly (A) RNA binding molecular function. Though, we assume that these all the 

genes have diverse functions but significantly they fall into these two molecular 

functions.  

 

In this chapter, we concluded that TF binding and conservation features can be 

helpful in identifying cis regulatory regions. We can choose best CRRs without 

splitting mapping window, as we have done in the method 1 and method 2.  Based 

on these results, we have used TF binding and conservation score features 

together for filtering potential regulatory regions in the 5th chapter. Further, we 

also need to increase the mapping distance of transcripts to all CRRs, here we 

considered up to 40kb for only 1st method and it can be increased 100 kb in the 

next chapter.  
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Chapter 5 

 

5 Predicting cis regulatory regions by using LASSO (Least 

Absolute Shrinkage and Selection Operator)  
 

In Chapter 4, we used TF binding, conservation score and position of potential 

cis regulatory regions to choose the CRRs (Candidate Cis Regulatory Regions). 

There should be a way to penalize the CRRs which are not predictive of gene 

expression because choosing CRRs on the basis of functional features for 

example TF binding and conservation score may miss some important regulators. 

Therefore, we can use a regression method which can penalize CRRs that are 

not predictive of gene expression. In the previous Chapter, we have shown that 

TF binding and conservation score are helpful in choosing the best potential 

regulators. Therefore, we can still consider these features for filtering the number 

of CRRs per transcript.   

There is an approach called LASSO, which is a type of regression that involves 

in penalizing the absolute size of the regression coefficients [131]. Qabaja et al., 

identified associations between disease and miRNA by LASSO regression using 

a disease signature [132]. Some researchers have used LASSO to select and 

classify biomarkers in genomic data [133]. Jie et al. [134] identified long non-

coding RNA in mouse by integrative modelling of chromatin and genomic 

features. Ploeg and Steyerberg predicted biologically relevant features for 

classification of type of infections using LASSO [135]. Wang et al.  [136] predicted 

the interactions between the microRNA and mRNA using LASSO. Several 

existing computational methods for predicting regulatory regions are discussed 

in the introduction of 4th chapter.  

LASSO is important when the number of potential coefficients are large and 

penalizing them is required as in our case each transcript is mapped to a large 

number of CRRs. There is a tuning parameter called lambda for LASSO to 

penalize the irrelevant CRRs. The strength of LASSO can be increased and 

overfitting can be decreased by filtering the input if we consider lambda.min 

tuning parameter [137]. This lambda.min is the value of lambda that gives 
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minimum mean cross validated error. Tuning parameter lambda influences the 

prediction results and it is difficult to determine this tuning parameter [138] [139]. 

Further, LASSO is explained in the methods section.  

Predicting enhancers would help researchers to understand the regulation of 

genes and experimental techniques are expensive and time consuming. There 

are experimental techniques for enhancer identification, for example enhancer 

trap method and also new technique called site-specific integration fluorescence-

activated cell sorting followed by sequencing (SIF-seq) [140].  

Our method of using LASSO to choose CRRs and their target gene is different 

from existing methods as several researchers had developed computational 

methods for identification of enhancers [141] [142].   

In the beginning of this chapter we have predicted gene expression fold change 

by training LASSO models on CRR DHSs signal intensities fold change and 

transcript expression fold change. Later on we have predicted just gene 

expression by training LASSO models on CRR DHSs signal intensities and 

transcript expression and reason is explained in that section. In the start of this 

chapter CRRs were obtained from the ChIP-seq data only and then we obtained 

CRRs from both ChIP-seq and DHSs data. In the end of this chapter, we have 

predicted CRRs from LASSO method and LASSO with filtered input (CRRs were 

filtered by using TF binding and conservation scores) method.  

 

5.1 LASSO with Fold change method 

 

Here we used the LASSO to model the relationship between expression fold 

change and DHSs signal intensities fold change. Ten (10) data points (cell types) 

were converted into 45 fold changes, as in 4th chapter.  

 

5.1.1 Method  

 

All the CRRs were obtained from ChIP-sq data, as explained in the Chapter 4, 

and were allowed to map to transcripts within 40kb and also within 100kb 

separately (hg19 genome version was used). Those transcripts which expressed 

in at least in four cell types, as discussed in the previous chapter were chosen.  
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Following is the equation of LASSO where y is the dependent variable (log 

(FPKM) values) fold changes of transcript), xi are the independent variables (log 

(DHSs signal intensities)) fold changes for the ith   candidate regulatory region, 

and n is the number of CRRs located within the chosen distance of TSS of 

particular transcript. 

 

𝒚 = 𝒌𝟎 +∑ 𝒌𝒊
𝒏

𝒊=𝟏
𝒙𝒊 

Since n is typically greater than the number of cell types for which data were 

available, model fitting demanded a penalized approach to limit the number of 

non-zero ki coefficients. We chose LASSO regression implemented in the R 

glmnet package [143]. Regularization and tuning parameter for the LASSO is 

lambda and LASSO penalizes the irrelevant predictors based on lambda, and 

penalty can be calculated as below. 

 

Penalty= λ ∑i |ki| 

 

As shown in above equation, penalty depends on lambda and number of non-

zero coefficients. These coefficients/CRRs can be penalized by lambda.min (λmin) 

and lambda.1se as shown in Figure 5.1 (C). Lambda.min is the value of lambda 

that gives minimum mean cross validated error and lambda.1se shows that error 

is within one standard error of the minimum.  

 

5.1.2 Results 

 

As mentioned in the method section that CRRs were mapped to all transcripts 

within the distance of 40kb and 100kb separately, therefore, results are split in 

two below parts.  

 

5.1.2.1 40kb 

 

We found that by using penalty parameter lambda.min which is described in 

methods, models typically have 4 or more non-zero coefficients which leads to 

the correlation>0.75 in more than 4000 models, and statistics of model building 
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are mentioned in the Table 5.1. Knowing the fact that this choice of lambda is 

based on minimum mean square error from cross validation. FTSJ2 

(ENST00000242257.8) is the example where, LASSO chooses 4 CRRs for this 

transcript, and its rank is 2963 when models were ranked according to the 

descending order of correlation, but still predicted expression and observed 

expression fold change are highly correlated as shown in Figure 5.1 (A) that is 

probably overfitting. Therefore, we decided to reduce the risk of overfitting by 

applying stronger penalty and restricting LASSO models to at most 3 CRRs per 

transcript. 
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Figure 5. 1: (A) FTSJ2 is the example of 40kb mapping, where correlation (r=0.788) 

between observed expression fold change and predicted expression fold change is 

shown (B) IDI1 is the example of 100kb mapping, and here correlation (r=0.796) between 

observed expression fold change and predicted expression fold change is shown. (C) 

This is the example for lambda as a tuning parameter. Dotted lines show possible 

choices of λ at minimum mean-squared error (λmin) and more conservatively at that value 

plus 1 standard error, and numbers above graph indicate number of predictive variables. 

(C) 
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5.1.2.2 100kb 

 

Here we have increased the mapping distance from 40kb to100kb, therefore, 

each transcript on average have 32 more CRRs than above method and this 

increase in number of candidates has caused over fitting. Here, 7437 models 

have correlation>0.75, and statistics of model building are detailed in the Table 

5.1. IDI1 (ENST00000381344.3) is the example where LASSO chooses 4 CRRs 

for this transcript; and its rank based on descending order of correlation is 5481 

and still it’s highly correlated as shown in Figure 5.1 (B).  

 

Table 5. 1: This table shows the statistics of model building for LASSO (40 
& 100kb mapping)  

              40kb           100kb 

Number of models attempted             20512          20611 

Number of models built             17670         19308 

Models with correlation>0.75             4008          7437 

Models with correlation>0.65            6940           11288 

On average CRRs per transcript               22            54 

 

 

5.1.3 Discussion 

 

In this method, CRRs were mapped to all transcripts within 40kb and 100kb 

distances. Here, we have observed that well correlated models increase by 

increasing the mapping distance. Therefore it is better to consider the 100kb 

mapping distance.  Well correlated models might increase because of increase 

in over fitting as CRRs for each transcript was increased by increasing the 

mapping distance. There are large number of well correlated models at 

lambda.min that leads to the overfitting as explained in the results section. 

Therefore, it was decided to restrict the chosen CRRs up to 3 per transcript.    
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5.2 LASSO without Fold change method 

 

5.2.1 Introduction 

 

In previous parts of thesis we aimed to predict expression fold changes from fold 

changes in activity at CRRs. However, in optimizing our methods we moved to 

the simpler approach of predicting absolute expression levels from absolute 

levels of activity at CRRs. This is better since there is no obvious cell type to use 

as a reference and inclusion of all possible fold changes in a model results in a 

set of variables that are not all independent.  

 To optimise our method, we added 5 more cell types increasing the number of 

data points on which each model is based, and therefore improving reliability. 

Huvec, Mcf7, Nhek, Nhlf and Sknshra cell types were added to the analysis 

(15=10+5). Later we realize that most of our mapped transcripts are not 

expressing in Hmec cells, therefore, this cell type was removed from the analysis 

and list of 14 cell types is given in Table 5.3 (page 115).  

 

5.2.2 Method 

 

We considered two ways of obtaining CRRs, based on ChIP-seq data and 

DNase-seq data (ENCODE 2012 release). Obtaining CRRs from ChIP-seq is 

explained in the Chapter 4, and the top 25% (based on peak intensity) DNase-

seq data were considered for obtaining CRRs and procedure of derivation is 

similar to the obtaining CRRs from ChIP-seq. We analysed CRRs from ChIP-seq 

and DNase-seq separately to see which set of CRRs is the most predictive of 

gene expression.  

Once were CRRs obtained then the DHSs signal intensities were extracted from 

bigwig files for each cell type and for all CRRs obtained from ChIP-seq and 

DNase-seq data. All CRRs were mapped to all transcripts within the 100kb 

distance. Here, we allow LASSO to choose only 3 best CRRs based on tuning 

parameter lambda to avoid over fitting. Only those transcripts, which express at 

least in 7 cell types were considered for further analysis (This 7 threshold was 

optimised to produce better results as we also tried other thresholds but this 

works better). Model was trained based on DHSs signal intensities of CRRs and 
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transcript expression values (FPKM) as explained in the previous section. 

5.2.3 Results 

 

Here, we built models from CRRs obtained from ChIP-seq and DNase-seq 

separately, results from both sets are given below.  

 

5.2.3.1 CRRs obtained from ChIP-seq data 

 

Here, LASSO built 16164 models successfully of which 1582 models have 

correlation>0.9. The statistics of model building are detailed in the Table 5.2. 

PPP1R11 (ENST00000376769.2) is the example of one of the best correlations 

and its correlation between observed expression and predicted expression is 

shown in Figure 5.2 (A).  

Large number of models are well correlated as mentioned in the Table 5.2 but we 

need to analyze certain number of top correlated models and we thought to 

consider top 2000 models for further analysis. Chosen CRRs with positive 

coefficients (DHSs signal intensities are positively correlated with the expression) 

were considered as potential enhancers and otherwise potential repressors of 

gene expression. We considered the three coordinate model as discussed in the 

method section, so for 2000 models and we have 6000 chosen CRRs; 1618 of 

them are repressors while remaining 4382 chosen CRRs are enhancers.   

A total of 403 chosen CRRs (enhancers and repressors) are regulating (here, we 

are using regulation term for those CRRs who are chosen by LASSO for particular 

transcript but we are not yet sure that these CRRs are regulating their respective 

transcript) more than one transcript, and 280 from these 403 (311 are enhancers, 

while 92 are repressors) are regulating different transcripts but the same gene. 

We have 4071 enhancers (not repeated), some of them potentially be regulating 

more than one transcript. 

 Other studies have suggested that different genes may be regulated by the same 

enhancers, and can be gene clusters [144].  These 4071 enhancers regulate 

1633 genes and 265 of these enhancers are involved in controlling gene 

regulation of more than one gene. 

 

These enhancers were overlapped with the transcription factors from K562, 
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Gm12878, Hepg2, Helas3 and H1hesc cell types separately. Number of 

transcription factors overlap with each enhancer from each cell type varies.  

Number of overlapped TFs from these five cell types were added for each 

enhancer and plotted in histogram as shown in Figure 5.2 (B).  

Figure 5.2 (C) shows the distance between the enhancers and transcription start 

site (TSS) of correlated transcript. Large number of enhancers lies in the proximal 

region and hundreds of enhancers are also located in the distal regions. In 

addition to that, enhancers are also located in upstream and downstream of TSS 

of the transcript.  
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Figure 5. 2: (A) shows the correlation between observed expression and 

predicted expression in PPP1R11. (B) This histogram shows the number of TFs 

binding on the enhancers (where correlation is positive between DHSs signal 

intensities and transcript expression), i.e., up to five TFs bind on more than 2000 

enhancers. (C) This histogram shows the distance of enhancers from their 

respective TSS, both upstream and downstream enhancers distances are shown 

here.  
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5.2.3.1.1 Validation 

 

Our knowledge of experimentally validated enhancers in the human genome is 

limited, with the VISTA Enhancer database [145] contains only 1790, so validation 

is difficult. We only found 16 enhancers because we have considered limited 

number of cell types and only globally expressed transcripts. One enhancer of 

these 16 is known to regulate WNT5A gene and our method have also predicted 

that enhancer for WNT5A gene.  

 

Table 5. 2: Statistics of model building by LASSO for CRRs obtained from 
ChIP-seq and DNase-seq data separately.  

 CRRs obtained from 

ChIP-seq 

CRRs obtained from 

DNase-seq 

Number of models attempted 18098 17957 

Number of models built 16164 16148 

Models with correlation>0.9 1582 1258 

Models with correlation>0.8 7920 6372 

Enhancers in top 2000 models 4382 4566 

Repressors in top 2000 models 1618 1434 

 

 

5.2.3.2 CRRs obtained from DNase-seq data 

 

LASSO built 16148 models successfully, here 1258 models have correlation> 0.9, 

and statistics of model building are detailed in the Table 5.2.  

EPN1 (ENST00000270460.5) is one of the example of well correlated models 

shown in Figure 5.3 (A). 

Again here, large number of models are well correlated but number of well 

correlated models are lesser than the CRRs obtained from ChIP-seq data as 

detailed in the Table 5.2. We considered top well correlated 2000 models for 

further analysis as we did for previous method, three CRRs were chosen by 

LASSO; therefore we have analyzed 6000 chosen CRRs. A total of 1434 of these 

CRRs are repressors (where CRRs DHSs signal intensities are negatively 

correlated with the transcript expression), while remaining 4566 are enhancers 



111 
 

 

(where CRRs DHSs signal intensities are positively correlated with the transcript 

expression). A total of 543 chosen CRRs (430 are enhancers and 113 are 

repressors) are found to regulate more than on transcript and 340 out of these 

543 (430 are enhancers while 113 are repressors) are regulating multiple 

transcripts but their gene is same.  

 

We have 4136 enhancers, and some of them are regulating more than one 

transcript from a single gene but very few also regulate more than one gene.  

These 4136 enhancers are regulating 1600 genes and 346 of these enhancers 

regulate more than one gene. Chosen enhancers were overlapped with all the 

TFs from K562, Gm12878, Hepg2, Helas3 and H1hesc cell types separately. 

Number of overlapped TFs from these five cell types were added for each 

enhancer and plotted in histogram as shown in Figure 5.3 (B).  

 Distances from enhancers and TSS of transcripts are plotted in histogram and 

shown in Figure 5.3 (C). Pattern of distances show that large number of 

enhancers lies in the proximal region, and some of the enhancers are also located 

in the upstream and downstream of their respective transcripts.  
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Figure 5. 3: (A) shows the correlation (r=0.99) between observed expression and 

predicted expression in EPN1. (B) This histogram shows the number of TFs bind on the 

enhancers (where correlation is positive between DHSs signal intensities and transcript 

expression), i.e., up to five TFs bind on approximately 2400 enhancers. (C) This 

histogram shows the distance of enhancers from their respective of TSS, both upstream 

and downstream enhancers distances are shown here.  
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5.2.3.2.1 Validation 

 

Our knowledge of experimentally validated enhancers in the human genome is 

limited, with the VISTA Enhancer database [145] containing only 1790, so 

validation is difficult. We only found 10 predicted enhancers in VISTA, because 

we have considered limited number of cell types and only globally expressed 

transcripts. One enhancer of these 10 is known to regulate the HHEX gene and 

we have also predicted that enhancer for HHEX gene.  

 

5.2.4 Discussion 

 

Significant number of models are well correlated as mentioned in the Table 5.2, 

which indicates that CRRs obtained from ChIP-seq and DNase-seq data can be 

predictive of gene expression. We analysed top 2000 models, with 4382 

enhancers and 4566 enhancers from ChIP-seq and DNase-seq data respectively, 

1363 enhancers are common in both sets. Therefore, it would be better to obtain 

CRRs from merged set of ChIP-seq and DNase-seq data. In this section, we 

restricted the number of CRRs per transcript but still we need to optimise the 

quantity of chosen CRRs per transcript.  
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5.3 Optimised method for predicting regulatory region using 

LASSO 

 

5.3.1 Introduction 

 

 Here we have predicted cis regulatory regions from integrative analysis of ChIP-

seq, DNase-seq and RNA-seq data and here CRRs were obtained from merged 

set of ChIP-seq and DNase-seq data. We used LASSO to predict the models of 

gene expression in following two different ways.  

1. All the CRRs (Candidate cis Regulatory Regions) were given as input to the 

LASSO.  

2. CRRs were filtered on the basis of TF binding and conservation score. 

We also used randomisation for estimating false discovery rate and these 

methods are explained in below methods section.     

 

5.3.2 Methods 

 

5.3.2.1 Dataset 

 

A total of 14 cell types from ENCODE were considered for generating our model, 

the details of which are given in Table 5.3. Transcription factor binding sites 

(TFBS) and H3K27ac data, were obtained as ChIP-seq peaks for the five cell 

types. DNase-seq peaks and RNA-seq data for 14 cell types were obtained. In 

addition to that DHSs signal intensities for all identified CRRs were obtained from 

14 cell types considered here.  A schematic representation of the optimised 

methodology is shown in Figure 5.4 (flow chart). 

 

 

 

 

 

 

 

 



115 
 

 

Table 5. 3: This table shows the complete data set; tick mark in the 
column represent that data in the column was used for cell types in the 
row.   

S.No Cell types ChIP-seq DNase-seq RNase-seq 

(FPKM) 

H3K27ac 

1 K562         

2 Gm12878         

3 Hepg2         

4 Helas3         

5 H1hesc         

6 A549       

7 Ag04450       

8 Bj       

9 Hsmm       

10 Huvec       

11 Mcf7       

12 Nhek       

13 Nhlf       

14 Sknshra       
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Figure 5. 4: This figure shows the methodology of predicting cis regulatory 

regions. Here, genomic coordinates are the CRRs and DNase-seq tag counts are 

DHSs signal intensities.  

 

5.3.2.2 Identifying potential CRRs (Candidate cis Regulatory Regions) 

 

CRRs (Candidate cis Regulatory Regions) were obtained from a merged set of 

ChIP-seq data for five cell types and DNase-seq data for 14 cell types, however, 

only top 25% of DNase-seq peaks (on the basis of peak intensity) were 

considered, these cell types are mentioned in the Table 5.3. 

Transcription factor binding events occurring at each CRRs were retrieved by 
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overlapping these CRRs with the transcription factor binding sites for five cell 

types. Further, DHSs signal intensities were retrieved for all the obtained CRRs 

from 14 cell types. These CRRs were mapped to all the transcripts within the 

100kb distance and transcript expression (FPKM) values were also retrieved for 

each transcript in 14 cell types.   

Only those candidate cis regulatory regions (CRRs) which have H3K27ac histone 

mark were selected for further analysis, as this histone mark represents the active 

enhancers. This mark was considered because it shows that the enhancer is 

active [20] and we decided to filter those CRRs which don't contain this histone 

mark. Some researchers [146] have also considered the p300 binding sites for 

determining the potential enhancers but P300 mostly binds on the promoter and 

we considered H3k27ac mark instead of P300  to include most of the potential 

enhancers irrespective of their position to TSS. Transcripts which were expressed 

at least in 7 cell types (this threshold works better in building models than other 

thresholds-see in previous section) were considered further analysis. Each 

transcript was mapped to the several (on average ~42) candidate regulatory 

elements. Therefore, LASSO has to choose only best potential cis regulatory 

regions. 

 

5.3.2.3 Predicting models of gene expression 

 

LASSO is explained in the beginning of this Chapter and here, we have used 

LASSO regression in following two ways.  

1. In 1st method, LASSO was allowed to choose the two best CRRs (those who 

are predictive of expression) and penalizes others, and we have referred this 

method in results section as a LASSO method. We have included R code for 

building LASSO models in Appendix II.  

2. In 2nd method; CRRs were filtered by TF binding and conservation score, 4 

CRRs were selected according to highest number of TF binding events and 4 

CRRs were selected according to highest conservation score. We have referred 

this method in results as a filtered LASSO method. Here CRRs were filtered to 

reduce the false discovery rate and we will get more significant models by giving 

just biologically important CRRs as an input to the LASSO. We gave DHSs signal 

intensities of these 8 CRRs as an input along with the particular transcript 
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expression (FPKM) values of 14 cell types to the LASSO and LASSO was 

allowed to choose only 2 best CRRs.  

 

5.3.2.4 Statistical testing by Randomisation 

 

We performed randomisation to estimate the false discovery rate. Transcripts 

were ranked according to the correlation between predicted and observed 

transcript expression and we picked 4 transcripts with the high correlations, 4 with 

medium correlations (0.5) and 4 transcripts where LASSO did not find any CRRs 

(LASSO didn’t build models).Models were chosen from each category to avoid 

any bias towards any group because these randomisations will be used for all the 

groups. However, distributions of correlations predicted from randomised CRRs 

were similar in all the groups. DHSs signal intensities in each transcript were 

shuffled and LASSO was allowed to pick the best two CRRs, and this exercise 

was repeated 50,000 times. So, we have 600,000 = (12× 50,000) randomisations. 

In 2nd method, we increased number of transcripts from 12 to 24 and 

randomisations were decreased from 50,000 to 25,000 per transcript but the total 

number of randomisations remain same (600,000=24×25000). 

 In 1st method, expression values (dependent variable) were also shuffled instead 

of CRRs DHSs signal intensities (independent variable) and same procedure was 

followed but results were similar with the above method (where we shuffled 

CRRs). Therefore, we considered only one way which is shuffling the CRRs 

(explained in the above paragraph).   

Empirical p values were calculated from the observed and random correlations 

(correlation between observed and predicted expression).  

 

5.3.2.5 Multiple testing corrections 

 

Empirical p values were adjusted by Benjamini and Hochberg [69] method to 

estimate the false discovery rate.  
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5.3.3 Results 

 

5.3.3.1 LASSO  

 

Here, we used LASSO penalty that permitted at most two or three non-zero 

coefficients (CRRs), which is generally more stringent than lambda.min because 

we preferred a conservative approach to the issue of possible overfitting. In 

genomic investigations it is important to assess the statistical significance of the 

results and we did this by randomisation as explained in the methods. Here, we 

have potential issue of overfitting, as each transcript (model) has many possible 

predictive variables (42 CRRs per transcript on average) and only small number 

of gene expression measures. Although LASSO is specifically designed to 

address this issue through penalization of the likelihood, we made a detailed 

study of the relationship of the LASSO parameters on the statistical significance 

of the models obtained. We also assessed the degree of penalization, 

investigating penalties leading to models with different number of CRRs, at least 

for globally expressed genes. The main concept is that the more predictive 

variables (CRRs) are allowed, the more likely overfitting. We assess the 

significance level in two coordinate model system (where only two CRRs were 

chosen) and in three coordinate model system (where only three CRRs were 

chosen) and we found that a larger quantity of models were significant in two 

coordinate model than three coordinate model. P values for two and three 

coordinate models are shown in Figure 5.5 A and B respectively.  
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Figure 5. 5: Figure A and B show the p values of models for two coordinate and three 

coordinate models respectively. More than 600 models are significant (p values <0.01) 

in (A) and ~250 models are significant in (B), suggesting to consider two coordinate 

model.  

5.3.3.1.1 LASSO method 

 

As mentioned in the method section that LASSO was allowed to pick the best two 

CRRs as large number of significant correlated models (transcripts) are 

significant and total number of models are 17963. A summary of the results is 

given in the Table 5.4 and list of chosen CRRs along with their target genes is 

given in the additional file 1 (given in CD). We used randomisation to estimate 

the false positives. We only got 4 significant models (RPS4Y1 

(ENST00000430575.1), KDM5D (ENST00000317961.4), RPS4Y1 

(ENST00000250784.7), and SPARC (ENST00000520687.1)) after adjusting p 

values by Benjamini & Hochberg. Detailed results of LASSO method are 

mentioned in the Table 5.4. Chosen CRRs of models having correlation >=0.7 

were divided into 1st chosen CRR and 2nd chosen CRR. It was observed that both 

chosen CRRs are located in upstream or downstream; and statistics of chosen 

CRRs location with respect to the TSS of transcript are detailed in the Table 5.5. 

Histograms showing distance between CRRs and TSS of their target genes are 

shown in Figure 5.6 (A & B).  

 

We have only 4 significant models after correcting p value that suggests that we 
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can build significant models for individual genes, attempting this model building 

genome wide would lead to large false discovery rate. Therefore, we decided to 

build models for genes with high (top 25%) log of variance of gene expression 

and for genes with high (top 25%) log of coefficient of variance of gene expression 

separately. We got 6 significant models from each set of genes.  

In this method, we have not enough number of significant models possibly 

because, we have given large number (on average 42) of CRRs for each 

transcript to LASSO. Therefore, we decided to filter the CRRs per transcript 

according to high TF binding and high evolutionary conservation score.  

 

(A)                                                         (B) 

 

Figure 5. 6(A&B): These histograms show distances between the chosen CRR1 

(A), CRR2 (B) and TSS. These CRRs are chosen by LASSO method.  

 

5.3.3.1.2 LASSO with filtered input 

 

Genomic features can be used to identify enhancers [147] and we can filter CRRs 

on the basis of biological features such as H3K27ac, TF binding and conservation 

score and we have explained this in Chapter 4.  

Here, we have filtered 8 CRRs for each transcript (model), 4 were chosen on the 

basis of highest number of transcription factor binding sites and 4 were chosen 

on the basis of highest conservation score. 

Both parameters TF binding and conservation score are important for 

identification of potential regulatory regions, these bound transcription factor have 
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some role and it was also observed in some studies that rate of transcription of 

gene would increase with the increase in TF binding. Here we are considering 

several factors such as conservation, TF occupancy and histone marks for 

filtering CRRs. We might miss some potential regulators by filtering them with the 

conservation criteria but they might will be picked according to high TF binding.  

Here again, LASSO was allowed to choose two best CRRs. 

 

Table 5. 4: This table shows the statistics of model building by LASSO 
and LASSO with filtered input 

 

In this method, large number of models (transcripts) have high correlations and 

approximately 1321 have correlations>0.8. Distances of CRR1 and CRR2 with 

TSS for models with correlation>=0.7 are shown in Figure 5.7 A and B 

respectively.  Chosen CRRs are located in upstream and downstream, or only in 

upstream or only in downstream of their target genes, and statistics of enhancers 

(chosen CRRs with positive correlation) are detailed in the Table 5.5. 

 
Table 5. 5: Statistics of CRRs position with respect to their target genes 

Methods Genes (transcripts) 
regulated by upstream 
regulatory elements 
Threshold= 
correlation>=0.7 

Genes 
regulated by 
downstream 
regulatory 
elements 

Genes 
regulated by 
the 
upstream 
and 
downstream 
enhancers 

Repressors 

LASSO 2303 2838 4063 5022 

Filtered 
LASSO 

992 1321 1854 1958 

Both shared  170 253 335 350 

 

Methods Number 
of 
models 
built 

Average 
number of 
CRRs per 
model 

Average 
correlation 
between 
observed and 
predicted 
expression 

Significant 
models 
after 
randomisat
ion; p value 
<0.05 

Standard 
deviation 

Significant 
models 
after 
multiple 
testing 
correction 

LASSO 16134 42 0.7105 1808 0.120 4 

LASSO 
with 
filtered 
input 

16056 8   
0.5962 

1979 0.14768 18 
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Figure 5. 7: These histograms show distances between chosen CRR1 (A), 

chosen CRR2 (B) and TSS for models with correlation> 0.7. These CRRs are 

chosen filtered LASSO method. 

 

We used randomisation to estimate the false discovery rate. Empirical p values 

were calculated from observed correlations and random correlations, and 

statistics of results are detailed in the Table 5.4. P values of 1979 significant 

models after randomisation (p value<0.05) are shown in Figure 5.8 (A).  

 

 

Figure 5. 8: (A) shows the distribution of p values (<=0.05) after randomisation 

from filtered LASSO method and (B) shows the distribution of p values after 

multiple testing correction from filtered LASSO method.  
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It is possible that significant p values are might be significant because of random 

by chance, so we applied Benjamini & Hochberg (Multiple testing correction) for 

correcting them. Only 18 significant models (p value <0.05) were significant after 

correction, these p values are shown in Figure 5.8 (B).  

We have only 18 significant models after correcting p value that suggests that we 

can build significant models for individual genes, attempting this model building 

genome wide would lead to large false discovery rate, as discussed above. 

Therefore, we decided to build models for genes with high (top 25%) log of 

variance of gene expression [148] and for genes with high (top 25%) log of 

coefficient of variance of gene expression separately. There are 28 significant 

models from the log of variance of gene expression set and 48 models are 

significant from the log of coefficient of variance of gene expression set.  

 We build models for genes with high (top 10%) log of coefficient of variance and 

we built 74 significant models.  

 

5.3.3.1.3 Comparison between LASSO method and filtered LASSO method 

 

Question was asked that how many models (transcripts) have same chosen 

CRRs predicted in both methods. Both methods predicted both same CRRs for 

1930 transcripts, and single same CRR for 4697 transcripts. However, there are 

11336 transcripts where not a single CRR is shared in both methods. These 

numbers are mentioned in the Table 5.6. 

These results show that CRRs chosen by LASSO method but not by filtered 

LASSO method indicates that these CRRs are possibly less conserved and less 

TF binding events occurred there.  

 

Table 5. 6: This table shows the statistics about the chosen CRRs which 
were predicted by both methods to regulate the same gene  

 Models Significant 
models, 
correlation>=0.7 

Significant 
models, 
empirical p 
values<0.05 

Significant 
models after p 
value 
correction 

Both shared CRRs 1930 796          452 48 

Single shared CRR 4697 1954 981 27 
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Set of transcripts with both shared chosen CRRs (1930 transcripts) have higher 

correlations than other sets, correlations between observed expression and 

predicted expression for these models are shown in Figure 5.9 (A). These 

correlation values are considered from the LASSO method. Both methods would 

have similar correlations as same CRRs are chosen by both methods, hence, we 

can consider correlation from one of these two methods. One example of both 

shared CRRs is CNN3 shown in Figure 5.10. This figure is divided in 6 sub figures 

i.e., LASSO cross validation curve (A), predicted expression (B), chosen CRR1 

correlation (C), chosen CRR2 correlation (D), rejected CRR correlation (E), and 

CNN3 transcriptional regulation (F).  CNN3 transcript was mapped with the 72 

CRRs and both methods have chosen both same CRRs that increase the 

significance of our methods. These chosen CRRs have high TF binding and are 

evolutionary conserved, and are predictive of gene expression.   

 

If the CRRs were picked by both methods for the same transcripts and these 

models are also significant then these chosen CRRs can be considered potential 

cis regulatory regions because they have less probability to be picked in both 

methods.  

We filtered those transcripts which were mapped to the lesser number of CRRs 

say 10 because if any transcript is mapped to 8 or less CRRs then obviously 

same CRRs will be picked up in both methods. This also can be narrated in this 

way that if certain transcript was mapped to the less number of CRRs and two of 

them are predictive of expression then we can consider these correlated CRRs 

as potential regulators of transcription for that transcript. Figure 5.9 (B) shows the 

histogram for distribution of model correlations (those transcripts which were 

mapped to at least 10 CRRs). 

We further filtered the models and considered only those models which should 

be mapped to at least 20 CRRs; Figure 5.9 (C) shows the distribution of 

correlation for such models (transcripts). 

 

Models which have at least one shared chosen CRR in both methods were also 

considered for further analysis, and we have 6627 (1930 + 4697) such models. 

Statistics of these numbers are shown in Table 5.6. In this set, 1419 models have 
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correlation>=0.8 and 3439 models have correlation>=0.7. Again here, we can 

filter them further by setting threshold such as transcript should be at least 

mapped to 10 CRRs or 20 CRRs. By considering 10 as a threshold for mapping, 

we got 1372 models have correlation>0.8 and 3258 models have correlation>0.7. 

By considering mapping threshold of 20 (those transcripts which map with at least 

20 CRRs), we got 1176 models have correlation>0.8 and 2706 models have 

correlation>0.7. 

 

 

 

Figure 5. 9:(A) Distribution of correlations between observed and predicted 

expression from set of transcripts where both CRRs are shared in both methods, 

(B) Distribution of correlations from the transcripts which are mapped with at least 

10 CRRs and have both shared CRRs in both methods, (C) Distribution of 

correlations from transcripts which are mapped with at least 20 CRRs and have 

both shared CRRs in both methods.  

(A) (B) 

(C) 
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5.3.3.1.3.1 Statistical significance of models from both shared, single 

shared and non-shared set  

 

There are 1930 models where both CRRs are same in both methods regulating 

same target transcripts, 48 of these models are significant after correcting p 

values (multiple testing correction). A total of 4697 models have only one shared 

CRR in both methods and 27 models are significant after correcting p values. A 

total of 11336 models do not share any CRRs for any transcript in both methods 

and one model is significant after adjusting p values from empirical p values 

(calculated by randomisation).   
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Figure 5. 10:  Building an expression model for CNN3 (ENST00000370206.4). (A) shows the 

mean squared error against the log(λ) LASSO penalty parameter with numbers above the graph 

indicating the number of predictive variables (non-zero coefficients) in the corresponding LASSO 

model. Dotted lines show possible choices of λ at minimum mean-squared error (λmin) and more 

conservatively at that value plus 1 standard error.  This identifies models with 2 predictive 

variables as optimal. (B) Shows the correlation between observed expression and predicted 

expression from the model (empirical p value of correlation calculated after randomization: 2.83e-

05). (C) and (D) show the correlation of DNase-seq signal intensities and expression for the two 

candidate regulatory elements (CRRs) chosen by the LASSO method. (E) Shows the correlation 

between DNase-seq signal intensities and expression for an example rejected CRR. (F) Shows 

the genomic location of the two chosen CRRs and one example of rejected CRR. 
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5.3.3.2 Analysis of chosen/identified CRRs 

 

We have identified cis regulatory regions from above methods (LASSO and 

LASSO with filtered input) and we have compared results from both methods by 

dividing them into three sets, 1. Both methods have chosen both same CRRs 

(both shared set) for a particular transcript, 2. Both methods have chosen single 

same CRR for a particular transcript, and 3. Both methods have chosen both 

different CRRs for a particular transcript. Results from comparison of both 

methods are detailed in the Table 5.6.  

 

There are 1930 models with both shared CRRs in both methods, and 796 models 

are well correlated (correlation>0.7) from both shared set. Our methods have 

identified already known regulators of some of the genes as discussed in the 

validation section of the each method. Only three chosen CRRs from both shared 

set are experimentally validated. This shows that not enough number of chosen 

CRRs are experimentally validated because we have considered only globally 

expressed genes and limited number of cell types.  

WNT5A gene (ENST00000474267.1) is one of the example where our both 

methods have chosen same CRRs (both shared) and one of them is 

experimentally validated [145], and graphical representation for regulation of this 

gene is illustrated in the Figure 5.11. This figure contains both CRRs locations, 

their DHSs clusters, bound TFs and conservation. Our method (LASSO) has 

chosen two CRRs from all the CRRs given in Table 5.7, chosen CRRs are 

highlighted with the red colour. Both these regions are predictive of gene 

expression, have high TF binding ratio and high conservation score than other 

CRRs in the Table.  
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Figure 5. 11: (A) shows the location of chosen CRRs, mentioned as CRR1 and CRR2. B and C 

represent chosen CRR1 and CRR2 respectively. Both these figure panels (B & C) show H3K27AC 

signal, DHSs cluster, bound transcription factors, and conservation for CRR1 and CRR2. Location 

of chosen CRRs with respect to their TSS is also mentioned in their figure panels. CRR1 is 

experimentally validated and can be seen in Figure (B).  
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Table 5. 7: This table contains Candidate cis Regulatory Regions (CRRs) mapped 

to the WNT5A transcript (ENST00000474267.1) within 100kb. Two CRRs 

(highlighted with red colour) were chosen by LASSO. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

There are 4697 models (transcripts) where only one CRR is same in both 

methods (regulating the same transcript), and 1953 of them have 

correlations>=0.7, and statistics of this analysis are shown in the Table 5.6. A total 

of 23 chosen CRRs from single shared set are experimentally validated/known to 

regulate genes. PBX3 (ENST00000342287.4) is an example where one of the 

CRR is predicted by both methods and a CRR predicted by filtered LASSO is 

already known [145]. Therefore, three different CRRs are predicted by both 

methods. Three predicted regulators (chosen CRRs) are shown in the Figure 

5.12, CRR chosen only by filtered LASSO is shown in Figure 5.12 (D) that is 

highly conserved. These predicted regulators are predictive of gene expression 

and they are predicted from a list of potential regulators detailed in the Table 5.8.   

 

Chr # Start End Chr # Start End 

chr3 55436931 55437292 chr3 55532597 55532897 

chr3 55448600 55448750 chr3 55534680 55534830 

chr3 55450111 55451016 chr3 55536040 55536190 

chr3 55468808 55469379 chr3 55539125 55539506 

chr3 55470708 55470994 chr3 55546360 55546530 

chr3 55475595 55475824 chr3 55550805 55551144 

chr3 55479621 55480062 chr3 55553240 55553390 

chr3 55483563 55483842 chr3 55555840 55555990 

chr3 55487956 55488219 chr3 55556207 55556536 

chr3 55496060 55496470 chr3 55558551 55558870 

chr3 55498770 55499145 chr3 55559000 55559150 

chr3 55500583 55500902 chr3 55560431 55560793 

chr3 55502420 55502570 chr3 55580207 55580446 

chr3 55506132 55506407 chr3 55582061 55582310 

chr3 55507978 55508926 chr3 55583284 55583525 

chr3 55510516 55510879 chr3 55590043 55590318 

chr3 55511460 55511610 chr3 55590480 55590582 

chr3 55514782 55515707 chr3 55593748 55594027 

chr3 55516142 55517571 chr3 55605488 55606410 

chr3 55517891 55518515 chr3 55609397 55609660 

chr3 55518525 55518675 chr3 55615018 55615257 

chr3 55518985 55520824 chr3 55621467 55621830 

chr3 55520847 55523137 chr3 55622367 55622778 

chr3 55523189 55524273 chr3 55492414 55492754 

chr3 55529043 55529386 chr3 55524923 55525986 

chr3 55531415 55531694    
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Figure 5. 12:  (A) shows the location of chosen CRR1 (LASSO method), CRR2 (both methods), and CRR3 

(filtered LASSO). B and C represent chosen CRR1 and CRR2 respectively. Both these figure panels (B & 

C) show H3K27AC signal, DHSs cluster, bound transcription factors, and conservation for CRR1 and CRR2. 

Location of chosen CRRs with respect to their TSS is also mentioned in their figure panels.  CRR2 is highly 

conserved and also predictive of gene expression, therefore it was chosen by both methods. 
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D) CRR3 (PBX3)-Filtered LASSO:  Located in downstream at the distance of 8268 

base pairs from TSS  

 

Figure 5.12 (D): This CRR is chosen by the filtered LASSO possibly because of 

conservedness. This chosen regulatory region is completely lies in the known enhancer 

that is 1438 bases long.  This figure shows H3k27ac signal (weak signal), bound TFs, 

known enhancer from Vista enhancer database, and conservation score.  
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Table 5. 8: This table contains all the CRRs mapped to the PBX3 transcript 

(ENST00000342287.4) within 100kb. CRR1 was chosen by LASSO method that is 

highlighted with red colour. CRR2 was chosen by both methods and it is 

highlighted with yellow colour. CRR3 was chosen by filtered LASSO method is 

highlighted with green colour.  

Chr # Start End Chr # Start End 

chr9 128411380 128411619 chr9 128507617 128510010 

chr9 128411700 128411910 chr9 128510065 128511346 

chr9 128412406 128413193 chr9 128512586 128513212 

chr9 128414397 128414776 chr9 128517748 128518022 

chr9 128416387 128416735 chr9 128521153 128522612 

chr9 128422120 128422832 chr9 128528785 128529109 

chr9 128425388 128425843 chr9 128531188 128531451 

chr9 128437536 128438024 chr9 128535130 128535405 

chr9 128441872 128442255 chr9 128546680 128546830 

chr9 128442769 128443088 chr9 128547549 128547838 

chr9 128444006 128444285 chr9 128551534 128551773 

chr9 128445757 128446152 chr9 128553607 128553895 

chr9 128446535 128446927 chr9 128560036 128560275 

chr9 128451045 128451565 chr9 128567440 128567748 

chr9 128452989 128453287 chr9 128569448 128569711 

chr9 128456818 128457141 chr9 128572891 128573130 

chr9 128457837 128458276 chr9 128574648 128575167 

chr9 128458406 128458769 chr9 128577957 128578204 

chr9 128462991 128464064 chr9 128579712 128579975 

chr9 128466340 128466535 chr9 128583297 128584044 

chr9 128466987 128467386 chr9 128585207 128585582 

chr9 128468047 128468533 chr9 128586224 128586819 

chr9 128468812 128469937 chr9 128591856 128592539 

chr9 128494765 128495347 chr9 128596808 128597051 

chr9 128498336 128498611 chr9 128605920 128606070 

chr9 128505205 128505355 chr9 128607618 128607909 

chr9 128506441 128506730 chr9 128417559 128417852 

chr9 128507040 128507210    

 

 

ID1 (ENST00000376105.3) gene is also example of models where one of the 

predicted CRR is experimentally validated [145]. One of the two CRRs (single 

shared) for this gene is predicted by both methods, and here we have only 

presented CRRs predicted by LASSO method. Graphical representation of CRRs 

chosen by LASSO method for ID1 in Figure 5.13. Large number of TFs bind on 

both chosen CRRs as shown in Figure 5.13 B and C. These CRRs were chosen 

from list of CRRs given in Table 5.9, and chosen CRRs are highlighted with red 

colour.   
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Figure 5. 13: (A) shows the location of chosen CRRs, mentioned as CRR1 and CRR2. 

Figure (B) represents chosen CRR1 and this figure shows H3K27AC signal, DHSs 

cluster, bound transcription factors, and conservation for CRR1. Location of chosen 

CRRs with respect to their TSS is also mentioned in the figure (B).  
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Figure 5.13 (C): This figure contains H3K27AC signal, DHSs clusters, bound TFs, and 

conservation. A region in the chosen CRR2 is known to regulate WNT5A and known 

region size is 838 bases, which completely lies within this chosen CRR and can be seen 

here. 
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Table 5. 9: This table contains all the CRRs mapped to the ID1 transcript 

(ENST00000376105.3) within 100kb. Two CRRs (highlighted with red colour) were 

chosen by LASSO.  

Chr # Start End Chr # Start End 

chr20 30154621 30155285 chr20 30255165 30255440 

chr20 30156001 30157732 chr20 30256257 30256500 

chr20 30158625 30159259 chr20 30256776 30257051 

chr20 30159280 30159430 chr20 30257617 30258136 

chr20 30160137 30162027 chr20 30258429 30258883 

chr20 30162043 30162574 chr20 30259832 30260513 

chr20 30165620 30166145 chr20 30261594 30262342 

chr20 30166226 30166449 chr20 30262520 30264543 

chr20 30167803 30168078 chr20 30266189 30266818 

chr20 30168543 30168905 chr20 30266973 30267242 

chr20 30169207 30169635 chr20 30267268 30267557 

chr20 30171949 30172278 chr20 30267613 30268600 

chr20 30173474 30173864 chr20 30272430 30272816 

chr20 30175248 30176967 chr20 30273179 30273712 

chr20 30177540 30177690 chr20 30277880 30278030 

chr20 30178546 30179306 chr20 30279453 30280049 

chr20 30180669 30182208 chr20 30281119 30281522 

chr20 30182490 30184554 chr20 30281665 30282432 

chr20 30184907 30185308 chr20 30282518 30283067 

chr20 30190465 30191151 chr20 30283765 30284448 

chr20 30195923 30196852 chr20 30284862 30285405 

chr20 30198296 30198992 chr20 30286480 30287531 

chr20 30199250 30199983 chr20 30287794 30288449 

chr20 30200482 30201144 chr20 30292092 30293126 

chr20 30202260 30202535 chr20 30129957 30130472 

chr20 30205369 30205512 chr20 30191655 30195860 

 

LIMS1 (ENST00000480744.1) is the example, where one of the CRR is chosen 

by both methods (LASSO and filtered LASSO. Gene regulation of this gene and 

chosen CRRs along with multiple biological features are illustrated in the Figure 

5.14. This is the unique example because CTCF has binding site in the chosen 

CRR1 as shown in Figure 5.14 (B), and CTCF can work as an insulator. 

However, CTCF binds on that region in some of the cell types, not all. Large 

number of TFs bind on the CRR2, so this region is possibly chosen by both 

methods. Table 5.10 contains list of CRRs mapped to the LIMS1 transcript.      
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Figure 5. 14:  (A) shows the location of chosen CRRs, mentioned as CRR1 and CRR2. B and C represent 

chosen CRR1 and CRR2 respectively. Both these figure panels (B & C) show H3K27AC signal, DHSs 

cluster, bound transcription factors, and conservation for CRR1 and CRR2. Location of chosen CRRs with 

respect to their TSS is also mentioned in their figure panels. Both chosen CRRs are not conserved and 

CRR1 does not have bound TFs except RAD21. However, CTCF has binding site in the CRR1 region.    
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Table 5. 10: This table contains all the CRRs mapped to the LIMS1 transcript 

(ENST00000480744.1) within 100kb. Two CRRs (highlighted with red colour) were 

chosen by LASSO.  

Chr # Start End Chr # Start End 

chr2 109191426 109192419 chr2 109238194 109238764 

chr2 109194851 109195140 chr2 109238806 109239081 

chr2 109195260 109195536 chr2 109240062 109240337 

chr2 109196073 109196336 chr2 109241759 109242142 

chr2 109196539 109196814 chr2 109245713 109246381 

chr2 109197322 109198032 chr2 109248727 109249070 

chr2 109200372 109200853 chr2 109249185 109249474 

chr2 109201920 109202150 chr2 109251100 109251250 

chr2 109204140 109204290 chr2 109252735 109254216 

chr2 109204470 109205341 chr2 109256140 109256290 

chr2 109207494 109208161 chr2 109256560 109256710 

chr2 109209805 109209955 chr2 109257240 109257450 

chr2 109210060 109210290 chr2 109258274 109258553 

chr2 109210546 109212127 chr2 109268760 109268910 

chr2 109213903 109214009 chr2 109268938 109269611 

chr2 109220675 109220938 chr2 109278542 109279137 

chr2 109224121 109224640 chr2 109335372 109336463 

chr2 109225325 109225920 chr2 109391721 109391960 

chr2 109227242 109227878 chr2 109392054 109392329 

chr2 109228482 109229608 chr2 109231726 109232526 

chr2 109229951 109230464 chr2 109247855 109248668 

chr2 109236887 109238154    

 

 

There are thousands of models where both methods predicted different CRRs for 

each gene, for an example TEAD3 (ENST00000338863.7). Graphical 

representation of TEAD3 regulation is illustrated in Figure 5.15. Only RFX5 binds 

on the CRR2, and both chosen CRRs are not conserved except their small 

regions as shown in Figure 5.15 (B&C). Table 5.11 contains list of CRRs mapped 

to the TEAD3 transcript within 100kb distance.  
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Figure 5. 15:  (A) shows the location of chosen CRRs, mentioned as CRR1 and CRR2. B and C 

represent chosen CRR1 and CRR2 respectively. Both these figure panels (B & C) show H3K27AC 

signal, DHSs cluster (CRR1 has two DHSs clusters), bound transcription factors, and 

conservation for CRR1 and CRR2. Location of chosen CRRs with respect to their TSS is also 

mentioned in their figure panels. Only small regions in the CRR1 and CRR2 are conserved and 

CRR2 has only one bound TF.      
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Table 5. 11: This table contains all the CRRs mapped to the TEAD3 transcript 

(ENST00000338863.7) within 100kb. Two CRRs (highlighted with red colour) were 

chosen by LASSO.  

Chr # Start End Chr # Start End 

chr6 35364880 35365030 chr6 35453129 35454615 

chr6 35365366 35365921 chr6 35455438 35456111 

chr6 35368780 35368990 chr6 35457697 35458474 

chr6 35369799 35370784 chr6 35459223 35460004 

chr6 35378836 35379028 chr6 35460752 35461037 

chr6 35379985 35380135 chr6 35461144 35461772 

chr6 35382902 35383509 chr6 35461945 35462215 

chr6 35387288 35387677 chr6 35462984 35463323 

chr6 35393061 35393402 chr6 35463485 35466635 

chr6 35393957 35394160 chr6 35467381 35468158 

chr6 35395880 35396070 chr6 35468562 35469038 

chr6 35396145 35396850 chr6 35472089 35472378 

chr6 35396967 35398053 chr6 35474263 35474702 

chr6 35419443 35420881 chr6 35486791 35487086 

chr6 35420985 35421472 chr6 35490267 35491164 

chr6 35421667 35422062 chr6 35502220 35502370 

chr6 35429140 35429290 chr6 35534091 35535128 

chr6 35435502 35437866 chr6 35564286 35565356 

chr6 35439526 35440428 chr6 35438132 35439364 

chr6 35444841 35445180 chr6 35487335 35487838 

chr6 35445447 35445602 chr6 35536679 35537198 

chr6 35452691 35452966    

 

There are also examples where regulatory regions are known but or method has 

identified different regulatory regions, for an example, TCF4 has known 

regulatory region in Vista Enhancer [145], but our methods have chosen different 

CRRs. This is because, known regulatory region activity was observed in cells 

that we have not considered in our dataset.  
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5.3.4 Discussion 

 

Gene expression is controlled by the cis regulatory regions such as enhancers 

and repressors. Here, we have identified regulatory regions by integrating ChIP-

seq, DNase-seq and RNA-seq data as discussed in the method section. We 

started this chapter by obtaining Candidate cis Regulatory Regions (CRRs) from 

ChIP-seq and DNase-seq separately, and end up in combining both ChIP-seq 

and DNase-seq data sets together and then obtaining CRRs from them. Later on, 

we optimised method by limiting the choice of CRRs, not using fold change, and 

setting a mapping threshold of 100kb [149] (mapping of transcripts to potential 

regulators).  

 

Two different strategies were adapted for LASSO followed by randomisation to 

estimate the false discovery rate. Significance of the models increases if both 

methods have chosen same CRRs/CRR for a particular transcript .These two 

different methods/strategies were used to study whether we can identify 

regulators by giving filtered input to the LASSO, else we allow LASSO to choose 

those CRRs which are predictive of gene expression from all CRRs mapped to 

the transcript within 100kb. CRRs were filtered on the basis of highest ratio of TF 

binding and highest conservation score. As we have discussed in the 1st chapter 

that TFs have important role in regulation of genes [150] and functional regions 

i.e., regulatory regions are less susceptible to change (remain conserved). 

However, non-conserved regions can also be functional regions [151]. Therefore, 

we also adapted strategy, where we gave input to the LASSO without filtering. 

Same CRRs were chosen by LASSO in both methods for large number of 

models, which suggest that several potential regulators regions were predictive 

of gene, expression, conserved and bound by several TFs. It increases the 

significance of our methods, as it is not possible for different methods to choose 

same CRRs from a large number of candidates.     

 

We have discussed in the results section that we have limited number of 

significant models after correcting (multiple testing correction) p values that are 

generated after randomisation. Therefore, we concluded that models can be built 

for individual genes as genome wide model building lead to the large false 
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discovery rate. We can choose models according to biological features, for 

example log (coefficient of variance of gene expression) and different thresholds 

were considered. Models with high (top 10%) log (coefficient of variance of gene 

expression) were built, and we successfully built 74 significant models from this 

set.  

 

We can assess the significance of our chosen CRRs by testing with some 

independent cancer data, knowing the fact that most of the cell types were 

considered for obtaining CRRs are cancer cell types. Recently published work 

suggested that cis regulatory regions contain significant number of somatic 

mutations and mutations in TF binding sites can drive different abnormalities 

including cancer [152].  

 

Vista Enhancer database [145], contains 1790 enhancers for 1537 genes and 

397 of these genes are in our set of LASSO models, which is less than quarter of 

total genes in this database. This shows that vista enhancers have identified 

enhancers for a specific set of genes and our method has predicted 

experimentally known enhancers for only 21 genes, which is a small number. It 

is possibly because, our method has identified ubiquitous regulatory regions and 

Vista Enhancer database contains mostly cell type specific enhancers. They have 

observed expression patterns for known enhancers in those cells which we have 

not considered for model building. We looked in experiments for known vista 

enhancers, and concluded that researchers have observed expression levels in 

neural tube, hindbrain, limb, cranial nerve, midbrain, forebrain, nose, tail, 

mesenchyme derived from neural crest, and heart. However, cell types 

considered for model building are mostly cancer cell types, and only SK-N-SH-

RA (sknshra) is neuroblastoma cell line. Therefore, we decided to assess 

significance of predicted regulatory regions by independent cancer mutation 

dataset, and that is discussed in the next chapter.  
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Chapter 6 
 

6 Mapping cancer somatic mutations to regulatory regions 

 

6.1 Introduction 

 

We have developed methods for prediction of cis regulatory regions in the 

previous chapters, but here we are pursuing with the models built by LASSO 

method. We have discussed in the previous chapter that, chosen CRRs are 

difficult to validate because we don’t have enough existing knowledge about 

regulatory regions and it was also observed that regulatory regions (chosen 

CRRs) are prone to high false discovery rate. Therefore, we considered whether 

a completely independent dataset, known cancer somatic mutations could reveal 

further significance of these chosen CRRs. We test whether our chosen CRRs 

accumulate significant number of cancer somatic mutations than CRRs rejected 

by our method. Studying the relationship between mutational frequencies and 

variables such as replication timing and gene expression have allowed the 

identification of recurrently mutated regions and mutated protein and they are 

likely to be oncogenic drivers [153]. 

  

Mutations in regulatory regions could lead to the aberrant regulatory process, and 

this has a role in initiation and progression of cancer, such as constituent 

activation of transcription factors regulated by chromosomal re-arrangements 

[154]. 

Mutations in regulatory regions can lead to abnormal gene expression levels, 

which ultimately can result in uncontrolled cell growth that is one of the signs of 

cancer. Similarly, researchers have found in large percentages of cases in some 

cancer types that point mutations in TERT gene promoter are strongly linked to 

gene expression changes [155]. Developments in the field of whole genome 

sequencing, made possible for scientists to focus on mutations that occur in 

potential regulatory elements within the genome. Recently, it has been 

discovered that regulatory regions accumulate large numbers of the somatic 

mutations that have been observed in cancer cell genomes [156]. Mutations in 

regulatory regions are may be important in promoting survival and reproduction 
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of cancer cells, which is an evidence of positive selection for mutations in these 

regions 

 Weinhold et al., [157]  have also observed recurrently mutated regulatory 

elements and discovered regions potentially regulating genes with known 

involvement in cancer. Fredriksson et al., [158]  have developed  method for the 

discovery of mutations that are strongly linked to expression levels of nearby 

genes in cancer samples. However, Identification of regulatory mutations driving 

cancer is a difficult process and existing methods have discovered only fraction 

of such mutations. Therefore, there is a clear need for new methods that would 

help us to understand the irregularities in gene regulation.  

 

Understanding regulation of genes is challenging, as several factors influence the 

expression of genes, and each factor has its own dimensions. Large number of 

regulatory regions have been identified by recently discovered technologies and 

it was difficult to link them to their respective genes. However, we have 

successfully identified potential regulatory regions and link them to their 

respective genes by using correlative models, as discussed in the 5th chapter. 

We have identified regulatory regions mostly from cancer cell types and it was 

assumed that these regions may accumulate significant number of cancer 

somatic mutations. We have also compared the frequency of mutations in chosen 

regulatory regions for genes known to involve in cancer with the frequency of 

mutations in chosen regulatory regions of those genes which are not yet known 

to involve in cancer.  

Here, we have mapped cancer somatic mutations on chosen and rejected CRRs 

that are identified by our method explained in the Chapter 5 and we investigated 

that whether chosen CRRs harbour significant number of mutations than rejected 

CRRs.  
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6.2 Methods 
 

6.2.1 Regulatory regions 

 

Here, we have considered chosen and rejected CRRs from LASSO method, 

which is explained in the 5th chapter. LASSO method based on correlative models 

chooses two CRRs (Candidate cis Regulatory Regions) that are predictive of 

gene expression and rejected all other CRRs mapped to the transcript within 

100KB distance.  R code for building LASSO models is given in Appendix II, this 

file as an additional file 4 is also available here:  

 https://static-content.springer.com/esm/art%3A10.1186%2Fs12943-016-0560-

0/MediaObjects/12943_2016_560_MOESM4_ESM.r  

6.2.2 Mapping cancer mutations to regulatory regions 

 

Somatic cancer mutations were obtained from the COSMIC database V.76 [159] 

(Catalogue of somatic mutations in cancer). Approximately 2.3 million cancer 

somatic mutations were retrieved and mapped to the chosen and rejected CRRs. 

Duplicate mutations (mutations occurring at the same genomic location) were 

eliminated. 

 

6.2.3 Statistical significance of differences in mutation counts 

 

The statistical significances of differences in the counts of somatic mutations 

observed in chosen and rejected CRRs were tested in several ways. Differences 

in the average number of mutations per CRR were tested with two-sample t-tests, 

and also equivalent non-parametric Wilcoxon tests to account for possible non-

normality. To account for other possible effects that might bias these 

considerations we also repeated these tests after first balancing the chosen and 

rejected sets to have the same distribution of any potential confounding variable. 

This was achieved by sampling the rejected set of CRRs randomly to match the 

distribution of a variable in the chosen set, which was enabled by the significantly 

larger size of the rejected set.  The variables considered were replication timing, 

base pair composition, length of the CRRs and distance of the CRR to the 

https://static-content.springer.com/esm/art%3A10.1186%2Fs12943-016-0560-0/MediaObjects/12943_2016_560_MOESM4_ESM.r
https://static-content.springer.com/esm/art%3A10.1186%2Fs12943-016-0560-0/MediaObjects/12943_2016_560_MOESM4_ESM.r
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transcription start site (TSS). Replication timing and GC content data was 

downloaded from the UCSC website: the wavelet-smoothed signal of replication 

timing [160] for 9 cell types was obtained and we used the average signal.  In 

each case data was binned in 4 equal bins and the process required a chosen 

CRR to be matched by a rejected CRR from the same bin. These all variables 

considered here may influence the CRRs choice by LASSO method and also can 

influence frequency of mutations in these regions. Replication timing is the order 

in which parts of genome are duplicated. It has been known that replication timing 

can influence the rate of mutation[153], and replication timing can also be 

influenced by the base pair composition [161]. Some of the base pairs are more 

prone to mutations and some are not, similarly proximal regions accumulate high 

frequency of mutations than distal and large CRRs can harbour large 

percentages of mutations. Therefore, we investigated that whether the chosen 

CRRs are accumulating significant number of somatic mutations considering 

these variables in mind.  

As an alternative test of statistical significance which enabled us to model all 

potential effects on mutation counts together, we built generalised linear models 

using the glm function in R. Generalized linear model is a set of independent 

variables each with a distribution from the exponential family, and it has response 

variables, which are expected to share the same distribution from the exponential 

family, and it has a monotone link function [162].  

We build the generalized linear model (glm), as explained below 

Response or dependent variable (y) = Mutation counts 

We assumed Poisson distribution where, 

log (E(y))= ∑i ki xi 

Where independent variables are, 

x1= distance of CRR from TSS  

x2= Replication timing 

x3=GC content  

x4= Length of CRR 

x5= Indicator variable for chosen/rejected CRRs 
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A log link function was used, first under the assumption of a Poisson distribution 

for the counts and then in cases of over-dispersion using the quasipoisson option 

in glm, which fits a dispersion parameter which is otherwise fixed at unity. The 

statistical significances of the effects of each variable were assessed from the 

standard Wald test statistics produced by glm. 

 

6.2.4 Cancer census genes 

 

It has been a central purpose of cancer research to identify genes involved in 

cancer. Futreal et al. [163], started compiling genes involved in cancer from 

literature. They included genes in the set of human cancer census genes if there 

are existing at least two independent reports showing mutations in primary patient 

material. As we have discussed previously that aberrant changes in regulation of 

genes cause cancer, and these changes in regulation are may be caused by 

mutations in regulatory regions. Therefore, we investigated the frequency of 

mutations in chosen CRRs associated with the cancer census genes.  

A set of 533 cancer consensus genes were retrieved from the COSMIC database 

of which 304 entered our analysis (the others did not meet our modelling criterion 

of expressing in at least 7 cell types).  These were analysed as a separate subset 

to investigate any possible specific effects for genes known to be directly involved 

in cancer. 

6.3 Results  
 

We investigated the possibility of a large-scale model building exercise for all 

genes/transcripts as we discussed in Chapter 5, and also in a restricted set of 

533 genes known to be cancer associated [163]. Here, we have considered 

LASSO method chosen regulatory regions set, and most of the genes considered 

for model building are globally expressed genes as explained in the previous 

chapter. The relevant statistics of model building are shown in Table 6.1 (This 

table contains No. of CRRs without repetition i.e., 25025 CRRs). Models were 

successfully built for approximately 9000 genes (16000 transcripts) (This model 

building is discussed in detail in ordinary LASSO section), and 292 genes (650 



149 
 

 

transcripts) from the cancer set. It shows model building failed only for 12 cancer 

census genes. List of chosen CRRs for 9000 genes that also includes the cancer 

census genes along with the count of somatic mutations is given in additional file 

1 (given in CD). Additional file 1 is also provided with our published paper [164] 

on Molecular cancer journal website:   

https://static-content.springer.com/esm/art%3A10.1186%2Fs12943-016-0560-

0/MediaObjects/12943_2016_560_MOESM1_ESM.xlsx 

We have included the copy of published paper in Appendix III. We have 

discussed this in the previous chapter but just to remind that this scale of model 

building exercise leads to a significant false discovery rate. Therefore, individual 

models should be studied carefully. We built models genome wide for the 

identification of single set of chosen CRRs that are predictive of gene expression, 

covering substantial part of open chromatin region, and a complement set of 

CRRs with weaker relationships to gene expression. It should be noted that some 

of the CRRs were chosen for more than one transcript in both sets (All transcripts 

and cancer set transcripts), as detailed in the Table 6.1. Figure 6.1 illustrates 

three genes and their chosen CRRs, one of the CRR accumulating 4 COSMIC 

mutations was chosen as a potential regulator of NAB2 and STAT6, and both 

these genes are known to be involved in cancer. The transcription factors that 

bind on these chosen CRRs and number of somatic mutations harbour in these 

chosen CRRs are also mentioned in the figure.  

 

 

 

 

 

 

 

 

 

 

https://static-content.springer.com/esm/art%3A10.1186%2Fs12943-016-0560-0/MediaObjects/12943_2016_560_MOESM1_ESM.xlsx
https://static-content.springer.com/esm/art%3A10.1186%2Fs12943-016-0560-0/MediaObjects/12943_2016_560_MOESM1_ESM.xlsx
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Table 6. 1: Statistics of model building 

 All transcripts Cancer set transcripts 

Number of models 

attempted 

17963 transcripts from 

9209 genes 

731 transcripts (from 304 

genes)  

 Number of models built 16134 (8670 genes) 654 (292 genes) 

Average r,r2 0.710, 0.519 0.718, 0.530 

Range r2 0.004-0.99 0.048-0.925 

Total candidate elements 678020 (mean 

42/transcript) 

28844 (mean 44/transcript) 

Chosen elements 25045 (2/transcript) 1140 (2/transcript) 

Elements chosen for 1 

transcript 

20025 999 

Elements chosen for >1 

transcript 

5020 141 
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Figure 6. 1: The chosen CRRs for NAB2 (ENST00000342556.5), STAT6 

(ENST00000300134.2) and LRP1 (ENST00000243077.2). Black arrows link 

CRRs to the transcripts for which they were chosen in expression models; note 

that one CRR was chosen for both STAT6 and NAB2. Details of the chosen CRRs 

are given red boxes, including the bound transcription factors, sizes of the CRRs 

and mutations mapped from the COSMIC database. CRRs are labelled as 

enhancers if they show positive correlation with expression and repressors if they 

show negative correlation. The chosen CRRs are marked as red boxes if there is 

at least one reported mutation in them, and black otherwise. 

 

Overall 8% of these COSMIC mutations mapped to CRRs identified with the 

transcript set defined above, this percentage is small because we have restricted 

number of transcripts by considering only globally expressed transcripts.   
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Table 6.2 gives statistics showing the mutations mapped in chosen and rejected 

CRRs from the modelling exercise. These results show that a significant higher 

proportion of chosen CRRs are mutated at least once than the rejected CRRs, 

and that chosen CRRs harbour around 1.5 times more mutations than rejected 

CRRs. We repeated this exercise for cancer set and chosen CRRs have 

significant higher proportion of mutations than rejected CRRs. Proportion of 

somatic mutation in chosen CRRs is significantly higher than the proportion of 

mutations in rejected CRRs in most of the sets but  smaller cancer genes set 

shows the same trends but with reduced levels of statistical significance. When 

limiting the analysis to CRRs only from higher quality expression models 

(confident models with r>0.7 and highly confident models with r>0.8) the effect 

size increases: mutations are enriched in chosen CRRs by a factor of 1.45 

(=1.35/0.93) in all models and this rises to 1.81 in CRRs for highly confident 

models.   

These results suggest that chosen regulatory regions could be functionally 

important for their respective linked genes, as they accumulate significant 

number of mutations.  These mutations may have some influence on the gene 

expression levels as they are predicted from correlative models.  

Table 6. 2: Mapping of somatic mutations from COSMIC to candidate 
regulatory regions (CRRs) 

Title All Cancer census genes 

Chosen CRRs Rejected CRRs Chosen CRRs Rejected 
CRRs 

Total number of CRRs        25045  158560 1140 7429 

CRRs mutated at 
least  once 

 3535 (14.11%)1 16241(10.24%)1 160 (14.03%)2 703 (9.46%)2 

Mean mutations/CRR 1.353 0.933 1.514 0.974 

Mean mutations/CRR  
(models with r>0.7) 

1.403 0.883 1.635 0.955 

Mean mutations/CRR 
(models with r>0.8) 

1.503 0.833 1.55 0.92 

1Proportion mutated in chosen set greater than in rejected set, p<10-15 (Chi-squared and Fisher test) 
2Proportion mutated in chosen set greater than in rejected set, p<10-5 (Chi-squared and Fisher test) 
3Mean mutations in chosen set greater than in rejected set, p<10-23 (two sample t test), p<10-8 (Wilcoxon 

test) 
4Mean mutations in chosen set greater than in rejected set, p<0.05 (two sample t test and Wilcoxon test) 
5Mean mutations in chosen set greater than in rejected set, p<0.05 (two sample t test), p=0.06 (Wilcoxon 

test).  
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It is known that DNA mutation frequencies are heterogeneous [153] over the 

genome, and are related to variables such as replication timing and GC content. 

In this analysis, average mutation frequencies within CRRs might be influenced 

by the length of the CRR and possibly the proximity to a transcription start site 

(TSS). We took two different approaches to investigate whether these effects 

could have biased the statistical considerations above. First we repeated the 

significance tests on the mean number of mutations per CRR, this time not using 

the entire set of rejected CRRs but by randomly choosing a set of equal size to 

the chosen set matched according to the variable concerned (e.g. matching each 

chosen set member with a rejected member falling in the same GC content bin).  

In the case of all variables (replication timing, GC content, length of CRR and 

proximity to a TSS) the effects reported above remained significant in all models 

set, but there are some cases of insignificance in cancer census genes set. 

Statistics (p values) of this analysis are shown in Table 6.3.   

Table 6. 3: This table shows the statistical comparison (p values calculated 
from independent t-test) of frequency of mutations in chosen CRRs and 
rejected CRRs that match in replication timing, GC content, length of the 
CRRs and distance from TSS. Here CCGs is the Cancer Census Genes from 
cancer set and All is for all models.  

 Replication   
timing  

   GC content 

 

Length of  CRRs Distance from 

TSS 

All CCGs All CCGs All CCGs All CCGs 

Mean 

mutations/CRR 

1.5e-14 

 

0.0028 

 

2.9e-15 0.0005 

 

1.8e-10 

 

0.20 

 

1.6e-36 

 

0.017 

 
Mean 

mutations/CRR 

(models with 

r>0.7) 

2.6e-09 

 

0.292 

 

2.5e-17 

 

0.379 

 

3.6e-06 

 

0.19 

 

1.7e-23 

 

0.0629 

 

Mean 

mutations 

/CRR  (models 

with r>0.8) 

0.00085 

 

0.025 1.594e-08 

 

0.825 

 

7.5e-07 

 

0.77 

 

7.7e-13 

 

0.023 

 

 

 Second approach is to model all these potential effects simultaneously we built 

generalised linear models for the counts of mutations in CRRs, and the result 

showing correlation of frequency of mutations with all five variables are detailed 

in the Table 6.4. We found the counts to be over-dispersed with respect to a 
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Poisson distribution assumption, and modelled this with an additional dispersion 

parameter. The effect size for an indicator variable showing whether a CRR was 

chosen or rejected was 0.46+/-0.02 (p<2x10-16 ,Wald test), revealing a highly 

significant effect on the (log) expected mutation counts consistent in size with 

observed differences in average mutation counts from Table 6.2. 

Table 6. 4: This table shows the result of generalized linear model built by 
correlating frequency of mutations with five variables, only replication 
timing is not correlated.  

Variables Estimate ± Std. error P value 

Distance -(8.4 ± 0.3) x 10-6 <2e-16 

Replication timing -(1.31 ± 9.26) x 10-4  0.887     

GC content (7.4 ± 0.095) x 10-2 <2e-16 

Length of the CRR (4.98 ± 0.045) x 10-4 <2e-16 

Chosen CRR=1, 
Rejected CRR=0 

(4.57 ± 0.2) x 10-1 <2e-16 

 

Chosen CRRs may be positively (enhancers) or negatively (repressors) 

correlated with the expression of the associated gene, and can be involved in the 

enhancing and repressing the gene expression levels.  From our chosen CRRs, 

32% showed negative correlations, and they can be called as repressors. We 

tested the difference in the average number of mutations between the enhancers 

and repressors, but there was no significant difference in rate of mutations 

between these two types of CRRs. This has been observed in all 

models/transcripts as well as in cancer set models, as mentioned in Table 6.5. 

Table 6. 5: This table shows the average number of mutations per enhancer 
and repressors in all models as well as in cancer set models. 

 All models Cancer census genes 
models 

Enhancers Repressors Enhancers Repressors 

Mean mutations  1.33 1.399 1.60 1.262 

Two sample t test p value =0.385 p value=0.44 

 

In other analysis, we divided CRRs into proximal and distal according to distance 

from the associated transcription start site (distal > 10kBases, proximal < 

10kBases), and tested the difference in average number of mutations between 

these regions. We found that proximal CRRs have significantly higher tendency 
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to be mutated than the distal CRRs, as detailed in the Table 6.6. This difference 

in average number of mutations is more pronounced in CRRs identified with 

cancer associated genes.  

Table 6. 6: Mapping of mutations to chosen CRRs proximal and distal to 
the transcription start site 

 Proximal (<10kB from 

TSS) 

Distal (>10kB from 

TSS) 

Mean mutations/CRR 

(all models) 

2.301 1.251 

Mean mutations/CRR 

(cancer related 

transcripts) 

3.402 0.992 

1Mean greater in proximal set, p<10-39 (t-test), p<10-17 (Wilcoxon) 
1Mean greater in proximal set, p<10-6 (t-test), p<0.05 (Wilcoxon) 
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6.4 Discussion  
 

It has been reported by several researchers that somatic mutations in regulatory 

regions have important role in dis-regulation of genes [157] [165], as we have 

discussed in the results section, this dis-regulation ultimately leads to cancer, and 

those mutations which cause cancer or any abnormality are known as driver 

mutations. We have used the several cancer cell types in model building. 

Therefore, it was worthy to look for cancer somatic mutations in chosen CRRs 

and rejected CRRs, and we found that chosen CRRs accumulate significant 

number of somatic mutations than the rejected CRRs.   

The work carried out in this chapter helped us to understand which somatic 

mutations in cancer cells drive the process of cancer progression and to identify 

underlying mechanisms of gene regulation. 

 Mutations in regulatory regions are an important feature of cancer, and the 

results reported here show that a set of candidate regulatory regions derived from 

simple correlative models preferentially harbour cancer somatic mutations 

compare to regions rejected by models. This suggest that chosen regions could 

be of functional significance in genetic regulation.  

It is now known that mutations affecting regulatory regions are potentially as 

important in cancer progression as mutations in protein coding regions or those 

that directly alter functional RNA molecules. Further, we identified positive 

selection of mutations in these chosen regions and existing research now suggest 

that this positive selection of mutations might involve in cancer progression. The 

work reported here strongly suggests that modelling based on large data 

compendia like ENCODE can identify genomic regions which are potentially more 

strongly linked to gene expression, and propose links to the regulated genes. This 

could lead to more effective definition and prioritisation of mechanistic 

hypotheses for cancer somatic mutations, which will be accessible to confirmation 

or refutation with further detailed laboratory investigations.  

Here, we investigated that whether different variables such as replication timing, 

GC content, length of the CRR, and distance of the CRR to the TSS (transcription 

start site) effect the rate of mutation. Existing studies suggested that replication 
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timing is correlated with the rate of mutation  [166]. There are also existing studies 

which suggest that both variables: replication timing and base pair composition 

are correlated with the rate of mutation [153]. However, we found that replication 

timing is not correlated with rate of mutations in our set of potential regulatory 

regions, though other variables behave differently as shown in Table 6.5.  Here, 

replication timing behaves differently than existing research possibly because we 

have limited set of regulatory regions that are associated with the globally 

expressed genes. In addition to that, we also considered all these four variables 

in comparing rate of mutation in chosen CRRs and rejected CRRs. We picked 

CRRs randomly from rejected CRRs set matched with chosen CRRs replication 

timing, GC content, length of the CRRs, and distance of the CRRs to the TSS. 

We found that still chosen CRRs accumulate significant high rate of somatic 

mutations than the rejected CRRs.  

In our study, we also identified that proximal regions have significantly high rate 

of mutations than the distal regions [157]. We also analysed the rate of somatic 

mutations in the enhancers (positively correlated) and repressors (negatively 

correlated), but we didn’t find any significant difference in rate of mutations 

between these regions.      

We investigated that whether the chosen CRRs mapped to the cancer census 

genes behave differently than chosen CRRs mapped to all genes. We found that 

both set of CRRs behave similarly, and chosen CRRs accumulate significantly 

higher frequency of mutations than rejected CRRs in both sets. We tested the 

difference of mean mutations/CRR between chosen and rejected CRRs by using 

two different tests (Wilcoxon test and two sample t test), just to increase the 

accuracy of the results.  
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Chapter 7 

 

7 Discussion and future work 

 

Our research starts with the development of method for prediction of TF-TF 

mutual interactions from ENCODE ChIP-seq data. The ENCODE has mapped 

approximately 119 transcription factors out of 1800 transcription factors. It was 

challenging to develop any statistical method to predict the interactions as binding 

sites for a limited number of transcription factors have been mapped but we 

manage to develop method based on two statistical methods i.e., Poisson 

distribution and Randomisation, where Mu of randomisation and Lambda of 

Poisson distribution are similar. It was challenging to optimise the size of 

accessible genome, we considered accessible genome size by unifying binding 

sites from all ENCODE transcription factors, and this was leading to the large 

number of significant overlaps, suggesting that size of accessible genome should 

be optimised. Finally, we manage to optimize the size of accessible genome by 

considering certain percentage of accessible genome. Some of interactions 

predicted by our methods are already known, which signifies the accuracy of our 

method. This method can also be applied to the new generated data and it can 

help in understanding that how transcription factors form complex to regulate the 

expression of genes.  

We also compared our method results from Gm12878 and K562 cell types with 

the results from ENCODE (K562) [34]. We found that, there are several common 

significantly overlapping TFs in our method and ENCODE method, even in 

different cell type (Gm12878).   

 

We also studied the conservation of TF binding sites by asking different questions 

and we found that shared TF binding sites in multiple cell types for a particular 

TF are more significantly conserved than cell type specific binding sites of that 

TF, which supports the argument that functional binding sites are shared in 

multiple cell types and they are conserved [167]. 

 In other analysis, we found that shared binding sites between TFs in a particular 

cell type are more significantly conserved than the non-shared (unique) binding 



159 
 

 

sites, this suggests us about the interaction of TFs through these shared and 

significantly conserved binding sites. We also looked for the distribution of 

conservation in shared and unique binding sites in a TF pair, six different 

examples from three cell types were analysed. We observed that distribution of 

conservation is bimodal in shared and unique binding sites set.  

 

Transcription factor binding near the genes might influence the expression level 

of genes, here we identified that most of the genes mapped near the co-binding 

sites of TFs have high level of gene expression than those genes which are 

mapped to the single TF binding site. This tells us that co-binding sites of TFs 

enhance the expression in most of the cases but in some cases these sites can 

act as repressors of transcription as detailed in the Chapter 3.  

 

In other study, we integrated ChIP-seq, DNase-seq and RNA-seq data for 

prediction of cis regulatory regions. In the beginning, ordinary linear regression 

was used to predict the cis regulatory regions and associate them with their target 

genes. We studied different factors which can be helpful in choosing CRRs. Two 

factors i.e., highest TF binding and highest conservation score were helpful and 

well correlated models were built from CRRs chosen by these factors. In the 4th 

chapter, we performed gene ontology enrichment analysis using DAVID, where 

we picked shared and unique set of well correlated models between three 

methods. We found that none of gene set was significantly involved in any 

biological process. However, most of the gene sets were significantly involved in 

protein binding and poly (A) RNA binding molecular function.  

 

 Later on (5th chapter), we used the LASSO instead of ordinary linear regression 

as LASSO can penalize the variables and select those CRRs which are predictive 

of gene expression. Previous studies and our analysis showed that regulatory 

regions are conserved, and have high frequency of TF binding and these factors 

are helpful in predicting cis regulatory regions [168]. Therefore, we considered 

biological features such as frequency of TF binding and conservation score to 

filter the candidate cis regulatory regions as each transcript was mapped to the 

approximately 42 CRRs. We allow LASSO to filter/penalize CRRs and we 

optimised it by considering only two best CRRs. We compared the two methods, 
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1. We filter candidate cis regulatory regions (CRRs) up to 8 according to highest 

TF binding and highest conservation score (4 CRRs by each factor), because 

LASSO should choose best two CRRs from a set of biological important CRRs; 

2. LASSO was given all the CRRs as an input and it was restricted to choose best 

two cis regulatory regions. Results from these two methods were compared and 

both methods choose same cis regulatory elements for particular transcripts in 

large number of transcripts. Scientists have developed tools for prediction of cis 

regulatory regions in Drosophila such as jPREdictor [169], where this tool predicts 

the regulatory regions by taking sequence and motif as an input; but our method 

is different as explained above.  

 

It has been observed in several studies that regulatory regions contain large 

number of cancer somatic mutations, as these regulatory regions have important 

role in regulation of genes. We analyzed that whether our chosen cis regulatory 

regions contain high frequency of mutations or rejected (rejected by LASSO) cis 

regulatory regions have high frequency of mutations, and we found that chosen 

CRRs accumulate significant number of mutations than rejected CRRs.  

 We also considered the biological parameters which may influence the frequency 

of mutations/count of mutations such as replication timing, base pair composition 

(%GC), length of the regulatory region, and distance of regulatory region with the 

transcription start site (TSS); despite of considering similar levels of these 

parameters for both sets, we found that chosen cis regulatory regions have 

significantly high frequency of mutations. We also built linear model to see 

whether these features are positively influencing the frequency of mutations or 

negatively and we found that all features significantly influence the frequency of 

mutation except replication timing. Though, it has been known that replication 

timing has significant influence on the frequency of mutations as discussed in the 

6th chapter. However, our results showed that replication timing does not have 

negative or positive influence on the frequency of mutations, possibly because 

we have considered restricted set of transcripts (globally expressed transcripts).  

Our this method for prediction of cis regulatory regions can be used for newly 

generated data and important part of this method is that it has predicted 

regulatory regions for globally expressed genes, which are important for running 

the biological system.  
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Enhancers and promoters interact with each other through looping to control the 

expression levels of genes. DNA becomes flexible to bend for looping because 

of histone acetylation occurring at the site of bending. ENCODE has generated 

looping interactions data by 5C (Chromosome Conformation Capture Carbon 

Copy) technique [170]. Sean et al., have developed a tool called TargetFinder for 

predicting looping interactions by training models with the known interactions. 

They give signal profiles of RNA polymerase II, enrichment of H3K27ac, and 

depletion of mono-methylation of histone H3 at lysine 4 (H3K4me1) in regions 

flanking the TSS of interacting promoters [171]. Similarly, Bing et al., separated 

interacting enhancer-promoter pairs and non-interacting enhancer-promoter 

pairs by training the random forest classifier with four features i.e., Enhancer and 

target promoter activity profile correlation (EPC), Transcription factor and target 

promoter correlation (TPC), Coevolution of enhancer and target promoter 

(COEV), and Distance constraint between enhancer and target promoter (DIS). 

They developed a method called IM-PET (Integrated Methods for Predicting 

Enhancer Targets) [172].  

 

 There are insulators for example such as CTCF that can block the interaction 

between enhancers and promoters. So, if there is CTCF binding site between 

these two regulatory regions (enhancers and promoters) then these regions 

would not interact with each other. CTCF is the “CCCTC-binding factor” that binds 

to 55,000-65,000 sites in mammalian genome [173].  

It is possible that these binding sites are located between our chosen CRRs for 

some of the models, as we have seen in the Chapter 5 that CTCF has binding 

site in the one of chosen CRR for the LIMS1 gene in some of the cell types, but 

not in all. Here, we have identified cis-regulatory regions for the globally 

expressed genes. However, 30-60% CTCF binding sites are cell type specific 

[174], therefore, they will be less likely to be located between our pair of chosen 

CRRs.   

 

Few studies already exist where they differentiated promoters and enhancers, 

and also correlated enhancers with their associated genes, but in a different 

method than our method. Jason et al., confirmed that RNA polymerase II 
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(RNAPII) is highly enriched at the strong promoters and weakly enriched at the 

strong enhancers, therefore, this features differentiates the promoters and 

enhancers. These researchers also linked genes with their potential enhancers 

by correlating gene expression levels with the histone modifications (H3K4me1, 

H3K4me2 and H3K27ac) activity at the enhancer locations [175]. We have also 

considered only those CRRs which have H3K27ac signal, however, we have 

correlated DHSs signal intensities at the CRRs with the gene expression levels. 

Other researcher have used different biological features to identify cis-regulatory 

modules. Similarly, Ross et al., suggested in a review paper that cis regulatory 

modules can be identified by considering clusters of transcription factor binding 

sites motifs, conserved non-coding DNA, and biochemical marks associated with 

the regulatory regions, and these features can be used collectively or individually 

to predict the regulatory modules. Their validations results proposed that 

identifying cis regulatory modules through biochemical marks is more reliable 

than other features [176].        

 

Here, we have predicted TF-TF mutual interactions, and identified enhancers and 

repressors of transcription along with their target transcripts that would help to 

understand the regulation of thousands of genes and to identify therapeutic 

targets for the cancer and other diseases.  In my thesis, I have also discussed 

known cancer genes and our method also has predicted the regulatory region for 

large number of cancer genes.  These methods can also be applied to the newly 

generated data. 

 

7.1 Future Work 

 

Experimentalists can use our set of predicted TF-TF interactions and chosen 

CRRs for experimental validation. Similarly, researchers can use chosen CRRs 

for interpreting newly identified mutations. Effect of somatic mutations lie in the 

TF binding sites motifs can be studied further to identify their influence on TF 

binding, ultimately, these mutations may alter genetic regulation. Transcription 

factor motifs can also be used to predict the TF binding sites. 
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Appendix I 

Narrow peak format  

chrom chromStart chromEnd name score strand signalvalue pvalue qvalue peak 

chr1 713849 714369 . 358 . 56.11685 -1 4.723727 260 

chr1 936119 936478 . 1000 . 219.308 -1 4.723727 177 

chr1 948512 949032 . 261 . 40.93646 -1 4.723727 260 

chr1 968260 968780 . 310 . 48.61145 -1 4.723727 260 

chr1 999583 999866 . 647 . 101.2878 -1 4.723727 123 

chr1 1243488 1244008 . 241 . 37.87323 -1 4.723727 260 

chr1 1310568 1310702 . 382 . 59.91272 -1 4.723727 108 

chr1 1342436 1342956 . 239 . 37.52594 -1 4.723727 260 

chr1 1447124 1447644 . 385 . 60.39419 -1 4.723727 260 

chr1 1609215 1609735 . 484 . 75.78422 -1 4.723727 260 

 

1. chrom: Name of the chromosome 

2. chromStart: The starting position of the feature in the chromosome 

3. chromEnd: The ending position of the feature in the chromosome 

4. name: Name given to a region. Use “.” if no name is assigned 

5. score: Indicates how dark the peak will be displayed in the browser 

6. strand: +/- to denote strand or orientation. Use “.” if no orientation is 

assigned 

7. signalValue: Measurement of overall (usually, average) enrichment for 

the region 

8. pvalue: Measurement of statistical significance (-log10). Use -1 if no 

pvalue is assigned.  

9. qvalue: Measurement of statistical significance using false discovery 

rate (-log10). Use -1 if no qvalue is assigned.  

10. peak: Point-source called for this peak; o-based offset from chromStart. 

Use -1 if no point source called.  

 

(Taken from https://genome.ucsc.edu/FAQ/FAQformat#format12) 

 

 

 

https://genome.ucsc.edu/FAQ/FAQformat#format12
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Appendix II 

R code for building LASSO models 

# CNN3.text is an input file 

matrx=read.table("CNN3.text", header=TRUE) 

matrx = as.matrix(matrx) 

library (glmnet) 

alpha=1 

# DHSs signal intensities of all CRRs 

x = matrx[,-1] 

# Expression (FPKM) values  

data = matrx[,1] 

#fitting the model 

fit=glmnet(x,data, family=c("gaussian"), alpha=alpha) 

pdf("output.pdf") 

plot(fit) 

plot(fit, "lambda") 

#Cross validation for glmnet 

cvfit = cv.glmnet(x, data) 

suma=summary (cvfit) 

plot(cvfit) 

# Adjusting the number of non-zero coefficients  

lambdaFit = cvfit$glmnet.fit 

df = lambdaFit$df 

lambda = lambdaFit$lambda 

fits=min(lambda[df==2]) 

# Below function makes predictions from cross validated glmnet model 

predict_fit1<-predict(fit,x, s=fits) 

sump=summary(predict_fit1) 

cor(predict_fit1, data) 
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print (fits) 

# Plotting the correlation between observed and predicted expression 

title=paste("Correlation: ", cor(predict_fit1, data), "| Lambda = ", fits) 

plot(predict_fit1,data, xlab="Predicted", ylab= "Observed", main=title) 

x = as.matrix(coef(cvfit,s=fits)) 

nonZeroVecs = names(x[x!=0,]) 

#Plotting the two CRRs correlation between DHSs signal intensities and 
transcript expression (FPKM) 

temp = as.data.frame(matrx) 

for(i in 2:length(nonZeroVecs)){ 

    plot(temp$Expression,temp[,nonZeroVecs[i]], xlab="Expression", ylab = 
paste("DHS tag count in", nonZeroVecs[i]), main = nonZeroVecs[i] ) 

    cx  = cor(temp$Expression, temp[,nonZeroVecs[i]]) 

    cat(nonZeroVecs[i], "= ",cx,"\n") 

} 

dev.off() 
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 “Cancer somatic mutations cluster in a subset of regulatory sites 

predicted from the ENCODE data” 
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Cancer somatic mutations cluster in a
subset of regulatory sites predicted from
the ENCODE data
Nisar A. Shar1,2, M. S. Vijayabaskar1 and David R. Westhead1*

Abstract

Background: Transcriptional regulation of gene expression is essential for cellular differentiation and function, and
defects in the process are associated with cancer. The ENCODE project has mapped potential regulatory sites across
the complete genome in many cell types, and these regions have been shown to harbour many of the somatic
mutations that occur in cancer cells, suggesting that their effects may drive cancer initiation and development.
The ENCODE data suggests a very large number of regulatory sites, and methods are needed to identify those that
are most relevant and to connect them to the genes that they control.

Methods: Predictive models of gene expression were developed by integrating the ENCODE data for regulation,
including transcription factor binding and DNase1 hypersensitivity, with RNA-seq data for gene expression. A penalized
regression method was used to identify the most predictive potential regulatory sites for each transcript. Known cancer
somatic mutations from the COSMIC database were mapped to potential regulatory sites, and we examined
differences in the mapping frequencies associated with sites chosen in regulatory models and other (rejected)
sites. The effects of potential confounders, for example replication timing, were considered.

Results: Cancer somatic mutations preferentially occupy those regulatory regions chosen in our models as most
predictive of gene expression.

Conclusion: Our methods have identified a significantly reduced set of regulatory sites that are enriched in
cancer somatic mutations and are more predictive of gene expression. This has significance for the mechanistic
interpretation of cancer mutations, and the understanding of genetic regulation.

Keywords: Cancer mutations, Cis regulation, Gene regulation, Modelling, Regulatory regions

Background
The majority of work on the somatic mutations that are
found in cancer cell genomes has focussed on the ana-
lysis of protein coding exons. These regions have clear
functional significance, and because they represent only
a very small fraction of the genome are more amenable
to systematic experimental investigation (e.g. in whole
exome sequencing studies). Analysis of these data, taking
account of the relationship between mutational frequen-
cies and variables such as replication timing and gene
expression, has allowed the identification of recurrently

mutated regions and protein coding genes that when
mutated are likely to be oncogenic drivers [1].
The role of aberrant genetic regulatory processes in

the initiation and progression of cancer, for example the
constituent activation of transcription factors driven by
chromosomal re-arrangements [2], has been appreciated
for many years. More recently, the discovery of point
mutations in the TERT gene promoter that occur in
large percentages of cases in some cancer types and are
strongly linked to gene expression changes [3, 4], along
with developments in whole genome sequencing, have
focussed the field on mutations that occur in potential
regulatory elements within the genome. It has been
shown that regulatory regions harbour significant num-
bers of the somatic mutations that have been observed
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in cancer cell genomes [5], and this work has also pro-
vided some evidence of positive selection for mutations in
these regions, suggesting that regulatory mutations may
be important in promoting survival and reproduction of
cancer cells in the host. Other related work has examined
recurrently mutated regulatory elements [6] and discov-
ered regions potentially regulating genes with known in-
volvement in cancer. Further, a method for the discovery
of mutations that are strongly linked to expression levels
of nearby genes in cancer samples has been developed [7].
However, given the complexity of genetic regulation in
eukaryotic cells, it is likely that current work reveals only
a fraction of the regulatory aberrations driving cancer, and
there is a clear need for new methods that will reveal dif-
ferent insights.
New technologies for DNA sequencing have revolutio-

nised our ability to map regulatory regions of the gen-
ome. For example, the ENCODE project [8] has mapped
gene expression, transcription factor binding to DNA
and other relevant variables such as DNaseI hypersensi-
tivity and chromatin modifications on a whole genome
scale in many laboratory cell lines, and more recent
studies have examined the regulation of cellular differen-
tiation [9, 10]. These studies and others have led to the
development of databases, for example RegulomeDB
[11], and these provide a rich source of information on
potential regulatory elements. However, genetic regula-
tion operates at multiple levels, and despite the volume
of data now available it remains an unmet challenge to
convert this data into more detailed mechanistic under-
standing of the regulation of individual genes. A large
number of candidate regulatory elements are identified
in the genome by these technologies, and the possibility
that genes are regulated by elements that are relatively
distant in the genome makes the process of assigning
regulatory elements to genes very difficult. Nevertheless,
these large data sets allow the development of correla-
tive models whereby candidate regulatory elements may
be identified, and used to develop regulatory networks
linking them to the genes they control [12]. Similar work
has used logistic regression [13], and Thurman and co-
workers [14] introduced models that link DNaseI hyper-
sensitivity data in promoter and distal sites to identify
regulatory regions. While these methods are clearly use-
ful, independent experimental knowledge of the links be-
tween genes and their regulatory regions is presently too
limited for effective method comparison and validation.
A useful alternative view of the utility of correlative

models of genetic regulation is to examine them in the
context of relevant independent biological data, such as
the somatic mutations observed in cancer genomes. Here
we introduce our own model of genetic regulation based
on ENCODE and examine the mapping of cancer muta-
tions from the COSMIC [15] database to the regulatory

regions it identifies. This integration of two large public
sources of biological information through modelling, has
the potential to improve our understanding both of gen-
etic regulation and cancer.

Results
Figure 1 illustrates the process of building a simple cor-
relative model of gene expression for a single transcript.
As described in the Methods, candidate regulatory re-
gions (CRRs) were identified as the union of all sites of
transcription factor binding and the top 25% of DNase1
hypersensitive sites in all the ENCODE cell types consid-
ered. Each transcript was considered to be potentially
regulated by any CRR within 100 kB [16] of the tran-
scription start site (TSS), in this case 72 CRRs. Although
genes can be regulated by enhancers up to 1 MB from
the TSS, the figure of 100kB was chosen to encompass
most regulatory elements, for example those of the leu-
kaemia related oncogene Lmo2 [17]. The aim of our
model was to predict the expression level of the gene in
each of the cell types, as measured by RNA-seq experi-
ments, from signal intensities in DNase1 hypersensitivity
data, which we use as a crude measure of activity (e.g.
transcription factor binding) at the CRR concerned.
Given the large number of CRRs relative to the num-

ber of cell types in which gene expression was measured,
we adopted a penalised regression approach (LASSO) to
identify a small set containing just those elements with
the strongest relationships to gene expression. Analysis
of the LASSO data indicated that the best supported
models were based on just two candidate regulatory
elements per transcript. We subsequently refer to these
elements as the ‘chosen’ CRRs, and the remaining ele-
ments as ‘rejected’ CRRs. In the case of the transcript in
Fig. 1 a convincing model was constructed, showing a
(Pearson) correlation of observed to predicted expres-
sion values of 0.97 (Fig. 1b). We further assessed the
statistical significance of this model using a random-
isation approach, resulting in a p value of 0.0016 (see
Statistical significance of models in Methods). Figure 1c
and d show the correlation of DNaseI signal intensities
and expression for the two CRRs chosen by the LASSO
method, and Fig. 1e shows a example rejected CRR. The
genomic location of the CRRs is shown in Fig. 1f.
We next investigated the possibility of a large-scale

model building exercise for all genes/transcripts, and
also in a restricted set of 533 cancer census genes from
COSMIC [18]. We focussed on transcripts from GEN-
CODE v7, and restricted the study to transcripts
expressed in at least 7 cell types, which were more suit-
able for our regression based modelling techniques.
Thus our study focused on genes expressed in a wider
range of cell types, and we call these ‘globally expressed’
genes. The relevant statistics of model building are
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shown in Table 1, and a list of all chosen CRRs along
with their target genes is included in Additional file 1:
Table S1. Models were successfully built for approxi-
mately 9000 genes (16000 transcripts), and 290 genes
(650 transcripts) from the cancer set. It should be noted
that the scale of this model building exercise leads, after
correction for multiple testing, to a significant false
discovery rate. While any individual model should be
considered carefully in this light, we treated the exercise
as a means to the identification of a single set of CRRs
covering a substantial proportion of the transcriptome
that lead to the best supported models of gene expres-
sion (the chosen set), and a complement set of rejected
CRRs with weaker relationships to gene expression. It
should be noted that some elements were chosen for
more than one transcript, and this is illustrated in Fig. 2,

which also highlights the transcription factors known to
bind in each CRR. As an illustration of the results for
more genes, in Additional file 2: Figures S1 and S2 we
include four examples (WNT5A, ID1, LIMS1 and
TEAD3) where predicted CRRs coincide with regulatory
elements that are already known [19].
The COSMIC database [15] is a high-quality compil-

ation of somatic mutations that have been observed in
cancer cells. Mutations were downloaded from this data-
base (a total of 2.3 million mutations) and mapped to
the CRRs, as illustrated in Fig. 2. Overall 8% of these
mutations mapped to CRRs identified with the transcript
set defined above, and 14% of transcripts mapped to at
least one mutated CRR. Table 2 gives statistics showing
how these mutations are partitioned between chosen
and rejected CRRs from the modelling exercise. This
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Fig. 1 Building an expression model for CNN3 (ENST00000370206.4). a shows the mean squared error against the log (λ) LASSO penalty
parameter with numbers above the graph indicating the number of predictive variables (non-zero coefficients) in the corresponding LASSO
model. Dotted lines show possible choices of λ at minimum mean-squared error (λmin) and more conservatively at that value plus 1 standard
error. This identifies models with 2 predictive variables as optimal. b shows the correlation between observed expression and predicted
expression from the model. c and d show the correlation of DNaseI signal intensities and expression for the two candidate regulatory elements (CRRs)
chosen by the LASSO method. e shows the correlation between DNaseI signal intensities and expression for an example rejected CRR. f shows the
genomic location of the two chosen CRRs and one example rejected CRR
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shows that a significantly higher proportion of chosen
CRRs are mutated at least once compared rejected
CRRs, and that chosen CRRs harbour around 1.5 times
more mutations than rejected CRRs. This applies equally
to all genes and to the cancer related subset. Within the
all genes set all comparisons are highly statistically sig-
nificant, while the smaller cancer genes set shows the
same trends but with reduced levels of statistical signifi-
cance. When limiting the analysis to CRRs only from
higher quality expression models (confident models with
r > 0.7 and highly confident models with r > 0.8) the ef-
fect size increases: mutations are enriched in chosen

CRRs by a factor of 1.45 (=1.35/0.93) in all models and
this rises to 1.81 in CRRs for highly confident models.
It is known that DNA mutation frequencies are het-

erogeneous [1] over the genome, and are related to vari-
ables such as replication timing and GC content.
Equally, in the context of this analysis, average mutation
frequencies within CRRs might be expected to be af-
fected by the length of the CRR and possibly the prox-
imity to a transcription start site (TSS). We took two
different approaches to investigate whether these effects
could have biased the statistical considerations above.
First we repeated the significance tests on the mean

NAB2 STAT6 LRP1CCG Non-CCGCCG

Egr1, Bhlhe40, Gata2, 
Egata2, Sin3a, Nr2f2, 
Cmyc, Tal1, E2f6, Corest, 
Usf1, Max, Tead4

Repressor
717 bases

Egr1, Elf1, Zbtb7, Znf143, Taf1, Smc3, 
Corest, Maz, Pu1, Ccnt2, Rad21, Nfya, 
Bclaf1, Nfkb, Nfyb, Mxi1, Tcf12, Six5, Stat3, 
Pax5, Mef2a, Mef2c, Yy1, Mta3, Bach1, 
Sin3a, Tead4

Whip

263 bases

Enhancer

4 COSMIC mutations 
reported

1437 bases

Enhancer
13 COSMIC mutations reported

Tr4

549 bases
Enhancer

1 COSMIC mutation 
reported

Chd2,Sin3a, Rbbp5,Tcf12

1024 bases

Enhancer

Fig. 2 The chosen CRRs for NAB2 (ENST00000342556.5), STAT6 (ENST00000300134.2) and LRP1 (ENST00000243077.2). Black arrows link CRRs to the
transcripts for which they were chosen in expression models; note that one CRR was chosen for both STAT6 and NAB2. Details of the chosen
CRRs are given red boxes, including the bound transcription factors, sizes of the CRRs and mutations mapped from the COSMIC database. CRRs
are labelled as enhancers if they show positive correlation with expression and repressors if they show negative correlation. The chosen CRRs are
marked as red boxes if there is at least one reported mutation in them, and black otherwise

Table 1 Statistics of model building

All transcripts Cancer set transcripts

Number of models attempted 17963 transcripts from 9209 genes 731 transcripts (from 304 genes)

Number of models built 16134 (8670 genes) 654 (292 genes)

Average r,r2 0.710, 0.519 0.718, 0.530

Range r2 0.004–0.99 0.048–0.925

Total candidate elements 678020 (mean 42/transcript) 28844 (mean 44/transcript)

Chosen elements 25045 (2/transcript) 1140 (2/transcript)

Elements chosen for 1 transcript 20025 999

Elements chosen for >1 transcript 5020 141
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number of mutations per CRR, this time not using the
entire set of rejected CRRs but by randomly choosing a
set of equal size to the chosen set matched according to
the variable concerned (e.g. matching each chosen set
member with a rejected member falling in the same GC
content bin). In the case of all variables (replication tim-
ing, GC content, length of CRR and proximity to a TSS)
the effects reported above remained significant, albeit
with reduced levels of significance reflecting the reduc-
tion in size of the rejected set. Second, to model all these
potential effects simultaneously we built generalised
linear models for the counts of mutations in CRRs. We
found the counts to be over-dispersed with respect to a
Poisson distribution assumption, and modelled this
with an additional dispersion parameter (see Methods).
The effect size for an indicator variable showing
whether a CRR was chosen or rejected was 0.46+/−0.02
(p < 2 × 10−16,Wald test), revealing a highly significant
effect on the (log) expected mutation counts consistent
in size with observed differences in average mutation
counts from Table 2.
Finally, within the chosen set of CRRs we tested for

differences in the average number of mutations in differ-
ent types of CRR. Chosen CRRs may be positively or
negatively correlated with expression of the associated
gene, and hence tentatively identified with enhancing or
repressing mechanisms. Of our chosen CRRs 32%
showed negative correlations with expression, but there
was no significant difference in mutation rates between
these two types of CRR, whether considering all models
or just those from cancer associated genes. On the other
hand dividing CRRs into proximal or distal according to
distance from the associated transcription start site

(distal > 10 kB, proximal < 10 kB) showed a significant
tendency for proximal CRRs to be mutated to higher
levels, as shown in Table 3 and previously reported [6].
This effect seems to be more pronounced in elements
identified with cancer associated genes.

Discussion
The recent revolution in DNA sequencing speed has
allowed us to map multiple variables relevant to genetic
regulation at genome-scale and sequence the genomes
of many individual cancers. The work reported here is
relevant to two important problems that arise from this
data: the first is to move from a descriptive understand-
ing of potential regulatory regions to a mechanistic un-
derstanding of the regulation of individual genes, and
the second to understand which somatic mutations in
cancer cells drive the process of cancer progression and
to identify underlying mechanisms.
In respect of the problem of understanding genetic

regulation, the genome scale data sets we have presently
still represent relatively little data for each individual
gene or transcript. The complexity of regulation in
eukaryotic cells, involving the interactions of transcrip-
tion factors and chromatin modifiers as well as miRNAs
and lncRNAs, and the potential involvement of DNA re-
gions (enhancers) distal to the transcript, mean that our
present levels of mechanistic insight are limited. Based
on the large scale data we have, the best that is possible
is the building of simple correlative models, which aim
to identify just those regions of the genome that seem
most strongly influential on gene expression. As we have
already commented, even this is subject to a significant
false discovery rate when attempted at genome-scale.

Table 2 Mapping of somatic mutations from COSMIC to candidate regulatory regions (CRRs)

Title All Cancer census genes

Chosen CRRs Rejected CRRs Chosen CRRs Rejected CRRs

Total number of CRRs 25045 158560 1140 7429

CRRs mutated at least once 3535 (14.11%)1 16241 (10.24%)1 160 (14.03%)2 703 (9.46%)2

Mean mutations/CRR 1.353 0.933 1.514 0.974

Mean mutations/CRR (models with r > 0.7) 1.403 0.883 1.635 0.955

Mean mutations/CRR (models with r > 0.8) 1.503 0.833 1.55 0.92
1Proportion mutated in chosen set greater than in rejected set, p < 10−15 (Chi-squared and Fisher test)
2Proportion mutated in chosen set greater than in rejected set, p < 10−5 (Chi-squared and Fisher test)
3Mean mutations in chosen set greater than in rejected set, p < 10−23 (two sample t test), p < 10−8 (Wilcoxon test)
4Mean mutations in chosen set greater than in rejected set, p < 0.05 (two sample t test and Wilcoxon test)
5Mean mutations in chosen set greater than in rejected set, p < 0.05 (two sample t test), p = 0.06 (Wilcoxon test)

Table 3 Mapping of mutations to chosen CRRs proximal and distal to the transcription start site

Proximal (<10kB from TSS) Distal (>10kB from TSS)

Mean mutations/CRR (all models) 2.301 1.251

Mean mutations/CRR (cancer related transcripts) 3.402 0.992

1Mean greater in proximal set, p < 10−39 (t-test), p < 10−17 (Wilcoxon)
1Mean greater in proximal set, p < 10−6 (t-test), p < 0.05 (Wilcoxon)
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Nevertheless, changes to genetic regulation are an im-
portant feature of cancer, and the results reported here
show that a set of candidate regulatory regions derived
from simple correlative models preferentially harbour
cancer somatic mutations, suggesting that these regions
are of functional significance in genetic regulation.

Conclusions
It is now recognised that mutations affecting regulatory
regions are potentially as important in cancer progres-
sion as mutations in protein coding regions or those that
directly alter functional RNA molecules. Here we have
shown that somatic mutations that are found in cancer
cells occur preferentially in those potential regulatory re-
gions that are revealed by the ENCODE data to be more
likely to be directly involved in the regulation of gene
expression levels. This adds to the growing body of work
in this area strongly suggesting that cancer progression
involves positive selection for mutations with regulatory
effects. This work also shows that modelling based on
large data compendia like ENCODE can identify gen-
omic regions which are potentially more strongly linked
to gene expression, and propose links to the regulated
genes. This could lead to more effective definition and
prioritisation of mechanistic hypotheses for cancer
somatic mutations, which will be accessible to confirm-
ation or refutation with further detailed laboratory
investigations.

Methods
Data sets and identification of candidate cis regulatory
regions
Data sets were downloaded from ENCODE [8] for hu-
man genome version hg19 as shown in Table 4. Candi-
date Regulatory Regions (CRRs) were defined as all
transcription factor binding sites (TFBS) found in the
five cell types for which ChIP-seq data for transcription
factors was available, plus the highest scoring 25% of
DNaseI hypersensitive (DHS) sites for all 14 cell types,
filtered to include only those with the H3K27ac active
enhancer mark in at least one cell type. We used DHSs
generated by the uniform processing pipeline of the EN-
CODE Analysis Working Group (AWG) for this study
[8], and similarly TFBS were taken from the ENCODE
standard data processing pipeline [8].
The DHS and TFBS were merged if they overlapped

by at least 1 base pair using bedtools [20] and the result-
ing merged regions were considered as the full set of
candidate regulatory regions (CRRs) for further analysis.
DNaseI-seq signal intensities for each CRR in the 14 cell
types (Table 4) were computed from the uniformly proc-
essed and normalised signal tracks using bwtool [21].
RNA-seq (whole-cell polyA+) transcript quantifica-

tions were downloaded from the ENCODE DCC portal

of UCSC genome browser [22]. The expression for any
transcript whose coordinates are defined by GENCODE
(version 7) [23] is the average FPKM (Fragments Per
Kilobase of transcript per Million sequenced reads) [24]
of all the replicates, and they were filtered for IDR (Irre-
producible Discovery Rate) < = 0.1. Further, only tran-
scripts that were expressed (FPKM > =1) in at least 7 of
the cell types defined in Table 4 were considered for all
our analysis given below (such data is more suitable for
our regression based modelling scheme). Our method-
ology is illustrated graphically in Fig. 3.

Model
For applicability in the largest number of cell types, we
based our model on DHS data and assumed a simple
linear relationship between transcript expression (log
(FPKM) values) and (log (signal intensity)) from the
DNaseI data in each CRR.

y ¼ k0 þ
Xn

i¼1
kixi

Here y is the expression value of the transcript, xi the
DNaseI signal intensity in the ith CRR for that transcript
and n is the number of CRRs within 100 kb of the tran-
scription start site.
Since n is typically greater than the number of cell

types for which data were available, model fitting
demanded a penalised approach to limit the number of
non-zero ki coefficients. We chose LASSO regression
implemented in the R glmnet package [25], which repre-
sents a least squares/maximum likelihood fit penalised
with a term λ∑i = 1

n |ki|. We investigated a number of

Table 4 ENCODE data sets used

S.No Cell ChIP-seqa

(TFs)
DNaseI-seq RNA-seq

(FPKM)
ChIP-seq
(H3K27ac)

1 K562 100 √ √ √

2 Gm12878 73 √ √ √

3 Hepg2 57 √ √ √

4 Helas3 54 √ √ √

5 H1hesc 47 √ √ √

6 A549 √ √

7 Ag04450 √ √

8 Bj √ √

9 Hsmm √ √

10 Huvec √ √

11 Mcf7 √ √

12 Nhek √ √

13 Nhlf √ √

14 Sknshra √ √
aTotal number of transcription factor ChIP-seq datasets considered, note that
data sets of CTCF, CTCFL and RNA polymerase II were not used
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different ways of determining appropriate values for the
penalty scaling parameter λ, using a selection of example
genes, and eventually chose conservatively so that two
non-zero ki parameters were determined for each model.
As shown in Fig. 1, this is consistent with the glmnet
package recommendation for choosing λ, as either λmin

(minimum mean square error) or this value plus one
standard error. CRRs are subsequently referred to as
‘chosen CRRs’ if they appear with a non-zero coefficient
in a LASSO model for at least one transcript, and
rejected CRRs if they were considered in the analysis
for any model but never associated with a non-zero co-
efficient. In the supplementary material we have in-
cluded an input data file (Additional file 3) and R code
(Additional file 4) to illustrate how the method can be
implemented.

Statistical significance of models
The quality of the models was assessed through the
(Pearson) correlation of predicted and observed gene ex-
pression values, using a leave-one-out cross validation
scheme. To further assess statistical significance we gen-
erated models from randomly permuted data: we fixed
the DHS data and generated 50000 random permuta-
tions of the gene expression values per transcript, calcu-
lating the empirical probability of obtaining a model
from the random data showing a correlation at least as
high as that for the model from the real data (using the
same value of λ in each case). Since randomization is
computationally expensive, we considered 12 models: 4
transcripts where the real model showed high correl-
ation of predicted and actual expression (~0.9), 4 with
moderate correlations (~0.5) and 4 where LASSO failed
to find models. We found that the distribution of ran-
dom model correlations was remarkably similar in all

these cases and therefore used the distribution from
these combined randomizations to generate p values for
all models. When studying the generation of models for
multiple genes we chose to control the false positive rate
using the Benjamini-Hochberg method.

Mapping cancer mutations to regulatory regions
Somatic cancer mutations were derived from the COS-
MIC database [15] v76 (Catalogue of somatic mutations
in cancer). 2.3 million somatic mutations were retrieved
and mapped to the CRRs defined above. Duplicate/re-
current mutations were eliminated so only one mutation
was considered at each genomic location.

Statistical significance of differences in mutation counts
The statistical significances of differences in the counts
of somatic mutations observed in chosen and rejected
CRRs were tested in several ways. Differences in the
average number of mutations per CRR were tested with
two-sample t-tests, and also equivalent non-parametric
Wilcoxon tests to account for possible non-normality.
To account for other possible effects that might bias
these considerations we also repeated these tests after
first balancing the chosen and rejected sets to have the
same distribution of any potential confounding variable.
This was achieved by sampling the rejected set of CRRs
randomly to match the distribution of a variable in the
chosen set, which was enabled by the significantly larger
size of the rejected set. The variables considered were
replication timing, base pair composition, length of the
CRRs and distance of the CRR to the transcription start
site (TSS). Replication timing and GC content data was
downloaded from the UCSC website: the wavelet-
smoothed signal of replication timing [26] for 9 cell
types was obtained and we used the average signal. In
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Fig. 3 Graphical summary of the methodology employed
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each case data was binned in 4 equal bins and the
process required a chosen CRR to be matched by a
rejected CRR from the same bin.
As an alternative test of statistical significance which

enabled us to model all potential effects on mutation
counts together, we built generalised linear models using
the glm function in R. Mutation counts were modelled
as a function of length of CRR, replication timing, GC
content, shortest distance to a TSS and an indicator
variable for chosen/rejected CRRs. A log link function
was used, first under the assumption of a Poisson distri-
bution for the counts and then in cases of over-
dispersion using the quasipoisson option in glm, which
fits a dispersion parameter which is otherwise fixed at
unity. The statistical significances of the effects of each
variable were assessed from the standard Wald test sta-
tistics produced by glm.

Cancer census genes
A set of 533 cancer consensus genes were retrieved from
the COSMIC database of which 292 entered our analysis
(the others did not meet our modelling criterion of ex-
pressing in at least 7 cell types). These were analysed as
a separate subset to investigate any possible specific ef-
fects for genes known to be directly involved in cancer.

Additional files

Additional file 1: Identified regulatory sites containing somatic
mutations. (XLSX 2006 kb)

Additional file 2: Examples of four genes, where predicted CRRs coincide
with the regulatory elements that are already known. (PPTX 63 kb)

Additional file 3: Example of input data fi le for the predictive model.
(TXT 14 kb)

Additional file 4: R code for LASSO model building. (R 1 kb)
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