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Abstract 

Background: Use of contrast enhanced cardiac magnetic resonance imaging 

(MRI) for identification of focal pathology (perfusion deficit and scar) is 

widespread. Quantitative analysis of dynamic contrast enhanced (DCE) MRI 

data may allow objective assessment of focal and diffuse disease. However it is 

a complex process and not widely adopted outside the research domain. For 

accurate quantification temporal variation in relative contrast agent 

concentration in the myocardium and feeding blood supply must be measured. 

While MRI signal intensity can be used as a probe of contrast agent 

concentration its response is non-linear.  

Aims: In this thesis non-linearity correction methods for quantitative myocardial 

DCE-MRI are compared, the feasibility of a novel bookend T1 based correction 

is tested and the method is used in clinical studies to assess myocardial 

characteristics in health and ischaemic disease. 

Methods: Signal non-linearity correction methods were compared using 

simulation, phantom experiments and a volunteer study. Methods compared 

were independent sampling strategies (dual-bolus and dual-sequence), 

previously proposed model based correction (native T1 or proton density 

weighted image based) and bookend T1 based correction which is proposed as 

a method to account for imperfect magnetisation preparation. The feasibility of 

the bookend T1 method was tested and characteristics of heathy and diseased 

myocardium were assessed in clinical studies of ischaemia and infarction.  

Conclusions: Native T1 based correction has been found to be highly sensitive 

to imperfect magnetisation preparation, and is thus recommended against. 

Model based correction using proton density weighted images or bookend T1 

data have been found to be more accurate and precise than dual-sampling 

methods. The clinical studies have demonstrated the feasibility of the bookend 

T1 based method and have yielded insights into myocardial characteristics in a 

range of conditions. 
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vd Distribution Volume Fraction 

ve Extracellular-Extravascular Volume Fraction 
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 Chapter 1

Introduction 

This thesis details work carried out between October 2012 and September 2015 

investigating the clinical application of quantitative analysis of contrast 

enhanced cardiac MRI data to probe myocardial tissue status. 

Prior to the period of the PhD I worked with my supervisors to retrospectively 

analyse dynamic contrast enhanced (DCE) magnetic resonance imaging (MRI) 

data acquired from a previous study in order to gain understanding of the 

applicability of the distributed parameter model to such data. This work resulted 

in the publication of a paper [1] and informs the work carried out during the 

PhD, but does not form part of this thesis. The structure of the work that is 

contained in the following chapters is detailed below. 

1.1 Structure of thesis 

Cardiovascular magnetic resonance (CMR) is an established tool for the 

evaluation of the structure and function of the human heart and vasculature and 

is employed routinely in clinical practice for a wide range of indications [2]. The 

work of this thesis focuses on a specific area of CMR, the quantitative 

assessment of myocardial tissue status using gadolinium based contrast agent 

(GBCA) enhanced MRI techniques. 

The use of GBCAs in CMR has become ubiquitous in the assessment of the 

myocardium in both ischaemic heart disease and various cardiomyopathies. 

This is based largely on work in the 1990s by Wilke et al [3, 4] and Kim et al [5, 

6] who demonstrated that the techniques allows identification of regions of 

suppressed perfusion and myocardial damage respectively. In addition to 

allowing visual identification of abnormal myocardium the technique affords the 

potential to perform quantitative analysis to determine absolute or relative 

physiological properties which may allow more objective assessment of focal 

pathology, and assessment of diffuse disease processes in which the lack of 

image contrast between myocardial segments or areas limits the usefulness of 

direct visual interpretation of acquired images. 
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The techniques discussed in this thesis rely on the underlying theory of the 

biodistribution of the contrast agents used, the physical effect of the contrast 

agent and its impact upon magnetic resonance signal intensity, and the biology 

and physiology of the heart. The theory of these areas is discussed in Chapter 

2. As discussed in the technical and clinical literature reviews in Chapters 3 and 

4 the majority of research on quantitative CMR for assessment of myocardium 

has focussed on the use of DCE-MRI to quantify myocardial perfusion or the 

use of contrast equilibrium MRI to estimate the distribution volume of the 

contrast agents used.  

Contrast equilibrium based estimates of contrast agent distribution volume rely 

on accurate quantification of the longitudinal relaxation time of magnetisation of 

water and proteins both the myocardium and blood, and such measurements 

may also be used in the quantitative analysis of DCE-MRI. Simulation and 

phantom based studies assessing the performance of variants of the commonly 

used modified Look-Locker inversion recovery (MOLLI) approach [7] are 

discussed in Chapter 5. 

The remainder of the thesis focusses on the assessment of multiple 

physiological parameters from the analysis of DCE-MRI using deconvolution 

analysis. Further background theory on this approach is discussed in Chapter 2. 

Chapter 6 describes the general methodology used for this approach in clinical 

studies, including those described in the subsequent chapters. For absolute 

quantification of physiological parameters from DCE-MRI it is necessary to be 

able to accurately relate magnetic resonance signal intensity to relative contrast 

agent concentration. Chapter 7 describes simulation and phantom studies 

performed to assess and compare the performance of several previously 

proposed methods and a novel proposal for this analytical stage. 

Chapters 8 and 9 describe results of clinical studies performed using the 

methodology described in earlier chapters. The former focusses on results from 

a control group of healthy volunteers using a one-compartment tracer kinetic 

model to assess the methods described in Chapter 7 in vivo, while the latter 

compares results from cohorts of patients with ischaemic heart disease to these 

volunteers using distributed parameter model constrained deconvolution. Finally 
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in Chapter 10 overall conclusions are described and areas in which further 

study are warranted are discussed. 

1.2 Equipment used 

All experimental work described in this thesis used data acquired using a 3 

Tesla Philips system or simulations of the sequences as implemented on this 

system. The system was upgraded from an Achieva TX system, as initially 

installed, to receive dSTREAM radiofrequency (RF) system architecture and 

updated software (from release 3.2 to 5.1) during the course of the PhD 

(December 2014). 

1.3 Ethics 

This thesis includes work involving the collection of data from healthy volunteers 

and patients including acquisition of image data, injection of adenosine and 

gadolinium based contrast agents, administration of oxygen and sampling of 

venous blood. The study protocols were approved by the local research ethics 

committee (12/YH/0169 STEMI study and 13/YH/0013 CAD hyperoxaemia 

study, the latter including volunteer and patient scanning) and complied with the 

Declaration of Helsinki. All patients and volunteers gave written informed 

consent. 

1.4 Chronology of project and resulting limitations 

The work presented in this thesis includes analyses of data collected during 

clinical studies led by different members of the research team  as described in 

the acknowledgements. 

Data acquisition for the ST-Elevation Myocardial Infarction (STEMI) study 

commenced near the outset of the PhD project and so the protocol was defined 

while naïve to the results of the work described in chapters 7 & 8. Indeed the 

concept of using bookend T1 based non-linearity correction was arrived at 

during analysis of the STEMI data and identification of the fact that several 

cases in this study could not be analysed using native T1 based correction. 

While the aim of this study was initially to measure myocardial characteristics 

post-STEMI the work also led to the development of the aim to compare non-
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linearity correction methods, including those identified in the literature review 

(section 4.3.2.2) and the proposed bookend T1 based approach. Additionally the 

original modified Look-Locker inversion recovery (MOLLI) T1 mapping scheme 

was used in this study, rather than optimised schemes identified through later 

work both in this thesis and reported in the literature. 

The scanner upgrade referred to in section 1.2 occurred after data acquisition 

for the STEMI study was completed. Part of the software upgrade included 

addition of the Philips interleaved scanning capability which allows 

instantaneous switching between multiple scans. This functionality allowed the 

dual-sequence approach, which was not possible before upgrade, to be 

performed on the scanner. This was implemented by Dr David Higgins of Philips 

Healthcare (see acknowledgements on page viii) and used in the subsequent 

hyperoxaemia study protocol. The simulation and phantom studies occurred 

concurrently with this clinical study. Consequently acquisition protocols for the 

clinical study were finalised prior to the outcomes of the simulation and phantom 

studies being known. 

A resulting limitation of the work in this thesis is thus that the optimal sequences 

and techniques identified in the phantom and simulation work have not always 

been used in the clinical protocols. In particular a low-flip angle proton density 

weighted sequence was not included in the hyperoxaemia study protocol so that 

correction method was not used for analysis for the patient studies and the data 

in the volunteer non-linearity correction methods comparison study was 

acquired with a sub-optimal proton density weighted sequence. However the 

clinical aims and the test of the feasibility of the bookend T1 approach in 

clinically usable protocols have been achieved through both patient studies. 

1.5 Additional work completed during PhD 

Beyond the work described in the following chapters I have supported additional 

research in cardiac MRI which has led to co-authorship on conference abstracts 

and papers in the following topics; comparing bolus administration strategies [8, 

9] and T1 mapping techniques [10] for contrast equilibrium based myocardial 

extracellular volume (ECV) fraction estimation, application of ECV mapping to 

develop understanding of myocardial adaption to exercise [11], analysis 
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strategies for myocardial perfusion MRI data [12], inter-vendor comparison of in 

vivo longitudinal relaxation time (T1) measurements [13] and establishment of 

reference values for T1
 and ECV in an international multi-centre study [14]. 

Further analysis of data from the cohort of ST-elevation myocardial infarction 

(STEMI) patients described in Chapter 9 has led to co-authorship on abstracts 

and publications relating to the application of non-contrast enhanced 

susceptibility weighted MRI [15, 16] and the prognostic value of extracellular 

volume mapping in comparison to measurement of the extent of late gadolinium 

enhancement [17, 18]. 

I have also supported an international cardiac MRI study investigating 

hypertrophic cardiomyopathy by authoring sections of the imaging manual 

relating to T1 mapping quality control. Finally, with colleagues from the Leeds 

Clinical CMR Group I authored a Pocket Guide on Cardiovascular Magnetic 

Resonance Physics for Clinicians which is endorsed by the European 

Association of Cardiovascular Imaging (EACVI) CMR Section of the European 

Society of Cardiology (ESC) [19]. 
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 Chapter 2

Background Theory 

In this chapter aspects of biological, medical and physical theory relevant to the 

topic of the thesis are described. 

The first section describes briefly the structure, function and physiology of the 

myocardium in health, and introduces common disease pathways and 

consequences. 

The following two sections describe first the underlying physics of MRI signal 

intensity and subsequently how it varies in the presence of MRI contrast agents. 

These sections are not intended to provide a comprehensive overview of MRI 

physics but serve to describe the theory relevant to the contents of this thesis. 

Finally the bio-distribution of extracellular contrast agents following intra-venous 

injection is described. This pattern of distribution informs the techniques used to 

quantitatively assess the physiological status of the myocardium that are 

employed in this thesis. 

The combined process of detection of the presence of these contrast agents, 

quantification of their concentration, and interpretation of these data to assess 

physiological status depends on the theory outlined in the four sections of this 

chapter. 

2.1 Clinical and biological background 

In this section a brief description of the clinical and biological background 

relating to the structure, function and perfusion of the myocardium both in health 

and disease, as relevant to this thesis, is provided. 

2.1.1 Normal myocardial structure, function and perfusion 

The basic function of the heart is to pump blood around the body through the 

pulmonary and systemic circulation. The mechanical force to drive this 

circulation is produced by cardiomyocytes, the muscle fibres which are the 

major constituent of the myocardium that forms the walls of the four chambers 

of the heart. The pulmonary circulation is driven by the right side of the heart 
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and the systemic by the left. Each side consists of two chambers, the atria into 

which blood arrives before passing into ventricles from where it is driven into 

either the pulmonary artery or the aorta respectively (Figure 2-1, left). This 

thesis focusses on assessment of the left ventricular myocardium, which 

normally has the greatest myocardial thickness of the four chambers as it is 

required to generate the largest pressures in order to drive the systemic 

circulation. 

 

Figure 2-1 – Left – Cross-sectional schematic of the structure of the heart 
showing the four chambers (RA – right atrium, RV – right ventricle, LA – 
left atrium and LV – left ventricle). Also shown are the major veins feeding 
the RA (SVC – superior vena cava and IVC – inferior vena cava) and the 
LA (PV – pulmonary veins) and major arteries draining the RV (PA – 
pulmonary artery) and LV (Ao – aorta).Ovals in the atria indicate inlets 
from the veins. Black arrows indicate direction of blood flow. Pink shaded 
regions show myocardium, with that forming the division between the LV 
and RV being the intraventricular septum. Right - Diagram of location of 
major coronary arteries in relation to structure of the heart. The major 
coronary arteries are indicated by RCA – right coronary artery, LCA – left 
coronary artery, Cx – circumflex and LAD – left anterior descending 
artery. 

The myocardium is perfused by the coronary arteries, the right and left coronary 

arteries being the most proximal branches of the aorta (Figure 2-1, right). These 

arteries branch sequentially into smaller arteries (the two major branches of the 

left coronary artery being the circumflex and the left anterior descending 

arteries), arterioles and then the capillary bed of the myocardium. 
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The walls of the capillaries consist of a single layer of endothelial cells and 

across these walls nutrient, gas and waste product exchange occurs to support 

the metabolism of the cardiomyocytes. Deoxygenated blood returns to the right 

atrium through the coronary venous system. The major vessels usually lie 

outside the epicardial surface of the heart and smaller branches permeate the 

myocardium to perfuse the full transmural thickness of the tissue (Figure 2-2). 

 

Figure 2-2 – Schematic of coronary circulation. Major coronary vessels lie 
on the epidcardial surface with smaller vessels penetrating the 
myocardium. Gas, nutrient and waste product exchange occurs across 
the thin wall of the capillaries. 

It should be noted that while the description above implies a linear structure in 

which each region of myocardium is perfused through a single route from the 

aorta in reality the network of macro- and micro-vasculature is more complex 

with regions perfused by multiple pathways potentially overlapping and links 

between parallel vessels existing. Following myocardial injury or in the presence 

of vascular disease this network may undergo a process of remodelling to 

maintain sufficient perfusion to affected myocardium or flow through healthy 

regions may increase to compensate for reduced perfusion through affected 

vasculature. 

At a microscopic level the myocardium consists of three major components, the 

cardiomyocytes and the microvasculature, supported within the extracellular 

matrix of the interstitium. This is depicted in Figure 2-3. 
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Figure 2-3 – Simplified diagram of the microscopic structure of the 
myocardium. Blood (red) flows through the microvasculature (indicated 
by red arrows) to perfuse the tissue. Gas, nutrient and waste products 
exchange across the capillary walls (dashed lines), supporting 
metabolism in the cardiomyocytes (brown ovals) to allow contractile 
function. The cellular and vascular structure of the myocardium is 
supported by the interstitial extracellular matrix (blue) which 
predominantly consists of collagen. 

The structure of the myocardium is regular, with sheets of parallel fibres of 

varying orientations throughout the layers of the heart [20] to facilitate the 

shortening, thickening and twisting of the ventricle which occurs during the 

cardiac cycle. Capillaries are arranged in parallel to the fibres [21] with a high 

density of almost one capillary per cardiomyocyte fibre in the adult heart [22]. 

However not all capillaries are open at all times [23]. The individual capillaries 

have a small lumen diameter, narrower than the typical red blood cell diameter, 

and so the red blood cells have to deform to pass through the microvasculature. 

Myocardial function responds autonomically to regulate systemic supply of 

oxygenated blood. Cardiac output can be increased either by increasing heart 

rate or the volume of blood ejected per cardiac cycle (or a combination of both). 

To facilitate the increased energy demand required for the cardiomyocytes to 

achieve this, myocardial perfusion can adapt and increases during periods of 

increased cardiovascular function, for example during exercise, emotional 

stress or after heavy meals. Myocardial stress can also be induced 

pharmacologically, as is used for stress perfusion studies in this thesis. For the 

work described in this thesis adenosine is used as a stress agent. This agent 

leads to dilation of the coronary vessels, with a lesser effect in stenosed vessels 

(see section 2.1.2) leading to a differential increase in blood velocity and flow 
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rate in vessels depending on their pathological status as well as decreased 

blood pressure and increased heart rate [24]. Similarly abnormalities in the 

function (i.e. the wall motion) that are not present at rest may also be induced 

by exercise or pharmacological stress. Increased myocardial blood flow is 

associated with a combination of increased arterial blood pressure and 

decreased microvascular resistance, the latter of which may arise due to a 

combination of dilation of small arteries and arterioles as well as the opening of 

additional capillaries (capillary recruitment) [23]. 

2.1.2 The myocardium in disease 

Diseases of the myocardium can broadly be classified into ischaemic and non-

ischaemic categories. Ischaemic heart disease arises due to limited perfusion 

through the coronary circulation arising from partial or complete occlusion of 

one or more of the coronary arteries or their sub-branches. Such occlusions 

arise due to atherosclerosis, in which fatty and fibrous materials are deposited 

on the arterial walls forming plaques (Figure 2-4).  

 

Figure 2-4 – Diagram showing a healthy artery (left) and arteries with small 
(middle) and large (bottom) artherosclerotic plaques (mid-left and mid-
right). Plaques may rupture (right) causing a blood clot to form, 
completely obstructing the lumen. 

Early phases of atherosclerosis may not lead to the presentation of symptoms 

as the plaques may not limit flow sufficiently to hinder myocardial metabolic 

activity. Eventually occlusions may advance such that adequate perfusion for 

normal myocardial metabolism levels may persist but without the capacity to 

increase sufficiently during periods of increased cardiovascular activity. This 

can lead to stress induced angina where symptoms of chest pain arise only 

during periods of increased cardiovascular demand. The series of processes 

that occur during ischemia have been described as the ischeamic cascade [25] 
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and initially consists of sub-clinical presentations which may not be detected 

before progressing to abnormalities in wall motion abnormalities and 

electrocardiographical findings as well as symptoms experienced by patients. 

This cascade is shown schematically in Figure 2-5. 

 

Figure 2-5 – The ischaemic cascade – figure reproduced from the original 
1987 description by Nesto and Kowalchuk [25]. 

Coronary atherosclerotic disease can be stable, where the lumen narrowing 

plaque limits maximal blood flow but is at lower risk of rupture. However when a 

plaque ruptures thrombus (blood clot) may occlude the artery or fragments may 

occlude vessels downstream, cutting off blood supply to a region of 

myocardium. This leads to ischaemia-induced damage to cardiomyocytes, 

including necrosis, in a process referred to as myocardial infarction. Over time 

the space previously occupied by the viable cells is replaced by a collagen 

network through the mechanism of replacement fibrosis [26]. 

Treatment for myocardial infarction may include physical intervention 

(“revascularisation”) in which blood supply to the affected myocardium is 

restored through mechanical means by opening the arterial lumen. Following 

infarction and revascularisation the myocardium may exist in several 

physiological states as shown in Figure 2-6. Example clinical MRI images 

showing these regions are presented in Chapter 9. 
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Figure 2-6 – Indication of the short axis view (left, green dashed line) 
intersecting both ventricles and a schematic in this view (right) of 
potential myocardial tissue states in acute myocardial infarction. A region 
of infarcted myocardium (orange) may be surround by oedematous tissue 
(blue) and may contain a core with microvascular obstruction (black). The 
pink regions are the blood filled cavities of the respective chambers. 

Regions of reperfused infarcted myocardium have restored blood flow but 

consist predominantly of non-viable myocardium and so contractile function is 

not expected to be restored. This region may contain a core in which perfusion 

has not been fully restored due to obstruction of the microvasculature 

downstream of the major occlusion which was targeted during therapy, and its 

presence has negative prognostic implications [27]. This obstruction may occur 

as a consequence of reperfusion, which can cause narrowing of the 

microvascular lumina through swelling of endothelial cells in the capillary walls 

or compression of the capillaries by swollen cardiomyocytes [28, 29]. Such 

regions of microvascular obstruction may appear only transiently in imaging 

studies (being detectable in the first few minutes after contrast agent 

administration) or be persistent over a longer period of time, with a poorer 

prognosis being associated with the latter (e.g. in the study by de Waha et al 

[30] the presence of microvascular obstruction on imaging 15 minutes after 

contrast injection was independently associated with negative outcomes 
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following myocardial infarction in contrast to presence only at 1 minute post-

injection). MVO was present in the majority of patients in this study (78%), and 

of those it was persistent in the majority (90%) of cases. 

Finally peri-infarct regions of oedematous myocardium may surround the infarct 

in an inflammatory response to the process of ischaemia and reperfusion. As 

these regions contain viable cardiomyocytes contractile function can be 

recovered. 

The spatial extent of these regions, and in particular the transmurality (extent 

throughout the thickness of the myocardium) of the infarct have been shown to 

have high prognostic significance [31, 32] and so imaging techniques with 

sufficient resolution to characterise the spatial distribution of these tissue types 

offer valuable clinical information. Quantitative analysis of image data can be 

performed on a pixel-wise basis allowing assessment of heterogeneity of 

disease. However this is limited by the need for robust compensation for both 

respiratory and cardiac motion and the fact that data from single pixels are 

noisier than that averaged over larger regions. Consequently analysis is 

commonly (including in work described in this thesis) performed on a regional or 

segmental basis, or on data averaged over the full extent of the myocardium 

within the imaging field of view. 

As described earlier (p10) vessels with atherosclerotic disease exhibit a 

reduced response to stress compared to healthy vessels. When disease is 

present that limits perfusion only at stress imaging findings (and symptoms) 

may only present at stress with normal findings at rest while abnormalities 

present at both rest and stress indicate myocardial damage (infarction) is likely 

[33] which has implications for patient treatment as contractile function is not 

expected to be recovered for the latter even if perfusion is restored. 

While this thesis focusses on ischaemic heart disease cardiomyopathies also 

arise due to a range of non-ischaemic aetiologies, including genetic 

predisposition, drug (e.g. chemotherapeutic agent) exposure, inflammatory 

response or as a secondary consequence of systemic or other diseases. 

Changes in structure and composition of the myocardium may occur during 

cardiomyopathy in response to chemical or mechanical influences. A common 
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pathological pathway is interstitial fibrosis, in which the interstitial portion of the 

myocardium increases due to collagen deposition [26]. This can lead to 

impaired contractility of the myocardium leading to limited cardiovascular 

function and morbidity or mortality. Some changes to the myocardium, including 

interstitial fibrosis, may be partially or wholly reversible through medical 

intervention or reduction of physical load on the myocardium. However 

replacement fibrosis is considered irreversible [26]. 

2.1.3 Clinical Imaging Modalities for Ischaemic Heart Disease 

In clinical practice several imaging modalities are available for evaluation of 

cardiac disease processes, each with different strengths and weaknesses as 

summarised in the review article by Schuijf et al [33] amongst other literature. 

As described in this review imaging can serve two purposes, functional 

assessment of the consequential outcomes of ischaemic heart disease and 

anatomical imaging of the coronary vasculature itself. Functional information 

can include assessment of changes to myocardial perfusion, structure and 

physiology as well as changes to the motion of the heart chamber walls which 

can arise due to such pathology. Dependent on the tissue or vascular properties 

being examined different imaging modalities, and different methods within those 

modalities, can be sensitive to different stages of the ischaemic cascade. Due 

to the difference in behaviour of the myocardium at rest and stress, and 

specifically the fact that some abnormalities in perfusion or function may only be 

observable at stress due to the behaviour described earlier (p10) imaging with 

many of these modalities is commonly performed at both stress and rest. 

Ultrasound (echocardiography) can allow visualisation of wall motion 

abnormalities and, through the use of echogenic microbubble contrast agents, 

myocardial perfusion and has the benefit of being relatively cheap and readily 

available as well as safe and well tolerated by patients. However the technique 

relies on availability of suitable acoustic windows and image quality can be 

compromised in some patients, particularly those of large body habitus. 

Nuclear medicine techniques (including single photon emission computed 

tomography, SPECT, and positron emission tomography, PET) allow 

assessment of myocardial perfusion; albeit with limited spatial resolution and 

without the temporal resolution to allow assessment of wall motion. Contrary to 
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non-ionising imaging modalities (MRI and echocardiography) nuclear medicine 

techniques impart a radiation dose to the patient and so the risks associated 

with this must be minimised and justified against the benefit of the clinical 

information obtained from the scan. 

MRI allows multi-parametric assessment of myocardial wall motion, perfusion 

and tissue structure (the latter two discussed throughout this thesis) with the 

benefits of high spatial and temporal resolution in comparison to nuclear 

medicine techniques and high soft-tissue/blood image contrast in comparison to 

echocardiography. Like echocardiography MRI imparts no ionising radiation 

risk. However the technique is contraindicated for patients with some medical 

implants or foreign bodies, and patients with severe renal dysfunction are 

contraindicated for contrast enhanced MRI using the most commonly used 

gadolinium based agents. 

Anatomical imaging of the coronary vasculature is most commonly performed 

using x-ray angiography although both MRI and x-ray computed tomography 

(CT) based techniques have been developed. As this thesis focusses on 

functional assessment of the myocardium these techniques are not discussed 

further here. 

2.1.4 Relationship of Pathophysiology to Contrast Enhanced 

Magnetic Resonance Imaging 

As described later (sections 2.3 and 2.4) magnetic resonance imaging can be 

sensitive to the presence of injected contrast agents which locally shorten the 

longitudinal relaxation time of magnetisation (T1, discussed in section 2.2). The 

pathological processes described above can affect the perfusion of the 

myocardium, and hence the delivery of contrast agent, as well as the relative 

volume fraction of the myocardium which is accessible to these agents 

(including extracellular spaces both within and outside the coronary 

microvasculature). Consequently contrast enhanced MRI can be sensitive to 

changes in myocardial structure and function that occur in ischaemic pathology, 

and so can be a useful probe for assessing such diseases. 
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2.2 Magnetic resonance imaging signal contrast in 

magnetisation prepared spoiled gradient echo sequences 

In this section specific areas of magnetic resonance imaging physics relevant to 

this thesis are described. For detail on the underlying fundamental principles 

describing magnetic resonance signal generation, decay and recovery of 

magnetisation (as discussed in sections 2.2.1 and 2.2.2) and localisation 

readers are referred to textbooks such as MRI: The Basics [34] or Picture to 

Proton [35], or for a cardiac MRI focussed reference the review article by 

Ridgway [36]. 

Signal intensity in MRI scanning is equal to the magnitude of the product of the 

transverse magnetisation at the time of signal acquisition and a constant (Ψ) 

that depends on factors including receiver gain, coil sensitivity etc. The former is 

dependent on magnetic properties of the signal generating tissue or fluid, 

parameters of the image acquisition sequence and the prior evolution of the 

magnetisation. 

Equation 2-1 

𝑆 = |𝛹𝑀𝑥,𝑦| 

 

For the work described in this thesis simplifying assumptions are made, namely 

that spoiling of transverse magnetisation is ideal (that is to say that no 

transverse magnetisation remains at the time of application of each readout 

pulse), that readout pulses are ideal and that recovery and decay curves exhibit 

mono-exponential behaviour. The latter point is valid where the exchange of 

detectable spins between regions of differing relaxation rates is fast in 

comparison to those rates and is discussed later in the context of water 

exchange. Additionally effects related to motion, such as in-flow, have been 

neglected. While these assumptions have been made here both imperfect 

spoiling [37-39] and slow water exchange [40-43] have been investigated by 

others and further investigation relating to the potential impact on quantitative 

cardiac MRI techniques may be warranted although are outside the scope of 

this thesis. 
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MR images are generated by acquiring a series of signals (echoes) in the 

presence of an applied magnetic field gradient to spatially encode signal in one 

in-plane direction (such that the precessional frequency varies with position – 

frequency encoding). Signals are generated by application of readout 

radiofrequency (RF) pulses which, for 2D acquisitions as are discussed in this 

thesis, are applied in the presence of a field gradient in the through-plane 

direction so that signal is only generated from within the slice of interest (slice 

selection). To encode a second in-plane direction additional gradients are 

applied between excitation and signal acquisition (so that position dependent 

phase differences are accrued – phase encoding), with the magnitude of this 

gradient varied between successive signal acquisitions. In spoiled gradient echo 

sequences residual transverse magnetisation after signal acquisition is 

destroyed by using a combination of gradients and/or RF pulses to dephase the 

magnetic moments in a process referred to as spoiling. This overall acquisition 

scheme is shown schematically in Figure 2-7; 
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Figure 2-7 – Schematic of a 2D spoiled gradient echo MRI pulse sequence. 
Gradients (G) are applied in the slice selection (SS), phase encoding (PE) 
and frequency encoding (FE) in order to spatially localise received 
signals. Multiple signals (S) must be acquired with varying GPE (indicated 
by striped pattern) in order to spatially encode signal in the PE direction, 
so the process is repeated multiple times (the RF pulse and slice select 
gradient for the subsequent repetition are shown on the right of this 
figure) with a repetition time TR. (Figure adapted from the Pocket Guide 
on Cardiovascular Magnetic Resonance Physics for Clinicians [19]) 

Raw acquired data in MRI describes image signal intensity in the spatial 

frequency domain, with the spatial frequency space traversed in one direction 

temporally throughout each acquired echo and traversed in the perpendicular 

direction in a step-wise fashion by repeating the acquisitions with differing 

phase encoding gradient moments. This raw data is stored in an array in the 

spatial frequency domain referred to as k-space. Data near the centre of k-

space, i.e. data acquired near the centre of the echoes generated with low 
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gradient moments, represents low spatial frequency (and thus dominates the 

determination of large scale image contrast) while those towards the periphery 

contain high spatial resolution detail. Data in k-space is transformed into an 

image in the conventional spatial domain by application of 2D Fourier 

transformation. 

2.2.1 T2
*
 weighting 

If a sufficient delay (for full transverse decay) or effective spoiling has been 

applied net magnetisation will exist only in the longitudinal axis. For signal 

generation a portion of the longitudinal magnetisation is tipped into the 

transverse plane using a readout RF pulse. The magnitude of the transverse 

magnetisation generated immediately after a readout pulse will depend on the 

prior longitudinal magnetisation and the flip angle as below.  

Equation 2-2 

𝑀𝑥,𝑦
+ = 𝑀𝑧

− ∙ sin 𝛼 

This magnetisation will then decay exponentially with a decay rate constant 

equal to the inverse of T2
* (as described in standard textbooks including those 

referenced above [34, 35]). The signal is determined by the transverse 

magnetisation at time TE (echo time) after the readout RF pulse is applied. 

Equation 2-3 

𝑀𝑥,𝑦 = 𝑀𝑥,𝑦
+ ∙ 𝑒−𝑇𝐸 𝑇2

∗⁄ = 𝑀𝑧
− ∙ sin 𝛼 ∙ 𝑒−𝑇𝐸 𝑇2

∗⁄  

For a given prior longitudinal magnetisation the signal will therefore be maximal 

with a 90° flip angle and the shortest possible TE. For a given TE value 

magnetisation of species with shorter T2
* values will decay more than those with 

longer values, thus giving reduced signal intensity. The relative signal 

differences between species with different T2
* values but equal longitudinal 

magnetisation after excitation will not depend on the flip angle, as this simply 

scales the proportion of the longitudinal magnetisation that is tipped into the 

transverse plane and is thus detectable. Extending TE values can increase the 

relative differences in signal intensity between different T2
* values, i.e. increase 

the T2
* weighting. However this also decreases the absolute signal intensity for 

all species, thus reducing signal to noise ratio. 
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The above description relates to gradient echo based sequences, which are 

used for the majority of CMR imaging sequences and all sequences used for 

human scanning in this thesis. For spin-echo based imaging the application of a 

re-focussing pulse reverses the dephasing arising from static sources, and so 

the constant T2
* is replaced by the longer T2 value which describes the decay of 

transverse magnetisation due only to irreversible spin-spin interactions. 

2.2.2 T1 weighting 

As described above MR signal intensity is dependent on the transverse 

magnetisation at the time of acquisition, which is dependent on both the 

longitudinal magnetisation prior to the application of the readout RF pulse and 

the transverse decay. The former will depend on the history of the evolution of 

the longitudinal magnetisation, which will depend on both the prior sequence of 

applied RF pulses and the T1 of the tissue or fluid being scanned. Following a 

single RF pulse the longitudinal magnetisation will be reduced by a factor equal 

to the cosine of the flip angle of that pulse. 

Equation 2-4 

𝑀𝑧
+ = 𝑀𝑧

− ∙ cos 𝛼 

The longitudinal magnetisation then recovers at a rate dependent on the T1 of 

the tissue or fluid (as described in standard textbooks including those 

referenced above [34, 35]). 

Equation 2-5 

𝑀𝑧(𝑡) = 𝑀0 − (𝑀0 − 𝑀𝑧
+)𝑒−𝑡 𝑇1⁄  

Most biological tissues and fluids have T1 values of around 250-2000 ms at 

typical field strengths of clinical scanners (1.5 or 3T). This may be reduced to 

less than 100 ms in the presence of high concentrations of contrast agents 

(described in section 2.3). For cardiac imaging the T1 relaxation time is thus 

commonly of the same order of magnitude as the typical cardiac cycle length 

which typically ranges from around 500-1500 ms (40-120bpm) during scanning. 

For a system that has been undisturbed for sufficient time to allow equilibrium to 

be attained the prior longitudinal magnetisation of an ensemble of spins will 

equal M0, which is dependent on the spin density, temperature and magnetic 
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field strength. In MRI successive RF pulses are typically applied during image 

readout, with a regular temporal separation (TR, repetition time) which is not 

sufficient to allow full recovery to the equilibrium state. The prior longitudinal 

magnetisation for all RF pulses except the first applied will be less than M0 and, 

based on Equation 2-5, will be: 

Equation 2-6 

𝑀𝑧
−,𝑛 = 𝑀0(1 − 𝑒−𝑇𝑅 𝑇1⁄ ) + 𝑀𝑧

+,(𝑛−1)
∙ 𝑒−𝑇𝑅 𝑇1⁄  

Substituting in Equation 2-4 and rearranging gives: 

Equation 2-7 

𝑀𝑧
−,𝑛 = 𝑀0 (1 − (1 −

𝑀𝑧
−,(𝑛−1)

𝑀0
∙ cos 𝛼) ∙ 𝑒−𝑇𝑅 𝑇1⁄ ) 

As n increases from 1 the prior longitudinal magnetisation tends towards a 

steady-state which is reached in which the longitudinal magnetisation prior to 

pulse n is equal to that prior to pulse n-1. Substituting steady-state 

magnetisation, Mz
-,ss, for both Mz

-,n and Mz
-,(n-1) into the equation above and 

rearranging yields the following equation steady-state prior longitudinal 

magnetisation. 

Equation 2-8 

𝑀𝑧
−,𝑠𝑠 = 𝑀0

(1 − 𝑒−𝑇𝑅 𝑇1⁄ )

1 − cos 𝛼 ∙ 𝑒−𝑇𝑅 𝑇1⁄
 

Signal intensity is dominated by low spatial frequency components of the 

acquired data, which are acquired at the middle of the readout train when using 

a fully-sampled Cartesian readout trajectory. Consequently by the time of the 

acquisition of the low spatial frequency components the steady-state will 

normally have been reached, although with under-sampling methods or 

alternative trajectories this may not be the case. Figure 2-8 shows steady-state 

Mz as a proportion of M0 for flip angles  up to 90° and T1/TR from up to 100. As 

can be seen to maintain relatively large steady-state magnetisation at short TR 

(i.e. large T1/TR) a low flip angle must be used. 
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Figure 2-8 - Variation of steady-state longitudinal magnetisation (for 
spoiled gradient echo sequences) with flip angle and T1/TR ratio. The right 
hand figure is zoomed in to the low T1/TR range. 

When the flip angle is low or T1 is short compared to TR magnetisation is able 

to nearly fully recover between RF pulses, and so is close to M0. Decreasing TR 

or increasing the flip angle reduces the steady-state magnetisation for a given 

T1, and increases the rate of variation of relative steady-state magnetisation 

with T1, thus yielding increased T1 weighting at the expense of signal to noise 

ratio. As can be seen in the right panel unless TR is similar to T1 (or longer) 

large flip angles result in very low steady-state Mz for this sequence. 

2.2.3 Magnetisation preparation 

Pulse sequences employed in cardiac MR scanning commonly employ a 

magnetisation preparation pulse followed by a delay prior to acquisition using a 

train of low flip-angle pulses. The preparation pulse may be a saturation pulse, 

which ideally nulls both longitudinal and transverse magnetisation, or an 

inversion pulse which ideally inverts the orientation of the longitudinal 

component of the magnetisation while maintaining its magnitude. These 

preparation pulses and delays are the predominant source of T1 weighting in 

the sequences used both for T1 mapping and dynamic contrast enhanced MRI 

discussed in the experimental chapters later in this thesis, in contrast to non-

prepared sequences where T1 dependent signal contrast is predominantly 

controlled by the flip angle of the readout pulses and the TR (Figure 2-9). 
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Figure 2-9 – Comparison of a non-prepared and saturation prepared 
sequence. In the latter differences in longitudinal magnetisation depend 
predominantly on differential recovery after the preparation pulse. (Figure 
adapted from the Pocket Guide on Cardiovascular Magnetic Resonance 
Physics for Clinicians [19]) 

The magnetisation prior to the readout of the central line of k-space (i.e. 

following a preparation pulse and a pre-pulse delay, PPD), assuming the 

system is in equilibrium prior to magnetisation preparation and neglecting the 

effect of the readout pulses, will be described by the equation below. This is 

based on Equation 2-4 and Equation 2-5. 

Equation 2-9 

𝑀𝑧
−,𝑛𝑘0 = 𝑀0(1 − (1 − cos 𝜃) ∙ 𝑒−𝑃𝑃𝐷 𝑇1⁄ ) 

Note that PPD is used as a general term for the delay after a magnetisation 

preparation pulse. When referring specifically to inversion recovery sequences 

the term “Inversion Time (TI)” is commonly used and the term “Saturation Time 

(TS)” is used for saturation prepared sequences. For cases where 

magnetisation is inverted immediately after the preparation pulse it will then 

recover towards equilibrium. There will thus exist a T1 dependent time PPD at 

which the magnetisation is nulled at the time of acquisition of the zero-spatial 

frequency data (Mz
-,nk0=0): 

Equation 2-10 

𝑃𝑃𝐷𝑛𝑢𝑙𝑙 = 𝑇1 ∙ ln(1 − cos 𝜃) 

This is shown graphically in Figure 2-10. In this example post-contrast healthy 

myocardium has the longest T1 and is nulled while blood and infarcted 

myocardium have shorter T1 and so have recovered past the null point. This is 
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the basis of late gadolinium enhancement (LGE) imaging discussed later in 

section 4.3.1. 

 

Figure 2-10 – Longitudinal magnetisation recovery following an inversion 
pulse (left) and an example of how this can be exploited to visual 
pathological myocardial tissue using the LGE technique (right) in which 
infarcted tissue appears bright in comparison to healthy myocardium for 
which the signal is nulled (dark). (Figure adapted from the Pocket Guide 
on Cardiovascular Magnetic Resonance Physics for Clinicians [19]) 

Equation 2-10 can be used to determine the PPD required to null signal from 

tissue with a given T1. Equivalently, for a specified PPD a specific T1 value will 

yield nulled myocardium, and so no signal. 

Equation 2-11 

𝑇1,𝑛𝑢𝑙𝑙 =
𝑃𝑃𝐷

ln(1 − cos 𝜃)
 

Typically magnitude data is recorded in MR images, so a non-zero signal 

intensity could correspond to either of two T1 values, one shorter than T1,null for 

which longitudinal magnetisation has recovered to positive values prior to 

readout and the other longer than T1,null which has not reached the null point 

prior to readout. A reduction in T1 of a tissue or fluid could therefore lead to 

either an increase or decrease in signal intensity, dependent on the original T1 

and the PPD used. 

The above scenarios specifically describe a system in which Mz prior to the 

preparation pulse is equal to M0. 

For the case of repeated magnetisation preparation pulses with insufficient time 

for full recovery between preparation phases, the assumption of starting in the 

equilibrium state will not hold. However in the specific case of the application of 

ideal saturation pulses all magnetisation is nulled, and so the model below 
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(Equation 2-12) can be applied as an approximation (excluding the effects of 

readout RF pulses) regardless of prior magnetisation history. Consequently 

saturation pulses are commonly applied in ECG triggered cardiac MR 

sequences, to remove the dependence on prior history and variability that could 

arise due to inconsistency in preparation pulse spacing (due to variation in the 

subjects’ heart rate). 

Equation 2-12 

𝑀𝑧
−,𝑛𝑘0 = 𝑀0(1 − 𝑒−𝑃𝑃𝐷 𝑇1⁄ ) 

For saturation prepared sequences with ideal saturation (i.e. cosθ=0) Mz is 

positive for all combinations of PPD and T1, so T1 and signal intensity vary 

monotonically with shortening T1 (for a given T2*) leading to increased signal 

intensity. 

Models have been published that also incorporate the effect of the readout 

pulses. The following derivation is based on that by Larsson et al [44] with 

notation adapted to match that used in this thesis. In general the longitudinal 

magnetisation prior to the nth readout pulse (Mz
-,n) will depend on that after the 

prior pulse (Mz
+,n) as well as the T1 and the delay (TR) according to Equation 

2-6. Mz
+,n will be determined by the magnetisation prior to the (n-1)th pulse and 

the cosine of the readout flip angle according to Equation 2-4. Therefore: 

Equation 2-13 

𝑀𝑧
−,𝑛 = 𝑀0(1 − 𝑒−𝑇𝑅 𝑇1⁄ )+𝑀𝑧

−,𝑛−1 ∙ 𝑐𝑜𝑠𝛼 ∙ 𝑒−𝑇𝑅 𝑇1⁄  

Substituting 𝑎 = 𝑐𝑜𝑠𝛼 ∙ 𝑒−𝑇𝑅 𝑇1⁄  and 𝑏 = 1 − 𝑒−𝑇𝑅 𝑇1⁄  this recursive formula can be 

expressed: 

Equation 2-14 

𝑀𝑧
−,𝑛 = 𝑀𝑧

−,1 ∙ 𝑎𝑛−1 + 𝑀0𝑏 ∑ 𝑎𝑖

𝑛−2

𝑖=0

 

𝑀𝑧
−,𝑛 = 𝑀𝑧

−,1 ∙ 𝑎𝑛−1 + 𝑀0𝑏
1 − 𝑎𝑛−1

1 − 𝑎
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Mz
-1 is the longitudinal magnetisation prior to the first readout pulse. Larsson 

assumed the preparation pulse was an ideal inversion pulse (θ=180°) and 

applied at equilibrium (Mz=M0). Larsson used TI to indicate the delay from 

magnetisation preparation to the first pulse. In this thesis PPD is used to 

describe the delay to the acquisition of the central line of k-space. Therefore TI 

is equivalent to PPD-(nko-1)TR and thus, according to Equation 2-5: 

Equation 2-15 

𝑀𝑧
−,1 = 𝑀0 − (𝑀0 − 𝑀0 ∙ 𝑐𝑜𝑠(180°))𝑒−(𝑃𝑃𝐷−(𝑛𝑘0−1)𝑇𝑅) 𝑇1⁄

= 𝑀0(1 − 2𝑒−(𝑃𝑃𝐷−(𝑛𝑘0−1)𝑇𝑅) 𝑇1⁄ ) 

Therefore the longitudinal magnetisation after the nth pulse is: 

Equation 2-16 

𝑀𝑧
−,𝑛 = 𝑀0 [(1 − 2𝑒−(𝑃𝑃𝐷−(𝑛𝑘0−1)𝑇𝑅) 𝑇1⁄ ) ∙ 𝑎𝑛−1 + 𝑏

1 − 𝑎𝑛−1

1 − 𝑎
] 

The assumption of perfect inversion doesn’t have to be made as Larsson et al 

did, and this equation can be kept more general for arbitrary magnetisation 

preparation as: 

Equation 2-17 

𝑀𝑧
−,𝑛 = 𝑀0 [(1 − (1 − 𝑐𝑜𝑠𝜃)𝑒−(𝑃𝑃𝐷−(𝑛𝑘0−1)𝑇𝑅) 𝑇1⁄ ) ∙ 𝑎𝑛−1 + 𝑏

1 − 𝑎𝑛−1

1 − 𝑎
] 

While the above equation allows for arbitrary values of θ the assumption of the 

magnetisation being at equilibrium prior to the inversion pulse remains. 

Kershaw [45] derived an equation for the steady-state magnetisation following 

the nth pulse of this sequence when applied repetitively at regular intervals and 

at a constant T1. As for the previous model notation is adapted to match that 

used in this thesis. The derivation for this model is identical to the prior model 

as far as Equation 2-14 but instead of assuming the magnetisation at the time of 

the preparation pulse is at equilibrium it is determined by first deriving the 

magnetisation at the end of the readout train (Mz
+,N, where N is the total number 

of pulses) and then applying Equation 2-5 for the remainder of the time until the 
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next magnetisation preparation pulse. According to Equation 2-4 and Equation 

2-14: 

Equation 2-18 

𝑀𝑧
+,𝑁 = 𝑀𝑧

−,𝑁𝑐𝑜𝑠𝛼 = [𝑀𝑧
−,1 ∙ 𝑎𝑁−1 + 𝑀0𝑏

1 − 𝑎𝑁−1

1 − 𝑎
] 𝑐𝑜𝑠𝛼 

Substituting F=b/(1-a) and Q=Mz
-1/M0: 

Equation 2-19 

𝑀𝑧
+,𝑁 = 𝑀0[𝐹 + 𝑎𝑁−1(𝑄 − 𝐹)]𝑐𝑜𝑠𝛼 

With the time between magnetisation preparation pulses defined as the inter-

shot delay (ISD) the recovery time after the final readout pulse to the next 

magnetisation preparation pulse is equal to ISD-(PPD+(N-nk0)TR). The 

longitudinal magnetisation at the end of this period and thus immediately before 

the preparation pulse (Mz
-,PP) is, according to Equation 2-5: 

Equation 2-20 

𝑀𝑧
−,𝑃𝑃 = 𝑀0 [1 − (1 − [𝐹 + 𝑎𝑁−1(𝑄 − 𝐹)]𝑐𝑜𝑠𝛼)𝑒

−
(𝐼𝑆𝐷−(𝑃𝑃𝐷+(𝑁−𝑛𝑘𝑜))𝑇𝑅)

𝑇1 ] 

In the steady-state the magnetisation at the end of this period is the same as 

that prior to the preparation pulse at the start. According to Equation 2-4 the 

magnetisation after the preparation pulse is: 

Equation 2-21 

𝑀𝑧
+,𝑃𝑃 = 𝑀𝑧

−,𝑃𝑃𝑐𝑜𝑠𝜃 

The magnetisation prior to the first readout pulse, Mz
-,1, according to Equation 

2-5, is: 

Equation 2-22 

𝑀𝑧
−,1 = 𝑀0 − (𝑀0 − 𝑀𝑧

+,𝑃𝑃)𝑒
−

(𝑃𝑃𝐷−(𝑛𝑘0−1)𝑇𝑅)
𝑇1  

Substituting    10 /1

1

TTRnPPD keE


 and    10 /TTRnNPPDISD

D
keE


 then re-arranging 

yields: 
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Equation 2-23 

𝑀𝑧
−,1 = 𝑀0(1 − 𝐸1) + 𝑀0𝑐𝑜𝑠𝜃𝐸1[1 − 𝐸𝐷 + [𝐹 + 𝑎𝑁−1(𝑄 − 𝐹)]𝑐𝑜𝑠𝛼𝐸𝐷] 

Dividing by M0, replacing Mz
-,1/M0 with Q, and re-arranging gives: 

Equation 2-24 

𝑄 =
(1 − 𝐸1) + 𝑐𝑜𝑠𝜃 ∙ 𝐸1(1 − 𝐸𝐷) + 𝑐𝑜𝑠𝜃 ∙ 𝐸1 ∙ 𝑐𝑜𝑠𝛼 ∙ 𝐸𝐷 ∙ 𝐹(1 − 𝑎𝑁−1)

(1 − 𝑎𝑁−1 ∙ 𝑐𝑜𝑠𝛼 ∙ 𝐸𝐷 ∙ 𝑐𝑜𝑠𝜃 ∙ 𝐸1)
 

Substituting: 

A=(1-aN-1)/(1-a) 

B=aN-1∙E1 

C= aN-1∙(1-E1) 

D=ED∙cosα 

Then simplifying yields: 

Equation 2-25 

𝑄 =
𝑀𝑧

−,1

𝑀0
=

𝑐𝑜𝑠𝜃 (𝑏𝐷𝐸1𝐴 + 𝐸1 (1 −
𝐷

𝑐𝑜𝑠𝛼) + 𝐵𝐷(1 − 𝐸1))

1 − 𝐵𝐷𝑐𝑜𝑠𝜃
+ (1 − 𝐸1) 

Returning to Equation 2-14 and substituting in the above result: 

Equation 2-26 

𝑀𝑧
−,𝑛 = 𝑀0𝑄 ∙ 𝑎𝑛−1 + 𝑀0𝑏

1 − 𝑎𝑛−1

1 − 𝑎
 

Finally substituting in Q from Equation 2-25 and simplifying yields: 

Equation 2-27 

𝑀𝑧
−,𝑛 = 𝑀0

[
 
 
 
 

𝑏

1 − 𝑎
(1 − 𝑎𝑛−1) + 𝑎𝑛−1(1 − 𝐸1)

+ 𝑎𝑛−1𝑐𝑜𝑠𝜃

(𝑏𝐷𝐸1𝐴 + 𝐸1 (1 −
𝐷

𝑐𝑜𝑠𝛼) + 𝐵𝐷(1 − 𝐸1))

1 − 𝐵𝐷𝑐𝑜𝑠𝜃

]
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Substituting A, B and D in from above and re-arranging yields: 

Equation 2-28 

𝑀𝑧
−,𝑛 = 𝑀0 [

𝑏

1 − 𝑎
(1 − 𝑎𝑛−1) + 𝑎𝑛−1(1 − 𝐸1)   

+ 𝐸1𝑎
𝑛−1𝑐𝑜𝑠𝜃

𝑏𝑐𝑜𝑠𝛼𝐸𝐷
1 − 𝑎𝑁−1

1 − 𝑎 + 1 − 𝐸𝐷 + 𝑎𝑁−1𝑐𝑜𝑠𝛼𝐸𝐷(1 − 𝐸1)

1 − 𝑐𝑜𝑠𝜃𝑎𝑁−1𝐸1𝑐𝑜𝑠𝛼𝐸𝐷
] 

This can be further rearranged to the form used later in Equation 7-5: 

Equation 2-29 

𝑀𝑧
−,𝑛 = 𝑀0

[
 
 
 
 
 

𝑏

1 − 𝑎
(1 − 𝑎𝑛−1) + (1 − 𝐸1)𝑎

𝑛−1

− 𝐸1𝑎
𝑛−1𝑐𝑜𝑠𝜃

[
 
 
 
 −𝑐𝑜𝑠𝛼𝐸𝐷 (𝑏

1 − 𝑎𝑁−1

1 − 𝑎 −
1

𝑐𝑜𝑠𝛼 + 𝑎𝑁−1(1 − 𝐸1)) − 1

1 − 𝑐𝑜𝑠𝜃𝑎𝑁−1𝐸1𝑐𝑜𝑠𝛼𝐸𝐷

]
 
 
 
 

]
 
 
 
 
 

 

2.2.4 Controlling weighting in MRI 

As described in the previous sections the signal in MR images is dependent on 

a range of parameters including magnetic properties of the material being 

imaged and parameters describing the imaging sequence. By appropriate 

selection of the latter images can be generated that are more or less sensitive 

to differences in the former. For example by using a high flip angle and short 

repetition time (potentially with the addition of a magnetisation preparation 

pulse) in the imaging sequence relative signal intensity across the image will 

depend strongly on differences in the T1 of the imaged material. In such T1 

weighted images a short echo time is typically used to minimise T2
* weighting. 

Conversely parameters that minimise the sensitivity of signal intensity to T1 and 

maximise it to T2
* may be chosen to achieve T2*

 weighting. By selecting 

parameters that minimise both T1 and T2
* weighting images can be acquired in 

which the signal intensity is primarily determined by the relative density of MR 
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detectable spins. Such images are referred to as proton density weighted 

images. 

2.3 Action of gadolinium based contrast agents (GBCAs) 

Contrast agents for MRI are generally not visualised directly through imaging 

but instead affect signal intensities by altering the properties of the neighbouring 

hydrogen nuclei. The agents can both accelerate the recovery of longitudinal 

magnetisation to equilibrium values (i.e. shorten longitudinal recovery time, T1) 

and accelerate dephasing of transverse magnetisation (i.e. shorten transverse 

decay time, T2
*) of MR visible spins in the local vicinity of the contrast agent 

molecules. The effect on relaxation rates (reciprocal of T1 and T2
*) is linearly 

dependent on concentration of the contrast agent with a constant of 

proportionality defined as the relaxivity: 

Equation 2-30 

𝑅𝑖 = 𝑅𝑖
𝑛 + 𝑟𝑖 ∙ [𝐶𝐴] 

Where: 

i = 1 for longitudinal recovery or 2* for transverse decay in gradient echo 

sequences 

Ri indicates relaxation rate (i.e. Ri = 1/Ti)  

Superscript ‘n’ indicates native (i.e. in absence of contrast agent) 

ri indicates contrast agent relaxivity 

 [CA] indicates contrast agent concentration 

 

GBCAs consist of a central gadolinium ion surrounded by a chelate molecule in 

order to make the agent safe (pure gadolinium is toxic). The effect of the 

paramagnetic gadolinium ion on relaxation rates is localised to a spatial region 

of roughly the same size of the chelate molecule. Consequently only small, 

mobile molecules are substantially affected by the presence of the contrast 

agent, resulting in the predominant effect of the agents in clinical MRI scanning 

being on the signal from water molecules with minimal effect on larger MRI 

visible molecules such as fat.  
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Gadolinium based contrast agents therefore influence local MR signal indirectly 

by shortening the T1, T2 and T2
* of surrounding MR visible water. Depending on 

the sequence parameters used, and the consequential balance of T1 and T2 or 

T2
* weighting, this can potentially lead to either increased or decreased local 

signal intensity as described in the previous sections. Typically however GBCAs 

are used in conjunction with T1 weighted sequences (as described in section 

2.2.4) where sequence parameters are chosen such that the predominant effect 

of the contrast agent will be to increase signal intensity (typically using either a 

short TR/high flip angle and/or a magnetisation preparation pulse to achieve 

strong T1 weighting along with a short TE to minimise T2
* weighting). Situations 

in which signal decrease may occur are in magnitude reconstructed inversion 

recovery sequences used for T1 mapping, where the TI will typically be shorter 

than that required to null signal (i.e. signal will be acquired while magnetisation 

is still inverted) for some tissues in some of the acquired images, or in cases 

where high concentrations of contrast agent are encountered, in which case the 

signal loss due to T2
* shortening may become dominant over signal increase 

due to T1 shortening. 

The majority of GBCAs in clinical use can pass through the capillary walls into 

extravascular spaces but remain outside cells with intact membranes. Such 

agents are described as extracellular agents and their distribution 

characteristics are described in the following section. Additionally some contrast 

agents have been developed which do not pass through capillary membranes 

and so remain in the intravascular space (except for through their clearance 

route, which is predominantly renal). These intravascular agents are not used in 

the work carried out in this thesis and so unless explicitly stated subsequent 

discussion of GBCAs refers to use of extracellular agents. 

2.4 Distribution of extracellular gadolinium based contrast 

agents 

In 1984 Weinmann et al [46] assessed the characteristics of a gadolinium 

chelate, diethylenetriaminepentaacetic acid (Gd-DTPA) as a contrast agent for 

MRI. Gadolinium, a rare earth element, exhibits the strongest effect on the 

longitudinal relaxation time (T1) of protons of all elements and also shortens 
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transverse decay times (T2
*), and so can alter MRI signal intensities. This work 

established the in vivo stability and high tolerance of Gd-DTPA in a rat model 

while demonstrating fundamentals of the pharmacokinetics of the agent, 

including the predominance of glomerular filtration as the excretion route. This, 

and other early work, established the value of such agents and Gd-DTPA was 

approved for clinical use in 1987. 

Later work furthered understanding of the biodistribution of Gd-DTPA. Koenig et 

al [47] demonstrated that, in the blood, Gd-DTPA exists in the plasma volume 

but does not enter the blood cells. As the exchange of water between the intra- 

and extracellular spaces in the blood pool is rapid in comparison to the 

differences in R1 relaxation rates which would exist between isolated plasma or 

intracellular regions, the overall longitudinal relaxation rate (R1) can be 

modelled as the weighted average of that of the water, intra- and extracellular 

proteins and the exogenous contrast agents. This results in the fact that a 

mono-exponential function adequately describes the evolution of the 

longitudinal magnetisation of blood. Through comparison of Gd-DTPA (using 

the radioactive isotope 153Gd) with other tracers these results were confirmed 

and further information on the biodistribution of the agent were determined. 

Comparison of Gd-DTPA to manganese-54 DTPA in dogs [48] and technetium-

99m DTPA in rats [49] demonstrated that the agent distributes to the interstitial 

space as well as the blood plasma, but does not penetrate intact cell 

membranes. Gd-DTPA can thus be described as an extracellular contrast agent 

as it only enters the extracellular spaces in both intra- and extravascular 

regions. The exchange of water between intra- and extracellular regions in the 

extravascular space is less rapid than between the equivalent regions in the 

blood. Consequently a model of fast-water exchange (and thus mono-

exponential model of longitudinal magnetisation recovery) may not be adequate 

when relaxation rate differences between intra- and extracellular water become 

large in comparison to the water exchange rates (i.e. at high contrast agent 

concentrations). Some recent publications have investigated the effect of water 

exchange on ECV estimation [43] and the potential utility of markers of water 

exchange rates for identifying cardiomyocyte hypertrophy [50]. 
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2.4.1 Temporal variation of contrast agent concentrations 

In this section the basis of tracer kinetics is described qualitatively and in terms 

of specific mathematical models. 

In many organs perfused tissue can be modelled as consisting of two regions 

accessible to extracellular contrast agents, the interstitium and the plasma 

volume. In such tissues transfer can occur between these two regions, as the 

contrast agent can cross capillary walls. This is not the case in healthy brain 

tissue, where the blood brain barrier constrains the contrast agent to the 

intravascular region. 

The transfer of contrast agent molecules occurs in both directions, but 

predominantly from high concentration to low concentration regions. 

Consequently the concentration in the plasma will reduce and that in the 

interstitium increase until equilibrium is reached. 

In addition to transfer between the interstitium and the plasma, the plasma 

volume in the perfused tissue also communicates with the systemic circulation 

and is thus subject to external effects. To fully describe the variation of contrast 

agent concentration in the interstitium it is therefore also required that the 

external drivers of plasma concentration are known. In a clinical application this 

is described by the administration method (e.g. bolus injection or infusion) as 

well as physiological parameters such as the blood plasma flow (Fp) to the 

tissue, dispersion of the contrast agent through the systemic vasculature and 

extraction of the contrast agent through the glomerular apparatus. 

Following a bolus injection of contrast agent the concentration in the plasma 

volume of a region of perfused tissue will rise rapidly when the bolus first 

arrives. The concentration in the interstitium will then rise, with the early rise 

being determined by both the delivery of concentration to the microvasculature 

(i.e. Fp) and the extraction efficiency (E) from the plasma volume into the 

interstitial space. 

At a later time, following a bolus injection, or following an infusion, the contrast 

agent will be well-mixed in the blood. In the absence of extraction of contrast 

agent from the system the concentration in the interstitium and the plasma 
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would reach a steady-state. In reality contrast agents are renally extracted from 

the blood (at a rate dependent on the individual’s glomerular filtration rate) and 

so the concentration in the plasma and the interstitium will both gradually 

decrease. 

2.4.1.1 Observing temporal variation of GBCA concentration 

In clinical practice GBCAs can be used by observing the effect on signal 

intensity at a prescribed time after contrast agent injection (in order to allow 

distribution to the tissue of interest), often in comparison with pre-contrast 

images. Alternatively the temporal variation in the distribution of contrast agent 

can be measured dynamically by acquiring images serially during and following 

the injection of the contrast agent. This process of dynamic contrast enhanced 

MRI is shown schematically in Figure 2-11, which relates specifically to cardiac 

DCE-MRI as discussed throughout this thesis in which image acquisition is 

triggered by an electrocardiograph (ECG) trace in order to allow images to be 

acquired at a consistent cardiac phase. 

 

Figure 2-11 – Schematic of cardiac DCE-MRI in which images are acquired 
serially during and following the injection of a GBCA bolus. In this 
example three image slices are acquired per cardiac cycle using a 
saturation prepared sequence. The images at the top show the temporal 
variation of contrast agent presence, with brighter signal corresponding 
to greater concentrations of GBCA. Contrast agent initially is seen in the 
right ventricular cavity, followed by the left ventricular cavity (after 
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passing through the pulmonary circulation) before perfusing the 
myocardial tissue. (Figure adapted from the Pocket Guide on 
Cardiovascular Magnetic Resonance Physics for Clinicians [19]) 

In order to perform quantitative analysis on such data it is necessary that the 

data is acquired with a sufficient temporal resolution to sample the most rapid 

components of the GBCA concentration variation in both the blood pool and 

tissue [51], for which exemplar curves are shown in Figure 2-12 to demonstrate 

the typical temporal scales of contrast agent concentration during the first 

minute after bolus injection.  

 

Figure 2-12 – Example data from myocardial DCE-MRI showing typical 
timescales of contrast agent variation in the blood (red) and myocardium 
(blue). (N.B. the myocardial data has been scaled up relative to the blood 
data for visualisation, as the signal variation in myocardium is generally 
much lower than in the blood, the signal is recorded in arbitrary units). 

In the blood pool this occurs during the first pass of the GBCA, which has a 

typical width on the order of 20-30s (dependent on injection protocol and 

cardiovascular function) [52] while in tissues it is typically the transit through the 

capillary network which is shorter, and may be of similar order of magnitude to 

the cardiac cycle length [1], and hence the temporal resolution when images are 

acquired every heartbeat. Note that the width of the first pass in the blood pool 

is substantially longer than the typical injection duration (which would be 2.5s 

for a 0.05 mmol/kg dose at 3 ml/s injection rate for an 80kg patient using a 0.5 
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mmol/ml contrast agent) due to dispersion in the peripheral veins and 

pulmonary circulation. 

Qualitative or semi-quantitative analysis 

While this thesis focuses on fully quantitative methods DCE-MRI data can be 

assessed in a qualitative fashion (through visualisation of acquired data, 

typically viewed in a movie format to show temporal variation) or through semi-

quantitative analysis. An example of the former, showing a selection of images 

from a DCE-MRI series with a perfusion defect visible, is shown in Figure 2-13 

below: 

 

Figure 2-13 – Pre-contrast (left) and early post-contrast (right) phase 
images from a stress DCE-MRI series of a patient with an inferior 
perfusion defect visible as a region of myocardium showing reduced 
enhancement compared to normally perfused tissue after contrast agent 
arrival. Visual analysis of such data can allow identification of perfusion 
defects without quantitative or semi-quantitative analysis. 

In particular comparison of regions of perfusion defects in DCE-MRI images as 

described above to regions of scar from late gadolinium enhancement imaging 

(used to assess viability of tissue, described later in section 4.3.1) can help 

guide the decision as to whether revascularisation therapy is appropriate as this 

therapy may restore function in tissue with stress-induced perfusion defects as 

long as the tissue remains viable [53]. 

Semi-quantitative analyses include calculation of parameters such as the initial 

rate of myocardial enhancement (“up-slope”) or area under the myocardial 

uptake curve up to the first-pass peak in the blood have been used as markers 

of perfusion [54]. As the signal intensity in MRI images is arbitrarily scaled such 

metrics require normalisation, typically by dividing stress and rest results to 
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obtain estimates of the myocardial perfusion reserve (MPR). While such 

parameters do not provide estimates of absolute physiological parameters they 

are dependent on physiological status, and so may provide sufficient diagnostic 

accuracy to be of clinical value while requiring less complex analysis than full 

quantification. However, as normalisation is required they provide less 

information than absolute quantification which may limit applicability in some 

settings. For example reduced MPR may be due to either increased resting 

perfusion (which may arise in hypertensive patients), reduced perfusion at 

stress due to coronary artery disease or otherwise impaired response to stress, 

or a combination of both [54]. Accurate absolute quantification of perfusion in 

each state would be able to identify the relative contributions of these sources 

to reduced MPR unlike semi-quantitative analysis. 

2.4.1.2 Basis of deconvolution for DCE-MRI analysis 

As described above contrast agent arriving in the myocardium distributes in the 

plasma and extravascular-extracellular regions of the tissue. A contrast agent 

molecule entering tissue via the coronary microvasculature will spend a finite 

amount of time in these regions of the tissue before exiting the system at the 

venous end of the capillary bed. The duration of this transit will vary randomly 

with a distribution of probabilities of a given transit time, H(t), the shape of which 

will depend on physiological conditions. If a large number of molecules arrive 

instantaneously the full proportion will exist in the tissue initially and then 

decrease as molecules leave the system. The rate of fractional loss of 

molecules from the system at any time after arrival will equal the value of H(t) at 

that time. The fraction of molecules that have exited the system by a given time 

will therefore equal the integral of H(t) over that time. The fraction remaining in 

the tissue, and thus detectable by imaging, is referred to as the residue 

function, R(t), as in Equation 2-31.  

Equation 2-31 

𝑅(𝑡) = 1 − ∫ 𝐻(𝑡′)
𝑡

0

𝑑𝑡′ 

This is a monotonically decreasing function, with R(0)=1, as all contrast agent is 

still present immediately after delivery. 
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In reality contrast agent delivery will be distributed over time, and contrast agent 

will re-circulate through the systemic and pulmonary circulation after leaving the 

tissue. The contrast agent delivery rate is thus variable, and is monitored by 

observing the arterial input function (AIF), that is the concentration of contrast 

agent in the feeding blood plasma supply. For an infinitesimal period of time (Δt) 

the number of contrast agent molecules delivered per unit volume tissue will 

equal the product of the blood plasma flow per unit volume tissue (Fp), the 

instantaneous concentration of contrast agent in the plasma and the duration of 

the time period. The concentration in the tissue at a given time, Ct(t), will equal 

the sum of the residual concentration from all previous time periods (assuming 

the physiological parameters, and thus the value of Fp and the shape of R(t) are 

constant) as in Equation 2-32. 

Equation 2-32 

𝐶𝑡(𝑡) = ∑𝑅(𝜏) ∙ 𝐹𝑝 ∙ 𝐴𝐼𝐹(𝑡 − 𝜏) ∙ 𝛥𝑡

∞

𝜏=0

 

In the limit of infinitesimally small Δt this becomes an integral, which in turn is 

equal to a convolution of the AIF and the residue function, scaled by the 

myocardial blood plasma flow (Equation 2-33). 

Equation 2-33 

𝐶𝑡(𝑡) = ∫ 𝑅(𝑡′) ∙ 𝐹𝑝 ∙ 𝐴𝐼𝐹(𝑡 − 𝑡′) ∙ 𝑑𝑡′ =

∞

0

𝐹𝑝 ∙ 𝑅(𝑡) ∗ 𝐴𝐼𝐹(𝑡) 

In DCE-MRI Ct(t) and AIF(t) are measured through imaging and the aim of 

quantitative analysis is to determine the shape and amplitude of the product of 

Fp.R(t). This is the reverse process of the above equation, and is thus referred 

to as deconvolution. This problem is ill-posed, and so optimisation techniques 

are required to perform the deconvolution. As R(0)=1 the initial amplitude of the 

result of deconvolution can be interpreted as Fp. In performing deconvolution 

the shape of R(t) can be constrained only by conditions such as smoothness 

and a requirement to be monotonically decreasing. This process is referred to 

as model-free or model-independent deconvolution respectively. Alternatively 

R(t) can be constrained to follow a mathematical form determined by a set of 
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parameters (model-based or model-constrained deconvolution). This 

mathematical form can be chosen on a phenomenological basis by choosing a 

form of the anticipated shape, or be of a form derived from an underlying 

physiological model. In the latter case the additional parameters describing the 

shape of R(t) can be interpreted in order to estimate physiological parameters 

beyond Fp. An appropriate model must be chosen carefully to match the 

underlying physiology of the tissue being studied, as an over-simplified, 

inappropriate or over-parameterised model can lead to invalid parameter 

estimates. 

2.4.1.3 Model choice 

One-region models 

A simple model of tissue structure from which a residue function can be derived 

is that of a single well-mixed compartment. In such a model the contrast agent 

concentration is assumed to be equal throughout the spatial extent of the 

region, and so the concentration at the venous outlet (Cv) is equal to that in the 

region. In DCE-MRI the observed quantity is the concentration in the tissue as a 

whole, which is equal to the concentration within the space accessible to the 

contrast scaled by the volume fraction of the tissue that the contrast agent 

distributes into (distribution volume fraction, vd). For intravascular agents vd is 

equal to the plasma volume fraction (vp), but the one-compartment model can 

also be applied to extra-vascular agents if the microvascular permeability is 

sufficiently high that it presents a negligible barrier to extravasation. In the latter 

case the contrast agent concentration in the intra- and extra-vascular regions is 

assumed to be equal at all times, and vd is the sum of vp and the extravascular-

extracellular volume fraction (ve). 
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Figure 2-14 – One-compartment model with no leakage. A single well-
mixed compartment with equal inlet and outlet flows (Fp) occupies a 
volume fraction vd. 

The rate of change of contrast agent concentration in the myocardium will, 

based on the principle of mass balance, equal the difference of the products of 

the plasma flow and contrast agent concentrations at the inlets and outlets. For 

a stationary system the flows will be equal. Consequently the rate of change of 

contrast agent will be described as in Equation 2-34. 

Equation 2-34 

𝑑𝐶𝑡

𝑑𝑡
= 𝐹𝑝 (𝐴𝐼𝐹 −

𝐶𝑡

𝑣𝑑
) 

The solution to this is of the form of a mono-exponential function (Equation 

2-35). 

Equation 2-35 

𝐶𝑡(𝑡) = ∫ 𝐹𝑝 ∙ (𝑒−
𝐹𝑝𝜏

𝑣𝑑
⁄

) ∙ 𝐴𝐼𝐹(𝑡 − 𝜏) ∙ 𝑑𝜏
∞

0

 

From inspection of Equation 2-33 it can be seen that the residue function for the 

one compartment model, R1C(t), is thus defined as in Equation 2-36. 

Equation 2-36 

𝑅1𝐶(𝑡) = 𝑒−
𝐹𝑝𝑡

𝑣𝑑
⁄

 

From Equation 2-31 the distribution of transit times can be determined by taking 

the negative of the time-derivative of R(t), and the mean transit time is the 

expectation value of this function. For the one-compartment model it is thus 

defined as in Equation 2-37 (where E[H(t)] indicates the expectation value of 

H(t). 
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Equation 2-37 

𝑇 = 𝐸[𝐻(𝑡)] = −∫ 𝑡
𝑑

𝑑𝑡
(𝑒−

𝐹𝑝𝑡
𝑣𝑑

⁄
)𝑑𝑡

∞

0

=
𝑣𝑑

𝐹𝑝
 

For intravascular agents which do not enter the extravascular spaces a one-

region plug-flow model may better describe the tissue, especially for tissues 

with a linear capillary structure. This model consists of a tube in which axial 

variation of contrast agent is allowed. For derivation of the residue function this 

is described mathematically as a series of communicating infinitesimal 

compartments. Such a model gives rise to a residue function with a 

discontinuity both at t=0 (in common with most residue functions) and at a later 

time point. The form of the residue function for this model is a step-function 

equal to 1 for the duration of the capillary transit time and then falling 

instantaneously to zero as the contrast agent exits at the venous outlet.  

 

Figure 2-15 – Single-region plug-flow model. The contrast agent passes 
through a single tube with equal inlet and outlet flows (Fp) and occupying 
a total distribution volume fraction equal to vd. To derive the residue 
function this tube is described mathematically as a series of 
communicating infinitesimal compartments. This model would typically be 
used for intravascular agents, in which case vd=vp. 

Two-region models 

In reality the capillary membranes may offer measurable resistance to 

extravasation and so a two-region model consisting of intra- and extravascular 

components may better describe the data. In such models the rate of contrast 

agent extravasation is dependent on both the permeability and surface area of 

the capillary walls, and is thus described by the product of these two 

parameters, PS. A variety of combinations of assumptions about the underlying 

nature of each of the two regions can be made leading to different models. For 

example both regions are assumed to be well-mixed compartments in the two-

compartment exchange model, which results in a bi-exponential residue 

function, whereas other models incorporate spatial variation of contrast agent in 

one or both of the regions. 
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Choice of the appropriate model can be made based on statistical grounds 

regarding goodness of fit, a priori understanding of the underlying tissue 

structure, or a combination of the two. In pilot work completed prior to this PhD 

project [1] a two-region one-barrier distributed parameter model, which 

incorporates spatial variation in both regions, was used for deconvolution of 

myocardial DCE-MRI data based on the linear structure of the myocardial 

capillary bed. This model incorporates plug-flow in the intravascular space with 

communication along the axial length of the vascular region to a series of 

infinitesimal extravascular regions. In this model axial transport is allowed only 

in the vascular region, so there is no direct communication between the 

extravascular regions.  

 

Figure 2-16 – Two-region single barrier distributed parameter model. 
Contrast agent passes through a series of communicating infinitesimal 
regions, with equal inlet and outlet flows (Fp) and occupying a total 
distribution volume fraction equal to vp. These regions communicate with 
a series of extravascular regions, which do not communicate with each 
other directly. The total distribution volume fraction of the extravascular 
regions is ve and the transfer between the two spaces is described by the 
permeability-surface area product (PS). 

As transit is not allowed between the compartments of the extravascular regions 

in this model axial transport is limited to the intravascular compartment, and so, 

similar to the one-region plug-flow model, the residue function contains a 

second discontinuity with an initial plateau (of length determined by the mean 

capillary transit time, Tc). This is followed by a monotonically decreasing shape 

which is dependent on a combination of the mean transit times in the two 

regions separately (Tc and Te) as well as the overall mean transit time (T). As 
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discontinuous residue functions can cause instability in the deconvolution 

process [55] Laplace domain fitting was used in this pilot work (as discussed in 

section 2.4.1.4 below) and in the analysis using this model described in Chapter 

9. The Laplace domain solution for the residue function is defined in Equation 

2-38 [51]. 

Equation 2-38 

𝑅𝐷𝑃(𝑠) =
1 − 𝑒

−𝑠
𝑇+𝑠𝑇𝑐𝑇𝑒
1+𝑠𝑇𝑒

𝑠
 

From the mean transit times further physiological parameters, which may be 

more intuitively interpreted, can be derived, as listed in equations 2-39 to 2-42 

[51]. 

Equation 2-39 

𝐸𝐶𝑉 = 𝑣𝑑 = 𝐹𝑝𝑇 

Equation 2-40 

𝑣𝑝 = 𝐹𝑝𝑇𝑐 

Equation 2-41 

𝑣𝑒 = 𝑣𝑑 − 𝑣𝑝 = 𝐹𝑝(𝑇 − 𝑇𝑐) 

Equation 2-42 

𝑃𝑆 =
𝑣𝑒

𝑇𝑒
=

𝐹𝑝(𝑇 − 𝑇𝑐)

𝑇𝑒
 

From Fp and PS a further parameter, the first-pass extraction fraction (E) can be 

calculated. For the distributed-parameter model (or other models in which plug-

flow is assumed in the intra-vascular region) this is defined as in Equation 2-43.  

Equation 2-43 

𝐸 = 1 − 𝑒
−𝑃𝑆

𝐹𝑝
⁄

 (plug-flow capillary bed) 
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For models in which the capillary bed is modelled as a well-mixed compartment 

(such as the two-compartment exchange model) the equation above is not valid 

and E is defined as in Equation 2-44. 

Equation 2-44 

𝐸 =
𝑃𝑆

𝐹𝑝+𝑃𝑆
 (compartmental capillary bed) 

Phenomenological models 

The residue functions above are derived from underlying models of tissue 

structure. However a widely used model in myocardial DCE-MRI analysis is the 

Fermi function [56] which was chosen on a phenomenological basis as the 

shape of the function was observed to approximate that expected. The function 

is described in Equation 2-46 and is characterised by two shape-defining 

parameters as well as the overall scaling by Fp. It consists of an initially slow 

decrease in value (approximating the plateau at the start of the distributed 

parameter model residue function), followed by a smooth transition into a 

roughly exponential decay. As it contains no discontinuity it can be utilised 

robustly in the temporal domain and, in terms of complexity (based on the 

number of shape defining parameters), lies between the one and two-region 

models described above. The model does not accurately describe washout of 

contrast-agent in the latter phases of enhancement and so analysis using this 

model is typically limited to data collected during the first-pass of the contrast 

agent. 

Equation 2-45 

𝑅𝐹𝑒𝑟𝑚𝑖(𝑡) =
1 + 𝑏

1 + 𝑏𝑒𝑎𝑡
 

As the shape of the function is not derived from a physiological model typically 

only the initial amplitude is interpreted (as Fp) and the parameters a and b are 

discarded. 

2.4.1.4 Deconvolution process 

The relationship described in Equation 2-33 relates the variation of the contrast 

agent in the tissue of interest to that in the blood directly at the inlet of the 
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tissue. In practice this is rarely measurable and the AIF is measured in a large 

vessel (or in the case of myocardial DCE-MRI typically in the left ventricular 

cavity) upstream of the tissue. The delay in arrival of contrast agent at the tissue 

relative to the blood sampled for the AIF (bolus arrival time, BAT) must be 

accounted for during or prior to deconvolution analysis. Several strategies exist 

to account for this including performing multiple fits with varying fixed BAT 

candidates and selecting the fit with the lowest residuals, including BAT as an 

additional continuous free parameter in the deconvolution process [57] or 

identifying the delay between the onset of the upslope of the tissue and AIF 

curves either manually or using an automated process [58, 59]. As the 

deconvolution process is ill-posed limiting the number of free parameters is 

preferable to avoid decreased precision, and so the increased number of 

procedural steps involved in estimating BAT prior to deconvolution may be 

preferable.  

Optimisation is commonly performed in a least-squares sense, by identifying a 

set of residue function defining parameters which optimally minimise the sum of 

the square of the residual values between the observed concentration in the 

tissue and the result of Equation 2-33. Several algorithms exist to perform this 

optimisation process and their precise application can be controlled by several 

parameters (such as initialisation values and termination tolerances). Generally 

these algorithms adjust the parameter set iteratively (from a user defined 

starting value) to find the set which gives the lowest sum of square of residuals, 

with different algorithms employing different methods to determine how the 

parameter sets are changed between each iteration. The optimisation 

terminates once specified limits are reached, for example when the parameter 

estimates change by less than specified values between each iteration. One 

limitation of these methods is that local minima can be found where a parameter 

set gives the lowest sum of square of residuals of the surrounding region of the 

parameter space which the algorithm searches, but that where the true 

minimum is elsewhere. Dependent on the nature of the optimisation problem 

and the quality of the data used different approaches may thus result in different 

optimal parameters sets being identified. This can be a particular problem in 

cases where several local minima exist as algorithms may not find the global 

minimum across the entire parameter space. A robust optimisation algorithm 
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and appropriate choice of initialisation values, constraints and termination 

tolerances is thus required for reliable estimation of these parameters. 

The above formulation is defined in the temporal domain. Alternatively data can 

be transformed into the frequency domain prior to optimisation. Such an 

approach can reduce the sensitivity of the optimisation process to the 

initialisation values and allow use of models for which there is no known 

temporal domain solution such as the tissue homogeneity model [55]. This 

process involves performing a Fourier transform on the AIF, multiplying by the 

Laplace domain solution of the residue function for the tracer kinetic model and 

then performing an inverse Fourier transform prior to calculating the residual 

difference compared to tissue data. As well as the advantages described above 

this can be computationally more efficient than direct convolution in the 

temporal domain in some circumstances.  

2.4.2 The partition coefficient and distribution volumes 

As described above the concentrations in the interstitium and the blood plasma 

will equalise over time following contrast agent administration. However, these 

volumes form part of a macroscopic system in which other regions are 

inaccessible to the contrast agent. In general it is the concentration within this 

macroscopic environment that is measurable. For example, the concentration in 

the whole blood is generally measured, rather than the concentration within the 

plasma alone. This is demonstrated graphically in Figure 2-17. 

 

Figure 2-17 – Graphical representation of spaces making up the systemic 
blood and the myocardium. Only white regions are accessible to 
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extracellular contrast agents. RBCs indicates red blood cells For the 
accessible areas the concentrations are defined as cp for plasma (in both 
systemic and myocardial blood) and ce for the extravascular-extracellular 
space. Relative volumes are defined as vp and ve for the same spaces 
respectively. For the systemic blood the plasma volume is equal to 1 – 
Hct, where Hct is the haematocrit. The ECV is the total extracellular 
volume fraction (ve+vp). 

In this figure it can be seen that in the systemic blood there exists a space 

accessible to the contrast agent which has a relative volume equal to 1-Hct, i.e. 

the plasma volume. In the myocardium a given section of tissue will contain 

capillaries, interstitial space and cells (predominantly cardiomyocytes). The 

accessible space is thus composed of both the extravascular-extracellular 

space (relative volume = ve) and the plasma volume (vp). Once equilibrium has 

been reached the concentrations in these regions (ce and cp respectively) are by 

definition equal. The following equations define the measurable concentrations, 

cb and cm (i.e. blood and myocardial concentrations): 

Equation 2-46 

𝑐𝑏 = (1 − 𝐻𝑐𝑡) ∙ 𝑐𝑝 

Equation 2-47 

𝑐𝑚 = 𝑐𝑒 ∙ 𝑣𝑒 + 𝑐𝑝 ∙ 𝑣𝑝 

 

As ce=cp at equilibrium Equation 2-47 can be re-written as: 

Equation 2-48 

𝑐𝑚 = 𝑐𝑝 ∙ (𝑣𝑒 + 𝑣𝑝) = 𝑐𝑝 ∙ 𝑣𝑑 

(at equilibrium only) 

Assuming that the contrast agent distributes in the entire extracellular space 

(i.e. that vd is equivalent to ECV), re-arranging the above yields the following 

definition: 

Equation 2-49 

𝐸𝐶𝑉 = 𝑣𝑑 =
𝑐𝑚

𝑐𝑝
=

𝑐𝑚

𝑐𝑏
∙ (1 − 𝐻𝑐𝑡) 

(at equilibrium only) 
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Defining the partition coefficient (λ) as the ratio of myocardial to blood 

concentration at equilibrium ECV can thus be calculated if λ and Hct are 

measured thus: 

Equation 2-50 

𝐸𝐶𝑉 = 𝜆 ∙ (1 − 𝐻𝑐𝑡) 

2.4.2.1 Measuring the partition coefficient using MRI 

As described in Equation 2-30, R1 varies linearly with contrast agent 

concentration. Consequently the relative contrast agent concentration in 

myocardium and blood can be estimated from the relative change in R1 from the 

pre-contrast state to that after contrast agent administration once equilibrium 

has been achieved (Equation 2-51). 

Equation 2-51 

𝜆 =
𝑐𝑚

𝑐𝑏
=

∆𝑅1,𝑚

∆𝑅1,𝑏
=

(
1

𝑇1,𝑚,𝑒𝑞𝑢𝑖𝑙𝑖𝑏
−

1
𝑇1,𝑚,𝑝𝑟𝑒

)

(
1

𝑇1,𝑏,𝑒𝑞𝑢𝑖𝑙𝑖𝑏
−

1
𝑇1,𝑏,𝑝𝑟𝑒

)
 

Note that the above relationship is valid only where the assumption of fast water 

exchange between regions can be assumed, as discussed previously. 

2.5 Conclusions 

In this chapter the relevant biological, clinical and physical theory that informs 

the subsequent content of this thesis has been introduced and described. This 

theory is required to inform the acquisition, analysis and interpretation of 

quantified contrast enhanced MRI as applied to the assessment of the 

myocardium. 
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 Chapter 3

Outline of a Clinical Cardiac DCE-MRI Protocol 

In this chapter the generic structure of a clinical DCE MRI protocol is described, 

including details of the sequences used for quantification of perfusion and 

distribution volume in the left ventricular myocardium. Variants of this generic 

structure using these established sequences are used in the later chapters 

describing clinical studies. 

3.1 Typical perfusion CMR protocol 

CMR is a highly flexible imaging tool and so protocols are tailored to the clinical 

questions being addressed. A protocol will begin with localiser scans to identify 

positioning for the standard cardiac views, including the short-axis view typically 

used for perfusion imaging and T1 mapping. This will be followed by a series of 

imaging sequences designed to assess the structure, function and status of the 

heart. Commonly this will include a variety of the following: cine images, tagged 

images, velocity encoded images, T2 weighted images, T2
* maps, T1 maps, and 

images of the coronary arteries. An example protocol including stress/rest 

perfusion is shown in Figure 3-1, such a protocol may take around 40-60 

minutes to acquire. 

The ordering and selection of some sequences in the protocol will vary based 

upon clinical indication or research questions with some constraints imposed 

due to the fact that some data should be acquired either before or after contrast 

agent administration (either as an absolute necessity or a preference, e.g. 

tagged images can be acquired at any time but may be best acquired pre-

contrast as tag patterns persist longer when T1 is longer). To account for both 

cardiac and respiratory motion the majority of scans are triggered or 

retrospectively gated by ECG and many are acquired in either one or several 

breath-holds. 
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Figure 3-1 – Example protocol including stress/rest perfusion (DCE) MRI. 
Items in pink indicate DCE-MRI and include contrast agent administration. 
Those in blue relate to ECV measurement, T1 mapping and/or non-linearity 
correction of DCE data. Items in green are additional sequences for tissue 
and function characterisation and the selection and ordering of these may 
vary depending on the clinical requirements. Additional elements, such as 
coronary artery imaging or flow encoded imaging, may also be included. 
Some of these sequences may be performed post-contrast during the 
delay periods (peach). 

For myocardial DCE-MRI, images are acquired regularly (typically every 

heartbeat) for a period of time which will be chosen based on the intended post-

acquisition analysis. During this time contrast agent is administered as a bolus 

administration at a high injection rate (typically 3-5 ml/s) followed by a saline 

flush (typically around 20 ml at the same injection rate as the contrast agent). 

For dual-bolus studies a reduced dose of contrast agent will be administered 

prior to the main bolus with either a reduced volume or the same volume of 

diluted contrast agent, also with a saline flush. For such studies the acquisition 

duration is extended to accommodate the two bolus administrations. Depending 

on the clinical indication perfusion studies may be repeated under different 

physiological conditions, for example under stress and at rest. As well as the 

perfusion series themselves additional sequences may be acquired to allow 

correction of the non-linear signal response to contrast agent concentration, as 

discussed later in this thesis. 

Following perfusion imaging additional contrast-enhanced studies may be 

acquired at prescribed times after the final contrast agent administration. These 

include inversion recovery early and late gadolinium enhancement images at 

around 1-3 and >10 minutes respectively, and T1 maps for fibrosis assessment 

(typically ~15 minutes). Inclusion of both early and late gadolinium 
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enhancement allows distinction of non-persistent (which can also be identified 

on perfusion imaging) MVO and persistent MVO (with the latter appearing at 

both time points and the former appearing only at the early phase). As 

discussed in section 2.1.2 the presence of persistent MVO implies a poorer 

prognosis than non-persistent or completely absent MVO. It has been 

postulated [30] that in cases with non-persistent MVO the residual blood flow is 

low but contrast agent does reach the tissue slowly through collateral flow and 

diffusion while persistent MVO reflects severely disturbed microvasculature, 

leading to the differential appearance at delayed phases after contrast agent 

administration. 

Finally, in addition to acquisition of MRI data it may be necessary to collect 

blood samples prior to scanning to provide patient specific haematocrit 

measurements, which are necessary for determining some physiological 

parameters (for example estimation of plasma flow and ECV requires 

knowledge of haematocrit, but that of blood flow and partition coefficient does 

not). 

3.1.1 Pharmacological stress 

As described above it is common to acquire perfusion images both at rest and 

under stress. Stress is achieved using pharmacological agents such as the 

vasodilators adenosine, regadenoson or dipyramidole, or the inotropic agent 

dobutamine. For the studies described in this thesis adenosine was used to 

achieve maximal hyperaemia (typically using a 140 μg/kg(bodyweight)/min dose 

infusion although in the absence of symptoms or substantial (10%) increase in 

heart rate after two minutes this was increased to 210 μg/kg(bodyweight)/min). 

This infusion is continued throughout the perfusion study to maintain 

hyperaemia, and terminated at the end of the acquisition at which point the 

effects subside rapidly due to the short blood half-life of adenosine [60]. 

Consequently for stress perfusion studies two cannulae are required, one for 

contrast agent delivery and one for stress agent infusion. 
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3.2 Sequences 

The following sections describe the sequences used for the DCE-MRI 

acquisition in the studies described in later chapters, as well as details of 

associated sequences used in the quantitative analysis. 

3.2.1 Cardiac perfusion sequence 

Cardiac DCE-MRI data in the studies described later in this thesis were 

acquired using an ECG triggered saturation recovery prepared 2D spoiled 

gradient echo sequence. Acquisitions consist of three slices aligned to provide 

short-axis views evenly spread through the longitudinal extent of the left 

ventricle, adopting the commonly used “three-of-five” approach to ensure 

reproducible positioning [61]. In this approach five short-axis slices are initially 

specified, equally spaced from the apex to the base of the left ventricle, the 

outer two are then discarded prior to imaging (see Figure 3-2). 

 

Figure 3-2 – “Three-of-five” approach for cardiac DCE-MRI imaging. 
Initially five equally spaced slices are prescribed (dashed lines). The outer 
two (red) are then discarded prior to acquisition of the inner three (green). 

The acquisition process for each slice consists of a non-slice selective 

saturation pulse followed by a delay and then a train of slice-selective readout 

pulses. Each readout consists of a Cartesian k-space trajectory accelerated 

with partial Fourier acquisition and parallel imaging to reduce the number of 
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lines of data that need to be acquired. Approximately 40 readout pulses 

(depending on resolution and field of view) are therefore acquired (NPE≈40), 

with the central line of k-space acquired early in the readout train (typically at 

around the 12th readout, nk0≈12). This line of k-space is acquired a specified 

delay, TS, typically around 100ms. Data is acquired with short TR and TE to 

minimise acquisition duration and T2
* weighting respectively. These are typically 

around 2.7 ms and 1.1 ms respectively. As a spoiled readout technique is used 

a low flip angle (FA≈15°) is used. The duration of the readout train (acquisition 

duration) is equal to the product of NPE and TR, around 108ms, and the total 

duration required to image a single slice (shot duration) is equal to the sum of 

TS and the product of TR and the number of lines of k-space acquired after the 

central line (NPE-nk0), around 176 ms. 

Image acquisition is triggered by ECG, with imaging starting at a delay after 

detection of the R-wave (trigger delay, TD) chosen to acquire images during 

diastole, when cardiac motion is minimal. The three slices are then acquired 

contiguously in time as shown in Figure 3-3. As the acquisition of all three slices 

takes a little over half a second there is an upper limit on the heart rate of 

around 110 bpm of the subject for which the sequence can be acquired without 

requiring a reduction in either resolution, number of slices or changing to 

triggering imaging every other heartbeat. This limit is typically not reached 

during scanning at rest but may be limiting when scanning subjects under 

pharmacologically induced stress. Changes in heart rate will also affect the 

cardiac phase of each slice, as the duration of image acquisition will remain 

constant while cardiac cycle length changes. 
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Figure 3-3 – Schematic of three slice, saturation recovery spoiled gradient 
echo, ECG triggered DCE-MRI sequence. Dark blue rectangles indicate 
non-slice selective saturation pulses. Bold blue lines indicate the position 
of the central line of k-space within the readout train (vertical blue striped 
rectangle). In proton density weighted variants the saturation pulses are 
omitted. 

Respiratory motion 

As well as the requirement to account for cardiac motion (typically achieved 

through ECG triggering as discussed above) the heart undergoes bulk motion 

due to breathing. For short DCE-MRI sequences this can be accounted for by 

the patient holding their breath during the acquisition. However this limits the 

maximum acquisition duration and may lead to severe motion if the patient 

takes a deep breath before imaging has finished. For longer acquisitions, or for 

patients who cannot easily hold their breath, shallow breathing throughout the 

acquisition may be preferable to a breath-hold followed by shallow breathing to 

reduce the likelihood of a deep breath leading to substantial motion taking 

place. In the latter case (breath-hold for initial part of acquisition) the variability 

in signal intensity may generally be more severe later in the DCE-MRI 

acquisition after the end of the breath-hold. 

For analysis in-plane respiratory motion can be accounted for by image 

registration techniques or by moving region of interest contours to account for 

motion. However neither of these methods can account for through-plane 
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motion in 2D imaging. Furthermore if image uniformity is not ideal sensitivity 

may vary across the imaging field of view and so even with successful 

correction for motion (using either registration or adjustment of contours) 

respiratory motion may cause artefactual variation in signal intensity throughout 

the acquired DCE-MRI data as for example in Figure 3-4 below: 

 
Figure 3-4 – Top – DCE-MRI images (cropped for clarity) acquired at each 
end of the respiratory cycle (left – inspiration, right – expiration). These 
images are from a volunteer who breathed deeply throughout acquisition. 
These images were acquired approximately 2 minutes after contrast agent 
administration and were 3 cardiac cycles (2.3 seconds) apart so little 
variation in contrast agent concentration would be expected. Despite this 
myocardial signal intensity varies approximately 20% between the two 
images. Bottom – This variation leads to structured variation in the 
myocardial signal curve which is due to motion rather than contrast agent 
variation. 
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3.2.1.1 Dual-sequence variant 

The dual-sequence approach exploits the unused time between the saturation 

preparation pulse and image readout of the DCE-MRI sequence to acquire an 

additional image with reduced T1 sensitivity, and thus linearity of signal 

response over a greater contrast agent concentration range. Due to the short 

time available (TS-nk0TR) this additional image has very low spatial resolution, 

but can be used to measure signal variation in the blood pool, i.e. the arterial 

input function, as this is taken from the relatively large left ventricular blood 

pool. The sequence does not have sufficient spatial resolution to allow reliable 

measurement of myocardial signal intensity. Typical parameters for this 

sequence are TS≈24 ms NPE≈24 and nk0≈8 with FA, TR and TE similar to the 

full resolution acquisition. Figure 3-5 shows a schematic and example images 

for this approach. 

The additional image acquisition is interleaved between the saturation pulse 

and image readout of one of the slices of DCE-MRI data. To avoid the extra 

readout pulses affecting the magnetisation evolution of the myocardium prior to 

acquisition of the full resolution image, a different slice position is used and 

slice-selective readout pulses are employed. For example a low-resolution 

image acquired at a position towards the base of the left ventricle would be 

acquired between the saturation pulse and readout of a slice towards the apex. 

As non-selective saturation pulses are used the magnetisation is saturated in 

the position of both slices. Additionally magnetisation in blood outside of the 

imaged slices (but within the region in the scanner bore over which the RF 

pulses are transmitted) which could flow into the slice by the time of image 

acquisition will also be saturated, although the saturation efficiency may be 

reduced away from the scanner isocentre, outside the imaging volume of the 

scanner. However, as this volume extends to around 40-50cm in the axial 

direction in a typical closed bore scanner, and saturation pulses are applied 

multiple times per cardiac cycle, it is unlikely that blood will be imaged that has 

not experienced multiple saturation pulses with similar saturation efficiency to 

those experienced by static tissue in the imaging slices. 

 



Chapter 3 Outline of a Clinical Cardiac DCE-MRI Protocol 

59 

 
Figure 3-5 – Top - Schematic of three slice, saturation recovery spoiled 
gradient echo, ECG triggered DCE-MRI sequence with interleaved low 
spatial resolution image for measuring the AIF in the dual-sequence 
approach. Bold blue or red lines indicate the position of the central line of 
k-space within the readout trains (vertical blue or red striped rectangles) 
for the full resolution or interleaved low resolution sequences 
respectively. In proton density weighted variants the saturation pulses are 
omitted. Bottom – Example low-resolution (top row) and high resolution 
(bottom row, same slice location) images from different phases of 
enhancement (left – pre-contrast, middle - peak AIF, right – myocardial 
enhancement). 
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3.2.1.2 Non-SR proton density weighted variant 

To perform signal non-linearity correction data from a proton density weighted 

sequence can be used to constrain a signal model. To acquire data for this a 

modified version of the DCE-MRI sequence is used, which is identical to the 

standard sequence except the saturation pulses are removed to reduce T1 

weighting. This sequence is acquired separately to the standard DCE 

sequence, typically over a small number of heart beats (~10) within a single 

breath-hold. A dual-sequence variant of this can also be acquired to provide 

proton density weighted images with resolution matched to the saturation 

recovery images acquired. As the readout pulse train is repeated every heart 

beat some T1 weighting will remain and signal may vary between early images 

as a steady-state is reached. To reduce such effects it may be beneficial to 

reduce the readout pulse flip angle. 

3.3 Conclusions 

In this chapter the outline of a CMR protocol has been outlined and the 

sequences performed for perfusion CMR described in further detail. These 

sequences form the basis of the protocols used in the following chapters. 

Specific parameters used for those studies are introduced as they are used.
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 Chapter 4

Literature Review – Technical 

This chapter provides a review of scientific literature relating to the technical 

aspects of quantitative contrast enhanced MRI, focussing on applications within 

the field of clinical cardiovascular imaging but also including relevant material 

from other clinical and pre-clinical fields. 

4.1 Introduction 

Changes to myocardial perfusion, structure and physiology are common to a 

range of ischaemic and non-ischaemic heart diseases. There is consequently a 

demand for techniques that are able to identify and characterise such changes 

in the clinical setting. Ideally such techniques should be non-invasive, safe and 

readily applicable in routine practice. Developments in MRI, along with other 

imaging modalities, have allowed increasingly detailed assessment of the 

myocardium, including through the application of exogenous contrast agents. 

This review details the development of quantitative cardiac MRI methods 

exploiting gadolinium based contrast agents for the measurement of perfusion, 

extracellular volume fraction (ECV) and other physiological parameters relating 

to myocardial tissue status. 

4.2 Clinical motivation 

Visual analysis of myocardial DCE-MRI data allows identification of perfusion 

defects and is thus commonly used in the assessment of ischaemic heart 

disease (being included in international standardised protocols [62]), both to 

identify regions of reduced perfusion and to assess response to therapy. Initially 

motivation for characterising changes in myocardial ECV was focussed on the 

assessment of viability of myocardium following infarction. In this setting the 

loss of cardiomyocyte cell membrane integrity associated with myocardial 

infarction was proposed as a mechanism for hyperenhancement observed in 

infarcted regions of myocardium in post contrast T1 weighted imaging [5] 

described in section 4.3.1. More recently interest in assessment of this 

parameter has developed into assessment of both interstitial and replacement 

fibrosis in a range of cardiomyopathies. Due to the more diffuse distribution of 
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fibrosis in many of these settings, and the fact that severity as well as spatial 

extent is of interest, methods to quantitatively assess contrast agent distribution 

volumes have thus been desired and developed [26]. Similarly quantification of 

perfusion may allow more objective assessment of changes due to non-

ischaemic diseases, or due to three-vessel disease where perfusion is limited 

throughout the myocardium and so localised deficits may not be visible [63]. As 

this chapter focusses on the technical development of quantitative contrast 

enhanced cardiac MRI a review of relevant clinical studies is presented in the 

following chapter. 

4.3 Contrast enhanced MRI methods 

Since the introduction of Gd-DTPA as a contrast agent its potential for use in a 

range of clinical applications has been investigated. Early investigations into 

cardiac applications were performed by assessing contrast between remote and 

infarcted myocardium, first in a canine model [64] and later in humans [65], and 

established the potential for this agent to be used to differentiate tissue states in 

acute myocardial infarction. Use of gadolinium based contrast agents in cardiac 

MRI is widespread and can broadly be classified into three categories which : 

DCE- MRI (also referred to as perfusion CMR), delayed enhancement (DE) MRI 

and contrast equilibrium MRI [66, 67]. These exploit different sections of the 

myocardial enhancement curves (as exemplified in Figure 2-12) to distinguish 

normal and pathological tissue. The development, theoretical background and 

application of these methods are discussed in the following sections. 

4.3.1 Delayed enhancement MRI 

The value of the use of gadolinium based contrast agents in assessing the 

viability of myocardium (as opposed to its perfusion status, discussed later) was 

first evaluated by Fedele et al in 1994 [68] . In this study the authors identified 

significant differences in signal intensities of T1 weighted images acquired 12 

and 30 minutes after contrast agent administration between normal, necrotic 

and hibernating myocardium (differences were not statistically significant at the 

earlier measured time points of 4 and 8 minutes). This provided the basis for the 

development of LGE MRI, in which T1 weighted inversion recovery images (with 

an inversion time selected to null signal from normal myocardium, see Figure 
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2-10 and associated discussion in section 2.2.3) are acquired after a delay of 

around ten minutes after contrast agent administration [69]. Due to the enlarged 

distribution volume resulting from breakdown of cardiomyocyte membranes in 

infarcted myocardium (and hence increased accumulation of Gd-DTPA once 

equilibrium is reached), the T1 at this delayed phase is shortened and strong 

contrast between normal and infarcted tissue can be achieved when the normal 

myocardium is nulled. This has since developed to become a gold standard 

technique for the identification of focal fibrosis and scar in a range of ischaemic 

and non-ischaemic heart diseases [70-75] and has been shown to provide great 

prognostic value in coronary artery disease [76]. 

The above techniques used to assess myocardial viability are commonly 

referred to as late gadolinium enhancement (LGE) MRI and are typically 

acquired 10 minutes or longer after contrast agent administration. Application of 

similar methods earlier (within around 5 minutes of injection) can allow 

identification of microvascular obstruction after infarction and reperfusion (as 

described in section 2.1.2) [66], referred to as early gadolinium enhancement 

(EGE).  

Development is still ongoing to improve the utility of this method, for example 

through the use of double inversion sequences to supress signal from blood as 

well as viable myocardium, and hence increase contrast at the endocardial 

layer [77]. Notably the introduction of phase-sensitive inversion recovery 

techniques (in which the image data depends on the direction of the longitudinal 

magnetisation prior to the application readout pulse, as well as its magnitude) 

can reduce the scope for operator error as the technique is less sensitive to the 

choice of inversion time although a systematic bias between such techniques 

and conventional magnitude reconstructed LGE imaging has been observed 

[78]. 

There are, however, two limitations to this technique. Firstly; while being useful 

for identifying regions of disease it is not possible to determine the severity of 

damage to the tissue reliably. Secondly; the technique relies on contrast 

between injured and remote myocardium, and so is not suited to the 

assessment of diffuse fibrosis or other pathological processes that result in 

global changes to the extracellular matrix. Consequently there remains a need 
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for other methods to quantitatively assess the physiological status of the 

myocardium. 

4.3.2 Dynamic contrast enhanced MRI 

The potential use of Gd-DTPA as a tracer for quantitative assessment of both 

myocardial blood flow (MBF) and ECV was investigated in 1992 by Diesbourg 

et al [79]. This was the first study in which MBF and ECV were estimated along 

with T1, T2 and myocardial Gd-DTPA concentration in a canine model of 

ischemic heart disease. The study was also the first to compare simulations 

based on tracer kinetic modelling techniques using the modified Kety model [80] 

to simulate myocardial Gd-DTPA concentration following a bolus or infusion 

administration. For this study simulated myocardial Gd-DTPA concentration 

curves were compared to measurements from hearts excised following sacrifice 

immediately post infusion and both immediately and at five minutes post bolus 

administration.  

The simulations from this study predicted that the physiological parameter 

which most influences myocardial Gd-DTPA concentrations changes throughout 

the period following bolus injection. Within the first minute MBF is the dominant 

effect whereas at later times ECV becomes dominant. Following a slow 

constant infusion to achieve a steady-state between the plasma and interstitial 

volumes, the concentration is primarily determined by ECV. At the time of this 

study MRI techniques for sampling the required concentration curves with the 

required temporal resolution were not available (as discussed in section 2.4.1.1 

this must be sufficiently high to sample the contrast agent variation adequately, 

which in practice requires imaging at least every other cardiac cycle [81]). 

However the paper raised the theoretical possibility of measuring the product of 

MBF and E, the extraction efficiency  (this product is also known as the 

unidirectional influx constant, Ki [82]), as well as the Gd-DTPA distribution 

volume in myocardium by using deconvolution methods if the technological 

obstacles could be overcome. For this T1 estimates of blood and myocardium 

would be required every few seconds. The study also measured λ following a 

constant infusion administration. Measurement of this parameter, along with 

adjustment based on a haematocrit measurement, is another method to 

measure ECV. 
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Later studies by the same group [83, 84] proposed a method combining 

contrast enhanced MRI, microsphere based myocardial blood flow estimates 

and nuclear medicine based distribution volume estimates to allow local 

measurements of E in a canine model. However this technique could not be 

applied in a clinical setting, and the results showed that E varied between 

subjects and tissue status and so an assumed value could not be used to allow 

estimates of MBF from DCE-MRI using this model. 

4.3.2.1 Acquisition techniques and estimation of physiological 

parameters 

Concurrent with the work above developments in MRI technology were allowing 

the introduction of rapid T1 weighted sequences to monitor the delivery of Gd-

DTPA to the myocardium in vivo [85, 86], thus allowing DCE-MRI to be 

introduced into clinical cardiac MRI workflow. Semi-quantitative measures (see 

section 2.4.1.1) such as signal intensity slope, time-to-peak and time to reach 

steady-state can be straightforwardly derived from DCE-MRI data [85] and offer 

objective parameterisation, although without direct physiological interpretation. 

Larsson et al [82] provided the first fully quantitative study using DCE-MRI to 

sample both myocardial and arterial Gd-DTPA concentration curves (validated 

against invasive arterial sampling). In this work the MRI derived AIF was scaled 

(to account for haematocrit and flow effects) using venous blood samples taken 

6 minutes post injection, so the need for blood sampling was not fully alleviated. 

However the protocol could, in principle, allow a change from repetitive arterial 

sampling to a single venous sample (although repeated venous and arterial 

samples were performed in this study for comparison). In order to measure the 

curves through MRI a pre-contrast T1 measurement (using an 

electrocardiograph (ECG) triggered inversion recovery (IR) spoiled gradient 

echo sequence (Fast Low Angle Shot, FLASH) with 12 inversion times (TI)) was 

performed (triggered every third RR interval). The same sequence was 

repeated with a single fixed TI to allow estimation of changes in R1 with a 

temporal resolution equal to three times the cardiac cycle length (TRR, the time 

between successive R-waves on the ECG trace). A Gd-DTPA bolus was 

injected after the acquisition of 15 baseline images, with 127 images acquired in 

total. Curves were generated for a region of interest in the septum and in the 
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descending aorta and estimates of Ki and ECV were derived through 

deconvolution methods using both the MRI generated and directly sampled 

AIFs (applying the Kety model [80]). In this approach it is assumed that the 

exchange of water between the different regions of the myocardium is fast in 

comparison to the temporal resolution and the range of longitudinal relaxation 

times. Consequently the myocardium is assumed to act as an ensemble of 

spins with equal longitudinal relaxation rates equal to a weighted average of 

those in the various regions. In the small healthy volunteer component of this 

study (n = 4 for MRI derived AIF, 3 of which also had arterially sampled AIFs) 

agreement in ECV and perfusion between AIF measurement technique was 

moderate with lower estimates of Ki from the arterially sampled AIF. The 

authors note that it was necessary to shift the arterially sampled AIF temporally 

to account for the transit time between the heart and the brachial artery 

sampling point and suggest that this is a possible source of error. If this was the 

case then the MRI sampled AIF may be preferable not just because it is 

sampled non-invasively, but also because this error source is minimised as the 

sampling point is much closer anatomically to the myocardium. Furthermore this 

may reduce dispersion of the contrast agent bolus shape between the sampled 

AIF and the true input to the myocardium, as well as the temporal offset. 

A subsequent study by the same group [87] utilised an extended model which 

assumed slow water exchange between the vascular and interstitial 

compartments, and thus also allows measurement of the fractional plasma 

volume (vp) in addition to Ki, ECV and BAT. Additionally a model which included 

the extraction fraction was included to attempt to separate Ki into its constituent 

parts (E and Fp). In this work data acquisition methods were similar to those for 

the previous study. It was found (in simulation studies) that the four parameter 

model was robust to noise but that inclusion of E (to allow Fp, rather than Ki to 

be determined) led to significant errors being introduced for moderate noise 

levels. Consequently the authors analysed the in vivo data (collected from 

healthy volunteers) using the four parameter model. The results from this 

analysis agreed reasonably well with separate PET (2.1.3) studies although with 

slightly higher results from MRI. The authors acknowledge that absolute MBF 

quantification with PET imaging has some limitations, including limited spatial 

resolution and the need to correct for factors such as partial volume and 
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spillover effects. In particular it was noted that due to the relatively low spatial 

resolution in PET, and the lack of ECG triggering to compensate for cardiac 

motion, there is likely to be significant averaging of flow heterogeneity. However 

this comparison has demonstrated the feasibility of DCE-MRI as a method to 

quantitatively measure parameters related to both perfusion and compartmental 

volumes. 

Vallée et al [88] later also used a one-compartment model (in which the 

interstitial and vascular compartments in the myocardium are not separated, as 

in the first study by Larsson et al). Consequently only the total distribution 

volume (ECV) and not its constituent parts can be assessed alongside the influx 

constant K1. It should be noted that there has been some variability in the use of 

notation within DCE-MRI literature [89], with K1, Ki and Ktrans having been used 

to represent the transfer constant from blood to myocardium, and K1 in this 

study is equivalent to Ki in the previous discussion. This study was performed in 

order to assess the change in measured parameters at rest and under 

dipyramidole induced stress in a canine model. The group later applied these 

methods in humans (n = 10) with normal resting cardiac function [90]. 

Distribution volumes measured averaged 15% in this study, which was similar 

to their animal study but considerably lower than those measured by Larsson et 

al in the study described above (around 30%) [87] suggesting that further work 

was necessary to elucidate the mechanisms responsible for the differences. 

In the first study to apply these methods in the setting of acute myocardial 

infarction a one compartment model (as per Vallée et al [88]) was employed to 

analyse MRI derived concentration curves following the bolus injection of Gd-

DTPA [91]. The study used an IR spoiled gradient echo (Turbo-FLASH) 

sequence, initially with varying TI to calculate pre-contrast T1 and then with 

fixed TI to monitor contrast agent passage. This sequences employs a 180° 

pulse to initially invert longitudinal magnetisation followed by a spoiled gradient 

echo sequence (Figure 2-7) with low readout flip angles and short TR to reduce 

image acquisition duration. Signal intensities were converted to changes in R1 

and subsequently contrast agent concentrations using the pre-contrast T1 

measurement and the signal intensity equation for the imaging sequence. Data 

was collected for 5 slices, each of which was segmented radially into 60 
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regions. K1 and ECV were calculated for each region and K1 maps produced. In 

regions with infarct (identified through lack of enhancement in visual 

assessment of the images) K1 was seen to fall dramatically. Converse to 

expectations the distribution volume was also significantly lower in infarcted 

regions. This contradicts results from other acute MI studies described more 

fully later in this review using both DCE and contrast equilibrium MRI (e.g. 

Flacke et al [92] and Pereira et al [93]). The reasons for this unexpected result 

are not clear but could relate to the distribution volume being underestimated in 

regions of microvascular obstruction where very little contrast agent reaches the 

myocardium, particularly if the duration of the image acquisition period was too 

short to allow precise estimation of distribution volumes. 

A study by Pack et al [94] evaluated DCE-MRI for assessing the distribution 

volume in chronic infarction using a modified Kety model. Dynamic data 

acquisition was performed at rest and under adenosine induced stress. Results 

were compared to a contrast equilibrium derived ECV estimate (a technique 

described in section 4.3.3) based on signal intensity ratios pre-contrast and at 

the end of the full protocol (at 40 minutes following two 0.025 mmol/kg injections 

of Gd-DTPA at approximately 3 and 13 minutes and a further 0.15 mmol/kg 

injection at 20 minutes). In order to assess the length of dynamic data 

acquisition required simulations were performed. It was found that for normal 

myocardium, estimates of ECV were within 5% of the ground truth value when 

30 s of data was acquired and for infarcted myocardium 90 s was required for 

the same accuracy. In both cases inclusion of later data points did not 

significantly affect accuracy. For patient studies acquisition durations of at least 

3 minutes were used, and for healthy volunteers at least 1 minute was acquired, 

to ensure ECV could be accurately assessed. This highlights the importance of 

ensuring that the protocol is designed to collect data sufficient for the purpose, 

and that extended DCE protocols may be required for myocardium with reduced 

perfusion and increased ECV. Using these acquisition durations ECV measured 

by DCE-MRI was not significantly different to that measured by contrast 

equilibrium methods, and was observed to increase approximately two-fold in 

infarcted myocardium compared to normal myocardium. 
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The studies described above employed model-constrained deconvolution, in 

which the shape of the residue function is described by a mathematical function 

which is derived from an underlying model of the physiology and is described by 

a small (typically 2-4) number of physiological parameters. Alternatively the 

deconvolution can be performed using a function that is chosen on a 

phenomenological basis, such as the Fermi function as employed by Jerosch-

Herold et al [56] or using model-free deconvolution (as later utilised later by 

same author [95]) in which the shape of the residue function is constrained only 

by shape defining parameters (such as smoothness and a requirement to be 

monotonically decreasing). In either case the amplitude of the residue function 

can be interpreted as the blood (or plasma depending on how data is scaled for 

haematocrit) flow while other physiological parameters are not readily 

interpretable. 

Since the work of Pack et al [94] the majority of published research into ECV 

quantification by cardiac MRI has focussed on T1 mapping based contrast 

equilibrium methods. However a 2009 abstract by Jerosch-Herold et al [96] 

described a study in which ECV measured by DCE-MRI in a sample of patients 

(11 congenital heart disease and 9 idiopathic dilated cardiomyopathy) and 

healthy volunteers (n = 20 was compared to that by obtaining the partition 

coefficient using one pre-contrast and three post-contrast T1 measurements. 

The DCE analysis used a two-compartment model and the parameters ve, Fp 

and PS parameters were optimised while an assumed value for the vp was kept 

constant. Signal intensity data were used in the deconvolution process, with no 

correction for signal non-linearity effects. The results agreed well between the 

two methods with no significant overall bias and similar variability in results, 

although with some differences existing between methods for individual 

subjects (the 95% confidence limits for agreements being -8 to +6 %). The 

authors concluded that contrast-to-noise ratio is the dominant factor affecting 

precision in such measurements by DCE-MRI (although no evidence was 

provided to support this claim) and that the technique may prove to be an 

efficient alternative to T1 mapping based techniques. 
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A later study [1]1 compared results of DCE-MRI analysis using deconvolution 

constrained by the widely used Fermi model to derive measures of Fb to model-

based deconvolution using a distributed parameter (DP) model, in which plasma 

and interstitial volume fractions, as well as PS and Fb were determined. The 

acquisition was performed at rest and under adenosine stress allowing the 

myocardial perfusion ratio (MPR, the ratio of Fb at stress to rest) to be 

calculated. A subset (11/16) of the volunteers returned for a second visit 

allowing repeatability to be assessed. This study allowed the effect of 

measuring additional parameters on the flow measurement to be evaluated, 

although no independent means of measuring volume fractions were included 

to allow the accuracy of the technique for that purpose to be tested directly. The 

DP model could be applied in the majority of cases, although in 5 of 27 data 

sets acquired at rest the results were deemed to be unreliable (yielding non-

physiological results). This was thought to be due to the model being over-

parameterised in cases with high first-pass extraction fraction in which case the 

delivery of contrast agent to the interstitium is limited predominantly by 

myocardial blood flow and it becomes difficult to separately characterise the 

extra- and intra-vascular distribution of contrast agent. This may limit the 

applicability of some models which while providing potentially useful additional 

data in some cases may be less robust than simpler models for tissue with 

differing physiology. In the failed cases in this study a one-compartment model 

was used to arrive at estimates of Fb and ECV (i.e. the combined plasma and 

interstitial volume fractions). The Fb results showed no significant bias at rest 

but those from the DP model analysis were significantly lower than the Fermi 

model results. However without independent gold-standard verification it was 

not possible to assess the accuracy. The authors note, however, that similar 

findings were reported previously [97] and that differences could be due to the 

fact that the Fermi model was developed for use with intravascular contrast 

agents (for which the single region distribution assumption the model is based 

on would be valid). In the repeatability assessment Fb was found to have lower 

or equal test/retest variation when measured with the DP model than with the 

                                            

1 The author of this thesis is lead author on this paper. Methods and software developed for this 

paper were implemented in the work carried out during this PhD but the work contained 

within the paper does not directly form part of this thesis. 
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Fermi model. Additionally the interstitial and combined volume measurements 

from the DP analysis were also less variable than the Fermi model flow results, 

and were consistent with literature values lending support to this analysis 

method. 

A lack of gold standard reference data is a common limitation to the above 

clinical studies as the most commonly accepted gold standard technique for 

non-invasive assessment of MBF is 15O-water or 13N-ammonia PET which are 

not widely available, largely due to the need for on-site isotope generating 

equipment [98]. Additionally PET based quantification is also limited by spatial 

and temporal resolution considerations as described earlier in this section (on 

p66) and so may not be an ideal reference standard, particularly for 

heterogeneous disease. 

Further comparisons between tracer kinetic models used for myocardial DCE-

MRI analysis has been performed by different groups. Handayani et al [99] 

compared the distributed parameter, Fermi, extended Tofts and Patlak 

constrained deconvolution and found similar estimates of MBF at rest, but 

significant differences between results for the Patlak model when compared to 

both distributed parameter and Fermi (but not when compared to the extended 

Tofts model). This comparison was performed in patients with either suspected 

or known coronary artery disease for whom coronary computed tomography 

was performed to identify coronary stenoses of more than 50% diameter 

reduction). For myocardium subtended by arteries with such stenoses perfusion 

estimates were only significantly reduced at stress when assessed by extended 

Tofts model or Fermi model based deconvolution, suggesting model choice 

could affect diagnostic accuracy. 

In a separate study by Biglands et al [100] diagnostic accuracy of a different set 

of four techniques was compared. In this study model based deconvolution 

constrained by one compartment, Fermi and uptake models, in addition to 

model-independent deconvolution, were compared in terms of the diagnostic 

performance for identifying perfusion deficits with a reference standard of a 

combination of the detection of inducible ischaemia by single photon emission 

computed tomography and a luminal stenosis of 70% or more by x-ray 

angiography. Diagnostic accuracy was compared for measurement of both 
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absolute MBF under adenosine induced stress and of myocardial perfusion 

reserve (MPR, the ratio of MBF at stress to that at rest). For absolute stress 

MBF the diagnostic performance was similar for all four methods (area under 

curve on receiver operating characteristic (AUC ROC) analysis of 0.85-0.87). 

For MPR diagnostic accuracy was also similar between three of the methods 

(Fermi and uptake model constrained or model-independent deconvolution), 

and was slightly higher than for absolute stress MBF (AUC ROC 0.87-0.92). 

However it was lower for one-compartment model based deconvolution (AUC 

ROC = 0.80) suggesting that this model may not be appropriate at rest. 

As described in the discussion above a range of techniques have been 

developed for both acquisition and quantitative analysis of myocardial DCE-MRI 

data. Systematic differences in results as well as variation in the physiological 

parameters estimated exist between many of these due to the differing 

underlying physiological assumptions in the models used. For these techniques 

to be useful in widespread application sufficient diagnostic or prognostic 

accuracy must be proven and the techniques must be robust enough to be 

applied in a routine clinical setting. The choice of the optimal method for this 

remains an open question and may depend on the clinical questions that are 

being addressed as well as the physiological status of the tissue and quality of 

the acquired data. 

4.3.2.2 Non-linear response of signal to contrast agent concentration 

As has been described above the DCE-MRI method relies on sampling 

concentrations of the contrast agent repeatedly with a high temporal resolution. 

This is done indirectly through serial measurement of the MRI signal intensity. 

Over a limited range of concentrations the signal response to contrast agent 

concentration is approximately linear, and such assumptions of linearity have 

been used in some studies  (for example the study by Pereira et al described 

previously [93]). However, to make such assumptions use of a low contrast 

agent dose is required and this can be problematic as the signal to noise ratio of 

the measured curves is reduced. At higher concentrations the signal response 

becomes sub-linear, and eventually saturates as the longitudinal recovery of 

magnetisation becomes sufficiently fast to be effectively complete between 

preparation and image readout pulses. At high concentrations signal intensity 
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may decrease due to the T2
* shortening effect of the contrast agent. As the 

contrast agent concentration range in the left ventricular blood is much higher 

than that in the myocardium if the assumption of signal linearity is made for a 

standard DCE-MRI protocol a compromise must be made between the extent of 

the validity of that assumption (which becomes less valid at higher doses, and 

affects the accuracy of derived parameters) and the contrast to noise ratio 

(which is poorer at low dose, and limits precision in quantification). 

Model based correction 

Signal non-linearity can be corrected for by using a mathematical model to 

describe signal intensity for the imaging sequence used and either assumed or 

measured additional data to constrain this model. However this relies on the 

relationship being monotonic (i.e. the contrast agent concentration being below 

that at which peak signal is achieved) and for the signal response to be 

sufficiently strong so that noise in the signal data does not lead to excessive 

errors in the conversion process. Use of either T1 measurements [44, 101] or 

signal from a proton density weighted series [102] acquired pre-contrast have 

been proposed as data that can be used alongside baseline signal from the 

DCE-MRI series for this process. In this approach the signal model is 

determined entirely by pre-contrast data and then used to convert signal data 

across the full range sampled, from baseline to the peak of the AIF. 

Consequently inaccuracies in the conversion process could be introduced by 

any bias in the pre-contrast data (either the baseline DCE-MRI signal or the 

additional data) or limitations of the signal model equation. 

The requirement to be in a regime of adequate contrast to noise ratio and below 

the levels of concentration that lead to signal saturation are complicated by the 

fact that a wide range of concentrations need to be measured, with considerably 

higher peak concentration in the blood pool (i.e. the peak of the AIF) compared 

to the peak concentration in the myocardium. Consequently dual-sampling 

techniques have been proposed to sample the AIF and myocardial data 

separately as discussed below. 
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Dual-sampling methods 

Two such approaches to sampling AIF and myocardial data independently have 

been proposed. The dual-bolus technique (assessed in a canine model in 2004 

[103] and later in humans [104]) employs administration of two injections of 

contrast agent. The first is a small dose used to measure the AIF, and the 

second a larger dose to measure the myocardial curve. This successfully 

allowed acquisition of an AIF in the approximately linear range while also 

acquiring a tissue response curve with sufficient signal to noise ratio. For 

analysis the measured curves are scaled by the ratio of the doses used prior to 

quantitative analysis. Similarly Köstler et al [105] observed in clinical studies 

that increasing the dose from 3-12ml  of Gd-DTPA in a single bolus experiment 

led to increasing estimates of MBF. However when the myocardial data was 

taken from the varying dose studies but the AIF data from the 3ml dose study 

this trend was not observed. Furthermore, using a lower dose of 1ml for the AIF, 

in combination with an 8 or 12ml dose for myocardial data, led to reduced 

variability in their MBF estimates. While the benefit of this technique has been 

demonstrated for perfusion quantification using first-pass data, for example in a 

study demonstrating improved diagnostic performance compared to single-

bolus DCE-MRI for the detection of significant coronary artery disease [106], its 

application to ECV quantification has not yet been studied. The work of Hsu et 

al [107] demonstrated that perfusion quantification using the dual-bolus method 

may potentially be improved by performing non-linearity correction of 

myocardial signal intensity data. Results from studies using two different 

saturation delay times (in order to give differing degrees of signal saturation) 

with a dual-bolus strategy employed were compared and differences in results 

demonstrated, indicating that despite the dual-bolus approach signal non-

linearity effects were still present. 

The requirement for two boluses to be injected introduces procedural 

complexity, including preparation and injection of the additional reduced volume 

or diluted dose. With current injector pump technology this typically requires 

staff presence within the scan room during scanning to perform. While future 

hardware changes to injector pumps may simplify this process the dual-bolus 

technique is currently cumbersome and single bolus techniques are thus 

preferable for ease of clinical implementation. 
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An alternative method utilises a single bolus administration, but a dual 

acquisition sequence. In this method images with two sets of acquisition 

parameters are acquired at each time point, one a lower spatial resolution 

image with lower T1 weighting than the other. The first exhibits a lower degree 

of signal non-linearity across the contrast agent concentration range expected 

in the blood pool and so is suited to measurement of the AIF. As only an 

average signal from a relatively large volume (typically the left ventricular blood 

pool) is required, a low spatial resolution can be used to minimise acquisition 

duration. The higher resolution, more T1 weighted sequence is more typical of a 

conventional myocardial DCE acquisition and is used to measure the 

myocardial curve. This was originally proposed by Gatehouse et al in 2004 

[108] in a study in which a separate acquisition was performed with a short 

saturation time to capture the data for the AIF. The results were compared to a 

dual-bolus acquisition and a significant bias in myocardial perfusion reserve 

(MPR) measures between the methods was observed (11% overestimation by 

the dual-sequence approach compared to the dual-bolus method). This was 

unexplained in the paper, but may be explained by the findings of Hsu et al 

[107] described above, as non-linearity correction of the myocardial signal data 

was not performed in this study and so MBF may have been underestimated by 

the dual-bolus strategy with more severe underestimation expected under 

stress conditions. In the initial dual-sequence study only relative blood flow 

(MPR) was reported. In order to perform absolute quantification of MBF it is 

necessary not only to sufficiently limit the effect of signal non-linearity in both 

the myocardial signal data and the AIF, but also to account for the differential T1 

weightings between the sequences. Following further optimisation of the dual-

sequence a study by Sánchez-González et al [109] demonstrated both good 

correlation (R2=0.92) and low bias between estimates of absolute MBF using 

the dual-sequence approach and dual-bolus methods. To account for the 

different T1 weighting in the acquisitions for the former signal intensity data were 

converted into contrast agent concentration data using a model-based approach 

constrained by a measurement of native T1 using MOLLI T1 mapping. 

The dual-sequence technique is more appealing than dual-bolus methods as 

the same bolus is used, so variations in contrast agent administration, 

dispersion or distribution are not a concern. However it is limited to providing 
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relative estimates of physiological parameters unless combined with a model-

based correction for the differential sensitivity of the two sequences. In terms of 

clinical practice the technique is thus also favourable as only a single injection is 

required, unlike the dual bolus technique. The technique was later refined, firstly 

by Kim et al [110] who developed a multi-slice variant to allow increased 

anatomical coverage, and later by Kholmovski et al [111] who modified the 

technique to use data from the same acquisition for the two image sets. In the 

latter a radial k-space sampling scheme was employed and a sub-set (one 

quarter of the 96 acquired projection) with the shortest effective saturation time 

were used to reconstruct low resolution images for the AIF, while the full data 

set was used to reconstruct higher, more T1 weighted images to characterise 

the myocardial response. By using the same acquisition for both data sets the 

time penalty incurred by including a second acquisition is circumvented. This 

idea has been extended by utilising highly-constrained back projection 

reconstruction techniques with a sliding window by Chen et al [112] and Ge et al 

[113], further shortening the temporal footprint of the AIF acquisition. 

While saturation effects in the AIF and methods to compensate for this have 

been in the research domain for the past decade, a consensus on the optimal 

strategy has yet to be reached. Although the techniques have been applied in 

research centres a method that is practically straightforward and widely 

available on commercial scanners will be required to allow widespread clinical 

adoption. Furthermore the assessment of these methods has focussed on 

perfusion quantification to date, and further studies will be required to evaluate 

their applicability in assessment additional parameters such as ECV.  

4.3.3 Contrast equilibrium ECV imaging 

As described previously, measurement of the partition coefficient, λ, of 

extracellular contrast agents along with measurement of the haematocrit can 

allow calculation of the distribution volume of the agent. This volume comprises 

the interstitial space and the plasma space within the capillary bed of the tissue 

of interest. As described in equation 2-30 the longitudinal relaxation rate, R1, is 

linearly related to the contrast agent concentration, therefore measurement of 

the change in R1 (ΔR1) between pre- and post-administration in both the blood 

and myocardium can allow calculation of the partition coefficient, as long as the 
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post-contrast measurement is performed once contrast equilibrium is achieved. 

According to equation 2-49, the ECV can be straightforwardly calculated from 

this, if the haematocrit is known. This forms the basis of contrast equilibrium 

ECV imaging. Contrary to DCE-MRI this technique uses data acquired before 

and at a delayed time after contrast agent administration and uses a few 

(typically two) time points, rather than imaging at high temporal resolution 

during contrast agent administration (see Figure 3-1). 

Arheden et al [114] applied this method in vivo in a rat model of myocardial 

infarction in 1999. In this study the distribution volume of Gd-DTPA measured 

by pre and post-contrast T1 measurements (inversion-recovery echo-planar 

imaging, IR-EPI) was compared to radioisotope (99mTc-DTPA) measurements in 

both normal myocardium (remote in infarcted mice and myocardium in a control 

group) and reperfused infarcted myocardium. To determine the effect of post-

contrast T1 measurement time on distribution volume estimates the post-

contrast measurement was repeated at 4, 14 and 29 minutes after contrast 

agent administration. The authors commented on the fact that one fundamental 

difference in these techniques is that the radioisotope experiment involves a 

direct measurement of tracer content whereas contrast enhanced MRI is 

inherently an indirect technique as it is the effect of the tracer on the local water 

molecules that is measured. Both techniques demonstrated a marked increase 

in infarcted myocardium compared to healthy myocardium (interpreted as the 

tracer gaining access to the intracellular space as the cardiomyocyte membrane 

is damaged). Agreement between the methods was excellent for the infarcted 

tissue but distribution volume fractions measured by MRI were significantly 

lower than radioisotope counterparts for both myocardium in the control rats 

and myocardium remote to infarction. Comparing post-contrast T1 

measurements at different delays following Gd-DTPA administration showed no 

temporal dependence, suggesting that contrast equilibrium in rats was achieved 

within 4 minutes of contrast agent administration in both healthy and infarcted 

myocardium. 

A further study by Pereira et al [93] used signal intensity ratios as a substitute 

for ΔR1 ratios in a canine model study of the variation of λ with time following 

reperfusion. This approach assumes a linear relationship between contrast 
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agent concentration and signal intensity, which is valid for low concentrations, 

as noted by the authors. At higher concentrations (dependent on pulse 

sequence parameters) the relationship deviates from a linear one and saturates 

to a maximal signal intensity. Consequently care must be taken with such an 

approach to ensure that measurements are performed in the linear range of 

contrast agent concentrations. 

The first human clinical study applying contrast equilibrium techniques 

compared λ derived from ΔR1 measurements (using a Look-Locker sequence) 

between acute and chronic myocardial infarction [92]. This study was the first to 

assess the clinical value of MRI derived partition coefficients to identify 

myocardial segments with acute or chronic ischaemic disease, and found high 

sensitivity and specificity for both when a threshold of 20% elevation above 

remote myocardium was applied. The study also looked at the regional variation 

of λ across the myocardium of healthy subjects and found that λ was generally 

uniform (with a non-significant trend for increased values towards the apex) but 

with significantly higher values measured in the septum. One explanation 

proposed for this was an increased tendency for partial volume effects with 

inclusion of mixed myocardium/blood pool voxels in the analysis. This highlights 

the importance of careful contouring and image registration, and the need for 

sufficient spatial resolution, when applying this technique. 

In the decade following these early demonstrations of the feasibility and clinical 

value of the technique research in the field concentrated on three main strands, 

which form the basis of the following sections. Studies were performed to 

assess the approach to equilibrium and the impact of the contrast agent 

administration scheme, techniques were developed and assessed for the 

accurate measurement of T1 required for measuring λ, and further clinical 

studies were performed assessing the technique within the context of 

myocardial infarction, in a range of other cardiomyopathies and in assessing 

variation across the healthy population (e.g. with age or gender). 

4.3.3.1 Contrast agent administration 

As described previously the contrast equilibrium method of measuring λ and 

ECV is reliant on the post-contrast measurement being performed once 
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equilibrium is obtained between the plasma and extravascular-extracellular 

space, i.e. the concentrations of contrast agent in the two compartments are 

equal. This can be achieved through a long infusion of the contrast agent. 

However, for the technique to find routine application it is necessary that 

equilibrium can be achieved using a method that is acceptable in clinical 

practice. 

Simulations performed in the early development of the contrast equilibrium 

method showed that it could take longer than 1 hour of infusion to reach 90% of 

equilibrium for tissues with high λ and low perfusion [83] although previous work 

had shown that this can be accelerated through use of a bolus injection prior to 

infusion [79]. The former study investigated optimisation of this protocol and 

found that, with an optimal ratio of bolus dose to infusion dose rate and no 

intervening gap, 90% equilibrium could be obtained in most tissue states within 

15 minutes and that 1 hour would be sufficient for even tissue with very low 

perfusion and highly increased distribution volumes. 

A later study by Thornhill et al [115] assessed the feasibility of omitting the 

lengthy infusion and measuring λ (in the setting of myocardial infarction) after a 

single bolus. The study recruited 9 patients and for each performed 

measurements at 3-4 weeks and 6 months post-infarction, in each case 

performing the experiment with both a bolus and infusion strategy and using 

relative signal intensity ratios rather than ΔR1 ratios as per the study by Pereira 

et al described previously in this review [93]. For the bolus strategy images 

were acquired serially at 3-5 minute intervals for up to 35 minutes after bolus 

injection. The study showed that for a delay time ≥ 4 minutes there was 

reasonable concordance (concordance coefficient > 0.83) between the two 

methods for both normal and infarcted myocardium at both time points. 

Concordance was significantly lower for the shortest delay time used (2 

minutes). This work suggested that, with a suitable delay, a bolus injection of 

Gd-DTPA could therefore be used to determine λ without the requirement for a 

lengthy infusion. 

The comparison of bolus and slow infusion contrast agent administration 

strategies was revisited in 2011 by Schelbert et al [116]. In this healthy 

volunteer study ΔR1 was calculated using a MOLLI sequence (described later in 
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this review) rather than relying on the assumption of linearity between signal 

intensity and contrast agent concentration. This study also built upon the 

previous study by including subject specific haematocrit measurements to allow 

calculation of ECV from λ. Other differences included the use of a different (but 

still non-ionic, extracellular) contrast agent, gadoteridol. The study did not 

evaluate the early time points assessed by Thornhill et al [115] but acquired 

post-contrast T1 measurements between 12 and 50 minutes post-injection. 

Results showed that while post-contrast T1 of both blood and myocardium 

increase with time after bolus injection (due to renal clearance of the contrast 

agent), λ, and ECV, were largely stable. There was a very small but statistically 

significant trend identified with the bolus strategy, with measured ECV 

increasing by 0.6% over 30 minutes, but this change is less than the size of the 

95% confidence intervals on the individual ECV measurements. This suggests 

that in healthy volunteers with normal renal function the glomerular clearance is 

sufficiently slow in comparison to exchange across the myocardial capillary 

walls that it does not have a detrimental effect on the ability to achieve contrast 

equilibrium. For patients with reduced renal function any effect would be 

expected to be lower, so it can be assumed that this would not produce 

problems for patients with renal impairment (although this was not tested in this 

study). However the result was reported with the caveat that for the specific 

case of patients with systemic amyloidosis rapid extra-renal clearance of Gd 

based contrast agents from the blood pool may impact the approach to 

equilibrium. 

More recently Salerno et al [117] built upon the work of Schelbert et al and 

Thornhill et al by performing a healthy volunteer study which incorporated a 

bolus and infusion strategy, although with a delay in between of 15 minutes 

which allowed collection of data for assessment of the bolus injection method. 

Two key results were presented as a result of this. Firstly, the methods showed 

good agreement, supporting the results of the previous studies. Secondly, 

regression of post-bolus data points at 5, 10 and 15 minutes showed a linear 

relationship, suggesting that equilibrium was achieved within 5 minutes for this 

sample. This is in concordance with the results of Thornhill et al who reported 

that equilibrium was achieved in 4 minutes for normal and infarcted 

myocardium. 
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In clinical practice it is common to administer two boluses of contrast agent in 

order to perform perfusion CMR under both pharmacologically induced stress 

and resting conditions. McDiarmid et al1 [8] compared ECV results obtained 

from T1 maps acquired before and after a split dose contrast agent 

administration, as would be used in stress/rest perfusion studies, to those from 

single bolus studies. The study included 10 healthy volunteers as well as 4 

ischaemic heart disease patients and 1 hypertrophic cardiomyopathy patient, all 

of whom were scanned at 3 Tesla with T1 maps acquired before contrast agent 

administration and after a total administration of 0.15 mmol/kg Gd-BT-DO3A 

gadobutrol (Gadovist), either injected as a single bolus or two 0.075 mmol/kg 

boluses separated by 12 minutes. Post-contrast T1 maps were acquired 15 

minutes after either the single or the latter of the two split dose administrations. 

Each subject was scanned with the single bolus administration once and the 

split dose administration either once (patients) or twice (volunteers), with each 

study performed on separate days. The results demonstrated no significant bias 

between administration protocols, with similar coefficients of variability whether 

comparing between protocols (5.04%) or between the two split dose studies for 

the volunteers (5.67%). This study thus provides evidence to support the 

compatibility of contrast equilibrium based ECV estimation with a stress/rest 

perfusion protocol and also demonstrates good reproducibility of the technique. 

The studies detailed above have demonstrated that a single or split dose bolus-

injection strategy can be applied to measurements of λ (or ECV) by MRI. Across 

the studies this has been demonstrated for both healthy and infarcted 

myocardium and has thus been tested at both extremes of the expected range 

of ECV values.  

4.3.3.2 Contrast agent choice 

The majority of studies have employed solutions of the non-ionic extravascular 

Gd based contrast agent Gd-DTPA. A study by Kawel et al [118] compared 

results of T1 mapping (MOLLI) and ECV calculation using Gd-DTPA and an 

ionic contrast agent, gadobenate dimeglumine (Gd-BOPTA). In this study post-

contrast myocardial T1 was systematically shorter when Gd-DTPA was used 

                                            
1 The author of this thesis is a co-author on this paper, but the work contained within the paper 

does not form part of this thesis. 
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compared to Gd-BOPTA, while there was no difference in blood T1. This led to 

a small but statistically significant difference in ECV (1% higher for Gd-DTPA). 

The authors suggested that this could be due to the fact that Gd-BOPTA binds 

to albumin, which is found mainly in the blood, a process which could lead to 

differences between the distribution characteristics of the two agents. A 

secondary outcome of this study was identification of a trend for measured ECV 

to increase with the delay between injection and post-contrast T1 mapping, as 

previously seen in the study by Schelbert et al [116] described earlier. Across 

the range studied (5 – 45 min) ECV increased by 3%. Additionally other contrast 

agents have been used in contrast equilibrium studies such as gadodiamide 

[119] or gadobutrol [8], with results comparable to other studies using different 

contrast agents but without direct comparison. 

4.3.3.3 Additional confounding factors 

A further study by Kawel et al [120] assessed a range of factors that may 

confound T1 and ECV measurements. It is well established that T1 

demonstrates a field strength dependence and so pre- and post-contrast T1 of 

both blood and myocardium would be expected to be longer at 3 T than 1.5 T. 

However, as ECV is a physiological parameter this would not be expected to 

vary with magnetic field strength. This was demonstrated in the study, in which 

31 healthy volunteers (all aged under 40) were scanned once at 1.5 T (using 

Gd-DTPA) and twice at 3 T (using Gd-DTPA in one study and Gd-BOPTA in the 

other). Native T1 of blood and myocardium was 31% and 28% higher 

respectively at 3 T compared to 1.5 T. T1 remained higher post-contrast but to a 

lesser extent. Importantly differences in ECV were not significant. 

In addition to comparing field strengths this study also performed 

measurements at two cardiac phases (systole and diastole) and compared the 

regional variation of ECV. T1 was shorter at diastole than systole both pre- and 

post-contrast. The relative difference was larger post-contrast leading to a 

statistically significant difference in ECV between the cardiac phases, with 

systolic ECV being 0.01 lower than diastolic ECV on average. In assessing 

regional variation it was seen that septal myocardial ECV was significantly 

higher than non-septal myocardial ECV. 
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The results of this study and the comparison of Gd-DTPA to Gd-BOPTA 

demonstrate that a variety of factors can confound ECV measurement, even 

within the same patient. In comparing ECV results care should be taken to 

ensure that consideration is made of differences in protocol, contrast agent, 

cardiac phase and myocardial region. Differences arising from some of these 

factors are due to imperfections in the measurement technique (as the 

measurement technique does not change the ECV). Others (such as cardiac 

phase or myocardial region) could be due to genuine physiological differences, 

measurement technique imperfections, or a combination of both. For example 

T1 and ECV could genuinely change throughout the cardiac cycle due to 

variations in the blood volume, or the apparent differences could be artefactual 

and arise due to varying degrees of impact of partial volume averaging with 

extra-myocardial tissue due to changes in the thickness of the myocardium. 

For contrast equilibrium methods a current area of research relates to the rate 

of water exchange between the interstitium and intra-cellular space. Koenig et 

al [47] demonstrated that in the blood Gd-DTPA exists in the plasma volume but 

does not enter the blood cells. However, as the exchange of water between the 

intra- and extracellular spaces in the blood pool is rapid in comparison to the T1 

times, the overall longitudinal relaxation rate (R1) can be modelled as the 

weighted average of that of the water, intra- and extracellular proteins and the 

exogenous contrast agents. This results in the fact that a single exponential 

function adequately describes the evolution of the longitudinal magnetisation of 

blood. In most contrast equilibrium studies to date a similar assumption has 

been made for the myocardium, and a single T1 value measured for the tissue 

has been used in analysis. However evidence from Judd et al [121, 122] and 

Donahue et al [40] has shown that this may not be the case for water exchange 

between plasma and the interstitium and between the interstitium and intra-

cellular spaces. In the first study by Judd et al [121] the change in R1 when a 

known concentration of contrast agents was introduced to isolated canine 

hearts was observed to be less than expected under the assumption of fast 

water exchange, and this phenomenon and a subsequent underestimation of 

myocardial perfusion was also observed in a follow-up study in isolated rabbit 

hearts [122]. Donahue et al [40] compared measured T1 changes in response to 

contrast agent concentrations in excised rat hearts to simulations under a range 
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of assumptions including fast and slow water exchange between the different 

regions. They concluded that the exchange between interstitial and intra-cellular 

regions could be considered fast while exchange between interstitium and intra-

vascular plasma could not. 

Coelho-Filho et al [43] suggested that the assumption of fast water exchange 

where it is not valid may lead to inaccuracy in ECV estimation. In the animal 

part of their study T1 was measured at least 6 minutes after successive contrast 

agent administrations, until a cumulative dose of 0.5 mmol/kg was achieved. 

Under the fast exchange assumption a linear relation between myocardial and 

blood R1 would be expected. However the results demonstrated a sub-linear 

relationship, consistent with the two-space slow exchange (2SX) model 

employed (where the two spaces are the intra and extracellular components of 

the myocardium). This was found to be the case in both control mice and those 

with fibrosis induced through Nω-nitro-L-arginine-metyl-ester administration. 

ECV by MRI was compared to histological connective tissue volume fraction 

measurements. Use of the 2SX model significantly improved correlation of ECV 

values with histological results compared to the fast exchange (FX) model. For 

the latter model significant underestimation was observed. In this study the two 

models were also compared in patients with hypertension and healthy 

volunteers where similar deviations from the linear relation predicted by the FX 

assumption were observed. This study suggests that the FX assumption in the 

myocardium is not necessarily valid for clinical doses of contrast agent, and so 

for accurate quantification of ECV the effect should be considered. This could 

complicate data acquisition and analysis, as multiple data points are required to 

allow use of the 2SX model, but could potentially lead to an increased sensitivity 

for diffuse fibrosis. 

4.4 T1 measurement techniques 

In order to calculated ECV or λ maps using contrast equilibrium MRI it is usually 

necessary to acquire T1 maps of the heart (unless the relative signal intensity 

method used by, for example, Pereira et al is adopted [93]). Cardiac MRI is 

complicated by the rapid motion of the heart throughout the cardiac cycle and 

the slower movement associated with breathing. To calculate T1 maps it is 

necessary to collect multiple images with differing contrast weighting to allow 
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estimation of T1 on a voxel-by-voxel basis. This is typically achieved through 

variation of a single scan parameter, and the majority of research into cardiac 

T1 mapping involves the variation of the delay following magnetisation 

preparation (either saturation or inversion). Alternatively ECV can be calculated 

for specific regions of myocardium, for which voxel-by-voxel T1 maps are not 

required but instead T1 can be calculated for user-defined regions. This 

approach circumvents some of the difficulties associated with cardiac motion 

but does not allow as full an assessment of heterogeneity across myocardium. 

4.4.1 Multi-point inversion or saturation recovery techniques 

In early work developing cardiac DCE-MRI techniques by Larsson et al [82], 

pre-contrast T1 was measured using an ECG triggered IR FLASH sequence 

acquired with 12 different TI values. By varying the trigger time the images were 

acquired at the same cardiac phase (mid-diastole). Images were acquired every 

third RR interval resulting in a total imaging time that is too long for acquisition 

within a breath-hold in the clinical setting. Consequently T1 was not calculated 

on a voxel-by-voxel basis, but for a small region of interest that was shifted to 

account for respiratory motion between image acquisitions. Further limitations of 

this sequence (acknowledged by the authors) were the low dynamic range and 

susceptibility to signal saturation effects, the latter being cited as a potential 

cause of underestimation of T1 seen by the authors in their phantom validation. 

Signal saturation effects arise as the readout pulses and spoiler gradients 

employed in this sequence perturb the recovery of longitudinal magnetisation. 

The authors postulated, and demonstrated through phantom experiments, that 

the effect of saturation on T1 measurement errors could be reduced through 

positioning of the acquisition of central portions of k-space (which dominate 

image contrast) towards the start of the readout train. Additionally the three 

heart-beat recovery period between inversion pulses is not sufficient to allow full 

recovery of longitudinal magnetisation in native myocardium or blood, and so 

incomplete recovery is likely a significant contributor to the underestimation of 

T1 observed in phantom experiments in this study. The authors did not identify 

this effect separately to the inherent saturation effects of a spoiled readout such 

as that employed by the FLASH sequence, and so this warrants further 

attention. 
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Use of a standard multi-point IR experiment, such as that described above, 

while allowing sufficient recovery between inversion pulses is not compatible 

with the requirement for imaging within a breath-hold in the clinical setting. The 

remainder of this section of this review focuses on ECG triggered sequences 

that exploit methods to allow them to be performed within a breath-hold, and are 

therefore suited to cardiac T1 mapping as opposed to purely segmental or 

region-based analysis. 

A study [123] including T1 measurement to investigate the effect of 

pharmacological stress on perfusion also utilised an ECG triggered FLASH 

sequence to measure baseline T1. However, for this a saturation preparation 

pulse was employed rather than an inversion pulse. In saturation recovery (SR) 

sequences the preparation pulses null the longitudinal magnetisation rather 

than negating it. Consequently the recovery periods required for IR methods are 

not necessary if saturation is ideal. This allows imaging to be performed in 

successive RR intervals and so shorter (breath-hold compatible) scan times can 

be achieved. In this approach nine images were acquired (saturation recovery 

time, TS, from 100-1400 ms). For the longer TS acquisitions it was necessary 

for the saturation pulse and readout module to be in consecutive RR intervals, 

whereas for short TS the two components were applied in a single RR interval. 

Consequently a single-slice T1 map could be generated within a breath-hold. In 

conventional imaging linear k-space ordering is used, in which the gradient 

moment is incremented in a step-wise process so that the outer lines of k-space 

(containing the highest spatial frequencies) are acquired first and last and the 

central lines are acquired in the middle of the pulse train. In this sequence 

partial centric k-space reordering (in which the order of the application of the 

gradient moments is changed so that the central, low-spatial frequency, lines of 

k-space are acquired earlier) was used. This reduces saturation effects from the 

readout train as the number of RF pulses applied prior to acquisition of the 

contrast dominating central lines of k-space is reduced 

A single breath-hold saturation recovery (SR) myocardial T1 mapping technique 

capable of acquiring three slices was proposed later by Higgins et al [124], 

motivated by a requirement to perform multi-slice T1 mapping during the first 

pass of a contrast agent. In the method (dubbed Short Acquisition Period T1, 
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SAP-T1) five images are acquired per slice (in successive RR intervals) using a 

single-shot spoiled gradient echo sequence (TurboFLASH). The nulling of 

longitudinal magnetisation at each preparation pulse, and use of an individual 

preparation pulse for each image, results in a sequence for which accuracy 

should have no heart rate dependence. However, as for all SR based methods, 

the maximal dynamic range is reduced as the longitudinal magnetisation can 

only vary between zero and its equilibrium value (Meq), whereas in IR 

experiments the magnetisation can vary between –Meq and Meq. 

In SAP-T1 the first image is acquired with no saturation pulse (equivalent to 

infinite TS) and later images are acquired with TS values of 60, 90, 120 and 160 

ms (the authors refer to this parameter as preparation pulse delay, PD, but for 

consistency with the above study TS is used in this review). All images for a 

given slice are acquired at the same cardiac phase, although the authors 

propose that the trigger delay can be adjusted on a per-slice basis to allow T1 

maps to be generated corresponding in position and phase to a perfusion 

sequence. The short TS values allow the preparation pulse and image readout 

to be performed in the same RR interval for all images (unlike the previous 

study). This, and the reduced number of TS values used, allows a single slice to 

be acquired in 5 heart beats, and hence 3 slices to be acquired in a breath-hold. 

While SR methods do not suffer from effects of incomplete recovery between 

preparation pulses the longitudinal magnetisation evolution is still perturbed by 

the readout pulses. Simulations of the sequence used by the authors 

demonstrated that by including an offset time as free parameter in the fitting 

algorithm T1 estimations can be improved, although a theoretical justification 

was not provided for this approach. 

The proposed T1 measurement and calculation method was validated by 

measurements of vials of Gd-DTPA solution with T1 values covering the 

physiologically expected range (85 to 1716 ms). Multi-point IR spin-echo (SE) 

relaxometry was used as a reference standard, with a long repetition time (10 s) 

to avoid saturation effects. Results demonstrated a systematic overestimation of 

T1 in comparison to IR-SE. The maximal error observed across all samples was 

14%. 
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A major limitation of this method in vivo however is the limitation of TS to very 

short values (up to 160 ms). For tissues with short T1 (e.g. post-contrast 

administration) there is sufficient recovery of longitudinal magnetisation to allow 

acquisition of images with sufficient signal-to-noise ratio (SNR) to generate T1 

maps. However, for native blood and myocardium SNR is severely impaired in 

all but the image with no saturation preparation. Consequently, while the 

method is applicable to the purpose intended by the authors, it cannot be 

extended to be applied to pre-contrast T1 mapping. 

4.4.2 Inversion recovery Look-Locker based techniques 

A later clinical study [92] by Flacke et al used a Look-Locker (LL) [125, 126] 

approach to perform pre and post-contrast T1 mapping. In this method a train of 

images is acquired following a single inversion pulse to reduce image 

acquisition times. For this study 50 images were acquired using an EPI readout 

for each of four short-axis slices during free-breathing. As images were 

acquired at different cardiac phases and with respiratory motion, T1 maps could 

not be readily generated on a voxel-by-voxel basis. Instead the authors 

calculated T1 on a segmental basis (8 circumferential sectors). In this method, 

as with all LL methods, the signal intensity measured at later time points is not 

equal to that which would be acquired at the same time point in a conventional 

IR experiment. This is due to the impact of the preceding readout pulses on the 

evolution of the longitudinal magnetisation. Deichmann and Haase [127] 

described this phenomenon, and the means to allow calculation of the true T1 

from a series of spoiled gradient echo images acquired consecutively and with a 

small readout flip angle. In this method a three parameter model (equation 4-1) 

is fitted to the recorded signal intensities to estimate A, B and an apparent 

longitudinal recovery time, T1
*. This value differs from the true T1 value as the 

longitudinal recovery is disturbed by the application of the readout pulses, but 

T1 can be calculated from the estimated parameters (equation 4-2). 

Equation 4-1 

𝑀(𝑡) = 𝐴 − 𝐵𝑒𝑥𝑝(−𝑡/𝑇1
∗) 

Equation 4-2 

𝑇1 = 𝑇1
∗(𝐵 𝐴⁄ − 1) 
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4.4.2.1 Modified Look-Locker inversion recovery (MOLLI) 

A modification to this approach (Modified Look-Locker Inversion Recovery, 

MOLLI) which allows high resolution T1 mapping of the heart was proposed by 

Messroghli et al [7]. In this method data is acquired only during a specified 

cardiac phase and following multiple inversion pulses. The timing of image 

acquisition in relation to an ECG trace and longitudinal magnetisation recovery 

for the imaging that is performed following a single inversion is shown in Figure 

4-1 and the merging of data from multiple inversion epochs in Figure 4-2 below. 

 

Figure 4-1 – Data collection for the MOLLI technique (for a single 
inversion). Images are acquired at the same cardiac phase and have 
differing contrast due to recovery of longitudinal magnetisation. (Figure 
adapted from the Pocket Guide on Cardiovascular Magnetic Resonance 
Physics for Clinicians [19]) 
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Figure 4-2 – Merging of data from multiple inversions (three in this case) 
in MOLLI. (Figure adapted from the Pocket Guide on Cardiovascular 
Magnetic Resonance Physics for Clinicians [19]) 

For the original proposed scheme an initial image acquisition is performed with 

data collected at an effective TI of 100 ms, and then at the same cardiac phase 

in the subsequent two RR intervals. Three images with TI values of 100, 

100+TRR and 100+2xTRR are thus collected, where TRR is the RR interval of 

cardiac cycle (which will in practice exhibit some variability). Following a rest 

period of at least 4 seconds (to allow recovery of longitudinal magnetisation) 

another acquisition is performed to acquire a further three images with the 

shortest TI incremented to 200 ms. The trigger delay (TD) is adjusted to ensure 

the data is collected at the same cardiac phase as that in the first epoch. 

Finally, following a further rest period, a final acquisition is performed, this time 

with a shortest TI of 350 ms and five images acquired. This scheme is referred 

to as 3(4s)3(4s)5 in the nomenclature adopted for this thesis, referring to the 

number of readouts in each epoch with the recovery period defined in 

parentheses. 

In total image data for 11 TI values was acquired in a period of 15.1 to 18.2 s (in 

a single breath-hold) for the volunteers in this study. Inversion times range from 
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100 ms to over 5 RR intervals providing sufficient data to characterise the 

longitudinal recovery of magnetisation for most biological tissues. This data is 

collated to provide a dataset with signal intensity values at 11 TI values before 

fitting to an appropriate equation in order to calculate T1. This approach 

circumvents the problems of the low number of data points that can be acquired 

within a breath-hold using a conventional IR approach, and of the impact of 

cardiac motion which prevents data collected using a conventional LL 

experiment to perform T1 mapping on a voxel-by-voxel basis. The readout 

method adopted for this protocol was a balanced steady-state free-precession 

(bSSFP) sequence, which minimises the effect of the readout train on the 

recovery of the longitudinal magnetisation recovery [128] as transverse 

magnetisation is not spoiled following readout. 

The authors propose using the same fitting procedure as per Deichmann and 

Haase above [127] where an initial three-parameter fit yields T1
* from which T1 

is then calculated. However this method was originally derived for a low flip 

angle spoiled gradient echo sequence, as opposed to a balanced sequence 

employed in the MOLLI sequence. Furthermore the correction was derived for a 

continuous train of readouts, as opposed to the selective approach where there 

are periods of free recovery adopted in MOLLI, and so it is not clear if its use in 

MOLLI fitting is justified theoretically. 

Phantom studies performed in this study demonstrated a systematic 

underestimation of T1, the magnitude of which is dependent on both heart rate 

(which affects the sampling times and recovery durations) and T1. For moderate 

to long T1 values (above around 500 ms) errors were seen to increase with 

increasing T1, reaching 10% for T1 of 1196 ms and a simulated heart rate of 40 

beats per minute (bpm). A more pronounced error (up to 22%) was seen for the 

shortest T1 tested (60 ms), although this is lower than would be seen in vivo. In 

the in vivo part of the study healthy myocardium in two volunteers and remote 

myocardium in a myocardial infarction patient was reported at around 1000 ms, 

and so within the range of T1 values validated in the phantom experiment. 

However infarcted myocardium and blood both had T1 values measured by 

MOLLI above the validated range and so the uncertainty for these tissues is 
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unclear. Underestimation is also likely to be more of a problem at higher field 

strengths where T1 would be longer. 

Following the original paper setting out the methods and phantom validation of 

MOLLI, a reproducibility study was performed in a sample of healthy volunteers 

[129]. MOLLI was performed in the volunteers for a single mid-cavity short axis 

slice in an initial study, followed by a second study on the same day with MOLLI 

data acquired for three slices at baseline and at several time-points (2-20 

minutes, mid-cavity only) following a dual bolus injection of Gd-DTPA (0.05 

mmol/kg followed one minute later by 0.1 mmol/kg). Eight randomly selected 

subjects returned for baseline and post-contrast mid-cavity T1 mapping on a 

later day. Extraction of data was performed independently by two experienced 

cardiac MRI readers. Consequently both inter- and intra-subject and inter- and 

intra-observer reproducibility could be assessed in this study, all of which were 

reported as being favourable. Additionally, visually assessed image quality was 

scored as good in 93% of segments analysed with the remainder suffering 

some extent of artefact (predominantly motion induced). Finally results were 

compared to in vivo studies described previously in this review. Results were in 

agreement with the LL method [92] but lower than the SR TurboFLASH method 

[123]. This is consistent with the observation of systematic underestimation of 

T1 made in the original MOLLI paper [7]. Assessment of the heart-rate 

dependence (due to effects described in the previous study) for the 

reproducibility study data demonstrated a linear dependence on heart-rate for 

T1 values typical of baseline studies. This dependence was not seen for shorter 

T1 values (post-contrast). Consequently the authors proposed and utilised a 

linear heart rate correction for baseline studies only. This was seen to reduce 

variability in baseline myocardial T1 across their sample, but further evaluation 

would be needed to establish suitable correction methods for longer T1 values 

(e.g. blood or myocardium at higher field strengths). 

After the demonstration of reproducibility and reliability of MOLLI further work 

was undertaken to optimise the parameters of the pulse sequence [130]. MOLLI 

was performed in a phantom study with iterative changes to four key 

parameters (flip angle, minimum TI, TI increment and recovery period duration 

(number of heart cycles)), altered successively to optimise accuracy. The 
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optimal sequence from the phantom work was then applied to 20 healthy 

volunteers pre-contrast and at various times (1 minute to 20 minutes) after 

administration of 0.15 mmol/kg of Gd-DTPA. The optimised parameters were: 

flip angle = 35°, minimum TI = 100 ms, TI increment = 80 ms and length of 

recovery period = 3 cardiac cycles). With the change to a recovery period 

defined as a fixed number of cardiac cycles this scheme is defined as 3(3)3(3)5. 

The results of the volunteer study were compared to those from the 

reproducibility study described above [129]. The results demonstrated 

comparable mean T1 values and less variability pre-contrast in comparison to 

the earlier study, and evidence of heart-rate dependence was no longer 

present. This suggests that the optimisation procedure had successfully 

improved some attributes of the protocol, although the results could have been 

strengthened by direct comparison of the original and optimised protocols in the 

same volunteer group. 

Further evaluation of MOLLI was performed by Nacif et al [131], who compared 

the sequence to a conventional LL protocol (with bSSFP readout) in healthy 

volunteers. Both sequences were performed pre-contrast and at various time 

points post-contrast. As a single-examination was performed there was a 1.5 

minute offset between the post-contrast times used for the two sequences. The 

results demonstrated good agreement pre-contrast but a systematic difference 

post-contrast, with T1 measured by MOLLI to be approximately 60 ms greater 

than by LL. With the lack of a gold-standard for myocardial T1 mapping in vivo, 

and of a direct comparison of these techniques in a phantom study, it is not 

possible to comment on the relative accuracy of these schemes. However the 

study did demonstrate a reduced variation in T1 values as measured by MOLLI 

in comparison to LL. Consequently they recommended the use of MOLLI in 

future studies for ECV calculation, and correction of post-contrast T1 values for 

retrospective analysis of LL data. 

Reference values of native T1 and ECV were determined at two field strengths 

(1.5 and 3 T) in an international study of 102 healthy subjects and 113 low-risk 

subjects, demonstrating the transferability of the technique between centres 
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[14]1. In this study narrow variability in native myocardial T1 was demonstrated, 

with coefficients of variation of 2.2% at both field strengths. 

As discussed above the original MOLLI method uses a balanced gradient echo 

readout. This can lead to artefacts due to off-resonance effects, particularly at 

higher field strengths. An alternative method has been proposed in which the 

same acquisition scheme is used as MOLLI but using a spoiled gradient echo 

readout [132]. To account for the different readout type a modified fitting 

procedure, using a Bloch simulation of the sequence, was used. In this study, 

performed at 3 T, accuracy and precision compared favourably to conventional 

balanced readout based MOLLI sequences in phantom studies, and off-

resonance artefacts were eradicated in volunteers.  

Acquisition of data for MOLLI using the optimised scheme (3(3)3(3)5) requires a 

breath-hold of 17 heart-beats. This is generally achievable for healthy 

volunteers and for some patients. However patients with pulmonary 

compromise may not find this possible as maximal breath-hold time is reduced 

[133]. Consequently work has been completed to develop and evaluate shorter 

variants of the scheme as discussed below. 

Several alternative MOLLI acquisition schemes have been proposed, the most 

commonly applied of which are discussed in the following paragraphs. A study 

by Salerno et al [117] compared 3(3)3(3)5) MOLLI to two shortened versions 

(as well as comparing bolus and continuous infusion methods for determining 

partition coefficients, as discussed earlier in this review). In one the first epoch 

was removed (3(3)5 MOLLI, 11 heart-beats) and in the second each epoch was 

shortened by one readout (2(3)2(3)4 MOLLI, 14 heart-beats). The techniques 

were tested in a phantom study for a range of T1 values (447 – 1459 ms) at two 

simulated heart-rates (60 and 100 bpm). For the lower heart-rate maximal 

errors were 8.4% across all T1 values and MOLLI variants, with little variation 

between the sequences. For the higher heart-rate 3(3)3(3)5) and 3(3)5) MOLLI 

were again comparable, and demonstrated larger underestimation than at lower 

heart-rate (consistent with previous studies). However large errors (up to 33%) 

                                            
1 The author of this thesis is a co-author on this paper, but the work contained within the paper 

does not form part of this thesis. 
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were observed for 2(3)2(3)4 MOLLI. Errors were most severe for the longest T1 

values. This is likely due to the reduction in the time between inversions in 

comparison to conventional MOLLI, which will exacerbate the effect of 

incomplete recovery of longitudinal magnetisation. In the healthy volunteer 

element of this study mean blood and myocardium values were comparable 

both pre- and post-contrast for 3(3)3(3)5 and 3(3)5 MOLLI. The standard 

deviation was larger for 3(3)5 MOLLI, due to the penalty of increased noise 

sensitivity incurred by using fewer data points in the fitting process. 2(3)2(3)4 

MOLLI demonstrated comparable results post-contrast. However T1 was lower 

pre-contrast, reaching statistical significance for blood (mean of 1379 ms 

compared to 1483 ms for 3(3)3(3)5MOLLI). This is as would be expected from 

the phantom study. This work has demonstrated that MOLLI can be shortened 

through the removal of the first epoch without affecting accuracy, although with 

a reduction in precision. This could prove beneficial for patient groups who 

struggle or find it impossible to hold their breath for the 17 heart-beat duration of 

conventional MOLLI. 

A similar study [134] compared 11 heart-beat (3(3)5) MOLLI to 17 heart-beat 

(3(3)3(3)5) MOLLI in both phantoms and volunteers at 3 T (where T1 of 

corresponding tissues would be expected to be longer than for the previously 

described study performed at 1.5 T). The phantom study compared both to an 

IR-SE reference standard, and results demonstrated the underestimation of 

longer T1 values and heart rate sensitivity seen in other MOLLI studies. Similar 

to the work completed at 1.5 T, 3(3)5 and 3(3)3(3)5 MOLLI showed good 

agreement, even at long T1, with no statistically significant bias reported. In the 

healthy volunteer component of this work agreement was also good between 

the two MOLLI variants for both blood and myocardium before and at various 

delays after bolus injection of Gd-DTPA. Consequently there was no significant 

difference in calculated ECV values. The results also showed no significant 

variation in calculated ECV from 8.5 minutes to 23.5 minutes post injection 

(differences were seen at 3.5 and 5 minutes), suggesting that dynamic 

equilibrium is reached (in healthy myocardium) within this time. 

Further modifications to MOLLI schemes have included the use of specified 

minimum temporal durations for recovery (as in the original MOLLI publication 
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[7]) or acquisition periods to minimise the dependence of T1 measurement 

accuracy on heart rate [135]. At high heart rates the acquisition duration of a 

conventional (fixed number of cardiac cycles) scheme is reduced, but 

systematic errors in T1 estimation may be introduced as the time between 

inversion pulses becomes too short to allow sufficient recovery of longitudinal 

magnetisation. Instead if a time interval is specified the overall acquisition 

duration and time between inversion pulses can be approximately maintained. 

As the acquisitions are synchronised to the cardiac cycle the duration of each 

readout or recovery period must be a multiple of the RR interval, and so in 

practice a minimum time period is specified and the minimum number of cardiac 

cycles to achieve that is used. For example for a specified 3 second recovery 

period the number of cardiac cycles would be 3 for heart rates between 40 and 

60 bpm but 4 for heart rates between 60 and 80 bpm. This study also 

introduced the idea of using different schemes for native and contrast-enhanced 

T1 mapping. A 4(1s)3(1s)2 scheme is proposed for contrast-enhanced T1 

mapping in order to provide a greater density of data at short inversion times to 

improve the accuracy and precision of short T1 value estimates. As the T1 is 

short the reduced time between inversion pulses introduced through the 

inclusion of three inversion recovery epochs and short recovery periods does 

not lead to inaccuracies. For native T1 mapping a 5(3s)3 scheme is proposed to 

increase the time between inversions, while sacrificing the density of sampling 

of short inversion times, which is less important for estimation of long T1 values. 

4.4.2.2 Shortened MOLLI (ShMOLLI) 

Another shortened variant of MOLLI (ShMOLLI) was proposed by Piechnik et al 

in 2010 [136] which employs a 9 heart-beat scheme (5(1)1(1)1), as contrasted 

to the 3(3)3(3)5 MOLLI scheme in Figure 4-3. 
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Figure 4-3 – Comparison of MOLLI and ShMOLLI schemes in relation to 
the ECG trace at 60bpm. Bottom plots show evolution of longitudinal 
magnetisation. Adapted from [136]. 

The proposed scheme does not allow sufficient recovery of longitudinal 

magnetisation for the full range of T1 values expected. However, errors in T1 

estimation caused by this are avoided through selective use of the data as 

described below. For accurate T1 mapping it is necessary to sample the 

recovery curve adequately. For a short T1 it is therefore optimal to include a 

high density of short inversion times to characterise the shape of the curve, 

whereas for longer T1 longer inversion times are required. In the first epoch of 

the ShMOLLI scheme data inversion times range from the shortest (100 ms) to 

longest (5xTRR + 100 ms) acquired. This is sufficient to characterise long T1 

recovery curves, and inclusion of data from later epochs would reduce accuracy 

as these data points would be affected by incomplete recovery. For 

intermediate T1 values there is sufficient recovery between the first and second 

inversion (6 RR intervals later) to allow inclusion of the data from the single 

readout of the second epoch without adversely affecting T1 accuracy. The final 

inversion pulse is applied just two RR intervals after the second, and so 

longitudinal recovery of magnetisation will only be adequate to allow inclusion of 

the data for calculation of very short T1 values. However, it is these T1 values for 

which the additional data at short inversion times is most valuable. The 

ShMOLLI fitting algorithm therefore differs to that for MOLLI in that it is 

performed in a conditional manner, with data from the second and third epochs 

only utilised when the fitted T1
 value is under a threshold that is dependent on 

TRR. 

Simulation and phantom studies performed in the study demonstrated that 

ShMOLLI is less susceptible to underestimation of long T1 values, and 

demonstrates less heart rate dependence. This is due to the fact that, for long 
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T1 values, all data that is used for the fit has been collected following a single 

inversion pulse, eradicating the effect of incomplete recovery. The penalty is an 

increase in noise, due to the use of fewer data points in the fit. Theoretically, the 

noise penalty, in comparison to MOLLI, would be more severe for longer T1 

values where fewer data points are used. This effect was demonstrated in the 

simulation, phantom and human volunteer experiments making up the initial 

ShMOLLI study. One key advantage demonstrated in ShMOLLI was a much 

more linear relationship to T1 measured by a reference standard technique than 

MOLLI. Both sequences demonstrated systematic underestimation, but for 

ShMOLLI this was consistent at 4% rather than demonstrating heart-rate or T1 

dependence. Correction is therefore more straightforward to apply. 

Normal variation of T1 in humans (at 1.5 T) was later assessed in a follow up 

study [137]. This multi-centre study (n = 342) allowed assessment of variation of 

myocardial and blood T1 with a range of potential confounding factors. Mid-wall 

myocardial T1 was found to be highly reproducible across individuals and 

scanners (<2% variability). Values were taken from the mid-wall to avoid partial 

volume effects (with blood or surrounding tissues). Age dependence was 

observed in females, with no difference between genders for volunteers over 

the age of 45 but slightly higher mid-wall myocardial T1 observed in younger 

females. In contrast to the original ShMOLLI paper, small but statistically 

significant heart-rate dependence was also identified (following correction for 

age and gender), with T1 increasing by 6 ms per 10 bpm. Similarly, small but 

statistically significant dependences on age, gender and heart rate were seen 

for blood T1 (although in this case T1 decreased with heart rate), as well as a 

small difference between measurements in the left and right ventricles. This 

study does not establish absolute values for population averages of myocardial 

and blood T1 in vivo or the accuracy of the ShMOLLI method. This is due to the 

fact that there is no accepted gold standard for in vivo cardiac T1 measurements 

and so accuracy can only be assessed in phantom studies, which do not fully 

replicate the complexities of the physiological system. However, the study does 

robustly demonstrate the reproducibility and stability of the ShMOLLI method. 

A subsequent study [138] utilised ShMOLLI in ECV calculations for healthy 

volunteers and patients with a range of disease states (n = 100 in total, 50 
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healthy). The technique was compared to multi-point IR FLASH performed over 

multiple breath-holds. The techniques demonstrated good correlation and low 

bias with comparable inter-study reproducibility (the latter tended towards being 

greater for ShMOLLI but did not reach statistical significance). Patients with 

severe aortic stenosis (n = 18) underwent myocardial biopsy, which allowed 

comparison with histological collagen volume fraction (CVF) measures. ECV 

correlated with CVF for both methods, with stronger correlation demonstrated 

for ShMOLLI than multi-point IR FLASH. These results demonstrate that 

ShMOLLI is comparable or better than IR FLASH techniques, but importantly is 

better tolerated with a lower failure rate. This is due to the fact that only a single 

short breath-hold is required for each T1 map. 

4.4.3 Saturation recovery Look-Locker based techniques 

The variants of MOLLI described above all utilised IR techniques. A method 

was proposed by Song et al [139] which employs the same modifications to 

conventional LL as MOLLI (selective data acquisition and use of data from 

multiple LL experiments) but uses a saturation preparation pulse. The 

technique, modified Look-Locker acquisition using saturation recovery 

(MLLSR), employed the same sequence architecture as MOLLI with three 

schemes investigated (2-2-4 and 1-3). Unlike IR variants, there is no need for 

recovery periods between epochs as the longitudinal magnetisation is nulled by 

each saturation pulse. This leads to greater efficiency as there are no RR 

intervals in which no data are acquired. Furthermore the sequence should be 

robust to arrhythmia and be heart-rate independent as the magnetisation at 

each readout should not depend on the history of the magnetisation in the 

preceding RR intervals if the saturation pulse nulls the longitudinal 

magnetisation effectively. A further advantage of SR over IR is that polarity 

restoration of magnitude reconstructed data (i.e. determining which signal 

intensities should be negative) is not required, thus removing a potential error 

source, although this can also be overcome in IR methods by using phase-

sensitive reconstruction [140]. 

The two schemes proposed have durations of 8 and 4 RR intervals respectively. 

In comparison to a reference standard IR-SE method phantom measurement, 

2-2-4 MLLSR results also systematically underestimated T1 in comparison to 
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MOLLI. The maximal error (11.8%) was observed for the longest T1 (1139 ms) 

and highest simulated heart rate tested (100 bpm) tested. The authors attribute 

this to the fact that the longest saturation time (2100 ms) for this heart rate is 

not long enough to allow accurate characterisation of the recovery curve of the 

longer T1 values. It should also be noted that the authors chose not to employ 

T1* to T1 conversion as used in MOLLI and ShMOLLI studies as they report that 

the validity of the correction is dependent on the T2/T1 ratio of the material being 

examined, and this tends to be significantly higher in gadolinium based 

phantoms than in biological tissues. Consequently the results can only be 

compared to other studies which employed this correction with this difference in 

mind. The shorter 1-3 MLLSR scheme was evaluated in a subset of 20 

subjects. The results demonstrated good correlation with the 2-2-4 MLLSR and 

so may offer a viable alternative for patients with a very low heart rate or those 

who are unable to hold their breath for the required time for other schemes. It 

would be expected that using only four data points would lead to a noise penalty 

and an increase in variability of T1 measurements, but data to assess this was 

not presented. 

More recently a saturation recovery single-shot acquisition (SASHA) sequence 

was proposed [141] which differs to MLLSR in that an independent saturation 

pulse is used for each of the nine saturation prepared images (the first image is 

acquired without magnetisation preparation) and a single-shot balanced steady-

state free-precession readout. The TS values for the saturation prepared 

images chosen to uniformly span the RR interval, so the maximal value 

depends on the subject’s heart rate. The technique was validated by Bloch 

simulations and comparison to a reference standard IR-SE sequence, in which 

it was demonstrated that the method exhibited accuracy that is independent of 

heart rate, flip angle T1 and T2 but may exhibit bias due to off-resonance and 

imperfect saturation efficiency, and both bias and limited precision due to low 

signal to noise ratio. 

These findings were confirmed in a subsequent comparison study [142] in 

which SASHA was compared to MOLLI and ShMOLLI as well as an IR-SE 

reference and a combined saturation/inversion recovery sequence (SAPPHIRE 

[143]). In this study it was shown that the techniques using saturation 
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preparation exhibited higher accuracy than MOLLI and ShMOLLI but lower 

precision, while reproducibility was similar across techniques. The optimal 

choice of T1 mapping technique may therefore depend on the competing 

requirements for absolute accuracy or precision in addition to other factors. 

Additionally it was shown that while all methods had similar reproducibility in 

ECV the average values differed, implying that systematic biases exist in at 

least some of these techniques and that normal or disease ranges for ECV 

values should be appropriate to the T1 mapping technique used to derive them. 

4.4.4 Two-point saturation recovery method 

A method has been proposed to allow arrhythmia insensitive rapid (AIR) T1 

mapping [144]. The technique utilises saturation recovery rather than inversion 

recovery for the reasons set out above. The technique described in this study 

does not employ a Look-Locker based method but instead uses just two 

images, one T1 weighted and one proton density weighted. The PDw image is 

used to normalise the T1 weighted image (correcting for variation in equilibrium 

magnetisation, coil sensitivity and radio-frequency uniformity) allowing the Bloch 

equation to be solved to establish T1. The T1 weighted image uses a TS of 600 

ms. This allows the T1 weighted image to be acquired in the same RR interval 

as the saturation pulse for heart rates up to 73 bpm. For higher heart rates two 

RR intervals are required for the T1 weighted image. The PDw image is 

acquired in the RR interval before the saturation pulse, so the total imaging time 

is two or three RR intervals (dependent on heart rate). The technique was 

compared (at 3 T) to MOLLI and a reference standard IR fast spin echo (FSE) 

sequence in phantoms and to MOLLI alone in human and animal studies. Of the 

nine human subjects one was a healthy volunteer and the others were patients 

with a history of atrial fibrillation (AF) but in normal sinus rhythm during the 

scan. Chronic AF was induced in goats and dogs (n = 9 and 8 respectively) in 

the animal study with an implanted pacemaker. 

The phantom study demonstrated smaller errors and variability in T1 measured 

by AIR compared to MOLLI. Most significantly the accuracy and precision of 

MOLLI was severely reduced at a simulated high (100 bpm) heart rate and in 

arrhythmia whereas AIR showed minimal variation. The human and animal 

studies combined demonstrated a strong correlation between the two methods 
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but with AIR consistently providing higher T1 estimates. For pre-contrast 

myocardium the results were 1501 and 1198 ms for AIR and MOLLI 

respectively. The authors note that the AIR result is closer to a published 

rigorous measurement of the T1 of an excised heart [145] but it should be noted 

that there is no accepted gold standard technique for in vivo myocardial T1 

mapping so it is difficult to assess the accuracy of any method in vivo. Inter-

scan repeatability was assessed (without repositioning) and was poorer (7% of 

mean compared to 5% of mean) for AIR compared to MOLLI. This is an 

expected consequence of the use of a small number of data points in the T1 

determination, and the authors note that this could be remedied through 

acquisition of additional T1 weighted images (at the expense of scan duration). 

Other acknowledged limitations include the fact that the original version of 

MOLLI rather than the optimised version was used. However both versions are 

known to be sensitive to heart rate and arrhythmia so the proposed method still 

offers an insensitive alternative. 

4.4.5 Segmented inversion recovery techniques 

Segmented data acquisition is performed routinely in cardiac MRI in order to 

acquire cine MR data sets, in which the motion of the heart can be evaluated 

through acquisition of images acquired at different cardiac phases. In this 

technique a subset of the data required for each image is acquired in each RR 

interval and then combined after all of the data is collected. Goldfarb et al [146] 

employed a similar technique, with the addition of an inversion pulse, to allow T1 

calculations. In this technique data for 19 images is acquired in alternate RR 

intervals (to allow recovery of longitudinal magnetisation). Data is acquired 

contiguously over an 800 ms period, with 15 lines of k-space data per segment 

acquired each time. The acquisition of the 15 lines of data took 39 ms, so 

images with inversion time (TI) increasing in 39 ms steps were acquired. 

The authors performed this protocol (using bSSFP readout) in phantoms 

consisting of Gd-doped water, and calculated T1 using three different signal 

intensity equations describing the magnetisation evolution with different levels 

of complexity. The first describes only the variation of longitudinal magnetisation 

and neglects incomplete recovery between inversions. The second includes the 

variation of transverse magnetisation and the effect of the readout train, while 
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the third is a further refinement of the second, also including incomplete 

recovery between inversions. The phantom study showed that all three models 

were sufficient for short T1 (yielding good accuracy in comparison to IR-SE 

results) but the simpler two models quickly diverged above around 500 ms, with 

severe underestimation of T1. The authors concluded that it is therefore 

necessary to use the full signal equation to yield accurate T1 estimates. 

The protocol was also performed in four patients with myocardial infarction (two 

chronic, two acute). As the images are acquired at different cardiac phases it is 

not possible to calculate T1 maps. Instead T1 was calculated for regions drawn 

in normal and injured myocardium and the left ventricular blood pool. T1 was 

calculated before and approximately every two minutes for one hour after a 

bolus injection of gadodiamide. Blood and both injured and normal myocardial 

T1 demonstrated recovery during the 1 hour observed period as the contrast 

agent is renally extracted. However the authors noted a slower variation in 

infarct than in normal myocardium, and differences between chronic and acute 

cases, suggesting differences in the kinetics of the contrast agent between 

these tissues. 

A modified version of this technique was later applied by Milanesi et al [119] in 

which the readout was extended over multiple heart-beats. This increases the 

maximum TI and increases the time between inversion pulses. This should 

allow better characterisation of slower recovery curves and more complete 

recovery of longitudinal magnetisation between inversion pulses, both of which 

should improve the accuracy of the technique for longer T1 values. However the 

technique also assumes that the T1 is constant throughout the cardiac cycle, yet 

small but significant variation in native myocardial T1 between systole and 

diastole which may reflect temporal changes in microvascular volume fraction 

have since been reported [147]. The protocol was first performed in phantoms 

(at 1.5 T) and compared to an IR-SE reference standard. The number of 

simulated RR intervals between inversions was varied, to vary the repetition 

time (TR) from 2000 to 7000 ms in order to determine the required TR for in 

vivo studies. Good agreement was found at short T1 for all TR values, but T1 

was underestimated for longer T1 values with short TR. Consequently a TR of 
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2000 ms was used in subsequent post-contrast in vivo studies, and 5000 ms for 

pre-contrast studies, chosen to achieve accuracy of 2% or better. 

The protocol (with the TR values determined from the phantom study) was 

applied in a cohort of healthy (n = 11) volunteers as well as patients with dilated 

cardiomyopathy (DCM, n = 22) and myocardial infarction (MI, n = 4). Data for T1 

calculations were acquired before and at 5, 10 and 15 minutes after bolus 

injection of gadodiamide. The number of RR intervals between inversions was 

adjusted on a per-subject basis (dependent on heart rate) to use the minimum 

number to achieve the required TR. LGE images were also acquired to identify 

regions of fibrosis. Examination of the results for healthy volunteers 

demonstrated no heart rate dependence suggesting that the use of a fixed 

minimum time between inversions successfully mitigated variations in the 

amount of longitudinal recovery affecting results. In comparing tissue types the 

authors found that T1 in areas of delayed enhancement in MI patients was 

significantly higher than the other myocardial tissue states assessed (healthy, 

delayed enhancement in DCM and remote). The T1 for healthy pre-contrast 

myocardium was reported as agreeing well with literature values for 1.5 T. 

Conversely T1 post contrast is lower than the other groups in MI (significant only 

at 10 and 15 minutes post injection). From pre and post-contrast blood and 

myocardial T1 measurements the authors calculated λ for the three time points. 

No significant differences were observed at 5 minutes but at 10 and 15 minutes 

λ was significantly higher for LGE regions in MI patients. LGE positive regions in 

DCM patients showed a trend for increased λ that did not reach statistical 

significance.  

This study has demonstrated an alternative method for T1 calculation (albeit one 

not suited to T1 mapping) with a proven lack of heart rate dependence. 

Furthermore the human subject results further support the clinical value of pre 

and post-contrast T1 mapping. However it should be noted that while the 

acquisition technique could be applied readily in clinical practice, the post-

processing would be labour intensive as corresponding regions would need 

contouring on images at different cardiac phases to allow T1 calculation on a 

segmental basis. 
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4.5 Conclusions 

Since the introduction of gadolinium based contrast agents into clinical use 

there has been much investigation of their potential utility for assessing the 

physiological status of human myocardium. The biodistribution of Gd-DTPA and 

other extracellular agents has been studied and has been confirmed to be 

suitable for application to probe the tissue status of the myocardium in health 

and a range of pathological states. Consequently such agents can be a 

valuable tool for assessing the myocardial interstitium (both qualitatively and 

quantitatively) as well as myocardial perfusion. Development of quantitative 

methods has formed two strands, assessment of dynamic data acquired with a 

high temporal resolution, or comparison of data acquired before contrast 

administration and once equilibrium between the blood and interstitium has 

been reached (or approached). 

Recent development has focussed primarily on contrast equilibrium methods, 

aided by the evidence supporting the fact that equilibrium can be approximated 

sufficiently well within a few minutes following a bolus injection, rather than 

requiring a clinically impractical lengthy infusion. There have been a range of 

techniques developed to allow T1 mapping to be performed within a single 

breath-hold, generally with coverage limited to a single slice but some with 

potential to allow up to three slices to be acquired. This allows the potential for 

mapping extracellular volumes but robust image registration between the pre 

and post-contrast image is required for this. 

While there has been much development in this field there are still a range of 

factors that must be considered when designing or evaluating contrast 

equilibrium data. The contrast agent administration regime and delay time are 

potential confounding factors, and some of the most widely adopted techniques 

are known to exhibit inaccuracy (particularly for long T1, which is a greater issue 

at higher field strengths) and heart rate dependence. Additionally there is 

variation in the analysis measures used, with various correction methods 

proposed but not universally adopted. With a lack of an accepted gold standard 

for measuring myocardial T1 in vivo direct validation of T1 mapping techniques 

remains difficult and is likely to continue relying on phantom based surrogates 

and comparison to existing techniques. With a wide variation in T1 mapping 
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techniques currently being investigated and used in clinical studies, each with 

differences in terms of precision, accuracy and heart rate dependence across 

the clinically applicable T1 range, it is important that current research results are 

evaluated with this in mind. There is consequently still a need to optimise these 

sequences and identify the optimal protocols for clinical application, considering 

both the performance of the techniques as well as suitability for use in non-

specialist MRI centres and with patients with limited breath-hold capability. In 

later chapters MOLLI schemes will be compared through simulations and 

phantom work (Chapter 6) although due to limitations as to the sequences and 

fitting algorithms available on the scanner used and the chronology of the 

project (section 1.4) the choice of T1 mapping technique used for the 

experimental chapters was limited. 

Despite the recent dominance of T1 mapping based ECV measurements in the 

literature there remains interest in dynamic imaging. As technological 

developments drive image quality improvements this may be a viable and 

efficient alternative which can provide multi-parametric assessment of the 

myocardium. Pilot work prior to this PhD [1] investigated the use of a distributed 

parameter model to perform such multi-parametric assessment, although was 

limited by the fact that the data was not acquired with this analysis planned and 

consequently the length of the DCE-MRI acquisition may have been sub-

optimal. This work is furthered in the clinical studies (Chapter 9 and Chapter 10) 

in this thesis firstly by prospectively acquiring data with this analysis technique 

planned and secondly by including ischaemic heart disease patients as well as 

volunteers. Furthermore limitations in non-linearity correction methods have 

been identified in this literature review, and these techniques are investigated 

further through both simulations and experimental work (Chapter 7 and Chapter 

8) in which the techniques discussed here are compared to a novel application 

of bookend T1 based correction. 

Further validation of this technique and determination of the optimal analysis 

still needs to be performed. The demand for accurate and reliable methods that 

can readily be applied in the clinical setting to assess myocardial fibrosis 

quantitatively remains strong. This is evident from the large number of abstracts 

presented at recent cardiovascular and general MRI conferences which have 
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used the methods described above in clinical studies to assess ranges and 

variability in both the normal population and a wide range of pathological states. 

This review has focussed on the development of the techniques employed, 

rather than the clinical studies employing them, and so these recent studies 

have not been discussed here.
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 Chapter 5

Literature Review - Clinical 

This chapter provides a review of clinical studies employing quantitative 

contrast enhanced cardiac MRI techniques. It serves to highlight and exemplify 

the key clinical areas which these techniques have provided insights into and 

may offer clinical value rather than describe the technical developments 

discussed in the previous chapter. Some of the studies described in the 

previous chapter are re-visited, but here the clinical observations rather than the 

technical developments are discussed. 

5.1 Early studies 

Early work investigating the use of quantitative analysis of contrast enhanced 

CMR data focussed on canine models of ischaemic heart disease with a series 

of studies by Pereira et al [93, 148, 149] demonstrating that the contrast agent 

partition coefficient in the infarcted territory is elevated after either temporary 

(two hour) occlusion followed by reperfusion or after permanent occlusion of a 

coronary artery. For temporary occlusion this increase was observed within the 

first minute following reperfusion, increased during the subsequent hours and 

showed a trend for a reduction (without returning to normal) over the following 8 

weeks. This work established the potential use of quantification of the partition 

coefficient as a non-invasive means to establish extent of myocardial damage 

following infarction. 

Concurrently studies investigating the application of contrast enhanced CMR in 

humans were ongoing. Fedele et al [68] measured MR signal intensity from a 

non-magnetisation prepared spin echo sequence prior to and at several time 

points (4, 8, 12 and 30 minutes) after administration of Gd-DTPA. This study 

was performed on 19 patients with chronic coronary artery disease and left 

ventricular dysfunction. The imaged myocardium was divided into 11 segments, 

with each segment defined as normal, hibernating or necrotic based on iodine 

123-phenylpentadecanoic acid (IPPA) scintigraphy. Significant signal intensity 

differences were observed between each tissue type at each post-contrast time 

point (except for between normal and hibernating myocardium at 12 minutes) 
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suggesting differences exist in tracer kinetic properties of these tissues. Notably 

the time point with the maximum signal intensity was most frequently the first 

time point (4 minutes) for normal and hibernating myocardium but the final time 

point (30 minutes) for necrotic myocardium suggesting the contrast agent 

delivery is substantially slower in necrotic myocardium. 

A study by Kim et al [6] demonstrated in canine models of both chronic and 

acute myocardial infarction that regions of hyperenhancement in inversion 

recovery prepared spoiled gradient echo sequences acquired 30 minutes after 

Gd-DTPA administration corresponded very closely with regions of necrosis in 

the acute phase or collagenous scar in the chronic phase by comparison with 

post-sacrifice histology. This observation held only for acute and chronic 

infarction, and not for induced reversible ischaemic injury in which signal 

intensity did not differ significantly from that in remote myocardium. Subsequent 

clinical studies from the same group demonstrated that the transmural extent of 

the region of hyperenhancement was highly predictive of recovery of contractile 

function in patients with both acute myocardial infarction treated by successful 

revascularisation [31] and chronic coronary artery disease [32]. These studies 

have led to the widespread adoption of late gadolinium enhanced (LGE) MRI for 

the assessment of myocardial viability in ischaemic heart disease. Additionally 

the technique has proven prognostic value [150, 151] for assessment of 

localised fibrosis or infiltrative disease processes in several non-ischaemic 

cardiomyopathies, for which the spatial distribution of enhancement is different 

to that for ischaemic disease. 

5.2 Further clinical studies in ischaemic heart disease 

Following the preliminary work described above clinical studies focussed on 

ischaemic heart disease, in which regions of myocardium affected by the 

temporarily or permanently restricted blood supply typically exist alongside 

regions of myocardium which have maintained normal blood supply. This leads 

to heterogeneity of tissue status within each case. 

5.2.1 Partition coefficient and extracellular volume fraction 

Flacke et al [92] measured the partition coefficient of gadopentetate 

dimeglumine in five patients with acute and five with chronic myocardial 
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infarction, as well as twelve healthy subjects, by measuring T1 before and after 

a 30-40 minute infusion of the contrast agent. The partition coefficient was 

elevated in both acute (0.91±0.11 ml/g) and, to a lesser extent, chronic infarct 

(0.78±0.09 ml/g) in comparison to normal myocardium (0.56±0.10 ml/g). Using 

a 20% increase in partition coefficient cut-off yielded high diagnostic 

performance for identifying segments of both acute infarct (100% sensitivity and 

98% specificity in comparison to a combination of identification of wall motion 

abnormality on angiography and echocardiography) and chronic infarct (88% 

sensitivity and 96% specificity in comparison to identification of wall motion and 

thickening abnormalities by CMR). 

A study by Klein et al [152] further investigated the delayed tracer kinetics of 

Gd-DTPA in ischaemic heart disease by measuring T1 of blood and 

myocardium both before and at several time points from 2-50 minutes after 

bolus contrast agent administration, as well as by measuring absolute 

myocardial blood flow by PET, in patients with ischaemic heart failure. T1 was 

observed to be similar in both viable myocardium and scar before, but differ 

significantly (with shorter T1 in scar) after contrast agent administration. It was 

also noted that T1 of blood and scar is similar between 5 and 15 minutes post-

contrast. This yields low contrast on T1 weighted images (including late 

gadolinium enhancement images) in this situation, including at the endocardial 

border in segments with subendocardial scar which can lead to difficulty 

identifying this border. This problem has been identified and a potential solution 

addressed in a paper by Peel et al [77] in which a dual inversion recovery 

sequence was proposed to suppress blood signal. In the study by Klein et al 

[152] the partition coefficient measured in viable myocardium was consistent 

from 2-50 minutes, whereas in scar it increased with time until a plateau from 20 

minutes. This agrees with the observations of slower contrast agent delivery in 

infarcts described by Kim et al [6] and discussed above. MBF (measured by 

PET) was observed to be lower in segments displaying delayed enhancement 

(scar) on MRI compared to unenhanced segments (viable myocardium), and to 

correlate moderately with the rate of the increase of the partition coefficient over 

the period from 2-20 minutes after contrast agent administration. The latter 

observation suggests that the slower enhancement in regions of scar is in part 

due to reduced wash-in of contrast agent due to reduced MBF. However the 
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correlation improved when the partition coefficient increase rate was correlated 

with the ratio of the steady-state partition coefficient to MBF, suggesting that the 

larger distribution volume is also a contributing factor to the slower tracer 

kinetics in the scar regions. 

5.2.2 Perfusion CMR 

In addition to measuring myocardial damage through the techniques described 

above there has also been interest in quantifying perfusion to myocardium in 

ischaemic heart disease. Nielsen et al [91] investigated the diagnostic ability of 

quantitative perfusion in the setting of acute myocardial infarction by model-

based deconvolution using a mono-exponential residue function allowing 

estimation of both Ki (interpreted as the product of the myocardial blood flow 

and the extraction fraction across the capillary membranes) and ve. The study 

recruited 7 patients presenting with acute myocardial infarction. Five of the 

patients received thrombolytic therapy, and of those 3 underwent MRI both 

before and 90 minutes after therapy. Reduced perfusion was demonstrated in 

regions of myocardium supplied by the occluded vessel, and in the patients 

scanned twice this was seen to recover partially following therapy. As discussed 

in the previous chapter, this study demonstrated unexpected findings in terms of 

estimated distribution volumes with lower results for regions of infarct. This 

casts some doubt on the validity of these results. However the perfusion 

estimates show that DCE-MRI can be sensitive to changes in the delivery of 

myocardial blood between healthy and pathological regions of myocardium, and 

also to changes induced by therapy. 

A subsequent study my Selvanayagam et al [153] investigated resting blood 

flow in hibernating myocardium, that is non-infarcted myocardium that 

demonstrates impaired contractile function that can be recovered following 

revascularisation therapy. DCE-MRI data was acquired in 3 slices and 

segmented into 8 segments per slice. Late gadolinium enhancement and cine 

images were also acquired for identification of infarcted myocardium and 

assessment of function respectively. 27 patients with severe coronary artery 

disease were studied within 24 hours prior to and after percutaneous coronary 

intervention (PCI). 25 of the patients returned for a 3-month follow-up scan in 

which contractile function only was assessed. MBF in myocardial segments 
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perfused by stenosed arteries was significantly lower than in remote 

myocardium prior to PCI (1.2±0.3 ml/min/g vs 0.7±0.2 ml/min/g). Following PCI 

the MBF in the revascularised segments was similar to that in remote 

myocardium (1.2±0.2 ml/min/g) demonstrating that the therapy had successfully 

restored perfusion. Restoration of the function of this hibernating myocardium 

was also observed in these patients at 3-month follow-up, confirming that the 

dysfunctional myocardium identified pre-therapy was viable and not irreversibly 

damaged. 

Hopp et al [154] utilised DCE-MRI to assess the development of myocardial 

infarction from the sub-acute (2-3 weeks post-revascularisation) to chronic (6 

months post-revascularisation) phase. Both semi-quantitative parameters and 

parameters from model-constrained deconvolution using both an expanded two-

compartment model including an intra- and extra-vascular volume fraction and 

model-independent deconvolution were determined. Semi-quantitative 

parameters showed that the initial upslope in both acute and chronic infarct is 

slower than in normal myocardium, and the signal persistently rises over the 

duration of the experiment (120 heart-beats acquisition in total) unlike the 

normal myocardium in which the slope is negative (i.e. signal decreases). 

Perfusion estimated by both model-constrained and model-independent 

deconvolution was decreased in infarct in the acute and chronic phases, with 

larger differences and lower absolute values at the chronic phase. At the acute 

phase only blood flow estimated by model-independent deconvolution, and not 

Ktrans, was significantly lower in infarct than in normal myocardium. Extracellular 

volume fraction was also increased at both phases (26%±7% acute & 23%±9% 

chronic compared to 19±7% and 18±6% for normal myocardium at the two time 

points), with a greater difference in acute myocardial infarction. In both cases 

the relative increase in ECV was lower than the relative differences in partition 

coefficient observed in other studies, e.g. that by Flacke et al described in the 

previous section [92]. This study supports findings from previous studies 

investigating properties of myocardial infarction, however the assessment of the 

variation of properties following revascularisation was limited by the fact that the 

first study was acquired in the sub-acute, rather than acute phase. 
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Finally the study by Pack et al [94] discussed in the previous chapter compared 

estimates of extracellular volume fraction from DCE-MRI in chronic infarcts to 

remote myocardium in a small number (4) of patients. Extracellular volume was 

increased to a much greater extent (45.7±3.4% compared to 23.6±6.3% in 

normal myocardium) in this study than in the study by Hopp et al [154]. 

5.3 Proliferation of contrast equilibrium ECV estimation and 

expansion into assessment of diffuse fibrosis 

The studies described above are focussed on ischaemic heart disease, in which 

myocardial damage is typically expected to be focal and substantial changes 

are expected. Since the facilitation of rapid myocardial T1 mapping enabled by 

the introduction of MOLLI [7] and other techniques described in the previous 

chapter there has been a proliferation of studies investigating the use of 

equilibrium contrast based estimation of ECV for the evaluation of diffuse 

myocardial fibrosis in a range of both cardiac and systemic diseases, as well as 

other conditions and processes which may impact upon the structure of the 

myocardium. This includes dilated [155, 156] and hypertrophic cardiomyopathy 

[157-160], congenital heart disease [161], aortic stenosis [162], cardiotoxicity 

from chemotherapy [163, 164], diabetes mellitus [165, 166], heart [167] and 

non-cardiac [168] organ transplant, systemic amyloidosis [169], systemic 

sclerosis [170], chronic kidney disease [171] and ageing [172, 173]. 

Full discussion of these studies is beyond the scope of this literature review. 

However, a small number of these studies have included histological validation 

in human subjects, and thus warrant further discussion below. 

Histological validation of ECV estimation techniques in humans is difficult as it 

requires analysis of tissue obtained from either myocardial biopsy, organ 

explant or autopsy. Consequently the number of studies that have performed 

histological validation are limited. Fontana et al [138] compared the single 

breath-hold ShMOLLI [136] T1 mapping technique to a multiple (14) breath-hold 

technique for the estimation of ECV in 100 subjects including healthy volunteers 

and patients with hypertrophic cardiomyopathy, severe aortic stenosis and 

amyloid. A single bolus administration of contrast agent was used, with a 15 

minute delay before post-contrast T1 mapping. The patients with severe aortic 
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stenosis were additionally indicated for biopsy, allowing histological validation in 

comparison to collagen volume fraction (CVF) assessed by tissue staining. It 

should be noted in these studies that the two techniques are measuring 

different tissue properties, with CMR being sensitive to the total space 

accessible to the contrast agent and histology specifically measuring the 

volume fraction of collagen, and so they should not necessarily be expected to 

agree. However as the network of collagen fibres exists in the interstitial space 

which is accessible by the contrast agent an increase in CVF would be 

expected to be accompanied by an increased ECV while the absolute value of 

CVF would be expected to be lower than ECV. 

ECV estimated by the multiple breath-hold technique and ShMOLLI both 

demonstrated moderate correlation with histological CVF (R2 of 0.589 and 

0.685 respectively) but with systematic differences. ECV was 27±6% and 

31±5% for the two CMR techniques and CVF was 18±8% by histology.  

A second study [174] performed a similar validation with six patients undergoing 

heart transplantation. ECV was measured by CMR using a bolus administration 

of gadolinium based contrast agent with pre and 10 and 15 minute post-contrast 

T1 measurements by MOLLI T1 mapping. Whole-heart CVF histology was 

performed post-explant using picrosirius red staining. Tissue samples were 

taken from 16 segments of the heart for each patient, corresponding to 

segments on CMR imaging. ECV by CMR using pre and 15 minutes post-

contrast T1 data showed strong correlation with CVF (R2 = 0.555 within-subject, 

0.893 between-subject) while post-contrast T1 alone showed significant 

correlation with CVF only when tested within-subject. This study allowed 

validation across a wide range of fibrotic tissue states, with CVF ranging from 

3.3-55.2% and ECV from 30.9-68.4%. 

More recently de Meester de Ravenstein et al [175] performed a study similar to 

that of Fontana et al [138] comparing ECV from MOLLI based T1 estimates to 

CVF from myocardial biopsy. Their patient cohort included patients with severe 

aortic stenosis, severe aortic regurgitation or severe mitral regurgitation, all free 

from coronary artery disease. CVF was lower than ECV as expected (6.1±4.3% 

vs 28.9±5.5%) but showed significant correlation (r=0.78). The study also 

examined correlation between CVF and native T1 to assess the need for 
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contrast agent administration, as well as the spatial extent of late gadolinium 

assessment, but found no significant relationship for either. 

The studies above have demonstrated that ECV estimation by equilibrium 

contrast CMR shows moderate to good correlation with CVF by histology, 

further supporting the use of the technique as a minimally invasive probe of 

myocardial tissue status. Additional components of these studies have 

suggested that acquisition of both pre- and post-contrast T1 data to allow 

calculation of ECV is required, as neither in isolation demonstrated strong 

relationships to histologically derived markers of tissue status. 

5.4 Conclusions 

Contrast enhanced MRI has found widespread clinical application in the 

qualitative assessment of myocardial perfusion and viability. Alongside this 

research and development in to the clinical application of quantitative 

assessment of both dynamic and equilibrium contrast enhanced MRI data has 

been ongoing. With the advent of robust myocardial T1 mapping methods that 

can be incorporated into routine protocols there has been a large growth in 

interest in quantifying extracellular volume fraction as a marker of both diffuse 

and focal pathological processes. Such techniques have been investigated in a 

wide range of diseases, including those of both ischaemic and non-ischaemic 

aetiology. 

In subsequent chapters in this thesis clinical studies are performed in both 

healthy volunteers and patients with coronary artery disease (under different 

physiological conditions) and severe myocardial infarction (at two time points). 

Based on the literature discussed above these cohorts should provide a wide 

range of myocardial tissue status (both in terms of perfusion and tissue 

composition) in which to evaluate the performance of the techniques under 

investigation. Future work following on from this project could include expansion 

of the application of these techniques to the evaluation of diffuse myocardial 

disease in a range of conditions identified above for which changes to tissue 

status are expected to be smaller.
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 Chapter 6

T1 Mapping – Simulations and Phantom 

Validation 

In this section evaluation of Modified Look Locker Inversion Recovery based T1 

mapping is discussed, specifically with regards to acquisition scheme. The 

simulations have been limited to schemes that can be performed on the 

scanner used for the clinical studies described later in this thesis. While 

ShMOLLI data can be acquired on this scanner the mapping software lacks the 

conditional algorithm used for ShMOLLI, and so this scheme is not considered 

in this chapter. 

6.1 Methods 

6.1.1 Simulations 

Simulated relative signal intensities were calculated for a range of MOLLI 

schemes, heart rates and T1 values through Bloch simulation of the sequence. 

From these values T1 was determined using published methods [7] and 

compared to the ground truth values used for the simulation. Software for this 

work was developed in MATLAB (Mathworks, Mattick, MA). 

Throughout this thesis the following convention is adopted to describe MOLLI 

schemes (including the recovery period); ni(ri)nj(rj)... where n is the number of 

readouts (one per RR interval) for the ith, jth, ... epoch. The term “r” is the 

number of recovery RR intervals between the last readout and next inversion. 

The original optimisation of the MOLLI scheme [130] is thus represented as 

3(3)3(3)5. A recently proposed modification to MOLLI is to use a minimum time 

rather than a prescribed number of RR intervals either for the readout cardiac 

cycles, the recovery period, or both [176]. This results in the number of RR 

intervals being increased for faster heart-rates. The suffix “s” after ni or ri is used 

to indicate recovery periods specified in this manner. This is demonstrated in 

Figure 6-1. 
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Figure 6-1 – Example MOLLI schemes indicating cardiac phases with data 
acquisition (black bars). Each epoch is preceded by an inversion pulse. 
For the heart rate of 70 bpm in this example an extra RR interval is 
introduced into each recovery period in the 3(3s)3(3s)5 scheme (bottom) 
compared to the 3(3)3(3)5 scheme (top) to achieve a recovery period of at 
least 3 seconds. 

Simulations included the effect of all RF pulses in the version of MOLLI 

implemented on the scanner used for the experimental work in this thesis 

(Philips Achieva 3.0T TX, Philips Healthcare) and assumed a T2 of 50 ms 

throughout. Signal intensity was assumed to derive entirely from the readout 

with zero phase-encoding gradient moment, which is the 47th readout of 83, 

following a 10 pulse linear ramp up in flip angle (up to 35°). The readout was a 

bSSFP sequence with TR/TE of 2.70/1.35 ms. TI for the first image after the 

inversion pulse was 146.46 ms for the first epoch, 350.00 ms for the last and 

248.23 ms for the middle epoch where present. In practice the value for the final 

epoch is user-defined, that for the first epoch is automatically set at the shortest 

possible value (which will depend on the TR and number of phase-encoding 

lines acquired up to the acquisition of the zero-spatial frequency data) and the 

values for additional epochs (where present) are distributed evenly between 

these two values. Simulations were performed at heart rates of 40-100 bpm and 

T1 from 50-2500 ms (50 ms increments). Conventional 3(3)3(3)5 MOLLI was 

simulated as well as a variant with the recovery period defined in seconds 

(3(3s)3(3s)5). Additionally shortened variants that have been proposed [135] 

were also simulated: 5(3)3 and 5(3s)3, and 4(1)3(1)2 and 4(1s)3(1s)2. 
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6.1.2 Phantom validation 

A phantom containing doped agarose gels with a range of T1 values was 

scanned to acquire MOLLI data with all schemes included in the simulation 

except 3(3s)3(3s)5. Data was acquired using the protocol from which the 

simulations were based at simulated heart rates of 40, 60 and 100 bpm. Results 

were compared to IR-SE reference T1 values. 

6.2 Results 

Simulated errors in T1 results are presented in Figure 6-2 in comparison to 

ground truth T1 values used in the simulations, while Figure 6-3 compares 

MOLLI T1 values to IR-SE reference values from phantom data. 
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Figure 6-2 - Simulated MOLLI accuracy curves for the simulated schemes. 
In the left column recovery periods are specified in terms of cardiac 
cycles and in the right column in seconds. 
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Figure 6-3 - MOLLI accuracy curves from the phantom data. 

6.3 Discussion 

For all schemes, underestimation of long T1 values is observed in the simulation 

data. This arises from incomplete recovery of longitudinal magnetisation 

between inversion pulses as well as disturbance of the recovery caused by the 

readout pulses. Approximately 10% overestimation of the shortest T1 (50 ms) 

occurs consistently as longitudinal magnetisation will have essentially fully 

recovered (TI=248.23ms corresponds to >99% recovery) for all but the image 

with the shortest TI. Consequently there is insufficient data at short TI to 
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characterise such fast recovery and the fitting is unstable. This is not of concern 

as this T1 is outside the clinically relevant range which the techniques were 

designed to be able to characterise. 

Examination of conventional MOLLI results (Figure 6-2 – top-left) shows that for 

this scheme underestimation of long T1 is more severe at faster heart rates. 

This arises as the time between inversion pulses is proportional to the RR 

interval, so a faster heart rate is associated with less recovery time. This heart-

rate variability at long T1 values is reduced through the use of 3 s recovery 

periods (top-right) although variability is still present throughout the T1 range. In 

this scheme an extra cardiac cycle is introduced into the recovery interval for 

heart rates above 60 bpm, and an extra two for heart rates above 75 bpm. 

However, breath-hold duration is also increased for heart rates above 60 bpm 

which may not be clinically acceptable. 

A similar pattern is observed for 5(3)3 and 5(3s)3 MOLLI (Figure 6-2 middle 

row). However in this case underestimation of long T1 values is less severe, 

likely because a smaller proportion (3/8 vs 8/11) of data points are affected by 

incomplete recovery and there is a greater time period between the first and 

second inversion pulses. In this sequence anomalies are observed at T1 values 

of 200 and 550 ms. These occur due to incorrect assignment of polarity during 

the fitting process, which is more likely when signal intensity from one of the 

images is very low and when there are fewer unique data points informing the 

fit. Use of two rather than three inversion epochs may thus increase the 

likelihood of such polarity restoration errors. 

4(1)3(1)2 and 4(1s)3(1s)2 MOLLI (Figure 6-2 – bottom) demonstrate 

comparable performance to the other shortened schemes at short T1, but 

without evidence of polarity restoration errors in these data. Accuracy and heart 

rate dependence are worse at long T1, as would be expected due to the 

shortened time between inversion pulses. However this sequence was only 

proposed for measurement of short, post-contrast T1 values. 

The phantom validation shows similar patterns to the simulation results, notably 

with a consistent error for 5(3)3 and 5(3s)3 but increasing errors and heart rate 

variability at longer T1 values for the other schemes (Figure 6-3). Additionally 
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underestimation is generally greater for all schemes compared to the simulation 

results, which may arise due to inaccuracies in the IR-SE reference data, error 

sources in the MOLLI sequences that were not included in the simulations or 

systematic differences in T1 caused due to a temperature difference between 

scans (discussed further in the limitations described below). 

6.3.1 Limitations 

Simulation work in this study is limited by omission of image noise, thus limiting 

the assessment to accuracy rather than precision and neglecting noise induced 

bias. Reducing the number of images acquired will tend to reduce precision and 

so a scheme that is identified as optimal in simulation and phantom studies 

(where images are generally SNR rich) may not be the optimal choice when 

imprecision arising from noise is considered. 

Phantom work was compromised by the fact that reference T1 maps were 

acquired on a different day to MOLLI T1 maps, and so there may have been a 

temperature difference in the gels. While the dependence of the T1 of these gels 

on temperature at 3 T is not known the datasheet accompanying the phantom 

indicates a typical change of 22% for an 8K change around room temperature 

(292-300K). For this experiment the phantom was stored in the scan room prior 

to scanning to equalise temperature, and the scan room temperature is 

controlled and maintained at 20°C for patient comfort so temperature 

differences, and consequently T1 value differences, between the scanning 

sessions should have been low. Furthermore the most pertinent assessment 

related to comparison between MOLLI schemes and heart rates, rather than 

overall accuracy, and all MOLLI data was acquired during the same scanning 

session. 

6.4 Conclusions 

Simulations of MOLLI sequences have demonstrated underestimation of long 

T1 compatible with literature reports. Choice of MOLLI scheme can significantly 

affect overall accuracy and heart rate dependence. Initial simulation results 

suggest that a 5(3s)3 scheme provides low heart rate variability and good 

accuracy, although with the potential for polarity restoration errors which can be 

avoided by including an additional inversion recovery epoch. While further in 



Chapter 6 T1 Mapping – Simulations and Phantom Validation 

124 

vivo assessment is required to assess performance in the clinical setting these 

results suggest that the use of a 5(3)3 or 5(3s)3 scheme for native T1 and a 

4(1)3(1)2 or 4(1s)3(1s)2 scheme for contrast enhanced T1 quantification can 

offer comparable or improved accuracy and heart rate variability to the 

conventional MOLLI scheme in a shorter breath-hold time.
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 Chapter 7

Signal Non-Linearity Correction – Simulation and 

Phantom Scanning 

In this chapter a simulation study is presented in which the performance of 

signal non-linearity correction methods for myocardial DCE-MRI techniques is 

compared. Additionally a phantom study to measure the saturation efficiency 

and validate the proposed bookend T1 based method is described. The 

simulation study was published as a paper [177] and conference abstract [178], 

although with the initial simulation of signal intensities described by an analytical 

approximation (the fully recovered model described later) rather than Bloch 

simulation. This publication also included results from a subset of the volunteer 

data from the following chapter. Contributions of the individual authors are 

described at the start of this thesis. 

7.1 Introduction 

Signal enhancement in saturation recovery DCE-MRI sequences is 

approximately proportional to contrast agent concentration for low 

concentrations and/or sequences with low T1 sensitivity [179], and could be 

used in quantitative analysis under such conditions. In practice peak 

concentrations in the AIF are considerably larger than those in the myocardium, 

leading to a challenge for quantitative analysis. Consequently when an imaging 

sequence with sufficiently low T1 sensitivity or contrast agent dose to obtain a 

linear response throughout the AIF is used the myocardial signal will vary only 

within a narrow range of the full dynamic range. The contrast-to-noise ratio 

(CNR) in the myocardium will thus be lower than if the protocol were optimised 

for myocardial contrast alone (which can be done for studies in which only 

visual analysis is performed) and this may limit the precision of quantification. 

Consequently a compromise must be made between signal linearity (which 

affects accuracy in quantitative analysis) and myocardial CNR (which affects 

quantitative precision, as well as the suitability of the images for visual 

analysis). As identified in section 4.3.2.2 several methods have been proposed 

to address this issue, including modelling the SI-concentration relationship [44, 
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101, 102, 107] or separating the AIF and tissue curve acquisition using the 

same (dual-sequence [108]) or an additional contrast agent administration 

(dual-bolus [103-105]). 

In these methods perfect magnetisation saturation throughout the LV is 

generally assumed. However, even with pulses optimised for high-field cardiac 

MRI, a small fraction of equilibrium magnetisation may remain after saturation. 

This may be aligned with the equilibrium state or be inverted, and has been 

reported at around 2-3% using the original BIR-4 pulse train [180-182] and more 

recently at <1% using an optimised version [183]. Although further improvement 

in saturation pulse efficiency (SE) may arise this is likely to be limited by SAR 

and radiofrequency field homogeneity constraints. It has been identified that 

residual magnetisation could bias DCE-MRI SI [181] (particularly for native 

tissue or blood), and hence cause inaccuracy in quantification [102, 182]. While 

baseline subtraction can account for some degree of saturation imperfection in 

signal based analysis this may not be robust at higher levels, and the effect on 

baseline signal could affect model-based approaches. However the magnitude 

of such errors in physiological parameters has not previously been assessed. 

In this chapter a novel application of bookend (native and post-contrast) T1 data 

to estimate and account for imperfect saturation is introduced and assessed 

alongside established methods. Bookend T1 measurements have been used to 

correct errors arising from various sources in breast DCE-MRI using non-

magnetisation prepared sequences [184, 185], but have not been applied to SR 

sequences in myocardial DCE-MRI. 

The combined use of signal and T1 data in the bookend T1 based technique was 

motivated by the observation that using native data may poorly define the 

signal-R1 curve and be susceptible to bias, as discussed in section 4.3.2.2 and 

shown graphically in . In the native T1 based method ideal saturation is 

assumed, which constrains the curve to pass through the origin. The curve 

shape is then defined by a single point which, under ideal circumstances of 

perfect T1 measurement, ideal saturation and no noise bias, would be at the 

intersection of the blue dashed line (indicating native R1) and the signal-R1 

curve (black curve). However, as indicated by the solid blue (over-saturation) 
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and red (under-saturation) curves this curve would not pass through the origin 

when saturation efficiency is not ideal. 

 

Figure 7-1 – Illustrative signal-R1 curves. The black line shows the 
relationship between signal and R1 for ideal saturation with the blue and 
red curves showing that for over- and under-saturation. Native, post-
contrast and peak R1 values are indicated by blue, green and brown 
dashed vertical lines respectively. In the native T1 approach the signal 
model is constrained to pass through the origin and so the relationships 
expected for over- and under-saturation cannot be described. In these 
scenarios the derived signal models would be as shown by the blue and 
red dotted lines, and thus large errors would occur for estimation of post-
contrast arrival R1 values. Use of the bookend T1 approach allows the 
expected relationship for non-ideal saturation efficiency to be determined 
from the two measured points. 

As the single point constraining the model in the native T1 approach is close to 

the origin small errors in the position of this point could lead to large deviations 

in the shape of the curve at higher R1 values. In the examples shown over- or 

under-saturation indicated by the blue and red solid curves would yield 

estimated signal-R1 relationships as indicated by the blue and red dotted 

curves. However similar errors could arise due to noise bias in the baseline 

signal or inaccuracy in measurement of R1. 

For accurate deconvolution it is sufficient for the relationship between the 

estimated R1 values to have a linear relationship to the true concentration 

values. However the relationship between the erroneous dotted curves and the 
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true solid curves cannot be described solely by scaling and translation, and so 

the estimated R1 values would still exhibit a non-linear response to 

concentration and thus yield inaccurate deconvolution results. 

It was hypothesised that errors could be reduced by constraining the curve by 

using two measured points (native and post-contrast, the latter being the 

intersection of the green dashed line and the relevant solid curve). By doing this 

the curve is no longer constrained to pass through the origin, thus allowing non-

ideal saturation, and data is only extrapolated over a smaller range of contrast 

agent concentrations (from the post-contrast value to the peak, corresponding 

to the R1 values indicated by the green and red dashed lines). 

7.1.1 Aims 

The simulation study in this chapter aimed to assess the impact of imperfect 

saturation and T1 measurement error on quantitative myocardial DCE-MRI 

using different non-linearity correction methods in the presence of realistic noise 

levels. Additionally a phantom study is described in which saturation efficiency 

is measured independently and the bookend T1 based technique is validated. 

7.2 Methods 

Simulations were performed in MATLAB (Mathworks, Natick, MA, USA). A 

population representative AIF was generated with a form and mean parameters 

described previously [52]. This is derived for a 0.1 mmol/kg dose administered 

at 3 ml/s yielding peak blood [CA] of 6.04mM, so was scaled to peak blood [CA] 

of 3.02mM to reflect the 0.05 mmol/kg dose administered in the volunteer study 

described later (ground truth concentration curves are shown in Figure 7-2). 

Longitudinal relaxivity (r1) of 4.5 l/mmol/s for gadobutrol (Gadovist) at 3 T [186, 

187] was assumed. Tissue concentration curves were generated by converting 

the AIF to concentration in plasma using a haematocrit value of 0.46 [188] and 

convolving with a one-compartment [88] residue function (a mono-exponential 

as defined in Equation 2-36). Equation 7-1, which is based on Equation 2-33), 

describes this process. 
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Figure 7-2 - Ground truth concentration-time curves used in the 
simulations. 

Equation 7-1 

𝐶𝑡(𝑡) = 𝑀𝐵𝐹 ∙ (1 − ℎ𝑐𝑡) ∙ 𝑅(𝑡) ∗ 𝐴𝐼𝐹(𝑡) 

“Ground truth” MBF and distribution volume (vd) were selected from published 

sources [1, 189]. GBCA concentration data were converted to longitudinal 

relaxation rate (R1) using Equation 7-2 (which is based on Equation 2-30) 

where R1,n is the native R1 value (i.e. that in the absence of contrast agent).  

Equation 7-2 

  1,11 rCARR n   

SI curves (assuming signal is determined entirely by the centre of k-space) 

were generated with a range of SE values using simulations based on Equation 

2-2 and Equation 2-4  to describe the effect of each RF pulse on the 

magnetisation and Equation 2-5 to describe recovery between pulses. The 

sequences were as described in section 3.2.1 with parameters as in Table 7-1 

(based on local practice and published values [14]).  
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Magnetic properties 
 Baseline blood T1

a 1736 ms 

Baseline myocardial T1
a 1052 ms 

Post contrast blood T1 400 ms 

Post contrast myocardial T1 550 ms 

Contrast agent relaxivity, r1
b 4.5 l mmol-1 s-1 

Physiological properties 
 MBF (rest/stress)c 1.5/3.5 ml min-1 100ml-1 

vd (healthy/infarct)d 25/69 % 

Haematocrite 0.46 

Contrast agent dose 
 Main bolus/pre-bolus 0.05/0.005 mmol kg-1 Gadovist 

Main sequence parameters 
 TS 95.94 ms 

nk0 (steps to central line of k-space) 11 

N (number of readout pulses per image) 42 

FA 15° 

TR 2.68 ms 

Number of slices 3 

Low T1 sensitivity sequence 
parameters 

 TS 24.3 ms 

nk0 (steps to central line of k-space) 8 

N (number of readout pulses per image) 19 

FA 15° 

TR 2.52 ms 

Number of slices 1 

PDw sequence parameters 
 nk0 (steps to central line of k-space) 11 

N (number of readout pulses per image) 42 

FA 15° & 3° 

TR 2.68 ms 

Number of slices 3 

Table 7-1 – Parameters used for simulations. Imaging parameters are 
representative of local practice. a - Native MOLLI T1 values (septal region 
for myocardium) [14]. b - Relaxivity at 3 T for Gd-BT-D03A [186, 187]. c - 
Mean healthy volunteer values [1]. d - Mean healthy volunteer and chronic 
infarct core values (rounded to 2 significant figures) [189]. e - Middle of 
normal range [188]. 

T1 was calculated for the start of each cardiac cycle based on Equation 7-2, 

native T1 and the contrast agent concentration at that time, and used for the 

simulation of each recovery period for that cycle (i.e. variation in T1 within the 

readout of a single image or between slices acquired within the same cycle was 

neglected). The magnetisation at the end of each cardiac cycle was carried 
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forward to the next cycle so the full magnetisation history was simulated. SE is 

related to the effective flip angle of the saturation pulse, θ, by Equation 7-3, so 

SE of 1 corresponds to perfect saturation while 0 represents no preparation and 

2 perfect inversion. 

 Equation 7-3 

 cos1SE  

As described in section 2.2 perfect spoiling and mono-exponential recovery and 

decay of magnetisation were assumed. For each simulation the magnetisation 

was assumed to start in its equilibrium state at the start of imaging (i.e. for the 

first cardiac cycle) but the residual magnetisation following acquisition of each 

image and the subsequent recovery period was used for the later cardiac cycles 

(i.e. the signal intensity for each time point depended on the full prior history of 

magnetisation evolution accounting for variation in T1 due to the variation in 

contrast agent concentration). Saturation pulses were modelled as non-

selective whereas readout pulses were slice-selective (i.e. magnetisation for 

each slice was only affected by readout pulses for that slice), in agreement with 

the implementation on the scanner. Signal was recorded as being proportional 

to the magnitude of the transverse magnetisation, reflecting standard practice, 

with Rician noise added where required. Further details of this simulation 

process are presented in an appendix (section 7.6). 

Deconvolution of resulting data with a one-compartment model was performed 

to estimate MBF and vd using the non-linearity correction methods described 

below, and results were compared to ground truth. Deconvolution was 

performed using a multivariable constrained optimisation (fmincon) initialised 

with Fp at 0.4 ml/min/ml (limits of 10-6 - 106 ml/min/ml) and vd at 30% (limits of 

10-6 - 100%)1. Figure 7-3 summarises the process. 

                                            
1 To avoid undefined numbers or invalid solutions lower limits several orders of magnitude lower 

than realistic values were used where physical lower limits were zero. Upper limits were 

several orders of magnitude higher than realistic values for Fp and 100% for vd as values 

greater than that are not physically valid. 
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Figure 7-3 – Simulation process. Simulations are repeated with varying 
SNR, ground truth physiological parameters and saturation efficiencies. 
Graphical representations show the AIF and myocardial concentration 
curves (dotted – healthy myocardium at rest, solid – healthy myocardium 
under stress, dashed – infarcted myocardium at rest). 

To assess errors introduced directly through deconvolution (due to factors 

including optimiser termination tolerances and discrete temporal sampling) 

noise-free concentration curves were analysed. Additionally deconvolution was 

performed using simulated signal enhancement data to assess errors incurred 

without non-linearity correction. 

7.2.1 Model-based non-linearity correction methods 

Model-based approaches involve the use of additional data and imaging 

parameters to constrain a signal model for the acquired data. This model is 

used to convert SI data into ΔR1 throughout the DCE-MRI acquisition prior to 
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deconvolution. One potential model for this, Equation 7-4, is based on Equation 

2-1 and Equation 2-17 ((for n=nk0 - based on Larsson et al [44], see section 

2.2.3) with substitution of 1-SE for cos(θ) (as per Equation 7-4). 

Equation 7-4 
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  and R1 is longitudinal relaxation rate 

(1/T1). S0 is the SI that would be acquired from a single readout pulse applied at 

equilibrium (i.e. S0=|Ψ∙M0∙sinα∙exp(-TE/T2
*)|), α is the readout pulse flip angle 

and nk0 is the number of RF pulses prior to the acquisition of the central k-space 

data. 

In the above model magnetisation is assumed to be fully recovered immediately 

prior to the preparation pulse. An alternative, Equation 7-5, based on that 

derived in Kershaw’s thesis [45], is to assume that the starting magnetisation is 

at a reduced steady-state value.  

Equation 7-5 
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with ISD being the inter-shot delay, i.e. the time between saturation pulses and 

N being the total number of RF pulses in each readout train. 

This model is based on Equation 2-1 and Equation 2-29 (for n=nk0), see section 

2.2.3. This model reflects a series of repeated epochs of magnetisation 

preparation and image readout is also an approximation to the true scenario in 

myocardial DCE-MRI and in the forward simulations here. Firstly the saturation 
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pulses are not regularly spaced temporally as the three slices are acquired 

contiguously after the ECG trigger, followed by a delay until the next trigger. 

Consequently there is an equal delay between the saturation pulses within the 

same cardiac cycle but a longer (and variable, due to natural variability in  cycle 

length) delay between the final saturation pulse and the first saturation pulse of 

the next cycle. Secondly T1 varies throughout the DCE-MRI acquisition. Both of 

these mean that steady-state will not be reached as described in this equation. 

Additionally a mixture of slice-selective (readout) and non-selective (saturation) 

pulses are used, so while stationary spins are affected by one saturation pulse 

for each slice during each cardiac cycle they will only be affected by readout 

pulses following one of these. 

For these studies an approximation is made that the saturation pulses are 

equally spaced throughout the cardiac cycle, in which case the ISD used for the 

model is the cardiac cycle length divided by the number of slices. A further 

approximation that is made to allow this model to be used is to assume that all 

pulses (including the slice-selective readout pulses) affect all spins. Such an 

assumption was made for the SR sequences, where it was assumed that the 

effect of the saturation pulses would dominate. For the PDw sequences 

however, where only slice selective readout pulses are applied, the model was 

implemented with an ISD equal to the cardiac cycle. 

Note that both of these models are approximations, and both differ to the 

forward simulation in that they use an analytical model of the signal intensity 

rather than a step-by-step simulation of the magnetisation evolution. The 

forward simulations thus account for the non-uniform spacing of slices 

throughout the cardiac cycle and for the variation in T1 between cycles due to 

the varying contrast agent concentration. An appendix to this chapter (section 

7.7) examines the behaviour of these analytical models in comparison to the 

forward simulations in further detail and explains the reasoning for inclusion of 

both models in this work. 

These techniques can be sensitive to factors that lead to the signal not being 

fully described by the model. As well as the limitations of the models not fully 

describing the pulse sequences additional such factors include B1 homogeneity, 

readout flip angle accuracy, motion and slice profile. These are not present in 
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either the forward or backward calculation in the simulation study but could 

explain additional errors in the experimental data. 

In the following descriptions of model based correction methods f(T1,SE) is 

used to describe the methods implemented with the fully-recovered model. In 

order to use the alternative model with steady-state prior magnetisation (as 

described in Equation 7-5) f(T1,SE) is replaced by g(T1,SE) in Equation 7-7 to 

Equation 7-12. 

7.2.1.1 Native T1 based 

SI can be converted to ΔR1 using measured or assumed baseline T1 [101], a 

method that has also been employed in DCE-MRI using inversion recovery 

sequences [87, 190, 191]. In the model (Equation 7-4 or Equation 7-5), S0 is 

initially unknown and SE is assumed to be ideal. For this approach as the model 

is only calculated with SE=1 the two signal models are equivalent, as f(T1,SE) 

and g(T1,SE) both simplify to exactly the same expression (Equation 7-6). 

Equation 7-6 
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Consequently only one set of results valid for both models is presented. S0 is 

determined using baseline SI and an independently derived native T1 (Equation 

7-7) and is assumed to be constant throughout the acquisition, allowing 

estimation of T1(t) throughout the remainder of the DCE-MRI acquisition 

(Equation 7-8, evaluated using single variable optimisation (fzero) with limits of 

T1 ranging from 10-6-106 ms. NB the fzero algorithm requires only a starting 

value or constraint range, the latter was used in its implementation in this 

study). 

Equation 7-7 
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Equation 7-8 

 
 

      2

10
0

1 1,minarg
1

tSISEtTfStT
tT




 

7.2.1.2 Native proton density weighted (PDw) based 

An alternative model-based method to determine S0 uses the acquisition of a 

proton density weighted (PDw) image (without saturation preparation) prior to 

DCE-MRI acquisition [102, 107]. In the absence of T1 weighting S0 would be 

sampled directly by that acquisition. In practice residual T1 weighting is present 

in the PDw sequence (due to the read-out pulses). Estimates of baseline T1 

(Equation 7-9, evaluated using single variable optimisation (fzero) with limits of 

T1 ranging from 10-6-106 ms) and subsequently S0 and T1(t) are therefore 

estimated using baseline DCE data and SI data from the PDw series, using the 

same approach as for the native T1 based method. This approach is similar in 

principle to the two-point saturation recovery T1 mapping method described in 

section 4.4.4 [144], although with the PDw and SR data acquired in separate 

series and a shorter saturation time used. 

Equation 7-9 
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Following estimation of the baseline T1 the analysis proceeds as for native T1 

based correction, using Equation 7-7 and Equation 7-8. For this study the read-

out flip angle was initially maintained at 15° for the PDw image. However, it is 

common to reduce the read-out flip angle in the PDw sequence [102, 107] to 

reduce T1 weighting, in which case the appropriate value of α must be used in 

f(T1,SE) in the denominator of Equation 7-9. Simulations using PDw based 

conversion were repeated with α = 3°. 

Note that while SE is assumed to be ideal for the saturation prepared sequence 

the two signal models are not equivalent for this method as the signal models 

are also used to describe the PDw sequence for which SE=0 and so the models 

are not equivalent  (the models converge only at T1=0). 
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7.2.1.3 Bookend T1 based 

The model-based methods described above sample SI only at native T1 to 

define the signal model, under the assumption of ideal saturation efficiency. By 

sampling SI at two known T1 values the relationship can be defined without this 

assumption by estimating SE (Equation 7-10, evaluated using single variable 

optimisation (fmincon) with a starting value of SE = 1 and limits of 0 and 2) and 

S0 (Equation 7-11). T1(t) is estimated as before, but using a study specific SE 

estimate (Equation 7-12, evaluated using single variable optimisation (fzero) 

with limits of T1 ranging from 10-6-106 ms). For the bookend technique only the 

optimisations use functions that are non-monotonic. The implementation used in 

this work, and the implications of this, are discussed in the appendix (section 

Chapter 7). These issues are not relevant to the other techniques where the 

analytical functions used are monotonic (as ideal saturation is assumed in the 

analysis). 

Equation 7-10 
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To perform this method a T1 measurement and DCE-MRI sequence are 

acquired at a delayed post-contrast time, as well as prior to contrast 

administration. Ideally the post-contrast data would be acquired while T1 is 

stable, but this is not achievable in practice as T1 will vary due to distribution 

and clearance of the contrast agent. However steps can be taken to 

approximate this including sampling post-contrast T1 and SI as close together 

(temporally) as possible at a time where T1 varies slowly (once equilibrium has 

been reached between blood and interstitium and variation is driven 
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predominantly by renal clearance). Measuring SI either side of T1 and 

interpolating to estimate the former at the time of the latter (or vice-versa) could 

further reduce the impact of [CA] variation between measurements. In the 

clinical protocols described in later chapters the former approach (with T1 maps 

and delayed DCE-MRI data acquired close together 10 minutes after the final 

contrast agent injection) was taken for the hyperoxaemia study. For the STEMI 

study this approach was not conceived at the time of protocol design (see 

section 1.4) and so the need to acquire late DCE-MRI data and T1 maps close 

together had not been identified. However DCE-MRI data was available either 

side of a delayed T1 map so the latter approach of interpolation could be 

employed as described in section 9.2). 

7.2.2 Dual-sampling methods 

The following methods allow independent measurement of an AIF that is 

minimally affected by non-linearity. These can be employed in isolation or in 

combination with model-based correction. 

7.2.2.1 Dual-bolus 

The dual-bolus approach [103-105] exploits the approximately linear response 

of SI to [CA] at the relatively low concentrations encountered in the myocardium 

from a standard dose, and in the AIF from a smaller diluted “pre-bolus” dose 

administered before the main bolus. Signal enhancement data from the pre-

bolus AIF is scaled by the bolus:pre-bolus dose ratio and analysed with the 

tissue response from the main bolus. As linearity of SI response is assumed no 

conversion to [CA] is required. 

This method was simulated by repeating simulation of the AIF signal data for a 

pre-bolus of equal duration with concentrations scaled by one-tenth. In practice 

residual contrast agent from the pre-bolus will affect the tissue curve. The 

details of this depend on physiological parameters and the delay between 

administrations. Additionally changes in AIF shape may occur between contrast 

agent administrations due to factors such as altered contrast agent volume or 

viscosity (depending on whether the pre-bolus is administered as a smaller 

volume or diluted dose) or cardiac output variation [192]. For simplicity it is 

assumed in these simulations that the pre-bolus is cleared entirely prior to main 
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bolus administration, and that the shape of the pre-bolus and bolus AIF and 

myocardial concentration curves are identical except for scaling. 

7.2.2.2 Dual-sequence 

The model-based methods described above can be combined with a dual-

sequence acquisition (described in section 3.2.1.1) in which the AIF is acquired 

using a sequence with reduced T1 sensitivity interleaved with the higher 

sensitivity sequences for myocardial curve acquisition [108]. This allows both 

curves to be acquired with a more linear signal response to [CA], while not 

introducing the additional procedural steps or concerns regarding bolus shape 

differences of the dual-bolus approach. For this study myocardial curves were 

generated using the same pulse sequence parameters employed for other 

methods. SI curves for the AIF were generated using the parameters described 

in the “Low T1 sensitivity sequence parameters” section of Table 7-1. The latter 

is designed to result in a linear relationship between SI and T1 over a wider 

range of concentrations, although yields reduced CNR and resolution. 

The initial application of the dual-sequence approach [108] was for estimation of 

relative blood flow (myocardial perfusion reserve). If the technique achieves a 

linear signal response for both myocardial and AIF data then signal 

enhancement data can be used for this purpose despite the difference in the 

sensitivity of the two sequences, as this will lead to equal relative errors in the 

stress and rest results. Consequently the errors would cancel out when 

calculating MPR. For quantification of absolute parameters the differences must 

be accounted for and so signal enhancement cannot be used. For simplicity in 

this simulation study the PDw model-based conversion technique was adopted, 

although in practice any model-based conversion technique could be chosen. 

Calculated ΔR1 is used in the deconvolution as for the other model-based 

approaches. Additionally, spatial resolution of the low T1 sensitivity sequence is 

typically lower, which results in greater signal-to-noise ratio (SNR). In the 

simulations the noise standard deviation was halved for the low T1 sensitivity 

sequence compared to the standard sequence. This is performed to achieve the 

approximate SNR that would be expected in this sequence, due to differences 

in the resolution and the number of lines of data read compared to the 

conventional sequence. 
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7.2.3 Simulation study 

Using each of the methods described above MBF and vd were estimated and 

compared to ground truth for a range of conditions (healthy myocardium at rest 

and under pharmacologically induced stress and chronically infarcted 

myocardium). In general MBF will be lower for infarcted myocardium at rest 

(one study reported regional blood flow in chronic infarct regions as being 16% 

lower than for remote myocardium [193]). For simplicity, and to allow 

comparison of results following alteration of individual parameters, the value of 

MBF used for infarct simulation was equal to that used for healthy myocardium. 

Similarly vd was not altered between rest and stress. Parameter values used 

are presented in Table 7-1.  

Simulations were performed in the absence of and including Rician noise with 

standard deviation equal to 0.5% of S0. For healthy resting myocardium this 

corresponds to peak myocardial SNR of 14 which is similar to the data acquired 

in the volunteer study and that reported elsewhere [194]. Simulations with noise 

were repeated 100 times and mean and standard deviation of fitted parameters 

recorded. SE was varied in increments of 0.01 from 0.9-1.1, and at finer 

increments (0.005) in the central part of this range (0.97-1.03). SE is defined 

such that residual longitudinal magnetisation after saturation equals (1-SE)*Mz
- 

(where Mz
- is the prior longitudinal magnetisation) with positive values being 

aligned with the equilibrium state and negative values representing inverted 

magnetisation. Simulations were repeated with each model (Equation 7-4, full 

recovery, and Equation 7-5, steady-state). 

Methods which utilise T1 values were repeated assuming T1 measurement 

errors of 5% (both under- and over-estimation). 

7.2.4 Phantom study 

In order to independently estimate the saturation efficiency for the pulse and 

scanner used in the volunteer and patient studies in the following chapters a 

phantom study was performed using the TO5 phantom from the Eurospin Test 

Object range [195]. This phantom consists of 18 gels of varying T1 and T2 

values across a physiologically relevant range, of which up to 12 can be 

mounted in a supporting holder. For this experiment 12 gels were used but the 



Chapter 7 Signal Non-Linearity Correction – Simulation and Phantom Scanning 

141 

gels were bound together closely in a bundle rather than mounted in the holder, 

so that the spatial separation of the individual tubes was minimised. 

Data were acquired using the DCE-MRI sequences described in the volunteer 

study in the following chapter. Additionally single slice MOLLI T1 maps (using 

the shortened schemes of 5s(3s)3s and 4s(1s)3s(1s)2s) were acquired. For all 

ECG triggered imaging a simulated trace (implemented within the scanner 

software) with a heart rate of 60 bpm was used. 

Additionally a reference standard IR-SE sequence was performed for T1 

measurement and a SR-GE for independent saturation efficiency estimation. 

Images were acquired with 11 TI (50-5000ms) values in the IR-SE experiment, 

with 15s between inversion pulses, and 15 TS values (30-5000ms) in the SR-

GE experiment with 10s between saturation pulses. For the IR-SE experiment a 

single line of image data was acquired following each inversion pulse whereas 

for the SR-GE sequence a modified standard (i.e. not dual-sequence) cardiac 

perfusion sequence in which a single slice was acquired was used to ensure the 

same saturation pulse was used as is used for the clinical protocols. 

MOLLI T1 and DCE-MRI signal data were analysed using the methods 

described for the model-based non-linearity corrections methods described 

above with one gel identified to represent native tissue and a second to 

represent contrast enhanced tissue for the bookend T1 method. Using the 

model parameters derived from that analysis T1 is estimated from the signal 

intensity data in the other gels and compared to reference standard T1. Signal 

intensity data from both IR-SE and SR-GE sequences were fitted to a three 

parameter model of longitudinal recovery, as in Equation 7-13. 

Equation 7-13 

𝑆 = 𝑆0(1 − (1 − cos 𝜃)𝑒𝑥𝑝𝑃𝑃𝐷 𝑇1⁄ ) 

In this equation PPD is the pre-pulse delay (inversion time (TI) for IR-SE and 

saturation time (TS) for SR-GE). S0 is the signal that would be acquired in the 

absence of a preparation pulse and θ is the flip angle of the magnetisation 

preparation pulse. 
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7.3 Results 

7.3.1 Simulation study 

Simulated signal-time curves are presented in Figure 7-4. 

 

Figure 7-4 – AIF signal-time curves assuming ideal saturation efficiency. 
Shading indicates one standard deviation. Top: AIF. The red line shows 
the standard AIF (normal acquisition, full dose), blue reduced dose pre-
bolus for the dual-bolus method and black the AIF from the full dose 
using the lower sensitivity sequence for the dual-sequence method (N.B. 
the same AIF concentration curves were used for rest and stress). 
Bottom: Myocardial response. Each line shows a different tissue status. 
The same myocardial signal data is used for each analysis method. 
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7.3.1.1 Signal enhancement methods 

Deconvolving noise-free concentration curves directly yielded negligible errors 

(<0.0002%). However analysing signal enhancement data without non-linearity 

correction (Figure 7-5 and Figure 7-6) yielded systematic bias with 30-50% 

over-estimation of MBF and errors in vd between -4% and +10% (for ideal 

saturation and in the absence of noise). Errors in both parameters showed an 

approximately linear dependence on saturation efficiency with larger variation in 

MBF accuracy and less variation for slices 2 and 3 in comparison to slice 1. 

Use of the dual-bolus strategy led to underestimation rather than overestimation 

of MBF and vd, but with lower absolute error than with the single bolus strategy 

at perfect saturation efficiency (Figure 7-7 and Figure 7-8). Precision, 

particularly in vd, was substantially decreased. As for the single bolus strategy 

saturation efficiency dependency was lower for slices 2 and 3 than for slice 1. 
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Figure 7-5 – Errors in estimated parameters for healthy myocardium at 
rest (A – MBF and B – vd) and stress (C – MBF and D – vd) and for infarcted 
myocardium at rest (E – MBF & F – vd) for deconvolution using signal-
enhancement data without correction for non-linearity. Dashed lines show 
results in the absence of noise. Solid lines and shading show mean 
results +/- one standard deviation for data with noise. Results presented 
are from slice 1. 
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Figure 7-6 – Errors in estimated parameters for healthy myocardium at 
rest (A – MBF and B – vd) and stress (C – MBF and D – vd) and for infarcted 
myocardium at rest (E – MBF & F – vd) for deconvolution using signal-
enhancement data without correction for non-linearity. Dashed lines show 
results in the absence of noise. Solid lines and shading show mean 
results +/- one standard deviation for data with noise. Results presented 
are from slice 2. Results were similar between slices 2 and 3. 
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Figure 7-7 - Errors in estimated parameters for healthy myocardium at rest 
(A – MBF and B – vd) and stress (C – MBF and D – vd) and for infarcted 
myocardium at rest (E – MBF & F – vd) for deconvolution using the dual-
bolus method. Dashed lines show results in the absence of noise. Solid 
lines and shading show mean results +/- one standard deviation for data 
with noise. Results presented are from slice 1.  
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Figure 7-8 - Errors in estimated parameters for healthy myocardium at rest 
(A – MBF and B – vd) and stress (C – MBF and D – vd) and for infarcted 
myocardium at rest (E – MBF & F – vd) for deconvolution using the dual-
bolus method. Dashed lines show results in the absence of noise. Solid 
lines and shading show mean results +/- one standard deviation for data 
with noise. Results presented are from slice 2. Results were similar 
between slices 2 and 3. 
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7.3.1.2 Effect of saturation efficiency and non-linearity correction – T1 

based methods 

Results using native T1 based correction (Figure 7-9 and Figure 7-10) were 

identical for the two signal models, as the relevant signal model equation is only 

used under the assumption of perfect saturation in which case Equation 7-5 

reduces to Equation 7-4 (i.e. f(T1,SE=1)≡g(T1,SE=1)). Mean errors were 

negligible for ideal saturation but show strong dependence on saturation 

efficiency, particularly for slice 1 for which the method fails at high levels of 

over-saturation as the estimated S0 value is less than the peak AIF signal. For 

slice 1 a marked decrease in precision and accuracy was observed above a 

saturation efficiency of around 1.06, where baseline signal is nulled due to the 

partial inversion. 

For the bookend T1 based method differences do arise between signal models 

(Figure 7-11 and Figure 7-12 (full recovery model) and Figure 7-13 and Figure 

7-14 (steady-state model)). Errors at non-ideal saturation efficiency are smaller 

than for native T1 based correction but saturation efficiency dependent errors 

persist as neither model fully describes the signal generation. Consequently for 

both models the degree of saturation pulse imperfection is underestimated (i.e. 

SE is overestimated when less than 1 but underestimated when greater than 1). 

These errors are larger when the full recovery model is used, but the steady-

state model leads to poorer precision. As for native T1 based correction a 

marked change in performance is observed above a saturation efficiency of 

1.06 for slice 1 due to baseline signal nulling. 
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Figure 7-9 - Errors in estimated parameters for healthy myocardium at rest 
(A – MBF and B – vd) and stress (C – MBF and D – vd) and for infarcted 
myocardium at rest (E – MBF & F – vd) for deconvolution using native T1 
based correction. Dashed lines show results in the absence of noise. 
Solid lines and shading show mean results +/- one standard deviation for 
data with noise. Results presented are from slice 1. Results are identical 
for the two signal models as the two signal models are equivalent for 
assumed ideal saturation (Equation 7-6). 
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Figure 7-10 - Errors in estimated parameters for healthy myocardium at 
rest (A – MBF and B – vd) and stress (C – MBF and D – vd) and for infarcted 
myocardium at rest (E – MBF & F – vd) for deconvolution using native T1 
based correction. Dashed lines show results in the absence of noise. 
Solid lines and shading show mean results +/- one standard deviation for 
data with noise. Results presented are from slice 2. Results were similar 
between slices 2 and 3. Results are identical for the two signal models as 
the two signal models are equivalent for assumed ideal saturation 
(Equation 7-6). 
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Figure 7-11 - Errors in estimated parameters for healthy myocardium at 
rest (A – MBF and B – vd) and stress (C – MBF and D – vd) and for infarcted 
myocardium at rest (E – MBF & F – vd) for deconvolution using bookend 
T1 based correction and the full recovery signal model. Dashed lines show 
results in the absence of noise. Solid lines and shading show mean 
results +/- one standard deviation for data with noise. Results presented 
are from slice 1. 
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Figure 7-12 - Errors in estimated parameters for healthy myocardium at 
rest (A – MBF and B – vd) and stress (C – MBF and D – vd) and for infarcted 
myocardium at rest (E – MBF & F – vd) for deconvolution using bookend 
T1 based correction and the full recovery signal model. Dashed lines show 
results in the absence of noise. Solid lines and shading show mean 
results +/- one standard deviation for data with noise. Results presented 
are from slice 2. Results were similar between slices 2 and 3. 
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Figure 7-13 - Errors in estimated parameters for healthy myocardium at 
rest (A – MBF and B – vd) and stress (C – MBF and D – vd) and for infarcted 
myocardium at rest (E – MBF & F – vd) for deconvolution using bookend 
T1 based correction and the steady-state signal model. Dashed lines show 
results in the absence of noise. Solid lines and shading show mean 
results +/- one standard deviation for data with noise. Results presented 
are from slice 1. 
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Figure 7-14 - Errors in estimated parameters for healthy myocardium at 
rest (A – MBF and B – vd) and stress (C – MBF and D – vd) and for infarcted 
myocardium at rest (E – MBF & F – vd) for deconvolution using bookend 
T1 based correction and the steady-state signal model. Dashed lines show 
results in the absence of noise. Solid lines and shading show mean 
results +/- one standard deviation for data with noise. Results presented 
are from slice 2. Results were similar between slices 2 and 3. 

Effect of Errors in Measured T1 

In simulations of T1 measurement dependent model-based methods errors in T1 

were found to introduce systematic errors in estimated physiological 

parameters. For model-based correction using native T1 alone, underestimation 
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of T1 led to a decrease in estimated S0 for a given SE, and consequently lower 

estimates of both physiological parameters (Figure 7-15 and Figure 7-16). As 

described previously, the native T1 method results are identical for both signal 

models, as the model equation is only ever used under the assumption of ideal 

saturation. 

 

Figure 7-15 – Errors introduced in analysis due to errors in measured T1 
used for model-based correction. Data is for the native T1 based 
conversion for slice 1. Results are identical for the two signal models as 
the two signal models are equivalent for assumed ideal saturation 
(Equation 7-6). 
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Figure 7-16 – Errors introduced in analysis due to errors in measured T1 
used for model-based correction. Data is for the native T1 based 
conversion for slice 2. Results are identical for the two signal models. 
Results are similar between slices 2 and 3. 

For the bookend method the direction of bias on physiological results depended 

on the T1 measurement in error (Figure 7-17 and Figure 7-18 (full recovery 

model) and Figure 7-19 and Figure 7-20 (steady-state model)). Underestimation 

of native T1 led to a slight overestimation of S0 and SE. This resulted in 

increases in estimated physiological parameters. For overestimation of post-

contrast T1 the converse was true, and the sensitivity to a given relative T1 error 
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was greater. Consequently when errors were simulated in both native and post-

contrast T1 simultaneously differences in SE, S0, MBF and vd were in the same 

direction as the T1 error, unlike for the native T1 based method. 

For the bookend T1 based method use of the steady-state model leads to larger 

T1 error sensitivity than the full recovery model. 

 

Figure 7-17 – Errors introduced in analysis due to errors in measured T1 
used for model-based correction. Data is for the bookend T1 based 
conversion with the full recovery signal model for slice 1.  
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Figure 7-18 – Errors introduced in analysis due to errors in measured T1 
used for model-based correction. Data is for the bookend T1 based 
conversion with the full recovery signal model for slice 2. Results are 
similar between slices 2 and 3. 
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Figure 7-19 – Errors introduced in analysis due to errors in measured T1 
used for model-based correction. Data is for the bookend T1 based 
conversion with the steady-state signal model for slice 1. 



Chapter 7 Signal Non-Linearity Correction – Simulation and Phantom Scanning 

160 

 

Figure 7-20 – Errors introduced in analysis due to errors in measured T1 
used for model-based correction. Data is for the bookend T1 based 
conversion with the steady-state signal model for slice 2. Results are 
similar between slices 2 and 3. 

7.3.1.1 Effect of saturation efficiency and non-linearity correction – 

PDw based methods 

With a 15° readout flip angle signal varied substantially in the early phases of 

the proton density weighted sequence simulation due to residual T1 weighting. 

Analysis failed for the standard acquisition simulation with both models as a 

positive native T1 could not be estimated that described the signal after this 

variation in both the SR and PDw sequences. Reducing the readout flip angle to 
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further reduce T1 weighting in the PDw sequence alleviated these problems 

(Figure 7-21 and Figure 7-22, full recovery model, and Figure 7-23 and Figure 

7-24 steady-state model). Saturation efficiency dependency was present 

although typically less than for the bookend T1 based method. Unlike the T1 

based methods a small bias was present even with ideal saturation efficiency 

with 4-5% under-estimation of MBF for the full recovery model and a lesser 

degree of 2-3% over-estimation for the steady-state model. 

When combined with dual-sequence acquisition the PDw based correction 

method yields only small levels of bias at ideal saturation (Figure 7-25, full 

recovery model, and Figure 7-26, steady-state model). However the method 

exhibits very strong saturation efficiency dependency and accuracy deteriorates 

sharply above SE of 1.02 due to signal nulling in the AIF baseline. This occurs 

at a lower level of over-saturation than for slice 1 in the other methods due to 

the shorter TS used. As only one slice of short TS data is acquired, and errors 

arise mostly due to ΔR1 quantification inaccuracies in the AIF, there is little 

difference between slices for this method. Furthermore there is little difference 

between signal models. 

Due to the reduced sensitivity, and hence decreased SNR, in the short TS AIF 

precision in both MBF and vd estimates is considerably reduced in the dual-

sequence approach. 
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Figure 7-21 - Errors in estimated parameters for healthy myocardium at 
rest (A – MBF and B – vd) and stress (C – MBF and D – vd) and for infarcted 
myocardium at rest (E – MBF & F – vd) for deconvolution using proton 
density weighted image based correction and the full recovery signal 
model. Dashed lines show results in the absence of noise. Solid lines and 
shading show mean results +/- one standard deviation for data with noise. 
Results presented are from slice 1 with 3° flip angle. 
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Figure 7-22 - Errors in estimated parameters for healthy myocardium at 
rest (A – MBF and B – vd) and stress (C – MBF and D – vd) and for infarcted 
myocardium at rest (E – MBF & F – vd) for deconvolution using proton 
density weighted image based correction and the full recovery signal 
model. Dashed lines show results in the absence of noise. Solid lines and 
shading show mean results +/- one standard deviation for data with noise. 
Results presented are from slice 2 with 3° flip angle. Results were similar 
between slices 2 and 3. 
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Figure 7-23 - Errors in estimated parameters for healthy myocardium at 
rest (A – MBF and B – vd) and stress (C – MBF and D – vd) and for infarcted 
myocardium at rest (E – MBF & F – vd) for deconvolution using proton 
density weighted image based correction and the steady-state signal 
model. Dashed lines show results in the absence of noise. Solid lines and 
shading show mean results +/- one standard deviation for data with noise. 
Results presented are from slice 1 with 3° flip angle. 
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Figure 7-24 - Errors in estimated parameters for healthy myocardium at 
rest (A – MBF and B – vd) and stress (C – MBF and D – vd) and for infarcted 
myocardium at rest (E – MBF & F – vd) for deconvolution using proton 
density weighted image based correction and the steady-state signal 
model. Dashed lines show results in the absence of noise. Solid lines and 
shading show mean results +/- one standard deviation for data with noise. 
Results presented are from slice 2 with 3° flip angle. Results were similar 
between slices 2 and 3. 
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Figure 7-25 - Errors in estimated parameters for healthy myocardium at 
rest (A – MBF and B – vd) and stress (C – MBF and D – vd) and for infarcted 
myocardium at rest (E – MBF & F – vd) for deconvolution using the dual-
sequence method and the full recovery signal model. Dashed lines show 
results in the absence of noise. Solid lines and shading show mean 
results +/- one standard deviation for data with noise. Results presented 
are from slice 1. Results were similar between all slices. 



Chapter 7 Signal Non-Linearity Correction – Simulation and Phantom Scanning 

167 

 

Figure 7-26 - Errors in estimated parameters for healthy myocardium at 
rest (A – MBF and B – vd) and stress (C – MBF and D – vd) and for infarcted 
myocardium at rest (E – MBF & F – vd) for deconvolution using the dual-
sequence method and the steady-state signal model. Dashed lines show 
results in the absence of noise. Solid lines and shading show mean 
results +/- one standard deviation for data with noise. Results presented 
are from slice 1. Results were similar between all slices. 
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Results for all methods with ideal saturation and realistic levels of saturation 

imperfection (SE = 0.975 and 1.025) are compared for healthy resting 

myocardium in Figure 7-27 and Figure 7-28 (MBF, full recovery and steady-

state models) and Figure 7-29 and Figure 7-30 (vd, full recovery and steady-

state models). 

 
Figure 7-27 - Box-and-whisker plots comparing non-linearity correction 
methods for realistic levels of saturation efficiency and SNR for resting 
MBF and normal vd values. Outliers (individual points) are identified as 
data more than two times the inter-quartile range above/below the 
upper/lower quartiles. These results show errors in MBF when the full 
recovery signal model is used for model based conversions. 
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Figure 7-28 - Box-and-whisker plots comparing non-linearity correction 
methods for realistic levels of saturation efficiency and SNR for resting 
MBF and normal vd values. Outliers (individual points) are identified as 
data more than two times the inter-quartile range above/below the 
upper/lower quartiles. These results show errors in MBF when the steady-
state signal model is used for model based conversions. 
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Figure 7-29 - Box-and-whisker plots comparing non-linearity correction 
methods for realistic levels of saturation efficiency and SNR for resting 
MBF and normal vd values. Outliers (individual points) are identified as 
data more than two times the inter-quartile range above/below the 
upper/lower quartiles. These results show errors in vd when the full 
recovery signal model is used for model based conversions. 
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Figure 7-30 - Box-and-whisker plots comparing non-linearity correction 
methods for realistic levels of saturation efficiency and SNR for resting 
MBF and normal vd values. Outliers (individual points) are identified as 
data more than two times the inter-quartile range above/below the 
upper/lower quartiles. These results show errors in vd when the steady-
state signal model is used for model based conversions. 

 

 

 

7.3.1.2 Effect of Image Noise 

Simulations including noise (solid lines and shading in Figure 7-5 to Figure 

7-26) showed similar overall patterns to the noise-free simulations. However the 
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variation in bias around the threshold SE values described above is less sharp. 

This is due to the asymmetric nature of the Rician noise distribution at low SNR 

leading to noise induced bias as the threshold value is approached. Inclusion of 

noise also allows assessment of relative precision of the methods (the vertical 

extent of the shaded areas is equal to twice the co-efficient of variation), with 

precision being poorest for dual-bolus due to the reduced CNR in the low-dose 

AIF and dual-sequence due to the reduced sensitivity in the short TS AIF scan.  

7.3.2 Phantom study 

IR-SE T1 values ranged from 224-1941ms and so include the full range of T1 

values typically encountered in clinical T1 mapping, but do not extend down to 

the short T1 values that might be encountered in the blood at peak contrast 

agent concentration (i.e. at the peak of the first pass of the arterial input function 

in DCE-MRI). For the simulated AIF the minimum T1 was 71ms. MOLLI T1 

estimates using the 5s(3s)3s scheme agreed well with IR-SE reference 

standard T1 values, with maximum absolute error of 48ms and maximum 

relative error of 8.6%. The 4s(1s)3s(1s)2s scheme agreed well with both the 

5s(3s)3s scheme and IR-SE at short T1 but showed progressively increased 

underestimation at longer T1, with large errors particularly for the gels with 

T1>1800ms. This is expected as this scheme is optimised for short T1 values 

expected post-contrast, and is not designed to yield accurate T1 estimates for 

native tissues or fluids with longer T1 values. Results are shown in Table 7-2 

and Figure 7-31. 

TO5 Gel 
Number 

IR-SE 
T1 (ms) 

MOLLI T1 (ms) SR-GE 
5s(3s)3s 4s(1s)3s(1s)2s T1 (ms) 

1 224 208 201 213 
3 343 341 333 343 
4 560 512 497 519 
6 526 524 519 511 
7 774 750 733 738 
9 920 907 888 884 
10 894 878 864 867 
12 1941 1893 449 1919 
13 1283 1293 1257 1276 
15 1516 1482 1411 1478 
17 1674 1661 1513 1629 
18 1819 1806 691 1792 

Table 7-2 – IR-SE, MOLLI and SR-GE T1 results. 



Chapter 7 Signal Non-Linearity Correction – Simulation and Phantom Scanning 

173 

 

Figure 7-31 - Bland-Altman plot of phantom T1 values by two MOLLI 
schemes and SR-GE in comparison to IR-SE. The large errors observed 
for the 4s(1s)3s(1s)2s scheme at long T1 are expected is this sequence is 
designed for use only with contrast enhanced tissues and does not allow 
for sufficient recovery of longitudinal magnetisation between inversion 
pulses to accurately quantify the native T1 values of blood or myocardium. 

Fitting Equation 7-13 to SR-GE data (Figure 7-32) yielded a range of saturation 

efficiency (SE) estimates from 1.0050 to 1.0124 (mean 1.0092, standard 

deviation 0.0021). T1 estimates were within 7.4% of IR-SE reference values for 

all gels (Table 7-2). 
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Figure 7-32 – Normalised SR-GE signal intensity (crosses) and model fits 
(lines) from the phantom study (bottom panel shows zoomed view). 
Absolute values are plotted and for each gel the fitted curve has a null 
point at TS>0, indicating over-saturation. For ideal saturation curves 
would recover from the origin, and for under-saturation curves would not 
reach the x-axis for TS>0. 

The gels with T1 of 1792ms and 343ms were chosen to represent native and 

contrast-enhanced blood respectively, as these were closest to the mean 

values in the volunteer study in the following chapter. In the bookend T1 method 

SE was estimated as 1.0174. As shown in Figure 7-33, estimated ΔR1 

(compared to the R1 of the gel representing native blood) values for the other 10 

gels correlated well with MOLLI derived T1 values across all gels for both 

methods (R2>0.97). The gels used to derive S0 and (for bookend T1) SE were 

excluded from the correlation as these necessarily lie on the line of identity. 

The agreement was better for the bookend T1 based method, with a slope of 

1.05 and intercept of -0.072s-1 compared to 1.69 and -0.173s-1 for the native T1 

based method. The value of S0 estimated using the bookend T1 based method 

was 43% higher than for the native T1 based method. 
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Figure 7-33 – Correlation of ΔR1 values from data acquired by imaging 
gels of differing T1 using a DCE-MRI sequence (estimated using with 
native (blue) or bookend (red) T1 based conversion with the full recovery 
model) to MOLLI T1 values. The black dashed line shows ideal agreement 
and the red vertical dashed lines intersect the points used in estimating S0 
and (for bookend T1) SE. For the native T1 based approach only the point 
at ΔR1=0 was used to constrain the model. The legend shows results of 
linear fits, and estimated SE for the bookend T1 based correction. 

7.4 Discussion 

7.4.1 Signal enhancement based analysis 

In accordance with the well-understood effect of signal non-linearity on MBF 

estimates [54] this study demonstrated that deconvolution of DCE-MRI signal 

enhancement data without correction for signal non-linearity leads to substantial 

over-estimation of MBF for the parameters used in this work. Additionally 

smaller systematic errors were also present in vd in this study, with 

overestimation of normal values but underestimation of the elevated vd value, 

as well as dependency on the magnitude of errors in both parameters on the 

saturation efficiency. The difference in behaviour for elevated vd occurred as the 

value of the distribution volume, and thus the equilibrium concentration, 
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exceeded that in blood (the distribution volume fraction of which is 1-hct). 

Consequently non-linearity effects in the tail of the curves are greater for the 

myocardial curve than for the AIF at such vd values. As these errors are well 

known absolute parameter values derived from quantitative analysis using 

normal clinical contrast agent doses without non-linearity correction would not 

normally be reported. As errors arise predominantly due to non-linearity effects 

in the AIF relative perfusion metrics (such as myocardial perfusion reserve or 

endocardial to epicardial perfusion ratios) from data uncorrected for signal non-

linearity may be reported with lower bias than absolute values (if the AIF is 

similar or identical for the two sets of data being compared). However, non-

linearity effects in the myocardium also contribute to the observed bias to an 

extent which is dependent on the physiological parameters being measured. 

Consequently calculating relative rather than absolute parameters will not 

necessarily completely eradicate such errors. 

Reducing the contrast agent dose has been shown to yield lower absolute MBF 

values by reducing non-linearity effects in the AIF while using a low dose for the 

AIF and a higher dose to measure the tissue response allows acceptable image 

contrast for visual analysis to be maintained [105]. However, while this dual-

bolus technique affects absolute MBF values it does not necessarily improve 

diagnostic performance for the detection of CAD [106]. In the simulations in this 

work this technique has been shown to be partially effective in reducing the 

magnitude of systematic errors in comparison to a single bolus method, 

although systematic errors still arise (due to residual non-linearity) and precision 

is substantially reduced, particularly in vd, due to low SNR in the pre-bolus AIF. 

Other work has suggested that model-based correction alongside dual-bolus 

acquisition may further improve accuracy by accounting for non-linearity in the 

myocardial data [107], however this cannot address the reduction in precision 

arising from the low SNR in the AIF. 

7.4.2 Model-based non-linearity correction 

When using model-based correction techniques bias in parameter estimates 

was typically negligible or small in simulations with ideal saturation pulse 

performance. However, in a typical myocardial DCE-MRI sequence baseline 

signal is generated from longitudinal magnetisation which has only recovered to 
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a small fraction of the equilibrium value. For example, assuming ideal saturation 

and the parameters used these simulations, baseline signal will be 

approximately 5% and 10% of S0 for blood and myocardium respectively in the 

conventional DCE-MRI series, and smaller for the dual-sequence variant. 

Consequently a small amount of residual magnetisation after saturation has a 

substantial impact on baseline SI, as has been previously identified [181]. 

Results from this study have shown that such biases influence the results of 

model-based non-linearity correction methods, and consequently the accuracy 

of quantitative DCE-MRI analysis. 

Over- or under-saturation leads respectively to lower or higher baseline signal 

than ideal saturation. For native T1 based correction the estimated value of S0 is 

directly proportional to the baseline signal, and so these biases propagate into 

large non-linear errors in estimated ΔR1 throughout the DCE-MRI series (as 

illustrated in ), and thus also into errors in estimated physiological parameters. 

For this technique results are identical between the signal models used as the 

model is only used with an assumed SE value of 1, in which case Equation 7-5 

simplifies to Equation 7-4. As the estimated value of S0 is inversely proportional 

to the evaluated result of the signal model at baseline T1 any errors in the 

measured T1 value also lead to systematic errors in S0 and physiological 

parameters. Underestimation of T1 (which is generally expected when using 

MOLLI based sequences, as described in Chapter 5) leads to underestimation 

of S0, which leads to underestimation of physiological parameters in most 

cases. The exception to this is for elevated vd where the direction of the effect of 

T1 errors is reversed (for the same reason as for the reversal of the direction of 

bias for signal enhancement based). 

Differences in behaviour between slices were observed, with greater saturation 

efficiency dependency for slice 1 than the other slices. This arises because the 

three slices are acquired contiguously, after which there is a delay prior to the 

next cardiac cycle. Consequently the time between the saturation pulse for this 

slice and that from the previous image acquisition is greatest for slice 1, 

allowing greater recovery of longitudinal magnetisation. The magnetisation is 

thus greater at the time of the preparation pulse for slice 1. This is discussed 

further in section 7.4.4. 
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7.4.2.1 T1 based methods 

Use of the bookend T1 based technique did reduce saturation efficiency 

dependency compared to use of native T1 and baseline signal alone, but to a 

generally lesser extent than proton density weighted image data for model 

based correction. However some saturation efficiency dependent bias in MBF 

and vd remains with this technique, likely due to limitations of the analytical 

signal models (note that these residual biases and saturation efficiency 

dependencies did not occur in the results in the paper published on the initial 

analysis [1], for which the same model was used for the forwards and 

backwards simulation as described in the introduction to this chapter). From 

Figure 7-17 to Figure 7-20 it can be seen that the level of saturation 

imperfection is underestimated and there are errors in estimated S0 values. This 

likely arises due to the fact that assumptions regarding starting magnetisation at 

the time of magnetisation saturation (of either full-recovery or steady-state prior 

longitudinal magnetisation) are used in the derivation of the analytical solutions 

of the signal models which differ to the forward simulations which simulated the 

magnetisation evolution throughout the full experiment. Consequently even in 

the simplified simulation study (which neglects effects which would occur in in 

vivo scanning, described in the limitations in section 7.4.6) the models used are 

not full descriptions of the signal behaviour. 

In the phantom study it was estimated using multiple SR-GE images that the RF 

pulse used slightly over-saturated magnetisation (i.e. resulted in a small fraction 

of the magnetisation being inverted). Furthermore the T1 estimates from this 

experiment agreed well with IR-SE reference results and 5(3s)3 MOLLI 

supporting the validity of the fits to these data. Over-saturation was also 

indicated in the bookend T1 approach when applied to the gels, although a 

higher level of over-saturation was estimated than in the SR-GE experiment. As 

described above in the presence of perfect T1 measurement accuracy 

deviations of saturation efficiency from ideal are underestimated by the bookend 

T1 approach, although biases due to errors in T1 mapping (as discussed below) 

may be larger than the errors introduced through limitations of the signal 

models. As shown in Figure 7-33 estimation of ΔR1 from the bookend T1 

approach in the gels agreed more closely with those from MOLLI than use of 

the native T1 approach, which supports the results of the simulation study. 
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However for both methods the strength of the linear correlation was very high, 

with negligible difference between bookend and native T1 approaches. As a 

consistent scaling error in ΔR1 would not lead to errors in estimated parameters 

from deconvolution of DCE-MRI data (as both the AIF and myocardial curves 

would be scaled equally) these data do not directly suggest that the bookend T1 

approach would yield more accurate estimates of physiological parameters than 

the native T1 approach when estimating physiological parameters. However this 

experiment was limited by the fact that there were no gels with T1 as short as 

would be expected at the peak of the AIF, and so the conversion techniques 

were not tested across the whole physiologically relevant range.  

For the bookend T1 approach the direction of the influence of errors in native T1 

measurement is reversed in comparison to when only native T1 and signal is 

used to constrain the signal model. This is due to the fact that underestimation 

of native T1 leads to underestimation of S0 when SE is constrained to be ideal 

(in the native T1 approach), but overestimation when SE is also estimated (in 

the bookend T1 approach). 

Errors in measurement of post-contrast T1 affect estimates of S0 and SE in the 

opposite direction to errors in native T1, and have a larger influence. Biases due 

to consistent under or overestimation of both native and post-contrast T1 were 

thus in the same direction, but of lower magnitude, than when errors were 

simulated in post-contrast T1 alone. 

Unlike for the native T1 based approach, where ideal saturation is assumed, 

Equation 7-4 and Equation 7-5 are not equivalent in this approach and so 

differences in results are present between signal models as well as slices. In 

general bias is lower at non-ideal saturation efficiency for the steady-state 

signal model. However for the full recovery model precision is better and the 

sensitivity to errors in T1 measurement is reduced. Consequently the preferred 

choice of model may depend on the expected performance of the saturation 

pulse being used, with the full recovery model preferred when the pulse is 

expected to have near-ideal performance but the steady-state model preferred 

to reduce saturation efficiency dependency where consistent near-ideal 

saturation pulse performance might not be expected. 
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It should be noted that the potential use of SE values representative of over-

saturation in the signal modelling, which the bookend T1 based method 

introduces, raises the potential of systematic biases due to errors when 

performing optimisation processes with non-monotonic function. As discussed 

in appendix 3 (section Chapter 7) such errors are not expected to affect the 

validity or interpretation of the results of this thesis. However the potential for 

such errors should be considered when applying this technique under different 

conditions, for example in combination with a dual-sequence acquisition. 

7.4.2.2 Proton density weighted image based methods 

When simulated with the same 15° readout flip angle as the DCE-MRI 

sequence the PDw based technique was not successful, due to the effects of 

substantial residual T1 weighting in the PDw signal data. In the presence of this 

T1 weighting real, positive T1 values could not be estimated throughout the 

acquired DCE data with either signal model. This was resolved when using a 

reduced flip angle to further reduce T1 weighting beyond removing the 

saturation pulse. However use of a very low flip angle will reduce SNR in the 

proton density weighted images and further work is required to determine the 

optimal sequence parameters to minimise T1 weighting while maintaining 

sufficient SNR. In these results saturation efficiency dependency was lower 

than for both T1 based approaches. However, unlike the T1 based approaches 

small systematic bias was present when perfect saturation efficiency was 

simulated. Although SE is not estimated in the PDw based technique the signal 

models are not only used under the assumption of perfect saturation. The 

model is also used with SE=0 for the PDw sequence. For the latter Equation 7-4 

and Equation 7-5 are not identical, so differences between models exist for this 

technique with lower bias for the steady-state signal model. Precision was 

similar between models, and comparable to that of the bookend T1 based 

method with the full recovery signal model.  

The PDw based technique was substantially less sensitive to imperfect 

saturation than the native T1 method, despite the methods following exactly the 

same procedure after baseline T1 is determined. As the former uses a two-point 

baseline T1 estimate (which would be expected to be less accurate than an 
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independent optimised T1 mapping sequence) this may seem counter-intuitive. 

This observation can, however, be explained by examining the error sources. 

With the native T1 method over-saturation leads to underestimation of S0 

(Figure 7-15 and Figure 7-16, top-right panels and Table 7-3 below). As S0 

defines the signal model for conversion of signal data to ΔR1 it is this error 

which leads to strong saturation efficiency dependency in the final physiological 

parameter estimates. If the independent T1 measurement is inaccurate the 

strong saturation efficiency dependence remains but the biases are shifted. 

For the PDw based method the baseline T1 estimate is estimated using the SR 

perfusion sequence and a PDw variant. As the baseline SR signal is strongly 

dependent on saturation efficiency so too is the estimated baseline T1. However 

in the subsequent step of estimating S0 from the same biased baseline signal 

and the T1 estimate these errors largely cancel out. Therefore physiological 

parameter estimates for this technique are substantially less saturation 

efficiency dependent than for the native T1 based method.  

Data exemplifying this is shown below. The second row of Table 7-3 shows 

relative baseline signal intensity for native blood in slice 1 of a standard SR 

sequence. In this a negative correlation between SE and signal exists. The 

following three rows show data used in the PDw based method. Firstly signal 

intensity from the PDw series (3° flip angle). This is independent of SE as this 

sequence does not use the saturation pulse. The fourth row shows T1 values 

estimated as a first step of the PDw based correction technique. These are 

derived from the previous two rows, and exhibit a positive correlation with SE 

due to the variation in baseline SR signal intensity. Finally for this method the 

fifth row shows the estimated value of S0 that is subsequently derived from the 

estimated T1 value and the baseline SR sequence signal intensity. As can be 

seen the biases largely cancel out yielding low SE dependence in S0. For the 

native T1 method however (bottom two rows), where the T1 estimate is SE 

independent, the SE dependency of the baseline SR signal propagates into S0. 
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Saturation Efficiency 0.98 1 1.02 

SR baseline relative signal (S/S0) 0.0050 0.0045 0.0040 

PDw relative signal (S/S0) 0.0483 0. 0483 0. 0483 

PDw method - Estimated T1 (ms) 1457 1620 1822 

PDw method - Estimated S0 0.9351 0.9351 0.9351 

Native T1 method - Accurate T1 (ms) 1736 1736 1736 

Native T1 method - Estimated S0 1.1086 1.0000 0.8923 

Table 7-3 – Example intermediate data for PDw image and native T1 based 
correction methods (both for slice 1 using the full recovery signal model). 
Ground truth native T1 and S0 values were 1736ms and 1. 

Even under conditions of ideal saturation the estimated T1 values in the PDw 

based method exhibit bias, and consequently so do S0 values. This arises 

because limitations in signal models remain for the PDw sequence (see 

appendix 2, section 7.7.1). The full recovery model over-estimates signal for 

long T1 as it does not account for signal saturation while the steady-state model 

is accurate only once the steady-state is achieved. However even for the latter 

the steady-state is still being approached during the limited duration of the 

baseline data acquisition. Use of the steady-state model resulted in lower bias 

in S0 for ideal saturation, but stronger SE dependence.  

Following determination of S0 the signal model is defined and R1 is estimated 

for each dynamic phase. Figure 7-34 shows the signal models derived from the 

above examples graphically. As the differences in S0 are negligible for the PDw 

method the lines overlie each other. For the native T1 method however the 

curves for the different SE values diverge substantially. 
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Figure 7-34 – Signal models derived from the results of Table 7-3. The S0 
values for the PDw method are very similar so the three curves are not 
visibly distinguishable on this plot. 

Divergence of the models alone does not determine the differences in estimated 

ΔR1 values, as differences in SE will also affect the signal intensities acquired 

throughout the DCE series. Table 7-4 shows R1 values that would be estimated 

for the baseline and peak concentration values in blood, and the corresponding 

ΔR1, for each example case described in Table 7-3. 

Saturation Efficiency 0.98 1 1.02 

SR baseline blood relative signal (S/S0) 0.0050 0.0045 0.0040 

SR peak-contrast blood relative signal (S/S0) 0.0634 0.0629 0.0625 

PDw method - baseline blood R1 (s
-1

) 0.687 0.617 0.549 

PDw method - peak-contrast blood R1 (s
-1

) 16.760 16.483 16.214 

PDw method - peak blood ΔR1 (s
-1

) 16.073 15.866 15.665 

Native T1 method - baseline blood R1 (s
-1

) 0.576 0.576 0.576 

Native T1 method - peak-contrast blood R1 (s
-1

) 11.729 14.171 18.245 

Native T1 method - peak blood ΔR1 (s
-1

) 11.153 13.595 17.669 

Table 7-4 – Estimated R1 and ΔR1 values for blood in the scenarios 
exemplified in Table 7-3. Without noise and with perfect saturation the 
native T1 method performs ideally, so the values in the bottom 3 rows of 
the SE=1 column also reflect the ground truth values. 

The values for the native T1 method at ideal saturation are accurate in this case. 

Additionally as the model is determined using baseline data the R1 estimates for 

that value only are accurate at all SE values. For non-ideal saturation estimates 

of post-contrast R1 (and ΔR1) are biased due to the different S0 estimates 

derived above. Due to the bias in S0 for the PDw method even at ideal 
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saturation efficiency errors exist for this method throughout. However while the 

latter exhibits substantial variation in both baseline and post-contrast R1 

estimates the ΔR1 estimates exhibits less saturation efficiency dependency than 

in the native T1 based correction. As for errors in S0, the absolute errors in ΔR1 

are substantially lower when using the steady-state model for the PDw method. 

Dual-sequence 

When PDw based correction is used with the dual-sequence acquisition 

technique the systematic bias at ideal saturation is reduced compared to the 

results of the PDw based method without dual-sequence acquisition. This is 

potentially due to further reduced residual T1 weighting in the PDw data, for 

which the sequence has a reduced number of readout pulses in the low spatial 

resolution sequences. However, the short TS in the interleaved sequence leads 

to reduced SNR in the AIF and consequently precision is substantially poorer 

for this technique compared to single acquisition strategies. Additionally the 

short TS leads to very high saturation efficiency dependency as a given degree 

of saturation imperfection will lead to a greater proportional difference in 

baseline signal than for the conventional DCE series. 

7.4.2.3 Over-saturation threshold 

The dual-sequence technique completely breaks down for moderate over-

saturation (SE>1.02) as the baseline signal is either nulled or arises from 

inverted magnetisation above this. Due to this behaviour caution should be 

adopted when quantifying dual-sequence data if near ideal saturation efficiency 

cannot be guaranteed. Additionally caution should be adopted if modifications 

such as use of centric k-space ordering are used to further shorten TS, as this 

would be expected to further increase the dependence on SE. 

Some similar features of sharp changes in results above a threshold over-

saturation level can also be observed in results from other techniques. For 

these the threshold occurs at SE=1.06 for slice 1, as this corresponds to the 

value at which baseline signal is nulled. For subsequent slices this threshold is 

not observed in the simulated range of SE values, as the magnetisation prior to 

saturation is less than for slice 1, due to the shorter delay since the previous 

saturation pulse. For the same reason the threshold SE value for slice 1 would 
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be expected to vary with heart rate, with a lower threshold at higher heart rates 

for which there would be less time for recovery of longitudinal magnetisation 

prior to the slice 1 saturation pulse. 

7.4.3 Influence of image noise 

In general image noise can have a biasing effect on baseline SI when the SNR 

is sufficiently low that the distribution of SI values is asymmetrical. With noise 

low SI values are, on average, higher than would be predicted in the absence of 

noise. For the native T1 based method an increased baseline SI leads to an 

increased calculated S0. Conversely an increased baseline SI in the bookend T1 

based method leads to a lower S0. These deviations can be observed in the 

presented data (where the continuous line showing mean results from noisy 

data deviate from the dashed line showing results from noiseless data) for some 

cases at the highest levels of over-saturation simulated. This only occurs where 

the SNR becomes very low, as the Rician noise distribution is close to 

symmetrical for SNR above around 2 [196], and so is more likely to occur either 

at over-saturation or when using the dual-sequence approach, as in both cases 

baseline signal intensity is reduced. At higher doses precision in model-based 

approaches would be expected to initially improve due to increased SNR but 

then deteriorate due to increased noise sensitivity in the conversion process 

(due to the reduced SI-[CA] gradient at higher concentration) and preliminary 

simulations have demonstrated this behaviour [1]. 

7.4.4 Slice dependence 

One previously unexpected finding of this work was the difference in behaviour 

between slices in the presence of imperfect saturation efficiency, which arises 

due to the pulse sequence design. In general saturation efficiency dependency 

is greater for the first slice acquired as the delay between the saturation pulse 

for that slice and the previous saturation pulse is longer. This allows greater 

recovery of longitudinal magnetisation prior to magnetisation preparation. 

In the simulations only a single heart rate was used (see limitations in section 

7.4.6 below), and so the additional “dead-time” at the end of each cardiac cycle 

was consistent (equal to the simulated cardiac cycle length of one second 

minus the time required to acquire the three slices of image data). In practice 
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this will vary both between and within series due to variation in heart rate. In 

particular at the limiting heart rate at which the acquisition of the three slices 

completely fills the available time, the saturation pulses would be equally 

spaced and no differences between slices would be expected, whereas 

differences would be exacerbated at low heart rates. 

In practice where slice ordering and heart rate dependency is expected due to 

these effects the characteristic behaviour should be considered when 

interpreting results. However this may not be practical and ideally this effect 

would be minimised. This could be achieved in part by improvements in 

saturation pulse efficiency although as discussed in the introduction further 

development in this area may be limited by energy deposition rate and transmit 

RF field homogeneity constraints. 

A proposed modification of the cardiac perfusion sequence is to automatically 

adjust image resolution (and thus acquisition duration) based on the subject’s 

heart rate to use all of the available time [197]. Adoption of this strategy would 

also remove the variations between slices in saturation efficiency dependence 

for quantitative analysis. This adaptation can only be fully be exploited when the 

heart rate is perfectly regular, in practice some remaining dead-time would need 

to be left to allow for potential heart-rate variability throughout the acquisition, 

and so some residual variation between slices in the saturation efficiency 

dependency of quantitative DCE-MRI results would be expected. It would also 

lead to differences in the number of readout pulses per image between DCE-

MRI series (for example the increased heart rate at stress would lead to a 

shorter readout being used). This would affect the image SNR as well as the 

effect of the readout pulses on the magnetisation recovery, and this difference 

would need accounting for in model based non-linearity correction techniques 

An alternative approach may be to add an additional saturation pulse during the 

dead time after acquiring the final slice in order to reduce magnetisation 

recovery prior to magnetisation preparation for the first slice of the subsequent 

cardiac cycle. While this may reduce saturation efficiency dependence the 

effect of this additional pulse would need incorporating into model based 

correction methods and the additional energy deposition would need 

consideration with respect to patient safety. 
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7.4.5 Practical implications 

Non-linearity in the relationship between contrast agent concentration and MRI 

signal intensity can lead to substantial bias in the results of quantitative 

myocardial DCE-MRI analysis. This work has demonstrated that mathematically 

modelling the non-linear relationship between concentration and signal intensity 

may avoid this bias for conventional acquisition protocols. Indeed because of 

the low SNR or high sensitivity to imperfect saturation pulse performance that 

may affect dual bolus or dual sequence techniques respectively model based 

correction may be more robust than the dual sampling techniques that have 

been proposed.  Furthermore this may avoid procedural complexity as well as 

analysis workload as the AIF and myocardial data are obtained from the same 

images. However appropriate choice of model based method must be used to 

avoid high sensitivity to saturation pulse efficiency, in particular use of native T1 

based correction should be avoided whereas bookend T1 or proton density 

weighted image based correction methods are less susceptible to such errors 

and can provide higher precision than the dual sampling techniques. 

Additionally the technique relies on a mathematical model describing the signal 

response to contrast agent concentration. Some simplifying assumptions will be 

required in the definition of this model and, as seen in the results of this work, 

the choice of equation used affects the accuracy, precision and sensitivity to 

saturation imperfection of the deconvolution analysis. Of the signal models used 

in this chapter the full recovery model generally resulted in better precision than 

the steady-state approximation, and so may be preferable in clinical practice 

despite the poorer absolute accuracy. Consequently this model was used in the 

subsequent chapters describing clinical experiments. 

Bookend T1 or proton density weighted image based correction can be 

recommended as preferable to other non-linearity correction methods on the 

basis of these results. However the performance of neither is completely ideal 

and the limitations and details of implementation (such as the signal model 

used) should be considered when defining myocardial DCE-MRI acquisition and 

analysis protocols. In particular these two experimental aspects relevant to non-

linearity correction should be considered together prospectively when designing 

such protocols, and their limitations should be considered during interpretation 

of the study results. The performance of the two recommended methods is 
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broadly similar, with neither consistently out-performing the other in terms of 

accuracy and precision. Consequently the choice of technique to use may 

depend on the specific experimental set-up (including equipment used and 

expected RF system performance), clinical questions and practicability of 

inclusion into the scanning protocol. 

Finally inaccuracy compared to ground truth and systematic differences 

between methods are minimised when saturation performance is ideal. 

Consequently the best preparation pulse available should be used and further 

work to improve saturation pulse efficiency and reliability is warranted. 

7.4.6 Limitations 

Several limitations apply to this study. Only a single set of imaging parameters 

were evaluated whereas sensitivities to various factors will vary between 

differing implementations of the techniques. The analysis was limited to 

assessing variation of errors with SE and T1 measurement accuracy and 

additional sources of error that were not simulated (e.g. ineffective spoiling, 

motion and inflow artefact [37], non-uniform sensitivity, slice profile, B1 

inhomogeneity and variations in bolus shape) could influence results. For 

correction of myocardial data it was assumed that SI differences compared to 

blood arise solely through differences in T1. Variations in factors contributing to 

S0 (including proton density and coil sensitivity) as well as differences in T2
* 

were not included. Similarly the T2
* shortening effects of contrast agent were not 

modelled, although this has been shown to be negligible at the short TE values 

used in DCE sequences [198]. Additionally image data is acquired over a period 

of time which is of the same order of magnitude as the saturation time. 

Consequently the effective TS will differ across the spatial frequencies of the 

image, but for this study the signal intensity was assumed to depend entirely on 

the zero-spatial frequency data. 

Contrast agent relaxivity was assumed to be identical in blood and myocardium 

and protons in both intra- and extracellular spaces were assumed to experience 

the effects of the contrast agent equally (i.e. fast water exchange was assumed 

[41]). While water exchange effects may lead to bias in absolute quantification 

of DCE-MRI data this would be due to distortion of the tissue response curve. 

As all methods investigated in this study use the same tissue data we would 
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thus expect any bias due to water exchange would be expected to be similar 

across the methods unless water exchange effects were present in the AIF 

(which would not be expected due to the rapid exchange of water between the 

plasma and red blood cells [47]). 

Simulations were limited to a single set of AIF shape (for rest and stress), native 

T1 values, SNR and heart rate, and three sets of physiological parameters using 

a basic one-compartment model that is a simplified representation of the 

myocardium (which can be more fully described by two-region models [1, 97]). 

In practice the AIF shape will vary between patients and between studies (e.g. 

between rest and stress) due to differences in cardiovascular physiology (both 

in the peripheral vasculature and in the heart). However in these simulations 

these differences were neglected and a single AIF shape assumed. 

Non-linearity effects may vary with field strength and peak concentrations 

occurring in the LV blood pool and myocardium and noise induced bias may be 

more severe at lower SNR, particularly a lower field strengths.  

In the phantom study the model based non-linearity correction approaches were 

approximated by comparing data from different gels in the same field of view, 

whereas in practice data will be compared from different time points at the same 

spatial location. Consequently spatial variation in saturation or readout pulse 

efficiency could have affected the results. Furthermore a gel with T1 as short as 

expected at the AIF peak was not included and so future validation studies 

would ideally include test objects spanning the full range of expected values. 

Finally the simulation study assumed each DCE sequence was commenced 

with no contrast agent present, whereas in clinical protocols multiple contrast 

agent administrations are common (e.g. when applying the dual-bolus method 

or when performing DCE under different physiological conditions such as at rest 

and under stress) and so residual contrast agent from previous administrations 

will be present for all except the first DCE series.  

In view of these limitations the exact behaviour of each method may exhibit 

substantial dependence on the protocol implemented, equipment used and 

characteristics of the subject. However the results presented demonstrate 
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fundamental patterns of behaviour that should be considered when performing 

quantitative myocardial DCE-MRI. 

7.5 Conclusions 

Performance characteristics of non-linearity correction methods for myocardial 

DCE-MRI, including a novel application of bookend T1 data, have been 

assessed through simulation and phantom studies. Under ideal conditions non-

linear correction techniques have been shown to be effective in reducing or 

eliminating bias due to signal non-linearity. However, at SNR and SE values 

consistent with current technology, including optimised saturation pulses, 

substantial bias or precision degradation may occur. 

Various non-linearity correction techniques have been shown to exhibit different 

performance, including different levels of bias, sensitivity to saturation efficiency 

imperfection or levels of precision. Consequently potential biases should be 

considered when comparing quantitative DCE-MRI results from studies using 

different non-linearity correction methods, protocols or hardware. 

In particular high dependence on saturation efficiency has been shown for 

native T1 and dual-sequence based methods and so these techniques may be 

substantially biased unless acquired under conditions where near-ideal 

saturation pulse performance can be guaranteed 

When saturation is not perfect the deviations between signal models and 

simulations are substantially greater for the interleaved image of the dual-

sequence method than for the conventional sequence. The use of a very short 

saturation time in this manner can thus increase the biases in non-linearity 

correction arising from use of a limited signal model. With this sequence these 

can be large even within the range of performance of optimised saturation 

pulses. 

Notably in these simulations the feasibility of model-based conversion of data 

generated without a dual-acquisition technique (dual-bolus or dual-sequence) 

has been demonstrated for a simulated protocol. While some systematic errors 

and saturation efficiency dependency exist in these methods it has been shown 
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that they can be more accurate and precise than the dual-acquisition 

approaches, despite the fact that the raw data acquired will be non-linear. 

As detailed above the native T1 based approach is highly sensitive to imperfect 

saturation efficiency and so is not recommended. Overall either bookend T1 or 

PDw based correction methods are thus recommended with the latter approach 

(using the steady-state signal model) demonstrating the lowest bias, saturation 

pulse efficiency dependency and slice dependence in these simulations. 

However evaluation in clinical application is required to determine the impact of 

factors excluded from this study as discussed in the limitations. 

These methods are compared further through in vivo study in the following 

chapter. These results of this chapter have been used to inform the protocols 

for the following experimental chapters with the exceptions that due to the 

chronology of the project (section 1.4) the STEMI study did not include PDw or 

dual-sequence acquisitions and the hyperoxaemia study used a sub-optimal flip 

angle for the PDw sequence. As a sub-optimal PDw sequence was used for the 

latter the bookend T1 based correction was used for clinical studies as 

discussed in the respective chapters.
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Appendices to Chapter 7 

7.6 Appendix 1 - Detailed methods for forward signal 

simulation 

This appendix provides a detailed description of the forward simulation process 

referred to in section 7.2.  

7.6.1 Starting condition 

To generate signal intensity curves from a T1-time data set the following 

process was followed. Magnetisation was described as a 3x1 vector. 

Equation 7-14 

𝑀 = [

𝑀𝑥

𝑀𝑦

𝑀𝑧

] 

 This was assumed to start at equilibrium prior to the first pulse of the first 

cardiac cycle. 

Equation 7-15 

𝑀𝑒𝑞 = [
0
0
𝑀0

] 

For the remainder of the sequence the magnetisation was carried forward step-

wise from each event (saturation, readout pulse, spoiling or recovery period), 

including from each cardiac cycle to the next (i.e. the full magnetisation 

evolution was simulated across the entire DCE-MRI series). The T1-time data 

set was discretised into a T1 value for each cardiac cycle, so the T1 value used 

for each event was equal to that at the time of the first saturation pulse. 

7.6.2 Events 

In the notation below M+ and M- refer respectively to the magnetisation vector 

before and after the corresponding event. 
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7.6.2.1 Rotation 

Rotations of magnetisation were all simulated about the y-axis by multiplication 

of Mz before the pulse by a 3x3 array, Ry. For flip angle of φ: 

Equation 7-16 

𝑀+ = 𝑅𝑦𝑀− 

𝑤ℎ𝑒𝑟𝑒 𝑅𝑦 = [
𝑐𝑜𝑠φ 0 𝑠𝑖𝑛φ

0 1 0
−𝑠𝑖𝑛φ 0 𝑐𝑜𝑠φ

] 

7.6.2.2 Free recovery/decay 

Between pulses recovery of longitudinal magnetisation and decay of transverse 

magnetisation were simulated by multiplying the magnetisation at the start of 

the period by the matrix A and adding the vector B. For recovery period of t: 

 Equation 7-17 

𝑀+ = 𝐴𝑀− + 𝐵𝑀0 

𝑤ℎ𝑒𝑟𝑒 𝐴 =  [
𝑒−𝑡 𝑇2⁄ 0 0

0 𝑒−𝑡 𝑇2⁄ 0
0 0 𝑒−𝑡 𝑇1⁄

]  𝑎𝑛𝑑 𝐵 =  [
0
0

1 − 𝑒−𝑡 𝑇1⁄
] 

 

7.6.2.3 Spoiling 

Perfect spoiling was simulated by nulling the two transverse components of the 

magnetisation: 

Equation 7-18 

𝑀+ = 𝑆𝑀− 

𝑤ℎ𝑒𝑟𝑒 𝑆 = [ 
0 0 0
0 0 0
0 0 1

] 
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7.6.3 Scope of events 

The effect of each saturation pulse was modelled as a rotation by the effective 

flip angle of the pulse (φ = θ = acos(1-SE)) followed immediately by perfect 

spoiling. This was applied for each saturation pulse in the sequence (i.e. three 

per cardiac cycle) as non-selective saturation pulses are used. 

The effect of each readout pulse was modelled as a rotation of the 

magnetisation about the y-axis by the flip angle of the pulse (φ). Each readout 

pulse was followed by a recovery period of TR at the end of which perfect 

spoiling was simulated. The effect of these pulses was only simulated for the 

slice being simulated, as slice-selective readout pulses are used. 

For the dual-sequence approach the effects of the other slice acquired in the 

same position (following a later saturation pulse) were included when simulating 

the low-resolution, short TS image, and vice-versa. The AIF scan was 

interleaved between saturation for and acquisition of the first slice, and was 

assumed to be in the same physical position as the third slice. 

7.6.4 Event timing 

7.6.4.1 Standard imaging 

Following each saturation pulse one of two options was simulated. 

1. If the saturation/readout period did not correspond to the slice being 

simulated then free recovery was modelled for a single time period, equal 

in duration to the total duration of the steps below (which equals 

TS+TR(N-nk0)). During this period any RF pulses applied would be slice-

selective and applied to a different physical location. 

2. If the saturation/readout period did correspond to the slice being 

simulated an initial delay period was simulated of duration equal to TS-

(nk0-1)TR. There then followed N repetitions of simulation of a readout 

pulse, recovery for time TR then perfect spoiling. Magnetisation was 

recorded immediately after application of pulse nk0. At the end of the third 

saturation/readout period free recovery was simulated for duration equal 

to the remainder of the cardiac cycle length. The magnetisation at the 

end of this period was used as the starting magnetisation for the next 

cardiac cycle. 
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7.6.4.2 Dual-sequence imaging 

For dual-sequence imaging the simulation of signal was identical for slices 1 

and 2 as the extra readout pulses were selective to the position of slice 3, and 

were interleaved into existing dead-time, so did not affect the timing of the other 

pulses. 

When simulating acquisition of either slice 3 or the additional interleaved AIF 

scan the first saturation/readout period (that used for slice 1 of the high 

resolution images) was modified to include the extra readout pulses. The initial 

delay for the interleaved AIF scan was TSDS-(nk0,DS-1)TRDS, where the DS 

subscript indicates the parameters are those corresponding to the interleaved 

scan. The readout train was then simulated as above for NDS pulses each 

followed by a delay of TRDS and then spoiling. This was followed by a delay 

such that the total time between the first two saturation pulses of each cardiac 

cycle remained as TS+TR(N-nk0). Free recovery was simulated between the 

second and thirst saturation pulses and then after the third saturation pulse a 

delay, readout train and final delay until the end of the cardiac cycle was 

simulated for slice three (in the same way as for the standard sequence). 

The above process was followed whether simulating the interleaved AIF scan 

(in which case magnetisation was recorded immediately after application of 

pulse nk0,DS after the first saturation pulse) or slice three at high resolution (in 

which case magnetisation was recorded immediately after application of pulse 

nk0 after the third saturation pulse). 

7.6.5 Signal simulation 

The above process formed a function in Matlab to simulate the longitudinal 

magnetisation at the time of the application of the readout pulse for the central 

line of k-space for the slice being simulated. To simulate signal intensity without 

noise the magnitude of this result was calculated for each cardiac cycle. 

To simulate noisy data with a Rician distribution the built in ricernd function in 

Matlab was used. This function performs the following calculation: 
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Equation 7-19 

𝑀𝑛𝑜𝑖𝑠𝑦 = √(𝑀𝑛𝑜𝑖𝑠𝑒−𝑓𝑟𝑒𝑒 + 𝑟1𝑆)
2
+ (𝑟2𝑆)2 

In the above r1 and r2 are random numbers drawn from a normal distribution 

with mean zero and standard deviation of one, and S is the standard deviation1 

of the noisy signal, as specified in the methods. 

7.6.6 Repetition 

The above process was repeated separately for each slice (including the 

interleaved AIF image for the dual-sequence method). Signal was simulated 

separately for myocardium (in different physiological states) and blood, each 

with a different T1-time curve, derived from the concentration-time curves 

presented in Figure 7-2. When simulating noisy data the process was repeated 

multiple times (as specified in the methods section of Chapter 7) and each 

resulting dataset was analysed separately. The resulting physiological 

parameters were then summarised statistically. 

  

                                            
1 NB Equation 7-19 reflects magnitude reconstruction of MRI images (the 

positive root is taken), and incorporates the fact that at low SNR the distribution 

of signal intensity values becomes skewed. M and S approximate the mean and 

standard deviation of the longitudinal magnetisation at high SNR, where the 

Rician distribution approximates the Gaussian distribution (and so is 

approximately symmetrical). 
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7.7 Appendix 2 - Examination of behaviour of signal models 

in comparison to forward simulation 

As discussed in section 7.2.1 the two analytical signal models used are 

approximations to the scanning sequences used. The full recovery model was 

derived by Larsson et al [44] for application in myocardial perfusion imaging 

using an IR sequence whereas SR sequences are now more commonly used. 

In that derivation ideal performance of the inversion pulse was assumed, as 

was a starting condition of equilibrium magnetisation prior to each inversion 

pulse. In the implementation in this thesis the former assumption was relaxed to 

allow arbitrary magnetisation preparation including ideal or non-ideal saturation. 

In practice full recovery will not be achieved whenever there is insufficient time 

between image acquisitions for effectively complete magnetisation recovery. 

This would be a concern in the original inversion recovery application. It would 

also be of concern in non-prepared sequences such as the PDw variant used in 

this thesis. However it is not a concern for saturation recovery sequences if the 

preparation is ideal, as the saturation pulse would nulls magnetisation making 

prior evolution irrelevant. As Larsson’s model has been used previously for 

quantitative myocardial perfusion studies it was included to allow assessment of 

its performance in the presence of non-ideal saturation pulse performance. 

With a regular spacing of image acquisitions and a constant T1 an analytical 

model can be derived for the steady-state signal, accounting for incomplete 

recovery of magnetisation. This was done in work by Kershaw [45] for 

application in oncological imaging with non-triggered acquisitions in which the 

effect of each pulse is experienced by all of the spins. In practice this scenario 

differs to that in the work in this thesis as: 

 multi-slice 2D acquisitions are performed with a combination of global 

and slice-selective RF pulses 

 the acquisitions are not spread equally temporally 

 the time between successive acquisitions of the same slice varies with 

natural variation in cardiac cycle length or ECG triggering errors 

 T1 changes due to varying concentrations of contrast agent 
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Additionally processes such as blood flow or other forms of motion are not 

accounted for in either of these models. 

To account for some of these limitations the relationship between signal 

intensity and T1 could be modelled using methods similar to the forward 

simulations.  However this would be computationally demanding as this process 

would need performing iteratively during optimisation processes to account for 

temporally varying T1 in a DCE experiment, and would still neglect additional 

signal influencing factors.  

Given the above considerations it was decided to adopt Kershaw’s steady-state 

model [45] in addition to the full recovery model and to compare their 

performance. While the steady-state model exhibits the limitations described 

above it was included to allow comparison of its performance with that of the 

simpler model, which neglects partial recovery between preparations entirely, 

but has been used in previous myocardial DCE quantification publications. 

In the following sections the characteristics of these two models are examined 

and compared with forward simulations across the range of conditions and 

pulse sequence parameters relevant to this chapter. In these figures the data 

presented is the longitudinal magnetisation relative to the equilibrium value. 

Relative signal intensity would depend on the magnitude of these values as well 

as noise contributions. 

7.7.1 Conventional saturation recovery sequence 

In Figure 7-35 the models are compared to forward simulations for the three 

acquired slices using the conventional sequence. The simulation results are for 

the 100th dynamic phase of a series with constant T1 to approximate the steady-

state. This figure extends in both directions beyond the R1 range encountered in 

the simulations, through which several key observations can be made. 

Models and simulations agree exactly for ideal saturation as prior magnetisation 

evolution becomes irrelevant when magnetisation is completely nulled. For all 

SE values the models and simulations converge at high R1 as longitudinal 

recovery of magnetisation between preparations becomes close to complete.  
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Figure 7-35 – Comparison of analytical models to the approximated 
steady-state in forward simulations of the conventional SR sequence. At 
SE = 0 (centre panel) the models and simulations overlie each as prior 
magnetisation evolution is irrelevant. This is also true for all of the SR 
data presented in the following three figures. 

A key difference between analytical models is that the full recovery version 

exhibits an SE dependent y-axis intercept whereas the steady-state model and 

forward simulations consistently exhibit zero or negligible Mz at R1=0. In the 

latter two cases repeated RF pulse application with no recovery drives the 

longitudinal magnetisation to zero in the steady-state. 
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As the models and simulations converge at high R1 the following figures show 

R1 up to 0.005ms-1, so the divergences can be seen more clearly. Figure 7-36 

shows the same data as the previous figure, but only for this narrower range. 

 
Figure 7-36 – Comparison of analytical models to the approximated 
steady-state in forward simulations of the conventional SR sequence. This 
figure is identical to the previous figure, except the x-axis is limited to a 
narrower range to better show deviations in behaviour. 
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The steady-state model can be seen to be a close descriptor of the latter slices 

whereas the behaviour for slice 1 is intermediate to the two models, tending 

towards the steady-state model at low R1 and the full recovery model at high R1. 

The data presented so far however shows the results from the 100th dynamic 

phase in the forward simulation, to approximate the steady-state. In practice the 

T1 is changing dynamically so the steady-state may not be achieved. In Figure 

7-37 the behaviour for the first dynamic phase is shown, assuming 

magnetisation was at equilibrium prior to the application of the first pulse. In this 

case the assumptions of the full recovery model are valid for slice 1, so the 

results from that slice agree with the full recovery model. For the later slices 

however the steady-state model is a better descriptor of the behaviour in the 

simulations as even with non-ideal saturation performance the large effective 

flip angle of the preparation pulse rapidly drives the system to steady-state. 
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Figure 7-37 – Comparison of analytical models to the first dynamic phase 
from forward simulations for the conventional SR sequence. The results 
for slice 1 overlie those for the full recovery model  exactly, while those 
for the latter slices are close to the steady-state model due to the effect of 
the previous saturation pulse (or pulses). 

In summary, the models and simulations converge at high R1 or with ideal 

saturation but deviate at low R1 and poor saturation pulse performance. The 

steady-state is approached quickly for this sequence, and consequently the 

steady-state model is generally a close approximation of the signal behaviour 

for the latter two slices. For the first slice however, the longer delay prior to 
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preparation leads to divergence from the steady-state model towards the full 

recovery model at intermediate R1 values. 

7.7.2 Interleaved AIF sequence (dual-sequence) 

Figure 7-38 shows behaviour for the interleaved AIF scan. As for the 

conventional variant both models converge with the simulations at high R1. 

Similar to slice 1 in Figure 7-36 the forward simulation matches the steady-state 

model at zero R1, and then diverges towards the full recovery model at 

intermediate R1 values. 

One key difference between this sequence and the conventional sequence is 

that within the simulated SE range Mz is inverted for a range of low R1 values 

(bottom row of Figure 7-38). However this only occurs above the 2-3% 

oversaturation that might be expected with optimised saturation pulses [180-

183].  For high degrees of over-saturation there thus exists a non-monotonic 

relationship between R1 and Mz in the forward simulations and steady-state 

model. Implications of this are discussed in the following appendix (section 

Chapter 7). 
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Figure 7-38 – Comparison of analytical models to approximated steady-
state from forward simulations for the interleaved AIF sequence. Due to 
the short saturation times larger relative deviations exist for this 
sequence than for the conventional sequence. 

7.7.1 PDw sequence 

Figure 7-39 shows behaviour of the PDw sequence (3° flip angle). While the 

behaviour over a wide range of R1 values is shown only pre-contrast behaviour 

(vertical dashed line) is relevant to the non-linearity correction process. 
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Figure 7-39 – Comparison of analytical models to forward simulations for 
the 3° flip angle PDw sequence as implemented for the conventional and 
dual-sequence method. The vertical dashed lines indicate the native R1 of 
blood. The top row shows the first dynamic phase while the bottom row 
shows the 100th, approximating the steady-state. The middle row shows 
the 5th dynamic phase, at which point the steady-state is still being 
approached. The three slices of the conventional sequence exhibit 
identical behaviour to each other and overlie the full-recovery model for 
the first dynamic phase and the steady-state model for the 100th. For the 
AIF interleaved sequence the results of the forward simulation for the first 
dynamic phase overlie the full recovery model. 

The full-recovery model describes the behaviour of the forward simulations well 

for the first dynamic only, but unlike the standard SR sequences this applies for 

all three slices due to the absence of non-selective pulses in the PDw variant. 
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By the 100th dynamic phase the steady-state model is a good descriptor of the 

behaviour for the conventional sequence. However deviations arise for the AIF 

interleaved image as the analytical model does not include the readout pulses 

for the co-located full resolution slice. 

As discussed previously the SR sequences approach steady-state very rapidly 

due to the presence of saturation pulses, even where these are not performing 

ideally. However in the absence of the saturation pulse, and with low readout 

flip angles, the steady-state is approached much more slowly. As shown in the 

middle row of Figure 7-39 at the 5th dynamic phase (halfway through the 

simulated baseline) the steady-state is still being approached for low R1 values. 

This approach to steady-state is plotted simulated for the R1 of native blood and 

both readout flip angles in Figure 7-40. It can be seen that there is greater 

variation initially for the higher flip angle, but the variations between phases 

becomes negligible more quickly (i.e. the steady-state is approached more 

quickly). 

 
Figure 7-40 – Plots showing the approach to the steady-state for the 
longest T1 relevant to the simulation study (that of native blood). Plots are 
shown for both flip angles simulated. 

7.7.2 Justification for signal model choice 

The full recovery model was originally implemented for use with inversion 

recovery sequences. In this scenario large deviations between the model and 

actual behaviour would be expected due to incomplete recovery between 
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inversions. With ideal preparation SR sequences are not dependent on prior 

magnetisation evolution prior, and so the full recovery model would perform 

better than in its original application. However, in the preceding sections this 

model is shown to deviate from forward simulations when saturation 

performance is not ideal, especially at low R1. The model derived by Kershaw 

[45] extended the full recovery model to account for both steady-state non-

equilibrium magnetisation prior to preparation and arbitrary preparation pulse 

performance. While the sequences this was derived for differ from those used in 

myocardial DCE, thus limiting the applicability of the derived model to work in 

this thesis, it was considered that including reduced longitudinal magnetisation 

prior to saturation in the model may reduce errors in non-linearity correction. 

In the data presented it can be seen that the models and simulations converge 

for fast longitudinal recovery (high R1) or ideal saturation (SE = 1) and deviate 

most substantially for non-ideal saturation at low R1. In particular larger errors 

occur for the interleaved AIF scan of the dual-sequence variant, which has a 

shorter saturation time. At intermediate R1 values there is inconsistency in 

which model is a better descriptor of the simulations dependent on the R1, slice 

number and progress on the approach to steady state. Similarly deviations exist 

for the PDw sequence at low R1. However, in contrast to the SR sequences the 

steady-state takes several cardiac cycles to approach for this sequence. 

In the above sections it can thus be seen that the steady-state model can offer 

a better descriptor of the signal behaviour compared to the full recovery model 

in many, but not all, of the scenarios included in the simulation study. 

Furthermore, it introduces minimal extra complexity and so is readily applicable 

in practice. Both models were adopted and compared in the assessment of non-

linearity correction methods in this chapter. In both cases however further 

factors (such as motion and heat rate variability) will affect the true behaviour in 

clinical studies. Consequently it may be possible in future work to derive more 

detailed models, which may improve accuracy further.
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7.8 Appendix 3 - Optimisations with non-monotonic 

functions 

In this appendix issues relating to performing optimisations using a non-

monotonic function are discussed, as these are required for the bookend T1 

based non-linearity correction method (see section 7.2.1.3). Two procedures 

are relevant to this discussion, estimation of SE from baseline and post-contrast 

data and determination of T1 throughout the dynamic dataset. These are set out 

in Equation 7-10 and Equation 7-12, repeated for reference below: 

Equation 7-20 
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Note that while f(T1,SE) is shown here the same applies when the steady-state 

model, g(T1,SE) is used. The issues relate only to the bookend T1 based 

method as the models are monotonic for SE = 1 or SE = 0, which are assumed 

throughout application of the other methods (the latter for PDw sequences).  

7.8.1 Determination of saturation efficiency 

For determination of SE there is an expectation that in practice the value would 

be close to ideal (near 1). Consequently this optimisation was initialised with a 

value of 1, from where the algorithm searched outwards. The model term used 

in Equation 7-20 (the ratio of results of the signal model with baseline to post-

contrast T1) decreases with increasing SE (and vice versa) in the vicinity of SE 

= 1 (Figure 7-41). This continues throughout the full range of under-saturation 

but for over-saturation a null point is reached at the value for which the signal 

model at baseline (the numerator) would be zero. For the full recovery model 

this occurs around SE=1.06 for blood. At a higher SE value a singularity is 

encountered where the post-contrast result (denominator) is zero. The latter 

however occurs only for SE values substantially outside the simulated range. 
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Figure 7-41 – ratio of baseline to post-contrast SI of blood modelled using 
the full-recovery model and parameters as in Table 7-1. Top: SE=0 to 
SE=2. Bottom: limited to SE range included in simulations. For the steady-
state model the null point and singularity occur at higher SE values. 

Given the implementation adopted the algorithm may incorrectly identify a 

solution from the wrong (low SE) side of the null point in the presence of high 

levels of over-saturation. The bookend approach should therefore be 

considered to carry risk of errors if used when over-saturation is potentially high 

enough that baseline signal is acquired from partially inverted magnetisation. 

Such cases are unlikely for the SE range expected in practice, although the 

potential for such errors exists at the upper end of range simulated. It should be 

noted that the example above is the worst case scenario, the full recovery 

model. For the steady-state model considerably higher levels of over-saturation 

are required to yield nulled signal. The smooth variation in bias in estimated SE 

in the results (Figure 7-17 and Figure 7-18) suggests, however, that such errors 

did not occur in the simulations. This can be explained by the observation from 

the results that saturation imperfection is underestimated, and also that even for 

SE = 1.1 signals generated in forward simulations arise from magnetisation that 

has recovered past the null point (except slice 1 of the first dynamic phase). 

7.8.2 Determination of T1 from DCE signal intensity 

The second occasion where a potentially non-monotonic model is used in an 

optimisation is in the estimation of T1 for each time point of the dynamic data, 

based on the derived signal model from the prior step (Equation 7-21). For the 

full recovery model the behaviour is non-monotonic for any SE value greater 
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than 1 (Figure 7-42 - left). The steady-state model differs in that a degree of 

over-saturation substantially outside the simulated or practically expected range 

(SE>1.5) is required for non-monotonic behaviour (Figure 7-42 - right). However 

once this level is reached there are up to three (compared to two for the full-

recovery model) R1 values corresponding to low signal intensities. 

 

 
Figure 7-42 – Relative signal intensity variation with R1 for ideal saturation 
and various over-saturation values for the full recovery (top) and steady-
state (bottom) model. As larger degrees of over-saturation are required for 
signal nulling in the latter a broader range of SE values is plotted. 

In this optimisation there is no clear choice of initialisation value as a wide range 

of R1 values are expected throughout the dynamic experiment. Consequently 

an algorithm implementation which searches over a specified range was chosen 

rather than one seeded with a starting value. 

There is scope for the algorithm to return the wrong R1 solution if the input 

signal intensity is within the range exhibiting non-monotonic behaviour, for the 
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SE value determined in the previous step. Consequently such errors would not 

be expected with the steady-state model as SE in excess of 1.5 would not be 

expected. In the worst-case shown above (full recovery model, SE = 1.1) the 

ambiguous range is R1≤0.002 ms-1 (i.e. T1≥500ms). However, as shown in the 

results the degree of saturation imperfection is underestimated when the 

bookend T1 approach is applied with the full recovery model, i.e. the SE value 

used in the signal model will be closer to 1 than the ground truth input value. 

The worst-case described above would thus not be encountered and the R1 

range of non-monotonic behaviour will be lower. Indeed for this signal model the 

highest estimated SE (without noise) for any slice was 1.0221. For this SE value 

the ambiguous R1 range is lower than the baseline blood R1. The corresponding 

highest signal intensity in the non-monotonic section of the full recovery model 

is around 25% lower than that of native blood. Consequently even with the 

addition of realistic noise levels simulated errors arising from the algorithm 

returning a result from the wrong p of the signal model curve would be unlikely. 

7.8.3 Implications for results in this thesis and future work 

The bookend T1 method introduces a requirement to perform optimisations 

using functions that exhibit non-monotonic behaviour above a threshold SE 

value. This introduces the potential for errors arising from the optimisation 

algorithm identifying the incorrect region of the objective function. As described 

above however such errors are unlikely for the SE range expected in practice.

As a result of the above arguments it is not expected that errors arising from 

misclassification during optimisation will have affected the validity of findings in 

this thesis for simulation or practical experiments. However the above 

discussion does highlight the need to consider the potential impact of the use of 

non-monotonic models in optimisation steps. Such considerations may be more 

relevant in different scenarios. For example if the bookend T1 based method 

were used with the dual-sequence approach then the potential for such errors 

would arise at SE values closer to ideal (for the AIF data which, with a shorter 

TS, requires a lesser degree of over-saturation to lead to signal nulling). 
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 Chapter 8

Volunteer Study - Comparison of Non-Linearity 

Correction Methods and Contrast Equilibrium 

MRI  

In this chapter a study is described in which DCE-MRI and T1 data from a 

cohort of healthy volunteers were acquired and analysed to allow an in vivo 

comparison of the non-linearity corrections methods discussed in the previous 

chapter. 

A subset of data from this study was included in a paper [177] and conference 

abstract [178] alongside the simulation study described in the previous chapter. 

Contributions of the individual authors are described at the start of this thesis. 

8.1 Introduction 

As discussed in Chapter 7 several potential methods exist to account for signal 

non-linearity in myocardial DCE-MRI. In that chapter these methods were 

compared through simulation and phantom studies. However such studies are a 

limited approximation to the full complexity of clinical scanning. 

8.1.1 Aims 

In this chapter the performance of these signal non-linearity correction methods 

are assessed in vivo by comparing results from model-based deconvolution 

using a one-compartment model with non-linearity correction methods from the 

previous chapter applied.  

Additionally the T1 and haematocrit data acquired for this study allows 

measurement of vd by contrast-equilibrium MRI, and the results of that analysis 

are presented in this chapter. 

The volunteers were recruited as a healthy comparison group for the 

hyperoxaemia study discussed in the following chapters. As the primary aim of 

the work carried out in this chapter was to compare non-linearity correction 

methods in vivo the analysis was limited to the data acquired under conditions 
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of normoxaemia and analysed using a one-compartment tracer kinetic model to 

estimate MBF and vd. 

8.2 Methods 

8.2.1 Acquisition 

30 healthy volunteers were recruited (exclusion criteria were as described in the 

later clinical study chapters, see section 9.2.1. T1 and DCE-MRI data were 

acquired using a clinical 3.0T whole-body scanner (Philips Achieva TX, Philips 

Healthcare, Best, Netherlands) with a dedicated 32-channel cardiac phased 

array receiver coil with dual-source radiofrequency-field shimming. All 

volunteers gave written informed consent and the study was approved by the 

local research ethics committee. Stress DCE imaging was undertaken during 

maximal hyperaemia (achieved by 140-210 µg/kg/min adenosine infusion [199]) 

with an intravenous dual-bolus (0.005/0.05 mmol/kg with the main bolus 

administered approximately 30 seconds after the pre-bolus) of gadobutrol 

(Gadovist, Bayer Schering Pharma, Berlin, Germany) administered at 4 ml/s 

followed by a 20ml saline flush at equal injection rate. Rest DCE-MRI imaging 

was undertaken at least 15 minutes after stress imaging with the same contrast 

agent administration protocol. Imaging was performed under normoxaemia and 

hyperoxaemia (achieved by breathing oxygen through a nasal cannula) in a 

random order as these volunteers were recruited for the CAD study described in 

the following chapter. For this chapter analysis is limited to data acquired at 

normoxaemia. 

A dual-sequence series with parameters as in the simulation study (and TE of 

1.14 ms, full details in Table 8-1) was acquired over 210 cardiac cycles; 

implemented using the Philips interleaved scanning capability which allows 

instantaneous switching between multiple scans. A composite water 

suppression enhanced through T1 effects (WET) saturation pulse was used 

[200]. Prior to the first DCE series a native T1 map (5s(3s)3s scheme MOLLI) 

and proton density weighted series (10 cardiac cycles, identical sequence to the 
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DCE series except without saturation preparation1) was acquired. A further 

saturation prepared DCE series was acquired (10 cardiac cycles) 15 minutes 

after the final contrast agent administration followed by a contrast enhanced T1 

map (4s(1s)3s(1s)2(s) MOLLI2).  

Main sequence parameters   

TS 95.94 ms 

nk0 (steps to central line of k-space) 11 

FA 15° 

TR 2.68 ms 

TE 1.14 ms 

FOV 360x360 mm 

Slice Thickness 10mm 

Resolution 2.43x2.43 mm 

Low T1 sensitivity sequence parameters   

TS 24.3 ms 

nk0 (steps to central line of k-space) 8 

FA 15° 

TR 2.52 ms 

TE 1.14 ms 

FOV 360x360 mm 

Slice Thickness 10mm 

Resolution 5.63x6.27 mm 

PDw sequence parameters   

nk0 (steps to central line of k-space) 11 

FA 15° 

TR 2.68 ms 

TE 1.14 ms 

FOV 360x360 mm 

Slice Thickness 10mm 

Resolution 2.43x2.43 mm 

Table 8-1 - Imaging parameters for the volunteer study. 

                                            
1 N.B. The PDw sequence was performed with the same readout flip angle as the saturation 

recovery sequence. This is suboptimal and a low flip angle readout would have been 

preferable but the clinical protocol was finalised prior to the results of Chapter 7 being 

known (see section 1.4). 

2 N.B. A ShMOLLI scheme may have reduced inaccuracy and heart rate variability in T1 

mapping. However the fitting algorithm for this scheme was not available on the scanner 

used and so these native and post-contrast enhanced specific schemes were used, as 

recommended by the scanner manufacturer and in keeping with the results of Chapter 6. 
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8.2.2 Analysis 

Myocardial and LV blood-pool contours were drawn (QMass, Medis, 

Netherlands), the former covering the full circumferential extent (excluding 

papillary muscles), on a mid-ventricular slice to extract signal-time data (Figure 

8-1). 

 

Figure 8-1 – Example contours from the hyperoxaemia volunteer study. 
Red and green contours show endocardial and epicardial layer contours 
respectively. The anterior right ventricular insertion point is marked (blue 
cross) and the myocardium segmented into 6 with equally spaced radial 
divisions although the full circumferential extent was averaged over these 
segments for this volunteer study as no focal disease was present. The 
yellow contour marks the region used for the AIF. Left – full field of view. 
Right – zoomed section showing left and right ventricles and contours. 

8.2.2.1 Non-linearity correction comparison 

For comparison of non-linearity correction methods data were analysed using 

the methods described in the simulation study in the previous chapter (using the 

full recovery model as this generally yielded higher precision, see section 7.4.5), 

with physiological parameters estimated using deconvolution constrained by a 

one-compartment model. Further details of the deconvolution process are 

described for the clinical studies in the following chapter. Optimisation algorithm 

parameters were as in section 7.2. A one-compartment model was chosen for 

this study to allow stable fitting (with few free parameters) and assessment of 

the impact of the choice of method on estimates of both myocardial blood flow 

and distribution volume. Deconvolution was performed in the temporal domain 

using a mono-exponential residue function (Equation 8-1, see section 2.4.1.3). 

Equation 8-1 

𝑅(𝑡) = 𝑒−
𝐹𝑝𝑡

𝑣𝑑
⁄
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8.2.2.2 Contrast equilibrium vd estimation 

In addition to estimation by DCE-MRI, vd was estimated using contrast 

equilibrium methods and the native and post-contrast T1 maps. T1 and 

haematocrit values were used to calculate this value using Equation 2-51.

8.3 Results 

Of the 30 volunteers recruited 4 withdrew prior to or during scanning. In a 

further 8 studies an incomplete set of analysable data was acquired due to a 

combination of factors including injection problems, errors in acquisition, ECG 

triggering problems or artefacts in T1 maps. Example data with severe signal 

variation due to respiratory motion, which can be analysed but will likely have 

compromised precision, has been presented in Figure 3-4. An example post-

contrast T1 map with fitting errors (apparent in the bimodal distribution of pixel 

values in the fitted T1 map) is shown in Figure 8-2. All of the non-linearity 

methods can thus be compared in 18 studies (9 male (50%), 54±13 years old). 

No gold standard data were acquired so only relative results can be compared 

to each other. T1 values are presented in Table 8-2 along with haematocrit and 

myocardial vd calculated using Equation 2-51. Example signal data are 

presented in Figure 8-3 and example images from selected phases of 

enhancement in Figure 8-4 (stress) and Figure 8-5 (rest). 

 

Figure 8-2 – Example post-contrast T1 map (left: individual images, right: 
T1 map) with artefact in the LV and RV blood pool. Images are cropped to 
the heart. 
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Blood T1 (ms) Myocardial T1 (ms) 

 

 
Hct Native Enhanced Native Enhanced ECV (%) 

Mean 0.43 1723 280 1179 436 27.7 

Std Dev 0.02 138 50 80 55 4.9 

Table 8-2 – Haematocrit, T1 values and ECV from the 18 volunteers. 

 

Figure 8-3 – Example signal-time data from one volunteer including one 
compartment model fits to signal enhancement data. 
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Figure 8-4 – Example stress DCE-MRI images. Top to bottom: interleaved 
AIF scan (dual-sequence) followed by slices 1-3. Left to right: pre-
contrast, peak AIF contrast and approximately 2 minutes post-contrast. 
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Figure 8-5 – Example rest DCE-MRI images. Top to bottom: interleaved 
AIF scan (dual-sequence) followed by slices 1-3. Left to right: pre-
contrast, peak AIF contrast and approximately 2 minutes post-contrast. 

8.3.1 Non-linearity correction comparison 

Over-saturation was typically measured using the bookend T1 based method 

(SE=1.014±0.014). Non-linearity correction was successful except for native T1 

based correction for which peak signal exceeded estimated S0 values for two 

cases in which the bookend T1 method returned estimates of SE>1.03. Tracer 
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kinetic model fitting was successful in all but 5 dual-bolus data sets (all rest) in 

which MBF estimates were stable but estimates of vd were unstable due to low 

SNR in the pre-bolus AIF. 

Contrary to the simulation results the PDw based conversion was successful 

with a 15° readout pulse flip angle in these volunteer data. This may be due to 

differences in signal behaviour in vivo compared to the simulation study due to 

in-flow effects in blood, or other effects not included in the signal simulation. 

Systematic differences in mean MBF and vd were observed between methods 

(Figure 8-6 and Table 8-3 (MBF) and Table 8-4 (vd)) with all non-linearity 

correction methods yielding lower estimates of both parameters than 

deconvolution of signal enhancement data. Dual-bolus and dual-sequence 

methods yielded lower MBF estimates than the bookend T1 and native PDw 

based methods, while estimates of vd were lower for the dual-bolus approach 

compared to the other three methods. Differences in myocardial perfusion 

reserve were also observed between methods (Table 8-5). 

 Stress MBF (ml/min/100 ml) Rest MBF (ml/min/100 ml) 

Method Mean Std Dev CoV Mean Std Dev CoV 

Signal Enhancement 356 96 27% 157 56 36% 

Dual Bolus 110 27 25% 43 24 56% 

Proton Density Weighted 210 68 32% 86 31 36% 

Dual Sequence 124 43 35% 61 16 26% 

Native T1 125 120 96% 62 53 85% 

Bookend T1 210 85 40% 88 37 42% 

Table 8-3 – Mean, standard deviation and coefficient of variation for MBF 
estimates from the different methods. 

 Stress vd (%) Rest vd (%) 

Method Mean Std Dev CoV Mean Std Dev CoV 

Signal Enhancement 23.4 3.9 17% 23.3 5.2 22% 

Dual Bolus 10.2 3.4 33% 12.2 7.5 61% 

Proton Density Weighted 20.2 3.7 18% 20.7 7.4 36% 

Dual Sequence 14.8 5.5 37% 20.0 8.5 43% 

Native T1 17.6 4.6 26% 17.7 8.4 47% 

Bookend T1 20.1 3.5 17% 20.6 7.1 34% 

Table 8-4 – Mean, standard deviation and coefficient of variation for vd 
estimates from the different methods. 
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Method Mean MPR Std Dev MPR CoV MPR 

Signal Enhancement 2.51 0.94 37% 

Dual Bolus 3.20 1.72 54% 

Proton Density Weighted 2.56 0.70 27% 

Dual Sequence 2.06 0.50 24% 

Native T1 2.43 1.30 53% 

Bookend T1 2.52 0.69 27% 

Table 8-5 – Mean, standard deviation and coefficient of variation for MPR 
estimates from the different methods. 

 

Figure 8-6 - Mean parameter estimates for 18 volunteers (error bars show 
one standard deviation) showing systematic differences in results 
dependent on analysis method used. In 2 cases data from the native T1 
based method is excluded as this conversion failed due to peak AIF signal 
exceeding estimated S0. These cases had the highest estimated over-
saturation (saturation efficiencies of 1.037 and 1.045) by the bookend T1 
based method. Dual-bolus data for resting vd is based on 13 of the 
volunteers as in the other 5 the parameter estimate was unstable due to 
low SNR in the AIF. 

As expected adenosine stress leads to a significant increase in MBF, with a 

myocardial perfusion reserve (MPR = stress MBF/rest MBF) of 2.55 ± 1.08 



Chapter 8 - Volunteer Study - Comparison of Non-Linearity Correction Methods and Contrast 

Equilibrium MRI  

225 

across all methods. The increased MBF at stress compared to rest was 

significant (P<0.005, paired t-test) for each non-linearity correction method 

while there was no significant increase in vd under adenosine stress (P>0.18 for 

each method). Estimates of vd by deconvolution (18.2±5.8% at rest across all 

methods, 19.9±4.7 excluding dual-bolus) were lower than by contrast 

equilibrium (27.7±4.9%). For each method this difference was significant 

(P<0.001). 

8.4 Discussion 

In the analysis of DCE-MRI data systematic differences in estimates of MBF, 

MPR and vd were observed between non-linearity correction methods with 

closest agreement between model based conversion using proton density 

weighted image data and bookend T1 data. The results of the latter were 

indicative of consistent slight over-saturation, which is in agreement with the 

phantom study in the previous chapter. The mean result is further from ideal in 

the volunteers than in the phantom, a result which may in part be due to 

differences in RF pulse performance between phantom and human scanning. 

However these SE estimates are also susceptible to error due to potential 

errors in T1 measurement and the limitations of the signal model used to 

estimate SE (which does not fully describe either the pulse sequence used or 

the effects of motion, which will influence magnetisation evolution) as discussed 

in the previous chapter. 

In estimates of MBF substantial variability between methods was observed in 

the volunteers, with lowest estimates from the dual-bolus technique and highest 

when no non-linearity correction was applied (as would be expected due to the 

expected effect of non-linearity for both techniques). The variability of MBF 

estimates was greater for native T1 based conversion (for which 2 cases failed 

conversion) than other model-based methods, and the results were lower than 

for bookend T1 or PDw based conversion, observations which may be expected 

due to the sensitivity of this method to variations in saturation efficiency and the 

underestimation of MBF that the simulations predict for this method in the 

presence of over-saturation. 
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While the dual-sequence method yielded systematically different results to 

proton density weighted image and bookend T1 based correction the precision 

(coefficient of variation) in MBF and MPR estimates between these methods 

was comparable. This is not in agreement with the results of the simulation 

study in Chapter 7 and the reason for this unexpected result is not clear and 

further investigation is warranted. 

Differences between methods persisted when relative blood flow (MPR) was 

calculated. In particular high estimates of MPR were observed for dual bolus, 

low estimates for dual sequence and high variability for both dual bolus and 

native T1 based correction in comparison to the other methods. For the other 

methods MPR averaged 2.5, which is slightly lower than reported previously 

(2.7) for healthy volunteers in pilot work for this PhD [1], although the results in 

that work were estimated using a shorter DCE-MRI acquisition, native T1 based 

non-linearity correction and the distributed parameter model to constrain 

deconvolution (except for a small number of cases in which that model gave 

unstable fit results, for which a one-compartment model was used) which tends 

to give systematically higher stress MBF results (see section 10.3.1.1). Similarly 

the distributed parameter model yielded unstable results in some cases when 

applied to this data (as also described in section 10.3.1.1) and so use of this 

model for this comparison of non-linearity correction methods would have 

further reduced the numbers available for final analysis. Consequently analysis 

for this chapter was limited to the simpler one-compartment model. 

Variability in these results reflects a combination of genuine variability between 

subjects and imprecision in the acquisition and analysis methods. Variability in 

this study was higher than comparable literature, for example coefficient of 

variation for model-based correction methods (excluding native T1 as this is 

known to be very sensitive to saturation efficiency) in this study ranged from 26-

42% for MBF and 24-27% for MPR in comparison to 17-22% and 21% 

respectively in the study reporting quantitative myocardial DCE-MRI results in 

humans using a dual-bolus approach by Hsu et al [104]. This may reflect 

differences in methods (for example use of a different model, the Fermi 

function, to constrain deconvolution) as well as genuine differences in perfusion 

variability in the two studies as the volunteers in the study by Hsu were of a 



Chapter 8 - Volunteer Study - Comparison of Non-Linearity Correction Methods and Contrast 

Equilibrium MRI  

227 

younger and narrower age range (33±4 compared to 54±13 years) and a 

different stress agent was used (dipyramidole compared to adenosine).  

In practice it may be considered that non-linearity correction is less important 

when estimating MPR than absolute MBF, as systematic errors which are 

consistent between stress and rest will cancel out during the calculation of 

MPR. As discussed in the previous chapter this is partially true, although non-

linearity effects in the myocardial data also affect results and so errors will not 

necessarily completely cancel out. In these results the mean MPR estimated 

without non-linearity correction is very close to that estimated from the bookend 

T1 and PDw based methods, although the variability is slightly higher suggesting 

that application of an appropriate method of non-linearity correction may 

improve precision even when only estimating relative values. This could arise 

due to a combination of the effect of differences between the AIF shape at 

stress and rest as well as signal non-linearity in the myocardial data. In general 

while proton density weighted image based correction yielded slightly higher 

precision in MBF in comparison to bookend T1 similar precision was found in 

MPR and vd between the two methods. 

Estimates of vd were also largest when no non-linearity correction was applied, 

and in close agreement for PDw and bookend T1 based conversion. However 

the differences were lower than for MBF, a result which is consistent with the 

findings of the simulation study. The dual sequence technique led to largest 

variability in vd estimates both between volunteers and between stress and rest, 

a finding which may reflect the reduced precision of this technique in 

comparison to the other model-based methods identified in the simulation study. 

For the dual bolus technique individual fits were often unstable and mean 

estimates of vd were lower than for the other methods. This is likely due to the 

low SNR of the low dose AIF, as well as the fact that in practice a shorter pre-

bolus acquisition is performed than for the main bolus (a difference which was 

not incorporated into the simulations) so there is less data available beyond the 

first pass than is present for single bolus methods. Additionally differences in 

bolus shape were observed between the pre-bolus and main bolus which may 

also lead to inaccurate parameter estimates. Second pass recirculation peaks 

were rarely visible and the tail of the AIF often appeared suppressed 
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(sometimes showing signal lower than baseline) which would not be expected 

based on the administration of the contrast agent alone. One potential cause of 

this is the use of the saline flush, which may dilute the blood after the passage 

of the main bolus. This may lead to the blood T1 lengthening to values higher 

than baseline at some time points after the first pass of the contrast agent, 

particularly for DCE-MRI series completed after a prior contrast agent 

administration. 

In the contrast equilibrium MRI results the mean measured value of 27.7% is 

comparable to the literature value of 25.4% used for healthy myocardium in the 

simulation study in the previous chapter [189], although mean vd and variability 

was higher (standard deviation of 4.9% in this study compared to 2.5% for the 

literature value). These differences may reflect age-related increases in vd 

which have previously been reported [172] as the mean age in these volunteers 

was 10 years older than in the reference paper. 

The contrast equilibrium estimates were higher than those for all methods (or in 

the absence) of non-linearity correction for DCE-MRI, particularly for the dual-

bolus technique. This overall difference between techniques is not explained by 

the simulation study and was not observed in previous work [96]. The bias could 

potentially be due to inaccuracies in the estimates by DCE-MRI due to factors 

not incorporated into the simulation study, by inaccuracies in the contrast 

equilibrium MRI results, or a combination of both. One potential source of this 

discrepancy could be differential impact of water exchange effects (which are 

described in section 4.3.3.3) which may affect contrast enhanced MRI derived 

vd estimates [43]. As DCE-MRI analysis includes data from time periods with 

higher contrast agent concentrations (at peak enhancement), and thus shorter 

T1 values, than for contrast equilibrium MRI such effects may be more 

substantial for the former. As validation studies have only demonstrated 

correlation with collagen volume fraction, which is not directly equivalent to vd, 

the absolute accuracy, and thus the most accurate technique, cannot be directly 

determined from such studies. 



Chapter 8 - Volunteer Study - Comparison of Non-Linearity Correction Methods and Contrast 

Equilibrium MRI  

229 

8.4.1 Limitations 

In this study of the 26 volunteers who did not withdraw 8 datasets were 

excluded from analysis in this chapter. This high exclusion rate arises in part 

from the fact that only those with a full set of analysable data were included. As 

each study included two DCE-MRI acquisitions with both dual-bolus 

administration and dual-sequence acquisition, a late DCE-MRI sequence, two 

T1 maps and a pre-contrast proton density weighted sequence this introduced 

significant scope for acquisition errors to arise. In practice the acquisition 

problems encountered in each of those 8 volunteers did not necessarily 

preclude analysis using all of the methods (for example artefact in post-contrast 

T1 map only precludes bookend T1 based correction). However, to allow 

comparison between methods only results from volunteers for whom a fully 

analysable data set was acquired were included in this analysis. As described in 

section 10.3 fewer subjects were thus excluded from the clinical study 

comparing these volunteers to patients with coronary artery disease. 

Additionally the sequence protocol for this study was finalised prior to the 

results of Chapter 7 being known (see section 1.4). Consequently a sub-optimal 

sequence with a 15° readout flip angle was used for the proton density weighted 

sequence. Ideally a lower readout flip angle should be used and clinical data 

with such a protocol should be acquired and compared to other techniques in 

future work. 

8.5 Conclusions 

In this chapter results from contrast equilibrium MRI based vd estimation and 

deconvolution of DCE-MRI data with a simple one-compartment tracer-kinetic 

model have been discussed. The latter has allowed an in vivo comparison of 

the non-linearity correction methods discussed in the previous chapter, in which 

differences between methods have been observed. These have generally 

agreed broadly with simulation studies although with some unexplained 

differences. Practical limitations of the native T1 model-based or dual bolus 

techniques which could prevent analysis in some cases (rather than solely 

leading to bias or precision loss) were identified, with either conversion failures 

or unstable fits occurring with these techniques. 
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In addition to the differences between methods of non-linearity correction for 

DCE-MRI an overall bias in distribution volume estimates between those results 

and estimates by contrast equilibrium MRI has been identified and potential 

sources of this bias proposed. 

On the basis of these results the conclusions drawn in Chapter 7 have been 

generally supported with experimental data and model based non-linearity 

correction using either bookend T1 or proton density weighted image data can 

be recommended for clinical studies in place of dual-sampling strategies. 

However further investigation into the unexpected high precision of MBF by the 

dual-sequence method is warranted, as is assessment of the proton density 

weighted image based correction with reduced flip angles to reduce residual T1 

weighting and signal variation. The clinical protocols in the following two 

chapters were completed prior to and concurrently with the work performed in 

this and the prior chapter. Consequently a prospective comparison of protocols 

designed with the findings of  this and the preceding chapter would also be 

beneficial to further support these findings. 
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 Chapter 9

Clinical Study – ST-segment Elevation 

Myocardial Infarction 

In this chapter a clinical study in which analysis of DCE-MRI data from a cohort 

of patients with ST-segment elevation myocardial infarction (STEMI) is 

described. Results from the acute visit of the study were presented in a 

conference abstract [201]. Additionally data on the prognostic value of ECV 

estimated by contrast equilibrium MRI from this study were presented in 

conference abstracts [17, 18]. This study was conceived and the protocol 

finalised prior to the research questions regarding non-linearity correction for 

this thesis had been developed, and prior to completion of the comparison of T1 

mapping techniques (see section 1.4). Consequently findings from earlier 

chapters were not available to inform the protocol design and the protocol was 

not designed to allow comparison of non-linearity correction techniques. 

9.1 Clinical background 

This chapter discusses a study in which patients were imaged at different 

stages following STEMI. As discussed in Chapter 2 myocardial infarction occurs 

when a coronary artery is occluded, restricting perfusion to a region of 

myocardium and leading to cardiomyocyte necrosis. STEMI is a severe form of 

myocardial infarction in which one of the major coronary arteries is occluded. 

Consequently a substantial region of tissue is affected across the full transmural 

extent of the myocardium. STEMI is typically treated urgently by 

revascularisation to restore blood flow to the affected myocardial territory. 

Following infarction and reperfusion there may be oedematous myocardium as 

well as potentially regions of non-viable infarcted myocardium and 

microvascular obstruction (MVO) as described in section 2.1.2. Over time 

regions of oedema and MVO resolve and acutely infarcted myocardium is 

replaced by non-contractile chronic scar through a process of replacement 

fibrosis. This pathological process is described in more detail in section 2.1.2. 
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9.1.1 Distributed parameter model constrained analysis of 

myocardial DCE-MRI data 

In pilot work completed prior to this PhD it was demonstrated that 

characteristics of healthy myocardium can be measured at rest and adenosine 

induced stress through analysis of myocardial DCE-MRI data by distributed 

parameter (DP) model constrained deconvolution [1]. 

Subsequent studies have focussed on comparing MBF estimates from the DP 

model to those estimated using other tracer kinetic models [202, 203] in healthy 

volunteers and patients with CAD. For both studies native T1 based non-

linearity correction was used and reporting of results focussed on MBF and 

MPR estimates without discussion of the additional parameters derived from the 

process of deconvolution constrained by this model. 

Papanastasiou et al [203] compared Fermi and DP estimates at both stress and 

rest in 8 volunteers and 5 patients. They reported similar MBF results between 

models at rest, but lower estimates when using the DP model at stress. 

Similarly Handayani et al [202] reported differences between four models (DP, 

Fermi, extended Tofts and Patlak) at stress only, with highest MBF values from 

Fermi constrained deconvolution while extended Tofts and Patlak models 

yielded lower estimates than the DP model.  

9.1.2 Aims 

The aim of the work described in this chapter was to test the feasibility of 

bookend T1 based correction of DCE data to the in vivo assessment of human 

myocardium in a range of healthy and pathological conditions and to investigate 

differences in tissue physiology in post-infarction myocardium. In particular the 

study aimed to assess whether perfusion is measurable in regions exhibiting 

MVO (commonly referred to as “no-reflow”) in qualitative image analysis. These 

methods were used to assess perfusion and additional physiological parameter 

differences (including intra- and extra-vascular distribution volumes and the first 

pass extraction fraction of the contrast agent) in myocardium in a diverse range 

of pathological states associated with severe myocardial infarction. Importantly 

these aims were addressed using data acquisition incorporated into a clinically 

feasible comprehensive CMR protocols. 
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9.2 Methods 

9.2.1 Subjects 

Exclusion criteria included contraindications to MRI or administration of 

gadolinium based contrast agents. Subjects were only recruited if they had 

none of the following: body-surface area normalised estimated glomerular 

filtration rate < 30 ml/min/1.73m2, were pregnant, had any implants or foreign 

bodies that are contraindicated for MRI at the field strength and conditions used 

or were too large or heavy for the scanner. All patients gave written informed 

consent and the study was approved by the local research ethics committee 

40 patients who presented with chest pain and were diagnosed with acute 

STEMI were recruited for this study. All patients were treated by percutaneous 

coronary intervention within 12 hours of the onset of symptoms and were 

subsequently recruited to the study. They underwent comprehensive cardiac 

MRI studies within 3 days of onset of symptoms (acute phase) and at 3-month 

follow up (chronic phase).  

9.2.2 Acquisition protocol 

Scan protocols included myocardial DCE-MRI acquired in 3 short-axis slices as 

well as native and post-contrast MOLLI T1 maps. Venous blood samples were 

taken from all patients in order to obtain haematocrit measurements. A 

conventional DCE-MRI sequence was used, as described in section 3.2.1. 

Patients underwent a comprehensive cardiac MRI study including cine MRI, T2 

weighted imaging (T2w), myocardial tagging, DCE-MRI, early and late 

gadolinium enhanced imaging (EGE & LGE) and MOLLI T1 mapping. The DCE-

MRI study comprised a dual-bolus administration of contrast agent (0.01/0.1 

mmol/kg gadopentetate dimeglumine (Magnevist)) acquired over 210 cardiac 

cycles. Additional acquisition of DCE-MRI data (with no further contrast 

administration) over 21 cardiac cycles was performed at 6 and 12 minutes after 

contrast agent administration. MOLLI (3(3)3(3)5 scheme1) T1 maps were 

                                            
1 N.B. This scheme is suboptimal but the clinical protocol was finalised prior to the results of 

Chapter 6 and findings from the technical literature review in section 4.4 were known (see 

section 1.4). Additionally comparison of multiple non-linearity techniques was not an aim of 

this clinical study, and so neither proton density weighted images nor dual-sequence DCE-

MRI were included. 
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acquired pre-contrast and 10 and 15 minutes post-contrast. Deconvolution 

analysis was performed on the combined data set from the three DCE-MRI 

series. As these patients were imaged shortly after a severe myocardial 

infarction imaging was limited to rest only as the physiological stress and 

discomfort associated with adenosine infusion would not be appropriate in such 

patients. 

Images were evaluated for the presence of artefacts and where possible (i.e. 

not for DCE-MRI data) acquisitions were repeated if significant artefact was 

present. 

9.2.3 Analysis 

9.2.3.1 Contouring 

All contouring was performed by a clinical research fellow experienced in 

cardiac MRI using CVI 42 software (Circle Cardiovascular Imaging, Calgary, 

Canada)1. Regions of infarct, microvascular obstruction and oedema were 

contoured based on T2w and LGE images before being transferred to the DCE-

MRI images and T1 maps and adjusted to avoid any regions of artefact. 

Regions of interest for blood signal and T1 were drawn in the left ventricular 

cavity. Figure 9-1 shows example images and contours for a patient with a large 

region of persistent MVO. 

                                            
1 While sample image has been examined by the author of this thesis the primary data thus 

used for analysis were reports detailing regional signal/T1 data along with image header 

information for timing data. 
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Figure 9-1 - Example images (acute visit) from a patient with persistent 
MVO and peri-infarct oedema. Left – T2 weighted image showing 
contoured bright region which includes infarct and oedema. Centre – LGE 
image showing contoured bright region of infarct with a core of MVO, also 
contoured in blue is a region of remote myocardium. Right – DCE-MRI 
image showing regions used for MVO (cyan), infarct (magenta), peri-
infarct oedma (yellow) and left-ventricular blood pool (blue, for AIF). In all 
images the endocardial and epicardial layers are delineated in red and 
green respectively. 

Figure 9-2 shows example images and contours for a patient with substantial 

myocardial salvage, that is a large region of bright signal on T2 weighted images 

(indicative of tissue that has undergone ischaemia) of which only a small 

proportion is bright on LGE (indicative of infarction). 

 

Figure 9-2 - Example images (acute visit) from a patient without MVO and 
with substantial myocardial salvage. Left – T2 weighted image showing 
contoured bright region which includes infarct and oedema. Centre – LGE 
image showing contoured bright region of infarct which is substantially 
smaller than the bright region on T2 weighted imaging. Right – DCE-MRI 
image showing regions used for infarct (magenta), peri-infarct oedma 
(yellow) and left-ventricular blood pool (blue, for AIF). In all images the 
endocardial and epicardial layers are delineated in red and green 
respectively. 



Chapter 9 Clinical Study – ST-segment Elevation Myocardial Infarction 

236 

For DCE-MRI contours were initially defined at the phase with peak signal in the 

blood and then copied to other phases. Inter-phase motion (predominantly due 

to breathing) was corrected for manually by moving contours rigidly. 

Regions of interest were drawn independently at acute and follow-up visits, with 

oedema and MVO regions drawn only at acute as these pathologies had 

resolved in all patients by the follow-up study (as exemplified in Figure 9-3). 

This does have implications regarding the comparison between infarcted 

regions at the two visits as the regions contoured are not necessarily of the 

same tissue but are defined based on imaging characteristics at the time of the 

study. In particular regions of infarct at follow-up will include the regions 

previously defined as MVO at the acute visit where present. The results of this 

study should thus be seen as a comparison between acute and sub-acute 

infarct (which consist of different constituents due to remodelling and fibrotic 

processes described in section 2.1.2) within patients rather than a direct 

comparison of the same tissue. An alternative approach would be to transfer 

contours from the acute visit to the follow-up visit to compare anatomically co-

located tissue, although this would need careful registration between visits and 

may be difficult or impossible if there is substantial remodelling or differences in 

patient positioning or scan alignment between visits. 

 

Figure 9-3 – Follow-up images from the same patient and slice location as 
Figure 9-1. Left – LGE. Right – DCE with contours (infarct in red, remote 
myocardium in green). Note that in the LGE image the core of MVO is no 
longer present, nor is the region of slightly enhanced signal in the region 
contoured as peri-infarct oedema at the first image. 
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9.2.3.2 Non-linearity correction and conversion to plasma 

concentrations 

For signal non-linearity correction signal-time data were converted to ΔR1-time 

data using the bookend T1 approach (section 7.2.1.3, optimisation algorithm 

parameters as in section 7.2) and the full recovery signal model (Equation 7-4). 

S0 and saturation efficiency were derived for blood within the left-ventricular 

cavity. Native DCE-MRI signal intensity and T1 were obtained from the baseline 

of the DCE-MRI series, prior to contrast agent arrival, and pre-contrast T1 

mapping. To determine the baseline length a point prior to contrast agent arrival 

was manually identified. The baseline was typically 10-20 cardiac cycles in 

duration. Post-contrast T1 was obtained from the 10 minute post-contrast T1 

map. DCE-MRI signal intensity that would be measured at that time was 

estimated by fitting a bi-exponential function to the tail of the AIF (including data 

from the initial acquisition, after any re-circulation peaks, and from the two 

additional 21 phase series) and interpolating the expected signal intensity at the 

time of the T1 map (see Figure 9-4 in section 9.3). A bi-exponential model was 

chosen as Gd-DTPA concentration in blood is expected to decay rapidly in the 

first few minutes after injection as it distributes to extravascular spaces, followed 

by a slower decay associated with renal extraction [46]. 

The AIF can be described in terms of contrast agent concentration in either 

blood or plasma. For convenience the AIF is scaled by the plasma volume 

fraction of the blood (1-haematocrit) prior to analysis (Equation 9-1), so that the 

estimated parameters relate to plasma. 

Equation 9-1 

AIF =
∆𝑅1,𝑏𝑙𝑜𝑜𝑑

(1 − ℎ𝑐𝑡)
 

9.2.3.3 Deconvolution 

Deconvolution was performed using a distributed parameter model with Laplace 

domain fitting [1]. The fitting process comprised multiple steps performed after 

non-linearity correction: 
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Interpolation and bolus arrival estimation 

The acquired temporal resolution of the DCE-MRI data is not constant due to 

variation in cardiac cycle length and occasional missed trigger instances in the 

ECG synchronisation, and for the STEMI study due to the gaps between the 

three DCE-MRI series. Prior to transforming data into the Laplace domain the 

AIF was interpolated onto a regular time grid (with temporal resolution equal to 

the mean cardiac cycle length) and translated so that the bolus arrival in the AIF 

and tissue curves were coincident. As described in section 2.4.1.4 a variety of 

strategies have been proposed to estimate the translation required (the bolus 

arrival time, BAT). For this study an initial deconvolution using a two 

compartment exchange model with BAT as an additional free parameter was 

performed. This model is used for this step as it can be performed using 

temporal domain calculations (i.e. by directly convolving the AIF and residue 

function rather than transforming the data into the Laplace domain), thus 

removing an analytical step. The residue function parameters from this fit are 

discarded and the AIF translated by the estimated BAT prior to subsequent 

analysis. By adopting this approach discretisation of BAT estimates (which 

would occur for the approach where fits with multiple fixed BAT values are 

used) and the addition of a fifth free parameter in the final fitting process (which 

would occur in the case of incorporating BAT into the distributed parameter 

model fit) are both avoided. However, any errors in the estimated BAT value 

may lead to errors in the subsequent deconvolution analysis [59]. 

For the STEMI study the gaps in the AIF between DCE-MRI series are also 

filled by interpolating using a bi-exponential fit to the tail of the AIF, as described 

in the non-linearity correction section above. 

Transformation and multiplication with residue function 

In order to avoid time-domain aliasing the calculated tissue response curve 

must decay to zero (or, practically, negligible levels) by the end of the array [55]. 

To achieve this the AIF array is padded with zeros after the last measured data 

point prior to Fourier transformation. Following multiplication in the Laplace 

domain and inverse Fourier transformation the resulting tissue response curve 

is then cropped to the length of the valid data for calculation of residuals in 

comparison to the acquired tissue data. The length of the padding required is 
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determined by the expected decay constant of the residue function [55]. To 

allow straightforward calculation of this value the expected decay constant used 

was that of the adiabatic approach to the tissue homogeneity model, which has 

a similar decay rate to the distributed parameter model in non-flow-limited 

tissues [51]. This is kep, the ratio of the product E.Fp to ve, for which values from 

results of the pilot study [1] were used to derive a typical value. To ensure 

sufficient padding is included for cases with large extracellular volume fractions 

and low perfusion a substantial margin is applied to this value for zero-padding. 

In practice the AIF time and signal arrays were padded to the length defined in 

Equation 9-3. 

Equation 9-2 

𝑃𝑎𝑑𝑑𝑒𝑑𝐿𝑒𝑛𝑔𝑡ℎ = 2𝑛+8 

𝑤ℎ𝑒𝑟𝑒 𝑛 = ⌈log2 (𝑁𝐴𝐼𝐹 + 6
𝑣𝑒

𝐹𝑝𝐸
)⌉ 

𝑎𝑛𝑑 𝑁𝐴𝐼𝐹 𝑖𝑠 𝑡ℎ𝑒 𝑙𝑒𝑛𝑔𝑡ℎ 𝑜𝑓 𝑡ℎ𝑒 𝑢𝑛𝑝𝑎𝑑𝑑𝑒𝑑 𝐴𝐼𝐹 

Following padding the Laplace domain array of frequencies to which the AIF is 

mapped (s) is calculated centrally around zero with increments as in Equation 

9-3. 

Equation 9-3 

∆s =
2𝜋i

max (𝑡𝑝𝑎𝑑𝑑𝑒𝑑)
 𝑤ℎ𝑒𝑟𝑒 𝑡𝑝𝑎𝑑𝑑𝑒𝑑 𝑖𝑠 𝑡ℎ𝑒 𝑝𝑎𝑑𝑑𝑒𝑑 𝑡𝑖𝑚𝑒 𝑎𝑟𝑟𝑎𝑦 

The tissue response curve is then calculated as the inverse fast Fourier 

transform of the product of the fast Fourier transform of the padded AIF and the 

residue function in the Laplace domain (R(s)), as in Equation 9-4. 

Equation 9-4 

∆𝑅1,𝑚𝑦𝑜,𝑚𝑜𝑑𝑒𝑙𝑙𝑒𝑑 = ℱ̅ (𝐹𝑝 ∙ 𝑅(𝑠) ∙ ℱ(𝐴𝐼𝐹𝑝𝑎𝑑𝑑𝑒𝑑)) 

The residue function used is as defined in Equation 9-5, where Tc, Te and T are 

the mean transit times in the capillaries, the interstitium and the combined 

system respectively. 
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Equation 9-5 

𝑅(𝑠) =
1 − 𝑒

−𝑠
𝑇+𝑠𝑇𝑐𝑇𝑒
1+𝑠𝑇𝑒

𝑠
 

R(s) is not defined for s = 0 as the numerator and denominator both equal zero. 

R(s=0) is thus replaced with T, which is the limit as s→0 based on l’Hôpital’s 

rule. As the data are discrete the computation is completed in practice using the 

fast Fourier transform process and following inverse transformation the resulting 

array is cropped to the length of the original AIF.  

Optimisation 

The above process of multiplication in the Laplace domain and inverse Fourier 

transformation is repeated iteratively to identify the optimal set of transit time 

values and plasma flow to minimise the difference between ΔR1,myo,modelled and 

the measured tissue response curve in a least squares sense using the 

constrained minimisation algorithm fmincon in MATLAB (Mathworks, MA, USA). 

Optimisation algorithm starting guess values were Fp = 0.4 ml/min/ml, Tc = 0.02 

min, Te = 0.19 min, T =  0.25 min (with the value of Fp chosen to match that of 

the previous chapter and of the mean transit times matching mean results from 

the pilot study [1]) 1. 

Prior to calculation of the residual difference between the modelled and 

measured myocardial response curves the modelled curve is interpolated back 

onto the original temporal sampling array. The squared residuals are summed 

only for samples after arrival of the main contrast agent bolus (identified 

manually) so that the parameters which best described the response to the 

main contrast administration are determined. 

Parameter interpretation 

The deconvolution process yields estimated values of the three mean transit 

time values (T, Te and Tc) as well as Fp. From these values PS, ECV, ve, vp and 

                                            
1 To avoid undefined numbers or invalid solutions lower limits several orders of magnitude lower 

than realistic values (10
-6 

 ml/min/ml (Fp) or 10
-6 

min (Tc, Te & T)) were used where physical 

lower limits were zero. Upper limits were infinite. Non-linear constraints were imposed to 

ensure that calculated values of PS would be positive (T>Tc) and that the calculated value 

of vd would lie within physical limits of 0-100% (FpT<1). 
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E are determined as in equations 2-39 to 2-42 [51]. Parameters described 

above relate to plasma flows and volume fractions. For comparison to literature 

values or ease of interpretation Fp and vp can be scaled to myocardial blood 

flow (MBF) or blood volume (vb) using the haematocrit (equations 9-6 and 9-7). 

Equation 9-6 

𝑀𝐵𝐹 =
𝐹𝑝

(1 − ℎ𝑐𝑡)
 

Equation 9-7 

𝑣𝑏 =
𝑣𝑝

(1 − ℎ𝑐𝑡)
 

 

Fit acceptance 

As identified in pilot work the distributed parameter model is sometimes over-

parameterised in the case of myocardial DCE data, leading to unstable fitting 

[1]. Such cases typically manifest as unrealistically high Fp and extremely short 

Tc being returned from the optimisation process. In such cases a one-

compartment model described by two parameters (Fp and T) may adequately 

describe the data, in which case only blood/plasma flow and total distribution 

volume can be determined. Distributed parameter model fits with any transit 

time less than the average temporal resolution (i.e. the mean cardiac cycle 

length) are identified and where non-physiological parameter estimates are 

found results are discarded. 

Statistical tests 

For within study comparisons paired t-tests were applied and significance 

determined at α=0.05 (with Bonferroni correction applied). Six comparisons 

were made for each of the 8 physiological parameters so P values less than 

0.00104 were thus deemed significant for the respective studies.  
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9.2.3.4 Contrast equilibrium vd estimation 

In addition to estimation by DCE-MRI vd was estimated in infarcted and remote 

myocardium using the native and final post-contrast T1 data, haematocrit values 

and Equation 2-51.

9.3 Results 

Of the patients recruited 32 (80%) were male and the patients were aged 57±11 

years. Mean venous haematocrit was 0.45±0.04 at both visits. Mean vd derived 

from contrast equilibrium MRI estimates were 29.8±5.6% and 29.8±6.7% for 

remote myocardium and 55.7±15.2% and 54.5±19.1% for infarcted myocardium 

at acute and follow-up visits respectively. 

An example AIF including the interpolated data in the tail and the timing of the 

T1 maps is shown in Figure 9-4. 

 
Figure 9-4 - Example AIF. Vertical lines indicate timing of MOLLI 
acquisitions and red circles indicate the SI used for this time point in 
saturation correction (derived from the baseline for pre-contrast or from 
the bi-exponential fit for post-contrast). 
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9.3.1.1 Fit success 

Data was available from acute and follow-up visits from 31 patients. Of these 21 

had regions of peri-infarct oedema and 22 had regions of MVO at the acute 

visit. In the non-linearity correction process saturation efficiency was estimated 

to be 1.009±0.016. DP model constrained deconvolution gave stable fits for 

216/252 analysed regions of interest at visit 1 and 147/173 at follow-up giving 

an overall success rate of 85%. In all but 4 of the failed fits the estimated value 

of at least one transit time was less than half of the average cardiac cycle. For 3 

of the other cases the optimisation algorithm returned parameter estimates at 

the upper limit of vd of 100% (above which is physically non-valid). In the 

remaining case (a region of peri-infarct oedema) results were excluded due to 

the estimated Fp value being unusually high (299 ml/min/100 ml) and 

substantially higher than that estimated by a one-compartment model 

constrained fit (61 ml/min/100 ml) despite the shortest transit time estimate (Tc = 

1.19 s) exceeding the mean cardiac cycle length (1.01 s). A region of oedema in 

an adjoining slice in the same patient did yield a stable fit using the DP model 

with a comparable Fp estimate to the one-compartment model and substantially 

longer Tc (15.54 s) than in the excluded fit. 

9.3.1.2 Fitting results 

Example myocardial data are presented in Figure 9-5, showing qualitative 

differences in shape between tissue types. Differences in baseline signal 

(notably lower signal in the MVO data) arise due to differences in myocardial 

enhancement from the preceding pre-bolus contrast agent administration. Acute 

visit results are presented in Table 9-1, follow-up results in Table 9-2 and all 

results in Figure 9-6. 
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Figure 9-5 – Example myocardial signal-time curves from one patient 
(cropped to main-bolus administration and first DCE-MRI series). 

Acute 
Remote 
(n=72) 

Infarct 

(n=75) 

Oedema 

(n=27) 

MVO 

(n=42) 

 

mean st.dev mean st.dev mean st.dev mean st.dev 

Fp (ml/min/100ml) 64.4 32.1 40.1 16.8 44.3 21.7 21.9 23.4 

PS (ml/min/100ml) 54.9 47.9 26.9 15.6 29.2 12.4 10.5 8.1 

ve (%) 17.4 4.7 36.2 14.0 26.2 9.7 32.9 12.6 

vp (%) 6.0 3.1 7.7 4.4 7.2 3.0 4.1 2.9 

vd (%) 23.4 5.2 43.9 13.9 33.4 9.6 37.0 13.2 

E (%) 54.1 15.2 47.0 13.3 48.7 10.8 43.5 13.9 

MBF 
(ml/min/100ml) 116.8 56.7 73.0 28.9 84.1 43.8 40.2 41.8 

vb (%) 11.0 5.7 14.2 8.3 13.5 5.8 7.7 5.6 

Table 9-1 – Results from the STEMI study for the acute visit (n indicates 
number of regions). 
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Follow-up 

Remote 

(n=78) 

Infarct 

(n=69) 

 

mean st.dev mean st.dev 

Fp (ml/min/100ml) 74.4 38.2 50.9 31.1 

PS (ml/min/100ml) 71.1 50.7 31.7 23.5 

ve (%) 18.3 5.5 36.1 12.0 

vp (%) 6.7 3.6 8.8 5.1 

vd (%) 25.0 6.0 44.9 12.8 

E (%) 58.1 14.7 45.7 15.4 

MBF (ml/min/100ml) 130.0 63.7 89.1 52.5 

vb (%) 11.8 6.2 15.3 8.4 

Table 9-2 – Results from the STEMI study for the follow-up visit (n 
indicates number of regions). 
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Figure 9-6 – Results from the STEMI study. 
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Statistical tests 

Table 9-3 shows P values from paired t-tests between the various pathological 

tissue types and remote myocardium at the acute visit and between visits for 

remote myocardium and infarcted tissue. 

 Acute– vs remote Follow up– vs remote Follow up vs acute 

 

Infarct Oedema MVO Infarct Remote Infarct 

n 57 23 31 58 60 56 

Fp <0.001 0.022 <0.001 <0.001 0.219 0.037 

PS <0.001 0.027 <0.001 <0.001 0.102 0.205 

ve <0.001 <0.001 <0.001 <0.001 0.448 0.498 

vp 0.067 0.544 0.090 0.025 0.213 0.298 

vd <0.001 <0.001 <0.001 <0.001 0.117 0.864 

E 0.030 0.946 0.001 <0.001 0.106 0.631 

MBF <0.001 0.018 <0.001 <0.001 0.434 0.097 

vb 0.065 0.585 0.107 0.029 0.408 0.649 

Table 9-3 – Paired t-test P values for the STEMI study (n indicates number 
of regions). 

Following Bonferroni correction significant decreases in perfusion metrics (Fp, 

PS and MBF) are observed in the acute phase in infarcted myocardium and 

MVO in comparison to remote myocardium along with significant increases in ve 

and vd, but not in vp. Additionally in MVO, but not infarct, a significant reduction 

in first-pass extraction fraction (E) is observed. For peri-infarct oedema the 

increases in ve and vd are also significant, but changes in perfusion metrics are 

not. 

At follow-up the reduced perfusion metrics and increased interstitial and total 

distribution volume fractions remained significant between infarcted and remote 

myocardium. Additionally the difference in E was significant. However no 

changes in parameters between the visits were significant after Bonferroni 

correction, although there was a trend for increased Fp and MBF in the infarct 

region at follow-up compared to the acute visit. 
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9.4 Discussion 

In this study, as for the phantom work (Chapter 7) and second clinical study 

(Chapter 10) application of the bookend T1 based non-linearity correction 

returned mean estimates of saturation efficiency indicative of slight over-

saturation.  

In this study significant changes in pathological myocardium in the acute phase 

of the disease have been observed, with differences between pathological 

tissue types. Specifically a reduction in perfusion and increase in distribution 

volume driven by an increased interstitial volume fraction was observed. These 

changes were measured within 3 days of the infarction and were observed to 

persist at 3-month follow-up with no significant changes between visits. A trend, 

which did not reach statistical significance, for increased Fp was observed in the 

infarct region between visits. 

Findings should be interpreted in light of the fact that the two regions are drawn 

independently at the two visits and so will not necessarily contain the same 

myocardial tissue. In particular MVO is not observed at 3 month follow-up, so 

the region of infarct at follow-up will include regions of myocardium classified as 

MVO at the acute visit. Additionally the composition of tissue that exhibits late 

gadolinium enhancement will change between the two time points with the initial 

time point potentially including a mixture of inflammation and hibernating 

myocardium as well as scar, whereas at the latter point the region would be 

expected to contain scar only in the form of replacement fibrosis. An alternative 

analysis method to that employed here would have been to map regions of 

interest from the acute visit to data from the follow up visit rather than re-

drawing contours. However this method could lead to errors due to mis-

registration or differences in slice positioning between visits. Furthermore the 

purpose of this study was to investigate characteristics of the tissue types 

exhibited that are identified through conventional means (including LGE and T2 

weighted MRI) rather than to determine the development of specific regions of 

myocardium and so the method employed in this study was deemed more 

suitable. 
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While MVO has previously been described as a no-reflow phenomenon this 

may describe a lack of adequate perfusion despite intervention, rather than a 

complete absence of flow. This study has shown that in regions of infarct core 

that do not exhibit late gadolinium enhancement perfusion is substantially 

reduced, but is present, measurable, and accompanied by elevated vd. 

While parameters measured by DCE-MRI did not change significantly between 

the two time-points observed it is known that physiological processes are 

ongoing including the formation of replacement scar in the interstitial space in 

the infarct region. However as both replacement scar and necrotic 

cardiomyocytes form regions accessible to extracellular contrast agents the two 

tissue types may not be readily distinguishable by these methods. This lack of 

observed difference between phases was also observed in the study by Hopp et 

al [154], although in this study the early data was collected at the sub-acute 

phase, one week after infarct, and follow-up time was longer (6 months) than in 

the study described in this chapter. 

It has been observed that myocardium remote to infarcted territories may 

undergo post-infarct remodelling [204] but there is lack of agreement as to 

whether this involves changes to the extracellular volume fraction, with one 

study reporting changes in post-contrast T1 values at both acute and chronic 

phases of MI [205] but others reporting no difference either in post-contrast T1 

[206] or contrast equilibrium MRI derived ECV [207]. In this study values of vd 

from DCE-MRI and from contrast equilibrium MRI were larger in both acute and 

follow-up visits in STEMI patients compared to the volunteers from the 

hyperoxaemia study. Furthermore there were differences in perfusion metrics 

between these two groups. This comparison is discussed further in the following 

chapter following presentation of the volunteer results. 

9.4.1 Limitations 

Some limitations apply to this work. Firstly as has been acknowledged in the 

pilot work fitting with the distributed parameter model yields unstable results in a 

substantial minority of cases. Consequently care must be taken to identify such 

fits and exclude results from further analysis. For group comparisons, such as in 

this work, this could lead to a potential bias if the unstable fits occur 

predominantly for certain ranges of physiological parameter values. 
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Furthermore excluding fits reduces the number of data points available for 

analysis so can lead to reduced statistical power, particularly for paired 

comparisons when a single unstable fit can preclude valid results from the same 

subject being included in the final analysis. 

Additionally this study did not include comparisons to other forms of analysis 

including visual and semi-quantitative analysis of DCE-MRI data. Such a 

comparison may allow the relative diagnostic and prognostic performance of 

various analysis methods to be performed. 

Finally as the bookend T1 correction method was conceived during analysis of 

this data the protocol was not optimised for this method as the post-contrast T1 

maps were not acquired close (temporally) to the late DCE-MRI data. 

Consequently interpolation of the AIF had to be performed and deviations in the 

true behaviour of the contrast agent distribution and clearance from the bi-

exponential pattern assumed in the interpolation may lead to errors in non-

linearity correction. This is in contrast to the study in the following chapter for 

which the protocol was designed prospectively with bookend T1 based 

correction planned for. 

9.5 Conclusions 

In this chapter the clinical feasibility of the use of bookend T1 based non-

linearity correction for quantitative DCE-MRI analysis has been demonstrated 

through inclusion of the technique in a clinical protocol with patients in the acute 

phase after STEMI and at 3 month follow-up. For the former similar saturation 

pulse performance was determined in this clinical study as for the previous 

experimental chapters. 

Additionally clinical findings from analysis of this data analysed using distributed 

parameter model constrained deconvolution has been presented. These 

findings are compatible with current understanding of the underlying disease 

processes. Results at the acute phase of STEMI have demonstrated that 

measurable perfusion exists in regions of microvascular obstruction, often 

referred to as exhibiting “no-reflow” after reperfusion, despite the fact that such 

regions exhibit minimal enhancement on first-pass perfusion. Additionally the 
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results have shown that while acute and infarcted myocardium are known to be 

different physiologically and structurally enhancement behaviour using 

extracellular GBCAs are small and the two tissue types may not be readily 

distinguishable with such techniques.



 

252 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

253 

 Chapter 10

Clinical Study – Hyperoxaemia in Coronary 

Artery Disease 

In this chapter a clinical study is described in which DCE-MRI and T1 data from 

cohorts of patients with stable coronary artery disease and healthy volunteers 

were acquired and analysed. 

10.1 Clinical background 

This chapter discusses a study designed to investigate the effects of 

hyperoxaemia on myocardial tissue status and includes patients with stable 

coronary artery disease (CAD) and a control group of healthy volunteers. 

Oxygen has been advocated as a therapeutic agent for the management of 

chest pain although it’s effectiveness has been questioned and a recent 

systematic review has suggested it may potentially have a harmful effect overall 

[208]. 

The DCE-MRI component of this study reported in this thesis was part of a 

larger experimental protocol aiming to gain additional insight into the effect of 

oxygen on myocardial perfusion. In addition to CMR patients also underwent 

coronary angiography and invasive coronary physiology assessment. 

The data from the volunteer cohort of the hyperoxaemia study was also used for 

the in vivo comparison of non-linearity correction methods in Chapter 8. 

10.1.1 Aims 

This study aims to extend the work of the previous chapter by testing the 

feasibility of the bookend T1 based non-linearity correction in a protocol with 

multiple DCE-MRI series and to investigate differences myocardial 

characteristics in a broader range of physiological states than in the previous 

chapter through inclusion of data acquired under pharmacological stress and 

hyperoxaemia. 
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10.2 Methods 

10.2.1 Subjects 

Exclusion criteria were as for the STEMI study (section 9.2.1). All volunteers 

and patients gave written informed consent and the study was approved by the 

local research ethics committee 

28 patients with severe stable CAD (coronary luminal stenosis severity >70% 

identified during routine clinically indicated x-ray angiography performed at the 

same hospital as the MRI study) were recruited along with 30 age matched 

healthy volunteers. For this thesis analysis was limited to the 16 patients with 

severe stenosis in a single major coronary artery (single vessel disease) due to 

availability of data at the time of analysis. Future analysis will include the 

remaining patients with multi-vessel disease. 

10.2.2 Acquisition protocol 

The scan protocol included multiple myocardial DCE-MRI sequences acquired 

in 3 short-axis slices as well as native and post-contrast MOLLI T1 maps. 

Venous blood samples were taken from all patients in order to obtain 

haematocrit measurements. A dual-sequence variant of the DCE-MRI 

sequence, as described in section 3.2.1.1, was used. 

Patients and volunteers underwent four separate DCE-MRI studies. The first 

and third studies were performed under maximal hyperaemia induced by 

infusion of adenosine (stress studies) while the second and fourth were 

performed at rest. Either the first two or final two studies were performed at 

hyperoxaemia achieved through inspiration of oxygen through a nasal cannula. 

The ordering of hyperoxaemia or normoxaemia was randomised. Each study 

comprised a dual-bolus administration of contrast agent (0.005/0.05 mmol/kg 

gadobutrol (Gadovist)) acquired over 210 cardiac cycles. 

A dual-sequence acquisition (section 3.2.1.1) was performed with a low 

resolution image interleaved between the saturation pulse and readout train for 
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the first slice1. Additional acquisition of DCE-MRI data (with no further contrast 

administration) over 10 cardiac cycles was performed at 15 minutes after the 

final contrast agent administration (late-DCE series). MOLLI T1 mapping was 

performed pre-contrast (5s(3s)3s scheme) and after the late-DCE series 

(4s(1s)3s(1s)2s scheme). 

Images were evaluated for the presence of artefacts and where possible (i.e. 

not for DCE-MRI data) acquisitions were repeated if significant artefact was 

present. 

10.2.3 Analysis 

10.2.3.1 Contouring 

Regions of interest for left-ventricular myocardium (excluding papillary muscles) 

were defined manually by drawing endo- and epicardial borders. A reference 

point was placed at the anterior insertion point of the right-ventricular cavity 

allowing automated segmentation of the left-ventricle into 6 equal 

circumferential sectors (QMass, Medis, NL) as demonstrated in section 8.2.2). 

Data from the mid-slice only (due to time constraints) was analysed for the full 

circumferential extent for volunteers and on a segmental basis for the patients. 

Contouring was performed both by a clinical research fellow and by the author 

of this thesis2. 

Segments were assigned as ischaemic or remote based on the vessel identified 

as stenosed by angiography and the corresponding perfusion territories defined 

by the American Heart Association guidelines [209]. However it should be noted 

that only segments with severe stenosis (as defined in section 10.2.1) were 

identified as ischaemic, so regions defined as remote to these may still be 

affected by lesser degrees of coronary artery disease. Summary statistics were 

calculated for segments with successful fits. 

                                            
1 N.B. The dual-sequence protocol was used as this protocol was also used for the comparison 

of non-linearity correction methods described earlier. However the interleaved AIF scan 

data was not used in this analysis for which the bookend T1 based correction was applied. 

2 While sample image data, including full studies for those contoured by the author, has been 

examined by the author of this thesis the primary data thus used for analysis were reports 

detailing regional signal/T1 data along with image header information for timing data. 
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10.2.3.2 Non-linearity correction and conversion to plasma 

concentrations 

Signal non-linearity correction was performed as for the STEMI study (section 

9.2.3.2) with native DCE-MRI signal intensity and T1 obtained from the baseline 

of the first DCE-MRI series, prior to contrast agent arrival, and pre-contrast T1 

mapping and post-contrast data obtained from the contrast enhanced T1 map 

and late DCE-MRI series. As for the STEMI study the baseline was manually 

identified and was typically 10-20 cardiac cycles in duration. 

10.2.3.3 Deconvolution 

Deconvolution was performed as for the STEMI study (section 9.2.3.3) with the 

exception that unlike in that study there was only one DCE-MRI series per-

analysis, so interpolation was performed only to convert the data to being on a 

regular time grid. 

Statistical tests 

For within study comparisons paired t-tests were applied and significance 

determined at α=0.05 (with Bonferroni correction applied). Four comparisons 

were made for each of the 8 physiological parameters so P values less than 

0.00156 were thus deemed significant for the respective studies. Only a small 

subset of CAD patients were included to provide preliminary observations on 

this cohort, and consequently parametric statistical tests were not reported for 

these data. 

10.3 Results 

Of the 30 volunteers recruited 4 withdrew prior to or during scanning. Of the 

remaining subjects 12 (46%) were male and they were aged 54±13 years. 

Mean venous haematocrit was 0.43±0.03. In 5 cases there were problems with 

acquisition (3 with ECG triggering problems, 1 with injection problems and 1 

with missing data) leaving 21 cases successfully analysed for this study1. 

                                            
1 NB a further 3 volunteers were excluded in the analysis in the previous chapter. These 3 

volunteers had acquisition problems or were missing data for sequences required for other 

non-linearity correction techniques but had all of the data required for the bookend T1 

based conversion successfully acquired. 
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Of the 16 patients with single vessel disease 1 withdrew and only incomplete 

data sets were available at the time of analysis for 3 patients. A further case 

was rejected due to a long delay between the delayed DCE-MRI series and 

post-contrast T1 map (> 7 minutes) which would yield inaccurate bookend T1 

based conversion. Of the remaining 11 patients 7 were male (64%) and they 

were aged 66±12 years). Mean venous haematocrit was 0.44±0.05. 

Example DCE-MRI data are shown in Figure 10-1 for a patient and healthy 

volunteer. 

 

Figure 10-1 – Example DCE-MRI images and contours from the 
hyperoxaemia study. Left – patient with severe occlusion of the right 
coronary artery with inferior perfusion defect visible. Right – healthy 
volunteer image. Images shown are at peak myocardial enhancement. 

In the non-linearity correction process saturation efficiency was estimated to be 

1.014±0.014 in volunteers, as reported in the previous chapter, and 

1.008±0.007 in patients. 

10.3.1.1 Volunteers 

For volunteers fits were stable for all but one case at rest (hyperoxaemia) and 

all but two cases at stress (normoxaemia), in which Tc was close to or below 

half of the temporal resolution. In one additional case at rest under 

hyperoxaemia the fit was discarded as excessive motion artefacts led to 

unrealistically high (>50%) estimates of ve for healthy myocardium. This data is 

shown in Figure 3-4. In the same volunteer estimates of ve were normal under 

the other physiological conditions for which motion artefacts were less apparent. 
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Results for rest are presented in Table 10-1 and for stress in Table 10-2, and in 

Figure 10-2. MPR in volunteers was 3.48±1.32 for normoxaemia and 3.74±1.89 

for hyperoxaemia. As reported earlier (Table 8-2) contrast equilibrium estimates 

of vd were 27.7±4.9%. 

Rest Air (n=21) O2 (n=20) 

 

mean st. dev mean st. dev 

Fp (ml/min/100ml) 50.4 24.3 51.6 23.6 

PS (ml/min/100ml) 51.8 35.6 53.2 24.0 

ve (%) 13.9 6.4 16.3 3.8 

vp (%) 7.2 4.9 5.8 2.9 

vd (%) 21.1 7.1 22.1 5.1 

E (%) 58.9 19.7 63.1 13.0 

MBF (ml/min/100ml) 88.2 40.2 90.5 40.0 

vb (%) 12.5 8.4 10.1 4.3 

Table 10-1 – Fitting results for the volunteers in the hyperoxaemia study 
for data acquired at rest. 

Stress Air (n=19) O2 (n=21) 

 

mean st. dev mean st. dev 

Fp (ml/min/100ml) 186.5 93.2 189.1 117.2 

PS (ml/min/100ml) 68.6 29.0 90.7 43.3 

ve (%) 14.8 2.8 14.9 3.4 

vp (%) 7.3 2.4 6.3 1.9 

vd (%) 22.2 4.0 21.2 3.7 

E (%) 33.0 10.9 41.6 14.2 

MBF (ml/min/100ml) 323.4 149.8 332.8 204.2 

vb (%) 12.8 3.9 10.9 3.2 

Table 10-2 – Fitting results for the volunteers in the hyperoxaemia study 
for data acquired under adenosine induced stress. 
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Figure 10-2 – Results from the volunteers in the hyperoxaemia study. 

Results of the statistical tests are presented in Table 10-3. 

Paired t-tests Rest Stress Air O2 

 

Air vs O2 Air vs O2 Stress vs Rest Stress vs Rest 

Fp (ml/min/100ml) 0.519 0.941 <0.001 <0.001 

PS (ml/min/100ml) 0.632 0.003 0.18 <0.001 

ve (%) 0.313 0.935 0.682 0.189 

vp (%) 0.960 0.105 0.166 0.702 

vd (%) 0.371 0.199 0.598 0.340 

E (%) 0.751 0.040 <0.001 0.002 

MBF (ml/min/100ml) 0.456 0.895 <0.001 <0.001 

vb (%) 0.946 0.100 0.141 0.670 

Table 10-3 – Paired t-test results for the volunteers in the hyperoxaemia 
study with successful fits for all physiological states. 

Stress led to significant increases in MBF for both oxaemia states and in PS for 

hyperoxaemia (with the relative increase being less than for MBF). The greater 

relative increase in MBF compared to PS led to decreased E at stress, although 
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for hyperoxaemia this did not reach significance following Bonferroni correction. 

Neither oxygenation status nor stress led to significant changes in any 

distribution volume parameter. Due to the lesser increase in PS with stress for 

normoxaemia there were trends for hyperoxaemia induced increases in both PS 

and E at stress but not at rest, although these did not reach statistical 

significance. 

In comparison to the results from the one-compartment (1C) fits performed in 

the previous chapter estimates of Fp were comparable at rest (mean ± standard 

deviation Fp(DP)/Fp(1C) = 1.02±0.21, paired t-test P=0.51) although distributed 

parameter estimates were significantly higher at stress (Fp(DP)/Fp(1C) = 

1.52±0.65, P<0.001). The differences in vd estimates between models were 

small for both rest (vd(DP)/vd(1C) = 1.02±0.03, P<0.001) and stress 

(vd(DP)/vd(1C) = 1.06±0.04, P<0.001), although the estimates were larger from 

the distributed parameter model in the majority (77/81) of cases. The bias 

between DCE estimates of vd and those from contrast equilibrium MRI is thus 

still present, although slightly reduced, when using this model. 

10.3.1.2 Patients 

For patients results are presented in Table 10-4 (rest) and Table 10-5 (stress) 

and Figure 10-3. MPR in ischaemic territories was 1.45±0.66 for normoxaemia 

and 1.50±0.59 for hyperoxaemia. For remote territories MRP was 1.66±0.47 

and 1.97±0.65 respectively. Fits were unstable for 21 of 264 analysed segments 

(8 rest, 13 stress). Of these 6 were all from one stress series (under 

hyperoxaemia) for which there were ECG triggering errors, with the remainder 

due to very short Tc estimates and unrealistically large Fp estimates. With the 

exception of the case with ECG triggering problems there was at least one 

successful fit for each combination of stress state, gas breathed and tissue type 

for each patient. 



Chapter 10 Clinical Study – Hyperoxaemia in Coronary Artery Disease 

261 

 Air O2 

Rest 
Ischaemic 

(n=11) 

Remote 

(n=11) 

Ischaemic 

(n=11) 
Remote 
(n=11) 

 

mean st.dev mean st.dev mean st.dev mean st.dev 

Fp (ml/min/100ml) 47.9 15.6 44.4 13.0 42.1 12.9 44.1 12.0 

PS (ml/min/100ml) 60.0 36.8 59.0 34.7 59.8 40.1 55.8 37.4 

ve (%) 17.5 3.7 17.3 4.0 19.1 5.8 18.6 5.2 

vp (%) 4.1 3.8 3.4 2.9 3.0 2.4 3.3 2.7 

vd (%) 21.6 4.2 20.7 4.7 22.1 6.0 21.9 5.2 

E (%) 66.6 19.0 68.0 15.1 70.0 17.9 65.6 17.6 

MBF 
(ml/min/100ml) 83.7 24.1 78.0 20.3 73.6 19.3 77.7 18.3 

vb (%) 7.0 6.3 5.9 4.8 5.2 4.3 5.7 4.8 

Table 10-4 – Results from patients with single vessel stable coronary 
artery disease. Results in this table are for the rest studies. The number of 
cases with stable fit results in at least 1 segment is indicated by n. 
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 Air O2 

Stress 
Ischaemic 

(n=11) 

Remote 

(n=11) 

Ischaemic 

(n=10) 

Remote 

(n=10) 

 

mean st.dev mean st.dev mean st.dev mean st.dev 

Fp (ml/min/100ml) 72.1 45.1 79.5 41.5 74.5 41.5 84.7 45.0 

PS (ml/min/100ml) 46.0 17.8 48.6 19.5 38.9 15.0 49.8 23.4 

ve (%) 14.6 4.4 14.9 2.7 14.3 3.1 14.2 3.3 

vp (%) 7.4 4.3 6.7 3.2 6.5 2.5 6.8 3.1 

vd (%) 22.0 4.9 21.5 4.0 20.8 4.1 21.0 4.0 

E (%) 52.6 22.9 48.8 18.8 44.5 18.2 46.5 14.8 

MBF 
(ml/min/100ml) 126.3 76.0 139.0 67.7 131.3 69.2 148.7 72.5 

vb (%) 13.1 7.2 11.7 5.4 11.6 4.1 12.1 5.2 

Table 10-5 – Results from patients with single vessel stable coronary 
artery disease. Results in this table are for the adenosine stress studies. 
The number of cases with stable fit results in at least 1 segment is 
indicated by n. 
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Figure 10-3 – Results from the patients with single vessel stable coronary 
artery disease in the hyperoxaemia study. 

Fp and MBF increase in response to stress in both ischaemic and remote 

myocardium, but values at stress are substantially lower in both tissue types 

compared to in healthy volunteers whereas those at rest are only slightly lower. 

Changes in PS are smaller and show a trend for slight decrease with adenosine 
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stress for both remote and ischaemic territories (unlike healthy volunteers, for 

whom PS increased at stress). E is reduced at stress, particularly under 

hyperoxaemia, for both tissue types. Overall vd is similar across all states, with 

a trend for increased vp and decreased ve at stress. 

10.3.1.3 Myocardial Perfusion Reserve 

Myocardial perfusion reserve results are presented in Table 10-6. 

 

Air O2 

 

mean st.dev mean st.dev 

Volunteers 3.14 1.11 3.25 1.75 

Patients (ischaemic) 1.54 0.82 1.90 1.06 

Patients (remote) 1.89 0.72 1.92 0.90 

Table 10-6 – Myocardial perfusion reserve estimates for patients and 
volunteers from the CAD hyperoxaemia study. 

10.4 Discussion 

In both patients and volunteers application of the bookend T1 based non-

linearity correction has returned mean estimates of saturation efficiency 

indicative of slight over-saturation, in line with the findings previous studies both 

using phantoms  (Chapter 7) and STEMI patients (Chapter 9).  

The total distribution volume estimates in the volunteer cohort were similar to 

those reported in the previous chapter using a one-compartment model 

although slightly higher. Use of the DP model may thus slightly reduce the bias 

between DCE and contrast equilibrium vd estimates, although the difference 

between models is small in comparison to the overall bias and so the other 

potential sources of error discussed in the previous chapter are still applicable. 

In the volunteer study substantially increased MBF was induced by adenosine 

stress as expected, with smaller increases in PS, and a consequent reduction in 

E. These findings are in accordance with pilot work [1] although MPR in this 

study was higher. MPR in these volunteer results was also higher than in the 

one-compartment model constrained deconvolution results discussed in 

Chapter 8 due to differences primarily in estimated stress MBF. Hyperoxaemia 
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did not induce any significant changes in physiological parameters, although 

there were trends for greater PS and E at stress in comparison to normoxaemia 

while MBF at stress was similar in the two oxygenation states. 

The systematic difference in results between the one compartment and 

distributed parameter model results raises an issue of appropriate model 

choice. Ideally a single model would be able to be employed with any acquired 

data as inspection of each fit result is not practical for routine clinical 

implementation. In this case the simpler model offers more robust fitting 

although sacrifices information as fewer parameters are estimated. In the 

absence of a gold standard measurement it is not possible to assess the 

relative absolute accuracy of the two models, only bias between them, and this 

has been seen to be substantial especially for stress MBF. Consequently the 

two models cannot be used interchangeably even if MBF is the only parameter 

of interest and other parameters can be discarded. As discussed in the Chapter 

11 further developments in acquisition techniques may improve raw data 

quality. Additionally alternative choices of optimisation strategies may prove 

more robust and further work is warranted to determine the optimal approach. 

Developments in either of these areas may allow more robust fitting of the more 

detailed model in a greater proportion of cases allowing greater depth of 

information to be gained from DCE-MRI studies. However at present a 

compromise must be made between this depth of information and reliability of 

analysis, and the systematic differences between results must be considered 

when choosing a protocol and also when comparing results between studies. 

The volunteer results from rest studies can also be compared to the regions of 

remote myocardium in the patients with STEMI in the preceding chapter. 

However this comparison should be made in consideration of the fact that 

different protocols were employed for the two studies and the volunteers were 

not matched for age or other demographic parameters with these patients. Any 

findings should be considered speculative and used only for hypothesis 

generation. Between these two cohorts the remote myocardium in STEMI 

patients had higher MBF and PS at both visits than in the volunteers from the 

hyperoxaemia study. However the first pass extraction fraction was lower in the 

patients than in the volunteers. Additionally vd was higher in the patients remote 
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tissue, and this was driven by higher ve. These differences may potentially be 

indicative of diffuse changes to myocardial structure and microvascular 

permeability in tissue remote to myocardial infarction coupled with 

compensatory increase in perfusion to remote regions of tissue due to reduced 

myocardial wall function in the infarcted territories. However these differences 

may also be due to differences in general myocardial health between these 

cohorts or systematic differences arising from protocol differences and a 

prospective study would be required to allow these hypotheses to the tested. 

In the subset of CAD patients analysed the adenosine induced relative increase 

in MBF (MPR) was substantially less in remote myocardium than in the healthy 

volunteers and the stress MBF was only slightly higher in remote myocardium 

than in the territories perfused by the severely stenosed artery. This could 

suggest either less severe degrees of coronary artery disease processes in the 

vessels not identified as severely stenosed (limiting flow at stress) or 

compensatory hyperaemia at rest in the remote myocardium. As no clear 

differences in absolute MBF were apparent between remote and ischaemic 

myocardium at either rest or stress these preliminary data better support the 

former hypothesised mechanism of flow limiting disease throughout the 

coronary vasculature, although a more extensive study would be required to 

confirm this. MPR in remote territories was similar at normoxaemia and 

hyperoxaemia. This lack of distinction between ischaemic territories and remote 

in these patients with severe CAD also raises questions regarding the optimal 

analysis strategy and whether this should be performed on a per-patient basis 

or with myocardium segmented into ischaemic and remote territories. The 

former may provide a better summary of overall ischaemic burden to the patient 

while the latter may allow heterogeneous disease to be better characterised. 

Additionally use of larger regions of interest, and consequently improved SNR, 

may allow more reliable fitting in the case of the former. In order to determine 

the optimal strategy further study assessing the prognostic accuracy of the 

potential analysis techniques would be needed, ideally including patients with a 

broader range of disease severity. 

In ischaemic territories MPR was lower at normaoxaemia, although at 

hyperoxaemia it was similar to the MPR values from the remote regions. This 



Chapter 10 Clinical Study – Hyperoxaemia in Coronary Artery Disease 

267 

difference was mostly due to a decrease in resting MBF at hyperoxaemia, 

rather than an increase in stress values. This may reflect oxygen induced 

vasoconstriction at rest, although the variability in this measure was high and 

further evaluation in a larger cohort of patients is required to confirm this 

observation. 

Contrary to the findings in the volunteers there was no clear increase in PS with 

adenosine stress in either tissue type for these patients, with a trend for a slight 

decrease observed, particularly for ischaemic segments at hyperoxaemia. 

Similarly Papanastasiou et al reported a lower mean PS value in the perfusion 

territories of the 7 obstructively stenosed vessels (from 4 patients) at stress than 

at rest [210]. Along with the observation that MPR was substantially reduced 

this supports the suggestion that the remote myocardium in these patients does 

differ to that in healthy volunteers, perhaps reflecting less severe ischaemic 

heart disease throughout the segments of the ventricle which are not perfused 

by the artery identified as being severely stenosed. 

While differences in perfusion metrics were apparent between patients and 

volunteers differences in the distribution volume were not (for either ischaemic 

or remote regions). There is therefore no evidence in this small dataset for 

remodelling or fibrotic processes at this stage of the disease process in these 

patients. However, ve was typically slightly lower in myocardium at stress than 

at rest, and this was accompanied by a similar but opposing change in vb 

leading to no clear change in vd. A reduction in ve during vasodilation or 

capillary recruitment could be explained in part by the resulting increased 

vascular space occupying part of the previously extravascular-extracellular 

space. However these findings were from a small number of patients and 

analysis of a greater number of subjects will be required to further investigate 

whether these findings are valid. As discussed above resting perfusion may be 

increased in remote myocardium following infarction as a compensatory 

mechanism to offset the effect on cardiac output caused by changes in wall 

motion as a result of infarction. However for these CAD patients (for whom the 

myocardium is still functioning in ischaemic territories) no evidence of 

compensatory increases in MBF were observed. 
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In the volunteers MPR was higher in this analysis, using the distributed 

parameter model, than in the corresponding bookend T1 based correction 

results using the one-compartment model from the previous chapter. As 

discussed above this was primarily due to higher MBF estimates at stress, and 

may reflect the fact that the one-compartment model does not adequately 

describe the structure and physiology of the myocardium at stress leading to 

inaccuracy in MBF estimates. Conversely at rest, where the extraction fraction 

is higher, the one-compartment model may adequately describe the acquired 

data, leading to lower differences in MBF estimates between models. 

10.4.1 Limitations 

Some limitations apply to this work including those relating to the unstable fitting 

in some cases and the lack of analysis using semi-quantitative or qualitative 

methods which also applied to the findings of Chapter 9. 

Data analysis was limited to the mid-slice due to time constraints and the labour 

intensity of image contouring. The segments on this slice were assumed to 

correlate to the vascular perfusion territories described in the AHA 17 segment 

model, although in reality there will be variation in anatomy between patients 

and this idealised models. This may have reduced the apparent difference in 

results between remote and ischaemic territories compared. 

The findings from the patient cohort in the hyperoxaemia study in particular are 

from a very small number of subjects. Consequently firm conclusions cannot be 

drawn from these data and they are included as a preliminary indication of 

potential trends in this clinical setting. Analysis of a larger number of subjects 

may yield further clarity or insights into the initial findings presented above. 

10.5 Conclusions 

In this chapter the clinical feasibility of the use of bookend T1 based non-

linearity correction for quantitative DCE-MRI analysis has been further 

demonstrated through inclusion of the technique in a different clinical protocol to 

the previous chapter. A key difference between these studies was that this 

protocol included multiple DCE-MRI experiments for which a single set of pre 

and post-contrast data were used to estimate saturation efficiency. 
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Results from analysis of DCE-MRI data for in myocardium of patients with 

severe coronary artery disease in a variety of physiological states have been 

presented alongside findings from healthy volunteers in the same states, thus 

extending the range of physiological conditions examined from those in the 

previous chapter by including temporary external physiological influences 

(adenosine stress and oxygen). Volunteer results have been in accordance with 

pilot data published previously  [1]. Results from the small sample of patients 

with severe single-vessel CAD suggest that there are differences in the 

myocardium remote to the territory of the stenosed vessel in these patients in 

comparison to healthy volunteers, potentially due to less severe artherosclerotic 

disease throughout the heart. 

Hyperoxaemia has not been observed to have measurable effect on most 

parameters, except for a trend to increase permeability-surface area product 

under adenosine stress which would need further investigation to confirm. The 

study has raised questions regarding the practical implementation of 

quantitative myocardial DCE-MRI analysis into routine clinical practice relating 

to model selection (which can systematically affect results as well as impact 

upon fitting reliability and depth of information that can be gained) as well as to 

the optimal strategy for defining regions of interest for best assessing the status 

of myocardial health in patients. Further work would be required to address both 

of these issues.
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 Chapter 11

Conclusions 

11.1 Current research 

In this thesis key processes in the estimation of absolute physiological 

parameters from myocardial DCE-MRI have been investigated. This was 

focussed on correction of the non-linear response of signal intensity to contrast 

agent concentration. Additionally the performance of commonly proposed 

MOLLI T1 schemes that were available on the scanner used for the 

experimental work were characterised through simulation and phantom studies. 

Finally the feasibility of applying model based correction using a proposed 

bookend T1 based correction in clinically applicable protocols has been 

demonstrated through application in clinical studies in which differences in 

tissue properties between myocardium in various states of health and pathology 

related to ischaemic heart disease have been investigated. 

11.1.1 Signal non-linearity correction 

In Chapters 7 and 8 simulations along with phantom and volunteer studies were 

used to assess the performance of various strategies proposed to address the 

non-linear response of signal intensity in conventional myocardial DCE-MRI 

sequences to the contrast agent concentration. In this work a novel application 

of bookend T1 and signal data to constrain model-based non-linearity correction 

has been proposed. A similar technique has been used in breast DCE-MRI 

[185] to address composite errors arising from a variety of sources. To the 

knowledge of the author this is the first application of these techniques in the 

context of myocardial DCE-MRI aimed specifically at addressing the error 

source of imperfect saturation during the magnetisation preparation phase of 

the imaging sequences. 

Use of saturation prepared sequences may be beneficial for quantitative DCE-

MRI as an ideal saturation pulse will erase the magnetisation history each time 

it is applied, thus making modelling of the signal for the sequence more 

straightforward. This is particularly pertinent for myocardial DCE-MRI where the 

use of ECG triggering and the natural variability in cardiac cycle length means 



Chapter 11 – Conclusions 

272 

that trains of image readout pulses are not generally equally spaced. This 

benefit of saturation prepared sequences only applies fully when saturation 

pulse performance is ideal. The work has led to insights into the sensitivity of 

these model-based conversion techniques to small degrees of saturation 

imperfection which might be expected even with RF pulses optimised for high 

performance in cardiac MRI.  

To reduce bias due to signal non-linearity effects sampling of the arterial input 

function that is independent to that of the myocardial response has been 

proposed. However use of these dual acquisition methods impose technical 

difficulties on acquisition either through the requirement for more complex 

contrast agent administration schemes (dual bolus) or the use of non-standard 

sequences that are not currently readily available (dual-sequence). Additionally 

analysis is more time consuming as additional contouring is required. While 

potential advances in areas such as injection pump design and image 

registration tools may ease some of these burdens the results of this work have 

generally suggested that appropriate model based correction of signal non-

linearity may yield more accurate and precise results than the dual sampling 

strategies and so may be preferable even if the technical obstacles can be 

overcome. 

Of the model based corrections it has been shown that the three techniques 

investigated in this thesis (with models constrained by native T1, proton density 

weighted image signal intensity or the novel proposal of bookend T1 data) 

exhibit differing performance characteristics including differing sensitivity to 

imperfections in saturation pulse performance. In particular use of native T1 

data alone has been shown to be highly sensitive to imperfect saturation 

efficiency and its use is thus strongly recommended against unless extremely 

high saturation efficiency can be guaranteed. 

The other two methods demonstrate reduced saturation efficiency dependence 

for different reasons. Using native proton density weighted image signal 

intensity rather than native T1 is inherently less sensitive to saturation pulse 

performance despite the fact that the assumption in the modelling that 

saturation efficiency is ideal is maintained. This is due to the fact that while 

deviations from this assumption lead to substantial errors in estimated values of 
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R1 throughout the DCE-MRI experiment the magnitude of the biases are much 

less variable (with varying contrast agent concentration) than for the native T1 

based approach, and so biases in the changes in R1 (that are subsequently 

used for deconvolution analysis) are smaller. 

However, when PDw based corrections are applied to dual-sequence data the 

dependence on saturation efficiency is very high. The shorter saturation time 

used for the interleaved image leads to greater deviation between the analytical 

signal models and simulated behaviour. This contributes to substantial biases at 

levels of saturation pulse performance that may realistically be encountered in 

clinical practice. Furthermore the possibility that signal may be generated from 

inverted longitudinal magnetisation is introduced. This adds a further potential 

error source to the analysis, which would only exist outside the expected 

saturation pulse performance range for the conventional sequence. Based on 

these observations and the results of Chapter 7, the dual-sequence method as 

implemented in this work is therefore not recommended. 

Model based correction using either proton density weighted signal or bookend 

T1 data with conventional sequences can thus be recommended as clinically 

feasible and preferable to use of raw signal enhancement, dual sampling 

techniques or native T1 based correction. However, neither offer completely 

ideal performance with both retaining some slight saturation efficiency 

dependent bias. In this study neither consistently produced higher performance 

than the other so the choice of method may depend on practical considerations, 

such as whether the additional data required for either is being acquired already 

for other uses. 

Additionally differences in the signal behaviour between slices in the presence 

of non-ideal saturation, arising from the irregular temporal spacing of the slices, 

have been identified. This leads to further practical questions regarding the 

implementation of these methods in clinical practice and whether modifications 

to the acquisition scheme could reduce slice-to-slice precision and accuracy 

variation. As the main difference arises between the first and the latter slices 

due to the difference in recovery time since the prior saturation pulse a change 

to the saturation scheme could be applied. One option would be to acquire an 

additional, unwanted slice first and discard this data. However, that would use 
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up available scanning time and thus likely impose additional limitations on 

possible spatial resolution, particularly at high heart rates. A preferable 

alternative may be to add a further saturation pulse after acquisition of the final 

pulse. While this would still leave variable recovery time between slices (with 

heart rate dependence) the overall magnetisation magnitude prior to saturation 

for the first image slice would be reduced. Further investigation would be 

needed to assess the impact of such a scheme and potential implications on 

increased specific absorption rate would need considering. 

Overall the optimal choice of method may thus depend on both the performance 

characteristics of the saturation pulse in use (a limitation of this work is that only 

one pulse design applied on one scanner was used) as well as the particular 

requirements for absolute accuracy, precision or insensitivity to saturation 

efficiency or slice position that apply to the research or clinical question. From 

the results of the work carried out in this thesis it is therefore not possible to 

produce a definitive recommendation for either of these two methods. Further 

work addressing one of the main limitations of this study (the fact that the 

protocol used for the experimental work used a sub-optimal proton density 

weighted as the scanning protocols were finalised prior to the results of the 

simulation study being known, as discussed in section 1.4) may offer further 

clarity as to which method, if either, could be recommended as generally 

preferred. 

The complexity of the results of this analysis highlights a general limitation of 

model-based conversion techniques. For ideal performance a complete signal 

model fully describing the scenario in clinical scanning is required. This requires 

detailed knowledge of the scan protocol and in practice is unlikely to be 

possible. Models of sufficient simplicity for practical implementation require 

assumptions to be imposed and do not account for the numerous additional 

factors which affect signal intensity (motion being a potential key factor). 

Knowledge of the assumptions included in the signal model, and the potential 

effects of deviations from these assumptions is thus required to understand the 

potential biases which may arise through use of these techniques. Signal 

enhancement based methods are also susceptible to such biases, but are 

simpler to analyse and in some scenarios (particularly where relative, rather 
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than absolute, parameters are reported) may offer sufficient accuracy and 

precision to answer clinical questions. The choice of a method for non-linearity 

correction in a myocardial DCE-MRI protocol is thus not a straightforward one 

and will depend on the requirement of the particular study. 

11.1.2 T1 mapping in quantitative CMR 

Since myocardial T1 mapping became practical in a clinical setting, largely 

prompted by the introduction of the MOLLI sequence [7] as well as subsequent 

modifications and alternative approaches, it has become a widely used tool as 

discussed in Chapters 4 and 5. Use of T1 data for signal non-linearity correction 

in DCE-MRI is only one of the applications for this technique; with both 

individual T1 maps and T1 map derived estimates of extracellular volume 

fraction having demonstrated clinical utility. Consequently understanding of the 

limitations of these techniques is required. Chapter 6 investigates this for MOLLI 

and a selection of proposed shortened variants through both simulation and 

phantom studies, and the results support existing literature [176, 189] 

demonstrating that such shortened schemes can offer not only improved clinical 

acceptability through reduced breath-hold durations but also improved 

performance compared to the originally proposed methods. Efforts to 

characterise the performance of such techniques are ongoing through large 

multi-centre, multi-vendor studies including those using volunteer cohorts [14] 

and phantom studies (such as the T1 Mapping and ECV Standardisation 

(T1MES) study which is commencing at the time of writing). 

11.1.3 Myocardial characteristics in ischaemic disease 

In Chapters 9 and 10 the techniques discussed and evaluated throughout this 

thesis were brought together to be applied in two clinical studies. Through these 

studies myocardium in a wide range of both healthy and pathological 

physiological states was evaluated. The results of these studies demonstrated 

that quantitative myocardial DCE-MRI is sensitive to the changes in 

myocardium that exist between these states, and provide insight into the 

disease processes occurring in ischaemic heart disease. 

Anticipated differences in myocardial physiology were demonstrated in these 

data, including substantially increased vd in reperfused infarcted myocardium 
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and reduced MPR in ischaemic territories in patients with severe CAD. 

Additionally peri-infarct oedema and regions of MVO where characterised at the 

acute phase, the former having MBF and vd intermediate to that in remote and 

infarcted myocardium and the latter having elevated vd and substantially 

reduced, but still measurable, perfusion. In the CAD study substantial 

differences between myocardium remote to the territory perfused by the 

severely stenosed vessel and that in healthy volunteers was observed, most 

notably substantially reduced perfusion reserve. This likely reflects less severe 

disease in the other coronary arteries or in the microvasculature throughout the 

left-ventricular myocardium. 

By measuring additional parameters beyond blood flow and total distribution 

volume fraction further insights can also be gained from these data, such as 

changes to the first pass extraction fraction and the relative contributions of 

intra- and extravascular regions to the total distribution volume fraction. For 

example the relative responses of MBF and PS to stress have been shown to 

be different, with a reduction in E under stress in all tissue types tested. While 

adenosine stress was not included in the STEMI study differences in E between 

remote and pathological tissue were observed, with a significantly lower value in 

regions of MVO and infarct at 3-month follow up, and a trend for a lower value 

in acute infarct. In patients with severe CAD a trend for decreased PS at stress 

was observed (contrasting with an increase for healthy volunteers), which has 

been observed elsewhere [210] but for which a physiological mechanism is not 

clear. This was most apparent in ischaemic territories under conditions of 

hyperoxaemia. However it should be noted that these are small studies and 

evaluation in larger cohorts would be required to confirm the preliminary 

findings of these analyses. 

The work in this thesis has demonstrated that distributed parameter model 

constrained deconvolution of myocardial DCE-MRI data can be successfully 

extended beyond the application in healthy volunteers reported in pilot work [1] 

and into studies assessing pathological myocardium. Importantly the studies 

have shown that such data can be acquired through protocols that can be 

applied in a clinical setting as part of a comprehensive CMR protocol. 
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Overall quantitative myocardial DCE-MRI is a complex, multi-step process 

requiring careful monitoring of the acquisition and analysis process to yield 

robust results. While limitations within several of these steps have been 

identified and assessed, both in this thesis and elsewhere, the technique can 

provide estimates of physiological data which may be of clinical value. This can 

either be on an individual patient basis (for example in assessing myocardial 

health and response to therapy) or on a group basis for developing 

understanding of myocardial disease processes without the need for invasive 

procedures. There remain several areas in which further research and 

development may either improve the accuracy, precision or robustness of these 

techniques, or potentially allow estimation of further physiological 

characteristics. Some of these potential areas are discussed below. 

Finally through this work an additional bias between distribution volumes 

measured using DCE-MRI to those from contrast equilibrium MRI was 

identified, with the latter yielding higher results. This bias was not predicted 

through simulation work and the source remains to be identified. One possible 

source of this bias is water exchange effects. As discussed below further 

investigation in this area is warranted as this may not only improve accuracy of 

estimates of physiological parameters conventionally derived from contrast 

enhanced MRI but also potentially provide additional data of potential clinical 

interest. 

11.2  Future related research directions 

Owing to the limitations discussed above further work is required to allow such 

techniques to be applied routinely and in a fully automated process without the 

need for user input. Several areas which may facilitate this remain open for 

development and further research in this field is warranted. This includes, but is 

not limited to, the areas described below. 

11.2.1 Signal model derivation 

In this thesis non-linearity correction techniques were compared using two 

previously proposed signal models. One which assumed full recovery between 

each image acquisition [44] and a second which accounted for a reduction in 

steady-state magnetisation due to repeated acquisition [45]. However, as 
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described in Chapter 7, both were limited approximations of the sequences 

used in this work. Section 7.7 shows the deviations that exist between both 

models and the forward simulations. These are largest for the interleaved image 

of the dual-sequence method, and this method exhibited very strong biases 

even with only slight saturation imperfection. Derivation and use of analytical 

signal models more completely describing the imaging sequences may allow an 

improvement in accuracy to be achieved in any of the model based non-linearity 

correction techniques. 

11.2.2 Motion correction 

A major bottleneck in the analysis of myocardial DCE-MRI data is the correction 

for motion between cardiac cycles, particularly when image acquisition is 

performed over an extended period of time beyond that for which a breath-hold 

is feasible. Manual motion correction is labour intensive and is susceptible to 

human error. Advances in robust, automated motion correction will facilitate 

more rapid analysis of myocardial DCE-MRI data and accelerate future 

research in this field. Such advances may also lead to a shift in preference for 

how breathing instructions are given during perfusion studies. Commonly a 

breath-hold is performed during the first pass followed by free gentle breathing. 

However this may lead to a sharp intake of breath during the study and so 

robust motion correction may allow gentle free-breathing throughout. However 

for any motion correction applied to two-dimensional imaging it must be 

remembered that only in-plane, and not through-plane, motion can be 

corrected. 

11.2.3 Acquisition improvements – resolution, noise and 

anatomical coverage 

The experimental protocols described in this thesis utilised 3-slice, 2D 

acquisition to provide short-axis views of the myocardium at different anatomical 

positions. Consequently the coverage of the myocardium is incomplete, with the 

most basal and apical parts of the left ventricle not imaged, as well as regions 

between the slices. Furthermore the acquisition of 2D data results in the fact 

that motion correction (manual or automatic) can account only for in-plane 

motion. Advancements in 3D myocardial DCE-MRI acquisition techniques may 
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allow whole heart coverage allowing assessment of all of the myocardium of the 

left-ventricle, as well as allowing correction for motion in all directions. 

For any MRI acquisition compromises must be made between signal to noise 

ratio (SNR), spatial resolution and temporal resolution. Due to the constraints 

imposed by the combination of cardiac and respiratory motion this is particularly 

true for myocardial DCE-MRI.  

Using the acquisition protocols in this study spatial resolution of around 2.4 mm 

in-plane and 10mm through plane is possible with adequate SNR and a short 

enough temporal footprint to allow 3 slices to be acquired for most heart-rates 

encountered clinically. While this resolution is sufficient for assessment of whole 

myocardial status or for large regions of interest, spatial resolution can be a 

limiting factor when assessing small regions of interest. In particular partial 

volume effects may be a concern for small regions of focal disease or when 

assessing myocardium close to the endocardial or epicardial surfaces. Analysis 

is thus limited to the left ventricle, where the myocardium is thickest, and may 

be limited in conditions which lead to thinning of the myocardial wall (such as 

dilated cardiomyopathy). 

Advances in MRI technology or acquisition techniques may lead to improved 

SNR, which may yield more robust fitting or allow improved spatial resolution. 

This may allow more robust analysis, particularly of small regions of interest, 

and may potentially allow analysis of data from other chambers of the heart with 

thinner myocardial wall thicknesses. This may also allow estimation of 

transmural variation in derived parameters which may prove clinically valuable, 

as transmurality of infarct area has established very high prognostic value [31]. 

However, as discussed in an abstract [17] arising from the STEMI study 

discussed in Chapter 91 assessment of severity rather than extent of infarct may 

better predict functional recovery and so in the case of quantitative assessment 

transmurality assessment may not prove as important as in qualitative 

assessment of contrast enhanced myocardial MRI for post-infarction 

prognostication. 

                                            
1 The author of this thesis was a co-author on this abstract but the work contained within does 

not form part of this thesis. 
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11.2.4 Water exchange effects 

The analysis in this thesis has assumed that water exchange between regions 

of the myocardium is fast in comparison to the longitudinal magnetisation 

relaxation rates. At high concentrations of contrast agent this assumption may 

not be valid. This may impact upon the accuracy of parameter estimates, 

potentially explaining differences between DCE and contrast equilibrium derived 

vd values identified in Chapter 8. Further research could elucidate the 

significance of such effects and allow for correction for water exchange effects 

where required. Additionally incorporating water exchange into the analysis 

process may provide additional, potentially clinically useful, physiological 

information as changes is tissue properties will affect water residence times. 

11.2.5 Effect of saline flush 

Differences in AIF shape between pre-bolus and main bolus, which cannot be 

explained by the understanding of the administration of the contrast agent 

alone, were often observed in experimental dual-bolus data in the work carried 

out in this thesis. It has been hypothesised that this could be due to the saline 

flush administered immediately after the contrast agent bolus. Further 

experimental work may provide further insights into the effect of the saline on 

the acquired signal data and consequential effects on quantitative analysis. 

11.2.6 Deconvolution – model selection and robust fitting 

Several decisions must be made when designing analysis processes, including 

the choice of tracer-kinetic model (where used) and implementation details. The 

latter include a range of choices including whether to perform analysis in the 

temporal or frequency domain and the choice of optimisation algorithm (least-

squares based or otherwise) along with the parameters determining the start 

point and termination of the optimisation. Ideally analysis would be insensitive to 

such workflow decisions. However in practice, and especially in cases where 

fitting can be unstable such as when using models with higher numbers of 

physiological parameters, different analysis strategies can potentially yield 

substantially different results. Further research is thus required to identify 

optimal analysis strategies to improve the robustness of parameter estimates 

and to avoid use of data from failed fits to inform clinical decisions. 
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Additionally strategies which circumvent the requirement for measurement of 

the AIF, for example blind AIF estimation or estimation of the AIF using 

reference tissues have been proposed [211-214] both for myocardial DCE-MRI 

quantification and for other tissues. While not investigated in this thesis these 

methods could potentially avoid some of the issues introduced by the need to 

quantify relative concentrations across the full range encountered in blood pool. 

However their use and description in the literature has so far been limited and 

deconvolution using study specific measured AIF data (as performed in this 

thesis) remains the most reported method for quantitative analysis of 

myocardial DCE-MRI data. 

11.2.7 Clinical studies and application 

In this work small studies are presented in a limited range of pathological tissue 

states. Further studies could provide more robust conclusions relating to the 

ischaemic processes probed in this work or insights into other pathologies not 

investigated in this thesis. In particular application to cardiomyopathies 

characterised by diffuse tissue changes may allow identification of disease 

processes before clinical manifestation or before they are identifiable through 

visual analysis of imaging data, and additionally these techniques may have 

value in the monitoring of the response of the myocardium to therapy. 

11.3 Conclusions 

Despite the limitations described above the methods described in this thesis 

can provide measures of physiological tissue status not measurable using 

conventional analysis techniques. The comparison of non-linearity strategies 

and proposal of the novel application of bookend T1 data to perform this provide 

evidence which may be used to improve the robustness of myocardial DCE-MRI 

quantification, particularly when estimating absolute rather than relative values. 

Furthermore the feasibility of applying these methods in clinical studies using 

standard, commonly available, imaging sequences has been demonstrated.  

Application of the distributed parameter model in this project has allowed 

measurement of parameters beyond the conventional analysis of myocardial 

blood flow from DCE-MRI data and total extracellular volume fraction from 

contrast equilibrium MRI data. Application of these methods in both volunteers 
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and patients has allowed preliminary insights to be gained into the physiology of 

left-ventricular myocardium both in health and in a variety of pathological states. 

However there remain several questions open as to the optimal acquisition and 

analysis methods (which should be considered in combination, not isolation) as 

well as technical obstacles which limit the applicability of these techniques in 

routine practice. Further development and refinement of these techniques is 

thus needed to provide a robust methodology that can both be readily applied 

and provide reliable, robust results. Furthermore for more widespread adoption 

of the technique the analysis workload must be acceptable for the investment in 

staff time required to be justified against the clinical information gathered.  

Without robust motion correction the contouring required for this technique is 

highly time consuming and thus ongoing development in motion correction 

strategies could greatly ease the application of quantitative DCE-MRI in both 

research and clinical practice. Automation of this step in the process, as well as 

contouring, quantitative analysis and presentation of results could significantly 

enhance the applicability of the method, particularly if integrated with routine 

clinical workflow by integration with commercial scanner software. 

Should these hurdles be overcome the technique could provide further insights 

into understanding of disease processes through application the research realm 

while the diagnostic or prognostic value must also be proven before the 

technique can find routine application in the assessment of individual patients to 

inform clinical decision making.
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