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Abstract

The aim of this thesis was to develop tools for evaluating the potential sustainability and
security of renewable energy systems in the UK, with a long-term view of maximising the
potential renewable energy penetration of wind and solar by deployment of electrical energy
storage. Using computer modelled renewable energy systems, a number of system variables are
considered such as system size, energy sources (solar and/or wind), type of demand load, and
capacity and type of storage technology. The results allow for a broad comparison of different
types of renewable energy systems, and their optimisation. The optimisation methodology is also
critically evaluated with consideration of its robustness and applicability, using two alternative
metrics to measure system energy security and two different measurements of energy return on
investment (EROI) to measure sustainability.

When comparing renewable energy systems, results found that large systems that
predominately got their power from wind sources were the most sustainable and secure, using
optimisation methods that penalised both their overproduction and underproduction. Nearly
all systems benefit from the use of electrical energy storage, without impacting too much on
sustainability levels, but larger wind systems used less storage, suffering lower energy security
as a result. System performance can best be improved by developing solar power technologies
with lower embodied energy costs, followed by a reduction in embodied energy of storage
technology. The former will enable more effective use of storage methods, while the latter
allows for larger storage capacities with less environmental impact.

Sustainability and energy security were given equal priority in the optimisation, however
it was found that more sustainable generation technologies were preferable to more secure
technologies, as there is more scope to improve energy return on investment than security.
Therefore there is a limit, generally around 45-85% (depending on size of system and choice
of technology) to the proportion of time that renewable energy systems using variable energy
sources can be autonomous, meaning that energy backup from the grid and/or dispatchable
sources is still required.

xxv



xxvi



Glossary

BOS Balance of system, the components such as inverter, frame, cables etc, that are necessary
parts to an energy system.

CAES Compressed air energy storage, a form of electrical energy storage.

CCGT Closed cycle gas turbines, a modern and more efficient type of gas power station.

DG Distributed Generation, the proposal of decentralised energy systems.

DOD Depth of discharge, the maximum percentage of stored energy that can be used from a
battery while ensuring reasonable battery life.

ηG Life cycle energy conversion efficiency of the current electric grid, taken to be currently 0.31
for the EU-27 grid.

Ein The measured energy inputs of a technology/system, otherwise known as its embodied
energy.

Eout A technology’s total generated energy over a set period of time, or the net output of energy
from a system.

EE Embodied Energy.

EEIR EROIout of a system multiplied by its EIR value. System is able to export energy.

EuEIR EROIused of a system multiplied by its EIR value. Excess energy is curtailed.

EIR Energy Index of Reliability, measuring the proportion of energy demand not satisfied.

EROI Energy Return On Investment, a metric of energy return used for sources of energy and
energy systems. This thesis uses the net energy return (NER) definition.

ELOLP EROIout of a system multipled by its (1 − LOLP ) result. System is able to export
energy.

EuLOLP EROIused of a system multipled by its (1−LOLP ) result. Excess energy is curtailed.

EPBT Energy payback time, the amount of time required for a renewable energy technology
to produce the amount of energy equal to its embodied energy value.

EROIout Energy Return On Investment using the returned energy value Eout that takes into
account system inefficiencies.

EROIused Energy Return On Investment using the returned energy value Eused that only
accounts for energy used locally within the system. Sometimes abbreviated to EROIu.
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Li-ion Lithium ion batteries.

LOLP Loss of Load Proportion, proportion of system’s lifetime that it spends where demand
cannot be met by locally generated demand.

NaS Sodium-sulphur batteries.

NER Net energy return, an EROI metric where energy use/losses within the system is
subtracted from the total energy output.

PbA Lead acid batteries (generally referring to deep cycle models in this thesis).

PITS Power integral time scale - a measure of how long a time-series will (on average) keep a
positive autocorrelation, i.e. the time-scale over which fluctuations occur. A longer PITS
will mean a more predictable time-series.

PHS Pumped hydro storage, a form of electrical energy storage.

PV Photovoltaic solar panels.

RE Renewable energy.

SOC State of charge, how “full” a battery is at given time t. Note minimum
SOC= 100%−DOD.

VPP Virtual Power Plant, an energy system containing points of energy supply and demand,
connected to the grid but capable of local energy flow management.

VRB Vanadium-redox batteries, a type of flow battery.

ZnBr Zinc-bromine flow batteries.

Any other abbreviations and symbols in the text are defined where they are used.
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Chapter 1

Introduction

1.1 Background

Climate change is one of the most pressing concerns of the world today, where increased
greenhouse gas (GHG) emissions in the atmosphere caused by the burning of fossil fuels are
triggering changes in the world’s climate, leading to potentially catastrophic results [1]. There
are many sectors such as industry, transport and agriculture which are creating these
emissions, however the ones which receive the most attention are those of electricity
generation and other direct use of energy such as space heating and transport. These three
sectors are the source of more than 50% of the UK’s current GHG emissions, as shown in
figure 1.1. Electricity generation in particular has the highest level of emissions and is the one
with the largest capacity for transitioning away from fossil fuels to renewable sources such as
wind and solar.

Given this attention, and the need for immediate action, countries around the world have set
targets for achieving certain percentages of their electricity generation from renewable energy
sources, which in principle have zero emissions during their operation. The European Union
has the target of achieving a 20% drop in GHG emissions by 2020, in part by increasing its use
of renewable energy sources to 20% of all final energy consumption. Each country within the
EU has individual targets to contribute to the total of 20%, where the UK has made a legal
commitment to sourcing 15% of their energy from renewable sources by 2020. As this 15% target
includes all energy, not just electricity, this likely requires the UK’s electricity to come from
at least 30% renewable energy sources [2]. These targets have been made with the assumption
that by 2050 there will have been mass electrification of transport and heating systems, so the
shift to renewables will be carried over to those sectors too, leading to reduced carbon emissions
across the board. The incentives given for this shift to renewables have primarily focused on
individual generation technologies, those being wind, solar and some micro-hydro schemes. The
two main policy incentives have been Renewables Obligation Certificates for large installations
(mostly wind power) and Feed-in Tariffs for small installations (mostly photovoltaics), however
both are now being phased out as of early 2016, despite the UK potentially falling short of the
15% target by 2020. A longer term goal is a reduction of GHG emissions by 80% relative to
1990 levels by 2050, but it has not been fully established how this will be done. However, it can
be presumed that renewable energy technologies will be part of this solution. The National Grid
predicts an installed capacity of 30-40% renewable energy by 2035, depending on scenario, which
translates to 60-100GW capacity. However these scenarios are dependent upon the strength of
the UK’s economy and the strength of political will to tackle decarbonisation, both of which
are unknown [3].

This transition to a higher use of renewable energy sources may be more complex than can
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UK GHG emissions by sector, 2013
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Figure 1.1: GHG emissions of the UK split by sector, normalised to CO2e. “Power” refers to electricity
generation, and “surface transport” is all transport except shipping and aviation. Data from the
Committee on Climate Change calculations https://www.theccc.org.uk
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Figure 1.2: Chart showing the annual production of renewable energy sources in the UK, which has
followed an exponential trajectory. Data is from the Department of Energy and Climate Change, UK
government.

be originally assumed, as the energy system as a whole must also comply with high security
requirements. This notion of “security” is somewhat nebulous, however in this context it can be
briefly defined as the ability to meet energy demands reliably, ensuring that the “lights stay on”.
A more considered definition of this concept and security evaluation metrics will be discussed in
section 1.1.4. There are concerns that accelerating the transition to renewable energy sources
can damage the electricity grid’s security, so friction between the two creates a more complex
situation, with less straightforward solutions. The third problem of keeping costs low is yet
another complexity. The interplay between these three aspects of sustainability, security and
cost is known as the energy trilemma, where any solution must be a compromise between all
three. Furthermore, the three aspects cannot be considered to be independent; for example
long-term security is tied to climate change, where political responses may also increase the
costs of fossil fuels through carbon taxation or reduction of fuel subsidies.

The increase in power generation from renewable energy sources from 2004 is shown in
figure 1.2 using government statistics on electricity generation and supply. Renewable energy
provision has increased rapidly over the past 10 years, supplying 19.1% of the UK’s electricity
over the year of 2014 (including biomass as 35% of the total), however it must be noted that
exact annual proportions will be dependent on weather because this is a measure of energy
production rather than power capacity. As wind speed is highly variable, certain years may be
windier than others, although biomass combustion is not weather dependent. Solar generation
made up 6.3% of renewable energy production in 2014, or 1.2% of total electricity production,
while wind made up 50% of renewable energy production, 9.5% of the total.

While substantial gains in renewable energy use have been achieved in the past decade, there
are concerns about limits to this renewable energy penetration, whereby increasing renewable
energy past a certain capacity creates diminishing returns on carbon reductions and increased
expense. This is partly because the current structure of the grid requires built-in capacity
reserve to back up variable sources of power such as wind in order to meet required levels
of grid reliability. This is one example of where the energy trilemma comes into play, as
this emphasis on sustainability begins to impact on the security and economic costs of grid
infrastructure. Increasing wind power capacity on the grid requires a greater capacity reserve
for each subsequent unit of renewable generation, where capacity reserves are commonly gas

5



turbines or even coal generation [4]. Common suggestions for reducing reliance capacity reserves
include building greater connections with other countries’ electricity networks, installing energy
storage on the grid, or managing demand to respond to energy availability (known as demand-
side management, DSM). These would all increase the flexibility of the grid, making it more
resilient to variability in either supply or demand levels, and providing solutions to the energy
trilemma. The more the three problems of sustainability, security and cost are broken apart,
the better the compromise can be between them.

However these proposals do not necessarily challenge the fundamental centralised structure
of the grid, which was built upon an old system containing large coal and nuclear power stations
that, combined with smaller gas or diesel generators, are capable of following demand. If the grid
was tailored to fit the needs of renewable energy sources, it would instead use decentralised, or
distributed generation (DG), in order to fit the geographically distributed nature of renewable
energy sources in general. Well designed DG approaches could also contribute to improved
voltage support and improved power quality, in addition to transmission loss reduction and
reducing peak power requirements if the systems are well designed [5] [6]. These would not only
enable more efficient use of renewably generated energy, but also ensure that energy security
remains high while more renewable energy sources come online.

To better understand the potentials for restructuring of the electricity network, we must
first understand the current structure, and its positive and negative attributes.

1.1.1 Historical and current structure of the UK’s national grid

The electricity network in the UK currently functions in a centralised and demand-led
framework, as it is in most Western countries. This means that most of the electricity
generated is produced by a small number of large power stations, which respond to the
nation’s electricity demand in real time. Such a strategy requires a centralised management
system; while a certain amount of demand and wind availability can be forecast a day or two
in advance, during the day there will be unforeseen fluctuations or hour-ahead predicted
changes which need to be matched by immediately turning on or off certain power stations.
This leads to three main types of power station [7]: baseload units, which are usually large
coal or nuclear power stations that have slow response, cheap fuel, and cannot be turned up or
down easily; load-following units, which are smaller quick response plants capable of being
turned on or up/down to match load; and peaking units, which are very quick response plants,
available for demand peaks and in emergencies. Peaking units have the highest running costs,
so are used only when necessary.

Base-load power stations can provide the constant minimum power required to meet
electricity demand, load-following plants provide supply to match forecasted fluctuations, and
any unpredictable extra demand or losses due to power station failure can be supplemented by
peaking units, typically gas, energy storage or spinning reserve (where a rotor is already
spinning and can be connected instantly to the grid without needing to start up). Figure 1.3
shows this in action, where nuclear and coal plants supply the baseload, gas combustion in
closed cycle gas turbines (CCGT) supplies most of the load-following generation, and pumped
hydro storage (PHS) becomes available at peak times. There exists around 1.8GW available
storage from the PHS plant Dinorwig in Wales, which is the only storage unit of significant
size in the UK. PHS plants function by buying power from the grid at times of low electricity
cost in order to pump water uphill, and letting this water flow downhill through turbines to
generate power at times of high cost, generally when supply is limited due to high demand.
Within this framework, wind and solar generation is treated as negative load, and is
forecasted alongside the demand load. Therefore as wind and solar electricity generation
increases so does the variability of the load, making it more difficult to balance the grid.
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While this is in principle managed centrally, the market mechanisms that guide the balance
of the grid are somewhat deregulated [8]. This is a relatively recent development in the past
25 years, as part of a worldwide movement away from the nationalisation of the energy sector.
The hourly or minutely fine-tuning of the grid balance may be conducted centrally using the
mechanisms described above, but the basic power capacities available are calculated on the
previous day through trade mechanisms on a spot market using forecasted data. To summarise
how this market operates, the price of electricity per kWh decreases when demand goes down,
which triggers generation to drop as not all suppliers will be able to sell their electricity below
certain thresholds. When demand increases, more expensive energy sources such as CCGT
or PHS become available on the market to meet this demand, and so the price per kWh will
increase. Renewable energy sources are very competitive on the wholesale market, as they are
able to sell at very low cost. This trading is conducted on the day-ahead wholesale market by
large buyers and sellers, using information on forecasted energy demand and availability. While
this does not account for all of the grid, as there are also separate bilateral agreements between
some sellers and buyers, the liberalisation of the energy market has opened up the electricity
grid to the possibility of a decentralised structure.

This energy management strategy has shown to be very reliable, as the UK’s electricity grid
is highly secure against the risk of blackouts and brownouts (where a blackout is avoided but
voltage drops low enough that power quality is substantially impacted). However, it is limited in
its scope. Once renewable energy penetration is high enough, it will impact into the usefulness
of base-load power stations because power from renewable sources will outcompete base-load
power on the energy markets. If base-load plants are not able to reliably sell their power, they
will either run at a loss, creating unnecessary GHG emissions and financial uncertainty, or be
forced to ramp production up and down which is less efficient, again creating unnecessary GHG
emissions. Variable generation from wind and solar also increases the need for spinning reserves
and quick response power stations (which are more expensive) to balance the grid. These
are the capacity reserves that were mentioned earlier. Increased use of expensive generation,
particularly if power requirements quickly fluctuate, is obviously more costly and can reduce
the efficiency of the running of these power stations, thereby undoing some of the gains in
sustainability that renewable energy was originally designed to deliver. If renewable generation
is particularly high, it may even be necessary to curtail its output. This is why restructuring is
necessary, to make the best use of renewable energy sources by ensuring they can increase the
entire sustainability of the system and have no negative overall impact on its security.

1.1.2 Distributed generation

The centralised grid described in the previous section has a hierarchical transmission and
distribution system as shown in figure 1.4, where the large power stations generate electricity
at a high voltage (400kV or 275kV). This voltage is stepped down to 132kV for the
subtransmission grid, which then feeds into local distribution networks at voltages of 33kV,
11kV or 6.6kV. The final household consumer then uses the electricity at a voltage of
400-415V (this is three-phase, giving 230-240V per phase). Therefore problems arise when
excess electricity is generated at points of low voltage, as local networks are not equipped to
export power to the grid in large quantities, and it is a matter of chance whether there will be
local capacity for extra generation in a particular location. As the national grid is controlled
centrally, and does not monitor small generation installations such as rooftop PV, the
imported electricity to a local network will not necessarily be reduced to compensate for any
increased local generation, and local power quality (typically voltage/frequency quality) issues
may occur as a result.

However, as electricity generation transitions over time to using more renewable energy
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Figure 1.4: Simplified diagram showing the voltage levels of the UK grid. Wind and solar power sources
are likely to input to the grid at points of lower voltage than large centralised power stations, which can
cause power quality issues.
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sources - particularly PV and other forms of microgeneration - distributed generation will likely
become more commonplace, where points of generation are close to points of demand and
therefore do not feed into the grid at high voltage levels [9]. Distributed generation is not
centrally planned by the power utility, has a relatively small power capacity and is connected
to the distribution system rather than transmission (black sections in figure 1.4).

This is already happening in the UK; the deregulation of energy markets and adoption of
certain policies such as the Feed-in Tariff has facilitated the move to distributed generation,
as smaller power generation companies have been able to enter the market more easily, and
households have been able to generate their own electricity while remaining connected to the
grid. Since 1999 when the market deregulation took place, independent energy suppliers have
become more commonplace, increasing from 7 in 2010 to 19 in 2014 and also increasing their
collective market-share by over a factor of 6 [10]. Meanwhile distributed generation operating
under the Feed-in Tariff (enacted in 2010) increased to an annual total of 4.05GW by the end of
2015, where 99% of these installations are PV, and 2.39GW comes from domestic installations -
largely rooftop PV arrays [11]. These installations are too small to connect to the high voltage
transmission system, and currently are spread out enough that they have been able to export to
the grid without much difficulty, but embracing this decentralisation would require more radical
changes to the grid structure as a whole.

Such a decentralised structure would require better communication between network
subsystems, and buffering technology to allow for local management of variable levels of wind
or solar generation. Electricity subsystems like these are called smart-grids [8], where an
information system is overlaid on the energy system, allowing for secure and flexible energy
management based on real-time demand data. This would enable a more accurate energy spot
market functioning similarly to the current day-ahead market, where energy users could shift
their energy use to times when prices are lower. A smart meter roll-out is planned for the UK,
which would be a crucial step in giving half-hourly demand data for individual households.
This is an example of systems based policy.

These smart subsystems could be used to build up a network of distributed virtual power
plants (VPPs) that contain points of power generation and also demand, where local renewable
energy sources are prioritised and security within the subsystem is maximised using local energy
flows as much as is reasonable. A VPP is defined as an aggregation of locally clustered small
generation units, generally alongside local points of demand, which is managed within the
cluster using smart-grid technology [12]. A VPP will appear to the wider grid as a node on the
network that functions much like a single larger power plant, however it may sometimes be a
point of demand rather than supply. It differs from a microgrid in that it is always connected
to the grid, while microgrids have islanding capabilities, and are designed to function when the
larger grid is offline. When it comes to overlaying VPPs on the existing grid, some locations
may not allow for two-way electricity flows between the VPP and the distribution network,
disallowing the export of electricity to the grid. This is due to technical limitations of the
existing infrastructure, as the grid was not originally designed to allow such flows.

In the urban environment VPPs are most likely to use rooftop photovoltaic (PV) powered
systems, as these energy resources are by design close to household loads. For local networks
with a number of household demand loads, they could also be implemented as community
energy schemes, where the ownership of the renewable energy generation would be local, and
thus more emphasis is placed on local energy use. Community energy schemes can provide
multiple benefits to their local areas and offer bespoke solutions to local energy needs, as there
will be better understanding of these needs if solutions are formed within the community [13].

As such systems would be dependent on variable renewable energy sources, local energy
balancing methods tend to rely on energy storage and/or demand-side management where

10



demand is directly managed and/or diversified by connecting to other energy networks such as
heating or transport. In particularly, electrical energy storage (e.g. battery storage) has been
at the forefront of research and development recently, being seen as the missing link that will
enable wider implementation of renewable energy technology [14]. Recent announcements of
energy storage projects include a 640kWh capacity battery system alongside a 1.5MW solar park
in Somerset [15], where the batteries would actively manage the connection between the PV
and the grid, the increase in capacity to 99.9MW of the approved PHS scheme at Glyn Rhonwy
in Wales [16], on-grid battery storage with capacity 6MW/10MWh at Leighton Buzzard [17],
or the microgrid at the Isle of Eigg where renewables supply nearly 100% of energy demand,
backed up by battery storage [18]. In particular, the Somerset installation will form part of an
investigation into the feasibility of battery energy storage combined with distributed generation.
These real projects are being studied to see if it is realistic to propose distributed generation
and electrical energy storage as a future energy system, and the existence of such projects at
the commercial stage is encouraging.

These storage units would effectively be run as alternative capacity reserve for variable
renewable energy sources [19], so the need for spinning reserves and other plants would be
decreased, further reducing coal and gas use by the grid. In an ideal system, wind power would
be able to meet baseload demand, facilitated with flexible balancing interventions, and reserve
capacity only needed for emergency situations a few days/weeks a year. Such a system would be
nearly 100% renewably sourced. It is however unlikely that storage and DSM alone can facilitate
a fully renewable electric grid, and connections to neighbouring countries may not have energy
available at the right times, so we may still rely on some non-variable energy sources to keep
demand met all year round [20].

1.1.3 Integrating heating and transport sectors

Distributed generation can also lend itself to other more creative solutions. As was mentioned
earlier, there is a general assumption made in much of energy policy that the future heating
and transport energy systems will be gradually electrified, making it possible to run them
off renewably sourced electricity rather than the combustion of gas, biomass or liquid fuels.
Currently the majority of households in the UK use gas heating, while nearly all vehicles use
petrol or diesel fuel, however there are many technologies such as ground/air-source heat pumps,
electric storage heaters, battery electric vehicles or hydrogen powered fuel cell vehicles that could
facilitate a rapid change towards electrification. This shift will not only allow for decarbonisation
of these energy sectors, but also have a large impact on the nature of electricity demand.

Firstly, the demand for electricity would significantly increase to encompass the demand
for heat and powering vehicles. While these increases can be mitigated by improved house
insulation, improved vehicle efficiency, or shifts to public transport and walking or cycling, they
will still have a noticable impact on the grid, demanding more power capacity when resources
are already tight. Secondly, changes in type of electricity demand will change the shape of
the demand profile; i.e. the daily/weekly/yearly fluctuations in demand. Currently national
electricity demand follows a fairly well known pattern, governed by household, commercial and
industry loads that are well understood by the grid regulators. However the patterns of vehicle
use are less well understood, especially if users of battery electric vehicles use them differently to
current internal combustion engine models. While heating demand patterns are better known,
as we have figures of gas usage, the need for heating in the winter (in the UK and other high-
latitude countries) means that much more power capacity would be necessary in the winter
than the summer. This power capacity brings in extra cost, and relative disuse in the summer -
unless major demand-side management is brought in - means that the return on that capacity
investment would be lower.
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Not all this change in demand is necessarily bad, as it may improve energy security; adding
points of heat storage, vehicle batteries or hydrogen generation can allow for more flexible
demand, the current grid being limited by having to satisfy most of its demand directly in
real-time. For example, the grid currently has much higher demand during the day and evening
than the night, and turning off wind turbines overnight is a waste of the cheap energy they
would produce. However, if this electricity production could be stored during that time in heat
storage or vehicle batteries then the production could be utilised, reducing demand later on
during the day when there is less capacity to spare. Heat pumps could also allow for some
storage as they are generally equipped with a hot water storage tank, but their load profile is
generally more constant throughout the day, so has relatively limited flexibility in comparison
to storage heaters or even electric boilers [21]. Such approaches work well within the VPP
framework, as they allow for further local management of energy system security. Managing
such a complex mixture of energy systems would undoubtedly be impractical at the national
level, and unnecessary given the amount of built-in flexibility and resilience of the system.

Therefore the diversification of energy demand into heating and transport will likely have
a diverse range of effects on the grid, both in terms of its security and sustainability. In fact,
it could have both positive and negative effects on either aspect, depending on how well the
transition is managed. Given the constraints on how much renewable capacity can be built in
the UK, based upon its demand for land area [22], there will likely be a real need to reduce
overall demand to have a realistic change in these sectors. This could also have positive effects on
health, if improved insulation brings warmer homes and more active transport such as walking
and cycling benefits people’s physical health. However it makes the potential demand modelling
and future extrapolations difficult to predict accurately.

1.1.4 Calculating energy security

While the energy trilemma lists security as a single entity, the reality is far more complex.
Energy security is commonly thought of as fuel supply security, most commonly related to oil
and gas supplies, which is further linked to geopolitical security. However, in the event of a
transition to renewable energy sources, fuel supply ceases to be as relevant, and the reliability
of the electricity network becomes more important. The notion of energy system reliability can
be divided into two definitions: adequacy and security, as shown in figure 1.5.

Energy security

Energy reliability Fuel supply security

Geo-political
security

AdequacyNetwork security

Figure 1.5: Showing the different dimensions of energy security. In the context of a transition away
from fossil fuel use, fuel supply security becomes less relevant, but concerns about unreliability of variable
energy sources (such as wind) become more important. This type of security can be evaluated using
adequacy evaluation, where adequacy describes how well the energy system can satisfy demand.
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In this context, the energy system’s adequacy refers to whether there are sufficient
resources to satisfy energy demand, and the system’s security is its ability to respond to
dynamic disturbances within the system [23] [24]. Reliability evaluation usually refers to
simply adequacy evaluation, which makes use of a number of probabilistic indices, the most
common being loss of load indices and loss of energy indices. Loss of load indices estimate the
expected length of time (within a given timeframe) that the system cannot supply enough
energy to meet demand, while loss of energy indices give the total amount of energy demand
that cannot be supplied during those loss of load events. Their probabilistic metrics Loss of
Load Probability (LOLP) and Energy Index of Reliability (EIR) can be calculated simply for
a total time period of length H hours. The most commonly used metric is LOLP:

LOLP =
LOLH

H
(1.1)

where LOLH is the loss of load hours, or the number of hours that generation will not be
high enough to meet demand. This is sometimes also called LOLE, or loss of load expectation.
The industry accepted standard in the USA for a reliable system is to have LOLE less than 0.1
days per year [25].

The equivalent index EIR gives the proportion of energy demand (the cumulative energy
demand over time H being E) that is met, and is defined as

EIR = 1− EENS

E
(1.2)

where EENS is the expected energy not supplied (or loss of energy expectation), measuring
the cumulative energy demand that is not met when the system suffers from loss of load.

For demand-following power plants these indices can be calculated by a simple comparison of
peak load versus grid capacity, taking into account probabilities of power plant outage. However,
when applied to variable sources of energy such as wind or solar, the analysis is somewhat more
complex and requires consideration of the time-dependent nature of both demand and supply
variability. This generally requires a sequential simulation using time-series to demonstrate
fluctuation of supply and demand, as the correlation between the two is of vital importance,
although non-sequential models are also possible and have a lower computational cost [25].

Concerns about meeting demand can therefore be reduced to a simple application of one of
these adequacy metrics. However focusing entirely on security could bring in some unwanted
costs, whether those be financial or environmental, so cost analysis is required as part of any
security evaluation in order to find natural limitations to a given system’s security. These costs
could come from any kind of additional infrastructure, such as storage units, IT networks, or
connections to external electricity grids, thermal systems or transport systems. To establish
a purely physical evaluation of these energy systems, the costs brought into this study were
environmental rather than financial, investigating the idea of a “sustainability metric”.

1.1.5 Calculating energy sustainability

In order to sufficiently measure sustainability of our energy systems, sustainability must be
defined in a quantifiable and accountable way. The most commonly used definition from the
Brundtland Report [26] is “Sustainable development is development that meets the needs of
the present without compromising the ability of future generations to meet their own needs”.
However, this is not a quantifiable statement, as the needs of the present and future
generations are undefined. It is also unclear whether “sustainability” is intrinsically separate
from “sustainable development”, but in the context of this research they can be assumed to be
the same, the focus being on new energy systems that are being proposed and analysed.
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The main motivation behind a transition to renewable energy is to reduce GHG emissions,
particularly carbon dioxide, and for that reason, analyses of renewable energy sustainability
are often focused on the potential for GHG emissions reductions only. These must take into
account the emissions from any (fossil fuel powered) capacity reserve mentioned earlier, and
the embodied emissions created in the lifecycle of the renewable energy technology. However,
in a potential future with 100% renewable energy sources, this approach is lacking rigour, as
renewable energy technology could be built using energy entirely from renewable sources, and
the capacity reserve could be replaced by flexible energy management or have net zero emissions
by using renewable sources of fuel such as responsibly sourced biomass/biogas. However we do
not want to create systems that are unsustainable in terms of energy production despite having
low GHG emissions. Measuring the energy return on investment (EROI) as a ratio of energy
output against lifecycle energy costs, can evaluate energy systems with regard to this greater
level of sustainability, and gives an good indication of carbon dioxide emissions when considering
renewable energy technology built using fossil fuel sources [27]. This analysis has already been
used on biomass and biofuels to argue that biomass’s low EROI levels contradict the claim that
it is a long term sustainable solution for electricity generation [28]. This analysis also points
out that a transition to energy systems with lower EROI will result in a less efficient economy,
as more resources would be diverted simply to energy generation.

Returning to the definition at the beginning of this section, EROI values can give a realistic
idea of how our energy needs of the present compare with the ability of future generations to
meet their energy needs. If EROI values are high enough then the energy system becomes self-
sustaining, creating available energy for our current needs and the needs of future generations.
However quantifying a threshold is incredibly difficult in practice, as the entire economy would
need to be analysed and compared to our levels of natural resources [29] and in practice neither
of these are fully documented.

Sustainability measurement is tackled further in the literature review, as different approaches
to the question of sustainability are examined with respect to their practicality and accuracy.
While there has been a significant amount of life cycle analysis done on individual components
of renewable energy systems, there is less awareness of it at a system level, especially when
also considering system energy security. The metric EROI has become a popular method of
sustainability measurement, however there is some inconsistency in how it is applied, so it is
important to be aware of what energy flows are being managed, and to carefully evaluate the
values of embodied energy used in analysis. This evaluation is done through a review of existing
life cycle analyses, and includes uncertainty analysis of the model results to test how sensitive
they are to the uncertainty of embodied energy values.

1.1.6 Considering economic sustainability

Economic metrics largely fail to consider environmental costs such as carbon emissions, and
the economics of renewable energy technologies in the UK are constantly in flux due to rapidly
changing markets and unpredictable government incentives. The fluctuating nature of markets
makes them a less reliable predictor of long-term energy issues than physical or ecological
approaches [29]. Furthermore the influence of Chinese PV production and the subsequent drop
in the Feed-in Tariff in the UK, not to mention the potential removal of many renewables
incentives or conversely the introduction of carbon taxation, show that renewable energy costs
are still heavily influenced by political positions. Current economic analyses of sustainable
technology such as marginal abatement cost (MAC) curves also suffer from not considering
interdependencies between different technologies [30]. Ignoring these interdependencies leads to
too much focus being placed on individual components such as PV, to the potential disruption
of energy security or overall sustainability.
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There are two potential solutions to tackling this economic unpredictability; to either bring
environmental costs into the economic sphere, such as by estimating potential future carbon
taxation levels, or to address strictly the physical ramifications of energy systems. Taking the
physical analysis approach would determine general costs in relation to resource use and energy
intensity. This particular study took the latter approach, where physical parameters can be
measured using life cycle analyses of the technology involved. Some notion of financial cost
would be imbued in this energy cost, however additional costs would be unaccounted for.

1.2 Overview, aims and objectives

This thesis brings together a number of studies centred around local renewable energy systems.
The aim is to establish to what extent localised renewable energy systems and storage can
provide values of sustainability and security. This is done at multiple sizes of demand networks,
from single households building up to a community energy system with different types of energy
inputs.

Most of the studies are chosen to only include mature technologies, however when
considering the future energy system we should consider more radical changes such as
widespread electrification of heating systems, and hydrogen storage/utilisation. Therefore
there is also an analysis of a household system with a heat pump to supply space heating
demand, and a household system with hydrogen used for energy storage. The potential for
these investigations is limited at this stage, given lack of data associated with future thermal
demand and life-cycle assessments of space heating technology/infrastructure or hydrogen
systems. However these preliminary assessments can create the space for further work, and
signal potential avenues of research and development.

The underlying hypothesis is that combining different types of energy sources and
implementing energy storage will improve energy security, with a diminishing return and
increasing cost as their sizes increase. Modelling the systems will allow for an understanding
of how much the returns diminish, and therefore at what point the energy costs override the
gains.

The theoretical framework of this thesis builds on the premise of distributed generation as
a new pathway for energy generation, and applies the use of simple metrics to form a
straightforward yet comprehensive optimisation/evaluation of these distributed renewable
energy systems. The systems are assumed to be connected to the larger electricity grid, and
capable of local energy quality management but limited in terms of how much they can
export/import energy to and from the grid (this can be due to high renewable energy
penetration or not allowing two-way energy flows). They are also mostly assumed to not be
connected to other forms of energy systems such as heating or transport, and the limitations
of this assumption are explored, as such connections would be useful for managing demand in
a more flexible way.

Such a framework is compatible with the current political goals of GHG emissions
reduction, which relies heavily upon reforming the energy sector to shift from fossil fuels to
renewable energy sources. While the UK is not currently committed to a 100% renewable
energy goal, the recent increase in renewable energy sources has prompted some pilot schemes
into distributed energy systems and battery storage, listed in more detail in section 1.1.2.
Assisting this distributed approach is the smart meter roll-out in the UK, planned to be
completed by 2020; a smart meter infrastructure supports the building of smart grids,
essential for distributed networks to manage themselves locally. Real pilot installations are
important for finding the technical and commercial feasibility of distributed renewable energy
systems, however a theoretical approach is also useful to evaluate long-term outcomes, and to
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generalise results for comparing the wide range of different system types across different
locations. This kind of analysis is also capable of pinpointing potential avenues for
improvement, and comparing technologies in a fair way.

Using the fundamental attributes of sustainability and security, both major parts of the
energy trilemma, this thesis explores the performance of renewable energy systems through the
lens of five major questions:

1. Is there an optimal mix of wind and solar technologies in the UK’s climate, and what are
the implications from any such optimum, now and in the future?

2. How effective is electrical energy storage at providing security services to local renewable
energy systems, and can this be done in a sustainable way?

3. What limits exist regarding the sustainability and security of distributed energy systems?

4. How can the technology be improved most effectively to surpass such limits?

5. When the method is applied to a real case study, how do real world limitations affect
these results and conclusions?

These questions are posed for systems of varying size and application, and also for different
types of electrical energy storage technologies. By comparing system results with respect to
these variables, we obtain a fuller understanding of the optimal results, leading to a more
considered evaluation. Therefore this is not simply an optimisation study, many of which
already exist in the literature. Instead it is a broad study of the strengths and weaknesses
of renewable energy systems, evaluating how they can best be purposed. The study seeks to
find the strengths and limitations of energy storage being used to balance renewable power
generation, as well as finding its optimal use. The application of these techniques to a case
study is an important part of the process, where social, geographical and political aspects have
to be brought into consideration.

This study therefore draws together research from multiple areas, covering new ground by
considering system optimisation and evaluation from an objective physical view of the systems.
While the financial aspect of the energy trilemma is not directly tackled, using EROI as a
sustainability metric addresses some economic concerns and refocuses the question on how
economic policy can be used to incentivise the best performing energy systems, rather than
simply individual technologies.

1.3 Research design

The research approach uses probabilistic methods, modelling large samples of potential
renewable energy systems in the UK and generalising these results to find typical outcomes.
Several types of modelled energy systems are analysed using metrics that emphasise the
importance of sustainability and energy security. These are modelled at multiple sizes: from
the scale of a single household system or non-domestic building, to several networked
households, to a community energy case study where the energy system contains an entire
small town. The systems are shown in figure 1.6.

By modelling systems at a variety of sizes it will be possible to advise the best solution for a
system of given size, rather than using a one-size-fits-all approach. This is particularly crucial
considering the current debate around community owned renewable energy systems, which will
usually be smaller than a privately owned wind farm and also contain demand loads next to the
point of generation, therefore could also be considered a virtual power plant (VPP) if combined
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Figure 1.6: Different energy systems to be modelled, all with PV and wind input, modelled either able
to export to the grid or with curtailed excess generation.
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with local network management. By including demand loads from domestic households and
non-domestic buildings, the types of system can also be evaluated and compared. For example,
it is often commented that household energy use is anti-correlated with solar production at high
latitudes, but the effect this has when storage is used to match supply to demand has not been
thoroughly investigated.

A number of different storage technologies are also analysed and compared in terms of
their performance for renewable energy systems. As lead-acid batteries are the most mature
battery technology, they are often the only battery used in this kind of analysis; however new
storage technologies are being developed or repurposed for utility scale storage, responding to
the need for new methods of balancing the increasing renewable energy deployment worldwide.
In particular, lithium-ion batteries are efficient, long-lived and have a certain level of technical
maturity, and new flow batteries such as vanadium-redox batteries [31] are being suggested
as suitable for large scale storage. Additional technology relating to heating and transport
systems is also considered in relation to the simulation results, where these solutions offer
added flexibility and alternative methods of energy storage.

As was mentioned earlier, the approach to energy security measurement has been to use
adequacy evaluation metrics, which address underproduction. However, it is recognised in
the literature that unmanaged overproduction can also be considered as an energy network
security threat. As the energy systems concerned are managed locally, it was assumed that
any overproduction is either exported to the grid or curtailed, depending on the resilience of
the local network and the renewables penetration in the wider grid, as high penetration may
make it difficult to use exported energy. This choice of scenario led to the development of an
alternative EROI value: EROIused where any energy production unused in the local system is
removed from the recorded energy output. To better distinguish these metrics, the standard
EROI is given as EROIout to make it clear that all energy system output is considered in the
EROI calculation.

To evaluate energy system performance, composite indicators were created using
sustainability metrics EROIout and EROIused, multiplied by energy security metrics LOLP
and EIR. These composite indicators were used as objective functions to undertake
optimisation of the systems, and are shown in figure 1.7. Rather than using a single composite
indicator, using these four variants allowed for consideration of different scenarios, and also to
compare LOLP and EIR in terms of their accuracy and applicability.

While most of the results rely upon generalisation of a “typical” energy system in the UK,
it has been recognised that geography is still an important factor, for both physical and social
reasons. Firstly, the wind and solar availability are incredibly dependent upon location, where
wind depends upon the local micro-climate, and solar more on general latitude (although cloud
cover must also be considered). This will have an effect on the potential best energy source,
even within the UK. The social aspect can end up being even more important than the physical
geography, particularly regarding wind power where social unacceptability in certain places have
prevented it from even being an option within the local energy system. Aside from matters of
social acceptability, local support for certain technologies, or traditions that lead towards the
use of certain energy sources, means that results must be viewed with practicality in mind. This
is why the largest model was based upon a case study in Stocksbridge, Sheffield, an area with
abundant natural energy resources but some local opposition to wind turbines. This allows
us to examine how the generic systems relate to a theoretical energy system with a particular
locality.
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Figure 1.7: The four simple objective functions used for performance evaluation, each created by
multiplying a security and sustainability metric together.
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1.4 Thesis outline

This introduction has outlined the proposal of a physical evaluation of small renewable energy
systems with inbuilt storage. These energy systems are designed to be the building blocks of
distributed generation network with a guiding principle of maximising energy from renewable
sources in a sustainable and secure way.

The next chapter is a thorough literature review of the subjects touched in this
introduction. It begins with a look into appropriate methods of energy system modelling and
optimisation, followed by a more detailed investigation into defining and measuring energy
security and sustainability. The technology used in the various studies is also examined in
more detail, to guarantee appropriate selection of technology and more accurate simulation in
the system models, not to mention greater accuracy of their embodied energy costs.

A reflective interrogation of the literature has led to greater potential and more meaningful
results, as divisions in the literature demanded closer attention to certain assumptions and
testing within the studies. Most importantly these related to discrepancies within EROI
calculation, which triggered a need for critical evaluation of how alternative methodologies
affect the results. The wide variation in recorded embodied energy values also led to a focus
on uncertainty and sensitivity analysis, helping us understand future impacts of technology
improvement.

The methodology is covered in chapter three, which explains in more detail how the energy
system models are designed and generated from random weather data, and explains the
construction of the metrics and objective functions (for application in optimisation) with
relation to the specific modelled samples. There is also an analysis on the available input data
based on recorded weather (solar irradiance and wind speeds) in the UK and building
electricity demand.

The next three chapters cover the results. Preliminary results are shown in chapter four,
in particular a validation of the model, statistical features of the models’ input data, and its
limitations which need to be considered within the main results. These results are based on
limited data sets or mathematical reasoning.

Chapter five is the main results chapter, which works through optimal results of all the
generalised systems: single households, small networks of up to 20 homes, and
commercial/industry demand loads. In addition to the optimisation studies is evaluation of
the metrics, uncertainty and sensitivity analysis regarding the model’s embodied energy values
and battery efficiency levels, and short investigations of alternative systems such as hydrogen
storage and domestic electric heating. The results from this section primes the discussion
before the case study.

Chapter six covers the results from the Stocksbridge case study, which uses the methodology
in conjunction with a real location, taking into consideration how this affects the choice of
technology available. This study uses only one of the four composite fuctions (EuEIR) after
considering metric evaluation in the previous chapter, and assuming that such a large system
with a limited size connection would be unable to export excess production.

Chapter seven is the conclusion, which ties together the results from the generalised systems
and the case study, and discusses the deeper meaning of these results.
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Chapter 2

Literature Review

As governments increasingly talk about decarbonisation goals, the restructuring of our power
systems to include more renewable energy sources becomes more of a pressing concern. Is it
possible to have a fully renewables based energy system? How do we ensure that the lights stay
on as we switch from mature fossil-based sources to renewable ones? Does the use of renewable
resources actually result in a sustainable energy system once all the extra requirements are
accounted for? Given the size of this task, and its impact on the lives of many people, there is
unsurprisingly a wealth of research already being done to find the answers to these questions.
Research of interest includes optimisation studies to determine the performance and cost of
renewable energy systems, development and analysis of technology designed to balance supply
and demand of electricity, and sustainability assessments of renewable energy technologies.

In order to fully understand the implications of renewable systems optimisation, a literature
review was done on the modelling and optimisations of such systems, in addition to the definition
and measurement of security and sustainability. This chapter is divided into four main sections
in addition to a final conclusion as follows:

1. Energy system simulation and optimisation - examining how past research has devised
and optimised hybrid renewable energy systems.

2. Energy security - definitions and ways to measure energy security.

3. Energy storage - methods for modelling battery storage, and the technology options
available.

4. Sustainability - definitions and ways to measure sustainability.

5. Identifying further work to be done.

2.1 Energy system simulation and optimisation

2.1.1 Hybrid renewable energy systems modelling

The majority of systems studied in this thesis were entirely electrical, and it was necessary to
initially conduct a literature review to see the most realistic types of system to study.
Bernal-Agustin & Dufo-Lopez [32] review a number of stand-alone hybrid renewable energy
system optimisations with different components, where the most common systems are
PV-Wind-Battery and PV-Diesel-Battery. Alternative configurations include PV-battery,
PV-diesel, wind-battery, wind-diesel, or PV-wind-diesel-battery [33], and some models
examine more unusual components such as fuel cells and ultracapacitors [34]. Control systems
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for the hybrid systems are dependent on the complexity of the system; hybrid systems with
diesel generators and batteries require a complex control strategy to work out the priorities of
these components, whereas using batteries only alongside renewable energy sources is much
simpler. It can generally be assumed that batteries will discharge when the load (demand)
exceeds renewable energy (supply), and charge when the supply exceeds demand. Some
optimisation/simulation software already exists, the most popular being HOMER (Hybrid
Optimisation Model for Electric Renewables) developed by NREL (National Renewable
Energy Laboratory in the USA), which can use time-series from a number of different types of
renewable energy sources as input [32].

Choice of load and geographic location are important for contextualising an energy system
model, as these can determine the scale and best possible combination of renewable energy
inputs. Loads in existing models vary across single households [35] [36], large buildings [37],
microgrids [38] and community-scale grids [39] [40]. Accurate power generation time-series are
often not available due to dependence on geographic location, so models can take a
probabilistic approach, where energy inputs are represented by probability distributions to
estimate availability [41] [42], typically using Rayleigh or Weibull distributions to simulate
wind speed distribution [43] [44] [45]. An alternative approach is to simulate the power
time-series using wind and solar weather data, where wind power can be estimated using wind
speed data and wind turbine power curves [33] [46], and photovoltaic (PV) generation
estimated from irradiance levels [33] [47] [37]. Wind turbine power curves can be obtained
from power specifications of the proposed wind turbine types, but this is not necessarily
completely accurate for wind turbines in practice, as manufacturers can over- or under-predict
power output [48] [49]. Levels of PV production are also affected by their performance ratio
which has a wide range of values within the literature [50] [51], many considerably higher than
the reference value of 75% in the Methodology Guidelines by Fthenakis et al. [52] as
technology improves over generations [53].

2.1.2 Incorporating other energy systems

Energy systems quickly become more complex when the types of demand loads diversify to
include heat and/or transport. The energy sector as a whole only contributes to around 1/4 of
the UK’s national carbon emissions, while heat and transport each contribute to 1/6, making
them also fairly important. These sectors are currently dependent on gas and oil for most of
their energy needs, so the UK’s renewable energy targets have been made with the assumption
that there will be mass electrification of heat and transport sectors [54], since otherwise their
decarbonisation would be very difficult. This can take the form of electric heating through
storage heaters or heat pumps, and electric/hydrogen private vehicles or electric public vehicles
(including permanently connected systems such as rail). Combining these energy systems may
also assist in increasing security, as demand can be made more flexible with the use of hot water
storage, vehicle battery charging or hydrogen production, the final being effectively a form of
energy storage. Vehicle batteries also increases the value of battery technology, being dependent
upon batteries for power.

There is support in many countries [55] for using combined heat and power (CHP)
generation alongside renewable energy to supply electricity and heat demand, however it has
been observed in Denmark that this imposes a limit to how much demand can be fulfilled by
distributed generation, while increased renewable generation ends up being exported to
neighbouring grids. This is explored by Blarke [56] where they found that the proportion of
electricity demand met by distributed sources peaked in 2005, while wind penetration has
continued to grow. This has caused some operators retire CHP units or move to simply heat
production. Blarke suggests that a better approach would be to improve flexibility of the
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system by introducing alternative thermal technology, such as electric boilers or heat pumps
to use any excess electricity production to supply heat demands. They found that while
electric boilers can provide better flexibility to the system, heat pumps are more cost-effective,
particularly when using waste flue gas from CHP units as a heat source [21]. This suggests
that both technologies are potential candidates for analysis using EROI, if reliable sources of
their embodied energy data is available. A major benefit of heat pumps is their high operating
efficiency, typically stated as 300% or coefficient of performance (COP) 3 [57], made possible
by their utilisation of underground ambient heat. In practice the COP will vary throughout
the year [58], being highest in summer, however most simulations assume a static COP. Also
important to note is that the UK’s Renewable Heat Incentive offers the greatest incentive to
ground source heat pumps and solar thermal, giving 19.33pkWh and 19.74p/kWh respectively,
in contrast to 7.51p/kWh for air-source heat pumps and 5.2p/kWh for biomass boilers/stoves
(numbers correct for April - June 2016). Solar thermal systems do not count as an
electrification of the heating systems, so have been considered out of scope for this study.

The effectiveness of heat pumps is reinforced by a number of other studies [59] [57] [60],
showing that the combination of wind power and CHP units brings limitations to the flexibility
of the system, and that heat pumps are likely the most economically sound [61] and resource-
efficient way of utilising excess wind production to meet existing energy demand, especially in
high-density housing [62]. They are also effective at reducing GHG emissions when combined
with low carbon electricity, and show only minor environmental impacts (mainly related to
limited pipe leakage) over their entire lifecycle [63]. The main alternative candidates for electric
heating are electric boilers, which are more expensive [64], or heat accumulation tanks for heat
storage. Heat pumps can also be used in conjunction with thermal storage, either using storage
tanks or passive heat storage with specially designed thermal materials in housing infrastructure.
Comparisons suggest that passive heat storage is more efficient [59]. However, the feasibility of
heat pumps is dependent upon their performance, the most widely used metric being coefficient
of performance (COP) [60] which can be measured at local or system level. Therefore the
installation of heat pumps must be well considered, using best practice operation methods.
There are a number of heat pump technology available, but ground source compression heat
pumps show better COP on average than air source heat pumps, whether in theory or in practice
[65]. More unusual heat pumps include absorption heat pumps (using waste heat flows) and solar
assisted heat pumps, which use either solar thermal or hybrid PV/thermal panels to increase
the heating potential of the heat pump [66] [67], but ground-source heat pumps are less complex
as they not depend upon additional technologies such as solar heat accumulators or waste heat
from CHP units. Field studies of 83 sites suggested that ground or air source heat pumps often
perform at COP lower than 3, due to poor operational management or unsuitably designed
systems [65], however growth of the industry should improve these practices as companies
gain experience in manufacturing and installation, and customers become more used to the
technology. Notably, a small percentage (13%) actually performed with COP above 3. The
heat pump’s performance is also affected by the wider system: for example new-build homes
are able to use under-floor heating, which requires lower water temperatures than radiators and
thus enables more efficient running of the heat pump, as heat pumps run less efficiently when
heating above 40◦C. However it is always necessary to heat above 60◦C occasionally to stop
any Legionella bacteria growing in hot water tanks, whether using the heat pump directly or
an additional immersion heater [65].

There are a number of studies measuring the carbon savings of different heating technologies,
and heat pumps are shown to deliver the highest savings while also increasing system flexibility,
allowing for a higher penetration of variable renewable energy sources [68] [69]. However, nearly
all these studies only measure the GHG emissions during operation, and do not include embodied
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emissions or energy use across the entire life cycle. The limited sources of embodied energy data
are reviewed in section 2.4.6 and used to estimate embodied energy of a typical household pump.

The transport sector was considered to be out of scope for this study, as fully electric cars
are highly complex in terms of components and still not widely deployed, and thus we are
lacking in embodied energy data for such technology required. However linking to thermal
systems using electric heat storage or heat pumps may bring more flexibility than using plug-in
vehicles, as heat pumps bring benefits to base load power while battery electric vehicles facilitate
the management of variable power demand instead, and hydrogen vehicles may offer the most
flexibility but are not currently cost competitive [70].

2.1.3 Methods of energy system optimisation

System optimisation is concerned with finding the best performing combination of inputs to
a system, evaluated by minimising or maximising a function constructed from those inputs.
Existing optimisations of renewable energy systems range in complexity from simply finding the
most appropriate size of PV systems [71] to more complex systems with multiple energy sources
and battery storage where optimal sizing of different components is required [32] [33]. There are
many optimisation methods available, most of which can be divided into two main types: single-
objective optimisation and multi-objective optimisation. Single-objective optimisation focuses
on one output variable, minimising or maximising this subject to constraints, while multi-
objective optimisation is concerned with multiple variables that might correlate or conflict with
each other, in addition to system constraints [72]. Some studies optimise control strategy in
addition to sizing or type of components [32].

When a single-objective optimisation is carried out, this is usually done to minimise net
present cost or levelised cost of energy [32], i.e. it is generally an economic optimisation. Some
consideration of system performance must be included to act as constraints in the optimisation,
the simplest being a measure of energy balance over the year, showing whether enough power
is generated overall to meet demand [34]. This kind of optimisation can be done with system
reliability in mind too, giving a minimum level of system reliability as one of the optimisation
constraints [42] [35], or a range of constraints on reliability [73]. However when the energy
system is grid connected the local limit on reliability is less well defined, so it is more useful
to evaluate reliability as part of a general performance analysis. This can be done as part of a
multi-objective optimisation of cost and system reliability to find the optimal size of storage [74]
[75], alongside the sizing of generation capacities. Where storage is not applied, multi-objective
optimisation has been used to optimise a mix of energy sources and the practice of strategies
such as demand-side management [76]. Multi-objective optimisation does not generally give a
single optimal result, but a set of equally optimal results known as the Pareto front [77] [78],
from which the most suitable result can be chosen by a decision maker.

Environmental impacts of hybrid renewable energy systems are rarely included in an
optimisation process, despite some recommendations in the literature that these need to be
addressed alongside reliability [32]. Exceptions include evaluations where costs of reducing
CO2 emissions are calculated but not optimised [79] [38], one study that carries out a
multi-objective optimisation process combining life cycle cost, embodied energy and reliability
analysis [78], and a couple of multi-objective optimisations of levelised cost of energy against
CO2 emissions [80] [81].

When these optimisation studies are carried out, they usually give a broad recommendation
of different paths rather than absolute optimal results. This is more practical and realistic
because of uncertainties and the multitude of variables and indicators. For example, the most
common optimisation method is to minimise cost - whether this is the levelised cost of energy,
initial costs or some other cost function - for a range of different reliability thresholds, typically
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95-99% system reliability measured using LOLP or similar metrics. Results from all these
studies generally agreed that while renewable systems could not meet reliability thresholds
when only wind power was available [39], hybrid systems such as PV-wind-battery and PV-
wind-hydro-battery were capable of meeting requirements within acceptable cost limits [74] [76]
[82] [42]. In hot countries such as Greece, PV-battery systems were also capable of meeting
these requirements [73] [71].

Some optimisation studies include greenhouse gas emissions or embodied energy as an
optimisation variable; their objective is generally to evaluate the cost of CO2 reductions or to
evaluate efficient values of financial incentives to encourage reduction in emissions [83]. In the
case of the latter type of studies, plotting the Pareto front (optimal combinations of cost and
emissions) shows that initial reduction in emissions costs very little, but the system eventually
reaches diminishing returns where an additional large investment can only reduce emissions
slightly [84] [46]. Optimising only with respect to cost gave more specific costs of CO2

emissions reduction using only wind and pumped hydro storage plants, ranging 41−56 per
tonne of CO2 depending on the scenario [79]. This study suggested that wind generation and
pumped hydro storage were a good combination, however traditional fossil fuel plants were
included in the optimisation as backup, which would have a impact on the system’s security.

One study optimising with respect to cost and environmental impact suggested that using
diesel generators as backup in addition to batteries can actually reduce emissions overall, by
avoiding oversizing of the other components, and again showed that in hot countries PV is
less in need of wind generation backup [81]. Optimising with respect to cost, reliability and
embodied energy gave a specific result for 95% energy index of reliability (EIR) chosen from a
Pareto front with many levels of reliability with 2.16kWp PV, 900Wp wind turbine and 180Ah
battery storage for a household in Colorado [78]. This combination of system components is
specific to this region and the single monitored household, but the method can be expanded to
further case studies. A similar multiobjective optimisation - measuring CO2 emissions rather
than embodied energy - had 35 results in its Pareto front, with an example optimal system at
95.5% reliability with 8kWp PV, 6.5kWp wind turbine, 88.7kWh battery, and 1.9kV A diesel
generator [80]. This was for a much larger load, however results showed that despite the high
cost of batteries, optimal results rarely used the hydrogen storage component that was given as
an option, due to its high cost and low efficiency.

In summary, these optimisation studies showed that a combination of renewable energy
inputs gives realistic systems in terms of their cost, security and environmental impact.
However it appears unlikely that an electricity grid could function securely with only variable
renewable energy inputs, as the oversizing of storage would be unsustainable. Their
optimisation approaches generally assumed a fixed lower limit of energy security, around
95-99%, however this is lower than the usually accepted limits in the UK or USA, while
simultaneously imposing very strict limits on these small systems.

2.2 Energy security

2.2.1 Defining energy security

Energy security is commonly thought of as regarding fossil fuels only, in relation to political
or geographical security. However it can be regarded in a wider sense to mean the general
availability of energy: whether the supply of energy is enough to meet our needs now and
in the future [85]. Using this definition, it becomes possible to relate the issues of energy
security to renewable electricity as well as fossil fuels, as the entire system and supply chain
of energy generation are taken into consideration. This is particularly important if the goals
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of decarbonising our energy systems are met, as this entails a move away from oil if transport
and heating systems become electrified [3]. There are concerns that efforts to broaden the
definition of energy security are in fact diluting its purpose, as some definitions overlap with
sustainability [86] and a too broad definition can make measurement difficult [87]. Attempts
to classify energy security into separate elements or dimensions are not yet fully cohesive, but
generally include availability, affordability, sustainability and accessibility [88] [87]. Metrics or
indicators pertaining to these aspects are generally applied at the wider system level, such as a
country or international grid.

As electricity is our main concern, it therefore makes sense to follow the established theory of
electrical power system reliability evaluation, which is divided into system adequacy or security
as mentioned in section 1.1.4 [23]. This asserts that the most relevant application of energy
security for this study is that of “adequacy” - how well supply is able to meet demand.

2.2.2 Risks to energy security posed by renewable energy sources

The transition from fossil fuels to renewable energy sources can improve energy security in some
aspects, as their non-reliance on fuel supply removes many of the geopolitical insecurities that
previously defined energy security, but instead there are issues with supply variability according
to weather patterns. It has to be noted that renewable energy sources are not intermittent, but
variable: the variation in renewable power production across a country like the UK will be
fairly smooth, a consequence of having hundreds of smaller generation units summed together.
It has been found in practice that as connected wind farms become more dispersed across a
larger area, their wind speed correlation drops and total power production tends towards a
steady output [89] [90]. There will still be occassional drop-offs in production [76], but this
geographical spread means that the drop will be more gradual as the weather will not change
suddenly in all places simultaneously. This is very different to when a large coal or nuclear
power station shuts down due to failure; wind and solar fluctuations are more predictable and
failure of individual small units are less of a shock to the overall system [91]. When renewable
sources only make up a small percentage of the energy sources across the entire grid (i.e. there
is a low penetration of renewables) these fluctuations are a small fraction of the overall supply,
and can be managed in the same way as variable demand - changing the output from traditional
power stations to balance supply. However, as renewables penetration increases, fluctuations
in supply become large enough that new approaches must be taken to balance the system [92].
Some literature refers to “limits to penetration”, however there is dispute about whether these
limits are absolute, or simply temporary barriers that can be overcome by reorganisation of
the energy system in order to use renewable energy sources flexibly and effectively [93]. It may
be possible that even with all the possible changes made to accommodate variable renewable
energy sources, a system based primarily on wind and solar power will require conventional
fossil fuel power stations for backup in dark windless periods [20]. There are also economic and
environmental limits to how much the system can be changed [94], as adding on new technology
to manage and balance the electricity network requires significant investment in money and
resources.

The effects of high renewables penetration on energy quality have been documented
thoroughly, particularly with respect to PV. Solar power production is generally
anti-correlated with household power demand in colder countries (i.e. without air
conditioning), which is significant because much of PV deployment is on domestic rooftops
[95]. Photovoltaics also have the disadvantage of frequently being deployed in areas that were
designed for electricity consumption only, not production, where the local network is
ill-equipped to export large loads of locally generated power to the electrical grid [96]. Wind
power installations are often larger and connected to the high-voltage grid, so can be more
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easily managed by the operators of the grid using wind forecasting techniques, but still the
current techniques are not sufficient to manage future projected levels of wind penetration
[97].

Concerns about the impact of variable power supply on the grid are deeper than simply not
being able to match demand to supply, as the cost of an imbalanced electricity network affects
the grid stability, voltage regulation and power quality [96]. Large-scale implementation of PV
in small areas can result in large loads that follow the same variable pattern in supply (as cloud
cover will affect all installations similarly) that would be difficult to manage, and vulnerable to
large disturbances [98]. Overproduction can result in too high a voltage and decreased efficiency
in grid transmission, to the extent where it is sometimes suggested to orient panels east and
west rather than south [99]. This may give a slightly decreased production, but the improved
matching to demand load makes the reduction worthwhile. Close together PV deployment
also risks causing harmonics on the grid which can distort voltage, but this can be managed
by carefully designing inverters as part of each PV array [100]. However spreading out the
deployment of PV systems geographically can actually increase the power quality of the system
[101] [102], and performance ratio of PV modules was found to be higher in grid-connected
systems [100], so it is still worth connecting renewables to the grid.

2.2.3 Improving energy security for renewable systems

Inserting flexibility into energy systems with high renewable penetration is therefore necessary
to minimise risk to the grid, where flexibility refers to ability of the grid to ramp power up and
down with differing magnitude, frequency and speed [103]. This can be achieved in multiple
ways: increased interconnections between electricity grids, energy storage, and demand-side
management [94] [103]. Such approaches will not only improve grid stability, but also use
renewable energy sources to their fullest potential, as the needs for generation curtailment and
over-sizing of power capacity will be reduced. Flexibility can also be achieved by choosing a
mix of renewable sources spread out to utilise different weather conditions, so the power quality
effects of large PV arrays mentioned in the previous section can be avoided with careful planning
[90] [76].

Implementing a smart grid, where electricity consumers can plan their energy use according
to the amount available that day, is seen as a necessary step for encouraging demand-side
management, and many countries have or are planning to start introducing smart meters for
the starting of such a grid [97], including the UK from 2014 onwards [54]. Smart meters are
also seen as a method for improving energy efficiency, and reducing energy use in general due
to consumers realising where they can save money on their energy bills. However, they are
not a complete solution, as it is unrealistic to expect people to simply use no energy if the
sun is down and the wind isn’t blowing. Increased interconnections across Europe would take
advantage of the variable weather patterns across the continent [104]. This works with the
simple theory that the majority of the time, if the wind is not blowing in one area of Europe, it
will be elsewhere. International connections would require the building of new HVDC cables to
reduce transmission losses, and the built capacity for electricity generation would by necessity
be much larger than the peak energy use, which brings extra costs. There would also still be no
guarantee that there wouldn’t be occasional times when the generated energy would still be too
low, which is where energy storage shows itself to be a key component [14] [105] [43]. Storage
and demand side management are the only interventions that are capable of time-shifting loads
[76], i.e. delivering power when demand exceeds available supply at that moment, and storage
has an advantage of being more directly controllable, although demand side management can
be considered more efficient because no energy conversion occurs [19]. This evaluation does not
consider the energy use by additional technology such as smart meters that may be necessary
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for effective demand side management, so in reality there will be some energy losses involved in
their life-cycle energy costs.

It is generally considered that all approaches to improve system flexibility must be used
together, so a future secure renewable system will require a diverse mix of renewables, improved
connections to other systems, some energy storage and demand-side management facilitated
with methods such as pricing mechanisms or smart grids [106] [93] [92]. However, significant
changes would need to be made to the design and structure of the UK’s electricity network,
which is currently very centralised regarding both energy management strategy through the
National Grid, and how the majority of supply comes from a small number of large coal or
nuclear power stations. The rapid deployment of wind and solar production across the country
has challenged this dynamic, giving a distributed structure more in line with the distributed
nature of wind and solar supply.

In particular, smart grids may work more effectively in a decentralised/distributed
structure where management of energy becomes more flexible, allowing coordination between
hierarchical energy subsystems [107]. These subsystems, known as virtual power plants
(VPPs), would contain distributed energy resources and multiple demand loads alongside
some kind of management structure that balances supply and demand locally as much as
possible, before exporting to or importing from the larger network [12] as illustrated in
figure 2.1. This security management could utilise energy storage or demand side
management, and its local positioning makes it more capable of reacting to fluctuating loads
in real time [12]. VPPs are particularly relevant to rooftop PV generation, where the energy
resources are necessarily near to household loads, and excess solar production can result in
reduced energy quality on the local network, as explained in section 2.2.2.

Furthermore, VPPs can be applied as part of a Supergrid with increased interconnections
between different countries, enhancing energy security while enabling higher penetration of
renewables [108] [109]. Such a structure would apply all the flexibility approaches outlined
above, combining the seemingly contradictory locally managed subsystems (thought necessary
for smart grid infrastructure) with international interconnections. The aging of current
infrastructure across much of Europe, in addition to the forecasted increase in electricity
demand from electrification of heat and transport, gives an incentive to redesign the electricity
network soon to avoid wastage of components [110]. However there are competing theories of
how best to organise such a network, with some advocating the already mentioned
electrification of heat and transport networks, and others arguing that combining district
heating (generally gas or biomass/waste combustion, occasionally geothermal where available
[111]) with electricity from renewable sources is more efficient [112]. This is the current
procedure in Denmark, which already has a very high penetration of wind power on the grid.
Both approaches include interconnections between energy grids, but they differ greatly in
application and the choice of direction may often be political or geographically dependent. It
was noted in section 2.1.2 that CHP in fact limits the flexibility of the system, so it is unlikely
that a future 100% renewable system would only use wind and CHP components to supply
energy and balance the grid.

2.2.4 Energy security metrics

Methods used for measuring energy security depend on the location in the system that it is
being measured at. If it is the broader system, e.g. over an entire nation, then metrics are very
complex, consisting of a number of indicators measuring different security impacts [87] [88].
Section 1.1.4 showed how the conventional methods for measuring security of electric networks
use metrics of system adequacy such as LOLP or EIR [23]. However, there is some inconsistency
of nomenclature in the literature when exploring optimisation studies: suggested metrics include
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Figure 2.1: Simplified diagram of a virtual power plant within a smart grid, surrounded by n other
VPPs (VPP1, VPP2,...,VPPn) that share information and energy flows. The control system allows
for efficient communication between the VPPs, where each one is aggregated into a single node on the
network.
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Loss of Load Hours or LOLP [6] (sometimes referred to as loss of load expectation [45]), Loss of
Energy Expectation, Frequency of Loss of Load, Duration per interruption, Load Not Supplied
per Interruption, Energy Not Supplied per Interruption [45], Loss of Power Supply Probability
[78] [34], Unmet Load [32], and Energy Expected Not Supplied (EENS) [44], the last two which
can be normalised to give the energy index of reliability EIR = 1−EENS/load = 1−UL [23].

These metrics can be divided into three categories: time-dimensional, energy-dimensional,
and event-descriptors. The first type include Loss of Load Hours (LOLH) and its derivatives
Loss of Load Probability (LOLP) and Loss of Power Supply Probability (LPSP). Loss of Load
Hours is the number of hours during the year where the system fails due to not being able
to satisfy required demand, and the other two metrics are proportions using LOLH. LOLP is
the proportion of time (generally over a year) that the system undergoes power failure, while
LPSP gives the probability that the system will fail when it is underproducing. LPSP is only
applicable to subsystems that are supported by external connections, or when implementing
storage/demand-side management, where the denominator is the same as the LOLH value of
the system without any balancing intervention. Note inconsistent use of security metrics within
the literature means that LPSP is defined in [82] similarly to EENS, and in [34] a metric named
LOLP is again defined similar to EENS.

Energy based security metrics are less common in the literature, but Loss of Energy
Expectation or Energy Expected Not Supplied are both defined as the sum of demand energy
that is not met over a year, while UL is normalised to be this sum of unmet demand energy
divided by the total demand over the year, therefore is the inverse of the EIR metric.

Finally, the third type of security metric is the least commonly used, where the Loss of
Load periods are quantified individually rather than summed over time or energy. Frequency of
Loss of Load describes how frequent these periods are over the year, Duration per interruption
measures their average length in time, and Load Not Supplied per interruption measures their
average unmet load.

LOLP is the most commonly used security metric, as it is applicable to most electricity
networks and easy to measure and define. It is unclear whether using one of the
energy-dimensional metrics such as EIR might be better, as they would have the advantage of
quantifying the energy shortfall more accurately. It is generally not expected to measure
overproduction as part of system security, even though overproduction has severe
consequences for power quality, which is an important part of energy security [19] [7]. The
only example is the occasional calculation of excess energy generation [82] [71], but this is not
used as one of the optimisation constraints in the cited studies, simply calculated for deeper
understanding of energy flows within the systems. However, the likely reason for the lack of
overproduction metrics is that in reality, if production is higher than demand within a smart
managed system, production will be either curtailed or exported to the grid. Therefore
overproduction can be better accounted for in the sustainability metric, discussed further in
section 3.4.2. This is because when the overproduction is managed through curtailment, the
impact is to reduce energy output, rather than reducing system reliability.

2.3 Energy storage

It is becoming clear that storage is expected to have a large part to play in improving the security
of energy from renewable sources [31]. Storage units are capable of replacing generating units
within the grid to supply energy at times of peak demand load, and are more flexible than
demand-side management strategies in balancing the grid, possibly more reliable than existing
thermal power stations of equal power capacity [113]. However, the type of technology employed
has a large impact on its effectiveness, and must be chosen carefully with respect to the type

30



and size of energy demand. The modelling of energy flows in and out of storage must also
be accurate enough to differentiate between each type of technology so the systems can be
compared authentically.

2.3.1 Energy storage technology options

While batteries are often touted as the main option for storage, the main storage technology used
currently is actually pumped hydro storage, at 127, 00MW storage capacity worldwide [114].
However, the trend towards renewables is matched by a trend towards distributed generation
[19] where localised energy storage is required to buffer grid imbalances [115] and allow for bi-
directional energy flows between areas of high PV deployment and the grid [116], thus avoiding
the security problems mentioned in section 2.2.2. As pumped hydro storage is only practical
in mountainous areas with significant inclines [117], and only economical for large installations,
research into finding cheap and energy dense (capacity per land area use or volume) energy
storage technologies has been increasing in importance [118], which would be more applicable
to VPPs. Most of this innovation has been into electrochemical storage [119], i.e. batteries.

Currently available storage technologies are summarised in table 2.1, along with their energy
and power capacities, and possible applications. There is much variation in available capacities
for each type of technology. There are four possible levels where storage can be inserted into the
grid: at site of large generation (e.g. wind farm), individually as large storage units to support
the transmission grid, dispersed as medium-sized storage units on the distribution network,
or at end user points as part of small systems [119]. The last two are directly applicable to
VPP networks, being situated close to demand loads. Different types of storage are suitable
for different locations, dependent on the services they can provide. The services are generally
related to their capacity and speed, where the services required specifically for renewables
integration are voltage support (power quality), time-shifting loads - i.e. storing overproduction
to supply demand at other times, see figure 2.2 - and rapid demand support [114]. High energy
storage capacity is required for time-shifting loads, while high power capacity and response
speed (one second response) is required to quickly balance fluctuations in power for demand
support, and high response speed (less than 5 seconds) is required for supporting power quality
on the grid, such as correcting voltage sag or frequency problems [116]. However when it comes
to small energy systems, choosing only one type of storage technology is preferable to reduce
the complexity of the system, particularly with regards to the power control strategy [32]. This
chosen technology will preferably be capable of addressing most of these energy security issues,
so needs to have high energy and power capacity (with respect to the size of the local system),
and quick response times. Obviously such a flexible technology will be more expensive, so costs
also have to be taken into consideration. The energy capacity and response time are graphed
in figure 2.3, with values taken from table 2.1.

Pumped hydro storage

Pumped hydro storage refers to systems where water is pumped uphill during periods of energy
surplus and allowed to flow downhill to provide power when it is needed. The conventional
placing of these systems is on steep hillsides, but some use underground reservoirs to maximise
drop and thereby their storage capacity, resulting in more flexible systems at higher cost [122].
The UK only has limited areas where PHS is suitable, as mountainous regions are limited, and
often protected or remote from any grid connections. One major advantage of PHS is its lower
embodied energy cost [123] and technological maturity, however placement in unsuitable areas
could negate those benefits.
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Storage technology Power
capacity
range

Energy
capacity
range

Speed of
response

Possible
applications

Pumped hydro 280 −
4000MW

1, 680 −
100, 000MWh
[118] [114]

Slow
(minutes)
[116]

Time-shifting
loads.

Compressed air
energy storage
(CAES)

5 − 400MW
[120]

>
5, 500MWh
[118]

Slow
(minutes)
[120]

Time-shifting
loads.

Lead-acid deep
discharge batteries

10−100MW
[117] [114]

40 −
400MWh
[121] [114]

Fast (ms)
[120]

Power balancing.

Lithium-ion
batteries

1 − 2MW
[117]

301 − 521Ah
[117]

Fast (ms)
[120]

Power balancing
and/or electric
vehicles.

Other
electrochemical
batteries (NiCd,
NiMH, NaS)

50MW [114] 300MWh
[114]

Fast (ms)
[120]

Power balancing
and/or electric
vehicles.

Flow batteries
(VRB, PSB, ZnBr)

1 − 1.5MW
[121]

1.5− 4MWh
[121]

In
development.

Time-shifting
loads.

Supercapacitors 0.1−0.3MW
[120]

0.48Ah [117] Very fast (<
3ms) [120]

Power quality
management.

Table 2.1: Available storage technologies, their applications and characteristics.

0

0.5

1

1.5

2

2.5

3

Po
we

r (
kW

)

Time shifting load with energy storage

Stored energy
used later at time of
underproduction (with
energy conversion losses)

Household demand

Solar
production

Figure 2.2: Illustration showing the shifting of solar production from peak supply to evening household
demand, using energy storage.
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Figure 2.3: Plot of possible ranges for energy capacity vs response rate for all reviewed storage
technologies, assuming voltage of 24V for conversion from Ah to kWh. Values are taken from table 2.1.
PHS is pumped hydro storage, CAES is compressed air energy storage.

Compressed air energy storage and cryogenic storage

Large-scale compressed air energy storage (CAES) is a relatively mature technology [118] but
used much less than pumped hydro storage. CAES systems use excess energy to compress air
in underground caverns, which is then heated through expansion and used to drive natural gas
through conventional turbines to produce electricity, essentially resulting in a more efficient
gas turbine [114]. While CAES potentially has low embodied energy costs, its reliance on gas
distracts from a renewably powered electricity network, and would only be applicable in larger
systems. The case study would provide a large enough system but PHS was seen as more viable
given the available geography.

Other, less mature technologies using compressed air are adiabatic CAES, which uses only
compressed air to drive the turbine, and cryogenic storage, which liquifies air or nitrogen at
very low temperatures and again uses this air to drive a turbine. Cryogenic storage is not
particularly well developed; it currently has low cycle efficiency [117] and little available data
on embodied energy. Adiabatic CAES is even less developed, being noted as at the “idea” in
2010 [114].

Electrochemical batteries

Traditional rechargeable batteries are currently used for many types of small storage
applications, having high power densities and good response speeds, but large storage capacity
systems are currently very expensive because of the need for high energy density batteries
[121] [14]. There are also problems with self-discharge over long time periods, particularly for
nickel-cadmium (NiCd), sodium-sulphur (NaS) and lead-acid (PbA) batteries [121].

Lead-acid batteries are the most commercially mature rechargeable batteries available, and
there are a number of different types, but deep-cycle stationary batteries are the most suitable
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for utility purposes [124]. They are very heavy and their maintenance requirements in
addition to short lifetimes make them relatively unreliable [114] so there are a number of other
types of battery technologies that have been developed to fix these problems. There is some
disagreement in the literature as to whether PbA batteries are realistic to be used in a utility
scale storage system, as some cite the issues with the environmental impact caused by their
material requirement [118] [125], but their technological maturity makes them a common
front-runner for use at this scale [114] [14] [126]. Their maturity means that recycling is easier
than less mature battery technologies, which reduces some of the environmental risk [127].

Lithium-ion batteries have a much higher energy density, low rate of self-discharge [120]
and greater capability for deep cycling than PbA batteries, although serious damage is risked
if they are discharged to too low a level. Their current cost inhibits their potential to be used
for large-scale storage, but their lower weight makes them an option for electric vehicles, which
could be used to balance the grid by opening up a new use for electricity capacity at times of
overproduction [121]. Additionally it is hoped that the scaling up of manufacturing will make
lithium-ion batteries an option for utility storage at the user end, such as in households or
community powergrids [114].

NiCd and nickel-metal hydride (NiMH) batteries are more mature than lithium-ion, but
suffer from problems such as low energy density, memory effect, and a similarly limited
discharge to PbA batteries. Another type of rechargeable battery is NaS, which have similar
lifetimes and deep discharge as lithium-ion batteries [128], but suffer from high self-discharge
and require high temperatures for operation [120]. Therefore three types of traditional
rechargeable batteries were chosen for further investigation: PbA, Li-ion and NaS. These
represent diversity of efficiencies, maturity and lifetimes, and are all currently available for
energy storage on a small scale. While it may be true that PbA are less suitable for utility
storage than other more modern batteries, their widespread use alongside PV [129] makes
their analysis necessary.

Parameters used for modelling all battery technologies are summarised in the methodology
in table 3.6.

Flow batteries

Flow batteries use electrochemical reactions similar to traditional batteries, but their electrolytes
are in liquid or gaseous form and stored in separated storage tanks. This gives them two major
advantages: capability to being discharged to their full capacity (allowing for more flexible
operation), and well designed for utility-scale operation [117]. They are likely to also have a
lower cost, however flow batteries are relatively new technologies, and have not been tested
extensively at a utility scale [130]. Such large scale testing is required to improve their safety
and refine how they are operated [31], this being more complex than conventional batteries due
to the use of pumps and other moving parts. Vanadium-redox (VRB), zinc-bromine (ZnBr) and
polysulphide bromide (PSB) batteries are the most mature examples, where VRB has already
been installed in a number of text sites, at up to 5MW/10MWh capacity [131]. Therefore VRB
and ZnBr batteries were chosen to be taken forward in this study: VRB judged to be the most
mature and ZnBr with the most data available for analysis.

Supercapacitors and other short-term storage

Capacitors store energy electrically by charging one of a pair of metal plates, separated by an
insulator. Supercapacitors (also known as ultracapacitors) use highly porous carbon materials
rather than metal plates to give a much larger surface area, increasing storage capacity. They
have a very high power density, fast charging/discharging capability [120] and long lifetimes,
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but cannot be used for long term storage due to high self-discharge rates [117] and lower energy
density than batteries. Possible applications are to use them in conjunction with batteries to
manage short duration grid insecurities, such as frequency or voltage disturbances, but this
would be on the order of seconds or minutes rather than hours [31].

Similarly, flywheels (which store kinetic energy) and superconducting magnetic energy
storage (which stores energy within an induced magnetic field) have very quick response times;
this in combination with their long lifetimes make them applicable for continuous use and
regular cycling (charging and discharging) [132]. This is useful for maintaining
voltage/frequency regulation as with supercapacitors, but these benefits are less noticable at
the half-hourly resolution.

Hydrogen production and storage

Excess electricity production can be used to produce hydrogen using electrolysis of water; this
hydrogen can be stored and then used to generate electrical energy using polymer electrolyte
membrane (PEM) fuel cells, or burned for heat. Hydrogen’s main advantage is its versatility,
as it can be transported more easily than the other storage mediums, and used as a fuel in
hydrogen cars. Its cycle efficiency of electrolysis and then fuel cell production is considerably low
at around 25-35% [32], but its reported low embodied energy costs may offset this to compare
more favourably with batteries, as long as the number of required storage steel cyclinders
remains low [133]. However it must be noted that the EROI analysis conducted here was
lacking in specific embodied energy figures for many components, and relied upon data for
the raw materials such as steel for the electrolyser frame, compressor and storage cylinders,
when in reality the precision required for manufacturing such high-quality components would
entail further energy costs. The fuel cell is the most inefficient component at 47-50%, while
electrolysis has an efficiency of 70% [134] and hydrogen compression for storage adds another
conversion efficiency of 89% [133]. The difficulty of hydrogen storage is one of the main barriers
to implementation, particularly in transport as the weight and size of compression cylinders is
much greater than that of fuel tanks supplying the same quantity of energy, even if it is more
convenient than most batteries. However hydrogen’s application to transport is considered its
most important attribute [135], being less mature than other stationary storage technologies
and there being few other options for electric personal vehicles.

2.3.2 Additional impacts of storage technologies

Adding storage into renewable energy systems can bring advantages and disadvantages: they
can be necessary to ensure the reliability/security of these systems, but their added cost and
environmental impact may have negative effects if not managed correctly. Sustainability being
the main focus of this research, it is necessary to ensure that any environmental issues they
bring with them do not undermine the goals of transitioning to renewable energy in the first
place.

Choice of storage technology and type of system is paramount to economic feasibility,
lead-acid batteries possibly adding costs of up to £1000 to an individual renewable energy
system [125], while pumped hydro storage at 1GW power capacity could actually reduce wider
system costs associated with increasing wind power penetration (up to 2GW power capacity
depending on the scenario) on the grid, by reducing the need for gas power stations [79].
Further analysis exists to compare different types of storage technologies, suggesting for
example that 10-minute flywheel storage is economically worthwhile, and that hydrogen
production in combination with redox flow cells are the most economic form of daily energy
storage, but still not economically justified (pumped hydro storage was not included in the
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analysis) [43]. When considering large-scale storage for time-shifting loads, compressed air
energy storage and possibly hydrogen production were suggested as possible candidates,
pumped hydro being rejected for its dependence on suitable sites, and batteries for their cost
[118]. However others consider that lithium-ion or NiMH batteries will be useful if their cost
and reliability are significantly improved [114], and/or if their deployment is combined with
electric vehicles [121].

Further comparisons can be made of their environmental impacts. Net energy analysis
accounting for embodied energy shows that including storage in energy systems still results in net
energy production, despite the increased embodied energy resulting from including additional
technology [136], and that pumped hydro storage and compressed air energy storage give the
best energy return [137]. Regarding other environmental impacts, the toxic components of
lead-acid batteries are well known to be an issue, despite measures to increase environmental
regulations and recycling of the lead [127]. In comparison, vanadium-redox flow batteries (VRB)
are a good candidate for large-scale storage, having better efficiency and lower environmental
impact, although there are still some toxic by-products [132]. NiCd batteries’ use of toxic
cadmium is also an issue [120], this being one of the reasons that they were not explored further
in this thesis. While lithium-ion batteries are low in toxicity, the limitation of lithium reserves
raises some concerns for how much we can use them in the future [138], especially as net energy
analysis does not account for limits to raw materials.

2.3.3 Simulating storage units as part of an energy system

In order to analyse the effectiveness of different storage technologies, their modelling as part of
the energy system must correctly express the different characteristics outlined in the previous
section. The study will compare a total of six different storage technologies: three different
rechargeable batteries, two flow battery technologies, and pumped hydro storage. It is likely
that a future energy system would likely require multiple types of storage technology to fulfill all
of the system balancing requirements such as quick response, large capacity, high efficiency, low
cost etc [31], however the precision required for such a comparision would not be available in a
half-hourly model. Therefore supercapacitors and the other quick-response storage technologies
would be out of scope for this model.

The most commonly modelled type of batteries in the literature are lead-acid, presumably
because of their aformentioned maturity and widespread use. The difficulty in battery
modelling is estimating state-of-charge, as this is determined as part of a complex dynamic
system, depending upon charge and voltage [139]. PbA batteries have been modelled as part
of PV systems, taking into consideration dynamic processes affecting the resistance, current
and voltage [140], in addition to usable capacity which can decline due to multiple factors
[141], and temperature [126]. Degradation and corrosion can also be modelled using a variety
of methods, which can lead to PbA battery lifetimes of 5.8 - 15 years (the real lifetime being
6.2 years) or 4.4 - 9 years (the real lifetime being 5.8 years), the most accurate method using
weighted Ah throughput of the battery as a variable [142]. An alternative method of
modelling the battery state-of-charge can be to treat charging efficiency as the main dynamic
component, dependent on state-of-charge [143]. Discharging can be assumed to be 100%
efficient [144]. This is a useful approach to take because at a half-hourly time-series resolution,
the voltage and charge would have to be averaged which simplifies many of the dynamic
processes, making their simulation unnecessary.

Modelling the PHS system is much simpler, as efficiency can be assumed to be constant and
power output is linearly dependent on the height of upper reservoir [79].
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Figure 2.4: Full sustainability includes environmental, economic and social aspects, however economic
and social aspects are fundamentally dependent on resources from the environment, so it is questionable
whether the “human” spheres of social and economics can be separated from the environment.

2.4 Sustainability

2.4.1 Defining sustainability

While sustainability was summarised in the introduction as a concept of comparing our
present day’s consumption with how many resources we leave for future generations, it was
noted that this is a somewhat nebulous idea, possible to be applied in various different ways.
Sustainability is sometimes split into the three overlapping sections of environment, economics
and social impacts [26], despite often being thought of as just reflecting environmental
concerns. However arguments from ecological economics show that economic and social
spheres are in fact dependent upon ecological processes, which gives a different understanding
of how these three areas relate (see figure 2.4). This viewpoint does not try to assert that
economic cost is correlated with environmental costs, but that the underlying drivers of
society and economics come from environmental resources (e.g. economic production requires
material goods) and are reliant upon a certain health of ecological processes and systems
[145]. Therefore we cannot have economic and social sustainability without a strong
foundation of environmental sustainability.

Some argue that sustainability cannot be quantified, but must be qualitatively assessed,
particularly when it comes to complex impacts on ecosystem services [146] or social
sustainability [147]. This can make analysis of the impacts difficult, so some attempt at
quantification is done through aggregating numerous measurements into large composite
indicators, but there are doubts about their accuracy and methods of aggregation [148] [149].
Such composite indicators are usually applied to entire countries, whereas in the case of
individual technologies an alternative approach is taken of listing the indicators separately,
generally including embodied greenhouse gas emissions, embodied energy, multiple pollutants
and ecosystem impact [150]. The number of different indicators will depend upon the
particular study, but the end result is a multitude of sustainability metrics, with no single
definition of sustainability. The separate metrics are usually reviewed qualitatively, as in
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practice certain ones are chosen to fit the criteria of the study.

Most attempts to quantify sustainability in a physical way use the notion of thermodynamics
and exergy [151]. It is proposed that such an approach is capable of treating sustainability in
both qualitative and quantitative terms [152]. One such study in [153] reframes the above
quote from the Brundtland Report in terms of ecosystems, as they are concerned with the rate
of raw material depletion (i.e. needs of the present) in comparison to raw material production
in the ecosphere (i.e. ability of future generation to meet their needs), in addition to how
waste production damages its capacity for raw material production. It is asserted that such
processes can be expressed in a single quantity of exergy, defined as the maximum work that can
be produced in a system that is approaching thermodynamic equilibrium with its surrounding
environment [154]. Exergy can be seen as a measure of the quality of energy, e.g. electrical
energy is of higher quality than thermal energy. Such analysis is capable of quantifying the
depletion of natural resources [155], although some aspects such as the full impact from depletion
of non-renewable minerals are missed from such a measurement [156]. Some research has gone
even further, suggesting emergy analysis as a measure of energy quality [157], normalised to
solar energy inputs. However the robustness of this approach is in dispute [158], and it is unclear
whether emergy is a function of exergy [159] [160].

Moving away from a theoretical definition of sustainability, our approach must be guided
by the availability of data and practicality of measurement. While measurements such as
exergy and emergy may be theoretically more accurate and broader in scope, a lack of data
makes their implementation impractical, so it may be beneficial to use more available data
even when this does not give the full picture of sustainability. With this in mind, this research
is primarily concerned with environmental sustainability, as it can be more quantitatively
defined than social sustainability, and deals more directly with the physical processes than
economic sustainability, which is not necessarily as important when finding the most
sustainable approach to GHG emission reduction [161]. Energy analysis rather than exergy or
greenhouse gas emissions was chosen as the most practical option, being a cost-effective
assessment of environmental impact [162]. Energy use continues to be correlated strongly with
greenhouse gas emissions [27] despite expansion of renewable energy sources in the electricity
grid, and the energy theory of value [163] [164] suggests that economic sustainability can be
linked to energy measurements of environmental sustainability (namely embodied energy or
exergy). There is some evidence that energy can be displayed as a function of economic
factors [165] but the theory as a whole is contentious with little research done so far [163].
While there may be some correlations between embodied energy and economic costs, these do
not appear accurate enough to support the claim that energy analysis can replace economic
evaluation. When addressing the issues of energy quality measurement missed by not using
exergy, some compensation can be made by scaling all energy to primary energy, i.e. the
energy required from fossil fuel combustion in order to give work of equivalent quality [52].
This improves comparability of energy measurements between technologies, so renewable
energy technologies can be compared fairly to fossil fuel powered technologies [166].

Finally, social sustainability should not be completely ignored. Theoretical links between
energy analysis and social impacts can be made through economic connections, such as the
previously mentioned energy theory of value, as GDP is often used to show societal well-being.
Additionally, if energy is affordable then the better access to home heating and electricity will
naturally improve social well-being, this being dependent upon physical health. Links can also
be made through environmental sustainability, as a safer climate and low pollution levels have
a positive effect on social wellbeing. It is accepted that development of human society has been
often very strongly linked to our use of energy [167] because a greater energy return gives value
to society, as people can use that energy to create jobs, services and produce technology that
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improves their quality of life. However there are so many indicators of society sustainability
[168] [147] such as equity, health, education etc. that finding a quantitative measure, let alone
finding a strong correlation, is unlikely. It may be noted that it is common for social aspects to
be largely ignored by sustainability analysis [168] and while this is regrettable, it makes sense
due to the mentioned difficulties. However, it could also be argued that energy security has a
social element, as one aspect of social sustainability is social acceptance of new technology [169]
and the more reliable the technology, the more accepted it will be by its users and therefore
society. Energy security is also broadly linked to feelings of safety [86], which is a necessary
part of social sustainability [169]. Thus if energy security is included in the analysis separate
from sustainability, social sustainability will be partially addressed.

2.4.2 Measuring sustainability

In order to find the environmental impacts mentioned in the previous section, a life cycle
assessment is usually performed on the technology in question. A life cycle assessment is a
methodological framework for assessing the environmental impacts over the life cycle of a
product, typically including the component manufacture, transportation and on-site
construction, operation and maintenance, and end-of-life/decommissioning stages of a device
[170]. There are multiple frameworks available, but the most commonly used are input/output
analysis and process analysis [171]. Results from a life cycle assessment are only useful if they
can be compared to other results, so consistency in accounting and system boundaries are of
utmost importance. Typically the initial stage of technology design is unaccounted for in life
cycle assessments [170] but more sophisticated assessments have included the impacts of
advertising, insurance and financial services, capital investment and the business system as a
whole [171] [172].

There are two distinct types of life cycle assessment, differentiated by their goals of either
describing a device and its environmental impacts (attributional), or describing how the choice
of actions taken will affect future environmental impacts (consequential) [170]. This research
is only concerned with the former type, thus uses results from attributional rather than
consequential or dynamic life cycle assessments. Consequential life cycle assessment not only
assesses the localised impacts, but also considers how the implementation of certain
technologies will affect the wider system in the future using economic modelling approaches
[173]. Similarly, dynamic assessments consider future energy mixes and projected
manufacturing methods [174]. Life cycle assessment is still a young discipline, with no
absolute consensus in the best methods to be used [170].

To perform an attributional life cycle assessment, first a life cycle inventory must be formed
[170]. This is a preliminary analysis of all environmental flows in and out of the system being
analysed, from “cradle to grave” over the stages mentioned earlier. These flows include raw
material extraction, energy acquisition, materials production, manufacturing, use, recycling
and disposal. The inventory is a methodology for quantifying these flows, and defines the
system boundaries for assessment. Next, the actual flows must be measured. As we are only
concerned with the energy flows, only the measurement of energy acquisition will be explained.
The input/output method of energy accounting does not actually measure energy use directly,
but records the cost of each activity, and combines these costs with the activity’s known energy
densities to find the total energy use. Alternatively, process chain analysis measures energy more
directly, summing up energy use for each process within the device’s life cycle by recording
fuel use (this is also useful for finding accurate greenhouse gas emission rates) [175]. The
methodology guidelines for PV lifecycle assessment [52] recommends using only process-based
LCA results, as input-output and hybrid methods have not been fully tested. Energy use can
be expressed in units per kg, power rating (applicable only for power generation technologies),
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size, or per “functional unit” which can be defined however the authors choose.

2.4.3 Energy metrics

Once embodied energy values are available, there are multiple methods of assembling them
to create a sustainability metric. This usually requires comparing the embodied energy to
the energy output from the resulting energy system. The most commonly used metric for
PV modules is Energy Payback Time (EPBT) [176], which is a prediction for the length of
time required for the system to run in order to generate the same total energy required for its
existence. A number of energy return ratios have also been defined in the literature concerning
net energy analysis, and while these were originally used for analysis of fuels, they can be applied
to renewable resources such as wind and solar with some changes to the methodology. The term
Energy Return on Investment (EROI) is frequently used, but there are four possible formulations
of this ratio, all applicable for different goals or systems [177]. These are the Net Energy Return
(NER), Gross Energy Return (GER), Net External Energy Return (NEER) and Gross External
Energy Return (GEER). Net returns use the net production of energy, subtracting the energy
use within the system, while gross returns include all generation. External energy return metrics
will only consider the external inputs when calculating the embodied energy value, while NER
and GER include all energy inputs to the process. From henceforth in this thesis, the term
EROI will be used to only refer to the Net Energy Return, as this is the most applicable to
renewable energy systems designed to supply energy to an external demand. A sixth energy
ratio is the energy intensity ε, which is the inverse of EROI, calculating the amount of energy
required per system energy unit output [178]. This is therefore equivalent to EROI, but is more
useful when expressing the energy efficiency of a nation, for example.

2.4.4 Formulation of metrics

If all energy is normalised to primary energy (PE) - i.e. the amount of energy currently required
to generate the equivalent quantity of electrical energy - using the coefficient ηG = 0.31 to
represent the average efficiency of the EU25 grid, [166] then a system with lifetime L, net energy
generation without curtailment Eout over entire lifetime L and lifecycle embodied energy costs
Ein, has an EROIPE calculated as follows [52] [177]:

EROIPE =
Eout

Ein · ηG
(2.1)

The coefficient ηG is important to preserve energy quality in the analysis; while most of
the energy input for technology manufacturing is thermal, mostly derived from fossil fuels, the
energy output is in the form of electricity, a high quality form of energy. Raugei [166] states
that “by expressing Eout in terms of its Primary Energy equivalent and calculating EROIPE
accordingly, one is in fact calculating how much Primary Energy is virtually returned to society
(i.e. preserved for alternative uses) per unit of Primary Energy invested in PV, given the
composition of the current electric grid.” Such EROI values would be comparable to “mine-
to-mouth” fossil fuel EROI, rather than the EROI of fossil fuel powered electricity, and would
naturally be significantly higher than standard EROI.

Energy intensity and energy payback time are calculated with similar inputs, but expressing
the result in different units. So energy intensity is the inverse of EROI:

ε =
1

EROIPE
=
Ein · ηG
Eout

(2.2)

and energy payback time is defined on the yearly system output Eout,yr:
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EPBT =
Ein · ηG
Eout,yr

(2.3)

Energy intensity and EROI are unitless ratios, while energy payback time is measured in
years. Choosing which metric to use can be down to personal preference, but the the unitless
property of EROI and energy intensity make them more flexible with regards to combination
with other metrics, and EROI is widely used for energy analysis of all kinds of systems and
fuels, so using it allows for easier comparison with other systems [179].

A benefit to using EROI is that it can be used to give a simple description of sustainability; a
system with EROI value less than 1 is by definition unsustainable in isolation, as this cannot be
sustained without overuse of resources, and is likely to be unprofitable. However this does not
imply that a system is automatically sustainable if it has EROI> 1. Any cut-off point is likely to
be higher; for example liquid biofuels have been calculated to require a minimum EROI of 3:1 in
order to be feasible [29], but a minimum threshold for any specific technology, let alone energy
systems, is difficult to define given the variables and error margins involved. Past calculations
of EROI (excluding conversion to primary energy) for PV and wind turbines have given 3-10:1
for PV, depending on latitude of operation, and average 18:1 for operational wind [180], but
this will vary because, as discussed earlier, larger turbines tend to have a higher EROI due to
increases in efficiency and the non-modular nature of wind-turbine embodied energy [181]. The
higher EROI an energy system possesses, the better it can replicate itself and provide energy
to society.

There are concerns in the literature that EROI lacks a consistent framework [182] [177],
whether this comes from inconsistency or non-transparency around LCA boundaries, conflation
of different EROI metrics, use/disuse of different grid efficiency coefficients etc. Therefore a
concerted effort has been made in this study to set out exactly which energy flows are being
measured in the analysis, and how the system boundaries are being defined.

2.4.5 Primary energy

Primary energy is defined as energy from the original sources such as fossil fuel combustion, solar,
wind, water etc [176]; although some sources will only include fossil fuel combustion as a primary
energy, here these are all included. Typically when bringing together different energy sources
for embodied energy calculations, these will be converted (normalised) to primary energy, to
prevent the summing of energies with wholly different energy quality. For example, if one
component was manufactured using 100kWh electricity from entirely renewable energy sources,
and another using electricity from 100kWh of coal combustion at 30% efficiency, the renewable
energy input would have to be scaled to account for the fact that its transference into the grid
is much more efficient, and that if both components were manufactured using coal then the
former one would actually require much more energy inputs.

There is some dispute in the literature as to whether energy output should be normalised to
primary energy at all. In the Methodology Guidelines on Life Cycle Assessment of Photovoltaic
Electricity, Fthenakis et al. [52] note that while EPBT always converts generated electricity into
primary energy, it being a specific measure of how well renewable energy can replace traditional
fossil fuel power plants, EROI is not always formulated to include such a conversion. This
results in much lower EROI results (by a factor of the grid efficiency ηG), so when presenting
these results it is necessary to make it clear whether primary energy normalisation was used.

In fact some argue that the conversion of electricity output to primary energy is deceiving,
resulting in unrealistically high EROI values for renewable energy [183]. Their methodology
gives the advantage to fossil fuel powered systems, whereas using primary energy scaling gives
better EROI values for renewable energy systems. Raugei also argues in [176] that the use of

41



primary energy scaling in EPBT calculations makes it difficult to apply to long-term planning, as
the increased deployment of more grid-efficient renewable energy technology would increase the
coefficient ηG, giving worse values of EPBT if the technology stays the same, or not reflecting
the full advantages if technology improves in lifecycle efficiency. He estimates a future grid
efficiency to be ηG = 0.42, 11 percentage points higher than the current 0.31, which is based
upon a projection of 20% PV penetration in 2050. EROI is suggested to be a more useful
objective energy performance indicator, but he argues in other papers [166] and [184] that
EROI should also be scaled by ηG, giving it the same comparative nature.

A third argument is levelled against the conventional use of fossil fuels as the primary type
of energy use, although this has already been addressed by widening the concept of primary
energy to include renewable sources. An alternative approach would be to choose solar energy
as the “primary” energy, as this is the source of most forms of energy on Earth, and normalise
energy with respect to that [185]. King admits that it is subjective whether fossil fuels are the
energy vectors from a renewable primary energy, or if renewables are an energy vector from
fossil primary energy sources. Advocates for the former would argue that coal, oil and gas
are stored solar energy from organic matter, while the latter would argue that in this point of
energy transition, renewable energy technology is being manufactured using mostly fossil fuels,
so their power generation is a way of using fossil fuels more effectively. However if we truly wish
to have an entire (or majority) transition to a renewably sourced energy system, then the latter
argument will lose relevance as more manufacturing will be using renewable energy sources,
for example the steel industry switching to arc welding so electricity can be used in in more
industries.

Such a transition would have complex impacts that are not fully reflected in any kind of
simplistic coefficient scaling methodology, or even in exergy analysis. The energy losses and
inefficiencies involved in electrification of multiple industries and energy systems are incredibly
difficult to calculate, being dependent on variables that are largely unknown or social in
nature, e.g. whether vehicles will be battery or hydrogen powered. As an interim measure,
energy inputs such as thermal energy, embodied energy in materials, transport etc could be
considered separately if their use is radically different, but embodied energy data is not
necessarily split easily into those categories. This split is however applied by Pacca et al. [186]
when they attempt to find a theoretical net energy ratio of second generation PV - modules
manufactured using electricity generated by PV. This is a simplifed way of considering how
renewable energy technology could be used as “breeders” to create more of themselves, when
in reality PV production would be available for all sorts of applications.

Using ηG as a catch-all coefficient of primary energy efficiency essentially assumes that all
the renewable energy technology being manufactured today will use electricity from “primary”
energy sources, and that they will be implemented into a world which only uses electricity,
without any energy losses resulting from this transition. While this is unrealistic, it is also
unrealistic to not apply any conversion factors to account for the higher efficiencies of PV and
wind turbines in comparison to fossil fuel combustion. A middle-ground approach would be
to assume that we are not attempting to replace all of society’s energy sources with wind and
solar, but that they are replacing units of capacity on the electric grid, and here it would be
fully appropriate to use grid efficiency as a primary energy conversion.

Calculation of the grid efficiency ηG is somewhat inconsistent, some sources defining it as
the average efficiency of primary energy to electricity conversion [52], and others as the life cycle
efficiency of the grid [166] using life cycle data of the grid in addition to conversion efficiency. The
former definition specifies that it only includes the efficiency of fossil fuel and other combustion
power plants, while the latter includes renewable energy inputs within the sphere of primary
energy, and considers the full life-cycle of all these technologies. This is essentially an extension
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of the first definition; it finds the efficiency of all primary energy inputs into the grid, whether
those inputs are embodied in the materials and construction, from renewable sources, or simply
the fuel inputs of combustion power plants. It is a more robust definition; it notes that while
the denominator uses a primary energy scaling (as all embodied energy is converted to primary
energy), the energy output Eout will likely not just be replacing fossil fuels, but fitting into a
system that also includes some renewable energy sources.

Therefore to calculate the grid efficiency of a grid with different sources of energy (or types
of power station), we use the formula:

ηG =
∑
i

ωi · ηi,LC (2.4)

where each generation technology i has weighting ωi and its life-cycle efficiency ηi,LC is
defined as:

ηi,LC =
Eout

Ein + Eout/ηconv

(2.5)

Using this definition can therefore lead to a better understanding of how useful the electrical
energy output is from a renewable energy system. If the electrical energy output is n times
greater than the primary energy inputs (i.e. has unscaled EROI of n), then not only has the
technology effectively multiplied energy availability by n, but if that primary energy Ein had
instead been spent on the grid, then it would have produced ηG · Ein electrical energy output.
Therefore the full benefit to using the renewable energy system is not an n multiplier, but an
n/ηG multiplier. Furthermore, as renewable capacity on the grid increases, the coefficient ηG
will also increase. Therefore this definition is used with values of ηG = 0.31 and higher to
encompass potential renewable energy penetration levels.

2.4.6 Embodied energy values

The values of embodied energy to be used in the analysis are extremely important, as EROI
results are highly sensitive to embodied energy levels, particularly of PV technologies [187].
Choosing these values is difficult, as the range in the literature is very high even within specific
technologies for multiple reasons. Chosen manufacturing techniques are very important, and
may depend on country of manufacture [188], maturity of technology (as efficiency tends to
increase over time due to improved methods and scaling up of operations [186]), or simply
the resources available. Country of manufacture is also relevant to transportation costs, as
shipping adds to energy use, although this is considered a small fraction of the overall embodied
energy for onshore projects [189]. As discussed earlier in section 2.4.2 the boundaries of the life
cycle analysis have a significant impact on the recorded embodied energy; for this reason, the
embodied energy values were picked from studies with similar boundary conditions. Thus the
studies were based on input/output analysis or process analysis done over the four stages of
component manufacture, transportation and on-site construction, operation and maintenance,
and end-of-life/decommissioning. Finally, the variety of technology available means that not all
life cycle analyses will have been done for devices of the same efficiency, size or power capacity.
For example, a decrease in silicon thickness of PV panels can result in a much lower embodied
energy value overall [190]. Most notably in the case of wind turbines, the materials used to
manufacture the components may not be consistent between models of turbine, and different
materials will have different levels of embodied energy. To maintain some consistency, results
for PV panels have been categorised by broad type of technology (mono-Si versus multi-Si) and
their efficiencies have been noted, while wind turbines have been analysed with respect to rated

43



Technology type Embodied
energy level
(kWh/m2)

Comments Ref

Multi crystalline Si,
energy efficiency 12-13%

1,500 Includes module, frame,
array support and
converter only

[191]

Single crystalline Si,
energy efficiency 10%

1,334 Full balance of system
evaluation (battery input
has been removed from
original calculation)

[192]

Single crystalline Si,
energy efficiency 14%

905 Also used in [166] [190]

Multi crystalline Si,
energy efficiency 13.2%

1,194 Calculated using their
EPBT values

[193]

Single crystalline Si,
energy efficiency 14%

1,555 Calculated using their
EPBT values

[193]

Poly crystalline Si,
average efficiency 12.3%

1,087 (mean) Standard deviation
614kWh/m2, all done
with cradle to gate system
boundary (16 samples)

[187]

Mono crystalline Si,
average efficiency 13%

1,729 (mean) Standard deviation
801kWh/m2, all done
with cradle to gate system
boundary (16 samples)

[187]

Multi crystalline Si,
efficiencies 10.7-13.2%

1,064 (mean) Standard deviation
226kWh/m2 (8 samples)

[194]

Mono crystalline Si,
efficiencies 12.2-14%

1,628 (mean) Standard deviation
796kWh/m2 (8 samples)

[194]

Table 2.2: Photovoltaic embodied energy values from the literature.

power, as this correlates with size and choice of materials. Such categorisation was not possible
for storage technologies, due to a shortage of available data.

While there are databases available such as ecoinvent that have embodied energy values for
specific technologies, it was decided that the best way of representing an average energy system
was to use average embodied energy values from the literature. This way, it is not just one
specific manufacturing process or brand that is being used, but an average representation of the
technology. However errors in this data are still recognised, and evaluated in an uncertainty
analysis.

Embodied energy of PV modules

A literature survey was done to collect possible embodied energy levels of PV panels, the results
of which are shown in table 2.2 and summarised in fig 2.5. These values include the full balance
of system: panels, frame and support structure, cabling and inverter. Here the inverter is
included, but it is removed from the final PV embodied energy in the methodology to account
for its non-modular scaling properties - larger inverters will have a lower embodied energy per
kW rating.

Taking average values of all results in the papers reviewed, the typical embodied energy
of mono crystalline Si modules is 1650kWh/m2, while the typical embodied energy of multi
crystalline Si modules is 1099kWh/m2. The slightly higher efficiencies of mono crystalline
panels are not enough to offset the increased embodied energy levels; for an average annual
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Figure 2.5: Box plots showing range of embodied energy of PV modules in the literature, from 54
samples. These include the inverter’s embodied energy.
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insolation of 1700kWh/m2, performance ratio 75% and lifetime of 30 years, multi crystalline
panels with energy efficiency 13.2% would have an EROI of 14.8 (4.6 not scaling for primary
energy) while mono crystalline panels under the same conditions with energy efficiency 14%
would have an EROI of 10.5 (3.2 not scaling for primary energy), which is significantly less.
Note that this method of calculating power production is simplistic in comparison to the actual
methods explained later in section 3.2.1 but the rough comparison between technologies remains
the same.

Embodied energy of wind turbines

Measuring the embodied energy of wind turbines is slightly different to that of PV, as wind
turbines benefit from economy of scale: the larger the wind turbine power capacity, the lower
the embodied energy value per kWp. This is partly driven by the fact that power capacity is
correlated with the cube of the turbine blade length, so wind turbines become more efficient as
their size increases, but also that larger wind turbines operate at higher altitudes where wind is
stronger, and tend to be newer and thus more efficient than smaller ones [180] [181]. With this
in mind, finding the embodied energy of wind turbines in general required embodied energy data
of turbines with varying power capacities. Different construction materials are also important to
acknowledge. A micro wind turbine typically consists of a steel tower and aluminium/fibreglass
blades, while a larger wind turbine may have a concrete tower and fibreglass/epoxy resin blades
[195]. The different manufacturing processes required for these materials result in very different
embodied energy levels. Finally, wind turbines require more maintenance than PV modules,
having moving parts that are more likely to break or degrade, and the work and transport
involved in maintenance contributes towards their lifetime embodied energy.

Embodied energy for a wide range of onshore wind turbine capacities was collected from a
literature survey in the same way as for PV, results shown in figure 2.6 from 12 articles and the
ecoinvent database [78] [196] [197] [198] [150] [199] [200] [188] [201] [202] [203] [204] [195]. Studies
were a mixture of process analysis and input/output analysis, only including wind turbines with
a horizontal axis and maximum power rating of 2MW . Results from [171] for 850kW and 3MW
turbines were considered for inclusion, but the alternative use of hybrid process analysis, while
it may give more accurate results with wider boundary conditions, was so different to the other
studies that they were eventually excluded to retain consistency. Further investigation using
more exhaustive methods of life cycle analysis may be necessary to fully understand the energy
costs of wind turbines.

Plotting power rating against embodied energy per unit of capacity in figure 2.6 shows that
the measure of embodied energy depends on the power rating of the wind turbine in question,
thus a linear fit of y = −0.825P + 3081 (orange curve) can determine embodied energy of a
generic wind turbine of any power rating up to the maximum needed in this study at 1.2MW .
The resulting embodied energy range is shown in figure 2.7 alongside embodied energy levels
of PV modules for comparison. Note that this fit will give a negative embodied energy value
for wind turbines of capacity above 3.7MW ; this is due to a nonlinear relationship once power
capacity becomes higher, but the linear relationship is accurate enough to use for the range of
wind turbines in this study.

Embodied energy of storage technology

There were six major different storage technologies considered, and all had to be compared
with respect to their embodied energy. Large scale battery storage is still an emerging
technology, particularly in combination with renewable energy systems, so rather than taking
average embodied energy values from the literature, where only a handful of life cycle
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Figure 2.6: Plot of embodied energy per kW power rating for wind turbines up to 2MW , showing that
as turbine size increases, embodied energy becomes more efficient in producing capacity. Anomalous
points in top right-hand corner were both obtained from Lenzen 2004. Linear fit is shown in orange
(note log scale).
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assessments exist, the most recent values were taken as standard. Embodied energy values for
batteries lead-acid (PbA), lithium-ion (Li-ion) and sodium-sulphur (NaS), and redox flow
batteries vanadium-redox (VRB) and zinc-bromine (ZnBr), were taken from [137] over a
lifetime of 30 years to fit with typical PV lifetimes, thus accounting for battery replacement
during this time. Using EE data from a single study allows for fairer comparison between all
types of batteries, as there are not enough studies to allow for averaging, and different studies
generally use slightly different methodology and accounting boundaries.

Nickel-cadmium (NiCd), nickel metal-hydroxide (NiMH) and polysulfide-bromide (PSB, also
known as Regenesys) batteries were not included in the model, due to unavailability of recent
embodied energy calculations and doubts about the practicality of their use in renewable energy
systems, as NiCd and NiMH suffer from being older technologies without the advantages of
being as widespread as PbA, and PSB is a developing technology with many similarities to
ZnBr batteries. The embodied energy for non-remote pumped hydro systems was calculated
from [123] to depend on system output in addition to storage capacity, in order to correctly
account for energy embodied in operation and maintenance. All embodied energy values are
shown in figure 2.8, referenced in table 3.6. Note that while the embodied energy for lead-acid
batteries may appear impressively low at 321kWh per kWh energy storage capacity, this is
thanks to their maturity and increased recyclability of their constituent parts, which is again
only made possible by their maturity and widespread use. It must also be pointed out that
when depth of discharge is considered, a lead-acid battery with depth of discharge 50% will have
embodied energy at 642kWh per kWh of usable storage capacity, while a lithium-ion battery
with depth of discharge 90% will have embodied energy at 504kWh per kWh of usable storage
capacity. Additionally, there is more scope for newer battery technologies to reduce their energy
costs, so flow batteries could end up with lower embodied energy than lead-acid eventually.

The embodied energy values for a small hydrogen storage and fuel cell unit was also
calculated using the paper by Pellow et al. [133], assuming the electrolyser was chosen to
reflect the power capacity P of the generators, and the fuel cell sized at 20MW capacity to
safely meet the highest recorded domestic demand of 17MW. Therefore using their suggested
energy intensities and component lifetimes of an electrolyser, compressor, n steel cylinders for
hydrogen storage, and PEM fuel cell gives a total embodied energy of
EEH2 = 2260P + 644n + 161160kWh. Each steel cylinder is sized to store 0.72kg hydrogen,
equivalent to 24kWh energy (not accounting for inefficiencies of fuel cell). This must be
considered an experimental calculation, as many of the embodied energy values are based only
on the materials required, and extrapolated to different sizes. However there is not enough
available LCA data to conduct a more thorough review. The results with hydrogen are likely
to be fairly different to the battery systems, as the hydrogen system has considerably lower
cycle efficiency, embodied energy is less dependent on size of storage due to considerable costs
of non-storage components, and the units of storage are much larger.

Compressed air energy storage, while not applied in the models, was estimated to have
an embodied energy cost of 75.3kWh/kWhcap for an installation lasting 40 years, where the
construction costs 73.8kWh/kWhcap and the gas fuel costs 1.45kWh/kWhcap [123]. This is
of a similar order of magnitude to PHS systems. PSB flow batteries were found in [191] to
have EE of 1189kWh/kWhcap for a system lasting 25 years, a little higher than the value of
1080kWh/kWhcap for VRB systems in the same study, and with a lower cycle efficiency at
60-73% [205]. Given their similar mode of operation, it could be assumed that PSB systems,
if modelled in this thesis, would give slightly worse performance than VRB systems, and their
results can be encompassed within the uncertainty analysis.
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Figure 2.8: Embodied energy of storage technologies. The bar for pumped hydro storage doesn’t take
into account energy costs of delivering stored energy, but this is a small amount and actual value is
dependent on the system.

Embodied energy of further system components

The balance of system for a renewable energy system includes more than simply the solar
panels, wind turbine and batteries; also essential is an inverter to convert DC power to AC
power for exporting to the grid, and a charge regulator to control the charging of the battery.
The embodied energy for both these components was calculated to be 278kWh/kW power
capacity [206] [191], and these figures have also been used in further publications by different
authors [81]. This is based upon a 3kW rated inverter. The power capacity of the inverter and
charge regulator (the latter only being included when a battery is present) should be chosen
to match the total power capacity of generation. While the embodied energy of the inverter
is usually included in the solar panels’ embodied energy values alongside its other balance of
system components, the wind turbine evaluation does not include this, so the full power rating
of the inverter must be accounted for in the embodied energy calculation. This is a different
type of inverter, being AC-AC rather than DC-AC, but the lack of data for these specific types
of inverter means that we assume that both have the same embodied energy.

However, it cannot be assumed that there will be a linear relationship between the size of
inverter and its embodied energy. Much of the embodied energy will be for the metal casing,
which does not necessarily scale with power capacity. Data from the ecoinvent database gives
lower embodied energy values for higher capacity inverters, which are shown alongside the
278kWh value for a 3kW inverter in figure 2.9. The embodied energy data from these four
inverters was then fit to a log curve y = −36.8 log(P ) + 256 where P is the power rating of a
hypothetical inverter, shown in figure 2.10. This fit cannot be said to be absolutely accurate, as
it is dependent upon only 4 datapoints, however it gives a rough idea of the expected inverter
energy cost at different sizes. Given that the 3kW inverter would typically only contribute to
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Figure 2.10: Embodied energy of differently sized inverters, plotted with log fit y = −36.8 log(P )+256.

3% of a PV installation’s embodied energy, this is a reasonable estimate to make. Wind systems
will have a proportionally greater embodied energy contribution from the inverter, and there
must be an awareness of this in the results. It was assumed that this relationship between power
rating and embodied energy is also followed by the charge regulator component, as they are of
similar construction.

Embodied energy for a 3.5kW rated domestic heat pump was estimated to be 2130kWh using
embodied energy data from two different heat pumps, both of which were attached to a solar
thermal system [207]. This included the following components: storage cylinder, glycol (an anti-
freeze used in the circulation system), expansion vessel and copper piping. An additional 20%
extra embodied energy was added to the components’ embodied energy to account for digging
and installation energy costs. Only taking into account these components, the total embodied
energy for the two heat pumps was 1850kWh for a heat pump with 300l storage cylinder
capacity, or 2403kWh for a heat pump with 400l storage cylinder capacity. The 2130kWh figure
was reached by taking an average value.
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2.4.7 Gaps in the literature

While there is much discussion of off-grid hybrid renewable systems with lead-acid battery
storage, or evaluations of national grid scale storage interventions using pumped hydro storage,
these results have limited relevance in future energy scenarios for multiple reasons. Firstly, the
suitability of lead-acid batteries for utility storage is questioned, due to their high rate of failure,
low depth of discharge levels, high weight and toxicity concerns. The suitability of pumped hydro
storage is also a concern, being geographically dependent. In the UK particularly, there is a
shortage of locations suitable for pumped hydro stations. Secondly, off-grid renewable systems
are likely to always be a niche interest. While their application in developing countries and very
large countries with remote communities is important, in countries such as the UK where most
areas are reached by the electricity network, off-grid systems have limited benefits. Thirdly,
there is increasing interest in restructuring our electricity networks in order to fully exploit the
benefits of variable renewable energy sources. These modern structures are rarely considered
in the context of the optimisation procedures, despite being designed to hopefully improve
performance and integration of renewable energy, which will obviously have an effect on system
optimisation. Such structures will likely not have as absolute limits on energy security, as they
are subsystems within the larger grid, and can import and export electricity when required.
However in order for the entire system to function, their energy security must be increased as
much as is practical, entailing an optimisation considering security and some measurement of
cost.

While some work has been done to compare different battery technologies in terms of their
EROI [208], this has not been done in the context of the wider system, as system sizing of
components was not a concern in that study. More work therefore needs to be done to
optimise future systems with newer battery technologies such as lithium-ion and flow batteries.
Additionally, while many studies include a consideration of energy security in terms of how
well demand is met by supply (usually by quantifying loss of load periods in some way), the
wider terms of energy security are not fully examined. The limits to renewable penetration do
not solely come from the threat of loss of load or cost, but also from overproduction and its
negative effects on the infrastructure of the electricity network. Merely curtailing production
is not a long-term solution, as it limits the capabilities of renewable energy technologies and
ends up being less cost effective [110]. Considering the effects of overproduction must then be
a part of any optimisation that takes energy security seriously. There is also little
standardisation of security metrics in the literature, despite industry standards of using LOLP
and EIR for adequacy analysis so a simple comparison between time-dimensional metrics and
energy-dimensional metrics would be useful to clarify which are more useful.

This project therefore addresses these concerns by focusing on grid-connected energy
system models using a variety of different storage technologies, and applying a physical
performance evaluation of those systems. The methodology in the next chapter explains how
the goal of optimising power subsystems with alternative storage technologies, with respect to
a full understanding of energy security and energy sustainability, will be approached in this
study.
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Chapter 3

Methodology

The broad goal of this thesis is to analyse renewable energy systems at different sizes and levels
of complexity, to give insight into how local storage solutions interact with variable renewable
energy sources, and optimise ideal renewable energy subsystems in terms of their sustainability
and security. There are a large number of possible system scenarios that need to be considered,
comparing the important variables shown in table 3.1.

The only practical approach for full comparison between these variables was computational
modelling of renewable energy systems with electronic energy storage, as building such a large
number of energy system experiments would be outside the scope of this project. To ensure
accuracy, the model used input energy time-series based on real world data of wind and solar
availability, and electricity demand measured in domestic and non-domestic buildings. While
probabilistic simulations of all three categories of time-series do exist, the importance of realistic
variability in the model necessitated the use of real world data.

This chapter is divided into four major sections as follows.

1. Energy flow simulation - how the energy flows within the networks are modelled, in
particular the behaviour of the battery or pumped hydro storage.

2. Construction of energy generation and demand input data.

3. Ensemble building and statistical sampling.

4. Approaches to analysis and interpretation of results.

In section 3.1, the simulation of battery technologies and pumped hydro storage is explained,
showing the reasons behind the methods chosen, and the different properties of the available
energy storage technologies that affect their behaviour.

In section 3.2, it is shown how energy generation time-series for solar and wind were
constructed, based upon UK weather data and limited photovoltaic (PV) generation data.
Just as importantly, the choice of household demand time-series, and construction of demand
for larger-scale networks, is explained.

Section 3.3 shows how the input data from section 3.2 is fed into the energy flow simulation
from section 3.1 in order to produce samples of energy networks for analysis. This must be done
according to the variables listed above, so the size of the network varied from a single household,
to street-level size (20 households), to a case study of the area of Stocksbridge, encompassing
6000 households and 5.5MWh/year of non-domestic electricity demand. There are also samples
of non-domestic electricity demand time-series, 93 generation scenarios of varying total capacity
and relative capacity between solar and wind, and eight different battery technologies alongside
pumped hydro storage for large networks.
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Variable Range/examples Comments
Type of electricity
demand load

Domestic household, non-
domestic building.

Choice of domestic household
is also relevant, as domestic
electricity use varies widely in
terms of total demand.

Size of demand-
supply network

Single household/non-
domestic building, up to 20
networked loads, case study
of small town.

See table 3.5 for full demand
ranges of all system scenarios.

Annual energy
available to meet
demand locally

Scaled to demand: generate
up to 260% of annual
demand.

While supply is scaled to
demand during the modelling
stage, systems are optimised
with respect to absolute
power capacity during the
analysis stage.

Ratio of wind to
solar generation
mix

93 combinations from entirely
wind, to hybrid mixes to
entirely solar.

Resolution is at every 20%
step, see table 3.4 for full
range of inputs.

Type of electrical
energy storage
technology

5 different types of battery
and pumped hydro storage
for large networks.

See table 3.2 for full list of
batteries and their properties.

Storage capacity of
energy storage unit

0 − 50kWh energy storage
per household, 0-500% daily
demand per non-domestic
building, 0−180MWh energy
storage for entire town.

Capacity is normalised to
kWh rather than Ah because
voltage and current are
not modelled. Availability
of real storage capacity is
determined by depth of
discharge.

Table 3.1: Important variables for consideration that might affect the sustainability or security of the
system
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Figure 3.1: Schematic of generic energy system, where t is time and k is battery capacity. The grid is
not modelled as part of the simulation, but is depicted here to illustrate energy over- and underproduction
in terms of exporting and importing energy

Finally section 3.4 explains how the results from the model are analysed. This encompasses
the metrics chosen to measure sustainability and security, the methodology of combining these
into some measurement of network performance, and methods of comparing these performance
results. Errors in the available data, particularly embodied energy values of the technologies
concerned, are considered by performing sensitivity analysis on the results. This is done by
varying parameters with the largest error margins to see the effect this has on the calculated
performance.

3.1 Energy flow simulation

The energy systems characterised in this study are made up of three main components,
illustrated in figure 3.1. These are energy input, storage unit and demand load. Energy input
is the electricity generated from a variable renewable source, storage unit can be an
electrochemical battery for small systems, or a flow battery/pumped hydro for larger systems,
and demand load is the demand from domestic households, non-domestic buildings, or
networks of multiple loads. When considering the physical aspects of the systems there are
more components to consider: energy input may come from PV panels and wind turbines,
these will be connected to an inverter to ensure AC output of electricity, and there may be a
number of household loads and storage units.

When modelling the energy system, the time-series E(t) and D(t) - representing generated
energy and energy demand respectively - were constructed separately as discussed in section 3.2,
so the priority of the system model is to simulate the energy storage technology correctly, which
creates the battery time-series B(k, t), in order to find the export and import output time-series.
Results are calculated using these output time-series, alongside other results such as battery
losses and on-site demand satisfaction.
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The energy storage technologies examined were chiefly rechargeable (secondary) batteries,
flow batteries and pumped hydro storage (PHS). Different technologies were suitable for different
sizes of system, e.g. secondary batteries are more suited to small installations, whereas pumped
hydro storage is only possible for large systems.

All energy storage technologies were modelled over time with the same central structure: a
black box model with energy input and output. The technologies were differentiated by applying
appropriate charging/discharging efficiencies, depth of discharge and capacity degradation. In
each half-hour time-frame, a stepwise simulation calculates the state-of-charge of the battery,
which stores surplus electricity from a source of energy generation and releases it when the
demand load exceeds available generated electricity. The battery is only charged with on-site
energy that is unused at the point of generation, and is only discharged when the load requires
it.

3.1.1 Energy conversion efficiency

Lead-acid battery charging efficiency at time t was modelled as dependent on state-of-charge
while battery charges, and 100% while discharging. As state-of-charge increases, voltage
decreases, which reduces efficiency. Thus efficiency was modelled linearly for PbA batteries as

η =
2(1− ηC)SOC +DOD(2ηC − 1)− 1

DOD − 1
(3.1)

where DOD = depth of discharge of the battery technology, SOC = state-of-charge of the
battery, ηC is average cycle efficiency and η is actual time-variant efficiency. Lack of information
in the literature meant that for other battery technologies their charging efficiency was assumed
to be constant at ηC while charging, 100% while discharging.

For pumped hydro storage systems, as there are losses in both water pumping (i.e. charging)
and hydro generation (i.e. discharging) but only cycle efficiency ηC is known, the efficiency was
modelled to be static at η =

√
(ηC) for both charging and discharging.

3.1.2 Depth of discharge

The batteries included in the model nearly all have limits on how much they can be discharged
by, as part of requirements for safe usage and encouraging optimal battery life; this significantly
impacts on usable storage capacity, and thus affects their performance and total embodied
energy (as larger batteries are necessary to make up for technology with shallow depth of
discharge levels, which obviously would require more embodied energy). While in reality the
depth of discharge is slightly variable, and can be changed with an impact on efficiency and
battery longevity, the batteries have been modelled as not being capable of discharging below
depth of discharge, as effects of discharging below are not yet fully understood. Used depth of
discharge values are shown in table 3.2. Pumped hydro storage can also be assumed to have
a depth of discharge at 95%, as the top reservoir cannot usually drain completely in practice
[128].

3.1.3 Battery degradation

Over time, the batteries degrade in two ways: usable storage capacity decreases, and the
batteries eventually reach the end of their lifetime. Once batteries drop to 80% of their
original capacity they are removed to be replaced with new batteries at full capacity (this is
modelled to only occur at the end of years, rather than during the year, as capacity
degradation is calculated at the end of each year). The lifetime of the system was chosen to be
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Figure 3.2: Flow chart illustrating energy flows around a generic single-load system, for a single battery
with maximum usable capacity k and efficiency η.
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25 years, as a compromise between the estimated lifetimes of PV modules (20-30 years) and
wind turbines (20-30 years, with land often only leased for 25 years).

In calculating battery lifetime, there are two values that can be used: float life (calendar
life - i.e. dependent on time used) and cycle life (dependent on number of cycles). The reason
for these alternative values is that the mechanics behind battery degradation vary, including
electrode corrosion which limits cycle life, and more complex processes that affect float lifetime.
These are dependent on frequency and depth of discharge, the float voltage and the ambient
temperature. The shorter of the two lifetimes was given for all batteries, assuming 365 cycles
per year (realistic for a PV system given its diurnal cycle), and are shown in table 3.2. Battery
capacity degradation was taken to be 1.2-1.5% per year for each battery type [209].

In order to model the impact of battery degradation, battery lifetimes were assumed to fit
the Weibull distribution with PDF described in equation 3.2, this being the most commonly
used probability distribution for failure rate. Figure 3.3 applies these probability distribution
functions for each battery technology, based on the lifetimes from [191] (note Li-ion and NaS
have identical distribution).

f(x;λ, k) =

{
k
λ(xλ)k−1e−(x/λ)

k
x ≥ 0

0 x < 0
(3.2)

Capacity degradation was modelled using the normal distribution D ∼ N(0.0135, 0.0015)
to estimate usable capacity loss each year for each battery in the system. If battery lifetimes
are ignored (as can occur for those technologies with very long lifetimes) this means that all
batteries drop to the minimum 80% capacity after an average of 17 years (max 32, minimum
12 years). Capacity degradation rates for all batteries except PbA are based on calendar (float)
life rather than number of cycles, as cycles are difficult to track given the varying minimum
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Battery type Efficiency and
range (%) [205]

Depth of
discharge (%)

Lifetime
(years) [191]

λ k

Lead-acid 75 (70-84) 50 [128] 2.5-5.5
(cycle)

4.29 6.57

Lithium-ion 90 (85-95) 90 [128] 14-16 (float) 15.30 27.59
NaS 79 (75-83) 90 [128] 14-16 (float) 15.30 27.59
ZnBr 66 (60-73) 100 [130] 8-10 (float) 9.30 15.84
VRB 70 (60-80) 100 [130] 15-20 (float) 18.03 17.96

Table 3.2: Battery properties for model, affecting performance and degradation. Note PbA batteries
have a short cycle life when operated daily, so this lifetime was chosen rather than their float life. All
batteries’ lifetimes are modelled using a Weibull distribution with parameters λ and k.

state of charge that the batteries experience. The cycle life of PbA batteries is so low that it
has been used instead of float life, with an assumption that the batteries cycle once per day on
average over the year.

Table 3.2 shows the battery characteristics used in the model for each battery type, including
cycle efficiency, depth of discharge, lifetime range (whether based on cycle or float lifetime) and
the Weibull scale and shape parameters (λ and k) used to model this expected lifetime.

To ensure that the model was working correctly, and to provide a baseline demonstration,
it was initially run with a small test sample of flat time-series and square waves as data input.
The results from this initial test are given in section 4.2 in the next chapter.

3.2 Construction of generation and demand data

In order to simulate a wide variety of systems, a great deal of time-series data was required
to represent electricity generation and demand loads. Electricity power generation time-series,
being produced from solar or wind sources, were created from PV and wind turbine generation
data, or simulated using weather data when the former were not available. Demand time-
series were collected from a survey of 22 homes in Loughborough in 2008/9, 15 non-domestic
buildings (a mixture of publicly available data and local buildings), and a group of homes fitted
with community PV installations. Given the need for accurate security results, high temporal
resolution was required, hourly at minimum. Using weather data rather than direct generation
data for wind and solar power generation had a number of advantages: nationwide data was
available for a number of locations, production could be modelled for wind turbines with different
hub heights (using the wind shear equation), and degradation of PV panels could be included
in their power simulation. Inaccuracy in the simulated power time-series was minimised by
considering a number of aspects of performance.

3.2.1 PV generation

Given the limited availability of nationwide PV generation data, the generalised model made
use of global irradiance data from weather observation stations around the UK, available on
the MIDAS database. The generalised model used simulated power generation by multi-Si PV
panels, chosen for their lower embodied energy levels and wide market availability. All panels
were assumed to have a rated energy conversion efficiency of 13%, chosen to match typical
efficiencies of multi-Si PV seen in the literature review (section 2.4.6). This ensures that the
embodied energy values used in the analysis will correctly match the technology that is being
analysed.
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Figure 3.4: Upper: efficiency of multi-Si solar panel accounting for thermal losses, with mono-Si panel
for comparison. Lower: Resultant power generation accounting for thermal losses. Peak efficiency is at
400W/m2 irradiance, but highest level of generated power is still highest at the top levels of irradiance.

Calculating power generation from global irradiance data required knowledge of panel
efficiency and the PV module’s performance ratio. Performance ratio was split into two parts:
firstly the thermal losses from heating of the panels, and secondly the module losses from
inverter and system inefficiencies, which were assumed to increase over time but remain
constant within each year. As temperature data was not available for all irradiance data
sources, panel efficiency was assumed to depend on irradiance level, using results from [47].
Thus the efficiency η depends on irradiance I according to the equation

η(I) = (b1 + b2I)log(I)− b3I (3.3)

where b1 = 0.029, b2 = 0.000022, b3 = 0.00023 for a panel with rated efficiency of 13%. This
is graphed in figure 3.4, showing that peak efficiency is at irradiance level of 350W/m2. Using
the available global irradiance data with this equation gives panels an average efficiency of 10%,
with annual energy production being 92.4% of idealised modelled production with a constant
13% efficiency.

To bring the overall performance ratio to 84% [53], further losses of 9.07% were added into
the system. This system efficiency of 91% is close to the 93.5% conversion efficiency assumed in
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the database ecoinvent [176] and is caused by inverter inefficiencies and general system losses.
Furthermore, when modelling solar generation over the full lifetime of the model, performance
ratio was further impacted by a panel degradation of 0.5% (percentage points) per year in
accordance with recent findings on modern PV modules [210]. Thus after 25 years, the modules
would be estimated to have a performance ratio of 73.5%. This linear rate of degradation
is recommended by multiple sources [52]. Photovoltaic failure rates were not included in the
model, as the simulation is of an ideal and well-maintained system, which is expected to have
a lifetime of 25-30 years.

With knowledge of efficiencies and performance ratio, the power generation can then be
simulated as follows. If the time-series of global irradiance I(t) measures the direct solar
irradiance per metre squared, then to model the power generation P (t, y) (in W ) of a poly-Si
PV array of age y years with initial performance ratio 84%, area Am2, variable efficiency η(I)
using eq 3.3 , and 13% rated efficiency (so that peak power 130W/m2 is reached only at test
conditions of irradiance I = 1000W/m2), the following formula was used:

P (t, y) = 0.9093A(1− 0.005y) · η(I(t)) · I(t) (3.4)

The available MIDAS data from 82 weather stations is shown in figure 3.5 using equation 3.4
to estimate annual PV generation potential per metre squared of PV arrays. The linear fits
of this data are compared in the lower graph to actual UK PV generation from the Sheffield
Solar microgen database at www.microgen-database.org.uk, which contains installations over
the period of 2006-2014. With only global solar irradiance data available, it was not possible
to construct perfectly accurate PV power generation time-series, as data is gathered from a
horizontal receptor with no separation of direct and diffuse irradiance, which are required to
model angled PV arrays [33]. However the close match to real UK data shows reliability in this
method of power generation estimation, and patterns of variability in solar availability would be
preserved so energy security can be calculated accurately. Where gaps existed in the data, these
were filled in by copying the solar irradiance measured at the next nearest weather station. If
after performing this step there were still gaps in the time-series, data from the previous day
at that location were used.

For the non-generalised models, some real PV generation was available from the microgen
database at Sheffield Solar at hourly or higher resolution; time-series from 5 locations were used
in the Stocksbridge model. This was not possible for the generalised model, as only a small
amount of data was available at high enough resolution, all from Sheffield locations, which would
give unrealistic results for the whole of the UK. The PV panels used on the test bed as part of
the Sheffield Solar project are mono crystalline Si, and thus have a higher energy efficiency of
14%, producing peak power 185W per 1.3m2 panel. This installation is the source of the high
resolution PV generation data mentioned in section 3.3.2, and some of the input solar data for
the Stocksbridge case study.

3.2.2 Wind turbine generation

The main data available for wind power generation were time-series of wind speed and direction
at half-hourly resolution from the MIDAS database provided by the Met Office, for weather
stations across the UK and Ireland. There was also real generation data from a wind turbine
located at the Centre for Alternative Technology (latitude 52.6, longitude -3.82), being a 500kW
Nordtank NTK turbine with hub height 7m, wind speed and direction measured at a 10-minutely
resolution. Where wind power generation data was not available, two calculations were required
to convert wind speed measurements to wind power generation: conversion of the recorded wind
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Figure 3.5: Upper: graph of simulated total energy generation for 13% efficiency PV, from years 2011
to 2014. Lower: graph of actual PV generation across the UK (normalised to 130W/m2), compared to
linear fit of estimated values derived from upper graph. Estimates using irradiance are slightly lower
than real PV due to conservative measure of performance ratio and assumption of horizontally inclined
panels.

62



speed to the expected speed at turbine hub height, and use of power curves on wind speed to
estimate potential power generation of the wind turbines.

To calculate the wind speed U at height z when wind speed data is available at height zr,
the power law profile can be used with an appropriate value of the wind shear exponent α [211].

U(z)

U(zr)
=

(
z

zr

)α
(3.5)

The value of α is often taken to be 1/7, but this is not an accurate value for real world
situations. Higher values are recommended for grass and forested landscapes, and a value of
0.2 is standard for areas suitable for wind turbine location; typically grassy land with minimal
shrubs and some low buildings nearby. Where hub height was not immediately available (e.g.
when modelling systems with large non-domestic building demand) an approximate formula
based on existing wind turbine data was used to estimate the turbine blade length l of wind
turbine with capacity CkW , and therefore hub height z:

z = 2l = 2
√

0.7028 · C + 36.02 (3.6)

Using the resulting wind speed time-series U(z, t), the power generation was calculated using
standard power curves, modelled as being a cubic curve up to the maximum power (at rated
speed) and flat up to the maximum wind speed when the turbine cuts out. These curves were
based on the manufacturers’ recommended cut-in speed, rated speed and cut-out speed, with an
example power curve shown in figure 3.6. Manufacturers typically give a wind power curve with
constant power for wind speeds above the rated speed, and while in practice there is likely to be
some decrease in production due to gusty conditions or overstrain on the turbine, it is generally
accepted to use this shape of power curve [33]. For most half-hourly wind speed time-series,
there are likely to be only few occurrences of sustained wind speed above the rated speed. The
generic wind turbine used for the generalised model has cut-in speed at 3.5m/s, rated speed at
14m/s, and cut-out speed at 24m/s. When connecting wind turbines to a grid, it is necessary
to include an AC-AC inverter to manage output and keep the network safe. This inverter would
typically work at 95% efficiency, slightly reducing the wind turbine’s output. To represent this
in the model, the final energy output was multiplied by 0.95.

Estimated wind power generation from the 130 suitable weather stations are plotted in
figure 3.7, given a power curve with the same shape as figure 3.6 but power capacity 1kW .
There is more variation in the wind power production than PV generation, and this is indicative
of the more variable nature of wind. However, some weather stations were situated in areas
that would never be chosen for wind power generation, so these locations were removed to give
a more realistic sample of wind speeds. The threshold chosen for removal was a mean capacity
factor of 10% for 1kWh turbines, which is still low but realistic for micro turbines with a low
hub height.

The same underproducing locations remained unused for turbines with higher power
capacities, however the minimum capacity factor is changed, as resulting capacity factors are
affected by modelling taller hub heights with α = 0.2 in figure 3.8. This effect on the wind
power is non-linear, being subject to the power curve, so minimum capacity factors for wind
turbines with power capacity 1.2MW and hub height 60m are on average doubled, rather than
simply multiplied by (60/10)0.2 = 1.43. There is also a more even spread of capacity factor
values, rather than the clustering of low capacity factors that is observed for 1kW turbines.
Further analysis of the wind and solar generation data, in addition to demand data, is covered
in section 4.3 in the preliminary results chapter.

Methods differed depending on the system being modelled. For small networks of demand
with low demand energy, wind turbines typically had a power capacity between 1 and 10kW,
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Figure 3.9: Graph showing a day of one of the household demand time-series at high temporal resolution
(red) and the average UK household load (green). Intermittent spikes occur in the single household load,
but these are completely smoothed out by the adding together of all the nation’s households.

so it was assumed that their hub height was 10m, the height at which wind speeds had been
recorded. Thus for these systems the wind speed was not altered.

3.2.3 Demand data

There is a large variation in demand data, so it was important to get a wide range of demand
time-series from different sources. Crucially, while average demand data was readily available,
the smooth average is not typical of an actual household’s demand, which demonstrates sudden
peaks in power demand. The smooth average curve shown by the green line in figure 3.9 only
exists for a large aggregation of households, and is not suitable for modelling a single household
because its characteristics would only occur when energy storage or demand-side management
is applied.

As household electricity demand simulation is still experimental, relying upon extensive
data collection that is not yet readily available [212] such as occupant behaviour [213], it was
decided that real recorded data was essential to return accurate security results. The majority
of available household electricity demand data was drawn from the CREST survey in
Loughborough, comprising of 22 houses with demand data at 2-minute temporal resolution
over the years 2008-9. These were chosen randomly in a monte-carlo simulation to give
average metric results for a single household, as explained in section 3.3. The sample of
households has a higher than average number (12, or 55%) that use the Economy 7 tariff,
where off-peak electricity use is incentivised by lower electricity prices. Two of these
households had incomplete data where only half of one year out of the two was usable, so the
total number of households with usable data was 20, 10 of which are on an Econ 7 tariff. The
difference in average daily demand profile of the households with a standard tariff are
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Figure 3.10: Graphs showing 2-minutely daily demand profile of the used household data, alongside
half-hourly national average demand profiles. The choice of tariff has in theory a big effect on the shape
of the demand profile, as many households with the Econ 7 tariff use electricity strategically in the
morning (off-peak) to reduce their demand later in the day, but this is not as apparent in the sample
data as in the national data.

compared to the households with an Econ 7 tariff in figure 3.10; there is actually not much
difference other than power spikes in the morning of the daily profile for Econ 7 sample
households (these mostly appear in one household) and some increased consumption at
around 2am, while the national average has a much higher demand peak at 2am. The
maximum power use is on average slightly higher in households with an Econ 7 tariff, shown
in figure 3.11, but there is some overlap and anomalous points, so the difference is not too
significant. The average annual demand is lower than average at 3.77MWh per year, and
their distribution of demand is shown in figure 3.12.

A survey was taken of all the households to establish the nature of their energy use, which
showed that all households had gas or oil heating, and only three used electric heating in addition
to that. Two of these households happened to be ones that had incomplete data, so only one
of the available time-series includes heating as an energy demand. As electricity was not the
primary source of heating in that household, and battery electric vehicles were very rare at
the time of measurement, it could be assumed that the household demand time-series generally
were not linked to any other energy sectors such as heating or transport.

In addition to the household demand there were 15 different non-domestic demand time-
series available, their annual demand shown in figure 3.13 and the type of buildings summarised
in table 3.3. The sources of these time-series are varied, but most are public buildings located
in Sheffield, London or Bristol.
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Figure 3.13: Non-domestic annual loads. The difference between loads is so large that the battery
capacity has to be scaled to demand.

Data source
1 Downing St
2 Hicks (university building)
3 School
4 Carbrook 3
5 Carbrook 4
6 Carbrook 5
7 Office building
8 Joinery workshops
9 Leisure centre
10 Swimming pool
11 Government building 1 (Bristol)
12 Government building 2 (Bristol)
13 Government building 3 (Bristol)
14 Government building 4 (Bristol)
15 Government building 5 (Bristol)

Table 3.3: Non-domestic demand sources. Most are office buildings.
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3.2.4 Thermal demand

For the household system model containing a heat pump, the thermal load had to be modelled
with respect to the household’s electricity demand load. Given that the intent of this model was
to examine how the additional heat load is handled by the system, it was not possible to simply
add a thermal load from an unrelated household. In lieu of existing heat demand data for the
households that supplied the electrical demand time-series, the heat pump was assumed to be
the average size of 3.5kW , and the load was crudely simulated using an occupancy method as
follows.

For each household, the electrical demand time-series was analysed to find days where the
household was unoccupied. It was assumed that if the total electricity use in that day dropped
below 50% of that household’s daily mean consumption, then the household was unoccupied
or in low use (there will always be some consumption from fridge-freezers etc). This was
judged to be realistic given that daily demand rarely dropped below 50% of the mean (see
figure 3.14), and that none of the households used electric sources for their primary heating
system. Furthermore, it was assumed that the household would be well insulated, so would
only require full heating during the winter period of December to February inclusive, where
this load would be continuous to maintain a steady indoor temperature. During the warmer
spring and autumn months (March to May and September to October) the heat pump would
be operated from mid-afternoon to the evening, to account for higher thermal demand in the
evening and night. This operational schedule is shown for one of the households in figure 3.14

While the hot water tanks (cylinders) were included in the embodied energy value for the
heat pump installation, their usage was not explicity modelled in this time-series, as such a
simulation would require more accurate thermal demand time-series.

3.3 Ensemble building and statistical sampling

3.3.1 System organisation

Once input time-series and simulation of the energy storage technologies were established,
they were assembled together to create samples of energy systems. These energy systems were
designed to run over lifetimes of 25 years, allowing for a large sample of electricity generation
time-series and the modelling of battery degradation. Given the dependence of system
performance on weather patterns, and the large range of weather conditions that would exist
over the UK across 4 years of data, repeated measurements of systems with different energy
inputs were taken, with the aim of giving generalised results for UK systems. This approach
varied depending on the particular system that was being modelled, however for all systems it
was assumed that the demand pattern would remain constant year-to-year, while solar and
wind availability would change between years. This fixing of annual demand is a
simplification, but backed up by the available household demand data that shows notable
similarity between years of the same households.

The energy systems are to be optimised with respect to two main variables: storage capacity
and power generation capacity. Storage capacity is varied by running the system model over an
array of different storage capacities, referred to by variable k in figure 3.1, where the range of
values of k depend on the depth of discharge of the chosen battery technology. The total storage
capacity range is always 0-50kWh, but the usable capacity range would be 0− 25kWh for lead-
acid batteries due to the setting of depth of discharge at 50%, for example. Power generation
capacity is varied by running the model multiple times for differently sized inputs; results
comparison is made possible by either comparing between systems using identical generation
time-series, or by using large enough samples of different generation time-series. It is important
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Figure 3.14: Top graph shows the daily electricity demand for one of the households, where dropping
below the occupancy threshold (half of the mean daily demand) indicates that the house was not occupied
that day. Combining that with non-heating during summer, the yellow sections indicate which days the
heat pump will be operated. The bottom graphs show the operation of the heat pump at a half-
hourly resolution during the winter, spring and summer months: constant during winter (except when
unoccupied), in the evening during spring (except when unoccupied), off during summer. Autumn has
the same operational schedule as spring.
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Generation
as
proportion
of annual
demand

PV=0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Wind=0 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0.2 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2
0.4 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4
0.6 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6
0.8 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6
1 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6
1.2 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6
1.4 1.4 1.6 1.8 2 2.2 2.4 2.6
1.6 1.6 1.8 2 2.2 2.4 2.6
1.8 1.8 2 2.2 2.4 2.6
2 2 2.2 2.4 2.6

Table 3.4: Table showing each generation mix scenario (93 in total including the null scenario with zero
generation). White cells show annual energy generation as a proportion of annual demand; greyed out
cells were not used as scenarios due to excessively large generation capacity for grid-connected systems

to note that while power generation capacity has been referred to previously in the text, system
samples have been grouped by their estimated annual energy production rather than rated
power. This was necessary to be able to compare between solar and wind sources, which have
different patterns of production over time, and different capacity factors. Furthermore, because
of the large range in size of annual energy demand values, most strongly across non-domestic
buildings but also between domestic households, annual energy production was normalised to
be a ratio of annual energy demand. It is thus referred to as generation/demand ratio (or
generation proportion), and its ranges are shown below in table 3.4; total generation ratio
ranges from 0 to 2.6 as a proportion of annual energy demand, while the contribution of wind
and solar range from 0 to 2. This approach of scaling generation to demand was not only
taken for convenience, but is realistic as the size of renewable energy installations are generally
dictated by the expected demand.

Three different sampling approaches were taken. Firstly results for each non-domestic
building demand load were taken separately to give preliminary results. Secondly the model
was run where 200 sample systems were taken for each generation mix scenario, and results
were averaged to give typical metric results. This was done for single household systems, and
networked households to simulate a neighbourhood. Thirdly the model was run for the
Stocksbridge case study, using only the load representing the entire area’s demand, and
generation time-series simulated using only weather data particular to the area’s location. For
the Stocksbridge case study a different approach was taken with the generation mix scenarios;
instead there was a base scenario of rooftop PV generation, and additional renewable sources
were added by using local land for wind and solar farms. These approaches are summarised in
table 3.5.

3.3.2 Single demand load analysis

The simplest ensembles were for single demand loads, where a single electricity demand time-
series was selected and used with generation data of different temporal resolutions from Sheffield.
Here the power generation time-series were not simulated using weather data, but were real solar
and wind power generation data. More precise temporal resolutions (up to 2-minutely) were
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System Annual
energy
demand
(MWh)

Number of data
input combinations
considered per
generation/demand
ratio

Technology
included in
systems

Source of input
data

Single
household

4.13 1 PV array,
PbA

Household demand
time-series, PV
generation time-
series

Single non-
domestic
load

61.9 - 1,464 15 (individually,
one for each load)

PV, wind
turbine,
all battery
technologies

Commercial load
time-series, UK
weather data
2011-2014

Average
household

3.73 (average
of all
available
households)

200 (results
averaged over
Monte Carlo
simulation)

PV, wind
turbine
with 10m
hub height,
all battery
technologies

Household demand
time-series, UK
weather data
2011-2014

Average
networked
load

7.46 - 74.59
(2 - 20
households)

12-100 depending
on network size

PV, wind
turbine,
all battery
technologies,
PHS for
largest
communities

Household demand
time-series, UK
weather data
2011-2014

Stocksbridge
case study

21,500
domestic
+ 5.5
commercial

1 (inputs are pre-
defined due to
location)

PV, wind
turbine,
all battery
technologies,
PHS

National demand
time-series for
domestic and
commercial loads,
school and leisure
centre demand
time-series,
Sheffield PV time-
series, Bradfield
wind speed data

Table 3.5: All tested energy scenarios
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used to examine the sensitivity of results to data accuracy, which necessitated the use of PV
generation data from the Hicks building solar array. There was no available wind power data
available at temporal resolution smaller than 10 minutes, so unfortunately the highest resolution
results were only available for PV systems. The limited volume of generation data at higher
resolutions was was the reason for not using a larger sample of generation data.

3.3.3 Averaging using Monte Carlo sampling

It was desired to return results that were representative of an average system in the UK, given
the usual lack of hourly household demand time-series, and the inability of forecasting an entire
year of generation. The model and its results are characterised by the variability/intermittency
in demand and generation time-series, so the inputs could not be aggregated, as this would
simulate a network of energy demand and generation with increased security. Thus instead
multiple samples of energy systems were simulated, individually measured for their sustainability
and security, and then these measurements were averaged over the samples with knowledge of
their statistical characteristics. Choice of energy input data varied depending on the particular
system that was being modelled. When modelling a single or networked household system with
wind and/or solar generation, and battery storage, it was assumed that the household(s) would
have a similar demand pattern year-to-year, while solar and wind availability would change
between years. Demand data from households with standard and Econ 7 tariffs were mixed in
the samples, as there was less difference between their demand profiles than would be expected
(see section 3.2.3). The process for building the demand and generation time-series is shown in
figure 3.15, for a fixed proportion of solar and wind production.

The process is nearly identical for systems with more than one household, quantity n up to
20 households, the only difference being that the demand time-series is created from n randomly
chosen household demand time-series. This creates a new time-series that is again repeated over
25 years. Locating weather stations within 50km of the initial station required conversion from
latitude and longitude to km. The following formula of the Spherical Law of Cosines was used
to find distance d between two points with latitude φ1 and φ2, and longitude θ1 and θ2 (unit
radians):

d = 6371 arccos(sinφ1 · sinφ2 + cosφ1 · cosφ2 · cos(θ1 − θ2)) (3.7)

Finding weather stations within 50km of any random weather station did not necessarily
always return solar irradiance data, due to there being less available time-series, so the available
area was widened to within 2 degrees latitude. The correlation between latitude and solar
irradiance is high (see figure 3.5) so this would still return a pool of solar data that is similar
in annual irradiance.

A similar procedure was followed for non-domestic demand, but different demand sources
were separated out due to their much wider range of demand sizes and profile shapes. This
procedure is outlined in figure 3.16. Given the considerable range of annual non-domestic
demands from less than 100MWh to nearly 1500MWh, results were not averaged between
different loads, and battery capacity was sized to fit the demand. This was done in the model
by dividing annual demand by average household demand, and taking this result as the number
of batteries in the system, where each battery has the usual range of 0− 50kWh storage.

All these results were collated using a biharmonic surface fit to find representative results
with respect to PV and wind power capacity. A biharmonic fit does not find a polynomial
equation to fit the three-dimensional data, but uses locally weighted linear regression to
smooth data. The Matlab function fit was used with model type biharmonic to find this,
which interpolates scattered points. The goodness of fit was measured using the R-squared
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Figure 3.15: Flow chart illustrating the sampling procedure for an averaged household model. Note
there are two years of demand data for each household, which are concatenated alternately to create 25
years.
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Figure 3.16: Flow chart illustrating the sampling procedure for systems with non-domestic demand.
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value. Accuracy in general was improved by using a large number of system samples for all
types of system scenarios.

3.3.4 Stocksbridge scenario

The largest system, the Stocksbridge case study, uses a different method of generating data
inputs given both its considerably larger size and fixed location. Stocksbridge has an
estimated 6,120 households and total domestic annual demand of 27GWh, so the sample was
considered large enough to use annual national demand time-series in combination with some
known time-series, scaled to 27GWh. This was repeated over the 25 years of the system
lifetime. Photovoltaic and wind generation time-series were created from Sheffield data as
discussed in sections 3.2.1 and 3.2.2. Different generation scenarios were modelled from a
baseline of having half of the roof-space devoted to PV installations, expanding capacity
through differently sized wind farms, solar farms and three types of energy storage.

3.3.5 Alternate scenarios

Two alternate scenarios were tested using the single household model: where a domestic heat
pump was added to the load, and where hydrogen was used to store excess generation. These
were simulated using limited sources of data, which is why they were not expanded to be part
of the main results. However, these limited investigations allow for a wider evaluation of the
technology available, and a long-term view of the potential energy transition.

3.4 Analysis and results interpretation

There were multiple lines of inquiry for the analysis: finding suitable metrics for energy security
and sustainability, choosing optimisation methods given certain metrics, sensitivity analysis
on certain error-prone variables, and analysis of the initial data to ensure that results were
representative of realistic energy systems.

In order to optimise the systems, metrics were required to measure and judge chosen
characteristics of the systems. For reasons outlined in the introduction - chiefly pertaining to
longevity and performance of the energy systems - sustainability and security were chosen to
be the most important system values. However, there is still a wide range of metrics available
to measure and illustrate these, as previously discussed in the literature review.

3.4.1 Energy security metrics

Two metrics measuring energy security/reliability were chosen for implementation, being the
most applicable and commonly used in the literature, and in electrical engineering practice.
Both metrics LOLP and EIR provide a measurement of the periods that the system cannot
meet demand, the former measuring the length of those time-periods, and the latter measuring
the energy shortfall during those periods.

Loss of Load Probability

The most common metric used for energy system reliability evaluation, LOLP (Loss of Load
Probability) is a dimensionless ratio that gives the proportion of time that the system suffers
from loss of load:

LOLP (n, c) =
LOLH(n, c)

H
(3.8)
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for a system with energy storage of size n and generation capacity c, run over a period
lasting H hours, where LOLH(n, c) refers to the LOLH (loss of load hours - number of hours
of underproduction) result. LOLP is most relevant to systems that are disconnected from the
grid, and therefore have to completely meet demand, but focusing on only LOLP can risk
unnecessary energy wastage when generation capacity is oversized in order to meet demand.
Lower levels of LOLP indicate higher security.

LOLP for a system’s full lifetime was calculated from the model’s output time-series in
Matlab as so:

>> for year =1: l i f e t i m e
>> −−run model−−
>> for k=1: lenSB
>> l o l p run ( year , k ) = length ( find ( imp(k , : ) >0) ) . / l g e n ;
>> end
>> end
>> l o l p = mean( l o l p run ) ;

where l gen is the length of each year’s time-series (leap years are ignored), imp is the
time-series of unmet (imported) demand (created by the model), and lenSB is the length of
the battery capacity array.

Energy index of reliability

There was some concern that measuring loss of load periods by their duration rather than energy
generation deficit may lead to inaccurate results, particularly when the time intervals are long,
as an interval with a small generation deficit is judged to be as equally underproducing as an
interval with zero generation and large demand. To see how much of a difference this makes,
metrics that measure the energy dimension rather than time were introduced. To measure
underproduction, the energy index of reliability EIR is defined as:

EIR = 1− EENS(n, c)

D
(3.9)

where EENS(n, c) denotes the needed energy not supplied over its lifetime where the system
has energy storage size n and generation capacity c, and D denotes the total electricity demand
of the system over its lifetime. EIR ranges from 0 to 1. EIR therefore shows the proportion
of energy demand not supplied over the system’s lifetime.

3.4.2 Sustainability metrics

As was outlined in the introduction, embodied energy was chosen as the measure of the
sustainability of the technology, being a cost-effective assessment of environmental impact
[162]. The level of embodied energy is correlated strongly with GHG emissions [27] and allows
for a dimensionally consistent analysis with energy generation [179]. Energy return on
investment (EROI) is a dimensionless net energy analysis metric that has been applied to a
broad range of energy sources [214], such as fossil fuels [215], biofuels and renewable energy
[27]. The EROI of an energy source is defined as the ratio of the generated energy to the
lifecycle energy costs [216].

If all energy is normalised to primary energy - i.e. the amount of energy currently required
to generate the equivalent quantity of electrical energy - using the coefficient ηG = 0.31 to
represent the average efficiency of the EU-25 grid, [166] then a renewable energy device with
lifetime L, total energy generation without curtailment Eout = total system energy output over
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Figure 3.17: Demonstration of security metrics: bars at top show periods of under- (white) and
overproduction (black) periods for a system without storage (upper) and 10kWh PbA battery storage
(lower). Yellow shaded area shows the locally used energy EENS(t) when a 10kWh PbA battery is
installed, matched by grey periods of system balance on the lower bar when all demand is met. For a
given system of storage k, LOLP calculation sums the white periods, and EIR sums the yellow area
and divides by demand (area under red line).

lifetime L and lifecycle embodied energy costs EE, has an EROIout calculated as follows [52]
[177]:

EROIout =
Eout

EE · ηG
(3.10)

This is a net energy ratio, as energy lost in the system (e.g. in battery energy conversion
inefficiencies) are not included in Eout. The coefficient ηG is important to preserve energy quality
in the analysis; while most of the energy input for technology manufacturing is thermal, mostly
derived from fossil fuels, the energy output is in the form of electricity, a high quality form of
energy. In a future system powered significantly by non-thermal renewables, the value of this
coefficient would increase proportionally, keeping consistently comparable EROI values across
time.

In EROIout the system boundaries are defined such that any energy generated and not lost
in the system is counted as Eout. However, in certain systems such as grid-connected PV in
a network with high solar penetration, surplus generation is of limited use, and thus counting
it as part of Eout will give a misleadingly high EROI result. Therefore in systems where
overproduction has to be curtailed, EROIused can be used instead, where:

EROIused =
EENS

EE · ηG
(3.11)

and EENS = used energy, i.e system demand that is met by local generation. Note this
was previously used in equation 3.9 for the security metric EIR. Then the EROI metric using
Eout as the numerator can be redefined as EROIout, and EROI can be used as a generic term
for both metrics.

The two different net energy ratios: EROIout and EROIused, can be applied to different
types of energy systems where different outcomes are desired.

The embodied energy values used in the Ein calculation are shown in table 3.6. Values
for PV modules are reduced to account for the separate calculation of inverter EE, which is
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Component Embodied
Energy

Range Units

Min Max
PV module (mono-
Si)

1,614** 474 3,098 kWh/m2

PV module (multi-
Si)

1,063** 280 1,842 kWh/m2

Wind turbine −0.8P +
3081**

-* - kWh/kWcap

Lead-acid battery 321 [137] 200 500 kWh/kWhcap
Lithium-ion
battery

454 [137] 300 600 kWh/kWhcap

NaS battery 488 [137] 370 630 kWh/kWhcap
ZnBr battery 505 [137] 450 550 kWh/kWhcap
VRB battery 694 [137] 600 850 kWh/kWhcap
Pumped hydro
storage

104C +
0.0068E2

del

[123]

- - kWh

Inverter (−36.8 log(P )+
256)

- - kWh/kWcap

Charge regulator (−36.8 log(P )+
256)

- - kWh/kWcap

Heat pump
(3.5kW)

2130kWh - - kWh

Hydrogen
electrolyser

756 - - kWh/kW

Hydrogen fuel cell
(10kW)

36340 - - kWh

Hydrogen cylinder 644 - - kWh

Table 3.6: Embodied energy for all system components. Note P = power capacity, C = storage
capacity, Edel = energy delivered over lifetime.
*Range was not determined for all wind turbine capacities due to lack of data, but section 5.5 discusses
range for micro wind turbines.
**Not including inverter.

addressed in the next section. Range of values is taken either from the literature or (in the
case of PV and wind) from minimum and maximum values used when finding the mean in
section 2.4.6. Note that pumped hydro storage has a lifetime of 60 years [123] but this is not
accounted for in the value chosen for analysis, so the final EROIout values of pumped hydro
will be slightly higher than if the system was used for its full 60 year lifespan. This approach
was taken because it could not be confirmed that a theoretical pumped hydro system would
remain in use after the generating units had reached the end of their lives.

Inverter embodied energy

Embodied energy for inverters and charge regulators with power rating P is calculated using
the formula EE = (−36.8 log(P ) + 256)P , as discussed in the literature review in section 2.4.6.
An energy system may contain many inverters and charge regulators; namely one inverter per
household PV array and one per wind turbine. The power rating of these components is unlikely
to precisely match the power rating of the PV array or wind turbine, as there are limited choice
of inverter sizes available. Therefore the power rating is taken as the closest available size above
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or equal to power generation capacity of the particular generation technology. This discrete
relationship is shown in figure 3.18, where power rating is is more precise for smaller inverters,
but there is less choice of selection the larger they become.

Using these conventions alongside the established embodied energy in table 3.6 can allow us
to consider how each component of an energy system contributes to its total embodied energy.
Three test systems, each of total power capacity 6kW, are shown in figure 3.19 with the embodied
energy of each component made clear. This demonstrates the much higher embodied energy
required for PV systems in comparison to wind, but since the inverter and charge regulator sizes
remain the same, this gives them more proportional embodied energy when wind is included in
the system. These higher proportions show why it was important to calculate inverter embodied
energy separately, considering how embodied energy cost decreases per kW as the systems grow.

3.4.3 Primary energy scaling

It was noted in the literature review that using the coefficient ηG (life-cycle energy efficiency
of the electric grid) cannot simply be taken at face value. To evaluate the effects that different
coefficients may have, the main results were calculated using ηG = 0.31, and then compared to
secondary results using a higher value of ηG (applying to a grid with an already high penetration
of RE), or simply not using ηG at all.

To estimate a reasonable value of ηG for the secondary results, first the life-cycle efficiency
of a 1.2MW wind turbine was calculated, with the assumption that any high penetration of
renewables in the UK would likely be from medium to large wind turbines. Indeed, the “Gone
Green” scenario in the National Grid’s UK Future Energy Scenarios [3] suggests by 2036 a 34%
wind penetration in terms of power capacity, and 40% in terms of annual energy production,
with only minimal solar input. Using average wind production from all over the UK, based on
the wind speed data used in the main model and and 95% inverter efficiency, life cycle efficiency
of the 1.2MW turbine was calculated to be 0.94. At 40% production penetration of the grid,
the grid’s life-cycle efficiency is estimated to be 56%. This is an improvement of 81%, or 25
percentage points. However this is a very rough estimate, as the National Grid scenario includes
many new generation technologies such as new nuclear and carbon capture & storage, whose
efficiencies and embodied energy are fairly unknown. Additionally, if utility storage is widely
implemented on the grid, then new sources of inefficiencies will be introduced. This future value
of ηG is much higher than the estimate of 42% given by Raugei [176] for a grid with 20% PV, as
it is based on a larger penetration of wind, which itself has a more efficient lifecycle than PV.

Due to the optimisation methodology, it is not possible that a different value of ηG would
change the system optimisation results; however the EROI value at those optimums would be
lower, which may have an impact on their acceptability. These projections in higher ηG values
were used in conjunction with estimated reductions in PV embodied energy of up to 80%. These
embodied energy reductions are examined in more detail in the sensitivity analysis.

3.4.4 Metric aggregation

Installing electronic energy storage alongside the renewable energy sources will inevitably reduce
EROI results [208], so there needs to be a way to tell if this drop in EROI is worth the increase
in energy security, i.e. a method of combining or comparing the sustainability and security
metrics. Any methods applied need to be able to both indicate a set of optimal systems, and
to assist in describing system performance as variables are changed.

Rather than taking metric results separately or setting minimum thresholds, it was
decided to combine EROI and EROIused with the mentioned security metrics, to form
two-dimensional composite indicators that can be maximised as part of an optimisation
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Figure 3.18: Upper graph shows convention for inverter sizing according to the device it is connected to
(PV or wind turbine). Lower graph shows the embodied energy of said inverter, using a log relationship
between the inverter’s power rating and its embodied energy.
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process. These indicators are chosen with the context of the particular energy system: if the
VPP exists in a grid where exporting energy to the wider grid is permissable, then EROI can
be used, but if all overproduction must be curtailed then EROIused must be used instead.
This curtailment may be the result of either local connections only having limited capacity, or
where the grid has such a high renewable penetration that there is no guarantee that exported
electricity will be usable. These systems will therefore have a lower indicator result than those
using the EROI measure, as some energy output will have been lost.

When choosing how to combine the metrics, the following factors were considered: weighting,
normalisation, and method of aggregation. Sustainability and security are judged to be of equal
weight in the study. The normalisation for LOLP is a simple subtraction from 1 to ensure that
all metrics return a larger value for higher performing systems. The method of aggregation was
chosen to be geometric, as recommended by the literature [217] to avoid the bias that weighted
addition methods can bring, but alternative optimisation methods were investigated as shown
in section 3.4.5. Composite indicators are therefore defined as follows:

ELOLP = EROIout · (1− LOLP ) (3.12)

ELOLPused = EROIused · (1− LOLP ) (3.13)

EEIR = EROIout · EIR (3.14)

EEIRused = EROIused · EIR (3.15)

Identifying positions of optimal values, and the behaviour of the indicators, gives insight
into the performance of the systems. This method will return Pareto optimal solutions, and the
theory behind this is further explained in section 4.1. Thus the composite indicators are also
objective functions, and will be referred to as such in the results.
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Figure 3.20: ELOLP metric curve for a domestic hybrid lead-acid battery system with PV capacity
1.52kW and wind turbine capacity 1.2kW . Optimal battery capacity according to ELOLP is 6.4kWh.

The results of the four indicators can be compared, showing the effect of different types of
systems and/or measurement methodology. For example, ELOLP and ELOLPused, or EEIR
and EEIRused, can be compared to see how generation curtailment affects the performance and
value of storage, while ELOLP and EEIR can be compared to see whether the choice of time
or energy measurement makes a difference to the results.

Difficulties may occur in optimisation if there is no peak observed when plotting the
composite indicator against generation or storage capacity. This peak refers to the curve
having a maximum point located at a capacity that is not the minimum or maximum of the
range, e.g. in figure 3.20 the example system has a peak for ELOLP where battery capacity is
6.4kWh, so the optimal battery capacity for that system is 6.4kWh. If ELOLP is a constantly
increasing or decreasing curve, conclusions can be more difficult to draw; this would generally
require either an expansion of the range of capacities (where the curve is increasing) to
identify a larger optimal point, or an improvement in resolution (when the curve is decreasing)
to identify an optimal point smaller than the current resolution. However, if the curve is
decreasing this may simply indicate that the optimum occurs where x = 0. See section 4.1 for
more detail on determining how peaks occur with this method of aggregation.

3.4.5 Alternative optimisation methods

As was mentioned in section 2.1.3, the most common methods of optimisation have generally
been some form of linear programming, or sometimes using multiobjective optimisation (which is
often nonlinear). Linear programming is particularly applicable to economic optimisation, which
can incorporate energy security requirements by setting constraints on security measurements
(e.g. LOLP < 0.05). A similar approach could be taken with energy sustainability metrics.
Alternatively multiobjective optimisation can be used to minimise with respect to security and
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sustainability simultaneously. These optimisation methods are more subjective than would be
expected, as the choice of weighting values or other similar inputs have a significant impact
on the optimal result. As the geometric aggregation method summarised above is capable of
automatically weighting the metrics, there was no reason to seek an alternative multiobjective
optimisation method.

Linear programming

[What was the point of this?]

To optimise systems using linear programming, the objective function must be constructed
by summing the cost functions, using appropriate weighting for all inputs. However, as EROI
and the security metrics are ratios on different size scales, where EROIout can range from having
8 or 80 as its maximum boundary, it is impractical and likely to cause unavoidable errors if fixed
weights are applied. Instead, it makes more sense to choose the objective function to either the
sustainability or security metric, and then to apply the complementary metric as a constraint.
Constraints can be set on both underproduction and overproduction levels.

Therefore, constraints were set on energy security levels, and the EROIout value was
maximised as follows where EEG is excess energy generation (proportion of generated energy
not used by local system):

maximise EROIout(S)

where EIR(S) > α

and EEG(S) > β

This ensures a result where underproduction and overproduction are restricted, and the
choice of their constraints α and β have a large impact on the results. The constraints must
be carefully chosen to ensure that an optimum exists. The metrics EIR and EEG have been
chosen because of EIR’s greater accuracy than LOLP . Preliminary results also suggest that
this may lead to smaller optimal battery capacities due to this increase in accuracy.

3.4.6 Sensitivity analysis

The metrics EROIout and EROIused are subject to certain errors, being based upon calculations
of embodied energy that are highly sensitive to multiple variables. Therefore it was considered
necessary to carry out uncertainty analysis so that the difference between systems could be well
understood in terms of their statistical significance, and that the results are not made worthless
by the errors involved in LCA data.

In particular, embodied energy is expected to decline in the future due to increased
efficiency of manufacturing and alternative cheaper materials (for example organic solar cells)
[186]. These are incidentally caused by economic pressures, but this process can be accelerated
if reduction in energy use is specifically targeted by governmental policy, such as reducing
transportation distances and using more energy-efficient manufacturing processes that are not
necessary economically beneficial. Adversely, there is some dispute in life-cycle analysis about
which input processes should be included. For example, energy use of the workers involved in
manufacturing (such as transport to work) is not currently included, and other energy inputs
may be poorly recorded or underestimated. Thus it is useful to test higher embodied energy
values than the ones used in the main model, in addition to the extrapolated lower values that
may be available in the future.

This analysis will also be useful to understand the differences between different storage
technologies, as they are characterised in the model by their embodied energy values, energy
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conversion efficiency, depth of discharge and lifetime. These are all prone to error to a certain
degree, often given by a range of values in the literature, so carrying out a secondary sensitivity
analysis with respect to their efficiency will provide more understanding into how choice of
storage technology affects the system’s performance. Lifetime uncertainty was not studied
directly because it only affects the embodied energy (as the embodied energy is calculated over
the system’s entire lifetime rather than just the battery’s lifetime), which is already addressed.
However variation in the lifetime may result in a wider range of possible embodied energy, and
it should be considered that using a greater depth of discharge with batteries will likely decrease
their lifetime.
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Chapter 4

Methodology validation and
preliminary results

This chapter on methodology validation sets some required initial results. These show that
the methods of analysis and energy system simulation are robust and working as expected.
Section 4.4 shows the impact of model resolution on results using a single household load, and
presents how the objective functions behave for a single system.

4.1 Optimisation methodology validation

When combining two metrics to create a objective function, it is useful to know if this method
will actually produce an optimal result in practice: i.e. if an observed peak is a Pareto optimal
point, and whether it is a global as well as local optimum. To ensure that this was the case,
mathematical analysis was performed on generalised curves that share the fundamental
properties of the investigated metrics. It can be assumed that these curves are smooth beause
the analysis takes place over the entire lifetime of the systems.

Let f(x) = EROI(x) where x can be any quantifiable system value that can be classified as
a security intervention, most likely storage or generation capacity, and EROI can refer to either
EROIout or EROIused. EROI will either be a decreasing curve with no maximum (f ′(x) < 0),
or an initially increasing curve with maximum point EROI = Emax at x = P and decreasing
for x > P . These are indicated by the curves f1(x) and f2(x) in figure 4.1. No optimal results
will be accepted for f(x) < 1.

Let g(x) be a security metric normalised such that larger values indicate better security, so
can be 1−LOLP or EIR. The function g(x) will be an increasing function (g′(x) > 0), because
otherwise the technological intervention implied by increasing x is unnecessary. In a case where
g(x) has a decreasing section for some values of x, the system can be evaluated by either taking
the lowest storage capacity size, or by only looking at the sections of g where g′(x) > 0. For all
values of x, g(x) ≤ 1 and g′′(x) < 0 because security interventions typically have diminishing
returns.

To carry out an optimisation study, we know that increasing x will eventually decrease
sustainability due to oversizing of the system or cost of the intervention, and we are only
interested in situations where increasing x will increase security, because otherwise the security
intervention is useless. Therefore for a system where small values of x improve security more
than sustainability is reduced, a Pareto optimal solution can be found at the limit where a
small increase in x will decrease sustainability more than security is increased. These changes
in sustainability and security must be weighted appropriately, with the most sensible option
being to express the change in terms of a ratio to the total sustainability or security.
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Figure 4.1: Plot of generic sustainability metric f (with alternate versions f1 representing EROIout
and f2 representing EROIused) and security metric g.

In terms of the functions f and g, a Pareto optimal point at x = Q exists where Q is the
largest x for which

− f ′(x)

f(x)
≤ g′(x)

g(x)
(4.1)

where the left-hand side is increasing and the right-hand side is decreasing, i.e. −f ′(Q)/f(Q) =
g′(Q)/g(Q) and −f ′(x)/f(x) > g′(x)/g(x) for all x > Q. Rearranging equation 4.1 gives

f ′(x)g(x) + f(x)g′(x) ≥ 0 (4.2)

The left hand side of this is simply (fg)′(x), so x = Q where (fg)′(x) = 0, i.e. the Pareto
optimal exists at the peak of fg(x), as shown in figure 4.2. Note that when f(x) has a peak at
x = P , f ′(x) > 0 for all x < P , so (fg)′(x) > 0 for all x < P also. Therefore the optimal exists
where x > P , which makes sense. In the opposite situation where the decrease in sustainability
is very high for even small x, it may be possible to see a curve with no peak, shown as the
trivial result (fg)0(x) in figure 4.2. This can also occur when the gradient of g(x) is small for all
x, i.e. when increasing x makes little appreciable difference to the security. For such systems,
the optimum is at x = 0. This result cannot exist for systems with the f2(x) curve or when
g(0) = 0, but it will likely be a rare case regardless of the metrics chosen. If in practice a large
number of systems return the trivial case, this is either an indictment of the cost of the security
intervention, or of the metrics chosen for the analysis.

To ensure that finding the peak of fg(x) is a robust method of optimisation, the local
optimum must also be a global optimum; i.e. this peak must be either the only peak, or the
highest. Otherwise if a peak is observed within a certain range of x, it will be unknown if a
better optimal solution exists for a larger value of x outside the range.
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Figure 4.2: Plot of generic objective function fg, showing a peak at x = Q. Trivial result with no peak
is also shown, where the optimum is at x = 0.

To show that Q is the global optimum, suppose another peak exists where x = R > Q.
Then

f ′(Q)g(Q) = −f(Q)g′(Q)

and f ′(R)g(R) = −f(R)g′(R)

Divide these (the denominator is by definition non-zero) to give

f ′(Q)g(Q)

f ′(R)g(R)
=
f(Q)g′(Q)

f(R)g′(R)

f(R)g(Q)

f(Q)g(R)
=
f ′(R)g′(Q)

f ′(Q)g′(R)

But we know f ′(Q) < f ′(R) and g′(Q) > g′(R), so

f(R)g(Q)

f(Q)g(R)
> 1

f(R)g(Q) > f(Q)g(R)

and since fg(Q) > f(R)g(Q) and f(Q)g(R) > fg(R), it follows that

fg(Q) > fg(R) (4.3)
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Figure 4.3: Energy time-series for the initial test of the model, with Pba battery capacity 0.5kWh.
Demand is a flat line, and the yellow fill shows how much demand is met by direct supply and battery.

so the peak at x = Q is higher and therefore the global optimum. It has therefore been
shown that finding the first peak of the curve fg will give the global Pareto optimal solution
for the system with respect to sustainability and energy security.

When comparing optimum results from multiple systems, it is still viable to choose the
highest fg results as the optimum over all those systems. However this cannot be assumed
to be the global optimum, as the behaviour of f and g are more complex, dependent on some
dynamic properties such as storage capacity sizing.

4.2 Model validation

Before moving to the generalised results, an initial test was carried out with simplified input data
to ensure that the model was working correctly. The demand data was approximated by a flat
demand of 0.15kWh/half-hour, photovoltaic (PV) generation by a daily square wave with peak
1.75kWh/half-hour, and wind generation by a flat supply of 0.1kWh/half-hour. These time-
series, alongside the satisfied demand and battery state of charge for a 0.5kWh PbA battery,
are shown in figure 4.3. Here it is shown that when supply exceeds demand, the battery is
charged until it is at 100% charge, then once supply drops below demand the battery discharges
to meet demand with a minimum at its depth of discharge at 50%.

The degradation of PV panels and each type of battery is also shown to perform as expected.
Figure 4.4 shows that while annual wind energy remains constant over the lifetime (note in the
model using real data this would vary due to weather), annual solar energy drops linearly as was
defined in the methodology by 0.5% each year (note this is percentage points, not cumulative).
Battery degradation follows two patterns: their depth of discharge drops each year by an average
of 1.35% of the original depth, modelled by the normal distribution D ∼ N(0.0135, 0.0015) (this
appears close to linear in the graph), and they also have a rate of failure modelled by the Weibull
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Figure 4.4: PV and wind power supply over lifetime of system, using fixed supply to show linear
degradation of PV module performance ratio.

distribution as shown in the methodology in figure 3.3. Figure 4.5 shows batteries of all five
types degrading their usable capacity over time and being replaced by new batteries when they
either reach the end of their life or drop below 80% depth of discharge. The graphs show that
lead-acid (PbA) batteries are replaced so often that their depth of discharge never reduces by
much, while batteries with very long lifetimes such as vanadium redox (VRB) may be replaced
before the end of their life. This gives a surprise benefit to batteries with high rate of failure,
as their usable capacity suffers less degradation, however their rate of replacement is accounted
for in the embodied energy values, so the cost of the system reflects this.

All components and energy flows of the model behave as required, so the model works as
expected and can be used to find results for real electricity demand and weather time-series.

4.3 Time-series preliminary analysis

To get a clearer idea of how the model is affected by the variability and intermittency of
the energy time-series, for both renewable generation and household demand, there was a small
amount of analysis done to determine these characteristics and relate them to the system results.
As this was carried out prior to the running of the model, the results are presented here.

4.3.1 Fourier transforms

Performing a Fourier transform displays the typical frequencies of the time-series, and can
illustrate major differences between different types of generation and demand. It is expected
that PV generation and household demand would both show daily frequency patterns, but this
does not mean they match because correlation is not indicated.

Comparing wind power and solar power generation Fourier transforms in figures 4.6 and 4.7,
you can see that while they both have daily frequencies, the solar diurnal pattern is very strongly
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Figure 4.5: Battery degradation of depth of discharge (DOD) and rate of replacement over lifetime of
system. Sharp peaks show when a battery is replaced, so age and DOD are reset.
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Figure 4.6: Fourier transform of PV power generation in the UK. The only major frequency is daily,
but cloud cover etc is a big enough factor that frequencies of more than two days are very low.
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Figure 4.7: Fourier transform of wind power generation in the UK. Frequencies higher than daily ones
can be observed in abundance, which decline in amplitude as frequency increases. Rather than have daily
cycles like solar power, wind power at a given time has more in common with the most recent previous
measurement than any other measurement. This is why it is difficult to predict wind power accurately
more than 2 days in advance.
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Figure 4.8: Average daily profiles of solar irradiance in UK data. A simple peak at noon is observed
for all weather station locations.

pronounced, while wind power has significant patterns at an hourly or minutely scale. So while
wind power is affected by day and night, this is only one of the many variables affecting wind
availability. The average daily profiles of solar and wind availability are shown in figures 4.8
and 4.9. Wind speed exhibits a peak at 3pm, which is unexpected, while solar exhibits a much
larger peak at noon.

The Fourier transform of domestic demand in figure 4.10 shows similar daily patterns to solar
production, however smaller peaks indicate other patterns present in the data. Non-domestic
demand has a similar result, shown in figure 4.11 with more non-daily frequency peaks present.
There is generally more variation between non-domestic building demands, and depending on
the particular building, they may not follow a standard daily routine in electricity use.

4.3.2 Integral time scale

A common metric in wind power analysis, the power integral time scale is the average time
over which fluctuations are correlated [218] [211]. First we must calculate the normalised
autocorrelation function R with time-lag m of energy time-series S(t) with variance σ2 and
mean µ:

R(m) =
E[(S(t)− µ)(S(t+m)− µ)]

σ2
(4.4)

The initial zero crossing C can be inferred from R(m), which is the value of m where the
line R(m) first crosses the x-axis. Then the power integral time scale PITS is calculated by
integrating R(m) between 0 and C:
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Figure 4.9: Average daily profiles of wind speed in UK data. A small peak at 3pm is observed for
many of the weather stations, particularly those with low typical wind speed.

Frequency (days)
0 1 2 3 4 5 6 7

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000
Fourier transform of household demand from CREST

Am
pl

itu
de

Figure 4.10: Fourier transform of sample household demand. The strongest frequencies are daily, and
are also some multiple-day cycles observed, so the demand within a week is generally fairly similar.
Higher frequencies are less strong, so each day experiences large changes in demand between each hour.
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Figure 4.11: Fourier transform of sample non-domestic demand. Daily frequencies are observed as
with household demand, but also hourly frequencies, showing a generally flatter demand.

PITS =

∫ C

m=0
R(m) dm (4.5)

Plotting the autocorrelation functions of wind and solar power production is very useful in
illustrating the difference in their fluctuation behaviour and predictability, shown in figures 4.12
and 4.13 where each autocorrelation function is plotted up to their corresponding initial zero
crossing. Solar power is generally more consistent, but wind power has large variability in
both the initial zero crossings and also within each individual autocorrelation function. This is
because wind power typically has much more variation in the lengths of productive time periods.
Sometimes there will be days of constant production (i.e. near-constant wind speed at the same
direction), sometimes short periods of unpredictable gusty weather, sometimes long periods of
nonproduction caused by low or non-existent wind speeds. This is highly relevant in optimising
wind systems for electrical energy storage, as the length of time storage is required for will
be difficult to predict in most locations. However note that the smoothness and uniformity of
autocorrelation in fig 4.12 does not mean that PV production is totally predictable and uniform,
but merely that the diurnal pattern of solar is consistent. In fact, the larger values of integral
time scale for wind production is indicative of wind power‘s predictability, and wind power
production can currently be predicted with good accuracy for up to two days ahead.

As there are so many wind power time-series included, it is difficult to pick out individual
values of their initial zero crossings, so their probability distributions are graphed in fig 4.14.
The variation between years, and the wind range within years, really shows how variable wind
power can be. Finally, the power integral time scales are shown for solar and wind in figures 4.15
and 4.16. Thus the average time that fluctuations are correlated is around 4 hours for solar
power, and 10-200 hours for wind power (but clustered mainly around 20-50 hours). Note that

96



m (hours)
0 1 2 3 4 5 6 7 8

R
(m

)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Autocorrelation function for PV power generation from MIDAS stations

Figure 4.12: Autocorrelation of modelled PV power generation in the UK, showing a correlation scale
of hours. The results of all weather stations are very similar to each other.
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Figure 4.13: Autocorrelation of modelled wind power generation in the UK, showing a correlation scale
of days, evidence of multiple-day long constant production. Results vary widely, and autocorrelation is
often sinusoidal in shape due to repeating patterns in production.
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this result is influenced by the fact that wind and solar data was measured hourly, which gives
larger PITS results [218]. However, regardless of this, these figures show that wind typically
experiences slower fluctuations than solar time-series.

The power integral time scales for demand time-series are shown in figures 4.17 and 4.18.
Household demand has the fastest fluctuations with typical PITS of value 1-2 hours, while non-
domestic demand has fluctuations of a similar speed to solar, at 5-10 hours. Anomalies at 34
hours show where the autocorrelation is so high between days that an extra 24 hours has been
added to the time-scale, so can be considered similar to a time-scale of 10 hours. Non-domestic
demand profiles shows no evidence of smoothing for larger buildings/demand, possibly because
even the smallest buildings already have a relatively smooth demand.

4.3.3 Probability distribution function

Plotting the PDF of a power time-series shows the likelihood of certain levels of power being
required (in the case of demand time-series) or supplied (in the case of generation time-series).
Comparing solar and wind power PDFs in figures 4.19 and 4.20 shows a similar proportion
of time not producing for both, but removing those instances of non-production shows that
PV modules very rarely produce their top level of power in the UK, while wind turbines can
be at full capacity up to 10% of the time. However there is much greater variability between
locations for wind power, as was demonstrated by the results earlier in this section and by the
total production in fig 3.7.

Comparing the PDFs of solar and wind to household and other building demand can give
an idea of the difficulty of matching supply to demand, as a mismatched distribution of supply
power can only meet demand through load shifting. Plotting the PDFs of household and
non-domestic demand in figures 4.21 and 4.22 shows that the shape in power demand is quite
different to that of supply, as there is a more gradual decline in the distribution as power demand
increases, in contrast to the much larger proportion of time that wind or PV supply is very low
or at zero. Again, this reinforces the need for time shifting of loads.

PDFs for the 1.2MW wind turbine show a lower proportion of time spent at low or zero
production than the 1kW turbine; this is due to the stronger wind speeds at higher altitudes
being captured by wind tubines with greater hub height.

4.3.4 Capacity factor

Capacity factor of the generation available is useful to know alongside system performance, as
it gives insight into how applicable the results are to real world systems. Typical capacity factor
values for PV installations in the UK are around 10%, using the data from figure 3.5, and this is
matched by the low latitude results in figure 4.23. Typical capacity factor values for micro wind
turbines are also around 10% [197] and this is matched by the data in figure 3.8, however some
locations show very high capacity factors. Capacity factors are expected to be much higher for
medium to high power wind turbines, and using the power law profile in equation 3.5 to model
production by 1.2MW turbines shows a much more suitable range of 25-50% capacity factors,
with less clustering around the lower values. These results are likely to overestimate slightly as
changes in wind direction are unaccounted for, as is time required for wind turbine maintenance.
Note that wind capacity factor is unaffected by latitude unlike solar capacity factor, as local
climate is a bigger factor, depending on many variables such as proximity to coast, roughness
of terrain etc.
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Figure 4.14: Probability distributions showing initial zero crossings of modelled wind power generation
in the UK. Each year has a different distribution, but all show an initial zero crossing of around 10 days
being typical.
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Figure 4.15: Probability distributions showing power integral time scale of modelled PV power
generation in the UK. The time scale is generally around 4 hours.
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Figure 4.16: Probability distributions showing power integral time scale of modelled wind power
generation in the UK. The time scale can range up to 300 hours, but below 100 hours is usually typical.
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Figure 4.17: Probability distributions showing power integral time scale of sample household demand.
Most have a time-scale of around 1-2 hours, showing a demand that fluctuates very quickly.
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Figure 4.18: Power integral time scale of sample non-domestic demand. The longer PITS shows that
non-domestic demand is more smooth and predictable than household demand, as they fluctuate over a
time period of 5-10 hours (the working day) rather than hourly. Unrelated to size of annual demand, so
larger loads are not necessarily smoother.
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Figure 4.19: Probability distribution function of modelled PV power generation in the UK. They spend
over half their time either not producing or producing at low levels.

4.4 Varying temporal resolution

There were some concerns that running the model only over half-hourly resolution would
remove important fluctuation detail from the data, particularly in light of security issues such
as frequency and voltage quality which take place over very short time periods from seconds
to minutes. For instance, figure 4.24 shows the maximum power demand for all households
where changing from a half-hourly resolution to 2-minutely can double these values per time
interval. As the household demand data was accurate to a resolution of 2 minutes, and some
2-minutely PV generation data was available, some brief results were obtained from this data
to analyse the PV model resolution’s effect on results.

The household with its demand load closest to the national average of 4kWh/year was chosen
for this test. The system has household with average annual demand of 4, 131kWh (peak power
demand 0.1−0.2kW per two minutes), a 4kWp PV array composed of 22 1.3m2 mono-Si panels
(Sharp NT-185U1 [219]) each with rated power capacity 185W at 14.2% efficiency, and varying
size of PbA battery. The usual energy system model was run with these inputs over a lifetime
of 30 years (estimated lifetime of PV) for different temporal resolutions of this input data to see
the effect on objective function results. The resulting objective function curves are displayed in
figure 4.25, and their corresponding optimal battery capacities shown in figure 4.26.

Important points from these results are that as resolution increases in accuracy, optimal
battery capacity decreases when using all objective functions except possibly EEIR, which is
mostly flat. It was concluded that as resolution increases, the model can account for smaller
fluctuations in supply or demand, so the battery is utilised more for these smaller amounts,
resulting in smaller optimal storage capacity. Crucially, this is the reason that the energy-based
security metric EIR is mostly unaffected by the resolution, as size of fluctuations can be better
detected when accounting for size of energy losses. The ELOLP results are close to those of
EEIR, however suggest a need for up to 2kWh more storage at low resolution, and up to 1kWh
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Figure 4.20: Probability distribution function of modelled wind power generation in the UK. Larger
wind turbines spend more time producing at their highest levels than small ones, and also spend less
time producing at low levels, but both spend about 20% of the time not producing.
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Figure 4.21: Probability distribution function of sample household energy demand. The majority of
the time is spent requiring less than 0.2kWh per half-hour, but households can require up to 5kWh of
demand on very rare occasions.
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Figure 4.22: Probability distribution function of sample non-domestic energy demand. The PDF is
more spread out due to variation in demand loads.
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Figure 4.23: Capacity factor of modelled PV power generation in the UK. There is high negative
correlation with latitude, and capacity factors range from 0.12 to 0.07.
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Figure 4.24: Max power draw from the available households (using years with complete data) with
relation to their temporal resolution. Reducing resolution smoothes out intermittent peaks, reducing max
power demands. Resolution is measured by length of time intervals rather than number of observations
per hour.
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Figure 4.25: Performance results for a single household PV-only system with varying temporal
resolution, where resolution is denoted by number of observations per hour. Peaks show optimal battery
capacity, and while resolution makes a difference to the x and y positions of the peaks, the level of
difference is dependent on the chosen objective function.
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Figure 4.26: Optimal battery capacity results for a single household PV-only system with varying
temporal resolution. The higher the resolution the more accurate the model is expected to be, so if there
is a large change then this objective function is likely to be more prone to errors when using low resolution
data. Using low resolution appears to push LOLP -derived optimisation towards larger batteries than
necessary.

less storage capacity at high resolution. The objective functions that account for under- and
overproduction (EuLOLP and EuEIR) give higher optimal battery capacities, but otherwise
show a similar pattern with EuLOLP decreasing while EuEIR remains mostly static. The
crossover point for both pairs of results is at 6 points per hour (10-minutely).

Looking at the curves in the top two graphs of figure 4.25, it is also apparent that as
resolution improves, the system appears to have higher performance for all battery capacities.
The most likely reason for this is that when resolution is poor, loss of load periods may appear
longer than they actually are: e.g. if a loss of load period is only be ten minutes long, and
supply is not sufficently high enough before or after that period, an entire half-hour period may
be thought to suffer from loss of load if that is the minimum resolution available. The opposite
could also occur: a short loss of load period may be obscured by low resolution if power supply
exceeds demand afterwards, but this appears to be less likely, or only occurring for shorter
periods. This order is not followed as strongly by the results that use the EIR security metric,
showing that accounting for energy losses reduces this possible error. They still show some
variation in curve height, but this could be due to a number of variables relating to the choice
of load, as there is no logical order to the height.

These limited results suggest that LOLP-based objective functions are less accurate than
EIR-based ones. This applies to both optimal battery sizing and the actual objective function
values. However even when there is reason to suspect error arising from low resolution, this
doesn’t necessarily mean that models must be run (or real life systems monitored) at a 2-
minute resolution, as there is little difference between 8-minutely resolution (7.5 points/hr) and
2-minutely results. Using EIR as the energy security metric may also reduce a great deal of this
error.
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Figure 4.27: Boxplots showing discrepancy between planned annual supply (green dotted line) and
actual supply (boxplots).

4.5 Power generation capacity

In the methodology it was mentioned that samples of energy systems were stratified by their
annual energy production from wind power and PV, as a proportion of the household’s annual
energy demand. These samples were shown in table 3.4. Due to practicalities of the
methodology, the actual supply to demand ratio over a system’s lifetime did not necessarily
match its expected production. There were many reasons for this: variability in solar and
wind availability from one year to the next, limited availability of sizes (PV arrays were
rounded to the nearest panel area, and wind turbines were rounded to the nearest 0.2kW), PV
panel degradation over time, and variability between the two available years of each household
demand data. This can be observed in figure 4.27 where the average supply is typically smaller
than expected (below the dotted green line) and the level of scatter above and below the mean
is high. This is realistic given the unpredictable nature of wind on an annual time-scale.

It is also useful to relate these supply:demand ratios to actual power capacity of the
technologies involved. Given that the total of annual household demand ranges from 1266kWh
to 6446kWh, in addition to the variability in renewable energy availability, this leads to a wide
range of possible capacity sizes. These ranges are shown in figure 4.28.
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because of its lower capacity factor, especially in the north of the UK.
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Chapter 5

Generalised results

The majority of energy system scenarios investigated in this thesis used a generalised model,
where randomised samples of energy systems were generated using solar irradiation and wind
speed data from across the UK, in combination with electricity consumption data from 20
households or non-domestic loads. The system scenarios differ according to their type of demand
and their choice of technology:

• Single households with battery storage:

– Lead-acid (Pba) batteries

– Lithium-ion (li-ion) batteries

– Sodium-sulphur (NaS) batteries

– Zinc-bromine (ZnBr) flow batteries

– Vanadium redox flow batteries (VRB).

• Networks of up to 20 households, using PbA batteries only.

• Non-domestic systems (mostly commercial and public buildings, some industrial) using
PbA batteries only.

• Single households with hydrogen storage using electrolysis and PEM fuel cells for hydrogen
creation and utilisation.

• Single households with heat pump load, using PbA batteries.

All these systems optimise across a full range of PV, wind turbine and storage capacities,
scaling these capacities appropriately to facilitate fair comparison between systems of different
sizes.

The single household systems with batteries are also analysed in further detail to investigate
the correlation between sustainability and security, testing the commonly assumed hypothesis
that they are necessarily the inverse of one another. This is followed up in the larger energy
systems of networked domestic demand and non-domestic demand. There is also an evaluation
of the methodology: first finding the correlation between security metrics to decide whether
one is more suitable than the other, then finding the sensitivity of results to the uncertainty of
input data.

This sensitivity analysis touches many strands of concern, and leads to significant results
regarding future technologies and how the makeup of the electricity grid affects primary energy
scaling. The analyses are as follows:
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Objective
function

Security concerns Dimension
of security
measurement

Sustain-
ability
metric

Security
metric

ELOLP Underproduction Time Eout LOLP
EuLOLP Underproduction and

overproduction
Time Eused LOLP

EEIR Underproduction Energy Eout EIR
EuEIR Underproduction and

overproduction
Energy Eused EIR

Table 5.1: Objective function summary.

• Uncertainty analysis of component embodied energy, using ranges of embodied energy
values from the literature.

• Uncertainty analysis of battery cycle efficiency, again using ranges of battery efficiency
from the literature.

• Sensitivity analysis of estimated future reduction in PV embodied energy.

• Sensitivity analysis of potential future grid efficiencies.

• Alternative results without using primary energy scaling.

All the standard optimisation analyses are performed using the four objective functions in
table 5.1, but the uncertainty analysis, reflection on the similarity of results, and conclusions
from the high-resolution tests in section 4.4 allow the investigation to proceed using only the
security metric EIR. Therefore only EEIR and EuEIR are used to analyse the hydrogen and
heat pump systems, and the case study in the next chapter only uses EuEIR.

The chapter is concluded with a comparison of the results to a more traditional optimisation,
where strict EIR constraints are chosen to give a more rigid choice of low energy cost systems.
This allows for a more open discussion on how the choice of methodology reflects the aims and
objectives, and how results and conclusions are affected.

5.1 Results for single household systems

This section examines the optimisation of systems composed of a PV array and/or wind turbine,
supplying a single household and balanced using a battery (PbA, Li-ion, NaS, ZnBr or VRB)
of varying size. The four objective functions in table 5.1 are each used to find optimal results,
and these results are compared to give an idea of the optimal systems and the viability of
each objective function. Graphs show results for systems with PbA batteries, but results are
compared in the text to systems with other battery technologies, and all result graphs are shown
in appendix B.1. Optimal results for systems with all batteries are discussed in section 5.1.5.

Size of components (PV array, wind turbine and battery) are all scaled to the system to allow
for reasonable comparison between samples. Therefore PV array and wind turbine are shown
as a measure of their total expected average output across the system’s lifetime, divided by the
household’s average demand (this is the same metric used to create the samples) and the optimal
battery capacities are shown as the total battery capacity (kWh) divided by the system’s total
power capacity (kW). This can be conceived as a measure of battery-hours: the amount of time
the battery would take to charge from 0% to full charge when the generation is running at full
power capacity. This was considered a more realistic scaling than using the annual demand as
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Figure 5.1: Optimal results for ELOLP for a PbA system, using the biharmonic method to fit the data.
This particular fit has r2 = 0.90, where the biggest scatter is for systems with majority wind input. The
fitted surface is shown more clearly in figure 5.2 using 2D contours.

the denominator, or annual energy output, as the battery works on time-scales of hours rather
than years, and is going to be in the most use when the system is producing at full capacity.
Furthermore, the battery-hours unit also expresses the value of the battery to the system: for
example, a system requiring twice the number of battery hours of another system means that
the value of storage is doubled.

The analysis proceeds as follows:

1. Find optimal storage capacity for each combination of PV and wind power capacities.

2. Optimise these results with respect to relative size of generators.

3. Compare results between choice of objective function and battery type.

The results for each battery type across all system input variable are displayed using two
graphs per objective function, the first displaying the optimal battery sizes and objective
function results (performance), the second displaying these optimal systems’ sustainability
and security values (using appropriate metrics). These results are for all systems optimised
with respect to battery capacity, and it is predefined that for all metrics, the performance for
a system with zero inputs is 0. All surface plots are fitted using the biharmonic interpolation
method within Matlab, which uses weighted linear least squares regression. The biharmonic
method was chosen because the results do not necessarily fit a polynomial surface, and there
are a large enough enough number of sampled systems that fitting by interpolation gives a
fairly smooth surface. The biharmonic fit of optimal battery results determined by ELOLP
are shown in figure 5.1 to demonstrate how the fitted results generally look.
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Figure 5.2: ELOLP results showing optimal PbA battery capacity (contours) and system performance
(shading) for all input capacities. Best security results lie along dashed line, and best performance is at
large wind-only systems, while worst is for small PV systems.

5.1.1 Results from ELOLP analysis

Plotting the optimal results with respect to wind and PV capacity in figure 5.2, it is clear that
large wind-dominated systems give the highest ELOLP results, and reducing this wind capacity
results in lower ELOLP -performance. Adding in PV capacity reduces this performance even
more quickly, unless wind capacity is at zero.

Wind-dominated systems also show less need or suitability for storage, as increasing wind
capacity alone gives a very slow increase in optimal battery capacity, while increasing PV
capacity alone gives an immediate requirement for storage, reaching its peak at 0.5 and
decreasing slowly thereafter. For small hybrid systems, increasing PV and wind input equally
has more of a complex effect, where systems with low PV input (below 50% of demand)
behave more like wind-only systems, and all systems with higher PV input will increase their
optimal battery size when extra capacity is added, regardless whether the capacity is PV or
wind.

The thick dotted line in figure 5.2 shows the combination of PV and wind that provides the
best security for a given total capacity, taken from the contours in figure 5.3. Systems existing
on this line have hybrid energy sources, but rely more on PV input than wind, with reduced
reliance on battery storage as generation capacity increases, which is matched by a gradual
increase in performance ELOLP .

When comparing single-source systems, PV-only have better security than wind-only
systems, as increasing to maximum capacity results in an LOLP of 0.4 for wind, but 0.25 for
PV. However increasing all types of generation capacity has diminishing returns on security,
showing that for these systems there are always going to be loss of load periods where
additional capacity cannot solve the problem.

PV may bring more security to the systems, but the wind-only systems have a much greater
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Figure 5.3: EROIout (shading) and LOLP (contours) results for optimal PbA energy systems. Dashed
line shows where best security exists for total energy supply, and best security overall is for large hybrid
systems, skewed towards those with a larger PV input.

advantage in terms of their EROIout, having a range of values over triple of the PV-dominant
systems. This EROIout has a peak for small wind turbines with an output of 40% of total
demand, which only have an LOLP of 0.7-0.75 and therefore a low ( 10) ELOLP value in
comparison to the larger wind-dominant systems. This interplay between the EROIout and
EIR values shows a certain amount of anti-correlation, however it is not true that increasing
one necessitates a decrease in the other, as in many cases increasing PV capacity has a negligable
effect on EROIout but an improvement in LOLP values.

Analysing all systems across all batteries, it is apparent that while wind turbines facilitate
higher EROIout results, some combination with PV is useful to reduce LOLP. However, at the
current embodied levels of PV technology, adding battery storage to wind is actually a more
cost-effective intervention, as moving to the right on the graph in figure 5.3 gives a very quick
decline in EROI.

These results are for PbA batteries, which are presumed to be the worst performing batteries
tested here. Other batteries succeed in reaching 0.1 LOLP with fewer resources, namely Li-ion
requires 12kWp PV, 4.5kWp wind and 10kWh battery, NaS requires 10kWp PV, 3.5kWp PV and
10kWh battery, ZnBr requires 8.5kWp PV, 3kWp wind and 10kWh battery, and VRB requires
10kWp PV, 3.5kWp wind and 10kWh battery. Analysing all systems across all batteries, it is
apparent that while wind turbines facilitate higher EROIout results, some combination with PV
is useful to reduce LOLP . However, at the current embodied levels of PV technology, adding
battery storage to wind is actually a more cost-effective intervention, as moving to the right on
the graph in figure 5.3 gives a very quick decline in EROI.

115



Figure 5.4: Residuals for the ELOLP -optimal fits. While there is some negative scatter for ELOLP
and EROI residuals for wind-only scenarios, caused by a small number of very high EROI results, this
is not systematic enough to suggest a bad fit of the data.

Goodness of fit

The biharmonic fit shown in these graphs is a good fit to the results, as shown by the residuals in
figure 5.4. A bad fit would display systematic deviation from 0 in the residuals, but these show
an even cluster around r = 0, with the exception of some wind-only systems with unusually high
EROI values. These are not numerous enough to suggest a bad fit, however are not anomalous
thus have not been removed either. These residuals also show that there is much more range
in the optimal results when one energy source is dominant over the other (i.e. in high-PV or
high-wind scenarios) in general. The fit to ELOLP and optimal battery size have r2 = 0.90
and r2 = 0.78 respectively.

5.1.2 Results from EuLOLP analysis

Using the EROI metric EROIused gives the performance of a system when its excess energy
is not usable by the external grid, resulting in a lower performance if there is unnecessary
overproduction. It is not expected that any of these systems will be able to reach good levels of
LOLP without producing too much energy at some points in time, so the EROIused results will
always be lower than EROIout unless the system is severly under capacity. A less direct result
of the EROIused metric is to add value to the batteries; now instead of merely contributing to
security via decreasing LOLP , they can also improve the system’s sustainability by reducing
energy losses.

This added value of the batteries is immediately apparent in the greater optimal capacity
of batteries in figure 5.5, where even wind-dominant systems utilise up to 4.6 battery-hours of
storage, and PV systems have a peak of 5.4 battery-hours. Unlike the ELOLP results, there
is a second peak of battery capacity for wind-dominant systems, with twice the performance of
the peak for small PV-only systems. The EuLOLP values are also much lower and more spread
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Figure 5.5: EuLOLP results showing optimal PbA battery capacity (contours) and system performance
(shading) for all input capacities. Optimal battery capacities are much bigger than when using ELOLP ,
particularly for wind-dominated systems. Less stark variation in performance exists, but medium-sized
wind-dominated systems have best performance and large PV-only systems have the worst. Best security
results lie along dashed line.

out than ELOLP , such that the highest performing systems are mid-large size wind-dominant
rather than large wind-only systems, and PV-dominant systems are able of showing over half the
performance of the best wind-dominant systems, unlike the steep differential seen with ELOLP .
These EuLOLP results and their similar battery sizes suggest that wind-dominant systems are
more prone to periods of overproduction, an observation that is borne out by energy export
results in figure 5.6. Therefore when a wind system is unable to export excess production, it
has more to gain by adding additional units of PV or storage capacity.

The dashed line of best security results has a similarly shallow gradient to that in the
ELOLP results, with the exception of a detour at PV≈ 0.5, where the second peak of battery
capacity is exhibited. This also shows a slight preference for more equal large hybrid systems;
now the wind turbines are matched by a larger battery capacity, their EIR results become
comparable to PV.

This explains the more symmetrical nature of the LOLP results in figure 5.6, but
PV-dominant systems still have a slight edge over wind-dominant ones, reaching 0.2 LOLP in
comparison to 0.3. All of the LOLP values are better when optimising with EuLOLP ,
benefitting from the larger storage capacity. Their sustainability is however much decreased,
PV-dominant systems in particular having an EROIused of less than 5. Large wind-only
systems also have much lower EROI, as so much of their production is lost, and they have the
extra cost of larger batteries.

When measuring the systems for exported energy in figure 5.7, the difference between
EROIout and EROIused is less obvious than you would expect, with only around 500kWh
saved annually under EuLOLP -optimisation. However while comparing systems with the
same generation capacity shows little difference, the optimisation towards smaller wind
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Figure 5.6: EROIused (shading) and LOLP (contours) results for optimal PbA energy systems. Large
hybrid systems give best security, while small wind-only systems give best sustainability.

turbines means that an EuLOLP -optimal system will curtail less than half the amount of
energy exported under ELOLP . The process of optimisation does change the total exported
energy for wind-only systems, as the contours close to the y-axis gain a negative gradient.
However curtailed energy for wind-dominated systems still exceeds that of PV-dominated
systems, despite larger battery capacity for some of the systems. It must be noted here that as
the battery capacity is scaled to the generation power capacity, and wind turbines on average
have a higher capacity factor than PV, the absolute battery capacity in kWh would be lower
for all wind systems, so their overproduction is a side-effect of their higher capacity factor.

The graphs in figure 5.7 also illustrate the difference between PV and wind fairly well, as
adding a small amount of PV to a mid-sized wind-only system will not increase the amount of
unusable generated energy (despite an increase in overall production), whereas adding a small
wind turbine to a PV-only system will generally result in increased excess. However once the
wind-only systems are producing over 150% of annual demand, the system becomes saturated
and PV no longer has that effect.

Seasonal results show the relationship between wind and PV more clearly; summer (June
to August) has the best security as long as there is substantial PV capacity, and winter has
the best LOLP results for wind-dominant systems, but still has a respectable showing for PV-
dominant systems which are able to contribute 0.5 LOLP when no wind is present. This is
admittedly small, but contradicts the commonly held assumption that PV is completely useless
in winter. When taking all seasons into account, PV does appear to deliver the most security
to the system; however given that winter is the period of greatest demand, there is reason to
give it more weight. The overall EuLOLP optimal result of wind-only systems would give a
result of 0.3-0.35 LOLP in winter, which is slightly better than the security over all seasons.
Therefore this optimal result is better than it may seem, as it delivers more security when it is
most needed.
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Figure 5.7: Exported energy (kWh per year) of single household systems.
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Figure 5.8: Seasonal ELOLP results for optimal PbA energy systems. Summer shows the best LOLP
results, with PV systems being able to utilise the more predictable solar power, but winter months show
the best LOLP for wind-dominant systems and spring.

Goodness of fit

The residuals from the fits were plotted as with ELOLP , shown in figure 5.9. There is much
less deviation from the fit in these results, particularly for the EuLOLP result itself, however
some highly negative residuals are again observed for wind-only systems. Fit for EuLOLP and
optimal battery size have r2 = 0.88 and r2 = 0.86 respectively.

5.1.3 Results from EEIR analysis

It is expected that optimisation using the EIR metric rather than LOLP would result in similar
outcomes to above, however the EIR metric may be better at accounting for the severity of
loss of load periods, as it quantifies the energy shortfall rather than just their lengths. This is
also more relevant in these systems where it is possible to import energy from the grid, rather
than a national grid where energy shortages may result in a blackout.

The reason for using both metrics was to compare and contrast results, to see how strong a
relationship they truly have. Indeed, the EEIR performance results in figure 5.10 show a very
similar shape to the graph in figure 5.2, with a peak for the largest wind-only systems and a
similar range of battery capacities. This result is repeated for the EROIout and EIR results in
figure 5.11, which shows very little difference to the ELOLP graph.

Using the same system inputs as mentioned in the ELOLP section to compare results at
high levels of security, a PbA system with 10kWp PV, 3.5kWp wind capacity reaches nearly 0.9
EIR with around 19kWh storage. For other battery technologies, a Li-ion system with 12kWp

PV and 4.5kWp wind reaches nearly 0.9 EIR with around 8kWh storage, and a NaS system
with 10kWp PV and 3.5kWp wind capacity reaches nearly 0.85 EIR with around 8kWh storage.
The flow battery systems show that a ZnBr system with 8.5kWp PV and 3kWp wind reaches
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Figure 5.9: Residuals for the EuLOLP -optimal fits. The scatter is generally lower than that seen in
the ELOLP results.

nearly 0.9 EIR with around 10kWh storage, and a VRB system with 10kWp PV and 3.5kWp

wind reaches nearly 0.9 EIR with around 11kWh storage.

A summary of the differences between EEIR and ELOLP results is in table 5.2, and more
detailed differences in the security results are shown in figure 5.12. The security metrics LOLP
and EIR are not expected to perfectly match, however mapping their variation in difference
can show how they detect levels of security given different ratios between PV and wind power
input. The graphs of these differences show a systematic difference where security is measured
as better (+0.4) for mid-sized wind-only systems when using LOLP , corresponding with a
larger battery capacity (+0.5) for those systems. There is not a consistent difference in battery
capacity across all systems, as using EEIR for hybrid systems results in a slightly smaller
(-0.1) battery capacity than when using ELOLP . Therefore the high resolution results from
section 4.4 may not necessarily hold when wind is included in the system. However this does
not mean that EIR is not more accurate than LOLP .

Goodness of fit

The residuals from the fits are similar to those found with ELOLP , and are shown in figure 5.13
where wind-only systems again have the highest level of scatter for EROIout. Fit for EEIR
and optimal battery size have r2 = 0.89 and r2 = 0.77 respectively.

5.1.4 Results from EuEIR analysis

As EEIR can be compared to ELOLP , so can EuEIR results with EuLOLP . Again, the
optimal battery sizes in figure 5.14 show a similar pattern to that of EuLOLP -optimal results,
with a double peak for small PV-only and mid-sized wind-dominant hybrid systems, and a
similar range of battery capacities. Regarding EuEIR performance, mid-sized wind-dominant
systems again have the highest value at EuEIR = 0.7.
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Figure 5.10: EEIR results showing optimal PbA battery capacity (contours) and system performance
(shading) for all input capacities. Results are very similar to when using ELOLP optimisation, except
for slightly smaller battery capacities.
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Figure 5.11: EROIout (shading) and EIR (contours) results for optimal PbA energy systems. Again,
results are very similar to when using ELOLP .
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Parameter Optimal results in
common

Differences

Battery
capacity

Similar range of battery
capacities and shape of
fitted surface.

ELOLP gives larger
optimal battery capacities
than EEIR when PV
input is low.

Objective
function

Identical position, similar
gradient.

No significant differences.

EROIout Similar location of peak
and shape of fitted
surface.

No significant differences.

Security Similar range and shape of
fitted surface (comparing
1− LOLP and EIR).

1− LOLP > EIR.

Table 5.2: Comparing results between the underproduction analyses ELOLP and EEIR.
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Figure 5.12: Differences between the security metric results and optimal battery capacity, when
comparing ELOLP and EEIR. LOLP is normalised to 1 − LOLP to better compare with EIR.
The differences are very small, however these graphs show a systematic difference where security is
measured as better for mid-sized wind-only systems when using LOLP , corresponding with a larger
battery capacity for those systems.
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Figure 5.13: Residuals for the EEIR-optimal fits. The patterns of scatter is almost identical to that
seen in the ELOLP results.
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Figure 5.14: EuEIR results showing optimal PbA battery capacity (contours) and system performance
(shading) for all input capacities. Battery capacity reaches a plateau for high power capacity, and gives
larger batteries for wind-dominated systems than PV. Performance is highest for small wind-dominated
systems.
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Figure 5.15: EROIused (shading) and CC (contours) results for optimal PbA energy systems. Best
security exists for medium-sized hybrid systems, and best sustainability for small wind-only systems.

In figure 5.15 the EROIused values show a similar pattern to the EuLOLP -optimal results,
with a very strong peak for small PV-only systems, and the security measured with EIR again
looks stronger than the LOLP results.

While this difference is only small, it is likely caused by a number of loss of load periods
where the energy shortfall is only small, and therefore appear as less significant when measured
with EIR as opposed to LOLP .

A summary of the differences between EuEIR and EuLOLP results is in table 5.3, and
differences in security metrics and optimal battery capacities are shown in figure 5.16. The
differences are very similar to when EROIout is used in the optimisation: security measured by
LOLP shows a slight preference (+0.04) towards PV-only systems, and there is little difference
in battery capacities.

Goodness of fit

The residuals from the fits are shown in figure 5.17 where wind-only systems again have the
highest level of scatter for EROIout. Fit for EuEIR and optimal battery size have r2 = 0.87
and r2 = 0.78 respectively. Compared to the fits for EuLOLP results, the battery fit is not as
strong (EuLOLP had r2 = 0.86) which is visible in the wider range of battery residuals.

Impact of EROIused

It is apparent that when excess energy is curtailed (applying the EROI metric EROIused)
performance decreases, optimal battery capacity increases, EROI reduces and the increased
battery capacity leads to an increase in security (measured by EIR). However, comparing
graphs of outcome by eye does not accurately display the variation in these differences depending
on the type of system.
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Parameter Optimal results in
common

Differences

Battery
capacity

Similar range in battery
capacities.

None.

Objective
function

Peaks exist for similarly
sized wind-only systems.

Peak for EuEIR is
steeper, and as more
households are added the
optimal power capacity
increases faster for
EuLOLP than EuEIR.

EROIused Peak exists at similar
location.

No significant differences .

Security Hybrid systems show the
best security.

Best EuLOLP is for large
PV-dominated hybrid
systems, but best EuEIR
is for small hybrid systems
around 3−4kWp capacity.

Table 5.3: Comparing results between the objective functions EuLOLP and EuEIR, which both
account for under- and overproduction.
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Figure 5.16: Differences between the LOLP and EIR results when optimising with EROIused. LOLP
security shows preference to PV systems, but there is little notable difference in battery capacity other
than for small wind-only systems where LOLP oversizes.
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Figure 5.17: Residuals for the EuEIR-optimal fits. The patterns of scatter is almost identical to
that seen in the EuLOLP results, except for the battery fit residuals where there is increased scatter,
especially for small wind-only systems.

Figure 5.18 shows how moving to a non-exporting system has the biggest impact on systems
with wind power sources, as their overproduction leads to a proportionally lower performance
and EROIused value. The EROIused is further reduced by adding battery capacity of up to 3.4
battery-hours (greatest for wind-only systems), which has the benefit of increasing EIR by up
to 0.12 (see figure 5.19). PV-dominated and hybrid systems show the lowest addition of battery
capacity per unit of production, and therefore experience the fewest changes in sustainability
or security.

The excess energy for EEIR and EuEIR optimisation are virtually identical to those of
ELOLP and EuLOLP (shown in figure 5.7), so instead of repeating those results, figure 5.20
shows the difference in excess energy when moving from a EEIR optimisation to a EuEIR
optimisation. All systems have some reduction in excess energy, however it is the wind-only
systems that benefit the most. Their increase in EIR also shows that the excess energy is
not simply being lost in the battery, but stored and used by the household demand when
instantaneous generation is not enough.

5.1.5 Full optimisation across all input variables

Optimal system results are shown in table 5.4, where the systems are optimised with respect to
their generation capacity as well as battery capacity, for each type of battery technology. These
results are calculated by finding the highest performance across all optimised systems for each
objective function. The four other different battery technologies all give very similar results in
terms of the shape and peaks of their output variables, but the specific values will be slightly
different.

All optimal systems include zero PV capacity (this is not included in the table), and a wind
capacity that supplies twice the annual demand when using the EROIout metric, or around
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Figure 5.18: Difference in performance (shading) and battery capacities (contours) when optimising
with EuEIR rather than EEIR. Large wind-dominated systems show the biggest drop in performance
as their overproduction becomes penalised, and they are given much larger batteries to curb excess
generation.
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Figure 5.19: Difference in EROI (shading) and EIR (contours) when optimising with EuEIR rather
than EEIR. Wind-only systems show the biggest drop in EROI as their overproduction becomes
penalised, and they are given much larger batteries to curb excess generation, which increases their
security.
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Figure 5.20: Difference in excess energy when moving from EEIR optimisation to EuEIR optimisation.
Contours show the difference in kWh per year, where the difference is the greatest for wind-only systems.
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Figure 5.21: Optimal battery capacity and security results for all single household systems. When
energy exporting is disallowed, battery capacity has higher value, but lower security is achieved as
energy input is roughly halved.

the same as annual demand when accounting for curtailed energy using the EROIused metric.
The biggest difference between systems with different battery types is in their optimal battery
capacities, where PbA always requires the largest capacity (having low DOD and low EE), and
VRB the least (having high DOD and high EE). However the higher capacity of PbA batteries
are not necessarily enough to ensure better security, as shown in figure 5.21.

The consistency of giving wind-only systems for all optimisations shows that advantages in
EROI are more likely to trump advantages in security, as PV is demonstrated to bring security
advantages to the system. However it cannot be assumed that the performance metrics are
entirely governed by the EROI result, as they always return an optimal system with wind
capacity higher than the EROI alone would suggest. Therefore it can generally be concluded
that a reduction in EROIout from increasing wind capacity (this reduction in EROIout comes
from the associated increase in battery storage rather than the turbine itself) brings more cost-
effective security benefits than bringing in new/additional PV capacity. The same can be said
for EROIused results, except that the increase in battery storage is greater, and EROIused is
directly impacted by the excess energy of larger wind turbines.

This combination of EROI and security within the objective functions means that the
maximum points of performance are much broader plateaus than the steep peak of EROI
values (whether EROIout or EROIused. These plateaus are widest in the y-axis (wind
capacity) but do also show some breadth in the x-axis. For example, increasing PV capacity
by 0.2 (per unit of total system demand) will decrease the maximum EROIused from 29 to 9,
but will decrease the maximum EuEIR from 7.1 to 6.4. Therefore while wind-only systems
are shown to be optimal, the strength of this optimality is weaker than if EROIused was
applied alone.

Comparing objective functions

For all battery technologies, objective functions ELOLP and EEIR return identical results for
power generation inputs, being the maximum wind input available. Given no cap on excess
energy production, and the improving energy return for wind turbines as they increase in
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Objective
function

Wind
turbine
output

Battery
capacity

Sustain-
ability

Security Perform-
ance

Annual
excess
energy
(kWh)

Goodness
of fit

PbA
ELOLP 2.0 1.31 30.5 0.39 18.5 4672 0.90
EuLOLP 1.2 3.99 12.6 0.43 7.3 1955 0.88
EEIR 2.0 1.31 30.9 0.59 18.2 4683 0.89
EuEIR 1.2 3.98 12.6 0.56 7.1 1959 0.87
Li-ion
ELOLP 2.0 1.17 30.3 0.35 19.7 4644 0.90
EuLOLP 0.8 2.52 16.6 0.52 8.0 981 0.87
EEIR 2.0 1.20 30.2 0.64 19.3 4635 0.89
EuEIR 0.8 2.53 16.6 0.47 8.0 983 0.85
NaS
ELOLP 2.0 0.94 30.9 0.37 19.5 4913 0.90
EuLOLP 0.8 2.13 16.5 0.53 7.7 1075 0.87
EEIR 2.0 0.98 30.8 0.62 19.1 4901 0.89
EuEIR 0.8 2.14 16.5 0.46 7.6 1077 0.86
ZnBr
ELOLP 2.0 0.75 31.4 0.39 19.2 4580 0.90
EuLOLP 1.0 2.11 14.2 0.49 7.3 1342 0.89
EEIR 2.0 0.78 31.3 0.60 18.9 4570 0.90
EuEIR 1.0 2.14 14.2 0.50 7.2 1338 0.87
VRB
ELOLP 2.0 0.57 30.4 0.41 17.8 4807 0.89
EuLOLP 0.8 1.32 16.3 0.56 7.2 1073 0.86
EEIR 2.0 0.52 31.4 0.57 17.6 4867 0.89
EuEIR 0.8 1.35 16.3 0.44 7.2 1070 0.86

Table 5.4: Summary of optimums for all single household systems, where all optimums have zero PV
capacity. Wind turbine output is measured as a ratio of annual demand, and battery capacity as a ratio
of wind turbine capacity. Goodness of fit is measured using r2.
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capacity, this would likely always be the case no matter how large they were permitted to be
in this model. The EROIout, measured security and exported energy results are also fairly
consistent across all battery types, possibly because the optimal battery capacity is minimal.
Performance using the EROIused metric similarly show very little difference between each other
for each type of battery system.

When comparing the results using EROIout against the ones using EROIused, it is
immediately apparent that wind turbines suffer greatly from having their excess production
curtailed, as many of the systems optimise to under-capacity. Furthermore, much larger (from
2 to 3 times the size) batteries are required to capture the excess energy, despite the systems
being considerably smaller. This increase in battery capacity leads to improved security,
however it is not enough to offset the massive reduction in EROI, so performance overall drops
to less than half for all systems.

For all systems and objective functions, the fit to the data is fairly good, with r2 values from
0.86 to 0.9. Given the range in absolute capacity sizes of the systems, this is notably high.

Comparing battery technologies

Optimal battery capacities are strongly dependent on which battery is used. For all objective
functions, energy systems with PbA batteries require larger battery capacity, and systems with
VRB storage require the smallest battery capacities. However, their optimal systems retain
similar levels of sustainability and security regardless of battery size. This is the result of
optimisation skewing battery capacity to reflect similar outputs.

The three variables that likely affect battery performance here are embodied energy, depth
of discharge and efficiency. Large PbA batteries are required because of their small usable
capacity and low efficiency, and their low embodied energy makes large batteries less of a
hindrance. However for batteries like VRB with their large usable capacity and high embodied
energy, only smaller batteries are needed/possible. When comparing the actual performance of
the optimal systems, Li-ion batteries always give the highest performance regardless of applied
metric, and VRB systems show the worst, but the difference between them is not very big.

5.2 Results for networked systems

To simulate networked households as part of a network/virtual power plant, the available
household demand time-series were randomly combined to create networks of up to 20
households. As the number of households increases, the smoother the demand load becomes.
While 20 households is not a large enough network to give a smooth demand like in
figure 3.10, combining these households does give a flatter daily profile, as shown in
figure 5.22. Running the model with this increased load can find how the optimal component
sizing of the system depends on its number of loads, and how this affects the system’s
sustainability and security. Depending on the objective function, the battery size required
could go up (to account for higher power spikes), go down (as smoother demand means less
need for storage) or stay roughly the same in proportion to demand. The system is modelled
with the assumption that each household has a battery of equal size to each other, and this
individual household battery is the capacity that is optimised.

Limits to this model come from the shortage of household demand time-series: there will
be less variation in the demand samples as system size increases because only 20 demand time-
series exist. This must not be mixed up with the phenomenon of smoothing, which would
occur for any size of population. Because of this lower variation, and to reduce computational
demand, the sample sizes are reduced for larger systems, as shown in table 5.5. These sizes are
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Figure 5.22: Demand time-series of all available households for a day in early March. Thick black
line shows the average demand from these households, which is flatter and more predictable than each
individual household, but not enough households are included to give the smoother national average
profile.
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Number of
households

Sample
size

ELOLP
r2

EuLOLP
r2

EEIR
r2

EuEIR
r2

1 200 0.90 0.88 0.89 0.87
2 150 0.90 0.88 0.89 0.87
3 100 0.91 0.89 0.90 0.89
4 100 0.91 0.88 0.89 0.87
5 100 0.91 0.88 0.89 0.86
6 100 0.91 0.88 0.89 0.88
7 100 0.91 0.88 0.89 0.86
8 100 0.92 0.88 0.90 0.87
9 100 0.91 0.89 0.90 0.87
10 100 0.92 0.90 0.91 0.88
11 100 0.92 0.89 0.91 0.88
12 100 0.92 0.91 0.91 0.90
13 100 0.92 0.91 0.91 0.91
14 100 0.92 0.89 0.90 0.87
15 100 0.92 0.89 0.91 0.88
16 100 0.92 0.91 0.91 0.89
17 100 0.92 0.88 0.90 0.86
18 100 0.92 0.89 0.90 0.88
19 100 0.93 0.91 0.92 0.90
20 100 0.93 0.92 0.92 0.92

Table 5.5: Sample size of the domestic grid systems and goodness of biharmonic fit (r2) for their
optimal battery size.

for the 92 samples stratified by supply ratio to demand, shown in table 3.4, so the total number
of tested systems is 92 x sample size, plus the null system with zero inputs. The goodness of
fit measured by r2 shows a slight increase as the number of households increase, possibly as the
samples begin to converge to give a more regular domestic load profile. The increase in network
load (averaged over the systems’ 25 year lifetimes) is shown in figure 5.23.

All sizes of network returned optimal systems with zero PV capacity and wind capacity high
for EROIout performance, or mid to large-sized wind capacity when using EROIused, similar
to with single households. Wind capacity is shown in figure 5.24. There is possibly a trend of
increasing wind turbine capacity for EuLOLP -optimal systems, but the results are so erratic
that very little can be strongly observed. These erratic results can be explained by viewing the
overall systems result for the largest networks in figure 5.25. While the plateau for maximum
EuEIR performance has been narrowed with respect to PV capacity (recall EuEIR results had
a wide plateau for maximum performance) there is still a broad range of wind-only systems
that achieve very similar EuEIR results. Therefore very small changes in input sample data
can shift the maximum point of this plateau from 0.6 up to 2 without much of a change in
performance.

Optimal battery capacities show a stronger relationship to the size of the network, decreasing
logarithmically as network size increases. Here there is also more visible difference between the
different security metrics, as LOLP derived optimals use notably larger batteries than with
EIR for all sizes of network. It was expected that larger networks would add to the system’s
security by diversifying the load, reducing the need for batteries, and this graph shows that
batteries do indeed offer much less value to the system when the network is larger. However
they are still useful, unless using EEIR results.

All performance measurements of the networks (figure 5.27 showed improvement as more
households were added. These improvements mirrored the sizing of the batteries, as the
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Figure 5.23: Demand samples for the network models. As the network increases in number of
households, the spread of annual demand increases, but variance shows no significant change when
size of demand is taken into account.
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Figure 5.24: Optimal wind capacity for networks of increasing size. Wind capacity remains at 200%
of demand for ELOLP and EEIR-optimised systems, and shows some increasing under EuLOLP but
not EuEIR.
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Figure 5.25: Optimal wind capacity for networks of increasing size. Wind capacity remains around
200% of demand for ELOLP and EEIR-optimised systems, and shows some increasing under EuLOLP
but not EuEIR, but results are not strong enough to make this a convincing trend.
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optimisations show a logarithmic decline.
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Figure 5.27: Performance at the optimum for networks of increasing size. Performance measured by
ELOLP and EEIR increases slightly erratically, while EuLOLP and EuEIR are smoother but show
less of an increase.

optimisations with smallest batteries had the greatest increase, and vice-versa.

However splitting the performance into EROI and security gives much less clear results
when EROIused is involved, as their values are much more sensitive to the erratic optimal
wind capacities for each network. While EROIout increases regardless of the security metric
applied, EROIused fluctuate, showing a non-significant increase, and their security results show
no particular overall trend.

Plotting these security results against the optimal wind capacity shows that it is indeed the
fluctuating wind capacity giving these results, and that the larger wind capacities are giving
higher security. The correlation ρ between LOLP and EuLOLP -optimal wind capacity is
−0.99, and the correlation between EIR and EuEIR-optimal wind capacity is 0.99, while the
equivalent correlations with battery capacity are 0.13 and 0.22 respectively, showing almost no
relationship.

Returning to figure 5.29, security for grid-exporting networks (using EROIout actually
decreases as more households are added. This decrease is caused by the drop in battery
capacity; while networked demand provides some level of security, this does not entirely
replace the security lost by reduced battery capacity.

Finally, systems allowed to export to the grid show some proportional increase in exported
energy as more households are added to the networks when using EEIR-optimal systems; this
is due to their smaller batteries. EEIR and ELOLP -optimal systems end up exporting a great
deal of energy, such that more is exported than used. This however is to be expected when
the systems produce 200% of demand. When using the EROIused metric this level of export
is lower, particularly when using EuEIR optimisation which remains below 50% excess (as a
percentage of annual demand).

Overall, the results show that added extra households to the system offsets an amount of
battery capacity, however this substitution of load flattening is not as effective as the battery
capacity lost, especially when it comes to limiting excess energy. EROI results do benefit greatly
as the battery cost is reduced, however the costs of interconnection and smart-grid technology
are unaccounted for in the analysis. To remain an improvement, this management network for
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Figure 5.28: EROI values at the optimum for networks of increasing size. EROIout increases noticably,
while EROIused changes erratically but shows no overall trend up or down.
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Figure 5.29: Security for optimal non-domestic systems. Security is erratic when EROIused is part of
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Figure 5.30: Security for optimal non-domestic systems, plotted against wind capacity. There is a
stronger correlation between wind input size (which was shown to be unrelated to demand size) and
security, so these results are shown instead of plotting against demand size. Note LOLP is normalised
to 1− LOLP to better compare with EIR.
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Figure 5.31: Energy exports/curtailment at the optimum for networks of increasing size. Results are
scaled to energy demand, to better compare networks at different sizes. Only systems under EEIR
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n households cannot exceed an embodied energy cost of xkWh, where

x = Ein(n) ·
(
P (n)

P (n)
− 1

)
with P being network performance measured by ELOLP , EEIR, EuLOLP or EuEIR, and

Ein being the embodied energy of the network. Both are functions on the number of households.

5.3 Non-domestic systems

5.3.1 Characteristics of non-domestic load

The model was also run using non-domestic building demand. This was considered a necessary
part of the analysis because household demand has a typical daily profile where evening demand
is highest (shown in figure 3.10) but as non-domestic and industrial buildings are places where
people work, the electricity demand is greatest during the daytime. Regarding the specific
loads used in the model, all household average daily profiles are shown in figure 5.32, which
can be compared to the daily demands of the non-domestic loads in figure 5.33 (both at a
half-hourly resolution). These household demands show peaks of demand in the morning in
addition to the evening, from households with Econ 7 tariffs which incentivise off-peak electricity
use. In contrast, most of the non-domestic loads have either a flat demand from mid-morning
until the evening, or a rounded peak around noon. This means that these buildings will be
better positioned to use solar generation. There is also a much greater variation in size of
demand between loads. The yearly demand for households, shown per day in figure 5.34,
is at its lowest during the summer and highest during December and January, so when the
sun is shining brightest their electricity demand is lowest. Non-domestic buildings have more
differences between them in their daily demand across the year (figure 5.35, but around half
show a similar dip in summer, while a couple show peak demand in summer and others are more
erratic or have a fairly consistent demand across the year. This will depend on the use of the
building, for example the gaps in demand for Load 3 match to holidays, as it is the electricity
demand of a school.

Therefore using these alternate demand time-series in the model can show how much of
an effect the daily profile has on the system’s optimal state, particularly in relation to PV
capacity. A secondary consideration, referring back to section 4.3, is that non-domestic demand
is less variable hour by hour than domestic demand. This is shown by the longer power integral
time scales of non-domestic demand (3-6 hours rather than 1-2), and the greater number of
frequencies picked out by Fourier analysis at non-daily frequencies. This is why the daily
profiles in figure 5.33 are much smoother than those in figure 5.32, and so this analysis can be
compared to the network systems of the previous sections. Comparing battery requirements
and security levels can therefore explain to what extent batteries can be useful for unexpected
peaks in demand typical of small household loads, in comparison to predictable regular demand.

5.3.2 Results for non-domestic system model

As the difference between different non-domestic annual demand loads is considerable, and the
tested range of battery capacity is scaled to annual demand, results are not averaged between
loads as with the domestic demand, but taken separately and compared to demand size, similar
to the network results. Figure 5.36 shows the optimal wind power capacity of thes non-domestic
systems, which has some similarities to the networked household systems. Optimisation with
ELOLP continues to give maximum wind capacity, however EEIR shows some systems with
smaller optimal wind capacities. These systems also have no battery capacity.
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Figure 5.32: Average daily profile over year 2008 for each household. Peaks exist in the morning and
the evening, showing a level of anti-correlation with PV generation.

Wind capacities are all lower when optimising with EuLOLP or EuEIR; the former still
provides a total energy supply of around 100% annual demand, however the latter frequently
shows significant underproduction, with a reduction in supply for some larger loads. There is
a group of smaller loads that show higher wind capacity, and it is shown below that these also
use a higher battery capacity. The considerable scattering of these results shows an increased
sensitivity of EuEIR to the specific load, there being a differentiation between these loads that
did not exist for the generalised household model.

Observing optimal battery capacities in figure 5.37, it is notable that EEIR optimisation
gives zero optimal battery capacity for nearly all non-domestic systems. EuEIR optimisation
also gives zero battery for some systems, and a rapid decline in capacity for the non-zero results
as annual demand increases. In contrast, ELOLP and EuLOLP show some decrease in battery
capacity, but always return non-zero results. All trends here are linear or unclear, a direct
contrast to the logarithmic decreases for network results in figure 5.26, because there is no
smoothing of the load as annual demand increases.

To investigate the reason for the zero battery optimisations, EEIR results for all wind and
PV capacities were viewed for non-domestic load 1 in figure 5.38. This shows that battery
capacity is only ever suggested for systems with more than a certain PV capacity, and the
change is very sudden from zero to 100kWh optimal capacity. Load 1 is chosen here as an
example, but this is exhibited for all non-domestic loads. If wind capacity is also included
then battery capacity is required for smaller PV capacity, but otherwise the results show that
batteries are only required for high PV use. This suggests that underproduction poses less of
an issue for non-domestic loads, but that LOLP is not precise enough to pick up on this. In
fact, the ELOLP and EuLOLP optimal battery capacities are lower than would be expected
if comparing to domestic systems, but higher than large domestic networks; they are roughly
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Figure 5.33: Average daily profile for commercial loads. Peaks generally exist at or around noon,
giving high correlation with PV generation.
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Figure 5.34: Daily time-series over the year for averaged household loads. Demand is lowest in summer
and highest in winter, so is again anti-correlated with PV generation.

comparable to networks of 2 households.

This can be explained by returning to the demand profiles. While non-domestic loads with
larger annual demand do not have a flatter demand profile in the same way as networked systems,
the non-domestic demand is inherently flatter than non-domestic demand, as was shown by the
time-scale analysis of non-domestic demand loads in section 4.3. There it was shown that the
time-scale of household demand was 1-2 hours, while the time-scale of the non-domestic loads
was 5-10 hours, defined by the length of the working day. This means that fluctuations in the
non-domestic load are much slower than fluctuations in the household demand, giving a more
steady and consistent load that is less reliant on energy storage. In particular, EIR is very
sensitive to this reduced dependency on batteries.

The reduced optimal battery capacity under other optimisations cannot be explained by any
flattening of the load, as the PITS results showed no positive correlation with total demand,
so the reduction in battery capacity must be caused by something else. Further investigation
shows that

Figure 5.39 shows increase in performance similar to that seen in domestic grids in
figure 5.27, excluding the initial sharper incline, as no notable smoothing of demand occurs.
This increase in performance for ELOLP and EuLOLP comes mostly from their
sustainability levels (figure 5.40), as energy security results in figure 5.41 show a high level of
scattering, and even a decrease in security under EuLOLP . The strongest increase in security
(in terms of fit strength r2 = 0.7 and gradient steepness) comes from EEIR optimisation,
where batteries are unused for all optimal systems. EEIR optimisation also gives the highest
EROIout values, as does EuEIR for the highest EROIused values.

In fact, EIR shows an increase in security whether using EROIout or EROIused, whereas
LOLP always shows stagnant or decreasing security. Given that battery capacity does not
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Figure 5.35: Daily time-series over the year for commercial loads. Much variety exists; while most
have less demand in summer, some peak in summer and others are erratic or consistent over the year.
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Figure 5.36: Optimal wind capacity for non-domestic systems, plotted against annual demand.
ELOLP -optimisation gives the maximum 200% wind input for nearly all loads, but EEIR appears
more sensitive to specific loads, showing lower wind capacity for some smaller loads. When forced to
curtail excess production, wind capacity is reduced further, especially when optimising with EuEIR,
resulting in under-capacity for most of the systems, especially the largest loads.
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Figure 5.37: Optimal battery capacity for non-domestic systems.
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Load
ID

ELOLP
r2

EuLOLP
r2

EEIR
r2

EuEIR
r2

1 0.94 0.91 0.93 0.89
2 0.96 0.96 0.97 0.96
3 0.95 0.94 0.94 0.94
4 0.92 0.88 0.91 0.86
5 0.93 0.88 0.91 0.84
6 0.93 0.92 0.92 0.92
7 0.96 0.95 0.96 0.94
8 0.93 0.91 0.91 0.90
9 0.93 0.93 0.93 0.93
10 0.94 0.92 0.93 0.92
11 0.96 0.94 0.96 0.94
12 0.94 0.92 0.93 0.91
13 0.95 0.93 0.95 0.93
14 0.93 0.92 0.92 0.91
15 0.95 0.94 0.95 0.94

Table 5.6: Non-domestic loads and their annual demand, and r2 goodness of biharmonic fit for their
optimal performance.
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Figure 5.38: Example EEIR optimal battery capacity results for non-domestic system samples with
load 15. Systems with low PV capacity always give an optimal battery capacity of zero, and the change
to include battery capacity is very abrupt once a minimum threshold of PV capacity is reached.
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Figure 5.39: Performance at the optimum for non-domestic systems. Performance increases slowly for
all objective functions.
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Figure 5.40: Sustainability for optimal non-domestic systems, which always increases.

increase with demand, and remains zero for almost all EEIR results (where security has the
strongest increase), this increase is more likely to be linked to an increase in supply, hence why
ELOLP and EuEIR show no increase.

This link between wind capacity and security is made clearer in figure 5.42 where the
security results for EROIused-derived optimisations are shown to be more related to their
wind capacities, as with the networked household systems. However specific demand still does
play a part, for example in the EuEIR optimal results where loads are split into two types:
those that optimise to give good security through high wind and battery capacity, and those
that optimise for underproduction and zero/small storage, but give higher EROIused. The
former systems tend to be smaller, but the latter types can be all sizes. Furthermore, the
small sample of possible loads cannot possibly represent all types of commercial and industry
electricity loads, as there is much diversity in the types of buildings and their functions.
Examining the daily or yearly profiles in figures 5.33 or 5.35 does not show any obvious
reasons that they would differ, as the loads 3, 6,8 ,9 12 and 14 (those with larger optimal
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Figure 5.41: Security for optimal non-domestic systems. EIR increases but non-exporting systems
show much scatter of security results, and LOLP either decreases or stays the same. Goodness of fit r2

is shown in brackets for each metric in their legend.
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Figure 5.42: Security for optimal non-domestic systems, plotted against wind capacity. The more
varied wind capacities under EROIused-derived optimisation show the most correlation with security.
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Figure 5.43: Energy exports/curtailment at the optimum for non-domestic systems. In contrast with
networked household systems, excess energy production never increases as a proportion of demand.

capacities) show no great difference to the other loads. Furthermore, their time-scale (PITS)
are in the same range as the others, so their time-series are not noticably more variable on an
hour-by-hour basis.

The systems’ excess energy levels shown in figure 5.43 are similar to those of networked
household systems, but with more variation for the ELOLP results (however it has a flat
linear fit like the networked systems) and decreasing excess energy for the EuEIR results. This
decrease is due to the very low wind turbine capacities, so is indicative of underproduction
rather than good levels of security.

In summary, these results show that even if there is not visible flattening of the demand
load when demand increases, larger systems generally have increased EROI and increased EIR.
EROI results are increased much more than for the networked household systems, with even
EROIused reaching 50, up from 12 for single household systems. This linear growth in EROI
is partly due to more efficient larger wind turbines, and partly from the reduced reliance on
battery storage.

One negative result is particularly important: even though the loads were observed to have
a demand profile well suited to PV supply, with a peak at mid-day, PV was still too costly
to be included in the optimal systems. Two possible reasons are that winter months will still
underproduce with a PV system unless the system is oversized, and that batteries are capable
over of spreading PV production to meet overnight demand (as seen in the summer months for
household systems) so that the actual demand profile becomes less important.

5.4 Correlation analysis for single household systems

Certain relationships between variables have already been noted from the results so far, such as
a tendency for PV capacity to decrease EROI and increase security, or wind capacity to do the
opposite. The strength of these relationships was evaluated in this section by using correlation
analysis. This allows us to compare how size of solar and wind generation inputs affect the
system’s optimal results; whether it is just as simple as there being more correlation between
solar capacity and storage requirements, or if more complexity is involved. The correlation is
measured using Pearson’s correlation coefficient ρ:
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ρX,Y =
cov(X,Y )

σXσY

This correlation measures linear relationships, but using the graphs in section 5.1 can show
whether a low correlation is due to a non-linear relationship or simply no interdependency.

Finding relationships between the results from each objective function is also useful in order
to evaluate their usefulness. It has already been observed that the ELOLP and EEIR objective
functions produce very similar results, and further investigation is required to decide which
objective functions should be carried on for later use.

5.4.1 Correlation of inputs with outputs

This section discusses the correlation levels between system inputs and the characteristics of
each optimised system, over all 18,400 modelled single household systems. Results for PbA
systems are shown in table 5.7 as representative of all types of battery systems. Note that when
interpreting this table that it shows correlation between the results when optimised for battery
capacity, so these patterns are not necessarily indicative of the technology by itself, but how it
behaves when optimised for battery capacity.

Note that the battery capacity itself is normalised to generation power capacity as in the
graphed results; therefore positive correlation of any variable X with battery capacity does not
merely mean that when X increases as does absolute battery capacity, but that an increase in
X gives more value to the battery, so its capacity increases per unit of power generation.

These correlation results demonstrate how complex the outcomes can be when optimising
the energy systems, as very few strong correlations exist. Two of the strongest are the ones
between wind capacity and EROIout-derived performance, being 0.87 and 0.86 for ELOLP
and EEIR respectively. However wind capacity is less well correlated with the individual
EROI and security metrics. In direct contrast, PV capacity is not particularly well correlated
with ELOLP or EEIR, but is better correlated with the EROI and security metrics; these are
cancelled out as it is negatively correlated with EROI but positively correlated with security.
These results suggest that when optimising for wind or PV, wind provides added EROIout and
a little security, performing well overall, whereas PV provides much more security, but at large
cost to EROIout, ultimately bringing the performance down.

Results with the EROIused-derived metrics are similar, but with some noted differences.
Wind capacity has a stronger relationship with security than EROIused, but both have a positive
correlation. This gives a positive correlation between wind capacity and EuLOLP or EuEIR,
but here PV has a stronger correlation, showing that PV performs better when excess energy
is discouraged. The correlation with excess energy is strongest with total generation, but is
notably stronger with wind input than PV for all battery technologies.

When PV and wind capacity are considered together, we see that this total capacity is
strongly correlated (ρ ≈ 0.87) with security in all cases, but is less well related to performance -
with no correlation when EROIused is involved - due to its anti-correlation with EROI, however
this relationship is not particularly strong because of the complex relationships involved.

The most complex relationships exist with the optimal battery capacity. In particular,
the relationship between PV capacity and battery capacity cannot be summarised using these
correlation values, as there is a strong non-linear relationship that they do not detect. The
graphs in section 5.1 showed a peak in battery capacity when PV provided 50% of annual
demand, so this is where batteries are able to provide the most value to the system for any
given wind input. The relationship between wind and battery capacities is also complex; when
PV input is low (below 50% of demand), increasing wind capacity gives more value to the
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Output PV Wind PV +
wind

ELOLP -optimal results
ELOLP -0.47 0.87 0.37
EROI -0.69 0.51 -0.16
LOLP -0.66 -0.29 -0.86
Battery 0.04 -0.40 -0.33
Excess 0.35 0.54 0.80
EuLOLP -optimal results
EuLOLP -0.73 0.63 -0.09
EROIused -0.73 0.14 -0.54
LOLP -0.59 -0.37 -0.87
Battery -0.58 0.00 -0.52
Excess 0.38 0.52 0.81
EEIR-optimal results
EEIR -0.48 0.86 0.35
EROI -0.68 0.47 -0.19
EIR 0.65 0.31 0.87
Battery 0.12 -0.32 -0.18
Excess 0.34 0.54 0.79
EuEIR-optimal results
EuEIR -0.73 0.63 -0.09
EROIused -0.70 0.12 -0.53
EIR 0.57 0.42 0.89
Battery -0.49 0.06 -0.39
Excess 0.38 0.52 0.81

Table 5.7: Correlation between input variables of power capacity and all optimal results for PbA battery
systems, including excess energy generation (whether that is exported or curtailed).
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Output ELOLP vs EEIR EuLOLP vs EuEIR
Performance -0.99 -0.99
Optimal
battery
capacity

0.92 0.99

EROI 0.99 0.99
Security -0.99 -0.99

Table 5.8: Correlation between ELOLP and EEIR optimal results (first column), and uELOLP and
EuEIR optimal results (second column). EIR and LOLP show almost perfect correlation, except for
optimal battery capacities with EROIout.

Metrics ρ EROIout EROIused
1− LOLP -0.47 -0.68
EIR -0.49 -0.64

Table 5.9: Correlation between security and EROI optimal results within all four objective functions.

batteries, but when PV input is higher, increasing wind or PV capacity actually decreases the
batteries’ value. Therefore the most important factor in the batteries’ value is PV availability.

5.4.2 Correlation between objective functions

All four objective functions are designed to evaluate performance with respect to sustainability
and security, so it was expected that they would have highly related results. Measuring these
relationships is therefore a necessary part of metric evaluation. Furthermore, measuring the
relationships within these objective functions - namely between their sustainability and security
- brings a new perspective on the difficulty of satisfying the trilemma.

Firstly, when comparing the security metrics in table 5.8, it is clear that they are strongly
correlated with ρ = 0.99 in almost all cases. The only exception is for battery capacity, which
was noted in section 5.1 where the difference between ELOLP and EEIR optimal battery
capacities reaches a maximum of 0.5 for several sizes of wind input (see figure 5.12). However
using EROIused removes this discrepancy, and correlation is still very high at ρ = 0.96.

While this does not mean that using either metric will always return the same results, it
does mean that the trends in energy security are represented equally well by LOLP or EIR.
This can also be seen in table 5.7 where ELOLP and EEIR return very similar correlation
results, although there is slightly more difference between the EuLOLP and EuEIR results.

This similarity means that the choice of security metric can be made freely, on the basis of
which is more well suited to the scenarios. Therefore in the light of EIR being potentially more
accurate, and more appropriate for grid-connected systems, any future analyses will use EIR
rather than LOLP .

Moving onto the relationship between EROI and energy security, table 5.9 shows that while
they are not directly related, they experience some negative correlation of around -0.48 when
using EROIout, or around -0.66 when using EROIused. There is a stronger negative relationship
when the system cannot export excess energy, as increased generation capacity improves security
but reduces EROIused through risk of overproduction. This does back up the argument that as
renewables penetration of the grid increases, security is more at risk when sustainable sources
are put as the main priority, however the lack of a very strong correlation means that this is
not absolute.
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Figure 5.44: Plots of all the systems’ EROIout and EIR results, when optimised with respect to
battery capacity. Each graph shows the same position of points, but systems are colour-coded differently
to illustrate trends in battery capacity, PV, wind and total supply.

These relationships need to be plotted to fully understand their complex relationship. These
results are shown for EROIout and EIR in figure 5.44, where it can be seen that increasing
PV capacity has different impacts on the metrics depending on wind capacity, and vice-versa.
Increasing PV capacity can improve EROIout and EIR if no wind is included in the system,
however in some hybrid systems, adding PV capacity can reduce EROIout with only a marginal
increase in EIR.

The graph shows segmentation between systems with different PV capacities, most notably
for the systems with lowest PV capacity. When PV is increased, these segments become narrower
and shift diagonally upwards and left, reducing in EROIout and increasing in EIR. This
segmentation shows that adding PV to the system creates significant change, and the narrowing
of segments shows that wind-only systems are more diverse in their optimal results.

Plotting EROIused against EIR in figure 5.45 shows a similar pattern, but the wind-only
systems are more ordered and the wide segment at the top of the graph has gone. This segment
contained a number of systems that showed relatively higher EROIout results for their EIR
result, so by disallowing energy exports, these systems have dropped in performance. These
were systems with good energy resources, so were producing slightly more energy and using
that to gain high EIR at lower cost. However this means that their EROIused result would be
much lower, moving them to the left.

PV-only systems (on the far left) are largely unchanged, however they already exhibited
negative correlation and the changes noted above are enough to increase the graph’s negative
correlation, giving the ρ = −0.68 result.
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Figure 5.45: Plots of all the systems’ EROIused and EIR results, when optimised with respect to
battery capacity. Each graph shows the same position of points, but systems are colour-coded differently
to illustrate trends in battery capacity, PV, wind and total supply.
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5.5 Uncertainty and sensitivity analysis

The largest source of error in all of these optimisation results comes from the embodied energy
values. As mentioned in section 2.4.6, these can vary widely depending on the calculation
methods used, the boundary of the energy accounting, or the individual process. While the
numbers chosen for this analysis were from similar methods of accounting, there will still have
been small variations between each lifecycle analysis due to individual methodology or the
depth of data available. All sections of the supply chain can be suspect to change, as different
factories will have different energy intensities in their process, transport from different countries
has a significant impact, and different materials will have different recycling levels. Uncertainty
analysis can evaluate how the accuracy of the results is affected by these errors/variation within
the lifecycle analysis. Different objective functions may be more sensitive to these errors, so
understanding this variation can further help picking which methods are the most suitable to
be carried forward.

There is also uncertainty in the values used for battery cycle efficiency. While in reality
the mechanisms behind battery efficiency is very complex, depending on charge level, current,
voltage, temperature etc, this simple model was unable to apply such mechanisms due to only
measuring energy flows and running at a half-hourly resolution. However the possible ranges
of average cycle efficiency are known, and were applied in an uncertainty analysis to find the
impact of these values on the results.

Another form of sensitivity analysis was performed on the grid efficiency ηG value, itself
valuable in determining the EROI but dependent upon the makeup of the grid. Additionally,
as was discussed in the literature review, there are some doubts about whether it should be
used at all. Results from these perspectives are presented to allow for a fuller discussion of ηG’s
implications.

5.5.1 Uncertainty analysis of embodied energy

Uncertainty analysis was applied to the embodied energy of all major system components (PV
module, wind turbine and battery), using the range of values specified in table 3.6.

Uncertainty of PV embodied energy

The range of a multi-Si PV module’s embodied energy was estimated to be 280−1, 842kWh per
m2, at -75% to +68% of the average value used in the main analysis. Running the model with
these levels of embodied energy gives the level of uncertainty in the optimal system’s component
sizing, shown in table 5.10. In particular, reducing the embodied energy of a PV module results
in a system with increased PV capacity and reduced wind capacity, while increasing it makes no
difference as the PV capacity remains at zero. A wind turbine of capacity 10kWp has embodied
energy of 31MWh, while a 10kWp PV array with the lower embodied energy has total embodied
energy of 22MWh, which explains the system’s preference for cheap PV. PV also brings added
security to the system, as was noted in section 5.1, but these results show that only EROIused
shows an increase as a result of reduced PV EE, while EROIout decreases, resulting in a lower
increase in overall performance.

Indirect effects of lower PV EE include a reduction in wind capacity when using EROIused,
reduced from 1.2 to 0.6 when using EuLOLP or EuEIR. This is matched by an increase of
PV by 0.6, so the total level of annual energy input remains the same. The optimal battery
capacity is also reduced by 33%. Therefore when cheaper PV modules are used in non-exporting
systems, it is no longer the case that you are better off increasing battery capacity than PV
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Metric Bound PV ∆ Turbine ∆ Battery ∆ EROI ∆ Security ∆ Performance ∆
ELOLP Lower 0.6 0 -13.7% -7.4% 35.4% 25.0%

Upper 0 0 0.0% 0.0% 0.0% 0.0%
EuLOLP Lower 0.6 -0.6 -32.7% 15.0% 30.9% 50.1%

Upper 0 0 0.0% 0.0% 0.0% 0.0%
EEIR Lower 0.6 0 -12.7% -8.4% 35.7% 24.2%

Upper 0 0 0.0% 0.0% 0.0% 0.0%
EuEIR Lower 0.6 -0.6 -32.6% 15.0% 28.0% 47.1%

Upper 0 0 0.0% 0.0% 0.0% 0.0%

Table 5.10: Uncertainty results when taking upper and lower bounds of PV embodied energy with a
PbA system. LOLP is normalised to 1−LOLP to allow comparison to EIR, so a positive change is an
increase in security for either metric.

capacity to ensure improvements in security. Sustainability EROIused also increases overall, so
performance increases by half.

The EROIout-derived results are less sensitive, as there is no reduction in wind capacity
(their overproduction suffering no penalty) and optimal battery capacity is only reduced by
13%. This being a proportional battery capacity, the total increase in power capacity means
that there would be an absolute increase in optimal battery kWh capacity. This is the reason
for the reduction in EROIout, and greater increases in security. Ultimately ELOLP and EEIR
are only increased by a quarter for cheaper PV modules.

Security metrics LOLP and EIR are similarly sensitive to the increase in optimal PV
capacity from reduced PV cost. They become less sensitive when the system cannot export
excess energy (under EROIused), increasing by a factor of approx 30% rather than 35%. However
in general, the system’s security is the most sensitive output when decreasing PV EE.

Uncertainty of wind turbine embodied energy

Determining the range of embodied energy values for wind turbines was difficult, as it was
originally calculated in relation to the turbine power capacity, and there were not enough points
to find the lower and upper boundaries over all power capacities. However, as the embodied
energy of the wind turbines was chosen by a fit to the data, the upper and lower bounds of
embodied energy were chosen to be the upper and lower bounds of that fit, giving the lower
bound as EEl = (−1.5P + 2567)P and the upper bound as EEu = (−0.13P + 3595)P . For a
wind turbine of power capacity 10kW (the typical capacity required for the ELOLP optimal,
supplying 200% of demand), this would give the lower bound of embodied energy as 25.5MWh,
upper bound as 35.9MWh, and a percentage range of ±17%.

While the range in uncertainty may be smaller than PV’s, varying wind turbine embodied
energy has a much greater effect on optimal battery capacity. This is shown in table 5.11, where
taking the higher value results in a larger PbA battery capacity (by up to 44% depending on
objective function) and taking the lower value reduces the optimal battery capacity by up to
94%. This is repeated for other battery technologies, and can be explained by considering that
the energy cost of the wind turbine essentially gives its generated energy an imbued cost: the
greater the cost, the greater the loss if this energy is unused. Therefore if wind turbines have
a greater embodied energy, there is an incentive to use larger batteries to store more of this
energy. This in turn has an effect on the sustainability and security of the system, as all security
metrics show a slight loss in security with lower embodied energy values, and a slight gain for
higher values. The gain in security for greater embodied energy values appears very small in
comparison to the gain in storage capacity, except for the EuLOLP optimised systems, but this
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Metric Bound PV ∆ Turbine ∆ Battery ∆ EROI ∆ Security ∆ Performance ∆
ELOLP Lower 0 0 -17.52% 17.17% -2.24% 14.49%

Upper 0 0 17.86% -12.89% 2.05% -11.04%
EuLOLP Lower 0 0 -16.09% 14.15% -2.18% 11.69%

Upper 0 0 16.37% -10.86% 1.95% -9.13%
EEIR Lower 0 0 -38.01% 25.19% -7.31% 15.10%

Upper 0 0 22.36% -14.18% 3.08% -11.10%
EuEIR Lower 0 0 -15.71% 14.12% -2.12% 11.71%

Upper 0 0 15.79% -10.82% 1.89% -9.15%

Table 5.11: Uncertainty results when taking upper and lower bounds of wind turbine embodied energy,
for PbA systems.

is because there are only small marginal gains to be made from increasing battery capacity for
wind-only systems.

Sustainability is greatly improved by using lower wind turbine embodied energy values, but
this is mostly caused by the reduction in battery capacity rather than the wind turbine itself.
Sustainability is only slightly impacted when the larger embodied energy value is used, and
optimal battery capacity is only slightly increased.

The greater uncertainty seen by varying wind turbine embodied energy rather than PV can
be explained by observing that the original optimal systems are all wind-only, so changing the
wind turbine’s embodied energy has an immediate effect on the system. In contrast, when PV’s
embodied energy is varied, this has an effect on both PV capacity and wind capacity, because
the system is radically changed by introducing PV capacity. The size in uncertainty of wind
turbine embodied energy is greatest when using ELOLP and EEIR optimisation, as was noted
with PV embodied energy uncertainty, but EuLOLP still has a large uncertainty in battery
capacity. EuLOLP is also the only objective function that results in any use of of PV when high
wind turbine embodied energy is used, but the its power capacity is still fairly small at less than
1kWp. A PV module of 10kWp capacity has 84.5MWh embodied energy at the average value,
while a 10kWp wind turbine at the high embodied energy value has total embodied energy of
42.5MWh, which is still smaller than PV.

There is little change to wind capacity, and there are three likely reasons for this. Firstly, the
optimal wind capacity under ELOLP and EEIR is already very high, close to the maximum.
Secondly, the wind turbine’s embodied energy is so low, even at high estimates, that there are
no real incentives to reduce wind capacity. Finally, the limits that keep wind capacity low when
optimised by ELOEP , EuLOLP or EuEIR are not caused by its embodied energy, but by the
risks to security caused by its oversizing. Reducing embodied energy will make no difference to
these system costs caused by its security risk.

Uncertainty of battery embodied energy

The five different battery types (PbA, Li-ion, NaS, ZnBr, VRB) all have different embodied
energy values, with ranges taken from the literature in table 3.6. The proportional range in
these values is as follows:

• PbA: -38% to 56%

• Li-ion: -34% to 32%

• NaS: -24% to 29%
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• ZnBr: -11% to 9%

• VRB: -14% to 22%

When taking the upper or lower bounds for their embodied energy values, the impact on
system component sizing has been varied. There is no impact on the capacity of PV or wind,
so these have not been shown here. This negative result shows that the barriers to including
PV in the system are more to do with PV’s high energy costs, rather than any need for battery
backup for PV, as if that was the case then reducing battery embodied energy may have caused
the system to include some PV capacity.

Table 5.12 shows that for all objective functions, using a lower embodied energy for the
batteries gives a larger optimal storage capacity, and vice versa. However the size of this change
depends on the batteries involved, where batteries with a wider range of uncertainty have a
larger impact from that uncertainty.

PbA systems have the largest changes in battery capacity, however this is unsurprising as
PbA batteries also have the widest range of embodied energy uncertainty. This trend remains
consistent across all types of batteries for most metrics, as shown by the linear relationships in
figure 5.46 between change in battery EE and optimal battery capacity; it can be inferred that
EROI is generally the biggest determinant of ideal battery capacity, regardless of battery type
or choice of metrics. EEIR is possibly an exception as it gives some scattering around the fitted
line, where the four anomalous points all come from either PbA or VRB systems. The only
characteristic these two share is a higher embodied energy per usable capacity (642kWh/kWhcap
and 694kWh/kWhcap respectively), so EEIR appears to be more sensitive than other objective
functions when this value is higher.

The considerable increases in optimal battery storage are matched by a linear increase in
security for all systems with reductions in battery EE (see figure 5.47), however this increase is
small in comparison to the security increases seen in section 5.5.1 where security increased by up
to 36% by having more PV capacity. Note the anomalous decrease in security for PbA systems
under EuLOLP and EuEIR optimisation are caused by the reduced wind turbine capacity for
those optimal systems.

Overall performance is always improved by reducing battery embodied energy, even when
the subsequent increase in battery capacity causes a drop in EROI. This is to be expected from
the optimisation mechanism, however the small percentage changes are notable in showing that
the system’s overall performance is less sensitive to battery embodied energy than any other
component. Performance increases range from 1% to 9%, depending on battery type, whereas
performance increases of up to 50% were seen with reduced PV EE, and up to 15% with reduced
wind turbine EE.

Uncertainty of all components’ embodied energy together

There are two main reasons for uncertainty in the embodied energy values, coming from either
the supply chain in general (particularly manufacturing processes or materials acquisition),
or the method of accounting for energy costs. These can be considered to be the real costs
vs the measured costs. When it is the the supply chain management causing variation, then
components can be analysed separately as in the previous three sections, as different materials
and components are usually acquired from separate companies. However when it is the method
of accounting, or if a manufacturer is dedicated to supply chain management in order to reduce
their energy intensity all down the supply chain, then all components will be affected in a similar
way. Table 5.13 shows results when all lower/highest embodied energy values are used for the
system components. Lower embodied energy values give an increase in PV capacity similar to
when PV modules were treated separately, however the other results are more mixed.
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Metric Bound PV ∆ Turbine ∆ Battery ∆ EROI ∆ Security ∆ Performance ∆
PbA
ELOLP Lower 0 0 72.89% -2.10% 7.13% 5.04%

Upper 0 0 -45.00% 2.58% -6.43% -4.03%
EuLOLP Lower 0 0 67.40% 5.68% 6.86% 12.90%

Upper 0 -0.4 -50.87% 19.56% -24.40% -9.52%
EEIR Lower 0 0 78.02% -3.38% 8.21% 5.06%

Upper 0 0 -68.31% 12.42% -13.55% -3.25%
EuEIR Lower 0 0 69.00% 5.51% 7.03% 12.89%

Upper 0 -0.4 -49.28% 19.72% -24.26% -9.14%
Li-ion
ELOLP Lower 0 0 56.44% -1.02% 6.23% 5.32%

Upper 0 0 -28.45% 1.16% -4.23% -3.22%
EuLOLP Lower 0 0 55.03% 4.55% 5.20% 9.96%

Upper 0 0 -27.87% -2.51% -3.55% -5.97%
EEIR Lower 0 0 55.34% -0.56% 6.09% 5.36%

Upper 0 0 -27.84% 1.09% -4.23% -3.31%
EuEIR Lower 0 0 55.48% 4.45% 5.31% 9.92%

Upper 0 0 -26.40% -2.65% -3.44% -5.97%
NaS
ELOLP Lower 0 0 37.98% -1.19% 4.17% 3.10%

Upper 0 0 -26.48% 0.89% -3.57% -2.64%
EuLOLP Lower 0 0 36.16% 2.66% 3.34% 6.07%

Upper 0 0 -26.13% -2.14% -3.06% -5.13%
EEIR Lower 0 0 35.59% -0.67% 3.94% 3.14%

Upper 0 0 -28.10% 2.09% -4.37% -2.64%
EuEIR Lower 0 0 34.92% 2.71% 3.30% 6.06%

Upper 0 0 -25.15% -2.21% -3.01% -5.15%
ZnBr
ELOLP Lower 0 0 14.24% -0.43% 1.53% 1.03%

Upper 0 0 -10.16% 0.63% -1.27% -0.74%
EuLOLP Lower 0 0 14.46% 1.05% 1.49% 2.55%

Upper 0 0 -9.13% -0.82% -1.02% -1.82%
EEIR Lower 0 0 15.01% -0.65% 1.77% 1.08%

Upper 0 0 -10.16% 0.56% -1.32% -0.76%
EuEIR Lower 0 0 13.13% 1.18% 1.38% 2.55%

Upper 0 0 -9.46% -0.77% -1.08% -1.83%
VRB
ELOLP Lower 0 0 20.56% -0.69% 2.16% 1.37%

Upper 0 0 -24.69% 1.39% -3.10% -1.77%
EuLOLP Lower 0 0 19.16% 1.12% 1.68% 2.83%

Upper 0 0 -21.89% -1.46% -2.27% -3.72%
EEIR Lower 0 0 30.59% -2.92% 3.93% 1.26%

Upper 0 0 -37.58% 4.86% -5.87% -1.39%
EuEIR Lower 0 0 18.13% 1.17% 1.66% 2.84%

Upper 0 0 -22.58% -0.93% -2.62% -3.69%

Table 5.12: Uncertainty results when taking upper and lower bounds of battery embodied energy, for
all types of battery systems.
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Figure 5.46: Changes in optimal battery capacity when its EE is varied. Optimal capacity value is
more sensitive when EE is reduced than increased, but regardless of this direction of change, there is a
linear relationship.
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When the system is unable to export energy, both higher and lower embodied energy bounds
result in a small wind capacity. This may seem contradictory, however a possible explanation
is that because excess production is penalised, the increase in PV capacity for lower EE drives
down wind generation. Meanwhile with universal high EE values the higher cost of wind turbines
makes them less worthwhile to install, regardless of the comparatively more expensive PV. As
the wind capacity of EuLOLP and EuEIR optimised systems at mid-range EE supplies only
120% of demand, this drop of 40% brings the system to undercapacity at 80%.

Change in optimal battery capacity is mixed, increasing only when the system can export
energy (under lower EE values), and decreasing under all other scenarios. Optimal battery
capacity is therefore sensitive to a number of factors, and to increase their value in the system
either their embodied energy must be decreased more than other components, or the system be
in a situation where excess energy cannot be exported.

Regarding EROI values, using higher EE values actually increases EROIused by around
6.5% due to the considerably smaller battery size (a reduction in 41-42%) regardless of the
security metric used in optimisation. However using lower EE values increases EROIused by
a much larger margin of 30.7%, while also reducing battery capacity and substituting some
wind production with equal amounts of PV. The EROIout results act in a very different way,
dropping by 8-11% for higher EE values and increasing only marginally (2-3%) for the lower
EE values. It can therefore be surmised that EROI is more sensitive to embodied energy values
when excess energy is curtailed; this holds true when EE is changed for individual components.

Lower bounds of EE result in much improved security, whether this is caused by inclusion of
PV capacity or increased battery capacity. As previously mentioned, battery capacity is actually
decreased when using EROIused, so taking all these results into consideration, increased PV
capacity has a stronger effect on increasing the optimal security than increased battery capacity.
Furthermore, choice of security metric makes a big difference in recorded security change, as
does the choice of EROI. For non-exporting systems, LOLP shows a bigger increase in security
than EIR despite giving similar changes in PV, wind and battery capacity, and the negligible
change in EROIused means that performance is also more changed, especially for the lower
bound of EE values.

Looking at performance overall, it is more sensitive to reductions in EE than increases,
particularly when using EROIused. This means that if the current EE values are missing out on
vital parts of the life cycle costs such as marketing, employee commuting etc, the error involved
is less than the potential improved performance that could be achieved by reducing embodied
energy across the whole supply chain.

Comparing these results with the previous ones shows that they have the most in common
with results when PV embodied energy is varied, particularly in relation to battery capacity,
PV capacity and security results. This suggests that the component with the most impact on
system optimisation is PV, so PV might be the system component most in need of reducing its
embodied energy.

This is backed up by examining the performance uncertainty in table 5.11; while lower
embodied energy values of the wind turbine gives the largest increase in performance, this is
done by sacrificing security for sustainability. In contrast, reducing the PVs embodied energy
increases performance by pushing up security. When optimising with EuLOLP, this also
increases sustainability, but if ELOLP or EEIR are used then the increase in battery capacity
has a negative impact on sustainability. Therefore reducing battery embodied energy levels
are a second priority after PV. The embodied energy levels of PV modules are explored in
more detail in the next section.

Comparing objective functions in terms of their sensitivity to embodied energy uncertainties,
EuLOLP and EuEIR generally appear the most sensitive, particularly regarding PV embodied
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Metric Bound PV ∆ Turbine ∆ Battery ∆ EROI ∆ Security ∆ Performance ∆
ELOLP Lower 0.6 0 5.60% 3.38% 39.03% 43.68%

Upper 0 0 -33.45% -10.86% -4.47% -14.78%
EuLOLP Lower 0.6 -0.6 -18.21% 30.71% 33.55% 74.10%

Upper 0 -0.4 -42.40% 6.43% -23.19% -18.15%
EEIR Lower 0.6 0 7.90% 2.13% 39.42% 42.79%

Upper 0 0 -40.53% -8.50% -6.56% -14.74%
EuEIR Lower 0.6 -0.6 -17.97% 30.66% 30.73% 70.56%

Upper 0 -0.4 -41.12% 6.59% -23.07% -17.86%

Table 5.13: Uncertainty results when taking upper and lower bounds of all components’ embodied
energy, for PbA systems.

Metric Bound PV ∆ Turbine ∆ Battery ∆ EROI ∆ Security ∆ Performance ∆
ELOLP Upper 0 -0.2 -0.1% 3.3% -2.5% 0.9%

Lower 0 0 -6.5% 2.3% -0.7% 1.5%
EuLOLP Upper 0 0.2 12.0% -13.3% 14.3% -1.4%

Lower 0 0.4 12.2% -17.7% 24.3% 2.0%
EEIR Upper 0 -0.2 -0.6% 3.6% -2.8% 0.7%

Lower 0 0 -5.4% 2.0% -0.8% 1.2%
EuEIR Upper 0 0.8 25.2% -31.2% 43.5% -2.1%

Lower 0 0.4 13.1% -17.8% 24.5% 1.7%

Table 5.14: Uncertainty analysis results for the range of battery efficiencies for lithium-ion batteries
(85-95%), showing how upper and lower limits for the battery efficiency affect the optimal outputs.
Results are displayed as the percentage difference from the result with 90% efficient batteries. There was
no variation in PV size, as all results returned wind-only systems.

energy levels. All objective functions are less sensitive to increases in embodied energy than
decreases.

5.5.2 Uncertainty of battery efficiency

Embodied energy is not the only uncertain variable that affects the performance significantly.
From comparing the results for each type of battery, it is apparent that the batteries with
more efficient cycles offer better performance, however it is difficult to compare these when
the different batteries also vary in terms of their embodied energy and depth of discharge. To
obtain a true comparison, it is necessary to compare results of the same batteries with different
assumed cycle efficiencies.

In practice, a battery does not have constant energy conversion efficiency; this is dependent
on a number of factors such as the current, state of charge (SOC) of the battery, temperature
etc [144]. However, limitations of the half-hourly model mean that charging efficiency of PbA
batteries were modelled as only dependent on SOC, and charging efficiency of other batteries
were fixed at their average cycle efficiency.

There were five types of batteries tested in the main set of results, and two were chosen
to test how their efficiency affected overall system performance. These two were lithium-ion
and vanadium redox batteries, considered to have more potential to improve their efficiency. In
particular, VRB are a fairly new technology that are currently estimated to have a low efficiency
of 70%, with a wide range of possible efficiencies (60-80%).

The lithium-ion uncertainty results in table 5.14 show that ELOLP and EEIR are not
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Metric Bound PV ∆ Turbine ∆ Battery ∆ EROI ∆ Security ∆ Performance ∆
ELOLP Upper 0 0 12.6% -0.2% 3.4% 3.2%

Lower 0 0 -23.5% 4.9% -1.9% 2.7%
EuLOLP Upper 0 0.2 22.8% -13.7% 15.1% -0.6%

Lower 0 0.4 14.7% -22.6% 21.4% -5.8%
EEIR Upper 0 -0.2 10.0% 3.0% -0.2% 2.6%

Lower 0 0 -40.9% 9.9% -6.7% 2.1%
EuEIR Upper 0 0.2 17.8% -13.1% 14.2% -1.0%

Lower 0 0.4 13.6% -22.6% 20.8% -6.2%

Table 5.15: Uncertainty analysis results for the range of battery efficiencies for VRB flow batteries (60-
80%), showing how upper and lower limits for the battery efficiency affect the optimal outputs. Results
are displayed as the percentage difference from the result with 90% efficient batteries. There was no
variation in PV size, as all results returned wind-only systems.

particularly sensitive to changes in the battery efficiency, however they both reduce the size
of the battery when it is less efficient, which leads to the EROI result improving slightly for
both the upper and lower limit of cycle efficiency. They also optimise to give a slightly smaller
wind turbine when the battery is more efficient, but there is no change for the lower efficiency,
however this is not a very meaningful result as the mid-efficiency battery gives the largest wind
turbines available. Security is measured as lower by LOLP and EIR for both the high and
low efficiency batteries, with the more efficient battery giving lower security because it is paired
with smaller wind turbines.

When the system is unable to export energy, the battery efficiency has a much greater effect
on optimal results. There is more scope for optimal wind turbine size to increase here, as the
original optimal size is not at the maximum boundary; both EuLOLP and EuEIR give a large
increase in wind input for the upper and lower battery efficiencies. Similarly, both upper and
lower efficiencies give larger batteries under those metrics, resulting in decreased EROI but
increased security. These largely balance out to give similar performance overall, with a slight
increase for less efficient batteries.

These results are surprising, as lower battery efficiency appears to give little hindrance to
system performance, and actually increases it overall by all metrics. It is also important to note
that the exact battery efficiency is a very important factor in evaluating the system, particularly
when using the EROIused metric which places more value on the battery within the system.

Despite the wide ranges in component sizes under EROIused-derived optimisation, the
overall performance by all objective functions shows only negligible change, suggesting that
the system optimises itself to always return to a fixed performance no matter the battery
efficiency (within this realistic range). This is particularly interesting in the case of EuEIR,
where wind and battery capacity are greatly increased for the upper and lower bounds of
battery efficiency, but all increases in security are offset by reduction in EROIused. This is a
very different outcome to when embodied energy is targeted for analysis.

Results for the VRB systems in table 5.15 yield similar results for the individual EROI and
security metrics, however performance was more sensitive to the battery efficiency. In particular,
using lower cycle efficiency batteries for non-exporting systems reduced performance by 6%, and
exporting systems showed marginal increased performance by 2-3% whether the batteries were
of higher or lower efficiency.

The results are so varied that there is no particular metric that can be shown to be more or
less sensitive to battery cycle efficiency.
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5.5.3 Sensitivity analysis for PV

Embodied energy values are likely to drop in the future due to improved manufacturing methods,
energy efficiency measures and possibly increased sustainability awareness in industry. This may
reduce the embodied energy in crystalline PV production by up to 85% from 1998, with more
modern projections suggesting 80% [186]. As the optimal results for most systems with current
average PV embodied energy levels do not contain PV input (presumably due to their high
energy costs) reducing their embodied energy by up to 80% in the model analysis can give
insight into whether it is useful to reduce energy costs of PV, and show how the sustainability
and security of the optimised systems is affected as a result. Depending on how the systems
are affected, this analysis can demonstrate whether research into less energy intensive PV is
necessary, and to what extent. Note that PV requires a reduction of around 50% (depending
on capacity, but this is accurate at the microgeneration scale) to match wind turbine embodied
energy levels per kWp of rated power capacity.

Using ELOLP

Results from ELOLP are shown in figure 5.48 where the reduction in PV embodied energy is
shown to have an impact on all outputs: performance and optimal battery capacity, optimal
wind and PV power capacity, and sustainability/security. Results are nonlinear, and also exhibit
a tipping point behaviour where for small reductions, reducing embodied energy makes little
difference. However, once embodied energy drops below 40-60% (where PV becomes more
competitive with wind turbines), the optimal system changes drastically, adding up to 80% PV
input, giving high EROIout and low LOLP . The sideways U shape exhibited is due to initial
increases in battery capacity, which are required due to the higher total power capacity. Once
the PV capacity increases the battery size also drops, increasing EROIout, but never regaining
the higher EROIout of the start. The only output parameter that steadily increases or decreases
for all battery types is the performance (measured by ELOLP ), which initially slowly increases,
then accelerates as the optimum starts including PV capacity at low energy cost.

Using EuLOLP

Results from EuLOLP are shown in figure 5.49, and these show more steady changes than with
ELOLP when PV’s embodied energy is reduced. While there is a tipping point as before, this
occurs much quicker at around 20%+ reduction in embodied energy. As PV embodied energy
reduces, wind capacity is gradually replaced by PV capacity, rather than simply adding PV
capacity to the existing maximum wind capacity. This results in a mid-sized hybrid system
with equal input from PV and wind.

Other impacts are that performance increases and battery size decreases, but performance
increases slowly at first and then accelerates, while battery size first drops quickly, then starts
to reach a plateau as PV starts to dominate the optimal systems. The behaviour of the
optimal systems’ sustainability and security is however similar to ELOLP results, as
EROIused first decreases in tandem with a decreasing LOLP , then once the systems contain
some PV input, EROIused quickly increases while LOLP remains fairly stable. This stable
LOLP result suggests that the system cannot easily improve its security once PV has reduced
its embodied energy by 30-40%, as any gains made by PV capacity are offset by the risk of
overproduction and loss of battery capacity. The initial loss in EROIused and steep loss of
battery capacity shows how useful PV is to maintaining a high LOLP result; this high
security is enough to lift performance overall and require less storage capacity.
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Performance in ELOLP
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Figure 5.48: ELOLP optimal results as embodied energy of PV modules is reduced by 80%. Each
marker shows an embodied energy decrease of 10% (percentage points). The change in power capacity
inputs (triggered once PV’s embodied energy has dropped by 45%) has an influence on the optimal
battery capacity, which increases when total power input increases. Sustainability initially decreases,
then increases once PV has a lower embodied energy than wind turbines, and security and performance
increase throughout.
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Performance in EuLOLP
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Figure 5.49: EuLOLP optimal results as embodied energy of PV modules is reduced by 80%. Each
marker shows an embodied energy decrease of 10% (percentage points). EuLOLP gives a more gradually
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Using EEIR

The results using EEIR are unsurprisingly similar to those of ELOLP , given the already
acknowledged high correlation between the two sets of results. Shown in figure 5.50, the only
notable difference between the two are that EEIR optimisation shows no reduction in optimal
wind capacity.

Using EuEIR

Finally, when using EuEIR analysis in figure 5.51, the results are almost identical to EuLOLP
results. While the changes in PV and wind power capacity differ, both result in a mid-sized
hybrid system with equal input from PV and wind.

Summary

Overall, ELOLP and EIR return similar sensitivity results: they both optimise to add in PV
capacity and reduce battery capacity as PV EE drops by 80%. These changes to the system,
in addition to the lower EE cost of PV modules, gives improved security and slightly reduced
EROI, improving performance by a third on average. When the system cannot export energy,
EuLOLP and EuEIR also return results similar to each other: they optimise to replace units
of wind with PV so that total supply remains the same, and also reduce battery capacity. All
choices of optimisation show an initial dropping of sustainability that is matched by a lift in
security, and then the trajectory changes direction where further added PV capacity has the
effect of improving EROI. However, the final EROI result is never as high as the EROI of the
wind-only system at the start.

The choice of battery also matters here. While battery type has little recognisable impact
on the optimal PV and wind capacities (other than VRB showing higher wind capacity), it still
affects the system’s optimal performance and objective function results. PbA systems require
the highest storage capacity and give the lowest sustainability across all results, but their
security results are average. The batteries remain consistently ordered, where capacity has the
order from highest to lowest of: PbA, Li-ion, NaS, ZnBr, VRB. Performance is ordered from
highest to lowest as: Li-ion, NaS, PbA, ZnBr, VRB. However, individual EROI and security
results are less neat.

5.5.4 Sensitivity to primary energy scaling

There has been much discussion on the necessity of primary energy scaling through the grid
efficiency coefficient ηG. Opinions range from believing that it is a misleading normalisation, to
alternate methods of defining and calculating it, to conjecture of how it may change when the
grid is more reliant on renewable energy capacity. If ηG is defined as the lifecycle efficiency of
the grid, then it will increase as renewable energy penetration increases, and EROI calculations
using that normalisation will decrease. However, due to the nature of the methodology, and
equal primary energy scaling on all system components, the optimal sizing is not affected by
the value of ηG.

EROI results without primary energy scaling

EROI results for single-household systems with PbA batteries are shown in figures 5.52 and 5.53.
The EROI results are reduced considerably, where some systems have EROIused approaching
1, which would result in a truly unsustainable system; if this were to occur then the energy
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Figure 5.52: EROIout (shading) and LOLP (contours) results for optimal PbA energy systems with
no ηG scaling on EROI results. LOLP is unchanged but EROIout is reduced where most results lie in
the 2-4 range.

directed towards manufacturing the components was effectively wasted, as it could have been
more effective if used directly to supply electricity demand.

For the systems to give an EROIout greater than 5, the energy production from wind sources
must be at least 3-4 times greater than energy from solar sources over the year. It is particularly
difficult to reach EROIused > 5, and essentially requires a wind-only system supplying around
80% of the system’s demand over the year, to meet the higher levels of EuLOLP . The actual
delivered demand for such a system (measured with EIR) is around 45-50%, or 0.55 LOLP.

Therefore if PE scaling is unused, renewable energy systems appear to be less sustainable,
particularly if excess energy production goes unused.

EROI results with improved grid efficiency

If instead primary energy scaling is accepted, then we can consider how grid efficiency will
increase as the proportion of generated energy from renewable energy sources grows. For
simplicity, this growth was estimated to be a linear progression to 40% wind production in
2040, where wind turbine life-cycle efficiency was calculated to be 94% in section 3.4.3 using
the equations in section 2.4.5. This gave an overall grid life-cycle efficiency of 56%, but this is
a rough estimate as efficiencies and embodied energy of non-renewable generation technologies
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such as new nuclear and carbon capture & storage are unknown. Furthermore, the efficiency
of future larger wind turbines are likely to be higher than 1.2MW turbines existing today.
However, this estimate is useful for these limited purposes, and can show how the EROI is
affected.

Figure 5.54 shows the average EROI values, and how they logarithmically decrease as ηG
increases. The samples are averaged with respect to their PV and wind input as a ratio of
household demand. As before, wind-dominated systems show the highest EROI results, and
systems with no solar input remain with EROIout > 15 and EROIused > 5 on average. However
PV energy systems do not fare as well, resulting in EROIout ≈ 5 and EROIused ≈ 2 at the
highest grid efficiency.

Given that this is a prediction of future EROI values, it was also considered worthwhile to
include improved EE values of PV modules from section 5.5.3, so that PV cost reduces by up
to 80% as the grid efficiency is increasing. It was assumed for simplicity that both increase
simultaneously. The results are shown in figure 5.55, where energy systems with PV benefit
greatly from reduced energy costs. Here, EROIout > 10 for all systems (on average) and
EROIused ≥ 5. However, the small wind energy systems still have the highest EROI values,
and PV-dominant systems remain with the lowest EROIused values. Note that these results
are for optimal systems, so battery capacity is not fixed.

5.6 Alternative systems: using hydrogen or heat pumps

It was discussed in the literature review that there are more innovative solutions to balancing
the grid to be considered, such as branching out of the electricity network into other energy
systems, or using hydrogen as more flexible means of storage.

The limitations of available data on demand profiles and embodied energy values means that
it was not possible to conduct a full study into these systems, however there was a small test
on a single household hydrogen system with 100 samples per wind/PV scale, and another on a
single household system with a heat pump, also with 100 samples per wind/PV scale. These
samples were analysed using only the EIR metric to measure security, as it was shown in the
more extensive investigations to be reasonably accurate and more appropriate for these kinds
of systems where they are able to import energy during loss of load periods.

5.6.1 Using hydrogen for energy storage

When using a hydrogen system instead of a battery for energy storage, there were considerably
more components to be considered within the system, and these had the effect of increasing its
embodied energy significantly. These components were the hydrogen electrolyser, which used
electricity to produce hydrogen from water and then compress it to be stored; the steel cylinders
used to store the hydrogen; and the fuel cell used to generate electricity from the hydrogen. The
fuel cell in particular added a great deal of embodied energy to the system, in part because of its
very short lifetime (just over a year) and the immaturity of this technology. These contributions
to system embodied energy are shown in figure 5.56

This higher embodied energy cost means that there is less incentive for the system to use
the hydrogen storage system, leading to zero utilisation when optimising with EEIR (this is
repeated for the ELOLP results). However if the systems are restricted to curtail excess energy
production, modelled by the use of EuEIR as the objective function, then some hydrogen storage
becomes worthwhile. This is shown in figure 5.57 where optimal storage capacity only rises above
0 once PV contributes to 60-80% of demand. Hydrogen storage capacity is normalised to the
energy capacity of the stored hydrogen, dividing by system power capacity, so can be directly
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compared to the battery system results. Therefore we see that a smaller capacity of energy
can be stored with the optimal hydrogen systems than the optimal battery systems, and the
peak storage capacity is located at a higher PV capacity - supplying 1.2 times demand rather
than 0.5. Wind capacity does not support any type of hydrogen storage, and in fact once PV is
producing 100% of demand, added wind capacity competes with storage, reducing the optimal
storage capacity.

The performance levels are also reduced, particularly for systems with PV input above half
the system’s demand. The lack of any storage for wind-dominated systems also reduces their
performance slightly, and their performance drops suddenly once any PV capacity is introduced,
in contrast to the battery systems where PV provided enough security that performance was
only slightly reduced on their introduction as long as their input was small.

These optimal system changes mean that security and sustainability are also changed, as
shown in figure 5.58 where EIR is reduced overall, only reaching a maximum of 0.75 for large
hybrid systems instead of the 0.9 EIR reached by PbA systems. Increasing wind capacity gives
a smaller amount of security to the system (compared to battery systems), with diminishing
returns, reaching only 0.45 EIR for the largest wind-only systems as there is no storage support.
In contrast, adding PV capacity gives slightly more security, especially once hydrogen storage is
added, reaching 0.65 EIR for the largest PV-only systems. However this added storage brings
the EROIused value down to below 5, less than when using batteries.

However while EIR is not as high, excess energy is reduced more with hydrogen storage than
batteries, resulting in up to 1,500kWh less excess production for PV-dominant large systems
(see figure 5.59). However, as EIR security is not similarly affected, it is fairly likely that this
is a product of the much lower cycle efficiency of the hydrogen storage system, being at 30%
rather than typical battery ranges of 70-90% efficiency. Therefore it is dubious whether such a
result can be viewed as positive, as the energy lost in hydrogen conversion might as well have
been wasted through curtailment.

While this was only a small test system, as the embodied energy levels are experimental, it is
clear to see why hydrogen systems are more generally proposed as transport systems rather than
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Figure 5.57: EuEIR results showing optimal hydrogen storage capacity (contours) and system
performance (shading) for all input capacities. Performance is highest for mid-sized wind-dominated
systems, but hydrogen storage only becomes necessary once PV input is 80% of demand.

as an alternative to batteries. The only advantage hydrogen can offer is through the portability
of storage cylinders, whether this is utilised through hydrogen cars or stockpiling of hydrogen
to be used for longer term energy storage. However the latter would seem unrealistic as there
were no results that showed a large optimal storage capacity, the costs being too great.

5.6.2 Adding heat pump load

For another alternative model, a demand load for a 3.5kW heat pump was added to the existing
household loads. This load was fairly simple; lacking data for either the local temperature or
household heating demand, the heat pump load was assumed to be flat and either on constantly
(during winter) on in the evenings (spring and autumn) or turned off (during summer or while
unoccupied). The added flexibility of hot water storage was not modelled, so this is simply an
investigation into how the added demand load in colder months affected performance.

An immediate effect of this increased load (an additional 12.3MWh per year, roughly a
factor of 4) is a matched increase in generational capacity, requiring an average 20kW PV array
or 9.8kW wind turbine to match 100% of the energy demand. This is also a factor of 4 increase
on average, so the seasonal variation in demand has not resulted in too much overcapacity.
These levels of capacity are shown in figure 5.60

Analysis with EEIR

The performance of the systems with heat pump load were measured using EEIR and
EuEIR. While the EEIR-optimal battery capacities in figure 5.61 are largely unchanged
except for disuse by wind-only systems and lower capacities for large hybrid systems, the
EEIR performance overall is generally a third of that shown by the systems without heat
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Figure 5.58: EROIused (shading) and EIR (contours) results for optimal energy systems with hydrogen
storage. Security increases as input increases, and increases quicker once storage becomes included.

pumps.
The results in figure 5.62 show that the difference is largely due to an equal reduction in

EROIout results across the board, however there is also a major difference where large wind-only
systems have the highest EROIout results. When heat pumps are not included, the maximum
EROIout is obtained by small wind-only systems, due to the cost of larger batteries with the
largest wind turbines. However when the heat pump is included, batteries become less important
and larger wind turbines manage to give the highest EROI while not suffering much of a security
loss. In fact, wind-only systems show better security than PV-only systems, reaching an EIR
of 0.55 in comparison to PV’s 0.5. The security of hybrid systems never reaches the high EIR
results of 0.85 seen when heat pumps are not included, as battery sizes are decreased.

5.6.3 Analysis with EuEIR

When the system is forced to curtail excess energy the wind-dominant systems are changed
significantly, ramping up optimal battery capacities and moving the optimal wind capacity to
be smaller because of this added battery cost (see figure 5.63. This is very similar to the earlier
systems without heat pumps, however the change is bigger as wind turbines were particularly
well-performing for EEIR. Battery capacities for PV-dominant systems are largely unchanged.

This increase in battery capacity has however had the advantage of improving EIR of wind-
dominant systems, see figure 5.64 as they now reach 0.65 in comparison to PV’s 0.5 (unchanged
from the EEIR-optimal results), close to the maximum of 0.75 reached by large hybrid systems.
However their EROIused result is much lower than the EROIout results, pushing the maximum
EROIused to very low wind capacity. This is similar to the EROIused results for systems without
heat pumps.

There are a few notable differences between the wind and PV supply profiles, and the most
important in these circumstances is the seasonal difference. Figure 5.65 shows that the summer
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Figure 5.62: EROIout (shading) and EIR (contours) results for optimal energy systems with hydrogen
storage. Results are similar to systems without the heat pump, but EROIout results are much decreased
from the added embodied energy of the heat pump and extra losses from PV curtailment.
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Figure 5.63: EuEIR results showing optimal hydrogen storage capacity (contours) and system
performance (shading) for all input capacities. Performance is highest for mid-sized wind-dominated
systems, similar to systems without the heat pump.
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Figure 5.64: EROIused (shading) and EIR (contours) results for optimal energy systems with hydrogen
storage. Results are similar to systems without the heat pump, but EROIused results are much decreased
from the added embodied energy of the heat pump and extra losses from PV curtailment.

months have very good LOLP results (less than 0.1) as long as annual wind production exceeds
annual demand, or as long as PV production exceeds 20% of demand. This is a product of
two factors: PV’s production being highest in the summer, and thermal load being zero in the
summer. Therefore during summer, nearly all sources of energy will be overproducing to meet
demand. Spring and autumn give similar levels of LOLP to each other, except that autumn is
better for wind power and spring is better for solar power to supply demand; the added heat
pump load in the evening means that LOLP values never reach the low values of the non-
heat pump systems. Finally winter months, where the heat pump is constantly running, show
very little impact from solar, reaching only 0.75 for PV-only systems (they achieved 0.55 with
non-heat pump systems) and 0.4 LOLP for wind-only systems. Minimum values of LOLP are
consistently not as good as when the heat pump is not included, except for in summer when
the system is overloaded.

The necessity to oversize generation capacity in order to meet increased demand leads to
much exporting in the summer months. Even when using EuEIR to optimise the system, only
wind production is curbed. This suggests that the level of storage given with EEIR optimisation
is already high enough to store all the possible PV generation to meet summer demand, and
any more storage will make no difference to excess energy generation. However the increased
load in winter can utilise wind generation when additional storage is available.

Therefore it appears that systems including a heat pump load are more well suited to large
wind-dominated systems in terms of both their sustainability and security; their performance is
less of a compromise than other systems, where PV could have brought in much better security
but was too expensive. The actual EROI results are lower for all types of renewable energy
due to the added costs of the heat pump, but this is an unfair comparison as the households
without heat pumps are do not include their heating costs in the analysis, avoiding the energy
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Figure 5.65: Seasonal LOLP results for EuLOLP -optimised systems (these optimal systems are the
same as when optimising with EuEIR).
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comparison. Annual demand is multiplied by 4 on average, but maximum export increases by a factor
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why PV is as bad as wind here for generating excess energy.
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costs of the auxiliary heating system that would use gas or oil.
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Chapter 6

Stocksbridge case study

6.1 Introduction

It was decided that the ideal way to test a larger system would be through a case study, as
developing an average community sized system would be unrepresentative of most towns or
cities. Only one objective function - EuEIR - was used, its results in the previous chapter
being fairly robust, accurate and encompassing of all necessary metrics.

While most of the new renewables capacity in the UK will come from large-scale deployment,
government policy has recognised the importance of community energy schemes by enacting the
Community Energy Strategy, stating that they will “work with the community energy sector to
set a clear level of ambition for community electricity generation” [220]. This adds to existing
legislation in Scotland and Wales to support community energy schemes across the country,
with the awareness that community energy projects have multiple benefits to their local areas,
and have the potential to contribute significantly to total renewable energy capacity [13].

As community projects are designed to meet local needs, it must still be ensured that energy
security with respect to the national grid remains a factor. In some cases, local energy projects
may improve energy security in the area, such as when local demand is not reliably met by the
grid in remote locations. However, in most grid-connected areas, the two main priorities are
similar to those described in the general model:

1. Maximising local use of locally generated electricity from renewable sources, with a long-
term view that financial incentives (the Feed-in Tariff) will reduce over time as electricity
generated from photovoltaics (PV) approaches grid parity and wind turbines decrease in
price.

2. Minimising export of electricity, to limit damage to grid infrastructure not designed to
cope with bi-directional energy flows.

Whilst currently PV and wind installations are rewarded for exporting to the grid through
the Feed-in Tariff and Renewable Obligation Certificates (ROCs), it is becoming evident that a
long-term energy plan would eventually curtail or localise some decentralised renewable energy
production, to protect the grid from surges that may damage power quality and make centralised
management of the grid more difficult. These incentives have in fact already been reduced
significantly, even before such results have come into play, and ROCs for new installations are
to be phased out by 2017 [221]. Furthermore, at the local level, transformers attached to areas
with high renewable energy production may not be large enough to safely export electricity to
the grid during times of peak production, as they were primarily designed for areas of electricity
consumption only. Therefore exposing these transformers to bi-directional (import and export)
electricity flows is a problem for local energy security.
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This chapter evaluates a model of a grid-connected community energy system powered
by renewable sources and balanced by energy storage technologies, connected to the wider
electricity network as a virtual power plant. The model simulates theoretical energy systems
in the small town of Stocksbridge in Sheffield, comparing different power sources and energy
storage technologies. The choice to conduct a case study rather than to model an average energy
system was made because, given the wide range of areas and possible community schemes, it is
not viable to generalise community energy projects. The uncertainties involved in location and
variability of supply also make modelling very difficult and prone to error [39]. With this in
mind, it is acknowledged that the optimisation results here are particular to this area, but the
discussion allows for a wider application of this method to other localised electricity systems
with variable renewable sources.

6.2 Stocksbridge

Stocksbridge is a small town in the city of Sheffield, England with a population of 17,120 people
in 6,120 households, located in a steep-sided valley running east to west. Most of the housing
is situated on the southern north-facing side of the valley, but the northern south-facing side
is largely farmland and contains the Upper Don river. The town has a history of industry,
and still contains a large steelworks factory owned by Tata Steel, which obtains its electricity
through a 400kV transmission substation separately to the rest of Stocksbridge. There is some
local interest in renewable energy schemes, and a number of residents (200 households [11])
already have solar PV installed on their roofs independently. Solar power is popular with the
residents, and would likely form a large part of any community energy scheme given this social
acceptability and the relative ease of installation.

This analysis builds on a wider case study that was held in Stocksbridge to explore different
ways renewable technology could be introduced in the area. The participatory research included
debates around electricity generation, heat, building regeneration and transport, and aimed to
keep solutions local and beneficial to local residents (EPSRC “Solar Energy in Future Societies”
EP/I032541/1). These themes were explored during 12 workshops, 2 exhibitions and a number
of informal interactions between a group of residents and a group of academics from Sheffield
and Durham Universities. While the scenarios discussed in this paper were not entirely arrived
at through the participatory process, the inputs and considerations on sizing and choice of
technologies were based on opinions of residents, who were also consulted with regards to the
results. Unfortunately, as the models only include electricity generation and demand, innovative
solutions such as ground-source heating pumps in the local abandoned mines, or district heating
from the waste heat of the steelworks, which were proposed by the residents, were unable to be
included.

The other projects running alongside this numerical study were designed to be more open;
residents of the area had an equal footing with the academics and the focus was more on coming
up with visions of future energy/sustainable systems in the area rather than evaluating them to
specific criteria. However there was some concern with the residents of how open-ended these
projects were, as some wanted more concrete results that they could use to persuade others of
their feasibility. Participants also asked for the academics to add their expertise, as they thought
it would be more efficient than less experienced individuals taking on large responsibilities [222].
This made the numerical study an important addition to the larger project, as it could give
these more solid results and evaluation, while the EROI-based methodology keeps to the ethos
of long-term solutions sought by members of the project.

Figure 6.1 gives an idea of possible locations for the chosen technologies of PV, wind turbines
and pumped hydro storage, based primarily on the contours of the land and availability of wide
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Figure 6.1: Map of Stocksbridge with locations for energy sources. Purple areas = space for PV farms.
Pink areas = space for wind farms (combined with existing uses of the fields). Blue squares = possible
location for PHS pools. Stars = sites of existing weirs for hydro power.

open areas for generation, however social acceptability also played a significant part. These
locations were decided through the participatory process with the local residents, as they held
the most knowledge of how socially acceptable certain areas were for generation. The quantities
and capacities of generation were based more upon physical possibilities, and optimal results
were presented to the residents for further feedback on how the system fit into their visions of
an energy future for Stocksbridge. Two examples of such feedback included negative feelings
about wind turbines from some residents, and a desire to include the local rivers (previously
used in the steel industry) as part of any future energy system.

The location of Stocksbridge brings certain stipulations on any proposed energy system.
The main ones are as follows:

1. While wind resources are plentiful, there is limited space to place wind turbines, and
planning permission is not guaranteed.

2. Hill steepness gives hydro as an option, whether that be microhydro generation or storage.

3. Solar panels (PV or thermal) are somewhat popular with residents, much more so than
wind power.

4. Power demand is mostly from domestic households, so peak demand is likely to occur in
the evening, with increased demand overall in winter.

5. The local distribution network has nominal voltage of 11kV, medium availability for
increased generation capacity and 0% capability of reverse power flows. There are
currently no physical constraints on the primary substation for generation connections.
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Items 1) & 2) relate to the physical geography, while item 3) is more socially motivated and
4) & 5) relate to the electricity network. These are all important factors, including the social
acceptability, which cannot be ignored or glossed over. For a real community energy scheme,
solutions must be worked towards with the community, preferably led by community members.
However, members of the community of Stocksbridge did express a need for external knowledge
and support, to ensure that they could spend their resources wisely [222].

Stocksbridge demand data

Simulating the electricity demand for Stocksbridge required an alternative approach to that of
the generalised model in the previous chapter. To begin, the total annual electricity demand
for the region was calculated using UK government data, where Stocksbridge was defined as
encompassing the Middle Layer Super Output Area codes E02001611 and E02001612, or Lower
Layer Super Output Area codes E01008142-E01008150 (note that this includes Deepcar as part
of Stocksbridge) as shown in figure 6.2. It was decided to not include the electricity demand for
the Tata steelworks plant, as their electricity use is managed as a one-to-one contract through a
separate transformer to the rest of the community, and thus is not publicly published, and also
does not add to the normal demand through the main network. Electricity use in Stocksbridge
has been declining for the past decade as shown in figure 6.3, but a linear extrapolation cannot be
assumed, so demand was modelled to be a total of 27GWh/year, split into 20GWh of domestic
load under normal tariff, 1.5GWh domestic load under Economy 7 tariff, and 5.5GWh non-
domestic load. The non-domestic load is then split further into generic commercial/industrial
load using average national figures, load from the leisure centre, and load from the three schools
in the area. This splitting of the non-domestic load was based upon recognition of very different
loads (e.g. electricity use in schools follows a very different pattern to homes and businesses)
and what data was available. Stocksbridge’s constructed annual electricity demand is shown in
figure 6.4.

6.3 Possible scenarios for Stocksbridge

As was mentioned in section 3.2, the choice of renewable energy system paths for Stocksbridge
were pre-defined rather than randomly assembled as in the previous chapter. These were based
upon the available energy sources of wind and solar, and their generation data was modelled
using wind speed data and actual PV generation data located only from the surrounding area.
There were five alternate scenarios: PV-only, Wind 1, Wind 2, Wind 3 and Hybrid. These were
envisioned along a pathway of increasing power capacity, shown in figure 6.5.

6.3.1 Wind inputs

Rather than having one wind turbine of variable power capacity, each wind scenario has a
choice of three wind turbine capacities: 100kWp, 500kWp or 1.2MWp. These are used in
varying quantities, and have different wind power curves as shown in figure 6.6, based up on
the power curve in figure 3.6. Their other properties are shown in table 6.1, based on turbines
100kW Air 19/100 [223], 500kW Nordtank NTK, and Autoflug A 1200. These properties are
generally representative of other wind turbines with comparable power ratings. The smallest
wind turbines were included in the analysis despite their lower efficiencies and EROI values, as
locals were concerned with the impact on the landscape brought by taller wind turbines with
greter power capacity. The size of the fields available gave an absolute limit of 60m hub height,
which was the height of the 1.2MWp turbines.

188



Figure 6.2: Subregions of Stocksbridge and Deepcar, and their annual electricity demand in 2012.

Turbine capacity 100kWp 500kWp 1.2MWp

Hub height (m) 25 35 60
Blade diameter (m) 19 37 61
Cut-in wind speed
(m/s)

3.5 4 4

Rated wind speed
(m/s)

14 14.9 13

Cut-out wind speed
(m/s)

24 25 25

Maximum number
of turbines

72 20 6

Maximum
estimated total
annual generation
(GWh)

22 29 27

Table 6.1: Wind turbine specifications for Stocksbridge wind and hybrid energy scenarios. Data taken
from website wind-turbine-models.com
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Figure 6.3: Electricity demand for the region of Stocksbridge and Deepcar, showing slow decline for
both domestic and non-domestic demand, and a much higher demand for domestic households. This
demand was high enough to justify using national average time-series for both domestic and non-domestic
demand, scaled appropriately.

The wind turbines were proposed to sit at the top of the south-facing hill, facing south
or south-east, to make the best use of the wind resources available. The wind speed data was
collected from a nearby location in Bradfield situated on a similar hill to the one in Stocksbridge,
with the strongest winds coming from 180-250 deg (see figure 6.7). Air temperature data was
collected from another location bordering the Peak District, within a distance of 50km. It
was noted that there already exists a small domestic wind turbine on the northern hill in
Stocksbridge, of only 10kWp capacity, but there was no further data available for this wind
turbine [11].

Air temperature data was collected because the wind shear exponent α used in
equation 6.1 is in fact variable throughout the day and year, depending on a number of
factors, but particularly air temperature and density (which are themselves related). The
relationship between temperature T and α is based upon experimental data from [224], using
monthly calculations of air temperature and wind speeds at different heights, and gives wind
shear for UK temperatures T at between 0.18 and 0.225 for the years 2011-14:

α(T ) = −0.001588T + 0.2258 (6.1)

This wind shear for Stocksbridge is summarised in the following graphs, which illustrate
annual and daily trends, and the typical range of wind shear exponent values. These generally
agree with the previous use of α = 0.2 for generalised energy systems across the UK.

6.3.2 Solar inputs

For solar generation, two locations of PV were proposed: rooftop installations, and solar fields
on the south-facing hill below any potential wind turbines. A baseline level of renewables
penetration was set fairly high at 6% of annual electricity demand, supposing that 12% of
household roofs have PV arrays at an average of 2.4kWp capacity, giving 1.8MWp baseline
capacity. This average capacity was determined using average Sheffield PV installation data
obtained from the Sheffield Solar microgen database, so is realistic of available roof space, and is
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Wind direction for Bradfield site, 2011−2014
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Figure 6.7: Wind rose showing primary wind directions at the location where wind speed was measured.
Strongest wind speeds were observed from the south and south-east, which is the direction that the hill
in Stocksbridge faces. Key shows length of time (in half-hours) that wind was observed from a certain
direction.
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smaller than the current Stocksbridge average of 3.4kWp because it includes roofs that may not
currently be seen as worthwhile due to their smaller size. Rooftop installations were considered
as a viable first step towards increasing renewable power generation capacity, as they require
no additional land use, can be managed by individual households, and fit into existing incentive
policies in the UK (Feed-in Tariffs). The solar fields to the north can add to solar generation,
and their capacity was added incrementally in the model as with wind to allow for optimisation
of size, up to 40ha of an estimated maximum 60ha of land. It was assumed that the fields, which
are currently grass, would be able to support current utilisation such as grazing, in addition to
solar generation. PV generation data was collected from four different PV arrays in Sheffield,
spanning years 2011 to 2013, array locations spaced 3-7km apart which roughly matches the
size of Stocksbridge. These arrays are roughly 10km away from Stocksbridge, so should have a
correlation of 0.85 with PV production in Stocksbridge, a good enough approximation for the
area [225]. Figure 6.9 shows the map of these locations.

6.3.3 Other components

The final power generation technology to be considered was micro-hydro, using the river Don
and its existing weirs. As mentioned previously, there was local interest in using the river
for power generation, there being a strong local history of using water power in steel mills.
However the estimated production is so small in comparison to total demand, only powering
30 households at most [226] that it was not included in the final model. While micro-hydro
can be applicable to small-scale energy systems, it was considered to make so little difference to
either the power generation or system security (despite being a flat, fairly dispatchable source of
power) that there was little reason to include it in the model. However there was some prospect
in using hydro generation for energy storage, albeit not as part of the natural river flow.

To balance the system, different types of energy storage technology were proposed. The first
option was household battery storage, using either deep-discharge lead-acid (PbA) batteries or
lithium-ion (Li-ion) batteries. These would be installed in every house, and connected to the
local grid with exporting and importing between them, to be exploited to their full extent. The
second option was large-scale flow battery storage, using VRB units to store electricity centrally.
Another centralised option for storage was pumped hydro storage (PHS), using the steep sides
of the valley to store gravitational energy in vertically pumped water. There is a potential drop
of 100m down the hill situated to the north of Stocksbridge, with no housing in the location,
making it a prime location for such technology.

6.4 Results

With five different options for power supply and four different storage technologies considered,
this gave a total of 20 possible scenarios with varying areas of land used for generation, whose
performance (measured in EuEIR) is plotted in figure 6.10 and corresponding optimal storage
capacities shown in figures 6.12 through 6.16. The performance values for the wind scenarios
are much higher than recorded for small household networks in section 5.2, which only reach an
EuEIR of 10, but this can be explained by the use of larger wind turbines with corresponding
lower cost per kW of power capacity. The PV-only systems are similar to those PV-dominant
systems for the single household systems, remaining below EuEIR = 5.

The scenarios are increased in capacity by adding more generation on land use, building
on the initial rooftop PV, so wind scenarios become more wind-dominated as total capacity
increases. This can make for difficulty in comparing systems along their pathways, however
it was considered more realistic that PV installation would be a precursor to wind turbine
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Figure 6.9: Map of PV locations used for PV generation data in the Stocksbridge model, compared to
the size of Stocksbridge.
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Figure 6.10: EuEIR results for all Stocksbridge scenarios. These have already been optimised for
storage capacity, shown in the next graph.

development, than for both to increase in capacity at the same rate. The best performing
systems are for scenarios that include wind. This is for multiple reasons: the lower embodied
energy of wind turbines, their combination with rooftop PV giving a more consistent baseline,
and their higher capacity factor giving more power per rated capacity overall. Larger wind
turbines perform best, as their ratio of embodied energy to generation capacity is lower, and
their taller hub heights give even higher capacity factors. It is therefore unsurprising that the
best performing system of all is Wind 3 (1.2MWp turbines) with PHS storage, but even this
system reaches a ceiling of maximum generation capacity at 5 turbines (7.8MW total capacity)
where adding another turbine would create too much overproduction, reducing performance.
In fact all systems have an optimal generation capacity at less than the theoretical maximum,
demonstrated by the peaks of the curves in figure 6.10 and summarised in figure 6.11. This also
shows the proportion of capacity that comes from solar or wind.

The optimal generation capacities are at least twice the maximum power demand of 7MW ,
and most of the optimal systems, excluding PV systems, are able to generate around 100% of
annual demand over the year, ranging from 85% to 111% depending on the size of wind turbines.
However not all this generation will be matched to demand, due to losses in the system and
inability to deliver all the energy where it is needed. Differing capacity factors between wind
and solar power make a big difference in the optimal generation sizing, as higher capacity factors
for wind (particularly larger turbines) gives them smaller optimal generation capacity that still
delivers more energy to the system over the year.

6.4.1 Battery capacity results

When comparing battery systems in figures 6.12 through to 6.16 greater storage capacity is
required when PbA batteries are used, despite their higher embodied energy cost. This is likely
due to their lower DOD at 50%, so while the maximum stated PbA capacity is higher than the
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Li-ion capacity at 12.3MWh (capacity is total over network), the usable capacities are fairly
similar. However the optimal PHS capacity results are higher still when high levels of wind
capacity are deployed. Different reasons come into play here; PHS can use its full capacity,
but the technology’s low embodied energy values means that using the maximum capacity of
160MWh provides a cost-effective increase in security. These lower embodied energy values are
reflected in the high EuEIR for PHS systems in figure 6.10 (excluding PV) as EROIused is
generally higher and the increased storage capacity gives higher EIR. VRB is shown here to
be the worst performing storage technology, as it is only worthwhile using alongside an all-PV
system, where the effective “cost” per MWh of electricity is greater, giving more incentive to
retain it through storage.

It can therefore be concluded that while both PHS and PbA storage utilises large storage
capacities, PHS is more effective at putting that capacity to good use.

It is notable that changing the storage technology makes only a little difference to the
optimal generation capacity of each system. However, this could be a factor of having large
increments between different generation capacities, which reduces accuracy. The PV scenario
has the largest increments, and its peak in figure 6.10 is very flat, so there is actually very little
difference in performance between the 18kWp and 24kWp systems.

While PV systems have the largest optimal generation capacity, the estimated annual
generation from this capacity is actually the lowest at 76% of annual demand, due to the
technology’s lower capacity factor in north England’s typical climate. This puts an inevitable
cap on the potential independence and security of PV-only systems, as capacity must be
oversized to meet demand, and this results in overproduction that must be exported if not
curtailed. The largest optimal supplies are for the Wind2-PHS and Wind3-PHS systems,
which both supply close to 110% of annual demand, while the others often give less than
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Figure 6.12: Optimal storage capacity for Stocksbridge PV-only scenarios. Increasing PV capacity
quickly leads to increased storage capacity for all technologies, the greatest increase being for PbA
batteries by a large margin. All reach a cap of maximum storage at 22MWp generation capacity, except
PbA systems which reaches the maximum storage capacity allowed at generation capacity of 25MWp.
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Figure 6.13: Optimal storage capacity for Stocksbridge Wind1 scenarios. Storage only becomes
worthwhile at a generation capacity of 6MWp, and VRB batteries are never cost-effective enough to
be deployed. PHS becomes worthwhile for large-scale deployment beyond 7MWp.
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Figure 6.14: Optimal storage capacity for Stocksbridge Wind2 scenarios. Storage deployment is similar
to Wind1 systems.

Local generation capacity (MW)
0 2 4 6 8 10

O
pt

im
al

 s
to

ra
ge

 c
ap

ac
ity

 (
M

W
h)

0

5

10

15

20

25

30
E

u
EIR-optimal battery Wind3 systems

PbA
Li-ion
VRB
PHS

Figure 6.15: Optimal storage capacity for Stocksbridge Wind3 scenarios. Less storage capacity is
deployed for the PHS systems than with Wind1 or Wind2, however the batteries exhibit the same
behaviour as with those systems.
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Figure 6.16: Optimal storage capacity for Stocksbridge hybrid scenarios. This bears more similarity to
the PV systems than the wind-dominant systems, giving maximum capacity to PbA rather than PHS,
and some deployment of VRB storage. However capacities of PbA and PHS are fairly close.

Scenario Generation
capacity
(MW )

Storage
capacity
(MWh)

EROI EIR EuEIR

PbA
PV 23.7 159 5.3 0.57 3.0
Wind1 8.4 12 36.7 0.64 23.4
Wind2 8.8 12 38.0 0.64 24.2
Wind3 7.8 12 52.0 0.71 37.1
Hybrid 13.6 61 16.8 0.73 12.3
Li-ion
PV 23.7 74 5.9 0.59 3.5
Wind1 9.0 12 35.7 0.69 24.5
Wind2 8.8 12 37.6 0.66 25.0
Wind3 7.8 12 50.8 0.74 37.7
Hybrid 13.6 37 17.4 0.76 13.2
VRB
PV 23.7 49 5.0 0.57 3.0
Wind1 8.4 0 37.8 0.61 23.4
Wind2 8.8 0 39.1 0.61 24.2
Wind3 7.8 0 54.1 0.68 37.1
Hybrid 13.6 12 16.8 0.72 12.3
PHS
PV 23.7 84 5.8 0.59 3.4
Wind1 9.0 48 35.7 0.76 27.2
Wind2 9.8 36 37.3 0.76 28.3
Wind3 7.8 24 53.0 0.80 42.5
Hybrid 13.6 60 18.0 0.79 14.2

Table 6.2: Sustainability, security and performance results for all optimised Stocksbridge scenarios.
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Figure 6.17: EIR for Stocksbridge scenarios optimised by EuEIR. Hybrid systems give the best
EIR given their more balanced mix of resources, and PV systems struggle to exceed EIR of 0.7 despite
reaching the highest available generation capacity. All systems show a limit to their independence, the
curves flattening so that a EIR of 1 is unobtainable without connection to the grid.

100%. Given that the greatest power demand by the system (on a half-hourly averaged basis)
is 7MWp, this means that the optimal wind systems are capable of supplying this at full
capacity, while the hybrid systems could generate twice this maximum demand, and PV
systems over 3 times. However, the system will rarely deliver full capacity, and solar is less
likely to meet peak demand as that generally occurs in the evening, highest in winter.

6.4.2 System independence

The impact of all these factors on the security/independence of the systems can be seen by
investigating the EIR results for the optimal systems, shown in figure 6.17. The independence
of Stocksbridge system was fairly important, being seen by some residents as their primary
motivation for choosing local sources of energy generation.

The individual EIR results for all systems are heavily dependent on type of generation, with
only a small difference seen with choice of storage technology. The results are worst for PV
systems, with a maximum EIR of for PV-PHS systems at their maximum generation capacity
of 62MWp. The high EIR values for PHS systems are caused by their larger optimal storage
capacities; comparing lithium-ion batteries with equivalently sized PHS would give better EIR
results for the li-ion systems due to their higher efficiency. However it is not feasible to ever
reach 100% security with such a small system; the best EIR results obtained (for maximum
storage capacity, at non-optimal states due to the cost of the extra storage) do not surpass an
EIR of 0.8. The lower EIR results for the hybrid systems in comparison to the wind-dominated
systems (when comparing systems of equal power capacity) may be surprising, but this merely
suggests that the most secure mixed-source systems have a higher penetration of wind than
solar. When alternative mixed-source systems with differing proportions of PV and wind were
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Figure 6.18: Excess energy curtailed, shown as proportion of total energy production. Large wind
turbines lead to the greatest amount of curtailment, whereas systems containing more PV, especially
using PHS, need to curtail less energy. However the lower cycle efficiency of PHS means that some energy
is still being lost.

investigated, the best performing systems had a low PV penetration, closer to the wind scenarios
than the chosen hybrid.

Of course, while EIR gives an idea of how independent the system is, it doesn’t show by
how much the system ended up overproducing in order to supply demand. A complementary
calculation alongside EIR is the total excess energy, assumed to be curtailed, shown in
figure 6.18. This shows that while the wind-dominated systems return the best EIR values,
their level of excess energy is also the highest when compared to their power capacity. By
contrast, the systems with higher levels of PV show less need for energy curtailment. This can
be partly explained by the greater amount of energy produced by the wind turbines, however
the blip shown on the graph for small PV-VRB systems, where there is no storage deployed,
gives evidence that the high storage capacities help curb excess energy. As shown in the
generalised model, PV works better with storage than wind turbines because day-night cycles
of production are more reliable and shorter than wind generation’s intermittent patterns,
enabling better use of storage to meet demand.

Finally, the metric EROIused shows favourable results for PHS storage and large wind in the
Wind 3 scenario. The PV scenario is the only one to continuously decrease in EROIused when
new generation is added. This could be caused by the higher embodied energy of PV modules,
in combination with the patterns of solar generation; i.e. while more energy is being generated,
it is occurring in the middle of the day when households are less able to use it, thus the satisfied
demand Eused is not increasing as much as it would with wind generation, while embodied
energy nonetheless increases at a faster rate than for wind turbines. The EROIused results are
more scattered than the other metrics, suggesting that it is more sensitive to chosen data, but
they mostly display a peak similar to the EuEIR and EIR curves, indicating that increasing
generation capacity past a certain point can have a detrimental effect on the sustainability, as
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Figure 6.19: EROIused values for Stocksbridge scenarios optimised with EuEIR. PV is the only
scenario to show constant decrease in EROIused, and using the largest wind turbines gives the highest
EROIused.

either the size of the required storage becomes prohibitively energy-expensive, or the increase
in generation capacity doesn’t create a large enough increase in usable local energy. The actual
EROIused values, mostly increasing beyond the initial value of 8.8 (with the only exception
being the PV systems), are encouraging as they suggest a good energy return.

6.4.3 Conclusions

These results have given the optimal renewable energy system to be a 1.8MWp network of
rooftop PV supported by five 1.2MWp wind turbines, managed with a local pumped hydro
storage system of 12.3MWh capacity. Furthermore, analysis with the metrics has given an
understanding of how this system compares to the others, and some ideas about how such a
system would behave in terms of its sustainability and security. It would not be feasible to
aim for a fully independent local renewable energy system, this being unachieveable with the
technology mentioned (long term storage would be necessary over the winter months and during
long periods of wind calms) and far too costly. However, this work has shown that it is possible
to create a local security buffer on a virtual power plant level, reducing the work required to be
done by the national grid to maintain full energy security.

It must be noted that the optimisation results cannot be taken at face value, as there are
more issues to be considered in terms of local acceptability and practicality. In attempting
to compromise for affordability, many of the scenarios suggested to the Stocksbridge residents
included wind generation using shorter wind turbines (to reduce their visibility), which some
were happy with, but others found alienating. One such resident gave this inclusion of wind
energy generation as the reason for her eventual leaving of the group, saying ”suddenly wind
turbines were back on the agenda... this is when I suddenly thought there is nothing more in it
for me”. [222].
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In terms of practicality, there are no current incentives for installing storage capacity on
such a large scale, other than potentially the capacity market, which pays generators to export
energy at times of peak demand. This would be more practical to apply to the VRB or PHS
systems, as they are large centralised units of power, but still would add extra complexity to
the system, as they would need to be producing energy at specific times of year with only
a few hours notice [227]. The centralised options for energy storage would likely be more
logistically practical, however would require planning permission and therefore entail a long
planning period beforehand. These are equally barriers to the more general systems studied in
the previous chapter, however such barriers are illuminated when relating to a real case study
with specific consumption/resources and locality.

Therefore it must be acknowledged that finding a desirable energy system of the future
cannot be determined entirely though optimisation; there are more complex nuances to the
solutions and results are unlikely to satisfy every party. However results from the participatory
process with the Stocksbridge local residents showed that having some form of optimisation
and evaluation is necessary, both as part of the decision making process and to give a sense of
tangible results.
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Chapter 7

Conclusions

This thesis has brought together a number of renewable energy system optimisation studies,
all using real world data of electricity generation and demand. In this conclusion the results
from across all scenarios are linked together and contrasted, allowing for a broad evaluation of
potential renewable energy systems.

These energy systems were posed within the framework of a transition towards
decentralised/distributed generation, where the challenge of balancing the grid is distributed
into more local energy systems, referred to as virtual power plants (VPPs). In this context,
electrical energy storage such as batteries or pumped hydro storage (PHS) becomes relevant as
a way to balance electricity generation and demand at the local level. However, there is
concern that while this model is designed to work in favour of renewable energy sources, which
are naturally distributed geographically, the additional requirements/costs of balancing
technology may undermine the primary goal of making our energy systems more sustainable.
The trilemma, widely known as the compromise between sustainability, security and financial
cost, is ultimately at the heart of this balance. Therefore these optimisations are an approach
to studying the trilemma, using the energy parameters of the energy systems to form a
physical, rather than economic, evaluation of their performance.

7.1 System optimisation results

7.1.1 Comparing different systems with PbA batteries

While not the most high-performing battery technology, lead-acid (PbA) batteries were used
as the baseline storage technology in the evaluated systems. The data available on their
performance and embodied energy is the most reliable, being the most mature of the battery
technologies, so evaluating results from PbA systems provided a threshold that could then be
extended to systems with more modern batteries.

Looking at the results for energy systems with a full range of optimisation (all studies
excluding the Stocksbridge scenarios), optimising with all objective functions returned an
optimal system that only had one source of power: wind, alongside some energy storage
capacity. While solar electricity generation was shown to improve energy security of the
system, PV’s high embodied energy meant that it was more sustainable for systems to use
only wind energy sources, supplemented by battery storage.

Optimal power capacity results for single household systems, whether these be power
generation or storage capacity, were not significantly affected by choice of LOLP or EIR, but
were by the choice of EROIout or EROIused; i.e. whether the system was allowed to export
energy to the grid. Optimal battery capacities for non-exporting systems were over twice the

207



Demand (kWh)
10 3 10 4 10 5 10 6 10 7 10 8Su

pp
ly

(a
s

ra
tio

of
an

nu
al

de
m

an
d)

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Wind3

Wind2
Wind1
Hybrid

PV

Optimal supply for all PbA systems

Networked
households

Non-domestic loads

Figure 7.1: Optimal power capacity results for single household systems, domestic networks and non-
domestic systems, up to results for Stocksbridge case study (PbA only). Log plot allows for expression
of small and large systems, and all fitted curves are linear. These linear fits are not particularly strong:
domestic household systems have an initial drop in capacity, Stocksbridge power capacity depends on
the power source’s capacity factor, and non-domestic systems have no clear trend, likely being more
dependent on type of load.

optimal battery capacity for exporting systems, across results for all battery technologies.
Similarly, systems returned optimal wind turbines with twice the energy output for exporting
systems than non-exporting systems, where they supplied a total energy over the year equal to
the total demand. Furthermore, the actual optimal wind capacity under ELOLP and EEIR
would be unlimited, as their results simply returned the upper limit imposed by the study.
This can be clearly seen as EROIout is only improved by using larger wind turbines, and the
security would not be negatively affected from increased generation.

When expanding these results to networked domestic systems, as shown in figure 7.1,
exporting systems once again gave optimal results where the largest wind turbines were sized
to be as large as possible. However there was a decline in optimal battery capacity, returning
almost zero capacity for the largest networks of 20 households. Non-exporting systems showed
a sharp drop in wind turbine capacity when a second demand was added to the initial single
household system, the result of demand smoothing. Wind turbine capacity was then stagnant
for EuEIR results, but increased under EuLOLP . Battery capacity dropped more
dramatically than for exporting systems, given their initially higher baseline. However their
storage capacities were still higher than for non-exporting systems up to the maximum size of
20 households.

Non-domestic systems showed similar trends, but larger non-domestic demands were less
likely to be smoother, as their profiles were constructed differently. Rather than being a number
of demands added together, which naturally creates a smoothing effect, larger loads were from
larger buildings, which may show some smoothing from having a number of different rooms, but
the building as a whole would likely adhere to a regular timetable, creating notable patterns
of demand that are not smooth. One example is the school load, which shows weekly and
term-time patterns of demand. Therefore reductions in battery capacity were linear rather
than exponential, guided more by the increase in EROI of the larger wind turbines rather than
limited storage functionality.

Figure 7.2 shows the exponential drop in battery capacity for networked households, and
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Figure 7.2: Optimal battery (PbA) capacity results for single household systems, domestic networks
and non-domestic systems, up to results for Stocksbridge case study. Battery capacity is normalised
for non-domestic demand by dividing total capacity by 3.77MWh (average household data demand).
Both domestic and non-domestic demand have decreasing battery capacity, but Stocksbridge’s use of PV
brings batteries back into the picture.

the more steady decline for non-domestic systems. Both give zero storage capacity for their
largest systems, however the much larger Stocksbridge system returns non-zero battery
capacities for all scenarios. This non-linear relationship is interesting, as it shows that
medium-sized systems develop a smooth enough demand that the batteries become less
valuable, eventually dropping their value below their cost. However the case study is large
enough that more complex considerations come into play, and PV becomes an integral part of
the energy inputs. This use of more costly PV production increases the value of the generated
electricity, making it more worthwhile to store, thereby giving larger battery capacities once
more. This is a complicated relationship, as PV generation also improves security by
complementing wind production, filling in some gaps of production when wind speed is low
but the sun is shining. PV generation is also complementary to storage regimes, as a fixed
storage capacity is capable of storing energy during daytime, and using that stored energy at
night. It is difficult to adapt this strategy to the more stochastic patterns of wind power
generation, where the periods of underproduction do not necessarily match the periods of
overproduction.

The effects of these battery sizes can be seen in the security results in figure 7.3 where small
domestic networks and non-domestic systems show a small increase, but all the Stocksbridge
scenarios have higher security. The case study scenarios benefit from using mixed energy sources,
where a 3:1 mix of PV and wind in the Hybrid scenario gives a slightly more independent system
than the more equal 6:7 mix (Wind 1/2) or the 5:7 mix (Wind 3) offered by the wind-dominated
scenarios, and the PV-only scenario has the lowest security, but not as low as the wind-only
smaller systems.

The use of mixed energy sources in the case study was inevitable due to a number of factors:
geographical, technical, econonomic and social. Geographically speaking, there is limited land
available for large wind turbines. On the technical side, large single-source PV or wind systems
run into security problems relating to overproduction, such as harmonics or limits to how much
can be exported at a given time. Economic and social factors are more complex: wind turbines
were included to allow for economic benefits, but wind-free scenarios also existed to give options
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Figure 7.3: Optimal security (EIR) results for single household systems, domestic networks and non-
domestic systems, up to results for Stocksbridge case study. Results for PbA battery systems. Increase
in EIR for the domestic networks and non-domestic systems is mainly motivated by demand smoothing
rather than battery use, as storage capacity decreases for both.

for residents who disliked wind power, as did small wind turbine scenarios for those who were
only against tall wind turbines.

These hybrid systems have better energy security than the smaller wind-only systems, as
previously noted, but sustainability is not increased any higher than the range of EROIu reached
by much smaller systems (see figure 7.4). This contrasts with the EIR results, where all of the
optimal Stocksbridge scenarios are higher than those achieved by the smaller systems. The most
secure system is the wind-PV hybrid scenario, but this is only slightly higher than the Wind
3 scenario (which also includes a small percentage of rooftop PV), both surpassing an EIR of
0.7. It can be concluded that a hybrid system with slightly higher power capacity of PV than
wind is generally the most secure and independent type of system according to EuLOLP .

Bringing sustainability and security together, EuEIR performance generally improves as
systems increase in size and demand increases, up until the Stocksbridge scenarios, where the
lower EROIused values of PV reduces performance. This is because sustainability is generally
the strongest factor in deciding performance; increasing sustainability has only a small impact
on security, whereas increasing security by using PV or larger storage capacity can have a
very large impact on sustainability. This is summarised in figure 7.5, where all the small
domestic household networks and non-domestic systems are optimised to be wind-only systems,
the most sustainable but least energy secure form of generation. Their performance increases
with system size, which is caused by the improved EROI of larger wind turbines and smoothed
demand requiring smaller batteries. The Stocksbridge case study also gives preference to large
wind turbines, where the Wind 3 scenario (using 1.2MW wind turbines) has over 12 times the
performance of the PV-only system. Reducing the size of the wind turbines to 500kW or 100kW
gives a factor of 8, and the hybrid system has higher performance than PV by a factor of 4.
These multiplication factors are seen across all storage technologies, and most of the difference is
contributed by the increase in EROIused when wind turbines are used, however a small increase
in EIR is also seen.

This result adds to the consistent theme of EROI being easier to increase than energy
security, which is understandable given the difference between the metrics. Since 100% security
(whether measured as an EIR of 1 or LOLP of 0) would be a perfectly secure system, a goal that

210



Demand (kWh)
10 3 10 4 10 5 10 6 10 7 10 8

ER
O

I us
ed

0

10

20

30

40

50

PV
 

 Wind2

 Wind3

 Hybrid

Optimal EROIused for all PbA systems

Networked
households

Non-domestic loads

Wind1

Figure 7.4: Optimal sustainability (EROIused) results for single household systems, domestic networks
and non-domestic systems, up to results for Stocksbridge case study. EROIused increases until PV is
introduced as the baseline for the case study, and the PV-only system has EROIused < 5.

is impossible even for the current national grid, this means that we will always see diminishing
returns when aspiring towards better security. However there is no “perfect” EROI to aspire
towards, and while energy consumption can be split into components that have diminishing
returns, e.g. aims for 100% recycling of materials, there is much more space overall for energy
use reduction and energy generation gains, and we are not currently at the limits of their
improvement.

It must be noted that when it comes to community systems as large as the one considered
here, the land available is an important concern, as it may be not big enough or not exposed
enough for wind turbine installation. Just as importantly, local perceptions of wind turbines
could remove the option of large wind turbines with their better EROI levels, or eliminate wind
turbines as an option altogether. However in the case of local opposition, EuEIR analysis can
be used to find a scenario that works to meet local needs while also maximising sustainability
and security. For example, there was some support in the participatory workshops for shorter
wind turbines, and the Wind 1 scenario with 100kW turbines still outperforms the Hybrid
and PV scenarios, while using shorter wind turbines than the Wind 3 scenario which used
1.2MW turbines. However, Wind 1 required up to 72 turbines, while only 5 1.2MW turbines
were required for the optimal result. Wind turbines are not the only factor affected by local
conditions; most areas would not have the hills required to support pumped hydro storage, so
this would not usually be available as an option. Furthermore, the ease of installing rooftop
PV, and the subsidies that used to exist for households that installed PV, meant that there was
a strong desire for solar energy inputs despite their higher costs.

Over all PbA systems tested, results showed that when optimising for battery capacity, EIR
could reach values of 0.9 for large hybrid systems, regardless of system size; this was seen for
the Stocksbridge case study and also single household systems. However these systems showed
very high excess energy that would need to be exported or curtailed, so the overall optimal
systems had lower inputs, less PV availability, and lower EIR values of 0.75 at most.

When comparing different sources, it was found that wind power is more prone to
overproduction, and PV is more prone to underproduction. This can be explained by their
capacity factors - wind turbines literally produce more total energy for an equal power
capacity - and also by their daily and yearly supply profiles. As wind power has higher
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Figure 7.5: Optimal performance (EuEIR) results for single household systems, domestic networks and
non-domestic systems, up to results for Stocksbridge case study. Performance increases overall, showing
consistency between domestic and non-domestic systems, but decreases for Stocksbridge systems with
significant PV use.

capacity factors (even at low hub heights, some areas showed high production) and can
generate power during night time when demand is lowest, it is more capable of supplying
energy when the system doesn’t need it. Furthermore, its stochastic nature means that the
battery is less likely to be empty when it is producing at full power, unlike PV whose daily
cycle means that the battery will generally have been discharged over night and ready to
charge again during the daytime. Therefore wind turbines may continue overproducing when
the batteries are fully charged and demand is low, so the only option is to export or curtail
production. By contrast, PV production is very low during the winter, so will always
underproduce in those months no matter how large the storage capacity is or how oversized
the system is (within reasonable limits). Even in summer when a large PV system may be
massively overproducing during the day, it will still not provide any power at night (at UK
latitudes) so there is a period where storage can discharge and be ready for recharging the
next day. This complementary relationship between PV and the battery can be observed in
the correlations between system inputs and their optimal sizing, as when only considering one
aspect of security - whether underproduction or overproduction - the size of PV capacity is
more correlated with the battery capacity. However when considering both aspects of security
through the either EuLOLP or EuLOLP , wind capacity has higher correlation with security,
as its tendency to overproduce is now penalised. However, this correlation is still less than
PV’s with security, and there is no correlation between wind inputs and optimal battery
capacity, suggesting that wind generation derives little value from battery storage.

When considering sensitivity of the results to embodied energy values, it was found that the
best way to improve sustainability, security and performance is to reduce PV embodied energy.
Reducing battery EE was also valuable for improving security, but sustainability was adversely
affected, as the system relied on larger battery capacities. Given the positive combination of
PV and battery storage, it would make most sense to reduce both in tandem, but giving more
emphasis to the reduction in PV EE.

Reducing the wind turbine’s embodied energy also improved performance, but this resulted
in lower battery capacities and thereby had a slight negative effect on the system’s security.
There also may be less scope to reducing these values because most of the energy use is from
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tower construction (steel or concrete) and these are mature manufacturing processes that would
require serious reform to ensure that all factories stuck to low energy techniques. While energy
costs for PV manufacturing could be reduced in an economically beneficial way by using more
efficient methods or new types of PV such as organic solar cells, reducing steel or concrete
energy costs would need changes such as very high levels of recycling or renewable energy
powered factories. Therefore reducing PV’s embodied energy is a more realistic goal, possibly
combined with the reduction of battery embodied energy to ensure that sustainability is not
compromised.

It was found that when PV’s embodied energy levels were reduced more gradually, optimal
system supply was shifted to hybrid systems with a significant PV input - equal to wind inputs
under EuEIR optimisation - and system security EIR was increased from 0.45 to 0.75 for
single household systems. However, 0.8 EIR appears to be a natural limit to optimised systems
when PbA batteries are used, as reducing PV’s embodied energy beyond 60% appeared to make
no considerable difference to EIR, only serving to improve EROIused. Using Li-ion and NaS
batteries could achieve EIR results of 0.85 when PV EE was reduced by 80%, but the other
batteries gave similar results to PbA.

7.1.2 Storage technology results

Five different types of batteries were investigated as part of the single household system
optimisation, and pumped hydro storage (PHS) was also used in the Stocksbridge case study.
PHS was only plausible for the case study because there was much higher energy demand, and
a hillside steep enough to consider it as an option. However, this is an unusual case, as there is
a shortage of available sites for PHS left in the UK.

Over all types of storage investigated, there were only small differences in their performance
(EuEIR) for single household systems, as shown in figure 7.6. While lithium-ion systems gave
the best performance, PbA systems had the best EIR result despite having poorer quality
batteries in terms of efficiency, lifetime and depth of discharge. This was because their reduced
energy costs allowed for larger wind turbines and more storage capacity, resulting in a lower
EROIused result overall and more excess energy.

VRB systems are the least successful, showing the lowest performance and EIR. Their low
EIR value is due to a low storage capacity, caused by their high energy cost. Their application in
the Stocksbridge case study also returned the worst results, where the wind-dominant scenarios
showed no use for the flow batteries at all.

Of course, the most important results to draw from the batteries was how they affected the
security of the systems. When it came to the optimised single household systems, all battery
types were unable to give an EIR result of above 0.55 without impeding sustainability (i.e.
becoming suboptimal), however this limit was also imposed by the systems being wind power
only. This upper limit of security was estimated to be 0.85 for Li-ion or NaS systems when the
embodied energy of PV was reduced by 80%, and 0.8 for the other battery technologies. For
the Stocksbridge case study, a limit of 0.75 EIR existed for large hybrid systems with Li-ion
batteries, but PHS systems were able to surpass this with an EIR of 0.8 for large wind and
hybrid systems.

Storage is likely to only become a widespread method of balancing renewable energy
production if certain technologies are improved. The results of the uncertainty analysis
showed that lowering the embodied energy levels of PV modules is the most effective way of
improving security and sustainability together. While systems with cheaper PV would require
smaller batteries, they can use them more effectively and attain security levels 28 − 35%
higher, or 30− 40% higher if battery EE is also reduced. These results are for single household
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Figure 7.6: Optimal results for single household systems with all battery types, using the objective
function EuEIR. Li-ion batteries give the best performance (EuEIR) levels, alongside higher EROIused,
but PbA systems use larger batteries and increased wind turbine capacity to reach higher levels of security,
while producing the most excess energy.

214



systems, and the margin of improvement is smaller for networked demand where sustainability
and security are already improved with less need for batteries.

7.2 Methodology evaluation

Throughout this project, methods were developed for the optimisation of renewable energy
systems with respect to sustainability and energy security, using four alternative objective
functions that can be maximised to find a Pareto optimal system. These objective functions
were designed to compare the changes in the outputs (sustainability and energy security) when
one of the system input variables was changed, finding the Pareto optimal system where an
increase in one output would only be possible by causing a greater decrease in the other output.

This approach of finding balance between sustainability and security was considered
appropriate for the framework of distributed systems, where security is important but not
entirely a local responsibility. This approach differs to much of the literature, where LOLP
levels are seen more from a whole-system viewpoint, and therefore have much more strict
limitations. Using EuLOLP or EuEIR is a much more grounded method, as it does not ask
how possible it is to return certain security/sustainability levels, but establishes the strengths
of the renewable energy systems, and shows how best they may be implemented or what
development is required to improve their suitability. It can be used as a policy tool to find the
best configuration of renewable energy and storage technologies, thereby showing what kind of
deployment should be encouraged and developed in research.

This methodology is based on a number of assumptions; most crucially that the metrics
are reasonable representations of the actual sustainability and security of the energy systems,
and also that a compromise could be reached where both aspects were maximised without
needing to keep above any particular thresholds. It was acknowledged that the metrics EROIout,
EROIused, LOLP and EIR were all limited in their abilities of fully describing the system, but
that the practicality of expressing it in a single number was worth the loss in information,
and that the combination of metrics still resulted in surprisingly complex outcomes. EROIused
showed more complexity than EROIout, however the division of systems into exporting and
non-exporting was a simplification when many systems are capable of sometimes exporting, and
sometimes not, depending on the energy composition of the wider electricity grid. Furthermore,
neither include the embodied energy costs of the network management system that would be
a requirement for any VPP, and even the single household systems, as this was an unknown
quantity.

The four objective functions can be divided into pairs by their approach to how independent
the systems were modelled to be: two investigating underproduction (ELOLP and EEIR), and
two investigating independence (EuLOLP and EuEIR). In other words, ELOLP and EEIR
(using the metric EROIout) were applied to systems that exported to the grid, while EuLOLP
and EuEIR (using the metric EROIused) were applied to systems that cannot export to the
grid. Reasons for not exporting could include a grid with a high penetration of renewable energy
(and therefore would not be able to use excess energy from wind or solar sources), a poor local
connection not allowing for bi-directional electricity flows, or complete disconnection.

When comparing the results of different objective functions, it was generally found that
EuEIR = EROIused · EIR gave optimal solutions that were neither oversized nor undersized
for demand, were sensitive to changes in system inputs, and balanced equally the concerns for
underproduction and overproduction. Supplementing EuEIR analysis with a measure of excess
energy production was also useful; while the EROIused metric accounted for this by subtracting
the excess energy from the total energy output, separation gave more insight into the energy
flows of the systems.

215



Exporting systems 
 
•Smaller 
batteries 
•Higher 
EROI 
•Wind 
turbines 
•Over- 
capacity 
 
 

Non-exporting systems 
 

•Larger 
batteries 
•Lower 

EROI 
•Wind 

and hybrid 
 
 
 
 

ELOLP 

EEIR 

E  LOLP u 

E  EIR u 

Figure 7.7: Summary of the four objective functions and how their use impacted on the results found.
Functions ELOLP and EEIR used EROIout to represent systems that export to the grid, and functions
EuLOLP and EuEIR used EROIused to represent more independent systems that have limits on their
exporting. EuEIR was found to be the most useful and accurate for maximising system independence,
so was the only method used to optimise the case study.
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In contrast, using EROIout as the sustainability metric gave oversized systems, limited only
by the cap of 200% that was imposed by the methodology. These exporting systems optimised
to give an unlimited capacity for the wind turbine, which while encouraging for the use of wind
power generation in the UK, was clearly unrealistic and demonstrated the limitations of such
an approach.

In addition to the main studies done of renewable energy systems at variable sizes, the
methodology was directly assessed, firstly by a study of how temporal resolution affected the
results. Lack of readily available high resolution data meant that this investigation could not be
taken very far, but the potential for new smart metering and big data approaches means that
further investigation into the usefulness of such data would be of value. The system investigated
was a single household with PV generation and one type of battery (PbA), using one of the
household demand time-series. Results were limited due to low availability of weather or power
generation data at higher resolution than half-hourly, but they suggested that measuring energy
security by measuring the actual energy discrepancy, rather than length of time that they exist
for, gives results that most accurately reflects the behaviour of the system in real time. This
is relevant because the most commonly used energy security metric is LOLP , which simply
measures the length of time that loss of load periods cover, and energy metering is generally
no more accurate than half-hourly. While this is good enough for comparing the reliability of
most systems, if all analyses use LOLP then they will likely overestimate the size of backup
or storage capacity required to fix energy security issues. This would incur additional costs in
terms of sustainability and finances.

Further investigation on the metrics themselves included uncertainty and sensitivity analysis,
which evaluated the sensitivity of results to the chosen embodied energy values in each system
component. All objective functions that account for underproduction are fairly sensitive to
the choice of embodied energy values for system components, but their sensitivity depends
on what component is being varied. Use of the metric EROIused with EuLOLP and EuEIR
optimisation resulted in more sensitivity to PV embodied energy values, whereas using EROIout
with ELOLP and EEIR optimisation gave results that were more sensitive to wind turbine
embodied energy. There was less difference when varying battery EE, but for batteries with
higher ranges of EE such as PbA and VRB, EEIR was more sensitive than the other objective
functions, giving higher than average performance for lower embodied energy values, and vice-
versa. When varying battery cycle efficiencies, there was no consistent difference between the
metrics.

High sensitivity can be undesirable when inputs such as embodied energy are known to
have a high error/variability, however it is also useful to know that system performance can be
greatly improved by reducing embodied energy levels. Therefore sensitivity cannot show the
effectiveness of the metrics, however it is useful to know that the performance of exporting
systems (i.e. ELOLP and EEIR) is more sensitive to wind turbine EE, and that the
performance of non-exporting systems (i.e. EuLOLP and EuEIR) is more sensitive to PV
EE, as this can be taken into consideration when looking at the optimisation results. These
differences show that exporting systems draw less benefit from PV being included as part of
the system, and actually have lower sustainability despite having to rely less on batteries.
However for non-exporting systems, their much larger batteries are reduced more significantly,
leading to an improvement in both sustainability and security, and an overall greater increase
in performance. In contrast, when wind turbine EE is reduced, none of the optimisations
showed any change in wind turbine capacity, so any change in performance is simply down to
the reduced cost of the wind turbine. As non-exporting systems have larger optimal batteries,
the wind turbine has a smaller contribution to the cost, so reducing that cost has a smaller
effect.
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All objective functions are more sensitive to the lowering of embodied energy values than
their increase. This is extremely important because there are concerns that current calculations
are underestimating embodied energy values, as not all sections of the supply chain are available
for analysis. This can include the energy costs of employees, research and development, and
advertising. Therefore since the results’ sensitivity is weaker for increases in embodied energy,
any errors in this direction should have less of an impact on the results.

In addition to the standard uncertainty and sensitivity analysis, there was some reflection
on the use of the primary energy scaling when applied to the EROI results. Scaling for primary
energy has a strong impact on the EROI values, multiplying them by a factor of 1

ηG
= 3.2 to

account for the fact that wind and solar generation have a purely electrical output, and removing
or reducing this multiplier brings down the EROI values significantly. While optimised power
and storage capacities were unaffected, this meant that PV and hybrid systems had very low
EROIused values of 1-3.

Therefore it was concluded that the most useful objective function was EuEIR, unless
the system can export to the grid with knowledge that the energy will be of use, in which
case EEIR is more applicable. However, if actual half-hourly data is unavailable, the LOLP -
derived objective functions would be a worthwhile substitute, being only slightly less accurate.
Using EuEIR can evaluate how well matched supply is to demand, where concerns about
underproduction and overproduction are equally weighted. The use of the metric EROIused as a
component of EuEIR is also appropriate for national electricity systems with a high penetration
of renewables, as it does not assert that exported energy is always usable, thus being applicable
to a long-term view of energy systems. Using objective functions such as EuEIR can establish
whether renewable energy systems can provide a reasonable level of sustainability and security
to the grid as a whole.

7.3 Final summary

At the beginning of this thesis five questions were posed. These served to address optimisation
results, the effectiveness of electrical energy storage, limits to sustainability and security,
possible technology improvements, and real world implications. The final summary answers
those questions, and offers suggestions and recommendations to follow this work.

1. Is there an optimal mix of wind and solar technologies in the UK’s climate, and what are
the implications from any such optimum, now and in the future?

From an objective optimisation perspective, where only the energy costs and security of
the system are considered, the results overwhelmingly gave optimal systems that were
were entirely wind powered, with capacity of generation and energy storage dependent on
the situation of the system. For systems that could rely on exporting to the grid, optimal
wind power capacity was enough to meet at least twice the system’s demand, while non-
exporting systems had a smaller optimal capacity, only enough to produce the same total
amount of energy over the year as there was demand. This gave less excess generation,
but also resulted in a reduced security, as generation patterns did not generally match
those of demand, even with larger batteries.

There were assumptions made in order to give a simple initial model, and these were broken
down by questioning how the energy costs of technology will change in the future, how
energy systems may entirely change their form and function, and how social implications
in the real world can change the options available to us. Key results from these show
why PV still has relevance; they include the deployment of PV and increase in system
performance once PV energy costs drop by around 50%, and higher acceptance of PV
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than wind turbines makes it necessary to include in real-world case studies. Results for
other countries would likely differ, given the different availability of certain energy sources,
and countries at lower latitudes may need less of a drop in PV embodied energy to enable
their deployment.

Therefore the conclusion from these studies is not that PV should be ignored, but that
its improvement in energy costs is a very important step in transitioning to a renewable
powered future. However, wind power generation is likely to remain the dominant source
of renewable energy for a long time.

2. How effective is electrical energy storage at providing security services to local renewable
energy systems, and can this be done in a sustainable way?

Despite the high energy costs of energy storage, it formed a fundamental part of most
of the optimised systems. Notable exceptions were the most expensive stroage options:
hydrogen storage systems, where using hydrogen production for energy storage was only
worthwhile for non-exporting systems with PV; also the wind-dominant systems in the
Stocksbridge case study gave optimal zero capacity when using high cost vanadium redox
batteries (VRB). However, the fact that such cases were so rare was encouraging; the
current discussion around batteries frames them as being too costly, so their inclusion in
most of the results showed that they do provide enough value to offset their cost.

When optimising the systems, storage capacity was expressed by converting the optimal
storage capacity in kWh to be scaled to power generation capacity; i.e. a battery capacity
of n could store n hours worth of peak production. This allowed for more objective
comparison between differently sized systems, and ultimately meant that the optimal
storage capacity also represented the value that storage brought to the system, because
large optimal batteries only occurred when their value to the system was large. When
this large value coexisted with high security values, such as for PV-dominant systems, this
showed an effective use of battery technology.

For the single household systems, plotting optimal battery capacity against energy security
showed a linear relationship, where optimal systems with larger batteries returned higher
security values. Non-exporting systems also optimised to use larger batteries, as their
use in constraining excess energy gave them more value in the system, and comparing
systems of equal generation capacity showed that security was improved by up to 0.12
EIR. Using EuEIR rather than EEIR meant that up to 650kWh of excess energy was
saved per year, where this maximum occurred for the optimal wind-only systems. PV-
dominant non-exporting systems showed less of a change in excess energy or security,
despite still having larger batteries.

The best results were reached by systems using Li-ion batteries or pumped hydro storage
(PHS), despite having contrary properties. Li-ion is the most effective per unit of storage,
having high cycle efficiency and high depth of discharge but mid-range energy cost, so its
optimal systems had smaller capacity but good performance. Conversely, PHS only works
for large-scale systems, and its strength is in having less cost per kWh of storage capacity,
despite having lower cycle efficiency. So systems using PHS achieve high performance
through high storage capacity at lower cost. This variety in results shows that choosing
the best storage technology is complex, and depends on many factors.

More complexities come from the additional sustainability costs of batteries, mentioned in
the literature review. These include the toxicity involved in PbA and VRB manufacturing,
and the limitated supplies of lithium for Li-ion batteries. If Li-ion batteries are used for

219



electric grid balancing in addition to battery electric vehicles, then this would put a lot
of strain on the world’s supplies, and require very high recycling rates.

Battery utilisation was most effective alongside solar power sources; PV-dominant systems
were capable of reaching higher security levels than wind-dominant ones, while requiring
lower battery capacity per unit of power generation capacity once they were large enough.
This effectiveness is caused by solar production being complementary to the day-night
patterns of PV production, in contrast to the more unpredictable wind time-series, where
the length of consistent production or outages can range from a few minutes to several
days. Planning a storage management strategy for such a variable pattern of production
is very difficult, and doesn’t lead to an obvious capacity size for storage.

There is another factor in the relationship between PV and batteries, however. Since
PV has higher EE, electricity produced from solar sources is imbued with more “value”,
meaning that there is more incentive to capture that energy through storage. This is part
of the reason that reducing PV EE gave a drop in battery capacity, and why systems with
very high storage costs (hydrogen and VRB systems) only included the storage for systems
containing above a certain penetration of PV. However, the patterns of production was
considered to be a more important factor. Such a conclusion could be reached because
when PV EE was reduced as part of the sensitivity analysis, battery capacity reduction
levelled off even as PV became cheaper than wind. These systems with cheaper PV gave
higher priority to security, as performance was increased while EROI initially decreased.
Therefore a future system of PV and battery storage is a realistic proposition, and one
that would become even more viable as the embodied energy costs of both components
drop.

Not all storage technologies mentioned in the literature review were tested. In particular,
compressed air energy storage (CAES) was ignored as it utilises natural gas. We can
assume that, as it has lower embodied energy costs and higher cycle efficiency than PHS
[123], it would have given slightly higher performance results than the PHS systems in
Stocksbridge. However, such a result would ignore the costs of using fossil fuels. Another
possible technology, supercapacitors, were not included as their application was based
more around short-term storage for power quality. However, given the reduced need for
storage for networked households, and the increased potential for power quality issues over
networks with high renewable energy penetration, supercapacitors may be more applicable
than batteries for small household networks. This result would also hold for other short-
term storage technologies such as flywheels and superconducting magnetic energy storage,
however these are likely to be less practical due to their mechanical nature and complexity,
respectively.

3. What limits exist regarding the sustainability and security of distributed energy systems?

Both EROI and LOLP/EIR were demonstrated to have hard limits in the tested small
systems, but the nature of those limits was different. These were caused by constraints of
security upon sustainability and vice-versa, and also from natural constraints imposed by
the wider system: eg. variable patterns of generation, supply chains, efficiency of available
energy, or recycling rates.

When looking at the optimal battery capacity sizing over all generation capacities,
security values of around 90% (i.e. 0.1 LOLP or 0.9 EIR) were achieved by the largest
hybrid systems. Any improvement in security, whether by increasing generation or
storage capacity, showed diminishing returns as larger units were required to give smaller
increases. Indeed, a key feature of the optimisation was to identify where this increase
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had diminished enough to not be worth its additional cost. For these large hybrid
systems, EROIout dropped from its optimal value of 30-31 to around 10, while
EROIused dropped from 12.6 to around 5. None of the systems reached the high energy
security expectation of 95% imposed by other previous studies. This suggests that while
those studies were able to reach such levels, the use of PV and storage capacities
required to do so are not worth the energy costs required.

When optimising for generation capacity (giving large wind-based energy systems) the
security limits were lower at around 57-64% for exporting systems, or 47-56% for non-
exporting systems. The lower security for the latter was caused by smaller power and
storage capacities, and the highest security was reached by PbA systems due to their
larger batteries. It was noted that levels of security depended upon the season, as PV
produced mostly in summer, wind produced slightly more in winter, and winter had the
highest levels of demand. These seasonal results showed that wind-dominant systems were
capable of reaching higher limits of security in winter, despite that period having greater
energy demand, and PV systems appearing more energy secure over the year. This greater
demand means that winter is more constrained for supply, and therefore that wind power
has additional benefits that are not obvious from the non-seasonal analysis.

Larger household networks showed some decrease in security as they increased in size, but
the most important relationship was with their wind turbine capacity, where security of
the non-exporting systems was improved to 70% when using the largest wind turbines.
Similar results were seen with the non-domestic systems, but security was increased no
further despite their larger sizes. The largest systems were in the Stocksbridge case study,
where introducing PV and cheap PHS enabled higher security limits of up to 80%.

The difficulties in surpassing these energy security limits of course comes from the use of
variable power such as wind and solar; even when combining the two together in hybrid
systems there is likely to be a shortfall in energy production at some point in the year.
Battery storage is not a complete solution to this, as wind generation can be down for
a week at a time, and holding such massive reserves of battery storage capacity is an
incredibly costly way to fulfil this demand. The only plausible solution would appear to
be low carbon reserve capacity, possibly combined with an extreme approach to demand-
side management.

By contrast to security results, increasing system size showed a distinct progression in
EROI results, up until the Stocksbridge scenarios where the addition of PV reduced
EROIused considerably. In general, EROI results (EROIout and EROIused) are most
constrained by the EROI of the most cost-effective component of the system, which in
turn is constrained by external processes such as recycling rates, efficiencies of supply
chains, source of energy in manufacturing etc. It was generally seen that improving
EROI was easier than improving security, as wind power can be boosted and battery
capacity reduced, and the range of possible EROI results - from 1 to 55 - were much
wider.

However, this does not mean that EROI is not constrained by security concerns: security
is valued when battery capacity is included in the system, which reduces EROIout from
the potential maximum of 46.7 (assuming a 4.7kW turbine with capacity factor 0.2,
producing twice the annual demand of 4000kWh) to 30.5. Another limitation was
enforced through the use of EROIused; where previously high-producing systems were
rewarded for their output regardless of whether it was used locally, now they were
penalised for producing power when none was needed, so the EROIused results were
significantly lower than EROIout, particularly for wind-dominant systems which
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experienced the most overproduction.

Another important limit for EROI is its lower limit. There was discussion in the literature
review of whether there is a lower limit to EROI, below which the system would be deemed
unsustainable. While results never returned EROI values of less than 1, there were some
that dropped below EROI values of 5, such as hydrogen systems and future projections
of improved grid efficiency. However for the most part, EROI of most systems plateaued
around values greater than 5. This meant that the focus could be overall performance
rather than whether sustainability values were too low.

While there is a compromise to be made between EROI and LOLP/EIR, it is not as
straightforward as it may seem. The metrics behave in different ways at their limits,
and plotting EROI against EIR showed a far more complex relationship than simply an
inverse correlation, as shown in figure 7.8. This relationship depends on the type of system
chosen, where focusing on wind singly does give an inverse correlation, but adding PV
makes this much less straight-forward. There is also much scattering of results due to
variability in weather patterns over the UK. Furthermore, circumstances may force the
use of PV because they are more acceptable, or because open land is not available for
wind turbines. While these may seem irrelevant, they are in fact qualitative elements
of sustainability: social acceptability is in the sphere of social sustainability, and land
is a much depleted resource that must be used sustainably. Therefore the framing of
the trilemma, where it is implicitly stated that security and sustainability must always
conflict, is not necessarily true.

Investigation into primary energy scaling, where the grid efficiency coefficient ηG is used
to scale EROI results of renewable energy systems, showed another element to the limits
of EROI. As the entire UK’s energy systems transition to using more renewable energy
sources, the efficiency of the grid increases, meaning that EROI results are scaled less,
making them less advantageous in comparison to the grid. However when accounting for
reductions in PV EE costs, the EROI of all systems appear to converge to EROIout of
10-20, or EROIused of 5-12: wind-dominant systems drop in EROI, while systems using
PV show some improvement.

There are limits to security, and possibly sustainability, imposed by sticking to electricity
load only; it was discussed in the literature review that in the future we will likely see the
heating and transport systems linked more strongly to our electricity systems, through
electric heating and battery electric vehicles or vehicles using hydrogen produced through
electrolysis. These will offer more flexibility, which was not successfully expressed through
the studies shown here. On the sustainability side, the electricity-only studies ignored
the existence of concurrent heating and transport systems that run almost entirely off
combustion of fossil fuels. Linking these systems together to use renewable energy sources
would reduce the overall primary energy use, and thereby improve EROI values.

If we bring these conclusions back to the initial discussion on whether sustainability can
be quantified, or whether there are qualitative aspects that cannot be reduced to simple
numbers, the question about limits to sustainability is very different. We can imagine a
“perfectly sustainable system”, where resources are recycled back into the natural
ecosystems at an equal rate of their use, and where pollutants are kept below minimum
thresholds etc, but quantifying this idea would require a completely different approach
to EROI analysis, and the process of quantification would likely still lose crucial aspects
of the ideal. For example, the term “zero-carbon” is sometimes marketed to describe a
high level of sustainability, but given that this only looks at greenhouse gases, it is
certainly limited in scope.
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Figure 7.8: The Pareto front created by plotting security against sustainability, using metrics EROIout
and EIR. While there is some anti-correlation, mostly for wind-dominant systems, results are more
complex and dependent upon the specific technology available. This is a summary of figure 5.44, showing
the segmentation of systems that are single-source: wind systems are in the bubble on the right, PV
systems are in the thin bubble on the left, and large (delivering at least twice annual demand) systems
in the red bubble. If the sensitivity analysis results were included then there would be more points in
the top-right section with higher performance.
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Finally, it must be remembered that LOLP and EIR don’t represent all aspects of
security, just as EROI doesn’t address all areas of sustainability. LOLP and EIR were
designed to measure adequacy - how well demand can be met - and do not address
network security, while measuring energy flows by EROI can address a number of
disparate elements, but does so in a somewhat crude way. Therefore the results for both
sustainability and security do not describe the full performance of the systems, meaning
that their actual limits are potentially lower than the quantified results.

4. How can the technology be improved most effectively to surpass such limits?

There were a number of tests done into the potential of future technologies and improved
manufacturing; these were the sensitivity analysis on embodied energy and storage cycle
efficiency, the investigation of hydrogen production and storage, and how demand may be
affected by using more electrical heating such as heat pumps.

There was a dramatic effect when reducing PV embodied energy; this had the implication
of making hybrid systems sustainable enough to deploy at full scale, which in turn improves
security, and sustainability is improved by having cheaper PV. Improving battery EE was
also important, but had a smaller impact and given the natural complementary natures of
PV and batteries, it made the most sense to focus on PV first. However improving wind
turbine EE was not particularly effective, as it discouraged efforts to improve security, and
wind turbines have less potential for improvement as they are a more mature technology.
Improving battery cycle efficiency had the least encouraging results, where lower cycle
efficiencies returned better performance for exporting systems.

The investigation into hydrogen production and storage was discouraging, as it showed
that its use was only worthwhile for systems that were already low performance: non-
exporting systems with at least 80% of demand met by PV production. This is because
hydrogen systems have a very high energy cost, the most costly component being the fuel
cells, which means that their use is worthwhile only if the energy in the system also has
a very high cost. However, this study was too simple, and ignored the most important
aspects of hydrogen use, which is its flexibility. Hydrogen’s application as an energy
vector - more than just energy storage - has the potential to expand electricity systems
into the transport and heating systems, in ways that would likely be more user-friendly
than battery electric vehicles or electric heating. This is true for hydrogen because it is a
physical fuel, and therefore can be stored and transported in ways that electrical energy
cannot. A full investigation into the implications of hydrogen is therefore far beyond the
scope of this thesis.

Heat pumps were also investigated, but again their full scope was unable to be realised.
The heating load of a typical house was assumed to quadruple the total energy load,
which led to system oversizing in summer, and reductions in EROI and security results.
This was despite heat pumps’ high coefficient of performance, as their constant usage
pattern resulted in a high load. However, comparison to the standard electrical system
was difficult to make, as previously the heating load was not included in the study at all,
and the disconnection between the electric and thermal systems meant that each would
have a different level of security. Furthermore, the full potential of improved demand-side
management could not be realised in the study, which would likely have had significant
implications into the security of the system. This would not remove the problem of
generation oversizing alone, but improved thermal insulation would also be a necessary
part of any investigation into more sustainable heating, so oversizing could possibly be
reduced by this reduction of thermal demand.
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These results can be linked to suggestions of how policy could create incentives for better
energy systems, not just focus on single technologies. Existing examples are the Renewable
Heat Incentive, where households require a minimum level of insulation before qualifying
for the financial incentive for heat pumps, or the smart meter roll-out across the UK by
2020, which will facilitate any building of smart-grids. Systems-based policy based on
these results could be: reducing energy use in technology manufacturing, for example by
shortening supply chains, increasing recycling and minimising shipping; matching regions
of high supply or demand with units of storage; and extending the current policy on smart
meters to requiring more local grid management, to create real smart-grids.

5. When the method is applied to a real case study, how do real world limitations affect these
results and conclusions?

The most obvious change in the Stocksbridge case study was around the availability of
certain technologies. Fundamentally, the cheap option of large wind turbines was possibly
removed, the option of pumped hydro storage became available when it was not previously,
and a minimum capacity of 1.8MW PV was included as a baseline for all the scenarios.
Large 1.2MW wind turbines were still included in one of the scenarios, but these were seen
as more of a comparison point than a potential solution. This use of different technology
had impacts on the quantitative results, as inclusion of PV led to fundamental changes
from the earlier generalised model.

However, a more subtle effect was the fuller realisation of the study. The value of the
model was seen differently; rather than just an objective study into performance, it could
be considered as a tool for understanding what is possible, and for passing knowledge to
others. Therefore while contextualising the systems in terms of their geographical and
social implications brought some limitations, the case study brought a new dimension
to the research. Relating these results to the generalised model also helped facilitate
understanding of those more theoretical results, and built up a picture of how the systems
at different sizes related to each other.

Recommendations for further research would include a more thorough look into the
behaviour of high resolution energy models, and expand the nature of the models to include
further interconnections and applications such as hydrogen production and heating. While all
these potentials were touched upon, a more extensive study is necessary to reach definitive
conclusions for those systems. Additionally, as this modelling was all done on a local scale, it
would be useful to investigate the interaction between these distributed renewable energy
systems and the greater electricity network, to see whether the local use of storage can truly
reduce the need for reserve capacity on the grid when renewable energy penetration is high,
and whether this reduction would be more sustainable than simply using reserve capacity.
Such analysis could also include the effects of demand side management, projected renewable
energy capacity on the centralised grid such as off-shore wind turbines, and the potential for
substantial electricity demand reduction.
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Appendix A

Appendix for the Methodology

A.1 Alternative security metrics

When developing security metrics, a number were proposed to replace or supplement metrics
that already exist in the literature. Not all were kept for the final results, the main reason being
that the additional measurements required did not return strong enough improvements in the
analysis to be worth including. Most of the metrics were fairly similar to either LOLP or EIR,
but two, LOEP and CC, are worthwhile including here.

A.1.1 Loss of Energy Proportion

The metric LOEP (loss of energy proportion) is the inverse of LOLP , measuring the length of
time that the system is overproducing and thereby losing energy through exporting or curtailing.
Its formulation came about to quantify the security losses in overproduction, however it did not
properly address these insecurities and led to results that were not useful. In particular, it is
not the length of time of overproduction that is damaging. When considering real life electricity
systems, if overproduction is an issue then curtailment is an easy solution, so the impact will
truly be on energy losses, which was better measured with the EROIused metric. Calculating
the total excess energy, which was done in the main analysis, is then a useful addition for full
explanation of the energy flows, but is not useful in the context of optimisation. Combining
LOEP with EROI (mirroring the methodology of ELOLP to create EROI(1 − LOEP )) led
to undersized production that did not satisfy the basic requirements of an energy system, i.e.
meeting energy demands.

A.1.2 Correlation Coefficient

In theory, a fully balanced system should have perfect correlation between supply and demand.
This proposition formed the basis of the correlation coefficient (CC), which was designed to
measure the exact balance of the system through correlation. This was calculated using the
Pearson correlation coefficient ρ between electricity demandD(t) and “deployed energy” Edep(t),
defined as the available energy at time t (either directly generated or from storage) that is either
used directly or exported to the grid. Thus for a system with energy storage capacity n and
generation capacity c,

CC(n, c) = ρ(D(t)Edep(n, c, t)) (A.1)

CC ranges from -1 to 1. However results were found to be erratic and non-intuitive, and
added no further information than the more basic metrics of LOLP and EIR. Additionally,
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the idea behind using correlation was to combine analysis of overproduction and
underproduction into one metric, but this created more problems than solutions, as these are
ultimately very different problems and needed to be separated out for fuller investigation,
which CC was incapable of doing easily.

A.2 Matlab code

The Matlab code for the photovoltaic and wind power simulation was as follows.

%Randomly s e l e c t the prepared input data
% check l o ca t i on , input data only from nearby s t a t i o n s

r = randi ( n s ta t i ons , 1 , 1 ) ; %S e l e c t a s t a t i o n randomly
l o c a t i o n=l o a d e d s t a t i o n s ( : , r ) ; %i n i t i a l chosen s t a t i o n
area=find ( d i s t a n c e s ( r , : ) <50) ; %L i s t s a l l a r eas with in a diameter o f

100km

%There aren ’ t many PV s t a t i o n s , so i n c r e a s e numbers by i n c l u d i n g a l l
on s i m i l a r l a t i t u d e

pv lat=pvs ta t i on s (1 , abs ( pv s t a t i on s ( 2 , : )− l o c a t i o n (2 ) )<2) ; %Guarantees
at l e a s t 2 PV s t a t i o n s

s t a t i o n s r u n=union ( pvlat , l o a d e d s t a t i o n s (1 , area ) ) ;

%S e l e c t a v a i l a b l e wind s t a t i o n s from each year
[ a , w11 , b]= i n t e r s e c t ( midas windspeed2011 ( 1 , : ) , s t a t i o n s r u n ) ;
[ a , w12 , b]= i n t e r s e c t ( midas windspeed2012 ( 1 , : ) , s t a t i o n s r u n ) ;
[ a , w13 , b]= i n t e r s e c t ( midas windspeed2013 ( 1 , : ) , s t a t i o n s r u n ) ;
[ a , w14 , b]= i n t e r s e c t ( midas windspeed2014 ( 1 , : ) , s t a t i o n s r u n ) ;
[ a , s11 , b]= i n t e r s e c t ( m ida s so l a r 2011 l oadab l e ( 1 , : ) , s t a t i o n s r u n ) ;
[ a , s12 , b]= i n t e r s e c t ( m ida s so l a r 2012 l oadab l e ( 1 , : ) , s t a t i o n s r u n ) ;
[ a , s13 , b]= i n t e r s e c t ( m ida s so l a r 2013 l oadab l e ( 1 , : ) , s t a t i o n s r u n ) ;
[ a , s14 , b]= i n t e r s e c t ( m ida s so l a r 2014 l oadab l e ( 1 , : ) , s t a t i o n s r u n ) ;

%only s e l e c t wind power i f the system has a wind input
i f windsca le==0
wpowerrun=zeros ( l gen , 1 ) ;
nwindrun=1;
turb inecap =0;
else

windrun = [ midas windspeed2011 ( 2 : end , w11) midas windspeed2012 ( 2 : end ,
w12) midas windspeed2013 ( 2 : end , w13) midas windspeed2014 ( 2 : end , w14
) ] ;

[ a , nwindrun]= s ize ( windrun ) ;

alpha =0.2 ;
wpowerrun=zeros ( s ize ( windrun ) ) ;
%This code c r e a t e s wind power output f o r a 1kW turb ine at 10m hub

he ight
wpowerrun ( windrun<=3.5)=0;
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wpowerrun ( windrun>3.5) =−0.000865∗windrun ( windrun>3.5) . ˆ3 + 0.022675∗
windrun ( windrun>3.5) . ˆ2 − 0.126985∗ windrun ( windrun>3.5) +0.203765;

wpowerrun ( windrun>14 )=−windrun ( windrun>14) ∗0 .025+0.85 ;
wpowerrun ( windrun>24)=0;

turb inecap =0.2∗round( windsca le ∗2 .5∗sum(sum( demandrun ) ) /mean(sum(
wpowerrun ) ) ) ; %Picks i d e a l turb ine power capac i ty ( rounded to
nea r e s t 0 . 2 )

wpowerrun=turb inecap ∗wpowerrun ; %S c a l e s to c o r r e c t s i z e

end

%Now do s o l a r

i f PVscale==0
pvrun=zeros ( l gen , 1 ) ;
n so la r run =1;
pvarea =0;
npane ls =0;
else

b1 =0.02718287;
b2 =0.0000201499;
b3 =0.00021585;

s o l a r run= [ mida s so l a r 2011 l oadab l e ( 2 : end , s11 )
m ida s so l a r 2012 l oadab l e ( 2 : end , s12 ) m ida s so l a r 2013 l oadab l e ( 2 :
end , s13 ) m ida s so l a r 2014 l oadab l e ( 2 : end , s14 ) ] / 3 . 6 ; %convert to W

[ a , nso la r run ]= s ize ( s o l a r run ) ;
%Using 13% PV modules
pvrun=real ( 0 . 0 0 1∗0 . 5∗0 . 9 0 9 3∗ ( ( b1+b2∗ s o l a r run ) .∗ log ( s o l a r run )−b3∗

s o l a r run ) .∗ s o l a r run ) ∗ 1 . 3 ; %energy output in kWh per 1 .3mˆ2 panel
pvrun ( pvrun<0 | isnan ( pvrun )==1)=0; %Fix va lue s =0 f o r very low

i r r a d i a n c e

npanels=round( PVscale ∗0 .5∗sum(sum( demandrun ) ) /( n so l ∗mean(sum( pvrun ) )
) ) ; %Picks i d e a l round number o f panels , each at 1 .3mˆ2

pvarea=npanels ∗ 1 . 3 ; %This i s array area per house
pvrun=npanels ∗pvrun ;
end

The Matlab code for the battery simulation was as follows.

%I n i t i a l i s e bat te ry degradat ion

battage=zeros ( nbatt , 1 ) ; %Shows age o f each battery , i n i t i a l l y 0 , max
16 ( drop below 80% capac i ty at 17 years )

battdod=dod ( bat t type ) ∗ones ( nbatt , 1 ) ; %Shows DOD of each battery ,
i n i t i a l l y the nameplate DOD

dodrea l=dod ( bat t type ) ;
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b a t t l i f e=ce i l ( wblrnd ( c ( bat t type ) , k ( bat t type ) , nbatt , 1 ) ) ; %Gives
l i f e t i m e o f each i n i t i a l battery , model led with Weibull

r e p l a c e d b a t t s=zeros ( l i f e t i m e , 1 ) ;

PR=1.005−0.005∗ [1 : l i f e t i m e ] ; %PV degradat ion o f performance r a t i o

%% Begin ac tua l s imu la t i on o f system
for year =1: l i f e t i m e

wind=wpowerrun ( : , randi ( nwindrun , 1 , 1 ) ) ;
pv=nso l ∗PR( year ) ∗pvrun ( : , randi ( nso larrun , 1 , 1 ) ) ;
supply=wind+pv ;
demand=demandrun ( : , mod( year , 2 ) +1) ;

%I n i t i a l i s e s t o r a g e s
b ( : , 1 )=c ind ;
b (1 , 1 ) =0;

%%Run model
for t =1: l g e n

%Set i n i t i a l f l o a t i n g remainder energy
su rp lu s ( : ) = supply ( t ) − demand( t ) ; %For vary ing battery ,

f i x e d supply
bcon = max(min( (b ( : , t ) + ( su rp lu s . / SB ind ) ) ,1 ) , 0 ) ;

i f surp lus<0 %i . e . d i s cha rg ing
e f f =1;

else %i . e . charg ing
e f f = (1−2∗mu( bat t type ) ) ∗ ( 0 . 5∗ ( b ( : , t )+bcon ) ) +1;

end

b l e s s = max(min( (b ( : , t ) + ( su rp lu s . / SB ind ) .∗ e f f ) , 1 ) , 0 ) ;
bmore = max(min( (b ( : , t ) + ( su rp lu s . / SB ind ) . / e f f ) , 1 ) , 0 ) ;
%Reduce remainder by amount d i r e c t e d towards bat te ry ( charg ing )

/ amount
%s u c c e s s f u l l y rega ined from batte ry ( d i s cha rg ing )
b ( : , t +1) = min( b l e s s ( : ) , bmore ( : ) ) ;

used=SB ind .∗max( ( b ( : , t +1)−b ( : , t ) ) . / e f f , ( b ( : , t +1)−b ( : , t ) ) .∗ e f f ) ;
su rp lu s = surp lu s − used ;
l o s t ( : , t ) = used + SB ind . ∗ ( b ( : , t ) − b ( : , t +1) ) ;

%Ca lcu la te energy imported / exported
imp ( : , t ) = max(0 ,− su rp lu s ( : ) ) ;
export ( : , t ) = max(0 , su rp lu s ( : ) ) ;

end

btminus=b ( : , 1 : l g e n ) ;
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b ( : , 1 ) = [ ] ;

imp ( imp<10ˆ(−10) ) =0; %Fix rounding e r r o r s
export ( export <10ˆ(−10) ) =0;

%%Calcu la te how much pv i s used / s to r ed on s i t e
dem sat=repmat (demand ’ , lenSB , 1 )−imp ;

%% Battery degradat ion

battage=battage +1;
battdod =(0.9865+0.0015∗randn( nbatt , 1 ) ) .∗ battdod ; %dec rea se DOD of

each batte ry us ing normal d i s t r i b u t i o n
deadbatts=find ( battage==b a t t l i f e | battdod <0.8∗dod ( bat t type ) ) ; %

i d e n t i f i e s b a t t e r i e s that d i e t h i s year or drop below 80%
battage ( deadbatts ) =0; %I n s t a l l new b a t t e r i e s to r e p l a c e them
battdod ( deadbatts )=dod ( bat t type ) ; %Reset new b a t t e r i e s to s t a r t i n g

DOD
b a t t l i f e ( deadbatts )=ce i l ( wblrnd ( c ( bat t type ) , k ( bat t type ) , length (

deadbatts ) , 1 ) ) ; %Update l i f e t i m e o f replacement b a t t e r i e s
r e p l a c e d b a t t s ( year )=length ( deadbatts ) ;

dodrea l=mean( battdod ) ; %Ca l cu l a t e s average DOD of bat te ry network (
t h i s i s the used v a r i a b l e in the model )
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Appendix B

Appendix for the results

B.1 Optimal results for all battery technologies

Optimal results for all batteries for single household systems were plotted with respect to their
PV and wind power capacities. There is a great deal of repetition with the PbA system results
and other battery systems, so they were not included in the main body of results but are shown
here in full.

B.1.1 Li-ion battery results
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Figure B.1: EEIR results showing optimal Li-ion battery capacity for all input capacities.

233



PV capacity (scaled)
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

W
in

d 
tu

rb
in

e 
ca

pa
ci

ty
 (s

ca
le

d)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

0.2
0.250.3

0.35

0.4
0.45

0.45

0.5

0.5

0.55

0.55

0.6

0.6

0.6

0.65

0.65

0.65

0.7

0.7

0.7

0.7

0.75

0.75

0.75

0.75

0.8

0.8

0.8

0.8

0.85

0.85

0.85

0.
9

0.
9

0.9

0.
9

0.9

EEIR: sustainability and security (Li-ion)

ER
O

I ou
t

0

5

10

15

20

25

30

35

Figure B.2: EROIout and EIR results for optimal Li-ion energy systems.
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Figure B.3: EuEIR results showing optimal Li-ion battery capacity for all input capacities.
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Figure B.4: EROIused and EIR results for optimal Li-ion energy systems.
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Figure B.5: Optimal EEIR results showing excess energy for Li-ion systems.
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Figure B.6: Optimal ELOLP results split out by season.

B.1.2 NaS battery results
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Figure B.7: EEIR results showing optimal NaS battery capacity for all input capacities.
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Figure B.8: EROIout and EIR results for optimal NaS energy systems.
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Figure B.9: EuEIR results showing optimal NaS battery capacity for all input capacities.
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Figure B.10: EROIused and EIR results for optimal NaS energy systems.
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Figure B.11: Optimal EEIR results showing excess energy for NaS systems.

B.1.3 Znbr battery results
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Figure B.12: EEIR results showing optimal ZnBr battery capacity for all input capacities.
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Figure B.13: EROIout and EIR results for optimal ZnBr energy systems.
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Figure B.14: EuEIR results showing optimal ZnBr battery capacity for all input capacities.
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Figure B.15: EROIused and EIR results for optimal ZnBr energy systems.
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Figure B.16: Optimal EEIR results showing excess energy for ZnBr systems.
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B.1.4 VRB battery results
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Figure B.17: EEIR results showing optimal VRB battery capacity for all input capacities.
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Figure B.18: EROIout and EIR results for optimal VRB energy systems.
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Figure B.19: EuEIR results showing optimal VRB battery capacity for all input capacities.
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Figure B.20: EROIused and EIR results for optimal VRB energy systems.
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Figure B.21: Optimal EEIR results showing excess energy for VRB systems.
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