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Abstract 

This thesis has been devoted to investigate and improve ptychography, which is a newly 

developed coherent diffractive imaging technique that can achieve quantitative imaging 

(both modulus and phase) at diffraction-limited resolution without imaging lenses.  

In particular, this thesis has first looked into two solutions of partial coherence in 

ptychography: the Wigner distribution deconvolution method (WDDM) and mixed state 

decomposition. WDDM is a non-iterative solution and with it partial coherence was first 

mathematically demonstrated solvable. We have improved the performance of WDDM, 

especially in the presence of noise, by proposing three tools that can be used together: a 

projection strategy, design of a favourable probe, and an iterative method. Furthermore, 

the reconstruction of spatial partial coherence via WDDM has been successfully 

demonstrated using a model calculation for the first time.  

Mixed state decomposition is an iterative solution. It provides much more flexibility and 

is able to solve any experimental instability (not just partial coherence) that can be 

modelled as a set of mutually orthogonal states. According to the formation of the 

mixed states, it can be divided into spatially mixed state ptychography and temporally 

mixed state ptychography. For spatially mixed state reconstruction, we have 

mathematically and experimentally demonstrated an inherent linear ambiguity in the 

reconstructions and also that the ambiguity can be broken by using an orthogonality 

constraint or phase-only constraint. Besides, the effects of a diffused probe on the 

reconstructions have been investigated using a spatial partial coherent x-ray experiment. 

For temporally mixed state ptychography, we have mathematically and experimentally 

demonstrated the breakdown of the linear ambiguity. In addition, an iterative algorithm 
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has been proposed to remove the static background noise from the measurements by 

treating the background as the diffraction pattern from an extra temporal state. 

Moreover, this thesis has also explored two ways to extend ptychography for three-

dimensional (3D) imaging: multislice ptychography and ptychographic tomography. 

The multislice method has already been introduced into ptychography to provide 3D 

information before. In this thesis, we have further extended it into a Fourier variant of 

ptychography – Fourier ptychography – by applying a parallel update for the aperture 

reconstruction and reforming the iterative algorithm to involve the specimen plane. Also, 

the reconstruction resolution has been discussed via the Ewald sphere construction and 

demonstrated via model calculations. 

Ptychographic tomography utilises ptychography to acquire 2D projection images at 

different orientations and makes use of tomography to achieve isotropic 3D reconstruc-

tions at high resolution. In this thesis, we have demonstrated this technique step by step 

via an x-ray experiment and shown how the inherent ptychographic reconstruction 

ambiguities are removed prior to the tomographic reconstruction. The possibility of 

electron ptychographic tomography is also discussed based on the scale calculation with 

the x-ray experiment. 
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1 Introduction 

In the context of imaging techniques, resolution has been always the factor that people 

care much about. In this chapter we will start with the brief review of conventional lens-

based imaging and how its resolution is limited according to Abbé’s theory. Diffractive 

imaging is then introduced as a solution to the resolution problem of conventional 

imaging. Apart from high resolution, another advance of diffractive imaging is that it 

delivers quantitative phase images, which not only provide much better contrast 

(compared to the brightness images produced by conventional imaging) but also allow 

quantitative analysis. Different types of diffractive imaging techniques are reviewed to 

give a general picture of how iterative ptychography stands out from them. 

1.1 Conventional imaging 

For a conventional transmission microscope, a typical configuration is schematically 

shown in Fig. 1.1. A thin specimen is illuminated by a plane wave radiation. The scat-

tered waves are collected by the objective lens and form the spectrum of the specimen at 

the back focal plane. Then the spectrum re-interferes and evolves into an image at the 

image plane. The image is usually a magnified reflection of the absorption or attenua-

Figure 1.1: A schematic diagram of a conventional transmission microscope. 
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tion power of the materials in the specimen with the magnification determined by the 

ratio of the distance from the specimen plane to the lens principal plane (the vertical 

symmetric axis of the lens) and the distance from the lens principal plane to the image 

plane. 

1.1.1 Abbé’s theory 

According to Abbé, the formation of an image in a microscope can be broken down into 

two stages, analysis and synthesis [1]. The analysis stage is the process from the speci-

men plane to the lens back focal plane. During this stage, the objective lens focuses the 

parallel diffracted waves into a point at the back focal plane. This process acts exactly 

like the Fourier transform. The synthesis stage is from the lens back focal plane to the 

image plane. During this stage, the waves in the back focal, i.e. the diffraction pattern or 

the spectrum of the specimen, re-interfere and evolve into an image of the specimen at 

the image plane, which can be considered as another Fourier transform. After two 

successive Fourier transforms, the image is a central symmetric version of the specimen. 

The Abbé resolution [2] of the image is given by  

 ,
2 sinn





   (1.1) 

where   is the wavelength of the radiation, n is the refractive index of the medium 

between the objective lens and the specimen, and   is the half angle subtended by the 

objective lens. The product sinn   is defined as the numerical aperture (NA) of the 

objective lens. The resolution is limited by the wavelength of the radiation and the 

highest scattering angle that can be collected by the objective lens. Abbé’s theory 

provides us guidance to evaluate or improve the performance of a microscope. 
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1.1.2 Resolution limit 

According to Eq. (1.1), the resolution limit is defined by the wavelength of the radiation 

source and the numerical aperture (NA) of the objective lens. In visible light regime, 

although good objective lenses with high NAs can be manufactured, the long 

wavelengths (400nm-700nm) still limit the achievable resolution. To pursue higher 

resolution, shorter wavelengths, like x-rays and electrons, are desired. However, for 

these sources good objective lenses are not available. Or if available, they certainly 

come at the price of an enormous increase in cost and complexity. 

For high-resolution x-ray microscopes, a zone plate is the predominant choice for the 

objective lens [3]. It is made up of a set of concentric rings, known as Fresnel zones, 

which alternate between opaque and transparent (or between 0 and π phase changes). 

Light hitting the zone plate will diffract around the opaque zones. The width of zones 

decreases along the radial direction so that the diffracted light constructively interferes at 

the desired focus. The resolution of an x-ray microscope is determined by the size of the 

focus of the Fresnel zone plate used and the size of the focus is of the same order of the 

outer zone width. For high-resolution x-ray imaging, the manufacture of narrow outer 

rings of a zone plate becomes very challenging, especially for hard x-rays because of 

the increased thickness of the zone plate. 

In electron microscopes, an electromagnetic field is used as the objective lens to guide 

the charged electrons [4]. The simplest magnetic lens is a donut-shaped coil through 

which the electron beam passes, preferably along the axis of the coil. An electric current 

is passed through the coil to generate the magnetic field, which enables to focus the 

electron beams. The magnetic field needs to be stable enough to maintain the path 

difference of the scattered electron beams, so that they can properly re-interfere to form 

https://en.wikipedia.org/wiki/Fresnel_zone
https://en.wikipedia.org/wiki/Opacity_(optics)
https://en.wikipedia.org/wiki/Transparency_(optics)
https://en.wikipedia.org/wiki/Diffraction
https://en.wikipedia.org/wiki/Interference_(wave_propagation)
https://en.wikipedia.org/wiki/Electrostatic_lens
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an image. In 1936, Scherzer showed that round magnetic lenses inevitably have 

spherical aberration [5], which means that the focusing power increases along the radial 

direction of the lenses. As a result of spherical aberration, electron beams of different 

angles are focused to different points along the optic axis, seriously limiting the resolution 

of electron microscopes. Later, Scherzer also pointed out that a non-round lens is able to 

compensate for spherical aberration [6, 7], but it was not until 1997 for its successful 

demonstration [8]. Although great progress has now been made in the manufacture of 

non-round aberration correctors, the cost of such systems is high and the gain in 

resolution is limited. 

1.2 Diffractive imaging 

To overcome the resolution limit imposed by the poor objective lens, an unintuitive way 

is to get rid of the lens during imaging. From this lens-less setup, rather than obtain the 

image of the specimen directly, we make some other forms of measurement (like 

diffraction patterns or holograms), from which we deduce or calculate the image. When 

the measurement is the diffraction pattern that is related to the exit wave emanating 

from the specimen by a Fourier transform, we refer to the corresponding imaging 

method as diffractive imaging. However, a detector is only able to record the intensity 

that is proportional to the square of the modulus part of the complex diffraction pattern. 

The information about the phase part is lost and this is referred to as the well-known 

phase problem. Without the lenses, rephasing the diffraction pattern to form an image is 

replaced by reconstruction algorithms (or “phase retrieval algorithms”). 

In diffractive imaging, the resolution is limited by the NA of the detector (instead of the 

NA of the objective lens as in conventional imaging) and the wavelength of the 

radiation. Normally, the NA of the detector is big enough to capture all the diffraction 
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orders of the specimen, so the resolution is only limited by the wavelength. Apart from 

high resolution, diffractive imaging also provides quantitative phase information of the 

specimen. Phase images present much better contrast than the brightness images. It thus 

allows us to see transparent structures without staining or tagging that would affect the 

natural state of the specimen under investigation. Conventional methods, like Zernike 

phase contrast microscopy [9] and differential interference contrast (DIC) or Nomarski 

microscopy [10], converts the invisible phase shifts experienced by the wave passing 

through the specimen to intensity changes in the image, hence enhancing contrast. 

However, the obtained image is often not linearly related to the phase information and 

show the presence of artefacts, like the halo effects in Zernike phase contrast 

microscopy and the shadows in DIC microscopy [11]. Diffractive imaging methods, on 

the other hand, create two images: the modulus image and the phase image. The phase 

image is linearly related to the optical thickness of the sample and it allows us to 

quantitatively study the sample [11]. 

1.2.1 Crystallography 

A representative diffractive imaging method would be crystallography that is used to 

determine the atom arrangement in crystalline objects via analysing the diffraction 

pattern measured by illuminating the crystals with a coherent beam [12]. The diffraction 

pattern contains a set of bright spots, called Bragg peaks, resulting from the constructive 

interference of the waves reflected from a set of atomic planes. Due to the phase 

problem, a direct reconstruction by applying an inverse Fourier transform is not possible. 

An iterative process of modelling and refinement is often used to reconstruct the atomic 

structure [12]. In this process, a hypothesized structure of the crystal is modelled and its 

diffraction pattern is calculated to compare with the measured one. Refinement of the 

model is repeated until the calculated diffraction pattern matches the measurement to a 
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great degree. It is a painstaking process. Fortunately, some a priori information about 

the crystals, like the knowledge of the constituent atoms, can be utilised to generate the 

initial guess models, so that less iterations are needed to find the solutions and the 

number of candidate solutions is reduced [12]. One obvious drawback of the technique 

is the stringent requirement that the sample is crystalline, because not only crystallising 

a sample can be extremely difficult, but also most samples of interest are not crystalline 

and cannot be crystallised. The word ‘crystal’ is derived from the Greek word 

‘κρύσταλλος’ meaning ‘ice’ or ‘rock crystal’ and ‘graphy’ derived from ‘γραφή’ 

meaning ‘writing’ or ‘drawing’. 

1.2.2 Crystalline ptychography 

Walter Hoppe first conceived the concept of ptychography to solve the phase problem 

in electron microscopy [13, 14, 15, 16, 17]. The basic idea is to let the diffraction orders 

(i.e. the Bragg peaks) of the crystal interfere and from the interference to work out the 

phase relation between them. The interference is realised by using a convergent 

illumination to illuminate the crystal. The convergent illumination is formed by a 

condenser lens with an aperture at its back focal plane. In the far field, the diffraction 

pattern is formed by the convolution of the Bragg peaks with the aperture function. If an 

appropriate size is chosen for the aperture so that in reciprocal space different 

diffraction orders only overlap (i.e. interfere) with their adjacent ones, then the phase 

problem is solvable. It should be noted that the condenser lens is used to provide a range 

of incident angles that only needs to be slightly bigger than the scattering angle between 

any two diffraction orders. It has much lower requirements as the objective lens does. 

‘Ptycho’ comes from the Greek word ‘πτυξ’ meaning ‘to fold’ that refers to the 

convolution in the diffraction plane.  

https://en.wikipedia.org/wiki/Ancient_Greek
https://en.wikipedia.org/wiki/Ice
https://en.wikipedia.org/wiki/Quartz#Varieties_.28according_to_color.29
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As shown in Fig. 1.2, if we only consider two diffraction orders 0u  and 1u , whose com-

plex values are denoted as 
0u  and 

1u , the intensity at the overlap region can be 

expressed as 

 

 

0 1

0 1 0 1 0 1

2

0 1

2 2

0 1 0 1

( ) ( )

( ) ( ) 2 ( ) ( ) cos ,

u u

u u u u u u

A u u A u u

A u u A u u A u u A u u  

     

          

 (1.2) 

where u is the coordinate in reciprocal space. It can be calculated by sinu n a   , 

where   is the wavelength of the incident beam, a is the side length of the unit cell of 

the crystal and θ is the scattering angle of the nth diffraction order. So 0 0u   is the 

position of the zeroth diffraction order and 1 1u a  the position of the first diffraction 

order. A is the aperture function, and 
0u  and 

1u  are the phases of 
0u  and 

1u respec-

tively. As we can see, the intensity value depends on the phase difference between the 

two orders. If we further measure the intensities at the non-overlap region, the value of 

the cosine term can be determined. However due to the even property of the cosine 

function, the sign of the phase difference remains ambiguous. An easy way to solve this 

sign ambiguity is to introduce a phase ramp across the diffraction orders by laterally 

Figure 1.2: The schematic depiction of the crystalline ptychography. Only two diffraction orders are considered here. 

The lens introduces a range of angles, which is determined by the size of the aperture, into the incident beam and 

expands each Bragg peak into a circle. When the size of the aperture is properly chosen, the diffraction circles will 

overlap. From the intensity of the overlap area, the phase relation between the two orders can be recovered. 
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shifting the illumination relative to the object by a distance of  , as a result the 

intensity value at the overlap now becomes 

 

 

0 1

0 1 0

1 0 1 0 1

2 2
2 ( ) 2 ( )

0 1 0

2

1 0 1 0 1

( ) ( ) ( )

( ) 2 ( ) ( ) cos 2 ( ) .

i u u i u u

u u u

u u u u u

A u u e A u u e A u u

A u u A u u A u u u u

 

  

   
        

          
 

  (1.3) 

Likewise, we can calculate the value of the cosine term in Eq. (1.3). Meanwhile, the 

value of 0 12 ( ) 2u u a     is known. So the value of 
0 1u u   can be completely 

determined without any ambiguity. However, it should be noted that when the shift   

is equal to an integral multiple of the unit cell size a , the sign ambiguity still remains 

[18]. In this way, the phase difference between any two overlapped diffraction orders 

can be obtained. If we assign an arbitrary phase to the zeroth diffraction order, we have 

the knowledge of the whole complex diffraction pattern. Although the absolute phase is 

lost, it has no effect on determining the structure of the crystal. Again, this method only 

applies to crystalline objects and the unit cell size must be known. Moreover, the 

transfer function of the lens will not be a perfect aperture function in real situations and 

it will complicate the intensity measurements recorded.  

1.2.3 Direct ptychography 

Hoppe attempted to extend crystalline ptychography to non-crystalline objects. But 

since the very simple interference phenomena that occur in crystalline ptychography no 

longer apply, an explicit solution for all the relevant phases did not at that time appear 

to be available. Even in his later discussion of these matters, Hoppe seemed to conclude 

that the aperiodic ptychographic problem was intractable [19]. It was not until 1989 

when Bates and Rodenburg [20] proposed a direct (non-iterative) reconstruction algo-

rithm, the Wigner Distribution Deconvolution Method (WDDM), did ptychography 

become applicable to non-crystalline objects [21, 22, 23, 24]. In this thesis, we refer to 
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the ptychography solved via WDDM as direct ptychography to differentiate from the 

ptychography solved by iterative algorithms that will be referred to as iterative 

ptychography (see section 1.2.6). Direct ptychography requires the specimen to be 

scanned over a grid of 2D positions separated by the desired resolution in the final 

reconstruction and a 2D diffraction intensity to be recorded at each scan position, giving 

rise to a very large 4D dataset. Taking the Fourier transforms of this 4D dataset with 

respect to the scanning coordinates and the diffraction coordinates (spatial frequency), 

we have 

  1 2
( , ') ( ', ) ( , ') ( , ')aH M    r' ρr ρ r ρ r ρ r ρ   (1.4) 

with the quantity 
f  called the Wigner Distribution Function (WDF) [25] of f and 

defined by  *( , ') ( ) ( )f f f  ρr ρ r ρ ρ , where 'r  and ρ  are respectively the dif-

fraction coordinates and the scanning coordinates, a  and   are respectively the illumi-

nation function and the specimen function, 
2

( ', )M r ρ  is the recorded 4D intensity 

dataset,  and 
1

 denote the Fourier transform and the inverse Fourier transform 

respectively with the subscript indicating the coordinate they operate upon, and the 

superscript asterisk represents complex conjugate. A deconvolution step allows us to 

separate out the effects of the illumination (e.g. aberrations) from the specimen by 

 
*

2

( , ') ( , ')
( , ') ,

( , ')

a

a

H










 

r ρ r ρ
r ρ

r ρ
  (1.5) 

where  is a small constant to avoid division by zero. A further Fourier transform of 

( , ') r ρ  with respect to r  gives us the complex product between every point in the 

diffraction pattern and the complex conjugate of every other point in the diffraction 

pattern: 
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   *( ', ') ( , ') ( ' ') ( '),D     rr ρ r ρ r ρ r   (1.6) 

where   is the Fourier transform of  , i.e. the diffraction pattern of the specimen. 

This quantity includes all the information of the interference between any two 

diffraction orders separated by 'ρ  and it allows us to solve for the phase problem.  

Due to the partial coherence, experimental instabilities or the finite extent of the lens, 

the frequency transmitted through the system is limited along 'ρ  [18, 24, 26, 27]. This 

is why the bright field image of a conventional microscope has an information limit. For

( ', ')D r ρ , even though along 'ρ  the frequency information beyond certain limit is lost, 

it can be recovered along 'r  and eventually an aberration-free image of the specimen 

can be reconstructed at diffraction-limited resolution [26]. Back in the 1990s, this 

frequency information recovery was realised by a method called stepping out in which a 

route containing all the specimen frequency information is chosen and the frequencies 

along the chosen route can be recovered sequentially one after another after assigning 

an arbitrary phase to the start point [18, 21, 22, 26]. However, it only makes use of a 

small fraction of the 4D data ( ', ')D r ρ  and the error will accumulate as the stepping out 

procedure progresses if a wrong data segment is chosen to start with [26]. A full 

derivation of WDDM and detailed introduction of a new stepping out strategy will be 

given in chapter 3. Nevertheless, the intensive scan and computation needed for this 

method make it less popular compared to iterative ptychography. 

1.2.4 Fourier holography 

Holography is a very elegant lens-less imaging method. It was invented by Gabor as a 

way to circumvent the resolution limit imposed by the spherical aberration in electron 

microscope [28]. In his invention, a convergent electron beam with good coherence 

illuminates a specimen that is highly transparent so that most part of the incident 
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electron beam goes straight through without interacting with the specimen. This part of 

electron beam is called reference wave. In the recording plane, the part of beam that is 

scattered by the specimen interferes with the reference wave. In this way, the phase 

information of the scattered wave is encoded as intensity variations and the record of 

them is called hologram. The specimen can be reconstructed by illuminating the 

hologram with the reference wave. However, the reconstruction is corrupted by its 

conjugate symmetric twin image because of the inline setup that means the reference 

wave coincides with the scattered wave during the hologram recording process. Leith 

and Upatnieks discovered that a small angle between the reference wave and the 

scattered wave can be used to avoid the overlap of the twin images, hence separating 

out the object reconstruction [29]. This optical arrangement is called the off-axis config-

uration. The word ‘holo’ originates from the Greek word ‘ὅλος’ meaning ‘whole’. 

The analogous form of optical holography in diffractive imaging is called Fourier 

holography (or Fourier-transform holography) [30, 31]. It requires a scatterer (normally 

a small pinhole) isolated from the specimen to be illuminated together with the 

specimen by a coherent plane wave. The resulting diffraction pattern is recorded in the 

far field. Here the isolated scatterer is the counterpart of the off-axis reference wave in 

optical holography and the measured diffraction pattern is the counterpart of hologram. 

The image reconstruction is realised by taking a Fourier transform of the measured 

diffraction pattern, which is analogous to illuminating the hologram with a reference 

plane wave and observing the reconstruction in the far field. The Fourier transform 

results in the autocorrelation of whatever in the specimen plane, i.e. the specimen plus 

the reference scatterer, according to the autocorrelation theorem in section 2.1.2. A 

simple numerical calculation is shown in Fig. 1.3 to demonstrate the implementation of 

Fourier holography. 
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Suppose ( )R r  and ( )O r  respectively denotes the reference scatterer and the specimen 

function, the corresponding autocorrelation (written in the form of convolution) is given 

by  

 
   
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  (1.7) 

where the asterisk denotes the complex conjugate,   represents the convolution and 0r  

is the separation between the specimen and the reference scatterer. When the reference 

scatterer ( )R r  is small enough to be approximated as the Dirac function, the third and 

the fourth terms in Eq. (1.7) respectively become *

0( )O r r  and 0( )O r r , i.e. the 

complex conjugate shifted version of the object function and its flipped shifted version. 

The first two terms in Eq. (1.7) are the autocorrelations of the object function and 

reference scatterer respectively. They are superimposed at the origin with a transverse 

extent twice as big as the size of the object function (in both Cartesian coordinates). To 

avoid the overlap between the four terms in Eq. (1.7), 0r  cannot be smaller than one and 

half times the object size. 

Figure 1.3: The flow chart of Fourier holography. The recorded data is the intensity of the diffraction pattern that is a 

Fourier transform of the specimen and the reference scatterer. The reconstruction is accomplished by taking a Fourier 

transform on the recorded diffraction intensity that leads to the cross-correlation of the function composed of the 

specimen and the scatterer. When the scatterer is small and far enough from the specimen, one of the side functions 

in the cross-correlation can be considered as the specimen function. 
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Although Fourier holography is able to image aperiodic specimen at high resolution, 

several drawbacks are associated with this imaging method. 1. The resolution of this 

imaging method is limited by the size of the reference scatter. The reconstruction is 

really the cross-correlation of the object function with the scatterer, not truly the object 

function. In hard x-ray regime, fabricating a small enough scatterer is challenging. 

Besides, when the scatterer is small, the transmitted x-ray flux becomes less, reducing 

the signal-to-noise ratio in the recorded data. The problem can be mitigated by using 

multiple reference scatterers [32] or by using extended reference with sharp features 

[33]. 2. The spatial coherence requirement is very high. The coherent beam needs to 

cover both the specimen and the scatterer. Since the distance between the scatterer and 

the specimen needs to be at least one and half times the specimen size, the extent of the 

beam with good coherence (i.e. the spatial coherence length) needs not be smaller than 

twice the specimen size. 3. The sampling requirement in the detector plane is very 

stringent, i.e. the pixel pitch of the detector needs to be very small. According to 

Shannon sampling condition (see section 2.1.4), the pixel pitch needs to be smaller than 

the inverse of the extent of the illuminated area. Since the beam extent needs to be twice 

bigger than the specimen size, as we explained in the second point, the pixel pitch needs 

to be twice smaller than the Shannon sampling pitch set by the specimen size.  

1.2.5 Iterative coherent diffractive imaging 

Iterative coherent diffractive imaging (CDI) is able to image non-crystalline objects at 

diffraction-limited resolution without use of any reference. It can be considered as an 

extension of crystallography to image aperiodic objects. Sayre [34] first suggested that 

the possibility of diffractive imaging of aperiodic objects given that the diffraction 

intensity is sufficiently sampled. Bruck et al [35] and Bates [36] have proved that the 

phase problem can be uniquely solvable for the two-dimensional case (or higher 
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dimensions) apart from some trivial ambiguities. The first observation of x-ray 

diffraction from an isolated object was reported in 1987 [37] but it was not until 1999 

that an image of an array of fabricated gold dots was reconstructed from a measured 

diffraction intensity by Miao et al [38] using an iterative phase retrieval algorithm called 

the hybrid input output (HIO) algorithm proposed by Fienup [39, 40]. From then on, 

this imaging method has grown enormously in both size and scope (until it is replaced 

by iterative ptychography), e.g. imaging of cells [41] and 3D samples [42]. 

A typical setup of iterative CDI with an opaque aperture is shown in Fig. 1.4. A coher-

ent plane wave illumination incidents on an opaque aperture, which sits right up against 

the specimen, so that an isolated area of the specimen can be illuminated. The exit wave 

emanating out of the specimen propagates over free space to the detector plane forming 

a diffraction pattern. The detector is positioned in the far field of the specimen, so that 

the diffraction pattern is estimated by a Fourier transform of the exit wave. The image 

reconstruction is performed using iterative phase retrieval algorithms. During the image 

reconstruction, only one diffraction pattern measurement is needed, so it is sometimes 

referred to as single-shot CDI. 

Apart from the developments of hardware, like bright sources with good coherence, 

Figure 1.4: A typical pinhole setup for iterative coherent diffractive imaging. An isolated area of the specimen is 

illuminated by a coherent plane wave illumination and the resulting diffraction pattern is recorded by a detector 

placed somewhere downstream. Then the recorded diffraction pattern is used to reconstruct the specimen image via 

iterative phase retrieval algorithms. 
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high efficient detectors with small pixels and fast computers with large memories, 

iterative phase retrieval algorithms have played a very important role in the realisation 

of iterative CDI [43, 44]. Most iterative algorithms to reconstruct an image from its 

Fourier modulus are mainly built on an idea proposed by Gerchberg and Saxton for 

phase retrieval in electron imaging [45]. It is referred to as the GS algorithm. It requires 

two intensity measurements – an image of the specimen in real space and a diffraction 

intensity measurement in reciprocal space. The algorithm involves iterative Fourier 

transform back and forth between real space and reciprocal space and in between the 

applications of the real-space constraint and the reciprocal-space constraint. The real-

space constraint is to replace the modulus of the current reconstruction with the square 

root of the measured image, meanwhile keeping the phase part intact. The reciprocal-

space constraint is to replace the modulus of the Fourier transform of the current 

reconstruction with the square root of the measured diffraction intensity, meanwhile 

keeping the phase part untouched.  

The block diagram of the GS algorithm is shown in Fig. 1.5. With an estimate of the 

specimen image g , one loop of the iteration consists of four steps: 1. Take the Fourier 

transform of the specimen estimate g  to obtain the complex diffraction pattern G ; 2. 

Replace the modulus of G  with the square root of the recorded diffraction intensity to 

Figure 1.5: The block diagram of the GS algorithm. 
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give an updated diffraction pattern 'G ; 3. Take the inverse Fourier transform of the 

updated diffraction pattern and get a new specimen estimate 'g ; 4. Replace the modulus 

of the new specimen estimate with the square root of the measured image to provide an 

updated specimen estimate, serving as the starting point for the next iteration. 

Fienup realised that the GS algorithm can be applied to any problem in which partial 

constraints (in the form of measured data or a priori information) are known in each of 

two domains, usually real space and reciprocal space. One simply transforms back and 

forth between the two domains, satisfying the constraints in one before returning to the 

other. In particular, the error reduction (ER) algorithm [39, 40] applies the support con-

straint instead of the modulus constraint in real space as used in the fourth step of the 

GS algorithm. The support constraint means beyond certain range the reconstruction has 

no values but zero. It can be expressed by 

 1

' ( ), if
( ) ,

0, if

k

k

g x x S
g x

x S



 


  (1.8) 

where S  represents the support region and k  denotes the iteration number. It allows the 

phase retrieval to start with only one intensity measurement (the diffraction intensity), 

and no longer needs the real-space measurement. The name error reduction is based on 

the fact that the calculated diffraction intensity from the reconstructed image is closer to 

the measured one each time after it is updated. However the algorithm easily gets stuck 

in local minima, causing stagnations [39, 40].  

To avoid the stagnation problem of the ER algorithm, Fienup further developed the 

hybrid input output (HIO) algorithm [39, 40]. Instead of setting the values outside the 

support region to zero, one assigns the difference between the previous estimate kg  and 

its update 'kg  to these values. It can be formularised as 
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where   is a feedback constant and is normally set to a value smaller than 1. This 

difference outside the support region acts like a strong modulator to the support region 

during the Fourier transform. By minimising this difference, i.e. the values are driven to 

zero, the HIO algorithm manages to avoid stagnations and converge much faster than 

the ER algorithm. In this generalisation, Fienup treated the first three steps in the ER 

algorithm as an nonlinear system, and thus the input and output of this nonlinear system 

are respectively kg  and 'kg . The strategy to constraint the region outside the support is 

a mixture of the input and output. This is why it is called the hybrid input output 

algorithm. 

In real space, any other a priori information about the specimen can be added as 

constraints together with the support constraint to facilitate the convergence of the 

algorithm. The positivity constraint is the one often used for fabricated sample in hard 

x-ray experiments where the electron density of the specimen is real and positive [46]. It 

is quite effective in removing the twin image ambiguity that means the true image and 

its conjugate symmetry simultaneously exists in the reconstruction. The ambiguity is 

caused by the fact that the twin images have the same Fourier magnitudes and from 

diffraction intensity alone they cannot be distinguished. Twin image ambiguity can also 

be removed by using a non-centrosymmetric support [47]. 

Another very general projection-based algorithm called the difference map (DM) has 

been developed by Elser [48]. It is designed to solve problems that can be expressed as 

the search for the intersection point between two constraint sets. In iterative CDI, the 

two constraint sets are the support constraint and the modulus constraint. A detailed 

comparison between DM and HIO can be seen in [49]. 



CHAPTER 1: INTRODUCTION 18 

 

However, iterative CDI has some drawbacks: 1. to fulfil the sampling requirement the 

support area needs to be smaller than half of the illuminated area (see section 2.3.4). 

This requires either an isolated small sample (very challenging to prepare) or an opaque 

aperture placed on top of an extended sample. Due to the limited spatial coherence in 

the experiments, the size of the illuminated area is restricted and so in either way only a 

small field of view is available; 2. For the object with a complex transmission function, 

the positivity constraint is not applicable, thus the twin image ambiguity could seriously 

corrupt the reconstruction. In this case, asymmetric apertures are required to get 

reasonable results [47, 50]; 3. For a 3D object, the reconstruction suffers defocus ambi-

guity [50]. The focus plane of the reconstruction is determined by which axial plane to 

impose the support constraint; 4. The presence of noise affects the probability that the 

unique solution will be found [50]. 

1.2.6 Iterative ptychography 

Thanks to iterative phase retrieval algorithms, ptychography can be applied to non-

crystalline objects in a much more practical way, because we no longer need to scan the 

sample at a step size of the resolution reconstructed. In 2004, Faulkner and Rodenburg 

developed an iterative algorithm called the ptychographical iterative engine (PIE) [51]. 

It has been successfully demonstrated with simulations using a sharp aperture [51] and a 

convergent illumination [52] and then with experiments using visible light [53, 54], x-

ray [55] and electron [56]. It marked a revolutionary breakthrough for diffractive imag-

ing. Compared to iterative CDI, ptychography makes measurements of multiple diffrac-

tion patterns from a set of overlapped illuminated area by laterally scanning the 

specimen with respect to the illumination, so it is also known as scanning CDI [57]. In 

this way, ptychography not only eliminates the ambiguity and convergence problems in 

iterative CDI, but also increases the robustness to noise and extends the field of view.  
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Fig. 1.6a shows a typical experimental configuration of iterative ptychography operated 

in transmission mode. It requires a localised illumination to be scanned over an 

extended specimen with the illuminated areas from adjacent scan positions partially 

overlapped. The scan is achieved by mounting the specimen on a translation stage with 

the scan plane perpendicular to the propagation direction of the illumination. At each 

scan position, the intensity of the diffraction pattern is recorded and the phase 

information is lost. Provided the overlap is sufficient, iterative algorithms can re-phase 

the recorded diffraction data and reconstruct a complex image of the specimen at a 

resolution only limited by the angular extent of the detector and the wavelength of the 

illumination. The flow chart of iterative ptychography is shown in Fig. 1.6b. 

Figure 1.6: Iterative ptychography. (a) A typical experimental setup of iterative ptychography. A localised 

illumination is provided by an opaque aperture. The specimen is scanned laterally with respect to the illumination. At 

each scan position, the diffraction pattern is recorded in the far field. (b) The flow chart of ptychographic imaging. 

Iterative algorithms are adopted to reconstruct the specimen function from the measured diffraction intensities. 
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Since the overlapped areas are measured more than once, the recorded diffraction data 

has certain amount of redundancy. During the past decade, algorithmic developments 

allow us to keep exploring the redundancy in a ptychographic dataset and recovering 

more and more information of the experiment, making ptychography a very powerful 

and useful imaging technique. Alongside the object function, the illumination function 

[58, 59, 60], the scan positions [58, 61, 62, 63] and the partial coherence [64] can also 

be recovered from the dataset. In addition, ptychography can extrapolate a limited size 

detector to gain resolution improvements in the object reconstruction [65, 66], image 

3D objects via the multislice method [67, 68, 69] without rotation of the specimen, deal 

with noisy data [70, 71], and achieve information multiplexing [72], dynamic object 

imaging [73] and continuous scan [74, 75, 76] via mixed state decomposition. It has 

also been modified to Bragg Ptychography [77] and Fourier Ptychography [78], and 

combined with tomography to achieve isotropic 3D imaging [79]. 

1.3 Outline of thesis 

This thesis focuses on ptychography, particularly its application in the presence of 

partial coherence and its extension to 3D imaging.  

As a coherent diffractive imaging technique, ptychography needs a radiation source 

with good coherence (both spatial and temporal). However, in real situations, especially 

in the regime of x-rays and electrons, most radiation sources are partially coherent. As a 

result, it compromises the quality of the images reconstructed. Although it has been 

demonstrated that good reconstructions are obtainable in the presence of partial 

coherence using iterative CDI via mixed state decomposition, a good model of partial 

coherence is necessary prior to the reconstruction [80, 81, 82]. Demonstration even 

shows the partial coherence can be reconstructed via a blind deconvolution using 
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iterative CDI, but the coherence function must be modelled as a Gaussian function [83]. 

Partial coherence was first proved solvable by Rodenburg and Bates using 

ptychography via the Wigner distribution deconvolution method in 1992 [26]. Because 

of this advantage, this discarded method is revisited and substantial improvements are 

made to it. The mixed state decomposition method used in iterative CDI has also been 

modified to adapt the iterative algorithms of ptychography and successful demonstra-

tion of this method has been made using an x-ray experiment by Thibault et al [64]. 

This thesis also investigates this iterative method and relevant contributions are made as 

well. 

With the development during the past decade, iterative ptychography is mature enough 

to routinely deliver high quality 2D complex images (both modulus and phase) of 

samples at diffraction-limited resolution [84]. Not only that, but it also shows great 

potential in 3D imaging. When the specimen under investigation has certain thickness 

that is not big enough to violate the multiplicative approximation – the exit wave of the 

specimen when an illumination is shining upon it is estimated by the multiplication of 

the illumination function and the specimen function – the 2D image produced by 

ptychography is the projection of the 3D transmission function of the specimen at a 

specific orientation [26, 57]. This property makes it perfect to be combined with tomog-

raphy. In addition, the quantitative phase image ptychography produces not only 

provides great contrast of the sample, but also allows quantitative analysis of the sample 

[85, 86]. The combination of ptychography and tomography, referred to as ptycho-

graphic tomography in this thesis, is particularly successful in the regime of x-rays and 

a lot of its applications have been explored in this regime [79, 87, 88, 89, 90]. This 

thesis will demonstrate ptychographic tomography step by step using a synchrotron x-

ray experiment of a micro-capillary filled with glass beads that implicates great 
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possibility of imaging the 3D atom distributions within amorphous materials using 

electron ptychographic tomography. Furthermore, ptychography on its own is able to 

provide 3D information as well. When the specimen is thick enough to break the 

multiplicative approximation, the multislice method (widely used in electron 

microscopy [ 91 ]) can be applied to circumvent the problem by computationally 

sectioning the thick specimen into a set of thin slices [67]. All the thin slices can be 

reconstructed, hence providing 3D information of the specimen. A great advantage of 

this technique is that no rotation of the specimen is involved. It is particularly successful 

in the regime of visible light because of the strong scattering inside the specimen and 

high NAs available for the illumination [68], although a proof-of-principle experiment 

has successfully demonstrated using x-rays [69]. This thesis will modify the iterative 

algorithms to adapt the multislice method for Fourier ptychography that is a Fourier 

variant of the conventional real-space ptychography [78]. 

The outline of this thesis is detailed as follows: 

Chapter 2 provides the theoretical and experimental backgrounds for ptychography. 

The most important mathematical tool, the Fourier transform, is first introduced and the 

associated properties are also given. Diffraction theory and different wave propagation 

models are then reviewed. Furthermore, the fundamental concepts and experimental 

concerns about ptychography are highlighted at the end. 

Chapter 3 discusses ptychographic inversion via the Wigner distribution deconvolution 

method (WDDM). The full derivation of WDDM is reviewed and a condition for the 

separation of the Wigner distribution functions (WDF) of the specimen and the 

illumination is presented. To suppress the errors introduced by noise, three ways at 

different stages of WDDM are proposed: a projection strategy makes use of all the 
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available data to mitigate the inconstancy of noisy data; design of a favourable probe 

avoids division of zero by evening the WDF of the illumination; and an iterative method 

utilises the information with higher accuracy (less affected by the noise) to recover the 

information with lower accuracy. The reconstruction of spatial partial coherence via 

WDDM is also demonstrated for the first time using a model calculation. 

Chapter 4 explores spatially mixed state ptychography. The reconstruction algorithm 

and the reconstruction structure are described. The modification of modulus constraint 

used in the coherent case enables the reconstruction of partial coherence via mixed state 

decomposition. However, since only the intensity addition of all the mixed states is 

constrained, linear ambiguity arises in the individual state reconstruction. A priori 

information of the experiment, like the orthogonalisation of the probe states in spatial 

partial coherent experiments and the phase-only response of the object states, can break 

the ambiguity and lead to true reconstructions. Furthermore, in this chapter the effects 

of a diffused probe on the reconstructions in the presence of spatial partial coherence 

are investigated. The use of diffuser increases the angular range of the illumination and 

enriches the information content encoded in the recorded intensity measurements. 

Eventually, it helps the reconstruction, especially when the specimen has very simple 

structures. 

Chapter 5 investigates temporally mixed state ptychography. The reconstruction 

algorithm and the reconstruction structure are given. The linear reconstruction 

ambiguity is broken because each wavelength only has one specific response from the 

specimen. An iterative algorithm is proposed to remove the static background noise 

from the measurements by treating the background as the diffraction pattern from an 

extra temporal state. This enables reconstruction without the step of background 

subtraction. 
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Chapter 6 looks into Fourier ptychography and its extension to 3D imaging via the 

multislice method. Fourier ptychography applies the ptychographic scan in the Fourier 

space of specimen, i.e. on the spectrum of the specimen. A parallel update is adopted in 

the iterative algorithm for the reconstruction of the aperture to avoid the dramatic slow 

convergence caused by the fact that the spectrum normally has a very big value for the 

zeroth diffraction order and presents very high dynamic range. Also, the iterative 

algorithm is extended to involve three planes (specimen plane, back focal plane and 

image plane) in the reconstruction, so that the multislice method can be incorporated to 

realise 3D imaging. 

Chapter 7 demonstrates tomography and ptychographic tomography. A background 

review of tomography is first given. In ptychographic tomography, ptychography 

acquires the projections of the 3D sample for all the orientations, so that tomographic 

reconstruction can be carried out on these projections. However, ptychographic 

reconstruction has inherent ambiguities, such as a phase ramp, phase offset and lateral 

shifts. These ambiguities need to be removed prior to the tomographic reconstruction. A 

synchrotron x-ray experiment of a micro-capillary filled with glass beads is used to 

demonstrate the implementation of ptychographic tomography. The possibility of 

electron ptychographic tomography is also discussed based on the scale calculation with 

the x-ray experiment. 

Chapter 8 summarises the work presented in this thesis and discusses the implication of 

the work for future research.  



2 Background 

In this chapter, we will introduce the computational basis of diffractive imaging, the 

Fourier transform, and some frequently used properties associated with it. The scalar 

wave theory and propagation approximations, which formularise diffractive imaging, 

will also be reviewed. Furthermore, the fundamental concepts and some key experi-

mental concerns about iterative ptychography are highlighted. 

2.1 The 2D Fourier transform 

The Fourier transform plays an essential role in diffractive imaging. It is a central part 

of the formularisation of the propagation theory. It also relates a specimen in real space 

and its spectrum in reciprocal space (the domain of the original function is referred to as 

real space and the domain after the transform as reciprocal space or Fourier space). 

Since only 2D wave fields or images are considered, the discussions about the Fourier 

transform are limited to two dimensions here. 

2.1.1 Definition 

The Fourier transform, denoted by , of a 2D function  ,x yr r  is defined as 

         , , , exp 2 d d ,x y x y x y x x y y x yf f r r r r i r f r f r r       
    (2.1) 

where xf  and 
yf  are the coordinates in reciprocal space corresponding to real space 

represented by xr  and yr  and 1i    . The inverse Fourier transform, denoted by 
1
, 

is similarly defined as 

         1, , , exp 2 d d .x y x y x y x x y y x yr r f f f f i r f r f r r       
    (2.2) 

The only difference between these two transforms is the sign in the exponential term.  
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2.1.2 Properties 

There are well-known theorems associated with the Fourier transform [92]. Here we list 

some of them that will find wide use later in this thesis. If we define two Fourier 

transform pairs     , ,x y x yf f r r   and     , ,x y x yf f r r  , some basic 

properties of the Fourier transform can be described as: 

1. Linearity theorem:  

         , , , , .x y x y x y x ya r r b r r a f f b f f        (2.3) 

The Fourier transform of a weighted sum of two functions is equal to the identical 

weighted sum of their individual transforms. 

2. Similarity theorem: 

   
1

, , .
yx

x y

ff
ar br

ab a b


 
  

 
  (2.4) 

A stretch of the real-space coordinates leads to a contraction of the reciprocal-space 

coordinates, plus an overall scaling of the Fourier amplitude. 

3. Shift theorem: 

       , , exp 2 .x y x y x yr a r b f f i af bf       
 

  (2.5) 

A lateral shift in real space introduces a linear phase offset in reciprocal space. 

4. Convolution theorem: 

         , , d d , , .x y x y x yr r f f f f              (2.6) 

The Fourier transform of the convolution of two functions in real space is equivalent to 

the multiplication of their individual transforms in reciprocal space. 
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5. Autocorrelation theorem: 

       
2

*, , d d , .x y x yr r f f             (2.7) 

This can be considered as a special case of the convolution theorem in which we 

convolve  ,x yr r  with  * ,x yr r   .  

6. Parseval’s theorem: 

    
2 2

, d d , d d .x y x y x y x yr r r r f f f f      (2.8) 

The energy in real space is preserved after transformed into reciprocal space. 

7. Fourier integral theorem: 

        1 1, , , .x y x y x yr r r r r r       
   

  (2.9) 

The successive transform and inverse transform of a function yield the original function. 

8. Central symmetry theorem: 

     , ,x y x yr r r r    
 

  (2.10) 

Two successive transforms of a function produce a central symmetric version of itself. 

9. Conjugate symmetry theorem: 

     * *, ,x y x yf f r r      (2.11) 

The Fourier transform of the conjugate of a function results in a conjugate symmetric 

version of the Fourier transform of the original function. 

10. Friedel’s law: 

        *, , , if , , .x y x y x y x yf f f f r r r r          (2.12) 

The Fourier transform of a real image is conjugate-symmetric. 
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2.1.3 Discrete Fourier transform 

Since all the calculations in this thesis are computer-aided and a computer only handles 

discrete functions, here we need to introduce the definition of Discrete Fourier 

transform (DFT). It is defined as 

       
1 1

0 0

, , , exp 2 ,

M N

x y

ux vy
u v DFT x y x y i

M N
  

 

 

  
      

  
   (2.13) 

where ,x y  and ,u v  are the discrete coordinates in real space and reciprocal space 

respectively, and M and N are the numbers of discrete points in real space along x and y 

directions. Similarly, the inverse Discrete Fourier transform is defined as 

       
1 1

1

0 0

1
, , , exp 2 .

M N

x y

ux vy
x y DFT u v u v i

MN M N
 

 



 

  
      

  
   (2.14) 

For the DFT, both real space and reciprocal space are discrete and periodic. The 

implementation of the DFT usually applies the fast Fourier transform (FFT) algorithm 

[93]. For this reason, the two terms, “DFT” and “FFT”, are often used interchangeably. 

It should be noted that the theorems introduced in section 2.1.2 for the continuous case 

are still valid for the discrete case DFT here. 

2.1.4 The Shannon sampling theorem 

Sampling is an operation to convert a continuous signal into a discrete sequence. The 

Shannon sampling theorem points out that the sampling interval has to be small enough 

to recover the original signal from its sampled version without loss of information [94]. 

Here we demonstrate the theorem using a one-dimensional function, but it is straightfor-

ward to extend it to two dimensions. 

As shown in Fig. 2.1, a continuous signal ( )f x  has a bandwidth of 2B , so 
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      0, if .F u f x u B     (2.15) 

We convert the continuous signal into a discrete sequence by sampling ( )f x  on a set of 

equally spaced points such as 

      , ,

n

f n f x x n x n





      (2.16) 

where x  is the sampling interval and   is the Dirac delta function. 

Performing the Fourier transform on the discrete sequence and utilising the convolution 

theorem of the Fourier transform, we have 

      ,

n n

n n
f n F u u F u

x x


 

 

   
       

    
    (2.17) 

where   denotes the convolution operation. The Fourier transform of the sampled 

signal  f n  is basically a repeat of the spectrum of the continuous signal, i.e.  F u , on 

another set of discrete points with a separation of 1 x . If all the repeated spectrums do 

Figure 2.1: Illustration of the Shannon sampling theorem. For a continuous function f(x) with a bandwidth of 2B, it 

can be fully recovered from its discrete version when the sampling interval is smaller than . FT stands for 

Fourier transform and iFT for inverse Fourier transform. 
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not overlap with each other (otherwise it is known as aliasing), filtering with a top-hat 

function ( )T u  with a support region of 2B  (unity on the support region, zero elsewhere) 

can pick out one complete spectrum for the recovery of the original function. To avoid 

the overlap (or aliasing) means the separation between the spectrums must be bigger 

than the width of the spectrum, i.e. 1 2x B  . This is equivalent to saying the sampling 

interval in real space must be smaller than the inversion of the bandwidth of the 

spectrum, i.e. 1 2x B  . In this case, the original function can be recovered without 

any loss of information from its sampled discrete version by a convolution with a sinc 

function 

        1( ) sin) .( c 2

n

f x Bf n T u x xf n n





        (2.18) 

This is the so called Shannon sampling theorem, which was originally pointed out by 

Whittaker [95] and was later popularised by Shannon [94]. 

2.2 Wave propagation 

The formularisation of the wave propagation is the basis of the computational imaging. 

In this section we will give a brief introduction of the scalar diffraction theory that leads 

to the fundamental Rayleigh-Sommerfeld diffraction formula. Then we show that a 

series of approximations depending on the propagation distance can be applied to the 

diffraction formula to simplify the calculation. Another propagation method, angular 

spectrum propagation, is also introduced when the propagation distance is too short to 

adopt any other approximations on the diffraction formula. 
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2.2.1 Scalar diffraction theory 

In a medium that is linear, dielectric, isotropic, homogeneous, nondispersive and 

nonmagnetic, all components of the electric and magnetic field behave identically and 

their behaviour is fully described by a single scalar wave equation [92, 96] 

 
2 2

2

2 2

( , )
( , ) 0,

n u t
u t

c t


  



r
r   (2.19) 

where r represents the space coordinate, t denotes the time and n is the refractive index 

of the medium, defined by 

 ,n    (2.20) 

where   and  are the permeability and permittivity of the medium respectively, and c 

is the speed of light in vacuum, given by 

 
0 0

1
,c


   (2.21) 

where 0  and 0  are the permeability and permittivity of the vacuum respectively. A 

detailed derivation of the scalar wave equation from Maxwell’s equations can be found 

in standard textbooks of optics [92, 96]. If the scalar field is monochromatic, its disturb-

ance is represented as 

 ( , ) ( )exp[ 2 ],u t U i vt r r   (2.22) 

where v  is the optical frequency and ( )U r  represents the space dependent part of the 

disturbance. Since the disturbance must satisfy the scalar wave equation, the 

substitution of Eq. (2.22) into Eq. (2.19) leads to the time-independent Helmholtz 

equation, given by 

  2 2 ( ) 0,k U  r   (2.23) 
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with the wave number k defined as 

 
2

2 ,
v

k n
c





    (2.24) 

 where   is the wavelength in the medium. As a result of the mathematical treatment 

involving Green’s integral theorem, a general solution to the Helmholtz equation is 

given by the Rayleigh-Sommerfeld diffraction formula [92, 96] 

 
1

( , , ) ( , ,0) cos( , )d d
ikre

U u v z U x y n r x y
i r

    (2.25) 

where ( , ,0)U x y  denotes the field in the diffraction plane, ( , , )U u v z  is the field in the 

observation plane, cos( , )n r  represents the cosine of the angle between the propagation 

direction n  and the vector r  joining the diffraction point to the observation point, and 

r  is the length of the vector r . Except for the cosine term that is referred to as obliquity 

factor, the equation has a physical interpretation identical to the Huygens-Fresnel 

principle [96]. It expresses the observed field ( , , )U u v z  as a superposition of divergent 

spherical waves 
ikre r  originating from secondary sources located at each and every 

point of the diffraction field ( , ,0)U x y . 

2.2.2 Fresnel propagation 

A series of approximations can be applied to Eq. (2.25) to simplify the calculation. As 

depicted in Fig. 2.2, a slice of the diffraction field lies in the plane P1 (indexed by x and 

y) and propagates along the positive z direction. We will calculate the field across the 

observation plane P2 (indexed by u and v) that is parallel to P1.  

The distance from a point ( , )x y  in P1 to a point ( , )u v  in P2 is denoted as r and it can 

be calculated by 
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2 2 2 2 2( ) ( ) 1 ( ) ( ) .

u x v y
r u x v y z z

z z

 
          (2.26) 

The angle between the vector joining these two points and propagation direction is 

denoted as   and its cosine can be calculated by 

 cos .
z

r
    (2.27) 

In the paraxial approximation [92, 96], i.e. all the light rays are almost parallel to the z-

axis, cos 1  . Therefore if the field in P1 is represented by ( , )U x y , according to Eq. 

(2.25), the field ( , )U u v  across P2 can be expressed as 

 
2 21

( , ) ( , ) exp 1 ( ) ( ) d d .
u x v y

U u v U x y ikz x y
i z z z

  
   

 
   (2.28) 

Besides, we can make use of the binominal expansion (or Taylor expansion) of the 

square root to expand the expression of the distance r to the second term as 

 2 21
1 ( ) ( ) .

2

u x v y
r z

z z

    
    

  
  (2.29) 

Substitution of Eq. (2.29) into Eq. (2.28) gives 

Figure 2.2: Illustration of wave propagation over free space between two planes. Different approximations can be 

applied depending on the propagation distance z and the wave extent in the transverse plane. 
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2 2( , ) ( , ) exp ( ) ( ) d d .

2

ikze k
U u v U x y i u x v y x y

i z z

 
      

    (2.30) 

This is the Fresnel propagation approximation. It is a convolution of the field with a 

parabolic phase term. So this approximation basically uses parabolic phase surface to 

approximate the spherical phase surface. Eq. (2.30) can be further reformed as 

  
2 2 2 2( ) ( )

2 2( , ) ( , ) exp d d .

k kikz
i u v i x y

z z
e k

U u v e U x y e i ux vy x y
i z z

    
     

  
   (2.31) 

It is recognised as the Fourier transform of the product of the field and a quadratic phase 

term. During this approximation, we neglect the contribution from the third and the 

higher terms of the square root expansion, which requires 

    
2

2 2
3

max

.
4

z u x v y



   
 

  (2.32) 

When the Fresnel approximation is valid, P2 is said to be in the near field of P1. For this 

reason, the Fresnel approximation can also be called near-field approximation. 

2.2.3 Fraunhofer propagation 

If the parabolic phase term  2 2exp[ ]
2

k
i x y

z
  in Eq. (2.31) can be assumed be flat, 

which requires 

 
 2 2

max ,
2

x y
z


  (2.33) 

the calculation can be further simplified as a Fourier transform 

  
2 2( )

2
2

( , ) ( , )exp d d .

kikz
i u v

z
e

U u v e U x y i ux vy x y
i z z



 

  
   

    (2.34) 
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This is the Fraunhofer propagation approximation. For this approximation to be valid, 

P2 has to be in the far field of P1. So the Fraunhofer approximation is also called far-

field approximation. 

2.2.4 Angular spectrum propagation 

The Fresnel and Fraunhofer approximations have simplified the calculation of the wave 

propagation and it is very easy to implement them in a computer. However, the 

propagation distance has to be long enough to validate these approximations. For short 

propagation distances, we use angular spectrum method to implement the calculation 

for the sake of computational convenience in a computer. 

The angular spectrum of a wave field is defined as the Fourier transform of the wave 

field [92, 96]. So the angular spectrum of the wave in P1 is expressed as 

      , ;0 , ,0 exp 2 d d .x y x yA f f U x y i f x f y x y   
    (2.35) 

The Fourier transform here can be regarded as a decomposition of the wave field into a 

series of simple complex-exponential functions. According to the Fourier integral 

theorem described in Eq. (2.9), the wave field is given as the inverse Fourier transform 

of the angular spectrum 

      , ,0 , ;0 exp 2 d d .x y x y x yU x y A f f i f x f y f f  
    (2.36) 

The complex-exponential function  exp 2 x yi f x f y 
 

 can be viewed as a plane 

wave with direction cosines 

    
22

, , 1 .x y x yf f f f             (2.37) 



CHAPTER 2: BACKGROUND 36 

 

So the inverse Fourier transform in Eq. (2.36) can be regarded as recomposing the wave 

field by summing a series of plane waves weighted by its angular spectrum. Here we 

rewrite the angular spectrum in terms of direction cosines instead of spatial frequencies 

  , ;0 , ,0 exp 2 d d .A U x y i x y x y
   


   

    
      

       (2.38) 

So the angular spectrum of the wave field in P2 can be expressed as 

  , ; , , exp 2 d d .A z U u v z i u v u v
   


   

    
      

       (2.39) 

And likewise, the wave field in P2 can be recomposed by an inverse Fourier transform 

  , , , ; exp 2 d d .U x y z A z i x y
     


     

    
     

       (2.40) 

Since  , ,U x y z  has to satisfy the Helmholtz equation, it leads to 

 

22
2 2

2

d 2
, ; 1 , ; 0.

d
A z A z

z

    
 

    

     
          

     
  (2.41) 

An elementary solution to the differential equation can be written in the form 

 2 22
, ; , ;0 exp 1 .A z A i z

    
 

    

     
       

     
  (2.42) 

There are two different classes of solutions. For 
2 2 1   , the exponential term 

becomes real and decays to zero rapidly. This is the non-propagating solution that is 

also called evanescent waves [92, 96]. For 
2 2 1   , the effect of propagation over 

distance z is simply a change of the relative phases of the various components of the 

angular spectrum. Substitution of Eq. (2.42) into Eq. (2.40) gives 

2 22
( , , ) , ;0 exp 1 exp 2 d d .U x y z A i z i x y

      
  

      

      
        

        (2.43) 
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This is the angular spectrum propagation. Its implementation can be broken down into 

three simple steps: 1. Take the Fourier transform of the wave field in P1; 2. For 

2 2 1   , multiply with the phase term 2 22
exp 1i z


 



 
  

 
; 3. Take the inverse 

Fourier transform to give the wave field in P2. The angular spectrum method is 

applicable for any propagation distance. However, due to the successive Fourier 

transform and inverse Fourier transform, P1 and P2 are both in the same space, having 

the same sampling. As the propagation goes on, the size of the wave field will rapidly 

grow, eventually exceeding the calculation window, causing aliasing. This method is 

therefore mainly used for short propagation distance over which the Fresnel 

approximation is not valid. 

2.3 Iterative ptychography 

In this section we will consider some fundamental concepts, basic theories and 

experimental concerns of iterative ptychography. 

2.3.1 The phase problem 

A monochromatic electromagnetic wave field is completely characterised by a complex 

scalar function  ( ) ( ) exp ( )i  r r r , containing both the modulus part ( ) r  and 

the phase part ( ) r , where r  represents a position vector in the wave field. With the 

whole information of ( ) r , one can predict the wave field at any plane along the 

propagation direction by adopting an appropriate propagation model (see section 2.2). 

Unfortunately, a detector device is only able to record the intensity of the wave field, i.e. 

2
( ) ( ) ( ) ( )I     r r r r , where the asterisk denotes the complex conjugate, i.e. 
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 ( ) ( ) exp ( )i    r r r . The phase part ( ) r  is lost during the recording process. 

This is referred to as the phase problem. 

In ptychography, the detector is positioned somewhere downstream of the specimen to 

record the intensity of the diffraction pattern that is normally related to the exit wave of 

the specimen by a Fourier transform. Without the phase information of the diffraction 

pattern, one cannot acquire the knowledge of the exit wave via an inverse Fourier 

transform, and hence cannot deduce the illumination function and the specimen function 

from the exit wave that is estimated by the multiplication of the two functions. To 

reconstruct the image of the specimen, the phase information of the diffraction pattern 

needs to be recovered and algorithms to do the phase recovery are referred to as phase 

retrieval algorithms. 

2.3.2 Coherence 

The retrieval of phase information relies on the interference between the different 

diffracting components. The interference has to be stable during the integration time of 

the recording process. This requires a good coherence, both temporal and spatial, for the 

radiation source. The general description of coherence is based on evaluating the cross-

correlation between two points in a wave field U separated in both space r and time t 

over certain time period T, which is defined as the mutual coherence function [97], 

given by 

   * *

1 2 1 2 1 2

1
, , ( , ), ( , ) ( , ) ( , )d ,

2

T

T T

U t U t U t U t t
T

  


    r r r r r r   (2.44) 

where   denotes the complex conjugate and   the time offset between the measure-

ment of the wave field at the two points 1r  and 2r . The complex degree of coherence is 

defined as the normalisation of the mutual coherence function 
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


 

r r
r r

r r r r
  (2.45) 

If a monochromatic or quasi-monochromatic wavefield is considered, the dependence 

on the time offset   can be dropped with 1 2( , ) r r  denoting the degree of the spatial 

coherence. We have 1 2( , ) 1 r r  for full coherence, 1 2( , ) 0 r r for complete incoher-

ence and any value between for partial coherence in space. According to Wolf [98], for 

a spatially partial coherent wavefield, its mutual coherence function can be expressed as 

a weighted summation of a set of orthonormal modes 

  1 2 1 2, ( ) ( ),n n n
n
    r r r r   (2.46) 

with 

 ( ) ( )d ,m n mn   r

r r r   (2.47) 

 where n  is the power occupation of the mode ( )n r  and mn  is the Kronecker symbol. 

According to Eq. (2.46), the intensity of the partially coherent wave field is given as 

  
2

( ) , ( ) ,n n
n

I    r r r r   (2.48) 

i.e. the incoherent summation of the intensities of all the modes. Therefore, the 

diffraction pattern measured from a partially coherent radiation can be treated as the 

incoherent summation of a series of diffraction patterns measured from each individual 

mode. 

Coherence can also be estimated by a characteristic length scale called coherence length 

that is defined as the propagation distance over which a coherent wavefield maintains a 

high degree of coherence [99]. Spatial coherence is estimated by transverse coherence 

length. A source with lateral extension in the plane transverse to the propagation 
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direction will degrade the spatial coherence. Let us consider the Young’s double slits 

experiment with a line source, as shown in Fig. 2.3.  

The source extent is denoted as a, the separation between the two slits as d, the 

wavelength of the radiation as λ, the distance from the source to the slits as R and the 

distance from the slits to the detector as L. The central point in the line source will 

generate an interference pattern in the detector plane. The constructive interference 

happens when sind n  . n is integers, representing different diffraction orders.   is 

the scattering angle and under the small-angle approximation sin .n d     

Different points in the line source will generate the same interference pattern with a 

lateral shift in the detector plane. If the minima of the interference pattern from the 

extreme point of the line source coincide with the maxima of the interference pattern 

from the central point, i.e. 2 2aL R L d , the separation between the two slits is 

defined as the transverse coherence length td  and it is given by 

 .t

R
d

a


   (2.49) 

Figure 2.3: Demonstration of transverse coherence length via the Young’s double slits experiment with a line source. 

The diffraction patterns from two narrow slits separated by a distance of d, originating from the centre of the source 

(dashed curve) and from the edge of the source (solid curve). The transverse coherence length is defined to be the slit 

distance d is when the two patterns are in antiphase. 
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Eq. (2.49) implies that a long wavelength source with small extent or large distance 

from the source to the specimen could give a good spatial coherence in the specimen 

plane. That is why in synchrotron x-ray coherent experiments an upfront slit is required 

to control the source size and the experimental hatch needs to be built far away from the 

source, or in electron microscope a small spot size is desired for high spatial coherence. 

The temporal coherence is characterised by the longitudinal coherence length [99]. A 

radiation with a broad bandwidth will cause degradation of temporal coherence. Let us 

consider two waves with wavelengths   and   . They depart from a point at the 

same time and after a distance of d the two waves are in antiphase, as shown in Fig. 2.4. 

This distance d is defined as the longitudinal coherence length. 

To calculate the propagation distance d, we assume the wave with wavelength of 

   propagates N wavelengths, and then the wave with wavelength of   propagates 

1 2N   wavelengths. The two distances are equal, i.e. ( ) ( 1 2)N N      , which, 

as a result, gives 2N    . The propagation distance can then be calculated by 

  2 2 2.d N          Normally the wavelength is much bigger than the 

wavelength difference, i.e.   , so the longitudinal coherence length ld  can be 

approximately given by 

Figure 2.4: Demonstration of longitudinal coherence length via two waves with wavelengths  and . The two 

waves depart at the same point and at the same time. The longitudinal coherence length is defined to be the 

propagation distance when the two waves are in antiphase. 
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
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


  (2.50) 

So a radiation with small bandwidth is desirable to ensure good temporal coherence. 

That is why in synchrotron x-ray coherent experiments monochromator is needed to 

select a narrow band of wavelengths, or in electron microscope stable high-voltage 

supply is required to suppress the energy spread. 

2.3.3 Geometries of the image and detector 

As we mentioned earlier, for computational imaging aided by a computer, both the input 

data and the output image are discrete. The data fed into the calculation for 

ptychography is the diffraction pattern recorded by a pixelated detector. To simplify the 

description, here we assume both the image and the detector are square with square 

pixels. Because they are related by a calculation of a discrete Fourier transform, the 

number of pixels is same for both of them. As shown in Fig. 2.5, we denote the sizes of 

the image and the detector as X and U respectively, and the pixel sizes as x  and u . 

The number of pixels along one dimension is given as M, so the sizes of the image and 

the detector are given by X M x   and U M u   respectively. 

Using the relation described in Eq. (2.37), the spatial frequency can be calculated by

f    with sin U L    under the paraxial approximation, where   is the angle 

subtended by the detector from the image plane and L is the distance from the image to 

the detector. According to the Shannon sampling theorem, the sampling in real space, 

i.e. the image pixel size x  is calculated by 

 
1

.
L L

x
f U M u

 
   


  (2.51) 

https://en.wikipedia.org/wiki/Wavelength
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The image pixel size is inversely proportional to the detector size. If we define the 

resolution as the smallest feature of the specimen that can be resolved, the pixel size can 

be assumed as the resolution of the image, but only when the detector is just big enough 

to cover the whole diffraction pattern, because a bigger detector cannot record more 

information. In another words, a detector with a size bigger than the diffraction pattern 

cannot increase the resolution, although it can cause smaller pixel size of the 

reconstructed image. 

2.3.4 Sampling requirement in ptychography 

We consider the sampling of the intensity measurement for only one diffraction pattern 

first, i.e. the sampling for iterative CDI [34, 38, 100, 101]. It is denoted by u  and 

equals to the angle   subtended by the detector sampling pitch (or the separation 

between two detector pixels) at the specimen plane, given by 

 
sin

,u

W

L




 
    (2.52) 

Figure 2.5: Geometries of the reconstructed image and the detector. Both the image reconstruction and the detector 

are discrete functions. The application of Shannon sampling theorem on both of them results in a relation between the 

pixel size in the image plane and the pixel size in the detector plane. 

x

u

image

detector

X M x 

U M u 
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where W is the separation between two detector pixels,   is the wavelength of the 

radiation, and L is the distance from the specimen plane to the detector plane. If we use 

a detector with densely packed pixels (so no gap between two pixels, normally is the 

case in real situations), then W is equal to the pixel pitch u  and it can be expressed by 

reforming Eq. (2.51) as W u L X   . As a result, the sampling in the detector plane 

is  

 
1

.u
X

    (2.53) 

It is basically the Shannon sampling in reciprocal space for a given image size X  in 

real space. However, this sampling requirement is set provided all the information about 

the diffraction pattern (both modulus and phase) is known. In another words, Eq. (2.53) 

is the sampling of the complex diffraction pattern. Since only the intensity is measured, 

the sampling is now determined by the autocorrelation function of the image, not the 

image itself [34], because according to Eq. (2.7) the Fourier transform of the intensity of 

the diffraction pattern gives the autocorrelation of the image. The autocorrelation size is 

twice as big as the image size, so the sampling of the diffraction intensity is now 

becoming 

 
1

.
2

u
X

    (2.54) 

In the literature of iterative CDI, this is referred to as oversampling from the perspective 

of the sampling of a complex diffraction pattern [38, 100, 101]. To satisfy this, an iso-

lated specimen or an opaque aperture with a support size smaller than half of the 

calculation window is needed in each dimension.  

The degree of oversampling can be characterised by a quantity called the oversampling 

ratio   in real space and it is defined in each dimension by [100, 101] 
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linear extent of the whole image

.
linear extent of the support region

    (2.55) 

According to the sampling requirement described in Eq. (2.54), the oversampling ratio 

needs to be bigger than 2 in each direction to make the phase retrieval possible. 

For iterative ptychography, one needs to scan the illumination patch over the sample. 

When the illumination patch does not overlap for the adjacent scans, each scan can be 

considered as an independent iterative CDI and the sampling for each scan is thus the 

same as iterative CDI. However, when the illumination patch overlaps, the information 

content increases because the overlapped areas are measured more than once, hence 

relaxing the sampling requirement in the detector plane. If we consider the scan of the 

illumination patch in the specimen plane as a sampling in real space, then ptychography 

has two types of sampling: sampling in real space and sampling in reciprocal space. Edo 

et al [102] points out that these two types of sampling can trade for one another without 

loss of information. A ptychographic sampling ratio   can also be defined and in each 

dimension given by 

 
1

,
u x


 

    (2.56) 

where u  and x  represent the sampling pitches in reciprocal space and real space 

respectively. u  is determined by the inverse of the linear extent of the illumination 

patch (according to Shannon sampling) and x  equals the step size of the scan. So Eq. 

(2.56) can be reformed as 

 
1

,
1




 


  (2.57) 

with the overlap   defined as  
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   linear extent of the illumination scan step size

.
linear extent of the illumination




   (2.58) 

The phase problem suggests that we need at least twice as many measurements to 

recover phase information. Thus, the ptychographic sampling ratio needs to be bigger 

than 2 in each direction. According to Eq. (2.56), it is obvious that increasing the 

sampling in real space helps relax the sampling in reciprocal space, and vice versa. 

2.3.5 Experimental geometries for the illumination 

According to the Shannon sampling theorem, the limited pixel pitch size of the 

recording detector imposes an upper limit on the size of the illumination used in 

ptychography. Although this upper limit, as we mentioned above, can be increased by 

using smaller scan step size [102, 103], we always try to fulfil the fundamental Shannon 

sampling in an experiment. An illumination of limited size can be formed by passing an 

extended beam through a pinhole or by condensing an extended beam via a lens as 

depicted in Fig. 2.6. 

The first way is referred to as pinhole setup. It is very easy to implement. Because of the 

diffraction of the edges of the aperture, the distance from the aperture to the specimen 

has to be as small as possible to stop the illumination from evolving too big when it 

approaches the specimen. Due to the unscattered beam, this setup will produce a 

diffraction pattern with a very high dynamic range – high counts in the central spot but 

very low counts at higher scattered angles [38]. Since the detector has a limited dynamic 

range, this will cause a very low signal-to-noise ratio for the high scattered signals that 

correspond to the high-resolution information in the specimen. As a consequence, a 

noisy reconstruction will be produced. Although multiple exposures can mitigate this 

problem (see section 2.3.10), the experimental time duration will increase, which could 

cause radiation damage and instabilities. 
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The second way is referred to as lens setup. If the spherical aberration of the lens is not 

considered, placing the specimen either upstream or downstream of the focus is 

equivalent in terms of producing an illumination with certain size. This setup can 

alleviate the high dynamic range problem substantially, because the high unscattered 

counts are now spread over a disc. Besides, this setup has flexible control over the 

illumination size via changing the defocus. Furthermore, from the perspective of 

information encoding, the lens setup also defeats the pinhole setup by having a range of 

incident angles in the illumination. From the lens setup, the probe will consist of a sum 

of plane waves with different angles, i.e. a range of k-vectors of ik  in reciprocal space 

[104]. When it illuminates an object, the resulting scattered wave will also have a range 

of k-vectors of sk  that is recorded on a detector (a specific pixel of the detector records 

a specific sk ). The structure information of the object is encoded in the scattering vec-

tors s iK k k  , which means the structure information is expressed at many different 

pixels in this case. If one of the pixels is ‘dead’ (i.e. no information is recorded on that 

pixel), it can still be recovered from other pixels that express the same structure 

information of the object. However, from the pinhole setup, the probe mainly contains 

one ik . As a result, the structure information is only expressed at one sk . If the 

Figure 2.6: Optical setups for creating localised illumination required in ptychography. (a) Pinhole setup where an 

opaque aperture is placed in the proximal front plane of the specimen to form a confined illumination patch on the 

specimen plane. (b) Lens setup where a lens is used to condense an extended wavefield to a localised patch on the 

specimen plane. The illumination size can be controlled via the defocus. 
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particular pixel that measures the structure information is dead, the corresponding 

information will be lost and cannot be recovered.  

All these advances of the lens setup are basically coming from the large range of 

incident angles. Therefore these advantages can be further enhanced by inserting a static 

diffuser upstream of the specimen. Considering the diffraction of it, the diffuser should 

be as close as possible to the specimen to stop the illumination getting too big when it 

reaches specimen. 

2.3.6 The Ptychographic Iterative Engine (PIE) 

The PIE algorithm was first proposed by Faulkner and Rodenburg and demonstrated 

using a sharp aperture function as the illumination function [51]. However, a sharp 

aperture illumination is not applicable for a real experiment. For this reason, the PIE 

algorithm was further improved by Rodenburg and Faulkner to allow the use of a 

realistic illumination function [52]. Here we denote the illumination function as P , the 

object transmission function as O , the exit wave as  , the diffraction pattern as  , the 

measured intensity as M, the iteration number as n, the reciprocal-space coordinate as q, 

the real-space coordinate as r and the scan position as rj. The iterative procedures of the 

PIE algorithm are given as follows: 

1. In the nth iteration, the exit wave guess at a probe position of rj is formed by the 

product of the current object transmission function guess and the known 

illumination function at the corresponding scan position: 

      .j j nP O  r r r r   (2.59) 

2. In the far field the diffraction pattern guess is formed by taking a Fourier transform 

of the exit wave guess: 
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     .j j    q r   (2.60) 

3. Apply the modulus constraint, i.e. replace the modulus of the diffraction pattern 

guess with the square root the measured intensity and keep the phase (it is exactly 

the same as the reciprocal-space constraint used in iterative CDI (see section 1.2.5)), 

and back propagate to real space to get an updated exit wave ' : 
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  (2.61) 

4. The object update function is given as: 

    
 

 
 

  
   

*

1 2

max

' ,
j j

n n j j

j j

P P
O O

P P

  

 
   

  


r r r r
r r r r

r r r r

  (2.62) 

where  is an arbitrary constant with a small value to avoid division by zero,   is also 

a constant ranging between 0 and 1 to control the feedback of the update, and 

   
max

j jP P r r r r  is the normalised modulus of the illumination function. The 

normalisation favours the areas of the specimen that have been strongly illuminated. 

This strategy, according to Rodenburg and Faulkner [52], could suppress the high errors 

that would otherwise arise when the illumination is weak. Repeat 1 to 4 for the next 

scan position until all the positions are looped through and it is considered as one loop 

of the PIE algorithm. When the illumination function is a sharp aperture and only one 

scan position is considered, the PIE algorithm reduces to the ER algorithm. It is the 

scanning and the overlapping of the illumination function in real space that enable the 

PIE algorithm to defeat the ER algorithm in terms of convergence speed, uniqueness of 

solution and field of view.  
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The PIE algorithm was successfully demonstrated using visible light [53, 54], x-rays 

[55] and electrons [56]. However, it has a serious disadvantage that is the requirement 

of accurate illumination function. At best, this could be very time-consuming, whilst at 

worst an accurate illumination model may be impossible to get. Algorithms with 

simultaneous reconstruction of the illumination and the object were developed to 

address this problem [58, 59, 60]. Among these algorithms, the extended PIE (ePIE) 

algorithm [60] and the difference map (DM) algorithm [59] give comparably good 

results. Since the ePIE algorithm is used for all the reconstructions shown in this thesis, 

we will give a detailed description of it. 

2.3.7 The extended PIE and its relation with the gradient descent method 

To eliminate the necessity of accurate illumination function in the PIE algorithm, 

Maiden and Rodenburg [60] extended it by introducing a probe update function, which 

is referred to as the ePIE algorithm. PIE and ePIE share the first three steps, except PIE 

uses the known probe function ( )P r  to calculate the exit waves while ePIE uses an 

updated probe function ( )nP r . In addition to the introduced probe update function, ePIE 

also changes the object update function so that no division is present (division by 

constant is not counted). Using the same notations as above, the updated probe function 

and object function are given as: 
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The update functions given in step 4 can be considered as the gradient descent search 

method. At each scan position, the algorithm is trying to minimize the difference 

between the  j r  and  ' j r , i.e. 

      
2

' .n j n jE P O   r r r r   (2.64) 

Take a partial derivative with respect to the illumination function and the object 

function respectively, the resulting gradients are 

 
     

     

*

*

2 '

2 '
.

P n j j j

O n j j j

G O

G P

 

 

    

   











r r r r

r r r r
  (2.65) 

Apply the standard iterative form of the gradient descent search method [105], i.e. 

  1 ,n n nx x F x      (2.66) 

where x  is the variable that needs to be searched to minimize the objective function 

( )F x , ( )nF x  is the gradient value of ( )F x with respect to x at the point of nx  and   

is the step size for the iterative search. Obviously, the two update functions in step 4 are 

choices of   as 
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  (2.67) 

The robustness of the ePIE algorithm demonstrates the effectiveness of the choices for 

the search step sizes. Parameters   and   are normally set to a value between 0 and 1. 

Higher values will boost the convergence, while lower values stabilise the reconstruc-

tions. When the recorded diffraction patterns are very good (for example, the signal-to-
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noise ratio is very high), they can be set to 1 to lean on the fast convergence, otherwise 

lower values are preferred to obtain good reconstructions. 

2.3.8 Reconstruction ambiguities 

Because of the symmetry of the multiplication of the illumination function and the 

object function, some reconstruction ambiguities will occur. Suppose an illumination 

function ( )P r  is scanned over the object ( )O r  and a set of diffraction patterns are 

recorded. However, any pair of two functions of ( ) ( ) ( )O u Or r r  and 

( ) ( ) ( )P P ur r r  will produce the same set of diffraction patterns. Because of this, 

several inherent ambiguities will be present in the reconstructions: 

1. Modulus scaling and phase offset. If ( )u r  is equal to a complex constant 
iae 

, we 

then have ( ) ( )iO r ae O r  and ( ) ( ) iP P ae r r . So the two reconstructed functions 

could have opposite modulus scaling and phase offset that will be cancelled in the 

multiplication. This ambiguity cannot be eliminated unless part of either function is 

known. However, these reconstructions will be still considered as right reconstructions 

because only the relative modulus and the phase are important. 

2. Raster scan pathology. When ( )u r  is not a constant function but a periodic function, 

i.e. ( ) ( )ju u r r r , reconstruction ambiguities will take place when 
jr  happens to be 

the scan positions. These ambiguous reconstructions cannot be considered right. This 

case is very common in practice, where raster scans are frequently used – this is referred 

to as raster scan pathology [59, 106]. The way to avoid this ambiguity is to break the 

periodicity of the scan grids. Two common methods are: 1. add a small amount of 

random offsets to a set of raster scan grids [60]; 2. use a circular scan geometry [79, 

106]. 
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Apart from the multiplication symmetry, some other ambiguities could take place due to 

the loss of the phase information of the measured diffraction patterns. During the 

reconstruction, the modulus constraint requires the calculated diffraction patterns from 

the reconstructed illumination and object to have the same intensity distributions as the 

measured ones, imposing no constraints on the phases. As a result, the following 

ambiguities could happen in the reconstructions: 

1. Arbitrary phase offset. Since the Fourier magnitude is not sensitive to phase offsets, 

the reconstructed illumination and object are allowed to have arbitrary phase offsets and 

they cannot be cancelled in the multiplication. This ambiguity cannot be eliminated 

unless we have some priori knowledges about both the object and the illumination 

functions. However, only the relative phase is important to determine the structure of 

the specimen, so the reconstructions with arbitrary phase offsets can still be considered 

right. 

2. Lateral shift. According to the shift theorem of the Fourier transform, a shift in real 

space will cause a phase ramp in reciprocal space. A phase ramp does not affect the 

intensity distribution, so the lateral shift version of the original functions can be 

produced in the reconstructions without compromise the modulus constraint. 

Determined by the relative shift between the illumination and the object during the 

ptychographic scan, the lateral shifts in the reconstructions of both functions have to be 

same. Again, this ambiguity does not affect the integrity of the reconstructions. 

3. Phase ramp. If the illumination and the object have opposite phase ramps, the 

multiplication of them at different scan positions will cancel out the phase ramps but 

leave different constant phase offsets [107]. Since these phase offsets do not affect the 

intensity distributions, they will be possible reconstructions. These ambiguous phase 
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ramps can be calculated and removed if either the illumination function or the object 

function has a flat region. In addition, the phase ramp can also happen when the 

measured diffraction patterns are not at the centre of the detector, as the shift theorem of 

the Fourier transform indicates. This phase ramp could be either on the illumination or 

on the object. To stop this from happening, the diffraction patterns need to be centred 

before reconstruction. 

According the conjugate symmetry theorem of the Fourier transform (see Eq. (2.11)), 

   jP O   r r r  will produce a set of diffraction patterns with the same intensity 

distributions as    jP Or r r  will. So the conjugate symmetric versions of the illumi-

nation and the object could be reconstructed if the orientations of the scan positions are 

flipped. It should be noted that it is different from the case in CDI where the original 

function and its conjugate symmetry simultaneously exist in the reconstruction. 

Accurate knowledge of the orientation of the coordinate system can remove this 

ambiguity. 

There is another kind of ambiguity resulting from the propagation model used for the 

space between the specimen plane and the detector plane [59]. Normally we use Fourier 

propagation. However, when the detector is in the near field of the specimen plane, the 

use of Fourier propagation is still able to give a right object reconstruction but a wrong 

illumination reconstruction with an extra parabolic phase offset according to Eq. (2.31) 

and (2.34). This is not critical when we only care about the object reconstruction. But in 

the situations where the illumination reconstruction matters, such as multislice 

ptychography [67] and optics wave front characterisation [108, 109, 110], Fresnel prop-

agation has to be used instead. 
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2.3.9 Error metrics for the reconstructions 

For a ptychographic reconstruction, normally the only available information is the 

recorded diffraction intensity. To assess the quality of the reconstructions, the direct 

way is to calculate the normalised root-mean-square-error between the calculated 

diffraction intensities (from the reconstructions) and the measurements [59, 60]. Here 

we call this error metric as diffraction intensity error metric and it is given by 
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where  j q  and  jM q  are respectively the calculated diffraction pattern and the 

measured intensity at the probe scan position 𝑗, as described in section 2.3.6. It is often 

used to monitor the convergence of the algorithm, so that when the error is smaller than 

a preset accuracy, the algorithm will stop the iteration. However, noise is inevitable in 

real situations. As a consequence, the measurements themselves are not accurate and 

this error metric is no longer able to reflect the quality of the reconstructions.  

In this case, Fourier ring correlation (FRC) would be a better alternative to compare the 

reconstructions [111]. FRC is the 2D analogue of the Fourier Shell Correlation for 3D 

objects [112]. It calculates the normalised cross-correlation coefficient between recon-

structions from two independent experiments over corresponding rings (qi) in Fourier 

space as a function of spatial frequency (q) and it is given by 
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where ( )F q  denotes the spectrum of the object reconstruction. It indicates the repeat-

ability of the reconstructions. 

In some situations, like model calculations or real situations where a calibration 

experiment is needed, the reference image of the object reconstruction is available. In 

these cases, we calculate the normalised root-mean-square-error between the 

reconstruction and the reference to assess the reconstruction quality and it is referred to 

as complex image error metric here. However, due to the reconstruction ambiguities, a 

direct calculation would fail to reflect the quality. An error metric invariant to the phase 

offset and lateral shift was developed by Fienup [113], but it is not applicable when the 

phase ramp ambiguity exists. Here we adopt similar idea to derive a more general error 

metric. Note that the modulus scaling ambiguity can be eliminated by normalising the 

reconstruction to its maximum modulus, so in the derivation we will not include the 

scaling. Suppose the reference image is ( , )f x y  and the reconstruction image is

   exp ( , )exp 2x yia g x r y r i ux M vy N     , where a is the constant phase offset, 

( , )x yr r  is the lateral shift, ( , )u v  is the linear coefficient for the phase ramp, and  ,M N  

is the dimension of the image. The normalised square error between the reference and 

the reconstruction is given by 
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The error metric should be zero with respect to any of these ambiguities. That is, we 

find the parameters a, rx, ry, u and v that minimise the error 
2 . Eq. (2.70) can be 

simplified as 
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with  

 *( , , , ) ( , ) ( , )exp 2 .fg x y x y

x y

ux vy
W r r u v f x y g x r y r i

M N


  
      

  
   (2.72) 

fgW  is the Wigner distribution function (see section 3.1.2 for details) between ( , )f x y  

and ( , )g x y . For a given lateral shift ( , )x yr r  and phase ramp ( , )u v  we determine the 

constant phase a  that minimises the error by setting the partial derivative of 

 2 , , , ,x ya r r u v  with respect to a  to zero: 

     *exp ( , , , ) exp ( , , , ) 0,fg x y fg x yi ia W r r u v i ia W r r u v         (2.73) 

which has the solution 

 arg ( , , , ) ,fg x ya W r r u v n      (2.74) 

where n is an integer and  arg   represents the phase. The corresponding minimum 

error is 
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The square root of the minimum error, i.e.  , is the complex image error metric. It is 

invariant to all the reconstruction ambiguities. Compared to the other two, this error 

metric is most reliable to assess the reconstruction quality, but a reference image is 

needed. 
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2.3.10 Some key experimental parameters 

To perform a ptychographic experiment, several key parameters need to be carefully 

taken care of: 

1. Scan pattern. To date, two types of scan patterns are widely used: raster scan [60] and 

circular scan [79]. Raster scan is very straightforward and easy to implement. However, 

periodic positions in a raster scan can cause ambiguous reconstructions (raster scan 

pathology) in ptychography. The circular scan is proposed and adopted to fix the 

problem. Another easy way to fix it is to add small amount of random offsets to perturb 

the regular positions in a raster scan. In this thesis, all the experiments presented use the 

raster scan plus small random offsets.  

2. Scan step size. The characteristic parameter of a raster scan is the step size between 

two scan positions. For an illumination of a specific size, scan step size determines the 

overlap of the adjacent scans. The overlap is given by 1 s d  (as defined in section 

2.3.4), where s is the scan step size and d is the diameter of the illumination. It affects 

the sampling in real space, i.e. the redundancy in a ptychographic dataset, and hence the 

reconstruction quality. It has been studied for the PIE algorithm by Bunk et al that 60% 

overlap is required for a good reconstruction [54]. For the ePIE algorithm, it has not 

been systematically studied, but from personal experience at least 70% overlap is 

necessary for good reconstructions. To solve for more information, more overlap is 

needed. 

3. Random offsets. As we mentioned above, to avoid raster scan pathology, random 

offsets need to be added. Normally, they are given a magnitude of from 10% to 20% of 

the scan step size. Too small would not be able to get rid of raster scan pathology. Too 

big would affect the overlap of the scan. 
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4. Camera length. This means the distance from the specimen plane to the detector 

plane. Decrease of camera length will enlarge the angle subtended by one detector pixel 

at the specimen plane and also the angle subtended by the whole detector. The former 

would cut down the maximum allowable illumination size according to the Shannon 

sampling theorem. The latter will cause a decrease of the pixel size (and also cause an 

increase of the resolution if the scattering strength falls outside of the detector) of the 

reconstruction image (see section 2.3.3). Of course, camera length also determines 

which propagation model would be used to form the diffraction pattern (see section 2.2). 

5. Exposure time. This is defined as the time period over which the detector is exposed 

to the radiation. It determines how many photon/electron counts can be collected by the 

detector because the counts are proportional to the exposure time. The photon counting 

obeys Poisson statistics and the fluctuation of the counting numbers is called Poisson 

noise. The standard deviation of a Poisson distribution is equal to the square root of the 

expectation that is the average photons a pixel receives during the exposure time. This 

means the signal-to-noise ratio (SNR) for a specific count is its square root. Therefore, 

to increase the SNR, one needs to increase the counts and hence the exposure time. 

6. Multiple exposures. As we mentioned earlier, a diffraction pattern normally has a 

very high dynamic range (the difference between the largest value and the smallest 

value), especially for the pinhole setup. A detector also has a limited dynamic range 

determined by the bit numbers of the analogue-to-digital-converter used. To detect a 

complete diffraction pattern, its dynamic range must be smaller than that of the detector. 

This means the exposure time cannot be infinitely increased, even though doing so can 

increase SNR, because otherwise the highest value in the diffraction pattern will 

saturate the detector. The signals of the high scattered angles correspond to the high 

frequencies in the specimen. They normally have relatively low counts and hence small 
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SNR compared with the signals of the low scattered angles. As a consequence, bad 

reconstructions are produced. The common way to fix this is to take multiple exposures 

with different exposure time, so for each exposure the subsequent set of recorded 

diffraction patterns will have a different non-saturated area with high SNR. Then these 

areas will be scaled according to the exposure time and combined to give a complete 

diffraction pattern but with much higher dynamic range. 

7. Background noise. In the absence of radiation, the detector may still have some 

constant response that is referred to as the background noise. This is mainly caused by 

the thermal heat. Most detectors, like CCD and CMOS, utilise the photoelectric effect 

that converts photons into electrons. The detected signals are proportional to the 

electrons stored in the detector. However, due to the thermal heat produced by the 

detector circuitry, electrons can be generated as well without being hit by photons. The 

signals correspond to these electrons are referred to as thermal heat noise (or dark 

current). The ambient light in the laboratory could also contribute to the background 

noise. This noise will superimpose on the true signals to give the diffraction intensities 

we measure during the experiment. In order to compensate for it, we need to measure a 

dark frame without turning on the radiation and subtract it from the diffraction intensity 

measurements.



3 Direct Ptychography 

In this chapter we will review the direct (non-iterative) solution for ptychography called 

the Wigner Distribution Deconvolution Method (WDDM), which has been discarded 

for almost twenty years, but recently has regained some attention [114, 115]. WDDM, 

as we described in section 1.2.3, requires to scan the illumination (or the specimen) over 

a very dense grid. The diffraction intensity recorded on each pixel of the detector will 

vary as a function of the scan position. An important step in WDDM is to take a Fourier 

transform of the intensity with respect to the scan position, which gives access to the 

phase differences between all the pairs of the diffraction components of the specimen. 

Then a deconvolution step allows us to further separate out the phase differences 

information and eventually solve the phase problem.  

WDDM is remarkable for two reasons: 1. it solves the quadratic phase problem with 

linear calculations. 2. It can decouple the influence of the illumination from the speci-

men. The success of this algorithm was experimentally demonstrated with optical light 

[21], x-rays [22] and electrons [23, 24]. However, there were a few problems: 1. a very 

big 4D dataset needs to be recorded, which imposes challenges not only on the memory 

but also on the computation of a computer. 2. The deconvolution step involved is often 

ill-conditioned, especially in the presence of noise. Although this deconvolution step 

can be skipped, it only works weak phase objects and only double-resolution (compared 

to the resolution limit set by the imaging system) can be obtained [23, 26, 114]. 3. The 

phase retrieval step following the ill-conditioned deconvolution step is not very reliable, 

because of the fact that only a fraction of the big 4D dataset can be used. In this chapter 

we will try to fix these problems. The work described in this chapter has led to a journal 

paper publication [116]. 
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3.1 Direct ptychography of aperiodic objects 

In this section we will review the derivation of direct ptychography and point out a 

prerequisite for this method to work that has been missing from the previous derivations 

[20, 26]. Also a novel method will be demonstrated to use all the information from the 

measured data to solve for the phase problem, instead of just the small subset used in 

the original ‘stepping out’ procedure [18, 21, 22, 26]. 

3.1.1 The 4D intensity dataset 

To keep consistent with the literature, here we keep all the nomenclature from 

Rodenburg and Bates [26], some of which will be different from that used in other 

chapters. As shown in Fig. 3.1, a radiation source ( )s ρ  illuminates an aperture ( ')A r  

sitting in the back focal plane of a condenser lens. The illumination is then focused by 

the condenser lens onto the specimen plane as a probe function ( )a r . The probe 

function can be scanned to various positions ρ  laterally with respect to the specimen

( ) r . At each scan position, the intensity of the corresponding diffraction pattern 

( ', )M r ρ  is recorded by a pixelated detector lying in the far field of the specimen. 

Figure 3.1: The coordinate definition for different planes in a lens setup ptychography. We define the coordinate in 

the source plane to be the same as the scan position, because scanning a point in the source plane is equivalent to 

scanning the probe across the specimen plane. The lens back focal plane and the detector plane are defined as 

reciprocal space of the specimen plane. 

( )A '
r

source

plane

specimen

plane

back focal 

plane

detector

plane

( )s ρ ( )a r ( , )M '
r ρ( ) r

ρ



CHAPTER 3: DIRECT PTYCHOGRAPHY 63 

 

 

According to the Fraunhofer propagation approximation (see section 2.2.3), we have the 

following relation 

 2 '( ', ) ( ) ( ) d .iM a e   
rr

r ρ r ρ r r   (3.1) 

It should be noted that both r  and ρ  are 2D coordinates. As a result, we acquire a 4D 

intensity dataset 
2

( ', )M r ρ .  

For a specific scan position 0ρ  in the dataset, 
2

0( ', )M r ρ  is the intensity of the 

corresponding diffraction pattern. For a particular pixel 0'r  in the dataset, according to 

the reciprocity, 
2

0( ' , )M r ρ  is the intensity of the image that is obtained by placing the 

detector in the source plane and having the source in the position of the pixel 0'r . This 

is a tilt illumination condition in the conventional electron microscope. Obviously, each 

image has the same resolution limited by the aperture at the back focal plane of the lens, 

but with different frequency information of the specimen. WDDM is a method to 

combine all this information to give a complex image of the specimen at a resolution 

limited by the recording angle of the detector. 

As we will explain later, WDDM relies on the equivalence of the coordinates 'r  and 'ρ  

(the reciprocal coordinate of ρ ) to recover the high frequency components in the spec-

trum of the specimen. This requires the equivalence of the coordinates r  and ρ , which 

means this method needs to scan the specimen at a step size ( ρ ) of the pixel size of the 

reconstructed image ( r ). In addition, the dimensions of r  and ρ  (or 'r  and 'ρ ) need to 

be the same as well. 

To help understand this, here a model calculation is simulated based on the 

configuration shown in Fig. 3.1. Since WDDM needs to do a very dense scan, it 
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imposes challenges on both the computation and the memory of the computer. To 

alleviate this problem, we set the probe and the object to be 64×64 pixels, as shown in 

Figs. 3.2a and 3.2b. The pixel size in real space is 2Å. The electron beam has a 

wavelength of 0.0037nm (equivalent to beam energy of 100keV). The aperture size at 

the back focal plane of the objective lens is chosen to be 3mrad that is about one third of 

the entire reciprocal space, which can be seen from the unscattered beam in one of the 

recorded diffraction patterns as shown in Fig. 3.2c. The focused beam at the defocus of 

1000Å is chosen as the probe. Since r  and ρ  need to be equivalent and have the same 

dimension, the scan grid is set to 64×64 with a step size of 1 pixel. At each scan 

position, the intensity of the diffraction is recorded. In this way, a simulated 4D 

intensity data is acquired. 

Fig 3.2c is a 2D slice of the 4D intensity data at 0ρ . It is basically the intensity of the 

diffraction pattern at the scan position of 0x ρ  and 0y ρ . Fig 3.2d is a 2D slice of 

the 4D intensity data at ' 0r . It is basically, according to the reciprocity, the intensity 

Figure 3.2: The 4D intensity data simulations. (a) The probe model. The left is the modulus part and the right phase 

part. The modulus part is square rooted for display purpose. (b) The object model. The left is the modulus part and 

the right phase part. (c) The 2D slice of the 4D intensity data at (logarithmic scale). (d) The 2D slice of the 4D 

intensity data at . 
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of the image recorded at the source plane using a point source placed at the position of 

' 0x r  and ' 0y r  (in this case, the illumination is on the optical axis, not tilted). It 

should be noticed that the image is a rotated version of the object and that the resolution 

is limited by the small aperture size. Other 2D slices at different 'r  positions are the 

images of tilted illuminations. 

3.1.2 The derivation of WDDM 

According to Eq. (3.1), the 4D intensity dataset 
2

( ', )M r ρ  can be expressed as 

 
2 * * 2 ( ) '( ', ) ( ) ( ) ( ) ( ) d d ,iM a a e      

ξ η r
r ρ ξ ρ η ρ ξ η ξ η   (3.2) 

where the asterisk denotes the complex conjugate, and ξ  and η are the dummy 

variables of the specimen coordinate r . The key mathematical step in WDDM is to take 

a Fourier transform of the intensity dataset with respect to the scan positions ρ  and an 

inverse Fourier transform with respect to 'r , such that 

 * * 2 ( ) ' 2 ' 2 '( , ') ( ) ( ) ( ) ( ) d d d d 'i i iH a a e e e        
ξ η r ρρ rr

r ρ ξ ρ η ρ ξ η ξ η ρ r   (3.3) 

We separate out the part of Eq. (3.3) dependent on 'r  and make use of the following 

relation 

  2 ( ) 'd ' ,ie       
ξ η r r

r ξ η r   (3.4) 

where   is the Dirac function, Eq. (3.3) can be simplified to 

 * * 2 '( , ') ( ) ( ) ( ) ( ) d d .iH a a e       
ρρ

r ρ r η ρ η ρ r η η η ρ   (3.5) 

Using the variable substitution  σ η ρ  for Eq. (3.5), we have 

 * * 2 ( ) '( , ') ( ) ( ) ( ) ( ) d d .iH a a e      
η σ ρ

r ρ r σ σ r η η η σ   (3.6) 
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If we separate the two integrals in Eq. (3.6) and define a quantity for any general 

function ( )q r  as 

 * 2( , ) ( ) ( ) d ,i yv

q x v q x y q y e y     (3.7) 

Eq. (3.6) can be then rewritten as 

 ( , ') ( , ') ( , ').aH   r ρ r ρ r ρ   (3.8) 

Eq. (3.7) is the definition of Wigner distribution function (WDF) [25]. The advantage of 

forming ( , ')H r ρ  becomes obvious now because it makes the probe and the specimen 

separable. 

Using the simulated model in the above section, we calculate the WDF of the probe 

( , ')a r ρ  as shown in Fig. 3.3a, the WDF of the object ( , ') r ρ  as shown in Fig. 

3.3b, and the product of the two WDFs as shown in Fig 3.3c. Also, according to its 

definition in Eq. (3.2), we calculate ( , ')H r ρ  by taking the Fourier transform of the 4D 

Figure 3.3: The model calculations of the two WDFs and the Fourier transform of the 4D intensity data (logarithmic 

scale). (a) The WDF of the probe. (b) The WDF of the object. (c) The product of the two WDFs. (d) The Fourier 

transform of the 4D intensity data, i.e. . For all the figures, the left is the modulus part and the right the 

phase part. The coordinate indicator applies to all the images. 
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intensity data as shown in Fig. 3.3d. It should be noted that all these quantities are 4D 

and that the corresponding images shown are their central 2D slices with ' 0x r  and 

0x ρ  at logarithmic scale. Hereinafter, if it is not explicitly stated, the image of a 4D 

data will be shown in the same fashion. According to Eq. (3.8), the calculated ( , ')H r ρ  

should be equal to the product of the two WDFs, i.e. Fig. 3.3c should be the same as Fig. 

3.3d. But clearly, they are not the same. 

The reason is that the two variables, σ  and η , were treated as two independent 

variables from Eq. (3.6) to Eq. (3.8), as in the original derivation [20, 26]. However, the 

variable substitution  σ η ρ  we used above indicates that the two variables are 

related. The separation of them has conditions. We separate out the part of Eq. (3.8) 

dependent on σ  and convert the Fourier integral into discrete Fourier transform as 

 * 2 '

1

( , ') ( ) ( ) .i M

M

U a a e 

  

 
η

σρ

σ η

r ρ r σ σ   (3.9) 

Clearly, the value of ( , ')U r ρ  relies on η  unless σ  being a cyclic coordinate. This 

means the scan coordinate ρ  ( η σ ) needs to be cyclic as well. However, in a real 

experiment the scan is linear. The strategy to make this separation possible is to impose 

constraint on the sizes of the probe function and the specimen function so that a linear 

scan is equivalent to a circular scan. A circular scan means the parts of probe that 

exceed the extent of the specimen will wrap around to the opposite side of the specimen. 

This is equivalent to a linear scan with a periodic specimen (see Fig. 3.4). Obviously, 

when the sum of the probe support size a  and the specimen support size   is 

smaller than the calculation window size  , a linear scan will generate the same dataset 

as a circular scan does. Therefore, the condition for the separation of σ  and η  in Eq. 

(3.6) becomes 
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 .a      (3.10) 

This requirement applies to both the x and y coordinates of ρ  and it allows us to 

separate the two integrals in Eq. (3.6). This actually is the sampling condition for the 

Fourier transform acting on ρ , analogous to the sampling condition for the Fourier 

transform acting on r  which is the probe size should be smaller than the calculation 

window size (i.e., a  ). Therefore, violation of Eq. (3.10) will cause aliasing in ρ . 

The aliasing problem can be mitigated by multiplying the 4D intensity data with a 

window function ( )w ρ  that is unity at its central region and falls smoothly to zero at its 

edges [21, 26], because the separation error is bigger when the scan position ρ  is at the 

edges than at the centre. To make sure the separation condition is fully fulfilled, we crop 

Figure 3.4: Illustration of the connection between circular and linear scan using a periodic specimen. The 

transmission coefficient of the dark margin is zero. The white arrows indicate the scanning directions. A linear scan 

over the periodic specimen is equivalent to circular scan over its one period. The separation of probe function and 

specimen function in WDDM relies on linear scan being equivalent to circular scan.  
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object
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both the probe and the object into half of the calculation window as shown in Figs. 3.5a 

and 3.5b, although they might not be realistic in real experiments. A 4D intensity data is 

accordingly generated. In the same, we calculate the two WDFs (respectively shown in 

Figs. 3.5d and 3.5e), their product (shown in Fig. 3.5f), and ( , ')H r ρ  (shown in Fig. 

3.5c). Now, it is obvious that the calculated ( , ')H r ρ  is the same as the product of the 

two WDFs. The following calculations will use this new model. 

3.1.3 The frequency cut-off  

If taking the Fourier transform of ( , ') r ρ  with respect to r , we have 

 
*( ', ') ( ' ') ( '),D    r ρ r ρ r   (3.11) 

 

Figure 3.5: The new simulated models. (a) The cropped probe model. (b) The cropped object model. (c) The Fourier 

transform of the 4D intensity data, i.e. ( , ')H r ρ . (d) The WDF of the probe. (e) The WDF of the object. (f) The 

product of the two WDFs. For all the figures, the left is the modulus part and the right phase part.  
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where ( ') r  is the Fourier transform of the specimen function ( ) r . The quantity 

( ', ')D r ρ  includes all the information of the interference between any two diffraction 

orders separated by 'ρ . It is this information that allows us to solve for the phase 

problem. To obtain this information, we need to perform a deconvolution on ( , ')H r ρ  to 

separate out the WDF of the probe function. The probe function can be estimated given 

the experimental parameters are known, so ( , ')a r ρ  can be calculated according to 

Eq. (3.7). The deconvolution is carried out via a division as 

 
*

2

( , ') ( , ')
( , ') ,

( , ')

a

a

H










 

r ρ r ρ
r ρ

r ρ
  (3.12) 

where is some small constant to avoid the division by zero. The deconvolved 

( , ') r ρ  of the new model calculation is shown in Fig. 3.6a and it is the same as the 

WDF of the object shown in Fig. 3.5e that is calculated according to its definition. The 

Fourier transform of the deconvolved ( , ') r ρ  with respect to r , i.e. ( ', ')D r ρ  accord-

ing to Eq. (3.11), is shown in Fig. 3.6b. 

Prior to the deconvolution, we will give a little more introduction about the probe 

function and its WDF. In a real situation, due to the partial coherence, experimental 

instabilities and the finite extent of the lens, in the back focal plane of the lens there is a 

Figure 3.6: The quantities after the deconvolution of the new model calculation. (a) The deconvolved  .  (b) 

The corresponding  by taking the Fourier transform of (a) with respect to . For all the figures, the left is 

the modulus part and the right phase part. 
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cut-off beyond which the spatial frequencies cannot be expressed in the image [18, 24, 

26, 27]. This is why the bright field image of a conventional microscope has an 

information limit (as shown in Fig. 3.2d). This frequency cut-off also causes a finite 

extent of ( , ')a r ρ  along 'ρ . To understand this better, we rewrite ( , ')a r ρ  as 

 * 2 '( , ') ( ' ') ( ') d ',i

a A A e    
rr

r ρ r ρ r r   (3.13) 

where ( ')A r  is the Fourier transform of the probe function ( )a r . If we denote the 

frequency cut-off as max'ρ , we can infer that ( , ')a r ρ  has a support size of max2 'ρ  

along 'ρ . This can be clearly seen in the calculation shown in Fig. 3.3a that has a finite 

support region twice the size of the aperture of the objective lens along 'ρ . This, in 

return, results in a finite support size of max2 'ρ on ( , ') r ρ  along 'ρ  after the decon-

volution, i.e. a limited number of spatial frequencies can be accessible along 'ρ . 

However, the cut-off is not seen in the new calculation shown in Fig. 3.5d and neither in 

the deconvolved ( , ') r ρ  and its Fourier transform shown in Fig. 3.6. This is because 

the new probe model is cropped in real space. However, to demonstrate the frequency 

cut-off, three fourths of the data ( ', ')D r ρ  at high 'ρ  are manually thrown away, as 

shown in Fig. 3.7. 

In the next section, we will introduce a projection strategy to overcome this frequency 

Figure 3.7: The  with three fourths of its complete data thrown away at high . The left is the modulus 

part and the right the phase part. 
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cut-off problem and obtain the information of the frequencies higher than the cut-off by 

exploring the data ( ', ')D r ρ  along 'r . 

3.1.4 The projection strategy 

Although the high frequency information of the specimen is lost along 'ρ , the detector 

is able to collect the high-angle, high-resolution information in 'r . All this information 

is stored in the dataset ( ', ')D r ρ . We need an algorithm to utilize the data lying in the  

'r  direction while avoiding the constraint in the 'ρ  direction. Rodenburg and Bates 

used a method called ‘stepping out’ that only uses a subset in ( ', ')D r ρ  [26]. For 

example, consider a specimen that contains five frequency components 2 , 1 , 0 , 

1 , 2  and its ( ', ')D r ρ  has a support size that only allows the expression of three 

components along 'ρ  (see Fig. 3.8, the unshaded region between max'ρ  and max'ρ ). In 

the stepping out method, one chooses a route, as indicated by the black arrows, 

containing all the frequency information of the specimen. The modulus of 2  can be 

calculated from *

2 2  . By assigning an arbitrary phase to 2 , one then can derive 

1  from *

2 1  . In the same way, 0 1,    and 2  can be recovered in turn from 

Figure 3.8: Demonstration of the stepping out method using the dataset of a simple specimen containing 

five frequency components. The arrow line shows one of the routes to implement the stepping out method. 
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*

1 0  , *

0 1   and *

1 2    respectively. Although the stepping out method can 

manage to recover all the frequency components, one has to manually pick a suitable 

fraction from the dataset ( ', ')D r ρ  and cannot make full use of the information available. 

In the presence of noise, if a wrong data segment is chosen to start with, the error will 

accumulate as the stepping out procedure progresses. 

Here we improve the stepping out method by introducing a projection strategy that 

recovers all the information as well as improving the robustness of the method to noise. 

The projection method is expressed as 

 

max

max

max

max

'

' '

'

2

( ' ') ( ', ')

( ') .

( ' ')

D





 

 

 





ρ

ρ ρ

ρ

ρ' ρ'

r ρ r ρ

r

r ρ

  (3.14) 

The two summations in the above equation are carried out along 'ρ , like a projection in 

this direction. This is where the name projection strategy comes from. It should be 

noticed that because of the cut-off max'ρ  the implementation of the projection only 

recovers the frequency of ( ') r  up to max2 'ρ each time, so it may need to be repeated if 

one implementation of the projection is not enough to recover all the frequencies. Using 

the same example in Fig. 3.8, the implementation of the projection method is demon-

strated in Fig. 3.9. By assigning an arbitrary phase to the modulus of 0  that is given 

by the square root of (0,0)D , i.e. *

0 0  , we obtain the first component of ( ') r . 

Making use of the data lying in the column at ' 0r , i.e. (0, ')D ρ , we can extract two 

more components by doing the calculation  
2*

1 0 1 0 00, , , ,0 (0, ')D     ρ , still 

losing the two highest components. Then we apply the projection strategy by calculating 
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  
1 1

2

2 1 0 1 2

' 1 ' 1

, , , , ( ' ') ( ', ') ( ' ') .D 

 

          
ρ ρ

r ρ r ρ r ρ   

In this case, one projection is enough to solve all the components in the specimen. Once 

recovering all the frequencies, we only need to implement an inverse Fourier transform 

to get the complex image of the specimen.  

The new model calculation is also used to demonstrate the projection strategy as shown 

in Fig. 3.10. The low-resolution image shown in Fig. 3.10a corresponds to the frequen-

cies available lying on (0, ')D ρ  that has only one fourth of the complete frequency 

information at the low angles. Using this available low frequency information on 

(0, ')D ρ , after we apply the projection strategy by three times (each time it recovers one 

fourth of the frequency information), all the frequency information is recovered. The 

corresponding image after each time of projection is respectively shown in Figs. 3.10b 

Figure 3.9: Implementation of the projection strategy using the dataset of a simple specimen containing five 

frequency components. First, we calculate (a)  and (b) . We then sum along  to 

get (c)  and (d)  respectively. Finally, the division of (c) and (d) gives all 

the frequencies of . 
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(one time), 3.10c (two times) and 3.10d (three times). Fig. 3.10d has complete frequen-

cy information and it looks the same as the reference given in Fig. 3.5b.  

3.2 Noise effects on WDDM 

The ideal simulation shown above demonstrates the success of the projection strategy 

and the reconstruction via WDDM. However, we have not considered a very practical 

problem in the real situations, that is, the statistical noise produced during the recording 

process. In this section, we will consider the noise effects and introduce two ways to 

suppress them: probe design and an iterative method. 

3.2.1 Noise suppression via the probe design 

Using the above calculation model, here we add Poisson noise to the measured intensity 

data with a level of 10
6
 total counts per diffraction pattern (about 244 counts per pixel). 

The reconstructions are shown in Fig. 3.11 (the probe function and its WDF are shown 

here again for comparison). Compared to the ideal case (see Fig. 3.6a), the deconvolved 

( , ') r ρ , as sown in Fig. 3.11c, has serious numerical errors, especially at the edges 

Figure 3.10: The reconstructed object functions after applying the projection strategy by (a) zero time, (b) one time, 

(c) two times, and (d) three times. For all the figures, the left is the modulus part and the right the phase part. 
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where ( , ')a r ρ has small values. It eventually results in an unrecognisable reconstruc-

tion of the specimen (see Fig. 3.11d). 

Although the projection strategy makes full use of the redundancy in the big dataset and 

can mitigate any inconsistency by averaging all the available data along the projection 

direction, WDDM still has very poor performance in the presence of noise due to the 

numerical instability caused by the division of small values during the deconvolution 

process [26]. An instinctive way to improve this is to produce a probe that would have 

an even distribution across its WDF, i.e. a rather flat ( , ')a r ρ , so that there will be no 

division by small values. The easiest way to make such probe is via a diffuser. Using 

the same parameters as used above for the defocused probe, we insert a random phase 

diffuser (ranging from –π/2 to π/2) at the back focal plane of the lens and get a diffused 

probe (see Fig. 3.12a). The corresponding WDF (see Fig. 3.12b) stretches out more 

compared with the WDF of the defocused probe. As a result, the deconvolved ( , ') r ρ  

Figure 3.11: The WDDM reconstruction of the data generated from the defocused probe. Poisson noise with total 

counts of 106 for each diffraction pattern is added. (a) The defocus probe. (b) The WDF of the probe function. (c) The 

deconvolved WDF of the specimen function. (d) The final reconstruction of the specimen function. For each subset, 

the left image represents the modulus part and the right one represents the phase part. The moduli of (b) and (c) are 

square rooted for display purpose. 
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has much higher accuracy at the edges and also a much better specimen image is 

reconstructed (see Figs. 3.12c and 3.12d).  

Although a diffused probe has substantially suppressed the noise and improved the 

reconstruction, there are still some noticeable errors in the specimen image. In order to 

optimize and engineer such a probe, we have found it is possible to use an iterative 

method similar to a conventional iterative ptychographic reconstruction. If reviewing 

the definition of WDF in Eq. (3.7) and the diffraction pattern in Eq. (3.1), we will find 

that they have the same formulations. In another words, the WDF of a probe function 

can be treated as the diffraction patterns obtained by scanning the probe over its 

conjugate function. This means we can use the iterative ptychographic reconstruction 

algorithms to find the favourable probe given a desired WDF as the diffraction intensity 

data. Here we use the square root of the modulus of the WDF from the above diffused 

probe as the desired ( , ')a r ρ  (the use of the square root is trying to flatten the WDF 

Figure 3.12: The WDDM reconstruction of the data generated from the diffused probe. Poisson noise with total 

counts of 106 for each diffraction pattern is added. (a) The diffused probe. (b) The WDF of the probe function. (c) 

The deconvolved WDF of the specimen function. (d) The final reconstruction of the specimen function. For each 

subset, the left image represents the modulus part and the right one represents the phase part. The moduli of (b) and 

(c) are square rooted for display purpose. 
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distribution) and apply the ePIE algorithm to solve for the favourable probe function. 

Because of the square root operation, the desired ( , ')a r ρ  may not correspond to a 

function’s WDF, which means the ePIE does not necessarily converge to a solution that 

gives the exact ( , ')a r ρ  as we want. For this reason, we only run the ePIE for 4 

iterations. In this way, we generate a third probe that we call the designed probe here 

(see Fig. 3.13a). The corresponding WDF completely stretches out and fills in the whole 

window. As a consequence, we cannot even observe any noise effect in the deconvolved 

( , ') r ρ  and the specimen reconstruction (see Figs. 3.13c and 3.13d). 

3.2.2 Noise suppression via an iterative method 

Because of the projection operation, a reconstructed specimen function can average out 

some errors caused by the noise. To put it in another way, the deconvolved data with 

big errors is refined by the areas with small errors. This means the calculated WDF 

Figure 3.13: The WDDM reconstruction of the data generated from the designed probe. Poisson noise with total 

counts of 106 for each diffraction pattern is added. (a) The designed probe. (b) The WDF of the probe function. (c) 

The deconvolved WDF of the specimen function. (d) The final reconstruction of the specimen function. For each 

subset, the left image represents the modulus part and the right one represents the phase part. The moduli of (b) and 

(c) are square rooted for display purpose. 
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' ( , ') r ρ using the reconstructed specimen will have higher accuracy than the 

deconvolved WDF ( , ') r ρ  in the places where ( , ')a r ρ  has small values, while for 

the places where ( , ')a r ρ  has big values ( , ') r ρ  has higher accuracy than ' ( , ') r ρ . 

Making use of this property, we come up with an iterative method to suppress the 

residual errors introduced by the deconvolution. First we need to go through all the 

usual steps of WDDM and obtain a non-optimally deconvolved WDF ( , ') r ρ  and a 

noisy reconstructed specimen image. Then the iterative method loops through the 

following three procedures: 

1. Use the reconstructed specimen image to calculate the WDF ' ( , ') r ρ ; 

2. Generate a new WDF by replacing the values of ( , ') r ρ in the places where 

( , ')a r ρ  is smaller than a pre-set threshold T with the values of ' ( , ') r ρ ; 

3. Go through the usual WDDM steps using the new WDF to reconstruct an improved 

specimen image. 

A block diagram of the method is shown in Fig. 3.14. As the iteration runs, the 

reconstructed specimen image will be improved. As a result, the accuracy of all the 

values in the calculated WDF ' ( , ') r ρ  slowly gets higher. For this reason, we adopt 

Figure 3.14: Block diagram of the iterative noise suppression method. The part in the dashed square shows the noise 

suppression loop. The inputs of the loop are the two WDFs and the output of the loop is the final reconstruction of 

the specimen function. In the diagram,  and  represent the Fourier transform and the inverse Fourier 

transform respectively, and their subscripts indicate the coordinate on which the transform operates on. 
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an increasing threshold, which means more and more areas of ' ( , ') r ρ  for the places 

where ( , ')a r ρ  has big values are assumed as accurate as the iteration proceeds. 

Eventually, the specimen image is reconstructed accurately and it gives an accurate

' ( , ') r ρ . We apply this algorithm on the above three noisy datasets with different 

probes for 50 iterations and the reconstructions are shown in Fig. 3.15. Compared to the 

previous reconstructions (see Figs. 3.11d, 3.12d and 3.13d), the improvements are 

obvious, especially for the cases of the defocused probe (see Fig. 3.15a) and the 

diffused probe (see Fig. 3.15b). 

3.2.3 Model calculations for different noise levels 

The combination of the probe design and the iterative method has greatly suppressed 

detrimental effects of the noise introduced during the deconvolution and considerably 

enhanced the performance of WDDM. In this section, we will look into the noise 

tolerance of this combination. 

a b c

  

  

Figure 3.15: The WDDM reconstructions using the iterative noise suppression method from the three different 

probes: (a) the defocused probe, (b) the diffused probe and (c) the designed probe. 50 iterations are implemented for 

both the noise suppression WDDM and the ePIE algorithms. For each subset, the top image represents the modulus 

part and the bottom one represents the phase part.  The coordinate indicator applies to all images. 
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Here we still use the above three types of probe and three more noise levels were 

simulated with total counts of 10
5 

(about 24.4 counts per pixel), 10
4
 (about 2.44 counts 

per pixel) and 10
3 

(about 0.24 counts per pixel)
 
in each diffraction pattern. The iterative 

noise suppression algorithm is run for 50 iterations on each dataset. For comparison, we 

also run the ePIE algorithm on the designed probe datasets. Since the probe function is 

assumed known during the implementation of WDDM, to be fair we also feed ePIE 

with the known probe function and do not update it through the whole reconstruction. 

The reconstructions are shown in Fig. 3.16. For the defocused probe, the reconstruction 

is barely recognisable when the noise level only increases to 10
5 

(see Fig. 3.16a). The 

reconstruction quality degrades dramatically. For the diffused probe, the iterative 

algorithm manages to give a good reconstruction until the noise level reaches to 10
3 

(see 

Fig. 3.16j). The noise tolerance of the designed probe is much better than the other two 

probes and it still produces a satisfactory reconstruction for the noise level of 10
3 

(see 

Fig. 3.16k). For the low noise levels (10
5 

and 10
4
), the designed probe is able to recover 

the specimen image without any observable detrimental noise effect (see Fig. 3.16c and 

3.16g). It even gives better reconstructions than the ePIE algorithm does for high noise 

levels (10
4
 and 10

3
, see the comparisons between Figs. 3.16g and 3.16h, and Figs. 3.16k 

and 3.16i). The reason is because the increasing threshold strategy in the iterative 

method actually improves the measured intensity dataset at the places where have low 

signal-to-noise ratio using the information from the places where have high signal-to-

noise ratio, while the ePIE algorithm makes no changes to the measured dataset and 

keeps using it to update the specimen image. This implies that the ePIE algorithm also 

has space for improvements when processing very noisy datasets. 

To compare the reconstructions quantitatively, here we calculate the complex image 

errors for all the reconstructions with respect to the simulated specimen image (see Fig.   
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Figure 3.16: The reconstructions from the three different probes with different noisy datasets. The first column to the 

third column respectively represent the results from the defocused probe, the diffused probe and the designed probe 

using iterative noise suppression WDDM. The last column represents the results from the designed probe using ePIE. 

From (a) to (d), (e) to (h), and (i) to (l), the intensity data respectively has a noise level of 105, 104 and 103. For each 

subset, the top image represents the modulus part and the bottom one represents the phase part. The coordinate 

indicator applies to all the images. 

 

i j k

e f g

a b c d

h

l

  

  



CHAPTER 3: DIRECT PTYCHOGRAPHY 83 

 

 

3.5b). The errors are listed in Table 3.1. The quality degradation trend of the 

reconstructions is consistent with the visual comparisons indicated in Fig. 3.16. In 

addition, the stability of the WDDM performance under an increasing noise level for 

different probes is much more obvious in the tabulated values. The optimal probe is no 

doubt the most stable case, because from a noise level of 10
6
 to 10

3
 the reconstruction 

error only increases by a factor of 4, while it is 20 for the case of the optimal probe

 

using the ePIE algorithm, 100 for the diffused probe and it obviously diverges for the 

normal probe. It is interesting to note that for the optimal probe case with low noise 

levels (10
6
 and 10

5
), WDDM has higher reconstruction errors compared to ePIE. It is 

because we throw out the high frequency data of ( ', ')D r ρ  along 'ρ  to simulate the cut-

off as we mentioned in section 3.1.3, which means WDDM uses much less data than 

ePIE during the reconstruction.  

3.3 Solving for spatial partial coherence via WDDM 

It has been considered by Rodenburg and Bates [26] and Nellist et al [24, 27] that the 

effect of an extended incoherent source can be accounted in WDDM by a convolution 

over the scan position ρ . The measured intensity data, therefore, is modified as 

 
2 2 2

incoh ( ', ) ( ', ) ( ) ,M M s ρr ρ r ρ ρ   (3.15) 

Table 3.1:  Normalized mean square errors of different reconstructions from datasets with different noise levels

 

Noise level
WDDM with

normal probe

WDDM with

diffused probe

WDDM with

optimal probe

ePIE with

optimal probe
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where ( )s ρ  is the source function and ρ
 denotes the convolution over ρ . With this 

incoherent intensity dataset we apply the Fourier transform operations as described in 

Eq. (3.3) and it leads to 

 
incoh ( , ') ( ') ( , ') ( , '),aH S   r ρ ρ r ρ r ρ   (3.16) 

where ( ')S ρ  is the Fourier transform of the source intensity profile 
2

( )s ρ  and it 

corresponds to the mutual coherence function of the source according to Van-Cittert-

Zernike theorem [117]. Proceeding to do the deconvolution (see Eq. (3.12)) and the 

Fourier transform with respect to r  (see Eq. (3.11)), we are left with 

 *

incoh ( ', ') ( ') ( ' ') ( ').D S   r ρ ρ r ρ r   (3.17) 

It is obvious now that the coherence function is separable from the WDF of the 

specimen. It can be calculated by 

 

incoh

*'
incoh incoh

*

'

( ', ')
( ')

( ',0) ( ' ',0)

( ') ( ' ') ( ') ( ')
,

(0) ( ' ') ( ') (0)

N

D
S

D D

S S

S S




  
 

  





r

r

r ρ
ρ

r r ρ

ρ r ρ r ρ

r ρ r

 (3.18) 

where ( ')NS ρ  denotes the normalisation of ( ')S ρ  because (0)S  is the maximum 

amplitude of ( ')S ρ . According to the definition descried in section 2.3.2, ( ')NS ρ  is the 

complex coherence degree. It should be noted here the phase information of ( ')NS ρ  is 

lost. However, if the source intensity profile (positive-real valued) is symmetric and 

smoothly varying, ( ')NS ρ  will be positive and real, which means ( ') ( ')N NS Sρ ρ . A 

division is needed here to obtain ( ', ')D r ρ  from incoh ( ', ')D r ρ  and it is given by 

 incoh ( ', ')
( ', ') ,

( ')N

D
D

S




r ρ
r ρ

ρ
  (3.19) 
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where  is a small constant to avoid division by zeros. For an extended incoherent 

source, its mutual coherence function ( ')S ρ  will have a finite support, which means it 

will impose information cut-off in 'ρ  direction on ( ', ')D r ρ . However, as we have 

already demonstrated above, this will not affect the final resolution of the reconstructed 

specimen image. 

Here we use a model calculation to demonstrate how the spatial partial coherence can 

be solved via WDDM. We use a Gaussian distribution with a half width of 4.5 pixels in 

both two Cartesian coordinates to simulate the extended source profile (see Fig. 3.17a). 

Its coherence degree function, given by the normalisation of the Fourier transform of 

the source intensity, is shown in Fig. 3.17b. The rest of the configuration remains the 

same as the coherent model (see section 3.1.2). 

Each point in the extended incoherent source will produce the same probe function at 

the specimen plane with only a shift in ρ  corresponding to the position of the source 

point. Then each of these probes will generate a spatially coherent diffraction pattern at 

the detector plane and the recorded intensity is the incoherent superposition of the 

Figure 3.17: The source model. (a) The source profile (top) and its horizontal cross-section plot (bottom). (b) The 

coherence degree function (top) and its horizontal cross-section plot (bottom). 
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intensities from all these diffraction patterns. In this way we acquire the 4D incoherent 

intensity dataset (noise is not considered here). However, it should be noted that Eq. 

(3.10) is violated here due to a bigger effective probe size caused by the extended 

source size. For the extended incoherent source, we need to modify Eq. (3.10) as 

 ,a s      (3.20) 

where s  is the support size of the source. Because of this violation, aliasing occurs 

along 'ρ  direction, as we can see in incoh ( , ')H r ρ  (Fig. 3.18a) and incoh ( ', ')D r ρ (Fig. 

3.18b). Compared with the coherent case (see Fig. 3.5), it is not difficult to observe a 

Gaussian decay (i.e. the coherence envelope) in incoh ( , ')H r ρ  and incoh ( ', ')D r ρ  along 'ρ

Figure 3.18: The reconstructions of the spatially partial coherent dataset via WDDM. (a) The dataset . (b) 

The deconvolved WDF of the specimen function. (c) The complete dataset . (d) The retrieved coherence 

function . (e) The difference between the reference of the coherence function and the retrieved version. (f) The 

cropped dataset . (g) The high-resolution reconstruction of the specimen. For all the subsets, except (d) and 

(e), the left image represents the modulus part and the right one represents the phase part.  
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direction. The partial coherence effect is very obvious in incoh ( ', ')D r ρ  (Fig. 3.18c), 

causing information cut-off in 'ρ . We apply Eq. (3.18) to obtain the coherence degree 

function as shown in Fig. 3.18d. The difference with respect to the reference (see Fig. 

3.17b) is shown in Fig. 3.18e and it indicates the reconstruction errors are very small. 

Using this calculated coherence function, we carry out the division expressed by Eq. 

(3.19) over a finite region (about one fourth of the window size) where the coherence 

function has substantial values and it leaves us with ( ', ')D r ρ  (see Fig. 3.18f) to 

proceed with the projection method. Eventually, applying the projection method three 

times produces the high-resolution specimen image reconstruction (see Fig. 3.18g). 

3.4 Conclusions 

In this chapter, we have reviewed the direct (non-iterative) solution of ptychography 

called WDDM. We have presented the mathematical derivation, which formularises the 

Fourier transform of the 4D intensity dataset to be the product of the WDFs of the 

specimen and the probe. However, there is an essential condition for this formularisa-

tion, namely, the sum of the specimen size and the probe size should be smaller than the 

calculation window size. This condition actually is the sampling requirement for 

WDDM. Violating it when taking the Fourier transform with respect to ρ  (the scan 

coordinate) will cause aliasing in 'ρ , resulting in the same effect as the spatial partial 

coherence or a finite aperture at the lens back focal plane does. 

WDDM allows us to separate out the influence of the probe from the specimen by a 

deconvolution. However, in the presence of noise the deconvolution introduces 

numerical errors in the places where the probe WDF has small values. We have 

presented a means to design a favourable probe that is able to produce an even 

distribution WDF, thus minimizing the effects of division by small numbers. The design 
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is based on that the WDF has a form analogous to the conventional ptychographic 

dataset. As a result, we could use ePIE to find the favourable probe given a desired 

probe WDF distribution.  

Once the deconvolution step has been implemented, we are left with a 4D dataset 

representing all pairs of phase difference between all pixels in the diffraction plane. 

This dataset allows us to solve the phase problem and recover the high frequency 

information of the specimen. Unlike previous work, in which only a fraction of the 4D 

dataset can be used, a projection strategy proposed here is able to use all the available 

data, thus mitigating the inconsistencies and increasing its robustness. An iterative noise 

suppression method has also been presented to further improve the performance by 

utilising the redundancy of the 4D dataset. The basic idea is to use the information with 

higher accuracy to recover the information with lower accuracy.  

Furthermore, we have also reconsidered the effect of an extended source size and for the 

first time demonstrated the reconstruction of the coherence function via WDDM using a 

model calculation. However, the phase part of the coherence function is not recoverable. 

As a result, it needs the source to be symmetric and smoothly varying, so the coherence 

function will not have phase information. 

WDDM provides us with an insightful way to understand how information is expressed 

in a ptychographic dataset and in return it will also be very useful and helpful to seek 

improvements for the iterative methods.



4 Spatially Mixed State Ptychography 

Recent algorithmic development allows ptychography to image multiple states 

simultaneously in both the object and the illumination [64]. The coherent case discussed 

before can be considered as a single state ptychography where both the probe and the 

object are single state. When either the probe or the object has more than one state, we 

refer to it as mixed state ptychography. Spatially mixed state ptychography means the 

mixed states are caused by or equivalent to the spatial variation in the experiment. In 

spatially mixed state ptychography, every probe state will interact with every object 

state and all the resulting states contribute to the experiment incoherently. This 

technique not only substantially relaxes the requirements on the experiments, such as 

the instrumental or environmental stability and the coherence of the radiation [64], but 

also further extends the applications of ptychography, such as imaging dynamic objects 

[73] and fly scan ptychography [74, 75, 76]. In this chapter we will theoretically and 

experimentally reveal the inherent ambiguities in the reconstruction algorithm and 

demonstrate how the ambiguities can be broken using additional constraints. 

Furthermore, we will also experimentally explore the effects of a diffuser on the 

reconstructions for a lens setup x-ray ptychography in the presence of spatial partial 

coherence, which is a mixed state ptychography with multiple probe states but one 

object state [64]. 

4.1 Spatially mixed state ptychography 

In this section, we will give a description of the modified reconstruction algorithm for 

spatially mixed state ptychography based on ePIE and its relation with the gradient 

descent method, and present the derivation of the linear reconstruction ambiguity and 
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the means to break the ambiguity. Experimental demonstration will also be presented. 

The work presented in this section has led to a journal paper publication [118]. 

4.1.1 The reconstruction algorithm 

Both ePIE and DM have been modified to take account of the spatially mixed state 

effect by Thibault et al [64]. The most critical part is the modification of the modulus 

constraint. Since the measured intensity is the incoherent addition of multiple 

diffraction states, we cannot assign this measured intensity to any single diffraction state, 

as we did before for single state ptychography. In the modified algorithms, the strategy 

is to scale the measured intensity according to the forward intensity calculations of all 

the diffraction states. To detail the algorithm, here we denote the kth illumination state 

as ( )kP , the lth object state as 
( )lO , the corresponding exit wave state as 

( , )k l , the 

corresponding diffraction state as ( , )k l , the measured intensity as M, the iteration 

number as n, the reciprocal-space coordinate as q, the real-space coordinate as r and the 

scan position as rj. The iterative procedures are as follows: 

1. In the nth iteration, the exit wave guess at a probe position of rj is formed by the 

product of the current object state guess and the illumination state guess at the 

corresponding scan position: 

            ,
.

k l k l

j n j nP O  r r r r   (4.1) 

2. In the far field the diffraction pattern guess is then formed by Fourier transforming 

the exit wave guess: 

 
       , ,

.
k l k l

j j  
 

q r   (4.2) 
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3. Apply the modulus constraint, i.e. replace the modulus of the diffraction pattern 

guess with the square root of the scaled intensity measurement and keep the phase 

part, and back propagate to real space to get an updated exit wave 
( , )' k l : 

 
   

   

   
 

   
   

2
, ,

, 1

2 ,,
' .

k l k l
j jk l

j j k lk l
jj

k l

M 

 
  

  
 

  

q q
r q

qq

  (4.3) 

4. The update functions for the illumination states and the object states are given as: 

 

       
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  (4.4) 

In the same way as the update functions of ePIE derived in section 2.3.7, in this case the 

objective function is to minimise the difference between  ,
( )

k l

j r  and  ,
' ( )

k l

j r , i.e. 

 
           

2
,

' .
k l k l

n j n j

k l

E P O    r r r r   (4.5) 

Take partial derivative with respect to each illumination state and each object state 

respectively, the gradients are given as 
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  (4.6) 

So the update functions given in step 4 correspond to the choices of the search step size 

of 
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   (4.7) 

The parameters   and   can be adjusted to find a balance between the convergence 

speed and the reconstruction stability. They are normally set to a value between 0 and 1. 

4.1.2 The reconstruction structure 

Attention should be drawn to step 3 in the above section, where the algorithm only sets 

constraint on the intensity addition of all the diffraction states, not on the intensity of the 

individual diffraction state. As a result, it allows the reconstruction of certain linear 

combination of the underlying object/probe states that still satisfies the modulus 

constraint. In this section we will show it is this degree of freedom in the algorithm that 

leads to ambiguous reconstructions.  

Here we consider a general case of K probe states and L object states. A particular set of 

solutions that satisfy the modulus constraint is given as   ( )

1

K
k

k
P


r  for probe states and 

  ( )

1

L
l

l
O


r  for object states. Therefore, each probe state will interact with each object 

state to give a single diffraction state, i.e.   (( ), () ) ( ) ( )k l k lP O    rq r , and the inten-

sity summation of all the diffraction states equals to the measured intensity, i.e. 

 
2

( , )

1 1
( )

K L
k l

k l
M

 
   q q . Since the above relation applies to every scan position, 

the position index j is dropped here. It should be noted that the multiplication between 

the probe state 
( ) ( )kP r  and the object state 

( ) ( )lO r  is pixel-wise. As shown in Fig. 4.1, 

if we assemble the probe states as a row vector (1) (2) ( )( ), ( ), , ( )KP P P   r r rP , the 
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object states as a row vector (1) (2) ( )( ), ( ), , ( )LO O O   r r rO , and the diffraction states 

as a row vector        (1,1) (1, ) ( ,1) ( , ), , , , , ,L K K L      Ψ q q q q , then the rela-

tion between the three state vectors can be described as a state-wise Kronecker product 

(denoted by  ): 

   ,   P OΨ   (4.8) 

where ( )   represents the Fourier transform operating on each exit wave state, i.e.

( ) ( )( ) ( )k lP O 
 r r . The elements of the three row vectors are defined to be states and 

the state-wise Kronecker product of the vectors operates on the states, not on the 

individual pixels within each state. Hereinafter, when the element of a vector is defined 

to be a state, any calculation on this vector will be considered to operate state-wise 

whilst multiplications between states will be pixel-wise. Therefore, the intensity 

summation of all the diffraction states can be expressed as 

Figure 4.1: Schematic demonstration of Kronecker product (denoted by ⊗) and the formation of exit waves (denoted 

by 𝜓) and diffraction waves (denoted by Ψ). 𝑷 and 𝑶 denote the illumination states and the object states respectively. 

  denotes the Fourier transform. The diffraction patterns are displayed at logarithmic scale. 
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( ) ( ) ( ) ( ) ,

K L K L

k l k l k l

k l k l

P O

   

   
  ΨΨ q q r r   (4.9) 

where †  denotes the Hermitian conjugate.  

Using the same vector representation as above, we denote the set of reconstructed probe 

states as a row vector (1) (2) ( )( ), ( ), , ( )KP P P 
 

r r rP  and the set of reconstructed ob-

ject states as a row vector (1) (2) ( )( ), ( ), , ( )LO O O 
 

r r rO , where K  and L  are re-

spectively the number of probe states and object states assigned in the algorithm. As 

previously, the reconstructed diffraction wave states Ψ can then be represented by a 

state-wise Kronecker product as 

   .  
 

Ψ P O   (4.10) 

We assume that the reconstructed states ( P  and O ) and our particular set of solution 

states ( P  and O ) have the following linear relationship 

 ,P

O




 

P PU

O OU
  (4.11) 

where PU  and OU  are matrices with each element being a complex-valued number and 

the their row-by-column dimensions are K K  and L L  respectively. Since the ele-

ments of P , O , P  and O  are states, Eq. (4.11) can be expressed explicitly as 

 

( ) ( )

( ) ( )

( ) ( )

,
( ) ( )

k i

ik

i

l j

jl

j

P P u

O O v





 






r r

r r
  (4.12) 
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where iku  is the element of PU  on row i and column k, and 
jlv  is the element of OU  on 

row j  and column l . The Fourier transform of each state in Ψ is then calculated as 

follows: 

 
( ) ( ) ( ) ( )( ) ( ) ( ) ( .) ik jl

i j

k l i jP O vO uP       r r r r   (4.13) 

For a set of reconstructed states to be a set of solutions, it has to satisfy the modulus 

constraint, i.e. † †ΨΨ ΨΨ . The substitution of Eq. (4.10) and (4.11) into †
ΨΨ  gives 

        †
† †

.P O P O
               




   


ΨΨ P O P O PU OU PU OU   (4.14) 

Since the Fourier transform does not operate on the matrices PU  and OU , as we can see 

in Eq. (4.13), Eq. (4.14) can be rewritten as 

       
†† †
.P O P O          ΨΨ P O U U U U P O   (4.15) 

The modulus constraint requires 

           
† ††

,P O P O                     P O U U U U P O P O P O   (4.16) 

which leads to the following relation 

    †† †
,P O P O P P O KLO   U U U U U U IU U   (4.17) 

where I  denotes the identity matrix with its dimension indicated by the subscript. This 

means that the matrices PU  and OU  have to satisfy  

 

†

†
,P P K

O O L

c

c




 

U U I

U U I
  (4.18) 

where c represents some arbitrary positive real number. KI  has full rank, so the rank of 

†

P PU U  is K. According to the properties of the matrix rank, rank( )PK  U  and 
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rank( ) min( , )P K KU , which leads to rank( )P KU  and K K . For matrix OU , we 

have rank( )O LU  and L L . This means as long as we assign a number no smaller 

than the number of the underlying object/probe states to the number of the 

reconstruction states in the algorithm, the modulus constraint can be fulfilled but each 

reconstruction state will be an arbitrary linear combination of the underlying states, i.e. 

ambiguous reconstructions. Since the magnitude of the diffraction wave is only 

sensitive to the relative phase not the absolute phase, the constant phase ambiguity will 

still exist in each reconstruction state. Furthermore, the substitution of Eq. (4.11) into 

Eq. (4.18) leads to 

 
† †

† †
.

/

c

c






 

PP PP

OO OO
  (4.19) 

This means that although the reconstruction ambiguity happens for each individual state, 

the normalised intensity addition of all the reconstruction states is equal to that of the 

underlying states for both the probe and the object. 

4.1.3 Breaking the reconstruction ambiguities 

The reconstruction ambiguity basically originates from the modulus constraint where 

the only condition is on the intensity addition of all the diffraction waves. Consequently, 

the reconstruction recomposes the original probes and objects linearly in a manner 

determined by the initial probe and object guesses. The ambiguity is the inherent 

property of the reconstruction algorithm. To break it, we have to make use of the known 

information about the experiment. The known information can be formed as extra 

constraints added into the algorithm. Hopefully, these constraints can help to eliminate 

the ambiguity, producing unique true reconstructions. Here two such constraints are 

discussed: phase-only and orthogonalisation. 
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Phase-only constraint means the amplitude part is known to be flat for a complex signal. 

It is very common for the objects in high-resolution x-ray [119] and electron imaging 

[120]. Here we use a simple example of two phase object states as the demonstration. 

The two states are 
(1)(1) (1) ( )( ) ( ) iO e   r

r r  and 
( 2)(2) (2) ( )( ) ( ) iO e   r

r r , where 
(1) ( ) r , 

(2) ( ) r  are the flat amplitudes and 
(1) ( ) r , 

(2) ( ) r  are the phases. If the matrix 

 11 12 21 22, ; ,O u u u uU , according to Eq. (4.11) the two reconstruction states will have 

the following relation 

 
(1) (1) (2)

11 21

(2) (1) (2)

12 22

( ) ( ) ( )
.

( ) ( ) ( )

O u O u O

O u O u O

  


  

r r r

r r r
  (4.20) 

 The amplitudes of the two reconstruction states are 

 

(1)

2 2
(1) (2) (1) (2) (1) (2)

11 21 11 21
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2 2
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  (4.21) 

Since the amplitudes 
(1) ( ) r  and 

(2) ( ) r  are flat, the cross-terms in Eq. (4.21) must be 

zero, which gives 11 21 0u u   and 12 22 0u u  . Besides, the matrix OU  satisfying Eq. (4.18) 

requires 
2 2

11 12 1u u   and 
2 2

21 22 1u u  . The scaling constant c is omitted for 

simplicity and its absence will not affect the results. So the phase-only constraint leads 

to  , ; ,1 0 0 1O U  or  , ; ,0 1 1 0O U . Both the solutions are unambiguous, only with the 

ordering of the two states swapped. Although an example of only two states is 

demonstrated here, it can be readily extended to cases with more than two states. 

However, this constraint is unlikely applicable to the probe states for a real situation. 



CHAPTER 4: SPATIALLY MIXED STATE PTYCHOGRAPHY 98 

 

 

We have to resort to other constraints to break the reconstruction ambiguity of the probe 

states. 

Orthogonalisation constraint means the states are known to be mutually orthogonal (i.e. 

the dot product of two states will be zero). The spatial partial coherence is a well-known 

example for this constraint [98]. As we stated in section 2.3.2, a spatial partial coherent 

field can be decomposed into a set of mutually orthogonal modes. Each mode is totally 

coherent itself but completely incoherent with the others. It is a common constraint to 

break the ambiguity in the probe reconstructions and gives a unique set of probe modes 

[64]. 

Suppose the solution probe states are mutually orthogonal, which means their dot 

product is zero. In order to formularise the orthogonality, we write each state 
( ) ( )kP r as 

a column vector ( ) ( ) ( ) ( )

1 2, , ,( ) ( ) ( )
T

k k k k

Mp p p   s r r r , where T represents the transpose 

operation, ir  denotes the ith pixel and M is the number of pixels in the state. So the 

mutual orthogonality means 

 ( ) ( )†
0,   

,
,   

k l
k l

k l


 


s s   (4.22) 

where   is the power of the mode and it is a positive real number. Assembling this set 

of probe states as a matrix S  (to differentiate from the notation P  used in section 4.1.2, 

where it is only a state vector, not a matrix, but the relation described in Eq. (4.11) still 

holds here) such that 

 

(1) (2) ( )

1 1 1

(1) (2) ( )
(1) (2) ( ) 2 2 2

(1) (2) ( )
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p p p

 
 
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 
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r r r
S = s s s

r r r

  (4.23) 
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so now we can form the matrix D  containing all the dot products of the probe states as 

 

(1)† (1) (1)† (2) (1)† ( )
1

(2)† (1) (2)† (2) (2)† ( )
2†

( )† (1) ( )† (2) ( )† ( )

0 0

0 0
.

0 0

K

K

K K K K
K







   
   
     
   
   
    

s s s s s s

s s s s s s
D S S

s s s s s s

  (4.24) 

And this matrix D  is a diagonal matrix. Making use of the relation described in Eq. 

(4.11), we can form a matrix D  for the set of reconstruction states as 

 † † .P P D S S U DU   (4.25) 

Eq. (4.25) gives us the form of the Eigen decomposition of the matrix D . The diagonal 

elements in matrix D  are the eigen-values and the columns in †

PU  are the correspond-

ing eigen-vectors. So through the Eigen decomposition of the matrix D , we can obtain 

the matrix †

PU . Utilising the relation in Eq. (4.11), we then can calculate the orthogonal 

states from the reconstructed ones via 

 †.PS SU   (4.26) 

It is worth mentioning that the orthogonalisation of the probe states described here is 

equivalent to the diagonalisation of the density matrix of the coherence function. 

According to the definition, the density matrix is given by 
†

SS . Using the relation in Eq. 

(4.11) and Eq. (4.18) we have 

 † † † † ,P P N N SS SU U S S DS   (4.27) 

with 

 (1) (2) ( )

1 2/ , / , , / .K

N K   
 

S s s s   (4.28) 

So the eigenvectors of the density matrix are the original illumination states normalised 

and the eigenvalues are the power of the corresponding states. 
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4.1.4 Optical experiments 

Optical experiments are carried out to demonstrate the reconstruction ambiguities. We 

used a diode laser (with wavelength of 675nm) coupled with a step-index multi-mode 

optical fibre (10µm core diameter, 0.1 NA) as the source. Since the exit wave from a 

multi-mode fibre is spatially partial coherent [121], this will produce an illumination 

with multiple states. In order to generate multiple object states, we use a phase-only 

spatial light modulator (SLM, a Holoeye Pluto reflective liquid crystal device) to 

display two patterns (a dog and a horse) alternatively at a rate of 20Hz. The optical 

setup is shown in Fig. 4.2. It is a reflection configuration for ptychography. A linear 

polarizer is inserted into the beam to make sure the polarization of the illumination 

matches the polarization of the SLM. Two standard doublet lenses (f1=100mm and 

f2=45mm) are arranged in a 4f configuration to focus the illumination. An aperture of 

4mm diameter is used to limit the size and numerical aperture of the probe. The SLM is 

positioned at a slight distance after the focus, where the beam diameter is approximately 

900µm. A beam-splitter is inserted between the second lens and the SLM to allow the 

diffraction patterns reflected from the SLM to be recorded on a CCD detector (an AVT 

Pike F421B, with 2048×2048 pixels, each of 7.4µm
2
. However, for reconstruction the 

diffraction patterns are binned by a factor of 4 to 512×512). The SLM is mounted on an 

x-y translation stage to implement the ptychographic scan. 

Figure 4.2: The experimental setup of ptychography operating in the reflection mode. OF stands for the optical fibre, 

P for polarizer, L for the lens, A for aperture, BS for the beam splitter, D for the detector and SLM for the spatial 

light modulator. The focal length of L1 is 100mm and that of L2 is 45mm. 

OF L1 L2
P

A BS

D

SLM
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To obtain the reference images for the probe states and the two object states, we 

perform two calibration experiments first, one with a static dog pattern displayed on the 

SLM and the other with a static horse pattern displayed. The illumination is scanned 

over the patterns on a grid of 13×13. At each scan, two exposures (0.25s and 1.0s) are 

taken and combined to increase the dynamic range of the detector. The step size is about 

100µm with ±20% random offsets. 

As explained above, the number of reconstruction states should be no smaller than that 

of underlying states in the experiment to ensure the convergence of the reconstruction   

(i.e. fulfil the modulus constraint). However, for this experiment the number of 

underlying probe states is unknown. Therefore, we try a set of reconstructions with an 

increasing number of probe states from 1 to 7 in the algorithm. The reconstruction 

began with 100 iterations of the ePIE algorithm, assuming a single probe state. The 

results were then used as the starting point for 900 iterations of the modified ePIE 

algorithm described in section 4.1.1, when we assign a number bigger than 2 to the 

probe states. The orthogonalised probe modes from different reconstructions are shown 

in Fig. 4.3. We note the following: the first mode, containing most of the power in the 

illumination, looks similar for all the reconstructions; the modes with lower power 

evolve as the number of states assigned in the reconstruction is increased, until five 

modes is included, after which the first five modes remain more or less constant; modes 

6 and 7 varied randomly and contain very little power (totalling less than 3% of the 

incident beam). We conclude that the latter low power, randomly shaped modes account 

for imperfections in the data sets, such as the background noise in the detector [122],and 

their inclusion therefore helps ‘clean’ the image quality in the dominant object and 

probe states. As a result, in subsequent reconstructions we assign six to the number of 
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the probe states, five to model the beam emitted from the optical fibre and a sixth to 

manage inconsistency in the recorded diffraction data. 

The five illumination modes and the two object states from the calibration experiments 

are shown in Fig. 4.4, where the colour wheel depiction shows phase variations as 

changes in hue and modulus variations as changes in brightness. Because of the strong 

phase curvature, the structures of the probe modes cannot be observed clearly, so the 

phase of the first mode is used as a reference to remove all the phase curvatures, as 

shown in Fig. 4.4d. (For display purposes we will use this same reference to remove the 

phase curvature in the probe reconstructions that follow.) Although the SLM is a phase 

modulator, our images do show some amplitude modulation around the edges of the dog 

and horse patterns, caused by scattering beyond the extent of the detector from these 

regions; close inspection also reveals the regular 8µm spacing of the SLM pixels.  

Figure 4.3: The modulus parts of the probe modes reconstructions after orthogonalisation with different numbers of 

modes assigned to the reconstruction algorithm. From (a) to (g), the numbers are accordingly from 1 to 7. The scale 

bar indicates a length of 300µm. 
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Using the same experimental parameters as above, we repeat our experiment with the 

SLM programmed to alternately display the dog and horse images on a 20Hz cycle, 

ensuring that both patterns are displayed several times during the 0.25s and 1.0s 

exposures. Again, we run the ePIE algorithm for the first 100 iterations. Then the results 

are fed into the modified ePIE algorithm, running for 900 iterations. With this dataset, 

two sets of reconstructions are performed with different initial guesses and the 

reconstructions are shown in Fig. 4.5. Obviously, the two reconstructions are different 

for both the probe states and the object states and also different from the calibrated 

results, demonstrating the ambiguities. 

According to Eq. (4.19) the normalised intensity addition of both reconstructed probe 

states and reconstructed object states should be unique despite the ambiguity of the 

individual state. To demonstrate this, we calculate the normalised intensity additions for 

both the two calibrated object states (the main figure in Fig. 4.6a) and the five calibrated 

Figure 4.4: The reconstructions from the calibration experiments. (a) The dog pattern reconstruction. (b) The horse 

pattern reconstruction. (c) The illumination modes reconstructions. (d) The illumination states reconstructions with 

the phase curvature removed. The scale bars indicate a length of 300µm. The colour wheel applies to all the images. 
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illumination modes (the inset in Fig. 4.6a). The same calculations were done for the two 

sets of reconstructions shown in Fig. 4.5. It is interesting to notice that except the edges 

of the patterns the intensity additions of the two object states can be assumed flat, which 

is consistent with the fact that the SLM only had phase response in the experiment. 

These edges are due to the high frequencies scattered off the detector. From 

visualisation, there is no major difference among these intensity additions. They can 

Figure 4.5: Two different sets of reconstructions from the same dataset using different initial guesses. (a) The first set 

of raw reconstructions. (b) The second set of raw reconstructions. The scale bars indicate a length of 300µm. The 

colour wheel applies to all the images. To aid in display, the curvature of the probe phases has been removed. 
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Figure 4.6: Comparison of the normalised intensity additions of the states. (a) The intensity additions of the 

calibrated probe modes and the calibrated object states. (b) The intensity additions of the probe states and the object 

states from the first reconstruction. (c) The intensity additions of the probe states and the object states from the 

second reconstruction. The scale bars indicate a length of 300µm. 
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also be quantitatively compared using the complex image error metric (see section 

2.3.9). Between the calibrations and the first reconstructions, i.e. between Figs. 4.6a and 

4.6b, the error for the normalised intensity addition of the objects is 0.214 and the error 

for that of the probes is 0.0767. Between the calibrations and the second reconstructions, 

i.e. between Figs 4.6a and 4.6c, the error for the normalised intensity addition of the 

objects is 0.210 and the error for that of the probes is 0.0721. The errors are higher for 

the object case, due mainly to the discrepancy from the edges in the patterns. These 

errors can be assumed small considering the presence of imperfections in the 

experiment, such as statistic noise, background noise, readout noise of detector and the 

signals scattering beyond the detector.  

Since the SLM we used in the experiment is a phase modulator (although the border of 

each SLM pixel does affect the amplitude of the reflected beam to some extent), an 

assumption of flat amplitude for the object states can be used as a priori knowledge in 

the reconstruction. Forcing the amplitudes of the two object states to be flat during the 

reconstruction produces the results as shown in Fig. 4.7a. Evidently, the phase-only 

constraint has successfully broken the ambiguity, although there is some cross-talk 

between the two states because the pixelation of the SLM does somewhat modulate the 

object state amplitudes. To mitigate this problem, the results of Fig. 4.7a are used as 

accurate initial guesses to feed into a second run of the algorithm, this time without the 

phase-only constraint, with the results shown in Fig. 4.7b. Having broken the object 

state ambiguity and generated images very close to the calibrated reference states, this 

additional step largely eliminates background artefacts, whilst the slight cross-talk 

between the two states still exists because of its presence in the initial guesses. 

The slight inaccuracy in the assumption of flat amplitude for the SLM experiments 

leads us to simulate an experiment that demonstrates that the phase-only constraint 
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works perfectly when the amplitudes are ideally flat.  Moreover, to demonstrate this 

constraint can be applied successfully to more than two object states, in this simulation 

four object states are used. The phases, shown in Fig. 4.8a, are set to a range between –

π/2 to π/2 and the amplitudes set to 1. The probe mode with the most power in the 

reconstruction, as shown in Fig. 4.4c, is used as the single probe state in this simulated 

experiment, and the scan positions from the optical experimental are also reused, 

producing 169 diffraction patterns from 13×13 overlapping regions. First the 

reconstruction is carried out without the phase-only constraint – the phase parts of the 

results are shown in Fig. 4.8b. Ambiguous reconstructions with different combinations 

of the original four object states are reconstructed. Then, imposing the phase-only 

constraint another reconstruction is carried out, with the results shown in Fig. 4.8c; the 

four object states are successfully reconstructed without any artefacts or cross-talk – the 

only ambiguity remaining is the order in which the states appear in the reconstruction.  

Figure 4.7: Reconstructions of the two object states with applying the phase-only constraint. (a) The two object states 

reconstructions with the phase-only constraint through the whole reconstruction process. (b) The two object states 

reconstructions using (a) as the initial guesses respectively without the phase-only constraint. The scale bars indicate 

a length of 300µm. The scale bar and the colour wheel apply to all the images. 
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Some other constraints have also been tested to try to break the object ambiguity. 

Among these, the real-valued constraint (the object states only have real part), positivity 

constraint (both the real part and imaginary part are both positive) and support 

constraint (the object states have a limited extent) fail to break the ambiguity. Another 

constraint that allows small fluctuation in the amplitudes (the fluctuation range we tried 

is from 0.9 to 1.0) can successfully break the ambiguity.  

Since the illumination exiting the step-index multi-mode optical fibre is spatial-partially 

coherent, here we can orthogonalise the probe states reconstructions to obtain the 

orthogonal probe modes. The orthogonal modes from the two ambiguous reconstruc-

tions are shown in Fig. 4.9. The structures of the modes are consistent across the two 

experiments and agree with the calibrated modes, apart from arbitrary constant phase 

Figure 4.8: The simulation and the reconstructions. (a) The phase parts of the four object states. The amplitudes are 

all set to 1. (b) The phase parts of the four states reconstructions without applying the phase only constraint. (c) The 

phase parts of the four states reconstructions with applying the phase only constraint. 
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offsets. A quantitative comparison of each mode, using the complex image error metric 

(see section 2.3.9), gives errors for the first set of modes, compared to the calibrated 

modes, as respectively 0.0428, 0.0282, 0.0245, 0.0219 and 0.0224; the errors for the 

second set of modes are respectively 0.0386, 0.0292, 0.0253, 0.0183 and 0.0197. These 

errors are normalised to the total power of the calibrated modes and can be assumed 

very small in the presence of noise in the data set, demonstrating that orthogonalisation 

breaks the probe reconstruction ambiguity. It also implies that, as expected, the two sets 

Figure 4.9: Comparison of the illumination modes from the two different sets of reconstructions after 

orthogonalisation. (a) Orthogonal probe modes from the first set of reconstructions. (b) Orthogonal probe modes from 

the second set of reconstructions. (c) The power distribution of the original probe modes and the two sets of 

reconstructed probe modes. The scale bars indicate a length of 300µm. 
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of reconstructed probe states are different linear combinations of the original probe 

modes.  

It should be noted that the orthogonalisation can also lead to a unique set of object 

reconstructions. However, unlike the orthogonal illumination modes for partial coherent 

illumination, the orthogonalisation of the object states does not give interpretable results 

in this case, because the two images used in the experiment were not themselves 

orthogonal. 

4.2 The effects of a diffuser in the presence of spatial partial coherence 

The photon flux available in the experiments is very important for x-ray diffractive 

imaging. The increase of flux could shorten the exposure time and hence the whole 

experimental duration, reducing possible instabilities in the experiment like drift and 

radiation damage. It also increases the signal-to-noise ratio for the measurements. For 

these reasons, to make full use of the x-ray coherence, a lens setup should be adopted, 

because pinhole setup cuts out useful flux. For example, a synchrotron x-ray source 

typically has a horizontal coherence width no smaller than 50µm (the vertical coherence 

width is normally bigger than the horizontal width by several times). However, the 

common size for an illumination function is around 30µm or less to make sure the 

sampling condition in the detector plane is well satisfied. In this case, the pinhole will 

cut off almost 50% of the useful counts. Moreover, partial coherence can be solved via 

mixed state ptychography. This means we are able to increase the flux by intentionally 

introducing small amount of partial coherence into the experiment. In this section we 

explore the effects of a diffuser on the reconstructions for a lens setup x-ray experiment 

in the presence of spatial partial coherence (the content of this section may not fit in 

with this chapter quite well, but because of the spatial partial coherent condition, we 
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place it here). The work presented in this section has led to a journal paper publication 

[123].  

4.2.1 The benefits of a diffuser 

In section 2.3.5, we have discussed the benefits of the lens setup against the pinhole 

setup. The lens setup defeats the pinhole setup by introducing a much larger range of 

incident angles in the illumination, so it could reduce the dynamic range in the 

diffraction pattern and encode the scattering information of the specimen into more 

pixels. All these benefits can be enhanced by having a diffuser inserted into the beam, 

because the angular range of the illumination is further broadened. Therefore, a diffuser 

can help to make full use of the limited dynamic range of a detector, increase signal-to-

noise ratio for the signals scattered to high angles, and solve more unmeasured pixels 

much more reliably. 

An example of recovering unmeasured pixels is to extrapolate a detector of limited size 

to gain resolution improvement [65, 66]. The ultimate size that the detector can be 

extended to is, in theory, equal to the width of the detector plus the angular range of the 

illumination. The stronger a diffuser is, the broader the angular range will be produced 

and hence the bigger the ultimate size is. When the scattering strength of the specimen 

exceeds the collection angle of the detector, this detector extrapolation strategy can help 

the gain of the resolution of the object reconstruction [65, 66]. 

It has also been demonstrated that a diffuser is very helpful in improving the depth 

resolution in 3D visible light ptychography via the multislice method [67, 68]. As it will 

be explained in detail in chapter 5, the depth resolution is related to both the scattering 

strength of the specimen and the angular range of the illumination. Thus, increasing 

either of them provides a gain in the depth resolution. 
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For the Wigner distribution deconvolution method (see chapter 3), we have 

demonstrated that a diffused probe is better than a normal defocused probe in terms of 

avoiding division by small values during the deconvolution process in the presence of 

noise. For iterative algorithms, it has been shown that tailoring the beam using a sharp 

aperture to broaden the angular range of the illumination can improve the reconstruction 

in the context of x-ray coherent ptychography [124]. Burdet et al [125] have reached the 

same conclusion using model calculations in the presence of partial coherence, a result 

we will explore experimentally in this section. 

Making use of the properties of the diffraction pattern speckle from a random surface, 

we can estimate the degree of the partial coherence in real time by using a diffuser. We 

will also demonstrate this advantage of using a diffuser in this section. 

4.2.2 X-ray experiments 

We implement the x-ray experiments on the I13 beamline at the Diamond Light Source 

in UK. The monochromated x-ray energy is selected at 9.7keV. In the horizontal 

direction, due to a larger size of the source, the beamline has lower coherence compared 

to the vertical direction. For the experiment, we intentionally open up the upfront 

horizontal slits to introduce partial coherence. A Fresnel zone plate (FZP) with a focal 

length of 470mm is inserted downstream of the slits to condense the beam. A central-

stop (CS) is used to block the transmitted beam and an order-select-aperture (OSA) is 

used to choose the first order of the diffracted beam as the probe for the experiment. 

The sample is a Siemens star with 500 nm thick gold structures and it is mounted about 

16mm upstream of the FZP focus. A piece of paint is used as the diffuser and is inserted 

about 1mm upstream of the Siemens star. The experimental setup is shown in Fig. 4.10. 

The photon-counting ‘Merlin’ detector is composed of 2×2 arrays of MediPix3 chips  
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(each with 256×256 pixels of 55µm
2
), which is positioned 14.33m downstream of the 

sample.  

Two experiments are carried out using the above setup with the diffuser (‘Din’ 

configuration) and without the diffuser (‘Dout’ configuration). The centre of the Siemens 

star is scanned over a grid of 30×30. The step size is 1um plus ±10% random offsets. 

For experimental reasons that do not affect the present work, each diffraction pattern is 

taken with 256 exposures of 0.032 seconds (i.e. total exposure is 8.192 seconds). For 

each experiment, the dataset takes about 5 hours to collect. Unfortunately, the probe is 

not consistent during this long scan (which we discovered when we process the data). It 

is probably caused by the drift of the optics or the radiation damage of the diffuser. 

Because of this, we select a subset scan of 12×24 positions that has negligible probe 

variation to assess the performance of the diffuser. We divide the 256 exposures into 

two 128 exposures to implement the Fourier ring correlation comparison. An example 

of the diffraction patterns from each experiment at the same scan position is shown in 

Fig. 4.11. The two perpendicular dark lines in the centre are the gaps between the 4 

detector chips. For the diffuser configuration, the diffraction pattern extends well 

beyond the unscattered beam and fills up a larger proportion of the detector. Judging 

from this, the paint acts as a good diffuser.   

Figure 4.10: The experimental configuration. FZP stands for the Fresnel Zone Plate, CS for the Central Stop, OSA 

for Order Selected Aperture, S for the specimen and D for the detector. 
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100 iterations of the normal ePIE algorithm are run first on the two datasets without 

accounting for the partial coherence. The results are then served as the initial guesses 

for the modified ePIE algorithm. 300 iterations are run and 12 probe modes are used in 

the algorithm. Fig. 4.12 shows the reconstruction of eight dominant probe modes after 

orthogonalisation from the Dout (Fig. 4.12a) and Din (Fig. 4.12b) configurations. Except 

random perturbation exists for the Din configuration, the two sets of probe modes have 

the same structures, which is that more lobes present in the horizontal direction. The 

results indicate that the experiments have a shorter coherence length along the 

horizontal direction, which is consistent with the fact that the synchrotron source has a 

much bigger horizontal width than its vertical width.  

The corresponding specimen reconstructions are shown in Fig. 4.13. Both two 

reconstructions are fairly good considering the low degree of coherence in the datasets. 

With inspection of the zoom in figures, we can see that the reconstruction from the Dout 

configuration has ringing effects and blurred structures, whereas the reconstruction from 

the Din configuration has cleaner background and sharper details, which is particularly 

obvious in the central disc of the Siemens star in the top right corner of Fig. 4.13(a2) 

and 4.13(b2).  

Figure 4.11: An example of the recorded diffraction patterns at logarithmic scale from (a) without diffuser and (b) 

with diffuser at the same scan position. With the diffuser in, the diffraction pattern extends well beyond the 

unscattered beam and fills up a larger proportion of the detector.  The scale bars represent 3 μm−1. 
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Since we have two sets of datasets with the same exposures for each experiment (256 

exposures divided into two 128 exposures as we mentioned above), we can calculate the 

Fourier ring correlation to compare the reconstructions. The correlation curves are 

shown in Fig. 4.14 and they also indicate that the diffused probe produces better 

reconstructions. However, the overall improvement in the reconstruction is rather 

marginal. 

The reason is probably because that the specimen is complicated (structure-wise) 

enough so that the complexity of the probe does not matter that much. To investigate 

this, we should use a simple object (for example having large areas of flat contrast and 

sparse features). Therefore, another pair of experiments with both Din and Dout 

configurations is carried out at the edge of the Siemens star where the features are much 

sparser. The sample this time is scanned over a grid of 16×16 and only one exposure of 

Figure 4.12: The moduli of the probe modes reconstructions using the data from (a) Dout configuration and (b) Din 

configuration. More lobes present in horizontal direction in the probe modes indicate that the horizontal size of the 

synchrotron source is bigger than its vertical size. The scale bars represent 5µm. 
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5 seconds is taken for each diffraction pattern. The same reconstruction strategy as 

above is used here and the results are shown in Fig. 4.15. For the Dout configuration, the 

specimen reconstruction is blurred. When the diffuser is present, the spikes in the 

specimen are reconstructed much more sharply. Clearly, the two sets of orthogonalised 

Figure 4.13: The phase reconstructions of the Siemens star from (a) the Dout configuration and (b) the Din 

configuration. The scale bars represent 5µm. 
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probe modes are not well reconstructed, because we would expect them to show the 

same structures as in Fig. 4.12 provided low coherence in the horizontal direction. 

However, some vertical lobes present in the orthogonalised probe modes reconstructed 

from the Din configuration indicates that they are closer to the expected modes than the 

ones reconstructed from the Dout configuration. This means that highly structured 

illumination helps both the object reconstruction and the probe mode reconstructions.  

As stated above, another advance of using a diffuser is that we can estimate the partial 

coherence of the experiment in real time. The phenomenon of coherent speckle in x-ray 

scattering is very well established [126], and its theory is very well understood [127, 

128]. The intensity histogram of a coherent diffraction pattern from a random object 

should have an exponential profile. This means the probability of the measured 

intensities in the diffraction pattern falls as an exponential; the highest probability thus 

locates at the zero intensity. However, when any form of incoherence is present, zero 

intensity is never measured. As a result, the highest probability shifts to some finite 

intensity and the histogram will have a rising hump. To demonstrate this, we plot the 

histogram of one of the diffraction patterns measured from our first experiment with 

diffuser in and also the histogram of the same diffraction pattern calculated from the 

first probe mode reconstructed, as shown in Fig. 4.16. With only one mode, the 

Figure 4.14: A comparison of the Fourier ring correlation (FRC) plots taken from the object reconstructions in the 

Dout configuration and the Din configuration. 
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diffraction pattern is coherent and consequently the histogram is an exponential decay 

with the peak located at zero (see the red plot), whereas the histogram of the diffraction 

pattern measured under low degree of coherence has a rising hump (see the green plot). 

When the histogram is plotted as a function of the number of coherent modes for a 

specific experiment, we can use it as an empirical indicator to estimate the degree of 

coherence of the experiment, although the exact modelling of the plots is depending on 

many factors, like the detector pixel size and the ratio between the typical structure size 

in the diffuser and the probe size. The histogram can be plotted in real time, which 

means we can adjust the coherence of the experiment qualitatively before collecting 

data. 

Figure 4.15: Reconstructions when the specimen has sparser features. (a) The phase reconstruction of the object from 

the Dout configuration. (b) The modulus reconstruction of the probe modes from the Dout configuration. (c) The phase 

reconstruction of the object from the Din configuration. (d) The modulus reconstruction of the probe modes from the 

Din configuration. The scale bars represent 5µm. 
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4.3 Conclusions 

In this chapter, we have mathematically shown when a multi-state probe interacts with a 

multi-state object and only the intensity addition of all the resulting diffraction states is 

constrained during the reconstruction, some linear combinations of the underlying states 

(both object and probe) also satisfy the modulus constraint, leading to reconstruction 

ambiguities. Despite the linear reconstruction ambiguity, the normalised intensity 

addition of the all the states reconstructions is unique and true for both the probe case 

and the object case. Also, we have derived how the phase-only constraint and 

orthogonality constraint break the reconstruction ambiguity. An optical experiment that 

involves a dynamic object composed of two states (not mutually orthogonal) and a 

spatially partial coherent illumination with five modes has successfully demonstrated 

the validity of these conjectures.  

Figure 4.16: A comparison of the histograms from a typical diffraction pattern, as recorded (green) and as calculated 

using the first probe mode (red). The inset is the calculated diffraction pattern relating to the first probe mode. The 

corresponding recorded diffraction pattern is shown in Fig. 4.11b. The histograms are plotted using the region outside 

of the blue circle. Note that in order to show the different location of the peaks, the histogram plots are cut to the 

bottom 10% of the intensities for display purpose. 
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Moreover, to test the performance of a diffuser in ptychographic reconstruction in the 

presence of partial coherence, we have carried out x-ray experiments to compare the 

configuration with only a FZP and that with a FZP plus a diffuser. The introduction of 

spatial partial coherence helps increase the flux, but the information encoded in the 

diffraction intensity measurements is corrupted by the partial coherence. In this case, 

the experimental results have shown that a diffused probe produces better 

reconstructions than a non-diffused probe, especially when the specimen has very 

simple and sparse structures. This is attributed to the fact that the diffuser increases the 

angular range in the probe that helps enrich the information content contained in the 

intensity measurements.  

Furthermore, we demonstrate the advantage of estimating the degree of partial 

coherence by using a diffuser. It makes use of the histogram plot of the diffraction 

pattern. When the experiment is coherent, the histogram has an exponential profile with 

the peak located at zero. However, when the experiment is partial coherent, the peak 

shifts to a higher intensity and the histogram will have a rising hump. If the relationship 

between the histogram plot and the number of coherent modes for a specific experiment 

can be found, we are able to adjust the coherence of the experiment in real 

time.  



5 Temporally Mixed State Ptychography 

When the radiation source is temporally partial coherent, each wavelength will cause a 

different response from the specimen to give a single diffraction state in the detector 

plane and the measurement will be the incoherent summation of the states from all the 

wavelengths [80, 82]. In this case, the probe/object state is wavelength-dependent and 

each probe state only interacts with the object state triggered by the specific wavelength. 

We will mathematically show in this chapter that it is this wavelength dependent state 

interaction that eliminates the linear reconstruction ambiguity. Experiments using two 

lasers with wavelengths of 633nm and 675nm are carried out and successfully 

demonstrate the validity of the mathematics. Also, by treating the static background 

noise in the diffraction patterns as an extra temporal state, we develop an iterative 

update function for the background in the reconstruction algorithm. In this way, we 

manage to reconstruct the background and remove it from the signals iteratively without 

the background subtraction step. 

5.1 Temporally mixed state ptychography 

In this section, we will give a description of the modified reconstruction algorithm for 

temporally mixed state ptychography based on ePIE and its relation with the gradient 

descent method, and present the derivation of how the linear reconstruction ambiguity is 

broken in this case. Experimental demonstration will also be presented. 

5.1.1 The reconstruction algorithm 

The ePIE algorithm has been adapted to multi-wavelength ptychography by Batey et al 

[72]. The modulus constraint is modified in the same way as the spatially mixed state 
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ptychography. Using the same notation as used in section 4.1.1, here we present the 

iterative reconstruction algorithm for temporally mixed state ptychography in detail as: 

1. In the nth iteration, the exit wave guess at a probe position 
jr  is formed by the 

product of the current object state guess and the illumination state guess at the 

corresponding scan position: 

            .k k k

j n j nP O  r r r r   (5.1) 

2. In the far field the diffraction pattern guess is then formed by Fourier transforming 

the exit wave guess: 

         .
k k
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q r   (5.2) 

3. Apply the modulus constraint, i.e. replace the modulus of the diffraction pattern 

guess with the square root of the scaled intensity measurement and keep the phase 

part, and back propagate to real space to get an updated exit wave  
'

k

j : 

 
   

   

   
 

   
   

2

1

2
' .

k k
j jk

j j kk
jj

k

M 

 
  

  
 

 

q q
r q

qq

  (5.3) 

4. The update functions for the illumination states and the object states are given as: 
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In the same way as the update functions of ePIE derived in section 2.3.7, in this case the 

objective function is to minimise the difference between    k

j r  and    '
k

j r , i.e. 
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2

.'
k k k

n j n j

k

E P O    r r r r   (5.5) 

Take partial derivative with respect to each illumination state and each object state 

respectively, the gradients are given as 
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So the update functions given in step 4 correspond to the choices of the search step size 

of 
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  (5.7) 

The parameters   and   can be adjusted to find a balance between the convergence 

speed and the reconstruction stability. They are normally set to a value between 0 and 1. 

5.1.2 The reconstruction structure 

During the reconstruction of temporally mixed state ptychography, it is the same as 

spatially mixed state ptychography that the modulus constraint only constrains the 

intensity summation of all the states, not the intensity of individual state. However the 

interaction between the probe states and the object states is different here. A specific 

object state is triggered by a specific wavelength, so this object state will only respond 

to the probe state corresponding to that wavelength. There will be no cross-interaction 
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between different wavelengths. The resulting diffraction states are a subset of those in 

spatially mixed state ptychography. From a different perspective, we can assume 

temporally mixed state ptychography as a special case of spatially mixed state 

ptychography with a much more stringent constraint on the state interactions. In this 

section, we will mathematically show this constraint is able to break the linear 

reconstruction ambiguity and leads to unique solution. 

Suppose a temporally partial coherent radiation source, which can be modelled by K 

wavelengths, will produce K probe states   ( )

1

K
k

k
P


r  and K object states   ( )

1

K
k

k
O


r . 

The corresponding diffraction states   ( )
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1

K

k

k kP O
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 r r . The 

diffraction intensity measurement  M q  would be 
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Again, since the above relation applies to every scan position, the corresponding index 

will not be considered here. If assembling the underlying probe states as a row vector 

(1) (2) ( )( ), ( ), , ( )KP P P   r r rP , the underlying object states as a row vector 

(1) (2) ( )( ), ( ), , ( )KO O O   r r rO , the reconstructed probe states as a row vector 

(1) (2) ( )( ), ( ), , ( )KP P P   P r r r , the reconstructed object states as a row vector 

(1) (2) ( )( ), ( ), , ( )KO O O   O r r r , and also assuming the linear relation expressed by 

Eq. (4.11) between the underlying states and the reconstructed states is still applicable 

here, we then have the intensity summation  M q  of all the reconstructed diffraction 

states described by 
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The modulus constraint requires    M Mq q , which leads to 
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It should be noted here that both PU  and OU  are full rank square matrix. This means 

there will be no columns or rows full of zeros. Under this condition, for i j  in Eq. 

(5.10), 
2

1
0

K
ik jk

P O
k

U U


 , which is equivalent to 0ik jk

P OU U  , requires that in each row 

and each column of both PU  and OU  there is exactly one non-zero entry (this is the 

definition of generalised permutation matrix) and that the positions of the non-zero 

entries in PU  and OU  are the same (i.e. the non-zero patterns for PU  and OU  are the 

same). As a result, the linear reconstruction ambiguity is broken in temporally mixed 

state ptychography. The positions of the non-zero entries in PU  and OU  determine the 

order of the reconstructed probe/object states, which will stay ambiguous. Furthermore, 

for i j  in Eq. (5.10), 
2

1
1

K
ik jk

P O
k

U U


  is now equivalent to 1ik ik

P OU U  , which 

means scale and phase offset are allowed for the interacting pairs of probe and object 

states in the reconstruction. As we can see, each state reconstruction in temporally 

mixed state ptychography is independent and it is exactly the same as the reconstruction 

structure of the coherent single state ptychography. 
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5.1.3 Optical experiments 

Optical experiment with multi-wavelength has been demonstrated before using three 

lasers with distinctive wavelengths (410 nm, 530 nm and 633 nm) and the reconstruc-

tions also clearly showed the breakdown of the ambiguity [72]. Here we demonstrate 

temporally mixed state ptychography by using a 633nm HeNe laser and a 675nm diode 

laser as the source. The setup is shown in Fig. 5.1. The two lasers are coupled via a 

beam splitter to provide the illumination. A circular aperture with a diameter of 150µm 

is inserted upstream of the specimen to form a localised illumination. The transmitted 

diffraction patterns are recorded on a CCD detector (an AVT Pike F421B, with 

2048×2048 pixels, each of 7.4µm
2
) positioned at about 26mm downstream of the 

specimen. A microscopy slide of a clam gill section is used as the specimen and it is 

mounted on an x-y translation stage to implement the ptychographic scan. 

In order to obtain reference images of two wavelengths for later comparisons, we 

perform two calibration experiments with only one wavelength switched on each time 

during the ptychographic scan. The illumination is scanned over the patterns on a grid 

of 20×20. At each scan, four exposures (0.8ms, 4ms, 20ms and 50ms) are taken and 

Figure 5.1: The experimental configuration. Two lasers, 675nm and 633nm, are coupled via a beam splitter as the 

radiation source. A circular aperture with a diameter of 150µm is placed upstream of the specimen to provide the 

localised illumination. A CCD detector is positioned at about 25mm downstream of the specimen to record the 

diffraction patterns. L stands for lens, BS for beam splitter, A for aperture, S for specimen and D for detector. 

675nm

633nm

L

L

BS

D

A
S
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combined to increase the dynamic range of the detector. The step size is about 30µm 

with ±20% random. 

For the reconstructions, the diffraction patterns are binned by a factor of 4 to 512×512 

(the sampling requirement is still well fulfilled) and only a central region of 256×256 

(outside of which very little photons are detected) is used. The initial guess for the 

object is free space (i.e. 1 everywhere) and for the probe is a circular aperture with a 

diameter of 150µm. 300 iterations of the ePIE algorithm are run and the reconstructions 

are shown in Fig. 5.2. The colour wheel depiction shows phase variations as changes in 

hue and modulus variations as changes in brightness. As we can see, the specimen has 

different responses for different wavelengths. Also, the scale of the two reconstructions 

is different due to the difference in wavelength causing different pixel sizes in the 

reconstructed images, which is very obvious in the illumination modulus reconstruc-

tions. Different phase ramps are reconstructed in the illumination phases, indicating the 

misalignment in the propagation direction of the two laser beams, given that no obvious 

phase ramp ambiguity exists in the object reconstructions. 

We repeat our experiment with both two wavelengths switched on during the scan. This 

Figure 5.2: The reconstructions from the two single wavelength experiments. (a) 633nm. (b) 675nm. In each figure, 

the left panel is the object reconstruction and the right panel is the probe reconstruction with the modulus on top and 

the phase at the bottom. The scale bars indicate a length of 100um. The colorwheel applies to all the figures of the 

object reconstructions. 

a b
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experiment, in theory, is equivalent to combining the two calibrated experiments into 

one. Again, the diffraction patterns are binned by a factor of 4 and a central region of 

256×256 is cropped out for the reconstructions. Also, the initial guesses for the two 

object states are free space (i.e. 1 everywhere) and for the two probe states are given by 

the product of the 150µm circular aperture with two different arrays of random values. 

We use the modified ePIE algorithm to run the reconstruction for 300 iterations. It 

should be noted here that the algorithm does not require the initial guesses for either the 

two probe states or the two object states to be different, because the different pixel sizes 

in the reconstructions will help the algorithm to differentiate the states. The results are 

shown in Fig. 5.3 and they have a good agreement with the calibrated results shown in 

Fig. 5.2. The two wavelengths are clearly well separated, indicating that the discrepancy 

between the specimen responses to the two wavelengths is big enough to be assumed as 

two states for the reconstruction algorithm, because otherwise the linear reconstruction 

ambiguity will occur for the probe states reconstructions. 

This could be very useful, because it shows the possibility of spectroscopic imaging via 

ptychography using just one scan [129]. It could also relax the requirement for the tem-

Figure 5.3: The reconstructions from the double wavelengths experiment. (a) 633nm. (b) 675nm. In each figure, the 

left panel is the object reconstruction and the right panel is the probe reconstruction with the modulus on top and the 

phase at the bottom. The scale bars indicate a length of 100um. The colorwheel applies to all the figures of the object 

reconstructions. 

a b
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poral coherence in the experiment. To further explore it, hopefully we could carry out 

experiments using a source with continuous spectrum of broad bandwidth in the near 

future. 

5.2 An iterative method to remove background noise 

As we explained in section 2.3.10, the background noise is the constant response of the 

detector in the absence of radiation. We need to measure it by taking a dark frame of the 

detector without turning on the radiation and then remove it by subtracting it from the 

diffraction intensity measurements. As an inspiration from the temporally mixed state 

ptychography, by treating the background noise as the diffraction pattern from an extra 

temporal state, we are able to reconstruct and remove the background noise iteratively 

in the algorithm without the need of measuring and subtracting the dark frame. 

5.2.1 The background noise update function 

For the extra temporal state corresponding to the background noise, we denote its 

illumination function as 
BGP  and its object response as 

BGO . According to the modified 

ePIE algorithm for the temporally mixed state ptychography, the update function for the 

illumination is 

    
     

  
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 
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

r r r r
r r

r r

  (5.11) 

Since the background noise is the same for all the scan positions, for this extra temporal 

state its object response 
BGO  should be constant everywhere and we do not need to 

update it during the iteration. As a result, the update function can be simplified as 

        1 ' ,BG BG BG BG

n n n nP P P P
    r r r r   (5.12) 
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where 'BG

nP  denotes the illumination function after applying the modulus constraint. 

Since we only care about the background noise (i.e. the intensity of the Fourier 

transform of the illumination function), not the illumination function itself, the 

illumination update function can be transferred to its Fourier space by taking the Fourier 

transform of both sides of the equal sign in Eq. (5.12) 

        1 ' ,BG BG BG BG

n n n nP P P P
   
 

q q q q   (5.13) 

where the overline denotes the Fourier transform of the corresponding functions. The 

modulus square of 1

BG

nP   and BG

nP  are basically the current and previous estimates of the 

background noise respectively. The modulus square of 'BG

nP  is actually the assigned 

intensity of the background noise and it is given by 

  
 

   
 
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j
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q
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q q
  (5.14) 

where S  is the forward calculation of the diffraction pattern of the temporal state from 

the signal, BG  is that from the background noise, and M is the diffraction intensity 

measurement. Since the phase parts of BG

nP  and 'BG

nP  are the same, if we take the 

modulus square of both sides of the equal sign in Eq. (5.13), we have 
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  (5.15) 

with    
2

BG

n nB Pq q  and    n 1

2

1

BG

nB P q q , where B denotes the background 

noise update. Adding this extra update function into the ePIE algorithm, we are able to 

reconstruct the background noise and separate it from the signal.  
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5.2.2 Optical Experiments 

To demonstrate the background noise reconstruction, we reuse the ptychographic data 

from the calibration experiment of 633nm HeNe laser in section 5.1.3, but without the 

background subtraction. The background noise and an example of the diffraction  

intensity measurements with and without the background subtraction are shown in Fig. 

5.4. As we can see, the background noise seriously corrupts the diffraction data, 

especially at the high scattering angles, where very low counts can be detected. 

The reconstruction of the uncorrupted diffraction data (with the background subtraction) 

is already done in section 5.1.3 and it is shown in Fig. 5.2a. The corrupted diffraction 

data (without the background subtraction) is first reconstructed by running the normal 

ePIE algorithm for 300 iterations and the results are shown in Fig. 5.5. The object is 

very blurry and it is clearly not well reconstructed. As for the probe, in the modulus a 

bright spot disguises the real structures that can still be observed although not well 

developed in the phase part. The intensity of the Fourier transform of the probe (see Fig. 

5.5b) shows a resemblance to the background noise. This means the algorithm treats the 

background noise as part of the spectrum of the probe. This is easy to understand. 

Because during the ePIE reconstruction the probe function is the same through all the 

Figure 5.4: The measured background noise (a) and one example of diffraction intensity measurements with (b) and 

without (c) the background subtraction. The background noise has relatively small values. However, it seriously 

corrupts the diffraction data of the signals, especially at the high scattering angles. 
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scan positions, the algorithm will assume any unchanged part in the diffraction pattern 

is from the probe function. Since the background noise spans the entire frequency space 

and has relatively uniform response, it causes a bright spot in the probe reconstruction. 

As this reconstructed probe function scanned over the specimen, different area of the 

specimen will interact with the bright spot, still causing slightly difference in the 

diffraction pattern corresponding to the background noise. So the ePIE algorithm in its 

traditional way is not able to accurately account for the background noise. In addition, 

the bright spot has another detrimental effect on the reconstruction. The update function 

for the object in ePIE (see section 2.3.7) is normalised to the square of the maximum 

value of the modulus of the probe. The bright spot will dramatically slow down the  

update of the object function. 

The corrupted diffraction pattern is then reconstructed by running the modified ePIE 

algorithm for 300 iterations and the results are shown in Fig. 5.6. Both the object and 

the probe are very well reconstructed and cannot be visually differentiated from the 

reference reconstructions (shown in Fig. 5.2a). In addition, the background is also 

reconstructed. Except at the low frequencies, the reconstructed background noise has a 

Figure 5.5: The reconstructions from the corrupted diffraction data using the normal ePIE algorithm. (a) The object 

and probe reconstructions. The left panel is the object reconstruction and the right panel is the probe reconstruction 

with the modulus on top and the phase at the bottom. The scale bars indicate a length of 100um. (b) The intensity of 

the Fourier transform of the reconstructed probe. It has a good resemblance to the background noise, indicating the 

algorithm treats the background noise as part of the spectrum of the probe. 
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good agreement with the measured one. The static background noise reconstruction 

highly relies on the variation of the signal from one scan position to another. Otherwise 

the algorithm cannot differentiate the signals from the background noise. For the low 

frequencies, the diffraction pattern normally varies little between different scan 

positions. This is because the low frequencies in the specimen do not have enough 

sampling due to the sparse scan compared to the dense scan needed by WDDM (see 

chapter 3). Because of this slow variation of the signals at the low frequencies, the 

background noise is not very well reconstructed at these areas. However, the low 

frequencies normally have very high counts, so that the background noise has very little 

effects on them. For this reason, the reconstruction shown in Fig. 5.6 can be assumed 

successful. 

Figure 5.6: The reconstructions from the corrupted diffraction data using the modified ePIE algorithm with 

background noise update function. (a) The object and probe reconstructions. The left panel is the object 

reconstruction and the right panel is the probe reconstruction with the modulus on top and the phase at the bottom. 

The scale bars indicate a length of 100um. (b) The intensity of the reconstructed background noise. (c) The difference 

between the measured background noise and the reconstructed version.  
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5.3 Conclusions 

In this chapter, we have mathematically proven that the linear reconstruction ambiguity 

occurred in spatially mixed state ptychography is broken in the case of temporal mixed 

state ptychography, although the modulus constraint is applied in the same way for the 

two cases. It is because the temporal mixed state ptychography has a non-cross 

interaction between the states from the different wavelengths. For a specific wavelength, 

the triggered object state only responds to the corresponding probe state. This a priori 

information is fed into the algorithm acting like a strong constraint and it breaks the 

linear reconstruction ambiguity. 

Here we have carried out an optical experiment using a clam gill section with two lasers, 

633nm and 675nm, to demonstrate the breakdown of the reconstruction ambiguity. The 

good reconstructions have shown that this technique is able to differentiate the two 

wavelengths for this specific specimen. To further explore it, experiments using a 

source with continuous broadband spectrum would be ideal, so that we could show that 

the requirement for the temporal coherence can be relaxed. It could also indicate the 

possibility of spectroscopic imaging via ptychography using just one scan. 

As an inspiration from the temporally mixed state ptychography, we have developed an 

iterative method to reconstruction the background noise in the diffraction intensity 

measurements by treating it as the diffraction pattern from an extra temporal state. In 

this way, we are able to implement the reconstruction without the need of measuring 

and subtracting the background noise from diffraction intensity measurements. 

Experimental data reconstructions have been carried out and the results have shown that 

the recovery of the background noise relies on the variations of the signals through the 
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scan. No variation or even slow variations, like the low frequency areas in the 

diffraction patterns, will cause high errors in the reconstructed background noise. 



6 3D Fourier Ptychography 

Optical 3D imaging is generally realised via two ways: optical tomography and optical 

sectioning. The common idea of optical tomography is to record multiple images for 

various angles of illumination with respect to the specimen, and then to reconstruct 3D 

structure with this set of angular images. Optical sectioning, on the other hand, involves 

collecting a set of images at different longitudinal positions by an axial scanning and 

then assembling the set of axial images to form the 3D reconstruction.  

Ptychography has been adapted to produce 3D reconstructions by combining with the 

multislice method [67, 68, 69]. Multislice ptychography belongs to the category of 

optical sectioning, but it does not need to perform a physical scan along the longitudinal 

axis. The sectioning is numerically carried out in the reconstruction algorithm. It thus 

saves the data acquisition time compared with the conventional optical sectioning 

methods like confocal scanning microscopy [130]. Moreover, multislice ptychography 

delivers quantitative phase reconstruction of a 3D structure. The phase reconstruction is 

able to provide good contrast of the structure at its nature state without any assistance 

like fluorescence used in confocal scanning microscopy and light sheet microscopy. The 

quantitative information is further able to allow us to study the structure quantitatively. 

These properties are very important in biologic imaging applications, like the live cell 

imaging [131]. 

Fourier ptychography is a Fourier domain variant of ptychography [78]. To help differ-

entiate these two types of ptychography, here we refer to the conventional ptychography 

as real-space ptychography. Instead of scanning a localised illumination function over 

an extended specimen and recording the intensities of the diffraction patterns in real-
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space ptychography, in Fourier ptychography one scans a small aperture over the 

spectrum of the extended specimen and records the intensities of the resulting low-

resolution images. Methodologically, the two forms of ptychography are the same: a 

localised function is scanned over a fixed extended function with certain amount of 

overlap and at each scan position the measurement is made in the corresponding 

reciprocal space with the phase information missing. Therefore the ePIE algorithm can 

be applied to Fourier ptychography. 

However, unlike the specimen function in real-space ptychography, the spectrum of the 

specimen in Fourier ptychography has a very high dynamic range and a dramatically 

bright spot (the DC component) in the centre. This will cause slow convergence in the 

reconstruction of the aperture function if we directly use the ePIE algorithm in Fourier 

ptychography, because the update function will be scaled to the maximum intensity 

value. Furthermore, it is not obvious how to extend the ePIE algorithm of Fourier 

ptychography to produce 3D reconstruction of the specimen via the multislice method. 

In this chapter, we will address these problems. The work presented in this chapter has 

led to a journal paper publication [132]. 

6.1 2D Fourier ptychography 

A typical setup for Fourier ptychography is shown in Fig. 6.1. Provided the specimen is 

thin enough, the spectrum lying in the back focal plane of the lens is related to the 

specimen by a Fourier transform when the specimen is illuminated by a plane wave 

radiation. According to the shift theorem of the Fourier transform (see section 2.1.2), 

tilting the plane wave illumination corresponds to a shift of the spectrum. An aperture is 

inserted at the back focal plane with its centre coinciding with the optic axis to filter the 

spectrum. Meanwhile a detector is placed at the image plane to record the low-
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resolution image. Carefully choosing the tilt angle interval to ensure enough overlap of 

the specimen spectrum filtered by the aperture, in this way, we can perform a 

ptychographic scan by tilting the plane wave illumination. The aperture here is the 

counterpart of the localised illumination in real-space ptychography. The spectrum and 

low-resolution images here have the same roles as the specimen and the diffraction 

patterns do respectively in real-space ptychography.  

Recorded images have low resolution due to the small aperture in the back focal plane 

and they contain different frequency information of the specimen spectrum. The 

different frequency information can be tiled to form a spectrum with much wider region 

than the size of the aperture. The larger the illumination tilt angle is, the higher the 

frequency can be extended. The resolution of the reconstructed specimen image is 

determined by the highest angle of the synthetic spectrum and it can be much smaller 

than the pixel size of the detector. This method is very similar to the aperture synthesis 

approach used in astronomy radio [133] and radar [134]. It was originally adopted in 

electron microscopy to overcome the resolution limit imposed by the small NAs of the 

electron lenses [135, 136]. Although at that time it was recognised as a reciprocal ana-

logue of ptychography [137], but a good reconstruction algorithm was not available. 

Figure 6.1: The optical setup of Fourier ptychography. When the specimen is thin enough, tilting the plane wave 

illumination corresponds to a shift of the spectrum. Meanwhile an aperture is inserted in the back focal plane of the 

imaging lens and a detector is placed at the image plane to record the resulting low-resolution images. In this way, a 

ptychographical scan can be performed in the back focal plane.  
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Fourier ptychography uses the ePIE algorithm to tile the different frequency information 

and hence achieve high resolution [78]. The outputs of the ePIE algorithm in Fourier 

ptychography are the aperture function and the synthetic specimen spectrum. To obtain 

the specimen image, an inverse Fourier transform needs to be carried out on the 

reconstructed spectrum. 

Fourier ptychography, like real-space ptychography, is capable of delivering quantita-

tive phase images at diffraction limited resolution. However, due to the specimen image 

having a very much lower dynamic range compared to its spectrum, Fourier ptychogra-

phy has much lower requirement on the detector dynamic range compared to 

conventional ptychography. But when the illumination is tilted to high angles, very little 

scattered amplitude goes through the aperture. As a result, longer exposures might be 

needed for high tilted angles to ensure good signal-to-noise ratio. In real-space 

ptychography, this is compensated by the multiple exposures strategy (see section 

2.3.10). Moreover, unlike real-space ptychography, the different angles of illumination 

can be supplied by LED arrays placed far away from the specimen, meaning that there 

is no need of scan: the whole imaging procedure can be controlled electronically 

without moving parts (of course this is only true for visible light). Furthermore, small 

defocus errors in the lens, which means the aperture slightly deviate from the back focal 

plane, can be reconstructed as part of the aperture function because they stay fixed 

substantially relative to the aperture when the plane wave illumination is tilted to 

different angles. As a result, the reconstructed specimen image is always in focus.  

6.1.1 The reconstruction algorithm 

As mentioned earlier, the ePIE algorithm can be adopted here for Fourier ptychography 

reconstruction. If we only consider the aperture plane (i.e. the back focal plane) and the 
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detector plane (i.e. the image plane), the flow chart of the ePIE algorithm for Fourier 

ptychography is depicted in Fig. 6.2. A tilt of the illumination becomes a shift of the 

spectrum in the back focal plane. The exit wave  ES q , i.e. the filtered spectrum, is 

given as the product of the aperture ( )A q  and the spectrum  IS q , where q  denotes the 

coordinate at the back focal plane. At the image plane, a low-resolution image is formed 

by the Fourier transform of the filtered spectrum. The square root of the intensity of the 

measured low-resolution image is used to replace the modulus of the formed image and 

the phase part remains untouched. By taking an inverse Fourier transform of the 

modified image, an updated version of the filtered spectrum  'ES q  is obtained at the 

back focal plane. If we use the update functions described in section 2.3.7, the aperture 

and the spectrum can be reconstructed.  

Here for Fourier ptychography, we use the above notation and rewrite the ePIE update 

functions in Eq. (2.63) as 

Figure 6.2: The flow chart of the ePIE algorithm for Fourier ptychography. Same as the ePIE algorithm used for 

conventional ptychography: modulus constraint is applied in the detector plane where the phase information is lost; 

ePIE update in the aperture plane, where the scan is performed, could reconstruct the aperture function and the 

spectrum of the specimen.  
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  (6.1) 

where n indexes the iteration number and 
jq  denotes the lateral shift of the spectrum in 

the back focal plane when the jth tilted plane wave illuminated the specimen. So far, it 

has been exactly the same as real-space ptychography. However, different from the 

specimen function in real space, the specimen spectrum normally has high dynamic 

range with a very bright spot in the centre (corresponds to the unscattered beam). The 

iterative search step sizes for all the pixels in ( )A q  are scaled by the square modulus of 

this brightest pixel. This will cause dramatically small search step sizes for the pixels 

that have very small modulus, hence slowing the convergences for these pixels. A 

parallel update version of the ePIE algorithm, which is first proposed by P. Godard et al 

to enhance the performance in the presence of noise [70], can mitigate this problem by 

using spatially variant search step sizes. Instead of trying to minimise the difference 

between the filtered spectrum  ES q  and its updated version  'ES q  for each tilted 

illumination separately, the parallel version minimises the difference for all the 

illumination angles at once. The objective function for the minimisation can be 

described as 

      
2

1

.'

J

EI j

j

E A S S



   q q q q   (6.2) 

If we take the partial derivative of the objective function E  with respect to the aperture 

function ( )A q , we have the gradient expressed as 
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The spatially variant search step sizes are chosen to be 
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where  is a small constant to prevent division by zero. Therefore the parallel update 

for the aperture function written in the form of gradient descend search method is given 

by 
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Now the search step sizes for different pixels are scaled by different values of the same 

magnitude. In this way we make sure of relatively even convergences for all the pixels. 

However, unlike the sequential ePIE where the function is updated for each scan 

position, the parallel ePIE only updates the function once for all the positions. This 

property of parallel update on the contrary slows the convergence [70]. But luckily in 

Fourier ptychography, the aperture used is normally a circular function (with smoothly 

variant phase if defocus error exists), which is a very simple structure, and it thus does 

not need to be updated very frequently. For the spectrum reconstruction, since it does 

not have the high dynamic range problem as the aperture reconstruction does, we stick 

to the sequential update for the sake of convergence speed. 

6.1.2 Optical experiment 

An optical experiment is implemented here to compare the sequential ePIE algorithm 

(conventional version) and the parallel ePIE algorithm (modified version) as described 

above. The experiment was set up as sketched in Fig. 6.1. The illumination was 
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provided by a HeNe laser ( 633nm  ) coupled with an optical fibre via a 20× Olympus 

objective lens. The exit of the fibre, which produces a divergent point source, was 

mounted on a stepper motor driven x-y translation stage.  When the specimen is far 

enough from the source (the distance was about 70mm for the experiment), by scanning 

the stage we can generate plane waves with different tilt angles at the specimen plane. 

The specimen was a microscope slide of a fern leaf and a standard doublet lens with a 

focal length of 30mm was positioned downstream at a distance of approximate 45mm 

from the specimen. At the back focal plane of the lens, a diaphragm with its diameter 

set to 2mm (amounts to an angle of 0.09rad) was placed. A CCD detector (2048×2048 

pixels, each of 7.4µm
2
) in the image plane (215mm from the diaphragm) was used to 

record the low-resolution images. The magnification of this imaging system was 

calibrated and it was about 8. A raster scan of 15×15 was carried out with a nominal 

step size of 1mm (equivalent to an angle of 0.02rad, resulting in a 78% overlap in the 

back focal plane) with ±20% random offsets. One example of the recorded low-

resolution images is shown in Fig. 6.3a.  

For the reconstruction, the recorded images were binned by a factor of 4 to 512×512 

pixels and only a central region of 200×200 pixels were used to avoid the vignetting 

effect. Free space (1 everywhere) was used as the initial guess for the specimen and a 

Gaussian function as the aperture initial guess. Both the algorithms with sequential 

update (sequential ePIE) and parallel update (parallel ePIE) for the aperture 

reconstruction were run for 200 iterations. The reconstructions in Fourier space are 

shown in Figs. 6.3b and 6.3c respectively. As we can see from the size of the bright 

regions in the reconstructions, the specimen spectrum is expanded by about 3 times 

((15-1)×(1-78%)=3.08) the size of the aperture in both x and y directions. Apart from 

the spectrum, the aperture function is also reconstructed. The polygonal shape implies a 
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good agreement with the fact that we are using a diaphragm as the aperture. With close 

inspection of the aperture phase reconstructions, we can observe a small phase curvature 

that is accounting for the slight defocus error of the imaging system. Judging from the 

flatness and sharpness in the modulus parts of the aperture reconstructions, it is easy to 

tell that parallel ePIE outperforms the sequential ePIE. Moreover, when the spectra are 

Fourier transformed into real space, the comparison between them becomes obvious. 

From the enlarged view shown in Figs. 6.3f and 6.3g, it is not difficult to see that the 

modulus of the specimen reconstruction from the parallel ePIE has a much cleaner 

Figure 6.3: Comparison between the sequential ePIE algorithm and the parallel version using a visible light 

experiment. (a) One example of the recorded low-resolution images. (b) and (c) are the reconstructions of sequential 

ePIE and parallel ePIE respectively: the main figure is the specimen spectrum reconstruction; the top row of the inset 

is the modulus part of the aperture reconstruction and the bottom row is the phase part. The black circles in the 

spectrums indicate the size of the aperture. (d) and (e) are the specimen reconstructions obtained by respectively 

taking Fourier transform of (b) and (c). (f) and (g) are respectively the enlarged views for the highlighted regions in 

(d) and (e). (h) The image intensity error plots of the two reconstructions. 
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background. Furthermore, the image intensity errors versus the iterations for both 

reconstructions are also plotted. Parallel ePIE reaches convergence almost at the 30
th

 

iteration while sequential ePIE makes very slow progress and converges at the 160
th

 

iteration still with a higher error. 

Compare to the recorded raw image, the reconstructed image in real space has a much 

higher resolution: it is increased by about 19 times, given the pixel size is reduced from 

29.6µm to 1.57µm that is calculated by 200 29.6 8 470  , where 200 29.6μm is 

the size of the recorded image, 8 is the magnification of the imaging system and 470 is 

the pixel number of the reconstructed image. However, it should be noted that the actual 

pixel size is slightly bigger than 1.57µm because the dark frames in the spectrum 

reconstructions (see Figs. 6.3b and 6.3c) do not transmit any frequency information. If 

this is taken into account, the actual pixel size is about 1.72µm, still much smaller than 

that of the raw image. In addition, the phase of the specimen, which was lost during the 

recording process, is also recovered.  

6.2 3D Fourier ptychography 

Fourier ptychography only works when the specimen is thin enough, so that the 

spectrum at the back focal will be a constant function with different lateral shifts during 

the tilting of the plane wave illumination. However, when the object is thick, the 

spectrum will be changing rather than just shifting. An easy way to think of this is that 

when the illumination is tilted the projected image of a thick object will changes. The 

Ewald sphere constructions can be used here to describe how information is expressed 

in reciprocal space for Fourier ptychography, as shown in Fig. 6.4. Tilting the 

illumination in reciprocal space is equivalent to rocking the Ewald sphere. However, the 

lens in Fourier ptychography always lets through the same range of angles of the 
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scattered beams, which is related to each image recorded on the detector by a Fourier 

transform. Since the Ewald sphere is different under different illumination angle, each 

recorded image corresponds to a different section of reciprocal space. In this case, 

conventional ptychographic reconstruction algorithms, which depend on the constancy 

of the object function whether in real space or in reciprocal space, cannot be used. 

If we keep the illumination angle constant, the Ewald sphere will be fixed. Scanning the 

aperture across the back focal plane then allows us to explore different section of the 

fixed Ewald sphere, as shown in Fig. 6.5. In this way, the conventional ptychographic 

reconstruction algorithms become applicable now, but this method solves for the full 

scattering field of the object [138].This is the same information that is admitted by the 

objective of a conventional microscope. Although the wave can then be computationally 

propagated to different layers within the object, like going through focus in a 

conventional microscope there will always be Fresnel-type artefacts arising from other 

Figure 6.4: The Ewald sphere construction for tilt-series configuration. (a) Illustration of the experimental setup for 

the tilt-series configuration. (b) The data representation on the Ewald sphere of tilt-series configuration. ki is the k-

vector of an incident plane wave along the optic axis. Allowed scattering vectors, ks, must lie on the Ewald sphere 

(seen in cross-section, solid circle) associated with ki. For a tilted incident k-vector, the dotted Ewald sphere applies. 

The cone of scattered wave vectors admitted by the object lens remains constant, picking out a series of spherical 

caps in 3D reciprocal space. (c) Total volume in reciprocal space (seen in cross-section) spanned by the tilt-series 

configuration. 
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out-of-focus planes of the object, especially given that the illumination needs to be 

coherent for ptychography to work. A further disadvantage of this approach is that the 

experimental elegance of the tilted illumination configuration is lost: a mechanical 

stepping motor is required to move the filter, unlike an electronically controlled 

illumination array. We refer to this approach as the aperture-scanning method. 

6.2.1 The multislice method in real-space ptychography 

Real-space ptychography has a similar problem with the specimen thickness. During the 

formation of the specimen exit wave, a multiplicative approximation [26, 57] – when an 

illumination propagates through the specimen the exit wave at the instant plane after the 

specimen can be factorised as the multiplication of the illumination function and the 

transmission function of the specimen – is used. When the specimen is too thick, the 

approximation breaks down. As a consequence, the conventional ePIE algorithm cannot 

give right reconstructions anymore [67]. The multislice method, widely used in electron 

microscopy to account for the multiple elastic scattering effects [91], can circumvent the 

Figure 6.5: The Ewald sphere construction for aperture-scanning configuration. (a) Illustration of the experimental 

setup for aperture-scanning configuration. (b) The data representation on the Ewald sphere of aperture-scanning 

configuration. The method solves for the information over the surface of the Ewald sphere: the same information that 

is expressed in a conventional transmission microscope. (c) Total volume in reciprocal space (seen in cross-section) 

spanned by the aperture-scanning configuration. 
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problem by sectioning the thick specimen into a set of thin slices, as shown in Fig. 6.6 

(reproduced from the original 3D real-space ptychography work by Maiden et al [67]). 

In the forward calculation, as shown in Fig. 6.6a, the exit wave of a thick specimen can 

no longer be estimated by a simple multiplication of the incident illumination and the 

object transmission function. Instead, we section the thick specimen into a set of thin 

slices, so that the multiplication approximation is valid for each thin slice. Therefore, 

the exit wave of each thin slice can be calculated by the multiplication of its incident 

wave function and its transmission function. The resulting exit wave is then propagated 

to the next slice to be the incident wave of that slice. This process is repeated until the 

last slice is reached and its exit wave (i.e. the exit wave of the thick specimen) is 

propagated to the detector plane to give the diffraction pattern in the detector plane.  

In the update calculation, as shown in Fig. 6.6b, the modulus constraint is first applied 

to the diffraction pattern in the detector plane and backpropagation of the accordingly 

corrected diffraction pattern gives the updated exit wave of the last slice. Then the 

conventional ePIE update can be used to reconstruct the current slice and its incident 

wave, and backpropagation of the updated incident wave to the slice upstream gives the 

Figure 6.6: The schematic demonstration of real-space multislice ptychography. Reproduced from [67]. 
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updated exit wave of that slice. This reverse process is also repeated until all the slices 

are updated. In this way, real-space ptychography is able to break the thickness limit 

and provide 3D reconstruction of the specimen [67].  

6.2.2 The reconstruction algorithm of 3D Fourier ptychography 

Actually, the thickness problem in Fourier ptychography can also be considered as the 

breakdown of the multiplication approximation. When the specimen is thick, the exit 

wave of the specimen is no longer equal to the product of the plane wave illumination 

and the specimen. In this case, the multislice method can be adopted to estimate the exit 

wave of the specimen, just like real-space ptychography. However, this is not 

compatible with the ePIE algorithm described in section 6.1.1, because only the aperture 

plane and the image plane are included in that algorithm. To use the multislice method, 

the specimen plane needs to be involved in the reconstruction algorithm as well. 

Therefore, a new algorithm is developed to include all the three planes and the flow 

chart is shown in Fig. 6.7. 

A tilted plane wave illuminates the specimen and the exit wave estimated by the 

multiplication of the illumination and the specimen. The imaging lens performs a 

Figure 6.7: The flow chart of the reconstruction algorithm for multislice 3D Fourier ptychography. Compared to the 

2D reconstruction algorithm, it extends to three planes, so that it takes into account of the specimen plane where we 

can apply the multislice method. 

    

  

Tilt j

3PIE

update

Modulus 

Constraint

    

  

ePIE

update

detector plane

(image plane)

aperture plane

(back focal plane)
specimen plane



CHAPTER 6: 3D FOURIER PTYCHOGRAPHY 149 

 

 

Fourier transform on the exit wave and transforms it into a spectrum in the back focal 

plane. The spectrum is then filtered by a small aperture and it is also estimated by a 

multiplication. The propagation from the filtered spectrum to the detector plane is 

modelled by another Fourier transform, so a low-resolution image of the specimen is 

formed and detected. When the specimen is thin, the Fourier transform from the 

specimen plane to the aperture plane converts the tilts of the plane wave illumination 

into lateral shifts of the spectrum. This is exactly the same as the algorithm described in 

section 6.1.1. However, when the specimen is thick, the multislice method can now be 

used to estimate the exit wave. In this way, the 3D information can be extracted, just 

like 3D real-space ptychography.  

For simplicity, we use an object composed of two slices to demonstrate the algorithm, 

but extension to the cases with more than two slices is straightforward. With reference 

to Fig. 6.8, here we describe the algorithm step by step: 

1. For the nth iteration, at tilt angle j the plane wave ,1jP  is incident on the first layer of 

the current object guess 
,1nO  and the exit wave 

,1j  is calculated as 

      ,1 ,1 ,1 .j j nP O r r r   (6.6) 

2. The exit wave is then propagated over a distance of z to the second layer forming the 

Figure 6.8: Schematic detailing the nomenclature used to describe the new 3D algorithm.  
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incident wave 
,2jP  

    ,2 ,1 .j z jP    r r   (6.7) 

Because the distance z is normally a very small value, the propagation will be 

modelled by the angular spectrum method (see section 2.2.4). 

3. The exit wave for the second layer is calculated as the product of the incident wave 

,2jP  with the second layer transmission function 
,2nO  

      ,2 ,2 ,2 .j j nP O r r r   (6.8) 

4. The spectrum 
,j IS  at the back focal plane is related to the exit wave 

,2j  by a 

Fourier transform 

    , ,2 .j I jS    q r   (6.9) 

5. The spectrum is then filtered by the current aperture guess nA  at the back focal 

plane 

      , , .j E j I nS S Aq q q   (6.10) 

6. The low-resolution image guess 
jG  at the detector plane is formed by taking a 

Fourier transform of the filtered spectrum 

    , .j j EG S   r q   (6.11) 

7. The modulus constraint is applied at the detector plane, i.e. replace the modulus of 

the low-resolution image guess by the square root of the recorded image intensity 

jM  and keep the phase unchanged. Then an inverse Fourier transform is performed 

to give the new filtered spectrum ,' j ES  
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8. The aperture function is reconstructed via the parallel ePIE update and the spectrum 

reconstructed via the sequential ePIE update 
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9. The reconstructed spectrum is back propagated to the specimen plane by an inverse 

Fourier transform 

    1

,2 ,' ' .j j IS     r q   (6.14) 

10. Apply the conventional ePIE update to reconstruct the second layer and its incident 

wave 
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11. The reconstructed incident wave for the second layer is back propagated to the first 

layer to form the updated exit wave ,1' j  for the first layer 

    1

,1 ,2' ' .j z jP     r r   (6.16) 

12. The illumination for the first layer is the known plane wave, so we only need to 

reconstruct the first layer using the ePIE update 
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Here r and q represent the real-space and reciprocal-space coordinates respectively. The 

constant 𝛼 in the update functions can be altered to adjust the feedback of the update 

and it is normally assigned a value between 0 and 1. The forward calculation is from 

step 1 to step 6. Except the different incident illuminations (in Fourier ptychography it 

is a set of plane waves with different tilt angles, while in real-space ptychography it is a 

localised function with different lateral offsets), the forward calculation of the multislice 

method is basically the same for real-space ptychography and Fourier ptychography. 

However, for real-space ptychography the lateral scan is already performed in the first 

three procedures, Fourier ptychography needs further two procedures, step 4 and step 5, 

to accomplish the scan. The propagation in step 6 is again the same as in real-space 

ptychography, to calculate the wave field in the detector plane, except that the wave 

field is an image in Fourier ptychography but a diffraction pattern in real-space 

ptychography. The update calculation is from step 7 to step 13, which is basically to 

reverse all the steps in the forward calculation. The outputs of this algorithm are the 3D 

function of the specimen and the aperture function in the back focal plane. These two 

reconstructions are in difference spaces. In real-space ptychography, the outputs are the 

3D function of the specimen and the localised illumination function and both two 

functions are in real space. 

6.2.3 Optical experiments 

A proof-of-principle experiment was implemented here using a specimen made up by 

two microscope slides (Hydrilla stem tip and dicotyledon leaf) to test the algorithm. The 

separation between the two slides was about 1mm. The same setup and scan parameters 
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as used in section 6.1.2 were used here. One of the recorded images is shown in Fig. 6.9 

together with the microscopic images of the two slides. 

First, we tried a reconstruction assuming single slice in the specimen and the results are 

shown in Figs. 6.10a (specimen reconstruction) and 6.10c (aperture reconstruction). The 

specimen reconstruction seems like it is focused on the second layer with out-of-focus 

features from the first layer. However, it is not a right reconstruction because the 

algorithm is assuming a constant spectrum at the back focal plane is applicable here. 

This is clearly shown in the reconstruction of the aperture that is obviously very bad. 

Then we tried the modified algorithm assuming two slices with a separation of 1mm in 

the specimen on the dataset. The reconstructions are shown in Figs. 6.10b (the specimen) 

and 6.10d (the aperture). The algorithm successfully separated the two slides, producing 

reconstructions with both modulus and phase images and comparable resolution with 

the microscopic images taken with a 10× objective lens (0.25 NA) for each slide. It is 

easy to tell from the aperture reconstruction that the modified algorithm improves the 

Figure 6.9: The microscopic images (taken with a 10× (0.25 NA) objective lens) of the two slides, (a) and (b), that 

are made up the thick specimen used for the optical experiment and (c) one example of the recorded low-resolution 

images. 
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reconstructions by a substantial amount. Again, the small phase curvature in the 

aperture reconstruction indicates a slight defocus error in the experimental setup. 

To compare it with the aperture-scanning method, here we carried out another 

experiment with the illumination angle fixed but scanning the aperture at the back focal 

plane. Due to the limited space in the setup, unfortunately, the diaphragm will cause 

interference with other components during the scan. We therefore changed it to a 2mm 

circular aperture. This will not affect the comparison with the tilt illumination 

experiment, because only the size of the aperture (not the shape) matters. We also 

adjusted the step size (from 1mm to 435µm, so the overlap for both experiments is 

about 78%) to match the lateral shift of the spectrum in tilt illumination experiment. The 

rest of the parameters remained the same. 

Figure 6.10: The reconstructions of 3D Fourier ptychography. (a) The specimen reconstructions and (c) the aperture 

reconstructions without taking account of 3D effects using the multislice method. (b) The specimen reconstructions 

of the first slice (left column) and the second slice (the right column) and  (d) the aperture reconstructions with taking 

account of 3D effects using the multislice method. For all the figures, the top row is the modulus part and the bottom 

row is phase part. 
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In this configuration, the function lying in back focal plane is constant during the scan, 

so the conventional algorithm (described in section 6.1.1) is applicable on this dataset 

now. The reconstructions are shown in Fig. 6.11a. Among them, the specimen recon-

struction is actually the exit wave (not the transmission function) of the 3D specimen. 

Since the whole complex field is retrieved, we can propagate this exit wave to each slice 

to obtain the images of the two slides, as shown in Figs. 6.11b and 6.11c. As we can see, 

the fine structures are disrupted by the out-of-focus features from the other slice. 

Moreover, the aperture reconstruction cannot account for the defocus error as indicated 

by its flat phase reconstruction. This is because in this aperture-scanning configuration 

the defocus error stays fixed with the scattering field rather than with the aperture (as in 

the tilt-series configuration) during the scan. 
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Figure 6.11: The reconstructions of aperture scanning method. (a) The raw outputs of the 2D reconstruction 

algorithm (described in section 6.1.1). The inset in the top right corner is the aperture reconstruction. (b) The first 

layer reconstructions with the raw outputs propagated to the first slice. (c) The second layer reconstructions with the 

raw outputs propagated to the second slice. For all the figures, the top row is the modulus part and the bottom row is 

phase part. 
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6.2.4 Reconstruction resolution 

As we define the resolution of a 2D reconstruction (see Eq. (2.51)), the transverse 

resolution for a 3D reconstruction is defined to be the inverse of the frequency 

bandwidth in the plane perpendicular to the propagation direction. Likewise, the 

longitudinal (depth) resolution is defined to be the inverse of the frequency bandwidth 

along the propagation direction, as discussed by Chapman et al [42] in iterative CDI, 

and by Takahashi et al [69] and Tian et al [139] in multislice ptychography via the 

Ewald sphere constructions. In other words, a frequency bandwidth of B  in reciprocal 

space is able to resolve a feature size of 1 B  in real space. Therefore, to acquire the 

knowledge of reconstruction resolution we need to know the frequency bandwidth in 

the corresponding direction for 3D Fourier ptychography.  

Here we redraw the Ewald spheres for 3D Fourier ptychography as shown in Fig. 6.12. 

The radii of the Ewald spheres are 1  , with   being the wavelength of the radiation. 

I  denotes the half maximum tilt angle of the plane wave illumination and A  the half 

maximum angle subtended by the aperture at the back focal plane. 
,x yq  represents the 

frequency bandwidth in the transverse direction (e.g. x  and y ) and zq  the frequency 

bandwidth in longitudinal direction (e.g. z). If we define the numerical aperture of the 

tilt illumination as NA sinI I  and that of the aperture as NA sinA A , the two 

bandwidths 
,x yq  and zq  can be calculated by 
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  (6.18) 

So the corresponding resolutions are 
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The transverse resolution ( x  and y ) for Fourier ptychography is equivalent to a 

conventional microscope having an objective with an numerical aperture of 

NA NAI A . However, the longitudinal resolution ( z ) for Fourier ptychography is not 

equivalent to that conventional microscope whose longitudinal resolution would be 

 
2

1 1 NA NAI A    , which is slightly smaller. As we mentioned in section 6.1.2, 

Figure 6.12: The Ewald sphere construction for Fourier ptychography. The shaded area is the total volume of the 

accessible region in reciprocal space (seen in cross-section). The radii of the Ewald spheres are 1/λ, with λ being the 

wavelength of the radiation. θI denotes the half maximum tilt angle of the plane wave illumination and θA the half 

maximum angle subtended by the aperture at the back focal plane. ∆qx,y represents the frequency bandwidth in the 

transverse direction and ∆qz the frequency bandwidth in longitudinal direction. 
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the spectrum is expanded by 3.08 times the size of the aperture, which means 

NA 3.08NAI A , and the transverse resolution is calculated to be 1.72µm. As a result, 

we have 9 6NA 633 10 2 4.08 1.72 10 0.045A

        and NA 3.08NA 0.139I A  . 

The achievable longitudinal resolution for this imaging system is therefore about 59µm. 

However, this calculation only sets a limit for the highest achievable longitudinal 

resolution, because for different transverse spatial frequencies the bandwidth in the 

longitudinal direction is different. This means different features in the specimen will 

have different longitudinal resolution. The features with lower spatial frequency will 

have smaller longitudinal bandwidth, hence having worse longitudinal resolution. The 

zero spatial frequency has zero longitudinal bandwidth, which leads to infinite 

longitudinal resolution. This means that a Fourier ptychography imaging system can 

never resolve a 3D object along its longitudinal axis if the object is uniform along its 

transverse direction.  

To demonstrate the achievable longitudinal resolution for the experimental imaging 

system, a set of simulations with different distances between the two slices is carried out 

using the same parameters used in the optical experiments (to make sure the same NAs 

for the illumination and the aperture). The results are shown in Fig. 6.13. A very clear 

trend can be observed: the distance between the two slices increases the separation of 

them becomes cleaner in the reconstructions. The two slices cannot be distinguished 

until the distance reaches the theoretical resolution limit (i.e. 59µm), although each slice 

still has some leftover features from the other slice. As we increase the distance, the 

leftover features reduce. Upon close inspection, we could find that these leftover 

features are very smooth and they correspond to the low spatial frequency of the 

specimen spectrum. As we pointed out before, the low spatial frequency has a large 

longitudinal resolution. This means a long distance is necessary to ensure a clean 
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Figure 6.13: The simulation results using the same illumination NA and aperture NA used in the optical experiments. 

When the distance between the two slices increases the separation becomes cleaner in the reconstructions. A distance 

of at least 60µm is required to distinguish the two slices, although slightly cross talk between them still exists. 

Features with different spatial frequencies need different distances to ensure a clean separation.  
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separation of the two slices. For this particular simulation, 500µm is able to completely 

separate out the two slices.  

To increase the resolution, high NAs are needed for both the illumination and the 

aperture. In the extreme case where the illumination is able to be tilted to a solid π angle 

and the aperture is fully opened up, the accessible volume has a shape of a doughnut 

with the cross-section corresponding to two discs of the diameter of the Ewald sphere 

touching at the origin, as shown in Fig. 6.14. As a result, a longitudinal resolution of 

half wavelength is achievable (because NA NA 1I A  ). Good volumetric imaging has 

been demonstrated for 3D real-space ptychography using the multislice method [68]. By 

reciprocity, the accessible volume in Fourier ptychography is the same as in real-space 

ptychography. Therefore, 3D Fourier ptychography could achieve similar performance 

if we manipulate a system with a very wide range of incident illumination angles.  

Figure 6.14: Total accessible volume in reciprocal space for Fourier ptychography when the illumination can be tilted 

to a π solid angle and the aperture in the back focal plane is fully opened up. In this extreme case, the illuminate NA 

and the aperture NA are both 1. As a result, the achievable transverse and longitudinal resolutions are respectively 

quarter and half wavelength. 
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6.3 Conclusion and discussion 

In this chapter, we have explored Fourier ptychography in both 2D and 3D forms. 

Fourier ptychography is a Fourier domain version of real-space ptychography. 

Methodologically, the two forms of ptychography are the same. This also means they 

can share the same reconstruction algorithms. However, in Fourier ptychography the 

spectrum of the specimen and the aperture function are reconstructed, instead of the 

specimen and the illumination in real-space ptychography. Since the spectrum normally 

has a very bright spot in the centre and the search step size for the aperture update 

function in the ePIE algorithm is scaled to the brightest pixel, this dramatically 

diminishes the search step sizes for the pixels with small moduli, hence slowing the 

convergences for these pixels during the aperture reconstruction. A parallel update 

version can mitigate this problem by scaling the search step sizes with different values 

to make sure of relatively even convergences for all the pixels. Optical experiments 

have been carried out and verified the effectiveness of the modified ePIE algorithm. 

Like real-space ptychography, Fourier ptychography also has an upper limit for the 

thickness of specimen. When exceeding this limit, the specimen spectrum will be 

changing rather than just shifting during the tilting of the plane wave illumination. As a 

consequence, the 2D reconstruction algorithm is no longer applicable. By directly 

scanning the aperture in the back focal plane, instead of tilting the illumination, one can 

enable the validity of applying the 2D reconstruction algorithm, because the spectrum 

function is now constant through the whole scanning process. However, in this way 

only the exit wave of the thick specimen is reconstructed. Although the reconstructed 

exit wave can be propagated to different axial positions within the specimen to bring a 

particular plane in focus, there will be out-of-focus artefacts arising from other planes. 
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Furthermore, the experimental elegance of the tilting illumination configuration (i.e. no 

physical scan involved) is lost. Here in this chapter, we have modified the 2D 

reconstruction algorithm to include the specimen plane, so that the multislice method 

can be used to account for the thickness problem, which would otherwise not be 

possible. Optical experiments have been performed and demonstrated the success of the 

modified 3D reconstruction algorithm compared to the aperture scanning method. 

The reconstruction resolution of Fourier ptychography has also been discussed. It is 

given as the inverse of the frequency bandwidth accessible in reciprocal space along the 

corresponding direction. The transverse resolution is equivalent to that of a 

conventional microscope with an objective of the sum of the illumination NA and the 

aperture NA. The longitudinal resolution depends on the spatial frequency. Features 

with lower spatial frequency normally will have a worse longitudinal resolution and 

uniform 3D space (that has zero spatial frequency) cannot be resolved via Fourier 

ptychography. Simulations based on the configuration of the optical experiments have 

been modelled to demonstrate the achievable longitudinal resolution of the imaging 

system and the results have agreed with the theoretical calculation and analysis.  



7 Ptychographic Tomography 

Ptychography is suitable for any wavelength, but it is particularly successful in the 

regime of x-rays. There are two main reasons: 1. Short wavelength leads to high 

resolution. Compared to visible light, x-rays, especially hard x-rays, have a wavelength 

more than thousand times shorter. 10nm resolution via x-ray ptychography has been 

achieved using 0.2nm hard x-rays by Holler et al [140]. 2. The simple configuration 

makes the experiments very easy to implement. A localised illumination, a two 

dimensional scanning stage and a detector are enough to produce a high-resolution 

image [57]. No high quality imaging lenses and no complicated optical setup are needed. 

Although electrons have shorter wavelength, the electron microscope has extremely 

complicated optical arrangements, especially the lenses in between the specimen and 

the detector that distort and drift the diffraction patterns, imposing big challenges on the 

experiments and reconstructions. 

The quantitative phase signal recovery is a very important advance for x-ray 

ptychography, because for light elements in biological samples the absorption based 

imaging mechanism cannot provide enough contrast for us to observe the structures. 

Conversely, the phase shifts introduced by the samples are able to produce much better 

contrast [79, 107]. The linear relationship between the reconstructed phase signal and 

the physical parameter (the real part of the refractive index) of the samples allows us to 

quantitatively study the samples (e.g. the electron density [107, 141] or sample thick-

ness [85]). It does not require the samples to be weakly scattering to retain the 

quantitative relationship like the Zernike phase contrast imaging does [142], and it pro-

vides much higher resolution than the grating interferometer methods do [143]. 
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Tomography provides 3D reconstruction of a sample by using a series of 2D projection 

images taken at different sample orientations [144]. It is an important tool to detect and 

observe the internal structures of 3D samples non-invasively. Because of its high 

penetration power, x-rays are most frequently used for this technique. However, quite 

often the detected signal is attenuation-based (i.e. absorption contrast imaging) [145]. 

Ptychography provides a means to extract the phase signal at high resolution, so if we 

use it to acquire the 2D projection phase images for different sample orientations, 

tomography is able to reconstruct the 3D structure information of the sample at high 

resolution and with good contrast. This form of combination of these two techniques is 

referred to as ptychographic tomography. In this chapter, we will demonstrate and 

explore this technique with a synchrotron x-ray experiment using a micro-capillary 

filled with glass beads as the sample. The possibility of electron ptychographic 

tomography is also discussed based on the scale calculation with the x-ray experiment. 

7.1 Theoretical basics of tomography 

In this section, we will review some important theoretical background of tomography 

and the sampling requirement for ptychographic tomography. 

7.1.1 The calculation coordinates 

In practice, a tomographic experiment is normally implemented by rotating the sample 

relative to the radiation and detector as shown in Fig. 7.1a. However, during the 

calculation it is easier to fix the image (i.e. sample) while rotating the radiation and the 

detector in the opposite direction as shown in Fig. 7.1b. The two systems are equivalent. 

Here is this chapter all the calculations are applying the coordinates shown in Fig. 7.1b. 

In other words, when we say at the rotation angle of  , it means the radiation and the 

detector are rotated anti-clockwise by an angle  , but the sample is fixed. 



CHAPTER 7: PTYCHOGRAPHIC TOMOGRAPHY 165 

 

 

7.1.2 The Radon transform 

In mathematics, the Radon transform is an integral calculation along straight lines, i.e. a 

projection along the direction parallel to the lines [146, 147]. As shown in Fig. 7.2, if 

we use coordinate s  to denote the detector pixel position, the parallel lines at the 

rotational angle of i  are given by 

 cos sin 0.i ix y s      (7.1) 

If we use Dirac delta function   to represent a point, then the lines can also be 

represented by  cos sini ix y s    . Given a 2D function ( , )f x y , its Radon trans-

form along these parallel lines is defined as 

 ( , ) ( , ) ( cos sin )d d .i i ip s f x y x y s x y   

 

 

      (7.2) 

Figure 7.1: Coordinate systems in tomography. (a) Experimental coordinate system. During the data acquisition, the 

radiation source and the detector are fixed, while the specimen is rotated clockwise to different angles. (b) 

Calculation coordinate system. During the reconstruction, the image of the sample is treated still while the radiation 

source and the detector are rotated anti-clockwise. It is equivalent to the experimental coordinate system, but much 

easier for the calculation. 
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This is basically the projection of ( , )f x y  at rotational angle of i . If we rotate the 

sample from 0  to 180  at an angular step of   and measure the projection at each 

angle, assembling these projections gives the projection dataset ( , )p s   as shown in Fig. 

7.2. 

The projection dataset ( , )p s   is also called a sinogram [144], because for a specific 

point  ,i ix y  in the sample its projection position is  on the detector is related to the 

projection angle   by a sine function 

 cos sin .i i is x y     (7.3) 

As we can see from Fig 7.2, the projections of the small features, especially the bright 

edges of the sample, appear graphically as a number of blurred sine waves with 

different amplitudes and phases. 

Figure 7.2: Schematic representation of the Radon transform. It is mathematically expressed as the line integrations 

along the direction of the propagation of the radiation source. These line integrations are called the projection of the 

sample and it is a 1D function. For a 2D sample, its projection at a specific orientation will be a line. Assembling 

these lines in the order of the sample orientation angles, the 2D diagram we get is called sinogram.  
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7.1.3 Fourier slice theorem 

If the 2D Fourier transform of the sample ( , )f x y  is given as ( , )F u v  and the 1D 

Fourier transform of ( , )ip s   is ( , )iP w  , the Fourier slice theorem states that ( , )iP w   

equals a slice of ( , )F u v  going through its origin at the same angle of i  [144]. 

According to the definition, the 1D Fourier transform of ( , )ip s   is given by 

 2( , ) ( , ) d .i sw

i iP w p s e s 







    (7.4) 

Substitution of Eq. (7.2) into the above equation leads to 

 2( , ) ( , ) ( cos sin )d d d .i sw

i i iP w f x y x y s x y e s   

  



  

  
   

  
     (7.5) 

Switching the integral order gives 

 2( , ) ( , ) ( cos sin ) d d di sw

i i iP w f x y x y s e s x y   

  



  

  
   

  
     (7.6) 

Since   is zero everywhere except at zero, we have 

 
 2 cos sin

( , ) ( , ) d d .i ii x y w

iP w f x y e x y
  



 

 

 

     (7.7) 

According to the definition of a 2D Fourier transform, the above equation can be re-

written as 

    
cos , sin

, , .|
u w v w

P w F u v
 


 

   (7.8) 

If we use the polar coordinates w  and   to replace the Cartesian coordinates u and v (w 

and   are related to u and v by cosu w   and sinv w  ), ( , )F u v  can be written as 
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( , )PF w  , where PF  denotes the Fourier transform represented in the polar coordinate 

system. Therefore the Fourier slice theorem is simply described by 

 ( , ) ( , ).PP w F w    (7.9) 

A schematic representation of the Fourier slice theorem is shown in Fig. 7.3. 

7.1.4 Image reconstruction via filtered back projection 

Image reconstruction reverses the projection process, i.e. retrieving the image of the 

sample from the projection dataset. According to Fourier slice theorem, if we measure 

the projection data of the sample from 0  to 180  and perform the 1D Fourier transform 

on the projection dataset, we are able to fill in the 2D Fourier space of the sample slice 

by slice. To obtain the specimen, only an inverse Fourier transform is needed. However 

in this way the 2D Fourier transform of the specimen is represented in the polar 

coordinate system. To do the inverse Fourier transform using FFT, we need to convert 

Figure 7.3: Schematic representation of Fourier slice theorem. For a 2D sample, it says the Fourier transform of the 

projection of the sample (the projection is 1D, so the Fourier transform is also 1D) at a specific orientation angle is 

equal to the slice of the 2D Fourier transform of the sample that goes through its origin at the same angle.  
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the polar coordinates to the Cartesian coordinates [148]. This conversion requires inter-

polations in Fourier space that will introduce substantial errors and result in serious 

artefacts in the reconstruction [149]. 

A widely-used well-known reconstruction algorithm called filtered back projection 

(FBP) is able to produce very satisfactory reconstructions [150]. If we adopt the same 

idea as above, the image of the sample  ,f x y  is reconstructed by performing an 

inverse Fourier transform on ( , )PF w   in the polar coordinate system as 

    
2

2 ( cos sin )

0 0

, , d d .i w x y

Pf x y F w e w w



   



     (7.10) 

Since  ( , ) ,P PF w F w     , Eq. (7.10) can be rewritten as 

     2 ( cos sin )

0

, , d d .i w x y

Pf x y F w w e w



   







     (7.11) 

Substituting Eq. (7.9) into Eq. (7.11) leads to 

     2 ( cos sin )

0

, , d d .i w x yf x y P w w e w



   







     (7.12) 

Using the following substitutions 

 ( , ) ( , )Q w P w w    (7.13) 

and 

 2( , ) ( , ) d ,i wsq s Q w e w 





    (7.14) 

we have 
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cos sin

0

( , ) ( , ) d .|
s x y

f x y q s



 

 
 

    (7.15) 

Here ( , )q s   is a filtered version of the projection dataset ( , )p s  . The transfer function 

of the filter is w , which suppresses the oversampled low frequencies. Because of its 

shape, the filter is often called ramp filter [150]. Eq. (7.15) is basically a back projection 

process: smearing the filtered projections back over the paths along which the Radon 

transform is performed. Eq. (7.13) to Eq. (7.15) mathematically expresses the FBP 

algorithm and Fig. 7.4 shows the tomographic reconstruction process via the FBP 

algorithm. 

Figure 7.4: The flow chart of tomographic reconstruction via FBP algorithm. The data acquired from the experiments 

provides us the projections of the sample at different orientation angles. At each angle, the projection is first filtered 

along the detector index using the ramp filter. The filtered projections are then back projected to form the 

tomographic images of the sample. For a 3D sample, the above procedures need to be repeated for all the slices in the 

sample. 
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7.1.5 Sampling requirement for ptychographic tomography 

For tomography, the measurement of the projections is discrete and so is the Fourier 

space of the sample. So there are two types of sampling: the translational sampling for 

the projections and the angular sampling for the Fourier space. The translational 

sampling space x  is the size of the pixel pitch of the detector where the projections are 

recorded, as shown in Fig. 7.5. According to Shannon sampling theorem, we have 

 
1

,x
N k

 


  (7.16) 

where N is the number of sampling spaces and k  is the sampling space in reciprocal 

space. In ptychographic tomography, the projections are the reconstructed images from 

ptychography, thus the translational sampling is the pixel size of the ptychographic 

images, which is given in Eq. (2.51). It is determined by the highest frequency that can 

be measured in the diffraction plane.  

Figure 7.5: Sampling requirements of tomography. There are two samplings: translational sampling ∆k for the 

recorded projections and angular sampling ∆θ for the Fourier space of the sample. The resulting sampling space ∆kθ 

is proportional to the angular sampling ∆θ and the highest frequency in the projection image (i.e. ). In the 

experiments, we need to match these two samplings, which requires ∆k = ∆kθ. 
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The angular sampling space   for tomography is 

 ,
M


    (7.17) 

where M is the number of projection measurements over 180 . Corresponding to  , 

the sampling space k  in reciprocal space of the specimen is calculated by 

 .
2 2

N k
k

x





 
   


  (7.18) 

It is proportional to the angular sampling space   and the highest frequency of the 

projection image (i.e. 1 x ). To match the translational sampling and the angular 

sampling, we require k k    and this leads to 

 .
2

N
M


   (7.19) 

For a given sample, if its diameter is D and the reconstruction pixel size is x , Eq. 

(7.19) can be written as 

 .
2

D
M

x





  (7.20) 

This sets a minimum number of projections needs to be measured for a specific sample 

size D to be reconstructed at a specific resolution x  [148]. 

7.2 X-ray ptychographic tomography experiment of glass beads 

As a demonstration of ptychographic tomography, an x-ray experiment was performed 

on the I13 beamline at the Diamond Light Source in UK. The sample was a 42/52µm 

(inner/outer diameter) glass capillary filled with 1µm glass beads. 
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7.2.1 Data acquisition 

The monochromated x-ray energy was selected at 9.12KeV ( 0.136nm  ). The setup 

is shown in Fig. 7.6a. A Fresnel zone plate (FZP) with NA of 4.6×10
-4

 was used to 

focus the beam. A central-stop (CS) was used to block the transmitted beams and an 

order-select-aperture (OSA) was used to choose the first order of the diffracted beams 

from the FZP. Upstream of the FZP, two sets of slits were adjusted to select a coherent 

region of the beam. Located at about 2.3mm upstream of the FZP focus, the sample was 

mounted on a translational piezo stage that itself was mounted on a rotational stage. 

Because of this arrangement, at each sample orientation the translational scan needs to 

be adjusted to compensate for the rotation angle. The single-photon counting ‘Merlin’ 

detector (composed of 2×2 arrays of MediPix3 chips each with 512×512 pixels of 

55µm
2
) was positioned 7.284m downstream of the sample to measure the diffraction 

patterns. To resolve the 1µm glass beads in a 42µm glass tube (the thickness of the glass 

tube is not included), Eq. (7.20) gives a minimal number of projection measurements of 

132 (the pixel size x  has to be smaller than the radius of the glass beads). Here 180 

sample orientations spaced by 1 degree ranging from -90 degrees to 90 degrees were 

Figure 7.6: The x-ray ptychographic tomographic experiment. (a) The optical configuration of the experiment. The 

three dimensional scanning stage, including the coordinate system, is shown in the inset enclosed by the dashed 

rectangular. (b) An example of the diffraction intensity measurements (square rooted for display purpose). 
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measured. At each orientation, the sample was scanned over a 12×26 raster grid with a 

nominal step size of 2.5µm plus ±20% random offsets, covering a field of view of 

30μm×65μm. At each scan position, the exposure time was 0.25s, giving average total 

counts of 1.1×10
5
 per diffraction pattern. The whole measurements took about 12 hours. 

One example of the recorded diffraction patterns (cropped to a region of 256×256, 

where significant photons were detected) is shown in Fig. 7.6b. 

7.2.2 Ptychographic reconstruction 

Since the sample has a thickness of 42µm, prior to reconstruction, we need to make sure 

the projection approximation is well satisfied. Given the fact that the NAs of the FZP 

and the object are very small, according to the calculation in section 6.2.3 the maximal 

allowable thickness is approximately given by 

 
2 2

2

NA NAO P

z


 


  (7.21) 

where NAO and NAP are the numeric apertures of the object and the FZP respectively. 

The cropped diffraction pattern has an NA of 
6 4128 55 10 7.284 9.7 10      and its 

NA is equal to the addition of NAO and NAP, so   4 4NA 9.7 4.6 10 5.1 10O

      . 

The maximal allowable thickness is 577µm, so the reconstruction is well modelled by 

the projection approximation. 

At each angle  , the ptychographic reconstruction of the object is the representation of 

the projected transmission function of the sample along the beam propagation direction, 

which can be expressed as [151] 

  
2

( , , ) exp ( ) 1 d ,
i

t x y n z





 
  

  r   (7.22) 
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where   is the wavelength, x, y and z are the experimental coordinates (the orientation 

is indicated in Fig. 7.6a), r is the sample coordinates and is related to the experimental 

coordinates by    , , cos sin , , cos sinx y zr r r x z y z x      r , and 1n i     is 

the complex refractive index of the sample.   and   are determined by physical 

properties of the material under investigation and the distributions of   and   can 

provide different contrast images of the sample: the imaginary part   causes attenua-

tions of the incident x-rays, giving an absorption image of the sample; the real part   

introduces phase shifts on the incident beam, forming a phase image of the sample. For 

hard x-rays,   is normally much bigger than  , especially for light elements. As a 

consequence, phase images always have much better contrast than absorption images in 

x-ray regime. 

At each sample orientation, 400 iterations of ePIE were used to reconstruction the 

projected complex transmission function of the sample as well as the illumination 

function. Fig. 7.7 shows the ptychographic reconstructions when the sample is rotated to 

Figure 7.7: Ptychographic reconstructions at the rotational angle of -90 degree. (a) The modulus part of the 

reconstructed object. (b) The phase part of the reconstructed object. (c) The modulus part of the reconstructed probe. 

(d) The phase part of the reconstructed probe. 

a

b

c

d

10µm
3.5µm
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-90 degrees. As we can see, the phase part (determined by  ) indeed has much better 

contrast than the modulus part (determined by  ) and better signal-to-noise ratio as 

well. It is interesting to notice that at the edge of the tube some glass beads are 

crystallised. The discontinuities of the phase at the edge of the tube are caused by phase 

wrapping, which happens when the sample introduces a phase change that exceeds the 

range ,  . 

7.2.3 Tomographic reconstruction 

Here for the tomographic reconstruction, we use the phase images 

    
2

, , arg ( , , ) ( cos sin , , cos sin )d .x y t x y x z y z x z


       


       (7.23) 

As we discussed in section 2.3.8, the simultaneous reconstruction of the illumination 

and the specimen in ptychography has some inherent ambiguities, such as a phase ramp, 

phase offset and lateral shifts. These ambiguities need to be eliminated before the 

tomographic reconstruction [107]. 

1. Removal of phase ramp and phase offset 

The ptychographic scan has covered the whole sample in x direction with some extra 

free space at each side (see Fig. 7.7b). The free space provides an easy way to remove 

the phase ramp and offset. First we cut out a M×N rectangular region from the free 

space reconstruction. Suppose the phase ramp and the phase offset are expressed as 

  ( , ) exp ,x y i ax by c        (7.24) 

where a and b are the linear coefficients of the phase ramp along x and y directions 

respectively, c is the phase offset. Then performing a discrete Fourier transform (DFT) 

on the cut out region, we have 
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   DFT exp( ) ( ,exp
2 2

,)
aM bN

ici ax vc uby 
 

        (7.25) 

where   is Dirac delta function, u and v are the reciprocal coordinates. So the linear 

coefficients of the phase ramp can be calculated from the shift of the brightest spot of 

the Fourier amplitude from the image origin. The phase offset c is directly given by the 

phase value of the brightest spot. A higher accuracy of the linear coefficients of the 

phase ramp can be obtained by using a DFT subpixel refinement method [152]. After 

obtaining a, b and c, we manually form an opposite phase  ( , )conj x y  and use it to 

multiply the reconstruction to remove the phase ramp and phase offset. Since these 

phase ambiguities can be different for each ptychographic reconstruction at different 

sample orientations, this step needs to be applied to all the ptychographic 

reconstructions. 

2. Phase unwrapping 

Phase unwrapping is to reverse the wrapping process and return the phase signal to a 

continuous form. The phase is well reconstructed here and has very few phase residues - 

inconsistent points in the unwrapped phase [153] - at the edges of the field of view. 

Since phase residues cause problems and difficulties for the phase unwrapping, here we 

cropped out a region with no residues as shown in Fig. 7.7b. With this region, the phase 

unwrapping becomes very easy. The unwrapping of a two dimensional phase image can 

be broken down into two one dimensional phase unwrapping (row and column). 

Suppose ,i j  represents the phase value located at row i and column j of a 2D phase 

image, the unwrapping of the ith row of this phase image can be described by the 

following steps: 
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1) Calculate the phase difference between two adjacent pixels via
, 1 ,i j i jE    from 

1j  ;  

2) If E is bigger than π when j m , then 
, , 2i j i j    for j m ; 

3) If E is smaller than -π when j n , then 
, , 2i j i j    for j n ; 

4) Repeat the above steps until j reaches to the last pixel of the ith row. 

After going through all the rows, the phase unwrapping along the row direction is 

considered finished. Now we do the same implementation for the column direction. 

Then the phase unwrapping of a 2D image is completed. Fig. 7.8 shows the phase 

unwrapping results of the phase image shown in Fig. 7.7b. The top image is the result of 

applying phase unwrapping along column direction. Noticeable changes are the two 

vertical discontinuity lines, which become straight after phase unwrapping. The bottom 

image is the phase unwrapping result of the top image along the row direction. This is 

the phase image that can be used for the tomographic reconstruction. 

Figure 7.8: Phase unwrapped images of the object reconstruction. The top one is the result after applying phase 

unwrapping on the phase image of the reconstructed object along vertical direction. The bottom one is the result after 

applying phase unwrapping on the top one along horizontal direction.  
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3. Align projections 

Due to the mechanical errors of the stage and lateral shifts ambiguity in the 

reconstructions, the phase images need to be aligned before the tomographic reconstruc-

tion. The alignments include both x and y directions. The randomly positioned glass 

beads lead to projections with random features (see Fig. 7.8). Alignment via cross-

correlation [154] or fiducial markers [155] is not very effective here. Since the field of 

view covers the whole sample along x, the integration of the unwrapped phase images 

along x should be the same for all the measurement angles. This provides us a way to 

align the phase images along y.  

We sum the unwrapped phase images along x for all the angles, which can be 

formularised as 

 ( , ) ( , , )d .y x y x       (7.26) 

As shown in Fig. 7.9a, the distribution of   for different angle   look very similar, but 

with different offsets along y. To align them, we choose a section (enclosed in the red 

rectangular) with big variations and arbitrarily pick a vertical line (or the average of all 

the vertical lines) as reference. Then for a specific vertical line we shift it to different 

positions and for each position we calculate the difference with respect to the reference 

within the selected section. The position that corresponds to the smallest difference will 

be the aligned position. If we denote the line reference as ( , )y  , and the selected 

section as a top hat function w, we can formularise the alignment as 

 
2

min ( , ) ( , ) ,
y

y

w y y y  


       (7.27) 

where y  denotes the offset along y. Repeat the implementations for all the angles to 

complete the alignment for all the phase projections as shown in Fig. 7.9b. 
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Since the integration of the unwrapped phase images along y will not be the same for 

different angles, we cannot use the above method for the alignment along x. However, 

there is a hidden fiducial marker – the projection centre-of-mass – that allows us to do 

the alignment along x [156]. For angle  , the projection centre-of-mass is defined as 

 
( , )d

( ) ,
( , )d

x x x
x

x x

 


 




  (7.28) 

with 

 ( , ) ( , , )d .x x y y       (7.29) 

According to the definition of projection in Eq. (7.2), we have 

  ( , ) ( , ) cos sin d d ,x z x z x zx f r r r r x r r         (7.30) 

with 

 
2

( , ) ( , , )d .x z x y z yf r r r r r r





     (7.31) 

Substitution of Eq. (7.30) into Eq. (7.28) leads to 

Figure 7.9: Phase projections alignment along y (the vertical direction). The distribution of  is shown (a) 

before and (b) after the alignment.  

a b
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with 
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  (7.33) 

xr  and zr  are the centre-of-mass of ( , )x zf r r  along xr  and zr  respectively. According to 

Eq. (7.3), the relation described by Eq. (7.32) indicates that the centre-of-mass of 

( , )x zf r r  will always be projected onto ( )x   at angle  . However, the relations 

described by Eq. (7.3) and Eq. (7.32) are based on the assumption that the rotation 

centre will be projected onto the centre of the detector. If there is an offset s between 

the rotation centre projection and the detector centre, as the real case always does, the 

relation shown in Eq. (7.32) is then modified as 

 ( ) cos sin ,x zx s r r        (7.34) 

In an ideal situation, the distribution of ( )x   over the measurement angle   should be 

sinusoidal. Due to the misalignment, the distribution will be wobbly around the sinusoid. 

The alignment along x is basically trying to correct the random offset of ( , )x   for 

each angle. The strategy is to use the linear least squares fitting method to find the 

sinusoid, i.e. to find out the values of s , xr  and zr . This can be written as a set of 

simultaneous equations in matrix form as 
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  (7.35) 

where n is the number of angular measurements. The standard linear least squares 

solution [157] to Eq. (7.35) is  

 
1

T T


   σ A A A ρ   (7.36) 

For all the angles (from 0  to 179 , 180 measurements), we can calculate the ( )x  , 

cos  and sin  and thus find solutions for s , xr  and zr . According to Eq. (7.34), the 

estimated projection centre-of-mass ( )ex   can then be calculated for each angle, so the 

offset along x for each angle is 

 ( ) ( ).ex x x      (7.37) 

Figure 7.10: Phase projections alignment along x (the horizontal direction). The distribution of  is shown (a) 

before and (b) after the alignment.  

a b
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Fig. 7.10 shows the distribution of ( , )x   before and after alignment along x. The 

difference is obvious at the edges. It should be noted that the accuracy of the alignment 

along x is dependent on the accuracy of the alignment along y. If the y direction is not 

well aligned, the projection ( , )x zf r r  as defined in Eq. (7.31) will be different for 

different angles, then the basis for the alignment of x direction described in Eq. (7.32) is 

violated. Moreover, to ensure Eq. (7.32), here the alignment along y is done before the 

Figure 7.11: The tomographic reconstructions of the glass beads in the 42/52um micro-capillary. (a) 3D rendering of 

the tomographic reconstruction. (b) The top view. (c) The side view. (d) The front view.  

a

b c d
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alignment along x. 

After all these pre-processes described above, the phase images are ready to be fed into 

FBP algorithm for the tomographic reconstruction. Each row in the unwrapped phase 

images from all the angles will give a slice reconstruction of the 3D distributions of the 

component   of the sample. Assembling all the slice reconstructions gives the whole 

3D reconstruction as shown in Fig. 7.11. 

7.2.4 The possibility of electron ptychographic tomography 

In high resolution transmission electron microscopy, the image of an amorphous 

material becomes uninterpretable and meaningless when the specimen reaches certain 

thickness, because the superimposition of too many layers of random structures will 

completely wash out meaningful signals and become noise [158, 159]. This actually can 

be clearly seen in the x-ray ptychographic reconstruction of the glass beads as shown in 

Fig. 7.7b. Except the crystalline structures at both inner edges of the capillary, the 

reconstruction in the central region is completely unidentifiable because of the overlap 

of so many beads. However, the tomographic reconstruction, as shown in Fig. 7.11, 

surprisingly reveals the arrangement of every single bead in the bulk. This prompts a 

possibility of seeing the atom arrangement in amorphous materials via electron 

ptychographic tomography. 

To demonstrate the possibility, we use the x-ray experiment as a scaled experiment for 

the electron case. The important factor of this demonstration is to show whether an atom 

can be well resolved enough for it to be seen clearly in the 3D reconstruction for the 

electron case. From the 3D reconstruction of the x-ray experiment, we know that the 

beads are well resolved enough. Here we use the ratio of the diameter of the target (i.e. 

the bead in x-ray case or the atom in electron case) versus the pixel size in the 
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reconstruction to make the comparison between the x-ray case and the electron case. 

The ratio basically shows how many pixels across the target in the reconstruction. For 

the x-ray case, the pixel size, according to Eq. (2.51), is 70nm (calculated by λ/2NA). 

The ratio of the x-ray case is therefore about 14.3. 

For the electron case, suppose the wavelength is 1.97pm (i.e. the beam energy is 

300keV) and the scattering has a semi-angle of 30mrad. This gives a pixel size of 0.33Å 

in the reconstruction. If the atom has a diameter of 2.4Å, the ratio of the electron case is 

7.27, which is about half of the ratio of the x-ray case. To match these two ratios, we 

need to reduce the scattering angle of the x-ray experiment by half. This can be realised 

by cropping down the diffraction patterns from 256×256 to 128×128. For this reason, 

we did another reconstruction using the same diffraction data as above but with only the 

central region of 128×128. The reconstruction is shown in Fig. 7.12. Compared to the 

result shown in Fig. 7.11, the resolution of each individual bead has not been 

compromised too much by the cropping of the diffraction patterns. If reviewing the 

diffraction pattern shown in Fig. 7.6b, we will know the reason is because most of the 

counts are in the unscattered disc, which means the cropping only cut out very few 

useful counts. This means the electron ptychographic tomography is able to resolve 

2.4Å atoms in a 3D amorphous material given a wavelength of 1.97pm and a semi-

scattering-angle of 30mrad. 

The capillary in the above x-ray experiment contains about 40 layers of beads. To 

further test the ability of this technique by using more layers of beads, another set of x-

ray ptychographic tomography experiment is carried out using a 117/141µm 

(inner/outer diameter) capillary filled with 1µm glass beads. The capillary diameter is 

still much smaller than the maximal allowable thickness set by the projection 

approximation. The experimental setup remains the same as above. According to Eq.  



CHAPTER 7: PTYCHOGRAPHIC TOMOGRAPHY 186 

 

 

(7.20), at least 367 projection measurements are needed. Here 360 sample orientations 

spaced by 0.5 degree ranging from -90 degrees to 90 degrees were measured (slightly 

undersampled). At each orientation, the sample was scanned over a 12×70 raster grid 

with a nominal step size of 2.5µm plus ±20% random offsets, covering a field of view 

Figure 7.12: The tomographic reconstructions of the glass beads in the 42/52um micro-capillary using the diffraction 

data with only the central region of 128×128. (a) 3D rendering of the tomographic reconstruction. (b) The top view. 

(c) The side view. (d) The front view. 

a

b c d
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of 30μm×175μm. At each scan position, the exposure time was 0.15s, giving average 

total counts of 5.4×10
4
 per diffraction pattern.  

The diffraction patterns were cropped down to 128×128 for the ptychographic 

reconstructions. The decrease of the exposure time leads to slightly noisy 

reconstructions, which imposes challenges in the phase unwrapping and the projection 

alignment. The increase of the sample dimension and the slight undersample in the 

angular measurement also cause degradation in the reconstruction. The first attempt of 

the tomographic reconstruction is shown in Fig. 7.13.  

However, there are many challenges and problems present in the electron tomographic 

experiments [160] or even just in the electron ptychographic experiments, like the 

sample preparation, the instability of the sample stage and the projection alignment at 

such small scale (0.33Å), the limited dose to avoid radiation damage, the missing wedge 

of information due to a restricted tilt range (if the sample has a shape of plate), etc. 

Although the x-ray experimental results show great potential of electron ptychographic 

tomography for revealing atom arrangement in amorphous materials in theory, there is 

still a long way to go in practice. 

7.3 Conclusions 

In this chapter, we have briefly reviewed some important theoretical basis of 

tomography and mathematically derived the Fourier slice theorem and the filtered back 

projection (FBP) reconstruction algorithm. In addition, we have also discussed the two 

sampling requirements, translational sampling and angular sampling, in tomography. 

The match of these two samplings imposes a limit on the size of the object under 

observation for a desired reconstruction resolution with a specific number of projection 

measurements.  
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Figure 7.13: The tomographic reconstructions of the glass beads in the 117/141um micro-capillary. (a) 3D rendering 

of the tomographic reconstruction. (b) The top view. (c) The side view. (d) The front view.  

a

b dc
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Furthermore, we have demonstrated the combination of ptychography and tomography 

via an x-ray experiment. Since ptychography has phase ramp and offset ambiguities in 

the phase reconstruction and also the phase values are wrapped in the range between –π 

and π, we need to remove the ambiguities and unwrap the phase. The ambiguities can be 

eliminated using the free space in the ptychographic reconstruction as the reference, 

because the free space should have flat phase of zeros. Phase unwrapping is easy when 

no residues are present and it can be broken down into two one-dimensional 

unwrapping processes respectively along vertical and horizontal directions. 

Even though the ambiguities are removed and the phases are unwrapped, the phase 

projections need to be aligned before the tomographic reconstruction due to the 

mechanical errors of the stage and lateral shifts ambiguity in the ptychographic 

reconstructions. The alignment is also broken down into two steps: vertical alignment 

and horizontal alignment. The vertical alignment is realised by making use of the 

consistency of ( , )y  , i.e., the distribution of the phase projection summation along 

horizontal direction for different sample orientations. The horizontal alignment is 

achieved by utilising the centre-of-mass of ( , )x zf r r  will always be projected onto ( )x   

at angle  . At this point, the phase projections are ready to be fed into FBP to produce 

tomographic reconstructions. 

Because of the overlap of the beads, projection images produced via ptychography have 

unidentifiable random structures, but tomographic reconstruction is able to recover the 

3D arrangement of the beads in the bulk. This shows great possibility of seeing the 3D 

arrangement of atoms in amorphous materials via electron ptychographic tomography. 

The scale calculation between the x-ray experiment and the electron case further 

strengthens the possibility in theory. Another set of x-ray ptychographic tomography 
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experiment is carried out on a bigger capillary to further demonstrate the power of this 

technique. However, in real situations, there are still a lot of problems present in the 

electron tomographic experiments or even just in the electron ptychographic 

experiments. 

Ptychographic tomography, possessing the strengths of both ptychography and 

tomography, is able to deliver 3D quantitative phase contrast images at very high 

resolution. It will be beneficial to many other fields, like life science and material 

science. 



8 Summary and Future Work 

8.1 Summary 

The thesis was focused on the developments of ptychography to solve partial coherence 

and achieve 3D imaging.  

Partial coherence is important because of its common existence in real experiments, 

especially in x-rays and electrons. It seriously detriments the quality of the 

reconstructed images, so to remove it from the reconstructions becomes very important 

and beneficial. In ptychography partial coherence can be solved non-iteratively using 

WDDM or iteratively via mixed state decomposition. This thesis investigated both 

methods. 

WDDM is an elegant linear solution to solve the quadratic phase problem, but a dense 

scan at a step size of the final resolution in real space is needed to collect a big 4D 

intensity dataset. The Fourier transform of this 4D dataset gives us the product of the 

WDFs of the specimen and the illumination. During this formulisation, we found that a 

condition needs to be fulfilled and that is the sum of the specimen size and the probe 

size needs to be smaller than the calculation window size in each direction. In this 

formulisation, we can separate out the influence of the probe from the specimen by a 

deconvolution. However, in the presence of noise the deconvolution is ill-conditioned. 

It introduces serious errors in the places where the illumination WDF has relatively 

small values. To mitigate this problem, we have presented a means to design a 

favourable illumination whose WDF has an even distribution. After the deconvolution, 

we are presented with a 4D dataset that contains the phase difference between all pixels 

in the diffraction plane. It is this dataset allows us to solve the phase problem. To 
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recover the high frequency information lost during the experiment, we proposed a 

projection strategy that makes use of all the available data to do the job, and hence it 

outperforms the stepping out method used in 1990s by averaging out the inconsistencies 

present. Also, we have presented an iterative method to suppress noise effects by 

exploiting the high redundancy of the 4D dataset. The basic idea is to utilise the well 

deconvolved data to iteratively refine the badly deconvolved data. Furthermore, we 

have revisited the effect of spatial partial coherence and for the first time demonstrated 

the reconstruction of the coherence function using a model calculation via WDDM. 

However, it needs the source to be symmetric and smoothly varying, so that the 

coherence function will not have phase information that is not recoverable using 

WDDM. 

Mixed state ptychography provides much more flexibility in solving experimental 

instabilities (including partial coherence), as long as the instability can be decomposed 

into a set of states that contribute to the experiment incoherently. There are two types of 

mixed state ptychography: spatially mixed state ptychography and temporally mixed 

state ptychography. Spatially mixed state ptychography means the mixed states are 

caused by the spatially variation (or anything equivalent, such as spatial partial 

coherence) in the experiment. Every probe state will interact with every object state in 

spatially mixed state ptychography. We have given the reconstruction algorithm 

modified based on ePIE and its relation with the gradient descent method. The sum of 

the Fourier intensities of all the mixed states is kept to equal to the corresponding 

intensity measurement during the reconstruction, and for each individual state its 

Fourier intensity is scaled according to their proportion in the sum. It is this 

modification of the modulus constraint that enables the reconstruction of the mixed 

states. However, we have mathematically shown that some linear combinations of the 
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underlying mixed states (both object and probe) are also able to satisfy the modulus 

constraint, leading to reconstruction ambiguities. We have also mathematically and 

experimentally demonstrated that the orthogonalisation of the probe states in spatial 

partial coherence and the phase-only response of the object states can break the 

ambiguity and lead to true reconstructions. Furthermore, we have looked into the effects 

of a diffused probe on the reconstructions in the presence of spatial partial coherence. 

The use of diffuser increases the angular range of the illumination and enriches the 

information content encoded in the recorded intensity measurements. Eventually, it 

helps the reconstruction, especially when the specimen has very simple structures. Also, 

a diffuser can help us estimate the degree of partial coherence in real-time by looking at 

the histogram distribution of the diffraction pattern. 

In temporally mixed state ptychography, the mixed states are wavelength dependent. 

This means a particular wavelength will only trigger one specific object response. The 

ePIE-based modified reconstruction algorithm and its relation with the gradient descent 

method have been given. The reconstruction algorithm is very similar to that used for 

spatially mixed state ptychography, but with each probe state only interacting with one 

specific object state (not all the object states). We have mathematically proven that, 

because of this, the linear reconstruction ambiguity occurred in spatially mixed state 

ptychography is broken in temporally mixed state ptychography, although the modulus 

constraint is applied in the same way for the two cases. We have also experimentally 

demonstrated the breakdown of the linear reconstruction ambiguity using two lasers 

(633nm and 675nm). The good results have suggested the great potential of this 

technique to solve for temporal partial coherence. Moreover, as an inspiration of the 

temporally mixed state ptychography, an iterative method has been developed to 

reconstruction the static background noise in the intensity measurements by treating it 
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as the diffraction pattern from an extra temporal state. In this way, we are able to 

implement the reconstruction without having to measure and subtract the background 

noise. Experimental results have shown that the reconstruction of the background noise 

relies on the variation of the superimposed signals through the scan. The low 

frequencies of the diffraction patterns vary very slowly and this causes high errors in the 

reconstruction of the background noise. 

A specimen in its natural state is usually 3D. Having 2D images, either under the 

projection approximation or by sectioning thin slices from a thick sample, is not able to 

completely characterize it. Ptychography has two ways to extend its ability to the depth 

dimension: the multislice method and ptychographic tomography. This thesis explored 

both techniques. 

Fourier ptychography is a Fourier variant of real-space ptychography. A conventional 

microscope can be easily modified to implement this technique by inserting a small 

aperture in the back focal plane of the objective lens. The ptychographic scan is carried 

out on the spectrum of the specimen by tilting parallel illumination to different angles 

and the intensity measurement takes places in the image plane. Methodologically, this is 

the same as real-space ptychography where the small aperture would lie in the specimen 

plane, the ptychographic scan would be realised by scanning the specimen, and the 

intensity measurement would occur in the back focal plane. Although this in theory 

allows the two forms of ptychography to share the same reconstruction algorithms, the 

different nature of the specimen and its spectrum determine that different considerations 

need to be taken. The spectrum function normally has a very bright spot in the centre 

and presents very high dynamic range. In the ePIE algorithm, because the search step 

size is scaled to the biggest value, this dramatically diminishes the search step sizes 

(hence slowing down the convergences) of the pixels with small moduli during the 
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aperture reconstruction. We have adopted a parallel update to avoid this problem by 

scaling the search step sizes to different values, resulting in relatively even 

convergences for all the pixels. Besides, we have also extended the reconstruction 

algorithm to involve three planes: the specimen plane, the back focal plane and the 

image plane. In this way, the multislice method can be used to provide 3D information 

when the multiplicative approximation is broken because of a big thickness of the 

specimen. This is not possible for the original form of the reconstruction algorithm 

where only the back focal plane and the image plane are considered. Experimental 

comparisons have been made between this multislice method and a method that directly 

scans the aperture in the back focal plane without tilting the illumination. The latter 

method is only able to reconstruct the exit wave of a thick specimen, whilst the 

multislice method can reconstruct the 3D transmission function of the specimen. 

Furthermore, the reconstruction resolution has been discussed via the Ewald sphere 

construction. It is defined as the inverse of the frequency bandwidth accessible in 

reciprocal space along the corresponding direction. The depth resolution has been 

further explored via simulations. The results have suggested that the achievable depth 

resolution is feature-dependent. Features with lower spatial frequency normally will 

have a worse depth resolution and uniform 3D space (that has zero spatial frequency) 

cannot be resolved via Fourier ptychography.  

Under the multiplicative approximation, a 2D image produced by ptychography is the 

projection of the 3D transmission function of a specimen. If the specimen is rotated to 

different orientations and a set of 2D projection images are obtained via ptychography, 

an isotropic 3D reconstruction of the specimen can be achieved via tomography. We 

have demonstrated this technique step by step with a synchrotron x-ray experiment of a 

micro-capillary filled by 1µm glass beads. The capillary has an inner/outer diameter of 
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42/52µm and the glass beads. 180 sample orientations spaced by 1 degree ranging from 

-90 degrees to 90 degrees were measured. For each orientation, ptychography was used 

to reconstruct the corresponding 2D projection image. The phase part of the 

ptychographic reconstruction of the specimen shows great contrasts between the beads 

and the capillary, whilst the modulus part is very noisy and barely provides any contrast. 

However, the simultaneous reconstruction of the illumination and the specimen in 

ptychography causes inherent ambiguities, such as a phase ramp, phase offset and 

lateral shift. Phase ramp and phase offset are random, and they cause inconsistency 

between the reconstructions of different orientations. Fortunately, the field of view 

(FOV) of ptychography covers the whole sample in horizontal direction, providing us 

some extra free space at both sides. Free space should be flat, making it very easy to 

remove the phase ramp, and free space should have zero phase change, making it very 

easy to remove the phase offset. Apart from these two phase reconstruction ambiguities, 

phase wrapping also causes inconsistency. We therefore need to unwrap the phase as 

well. Since we cropped out a well reconstructed region with no phase residues, phase 

unwrapping is rather easy. A 2D phase unwrapping can be divided into two 1D phase 

unwrapping implemented one after another and the order does not matter. For 1D phase 

unwrapping, it is realised by sequentially calculating the phase difference of two 

adjacent pixels, once the phase difference exceeds π, the phase value of the current pixel 

will be added 2π or -2π depending on whether the phase difference is smaller than –π or 

bigger than π. Furthermore, the lateral shift ambiguity causes misalignment of the object 

reconstructions of different orientations. Even if there is no lateral shift ambiguity, 

misalignment could happen because of the mechanical instabilities in the stages. The 

misalignment is in both horizontal and vertical directions and the strategies of the 

alignment for the two directions are different. The alignment for the vertical direction is 
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relatively easy because the integration along horizontal direction of the phase 

reconstructions at different orientations should be the same. The alignment for the 

horizontal direction is slightly complicated. It utilises a hidden fiducial marker called 

the projection centre-of-mass. When a 2D image is projected to a set of lines at different 

angles, for a specific angle the centre-of-mass of the 2D image is always projected onto 

the centre-of-mass of the corresponding line. The distribution of the centre-of-mass of 

the lines versus orientation angles should be a sinusoidal. The actual distribution can be 

calculated according to the experimental geometry and a linear least squares fitting 

method can then be used to find the right sinusoidal distribution. In this way, the 

alignment for horizontal direction is accomplished. At this point, the phase 

reconstructions of different orientations are ready to be fed into FBP algorithm for the 

tomographic reconstruction. The tomographic reconstruction of the beads, especially the 

scale calculation between the x-ray and the electron, demonstrates great potential of 

electron ptychographic tomography for seeing the 3D arrangement of atoms in 

amorphous materials, even though there are still plenty of practical problems that need 

to be solved before it can really happen. 

8.2 Future work 

Some implications for future research of ptychography are discussed below. 

Ptychography is a lensless phase imaging technique. The lensless feature of ptychogra-

phy has gained huge success in high resolution x-ray imaging, because it not only 

substantially reduces the cost to manufacture high performance x-ray lenses (like 

Fresnel zone plate), but also simplifies the imaging system without compromising the 

achievable resolution. The lensless feature also gives plenty of space for complex 

sample operation, like installing complicated sample mounting system or storing sample 
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in culture dish. In the aspect of reducing the complexity and the cost of imaging systems, 

ptychography has great potentials and will play important roles. 

Although lensless feature is not viewed as important in electrons and visible lights, the 

phase imaging feature still enables ptychography to become popular in these 

wavelengths. Phase imaging allows to see transparent structures without applying 

contrast agents (like stain and phosphor), which not only simplifies the sample 

preparation, but also images the samples at their nature states. Moreover, the phase 

image provided by ptychography is of high quality and quantitative. The quantitative 

phase information is linearly related to the optical thickness of the sample and it allows 

us to quantitatively study the sample. As an important quantitative phase imaging tool, 

ptychography will find its wide applications in material science, life science and etc. 

Another very important feature of ptychography is that it is able to reconstruct the 

illumination function. This can separate out any effects of the illumination on the 

specimen and improve the image quality. Accurate model of the illumination function 

needs complete investigation of the optical components placed upstream. Anything like 

aberration or misalignment would cause a wrong illumination model, and hence 

affecting the reconstructed images. Being able to reconstruct the illumination saves all 

the troubles to obtain an accurate illumination model. Moreover, comparing the actual 

illumination wavefield (the reconstructed illumination function) and the ideal 

illumination model would also allow us to characterize the upstream optics and correct 

the defeats in the optics. This wavefront sensing feature of ptychography is becoming a 

powerful tool for optics characterization [161] and optical metrology [162].  

Compared to iterative algorithms, WDDM is much quicker to reconstruct the images. 

However, a big 4D dataset needs to be obtained from a dense scan, which makes 
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WDDM not experimental friendly. But as a theoretical tool, WDDM provides us 

insightful understanding about ptychography. It could be a very useful tool to 

systematically study the sampling of ptychography which further includes the effects of 

the illumination size and the detector pixel size, not just about the scan step size in 

specimen plane and the sampling pitch in detector plane as investigated in [102]. 

Moreover, WDDM on its own may not seem very practical, but it can be combined with 

other imaging method that shares the same experimental implementations, like scanning 

transmission electron microscopy (STEM), to provide phase contrast information about 

the specimen under inspection. STEM performed in annular dark-field (ADF) imaging 

mode is able to provide contrast of atomic number (i.e. Z-contrast) which helps to 

identify heavy atoms. Phase contrast image, on the other hand, gives good contrast of 

the light elements. These two images can be obtained simultaneously in one single 

experiment [163].  

Mixed state ptychography has substantially relaxed the requirements on the experiments 

and extended the ability of ptychography. Multi-state models arise in many physical 

situations where mixed state ptychography may become a useful tool. Examples of the 

application of multiple probe states include modelling partial spatial coherence from an 

extended source, lateral specimen vibrations and detector point spread [64]. Examples 

where multiple object states apply are also wide ranging and include axially vibrating 

structures – the tympanic membrane being one interesting instance [164] – and flicker 

in red blood cell membranes [165]. Models relying on both multiple probe and multiple 

object states are of particular relevance to electron microscopy, where the electron beam 

is always partially spatially coherent and its interaction with a specimen generates 

multiple states in the form of plasmon and phonon resonances and structural instabilities, 

for example in the case of a bistable dislocation core [166]. 
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So far, temporally mixed state ptychography has not been fully explored and only 

discrete wavelength spectrum has been demonstrated. To further explore it, experiments 

using continuous wavelength spectrum would be ideal and necessary. As a result, high 

quality lasers used in optical ptychography maybe can be replaced with low cost LEDs, 

or gigantic synchrotron x-rays sources used in x-ray ptychography can be replaced by 

laboratory table-top x-rays. Besides, this also indicates the the possibility of 

spectroscopic imaging via ptychography in one single experiment, instead of one 

ptychographic scan for each energy [129]. Moreover, ptychography has only been 

demonstrated to solve spatially and temporally partial coherence separately, but it is 

very likely that ptychography is able to handle both of them simultaneously. The 

reconstruction structure can be envisaged that the linear reconstruction ambiguity will 

occur between the spatially mixed states within each wavelength, but not between 

different wavelengths. This could substantially relax both the spatial and temporal 

coherence requirement on the radiation source, like the field emission gun used in 

electron ptychography. 

Multislice ptychography can achieve 3D imaging without the need of sample rotation. 

From the perspective of data acquisition, it is a great advantage. However, the 

longitudinal resolution is rather low compared with the transverse resolution. 

Ptychographic tomography, on the other hand, can produce isotropic 3D high resolution, 

but the data acquisition is very time-consuming, because the sample need to be rotated 

180 degrees at a small angular step and a ptychographic scan needs to be performed at 

each sample orientation. A combination of these two techniques could increase the 

longitudinal resolution and meanwhile reduce the angular measurements. It looks very 

appealing and definitely worth further exploration. Whilst the attention is dragged to 

improve the longitudinal resolution, multislice ptychography has another very important 
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potential and that is to extend the depth of field. High resolution imaging techniques 

have very small depth of field and as a consequence only a thin layer of the specimen 

can be imaged in focus. Multislice ptychography, however, can extend the limited depth 

of field by sectioning the out of focus features into one layer or more (depending on the 

optical setup and sample thickness) [167]. 

Lastly, the concept of ptychography is being generalised and adopted to many other 

imaging techniques. Conventional ptychography requires an overlapping scan of a 

localised illumination across the specimen at a grid of positions and the measurements 

of the transmitted or reflected signals somewhere downstream. The overlapping scan 

provides diversity in the measurements that allows to reconstruct the image of the 

specimen. The measurements need to take place at a different plane from the scanning 

plane, so that the lost information can be encoded in the measurements. A successful 

modification of conventional ptychography is Fourier ptychography which utilises a 

series of tilted plane waves and a small aperture to accomplish the overlapping scan in 

Fourier space of the specimen. The use of LED array to generate the tilted plane waves 

makes it very easy to be compatible with most existing microscope platforms, no major 

changes to be made. As a result, a normal microscope can deliver high resolution 

quantitative phase images [78]. Moreover, the concept of ptychography can be applied 

to incoherent imaging as well. An epifluorescence microscope has been successfully 

modified to achieve resolution improvement using randomly structured illumination 

[168]. This implies that the general concept of ptychography can be applied to many 

other problems to retrieve the lost information during the measurements. 
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