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Abstract

Kinematic dynamo modelling addresses the growth of magnetic fields under the ac-

tion of fluid flow, effected in the geophysical case by the action of the convecting electrically

conducting outer core and magnetic diffusion. In this study, we prescribe the flow to be station-

ary and geophysically motivated by some large scale process, for example, differential rotation

or convection. Historically, workers have applied eigenvalue stability analysis and although in

some cases Earth-like solutions have been found, the results hinge critically on the precise choice

of flow. We therefore cannot attribute physical mechanisms in such cases since it is rather case

dependent.

Following the success of more generalised stability techniques applied to the transition

to turbulence in various non-magnetic fluid dynamical problems, we investigate both the onset of

and subsequent maximised transient growth of magnetic energy. These approaches differ from

the eigenvalue methodology due to the non-normality of the underlying operator, which means

that superposition of non-orthogonal decaying eigenmodes can result in sub-critical growth. The

onset or instantaneous instability problem can be formulated using variational techniques which

result in an equation amenable to a numerical Galerkin method. For the suite of flows studied,

we find robust results that can be physically explained by field line stretching. Convectively

driven flows exhibit the greatest instability, the field structures giving this maximal instability

being axisymmetric. All flows indicate an apparent asymptotic dependence on the magnetic

Reynolds number Rm, which is reached when Rm
� O

�
1000 � . For the flows studied, we find

improved lower bounds on Rm for energetic instability of between 5 and 14 times, compared to

that resulting from the analytic analysis of Proctor (1977a).

In all the flows studied, without exception the geophysically dominant axisymmetric

dipole field symmetry is preferentially transiently amplified. The associated physical mecha-

nisms are either shearing of poloidal field into toroidal field by differential rotation, or advection

into locations of radial upwelling followed by field line stretching in the convective case. Tran-

sient energy growth of O
�
1000 � , which can be obtained when Rm

� 1000 is robust and may

explain the recovery of field intensity after a magnetic reversal. Assuming the flow to be a sta-

tionary solution of the geostrophic balance equation where buoyancy, pressure and the Coriolis

forces are in equilibrium, we computed the geophysically scaled ratio of the Lorentz to the Cori-

olis forces and found it to be O
�
1 � for flows with a large convective component. This indicates

that transient growth, in particular of axisymmetric fields that are ostensibly precluded by the

theorem of Cowling (1933), can explain the entry into the non-linear regime without the need

for eigenmode analysis.
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Chapter 1

Introduction

1.1 A brief history

From the study of ancient rocks, paleomagnetists know that the Earth has had a magnetic field

for much of its 4.6 billion year history. The discovery and appreciation of this fact by human

civilisation has been limited to somewhat more recent times however. The ancient Greeks knew

that magnetised rocks (lodestones) could attract iron. In fact the word magnet is derived from

Magnesia, a city in then Asia Minor, where archaeological excavations have uncovered such

rocks (Parkinson, 1983). It is the Chinese (ca. 1000 AD) though who are credited with the

discovery that a freely pivoted magnetised needle will always point northwards. The origin of

this unknown (seemingly constant) attractive force was believed to be either celestial in nature

(since the north star was a fixed point) or that there was a great mountain of lodestone somewhere

near the north pole (Stern, 2002).

An important scientific breakthrough in Europe came with the publication of William

Gilbert’s De Magnete in 1600. After a series of experiments involving a spherical lodestone, he

realised that “the Earth globe itself is a great magnet”. Thus was born the idea that the magnetic

field was of internal origin (Malin, 1987).

From about the late 16th century, sailors knew that compasses did not point exactly

northwards. The deviation in angle is called the declination and over the next few centuries it was

mapped by the many global voyages that furnished the era. It was realised that the declination

was not constant, but varied depending on both the position and year of the reading. Halley came

up with the ingenious solution of permanently magnetised concentric spherical shells inside the

Earth, that could move relative to one another and thus explain the apparent fluctuations.

The idea of permanent magnetism (the only form known at that time) suffered a fatal
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blow when it was realised that almost all of the Earth’s interior was too hot (above its Curie

temperature) to retain its magnetisation. Larmor (1919), with reference to the sun speculated that

a self-sustaining dynamo process could be responsible for maintaining a magnetic field. It was

soon after discovered that the Earth’s field had reversed many times in its history. What process

can then account for these spatially and temporally complex characteristics of our magnetic

field?

It is now known through seismic studies that the Earth has a solid inner core, a liquid

outer core and a solid mantle; a schematic picture depicting this is shown in figure 1.1 (e.g.

Fowler, 1990). Today we believe that the magnetic field is generated and sustained by fluid

motion in the outer core, driven by convection. It is almost certainly the influence of the Earth’s

rotation on the fluid outer core that causes the generated magnetic field to be preferentially

dipolar, with magnetic poles almost coinciding with the geographic poles.
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Figure 1.1: Schematic picture of the Earth. From the surface downwards: the solid mantle, liquid
outer core and solid inner core.

The outer core consists mainly of liquid iron with a few dissolved light elements. Due

to the action of pressure, the iron freezes preferentially at the centre of the Earth first (this is

contrary to perhaps what might be expected since fluids generally freeze from the coldest point,

in this case the outside, inwards). As the iron solidifies onto the inner core, the impurities are

released. These are buoyant and so rise, creating a convective motion that stirs and stretches the

magnetic field. Another principal source of energy is that of thermal convection generated by the

latent heat of freezing at the inner core boundary. Fluid parcels are heated and become buoyant,

rising in a manner similar to that of compositional convection. Although thermal convection

is less efficient than compositional, it is important to understand how the Earth’s dynamo (that
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is, the mechanism by which the field is sustained) could operate without an inner core, that

is, driven by heat alone. This is because thermodynamic calculations are still uncertain over

whether the inner core has been in existence for the duration of the Earth’s geomagnetic history

(e.g. Labrosse et al., 2001; Gubbins et al., 2003).

1.2 Paleomagnetism

Detailed measurements of the Earth’s magnetic field from the past 400 years or so (from sea

voyages, fixed observatories and more recently satellites) comprise only about one ten millionth

of the age of the field. Fortunately we know a lot more about its history from paleomagnetic

measurements. When hot rock cools from above the Curie temperatures of its magnetic minerals,

it records the magnetic field in which it is exposed at that time. In principle then, assuming the

rock can be correctly dated and that sufficient samples are collected, the history of the field can

be established. The main problem with this approach is that there is not enough data: volcanic

eruptions have been too sporadic in time and do not offer good global coverage since they tend

to cluster around tectonic plate margins or other hotspots. With insufficient data, the fitting

of a global field to the local measurements is non-unique so resolution of large scale features

is difficult. Another issue is that of dating accuracy: geologically fast field transitions (e.g.

reversals) occur within the error bounds of the sample age estimation, so it is impossible to

model anything but slow processes.

Other sources of paleomagnetic data are sedimentary cores taken from deep ocean

floors. As the sediments are compressed into rock, they record the magnetic field that they

were exposed to at that time. However, if the deposition rate is too slow the record tends to be

filtered and smoothed (see Merrill and McFadden, 1999) and the data really only gives a time

average. Nonetheless these are important as they give a contiguous data set of anything up to a

few hundred thousand years back in time.

The Earth’s magnetic field is around three billion years old and averaged over time it

is well approximated by an axial dipole, aligned with the rotation axis. There is strong evidence

that, for fast rotating bodies such as the Earth, rotational effects, manifested by the Coriolis force,

have a significant effect on the flow patterns in the fluid core (see Busse, 2002, for example).

Such a system favours axially aligned cylindrical structures, so perhaps this time averaged effect

is not unexpected. The paleomagnetic data also shows that the average intensity (strength) of the

field is slightly (around 30%) weaker over the past 0.8Ma than it is today, although significant

deviations have occured during transitions of the field (Dormy et al., 2000).
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1.3 Reversals

Perhaps the most well known fact about the Earth’s field is that it has reversed polarity many

times over the course of its lifetime. The current reversal rate is about 4.5 per Ma, although this

has changed over time (see e.g. Constable, 2000). On average, a reversal takes 4600 years to

complete, making it geologically almost instantaneous. As a fraction, only 2% of the field’s time

has been spent in transitions, making it quite unlikely that lava flows of sufficient proliferation

and of the correct age are stumbled upon, giving us some idea as to the processes that accompany

such events. Nonetheless, this does occasionally happen — one of the highest profile data sets is

that from Steens Mountain (Oregon, USA) which captures just such a phenomenon (Prévot et al.,

1985; Mankinen et al., 1985). The ancient volcano erupted many times 16 Ma ago, producing

a large array of lava flows, all of slightly different ages. Measurements from these flows reveal

that a reversal took place during the period of volcanic activity. In particular, two flows recording

the transition captured some very strange behaviour. The field recorded in the quickly cooled

exterior of the flows was strikingly different from that of the slowly cooled interior. Over the

days or weeks it would have taken to cool completely, the field changed by up to 6 � per day, a

huge change compared to current typical values of secular variation (field change over time) of

around 0 � 5 � /yr.

Although it has been argued that such results could be due to a material property of the

rock and not of the field recorded, further studies (Camps et al., 1995; Coe et al., 1995; Camps

et al., 1999) have confirmed that this is not the case: the results still stand. External influences

of magnetic storms have been called upon to explain these swift field changes (Ultré-Guérard

and Achache, 1995) but this is discounted by Jackson (1995). Invoking an internal mechanism

(seemingly the only explanation left) has its own set of problems however. In order to get such a

rapid field movement, either the typical velocity in the outer core must show a strong increase (by

at least 1000 times) or we need to have a spatially much more complex field. Neither of these are

particularly appealing and are not manifested in the recent simulations showing reversals (e.g.

Glatzmaier and Roberts, 1995). In any event, the semiconducting mantle will filter out signals of

duration less than six days (Coe et al., 1995) although this is a rather optimistic estimate based on

a low value of lower mantle conductivity. Perhaps a more realistic timescale is that of about one

year, consistent with observatory data from the Earth’s surface (Merrill and McFadden, 1999).

Hence even if the signal were to be of internal source one would not, on this basis, expect to be

able to measure it. As an alternative, conductivity inhomogeneities could distort the magnetic

signal as it passed through the mantle, causing localised apparent field movement. Whether or
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not this is likely remains to be investigated.

Almost all documented field reversals are preceded by a period of low intensity, of

about 10–20% of the pre-transitional field (Merrill and McFadden, 1990), presumably making

the dynamo unstable. In many cases, for example in the data from Steens Mountain, Kauai

(Hawaii) (Bogue and Paul, 1993) or La Palma (Canary Islands) (Valet et al., 1999) where such

transitions have been adequately recorded by lava flows, the post-transitional field intensity is

higher than average. This state could either be a transient phenomenon associated with a reversal

(Bogue, 2001) or the start of a slow decay over time (as in the controversial sawtooth pattern of

Valet and Meynadier (1993); the higher the peak the longer the time until the next transition).

In both cases there is evidence of swift field recovery after reversal in 1–10 Ka. In the sawtooth

pattern, the post-transitional field is stable and slowly decays, presumably dominated by an axial

dipole. This stability is also found in the data from Kauai and La Palma, although the high

intensity lasts around 10Ka and 100Ka respectively (although only the latter time is long enough

to be consistent with the sawtooth pattern). In contrast, records from Steens Mountain show that

the field is more variable after the reversal than before; thus the newly established dynamo was

unstable (see Bogue, 2001, for a comparison).

In virtually every case paleomagnetic measurements yield the direction of the ancient

field at the sampling site. From values of the declination and inclination (the dip angle of the

magnetic field below horizontal) the orientation of a simple dipole field that would reproduce

such readings can be determined. If the field was purely dipolar then this process would exactly

capture the true field. In addition, different locations would agree; the fact that such calcula-

tions produce different virtual geomagnetic dipoles depending on the sampling location means

that the transitional field is highly complex and not dominated by the usual dipolar structure.

Nonetheless, if there are sufficient readings at different points in time, we may track the virtual

geomagnetic pole (VGP) during a reversal. The paths that the VGPs have taken have been linked

to lower mantle heterogeneities (Laj et al., 1991), although a recent study (Valet and Herrero-

Bervera, 2003) suggests there is insufficient evidence to substantiate preferred longitudes.

The basic picture of reversals emerging is this:

1. The intensity before and during a reversal is low, about 10–20% of the pre-transitional

field.

2. The reversals are highly complex, dominated by non-axial dipole fields and take on aver-

age 4600 yrs.

3. After the reversal the field intensity recovers very fast by some transient mechanism, in
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about 1-10 Ka, although the stability of this post-transitional state seems variable.

1.4 The field at Epoch 2000

Satellite measurements of the Earth’s magnetic field can be downwards continued to the core-

mantle boundary (CMB) under various assumptions. In this way we can produce maps of the

field at the edge of the dynamo region. The method is essentially that of a least squares fitting of

the data to a model that gives the field at any point above the CMB. See Appendix A for details.

Figure 1.2 shows a contour map of the radial component of field at the CMB on 1st January

2000 (orange is positive, blue negative; continents are plotted for reference). Strong colours

indicate an increased density of field lines (field flux). The field is principally a dipole, with

field lines leaving the core in the southern hemisphere and returning in the northern hemisphere.

The picture is complicated somewhat by patches of reversed flux, for example, those beneath the

southern Atlantic.

Figure 1.2: The radial component of the Earth’s magnetic field at epoch 2000. Contour interval
is 200 µT. Orange is positive, blue is negative.

The radial component of field is the only quantity that is guaranteed to be continuous

across the CMB interface. Due to the possible presence of a current sheet, the other components

will not necessarily be indicative of the field at the (inside) edge of the outer core (Jacobs, 1987).

The field at the Earth’s surface can be approximated by the superposition of three

mutually perpendicular dipoles. Table 1.1 shows the strength of each component, derived from

the analysis in Appendix A.

The axial dipole component dominates by around an order of magnitude, and such val-

ues will be used in subsequent chapters to scale theoretically modelled fields to the geophysical

case.
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Dipole orientation Associated north magnetic pole Magnitude (nT)
Axial θ � 0 -29616.31
Equatorial θ � π

�
2 � φ � π

�
2 5185.72

Equatorial θ � π
�
2 � φ � 0 -1729.10

Table 1.1: Strength of each dipole component and the locations of the associated north magnetic
pole. Coordinates are colatitude

�
θ � and longitude

�
φ � .

1.5 Thesis outline

This thesis is concerned with the possible mechanisms of generating magnetic field inside the

liquid outer core. In order to make progress, we use the kinematic assumption, whereby we

impose some geophysically motivated flow structure in the outer core and determine whether

or not magnetic fields are unstable, that is, will a small ‘seed’ field grow? We address this

problem in three different ways: standard linear eigenvalue methods, the onset of magnetic

energy growth and finite time growth of magnetic energy. These three schemes differ in general

due to a property termed non-normality of the controlling system. In chapter two we detail the

advances that have been made to date, mostly in the eigenmode formulation, which suffers from

its sensitivity on the exact choice of the particular flow used, indicating that robust physical

mechanisms describing such field growth are hard to find.

Chapter three discusses the more theoretical issues appropriate to our study, in particu-

lar the defining equations and subsequent manipulations that we shall base our numerical studies

on. Chapter four details the numerical techniques that we use, including a fully spectral Galerkin

method. Calculations relating to the onset of magnetic energy instability are presented in chap-

ter five. We find excellently converged results that indicate a robust magnetic energy generation

mechanism associated with the stretching of field lines. Whether or not such growth continues

however is addressed in chapter six, where we investigate how large magnetic energy can be-

come before its eventual decay, in the cases where it is not infinitely sustainable. We find that

for a geophysical choice of flow, Earth-like axisymmetric dipolar fields may grow sufficiently

large as to introduce non-linear effects, signalling the demise of the kinematic assumption. Al-

though the theorem of Cowling (1933) prohibits infinite sustenance of such fields, their finite

time behaviour could be of crucial importance in the geodynamo.
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Chapter 2

Kinematic dynamo modelling

2.1 Introduction

Dynamos exist. One can buy them in shops.

“What”, one may ask, “is all the fuss about?” (Roberts, 1992)

Dynamos can indeed be bought from shops (e.g. to power bicycle lights) and are essentially

electrical motors run in reverse, turning mechanical energy into electric currents. Associated

with every current is a magnetic field, for example, as manifested in concentric circular field lines

surrounding a current carrying wire. Thus producing magnetic field and current are essentially

one and the same, and it would therefore appear that generating magnetic fields is an easy task.

Extending the argument, perhaps the same can be said of the Earth’s core?

However, the geometry crucially differs between the two cases: in the motor-dynamo

the current is forced to flow in directions dictated by the wires and moreover the circuit is not

simply-connected, i.e. at all times there is not necessarily a path joining every point to every

other in the circuit. In the Earth the situation is much more simple: currents may flow at all

times in any direction that they so choose. It is quite possible however that these may short-

circuit, thus completely ruling out dynamo action. It is certainly not obvious that a dynamo can

operate in such a simple geometry.

2.2 Equations of Electromagnetism

2.2.1 Maxwell’s equations

Maxwell’s equations governing the behaviour of a magnetic field and its associated electric field

in a moving conducting medium have been documented extensively elsewhere (see Davidson,
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2001; Roberts, 1994, for example). In fact since the relevant velocities in the magnetohydro-

dynamic problem applicable to the Earth’s core are very much less than the speed of light we

may use the pre-Maxwell equations, a simpler subset. These describe the relation between the

magnetic field B, the electric field E, the current density J and the time t:

µ0 J ����� B (2.1a)

��� E ��� ∂B
∂ t

(2.1b)

��� B � 0 (2.1c)

The value µ0
� 4π � 10 � 7H m � 1 is the permeability of free space. Ampère’s law (equation 2.1a)

describes the magnetic field associated with an electric current. A simple example of this is

the concentric circular field lines surrounding a straight current carrying wire. Faraday’s law

(equation 2.1b) relates a changing magnetic field with an induced electric field. For example,

moving a magnet towards and away from a fixed wire will cause an electric field to be induced

and therefore a current will flow if the circuit is closed. The solenoidal condition of equation

(2.1c) can be expressed in integral form as

	
∂V

B � dS � 0 (2.2)

for the boundary ∂V of any volume V . This law therefore excludes monopolar fields since they

have no angular dependence and cannot satisfy relation (2.2) unless identically zero. The above

three laws require a closure relation which is taken as Ohm’s law. In general, the conductor will

be moving with velocity u so it is written in the form

J � σ
�
E � u � B � (2.3)

where σ is the electrical conductivity. This can be simply understood as the current being propor-

tional to the electric field but with an extra inductive term due to the movement of the conductor

through the magnetic field.

The Earth’s dynamo is called self-sustaining (it has no external energy sources) and

homogeneous (it is simply connected and has isotropic conductivity). Currents flowing in the

core generate heat due to Ohmic dissipation: this represents a drain on the system and without

any generation process the magnetic field would decay. The mechanism by which the dynamo

maintains the field can be understood in the following way. Motion in the outer core across
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magnetic field lines induces currents (Ohm’s law) that have their own field associated with them

(Ampère’s law). If the generated field reinforces the existing field then self-exciting dynamo

action can occur (the process needs no external sources apart from a ‘seed field’ to get it started).

If not then the dynamo will fail and the field will decay.

At first glance, given a ‘seed field’ this mechanism appears to be able to magnify the

magnetic field indefinitely; indeed in theory this could occur. However, the increase in magnetic

energy comes at the expense of the kinetic energy of the fluid; in particular the magnetic field

exerts a Lorentz force on the conducting fluid so that not only has the fluid to do extra work

against this magnetic ‘resistance’, but in general this force will also modify the flow pattern over

time.

2.2.2 The induction equation

It is instructive (and sufficient) to consider only the evolution of the magnetic field since all other

relevant quantities can be derived where needed using equations (2.1) above. By eliminating the

electric field and current density, we arrive at the magnetic induction equation describing the rate

of change of B in a conducting fluid moving with velocity u:

∂B
∂ t

����� �
u � B � � ��� �

η ��� B � (2.4)

where the magnetic diffusivity is denoted η � �
µ0 σ � � 1. In the case of constant finite magnetic

diffusivity we may non-dimensionalise equation (2.4) by typical scales of length
�

, of velocity
�

and (magnetic diffusion) time
� 2 �

η to obtain:

∂B
∂ t

� Rm
��� �

u � B � � ∇2B (2.5)

where we write � � � � � � � � � ∇2. The magnetic Reynolds number Rm is defined to be
��� �

η and is the ratio between the action of the flow and diffusive terms. When Rm
� 0 the

equation remaining is analogous to a scalar diffusion equation: indeed in this case the magnetic

field energy exponentially decays with a nondimensional e-folding time of 1
�
π 2 (e.g. Backus,

1958). In the other extreme when Rm � ∞, the magnetic field lines become frozen into the

fluid (see e.g. Roberts, 1967). This is a useful picture to have: in this sense Rm is a measure of

how much the fluid grips the magnetic field lines as it moves around. More precisely, it is the

magnetic flux through any closed contour in the fluid that is conserved in this so called ‘frozen

flux‘ limit; this gives a useful way of describing how magnetic field is generated. Consider a
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bundle of magnetic field lines having a cross sectional area A. Suppose the fluid motion stretches

the bundle; if the fluid is incompressible then A must decrease and hence the field intensity must

locally increase, since the flux must remain constant.

2.3 The general dynamo problem

2.3.1 The Navier-Stokes equations

In general the flow u of the conducting medium must be derived from the Navier-Stokes equa-

tions in a rotating frame of reference. The medium is usually, but not always, taken as incom-

pressible except that we allow density differences to drive convection (the Boussinesq approxi-

mation). In addition, since the geodynamo is driven by chemical and thermal energy sources we

must also solve the relevant equations for these quantities simultaneously. On the simplification

that only heat is important in convection, the following formidable set of magneto-hydrodynamic

(MHD) equations (Fearn, 1998) must be solved:

Ro

�
∂u
∂ t

�
�
u � � � u � � ẑ � u � � � Π � qRaT r � E∇2u �

� ��� B � � B (2.6a)

∂B
∂ t

����� �
u � B � � ∇2B (2.6b)

∂T
∂ t

�
�
u � � � T � q∇2T � h (2.6c)

��� B � 0 ��� u � 0 (2.6d)

The scalar function Π is the generalised pressure, the vector ẑ is a unit vector in the direction of

the Earth’s angular velocity, T is the temperature, r is the position vector and h are the thermal

sources. The nondimensional parameters appearing give the strengths of various effects relative

to the Coriolis force (written non-dimensionally as ẑ � u) and are: the modified Rayleigh number

Ra (the vigour of convection), the Rossby number Ro (the importance of inertial effects), the Ek-

man number E (the importance of viscosity) and the Roberts number q (a ratio of diffusivities).

The definitions are

Ra
� g0αβ r2

o

2Ωκ
Ro

� η
2Ωr2

o
(2.7a)

E � ν
2Ωr2

o
q � κ

η
(2.7b)

where the gravitational force is � g0 r, α is the thermal expansion coefficient, β is the maximum

temperature gradient, ro is the radius of the outer core, Ω is the Earth’s rotation rate, κ is the
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thermal diffusivity and ν is the viscosity. The parameters take on typical values of Ro
� 10 � 9,

q � 10 � 5, E � 10 � 15 and Ra
� 108 (although this is largely unknown).

Although at first sight the minuscule size of E would seem to simplify the problem

since the viscous force could be neglected, it transpires that such a simplification does not work

and we need to include very thin boundary layers, far beyond the resolution of any current

simulations. It is for this reason that numerical work is currently limited by the size of the

Ekman number. Typical simulations use E � 10 � 3 � 10 � 6 corresponding to the viscosity of the

liquid outer core being many orders of magnitude too high (for a review see Kono and Roberts,

2002). Notice that in this non-dimensionalisation the magnetic Reynolds number is determined

a posteriori from the computed flow so that it does not appear as an adjustable parameter in the

model. This is also true of the Elsasser number Λ, measuring the nondimensional size of the

magnetic field.

2.3.2 The Lorentz force

In equations (2.6) the magnetic field is allowed to affect the flow via the Lorentz force, written

non-dimensionally as
� � � B � � B. It is quadratic in the size of B and note that it is pointwise

perpendicular to the field producing it. There is no reason to suppose that even though B might

be large the same can be said of the Lorentz force, since for example, it might identically vanish

if the electric current (proportional to � � B) happened to be parallel to the magnetic field. There

is little a priori known about the size and effect of the Lorentz force associated with a kinematic

dynamo; instead it must be computed from the generated magnetic field after the computation.

It may be re-written in the following way:

� ��� B � � B � � 1
2
� �

B2 � �
�
B � � � B (2.8)

The first term on the right hand side is a magnetic pressure and may be incorporated into the

general pressure expression Π. The second term represents a tension in the magnetic field lines

that exerts a force on the fluid.

2.3.3 A few comments on energy

The geometry of the system considered is that of a sphere V (the core) containing fluid of con-

stant magnetic diffusivity that moves with a velocity u; the external region (the mantle) denoted

V̂ is modelled as a quiescent electrical insulator. Taking the inner product of the non-dimensional

induction equation (equation 2.6b) with B and integrating over all space yields the relation (see
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chapter three for details)

1
2

d
dt

	
V � V̂

B2 dV � 	
V

B � ��� �
u � B � dV �

	
V

� ��� B
� 2 dV (2.9)

When the flow is quiescent (u � 0) the total magnetic energy of the system monoton-

ically decays and is lost to Ohmic heating representing a drain on the system. The generation

term (first on the right hand side) is responsible for matching this loss and may be rewritten in

the case where the flow vanishes on the boundary of the region as

	
V

B � ��� �
u � B � dV ��� 	

V
u � � ��� B � � BdV (2.10)

This is identical to the work done in the Navier-Stokes equation by the flow against the Lorentz

force. Hence no energy is lost in the system by the dynamo mechanism: energy is converted

faithfully between magnetic and kinetic forms. One might expect because of Lenz’s law 1 that

the system will always oppose change of magnetic flux so that the two equivalent energy forms

in (equation 2.10) are positive. That is, the fluid always does work on the magnetic field and

always represents a drain on the kinetic energy. This is demonstrably true as calculations in

chapter six indicate. Another noteworthy point is that the magnetic pressure does no work on the

system (indeed neither does the general pressure) if the flow is incompressible and the flow has

a vanishing normal component on the boundary.

	
V

u � � ΠdV �
	

∂V
Πu � dS � 0 (2.11)

Hence only the maxwell tension effects the energy of the flow.

2.3.4 Rationale of the kinematic assumption

The general magnetohydrodynamical (MHD) problem of solving simultaneously for u, B and T

is formidable and has not yet been performed in a parameter regime comparable to the Earth.

Indeed, resolving the Ekman boundary layers adequately may take many years of computational

improvement to achieve. Despite full MHD simulations successfully showing many Earth-like

characteristics such as the correct field strength and even magnetic reversals, there is no guar-

antee that these features will remain robust as the parameters tend towards their geophysical

values. Indeed, there is concern that dynamo action may disappear as the magnetic Prandtl num-

1Lenz’s law states that an electric current induced by a changing magnetic field is associated with an magnetic
field that resists the change. This means that if B is increasing, the system will try to slow the change by creating a
Lorentz force that acts against the flow thereby slowing the generation.
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ber, Pm
� ν

�
η , decreases from typical simulation values of O

�
1 � to Earth-like values of O

�
10 � 6 �

due to enhanced Ohmic dissipation.

In any event, the numerical solutions obtained are extremely complicated and are not

easily understood in terms of known concepts. There is therefore a gap for simple models ex-

plaining not only why such a dynamo might exist in the Earth’s core, but how it might operate.

Kinematic models treat the flow u as prescribed and (typically) stationary so that the induction

equation may be solved in isolation. This assumption makes the problem simpler because the

Navier-Stokes equations no longer need to be solved; in addition the system is linear in B since

the Lorentz force is neglected. The rationale behind this simplification is to study and learn how

magnetic fields can be generated by simple flows; the fact that this has turned out harder than

expected (see next section) leads to an increased justification in this isolated study. It is hoped

that from these simple models some insight might be gained into generic dynamo processes with

application not only to the Earth but to other planets and stars having some kind of dynamo

mechanism. In addition, by comparing calculated fields with their geophysical counterparts we

might be able to constrain the types of flow that generate Earth-like features without solving the

full Navier-Stokes equations.

2.4 The kinematic dynamo problem

The kinematic dynamo problem that we shall consider is the following. A sphere V of radius
�

contains fluid of constant conductivity σ that moves with prescribed velocity u and is embedded

in an infinite insulator V̂ . If the flow can be physically motivated we assume it to be a (usually

steady) solution of the full (non-magnetic) Navier-Stokes equations perhaps with some kind of

extra forcing term. The assumption that the Lorentz force should be neglected is only valid with

a vanishingly small magnetic field. Fortunately the induction equation is linear in B so that any

dynamo mechanism is independent of its magnitude. We therefore formulate the problem as one

of an instability from a non-magnetic base state and pose the question: ‘can a small adventitious

seed field grow in such a flow?’.

Here we are more interested in whether an infinitesimal field can grow and not whether

a finite steady field can be maintained. Such an extension is clearly possible although we would

start to move away for the true physical system due to the finite Lorentz force.

Geophysically, the sphere of moving fluid represents the liquid outer core; in general a

solid inner core may be modelled by prescribing a quiescent region in its centre. The assumption

that the conductivity is constant stems from the belief that the outer core is well mixed. Although
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the mantle is not a perfect insulator its conductivity is around four–five orders of magnitude

less than that of the core, so this assumption is a fair approximation. Typical estimates are 10

Sm � 1 for the lower mantle (Shankland et al., 1993) compared to 5 � 105 Sm � 1 for the outer core

(Gubbins and Roberts, 1987).

The problem is then to solve the (non-dimensional) induction equation (equation 2.12)

∂B
∂ t

� Rm
��� �

u � B � � ∇2B (2.12)

as previously discussed, subject to the conditions that the field is everywhere divergence-free,

finite and perhaps most importantly in the geophysical case, that the field must be self-generated:

all external sources of energy are excluded. We note that in this nondimensional system, the

sphere V is of radius 1. For a given u and Rm we seek growing field solutions.

In the case of the Earth, η � 2m2 �
s,
� � 10 � 4m

�
s and

� � 3485 � 103m so that Rm �
200. Clearly there is a vast amount of uncertainty in this figure which is attributed particularly

to the poorly constrained velocity estimate. Geophysically relevant values of Rm are therefore

probably in the range 0–1000.

2.4.1 Some notation

We now introduce some notation that will facilitate a review of kinematic dynamos to date; full

details are presented in chapter three.

In order to satisfy the solenoidal condition, following Elsasser (1946) we typically

expand the magnetic field in poloidal (S � and toroidal (T) form B � S � T where

S � ��� ����� S �
r � r̂ � (2.13)

T � ����� T �
r � r̂ � (2.14)

We use spherical polar coordinates
�
r� θ � φ � and denote the position vector by r � r r̂. Note that

toroidal vectors have no radial component (see chapter three). It is immediately apparent that

any field of this form will have zero divergence. In addition, the defining scalar functions of

position, S and T , are typically expanded in terms of spherical harmonics defined as

Y m
l

�
θ � φ � � Pm

l

�
cos θ �

���� sinmφ

cos mφ

	�

� (2.15)

The functions of colatitude, Pm
l , are the associated Legendre functions. For ease of notation we
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use the Greek letters to denote a particular harmonic, corresponding to a choice of l, m and the

sine or cosine function in azimuth. We can represent, for example, the poloidal part of the field

in terms of ‘vector spherical harmonics’ where the scalar functions are unknown:

S � ∑
α

��� �����Yα
�
θ � φ � Sα

�
r � r̂ � (2.16)

In addition, when writing axisymmetric vectors such as S0
1, we omit the unnecessary superscript

of 0. The flows that we study will be incompressible, an assumption reasonable for the Earth

where the density difference across the fluid outer core is around 1.2 (from the Preliminary

Earth Model, Dziewonski and Anderson, 1981). The flow u is therefore divergence free and

we write u � s � t for the poloidal and toroidal components respectively (always using lower

case). We refer to vector spherical harmonics in an identical way to those for the magnetic field.

It transpires that the condition that the magnetic field is self-generating (due only to internal

sources) may be represented easily in poloidal-toroidal form (see chapter three for details) as

d Sα
dr

�
1 � � lα Sα

�
1 � � 0 Tβ

�
1 � � 0 (2.17)

The field in the exterior V̂ is completely determined by the field on the boundary but only the

poloidal part may escape the core to be observed at the Earth’s surface; the toroidal field inside

the core is unknown. Finiteness of the field follows automatically assuming that Sα and Tβ are

well behaved and that they satisfy a certain regularity condition at the origin (see chapter three).

2.5 Anti-dynamo theorems

After the proposal of Larmor (1919) that a magnetic field might be maintained by a self-sustaining

dynamo mechanism, the subject suffered a severe blow with the publication of Cowling’s cele-

brated theorem in 1933. It essentially states that a steady axisymmetric poloidal field cannot be

maintained. Such a configuration is to be found in sunspots (the subject of the paper) where field

lines, to a first approximation, lie in planes parallel to the axis of symmetry. That the Earth’s

field is also principally of this symmetry led to his conclusion:

The theory proposed by Sir Joseph Larmor...is examined and shown to be faulty.

In subsequent years this theorem has been generalised by Hide and Palmer (1982) and Ivers

and James (1984) to include time dependent fields, compressible media and spatially dependent

diffusivity. There is however some ambiguity about how long these ill-fated axisymmetric fields



17

would take to decay in such cases. If the decay time greatly exceeds that due solely to Ohmic

dissipation (around 20,000 years in the Earth) then these systems cannot be dismissed as being

geophysically or astrophysically irrelevant. We summarise the so called anti-dynamo results as

follows (as in Roberts, 1994, p.28)

� Axisymmetric fields may not be sustained by dynamo action.

� A magnetic field that is a function of only two spatial coordinates cannot be sustained.

� A toroidal flow may not maintain any magnetic field.

� An incompressible motion in which uz
� 0 for some Cartesian coordinate system

�
x � y � z �

may not maintain any magnetic field.

� In a sphere, a velocity having only a radial component cannot maintain a magnetic field.

In summary, if the flow or field is too simplistic or has too much symmetry then a

dynamo cannot operate. It is important however to realise what is not included in the above

negative results. For example, non-axisymmetric fields may be maintained by axisymmetric (or

non-axisymmetric) flows. There is also no poloidal counterpart to the toroidal flow theorem: a

poloidal flow may generate a magnetic field (Love and Gubbins, 1996a). It is unfortunate though

that working homogeneous dynamos are necessarily complex in structure and a simple model of

the Earth cannot be constructed.

2.6 A review of kinematic modelling

2.6.1 After Cowling’s theorem

It was some time after the publication of Cowling’s theorem that any progress was made on the

Earth’s dynamo problem. Simple axisymmetric fields were ruled out and so was, perhaps, a

self-sustaining mechanism in the Earth’s core. It was not known whether a general anti-dynamo

theorem might exist thus ruling out any kind of generative mechanism altogether. An outstanding

problem though was that of explaining the observed secular variation: the Earth’s field varied on

a timescale of years, whereas it was known that the magnetic field would take tens of thousands

of years to decay freely. Elsasser (1947) was the first to suggest that a complex mechanism

might be taking place within the outer core, converting magnetic field between symmetries thus

breaking the constraints of Cowling’s theorem. He suggested that differential rotation could

convert an axisymmetric dipole field, represented by the S1 vector harmonic, into T2. Figure 2.1
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(a)

S1

(b)
T2

Figure 2.1: The effect of a t1 flow on an S1 axial dipole field. The sphere is viewed side on and
the field lines are stretched by the differential rotation, being faster midstream than towards the
boundaries (picture a). The field component T2 is created, amongst others (picture b).

shows a schematic diagram depicting this effect. The S1 field is sheared by differential rotation,

that is, a flow with no radial component whose velocity differs from that of a rotating solid body

so that over time fluid particles move apart from each other. In this case the flow is faster at the

equator than towards the poles, so the axial field is stretched as shown in figure 2.1(a). This new

field has a T2 component, shown in figure 2.1(b). The problem remained of how to close the

loop, that is, how to change the newly created T2 field back into S1 so that the process might

continue indefinitely. Note that reversing the flow will not work: a toroidal field can never be

sheared by a toroidal flow to create poloidal field.

Of the two mechanisms he suggested, namely turbulence and tilted flows, the latter

was pursued by Bullard (1949) who argued qualitatively that a flow component s2c
2 (describing

a tilted convection roll) might be sufficient to regenerate the axial dipole field. Figure 2.2 shows

a schematic picture of this process. Solid arrows show the effect on the field of the t1 flow;

dashed arrows show the effect of the flow component s2c
2 . Thus an S1 field, if acted upon in this

manner, might be sustained creating byproducts of T2, T2s
2 and T2c

2 fields enroute. The emphasis

at this time was on finding a mechanism whereby the principally observed geophysical field

component
�
S1 � could be sustained; no attention was given to other field symmetries. Since

this four component field is not axisymmetric, Cowling’s theorem does not apply and the idea is

plausible.

The choice of the t1 s2c
2 flow was geophysically motivated by differential rotation and

convection. Bullard (1949) suggested that radial motions stirred the outer core due to buoy-

ant material rising. If a density difference existed between the upper and lower layers of the

outer core then an angular momentum argument could be invoked to suggest that the inner sec-
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T2c

T

T2s

S

2 2

1 2

Figure 2.2: The interactions between the lowest degree harmonics involving the axial dipole S1
which forms a closed loop. Solid arrows denote coupling by t1 motion; dotted by s2c

2 . If all
links of this chain work at some non-zero rate then the axial dipole harmonic could be infinitely
sustained by this process.

tion would be accelerated and the outer section decelerated relative to the mantle; in this way,

differential rotation could arise.

2.6.2 The Bullard and Gellman model

The first quantitative model of a self-sustaining process taking place inside the Earth’s core was

proposed by Takeuchi and Shimazu (1953). This work was closely followed by Bullard and

Gellman (1954) (henceforth BG); both papers extended the suggestions of Elsasser and Bullard

that if a flow was chosen carefully, through a sequence of interactions the original field might

be amplified and lead to a self-sustaining process. We introduce the terminology of BG below

although it is largely similar to the Japanese work published a year previously.

In order to solve the induction equation, BG expanded the unknown field in vector

spherical harmonics:

B � ∑
γ

Sγ � Tγ (2.18)

In order to derive differential equations for the unknown defining scalar functions, they took the

dot product of the induction equation (using the same vector harmonics) with scalar functions

of unit dependence, and integrated over a spherical shell of radius r. If the velocity is chosen

to be a finite sum of vector spherical harmonics (in this case t1 and s2c
2 ) with prescribed radial

behaviour then

N2
γ

∂ Bγ

∂ t
� Rm ∑

α � β
�
uα Bβ Bγ � � N2

γ � ∂ 2Bγ

∂ r2
� lγ

�
lγ � 1 � Bγ

r2 � (2.19)

In this formula, Bγ denotes an arbitrary vector harmonic scalar of B (both toroidal and poloidal
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parts); uα denotes the same of u. The value N2
γ is a normalisation factor associated with the

vector spherical harmonics that are orthogonal (see chapter three). The interactions between the

flow u � ∑α uα and the magnetic field B � ∑β Bβ are represented in the term

Rm

�
uα Bβ Bγ � � Rm

	 ��� �
uα
� Bβ � � Bγ dΩ (2.20)

and are fully evaluated in BG, involving the unknown field scalar functions and integrals between

the three spherical harmonics involved. This leads to a large simplification for certain flows since

the interaction relation decouples the field into disjoint sets. That is, no field component in one

set can interact with the flow to produce any field component in another; therefore each set

of field harmonics can be studied independently. BG listed selection rules that govern which

interactions are non-zero; they are omitted here for brevity but detailed in chapter three.

In general a disjoint set containing a particular harmonic is an infinite subset of the

complete set of harmonics. However, it is assumed (and hoped) that only the large scales are

important and so the set is truncated in some way, keeping for example, only those harmonics

with l � L. Both BG and Takeuchi and Shimazu initially truncated their set containing the axial

dipole at L � 2, keeping only the harmonics S1, T2, T2c
2 and T2s

2 .

After choosing a flow u, (equation 2.19) defines the set of differential equations that

must be solved. The original procedure followed was to seek steady fields, which converts these

equations into a generalised eigenvalue problem for Rm; a steady solution was manifested by the

existence of a real eigenvalue. Using the boundary conditions pertaining to the self-sustaining

problem, the four resulting ordinary differential equations describing the four harmonic scalar

functions were solved using the finite difference method, essentially solving for the unknown

functions at certain grid points. The velocity chosen for both the Japanese and English studies

was defined by

t1
�
r � � εr2 �

1 � r � s2c
2

� r3 �
1 � r � 2 (2.21)

where ε is an adjustable parameter. No inner core was included in the flow pattern to make it

as simple as possible. In both cases real eigenvalues were found for Rm which didn’t appear to

be affected greatly by changing the harmonic truncation, at least within the limited computer re-

sources available at that time. Thus it had appeared that a working dynamo had been discovered:

the combinations of the differential rotation t1 and the tilted convection roll s2c
2 was such that a

(non-axisymmetric) steady field could be maintained with an Earth-like S1 component. How-

ever, 13 years later a repeat of the calculations (Gibson and Roberts, 1967) at higher resolution

showed that the positive dynamo action found was spurious: the results were merely an artifact
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of the inadequate numerical method used and not of the underlying physics. The question of the

possibility of dynamo action in a homogeneous conducting sphere was again re-opened.

2.6.3 Non geophysical dynamos

The work of Backus (1958) and Herzenberg (1958) strengthened the belief that dynamo action

was possible by studies of analytical models. The problem with the induction effect is that

for any length scale, successively smaller scales will be created by the fluid-field interactions.

Numerically it is hoped that on increasing the resolution, the solution converges sufficiently

quickly to be captured with the available computing resources. Both of these dynamos use

diffusive effects to kill off the small scale fields: the Backus dynamo by periods of stasis and

the Herzenberg dynamo by spatial attenuation. Neither of these solutions would be a possible

candidate for the Earth; this was evidence however that no generalised anti-dynamo theorem

existed.

The study of the dynamo problem in a sphere was also complimented by calculations

in other geometries. Analytical solutions of working dynamos in a cylindrical helical flow were

published by Lortz (1968) and Ponomarenko (1973). Roberts (1970; 1972a) studied infinite

spatially periodic dynamos, and found that almost all motions gave rise to dynamo action for

almost all values of Rm. An important outcome of these works in both cylindrical and periodic

geometries was that flows that depended only on either one or two spatial coordinates could

maintain a magnetic field so long as the field itself depended on all three. This was real evidence

that not only was it possible to find flows that worked as dynamos but that it was relatively easy

to do so, completely ruling any generalised anti-dynamo theorem. Of course, such geometries

were far from geophysical and the lack of spherical boundary conditions turned out to be very

important.

2.6.4 Further work on spherical dynamos

The BG choice of flow harmonics was called into question by the analysis of Braginsky (1965)

and Tough (1967) who studied the induction equation in a well defined nearly-axisymmetric

limit. They showed that in order to obtain a working dynamo, any non-axisymmetric poloidal

flow component would have to contain both sine and cosine functions of azimuth, although

strictly this was only valid if the flow was a small perturbation to t1. This was addressed by

Lilley (1970) who studied the flow u � t1 � s2c
2 � s2s

2 and found ostensibly converged growing

magnetic field solutions. The fact that he had succeeded where BG had failed gave support to

the perturbation analysis. Unfortunately, later workers yet again discovered his results to be
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unconverged.

The first converged solutions to the kinematic dynamo problem were presented by

Gubbins (1973), Pekeris et al. (1973) and Roberts (1972b). The method of solution switched

from seeking steady solutions (leading to a generalised eigenvalue problem for Rm) to time-

dependent eigenmode solutions. In this paradigm, the assumption that B � B̂eλ t is made thereby

reducing the induction equation (equation 2.12) to an eigenvalue problem for the complex growth

rate λ . The adjustable parameter Rm was varied and the lowest value giving ℜ
�
λ � � 0 sought.

If such a value could be found (which was by no means certain) this was termed the critical

magnetic Reynolds number
�
Rc

m � . It is entirely possible that ℑ
�
λ � �� 0 in this critical state so

that the dynamo would be oscillatory. Such behaviour cannot be captured assuming a steady

field which might partially explain the convergence problems of previous authors. Gubbins

studied the flow u � tn � ε sn where the radial scalar functions were chosen to have a cellular

structure whose complexity was governed by the parameter n (also defining the degree of the

vector spherical harmonics)

sn
�
r � � εtn

�
r � � � r2 sin

�
nπr � tanh

�
nπ

�
1 � r � � (2.22)

He found that a greater flow complexity favoured dynamo action, i.e. the critical value of Rm

was smaller. The flow component sn represents an axisymmetric meridional overturn motion

and the tn component some kind of differential rotation. Since the flow is axisymmetric the

field symmetries separate in azimuthal wave number by the selection rules of BG. The m � 0

(axisymmetric) fields must necessarily decay by Cowling’s theorem so the growing fields he

found were functions of some non-zero wave number m. In fact the solutions were dominated

by an m � 1 dipole aligned with an axis through the equator (that is, perpendicular to the present-

day geomagnetic configuration).

Flows comprising azimuthal wave numbers m of any multiple of 2 (including m � 0)

are a popular choice for study since the field symmetry class that includes the axial dipole har-

monic S1 also includes harmonics of m � 2 � 4 � 6 � � � . This means that Cowling’s theorem does not

apply and geophysically relevant field solutions can be obtained, assuming that the S1 harmonic

dominates the field. It was this fact that partially motivated the choice of BG and also that of

Pekeris et al. (1973). They chose a flow that was quasi-geophysically motivated by satisfying

the equation
�
u � � � u � � � p � F (2.23)

which is the steady Navier-Stokes equation with no Lorentz, Coriolis or viscous forces but in-
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stead a prescribed forcing F. Solutions to this are given by flows of the form � � u � τu, where

τ describes the sign of helicity h � u � ��� u (the chirality of the flow spirals). The form of the

defining scalar functions is

sα
�
r � � τ r jα

�
τ r � tα

�
r � � τ sα

�
r � (2.24)

where jα is a spherical Bessel function of order α (see Abramowitz and Stegun, 1984). Their

flow comprised only two components: one poloidal and one toroidal involving just one spherical

harmonic. Interestingly, they found converged solutions when taking a Y 2c
2 dependence in con-

trast with the perturbation analysis of Tough and Braginsky. They obtained growing eigenmode

solutions containing the axial dipole which had energy roughly equally distributed between its

toroidal and poloidal parts. Calculations involving a solid inner core showed very similar results

to those without, thus mitigating the simplification of a full liquid sphere usually made. They

also noted that there was a problem with the somewhat arbitrary choice of flow configuration,

so they computed the flow that had a growing magnetic field with minimal Ohmic dissipation

(from among those in their study), which might be naturally selected on geophysical grounds.

The minimum value was 1.8 GW, well within the geophysical bounds of 1–2 TW (Roberts et al.,

2003) and 0.1–0.5 TW (Buffett, 2002a).

2.6.5 Work based on the flow of Kumar and Roberts

Kumar and Roberts (1975) (henceforth KR) studied the flow with four components:

u � t1 � ε1s2 � ε2s2c
2 � ε3s2s

2 (2.25)

where the values of ε1 � ε2 and ε3 are adjustable; this flow has been the basis of many studies

of kinematic dynamo action to date. Following the previous study of Lilley both s2c
2 and s2c

2

terms representing tilted convection rolls were included. The t1 component again represented

an azimuthal differential rotation and the s2 a meridional circulation. This choice of flow also

precludes Cowling’s theorem from applying to the symmetry class containing the axial dipole

harmonic since it also includes all even azimuthal wave numbers. They found converged field

solutions containing the axial dipole, and followed Gubbins (1973) in checking not only conver-

gence of the eigenvalues but of the eigenvectors as well. Again, increasing the spatial complexity

favoured more efficient dynamo action. They also found that the direction of the flow compo-

nents (i.e. the sign of the values of εi) was crucial in determining the symmetry of the growing
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magnetic field (a result similar to Roberts (1972b)). The geophysically scaled fields of dipole

symmetry had an Ohmic dissipation of around 1TW which is physically plausible.

In an exhaustive study of the same flow by Sarson and Gubbins (1996), it was found

that steady magnetic field solutions were favoured with strong meridional circulation. The inclu-

sion of a solid inner core introduced significant changes in the field solutions (in contrast with

the study of Pekeris et al. (1973)); the fact that different symmetries adapted in different ways led

to the possibility that the inner core might play a role in field symmetry selection. Interestingly,

little change was observed on altering the inner core from an insulator to a conductor, in contrast

to recent simulations that suggest that a conducting inner core might stabilise the dynamo (e.g.

Hollerbach and Jones, 1993). In an earlier study based on the same flow, Gubbins and Sarson

(1994) attributed flux concentrations on the CMB and favoured VGP paths to downwelling re-

gions possibly leading to inferences about the actual motion in the outer core from geophysical

observations.

To some extent the KR flow resembles the spiralling convection rolls observed in non-

magneto convection. Sarson and Busse (1998) extended previous studies and found that when

the sense of the spiralling and zonal flow was that which is physically preferred, dipole symmetry

was favoured. This supported all the earlier studies that indicated that dynamo solutions of this

symmetry were easily found and perhaps going some way to explaining the Earth’s magnetic

field structure in a robust manner.

In the comprehensive parameter study of the KR flow by Gubbins et al. (2000a;b) and

by Gubbins and Gibbons (2002), it was found that (a) there is a critical dependence of kinematic

dynamo action on the exact the choice of flow (b) large scale meridional flow promotes large

scale axisymmetric poloidal fields and that it decreases the Ohmic dissipation (c) there is some

correlation between dynamo action and helicity although this is not conclusive (d) axial dipoles

are the most commonly excited field symmetry (e) meridional circulation promotes steady so-

lutions (f) if a flow manages to correlate radial and azimuthal field components then this might

lead to oscillatory behaviour and reversals. Thus flows of KR type can explain the geomagnetic

principally steady and dipolar field, by requiring strong, large scale meridional circulation.

2.6.6 Simple roll flows

Despite the correlation between increasing spatial complexity and dynamo efficiency, Dudley

and James (1989) (henceforth DJ) found growing magnetic field solutions in very simple ax-

isymmetric convection roll flows, of t1 s2, t2 s2 and t1 s1 type. Figure 2.3 shows (a) streamlines

of an s2 flow (comprising 2 convective cells: one above and one below the equator) and (b) con-
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tours of uφ (the azimuthal flow) supplying the differential rotation, being faster midstream than

at the boundaries. No growing field solutions containing the geophysically relevant axial dipole

(a) (b)

Figure 2.3: (a) Streamlines of an s2 flow in a meridian plane; (b) contours of uφ in a meridian
plane giving rise to differential rotation, the flow being stronger midstream than at the bound-
aries.

harmonic exist since the fields completely decouple in azimuthal wave number m and axisym-

metric fields are precluded. DJ only found solutions in the first two models when the sense of

meridional circulation was inwards along the equatorial plane and outwards towards the poles

(as in figure 2.3(a)), possibly reducing the expulsion of toroidal field to the boundary and con-

sequent increased Ohmic dissipation. The fact that a one cell convective flow t1 s1 can support

dynamo action dispelled beliefs that the flow had to be complex in nature, as results from the

KR literature suggested. These simple flows were analysed with those of previous authors in the

study of Nakajima and Kono (1991). They found increased dynamo efficiency with a greater

hemispherically averaged helicity (similar to that found by Gubbins et al. (2000a)).

2.6.7 The influence of an insulating boundary

Although some flows had been found that show kinematic dynamo action, many more do not.

It was not clear why a spherical geometry with an insulating exterior should inhibit growing

magnetic fields so much, especially after Roberts (1972a) had showed that almost all infinite

spatially periodic flows show dynamo action. This question was addressed by Bullard and Gub-

bins (1977) who showed that the insulating boundary condition trapped currents near the edge

of the flow region and catastrophically increased Ohmic dissipation. They suggested that this

might not be a problem if the flow near the CMB was quiescent, a topic taken up by Hutchenson

and Gubbins (1994) and Sarson and Gubbins (1996). They found the addition of a static outer

conducting region on top of the fluid core promoted dynamo action: either the critical magnetic

Reynolds number was lowered or growing magnetic fields were found when all had previously

decayed. The trapped currents could now flow outside the core region facilitating dynamo ac-
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tion, geophysically motivated by the possibility of a stably stratified layer at the top of the outer

core. It is not the case however that a monotonic increase in the static layer thickness is always

beneficial: in general there is a finite optimal depth (Kaiser and Tilgner, 1999).

2.6.8 Motivating the choice of flow

Although one of the great strengths of kinematic theory is the ability to prescribe the flow, the

lack of physical self-consistency is one of its great drawbacks. To partially mitigate this issue

Love and Gubbins (1996b) following Pekeris et al. (1973), studied the problem whereby the

dynamo efficiency, defined in terms of the critical magnetic Reynolds number and the Ohmic

dissipation produced by the growing field, was minimised over a choice of flow (in this case the

the values of ε in the KR flow). Such a method of choosing a flow has a strong basis on physical

grounds because it might be energetically favoured. They found flows that supported dynamo

action with geophysically scaled fields containing the axial dipole, producing a minimal Ohmic

dissipation of 70GW (well within the allowed bounds). A similar minimisation was carried out

by Holme (2003) who used B-splines to find the functional form of the scalars defining simple

axisymmetric flows, based on the study of DJ. He found that out of the three roll flows proposed

by DJ that the critical magnetic Reynolds number for the t2 s2 flow could be minimised the most.

A partial solution to the full Navier-Stokes equations is another way of choosing the

flow. Pekeris et al. (1973) had considered the steady state described by the balance of iner-

tia, pressure and a prescribed driving force to derive the form of their velocity. Sarson (2003)

considered the more geophysically relevant geostrophic approximation, balancing the Coriolis

force, buoyancy and pressure as a first approximation to the full equations. He derived a fully

consistent flow, and although the driving temperature profile was not geophysically plausible, it

is certainly a step closer to attaining more Earth-like flows. He found growing field solutions of

dipole symmetry in line with the studies of the KR flow.

2.6.9 Non-linear effects

In studying the linear induction equation in isolation we should be aware of as many of the non-

linear effects as possible that might be of relevance in the full problem. Both Brummell et al.

(1998) and Fuchs et al. (1999) studied the Navier-Stokes equation coupled with the induction

equation. They neglected the Coriolis force but instead supplied a forcing, chosen such that a

known kinematic dynamo flow was a steady solution when B � 0.

There is no guarantee of stability of this magnetically favourable steady state, and with

large forcing or a non-zero magnetic field the system may well move away from the desired flow.
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The results may be summarised as follows:

1. An initial magnetic field was amplified as expected, until the Lorentz force became impor-

tant. This non-linear feedback perturbed the flow and the system evolved towards another

steady solution of the Navier-Stokes equations. The final state was not a kinematic dy-

namo and the magnetic field decayed.

2. Starting with a steady state that was not a kinematic dynamo, if the initial magnetic field

was large enough, the associated Lorentz force perturbed the system into a flow regime

that supported growing fields and the magnetic field grew.

Thus the magnetic field was observed to either kill or create a kinematic dynamo. This effect

relies on multiple steady states of the Navier-Stokes equations and serves as a warning that a

growing magnetic field solution of a kinematic dynamo is only valid until the Lorentz force

becomes large.

2.6.10 Summary

In the above review, no attempt has been made to discuss the advances of mean field theory, a

vast subject in its own right describing particularly the effects of small scale turbulence, since

this thesis is only concerned with large scale flows. In any event, one might expect that since the

Earth’s field is principally large scale 2 that the underlying flow causing its maintenance is also

large scale, especially considering the size of the magnetic Prandtl number Pm
� ν

η � 10 � 6 in

the Earth (the diffusive scale of the magnetic field is much smaller than that of the fluid).

It is possible in kinematic calculations given a choice of flow, only to either

� find a converged growing magnetic field solution and so label the flow as a kinematic

dynamo.

� concede that with the computing resources available, no growing converged solution can

be found.

Thus it is impossible to rule out dynamo action with finite computing resources; however, we

can usually explore the geophysically relevant range of Rm
� 0–1000 with sufficient resolution

to achieve convergence.

Kinematic dynamo theory has had a lot of success, in particular showing:

2Models of the field at the core-mantle boundary inverted from observations can only be resolved up to degree
l � 14 due to the effects of crustal noise, so the results are necessarily large scale. Nonetheless, decreasing power
spectra (see e.g. Langel, 1987) suggest that this is the case.
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� Self-exciting dynamo action in a conducting homogeneous sphere is possible.

� Earth-like field structures can be found with partially geophysically motivated flows.

� Some links have been made between the generated fields and various flow properties, e.g.

strength of meridional circulation, locations of downwelling and helicity.

� A thin quiescent conducting layer on the top of the convecting region in the outer core

would favour dynamo action.

� Reversal mechanisms have been proposed (e.g. Sarson and Jones, 1999; Rikitake and

Hagiwara, 1968) typically appealing to a fall in meridional circulation leading to either

oscillatory behaviour or field decay. In the first case, the field reversal is automatic and

subsequent restarting of the motion perhaps would grow the field energy back to its pre-

transitional value. In the latter case the field decays to zero; a recovery in the motion leads

to kinematic dynamo action that grows the magnetic field but in the opposite polarity.

The main problems with kinematic dynamos are two-fold.

1. Assuming that the flow can be motivated physically there is still the issue of the neglected

Lorentz force. For small fields this is justified but if growth occurs this assumption be-

comes increasingly worse. Thus kinematic dynamos can only describe magnetic field

growth in a self-consistent manner until the Lorentz force becomes large. It may well

be the case that this cutoff is reached before the fastest growing eigenmode can manifest

itself, so that the eigenvectors computed may not be a good description of the geophysical

field. The effect of the Lorentz force on the system is not well understood; however, it may

well suppress differential rotation leading to enhanced heat transport efficiency across the

outer core in the full non-linear system (Busse, 2002).

2. Whether growing eigenmodes exist or not is critically dependent on the choice of flow.

For example a typical KR type flow that supports growing magnetic fields can be shown

to comprise 99% of t1 by root mean squared (rms) average over V , but t1 is excluded from

supporting dynamo action. Thus two flows, only one of which is a kinematic dynamo,

differ by just 1%. Sensitivity in the exact choice of flow is also manifested in the field

symmetry selection (Gubbins et al., 2000b) where a tiny perturbation in the flow may

lead to a different preferred symmetry. This sensitivity can be understood by the fact that

the eigenmodes must necessarily grow everywhere at the same rate (by the assumption

B � B̂eλ t ). Poloidal and toroidal shear act together to produce a growing field but their
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effect must be the the same at all points and not just on average. This means that for

example, in the case of the KR flow, that the balance between the chosen values of ε is

very delicate and so only a small subset of the possible choices allow growing fields.

The concern here is that on changing the flow slightly, either by convective processes or

by the Lorentz force, that the dynamo action would disappear. That many planets and stars

have working dynamos does not support this; indeed the Earth has maintained its magnetic

field for around 3Ga at an approximately constant magnitude and has showed no sign of

failing.

Because of the sensitivity issue there is no robust method of explaining how a kinematic

dynamo operates, for a small change may not effect the physical interpretation but it might

switch the dynamo off. There is therefore a need for a robust way of characterising mag-

netic field growth and the associated physical processes. This is one of the aims of this

thesis.

2.7 Dynamo experiments

2.7.1 Introduction

No introduction to kinematic dynamo theory would be complete without some comments on

dynamo experiments. These can be seen as a testing mechanism for not only the ideas behind

self-sustaining mechanisms but for the quantitative results from numerical calculations. The idea

is to reproduce in a laboratory, as much as possible, the flow patterns already known to exhibit

kinematic dynamo action to see if they really can be made to generate magnetic field.

Physical realisations of dynamos have many attractive characteristics over numerical

models, for not only are the physical fluid properties automatically correct, but there can be no

spurious results due to numerical inaccuracies, lack of proper boundary conditions or otherwise.

The experimental setup will be usually some variant of the following: liquid sodium is

encased in a metal container of some geometry and made to flow in a certain manner by external

forcing, usually propellers. A seed magnetic field is injected into the system by external coils

and its subsequent time evolution is tracked by Hall probes. From kinematic theory it is known

that in order to get dynamo action, the value of Rm must be sufficiently large, of O
�
10 � . This

is just about obtainable in experiments, recall that Rm
� � � �

η and sodium has the lowest

magnetic diffusivity of any liquid metal of η � 0 � 092 m2 s � 1 (at 150 � C, see Nataf , 2003). For a

typical laboratory length scale
�

of 30cm this means that we need flows of around
� � 3ms � 1
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to give Rm
� 10. This is possible, although to get much higher values of Rm is clearly difficult,

especially when considering the safety factors involved.

In contrast to the current parameter regimes addressed by current numerical simu-

lations, experiments can achieve Ekman numbers of 10 � 8 (in the rotating case, see Lathrop

et al., 2001) and magnetic Prandtl numbers of around 10 � 6, very similar to that predicted for the

Earth’s core. Unfortunately such a low value of Pm means that the kinematic Reynolds number

Re
� Rm P � 1

m is O(107) indicating strongly turbulent flow. This creates problems in visualising the

flow, for significant time-dependent departures from the large scale forced flow will occur. This

makes interpreting the results problematic since only the kinematic dynamo action of stationary

spherical flows are at all well understood. The power required to drive a given non-magnetic tur-

bulent flow scales as R3
m, all of which is converted to heat by viscous processes. The main issue

though is not putting the energy in, but rather extracting it sufficiently fast, for the conductivity

of liquid sodium decreases (and hence so does Rm) as the temperature increases. For a good

recent review of experimental work see Nataf (2003).

2.7.2 Two working dynamos

In 2000 two independent groups in Riga and Karlsruhe, working on completely different exper-

imental dynamos, announced their success. The Riga group had worked on a setup based on

the Ponomarenko (1973) helical screw dynamo, consisting essentially of a long cylindrical tube

filled with liquid sodium driven at one end by a propeller. They reported a growing magnetic

field that could be sustained in a saturation phase (where the Lorentz force was important) for

several minutes (Gailitis et al., 2000; 2001). In contrast the Karlsruhe group built a finite ap-

proximation to the infinite spatially periodic flow of Roberts (1972a) consisting of 52 juxtaposed

vertical cylindrical cells. Liquid sodium was constrained to flow in a helical manner by blades in

each cell and generated a magnetic field that was predominately horizontal (Stieglitz and Müller,

2001). Both of these experiments confirmed that dynamo action was physically possible and

could be adequately described by kinematic theory.

2.7.3 Spherical dynamos

Although the Earth’s dynamo is powered by convection, achieving this in laboratory dynamos

is difficult simply because the likely velocities (and hence Rm) will be too small. For this rea-

son investigators such as those in the Maryland (USA) group drive their spherical flow using

propellers to achieve Rm
� O

�
10 � . In this case, the flow pattern they try to mimic is that of the

t2 s2 flow of DJ. The setup comprises two counter-rotating propellers mounted near the top and
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(a) (b)

Figure 2.4: (a) Schematic picture of the t2 s2 flow of Dudley and James (1989) on which one of
the Maryland experiments is motivated (b) A more realistic situation: the propellers tend to fling
fluid radially outwards, generating more of a t2 s2 s4 pattern.

bottom of the inside of the sphere on the axis of symmetry that not only push fluid up away from

the ‘poles’ and outwards on the ‘equator’, but generate an equatorially antisymmetric toroidal

flow. In fact, the propellers tend to fling fluid radially outward creating a flow more of a t2 s2 s4

configuration (see figure 2.4), which will no doubt alter the results of the kinematic theory. In

addition the flow is highly turbulent and it is unknown whether such effects are important: it is

unlikely that the steady kinematic dynamo solutions predicted by DJ will be manifested due to

the strongly time-dependent flow.

In order to investigate the tendency towards dynamo action, the decay time of the

initially injected field is monitored. If a generating mechanism is possible, this decay time

should increase as a function of Rm towards infinity at the critical point. So far no dynamo

action has been found; however, surprisingly there has been a trend of the field containing the

m � 0 symmetries to increase towards self-generation in the manner described, more so than

that containing the m � 1 symmetries (Peffley et al., 2000a). Of course, since the flow is non-

axisymmetric the field does not decouple in azimuth so Cowling’s theorem does not rule out

this effect; indeed, this is the kind of behaviour seen in kinematic models of KR type. The

measurements of magnetic decay rates by Hall probes mounted on the sphere’s exterior show a

great dependence on spatial position (Peffley et al., 2000b). In addition, in the current sub-critical

regime, intermittent bursts of magnetic field energy due to the strong turbulence are observed

(Sweet et al., 2001). Such effects are not characteristic of theoretical kinematic solutions: if one

eigenmode is obtained then its growth rate should be everywhere the same. Tilgner (2002) argues

however, that multiple eigenmodes could be excited thus creating the spatial inhomogeneities
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measured. It is not clear whether dynamo action will be physically realised in flows of this kind

since the departures to the simple theory on which they are based are significant (recall that even

a small perturbation in the flow can switch off dynamo action).

The interested reader should consult Nataf (2003) for a wider and more detailed

overview.
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Chapter 3

Theoretical considerations

3.1 The defining equations and geometry

In this thesis we will be interested in modelling the behaviour of a magnetic field B under

the influence of a sphere V of conducting fluid (of conductivity σ and magnetic diffusivity

η � �
µ0 σ � � 1), that moves at prescribed flow velocity u. Because of the geometry, we use

spherical polar coordinates
�
r� θ � φ � describing V by r � R where the flow is non-zero, and its

exterior V̂ by r � R where the medium is quiescent. The infinite region V̂ will be taken to be

an electrical insulator. We denote the boundary of a region by the ∂ symbol; for example, ∂V is

equivalent to r � 1 although we must bear in mind that this surface is viewed from V i.e. from

the inside.

The flow will be taken to be incompressible
� � � u � 0) and non-slip (u � 0 on ∂V ).

We denote the position vector by r � r r̂ where r̂ is a unit vector.

3.1.1 The induction equation

The non-dimensional induction equation (equation 3.1) describes the effect of the moving con-

ductor and diffusion on a magnetic field:

∂B
∂ t

� Rm
��� �

u � B � � ��� �
η ��� B � (3.1)

If the diffusivity is constant and finite then this may be written

∂B
∂ t

� Rm
��� �

u � B � � ∇2B (3.2)
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The non-dimensional parameter above is the magnetic Reynolds number, Rm
� ��� �

η0, where

the non-dimensional velocity, length and diffusivity are scaled relative to typical values of
�

,
�

and η0 (the diffusivity of V ). We will take
�

to be the radius R of the sphere so that the

non-dimensional radius of V is 1. The non-dimensional magnetic diffusivity η is unity in V and

infinite in V̂ (since σ � 0 there). Implicit in equations (3.1) and (3.2) is the non-dimensional

time, scaled relative to the magnetic diffusion timescale
� 2 �

η0. The choice of the typical

velocity scale is somewhat open to interpretation since it could take on any number of forms: the

maximum pointwise flow speed, the maximum rate of strain and the root mean squared (rms)

average are all possible contenders. In this study we choose the latter (rms) scale. Consultation

of equations (3.1) and (3.2) reveals that this is equivalent to normalising the flow to have unit

rms, and then multiplying by the relevant value of Rm. Such a procedure is important since it

allows us to compare the kinematic dynamo action of different flows meaningfully, especially

when different sets of authors have different ways of defining their velocities.

Lastly we note that the pre-Maxwell equations are invariant under any rotation and

it follows that this property is carried forward to the induction equation as well. Therefore,

given any velocity field, we may add or subtract any solid body rotation to it without altering its

dynamo effect; in particular, if V spins as a solid then the field will behave in the same manner

as if V were quiescent: it decays.

3.2 Vector harmonics

3.2.1 Poloidal and toroidal form

Any divergence-free vector field, for example the magnetic field B, can be expressed in poloidal
�
S � and toroidal

�
T � decomposition where B � S � T and

S � ��� ����� S �
r � r̂ � (3.3a)

T � ����� T �
r � r̂ � (3.3b)

The literature is divided over whether the above expressions should be defined instead with r and

not r̂; on comparing results with other authors care should be taken to determine which definition

they have used.

The scalar fields S and T uniquely define B if on the surface of any origin-concentric

spherical surface they have zero mean (see Backus et al., 1996). Monopolar fields have no angu-

lar dependence, and if included these averages will be non-zero. Consequently this uniqueness
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condition amounts to precisely the exclusion of monopoles that we demand anyway from the

pre-Maxwell equations. We expand the scalar functions in spherical harmonics Y m
l

�
θ � φ � which

form an orthogonal complete set over a spherical surface, each having zero mean if l
�

1. They

are defined as

Y ms � c
l

�
θ � φ � � Pm

l
�
cos θ �

�� � sinmφ

cos mφ

	�

� (3.4)

where Pm
l are the associated Legendre functions of degree l and order m (see Appendix B.1 or

Macrobert, 1967). It is usual to take 0 � θ � π and 0 � φ � 2π to define a spherical surface

rather than any other description. For example, 0 � θ � 2π and 0 � φ � π is a viable alternative,

although there is some ambiguity in using functions of cosθ , it having no inverse in this range.

Instead of tediously and sometimes confusingly defining each spherical harmonic by

its l and m values and either sinmφ or cos mφ dependence, we shall sometimes use Greek sub-

script notation, for example:

S
�
r� θ � φ � � ∑

α
Yα

�
θ � φ � Sα

�
r � (3.5)

where each value of the summation variable α represents a different harmonic. The scalar func-

tions Sα
�
r � describe the remaining radial dependence.

We may therefore express the magnetic field in terms of ‘vector spherical harmonics’,

implicitly excluding the l � 0 monopolar terms:

B � ∑
α

Sα � Tα
� ∑

α

��� �����Yα
�
θ � φ � Sα

�
r � r̂ � � �����Yα

�
θ � φ � Tα

�
r � r̂ � (3.6)

where the radial dependence is either given or assumed unknown and must be solved for. Some-

times we shall need to be explicit and write out the harmonic dependence in full. On such

occasions we shall not write the unnecessary superscript of 0 for axisymmetric harmonics, thus

S0
2

� S2 for example.
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The components of the vectors Tα and Sα are

Tr
� 0

Tθ
� Tα

�
r �

r sinθ
∂Yα
∂φ

Tφ
��� Tα

�
r �

r
∂Yα
∂θ

(3.7)

Sr
� lα

�
lα � 1 �
r2 Sα

�
r � Yα

Sθ
� 1

r
dSα
dr

∂Yα
∂θ

Sφ
� 1

r sinθ
dSα
dr

∂Yα
∂φ

(3.8)

Toroidal vectors have no radial component so they are confined to spherical surfaces of constant

radius; poloidal vectors have all three vector components. The curl of a toroidal vector is trivially

poloidal although the converse is also true:

��� ��� ����� S �
r � r̂� ��� ∇2 ����� S �

r � r̂ � (3.9)

using the identity � � � � A � � � � � A � � ∇2 A for any vector A. The Laplacian operator can

be taken inside the curl, leaving the vector in toroidal form, although inflicting some derivatives

on the defining scalar function (see section 3.4.1 for details).

3.2.2 Orthogonality and normalisation

Spherical harmonics are orthogonal over any origin-concentric spherical surface S so that

	 2π

0

	 π

0
Yα

�
θ � φ � Yβ

�
θ � φ � sin θ dθ dφ ���

S
Yα Yβ dΩ � N2

αδα β (3.10)

where dΩ � sinθ dθ dφ is the element of solid angle and the symbol δα β is 1 only if α � β and

zero otherwise. The constant N2
α depends on the specific normalisation chosen for the harmonics.

Kinematic dynamo theory is plagued with differing normalisations used between authors, for

example, Bullard and Gellman (1954) used unnormalised harmonics and Sarson (2003) used

Ferrer normalisation. In this study, we shall always use Schmidt quasi-normalised harmonics,

defined by

N2
α

� 4π�
2lα � 1 � (3.11)
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Toroidal and poloidal vector harmonics are mutually orthogonal over S and are orthogonal with

other vectors of the same type but of different spherical harmonic dependence:

�
S

Tα
� Sβ dΩ � 0 (3.12)

�
S

Tα
� Tβ dΩ � δαβ lα

�
lα � 1 � N2

α
Tα

�
r � Tβ

�
r �

r2 (3.13)

�
S

Sα
� Sβ dΩ � δαβ N2

α
lα

�
lα � 1 �
r2 � lα

�
lα � 1 � Sα

�
r � Sβ

�
r �

r2 � dSα
dr

dSβ

dr � (3.14)

A closely related formula is that for the rms average of B within the sphere V . It may be written:

4π
3

B2
rms

� ∑
α

lα
�
lα � 1 � N2

α

	 1

0 � lα
�
lα � 1 �
r2 S2

α �
�

dSα
dr

� 2

� T 2
α � dr (3.15)

In deriving such relations use has been made of the following identities

�
S � ∂Yα

∂θ
∂Yβ

∂φ
� ∂Yα

∂φ
∂Yβ

∂θ � dθdφ � 0 (3.16)

�
S � ∂Yα

∂θ
∂Yβ

∂θ
� 1

sin2 θ
∂Yα
∂φ

∂Yβ

∂φ � dΩ � N2
αδαβ lα

�
lα � 1 � (3.17)

For derivations of these and further details on spherical harmonics see Appendix B.1.

3.3 Boundary conditions

3.3.1 Continuity conditions

The magnetic field B, electric field E and current density J must satisfy the following continuity

conditions across any surface with or without a conductivity discontinuity

�B � � 0 (3.18)

� n̂ � E � � 0 (3.19)

� n̂ � J � � 0 (3.20)

where [] denotes the jump and n̂ the normal to the surface in question. All other components

may be discontinuous (Gubbins and Roberts, 1987).

The only discontinuity of σ we shall encounter is that at r � 1, between σ � 0 in V̂

and σ being finite and non-zero in V . If the flow is non-slip there so that u � 0, then from
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the pre-Maxwell equations, � � B � µ0 J � µ0 σ E and so equation (3.19) is equivalent to the

continuity of the tangential components of E � η � � B. Equation (3.20) supplies no additional

information. In terms of the toroidal and poloidal defining scalars, these amount to

� Sα � � 0 � S �α � � 0 � Tα � � 0 (3.21a)

� ηT �α � � 0 � η∇2
αSα � � 0 (3.21b)

where the notation ∇2
α is defined in section 3.4.1 and � is the radial derivative. Note that if a quan-

tity is continuous over the surface r � 1 then its spherical harmonic components must be also,

hence it is justified to generalise to the above individual harmonic components. Equation (3.21a)

is derived from the continuity of B and equation (3.21b) from consideration of the tangential

components of η � � B. If large tangential current sheets occur at the discontinuity due either

to boundary layer effects or a very large conductivity, then equations (3.21) must be reduced to

merely the continuity of Br, or equivalently Sα and the conditions of (3.21b). In the case where

V̂ is modelled as an electrical insulator, these reduce further since equation (3.21b) becomes

meaningless (η being infinite in V̂ ). We can now only guarantee the continuity of Br, which is

therefore the only component we may infer on the inside of the CMB from inverse models of

observational data.

3.3.2 The magnetic field in an electrical insulator

In an electrical insulator, the conductivity σ vanishes and so � � B � 0 from the pre-Maxwell

equations. Therefore B can be written as a potential

B ��� � Φ (3.22)

for some function Φ. Since B is solenoidal then

∇2Φ � 0 (3.23)

that can be solved to give

Φ � ∑
α :lα

�
1

Gα rlα Yα � Hα r � �
lα � 1 � Yα (3.24)

identically to that presented in Appendix A. In the case we will consider, the electrical insulator

is V̂ , being the region r
�

1. Excluding external sources of field amounts to the condition that the
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field must vanish as r � ∞ so that Gα
� 0. The remaining solution then decays with increasing

r, as consistent with an internally generated field. In particular, the potential Φ � O
�
r � 2 � and

B � O
�
r � 3 � as r � ∞. From the pre-Maxwell equations it follows also that E � O

�
r � 2 � .

3.3.3 Electrically insulating boundary conditions

The solution for the magnetic field in the external insulator is of poloidal form:

B � � � ∑
α :lα

�
1

Hα r � �
lα � 1 � Yα

� ∑
α :lα

�
1

��� ��� � Hα
lα

r � lα Yα r̂ � (3.25)

By orthogonality there can be no toroidal field in V̂ and by continuity Tα must vanish on the

inside edge of r � 1. To derive a condition on the poloidal field, we use the continuity of the

scalar function Sα
�
r � and its first derivative across r � 1. By eliminating the unknown scalar Hα

we arrive at the following matching conditions:

dSα
dr

�
1 � � lαSα

�
1 � � 0 Tα

�
1 � � 0 (3.26)

We can therefore extend any poloidal field Sα into V̂ to get:

B ��� lα Sα
�
1 � �

�
Yα
rl � 1 � (3.27)

Note that the above analysis is made possible by applying continuity of the spherical harmonic

components of the poloidal scalar and its derivative. A local finite element method for example,

has no knowledge of the global harmonic coefficients so matching the solution to an external

electrical insulator is far more problematic.

3.3.4 Regularity at the origin

The origin is a singular point of the spherical polar coordinate system and we must ensure that the

quantities we use are regular there and infinitely differentiable (where appropriate). In order to

do this, we need to be able to write the scalar functions and Cartesian components of the vectors

as multinomials in
�
x � y � z � . In the case of a field in poloidal and toroidal form, this is equivalent

to using the r notation (r being infinitely differentiable) in the original definitions (equation

3.3), rather than r̂, and insisting that the poloidal and toroidal scalar functions themselves be

multinomials of
�
x � y � z � everywhere.

To apply this to a spherical geometry, assume first that such a process has been carried
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out for the vector or scalar function in question. We investigate what conditions it places on the

behaviour of the defining harmonic scalar functions at the origin.

We first expand the scalar functions in the (complete) homogeneous multinomials in
�
x � y � z � , fn, of degree n (see Backus et al., 1996, pg. 47). We can write each fn as

fn
�
x � y � z � � rn

�
n � 2 �
∑
i � 0

Yn � 2i

�
θ � φ � (3.28)

where Yl is a linear combination of spherical harmonics of degree l (see Macrobert, 1967) and

here � � means the integer part.

The power of r multiplying Yl is

� at least l

� differs from all other powers by an even number.

Hence the behaviour near r � 0 of the coefficient of Yl is

rl � a0 � a1r2 � a2r4 � � � ��� (3.29)

We might expect the expansion to be of this form since odd powers of r introduces singular

behaviour at the origin. Reverting to the r̂ form of the toroidal-poloidal vectors means that we

have the following necessary condition for regularity at the origin of any vector harmonic scalar

function multiplying Y m
l

�
θ � φ � :

rl � 1 �
a0 � a1r2 � a2r4 � � � � � (3.30)

This condition is also sufficient, since rlY m
l

�
θ � φ � is a homogeneous multinomial in

�
x � y � z � of

degree l and so is regular; any extra powers of r2 are also analytic.

Infinite differentiability is not always required; for example, in the induction equation

only the first derivative of the velocity is needed (which involves the second and first derivatives

of the poloidal and toroidal scalars respectively). So long as the vectors in question have as

many continuous derivatives as is necessary, no penalty should be placed on lack of infinite

differentiability.

An additional point is that if a finite difference scheme is used to solve the equations,

the relevant quantities are sampled only at discrete locations (the same also being true in general

of a spectral scheme using quadrature). It could then be conceived that even if the poloidal and

toroidal scalars did not conform to the behaviour given above for infinite differentiability but
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nonetheless vanished at the origin, that they might conform on a scale smaller than that of the

grid used. Therefore no discrete numerical procedure will be able to distinguish whether or not

the above limiting form is obeyed.

Such an argument may be used to motivate geophysical flows that do not satisfy the

criteria above.

3.4 The diffusion operator

3.4.1 Properties of the Laplacian

The Laplacian operator ∇2 commutes with the curl vector operator � � in a Cartesian system

and hence it must also do so in spherical polar coordinates. Additionally, ∇2 annihilates the

position vector r (but not r̂) so that we can write

∇2 ��� ����� S �
r � r̂ � � ��� ��� ∇2 � S �

r � r̂ � (3.31)

� ��� ��� ∇2 � S �
r �
r

r � (3.32)

� ��� ����� r∇2

�
S

�
r �
r

� r̂ � (3.33)

and similarly in the toroidal case. We may write, in spherical polar coordinates

∇2 � 1
r

∂ 2

∂ r2 r � L2

r2 (3.34)

where L2, the angular momentum operator, is defined as

L2 ����� 1
sinθ

∂
∂θ

�
sinθ

∂
∂θ

� � 1

sin2 θ
∂ 2

∂φ 2 � (3.35)

The spherical harmonics Y m
l are eigenfunctions of L2 with eigenvalues l

�
l � 1 � . This means that

∇2 � f m
l

�
r � Y m

l

�
θ � φ � � � Y m

l

�
θ � φ ��� D2

l f m
l

�
r ��� (3.36)

where we define the operator

D2
l

� 1
r

d2

dr2 r � l
�
l � 1 �
r2

� d2

dr2 � 2
r

d
dr
� l

�
l � 1 �
r2 (3.37)

Hence from equations (3.33) and (3.36) the Laplacian of a poloidal (toroidal) vector harmonic

is also poloidal (toroidal) and of the same harmonic dependence but defined by a radial scalar
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function given by

r � 1
r

d2

dr2 r � l
�
l � 1 �
r2 � �

Sα
r

� � � d2

dr2
� l

�
l � 1 �
r2 � Sα (3.38)

We define the operator associated with the Laplacian acting on toroidal and poloidal scalars as

∇2
α or ∇2

l (depending on the context) which we shall define as

∇2
α

� d2

dr2
� lα

�
lα � 1 �
r2 (3.39)

or

∇2
l

� d2

dr2
� l

�
l � 1 �
r2 (3.40)

It should be noted that the Laplacian operator itself depends only on r and l (hence the subscript

l used in the notation); it is independent of the azimuthal wave number m. Explicitly then:

∇2 ��� �����Yα Sα r̂ � ����� ��� �Yα ∇2
αSα r̂ � (3.41)

∇2 �����Yα Tα r̂ � ����� �Yα ∇2
αTα r̂ � (3.42)

3.4.2 The diffusion problem

In benchmarking numerical code it is often invaluable to be able to make comparisons with

known analytic results. In our case we can solve the diffusion problem
�
Rm

� 0 � exactly which

will be used as a guide for numerical accuracy. The relevant equation is:

∂B
∂ t

� ∇2B (3.43)

and we typically seek an exponential time-dependence of the form B
�
t � � B̂e � d2 t that reduces

the diffusion equation to a vector eigenvalue problem for � d2. As has already been shown the

toroidal and poloidal vector harmonics decouple under the Laplacian operator so the resulting

equations are of a simple form:

� d2
P Sl

�
r � � ∇2

l Sl

�
r � (3.44)

� d2
T Tl

�
r � � ∇2

l Tl

�
r � (3.45)

where we have written � d2
P and � d2

T for the poloidal and toroidal decay rates respectively.

Because the Laplacian is independent of m, the solutions for the defining scalar functions are
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dependent only on l and r. The poloidal solutions are (and similarly in the toroidal case)

Gr nl

�
dPr � � H r jl

�
dPr � (3.46)

where jl and nl are spherical Bessel functions of order l and of the first and second kinds (see

Abramowitz and Stegun, 1984); G and H are arbitrary constants. We discard n l which is singular

at the origin and are left to fit the relevant boundary conditions to determine the decay rates.

Applying the electrically insulating boundary conditions at r � 1 we obtain

dP j �l
�
dP � �

�
l � 1 � jl

�
dP � � 0 (3.47)

jl
�
dT � � 0 (3.48)

where the superfix � denotes the derivative. Using standard recurrence relations the poloidal

boundary condition amounts to jl � 1

�
dP � � 0. Hence both sets of decay rates are simply related

to zeros of relevant (but different) spherical Bessel functions. These form an infinite set (for

any given l) but we typically are only interested in the most slowly decaying modes since these

will dominate the solution at large times. The slowest decay rates are both associated with the

l � 1 harmonics (being physically of largest scale) and are in the poloidal case: � d 2
P

� � π2

with scalar function S1

�
r � � r j1

�
π r � and in the toroidal case: � d2

T
� � 4 � 49342 � � 20 � 1907

(approx) and T1

�
r � � r j1

�
4 � 4934r � .

The decay rates increase with l (i.e. as the spatial scales get more complex, the field

decays faster). This means that the diffusive effect on field solutions containing harmonics with

high values of l will be correspondingly larger. For a table of decay rates see Gubbins and

Roberts (1987).

All decay modes are orthogonal over V � V̂ ; since toroidal modes vanish in V̂ however

they are orthogonal over V (see Appendix B.4 for a proof). The decay modes also form a

complete set, as follows from the self-adjointness (section 3.8.3) and then appealing to standard

theory (e.g. Lanczos, 1961).



44

3.5 The magnetic energy equation

3.5.1 Magnetic energy

The induction equation governs the pointwise time-dependence of a magnetic field but how do

we measure the global ‘size’? We introduce the magnetic energy, M, by

M
�
t � � 1

2

	
V � V̂

B2 dV (3.49)

which is a non-dimensional measure of the strength of the field and differs slightly from the true

physical dimensional magnetic energy M
�
µ0. However, we will be concerned only in relative

energy growth and so such a linear factor is of no importance. We choose the region over which

M is defined to be V � V̂ and not simply the dynamo region V , because the magnetic field must

be sustained everywhere.

3.5.2 Derivation of the magnetic energy equation

In the following derivation we shall assume that V̂ has a finite but large magnetic diffusivity η

that will eventually be allowed to tend to infinity (recall that η � 1 in V ). This is to ensure clarity

of certain limiting expressions that will appear.

Taking the dot product of the induction equation (equation 3.1) with the magnetic field

B and integrating over all space gives

1
2

d
dt

	
V � V̂

�
B

� 2 dV � Rm

	
V

B � ��� �
u � B � �

	
V � V̂

B � ��� �
η ��� B � dV (3.50)

Since the flow u is only non-zero in V this is the only region that contributes to the

velocity term above.

The first integrand on the right hand side is

B � ��� �
u � B � � B � �

B � � � u � B � �
u � � � B (3.51)

and integrating over V :

	
V

B � �
B � � � udV �

	
V

BiB j
∂ui

∂x j
dV

�
	

V
B ��� B dV (3.52)
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where �
i j

� 1
2

�
∂ui
∂x j

� ∂u j

∂xi
� is the rate of strain tensor, representing the local stretching of the fluid

(see section 5.2). The notation Ai denotes the ith Cartesian component of the vector A.

The 2nd contributed term from the velocity represents only advection and does no

work on the system:

	
V

B � �
u � � � B dV � 	

V
Biu j

∂Bi

∂x j
dV � 1

2

	
V

��� �
B2 u � dV

� �
∂V

B2 u � dS � 0 (3.53)

since the flow u is incompressible and has no normal component on the boundary ∂V .

We now turn our attention to the diffusive term. Using the standard vector identity

��� �
F � G � � G � ��� F � F � ��� G (3.54)

for any vectors F and G we can write

� 	
V � V̂

B � ��� �
η ��� B � dV

� � 	
V � V̂

��� �
η � ��� B � � B � dV �

	
V � V̂

η
� ��� B

� 2 dV (3.55)

Using the divergence theorem we may turn the first term on the second line into two surface

integrals. Also recall from the pre-Maxwell equations that on r � 1, η � � B � E (section

3.3.1) so that

� 	
V � V̂

��� �
η � ��� B � � B � dV � �

∂V
B � E � dS � �

∂V̂
B � E � dS (3.56)

The surface ∂V̂ has two parts: one at r � 1 and one at r � ∞. At r � 1 the two above surface

integrals cancel by continuity of B and E � dS (we may permute the terms as B � E � dS �

B � E � dS). At infinity we must be a little careful since although ��� B � 0, η will be allowed

to become infinite there. However, their product, E, is finite and O
�
r � 2 � ; also B � O

�
r � 3 � (see

section 3.3.2) and so the integrand is O
�
r � 3 � and therefore vanishes.

Lastly, η
� � � B

� 2 � E2 �
η in V̂ and so vanishes when η � ∞ since E must remain

finite and independent of η .

We therefore have derived the equation for the time evolution of magnetic energy:

dM
dt

� Rm

	
V

B � � B dV �
	

V

� ��� B
� 2 dV (3.57)
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Energy increases by the stretching action of the flow, and decreases by Ohmic dissipation that

stems from the diffusion term. Flow advection has no global effect at all, being integrated out in

the analysis.

3.6 Symmetry

Consideration of symmetry properties is a powerful technique that can be used to simplify a

problem greatly, for we might be able to vastly reduce the necessary representation of the field.

In addition, the different types of solution might behave in a different fashion, perhaps aiding the

understanding of the underlying physical processes. Since the Earth is rotating, the symmetry

transformations that are most relevant are reflections in the equatorial plane and rotations about

its rotation (z) axis.

3.6.1 Symmetry of vectors

Following Gubbins and Zhang (1993) and Sarson (1994) we define a scalar to be equatorially

symmetric (ES) if

s
�
r� π � θ � φ � � s

�
r� θ � φ � (3.58)

and antisymmetric (EA) if

a
�
r� π � θ � φ � ��� a

�
r� θ � φ � (3.59)

Note the nomenclature: a for antisymmetric and s for symmetric. The same attributes can be

given to symmetric (ES) vectors S and antisymmetric EA vectors A:

� Sr � Sθ � Sφ � �
r� π � θ � φ � � � Sr �

� Sθ � Sφ � �
r� θ � φ � (3.60)

� Ar � Aθ � Aφ � �
r� π � θ � φ � � � � Ar � Aθ �

� Aφ � �
r� θ � φ � (3.61)

The θ -component is antisymmetric since the direction of increasing θ becomes inverted on

reflection. Scalars and vectors that are symmetric or antisymmetic with respect to a rotation by
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2π
M about the z-axis are similarly denoted PS

M or PA
M and satisfy

s
�
r� θ � φ � M

2π
� � s

�
r� θ � φ � (3.62)

a
�
r� θ � φ � M

2π
� � � a

�
r� θ � φ � (3.63)

� Sr � Sθ � Sφ � �
r� θ � φ � M

2π
� � � Sr � Sθ � Sφ � �

r� θ � φ � (3.64)

�Ar � Aθ � Aφ � �
r� θ � φ � M

2π
� � � �Ar � Aθ � Aφ � �

r� θ � φ � (3.65)

since there are no coordinate inversions associated with such rotations. If M is unspecified it

means it may take on any value.

3.6.2 Symmetry of operators

Suppose a quantity has a particular symmetry with respect to a transformation (e.g. it could be

ES for example) and we apply an operator to it. If both the resulting and original quantities have

the same symmetry then the operator is said to be symmetric; if they have opposite symmetries

then the operator is antisymmetric. Specifically, the following differential operators have the

symmetries:

∂
∂ r

: ES PS
M (3.66)

∂
∂θ

: EA PS
M (3.67)

∂
∂φ

: ES PS
M (3.68)

which means that the vector operators: � , � � and ∇2 are all of ES PS
M symmetry whereas � �

is EA PS
M . That the curl operator differs in symmetry is not surprising since it involves the anti-

symmetric alternating tensor εi jk that also effects all vector cross-products:

� a � b � i � εi jk a j bk (3.69)

If a and b are both either EA or ES then a � b is EA; otherwise, if a and b differ in symmetry

then it is ES. The opposite is true of the dot product a � b that is E S if both a and b have the same

symmetry and EA if they differ.
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3.6.3 Symmetry of harmonics

Spherical harmonics have the property that

Y m
l

�
π � θ � φ � � � � 1 �

�
l � m � Y m

l

�
θ � φ � (3.70)

so those for which
�
l � m � is even are ES and those for which

�
l � m � is odd are EA. For the

toroidal and poloidal vector harmonics, since � � essentially switches the symmetry and noting

that the unit vector r̂ is ES, then Tm
l has the opposite parity to its Y m

l ingredient and Sm
l has the

same.

3.6.4 Separation of harmonics

We now consider the effect of symmetry on the induction equation. The time derivative ∂
∂ t and

∇2 are both ES operators and so is the velocity operator � � u � if u is E S. In this case the

symmetry with respect to the equatorial plane of a magnetic field B would be unaffected by

these operators, and the ES and EA parts of the field would then be independent. Given a flow

without ES symmetry no such separation can occur. Many flows studied in the literature, for

example the KR flow

u � t1 � ε1s2 � ε2s2c
2 � ε3s2s

2 (3.71)

are ES (which can easily be checked). In addition, this flow is PS
2 , since the azimuthal dependence

is either cos2φ or sin2φ . Hence the full set of harmonics is divided into four sets: two divisions

into either ES or EA and two further into either PS
2 or PA

2 . These sets are

ES PS
2 : T1 � S2 � S2c

2 � S2s
2 � T3 � T2s

3 � T2c
3 � S4

� � � (3.72a)

ES PA
2 : S1c

1 � S1s
1 � T1c

2 � T1s
2 � S1c

3 � S1s
3 � S3c

3 � T3s
3 �
� � � (3.72b)

EA PS
2 : S1 � T2 � T2s

2 � T2c
2 � S2c

3 � S2s
3 � T4 � T2c

4 � T2s
4 �
� � � (3.72c)

EA PA
2 : T1c

1 T1s
1 � S1c

2 � S1s
2 � T1c

3 � T1s
3 � T3c

3 � T3s
3 �
� � � (3.72d)

Historically these sets of harmonics have been referred to by their largest scale poloidal member.

For example, the set EA PS
2 is sometimes called the ‘axial dipole’ symmetry since it contains the

dipole S1. Similarly ES PA
2 is the ‘equatorial dipole’ symmetry since it contains S1c

1 . The other

sets that do not contain a (poloidal) dipole are referred to as quadrapolar, since their largest scale

poloidal harmonic has four poles. Sometimes this nomenclature is misleading, for if there is no

symmetry separation then the ‘axial dipole’ and ‘equatorial quadrapole’ sets could in fact be the
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same, both being the whole set. It should hopefully be clear by the context which harmonic set

is being referred to; in general however, we shall use the more explicit E S � A PS � A
2

or otherwise to

specify a particular symmetry.

Other choices of flow may not be ES so the separation detailed above will not be ap-

propriate. However, other symmetries may apply in these cases leading to a different separation.

In practice there is little point detailing the symmetry classes for every choice of flow since this

procedure can be automated using interaction selection rules that are detailed in the following

section. It is useful though to understand how such separation arises from a mathematical point

of view.

3.6.5 Selection rules

Bullard and Gellman (1954) studied the properties of the operator ��� u � , being the only term

in the induction equation that couples field harmonics together (the time derivative and the Lapla-

cian operator preserving the harmonics they act upon). If the velocity is chosen expediently, the

magnetic field may partition into independent symmetry classes. Bullard and Gellman (1954)

detailed a set of selection rules applying when the flow is expanded as a simple sum of vector

spherical harmonics, determining whether or not a particular field harmonic belongs to the same

symmetry class as another. We introduce the terminology

�
uα Bβ Bγ � �

	
V

��� �
uα
� Bβ � � Bγ dV (3.73)

The symmetry classes are effectively determined by the interactions
�
uα Bβ Bγ � and are non zero

if:

1.
�
lα � lγ

�
� lβ � lα � lγ

That is, the l’s form a (possibly degenerate) triangle.

2. At least one of mα
�

mβ
�

mγ
� 0.

3. For an interaction involving an even number of toroidal harmonics:

(a) lα � lβ � lγ is even.

(b) there are an even number of sinmφ harmonics (m � 0 counts as a cosine).

4. For an interaction involving an odd number of toroidal harmonics:

(a) lα � lβ � lγ is odd.
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(b) there are an odd number of sinmφ harmonics.

(c) all the harmonics are different.

5 � .
�
tαTβ Pγ � � 0

To determine the symmetry classes numerically, we start off with Bβ as a ‘seed symmetry’ and

use it to generate other harmonics Bγ in the class using the selection rules. For example, if we

were interested in generating Earth-like solutions we would begin with S1 since then we would

be guaranteed of its inclusion. We keep on reapplying the selection rules on every harmonic in

the class until all the interactions have been accounted for. In general, the classes are infinitely

large, so that we must restrict our search to a truncated set of harmonics. In general we will

truncate in l, so that l � lmax for some prescribed lmax.

The inclusion of 5 � leads to an asymmetric set of interaction rules. That is, although

one field symmetry may generate another, the converse is not necessarily true. For example, in a

toroidal flow, a toroidal field may be generated from a poloidal field (rule 3); however no poloidal

field may be created from a toroidal field (rule 5 � ). This means, depending on the choice of the

‘seed symmetry’ either the whole set or a subset of a symmetry class (as predicted by section

3.6.4) may be generated. To alleviate this difficulty and to make the interactions symmetric,

we remove the offending rule from the list. In particular, if the term involving the velocity is

symmetric (section 3.9.2) then this necessitates such a choice of selection rules.

This removal may lead to the inclusion of more harmonics than is actually necessary

in a solution. Of course in this case, numerically the solutions will separate and those symme-

tries that were falsely incorporated will have no effect. The selection rules merely provide a

convenient way of studying different sets of harmonics independently; the final result must be

produced by putting all the findings from each symmetry class together since in general it is not

a priori obvious which will be relevant to the problem.

One of the most important separation of symmetries is that which occurs with an ax-

isymmetric flow. In this case, field harmonics of different azimuthal wave number m are com-

pletely independent. In addition, if the flow is E S then the decoupling is as follows:

ES m � 0 : T1 � S2 � T3 � S4 �
� � � (3.74a)

EA m � 0 : S1 � T2 � S3 � T4 �
� � � (3.74b)

ES m � 1 : S1c
1 � S1s

1 � T1c
2 � T1s

2 � S1c
3 � S1s

3 �
� � � (3.74c)

EA m � 1 : T1c
1 � T1s

1 � S1c
2 � S1s

2 � T1c
3 � T1s

3 �
� � � (3.74d)
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and so on. For a given truncation in l, we therefore need many fewer harmonics in the solution.

Although all the different groups above must be studied individually and their results compiled

at the end, this is much quicker than performing one large computation, since the time taken per

run will scale as some (super linear) power law in the number of harmonics.

In addition, in the range of Rm
� 0–1000 of geophysical interest, the harmonic sets of

large m also have correspondingly large l (since m � l). Ignoring the fact that we would have

to increase the truncation level in order to keep the number of harmonics in each set the same,

higher values of l lead to a much higher Ohmic dissipation rate (see section 3.4.2) so dynamo

action is more difficult. For very large Rm this is no obstacle, but in the range under consideration

this encumbrance is significant and kinematic dynamo action is seldom seen for m � 2.

A further point on axisymmetric flows is that in general, fields of a single wave number

m represent solid body rotations; this perhaps is to be expected since the flow itself has no

preferred azimuthal orientation and can be rotated at will. We may show this by writing the φ

dependence of B as a complex Fourier mode eimφ where i2 ��� 1. If we also have a dependence

B ∝ eλ t then

eimφ eλ t � ei
�
mφ � ℑ

�
λ � � t eℜ

�
λ � t (3.75)

so that the field rotates in time with angular velocity ℑ
�
λ � �

m and has an amplitude that grows

or decays depending on the sign of ℜ
�
λ � . Note that this may only occur if the field symmetry

contains both sine and cosine harmonics in azimuth, both being necessary to span the relevant

rotations.

Any eigenvector of the induction equation is determined only up to an arbitrary mul-

tiplicative constant; if the vector is complex this introduces a degeneracy since the argument of

this constant is unknown. If only a single wave number m is present then this amounts to a rota-

tion of the field about the z-axis. In general we combine the two eigenvectors forming a complex

conjugate pair into a new eigenvector such that its largest scale poloidal mode attains 1 � 0 i on

r � 1.

3.7 Existing bounds

Theoretical bounds for the dynamo problem are very useful, for they provide rigorous boundaries

to the relevant quantities and parameters involved. Most of the bounds surveyed below are lower

limits on the value of Rm needed for dynamo action, that serve as not only a useful comparison

for geophysical estimates and for numerical models, but also for designing experiments since

they place constraints on their size and typical flow velocities required.
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3.7.1 Backus’s bound on Rm

If we define dynamo action to be the manifestation of growing magnetic energy (at least initially)

as in the definition given in section 3.5.2, this places constraints on the size of Rm. The bound

of Backus (1958) is derived as follows. If M increases, then from equation (3.57) we obtain the

necessarily condition that:

Rm

	
V

B ��� BdV
� 	

V

� ��� B
� 2 dV (3.76)

If µmax is the pointwise maximum rate of strain of � , that is, its largest pointwise eigenvalue then

Rm µmax

	
V

B2 dV
�

Rm

	
V

B � � BdV (3.77)

We may then write

Rm µmax
�

�
V

� ��� B
� 2 dV

�
V B2 dV

(3.78)

The field B is unknown, so in order to derive a bound we replace the right hand side by its

minimum value.

Backus (1958) facilitated this minimisation by replacing the domain of the denomina-

tor by V � V̂ although thereby reducing the bound’s sharpness. It becomes

Rm µmax
�

min

�
V

� ��� B
� 2 dV

�
V � V̂

B2 dV
(3.79)

As in section 3.5.2 we now consider the electrically insulating V̂ in its limiting form, i.e. where

η is large but finite. From equation (3.55), adding in η
� � � B

� 2 � O
�
η � 1 � in V̂ we can write,

allowing η � ∞

	
V

� ��� B
� 2 dV �

	
V

� ��� B
� 2 dV �

	
V̂

η
� ��� B

� 2 dV (3.80)

� 	
V � V̂

B � ��� �
η ��� B � dV (3.81)

��� 	
V

B � ∇2BdV �
	

V̂
B � ∂B

∂ t
(3.82)

where we have used ∂B
∂ t

� � � � �
η � � B � in V̂ . Expanding as a linear sum of decay modes: B �

∑α cα Bα and recalling that their time dependence is e � d2
α t and that in V they are eigenvectors of
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∇2 with eigenvalue � d2
α , then

min

�
V

� ��� B
� 2 dV

�
V � V̂

B2 dV
� min

∑α d2
α c2

α
�
V � V̂

B2
α dV

∑α c2
α

�
V � V̂

B2
α dV

(3.83)

by orthogonality of Bα over all space. The minimum required is d2
α where � d2

α is the slowest

decay rate of � π2, being associated with the l � 1 poloidal decay mode. Hence Backus showed

that

Rmµmax
� π2 (3.84)

3.7.2 Proctor’s bound

Proctor (1977a) improved on this bound by directly minimising equation (3.78) using a Lagrange

multiplier method. A direct decay mode expansion now can only find the minimum in the

toroidal-field only case, since the poloidal modes are not orthogonal over V . This provides

an upper bound of 4 � 49342 � 20 � 1907 for the minimum sought, being associated with the l � 1

toroidal decay rate. However, Proctor found that a l � 1 poloidal field gave the minimum bound

of

Rmµmax
�

12 � 29 (3.85)

Figure 3.1 shows how the two l � 1 poloidal scalar functions compare. Solid is that of Proctor’s

bound: S1

�
r � � r j1

�
α r � � j1

�
α � r2 �

2 where α2 � 12 � 29; dashed is that of Backus: S1

�
r � �

r j1
�
π r � . Each function is determined within an arbitrary linear factor that will typically be

chosen by some form of normalisation. However, the plotted S1 scalar functions have not been

scaled, for example so that they attain a maximum value of unity, since the curves would be

graphically indistinguishable from each other. It is remarkable how similar these two curves are

given the approximate 25% difference in the related bounds. A derivation of Proctor’s bound is

given in section 3.9.6

3.7.3 Other bounds on Rm

Childress (1969) also produced a similar bound although based on the maximum flow rate umax

rather than the maximum strain rate:

Rm umax
� π (3.86)

Due to the invariance of the pre-Maxwell equations under a rotation (e.g. Davidson, 2001), we

may transform to a co-rotating frame where umax is least to give the best bound. This cannot

be applied to measures involving the strain rate which is independent of the rotational frame of
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Figure 3.1: Comparison between the minimising l � 1 poloidal field scalar functions from the
bounds of Proctor (1977a) (solid) and Backus (1958) (dashed). The curves are not normalised
and are subject to arbitrary linear scaling factors.

reference.

3.7.4 A note on the trivial bound

It is worth pointing out why 0 is not the minimum of (3.78). If this were to be the case then the

field would have to be curl free everywhere; such a field could not be everywhere continuous.

Let us consider a potential field: B � � � fα
�
r � Yα � where the solenoidal condition of B gives

that pointwise fα is either of the form rlα or r � �
lα � 1 � (see section 3.3.2); regularity requires

that near the origin it must be of the former type, and exclusion of external fields requires the

latter towards infinity. At at least one point in between there must be a boundary at which the

behaviour changes. This introduces a discontinuity in B since we cannot match both fα
�
r � (as

required by the θ and φ components) and f �α
�
r � (required by the radial component) across the

boundary. Hence in order that B be everywhere continuous we must have either a zero field, or

one that is not everywhere of potential form.

3.7.5 Bounds on motion

Toroidal motions cannot sustain magnetic fields (one of the antidynamo theorems of section 2.5)

so some amount of poloidal flow is needed. Busse (1975) considered the generated poloidal
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field to get a lower bound on ur necessary for dynamo action. Instead of dotting the induction

equation with B before integrating, he instead dotted with r and multiplied by
�
B � r � , producing

1
2

d
dt

	
V

�
r � B � 2 dV � 	

V

�
r � B � r � � Rm

��� �
u � B � � ∇2B � dV (3.87)

He was able to manipulate this into the form

Rm
�
u � r � max

�
�

2EP

ET � EP
� 1

2

(3.88)

where EP and ET are the poloidal and toroidal field energies respectively, taken over all space.

Given a field B this can be used to calculate the minimum radial motion required. Unfortunately

without knowing B, replacing the right hand side with its minimum gives little information since

it may be made arbitrarily small by choosing the field to have a vanishingly small poloidal

component. Nonetheless, this bound may be seen as evidence that some poloidal motion is

necessary for dynamo action and that the outer core could not be everywhere stably stratified

(ur � 0).

3.7.6 Upper bounds on time-dependence

We may bound the rate of growth of magnetic energy by discarding the Ohmic dissipation term

of equation (3.57). In a similar argument to that used above in the bounds of Backus (1958) and

Proctor (1977a) we can then write

dM
dt

� Rmµmax

	
V

B2 dV � Rmµmax

	
V � V̂

B2 dV (3.89)

This inequality may be re-written:

1
�

M

d
dt

�
M � Rmµmax (3.90)

This bounds the normalised instantaneous rate of magnetic energy growth by the maximum

strain rate of the flow. If we define λE to be the maximum value of the left hand side over all

possible magnetic fields (see section 3.9.1), this also is similarly bounded. In section 3.9.3 we

show λE to be an upper bound on the eigenvalue growth rate ℜ
�
λ � , where the eigenmode ansatz

is B � B̂eλ t , so that

ℜ
�
λ � � λE � Rmµmax (3.91)
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The equality in bound (3.89) is attained only when (a) the maximal rate of strain is achieved

everywhere in the flow, (b) B is aligned with the direction of maximal straining at all points in V

and (c) if Ohmic dissipation is negligible (none of which will occur in reality). Physically this

means that the larger the ability of the flow to stretch field lines, the larger the possible growth.

The above bound on the growth rate, and indeed most of the lower bounds on Rm pre-

sented above depend on pointwise maximum properties of the flow: either maximum strain rates

or flow velocities. Such results are clearly sub-optimal, since the flow could be almost entirely

at rest with just a small vigorously moving section. These bounds then would not reflect the

fluid as a whole, but only tiny fraction. A better situation, especially given our definition of Rm

based on the rms average of the flow, would be to formulate a bound in terms of the fluid kinetic

energy. Unfortunately Núñez (2002) showed that no bound on λ can be formulated in terms of

the quadratic norm
�
V u2 dV . However, it can be shown that (Núñez, personal communication,

2003):

ℜ
�
λ � � 1

2
R2

mu2
max (3.92)

3.8 Adjoints

Roberts (1972b) noted a striking similarity with the eigenvalue growth rates of E A and ES fields

under the change of sign u � � u. That is, by changing the direction of the flow the favoured

symmetry switched from that of a dipole to a quadrapole. This result had important ramifications

for the geodynamo since the fact that the Earth’s field was principally dipolar could perhaps lead

to inferences about the direction of flow. This mathematical peculiarity was traced to the so

called adjoint equation, that has the property of having the same eigenvalues and biorthogonal

eigenvectors as the induction equation. Gibson and Roberts (1967) showed that the adjoint

equation could be constructed to have the same form as the induction equation but with a flow

of reversed direction, although the boundary conditions were non physical. Proctor (1977b)

studied the ‘comparison problem’ where the poloidal and toroidal fields were made to vanish on

the boundaries and found that the similarity observed by Roberts (1972b) was exact in this case:

EA and ES fields had precisely the same growth rate under change of velocity direction. If the

boundary conditions were not important to the problem, that is, if they were pushed away from

the dynamo region by for example, a quiescent conducting layer on top of the outer core, then

this result might be expected to hold approximately (Kaiser and Tilgner, 1999). However, as

has already been discussed (section 2.6.7) the spherical boundary conditions are of fundamental

importance to the kinematic problem so this result is unlikely to hold in the physical Earth. In
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any case, the non-linear Navier-Stokes equations are not invariant under a directional change of

flow, so that the sign of u is not a free parameter but it inherent in the dynamical system.

3.8.1 The magnetic energy adjoint

The adjoint we will consider here is that relevant to the magnetic energy problem and differs

from other formulations in the literature (see Sarson, 1994, for an overview). Consider a vector

differential operator L that acts upon a magnetic field B. Solutions of the equation LB � 0 can

also be represented as 	
V � V̂

B† � LBdV � 0 (3.93)

for all vectors B† provided that the space spanned by them is sufficiently large. The operator L

has an associated adjoint operator called L† and is defined as (e.g. Lanczos, 1961)

	
V � V̂

B† � LBdV � 	
V � V̂

B � L† B† dV (3.94)

To find L† we typically successively integrate by parts, transferring the spatial derivatives of B

onto B† and imposing suitable boundary conditions to kill off the terms than cannot be expressed

in the above form. The adjoint operator L† may be shown to have the same eigenvalues as L

although having different eigenvectors in general. These form a biorthogonal set, that is, each

eigenvector of L† is orthogonal to all eigenvectors of L except that which has an eigenvalue

being the complex conjugate of that of the adjoint eigenvector.

3.8.2 The adjoint of the induction operator

We define the induction operator L (of which we might want to find the eigenvalues) by

L � Rm
��� u � � ��� η � � (3.95)

Therefore the equation defining L† is

	
V � V̂

B† � �Rm
��� �

u � B � � ��� �
η ��� B � � dV � 	

V � V̂
B � L† B† dV (3.96)

where η � 1 in V and is infinite in V̂ . The velocity term can be written

Rm

	
V

� ��� � �
u � B � � B† � �

�
u � B � � � ��� B† ��� dV (3.97)
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and if the flow u is non-slip on the boundary r � 1, then it is simplified to

� Rm

	
V

B � �
u � ��� B† � dV (3.98)

The diffusion term may be manipulated into the form

	
V � V̂

� B† � ��� �
η ��� B � dV

�
	

V � V̂

� B � ��� � η ��� B† � dV � �
∂V � ∂V̂

� B† � �
η ��� B � � B � � η ��� B† � � � dS (3.99)

If we choose L† � � Rmu � � � � � � η � � and the boundary conditions on B† usual for a

magnetic field, then this equation is satisfied by the usual continuity properties of section 3.3.1.

In this case, the adjoint equation differs from the induction equation by having a different flow-

field interaction but possesses the same diffusive term and boundary conditions. Notice that

when Rm
� 0 the adjoint and original equations coincide.

3.8.3 Self adjoint operators

In certain cases the adjoint operator with its boundary conditions is exactly the same as those

for the original problem. In this case, the operator is said to be self-adjoint. Such operators

possess real eigenvalues and mutually orthogonal eigenvectors. Such an example is the diffusion

operator, a special case of the above when Rm
� 0. Thus the decay modes (eigenmodes of this

problem) form an orthogonal (and complete) set over all space (see also section B.4) so that any

solution B
�
t � to this equation may be expressed as a sum over these modes:

B
�
t � � ∑

α
cα e � d2

α t Bα (3.100)

where the spatial component of each mode Bα is normalised to have unit magnetic energy. The

magnetic energy of the total field is

1
2

	
V � V̂

B
�
t � 2 dV � ∑

α
c2

α e � 2d2
α t (3.101)

by the normalisation and orthogonal properties. Therefore the evolution of the energy is com-

pletely determined by the eigenvalues of the original system. Indeed in this case, to maximise

the field energy at any time t � 0 given the restriction of having unit initial energy, we would put

all of the energy into the l � 1 poloidal mode that decays at (the slowest) rate of � π 2.
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3.8.4 Non self-adjoint operators

If the operator is non self-adjoint (e.g. when Rm �� 0) then the above behaviour does not apply: in

general eigenvectors are not mutually orthogonal and the energy has a different time-dependence

from the linear system. Eigenvectors of the induction operator are complete (Browder, 1952;

1953) so any solution may be written as a sum

B
�
t � � ∑

α
cα Bα eλα t (3.102)

where again Bα is the spatial part of the eigenmode, but now the energy is

M � 1
2

	
V � V̂

B2 dV � 1
2 ∑

α β
cα cβ e

�
λα � λβ � t

	
V � V̂

Bα
� Bβ dV (3.103)

The non-orthogonality of the eigenvectors means that the resulting non-zero cross products in-

troduce a time dependence not related to any of the individual eigenvalues.

For a simple example, consider a t1 flow acting upon a poloidal field. Although no

dynamo may operate (section 2.5) so that all the linear eigenvalues have negative real parts,

much toroidal field can be produced by differential rotation before the eventual decay. Hence a

period of transient growth occurs that is not predicted by the eigenmode formulation.

This is important for kinematic theory since we are interested in magnetic fields that

grow only until the Lorentz force becomes important. Finite time transience rather than expo-

nentially growing solutions may therefore be of relevance in the physical system.

3.9 Magnetic energy instability

3.9.1 Measures of magnetic energy growth

Historically, magnetic field growth has been linked exclusively to the eigenvalues of the induc-

tion operator, when we make the assumption that each eigenmode is of the form B i
� B̂i eλi t .

Such an expansion is complete (Browder, 1952; 1953) so we can write any solution of the prob-

lem as

B � ℜ � ∑i

Ai Bi eλi t � (3.104)

where we take only the physically relevant real part. In general the eigenmode formulation

allows complex eigenvectors and eigenvalues that indicate a rotation about the z-axis at a fre-

quency depending on the azimuthal wave number m of each mode. Any initial field will almost
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certainly have a projection onto all of the eigenvectors, and so the time-evolution of the field at

large times is controlled by the most unstable mode, i.e. that which is the fastest growing or

most slowly decaying, associated with the eigenvalue of maximal real part. We could take the

view that measuring the growth of magnetic fields by this mode is very much related to a phys-

ical process, since it is naturally selected by the system, albeit possibly after only times t � 1.

Numerically to find out if a growing eigenmode exists, we increase Rm from 0 and to track the

eigenvalue with maximal real part. We denote the lowest value of Rm for which there exists an

eigenvalue with ℜ
�
λ � � 0 as Rc

m, the linear critical magnetic Reynolds number. Whether or not

there exists such a value however is crucially dependent on the choice of flow studied, and is

therefore arguably not a robust way of measuring field growth. Indeed, geophysically we are

interested in magnetic field growth only until the Lorentz force becomes important, which can

have any time-dependence, not necessarily exponential.

Another way of characterising magnetic energy growth is instead to look at very short

times, and pose the question, ‘what is the magnetic field structure that grows instantaneously,

energetically the fastest?’. This may be a good indicator of growth over short time periods

and in general will not coincide with that predicted by eigenmode analysis since the induction

operator is not self-adjoint. We may formulate this as

λE
� max

B

1
�

M

d
dt

�
M

� max
B

1
2M

dM
dt

(3.105)

If λE � 0 then at least one magnetic field structure will grow instantaneously; if λE � 0

the flow is stable for all magnetic perturbations (since the maximum growth rate is negative). The

value of Rm for which λE
� 0 gives the energetically critical state and will be called RE

m; it is

the greatest lower bound (infimum) on Rm for energetic instability. Note that RE
m � Rc

m since it is

always easier to grow fields instantaneously than for long periods (for a proof of this see section

3.9.3); equality is obtained if the underlying operator is self-adjoint. In every case considered in

this thesis, RE
m exists; by contrast, in most cases, Rc

m does not. A simple example where RE
m

� Rc
m

is in the diffusion problem, where the induction operator is self-adjoint. In such cases, the linear

eigenmodes are orthogonal and so no transient effects can be caused by mutual superposition.

Thus the time dependence is controlled completely by the eigenvalues, and in particular so is the

instantaneous growth.

A further alternative method of characterising magnetic field growth is to solve the

fully time-dependent kinematic problem. In this manner, we can answer such questions as,
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‘what is the maximum relative growth of field energy over a time t?’ That is

max
B

�
0 �

M
�
t �

M
�
0 � (3.106)

where the maximisation is taken over all possible initial fields B
�
0 � . When t is small we expect

agreement with the instantaneous analysis; when t is large we expect to mimic the eigenmode

formulation. In the latter case, such a method alleviates the worry about whether or not the fastest

growing eigenmode has had a chance to dominate and in general incorporates effects from all

the eigenmodes, growing or not. We may track the evolution of the field and physically monitor

how it changes over time: this should give far greater insight than looking at just the final state

(for large t), governed by the most unstable eigenmode of the system.

3.9.2 The onset of magnetic energy instability

We will now investigate the instantaneous onset problem of magnetic energy growth. Recall that

we measure this by λE :

λE
� max

B

1
�

M

d
dt

�
M

� max
B

1
2M

dM
dt

(3.107)

The maximisation is taken over all possible magnetic fields, constrained to be solenoidal and

to satisfy the continuity and boundary conditions at r � 1. Let us suppose that the maximum

of equation (3.105) is attained by field B. In order to find an equation that λE must satisfy, we

perturb B by a relatively small field εδB, whose magnitude is O
�
ε ��� 1 where B � O

�
1 � . At

such a stationary point, λE must be at least quadratic in ε and using equations (3.105) and (3.57),

terms of first order give:

λE

	
V � V̂

δB � BdV � Rm

	
V

δB ��� BdV �
	

V

� ��� δB � � � ��� B � dV (3.108)

The symmetry of each term makes λE necessarily real, since if B were complex, we could take

our arbitrary perturbation δB to be proportional to its complex conjugate: δB � εB � , forcing λE

to be real.

Using a standard identity, we may recast this in terms of the Laplacian operator:

λE

	
V � V̂

δB � BdV � Rm

	
V

δB ��� BdV �
	

V
δB � ∇2BdV � �

∂V
δB ��� ��� B � � dS (3.109)
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Ideally we would now like an additional simplification to remove the unwanted perturbation δB

to leave an equation for just the maximising B and λE . However, due to the presence of the

boundary integral this is intractable, and we are left with the slightly unsatisfactory position of

an equation for λE and B but containing any arbitrary perturbation δB. In the case where V̂ has a

non-zero electrical conductivity, the relevant equations can be written down exactly (see section

3.9.8) and in a modified situation they can be analytically solved (section 3.9.6). Here however,

progress is only possible numerically using a Galerkin method as detailed in chapter four.

The term involving the velocity is now symmetric in δB and B, and so any selection

rules used to separate the harmonics into disjoint sets (section 3.6.5) must be symmetric. It is for

this reason that we deleted the asymmetric rule so that the results could be applied here.

3.9.3 Using λE to bound the eigenvalue growth rate

We now show that if

λE
� max

B

1
2M

dM
dt

(3.110)

and

λ B � ∂B
∂ t

� LB (3.111)

then the following bound holds:

ℜ
�
λ � � λE (3.112)

Physically this intuitive since one might expect that it is easier to grow magnetic fields instan-

taneously than over a long period of time. We give a proof of the result here, courtesy of Dr.

Richard Kerswell (personal communication, 2001). It immediately follows that RE
m � Rc

m. It is

first necessary to introduce the energy inner product:

�
B1 � B2 � �

	
V � V̂

B1
� B2 dV (3.113)

We write the eigenvalue as λ � λr � iλi that has associated eigenvector B � Br � iBi. It follows

that, since B is real:

λr Br
� λi Bi

� LBr (3.114a)

λr Bi � λi Br
� LBi (3.114b)
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Taking the energy inner product of equation (3.114a) with Br and of equation (3.114b) with Bi

and adding, gives

λr
�

�
Br � LBr � �

�
Bi � LBi �

�
Br

�
2 �

�
Bi

�
2 (3.115)

It remains to show that this may be bounded above by

λE
� max

B

�
B � LB �

�
B

�
2 (3.116)

Writing
�
B � LB � � g

�
B � and

�
B

� 2 � h
�
B � this amounts to showing that

g
�
B1 � � g

�
B2 �

h
�
B1 � � h

�
B2 � � max

B

g
�
B �

h
�
B �

� g
�
BM �

h
�
BM � (3.117)

where BM is the field at which the maximum is attained. It follows that

g
�
B1 �

h
�
B1 � � g

�
BM �

h
�
BM � (3.118)

so that

g
�
B1 � h

�
BM � � g

�
BM � h

�
B1 � � 0 (3.119)

and similarly for B2. It is then straightforward to show that

g
�
B1 � � g

�
B2 �

h
�
B1 � � h

�
B2 �
� g

�
BM �

h
�
BM �

� h
�
BM � � g �

B1 � � g
�
B2 � � � g

�
BM � � h �

B1 � � h
�
B2 � �� h �

B1 � � h
�
B2 � � h �

BM � � 0 (3.120)

3.9.4 An adjoint derivation of magnetic energy instability

An alternative derivation of the equation for instantaneous magnetic energy instability can be

obtained as follows. Let us write the induction equation in the following form:

∂B
∂ t

� LB (3.121)

Taking the dot product with B and integrating over all space gives the equation for the rate of

change of magnetic energy that we can write as

1
2M

dM
dt

�
�
V � V̂

B � LB dV
�
V � V̂

B2 dV
(3.122)
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If we maximise this expression we shall obtain λE as defined in section 3.9.1. Applying the

variational methodology we obtain:

2λE

	
V � V̂

δB � BdV � 	
V � V̂

� δB � LB � B � LδB � dV (3.123)

where we have collected all first order terms together; δB is an O
�
1 � field perturbation (as

before). This can be rewritten as

λE

	
V � V̂

δB � BdV �
	

V � V̂
δB �

�
L � L† �

2
BdV (3.124)

The operator
�
L � L† �

2 is self-adjoint and so has a complete set of orthonormal eigenvectors v i with

corresponding real eigenvalues µi. Writing B � ∑i civi and δB � ∑i divi we get

λE
� max

∑i µi ci di

∑i ci di

� max � µi � (3.125)

Therefore λE is the maximum eigenvalue of
�
L � L† �

2 and is attained when B is the associated

eigenvector.

In particular, if the problem is self adjoint (for example in the case of the decay problem

when Rm
� 0), the instantaneous growth rates coincide with the linear eigenvalues. This is

to be expected since the eigenvectors are orthogonal and no transient superposition effects are

possible.

3.9.5 Finite time growth of magnetic energy

Since the induction equation is linear, we can in fact write down exact solutions in the following

way. Writing it again in the form
∂B
∂ t

� LB (3.126)

where L is the induction operator, we can regard it as an ordinary differential equation in time

and so the solution is

B
�
t � � eLt B

�
0 � (3.127)

The exponential function can be made sense of by a power series expansion:

eLt � 1 � L t �
�
L t � 2 �

2! �
�
L t � 3 �

3! � � � � (3.128)
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Suppose that we would like to calculate the maximum relative growth of magnetic energy over

some time t. We use the energy inner product

�
B1 � B2 � � 	

V � V̂
B1
� B2 dV (3.129)

This problem can be formulated as a maximisation over all initial fields B
�
0 � with unit energy

(M
�
0 � � 1):

maxM
�
t � � max � eLt B

�
0 � � eLt B

�
0 � � (3.130)

� max
� � eLt � †

eLt B
�
0 � � B

�
0 � � (3.131)

� max
�
eL† t eLt B

�
0 � � B

�
0 � � (3.132)

since we may take the adjoint operation inside any linear sum (of which the exponential is a

limiting form) and it is independent of t, involving only spatial derivatives. The methodology

just derived can be applied to the instantaneous maximised energy growth problem, which is

equivalent to maximising the growth of M
�
t � for vanishingly small t. If t � 1 then to first order

eLt � 1 � L t so again if M
�
0 � � 1:

maxM
�
t � � � �

1 � L† t � �
1 � L t � B

�
0 � � B

�
0 � � (3.133)

Taking the derivative with respect to time gives that

max
dM
dt

� max � �
L† � L � B

�
0 � � B

�
0 � � (3.134)

This is of a similar form to that in the previous section; again λE is the largest eigenvalue of the

operator
�
L† � L � �

2. (Note the extra factor of 2 needed in the above equation to make it conform

to the definition of λE).

3.9.6 A variational method applied to Proctor’s bound

Recall that Proctor (1977a) addressed the problem

λP
� min

�
V

� ��� B
� 2 dV

�
V B2 dV

(3.135)

by a Lagrange multiplier method. Here, we are able to use the variational method as above to

solve it analytically. In order to do so however, like Proctor we must allow the external region V̂
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to be finitely electrically conducting and subsequently let its magnetic diffusivity tend to infinity

in a well defined limit. We are at liberty to approach this limit in whatever way that we choose:

therefore we only consider η � η
�
r � since this facilitates the analysis. From the derivation of

the magnetic energy equation (equation 3.55), we see that the only difference that an electrically

conducting exterior makes is the inclusion of the Ohmic dissipation term in V̂ . The relevant

minimisation is

λP
� min

�
V � V̂

η
� ��� B

� 2 dV
�
V B2 dV

(3.136)

which agrees with (3.135) in the electrically insulating limit where η � � B remains finite but

��� B � 0 in V̂ .

To form the variational equation, assume that the minimum value, λP, is attained with

some field B. At this stationary point, perturbations to this field εδB � O
�
ε � � 1 where B �

O
�
1 � will affect the minimum at least quadratically in ε . Collecting terms linear in ε gives

� 	
V � V̂

η
� ��� B � � � ��� δB � dV � λP

	
V

B � δB dV � 0 (3.137)

Using a standard identity equation (3.137) may be written, noting that η � 1 in V :

� �
∂V � ∂V̂

ηδB � � ��� B � � dS �
	

V
δB � � ∇2B � λPB � dV

� 	
V̂

δB � ��� �
η ��� B � dV � 0 (3.138)

The surface integrals vanish due to the usual continuity conditions imposed and the behaviour

at infinity. Using the notation χV

�
r � � 1 if r � V and 0 otherwise, we rewrite the remaining

equation in implicit form:

	
V � V̂

δB � � χV

�
r ��� ∇2B � λPB � � χ

V̂

�
r � � ��� �

η ��� B � � � dV � 0 (3.139)

Using the Lemma in Appendix C, we obtain the explicit equations for any stationary point of

(3.136), in particular its minimum:

∇2B � λPB � � ξ � 0 in V (3.140a)

� ��� �
η ��� B � � � ξ � 0 in V̂ (3.140b)

where ξ is continuous at r � 1.

These equations may be solved (see Appendix C for a derivation) to give that B is of
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l � 1 poloidal form with

S1

�
r � � r j1

�
α r � � j1

�
α � r2 �

2 (3.141)

in the insulating limit: η � ∞ in V̂ . The constant α solves

j1
�
α � � 2

3
j0

�
α � � 0 (3.142)

that numerically can be evaluated to be λP
� α2 � 12 � 29 (to 2 decimal places).

3.9.7 The singular electrically insulating limit

To obtain the limiting form of the equations in the electrically insulating limit, if one naively

ignores equation (3.140b) and instead imposes the relevant boundary conditions at r � 1, this

demonstrably leads to the wrong answer. In fact, on taking the curl of equation (3.140a) we

arrive back at the diffusion problem which would give λP
� π2. So what has gone wrong and

why is this limit ostensibly singular?

The answer is of course that it is not singular, and we have made an error en route in

the derivation. The increase of the domain of the numerator from V in equation (3.135) to V � V̂

in equation (3.136) makes no difference in the electrically insulating limit. The extra addition

splits up into two exactly cancelling integrals:

	
∂V̂

ηB � � ��� B � � dS �
	

V̂
B � ��� �

η ��� B � dV �
	

V̂
η

� ��� B
� 2 dV � 0 (3.143)

in the limit as η � ∞, and all parts stay finite and non-zero. If we ignore the integral over V̂ then

we must also ignore the boundary integral. This happens to cancel out a similar boundary term

from V which is why in the conducting case the problem involves only volume integrals. If we

take the limit properly then equation (3.138) should lead to the following equation in V :

	
V

δB � � ∇2B � λPB � dV � �
∂V

δB � � ��� B � � dS � 0 (3.144)

We therefore have two options:

(a) treat the exterior as finitely conducting, solve in both V and V̂ , match at r � 1 and then let

η � ∞ in V̂ or

(b) treat the exterior as an electrical insulator and include the extra (now non-cancelling)

boundary term in the analysis when solving in V . We may use the usual boundary condi-

tions at r � 1.
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Incorporation of the boundary term makes an analytic approach intractable which is why option

(a) was taken by Proctor (1977a) and is done so here. Option (b) may be treated by numerical

Galerkin methods that are detailed in chapter four.

3.9.8 The differential equations of instantaneous magnetic energy growth

One might think that, following the success of the variational approach to Proctor’s bound that

perhaps an analytic treatment of the equation for instantaneous energy growth is possible; such

an attempt is outlined here. Including the finitely electrically conducting region V̂ in the diffusive

term of equation (3.108) as in the previous treatment gives the following equation:

Rm

	
V

δB ��� B � B � � δB �
	

V � V̂
η

� ��� B � � � ��� δB � dV � λE

	
V � V̂

δB � BdV (3.145)

On transforming the diffusive terms and noting that in this case the boundary integrals cancel

out, we end up with

	
V

δB � � Rm
� B � ∇2B � λE B � dV �

	
V̂

δB � � ��� �
η ��� B � � λE B � dV (3.146)

Using the Lemma in section C.1.1 these are equivalent to:

Rm
� B � ∇2B � λE B � � ξ in V (3.147)

��� �
η ��� B � � λE

��� � ξ in V̂ (3.148)

for some continuous function ξ . The action of � couples vector harmonics together in the same

fashion as the operator Rm
� � u � in the induction equation. In order to formulate a solution,

one could try extract the toroidal and poloidal harmonic components of each equation and use a

finite difference scheme in radius, but that leaves the question of how to let η � ∞ in V̂ in a well

defined way. As has already pointed out, simply solving in V and using the usual electrically

insulating boundary conditions is incorrect: either we solve in V̂ as well or we are forced to

include a boundary integral earlier on in the analysis which stops us getting this far. Notice that

the unknown eigenvalue λE appears in both domains which inhibits any kind of local solution,

for example in V̂ , which could then be matched to that in V to determine λE .
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Chapter 4

Numerical methods

In this chapter we detail the numerical procedures used in this thesis, coded in FORTRAN 90,

and their convergence. In particular, we introduce the use of a fully spectral Galerkin method

to solve ostensibly intractable sets of equations. We motivate this method by solving a simple

example outlined below. Some references that the reader may turn to for more detail are Boyd

(2001), Canuto et al. (1988) or Fornberg (1998).

4.1 A simple example

Consider the simple 1D diffusion equation for u � u
�
x � t � :

∂u
∂ t
� ∂ 2u

∂x2
� 0 (4.1)

subject to the boundary conditions

∂u
∂x

� u
x

� 0 x
�

1 � t
�

0 (4.2)

u
�
0 � t � � 0 (4.3)

Let us seek solutions of the form u
�
x � t � � P

�
x � eλ t . The boundary condition implies that the

solution in x
�

1 is u
�
x � t � � Aeλ t

x for some constant A, and so its behaviour is completely deter-

mined by its value on x � 1. The decay modes are then:

u
�
x � t � �

���� e � ν2
n t sinνnx 0 � x � 1

e � ν2
n t sinνn

x x
�

1
(4.4)
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where νn is the nth strictly positive root of the equation tank � k � 0. The slowest decaying mode

is associated with the value ν1
� 2 � 0288 (or equivalently � ν 2

1
��� 4 � 1159).

4.1.1 A range of numerical approaches

Since we may solve equation (4.1) analytically it is interesting to discuss how this problem might

be tackled numerically. We would start by formulating the equation as an eigenvalue problem

λ P
�
x � � d2P

d x2
� 0 (4.5)

and discretise the differential operator in some way to give it a finite representation. For example,

we might use a finite difference scheme whereby we solve for P
�
x � on some grid, and express the

derivatives at each location as linear combinations of P evaluated on neighbouring grid points

(with some degree of error), using a Taylor expansion. As we increase the number of grid points

and the accuracy of the differencing scheme, we hope that converged solutions are found. An

alternative method is to use a so called spectral scheme, where we express P
�
x � as a finite sum

over known functions, for example

P
�
x � � N

∑
n � 0

An xn (4.6)

In this case the differential operator is exact and in fact the diffusion problem amounts to solving

λ
N

∑
n � 0

An xn � N � 2

∑
n � 0

�
n � 1 � �

n � 2 � An � 2 xn � 0 (4.7)

Equating the first n � 2 powers of x gives n � 2 constraints, and adding in the two boundary

conditions produces n equations for n unknowns. Alternatively we may use a collocation scheme

to derive the n � 2 constraints on Ai from the equation above. This is where, instead of equating

powers of x, we use the fact that equation (4.7) holds everywhere in � 0 � 1 � and we simply evaluate

it at n � 2 locations (at our disposal). Again by increasing the number of basis functions N and

concomitantly the number of collocation points, we hope to find converged solutions. We may

expand P
�
x � over any basis that we choose, for example, Fourier series, Bessel functions, power

series, Chebyshev polynomials are all possibilities, the choice of which will be motivated by

examining the particular properties of the problem. For example, if odd and even solutions

separate then we might either use a sine or cosine Fourier series or odd and even polynomials to

address each symmetry separately.

A clever way of approaching spectral problems is to use a ‘recombined basis’ (Boyd,
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2001). This is where each basis function individually satisfies all the relevant boundary condi-

tions and so we do not need to explicitly include them when we solve the system. For example,

in the above problem the following is a basis:

Un
�
x � �

���� Tn
�
x � � 1 � n2

2 x 0 � x � 1

1 � n2

2x x
�

1
(4.8)

where Tn
�
x � is the nth Chebyshev polynomial with n

�
2 (see section 4.4.2). It is a simple

exercise to check that each Un
�
x � satisfies both boundary conditions. We can then expand P

�
x � in

this basis and obtain the full quota of n equations using a collocation method without ‘wasting’

two equations for the boundary conditions. In addition, these problems are often numerically

better conditioned since the boundary conditions are implicit in each matrix element and not

represented by a few rows in what could be very large matrices.

An important property of spectral schemes is that very few basis functions may be re-

quired to represent the unknown solution extremely well. Indeed, these methods often exhibit so

called ‘spectral accuracy’, that is, they converge exponentially fast. This relies on the properties

of the basis functions and it certainly holds in the case of Chebyshev polynomials.

4.1.2 A Galerkin method

Recall that the methodology of the collocation method using a recombined basis is as follows.

We expand u in the spectral basis, substitute this into the differential expression, equate it to

zero and evaluate it at the collocation points. In a Galerkin method, instead of equating the

differential expression to zero, we make it orthogonal to some set of functions. In general we

choose this set of functions to be the basis we first thought of. As we increase the number of

basis functions N, not only do we improve the representation of the unknown function P
�
x � but

also the representation of 0, being orthogonal to all functions. Writing P
�
x � � ∑i AiUi

�
x � the

Galerkin formulation is then

	 1

0
Ui � λ ∑

j
A j U j

� ∑
j

A j

	
V

d2U j

dx2 � dx (4.9)

� λ ∑
j

A j

	 1

0
UiU j dx � ∑

j

A j

	
V

Ui

d2U j

dx2 dx � 0 (4.10)

for i � 1 � 2 � 3 � � � � N. This gives N equations in
�
A1 � A2 � � � � � AN � that we solve as an eigenvalue

problem

λ � v ��� v � 0 (4.11)
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where the matrices are

� i j
� 	 1

0
Ui U j dx �

i j
� 	 1

0
Ui

d2U j

dx2 dx (4.12)

and v � �
A1 � A2 � A3 � � � � � AN � is the vector of the unknown coefficients. We might be able to

formulate these integrals analytically from knowledge of the expressions for Ui. Indeed, in

general we can integrate by parts, resulting in a “weak form” of the system with lower spatial

derivatives than the original. If analytic methods are intractable we could use an exact quadrature

scheme, that essentially relates the integral to samples of the integrand at a number of judiciously

chosen points. This is then equivalent to a collocation method using the same grid.

There is some flexibility when choosing the region of integration of this Galerkin

scheme. Clearly we must include the region � 0 � 1 � but since the behaviour of u in x � 1 is

completely determined from u
�
1 � we are at liberty to choose any region � 0 � a � where a

�
1. This

will modify the matrices although the method will still converge to the same solution. If a � 1,

no comparison with the collocation method can now be made, and the defining equation here is

λ P
�
x � � ∂ u

∂ t

�
x � � ∂ u

∂ t

�
1 � �

x � ∂ 2 u
d x2

�
1 � �

x (4.13)

Therefore the contributions to � and � are respectively:

	 a

1

Ui

�
1 � U j

�
1 �

x2 dx
	 a

1

Ui

�
1 � U � �j

�
1 �

x2 dx (4.14)

Table 4.1 shows exponential convergence in N to the slowest decay rate of � 4 � 1159 (approx)

using the package Maple, numerically calculating terms to 30 decimal places. Since the solution

sought is odd we restrict the basis to its odd subset: U3 � U5 � U7 � etc. On increasing N by 2,

the logarithmic error approximately halves for both choices of a. Choosing a � 1 in this case

exhibits the best convergence although both choices clearly work.

log10

�
λ � ν1 �

N a � 1 a � ∞
1 -1.602 0.055
2 -4.522 -1.533
4 -11.90 -5.141
6 -20.62 -9.456

Table 4.1: Exponential convergence towards the analytic decay rates in N, for the two regions of
integration � 0 � a � where a � 1 and a � ∞.
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4.2 Comparison of various numerical methods

The Galerkin paradigm has been outlined above, and we detail its relevant applications later.

For now, we present a comparison of the different numerical methods that could be employed to

solve scalar differential equations.

1. Finite difference:

(a) Expand the unknown scalar on a grid.

(b) Impose that the equation be satisfied at these points.

(c) Handle the derivatives by central/forward/backward

“differences” of neighbouring grid points. This is not exact and depends on the

‘order’ of the scheme.

(d) Each grid point will only depend on those immediately around it, leading to banded

matrices and more efficient storage.

(e) The inaccuracies in representing the unknown function stem from the finite grid used

and the order of the differencing scheme.

2. Collocation using a re-combined basis:

(a) Expand the unknown scalar as a linear sum of N known basis functions, each of

which satisfies the boundary conditions.

(b) Impose that the equation be satisfied at a set of N points (which are in general expe-

diently chosen).

(c) The derivatives can be handled exactly by differentiating the known functions.

(d) The resulting system is dense (that is, almost all matrix entries are non-zero), al-

though it is exact for the finite basis representation used.

3. Galerkin

(a) Expand the unknown scalar as a linear sum of N known basis functions.

(b) Introduce some integral measure of orthogonality.

(c) Impose that the equation be orthogonal to each basis function, instead of being iden-

tically zero.

(d) Derivatives are usually handled using integration by parts, yielding a “weak form”

of the equation. The resulting integrals involve lower order derivatives than those of

the original equation.
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(e) The resulting system is dense, although exact for the finite basis representation used.

If it clear that finite difference schemes are very different in structure to Galerkin and re-combined

collocation methods, having between them many similarities. Consider a spectral scheme using

a recombined basis where we expand B � ∑N
i � 1 Ai Bi in order to numerically solve the equation

�
B � λB � 0 where

�
is some vector differential operator. The residual is defined to be

� � � λ I � N

∑
i � 1

AiBi
� RN

�
r � A0 � A1 � A2 � � � � � AN � (4.15)

that is the error between the finite approximation B and the true (unknown) solution that solves

the equation exactly; in general it will also be spatially dependent so is a function of the position

vector r. Both Galerkin and re-combined collocation schemes seek to minimise the residual:

collocation by imposing that it be zero at certain (expediently chosen) grid points, and Galerkin

by imposing that it be orthogonal to the basis used. If we expand R in terms of the same basis,

then these schemes amount to imposing that the first N spectral coefficients vanish. Should we

use a basis expansion that converges exponentially (e.g. Fourier or Chebyshev series) then the

residual will converge to zero exponentially fast, i.e. I
�
R � ∝ c � N for some integral measure I of

the residual (e.g. the energy) and some constant c � 1. This is so called “spectral convergence”.

A Galerkin method numerically integrating by a quadrature scheme using the set of

Gaussian-abscissas (discrete sampling points) gives precisely the same matrix formulation as

a re-combined collocation method on the same grid (see Boyd, 2001, section 4.4). Thus in

certain cases these two schemes are exactly equivalent. In general, collocation methods refer

to a spectral expansion, for example in Chebyshev polynomials, but imposing the boundary

conditions explicitly rather than implicitly, using up one or more rows of the matrix system.

Another method that may be used is a so called tau-method (e.g. Fornberg, 1998), similar to

the general collocation scheme but instead of imposing that the equation be pointwise zero, it

uses the Galerkin orthogonality condition instead. Thus tau is akin to Galerkin, but imposes the

boundary conditions explicitly.
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4.3 Application of the Galerkin method

4.3.1 The induction equation

We now detail the application of a Galerkin method to solve the induction equation eigenvalue

problem. Expanding the unknown magnetic field as a linear sum over a basis of vectors so that

B � N

∑
i � 1

Ai Bi (4.16)

we may formulate the Galerkin problem as a matrix equation:

λ � V v � �
Rm � � � V � v (4.17)

where the vector v � �
A1 � A2 �

� � �
� AN � represents the unknown coefficients, and we have imposed

orthogonality over the unit sphere V . The matrix entries are:

� � V � i j
�
	

V
Bi
� B j dV � i j

�
	

V
Bi
� ��� �

u � B j � dV

� �
V � i j

�
	

V
Bi
� ∇2B j dV (4.18)

This is a generalised eigenvalue problem that may be solved using standard methods. In addition

we may determine the secular variation of any given field similarly. Suppose that B (and there-

fore v) is known; since ∂B
∂ t satisfies the same boundary conditions as B we can also expand it as

a sum over the basis Bi, represented by the vector, s, say. Substituting these expressions into the

induction equation and integrating against each basis function gives

s � � � 1
V

�
Rm � � � V � v (4.19)

The matrix � � 1
V

�
Rm � � � V � is a discretisation of L � Rm

� � u � � � � η � � , the induction

operator, and can either be used to time-propagate magnetic fields or to find the eigenvalue

growth rates of linear modes (this being equivalent to finding the generalised eigenvalues as

above).

4.3.2 Variational equations

In chapter three we derived two equations that could not be solved analytically and appeared to

be intractable because of the presence of boundary integrals. These were, the equation describing
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the instantaneously most unstable magnetic field, growing in energy at a rate λE (section 3.9.2)

λE

	
V � V̂

δB � BdV � Rm

	
V

δB ��� BdV �
	

V
δB � ∇2BdV � �

∂V
δB ��� ��� B � � dS (4.20)

and a simpler equation coming from the application of the variational principle to the bound of

Proctor (1977a), section 3.9.7:

	
V

δB � � ∇2B � λP B � dV � �
∂V

δB � � ��� B � � dS � 0 (4.21)

In both of these equations, δB is any perturbation field. Galerkin methods offer a powerful way

of treating such problems numerically: we expand B over some basis and then take δB to be each

basis function in turn, forming a linear system of equations. In this sense, the above equations

really represent an orthogonality relation written in some kind of weak form. Thus the numerical

approach to the variational equations is no different from the application of a Galerkin method

to the induction equation, even with the inclusion of ostensibly troublesome boundary integrals.

We then therefore formulate equation (4.20) as a generalised eigenvalue problem:

λE � V � V̂
v � �

Rm � � �
V � V̂

� v (4.22)

where λE is the largest such eigenvalue, and

� �
V � V̂

� i j
�
	

V � V̂
Bi
� B j dV � i j

�
	

V
Bi
��� B j dV

� �
V � V̂

� i j
� 	

V
Bi
� ∇2B j dV � �

r � 1
Bi
� � ��� B j � � dS

��� 	
V

� ��� Bi � � � ��� B j � dV (4.23)

and similarly for equation (4.21). Note that � and � are defined over all space and are both

symmetric; in particular the discretised diffusion term is identical to that which comes about

from a Galerkin treatment of the Laplacian operator (see section 4.6.1).

4.4 Choice of basis

4.4.1 Properties of the basis functions

We detail in this section the choice of basis that we shall use in our study. Recall that each basis

function must individually satisfy all boundary and other relevant conditions. In particular they
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must be solenoidal so we expand as usual in poloidal-toroidal form; the insulating boundary

conditions mean that they can be explicitly written as

Sα
�

���� ��� ����� Sα Yα r̂ � in V

� lα Sα
�
1 � �

�
Yα

rlα � 1 � in V̂
(4.24)

Tα
�

���� ����� Tα Yα r̂ � in V

0 in V̂
(4.25)

with
dSα
dr

�
1 � � lαSα

�
1 � � 0 Tα

�
1 � � 0 (4.26)

Regularity imposes that as r � 0

Sα
�
r � � O

�
r

�
l � 1 � � Tα

�
r � � O

�
r

�
l � 1 � � (4.27)

In addition, since we include the origin in our domain, the system must be invariant under the

mapping:

θ � θ � π r � � r (4.28)

The harmonics satisfy Y m
l

�
θ � φ � �

� � 1 � lY m
l

�
θ � φ � under θ � θ � π see section (B.1.3). This

means that

Sm
l

�
r � � � � 1 �

�
l � 1 � Sm

l
� � r � (4.29)

which comes from, for example l
�
l � 1 � Y m

l Sm
l

�
r � �

r2, the radial component of a poloidal vector

harmonic, and noting that the extra power of � 1 stems from the reversal of r̂ under such a

transformation.

A similar result holds for the toroidal vectors, following from the behaviour of the

θ -component. Again we see that T m
l

�
r � � � � 1 � l � 1T m

l

� � r � since ˆ�
changes sign.

This means that if l is an odd number, then the corresponding radial functions Sm
l and

T m
l must be even; similarly if l is an even number, then the functions must be odd. This parity

separation means that we can either exclude all even or all odd functions in r for any given l,

which increases the degree of expansion that we can achieve by a factor of two for a fixed number

of terms. The interested reader should consult Kerswell and Davey (1996) for more details on

symmetry separation.
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We shall index the basis functions by the superscript n so that, for example

Sα
� Nmax

∑
n � 1

��� �����Aα Yα Sn
α r̂ � (4.30)

for some coefficients A1 � A2 � � � � � ANmax
.

Following the behavioural constraint at the origin, we might seek radial basis functions

of the form:

Sn
α

�
r � � rlα � 1 f n

α
�
r � T n

α
�
r � � rlα � 1gn

α
�
r � (4.31)

for some non-singular functions f n
α and gn

α . However, this is perhaps not a good way to proceed

since significant relative errors are introduced when evaluating terms in r � 1, due to the large

pre-multiplying power of r (Dr. David Ivers, personal communication, 2002). We instead follow

Zhang and Busse (1988) in using an expansion of the form:

Sn
α

�
r � � r f n

α
�
r � T n

α
�
r � � r gn

α
�
r � (4.32)

where f n
α and gn

α are both O
�
r � at the origin, which satisfies the weaker form of S n

α and T n
α being

O
�
r2 � at r � 0. We truncate these functions as n � Nmax similarly to that in l, using l � Lmax.

Although the regularity condition of O
�
rl � 1 � is necessary, we might expect that the

solution obtained automatically satisfies this constraint whatever basis functions we choose. We

therefore use it only to hone the basis and do not worry too much about whether each basis

function individually satisfies it. This approach is typical in a finite difference scheme where

only O
�
r � behaviour is enforced, since power law constraints are not in a tractable form for such

a method.

4.4.2 Chebyshev Polynomials

We will make extensive use of Chebyshev polynomials in the basis that we choose, so a few

details are given here. Chebyshev polynomials may be defined by

Tn
�
cosθ � � cos

�
nθ � (4.33)

and satisfy the equation:

�
1 � x2 � T � �n

�
x � � xT �n

�
x � � n2Tn

�
x � � 0 (4.34)
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They are efficiently determined by the three-term recurrence relation and starting values:

T0

�
x � � 1 (4.35a)

T1

�
x � � x (4.35b)

Tn � 1

�
x � � 2xTn

�
x � � Tn � 1

�
x � (4.35c)

Other useful relations are:

2Tm
�
x � Tn

�
x � � Tn � m

�
x � � Tn � m

�
x � n

�
m (4.36)

Tn
�
1 � � 1 (4.37)

Tn
� � x � � � � 1 � nTn

�
x � (4.38)

Tn
�
0 � �

���� � � 1 � m n � 2m

0 n � 2m � 1
(4.39)

T �n
�
1 � � n2 (4.40)

T � �n

�
1 � � 1

3
n2 �

n2 � 1 � (4.41)

	 1

0
Tn

�
x � dx � � Tn � 1

�
x �

2
�
n � 1 � �

Tn � 1

�
x �

2
�
n � 1 � � x � 1

x � 0
n

�
2 (4.42)

	 1

� 1

Tm
�
x � Tn

�
x �

�
1 � x2

dx �
���� 0 m �� n

π
2

�
1 � δn0 � n � m

(4.43)

�
1 � x2 � T �n

�
x � � � nxTn

�
x � � nTn � 1

�
x � (4.44)

A recurrence relation links the derivatives:

T �k
�
x � � k

∑
i � 0

aiTi

�
x � (4.45a)

ai
�
���� 0 i

�
k

2kδi � k � 1 � � ai � 2

1 � δi0
i � k � 1 � k � 2 � k � 3 � � � � � 0

(4.45b)

For example,

T �6
�
x � � 12T5

�
x � � 12T3

�
x � � 12T1

�
x � (4.46)

T �7
�
x � � 14T6

�
x � � 14T4

�
x � � 14T2

�
x � � 7T0

�
x � (4.47)

A Chebyshev series is closely related to a cosine Fourier series (4.33) and consequently

has many similar properties; in particular they converge exponentially fast (see Boyd, 2001,
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section 2.11). It may also be shown that the Chebyshev polynomials are complete. Another

point of note is that they have a definite parity (4.38), which we will exploit.

4.4.3 The Chebyshev basis

No combination of the Chebyshev polynomials T0, T1 and T2 can be used to fulfil the regularity,

boundary condition and parity requirements of equations (4.27), (4.26) and (4.29), and so they

are used as building blocks for the radial basis. The following is a set of basis functions that sat-

isfy all the required constraints, and additionally exhibit completeness and excellent convergence

properties.

T n
α

�
r � � r

�
�
�
��
�
�
�

� T2n � 1

�
r � � T1

�
r � lα odd

T2n � 2

�
r � � T0

�
r � lα even, n odd

T2n � 2

�
r � � T2

�
r � lα even, n even

(4.48)

Sn
α

�
r � � r

�
�
�
��
�
�
�

� T2n � 1

�
r � � �

2n � 1 � 2 � l � 1
l � 2 T1

�
r � lα odd

T2n � 2

�
r � � o1T2

�
r � � o2T0

�
r � lα even, n odd

T2n � 2

�
r � � e1T2

�
r � � e2T0

�
r � lα even, n even

(4.49)

with lα
�

1,n
�

1 and

o1
� �

2n � 2 � 2

2
�
lα � 3 � o2

� �
2n � 2 � 2 � 2lα � 6

2
�
lα � 3 �

e1
� �

2n � 2 � 2 � 2lα � 2
2

�
lα � 3 � e2

� �
2n � 2 � 2 � 4
2

�
lα � 3 �

(4.50)

Note the dependence on whether n is odd or even. This is due to the change in T2n � 2

�
0 � �

� � 1 � n � 1. The parity separation means that for a given radial truncation Nmax, the maximal

degree of polynomials used is O
�
2Nmax � compared to O

�
Nmax � , as would be the case without

such separation. Figure 4.1 shows the first four toroidal and poloidal basis functions on the

domain 0 � r � 1.

4.4.4 A sinusoidal basis

An alternative basis, motivated by Zhang and Busse (1988), is proposed below involving stretched

Fourier series:

Sn
l

�
r � � rΓ

�
l � sin

�
νn

l r � T n
l

�
r � � rΓ

�
l � sin

�
nπr � (4.51)
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Figure 4.1: Toroidal and poloidal radial basis functions for l � 1 � 2; n � 1 � 2.

where Γ
�
l � � 1 if l is odd and 2 if even (to ensure the correct parity of the functions) and ν n

l

satisfies:

tan
�
νn

l � �
νn

l

l � Γ
�
l �

� 0 (4.52)

We let νn
l be the nth positive root.

One might expect that Fourier series should converge exponentially fast; however, in

the poloidal case above where each term is radially compressed by a factor ν n
l rather than the

usual nπ , this is demonstrably false as shown later in section 4.7.1.
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4.5 The matrix elements

4.5.1 Definition and choice of region

As has been outlined above, we use the matrix elements defined as

� i j
� 	

V
Bi
� � B j dV � i j

� 	
V

Bi
� ��� �

u � B j � dV (4.53)

� ��� � i j
�
	
�

Bi
� B j dV � � � � i j

��� 	
�

Bi
� ��� �

η ��� B j � dV (4.54)

where in the cases of � and � the region
�

over which the elements are integrated is written

explicitly. Since every such choice
�

must always include V , the only region in which u is

non-zero, no such treatment is necessary for the matrices � and � . Unless stated we always use

the Chebyshev basis since it has superior convergence properties.

In the case of the variational equations for the onset of magnetic energy instability, the

region over which the integration is taken when computing the matrix elements is fixed: that of

V � V̂ . There is some degree of flexibility however when formulating the Galerkin method for

the induction equation. Any choice of domain
���

V is a valid choice, since the magnetic field

in V̂ is completely determined by its behaviour on ∂V and the inclusion of the region V ensures

that the velocity is fully represented. The calculation of the matrix elements of � and � are

detailed in section 4.6.1.

Therefore every discretisation of the induction operator L is of the form

� � � � 1�
�
Rm � � � � � (4.55)

There are infinitely many choices of � , all representing the same operator. This degeneracy

might be regarded as that analogously obtained on changing the grid points in a finite difference

or collocation method, clearly affecting the numerical results but nonetheless converging to the

same solution. In general, there is an optimal grid that is chosen for such methods, and we

might expect the same to be true in this case for an analogous choice of region. Table 4.2

shows the effect of the choice of region on the convergence to the l � 1 poloidal decay rate

of λP
� � d2

P
� � π2 using the Chebyshev basis. The value λ is the numerically computed

eigenvalue for the choice of
�

for the decay problem. The error in the eigenvector is measured

by

I
� � � �

	
V
� B� � BP � 2

dV (4.56)

where BP is the analytical decay mode and B � its numerical approximation using the region
�
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in the Galerkin method. All fields are normalised such that the defining poloidal scalar attains 1

at r � 1.
� � V

� � V � V̂
Nmax log10

�
λ � λP

�
log10 I

�
V � log10

�
λ � λP

�
log10 I

�
V � V̂ �

4 -3.4820 -8.3626 -7.9246 -8.6051
8 -10.9883 -23.6788 -12.0438 -24.3839
16 -11.2306 -24.9785 -11.4347 -24.1401

Table 4.2: Different choices of the region
�

lead to different convergence in the l � 1 poloidal
decay rates of λP

� � d2
P

� � π2. I
� � � � �

V � B� � BP � 2
dV where B� is the numerical eigen-

vector using the Chebyshev basis, and BP is the analytic decay mode. In all cases the fields are
normalised so that the defining poloidal scalar attains a value of 1 at r � 1.

The error in the eigenvectors is not only very small, especially for Nmax
� Lmax

�
8,

but remarkably similar for each choice of region. That this is so is not surprising since the true

decay mode has only one projection onto the basis used, irrespective of which method is used to

find it. This is only true when the projection is well defined; in the case of the sinusoidal basis

this process is numerically ill-conditioned and many representations of a vector will almost agree

leading to large errors.

The differences in the governing matrices are manifested in the differing convergence

of the eigenvalues. Although both computations converge to a ceiling of around 10 � 11, taking
� � V � V̂ is seen to be vastly superior.

This is again seen in the non-quiescent flow case. We now compare the convergence

using the different regions, in the most unstable eigenvalue of � as a function of truncation, for

the case of the t1 s2(MDJ) flow, τ � 0 � 5, Rm
� 55 � 0 (defined in chapter five). The symmetry

investigated is the critical one: m � 1, E S; the eigenvalues are shown in table 4.3.

We also computed the integral
�
V
�BV
� B

V � V̂
� 2 dV , where BV and B

V � V̂
are the eigen-

vectors from calculations with
� � V and

� � V � V̂ respectively, which measures the devi-

ation in the eigenvectors for differing regions. For cases of Nmax
� Lmax

�
16 we found the

integral to be at most 10 � 8. This again means that the eigenmode has only one representation

and any choice of region will give the same result. The eigenvectors were normalised so that

S1S
1

�
1 � � 1 � 0i. The differing eigenvalues reflect the differing governing matrices.

In this case, as before, it is most expedient to choose the region V � V̂ for swiftest

convergence. We need only Nmax
� Lmax

� 16 to achieve convergence to five decimal places

choosing
� � V � V̂ , whereas if we choose

� � V , we need more: Nmax
� Lmax

� 32 will give

the same result.

We note in conclusion that any representation of L will work, although some better



84

Nmax
� Lmax λV λ

V � V̂
4 0 � 4248 � 36 � 4035i 2 � 0087 � 33 � 1449i
8 � 0 � 2482 � 35 � 0776i 0 � 04421 � 35 � 0348i

16 � 0 � 002513 � 35 � 0741i � 0 � 001887 � 35 � 0749i
32 � 0 � 001866 � 35 � 0750i � 0 � 001866 � 35 � 0750i

Table 4.3: The most unstable eigenvalue of � as a function of truncation, for the different regions� � V and
� � V � V̂ , using the Chebyshev basis.

than others. Interestingly, to achieve the fastest convergence we choose
� � V � V̂ and not the

region available for finite difference and collocation methods of
� � V .

4.6 Computation of matrix elements

4.6.1 Calculation of Galerkin elements in V̂

We have not touched upon how to compute elements of � and � in V̂ but some clue has been

given in section 4.1.2. It is a simple matter to extend B over V̂ and so the elements of � follow

easily. We may formulate the contribution to the diffusion matrix � i j from V̂ in one of two ways.

Recall that the time dependence is governed in V̂ by

∂B
∂ t

��� ��� �
η ��� B � (4.57)

where η is infinite in the well defined electrically insulating limit. The first method is to directly

write the contribution as

� 	
V̂

Bi
� ��� �

η ��� B j � dV ��� �
r � 1

Bi
� � ��� B j � � dS (4.58)

on taking the limit η � ∞ which gives well defined matrix elements. The above equation follows

directly from, for example, the analysis in section 3.9.7. Secondly, we may simply infer the

behaviour of B in V̂ from r � 1. That is, for r � 1,

� ��� �
η ��� B � � ∂B

∂ t

�
r � ���

�
∂B
∂ t

�
1 � � ��� � ∇2B

�
1 � � (4.59)

where � is the potential field extension of a vector defined in V into the electrical insulator V̂ .

From sections 3.3.3 and 3.4.1 it follows that

� � ∇2Bα
�
1 � � ��� lα ∇2

αSα
�
1 � �

�
Yα

rlα � 1 � (4.60)
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and so the contribution to � � � i j from V̂ ,where the index i refers to the dual index
�
α � n � and j to

�
β � m � , is

	 2π

0

	 π

0

	 a

1
Bn

α
� � �

∇2Bm
β

�
1 � � dr sin θ dθ dφ (4.61)

� lα lβ ∇2
β Sm

β
�
1 � Sn

α
�
1 �
	 2π

0

	 π

0

	 a

1

�
�

Yα
rlα � 1 � � � � Yβ

rlβ � 1 � dr sin θ dθ dφ (4.62)

� l2
α

�
lα � 1 � ∇2

αSm
α

�
1 � Sn

α
�
1 � δα β

�
1 � a � �

2lα � 1 � � N2
α (4.63)

(4.64)

by a similar argument to that presented in B.3.3. In particular, if a � ∞ then the contribution

from V̂ to � is

l2
α

�
lα � 1 � ∇2

αSm
α

�
1 � Sn

α
�
1 � N2

α δα β (4.65)

4.6.2 Computation of elements in V

Unlike in V̂ , the functional form of the various matrix elements in V is complex. Although

analytic formulae will exist, we do not attempt to compute the elements in this fashion; instead

we use quadrature techniques that numerically integrate exactly if the elements behave in a

certain way. In particular, to compute the integrals over solid angle, we use the vector harmonic

transforms of Lloyd and Gubbins (1990) which is equivalent to using Gauss-Legendre quadrature

in cosθ and fast-Fourier transforms in φ . This method can be shown to compute the angular

integrals exactly. If the velocity harmonic scalar functions are polynomials, then since the field

scalars are also of this type, it follows that the radial behaviour is governed by a polynomial of

some maximal degree (related to Nmax and u) which can be exactly treated by Gauss-Legendre

quadrature. If the velocity scalars are sinusoidal for example, then we use increasing numbers

of radial points until satisfactory convergence is achieved. In practice, we only need to compute

the defining matrices once since they can then be saved; therefore computing on a fine grid is

little hardship.

To handle the diffusive terms (noting that only the radial integration needs to be done),

we use a Chebyshev transform although a radial quadrature method is equivalent. This is de-

scribed in Press et al. (1992), pg.149.

It is interesting to note the relationship between the matrices � and � :

� � 1
2

� � � � T � (4.66)
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This follows easily from consideration of

	
V

Bi
� ��� �

u � B j � dV �
	

V
B j
� ��� �

u � Bi � dV (4.67)

� 2
	

V
Bi
� � B j dV �

	
V

��� � �
Bi
� B j � u � dV (4.68)

similarly to section 3.5.2, and noting that the last integral vanishes since there is no normal flow

at r � 1.

4.6.3 Checking the elements

To check the computations of the matrix elements, we independently evaluated some of them

using the package Maple that uses computer algebra to compute them analytically. They were

found to agree satisfactorily. In addition, the matrix � could be checked against
�

� � � T � �
2 and

the matrices � and � used to solve the diffusion problem for which exact analytic solutions are

known. We also benchmarked the Galerkin discretisation of the induction equation eigenvalue

problem against existing finite difference codes and good agreement was found.

4.6.4 Solving the eigenvalue problem

Both the Galerkin form of the induction equation and the variational equations for maximal

instantaneous magnetic energy growth are of generalised eigenvalue form, where for example

�
Rm � � �

V � V̂
� v � λ �

V � V̂
v (4.69)

The matrices � and � are of block form due to orthogonality of the spherical harmonics:

� �

����������
�

B1

B2

B3
. . .

BNH

�����������
�

(4.70)

where NH is the number of harmonics and � (and similarly � ) is in general dense. Instead

of keeping the matrices of both sides of equation (4.69) in storage and finding the generalised

eigenvalues, it is simpler to compute 	 � � � 1
V � V̂

�
Rm � � �

V � V̂
� and find the usual eigenvalues

instead. The matrix � � 1
V � V̂

is easy to compute since it is also in block form, with blocks being

the inverses of those of �
V � V̂

.
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To find the eigenvalues, we use ARPACK routines1 which use the implicitly restarted

Arnoldi method to find a selected number of eigenvalues. These are very efficient at returning,

for example, the n eigenmodes with the largest real part, where n � N, the dimension of 	 .

Instead of solving the eigenproblem directly:

	 v � λ v (4.71)

we instead choose to solve the transformed problem:

� 	 � σ � � 1v � ν v (4.72)

where σ is a user specified real shift and ν � 1
λ � σ . The beauty of this approach is that the

eigenvalues of largest magnitude in (4.72) correspond to those closest to σ in the untransformed

problem (4.71). This is easiest seen in the relation λ � σ � 1
ν . Supposing then that we wanted

to find the eigenvalue of 	 with the largest real part. We supply the Arnoldi routines with a large

real shift, say σ � 1000, and find the eigenvalue with the largest magnitude of the transformed

problem. This is simply related to the eigenvalue that we want.

Although the constituent matrices comprising 	 are symmetric, in general their product

is not, so we cannot use a symmetric matrix eigenvalue solver in this case. Despite the problem

being self-adjoint, symmetry of the underlying matrix does not necessary follow.

4.7 Convergence

4.7.1 The decay problem

The decay problem is a standard by which we can benchmark the code. Some results have

already been presented, regarding the different choices of region over which we can choose to

formulate the Galerkin method when applied to the induction equation. We now compute the

convergence for three differing methods: two Galerkin formulations, using the Chebyshev and

sinusoidal bases and a scheme using spherical harmonics in solid angle and finite differences in

radius. Table 4.4 shows the convergence of the Chebyshev Galerkin scheme using
� � V � V̂ to

the l � 1 poloidal and toroidal decay rates as a function of Nmax (we only include the S1 harmonic

in this case).

Both the poloidal and toroidal scalars converge exponentially to the analytic solution

(i.e. increasing Nmax from 2 to 4 at least halves the logarithmic error) until a numerical ceiling of

1See the website http://www.caam.rice.edu/software/ARPACK/
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Nmax log10

�
λ � λP

�
log10

�
λ � λT

�

1 -0.1313 0.3635
2 -0.7304 -1.3049
3 -2.0015 -3.4629
4 -3.4820 -6.0471
5 -5.1513 -8.9645
6 -6.9721 -12.1272
7 -8.9212 -12.6786
8 -10.9820 -13.2733

16 -11.0705 -14.1484
32 -10.8967 -13.0023

Table 4.4: Absolute error of the l � 1 poloidal and toroidal decay rates relative to their analytic
values λP

� � d2
P

� � π2 and λT
� � d2

T � � 20 � 1907 respectively, as a function of the radial
truncation Nmax. We use the Chebyshev Galerkin scheme with

� � V � V̂ .

10 � 11 and 10 � 13 respectively is reached. It is noteworthy that the poloidal scalar can never match

the convergence of the toroidal scalar, why this is so is unclear. It most likely stems from the

fact that the poloidal integrals are much larger in magnitude than those for the toroidal elements

since there is an extra factor of 1
�
r2, allowing small numerical imprecision to creep in.

The diffusion problem, formulated using the sinusoidal Galerkin scheme over the re-

gions V and V � V̂ is shown in figure 4.2. The scheme exhibits exceptionally poor convergence
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Figure 4.2: Comparison of convergence to λP
� � π2 for the l � 1 poloidal decay problem for

the Galerkin formulation with the sinusoidal basis. Solid is using
� � V , dashed is

� � V � V̂ .

when compared to the Chebyshev basis. Indeed, we need around 600 basis functions to get any-

where near the convergence using just 8 Chebyshev basis functions. The difference in the choice

of region is also remarkable, and backs up a previous result that we must choose the region V � V̂

(each of �
V � V̂

and �
V � V̂

being symmetric) to get the best convergence.
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It is also noteworthy that not only do the eigenvalues differ in accuracy on changing

the choice of region, but the eigenvectors do as well (in contrast with the Chebyshev result which

shows little variation, section 4.5.1). This means that the projection of the decay mode onto this

basis is very poorly conditioned: there exist many different representations of almost the same

vector.

Lastly we present results of convergence of a finite difference calculation in radius,

solving the diffusion problem in V . Again, we only solve for S1 harmonic. Figure 4.3 shows the

absolute error in the decay rate as a function of NR, the number of (equally spaced) grid points

with three different orders of differencing scheme: solid is second order, short dashed is fourth

order and long dashed is sixth order (Gibbons, 1998).
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Figure 4.3: Comparison of convergence to λP
� � π2 for the l � 1 poloidal decay problem using

a finite difference formulation. NR is the number of radial points on the uniform grid. The three
lines show the order of the scheme: solid is second order, short-dashed is fourth order and long
dashed is sixth order.

In order to get good convergence, not only do we need a sixth order scheme but also

nearly 1000 grid points. This is in stark contrast to the Chebyshev Galerkin method.

4.7.2 Convergence in magnetic energy growth onset when Rm �� 0

We now detail convergence in the case of the eigenvalue problem for λE , i.e. that of maximised

instantaneous magnetic energy growth, using the Chebyshev basis. We use the t1s2 (MDJ) flow

with τ � 0 � 5 (defined in chapter five). Table 4.5 shows λE for the m � 0 EA field symmetry, for

a range of different Rm. The convergence is exponential, at least for Rm � 103, since progressive

increases in Rm by factors of 10 must be matched by additions of about 8 to Nmax
� Lmax. At

large truncations numerical errors begin to creep in, as demonstrated in the last significant fig-
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ures for the 56 and 64 truncation levels. We must also check convergence of the eigenvectors

Truncation λE for different values of Rm

Nmax
� Lmax Rm

� 10 Rm
� 102 Rm

� 103

4 -1.978674992 174.4142401 2120.712160
8 -1.920071338 198.7562174 2892.527679

16 -1.920069544 199.6333954 3277.361675
24 -1.920069544 199.6333961 3290.259497
32 -1.920069544 199.6333961 3290.271507
40 -1.920069544 199.6333961 3290.271507
48 -1.920069544 199.6333961 3290.271507
56 -1.920069544 199.6333961 3290.271509
64 -1.920069573 199.6333966 3290.271519

Table 4.5: Values of λE for the t1s2 (MDJ) flow, τ � 0 � 5 with field of m � 0 EA symmetry,
Rm

� 10 � 102
� 103. We use the Chebyshev basis; bold indicates convergence has been achieved.

however; this is shown in table 4.6 which shows the equivalent convergence in rms over the

unit sphere, with normalisation chosen such that the harmonic component S1 attains the value

1 on r � 1. The convergence in the eigenvectors matches that for the eigenvalues, perhaps not

surprisingly because the problem is described by symmetric matrices and so is self-adjoint. We

obtain converged solutions even up to Rm
� 1000 with only Nmax

� Lmax
� 32.

Truncation Brms for different values of Rm

Nmax
� Lmax Rm

� 10 Rm
� 102 Rm

� 103

4 3.716996525 7.446646010 9.814727629
8 3.730705373 11.406394715 46.58724052

16 3.730705866 11.692283662 159.9496714
24 3.730705866 11.692283920 172.7132574
32 3.730705866 11.692283919 172.7295699
40 3.730705866 11.692283919 172.7295700
48 3.730705866 11.692283924 172.7295720
56 3.730705865 11.692283791 172.7296738
64 3.730705873 11.692284666 172.7324848

Table 4.6: Spatial rms measure of the size of the eigenvector corresponding to λE , Brms
��

3
4π

�
V

�
B

�
2 dV , normalised so that the field component S1

�
1 � � 1, for the t1s2 (MDJ) flow,

τ � 0 � 5 with field of m � 0 EA symmetry. We use the Chebyshev basis; bold indicates conver-
gence has been achieved.

Another way of visualising this convergence is to plot a power spectrum. Figure 4.4

shows Ml
� 1

2

�
V � V̂

B2
l dV where Bl is the field containing only spherical harmonics of degree

l, as a function of l for the poloidal (solid) and toroidal (dashed) components. The field is

computed with Nmax
� Lmax

� 64, Rm
� 103 and normalised such that Ml sum to 1. Both curves
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bottom out at l � 32 indicating that this is the minimum truncation necessary for convergence,

in agreement with tables 4.5 and 4.6.
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Figure 4.4: Power spectrum of the field associated with λE for Rm
� 103 and Nmax

� Lmax
� 64,

for the t1 s2(MDJ) flow, τ � 0 � 5. The curves bottom out at l � 32 indicating that this is the
minimum truncation necessary for convergence, in agreement with tables 4.5 and 4.6.

4.7.3 Convergence in the induction equation eigenvalues when Rm �� 0

We now detail convergence in the case of the induction equation eigenvalue problem for λ . We

use the same t1s2 (MDJ) flow with τ � 0 � 5 for comparison with the previous section. The region

of integration for the Chebyshev Galerkin scheme is V , since although this does not show the best

convergence, we may directly compare the results with those of other schemes in the literature.

Table 4.7 shows the eigenvalue λ for the m � 0 E A field symmetry, for a range of different Rm.

The eigenvalues are all real unless explicitly written otherwise.

Again we also check convergence of the eigenvectors; this is shown in table 4.8 which

shows the associated rms values over the unit sphere, with normalisation chosen such that the

harmonic component S1 attains the value 1 � 0i on r � 1.

Convergence in the eigenvalues and eigenvectors is much poorer than that of the pre-

vious section. We only obtain converged solutions for Rm
� 10; the cutoff between unconverged

and converged solutions is somewhere in 10 � Rm � 100. It is noteworthy that both the eigen-

values and eigenvectors converge at the same rate: we find the solution at Rm
� 10 is fully

converged with Nmax
� Lmax

� 24. This is at odds with previous work, for example, Gibson

and Roberts (1967), who report that the eigenvalues tend to converge faster than the eigenvec-

tors. This could be an artifact of either truncation or their numerical method used. We find no
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Truncation λ for different values of Rm

Nmax
� Lmax Rm

� 10 Rm
� 102 Rm

� 103

4 -10.64748350 -9.917964773 + 251.6136792i -33.65136539
8 -8.182616767 -30.96805134 -33.71633508

16 -8.016049667 -19.59753494 -32.43089239
24 -8.016002465 -8.1361069667 -31.93038594
32 -8.016002462 -6.9701786935 -31.78237276
40 -8.016002463 -6.9294930685 -31.72673360
48 -8.016002462 -6.9288540530 -31.73916495
56 -8.016002469 -6.9168865200 -31.72331091
64 -8.016002694 -6.9872496777 -31.72243873

Table 4.7: Values of λ for the t1s2 (MDJ) flow, τ � 0 � 5 with field of m � 0 EA symmetry,
Rm

� 10 � 102
� 103. We use the Chebyshev basis; bold indicates convergence has been achieved.

Computed with the discretisation of L over
� � V .

Truncation Brms for different values of Rm

Nmax
� Lmax Rm

� 10 Rm
� 102 Rm

� 103

4 5.902958827 26.84085496 1.555194495
8 5.492042537 1.604959010 1.560766045

16 5.467587247 18.70823767 1.599028128
24 5.467581088 17.08907330 1.618530117
32 5.467581088 17.04782017 1.624227421
40 5.467581088 17.04690463 1.625880546
48 5.467581088 17.04689382 1.626355927
56 5.467581091 17.04063620 1.626486797
64 5.467581167 17.05841207 1.626520113

Table 4.8: Spatial rms measure of the size of the eigenvector corresponding to λ , Brms
��

3
4π

�
V

�
B

�
2 dV , normalised so that the field component S1

�
1 � � 1 � 0i, for the t1s2 (MDJ) flow,

τ � 0 � 5 with field of m � 0 EA symmetry. Bold indicates convergence has been achieved. Com-
puted with the discretisation of L over

� � V .

evidence to substantiate such a claim here using a fully spectral Galerkin method.

Tables 4.9 and 4.10 show the equivalent data for the induction operator L discretised

over V � V̂ , in all cases showing much improved convergence. Well converged solutions are

found for Rm
� 10 at Nmax

� Lmax
� 16, compared to the truncation level of 24 required for

� �

V . Most of the previous literature in kinematic dynamo theory uses finite difference schemes in

radius, for example Gubbins et al. (2000a), who employed truncation levels of up to Lmax
� 18

with 50 radial points. Our calculations suggest that, depending in the convergence required, that

Nmax
� Lmax

� 24 is a reasonable truncation level and highlights the difficulty in finding properly

converged eigenvalues, an issue that has plagued the subject since its conception. Many authors,

for example, Bullard and Gellman (1954) and Lilley (1970) found numerical results that were
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later found to be spurious, owing to insufficient numerical resolution.

Truncation λ for different values of Rm

Nmax
� Lmax Rm

� 10 Rm
� 102 Rm

� 103

4 -8.011955933 -6.164763605 -33.65136539
8 -8.015997179 -6.826803514 -33.71633508

16 -8.016002462 -6.928777793 -32.43089239
24 -8.016002462 -6.928848707 -31.93038594
32 -8.016002461 -6.928848717 -31.78237276
40 -8.016002459 -6.928848321 -31.73916494
48 -8.016002464 -6.928849576 -31.72673360
56 -8.016002428 -6.921928612 -31.72331091
64 -8.016002755 -6.955875275 -31.72244082

Table 4.9: Values of λ for the t1s2 (MDJ) flow, τ � 0 � 5 with field of m � 0 EA symmetry,
Rm

� 10 � 102
� 103. We use the Chebyshev basis; bold indicates convergence has been achieved.

Computed with the discretisation of L over
� � V � V̂ .

Truncation Brms for different values of Rm

Nmax
� Lmax Rm

� 10 Rm
� 102 Rm

� 103

4 5.459553693 16.81626987 1.626486796
8 5.467576745 16.09726939 1.560766045

16 5.467581088 17.03662230 1.599028128
24 5.467581088 17.04687639 1.618530117
32 5.467581088 17.04689369 1.624227421
40 5.467581087 17.04689364 1.625880546
48 5.467581088 17.04689386 1.626355927
56 5.467581072 17.04293268 1.626486797
64 5.467581189 17.05447682 1.626520070

Table 4.10: Spatial rms measure of the size of the eigenvector corresponding to λ , Brms
��

3
4π

�
V

�
B

�
2 dV , normalised so that the field component S1

�
1 � � 1 � 0i, for the t1s2 (MDJ) flow,

τ � 0 � 5 with field of m � 0 EA symmetry. Bold indicates convergence has been achieved. Com-
puted with the discretisation of L over

� � V � V̂ .

4.8 Maximal finite time growth

In section 3.9.5 we saw theoretically how we might go about computing maximal relative finite

time magnetic energy growth. We present the numerical details here. Suppose then that we

would like to evaluate, for some time t

max
B

�
0 �

M
�
t �

M
�
0 � (4.73)
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where the maximisation is taken over all initial fields B
�
0 � . We discretise the induction operator

L over all space, forming � , and so we may write the exact solution of

∂B
∂ t

� LB (4.74)

as

v
�
t � � e � t v

�
0 � (4.75)

where v represents the field B relative to the Chebyshev basis used. We may then rewrite the

maximisation problem as

max
B

�
0 �

�
V � V̂

B
�
t � 2 dV

�
V � V̂

B
�
0 � 2 dV

� max
v

�
0 �

v
�
t � T �

V � V̂
v

�
t �

v
�
0 � T �

V � V̂
v

�
0 �

� � e � t v
�
0 ��� T

B
V � V̂

e � t v
�
0 �

v
�
0 � T �

V � V̂
v

�
0 � (4.76)

recalling that the matrix �
V � V̂

is the basis energy inner product matrix. Since this is symmetric

and positive definite, we may write it as �
V � V̂

��� T � using the Cholesky decomposition (see

Press et al., 1992). Equation (4.76) then becomes

max
v

�
0 �

� � e � t v
�
0 � � 2

� � v
�
0 � �

2 (4.77)

where
� � 2 is the usual Eulerian 2-norm. Writing u ��� v

�
0 � this becomes

max
u

� � e � t � � 1 u
� 2

�
u

�
2

����� e � t � � 1 � 2
2 (4.78)

where ��� 22 is the Eulerian 2-norm of a matrix, which may be effectively calculated using the

singular value decomposition.

In contrast with computations for λE , we do not include convergence results for maxi-

mal finite time growth calculations here since they depend on the particular flow studied and no

generic behaviour was found; the reader is referred instead to chapter six where all the relevant

results are presented.

4.8.1 Finding the norm using Singular value decomposition

We may write any n � n matrix � as

� � �
	�� T (4.79)
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where � and � are orthogonal n � n matrices (that is, their inverses are equal to their transposes)

and 	 � diag
�
w1 � � � � � wn � , the singular values of � . This may be rewritten

� � � �
	 (4.80)

so that the ith column vectors of � and � satisfy

� vi
� wi ui (4.81)

We may expand a vector v in terms of the columns of � , being an orthogonal spanning set:

v � N

∑
i � 1

αivi (4.82)

so that

� v � N

∑
i � 1

αi wi ui (4.83)

Then by the orthogonality of ui and vi:

� A � 22 � max
αi

∑N
i � 1

�
αi wi � 2

∑N
i � 1 α2

i

� �
max

i
� wi � � 2 (4.84)

attained when v � vi, or any scalar multiple of it. If � has orthogonal eigenvectors, then the

singular values match the eigenvalues. A particular case of this arises if we compute � T � , and

apply equation (4.79); this may be written

� T � � � 	 � T � 	�� T � � 	 2 � T (4.85)

and so has singular values which are the squares of those of � . Therefore the maximum eigen-

value of � T � and the square of the largest singular value of � give the sought maximum, and

offer two independent means of computation.

4.8.2 The matrix exponential

In order to compute the maximum relative magnetic energy growth over some time t, we need

to be able to compute the matrix exponential of � . Although we may make sense of this using a
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familiar series expansion:

e � t � ∑
i � 0

�
� t � i �

i! � (4.86)

actually computing it this way is highly inefficient and convergence is slow.

An alternative method to compute e � t , popular in the literature discussed in section

5.1, is to project � onto its N most unstable eigenvectors and to use a truncated version of the

identity:

e � t � ∑
n � 0

� � Λ � � 1 � n �
n! � ∑

n � 0
� Λn � � 1 �

n! � � eΛt � � 1 (4.87)

where � � � Λ � � 1, the matrix � comprising the eigenvectors of � as columns, and Λ being the

diagonal matrix of the eigenvalues of � . The beauty of this methodology is that eΛt is trivial to

compute, being itself diagonal with entries � eΛt � ii � eΛii t . The idea is to increase the number of

eigenvectors involved in the truncation and hope that the computations converge. Unfortunately

in our case this does not occur, seemingly because more eigenvectors are needed in the expansion

than for which eigenvector convergence is possible. Using very high spectral resolution does not

seem to help, increasing only the numerical error and creating spurious eigenvalues. Recall that

historically it has been hard enough to prove the convergence of a single eigenvalue in kinematic

dynamo computations; in this case we would typically require 20.

Instead we use the Padé approximation of order 6 with scaling and squaring (see Molar

and Van Loan, 1978), identical to that used by the package Matlab.

In order to test the method, we used various different time-stepping schemes to find

the time-propagator matrix, which acts upon a field and evolves it to time t later on. This is

equivalent to the matrix e � t , and excellent agreement in equation (4.78) was found as the num-

ber of time steps was increased. We do not use such methods since they present yet another

parameter on which the convergence of the solution would depend. Although the order of the

Padé approximation is adjustable, we find that the usual value of 6 is sufficient for all of our

calculations.

4.9 Using finite time growth for the onset of magnetic energy growth

We may use the initial gradient of the maximised finite time magnetic energy growth calcula-

tions of equation 4.73 (which in chapter six will be referred to as ‘envelopes’) to compute the

maximum instantaneous magnetic energy growth rate λE . Recall that

λE
� max

B

1
2M

dM
dt

(4.88)
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so that 2λE is the initial envelope gradient. Such calculations are a useful check on our numerical

procedures since the techniques involved are very different from the direct eigenvalue methods

associated with the variational approach. We may also use such a method to find RE
m, by finding

the value of Rm for which the envelope initially has zero slope. Table 4.11 shows values of

RE
m evaluated using the two methods, for the m � 0 E A field symmetry with Nmax

� Lmax
� 16.

The values of RE
m agree well enough for us to be sure that they converge to the same solution.

Flow RE
m (Variational) RE

m (Envelope)
s2(MDJ), τ � 1

�
2 6.1240425 6.1240446

t1 s2(MDJ), τ � 1
�
2 11.3957947 11.3957882

t1 s2(KR), τ � 1
�
2 12.8193697 12.8193652

Table 4.11: A comparison in the value of RE
m using the two different methods. Computed for the

m � 0 EA field symmetries, Nmax
� Lmax

� 16. The envelope gradient calculations were carried
out using the differences between t � 0 and t � 10 � 10.

However, the envelope method is numerically more inaccurate than the direct variational method,

for when t � 1 we must compare the value of 1 � ε , where
�
0 � ε � 1 � , with its value of 1 at

t � 0 to see if it initially increases. The problem is that as t � 0, ε � 0 also, possibly more

rapidly than t, and finite machine precision becomes important when comparing two very similar

numbers.

4.10 The choice of domain for computations of λE

If we were to study the onset problem of flow energy growth in a fluid dynamical case, the choice

of the region over which to define the energy is natural, since the fluid only exists in a finite

region. Choosing to define the energy over a subset of this is also possible but not physically very

intuitive. In the magnetic case, although the field in the external insulator depends completely

on the field at the boundary, we may choose the energy to be defined over the region 0 � r � a

where a
�

1. There are infinitely many such choices of a, which one do we choose?

Any reasonable choice of region would reflect what is going on; for example, if Rm
� 0

one would expect that λE � 0. This diffusion problem should also converge easily, for if it does

not, then we will expect extreme difficulty seeking solutions for which Rm � 0.

For instantaneous instability, we are forced into choosing the region over which the

diffusion operator is self-adjoint, since any other measure does not capture this physical process.

We illustrate this idea with the study of a simple 1D model.
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4.10.1 Simple 1D model

Consider the simple 1D equation for u � u
�
x � t � already introduced in section 4.1:

∂u
∂ t
� ∂ 2u

∂x2
� 0 (4.89)

subject to the boundary conditions

∂u
∂x

� u
x

� 0 x
�

1 � t
�

0 (4.90)

u
�
0 � t � � 0 (4.91)

with u
�
x � t � and its first order spatial derivatives continuous everywhere.

4.10.2 Energetic instability

We define the energy of the solution to be

M � 1
2

	 a

0
u2 dx (4.92)

and

λE
� max

u
�
x � 0 �

1
2M

dM
dt

(4.93)

We use a variational principle to locate the maximum by multiplying equation (4.89) by u, inte-

grating and taking the first variation:

2λE

	 a

0
δuudx �

	 a

0

� ∂u
∂ t

δu � ∂δu
∂ t

u � dx (4.94)

which, on employing a Galerkin method with the basis Un (section 4.1.1), is of generalised

eigenvalue form.

4.10.3 Self-adjoint case

When a � 1 the equation becomes self-adjoint. This is because

	 1

0

∂ 2u
∂x2 δudx � � ∂u

∂x
δu

�
x � � 1

0

� 	 1

0

∂u
∂x

∂δu
∂x

dx � � u
�
1 � δu

�
1 � �
	 1

0

∂u
∂x

∂δu
∂x

dx (4.95)

which is symmetric. In this case, the normal modes are orthogonal, and the energy stability be-

comes identical to that of the usual linear eigenvalue case. That the normal modes are orthogonal
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is demonstrably true:

	 1

0
sin

�
νnx � sin

�
νmx � dx � � νm tanνn � νn tanνm�

ν2
n
� ν2

m � cos νn cosνm
(4.96)

which vanishes by definition of ν if νn and νm are different. It is non zero if they are the same.

4.10.4 Other choices of a

Table 4.12 shows values of λE for various values of a and N, the number of odd basis functions

used. The value k is the matrix condition number (for N � 8) which is the product of the smallest

and largest singular values. It gives a measure of the numerical difficulty in computing λE .

We used Maple, able to compute the matrix elements exactly using computer algebra to an

accuracy of 50 decimal places, which in the cases where k was extremely high was necessary

to get a converged solution. The only converged results are for a � 1 for which the decay rate

N
a 2 4 6 8 k

0.2 272.72 4883.83 24628.86 76957.10 1024

0.4 57.14 1141.57 5896.08 18624.64 1021

0.6 16.00 433.33 2372.03 7686.86 1016

0.8 0.49 153.52 1012.53 3537.94 1012

1 -0.41 -0.41 -0.41 -0.41 106

2 0.02 103.98 805.04 3267.90 107

6 2.92 167.53 1181.18 4618.38 107

10 3.47 178.93 1247.44 4854.93 107

100 4.19 193.77 1333.34 5161.23 107

Table 4.12: Values of λE for different choices of a as a function of N, the number of basis
functions used, restricted to those which are of odd parity since the sought solution is odd. k is
the condition number (for N � 8). Bold represents converged solutions.

ν1
� � 0 � 41 is recovered; all other choices give λE as a strictly increasing function of truncation.

So what is going on, and why aren’t we getting converged solutions for a �� 1? To answer this,

figure 4.5 shows the solution maximising the instantaneous growth for a � 0 � 4, N � 8. Note

the scale disparity for the inset graph. The discontinuous solution it is trying to converge to

appears to be one which vanishes in the region 0 � x � a and is non zero elsewhere. These

results may be easily understood by considering diffusion. A solution that is zero in a region and

large nearby will experience large instantaneous growth in the region as the solution diffuses

into it. Note that overall the solution may be reducing in magnitude over time, but the region

considered will experience a large initial growth. As a tends to 1 from below, the boundary

conditions become increasingly important. If u is zero in � 0 � a � where 1 � a � 1, the solution
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Figure 4.5: The solution maximising λE
� 18624 � 64 for N � 8 using the energy measure for

a � 0 � 4. The solution has energy M � 1
�
2 in the region 0 � x � a.

will be almost zero everywhere since the internal solution is communicated linearly through

the boundary. This is clearly not the optimal solution since almost no diffusion will occur; the

most unstable configuration when a � 1 is u non-zero in x � 1, decaying in line with the normal

modes.

The discontinuous solutions for a �� 1 live outside the space of functions realisable in

our Chebyshev basis which is continuously differentiable. Perhaps numerically a better method

would be a finite difference scheme, which would allow this kind of solution to be well approx-

imated. Unfortunately in this Galerkin paradigm, we are not at liberty to use such a tool.

4.10.5 Relevance

When defining a region over which we measure energetic instability, we must choose it such that

the diffusion operator is self-adjoint, otherwise computations do not converge to a physically

meaningful value. In the case here, we must choose the region � 0 � 1 � . In the case of the 3D

kinematic dynamo, the required region is V � V̂ . This is demonstrated in table 4.13 where we

demonstrate the behaviour of λE as a function of region chosen, using only the S1 harmonic.

Only the choice a � ∞, corresponding to the region V � V̂ , converges. Indeed, it converges to

the physically sensible (negative) normal mode value of � π 2. The methodology for producing

these results is as follows. Referring back to section 4.6.1 we see that the contribution to the
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Nmax

a 16 24 32
1 6.4023 28.1099 60.1305

1.25 -6.8425 -3.1094 2.3106
∞ -9.8696 -9.8696 -9.8696

Table 4.13: Convergence in λE for the S1 harmonic in Nmax, for different choices of region.

matrix elements of �
V � V̂

in V̂ are multiplied by a factor
�
1 � a � 3 � when l � 1. Thus we may

compute the matrix � a of the energy inner products of the basis in 0 � r � a where a
�

1, by

simply forming � V �
�
1 � a � 3 �

�
�

V � V̂
� � V � .

The value of λE associated with any region is the maximum eigenvalue of the matrix� � � � † � �
2 (as follows from section 3.9.4) where we choose (arbitrarily) to form � by discretising

over V � V̂ . The adjoint matrix � † may be formed by consideration of its definition:

	
0

�
r

�
a

B1
� LB2 dV �

	
0

�
r

�
a

L†B1
� B2 dV (4.97)

Expressing B1 relative to the Chebyshev basis as v1 and similarly for B2, this can be written:

vT
1 � a � v2

� � � † v1 � T � a v2 (4.98)

This this must hold for all vectors v1 and v2, it follows that

� † � � � 1
a � T � a (4.99)
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Chapter 5

The onset of magnetic energy growth

5.1 Motivation for non-eigenmode analysis

The motivation for the study of so called non-modal (non-eigenmode) analysis of linear systems

came about in the effort to explain the hydrodynamical phenomenon of transition to turbulence.

In this non-magnetic case, if a flow is driven hard enough in a steady basic state, growing per-

turbations emerge which push the system into a non-linear regime. The numerical approach

relating to this was to linearise the Navier-Stokes equations about some steady state and to look

for growing instabilities. If one is found that grows sufficiently large in magnitude, then the ini-

tial linearisation assumption breaks down and non-linear effects become important. Historically

workers have solved this stability problem using an eigenmode formulation, that is, u ∝ eλ t

where u is the velocity perturbation. In certain cases this was very successful, and in others,

disastrous as table 5.1 shows. The three flows listed here are: Rayleigh-Bénard convection (cel-

lular convection driven from bottom heating in an infinite plane layer), plane Couette flow (with

a linear velocity profile between two infinite plates moving parallel to one another) and plane

Poiseuille flow (with a parabolic flow profile in a channel with parallel sides). In the case of

convection with a quiescent base state, the important parameter is the non-dimensional vigour

of heating, measured by the Rayleigh number Ra. If Ra is large enough, the fluid will begin to

move in a convection roll formation, a more efficient mechanism of transferring heat than static

conduction. For the planar flows which are linearised about a steady but non-zero base state, the

controlling parameter is the non-dimensional flow speed: the kinetic Reynolds number, Re. The

threshold Rc is the critical value of R (either Re or Ra depending on the situation), above which a

growing eigenmode perturbation to the flow will grow. RE is the energetic critical value, below

which all disturbances decay in energy, but transient growth may occur if RE � R � Rc. Lastly,
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RT denotes that found in experiments and signifies transition from the base state (see Schmid

and Henningson, 2001). It is striking that the above three separate analyses agree so well in

Rayleigh-Bénard convection
�
Ra � Plane Couette flow

�
Re � Plane Poiseuille flow

�
Re �

Rc 1708 ∞ 5772
RE 1708 20.7 49.6
RT 1710

�
10 350 1000

Table 5.1: The critical linear Rc, energetic RE and experimental RT thresholds on R, denoting the
Rayleigh number Ra or the kinetic Reynolds number Re depending on the flow. From Schmid
and Henningson (2001).

Rayleigh-Bénard convection, and differ so much in the other two cases. Plane Couette flow is

eigenmode or linearly stable for all values of Re, in huge disagreement with experimental results.

In fact it seems that the energetic analysis, which signals the onset of growth (at least instanta-

neously before possible decay thereafter) is a better indicator of the physical behaviour, despite

being an order of magnitude too low. In both planar flow cases, even if all the eigenmodes decay

(i.e. the system is linearly subcritical) it is still possible to get significant transiently growing

perturbations (that eventually decay).

The disagreement between eigenvalue and energetic analysis can be traced to the un-

derlying operator’s non self-adjointness. In the literature this is also known as ‘non-normality’,

and signifies non-orthogonal eigenvectors. In a typical system, an initial condition may be rep-

resented as the superposition of nearly cancelling eigenvectors. The period of scientific interest

may be then described by how the pattern of cancellation evolves and not of the behaviour of

the individual eigenmodes. Indeed, in strongly non-normal cases it may be argued that there is

no good scientific reason to study eigenmode growth (Trefethen, 1997). In this fashion, even if

each eigenmode individually decays the energy may transiently grow. In the geophysical case,

we are not limited so much by the timescale but on whether or not the magnetic field grows large

enough so that the Lorentz force becomes significant; if such non-eigenmode growth can occur

then it is clearly of interest to quantify it.

Non-normal theory has enjoyed great success when applied to the transition to tur-

bulence in the Navier-Stokes equations, although alternative mechanisms have been proposed

(Waleffe, 1995). In particular, it has correctly predicted stream-wise streaks and vortices (Chap-

man, 2002) seen experimentally in both the planar flows described above. In MHD, using the

idea of the pseudospectrum (see below) the resistive Alfvén paradox has been resolved, where in

the limit of vanishing magnetic diffusivity, the Alfvén velocity spectrum appeared to be discon-

tinuous (Borba et al., 1994). In a study of the Hartmann layer, Gerard-Varet (2002) showed that
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significant subcritical perturbation growth can occur, leading to dynamics not predicted by eigen-

mode analysis. Energetic instability of magnetic fields has already been studied by Farrell and

Ioannou (1999a) in a cylindrical geometry. They find possibilities for large sub-critical transient

behaviour, of many orders of magnitude. Of particular relevance for the Earth is their discovery

of asymptotically unbounded growth (as Rm � ∞) in finite time of axisymmetric fields. Cowling

(1933) proved that no such field may be maintained indefinitely by dynamo action. However,

energetic instability may be important in explaining its large dominance in the Earth’s field.

As has already been discussed in chapter two, the kinematic eigenvalue problem is

extremely sensitive to the choice of flow. In contrast, non-normal theory is in general robust;

in the geophysical context, this means that many flows that are approximately the same will

allow similar magnetic fields to grow. In fact, if we replace the steady flow with a suitably

statistically steady state, we can sustain magnetic fields by transient growth mechanisms even

in, for example, the axisymmetric case where the field would have ordinarily decayed (Farrell

and Ioannou, 1999b).

5.1.1 Pseudospectra and sensitivity

Having motivated the subject of non-normal (non-eigenmode) growth, we now detail some of

the relevant theory. There are many important papers in the field, some of which are: Trefethen

et al. (1993), Reddy and Henningson (1993), Schmid and Henningson (1994), Trefethen (1997),

Farrell and Ioannou (1996).

A matrix � is normal if it has a complete set of orthogonal eigenvectors. Equivalently,

it satisfies � � † � � † � where its adjoint is � †. Let us denote the set of eigenvalues of � as Λ
�

� �
and z � Λ

�
� � occurs if and only if

�
z � � � � is singular, that is, it has at least one singular value

of 0 ( � is the identity matrix). We define the resolvent to be the matrix
�
z � � � � � 1 which has

reciprocal singular values to
�
z � � � � . This follows simply from section 4.8.1 where we write a

matrix � as � 	�� T . If � is invertible then

� � 1 � � 	 � 1 � T (5.1)

and so its singular values are the reciprocals of those of � .

If z is ‘near’ but not equal to an eigenvalue of � , then at least one singular value is very
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large. We define the ε-pseudospectrum of � , Λε
�

� � , by the following equivalent statements:

Λε
�

� � � �
z ��� : � �

z � � � � � 1 � � ε � 1 � (5.2)

Λε
�

� � � � z ��� : z � Λ
�

� � ∆ � � for some ∆ � with � ∆ � � � ε � (5.3)

where ��� � 2 denotes the square of the matrix norm of � , in our case, the square of the largest

singular value of the matrix ��� � � 1 (see the explanation below). � is the set of complex num-

bers.

If � is normal, the pseudospectra are circular regions centred on the eigenvalues of

radius ε (see figure 5.1(a)). If � is non-normal then significant deviations can occur and in

general they are much larger for a given ε (figure 5.1(b)). We may consider the pseudospectra as

regions representing ‘almost eigenvalues’. If inaccuracies creep in to our eigenvalue calculations,

then another value in Λε might be selected over the true value in Λ. This is rigourised in definition

(5.3) which relates errors or changes in the matrix � to the effect on Λ. In the case of kinematic

dynamo eigenvalue calculations, a small change in the flow or errors introduced by truncation or

numerical effects may significantly affect the eigenvalue spectrum if the problem is sufficiently

non-normal. Not only does this mean that as the non self-adjointness (proportional to Rm) is

increased, it becomes harder to find numerically accurate solutions, but that it is increasingly

difficult to find robust physical interpretation of the computations. This is important, since a

small change in the flow should not alter our physical understanding of the processes involved,

but it might switch off the dynamo by shifting the eigenvalues into a stable region.

The norms given in equations (5.2) and (5.3) in our case are taken using the energy

inner product, where u and v represent magnetic fields relative to the Chebyshev basis:

�
v1 � v2 � � vT

1 � V � V̂
v2

�
v

� 2 � vT �
V � V̂

v (5.4)

and ��� � 2 denotes the matrix norm: max
� �

u
�

�
u
� , the largest singular value of the matrix ��� � � 1

(see section 4.8). We can write � T � � �
V � V̂

since �
V � V̂

, the basis energy inner product matrix,

is positive definite (see Press et al., 1992). If the time-dependence is described by the equation

∂v
∂ t

� � v (5.5)

then we may transform this into:

∂
� � v �
∂ t

� � � � � � 1 � � � v � (5.6)
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Writing u � � v, we see that the system can be re-written as

∂u
∂ t

� � � � � � 1 � u (5.7)

�
u1 � u2 � � uT

1 u2

�
u

� 2 � uT u (5.8)

In the transformed system, ��� � denotes the largest singular value of the matrix � . This facili-

tates analysis of the pseudospectra equations and allows us to use the package EigTool1, to plot

contours of Λε using the usual Euclidean norm.

Figure 5.1 shows pseudospectra in the complex plane, for the cases of (a) the diffusion

problem and (b) the t1 s2 (MDJ) flow, τ � 0 � 5, Rm
� 50 with an m � 0 EA field symmetry. In (a)

the operator is self-adjoint and so Λε are circles of radius ε centred on the eigenvalues. In (b) the

non-normality significantly effects the structure; note also that the scale is around four orders of

magnitude smaller. The contour line ε � 10 � 4 � 5 cuts the imaginary axis so that a change in the

operator of a norm of this magnitude will give a growing eigenmode, as follows from property

(5.3). To put this in perspective, a change in a flow of 1% by rms can incur a norm of ∆ � of

O
�
100 � . Thus a change in the flow of figure 5.1(b) of O

�
10 � 6 � by rms could potentially push an

eigenvalue into the unstable real half-plane. Of course, perturbations to the induction operator of

the required magnitude to create linear instability may not be associated with realisable velocity

perturbations (i.e. they could merely be a numerical artifact), invalidating the above sensitivity

analysis. However, as we follow higher contours of ε this argument becomes increasing more

difficult to believe as they protrude greater distances into the real half-plane. Thus the induction

operator may not be as sensitive as the above analysis suggests, but fractional flow perturbations

of O
�
10 � 4–10 � 5 � could be significantly alter the eigen-spectrum.

The above results are based on the t1 and KR flows (both are defined in section 5.3),

KR comprising 99% of t1 by rms. Although these flows differ by just 1% , the norm of the vector

difference of the two flows was 370 (for Nmax
� Lmax

� 8, and field symmetry EA, m even and

Rm
� 600). A similar figure of 4000 was derived from the same truncation, field symmetry and

Rm but from the difference between the STW and KR flows. The importance of these flows is

that KR supports growing eigenmode solutions (if Rm is sufficiently large) but t1 does not. We

already discussed in chapter two the difficulties of attributing a robust physical process to the

kinematic dynamo in such a case, a small change in the flow having disastrous consequences.

This issue is quantified in pseudospectra computations.

The pseudospectra are not only linked to the sensitivity of the operator, but also to the

1Eigtool is available at http://www.comlab.ox.ac.uk/pseudospectra/eigtool/
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Figure 5.1: Pseudospectra for (a) the diffusion problem and (b) the t1 s2 (MDJ) flow, τ � 0 � 5,
Rm

� 50 with an m � 0 EA field symmetry. The contours are of log10ε and are indicated to the
right of each picture.

problems of maximal instantaneous energy growth and transient behaviour. Roughly speaking,

if the contours protrude far into the real half-plane, then large transient growth is possible. We

do not pursue this topic further here, but refer the interested reader to the references given at the

start of this section.

5.2 Properties of flows

This section is adapted from Acheson (1990), chapter six, and is included here for completeness.

5.2.1 Fundamental concepts

Strain

The relative change in shape, size or volume due to externally applied forces is called the strain.

The precise definition will depend on the geometry and the body concerned. Note that this is a

dimensionless number.

Stress

The internal force per unit area associated with a strain is called the stress.

In a solid body such as a spring, Hooke’s Law states that the strain is proportional to

stress. If it is loaded at one end with a weight, it will stretch until the resistive elastic forces

are equal and opposite to the externally applied force. Crucially this arises since the spring is

solid and the different parts may not move relative to one another (apart from being stretched of

course). In a fluid, if a stress is applied, fluid particles may slip past one another and no such

analogue to the restoring force exists. It is more reasonable to assert that the stress is proportional
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to the rate of strain (i.e. the rate of deformation). The constant of proportionality is the viscosity.

5.2.2 The stress tensor

The stress t exerted on an infinitesimal surface with unit normal n in the fluid, is given by

ti
� �

i jn j (5.9)

where
�

is the stress tensor, and is a function only of position. Consider the simple case of a

quiescent flow (u � 0 � where the only stresses are those caused by the pressure, and so

�

i j
� � pδi j (5.10)

The scalar function, p (the pressure) is the force per unit area exerted on the fluid into which n

points by the fluid on the other side of the surface. Hence the force per unit area exerted on the

surface is � pn (i.e. large pressures mean large compressional forces).

In general though, a viscous fluid will have an extra term

�

i j
� � pδi j � τi j (5.11)

where τi j is the stress induced by the relative motions of the fluid, communicated by the action

of viscosity. It may be shown that under the assumptions that

(i) τi j is linear in the velocity gradients (this defines a Newtonian fluid).

(ii) τi j should vanish if there is no deformation of the fluid elements.

(iii) The fluid is isotropic, that is, there is no preferred direction for its physical properties.

(iv) The fluid is incompressible.

then

τi j
� 2µ �

i j
�

i j
� 1

2

� ∂ui

∂x j
�

∂u j

∂xi
� (5.12)

where µ is the viscosity (not to be confused with the maximum strain rate used later on).

The stress tensor
�

is therefore given by

�

i j
��� pδi j � 2µ �

i j (5.13)
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where � is called the rate of strain tensor. The strain itself is an instantaneous measure of

total fluid deformation since time zero, giving no indication of the stress at that instant. The

strain rates give a measure of the local deformation of the fluid at that point. However, since

the fluid is incompressible they must necessarily sum to zero ( � has zero trace since � � u � 0)

and so on ‘average’ there is no deformation. This is precisely what we mean physically by an

incompressible fluid.

5.2.3 Strain rates and flow reversal

When a flow reverses its sign, its physical properties can change remarkably. At first sight this

may seem rather strange since it merely flows in the other direction — surely its properties are

preserved? In the 3-D case of the s2(MDJ) flow for example, fluid flows inwards along the equa-

tor and outwards towards the poles on the z axis. Flows of this type can remain incompressible

as long as the outward flow is sufficiently strong, relative to the equatorial inflow. Near the z-axis

there is a region of large vertical stress as fluid particles are accelerated along the z-axis, away

from the origin. If we reverse the flow, these regions of large stress transform to regions of large

vertical squashing (but equatorial spreading). Applying the idea frozen flux, if a magnetic field

was ‘frozen in’ and aligned with the flow at a location of strong vertical stretching, magnetic

energy would be locally created. In an equivalent setup but with the flow reversed, the magnetic

energy would locally decrease. Thus in 3-D flow reversal has a significant effect.

In a 2-D incompressible flow however, the strain rate tensor � is of dimension 2 � 2

and the eigenvalues are
�

�
� 2

12
� �

11
�

22 (using the facts that � is symmetric and has zero trace).

These are of the form
�

σ , and we note explicitly that

� v � � �
σv � (5.14)

where v � are the eigenvectors associated with eigenvalues σv � . If the flow is reversed, so that

� � � � , we must have that
� � � � v � ��� σv � (5.15)

Thus the maximum strain rate is unaffected, but the corresponding direction is now what used

to be that of minimal strain rate (and vice versa). This is intuitive: on reversing the direction of

flow, it merely causes the fluid to stress in the opposite direction, so that the direction of maximal

squashing becomes that of maximal stretching.

Before going any further, we first clarify some nomenclature. In general, we will

denote the pointwise maximum strain rate (the pointwise maximum eigenvalue of � ) by µ , and
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its global maximum by µmax
� max µ .

5.3 Flows studied

In this section we outline the flows that will be studied in this thesis. We measure the typical

velocity (on which Rm is defined) by their rms values. For a flow in poloidal-toroidal form, this

is
4π
3

u2
rms

� ∑
α

lα
�
lα � 1 � N2

α

	 1

0 � lα
�
lα � 1 �
r2 s2

α �
�

dsα
dr

� 2

� t2
α � dr (5.16)

where the radial scalar functions s and t are similar to those used for the magnetic field; we will

always use lower case for the flow to distinguish between them.

We normalise each flow by its rms value and then multiply accordingly by the value of

Rm required. To do this, each set of flow scalars is defined up to a constant K � 1 which is chosen

to be such that the flow has unit rms. Depending on the definition of flow, in certain simple cases

this can be analytically evaluated; more often we use quadrature (in radius) to compute it.

5.3.1 An axisymmetric toroidal flow

No toroidal-only flow can sustain a magnetic field indefinitely. However, these are an important

ingredient in many flows that can support dynamo action and are therefore worthy of a study in

their own right. We define an axisymmetric toroidal flow by the scalar

t1
�
r � � K � 1 r2 �

1 � r2 � (5.17)

This defines a differentially rotating flow which satisfies the non-slip condition on r � 1 and also

the regularity condition of section 3.3.4 that ensures infinite differentiability. The normalisation

constant is K � �
16

315 in this case. Differential rotation is thought to be a crucial process in

the geodynamo, generating toroidal field from poloidal field, and there is evidence that it is an

important aspect of rotating convection (Busse, 2002).

This flow can be visualised by contours of its sole non-zero component, uφ , in a merid-

ian plane as shown in figure 5.2(a). Figure 5.2(b) shows contours of µ , the pointwise maximum

strain rate.

5.3.2 Axisymmetric poloidal flows

We study three axisymmetric poloidal flows denoted s2(MDJ), s2(KR) and s2(IC). These are

based on the flows of Dudley and James (1989) and Kumar and Roberts (1975), the former flow
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(a) (b)

Figure 5.2: Contours in a meridian plane of (a) 0 � uφ � 1 � 708 and (b) 0 � µ � 4 � 437, the
pointwise maximum strain rate. The flow is strongest midstream and vanishes on the boundary
where µ is maximal, corresponding to large shear.

being modified into a polynomial form (hence MDJ). These are defined as

s2

�
r � � K � 1 r3 �

1 � r2 � 2 for MDJ (5.18)

s2

�
r � � K � 1 r6 �

1 � r2 � 3 for KR (5.19)

and for s2(IC):

s2

�
r � �

���� 0 r � 0 � 35
�
r � 0 � 35 � 3 �

1 � r2 � 2 0 � 35 � r � 1
(5.20)

These flows have no azimuthal component, so we can view streamlines in meridian planes as

shown in figure 5.3. All flows are non-slip at r � 1 (requiring both s2

�
1 � � 0 and s �2

�
1 � � 0)

but the s2(KR) flow does not satisfy the regularity conditions at the origin, required for infinite

differentiability. However, due to the factor of r6, in fact the first two derivatives of s2

�
r � vanish

at the origin; thus the first derivatives of u are continuous which is all that is required for the

kinematic dynamo problem.

The streamlines of the s2(MDJ) flow represent a convection pattern that has a stag-

nation point at the origin. In the s2(KR) flow, the streamlines are ‘bent’ away from the origin

which is not only a stagnate point but one at which the strain rates also vanish. We also modify

the scalar of s2(MDJ) to incorporate a stagnate inner core of radius r � 0 � 35, forming the s2(IC)

flow, modelling a solid (iron) inner core of the same conductivity as the liquid outer core.

These flows model the large scale poloidal overturn in the outer core driven by some
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(a) (b) (c)

Figure 5.3: Streamlines in a meridian plane of (a) s2 (MDJ), (b) s2 (KR) and (c) s2 (IC). Arrows
show the direction of flow. In (c), a solid inner core of radius 0 � 35 is represented by a quiescent
flow as shown by the dashed circle.

kind of convective process. They may be further motivated by results of axisymmetric convection

which take on an s2 form (see Weir, 1976; Chandrasekhar, 1961).

5.3.3 t1 s2 flows

The above t1 and s2 flows can be combined to form t1 s2 velocities. We define the ratio of the

rms values of the two constituent components by τ , where

τ �
�

3
4π

�
V

�
s2

�
2 dV

�
3

4π
�
V

�
t1

�
2 dV

(5.21)

The relative signs of the two components should be obvious from the context. We shall partic-

ularly make use of the flows: t1 s2(KR) and t1 s2(MDJ), since although the components behave

approximately the same, only the latter flow exhibits growing eigenmode solutions.

5.3.4 Other flows

We shall also study the full Kumar and Roberts (1975) flow (KR) and the Sarson (2003) flow

(STW — Sarson thermal wind). These are defined respectively as

t1
�
r � � K � 1r2 �

1 � r2 � s2

�
r � � ε1K � 1r6 �

1 � r2 � 3

s2s
2

�
r � � ε2K � 1r4 �

1 � r2 � 2 cos pr s2c
2

�
r � � ε3K � 1r4 �

1 � r2 � 2 sin pr (5.22)
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and

t1
�
r � � K � 1r2 �

1 � r2 �

s2s
2

�
r � � ε2K � 1r4 �

1 � r2 � 2 cos pr s2c
2

�
r � � ε3K � 1r4 �

1 � r2 � 2 sin pr

t2s
3

�
r � ��� ε3K � 1 4

5

�
5

�
d
dr
� 3

r
� r4 �

1 � r2 � 2 sin pr

t2c
3

�
r � � � ε2K � 1 4

5

�
5

�
d
dr
� 3

r
� r4 �

1 � r2 � 2 cos pr (5.23)

The value K is chosen to give the flows an rms value of 1. Kumar and Roberts found well

converged eigenvalue instability for the values ε1
� 0 � 03, ε2

� ε3
� 0 � 04, p � 3π giving Rc

m
�

890. Sarson found similar instability with the values ε2
� 0 � 04, ε3

� � 0 � 04, p � 3π , with

Rc
m

� 479. The STW flow is thermally driven and dynamically self-consistent in a geostrophic

regime, where a force balance is achieved between pressure, buoyancy and rotation. Although

the thermal source is not geophysically motivated, it is clearly a step towards more Earth-like

flows.

The components s2s � c
2

represent a non-axisymmetric spiralling convective flow; the

degree of tilt (variation of azimuthal phase with radius) is described by the parameter p (Sarson

and Busse, 1998). We lastly note that the KR and STW flows comprise 99% and 96% t1 by rms

respectively. Thus a small change in rms of the axisymmetric toroidal component converts these

flows that operate as kinematic dynamos to t1, which does not.

5.4 Some eigenvalue results

We do not dwell on presenting many eigenvalue calculation results; instead we refer the reader

to one of the many works cited in section 2.6. However, a few calculations are worth detailing

since they aid us in our understanding of the difficulties therein.

5.4.1 A working t1 s2 kinematic dynamo

Figure 5.4 shows λR
� ℜ

�
λ � as a function of Rm, for the t1 s2 (MDJ) flow with (a) τ � 0 � 5 and (b)

τ � 1 (flow energy equipartition). The short-dashed solid line shows the m � 0 symmetry, solid

the m � 1 and long-dashed the m � 2. The truncation used is Nmax
� Lmax

� 40 for the m � 0

symmetry and Nmax
� Lmax

� 32 for m � 1 � 2; the solutions are all satisfactorily converged. In

(a) the flow supports a growing field (of m � 1 E S symmetry) at a critical magnetic Reynolds

number of Rc
m

� 55 � 0. Here the solution is oscillatory, the eigenvalue being λ � 0
�

35 � 075i.
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Figure 5.4: The induction equation eigenvalue problem for the t1 s2 (MDJ) flow with (a) τ � 0 � 5,
(b) τ � 1. Plotted is ℜ

�
λ � against Rm. Short-dashed is the m � 0 field symmetry, solid m � 1

and long-dashed m � 2. The critical value ℜ
�
λ � � 0 is shown as the horizontal dashed line.

The m � 0 field solution, precluded by Cowling’s theorem initially increases in its value of λR,

and remains at around λR
� � 7 for most of the range shown; the m � 2 symmetry decays. In (b)

the kinematic dynamo has a growing m � 2 E S field solution, indicating a different mechanism

of field generation from (a) although with the same equatorial symmetry. The m � 1 solutions

now decay in this range though λR shows some signs of increasing at larger Rm. No higher

calculations in Rm converged sufficiently, so whether or not a growing m � 1 eigenmode solution

exists is unknown. These two kinematic dynamos both support exponentially growing field

solutions, but the mechanism by which this occurs is not robust. In contrast, the m � 0 solution

seems to behave similarly: in this case changing τ seems to have little effect.

In general if the kinematic dynamo fails, then the eigenvalues decrease with increasing

Rm. Even if there exists a growing eigenmode for a value of Rc
m, it does not necessarily follow that

the kinematic dynamo will still work for all Rm � Rc
m, the subject of so called fast dynamo theory.

Intuitively one might have thought that increasing Rm leads robustly to more efficient dynamo

action. In view of the above however, this is false if we only consider the eigenvalue problem.

In fact, a far more physical picture is obtained using the methods of non-normal analysis (see

section 5.5 onwards).

That the behaviour of the m � 0 symmetry is robust and generally tends towards the

region in which ℜ
�
λ � � 0 as Rm is increased, is significant if we consider the pseudospectra.

Recall that contours of the pseudospectra surround the eigenvalues, and that the more positive (or

less negative) the eigenvalue, the smaller the operator perturbation needed to obtain an unstable

eigenvalue. In this sense then, as Rm is increased the inclination of the system to undergo large

robust m � 0 field growth will increase; this is confirmed by direct calculations in chapter six.
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Figure 5.5: (a) A plot of Rc
m for m � 1ES fields against τ for the t1 s2 (MDJ) flow. (b) The

fraction of poloidal energy at Rc
m against τ .

5.4.2 Sensitivity and interpretation

Figure 5.5(a) shows Rc
m for the t1 s2 (MDJ) flow against τ for the m � 1 field symmetry. For

fields of this type, kinematic dynamo action is only possible within 0 � 3 � τ � 0 � 8, a fairly

narrow range of τ . Some hint as to the generating mechanism can be found in figure 5.5(b),

showing the fraction of poloidal field (by energy) at Rc
m associated with each value of τ . As

the poloidal flow strength (τ) increases, a higher fraction of poloidal field is generated. This

mechanism is fairly intuitive, if we associate the poloidal flow strength with the efficiency of

converting toroidal field to poloidal field. It is somewhat surprising, given that the t1 s2 (MDJ)

flow supports growing eigenmode solutions, that on changing the s2 defining scalar to that of

s2(KR), kinematic dynamo action ceases altogether, at least in this range of Rm for m � 1 � 2.

Both s2 flows describe the same physical process of convection, but only one promotes dynamo

action. This again flags the sensitivity issue of these calculations. The velocity term of the

induction equation is a function of the scalar quantities: s2, s �2, s � �2 , t1 and t �1 so perhaps the

sensitivity stems from one or more of these?

Figure 5.6 shows a comparison of s2, s �2,s � �2 of the s2(MDJ) and s2(KR) flows, each

normalised to have unit rms value. The scalars s and their first derivatives agree quite well;

however their second derivatives differ considerably over the domain. This may explain why

some ostensibly similar flows show different kinematic dynamo properties: not only must we

take into account the large scale behaviour but also the strain rates (also found by Holme, 2003).

An additional point is that the s2 (KR) flow has not only vanishing velocity at the origin but also

vanishing strain rate. This may be important in explaining why no growing eigenmode solutions

of the form B̂
�
r � eλ t are supported, for these require the rate of generation

�
λ � to be everywhere

the same. If this process is inhibited near the origin then no kinematic dynamo can operate.
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Figure 5.6: Comparison of scalar functions and their derivatives for the s2 (MDJ) (shown in red)
and s2(KR) (shown in blue) flows, 0 � r � 1. (a) shows s2

�
r � (b) s2 � (r) and (c) s2 � �

�
r � . The second

derivatives disagree considerably over the domain.

5.5 Instantaneous magnetic energy growth

5.5.1 Recap of important ideas

Recall that the equation governing the time-dependence of magnetic energy was

dM
dt

� Rm

	
V

B � � B dV �
	

V

� ��� B
� 2 dV (5.24)

so that energy is increased by the action of � , physically representing the stretching of field lines

by the flow, and decreased through Ohmic dissipation (stemming from the diffusion of magnetic

field). The problem of the onset of magnetic energy growth i.e. the maximised instantaneous

magnetic energy growth rate is described by

λE
� max

B

1
�

M

d
dt

�
M (5.25)

and that this was numerically formulated by the generalised eigenvalue problem:

λE � V � V̂
v � �

Rm � � D
V � V̂ � v (5.26)

where the matrix entries are given in section 4.5.1.

The idea is to see how fast a field can grow in energy initially, as measured by λE . The

lowest value of Rm giving λE
� 0 is termed RE

m, describing a critical state below which all field

structures decay, and above which at least one grows. In the following analysis, we essentially
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elaborate on the results of Livermore and Jackson (2004).

5.5.2 Magnetic field line stretching

The stretching effect of a fluid can locally cause properly aligned magnetic fields to grow in

energy. The rate of strain on a field line pointing in the direction of the unit vector B̂ is given by

� B̂. The rate at which the field line is actually stretched is the back projection of this quantity

onto the field itself i.e. B̂ � � B̂. This is a pointwise quantity and will in general vary throughout the

flow. Plotting contours of this gives an indication of local alignment of the field to the direction

of maximal strain rate.

At large values of Rm it might be supposed that the optimal magnetic field configuration

would be some sort of local solution around the location of maximal rate of strain in the flow, in

order to maximise its growth through stretching for a given amount of field energy. However, this

is not so, and in such cases dissipation plays a large role due to the small length scales involved.

We illustrate the key ideas in a simple example.

5.5.3 Example

We consider a 2-D flow in Cartesian coordinates:

u � x
�
1 � x � j (5.27)

0 � x � 1, where the unit vector j points in the y-direction. The flow profile looks much like

figure 5.7(a), with the maximum gradients of the profile are highlighted in the heavy dashed

lines.

(a)
(b)

Figure 5.7: (a) Cartoon of the flow profile with the maximum gradients (maximum stretching)
highlighted in heavy dashed line. (b) To maximise the instantaneous energy growth, the field
might align itself in this kind of configuration.
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To find the direction of maximal strain rate, we must compute � :

� � 1
2

�� 0 1 � 2x

1 � 2x 0

�� (5.28)

The eigenvalue decomposition of � is explicitly 1
2

�
1 � 2x � with eigenvector

�
1 � 1 � and � 1

2

�
1 � 2x �

with eigenvector
�
1 �
� 1 � . In 0 � x � 1, the value of µmax

� 1
�
2, attained at x � 0 and x � 1.

Therefore if we were to find a magnetic field that maximised B � � B in this geometry,

with B lying in the plane, we would expect it to look similar to that of figure 5.7(b). The field

lines are aligned along the maximal stretching directions at x � 0 and x � 1.

Note that this is just a cartoon; there are other effects that may be important in the gen-

eral case, for example, diffusion, the solenoidal condition and boundary conditions. Nonetheless,

it is worth keeping this picture in mind to help with visualising the field structure in 3-D flows.

We note that energetic instability in the simple infinite shear flow of u � x j has been

solved analytically by Farrell and Ioannou (1999a), corresponding to the local first order flow at

the origin in this example. They find RE
m

� 16
�

3
9 and that λE scales linearly with Rm as Rm � ∞,

where the most unstable field is aligned with the direction
�
1 � 1 � , just as we postulated above.

5.6 An axisymmetric toroidal flow

The rate of strain tensor for the axisymmetric toroidal flow of section 5.3.1 is given in spherical

polar coordinates (e.g. see Acheson, 1990, for the components of � in this geometry) by

� � � r2 sinθK � 1

����
�

0 0 1

0 0 0

1 0 0

�����
� (5.29)

The value of K ��� �
16

�
315 � ensures the flow is of unit rms. The eigenvalue decomposition of

� is: K � 1r2 sin θ with eigenvector
�
1 � 0 �
� 1 � , � K � 1r2 sinθ with eigenvector

�
1 � 0 � 1 � and 0 with

eigenvector
�
0 � 1 � 0 � (a null space).

The global maximum rate of strain (µmax) is K � 1 � 4 � 437, attained at r � 1, θ � π
2 (see

figure 5.2(b)). The associated eigenvector for the maximal growth at any point is
�
1 � 0 �
� 1 � , since

r2 sinθ � 0 everywhere. To maximise the stretching, the field must try to align itself pointwise

with
�
1 � 0 �
� 1 � as best it can, especially near regions where the strain rate is maximal, whilst also

minimising the effects of diffusion.



119

Also note that since � has only two eigenvalues, they necessarily differ only by sign.

This means that a reversal in flow direction makes no difference to the analysis, other than the

selection of the other eigenvector, amounting to nothing more than a reversal in the direction of

φ̂ .

5.6.1 Symmetry separation

Figure 5.8 shows λE as a function of Rm for the m � 0 (blue), m � 1 (red), EA (solid) and

ES (dashed) symmetries. The m � 1 ES is the critical symmetry which becomes energetically

unstable at RE
m

� 16 � 8, despite being eigenvalue stable for all Rm. Also note that the symmetries

do not differ greatly in their instability: the m � 0 E A symmetry has RE
m

� 19 � 3.
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Figure 5.8: Field symmetry separation in energetic instability. λE is plotted as a function of Rm.
Red shows m � 1, blue m � 0, solid EA and dashed ES. Computed for Nmax

� Lmax
� 16.

5.6.2 The structure of the critical field

Figure 5.9(a) shows field lines of the critical m � 1 E S symmetry in an equatorial plane. Crucially

the field aligns itself with the direction of maximal strain rate, as shown by contours of B̂ � B̂ in

figure 5.9(b) (where B̂ � B
� �

B
�
). Its structure is such that it has large intensity near such regions,

shown by contours of RE
mB � B in figure 5.9(c). The locations where the field is misaligned, that is

compressed by the flow, are very low in field intensity so that they contribute little to the energy

instability. Figure 5.9(d) shows the sum of pointwise stretching and dissipative contributions to

the energy integral: contours of RE
mB � B � � ��� B

� 2.

In trying to predict such behaviour, we would need to take into account alignment

of the field with the maximal stretching directions along with the negative effect of dissipation
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(a) (b)

(c) (d)

Figure 5.9: The energetically critical field of m � 1 E S symmetry for t1 at RE
m

� 16 � 8, in an
equatorial section (θ � π

2 ) showing: (a) fieldlines, (b) contours of � 4 � 435 � B̂ � B̂ � 4 � 437,
(c) contours of � 5 � 503 � RE

mB � B � 45 � 895, (d) contours of � 35 � 983 � RE
mB � B � � � � B

� 2 �
45 � 880. The field is normalised to have unit energy. Red is positive, blue is negative; arrows
show the field projected onto the plane. φ � 0 is located at the 3 o’clock position.

on small length scales. The location of µmax at the equator and its associated direction, means

that necessarily ES field symmetries are favoured. This is because the E A symmetry forces

B � �
0 � Bθ � 0 � there, and so lies in the null space of � — i.e. it is not stretched there at all. The

m � 1 subspace of ES symmetries contains spatially simpler harmonics than those of m � 0, so

dissipation has a lesser effect. Consequently the critical symmetry calculated numerically agrees

with this intuitive reasoning.

5.7 Axisymmetric poloidal flows

We consider now the instantaneous magnetic energy stability of the s2 (MDJ), s2(KR) and s2(IC)

flows, modelling poloidal overturn convection patterns in the Earth’s core. None can support

growing eigenmode solutions on their own but they can, as in the toroidal case, support magnetic
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energy instability. Each flow is non-slip and has a stagnation point at the origin; in the case of

the s2(KR) flow the strain rates also vanish there and in s2(IC) the whole region r � 0 � 35 is

quiescent.

5.7.1 Symmetry separation

Figure 5.10 shows (left) plots of λE as a function of Rm for m � 1 (red), m � 0 (blue), EA (solid)

and ES (dashed) symmetries along with (right) fieldlines of the critical (for RE
m � 0) m � 0 EA

(poloidal only) field in each case. Each row of the figure corresponds to a different flow: pictures

(a) and (b) to s2(MDJ), (c) and (d) to s2(KR) and (e) and (f) to s2(IC). Note the striking similarity

between all of these flows; in particular the similar dominating behaviour of E A fields is apparent

for Rm � 0, with m � 0 EA being the critical symmetry. The reversed flows
�
Rm � 0 � show no

such clear separation.

5.7.2 Structure of the critical fields

In the case of the s2(MDJ) flow, since it is infinitely differentiable everywhere, its strain rate

tensor is straightforward to compute. However, due to the increased flow complexity (relative to

t1 above), � is spatially dependent. The flow attains µmax at the origin, which turns out to be a

point of fundamental importance. Here, � is

� � 3
K

����
�

2cos2 θ � sin2 θ � 3cos θ sinθ 0

� 3cos θ sinθ 2sin2 θ � cos2 θ 0

0 0 � 1

�����
� (5.30)

Alternatively we may transform this back into Cartesian coordinates in which it takes on a simple

form:

� � 1
K

����
�
� 3 0 0

0 � 3 0

0 0 6

�����
� (5.31)

It is clear that the associated direction of maximal stretching is vertically up (and down), with a

strain rate of 6K � 1. This is physically intuitive, once we consider the 3-D geometry of the flow.

In the Cartesian system, the s2 (MDJ) flow is

u � 1
K
��� ��� � �

3
2

z2 � 1
2

�
x2 � y2 � z2 � � � 1 � �

x2 � y2 � z2 � 2 � � �
x � y � z � (5.32)
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Figure 5.10: Field symmetry separation in energy instability (left) and fieldlines of the critical
field in a meridian plane (right). Pictures (a) and (b) refer to the s2(MDJ) flow; (c) and (d) to
s2(KR) and (e) and (f) to s2(IC). In (a), (c) and (e) λE is plotted as a function of Rm. Red indicates
m � 1, blue m � 0, solid EA, and dashed ES. The critical symmetry in each case is m � 0 E A

and of poloidal form only, which means that fieldlines are confined to meridian planes. They are
shown in (b), (d) and (f). Arrows show the direction of the field; solid signifies high intensity.
The values of RE

m in each case are 6.1, 7.4 and 8.1 respectively. The truncation level used is
Nmax

� Lmax
� 16.
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which to first order in
�
x � y � z � at the origin is 1

K

� � 3x �
� 3y � 6z � . It is clear how the fluid behaves

here: there is convergent horizontal flow and vertical divergent flow of twice the strength.

Hence we get strong straining (of rate 6
K = 10.027) in k̂, and weaker compression in

î and ĵ (of rate 3
K

� 5 � 017). On flow reversal, this transforms to strong compression along the

z-axis, and weak stretching in horizontal directions. The origin is the location of maximal strain

rate, and has an associated stretching direction that is easily accessible to E A magnetic fields.

Figure 5.11 shows contour plots of the local maximum strain rate µ for the (a) forward

and (b) reversed s2(MDJ) flows and that for the s2 (KR) flow in (c) and the s2 (IC) flow in (d).

Note that changing the flow direction completely changes the behaviour of µ , for example the

maximum strain rate above becomes 3K � 1. It is no surprise therefore that this has a dramatic

effect on the energetics.

The vanishing strain rates at the origin in the s2(KR) and s2(IC) flows mean that the

location of µmax has moved to near the boundary. However, immediately above and below the

origin there is strong vertical stretching (figures 5.11(c) and 5.11(d)), and although not maximal

these locations dominate the field solution. The critical fields are shown in figure 5.12 with their

relation to the flows. Again each row represents each s2 type flow studied: figures 5.12(a)-(c)

the s2(MDJ) flow, 5.12(d)-(f) the s2(KR) flow and 5.12(g)-(i) the s2(IC) flow . Contours of
�
B

�

are showed in Column 1, RE
m B � � B in column 2 and RE

m B � � B � � � � B
� 2 in column 3. Since the

fields are axisymmetric, the latter quantity must integrate to zero over the region shown, since

the field is energetically critical.

All the critical fields align themselves with strong vertical stretching at or near the

origin. The s2(MDJ) flow stretches the field particularly strongly (note that the contours of

figure (b) are roughly 4 times those of (e) and (h)) at the origin, the location of its maximal strain

rate. The field is correctly aligned at this point and in the nearby region in order to feel the effect

of this maximally. The s2(KR) and s2(IC) flows have no rate of strain at the origin. However,

vertically aligned fields above and below the origin get stretched in a similar way. The contour

values show that the positive contributions of RE
m B � � B are not affected by Ohmic dissipation,

but it instead decreases the lowest contour level. The averaged effect of dissipation must match

that of the generation by stretching, the field being energetically critical.

It is an important result that all the critical fields show the same characteristics; in-

deed, it might have been thought that the introduction of an inner core, removing the origin as a

location for strong stretching, might fundamentally change the selected field symmetry. This is

demonstrably false however, and we may conclude that the mechanism for the onset of magnetic

energy growth by axisymmetric poloidal convection is robust, with or without an inner core.
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(a) (b)

(c) (d)

Figure 5.11: In a meridian plane, (a) and (b) show contours of µ for the forward and reversed
s2(MDJ) flows respectively. (c) and (d) show contours for the s2(KR) and s2(IC) (forward)
flows respectively. The flows are normalised to have a unit rms value. Contour levels are (a)
0 � 063 � µ � 10 � 027 (b) 0 � 050 � µ � 10 � 027 (c) 0 � µ � 8 � 792. (d) 0 � µ � 21 � 193. Red shows
positive values.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 5.12: The field at RE
m in a meridian plane for the three s2 flows: MDJ (row 1), KR (row 2)

and IC (row 3). Column 1 gives contours of
�
B

�
, column 2 contours of RE

m B � � B and column 3
contours of RE

m B ��� B � � ��� B
� 2. Red is positive, blue negative. Contour levels are as follows:

(a) 0 �
�
B

�
� 3 � 021, (b) � 14 � 011 � RE

m B � � B � 393 � 151, (c) � 29 � 762 � RE
m B � � B � � � � B

� 2 �
394 � 482
(d) 0 �

�
B

�
� 1 � 919, (e) � 10 � 023 � RE

m B � � B � 144 � 687, (f) � 23 � 056 � RE
m B � � B � � � � B

� 2 �
110 � 087
(g) 0 �

�
B

�
� 1 � 609, (h) � 8 � 528 � RE

m B ��� B � 150 � 933, (i) � 23 � 937 � RE
m B ��� B � � ��� B

� 2 �
106 � 726.
Arrows denote the direction of the field which is normalised to have unit energy.
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always have Rm � 0. Such lack of symmetry separation then does not concern us.

5.8 t1 s2 flows

Flows of t1s2 type are combinations of the flows in the previous two sections. We find linear

instability (the existence of Rc
m) only for a narrow range of τ : 0 � 3 � τ � 0 � 9 in MDJ.

Figures 5.13(a) and 5.13(b) compare λE for the various symmetries with τ � 0 � 5 for

the (a) t1s2(MDJ) and (b) t1s2(KR) flows. Notice that they are almost identical for Rm � 0

and fairly similar for Rm � 0. The effect of the vertical straining motion in the forward flow,

at or near the origin, still has a large effect on the solution giving rise to the dominant m �

0 EA symmetry. The value τ � 0 � 5 was chosen since Rm necessary for the t1s2(MDJ) flow to

exhibit linear instability (ℜ
�
λ � � 0) was minimal

�
Rc

m
� 55 � 0 � , see figure 5.5(a). The dominant
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Figure 5.13: Field symmetry separation in energy instability of the (a) t1s2(MDJ), τ � 0 � 5 and
(b) t1s2(KR), τ � 0 � 5 flows. λE is plotted as a function of Rm. Red is m � 1, blue m � 0, solid
EA, dashed ES.

symmetry of λE is preserved at higher values of Rm. In particular at Rm
� 55 � 0

� � Rc
m � the

energetically most unstable symmetry remains m � 0 E A. The structure of the most unstable

induction equation eigenmode (m � 1 ES) therefore differs fundamentally from that of energetic

analysis (m � 0 EA) even at the same Rm.

The critical symmetry at τ � 0 (where u � t1) and τ � ∞ (where u � s2(MDJ)) differ,

being m � 1 ES and m � 0 EA respectively. We now investigate at what value of τ this crossover

occurs. Geophysically we observe that the Earth’s field is dominated by the latter symmetry, so

it is of interest to quantify how large τ must be in order for this to become the most energetically

favourable.

We would like to study not only the t1 s2(MDJ) flow where each component has a

positive sign, but those in which the relative signs differ. In fact, if we write � τ to represent an



127

energy ratio of τ but where the two components differ by sign then

u ��� Rm
�
t1 � τ s2 � � Rm

�
t1
� τ s2 � (5.33)

since a change of sign in t1 only affects the direction of φ̂ of which s2 is independent. Therefore

negative values of τ merely correspond to a reversed flow direction. Figure 5.14 shows a plot of

RE
m against τ for the m � 0 field symmetry (solid) and the m � 1 symmetry (dashed). For τ � 0
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Figure 5.14: RE
m plotted as a function of τ for the t1 s2 (MDJ) flow, solid is m � 0 and dashed is

m � 1. Values of τ � 0 represent reversed flows with a velocity component ratio of
�
τ

�
. τ �

0 � 2
gives the critical energetic symmetry as E A m � 0.

the critical symmetry (the minimum of the two curves) switches at around τ � 0 � 2. For τ � 0 the

m � 1 symmetry dominates. Geophysically, this means that in order to obtain an energetically

unstable field of m � 0 EA symmetry we need τ � 0 � 2, which is easily achievable if convection

dominates the flow pattern in the outer core.

5.9 The KR and STW flows

We now investigate more complex flows that do not give as great a symmetry separation as those

preceding. Figure 5.15 shows λE as a function of Rm for the (a) KR and (b) STW flows. The

coloured curves represent not just one value of m but a whole set: red curves contain odd values

of m and blue even values of m. Solid denotes E A symmetry and dashed ES. In both cases, the

critical symmetry is that of m odd and E S, with RE
m

� 15 � 8 and RE
m

� 13 � 6 for the KR and STW

flows respectively. Note the close similarity of both plots to that of the t1 flow in section 5.6

that has an identical critical symmetry and λE
� 16 � 8. The fact that this t1 component makes

up 99% and 96% by rms of the KR and STW flows respectively, demonstrates that the energetic

instability method is again robust, in that small changes to the flow leave the energetic stability

almost unaltered.
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Figure 5.15: Field symmetry separation in energetic instability, for the (a) KR and (b) STW
flows. λE is plotted as a function of Rm. Red contains odd values of m, blue contains even values
of m; solid is EA and dashed is ES.

5.10 Improvements to Proctor’s bound

Energetic instability is a necessary condition for magnetic field growth, and provides a lower

bound on Rm for long-term dynamo action. Bounds of this nature play an important role, es-

pecially in physically realisable dynamo experiments where it is useful to have minimum size

and flow velocity specifications. In table 5.2, we compare Proctor’s (analytic) bound and the

(numerical) values found in the previous sections to improve lower bounds on Rm for energetic

instability. The value of µmax is calculated using a grid search method.

Velocity Rc
m µmax 12 � 29

�
µmax RE

m Critical symmetry RE �m

t1 - 4.44 2.77 16.8 m � 1 ES 74.6
s2(MDJ) - 10.03 1.23 6.1 m � 0 EA 61.2
s2(KR) - 8.83 1.39 7.4 m � 0 EA 65.3
s2(IC) - 21.19 0.58 8.1 m � 0 EA 171.64
t1s2 (MDJ), τ � 0 � 5 55.0 5.38 2.28 11.4 m � 0 EA 61.3
t1s2 (KR), τ � 0 � 5 - 4.81 2.56 12.8 m � 0 EA 61.6
KR 890 5.62 2.18 15.8 m � 1 ES 88.8
STW 479 7.81 1.57 13.6 m � 1 ES 106.2

Table 5.2: Comparison of lower bounds on Rm for energetic stability. Second column shows
Rc

m if it exists, the third shows µmax of the flow, normalised to have unit rms value. The fourth
shows the bound of Proctor (1977a) and the fifth shows the greatest lower bound RE

m, with the
associated critical symmetry in the sixth (in general this differs from that of linear analysis).
Column seven shows RE

m based on a flow with unit µmax instead of unit rms.

The value of RE �m is the magnetic Reynolds number based on a flow of unit µmax rather

than of unit rms value, being a measure of how well the field can align itself with the stretching

directions of the flow. It also depends on the distribution of µ in the flow: if the flow is every-

where static apart from one small region of vigour, RE �m � RE
m since the rms value of the flow
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will be much smaller than the maximum strain rate. This is manifested in the relatively large

value of RE �m for the s2(IC) flow, which has a reduced flow region in which to generate magnetic

energy. Indeed, for a given maximum flow velocity, its rms value will be substantially less than

that of any of the two other s2 flows, because of the presence of the inner core. This makes the

process less efficient, a fact that is hidden using Rm based on the rms value of the flow.

In comparing Proctor’s bound of 12 � 29
�
µmax with RE

m, we achieve a gain of between 5

to 14 times, depending on the flow. Note the increase from Livermore and Jackson (2004) who

showed an improvement of between 5 and 10 times, by the inclusion of the s2(IC) flow. Both

choices of flow normalisation predict that the s2(MDJ) flow is the most energetically unstable.

Generically, energetic instability is reached when Rm is O
�
10 � , based on flows of unit rms.

5.11 Behaviour as Rm � ∞

The subject of fast dynamos considers the ability of a flow to support magnetic instabilities in

the limit Rm � ∞. In eigenmode analysis, since a flow of a certain strength (and structure) is

required in order to achieve instability, naively one might expect that higher values of Rm will

serve only to increase it. However, this is not the case, and many flows support eigenmode

instabilities only in a finite range of Rm, if at all. This is due to the pointwise field growth

necessary for such a mode, being very sensitive to the exact form of flow, its strength, and the

effect of diffusion. Numerical difficulties hamper studies at large Rm since not only are smaller

and smaller length scales favoured leading to resolution problems, but the problem becomes

increasing non-normal which makes it numerically much more difficult to find the eigenvalues.

It is therefore not always easy to establish whether a flow is a fast dynamo or not. Much of fast

dynamo theory uses a different scale for t in the induction equation: that of advection rather than

diffusion time. This leads to a trivial rescaling of the results.

The behaviour of energetic instability however follows a more intuitive path: the

stronger the flow, the greater the instability, apparently even in the asymptotic limit. In the

range � 30 � Rm � 30, many of the previous figures suggest that the dependence of λE on Rm is

linear, and is independent of the flow choice and particular symmetry chosen. Figure 5.16 shows

a plot of λE as a function of Rm on an extended scale. Dotted is shown a linear trend λE ∝ Rm,

and dashed the upper bound of Rm µmax from section 3.7.6. The curve reaches its apparent (lin-

ear) asymptotic dependence at around Rm
� 1500, indicating that the bounds in 3.7.6 are sharp,

in the context of the scaling of magnetic instability as a linear power law in Rm. Well converged

solutions are obtained in this range (see chapter four). There is however a ceiling to how hard
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we may push the analysis, which with a convergence tolerance of 9 s.f. is around Rm
� 3000,

achievable with a truncation level Nmax
� Lmax

� 40.
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Figure 5.16: The value of λE is shown as a function of Rm for the t1s2(MDJ) flow with τ � 0 � 5
(solid line). Dotted shows the asymptote that is reached at around Rm

� 1500. Dashed is the
upper bound on growth: λE � Rmµmax, from section 3.7.6.

5.12 Discussion

Overwhelmingly the most remarkable result found in this chapter is the robustness of the anal-

ysis regarding the onset of magnetic energy growth. Not only is λE insensitive to small flow

perturbations, but the symmetry of the critical magnetic field remains unaffected. We may there-

fore explain the results by the same physical process, that of magnetic field line stretching by the

flow.

We found that the t1, KR and STW flows had almost identical magnetic energy insta-

bility, all being roughly of the same flow structure, KR and STW differing only by 1% and 4%

respectively from t1, by rms. The critical field symmetry was that of m:odd E S. By contrast the

linear stability characteristics are very different: t1 can never support growing eigenmodes but

KR and STW can. This means that no robust physical interpretation for such an analysis can

exist.

The three s2 flows, representing convection in the Earth’s outer core, all exhibited very

similar energy growth mechanisms, having the same critical symmetry of m � 0 E A. In fact, S1

was the largest component of these fields, dominating also in the Earth. Eigenmode analysis can-

not offer an explanation of this, due to Cowling’s theorem, barring the infinite sustenance of all

axisymmetric fields. However, we have shown here that these are the most energetically unstable

in plausible geophysical flows, and could therefore go some way in explaining their presence in
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the Earth’s field. When adding in a t1 component into these s2 flows, provided that the sense

of convection was geophysical (Rm � 0) and that the poloidal component was sufficiently large

(τ � 0 � 2) then again the Earth-like m � 0 EA magnetic field symmetry dominates. This again

flags the robustness of this analysis.

It is interesting to compare the sensitivity of this methodology with that of eigenmode

growth: this scheme is robust and really only takes into account the large scale flow. In con-

trast, the eigenvalue spectrum depends critically on the choice of flow. The flow driving the

geodynamo in the outer core plausibly has a significant large scale s2 convective component. It

is extremely unlikely that the flow is everywhere the same as a kinematic dynamo model that we

may study, for which growing eigenmode solutions might be found; only robust characteristics

can be relied upon. That the geophysically dominant m � 0 E A field symmetry is the most un-

stable at magnetic energy growth onset is significant, especially when this is insensitive to the

particular choice of convective flow used. Thus such a mechanism may partially explain how the

Earth’s field came to be of its current structure: if the flow is turbulent (so that traditional large-

scale eigenmode theory does not apply) and constantly feeds energy into the field, it may be that

this field symmetry is continuously generated. In any case, in view of the success of non-normal

theory in explaining transition to turbulence in the hydrodynamic case, this process may explain

how magnetic fields grow insensitively to the choice of flow, and lead into the non-linear regime

where the Lorentz force is important.

As Rm is increased, we find that λE asymptotically increases linearly. Physically this

means that the faster the flow, the easier it is to generate magnetic field energy. In contrast,

if unstable eigenmodes do not exist, the eigenvalues tend to become increasingly negative with

Rm, implying that the generation mechanism is less efficient. We found that the asymptotic linear

scaling for λE is reached at Rm
� 1500 which was well within our convergence range.

Converged eigenvalue calculations become increasingly harder to obtain as Rm in-

creases, due not only to the higher truncation level required but the increased non-normality

of the system. This means that progressively larger subsets of the complex plane become numer-

ically close to the true eigenvalues (i.e.
� � v � σ v

� � 0 for the controlling matrix � and some

σ � � , where σ may not be within the convergence tolerance of the true eigenvalue λ ). On

increasing the truncation levels, small numerical errors will start to creep in and thus imprecise

eigenvalues will be reported.

We have dwelt in this chapter on the onset of magnetic energy instability, ignoring

questions such as how large the magnetic energy might become and over what timescale it grows.

These are addressed in chapter six.
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Chapter 6

Transient magnetic energy growth

6.1 Transient growth

The idea that transient effects could be of importance in the geodynamo is not new, indeed

both Moffatt (1978) and Childress and Gilbert (1995) discuss non-normal growth. In fact, the

notion that the eigenmodes may not fully represent the capability of a flow to support growing

magnetic fields was first proposed by Backus (1958). He considered a cyclic time sequence of

various stationary flows, each linearly stable to magnetic fields. A period of stasis was imposed

at each flow change-over, killing off high degree field harmonics. An initial field grew transiently

in energy, and before it entered its decaying phase the flow changed and transient growth began

again. At not all parts of the cycle did magnetic field grow: in some the field was merely

transformed from one structure to another, for example, by a solid body rotation. Nonetheless,

despite at no time this flow being able to support growing eigenmodes, this kinematic dynamo

mechanism shows the importance of non-normal effects.

In general, even if a flow is excluded from indefinitely sustaining a magnetic field by

the antidynamo theorems of section 2.5 (i.e. all eigenvalues are stable), the field may decay over

such a long period of time that we may not be able to exclude them as being geophysically or

astrophysically irrelevant (Ivers and James, 1984). Such a situation was considered by Backus

(1957) who studied axisymmetric poloidal fields, in an axisymmetric flow, necessarily decaying

by the application of Cowling’s theorem. He found that the decay time was up to four times

longer than that of static diffusion, corresponding to around 80 � 000 years. Plausibly, by this time

the flow pattern could have changed and the field may have begun to grow again. Therefore,

ruling out such a situation on linear stability grounds could give misleading or even incorrect

results.
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In the Earth where the flow structure in the outer core is undoubtedly turbulent and

time dependent, it is difficult to rule out any dynamo mechanism on eigenmode stability grounds,

since not only does such an analysis depend on the flow being stationary, but transient effects

are ignored. Instead, two approaches may be taken. Firstly, we can try to decompose such a flow

into a time sequence of stationary flows, as in Backus (1958). We may then investigate magnetic

energy growth under each fixed flow; if the growth is robust under small flow perturbations and

occurs over a period of time where the stationary approximation is valid, then this might be at

least part of the mechanism which sustains the Earth’s field. In chapter one, we saw that after

magnetic reversals, the field intensity along with its axisymmetric dipole component recovers

rapidly over a timescale of around 10,000 years. No linear eigenvalue mechanism can supply a

mechanism since axisymmetric fields are barred from growing exponentially; perhaps transient

growth could offer an explanation? From a geomagnetic observational point of view, non-normal

growth may explain other phenomena. Observations at Steens Mountain, Oregon (Mankinen

et al., 1985), indicated very fast (on a timescale of days or weeks) field intensity and directional

changes during a field transition. Perhaps some kind of ephemeral linear magnetic field growth

might account for this.

Alternatively, if the flow is statistically steady, it may be argued that transient growth

could be continually fed by the flow, giving rise to a dynamo mechanism. It is not the linearly

unstable magnetic fields which are manifested, but so called pseudo-modes, those field structures

which grow transiently the most. This has been investigated by Farrell and Ioannou (1999b) in

a cylindrical geometry, where they find that axisymmetric magnetic fields can be indefinitely

sustained by stochastic forcing, despite the application of Cowling’s theorem indicating the con-

trary.

In order the the concept of non-normal growth is clear, we first introduce a simple

example.

6.1.1 A simple example

In a simple case, we show how the superposition of two decaying eigenmodes can produce

transient growth. We consider first two such modes which are spatially orthogonal in the usual

Euclidean inner product, for example v1
� �

0 � 1 � e � 2t and v2
� �

1 � 0 � e � t . Let us form some

vector quantity from a combination of these two as u � α v1 � β v2; its energy E would then be

E � u � u � � α e � 2t � 2 � � β e � t � 2
(6.1)
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which is shown in figure 6.1 as a dashed line, in the case when
�
α

� � �
β

�
. The curve is normalised

to have a maximum value of one. Secondly we consider two non-orthogonal eigenmodes, v1
�

�
0 � 1 � e � 2t and v2

� �
0 � 1 � e � t . If u � α v1 � β v2 as before then the energy is

E � u � u � � α e � 2t � β e � t � 2
(6.2)

This is plotted as a solid line for the case α � � β � � 1 under the same normalisation, so that

u � �
0 � 1 � � e � t � e � 2t � . The transient growth is caused by the initial destructive superposition
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Figure 6.1: Energies in the cases of (a) orthogonal decaying eigenmodes (dashed) and (b)
nonorthogonal decaying eigenmodes (solid). Each curve is normalised to have a maximum value
of 1.

of non-orthogonal eigenmodes, combining to give zero initial energy. In this case, non-zero

energy at any time t � 0 represents an infinite relative amplification from its initial value. This is

a somewhat contrived case however, and in general only finite energy growth is possible since the

eigenvectors are almost never exactly linearly dependent. Such transient behaviour is completely

dependent on the initial conditions: transient decay is also possible by choosing α � β in the

latter case. However, such effects will never be physically manifested and so we do not consider

them here.
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6.1.2 Envelopes

We now consider the maximal relative magnetic energy growth at some time t, a measure of the

possible transient behaviour:

σ 2 �
t � � max

M
�
t �

M
�
0 �

� max
1
2

�
V � V̂

B
�
t � 2 dV

1
2

�
V � V̂

B
�
0 � 2 dV

(6.3)

As already detailed in chapter four, this can be numerically computed by finding σ 2, where σ is

the largest singular value of the matrix � e � t � � 1, � being the discretised induction operator and

� T � � B
V � V̂

, the Chebyshev basis energy inner product matrix. The optimal initial condition is

given by � � 1 v, where v is the corresponding right singular vector. If we plot σ 2 as a function of

t, this defines an envelope of the possible relative energy growth. Every point on this curve is as-

sociated with an optimal initial condition which evolves to give this maximal growth; individual

growth curves of a particular initial field with unit energy may touch the envelope tangentially at

one or more points, but they may not cross it.

This is illustrated in figure 6.2 where we show the envelope of magnetic energy growth

under the action of the t1 flow with Rm
� 1000 (dashed); the evolution of two particular initial

conditions is shown as solid lines, chosen to optimise the energy growth at t � 0 � 001 and t � 0 � 1.

They touch the envelope at these points but in general it bounds them strictly from above. The

relevant field symmetry is m � 0 EA with Nmax
� Lmax

� 16. The initial condition chosen to
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Figure 6.2: The magnetic energy envelope of the t1 flow with Rm
� 1000 (dashed), and the

evolution of two particular initial conditions (solid), chosen to optimise the energy growth at
t � 0 � 001 and t � 0 � 1. The field symmetry is m � 0 E A with truncation Nmax

� Lmax
� 16.

optimise energy growth for t � 0 � 1 apparently approximates the envelope for most times fairly

well. In contrast, the optimal curve for t � 0 � 001 does not, and decays for t � 0 � 01.
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We note explicitly that the initial gradient of a magnetic energy envelope is equal to

the maximised instantaneous rate of magnetic energy growth subject to fields having unit energy.

This is none other than twice the value of λE of chapter five. If Rm � RE
m so that λE � 0, the

maximum gradient of the envelope will always be negative, i.e. it will decrease monotonically in

time. If Rm � RE
m on the other hand, the envelope will initially increase, although may eventually

decay. If Rm � Rc
m, should this linear critical magnetic Reynolds number exist, then the envelope

will asymptotically increase exponentially.

6.1.3 Scaling laws

In relating such maximal growth calculations to the Earth, we are interested in how large the

magnetic energy amplification can be and not necessarily at what time it is attained, so long as

the timescales involved are geophysically relevant. It therefore makes no sense to seek σ 2 �
t �

for some fixed value of t; instead, we measure the scope of transient growth by the height of

the envelope. It is in general not a priori possible to predict this height and the time at which it

occurs, these only being known after the computation.

In general, computations at high Rm are numerically difficult since progressively smaller

length scales become important and increased truncation levels result in very large matrix sys-

tems. In these cases, we try to fit quantities such as the height of the envelope peak and the time

it is attained as power laws in Rm. If such a procedure can be carried out, this gives us more

confidence of the behaviour at high Rm where convergence is difficult.

Scaling law analysis has been applied (see e.g. Schmid and Henningson, 2001) to the

plane Poiseuille and plane Couette flows described in chapter five. Numerically it is found that

the height of the energy envelope scales as R2
e , that is, an initial disturbance of energy O

�
R � 2

e �
grows to a perturbation of unit energy. Whether or not this final state leads to a transition to

turbulence or not is another matter; in fact the energy of the initial field leading to the turbulent

state is O
�
R � 2

e � and O
�
R � 3

e � respectively for these two simple flows, taking into account non-

linear interactions (Chapman, 2002). The height of the envelope peak is then a good benchmark

for determining the effect of growing perturbations which lead to transition. In their study of

transient magnetic energy growth in a cylindrical geometry, Farrell and Ioannou (1999a) found

that the magnetic energy envelope height scales as R2 � 3
m and is attained at a time O

�
R � 2 � 3

m � . It

is expected that a spherical geometry has a significant effect on these scalings, although these

indicate transient energy growth of O
�
100 � can occur when Rm

� 103.
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6.1.4 The rescaling of magnetic fields to the Earth

Since the induction equation is linear in B, our original non-dimensionalisation left the magni-

tude of the field unspecified. We now detail how we scale our numerically computed solutions

to Earth-like values.

Ideally, since all of our calculations are normalised to have unit magnetic energy, we

would simply scale the computed magnetic energy by that of the Earth; unfortunately this is

unknown. Instead, we normalise the initial field to take on an external dipole coefficient for

example, g0
1, matching that of the observational inverse model detailed in Appendix A. There

is in general always a choice between the three such dipole coefficients; we choose to scale by

which ever is the largest in the numerical solution. For example, in many cases the m � 0 E A

symmetry dominates and so we match the associated value of g0
1 to the Earth. At the Earth’s

surface (r � 1 � 83 in our units), the numerical solution gives

� 29616 � 13nT � g0
1

� 1 � 83 � 3 S1

�
1 � (6.4)

using equation 4.24 and Appendix A. This means that we must scale to S1

�
1 � � 181502nT.

The timescale that we use is that of diffusion time � d
� � 2 �

η0, one unit of which

corresponds to 192,000 years. This figure is computed using the length scale
�

= 3485km, the

CMB radius, and the core magnetic diffusivity of 2m2 s � 1. The e-folding time of the slowest

decaying magnetic field (of l � 1 poloidal form) is π � 2, approximately 20,000 years in dimen-

sional terms. We contrast this with the turnover time for the core of around 500 years, based on

the ‘frozen flux’ flow speed estimate of 2 � 10 � 4m s � 1 and length scale
�

.

6.2 The transient magnetic energy amplification of the t1 flow

6.2.1 Symmetry separation

As before, the different field symmetries which separate under this flow may be studied indepen-

dently. We show a comparison at fixed Rm in figure 6.3 of the magnetic energy envelopes. Blue

shows the m � 0 symmetry, red m � 1, solid EA and dashed ES. It is apparent that the blue curves

(m � 0 field symmetries) dominate over the timescale shown. A non-dimensional time of 0.2

corresponds to 2 dipole diffusion times (about 40,000 years in dimensional terms). In fact it is

the axisymmetric dipole symmetry that attains the highest envelope peak and it is this which we

shall study further. At small times a different field symmetry becomes important: instantaneous

energy growth calculations indicate that the critical field symmetry is m � 1 E S (section 5.6). It



138

0

3

6

9

12

E
nv

el
op

e 
he

ig
ht

0.00 0.05 0.10 0.15 0.20

t

Figure 6.3: Energy envelope calculations for different symmetries at Rm
� 100, truncation level

Nmax
� Lmax

� 24. Blue is the m � 0 symmetry, red is m � 1, solid is E A, dashed is ES.

is therefore of note that the critical field symmetry depends on the timescale we are interested in.

6.2.2 Convergence

The convergence in truncation of the envelope height is shown in table 6.1, with the time at

which it is attained in parentheses. We use a simple bisection algorithm in time to determine the

height.

Interestingly the necessary values of Nmax
� Lmax

� 8 (shown in bold) do not change

with increasing Rm, indicating that some large scale field is the optimum initial condition that

maximises the envelope height for all values of Rm. It would also appear that the time at which

this envelope maximum occurs is also independent of Rm, at around t � 0 � 0407 (7,800 years).

We note the very different truncation levels required to calculate λE in section 5.6,

requiring Nmax
� Lmax

� 32 for Rm
� 103. This indicates that the spatial structure of the initial

condition giving rise to optimal magnetic energy growth is a function of time. Vanishing small t

(corresponding to λE) and t � 0 (corresponding to σ 2 �
t � ) have very different associated optimal

initial field structures.

6.2.3 Scaling of the envelope height with Rm

We now investigate how the height of the envelope for the dominant m � 0 E A symmetry and

its associated optimising time vary, as functions of Rm. Figures 6.4(a) and (b) show respectively

the peak of the energy growth envelope as functions of Rm and the associated optimising time

(the time at which the maximum is attained). On the log-log scale, the graph of figure 6.4(a) is
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Truncation Envelope height and time attained
Nmax

� Lmax Rm
� 102 Rm

� 103 Rm
� 104

2 8.747978952 834.7320734 83433.80125
(4.91986E-2) (5.08927E-2) (5.09095E-3)

4 10.92474901 1051.700336 105129.8025
(3.98367E-2) (4.08643E-2) (4.08746E-2)

8 10.93463857 1052.636658 105223.3837
(3.96589E-2) (4.06905E-2) (4.07004E-2)

16 10.93463857 1052.636657 105223.3837
(3.96587E-2) (4.06901E-2) (4.06993E-2)

24 10.93463840 1052.636650 105223.3837
(3.96654E-2) (4.06950E-2) (4.06990E-2)

Table 6.1: Convergence in truncation of the envelope height; the time at which it is attained is
shown in parentheses. Bold indicates convergence has been obtained.
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Figure 6.4: For the t1 flow, m � 0 EA field symmetry, truncation level Nmax
� Lmax

� 24. (a)
shows the height of the energy envelope as a function of Rm, (b) shows the time at which it is
attained.

almost perfectly linear for Rm
�

100. This indicates a power-law scaling which we compute to

be 1 � 052 � 10 � 3 R2
m. The optimising time tends to a constant value of 0 � 0407 as Rm is increased;

the initial field configuration also converges and becomes independent of Rm for Rm
�

100.

6.2.4 The nature of the transient growth

We now investigate the form of this transient behaviour. Figure 6.5(a) shows the toroidal (dashed)

and poloidal (solid) energies respectively, for the time evolution of the initial magnetic field with

unit energy chosen to maximise the energy at t � 0 � 04, Rm
� 100, for the m � 0 EA field sym-

metry. A snapshot of Bφ is shown in figure 6.5(b); the field is dominated by its T2 component.

The poloidal energy decays since there is no process to sustain it; it is the toroidal

energy which grows by the shearing action of the flow on poloidal field lines. Notice that its



140

initial value is 0 so that the optimal initial field configuration is poloidal only (see figure 6.6(a)).
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Figure 6.5: (a) Time evolution of the toroidal (dashed) and poloidal (solid) energy of the ini-
tial field with unit energy chosen to maximise the total energy at t � 0 � 04. Calculated with
Nmax

� Lmax
� 16 for the m � 0 EA field symmetry with Rm

� 100.
(b) A snapshot of � 0 � 900 � Bφ � 0 � 900 at t � 0 � 04. The field is dominated by T2, and nor-
malised to have unit energy. Red shows positive contours, blue negative.

6.3 Initial fields

A comparison of the initial fields which maximise the envelope height for Rm
�

100 shows that

they are (i) independent of Rm (ii) of m � 0 EA symmetry and (iii) of poloidal-only structure so

that field lines are constrained to lie in meridian planes, shown in 6.6(a). Figure 6.6(b) shows the

fraction of poloidal energy comprising the initial fields as a function of optimising time for Rm
�

50. The solid line represents the m � 0 EA symmetry and dashed the m � 1 ES symmetry. To

interpret figure 6.6(b) we first isolate the solid curve. At small t � 10 � 3, the energy splits roughly

into two, between its toroidal and poloidal components. As the optimising time is increased,

the initial field becomes increasingly more poloidal until it reaches total saturation at around

t � 0 � 04. The dashed curve representing the m � 1 E S field symmetry behaves similarly. We

therefore have two regimes: for small t, the optimal initial field is of similar configuration to that

of instantaneous energy growth (i.e. that as t � 0); the energy growth mechanism is then one of

field line stretching. For large t, the energy growth process is one of finite time shearing, being

far more efficient at generating magnetic energy over these time periods than merely field line

stretching. The initial fields are poloidal-only fields which are configured such that (i) they can

be optimally sheared and (ii) they decay the slowest. It is no surprise therefore that they are of a
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Figure 6.6: (a) Field lines of the optimising initial field, maximising the envelope height for
Rm

�
100 for the m � 0 EA field symmetry. The truncation is Nmax

� Lmax
� 24.

(b) Percentage poloidal field energy of the initial field versus optimising time, for Rm
� 50,

Nmax
� Lmax

� 16. Solid is the m � 0 EA field symmetry; dashed m � 1 ES. Vertical dotted lines
mark t � 0 � 001 and t � 0 � 04.

similar structure to the l � 1 poloidal decay mode, shown in figure 6.6(a).

It is interesting to note that the length scales involved in this problem are all reasonably

large, requiring much lower truncations than typical eigenmode computations for the same Rm.

Typically high values of Rm mean that small length scales become ever more important; in this

case however it is not true. The initial fields associated with an optimising time t � 1 are those

of instantaneous magnetic energy instability and are of large scale, a property which is preserved

in their swift decay (figure 6.2). For t � 1, the initial fields approximate the l � 1 poloidal decay

mode and the T2 field harmonic dominates the subsequent behaviour, both of which being large

scale.

6.3.1 A simple model

We can understand the physical mechanism by considering the simple model

d S
d t

� � d2
PS (6.5)

d T
d t

� RmS � d2
T T (6.6)

where the scalars S
�
t � and T

�
t � represent the poloidal and toroidal field components respectively,

� d2
P is the slowest poloidal decay rate and similarly for the toroidal decay rate. We model the

shearing of poloidal field into toroidal field by the simple source term Rm S.
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The equations are trivially solved to be

S
�
t � � Ae � d2

P t (6.7)

T
�
t � � Rm A� d2

P

e � d2
P t � Be � d2

T t (6.8)

Suppose now we want to find the maximal energy growth and the time at which it is attained.

It is clear that the poloidal contribution merely decays and that the field will be dominated (as

expected), particularly for large Rm, by the toroidal component T . If the initial field is chosen

such that S
�
0 � � 1 and T

�
0 � � 0 then

S
�
t � � e � d2

P t (6.9)

T
�
t � � Rm� d2

P

�
e � d2

P t � e � d2
T t � (6.10)

We seek the maximum of the dominant toroidal component, comprising the difference of two

decaying exponentials, the archetypal model of transient growth of section 6.1.1.

It is clear that the maximum toroidal energy scales as R2
m and that the maximising time

is constant, calculated from
d
dt

�
e � d2

P t � e � d2
T t � � 0 (6.11)

which is

t � ln
� � d2

P

� d2
T

�
� d2

T
� � � d2

P � � 0 � 069 (6.12)

Although this model is rather simplistic, it explains two important features of transient growth

under the t1 flow. Firstly, the optimal magnetic energy growth scales as R2
m; secondly, the op-

timising time is independent of Rm, for Rm � 1, which is reasonably close to the numerically

calculated value of 0 � 04. The mechanism responsible is that of shearing by differential rotation,

creating toroidal field out of poloidal field. We note that the flow of energy is one way: there is

no process sustaining the poloidal field. We do not expect such simple scalings to apply in more

complex cases, where both field components interact in a complicated fashion.

6.4 The transient magnetic energy amplification of s2 flows

6.4.1 Symmetry separation

Figures 6.7(a)–(c) show envelope calculations for the four independent symmetries as before.

Red shows m � 1 (calculated with Nmax
� Lmax

� 24) and blue m � 0 (calculated with Nmax
�
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Lmax
� 40). Solid denotes the EA symmetry, dashed ES. We use different truncations since

the m � 1 symmetries contain twice as many harmonics as the m � 0 symmetries; however all

calculations are satisfactorily converged. We show plots at Rm
� 100 of (a) the s2(MDJ) flow,

(b) the s2(KR) flow and (c) the s2 (IC) flow.
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Figure 6.7: Energy envelope calculations for different field symmetries for (a) the s2 (MDJ) flow
(b) the s2(KR) flow and (c) the s2 (IC). Blue is the m � 0 symmetry, red is the m � 1 symmetry,
solid is EA, dashed is ES. In each case Rm

� 100.

In each case the m � 0 EA field symmetry is the most dominant, identical to the analysis

of instantaneous energy growth (section 5.7). There are several ‘kinks’ in the above curves (e.g.

in the solid blue curve of figure 6.7(a) and the dashed red curve of figure 6.7(c)). These are not

convergence errors, but can be understood by the envelope being the maximum of two different

curves, one describing optimal growth for small times and one for large times. The s2(MDJ)

flow can give a magnetic energy amplification of 52, the KR flow of 12 and the IC flow of 9. It

would appear that the behaviour at the origin is of great importance in determining this maximal

amplification: the more vigorous the flow at or near the origin, the greater the potential for large

growth. Recall that the s2(KR) flow has not only a stagnation point but vanishing strain rates at

the origin, and that s2(IC) is static for r � 0 � 35. Despite the differences in the flows however,

since the favoured symmetry is the same, we might expect similar physical growth mechanisms
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to apply.

6.4.2 Convergence

We now determine for the dominant m � 0 EA field symmetry, the envelope height for the

s2(MDJ) flow as a function of Rm and truncation level, shown in table 6.2. Unfortunately it

appears that out of all the points on the envelope, this maximum is the least well converged.

However, if we do manage to show convergence we may have faith that the whole envelope is

converged. We note that Rm
� 100 does not converge as well as we might like, especially con-

sidering the generic swift convergence in chapter five of λE , and of the t1 envelopes in section

6.2. We can only be confident that the values are correct to 4 significant figures, sufficient for

graphical purposes.

Immediately we see a dramatic difference in behaviour from the envelopes of the t1

flow. Apparently the initial fields that maximise the magnetic energy growth decrease in length

scale as Rm increases, and good convergence is not achieved after Rm
� 46 � 42. We see also an

increase of envelope height with Rm and a decrease in the associated optimising time.

The convergence can also be illustrated in the power spectra of the relevant initial field.

We consider the energy contained in the different harmonics:

Ml
� 1

2

	
V � V̂

B2
l dV (6.13)

where Bl is the magnetic field restricted to spherical harmonics of degree l. We also introduce

the surface magnetic energy spectra given by

SE l
� 1

2

	
∂V

B2
l d Ω (6.14)

For this flow, the optimal initial conditions are poloidal only. Figure 6.8 shows energy spectra

of the optimal initial conditions for the s2(MDJ) flow, with Rm
� 46 (solid), Rm

� 100 (dotted)

and Rm
� 464 (dashed). We note that as Rm increases, the solutions become less and less well

converged as small length scales become increasingly important.

We lastly note that this convergence behaviour is seen also in the envelope heights for

the other s2(KR) and s2(IC) flows.
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Truncation Nmax
� Lmax

Rm 16 24 32 40
6.813 1.046157012 1.046157012 1.046157012 1.046157010

1.88079E-2 1.88081E-2 1.88064E-2 1.88051E-2
10.00 1.653049544 1.653049548 1.653049545 1.653049544

3.74097E-2 3.74103E-2 3.74084E-2 3.74079E-2
14.68 3.118450364 3.118450707 3.118450713 3.118450681

3.61503E-2 3.61501E-2 3.61495E-2 3.61475E-2
21.54 5.876564026 5.876590843 5.876590860 5.876590800

2.88406E-2 2.88404E-2 2.88406E-2 2.88394E-2
31.62 10.60415170 10.60509048 10.60509078 10.60509079

2.15601E-2 2.15604E-2 2.15604E-2 2.15600E-2
46.42 8.413779906 18.42991952 18.42995688 18.42995693

1.58105E-2 1.58176E-2 1.58173E-2 1.58172E-2
68.12 31.01706535 31.16944751 31.17112047 31.17112651

1.15211E-2 1.15470E-2 1.15472E-2 1.15468E-2
100.0 50.74456144 51.62364995 51.65488505 51.65540378

8.3411E-3 8.4093E-3 8.4115E-3 8.4118E-3
146.7 80.63581727 83.897875512 84.185211623 84.19999334

5.9786E-3 6.1054E-3 6.1136E-3 6.1141E-3
215.4 126.5391395 133.71806103 135.21533500 135.3928391

4.2691E-3 4.4102E-3 4.4312E-3 4.4334E-3
316.2 U 209.86438334 214.11621378 215.2075859

U 3.1655E-3 3.2002E-3 3.2063E-3
464.1 U 334.99353930 334.94449783 338.3461971

U 2.2818E-3 2.2999E-3 2.3113E-3
681.2 U U 529.52947934 527.2444883

U U 1.6572E-3 1.6599E-3
1000.0 U U U 833.3477164

U U U 1.1977E-3

Table 6.2: Convergence in the height of the envelope as a function of Rm and the truncation
used, for the m � 0 EA field symmetry. Shown are the values of the envelope height and the
time it is attained underneath, accurate to 10 � 7. Bold shows that convergence has been appar-
ently achieved. The Rm are logarithmically equally spaced. U means that calculations did not
converge.
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Figure 6.8: The power spectra of the initial fields with unit energy maximising the magnetic
energy growth for the s2(MDJ) flow, Nmax

� Lmax
� 40. Solid shows Rm

� 46, dotted Rm
� 100

and dashed Rm
� 464.

6.4.3 The nature of the transient growth

We now investigate the nature of the transient growth and the physical process responsible. For

Rm
� 100, the envelope height is 52 with an optimising time of t � 0 � 0084, corresponding to

1600 years in dimensional terms. We forward propagate the associated initial field through time.

Figure 6.9 shows contours of
�
B

�
for a truncation level of Nmax

� Lmax
� 24. The field gets

advected towards the z axis where it is vertically stretched. Note the scales of the plots.

t � 0 t � 0 � 002 t � 0 � 004 t � 0 � 008

Figure 6.9: Contours of
�
B

�
for times: t � 0, 0.002, 0.004, 0.008, spanning the dimensional time

period of 1500 years. Contour maxima are, respectively, 0.822, 5.643, 29.817, 114.509. The
field is normalised to have unit initial energy.

Figure 6.10 shows the equivalent sequence of images for the s2 (IC) flow. The initial
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field associated with an optimising time of t � 0 � 0092 for Rm
� 100 is forward propagated.

Again, the field is advected into and stretched near the origin, in a similar manner to the s2(MDJ)

flow.

t � 0 t � 0 � 002 t � 0 � 004 t � 0 � 008

Figure 6.10: Contours of
�
B

�
for times: t � 0, 0.002, 0.004, 0.008, spanning the dimensional

time period of 1500 years. Contour maxima are respectively:1.397, 2.137, 9.218, 25.346. The
field is normalised to have unit initial energy.

Thus the physical mechanism responsible is the same despite the energy amplification

difference. Magnetic field is advected towards the origin where it is stretched; this incorporates

both finite time advection and the field line stretching of instantaneous magnetic energy growth.

Figure 6.11 shows the time evolved magnetic energy relating exactly to figure 6.9,

achieving the maximal energy amplification of 52. The times of t � 0 � 004 and t � 0 � 008 are

0
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40

50

60

M

0.000 0.005 0.010 0.015 0.020

t

Figure 6.11: The evolution of the total magnetic energy as a function of time. Marked are lines
representing t � 0 � 004 � 0 � 008 for reference.
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highlighted, since not only do they match with the contour plots of figure 6.9 but mark small

and almost maximally large magnetic energy states. We investigate how the magnetic energy

spectrum changes between its initial configuration and these times in figure 6.12(a). Figure

6.12(b) shows the evolution of the surface energy at the CMB. The initial field is shown as solid,

that at t � 0 � 004 as short-dashed and that at t � 0 � 008 as long-dashed. The two sets of spectra

0
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Figure 6.12: The spectrum of the magnetic field as a function of spherical harmonic degree l at
t � 0 � 0 � 004 � 0 � 008.(a) shows the energy spectrum, Ml and (b) the surface energy at the CMB, SEl
(see equation 6.14). The initial condition is shown as the solid curve, t � 0 � 004 as short-dashed
and t � 0 � 008 as long-dashed.

show very different characteristics. The large scales of the total magnetic energy appear to

linearly increase, retaining their initial ratios to one another. Additionally, the l � 1 harmonics

dominate at large times. In contrast, the surface magnetic energy shows a decrease as time

evolves which a complex scale-dependent behaviour. Despite the l � 1 harmonics dominating

initially, as time evolves it seems that the l � 5 harmonics become significant. An observer on

the Earth’s surface would therefore not see any transient magnetic energy growth, since not only

does the surface energy actually decrease overall, but seems to be concentrated in l � 5, which

undergoes moderate geometrical attenuation through the insulating mantle (see Appendix A).

Of course, we have chosen the initial condition to maximise the total magnetic energy

growth and not that of the field as sampled in any other way. We may therefore expect that to

achieve this favourable energy growth, the field becomes small near the CMB, concentrating its

intensity where the flow is large and so being maximally amplified. The field as sampled on the

CMB, and indeed that sampled on the Earth’s surface, will not behave in the same way as that

of the interior.

Figure 6.13 shows a comparison of the field intensity at a variety of locations on the

Earth’s surface, as a function of time. The field has been scaled to the Earth by its g0
1 com-

ponent, see section 6.1.4. Black shows that at Steens Mountain (of colatitude and longitude
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�
0 � 265π �

� 0 � 659π � ), red, Greenwich
�
0 � 214π � 0 � , green, the Equator at 0 longitude

�
0 � 5π � 0 �

and blue, the South Pole
�
π � 0 � . It is only after the dimensional optimising time of 1600 years
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Figure 6.13: The time evolution of field intensity sampled at Steens Mountain (black), Green-
wich (red), the Equator at 0 longitude (green) and at the South Pole (blue), for the s2(MDJ) flow
with Rm

� 100, truncation Nmax
� Lmax

� 24 with the m � 0 EA field symmetry. The initial field
is chosen to maximise the energy envelope (at t � 0 � 0084) and is scaled to the Earth through its
g0

1 component.

that the intensities show any sign of growth; indeed they decay initially whilst the field energy

as a whole increases dramatically. After the growth of magnetic energy towards the centre of

V has subsided, it diffuses outwards, leading to higher field energy as measured pointwise on

the Earth’s surface. We note however that this effect is location dependent: at the Equator the

measured field intensity decays almost monotonically towards zero. In most locations, observers

would have to wait 3000 years to see the maximum of the magnetic field intensity as sampled on

the Earth’s surface, double the time it takes the total magnetic energy to peak.

Although the above results pertain only to the s2 (MDJ) flow, the general behaviour as

indicated is generic and does not change on altering the form of the s2 flow.

6.4.4 Scaling of envelope heights

We investigate how the energy envelope height scales with Rm for the three s2 flows studied, for

the dominant m � 0 EA field symmetry. Table 6.2 shows that fully converged solutions are not

obtained above Rm
� 46. However, we shall consider up to Rm

� 1000 and hope that convergence

errors are not large enough to impair the general behaviour, for we only need a few significant

figures of accuracy for graphical purposes.

Figure 6.14(a) shows plots of the envelope height as a function of Rm for the three s2
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flows; figure 6.14(b) shows the relevant optimising times. We use the highest truncation which

is numerically tractable: Nmax
� Lmax

� 40. The curves in figure 6.14(a) do not tend to a per-
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Figure 6.14: For the field of m � 0 EA symmetry and truncation level Nmax
� Lmax

� 40, for
varying Rm (a) shows the associated envelope height and (b) the optimising time. The three s2
flows are shown as red (MDJ), green (KR) and blue (IC).

fectly straight line in log-log space, indicating that either numerical inaccuracies at large Rm are

important, or that the asymptotic regime (should it exist) has not yet been reached. However, we

may fit straight lines through the points located in the range 102 � Rm � 103 as approximations

to the asymptotes. The curves in figure 6.14(b) apparently reach linear asymptotes in the range

shown, until discrepancies appear at large Rm, due to numerical errors. Indeed, the fact that an

asymptote has apparently been reached suggests that similar behaviour should occur in (a) but is

affected significantly by numerical errors or truncation inaccuracies.

The approximated asymptotic scalings are shown below in table 6.3.

s2 flow Envelope height Optimising time
MDJ 0 � 426R1 � 20

m 0 � 426R � 0 � 85
m

KR 0 � 313R0 � 80
m 0 � 249R � 0 � 70

m
IC 0 � 396R0 � 71

m 0 � 208R � 0 � 68
m

Table 6.3: Comparison of approximate asymptotic scalings for the envelope height and op-
timising time as functions of Rm. Computed for the m � 0 EA field symmetry, truncation
Nmax

� Lmax
� 40.

The s2 (KR) and s2 (IC) flows are very similar in their asymptotic scalings; indeed,

this behaviour is also identified in figure 6.14(a). The envelope height for the s2 (MDJ) flow

seems to obeys a much more favourable scaling, leading to much greater potential for transient

behaviour. This indicates that the presence of a quiescent region in the vicinity of the origin

is important, restricting the magnitude of the transient growth allowed, although the exact size

does not appear make a great deal of difference.
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Despite the differences in envelope height scaling, there are no grounds for supposing

that the scalings of the optimising time with Rm are different, bearing in mind the likely errors

associated with such approximate asymptotes.

Therefore generically, in the range 0 � Rm � 1000, the envelope height scales as O
�
Rγ

m �
where 0 � 7 � γ � 1 � 2, depending on the flow chosen, and the optimising time as O

�
R � 3 � 4

m � . We

note that these scalings lead to the increase of transient growth with Rm, occurring on ever

shorter time periods. This is intuitive: on driving the flow faster we expect that it becomes easier

to generate magnetic fields and that any associated mechanism will operate more rapidly.

6.4.5 Initial fields

In each case, the optimal initial fields for magnetic energy growth over any time t
�

0 are poloidal

only in structure. Figures 6.15(a) and (b) show field lines for the initial m � 0 E A fields cho-

sen to optimise the energy envelope height for the s2(MDJ) flow with Rm
� 46 and Rm

� 464

respectively. They are extremely similar, although differ slightly in intensity near the origin (as

indicated by the size of the arrows plotted). It is interesting to make a comparison with the field

(a) (b)

Figure 6.15: The initial field which maximises the envelope for (a) Rm
� 46 and (b) Rm

� 464.
Computed for the s2(MDJ) flow and m � 0 EA field symmetry.

which optimises the initial energy growth (as addressed in section 5.7). Field lines in that case

are shown in figure 5.10. Although the field looks structurally very similar to that of figure 6.15,

if we forward propagate it through time it undergoes vastly suboptimal energy growth as shown

in figure 6.16. Energy is amplified by only a factor of 4 rather than the maximum of 52 (for this

Rm), despite the initial field being qualitatively similar. We must therefore be wary that maximal

growth is not as robust a feature as we might like, and that physically similar fields may not be
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amplified in energy equally.
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Figure 6.16: The time evolution of the most energetically unstable field, for the m � 0 E A field
symmetry, Rm

� 100, Nmax
� Lmax

� 40.

6.5 The transient magnetic energy amplification of t1 s2 flows

6.5.1 Symmetry separation

Figures 6.17(a)–(d) show the magnetic energy envelopes for the various independent symmetries

at Rm
� 100 for the flows: (a) t1 s2(MDJ) τ � 0 � 5, (b) t1 s2(MDJ) τ � 1, (c) t1 s2(KR) τ � 0 � 5 and

(d) t1 s2(KR) τ � 1. The truncation used is Nmax
� Lmax

� 24. Blue is m � 0, red is m � 1, solid

is EA dashed is ES. The t1 s2 (MDJ) τ � 0 � 5 flow has an unstable eigenvalue (Rc
m

� 55 � 0) of field

symmetry m � 1 ES that dominates the envelopes at large times. Notice though that it is highly

suboptimal for t � 0 � 04 (which in dimensional time is 7,700 years). It is unlikely that the flow in

the Earth’s outer core will be sufficiently stationary to sustain this growing eigenmode over such

a time period, so the fact that such an exponentially growing field exists in these calculations is

of no real importance.

Again we see that a robust feature of these flows is the dominance of the geophysically

relevant m � 0 EA field symmetry; this is perhaps not expected since such a symmetry dominates

flows consisting of the t1 and s2 components taken individually.

Both the t1 s2(MDJ) flows out-perform the t1 s2(KR) flows by a factor of four (note the

vertical scale). This stems from the increased efficiency of the s2(MDJ) component relative to

the s2(KR).
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Figure 6.17: The symmetries compared in computations of the magnetic energy envelopes for
the (a) t1 s2(MDJ) τ � 0 � 5, (b) t1 s2(MDJ) τ � 1, (c) t1 s2(KR) τ � 0 � 5 and (d) t1 s2(KR),τ � 1.
Rm

� 100; the truncation level is Nmax
� Lmax

� 24. Blue is the m � 0 symmetry, red is the m � 1
symmetry, solid is EA, dashed is ES. In (a), a growing eigenmode solution exists of m � 1 E S

symmetry; in (c), a slowly decaying eigenmode exists of eigenvalue λ � � 2 � 412
�

55 � 42i of the
same symmetry. The m � 0 ES symmetry dominates all non-normal growth in each case.

6.6 Envelope height scalings

Figures 6.18(a) and (b) show the variation of the envelope height for the three different flows

with the associated optimising time. We study only the dominant m � 0 E A symmetry with a

truncation of Nmax
� Lmax

� 40. Red shows t1 s2(MDJ) τ � 0 � 5, green MDJ τ � 1, blue KR

τ � 0 � 5 and black KR τ � 1 The approximated asymptotic scalings are shown below in table

6.4. All the flows have similar properties, but the two sets of t1 s2 (MDJ) and t1 s2 (KR) curves

look and behave almost alike. Indeed, the analysis does not critically depend on the exact choice

of τ , but shows generic behaviour. Of the t1 s2(MDJ) flows, that with τ � 1 (the equipartition

flow) supports greater growth. This is in conflict with the m � 1 E S symmetry, where a growing

eigenmode exists for τ � 0 � 5 but not for τ � 1.
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Figure 6.18: Comparison of (a) envelope height and (b) optimising time for t1 s2(MDJ) τ � 0 � 5
shown as red, t1 s2(MDJ) τ � 1 as green, t1 s2(KR) τ � 0 � 5 as blue, t1 s2(KR) τ � 1 as black.

t1 s2 flow Envelope height Optimising time
MDJ τ � 0 � 5 0 � 090R1 � 20

m 0 � 79R � 0 � 84
m

MDJ τ � 1 0 � 150R1 � 20
m 0 � 59R � 0 � 85

m
KR τ � 0 � 5 0 � 097R0 � 98

m 0 � 44R � 0 � 70
m

KR τ � 1 0 � 166R0 � 89
m 0 � 28R � 0 � 68

m

Table 6.4: Comparison of approximate asymptotic scalings for the envelope height and optimis-
ing time as functions of Rm. For the m � 0 EA field symmetry, truncation Nmax

� Lmax
� 40.

6.7 The magnetic energy amplification of the KR and STW flows

6.7.1 Symmetry separation

Figures 6.19(a) and (b) show the magnetic energy envelopes for (a) the KR and (b) the STW

flows, both at Rm
� 100. We use a truncation level of Nmax

� Lmax
� 16 which is just enough

to attain sufficient convergence. Since the flows are not axisymmetric, many more harmonics

are needed in the symmetry classes, and in this case they involve large matrices of dimension

2304 � 2304. This is the maximum resolution tractable, since not only are matrix exponentials

computationally expensive, but numerical inaccuracy issues and spurious singular values arise

from large matrix calculations.

The symmetries shown are: blue, containing even values of m, red, containing odd

values of m; solid shows EA and dashed ES symmetry.

It is interesting to compare these curves with the equivalent for the t1 flow in section

6.2 which comprises 99% and 96% of the KR and STW respectively by rms: they look almost

identical. This measure is therefore robust in the sense that small flow differences do not change

the resulting stability, at least at Rm
� 100.

We could not compute any asymptotic scalings since calculations with Rm � 100 were
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Figure 6.19: Energy envelopes for (a) the KR flow and (b) the STW flow, Rm
� 100. Blue

contains even m field harmonics, red contains odd m harmonics, solid is E A and dashed is ES.

Rm
� 100 Asymptotic scaling

Flow Envelope height Optimising time Envelope height Optimising time
t1 10.93 0.040 R2

m 0.0407
KR 11.16 0.042 - -
STW 9.72 0.038 - -
s2(MDJ) 51.66 0.0084 R1 � 2

m R � 0 � 85
m

s2(KR) 11.88 0.0096 R0 � 80
m R � 0 � 70

m
s2(IC) 9.36 0.0092 R0 � 71

m R � 0 � 68
m

t1 s2(MDJ) τ � 0 � 5 21.16 0.016 R1 � 20
m R � 0 � 84

m
t1 s2(MDJ) τ � 1 34.19 0.011 R1 � 20

m R � 0 � 85
m

t1 s2(KR) τ � 0 � 5 8.59 0.018 R0 � 98
m R � 0 � 70

m
t1 s2(KR) τ � 1 9.88 0.166 R0 � 89

m R � 0 � 68
m

Table 6.5: A comparison of the envelope heights attained by the various flows studied with
Rm

� 100 with the approximate asymptotic scaling. In two cases, convergence issues did not
allow the scaling to be calculated, shown by � .

unconverged.

6.8 Flow comparison

For each flow, the dominant symmetry for the non-normal growth is m � 0 E A, matching that

of the Earth. Table 6.5 shows the differing amount of transient growth possible for all the flows

studied for Rm
� 100, along with their approximate asymptotic scalings.

We have written the flows in groups, all showing similar characteristics. The t1, KR

and STW flows, all having very similar structures amplify an initial magnetic field by a factor of

around 10 in energy, for Rm
� 100. The time at which these maxima are attained are approxi-

mately also equal, indicating that the same mechanism of poloidal field line shearing is causing

the transient magnetic energy growth. At a higher value of Rm
� 1000, the t1 flow may optimally
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amplify magnetic energy by O
�
1000 � with the generated field being purely toroidal.

The s2 flows vary considerably in amplification capability, with the s2(MDJ) being

the most effective. The optimising time though is very similar for Rm
� 100, and indeed this

also shows in the asymptotic scaling. Again the same mechanism is responsible for each, that

of advection towards the z-axis followed by stretching. At Rm
� 1000, the s2(MDJ) flow may

amplify magnetic energy by O
�
1000 � , generating purely poloidal field.

The t1 s2 flows again vary in envelope height, with those containing the s2(MDJ) com-

ponent performing the best. Although those containing the s2(KR) component in fact show a

lesser energy amplification than that of s2(KR) itself, the asymptotic scaling suggests that for

larger Rm this efficiency difference will reverse.

Overall there are two main mechanisms for generating transient magnetic fields: that

associated with t1 of field line shearing and that associated with s2, of field line stretching. All

the flows considered are either combinations of these or close to one (in rms). Small flow per-

turbations may alter the effectiveness of the energy amplification, but the mechanism remains

the same. In addition, as Rm increases, the ability of all the flows to grow magnetic fields con-

comitantly rises. Therefore, not only is this analysis robust, but it agrees with our physical

understanding of generation mechanisms.

6.8.1 Geophysical discussion

Transient growth analysis is geophysically robust, in that each flow is dominated by the Earth-

like m � 0 EA field symmetry. Certain flows have the ability to support growing eigenmode

solutions; however, these might take up to 10,000 years to dominate (depending on the initial

field), a time period over which the flow will undoubtedly change since the timescale of core

convection turnover time is around 500 years. Given the sensitivity of such solutions to the

underlying flow, it is unlikely that they are manifested in the Earth.

Transient growth may explain the recovery of the field intensity and its axially sym-

metric dipolar component after a magnetic reversal, especially in the case where the flow is

dominated by an s2 convective overturn motion. At Rm
� 1000, the s2(IC) flow can amplify

magnetic energy by 53 times, corresponding to an intensity increase of 7. The timescale on

which this occurs is 500 years or so, a little short but nonetheless consistent with the figure of

10,000 years from paleomagnetic data. We also note that this recovery is unlikely to be mani-

fested immediately on the Earth’s surface, and that calculations indicate a significant time delay

of several thousand years. This brings the swift timescale computed to be more in line with that

geophysically observed.
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6.9 Optimal excitation of the most unstable eigenmode

The transient growth discussed above deals with time periods short compared to those on which

we would expect the fastest growing (or slowest decaying) eigenmode to dominate. That is, we

are more interested in how the superposition of these modes creates magnetic energy rather than

studying any mode individually. At large times however, assuming the flow remains stationary,

the most unstable eigenmode will dominate the system and is the subject of most of the previ-

ous literature on kinematic dynamos. In order to maximise the field energy at large times, we

want all of the energy to end up in this eigenmode; however, a slight twist comes about from

the non-normality of the system: the optimal initial condition in this case is not that of purely

the eigenvector, but its associated adjoint vector. In most cases having an initial condition pro-

portional to the dominant eigenvector is extremely suboptimal. We first introduce this rather

counter-intuitive result with a simple example.

6.9.1 A simple example

Let us consider the example given in section 6.3.1 in matrix form. We represent B by the vector
�
S � T � and write the schematic induction equation with the t1 flow as:

d
dt

�� S

T

�� �
�� � 1 0

Rm
� 2

�� �� S

T

�� (6.15)

where we represent the poloidal and toroidal decay rates by � 1 and � 2 respectively. If we now

seek solutions of the form B ∝ eλ t then we may write�� S

T

�� �
t � � A

�� 1

Rm

�� e � t � B

�� 0

1

�� e � 2t (6.16)

If we use the usual Euclidean 2-norm, the two eigenvectors are not orthogonal. Notice that the

non-normality of the system increases with Rm: when Rm
� 0 the eigenvectors are orthogonal.

To maximise the energy at large times, we would like the initial condition to have a maximal

projection onto the slowest decaying eigenvector, that is, such that A is maximal. Restricting

ourselves to initial fields of unit energy, the choice B � 0 forces A � 1
� � �

1 � R2
m � which is

vastly suboptimal as we shall see.

The adjoint problem is described in this norm by the transpose of the defining time-
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propagation matrix and has eigenvalues � 2 and � 1 with associated eigenvectors respectively�� Rm

� 1

��
�

�� 1

0

�� (6.17)

As with all adjoint vectors, they form a biorthogonal set, that is, each is orthogonal to all the

original eigenvectors except in the case where the eigenvalues are complex conjugates of each

other, or in this case equal (since they are real). If we want an initial condition to give a maximal

value of A, then we consider writing (at t � 0), since both sets of vectors are complete:

A

�� 1

Rm

�� � B

�� 0

1

�� � C

�� 1

0

�� � D

�� Rm

� 1

�� (6.18)

for some constants C and D. We want to find the field with the largest projection onto A. It

is clear that D � 0 since the adjoint vector it multiplies is orthogonal to that multiplying A.

Therefore, the optimal initial condition is C � 1, equating to�� 1

0

�� �
�� 1

Rm

�� � Rm

�� 0

1

�� (6.19)

which has unit norm, giving the value A � 1.

Thus, two eigenmodes both of norm greater than one (if Rm � 1) can superpose to

create an initial field of unit norm but with a larger projection onto the most unstable eigen-

vector than just that of the vector itself. As Rm � ∞, the ‘efficiency’ of an initial field of the

adjoint mode relative to that of just the leading eigenmode itself, is measured by the ratio of A:

1
� � �

1 � R2
m � , the ratio of the coefficient multiplying the leading eigenmode at large times. This

decreases as O
�
R � 1

m � for large Rm.

Physically, in order to generate large magnetic energy growth, we need to start off with

a purely poloidal field (the associated adjoint vector) which gets sheared by the flow, creating

large toroidal energy growth. The most unstable eigenvector is mostly toroidal (at least for

Rm � 1) and so an initial configuration in this form cannot be sheared nearly as much; such an

initial configuration is therefore highly suboptimal.
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6.9.2 A theoretical derivation

Suppose a vector system is governed by the equation

dv
dt

� � v (6.20)

where in our case v represents B with respect to the Chebyshev basis and � is the discretised

induction operator. As discussed in section 5.1.1 we may work in the Euclidean 2-norm. It

follows simply from its definition that the adjoint in this norm is � † � � T .

If we diagonalise � ��� Λ � � 1 then

� † � � � � 1 � T Λ � T (6.21)

where � contains the eigenvectors of � as columns and Λ is a diagonal matrix of the eigenvalues.

Since the exponential series expansion can be written

e
�

Λ
� � 1 t � ∑

i � 0

� � Λ � � 1 t � i �
i! ��� � ∑i � 0

�
Λ t � i �

i! � � � 1 ��� eΛt � � 1 (6.22)

the solution to the time-dependent problem is

v � e � t v �
0 � ��� eΛt � � 1 v

�
0 � (6.23)

The exponential of a diagonal matrix is also diagonal with entries � eΛt � ii � e
�
Λ � ii t . Suppose that

Λ11 is the unique eigenvalue with maximal real part, then the long term behaviour is governed

only by the sub-matrix of e � t :
� �

: � 1 � eΛ11 t � � � 1 � �
1 � : � (6.24)

where the notation �
�
: � 1 � means the matrix of identical size to � but containing only the the

first column of � ; �
�
1 � : � denotes a similar matrix but only containing the first row. This matrix

is already in singular value decomposition (up to a normalisation) and so the optimal initial con-

dition maximising the energy at t � 1 is given by the right singular vector (section 4.8.1). On

inspecting equation (6.21) this turns out to be nothing more than the adjoint eigenvector associ-

ated with the eigenvalue Λ11. Denoting this adjoint vector by a and the associated eigenvector

of � by v (both column vectors), we can write for t � 1, e � t � veΛ11 t aT and the ratio of the
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energies of the two time-propagated initial vectors of a and v is

�
e � t v

� 2
�
e � t a

�
2

�
�
veΛ11 t aT v

�

�
veΛ11 t aT a

� � a � v
1

(6.25)

where both v and a are normalised to have unit Euclidean 2-norm. Reverting back to our en-

ergy inner product, the efficiency of having an initial condition as the most unstable eigenvector

relative to that of the associated adjoint vector is
�
a � v � which typically scales as R � γ

m for some

γ � 0.

6.9.3 Scalings of efficiency

We firstly analyse the t1 flow with a field of m � 0 EA symmetry, which we simplistically rep-

resented as an introductory example in section 6.9.1. Figure 6.20(a) shows the (energy) inner

product of v and a. The scaling R � 1
m is shown as the dashed line, in agreement with that of the

simple model. The adjoint mode is purely poloidal as already discussed, which is maximally

sheared by the flow before its eventual decay. Figure 6.20(b) shows an equivalent plot but for

the s2(MDJ) flow with a field of identical symmetry; the dashed line is the scaling R � 0 � 37
m .
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Figure 6.20: Energy inner product between the most unstable eigenvector and its associated
adjoint vector, as a function of Rm. Dashed shows the linear asymptote (in log-log space); the
truncation level is Nmax

� Lmax
� 24. (a) shows the t1 flow, having an associated scaling of R � 1

m ,
(b) shows the s2 (MDJ), having a scaling R � 0 � 37

m .

Let us now consider the t1 s2 (MDJ) τ � 0 � 5 flow which supports an exponentially

growing eigenmode with Rc
m

� 55 � 0. Figure 6.21(a) shows the energy inner product for the

relevant m � 1 ES field symmetry; dashed is the fit R � 0 � 4
m (the same index as that found for the

m � 0 EA symmetry for this flow). The behaviour is unaffected going through the linear stability

transition at Rm
� 55 � 0. The eigenvectors are complex in this case, but we use only the physically

relevant real part.
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In figure 6.21(b) we show the time propagated initial fields of the most unstable eigen-

vector (solid) and that of the associated adjoint mode (dashed), with Rm
� 60 � Rc

m for the t1 s2

(MDJ) flow, τ � 0 � 5. At the end of the time series plotted, the latter curve takes on an exponential

form but with a much greater amplitude.
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Figure 6.21: For the t1 s2 (MDJ) flow with τ � 0 � 5, Nmax
� Lmax

� 24, m � 1 ES field symmetry
(a) shows the energy inner product between the most unstable eigenvector and its associated
adjoint mode. Dashed shows the fit R � 0 � 4

m . (b) The time evolution of the magnetic energy of the
most unstable eigenvector (solid) and its associated adjoint mode (dashed), both normalised to
have unit initial energy.

6.9.4 Summary of the adjoint–eigenvector analysis

In each flow considered above due to the non-normality of the system, it is always far more

efficient to excite the dominant eigenmode by taking an initial field of its associated adjoint

vector, rather than the eigenvector itself. Most flows seem to have an ‘efficiency’ scaling of Rγ
m

where γ � � 0 � 4, apart from the t1 flow which scaled as R � 1
m , the most severe. In their study

of non-normal magnetic energy growth in a cylindrical geometry, Farrell and Ioannou (1999a)

found a similar scaling of R � 1 � 2
m , despite the different geometry.

6.10 Minimum time calculations

If we seek a final steady state in fully non-linear calculations, the time period over which such

computer models are run must be sufficiently long so that all transient processes have decayed.

The question is, exactly how long is such a period?

When solving the joint system of the induction equation with the Navier Stokes equa-

tions, any ephemeral behaviour would in general couple both the flow and magnetic field in a

non-linear fashion. We set a lower bound on the model time required by considering only the

linear process of transient magnetic field growth in stationary flows. We study the same flows as
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before but now solve for the maximum time needed for the energy to fall back down to its initial

value of 1. This corresponds to intersections of the energy envelope with the curve M � 1 for

non-zero time, which we locate using a bisection method. These values will in general depend on

Rm, so we fix it initially at Rm
� 500 being a geophysically relevant value. We choose the m � 0

EA field symmetry since this dominates in each flow. Table 6.6 shows the strictly positive non-

dimensional time for which the energy envelope intersects the curve M � 1 (second column).

We scale this to the number of dipole diffusion times (third column) and the dimensional time in

years (fourth column). No converged solutions we found for the s2(MDJ) flow with Rm
� 500

Flow t π2 t Time/(103 yrs)
t1 0.357 3.52 69
s2 (KR) 0.185 1.83 36
t1 s2(MDJ), τ � 0 � 5 0.282 2.78 54
t1 s2(MDJ), τ � 1 0.266 2.63 51
t1 s2(KR) , τ � 0 � 5 0.260 2.57 50

Table 6.6: Intersection of the energy envelope curves with M � 1 for t � 0, for various flows.
Computed with a truncation level of Nmax

� Lmax
� 24 for the m � 0 EA field symmetry, Rm

�
500. The third column shows the number of dipole diffusion times, the fourth the associated
dimensional time in years.

nor for the KR and STW flows with Rm � 100.

At a higher value of Rm
� 1000, more transient growth is possible and the associ-

ated values of t become larger. Table 6.7 shows results from a few flows for comparison. For

Flow t π2 t Time/(103 yrs)
t1 0.4274 4.32 82
t1 s2(MDJ), τ � 0 � 5 0.3249 3.21 62
t1 s2(KR), τ � 0 � 5 0.3145 3.10 60

Table 6.7: Intersection of the energy envelope curves with M � 1 for t � 0 for various flows.
Computed with a truncation of Nmax

� Lmax
� 24 for the m � 0 EA field symmetry, Rm

� 103. The
third column shows the number of dipole diffusion times, the fourth the associated dimensional
time in years.

geophysical values of 500 � Rm � 1000 the minimum computational time required for a run to

discount all transient effects is 4 � 32 dipole diffusion times (82 � 000 years). Such bounds depend

on the particular flow studied: this figure is associated with the t1 flow. It is of note that this

exceeds the bound of Backus (1957) of 4 dipole diffusion times corresponding to axisymmetric

poloidal-only fields, avoiding the conditions of the theorem by generating large toroidal field en-

ergy. Generically we require at least three dipole diffusion times for a computational run, in line

with most current simulations. Of course fully non-linear transient behaviour may last longer
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than these kinematic results, and consequently they only place a lower bound on the necessary

model time for the full problem.

6.11 Virtual geomagnetic pole paths for transient events

So called VGP diagrams are a good way of visualising the behaviour of the magnetic field as

sampled at a particular site. This is especially useful for paleomagnetic data, where good spatial

coverage is often lacking and global field models cannot be constructed. A VGP is the location

of the geomagnetic north pole of a purely dipole field, consistent with measurements taken at the

site. If the data allows, these VGP locations trace out a curve as a function of time, the so called

VGP path.

If the field was purely dipolar, then such diagrams would exactly capture the path of

the geomagnetic pole. However, in general the field morphology is much more complex and

VGP paths are site dependent. Of particular interest are VGP paths recording the nature of

geomagnetic reversals, especially those showing extremely rapid field changes, for example,

that seen in the data from Steens Mountain. In general the paths wander in both longitude and

latitude as time evolves.

We now consider how the transient magnetic field growth as computed in the preceding

sections would look as VGP paths, computed from observations taken on the Earth’s surface. As

has already been shown in figure 6.13, the behaviour of the magnetic field intensity on the Earth’s

surface may not indicate in any way the generation processes going on deep within the core. We

investigate whether the same is true here.

To construct VGP paths at a given site, we require measurements of the field inclination

I and declination D. The methodology used is detailed in Appendix D.

6.11.1 Computed VGP paths

In each of the axisymmetric flows studied, the dominant transient magnetic energy growth sym-

metry is m � 0 EA. This means that the VGP paths lie on a line of constant longitude identical

to that of the sampling location. Geophysically this does not give much insight since observed

VGP paths in general vary in longitude with time. Instead we form plots associated with the KR

and STW flows, which are non-axisymmetric and have a dominant field symmetry that is E A and

contains harmonics for which m is even.

We propagate through time initial fields which maximise the magnetic energy growth

for Rm
� 100, for which calculations are sufficiently converged using a manageable truncation
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Figure 6.22: VGP paths for the (a) KR and (b) STW flows, viewed in a polar projection from
above the north pole. The initial field maximising the magnetic energy growth for Rm

� 100 is
forward propagated through time. The latitudinal grid is 10 � .

level of Nmax
� Lmax

� 16. For a sequence of times 0 � t � 0 � 2 in this interval, we compute the

VGP path for various chosen locations on the Earth’s surface.

Figures 6.22(a) and (b) show VGP paths for three locations: SM labels Steens Moun-

tain
�
θ � 0 � 265π � φ � � 0 � 659π � , SA: offshore south Africa

�
θ � 0 � 722π � φ � 0 � 278π � and GW:

Greenwich
�
θ � 0 � 214π � φ � 0 � . The VGP paths for both the KR and STW flows are very close

to the geographic north pole and do not extend far in latitude (the scale is 10 � ). In KR, each path

starts furthest away and moves toward the north pole. In STW, at SA and SM the VGP paths

start heading toward the geographic north pole and then turn away, in contrast to that at GW,

which heads straight towards it.

Crucially, over a non-dimensional time scale of 0.2 (38,000 years), the VGPs really do

not extend very far in latitude or longitude, so that in particular, the huge variation in the VGP at

Steens Mountain over a course of a week or so cannot be explained by such a model. We note

however that for these flows, the largest component of energy growth is toroidal which is not

seen at the Earth’s surface. The VGPs point predominantly northwards, indicating that the S1

component dominates all other poloidal components. However, as time proceeds (for example

seen at SM in figure 6.22(b)), the axisymmetric dipole eventually decays and the VGP moves

slightly away from the geographic north pole.
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6.12 The Lorentz force

In this chapter we have so far addressed the issue of transient magnetic energy growth. The

kinematic regime on which this work is based is only justified when the Lorentz force is small,

so that the induction equation may be studied in isolation. Indeed, our aim is to study the energy

growth of small magnetic fields until this assumption breaks down. We do not seek exponential

growth in particular, but growth on any timescale such that this occurs. Although we have

already seen substantial potential for transient energy growth, no comments have yet been made

on the likely effect of the associated Lorentz force on the underlying flow pattern. It is plausible,

for example, that the Lorentz force, proportional to
� � � B � � B, is precisely zero because the

generated current lies parallel to the associated field lines. Such a circumstance does not arise in

general, but it is nonetheless important to quantify its strength relative to the forces which might

be responsible for driving the flow.

The Earth is believed to be in a so called magnetostrophic balance (e.g. Gubbins and

Roberts, 1987), where to leading order, the Coriolis force (2ρ � � u, where Ω is the angular

rotation vector of the Earth and ρ is the density), the Lorentz force (µ � 1
0

� ��� B � � B), pressure

gradients and buoyancy are in equilibrium. In our kinematic framework, we assume that initially

the magnetic field is sufficiently small that the Lorentz force can be neglected. In this situation

then, the Coriolis force, buoyancy and pressure are in a geostrophic equilibrium, of which we

assume u to be a stationary solution. Of course, such flows are unknown to us, so we generally

prescribe them to describe some physical mechanism, such as convection. Should the magnetic

field and therefore the Lorentz force grow to a magnitude comparable with any of the geostrophic

forces, the kinematic framework then breaks down. We may therefore compute the (dimensional)

ratio of the Coriolis force to the Lorentz force, as a measure of the veracity of the kinematic

assumption.

We scale the magnetic field to the Earth by its largest external dipole component (in

most cases g0
1

� � 29616 � 13 nT). Explicitly, the rms dimensional Lorentz force is
� 2�

µ0

� � �
B � B � rms where � is the magnetic field scaling factor and

�
is the dimensional length scale,

taken to be the radius of the CMB. The dimensional Coriolis force is 2ρ
�

Ω
�
ẑ � u � rms where

the typical velocity scale is
� � Rm�

µ0 σ . The other parameters are: the angular rotation rate

of the Earth Ω � 7 � 3 � 10 � 5s � 1, the density of the outer core ρ � 104kg m � 3 (Dziewonski and

Anderson, 1981), the conductivity of the outer core σ � 5 � 105S m � 1 and permeability of free

space µ0
� 4π � 10 � 7 H m � 1.

We compute the non-dimensional rms values using identical techniques to those pre-
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sented in chapter four and noting that ẑ � S1, with S1

�
r � � r2 �

2. Additionally, we may compute

the Ohmic dissipation
�
V

�
µ � 1

0
��� B � 2 �

σ dV associated with the transient energy growth. This

represents a drain on the magnetic field: electric currents induce Ohmic heating and conse-

quently magnetic energy is lost. The main contribution to this dissipation is small scale fields,

thus the main field would be spatially ‘smoothed’ over time if no generation mechanism was

present. If the Ohmic heating is too large, too much energy is lost and the dynamo will cease

to operate. Geophysical values of 1–2 TW for the Ohmic dissipation were proposed by Roberts

et al. (2003) as an upper bound, while (Buffett, 2002a) suggested 0.1–0.5 TW, although larger

values were not discounted. We can use these to restrict our choice and flow and the size of Rm,

for we do not expect the numerically evaluated dissipation to vastly exceed these geophysical

values.

Another quantity of relevance to the geodynamo is the work done by the Lorentz force

on the flow, non-dimensionally given by Rm u � � ��� B � � B � .

In section 2.3.3, we saw that if non-slip boundary conditions were obeyed by an in-

compressible flow, this work is equal and opposite to that done by the flow on the magnetic field.

Indeed, we showed that

Rm

	
V

B � ��� �
u � B � dV � � Rm

	
V

u � � ��� B � � BdV � Rm

	
V

B ��� BdV (6.26)

Thus a spatial average of these rates of work is equal in magnitude to the spatial average of the

amount of field line stretching. In a pointwise sense however, these work rates give important

clues as to where and how the flow pattern might be significantly affected by the Lorentz force.

Since most of the existing literature on kinematic dynamos is concerned with eigen-

mode instability, we compare the Lorentz force and other relevant quantities associated with

such growth, with those from transience calculations. In this way, we can determine whether

there is much difference, if any, in the physical effects of these two solution types.

In what follows we write J � ��� B for the non-dimensional electric current density,

differing by a factor of µ � 1
0 from the dimensional quantity, and

� ��� B � � B, the Lorentz force,

differing by an identical factor from its dimensional value. Unless specified to the contrary, all

quantities will be non-dimensional. Although we present results for a few flows individually, the

results relating to all the various flows are compared in section 6.12.4.
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6.12.1 The t1 flow

We analyse the t1 flow with a truncation level of Nmax
� Lmax

� 24 with the dominant m � 0

EA field symmetry. When Rm
� 100, the optimising time for the maximum energy growth is

t � 0 � 0397 and has an associated energy amplification of 10.93, corresponding to a rise in Brms

of
�

10 � 93 � 3 � 31.

Figure 6.23 shows the evolution of Brms (long dashed),
� � � B � rms (short-dashed)

and
� � ��� B � � B � rms (solid), where rms denotes the root mean squared average over the unit

sphere; the initial field is normalised to have unit energy. The rms value of the field increases by
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Figure 6.23: The evolution of the rms values of B (long dashed), � � B (short-dashed) and� ��� B � � B (solid). The rms field increases by a factor of 3.31 (from an initial value of 0.62),
the current by 4.5 (initially 2.78) and the Lorentz force by 16 (initially 1.66).

a factor of 3.31, while the Lorentz force increases by a factor of 16. This much larger factor is

explained by the rise in current of around 4.5 times. In this case, the rms value of the Lorentz

force is precisely the product of the rms values of its constituent components: the current and

the magnetic field, indicating that they are orthogonal and so we can write

	
V

� � ��� B � � B
� 2 dV �

	
V

� � ��� B � � 2 �
B

� 2 dV (6.27)

which suggests, if the components behave suitably

� � ��� B � � B
�
rms � � ��� B

�
rms

�
B

�
rms (6.28)

This is simply explained since the transiently grown field is predominately T2 (section 6.2.4),

having only a ˆ�
component. Its associated current J comprises mainly S2, which has no ˆ�
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component. Thus in this case the current and the magnetic field are pointwise orthogonal. The

magnetic field grows only in the main body of the flow, whereas the current is roughly constant

except near r � 1 where it is heavily influenced by the boundary conditions which bring it sharply

to zero. This suggests that equation 6.28 is sufficiently satisfied in order to explain our results.

Figure 6.23 shows that the current scales linearly with the magnetic field, and indicates

that the extra � � operation on B, forming J, gives no extra time dependent behaviour, i.e. the

length scales relevant are the same at any given instant. This is in agreement with the results

of section 6.2.2 where we found that the field energy spectra did not change through time, be-

ing dominated by the T2 component. It follows that the peaks of the Lorentz force, magnetic

field and the current occur almost simultaneously as the figure shows, and that since the energy

envelope height scales as R2
m for this flow, the rms Lorentz force scales similarly as R2

m.

From a geophysical point of view, it is the ratio of the Coriolis force and the dimen-

sional Lorentz force which is of importance. In particular, if this ratio is O
�
1 � then the field

has a significant effect on the flow and the stationary-flow kinematic problem is no longer valid.

As before, to calculate the importance of this we rescale the g0
1 component of the field to its

Earth-like value; details can be found in section 6.1.4. The ratio for the case Rm
� 100, takes a

maximum value of 0.088. In this regime then, the Coriolis force is dominant, even though the

Lorentz force has increased by a factor of 16 from its original value. Since the rms Coriolis force

scales linearly in Rm, it follows that the ratio also scales as Rm. Higher flow rates then mean that

the kinematic assumption becomes increasingly less valid in the event of transient growth.

Figure 6.24 shows (a) contours of
�
B

�
, (b) contours of

� � � B � B
�
and (c) contours

of Rm u � � � B � B, the work done by the Lorentz force on the flow. The snapshot is taken at

t � 0 � 04 corresponding to the magnetic energy peak; red is positive, blue negative. The pre-

dominantly negative contour values in figure 6.24(c) show that the Lorentz force acts mainly

against the flow, as we might expect from Lenz’s law (stating that any growing field will act

against the movement generating it), and that it is concentrated at locations of large magnetic

energy growth. The total work done is
�
V Rm u � ��� B � BdV ��� 403 � 9754, the negative value

indicating that overall the Lorentz force does work against the flow at this time. In the fully dy-

namical system, the flow velocity near the regions of strong field line shearing would be slowed,

and consequently the the scope for field growth would be reduced. Notice though that there are

regions for which the Lorentz force acts upon the flow favourably (near r � 1 in particular).

We can also compute the dimensional Ohmic dissipation:
�
V

J2

σ dV . For a value of

Rm
� 1000, its maximum is 339 � 29GW , whereas for Rm

� 100, it is about 102 times lower:

3 � 44GW . These are well within the geophysical bounds of Roberts et al. (2003) of 1–2 TW.
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(a) (b) (c)

Figure 6.24: At t � 0 � 04, contours of (a) 0 � 1130 �
�
B

�
� 4 � 2285, (b) 0 �

� � � B � B
�

� 5 � 1292,
(c) � 134 � 00 � Rm u � � � B � B � 24 � 76. Arrows show the direction of the field. Computed
for the t1 flow, m � 0 EA field symmetry, Rm

� 100. The initial field is normalised to have unit
energy. The snapshot is taken at t � 0 � 04.

6.12.2 The s2(MDJ) flow

We now investigate the Lorentz force associated with the transient magnetic energy growth under

the action of the s2(MDJ) flow. Again we use Rm
� 100, and we take as an initial field that which

maximises the magnetic energy growth, associated with an optimising time of t � 0 � 0084 and

energy amplification of 52. We use the dominant m � 0 E A field symmetry and a truncation level

of Nmax
� Lmax

� 24.

Figure 6.25(a) shows the evolution of Brms (dotted, right axis) and Jrms
� � ��� B � rms

(solid, left axis). Note the disparity of the magnitudes: although Brms has increased by a factor of

about 8, the current shows an increase (in rms) of 29. This means that the characteristic length

scale must decrease by a factor of 3 during the time evolution shown. That this is so is not

surprising considering how the spatial scales evolve in time as the field is stretched by the flow

(section 6.4.3).

Figure 6.25(b) shows the evolution of
� � ��� B � � B � rms (solid, left axis) and

�
V Rmu � � � B � BdV (dotted, right axis). The Lorentz force grows by a factor of 2275 and

on average, opposes the motion of the fluid (since the integral above is negative). It reaches its

rms maximum at roughly the same time as those of the magnetic field and current. That the

Lorentz force increases by 2275, the magnetic field strength by 8 and the current by 29 is not in

error! Although an a priori scaling of Lorentz force is linear with the magnetic field and current,

these can locally superpose to create very strong Lorentz forces, making the global average large

while the global average of its constituent components might still be relatively weak. Using the
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Figure 6.25: The evolution of various quantities associated with the initial field chosen to max-
imise the energy growth at t � 0 � 0084 for Rm

� 100. The rms values plotted are those of (a)� � B (solid, left hand axis) and B (dotted, right hand axis). (b)
� � � B � � B (solid, left hand

axis) and
�
V Rmu � ��� B � BdV (dotted, right hand axis).

Cauchy-Schwarz inequality:

	
V

�
J � B

� 2 dV �
	

V

�
J

� 2 �
B

� 2 dV � � 	
V

�
J

� 4 dV � 1
2 � 	

V

�
B

� 4 dV � 1
2

(6.29)

and so it does not follow that the rms Lorentz force is bounded by the product of the rms values

of the magnetic field and current, unless either the current or magnetic field intensity is constant

in locations when the other varies, enabling us to replace the first inequality by two separate

integrals.

Scaling the relevant quantities to their geophysical values, the maximum rms ratio of

the Lorentz force to the Coriolis force is 21.33. Hence in this regime, the flow is very strongly

influenced by the field. The time at which the Lorentz force is maximised is around 0.009. Figure

6.26 shows (a) contours of
� ��� B � B

�
and (b) contours of Rm u � ��� B � B, where we see the

Lorentz force strongly suppressing the flow near the z-axis. To see the effect of changing Rm

on the Lorentz force, we compare the two values Rm
� 100 (a lower estimate for the Earth) and

Rm
� 1000 (an upper estimate). In each case we choose the initial condition which maximises

the energy envelope, which for Rm
� 1000 occurs at an optimising time of 0 � 0012. Table 6.8

shows the change in behaviour for two different values of Rm. Increasing Rm by an order of

Rm Brms
� ��� B � rms

� � ��� B � � B � rms Rm u � � ��� B � � B
100 4.94 (0.008) 99.25 (0.009) 4827.62(0.009) -40500(0.008)
1000 19.95 (0.004) 1198.26 (0.004) 638428.58 (0.004) -6002500 (0.004)

Table 6.8: The maximum value of different quantities as they evolve in time; the time at which
the maxima occurred are shown in parentheses. The initial field is normalised to have unit energy.

magnitude increases Brms by a factor of five, and decreases the length scale on which B varies
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(a) (b)

Figure 6.26: At t � 0 � 009, contours of (a) 0 �
� ��� B � B

�
� 2526 � 154,

(b) � 47807 � 40 � Rm u � � � B � B � 5449 � 552, for the initial field with unit energy maximising
the magnetic energy at t � 0 � 0084, for the s2(MDJ) flow with m � 0 EA symmetry, Rm

� 100.

from 1
�
20 to 1

�
60 of the core radius. The Lorentz force for Rm

� 1000 is huge, corresponding to

334 times the Coriolis force. The Ohmic dissipation associated with this is 27.18 TW, more than

geophysical constraints allow. Its large magnitude is due primarily to the small length scales

involved (compare with the value of 154 GW for Rm
� 100). These two geophysical constraints

restrict the choice of Rm, should this process occur to around Rm � 100. However, other s2 flows

are not so good at generating transient magnetic energy growth and we might expect that the

associated Ohmic dissipation and Lorentz force are concomitantly lower, since the field will not

be stretched on such a tiny length scale. Therefore, such a stringent bound on Rm might not

apply. Indeed, even the geophysical bound on dissipation rates may be avoided if the growth

is only transient, for example, recovering the field after a magnetic reversal. Even though for a

short while the Ohmic heating might be high, its contribution to the total energy budget may be

small.

6.12.3 t1s2 flows

Similar calculations have been carried out on t1 s2 flows and the results are shown in the flow

comparison of section 6.12.4. However, of particular interest is the nature of the Lorentz force

associated with eigenmode growth: how does it compare to the transience calculations?

We investigate the t1 s2 (MDJ) flow with τ � 0 � 5 which is eigenvalue unstable with
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field symmetry m � 1 ES and Rc
m

� 55 � 0. The eigenvector is unique up to a solid body rotation,

and we fix the orientation by demanding that the largest scale Chebyshev basis component of

S1c
1

�
1 � vanishes. We rescale the h1

1 component associated with S1s
1

�
1 � to have the geophysical

value of 5185 � 72 nT.

Again we use Rm
� 100 for comparison, and choose the initial condition to optimise

the field energy at t � 0 � 2, in order that it has an opportunity to dominate. This has the effect

of putting all the energy into the relevant adjoint vector; the field evolves quickly into the eigen-

vector although at a higher energy level than if this was chosen as the initial state. The most

unstable eigenvalue is 8 � 2961
�

56 � 6541 i and we would expect the growth to take on the form

of an exponentially growing solution at large times. Unless the Lorentz force and current identi-

cally vanish, they must also grow exponentially in time; however, we must determine their initial

amplitude.

Figure 6.27(a) shows the evolution of Brms (dotted, right axis) and
� ��� B � rms (solid,

left axis). After an initial transient, both the field and current grow exponentially. Note though

that the scale of the current is 10 times that of the field, indicating that the length scale of the

current is a tenth of that of the magnetic field. Figure 6.27(b) shows the associated rms Lorentz

force (solid, left axis) and its rate of working on the flow (dotted, right axis).

0

10

20

30

40

50

60

J R
M

S

0.00 0.04 0.08 0.12 0.16 0.20

t

0

2

4

6

B
R

M
S

0

100

200

300

400

L
or

en
tz

rm
s

0.00 0.04 0.08 0.12 0.16 0.20

t

-10000

-8000

-6000

-4000

-2000

0

W
or

k 
ra

te
Figure 6.27: For the t1 s2(MDJ) τ � 0 � 5 flow, Rm

� 100, the evolution of the most unstable
eigenmode solution in rms values of (a) � � B (solid, left hand axis) and B (dotted, right hand
axis); (b)

� ��� B � � B (solid, left axis) and Rm
�
V u � ��� B � BdV (dotted, right axis).

The Lorentz force, on average, opposes the motion of the fluid (since the work rate

above is negative). The ratio of the maximum rms dimensional Lorentz force with the rms Cori-

olis force in this case is 0 � 060, despite the field having grown to a much larger energy. The

Ohmic dissipation rate is 0.036 GW, tiny compared to other previously calculated values. The

work done by the Lorentz force on the flow is -8.08 GW, small compared to transient growth

calculations. This can be explained by the the fact that the eigenmode assumption relies on hav-

ing the same growth rate everywhere. Therefore, in regions of strong stretching, the field must
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be weaker than in those regions of lesser dynamo capability. Thus the work done in stretching

field lines is less than in the optimal transient cases.

We must also take into account that the field has been normalised using a different

(and smaller) dipole component than g0
1, used for other flows. Although this gives an Earth-

like comparison, it means that quantities rescaled by it may be a little low. We deliberately

chose to normalise the field such that the largest scale contribution to S1c
1 vanished on r � 1, so

that S1s
1

�
1 � would be larger than S1c

1

�
1 � , enabling us to match to the largest equatorial external

dipole coefficient. By such a procedure, we scaled the field to be as large as geophysically

possible, to try to compensate for the discrepancy of a factor of 6 between g0
1 and h1

1. Despite

our efforts, we could plausibly include an additional factor of 36 in to the Ohmic heating and

Lorentz force, increasing the values in line with the other results. The Ratio of Lorentz to

Coriolis forces is also rendered approximately unity by this (maximal) scaling. Nonetheless, if

we restrict ourselves to the geophysical values, then all the computed dimensional quantities are

very small in comparison to those of transience analysis.

6.12.4 Comparison of flows

We now show a summary of the various quantities computed for the suite of flows studied. Table

6.9 shows details of the initial fields used and the maximum fractional increase in the rms values

of field, current and Lorentz force (these may not take place at precisely the same time). Table

6.10 shows the maximal rms values of the quantities of table 6.9, along with the non-dimensional

work done by the Lorentz force on the flow.

The procedure was as follows. For Rm
� 100, the height of the envelope curve for the

dominant field symmetry was calculated. For the associated optimising time, we used the per-

taining initial field and forward propagated it through time, at intervals of 0 � 001 non-dimensional

time units. For each time, we computed the various quantities listed in the table. The symbol ∆

indicates the maximal gain in the associated rms quantity relative to its initial value. Note that

∆Brms is not exactly the same as the square root of the energy envelope height, since this rms is

taken only over V and the energy extends over V � V̂ .

The symbol † indicates a truncation level of Nmax
� Lmax

� 16 rather than Nmax
�

Lmax
� 24 was used for computational reasons. Values of Rm � 100 are not amenable to this

comparative study since the associated matrices required to obtain convergence for the KR and

STW flows were too large, introducing instead numerical errors and spurious results. The symbol

� indicates that the solution was an eigenmode; see section 6.12.3 for details.

Column four of table 6.10 shows the rms size of the Lorentz force associated with
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Flow Symmetry Opt time ∆Brms ∆
� ��� B � rms ∆

� � ��� B � � B � rms

t1 m � 0 EA 0.0397 3.65 5.03 16.29
KR† m � 0 EA 0.042 3.71 5.25 17.60
STW† m � 0 EA 0.038 3.18 6.47 24.45
s2(MDJ) m � 0 EA 0.0084 7.94 29.37 2275.29
s2(KR) m � 0 EA 0.0096 3.81 10.21 198.80
s2(IC) m � 0 EA 0.0093 3.37 10.17 203.25
t1s2(MDJ)

�
τ � 0 � 5 � m � 0 EA 0.0165 5.15 15.04 504.08

t1s2(MDJ)
�
τ � 0 � 5 � � m � 1 ES 0.2 12.52 20.49 526.73

t1s2(MDJ)
�
τ � 1 � m � 0 EA 0.0127 6.58 22.74 1399.02

t1s2(KR)
�
τ � 0 � 5 � m � 0 EA 0.0176 3.28 7.50 68.65

t1s2(KR)
�
τ � 1 � m � 0 EA 0.0125 3.50 8.92 128.48

Table 6.9: Initial field details for the calculations, with maximum relative growth in rms of the
magnetic field, current and Lorentz force. � indicates that the solution was an eigenmode, †
indicates a truncation level of Nmax

� Lmax
� 16 rather than Nmax

� Lmax
� 24. Computed for

Rm
� 100.

Flow Maximal non-dimensional values of
Brms

� ��� B � rms

� � ��� B � B � � rms Rm
�
u � ��� B � B � rms

t1 2.28 (0.040) 13.97 (0.036) 27.10 (0.039) -982 (0.021)
KR† 2.31 (0.042) 14.23 (0.038) 27.84 (0.041) -996 (0.022)
STW† 2.02 (0.045) 15.00 (0.042) 26.52 (0.044) -964 (0.029)
s2(MDJ) 4.94 (0.008) 99.25 (0.009) 4827.62(0.009) -40542(0.008)
s2(KR) 2.38 (0.010) 31.59 (0.012) 402.18 (0.014) -4038 (0.008)
s2(IC) 2.11 (0.009) 28.88 (0.012) 367.26 (0.013) -3416 (0.008)
t1s2(MDJ)

�
τ � 0 � 5 � 3.17 (0.017) 41.45 (0.018) 773.22 (0.018) -7010 (0.016)

t1s2(MDJ)
�
τ � 0 � 5 � � 7.72 (0.2) 63.47 (0.2) 748.40 (0.2) -19014 (0.2)

t1s2(MDJ)
�
τ � 1 � 4.02 (0.012) 67.11 (0.013) 2178.60(0.13) -18504 (0.011)

t1s2(KR)
�
τ � 0 � 5 � 1.99 (0.020) 19.83 (0.021) 95.52 (0.025) -1614 (0.015)

t1s2(KR)
�
τ � 1 � 2.16 (0.013) 25.36 (0.015) 219.8(0.017) -2652 (0.011)

Table 6.10: Non-dimensional values of the quantities given for Rm
� 100. The figure in paren-

thesis is the time at which the maximum occurred, discretised every 0.001 units.

each flow. The largest entries are for s2(MDJ) and t1 s2(MDJ) τ � 1, approximately ten times

larger than most other values. We may contrast this with column one, showing the maximum

rms field. The eigenmode, indicated by � , grows the most in rms over 0 � t � 0 � 2, but has a

small associated Lorentz force. It therefore does not follow that large magnetic fields and large

Lorentz forces go hand in hand. Clearly the Lorentz force always scales quadratically in the

field, although the important multiplicative factor seems to vary tremendously depending on the

situation.

The first three flows listed are t1, KR and STW which all behave similarly. Indeed both

tables show that the absolute size and relative amplification of the Lorentz force is approximately

equal to that of the field and current, also apparently true for the eigenmode solution. In all other
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flows, the rms Lorentz force is significantly larger than the product of that of the field and current.

In the cases where the flows contain a large component of s2(MDJ) with τ �
1, it is O

�
10 � bigger.

The differences between columns two and three of table 6.10 show the effect of an

extra spatial derivative. In the t1, KR and STW flows there is a discrepancy of about a factor of

10, indicating that the important length scale is one tenth of the radius of the core. This is also

shown in results for the t1 s2 flows with τ � 0 � 5; however all the s2 flows (and to some extent

the t1 s2 flows with τ � 1) show a length scale of 1/20. This difference is unsurprising when we

bear in mind the very different mechanisms of field generation, that of either shearing by toroidal

flow or stretching by poloidal flow.

Column five of table 6.10 shows the non-dimensional work rate of the Lorentz force

on the flow, being equal and opposite to the rate of work of the flow on the magnetic field.

In a dynamical system, this gives the rate of energy loss from the velocity into the magnetic

field which must be matched by flow-generative terms to retain a steady state. In the Earth, the

energy source is buoyancy, whereas in dynamo experiments the flows are externally driven by

propellers. It is therefore of interest to quantify the efficiency ratio, defined as the ratio of the

energy loss rate and the amount of field actually generated. In comparing column five to column

two of table 6.10, it is clear that t1, KR and STW flows are in this sense the most efficient,

despite not actually generating the most magnetic field. The most inefficient are the s2(MDJ)

and t1 s2(MDJ) τ � 1 flows.

Lastly, we note that the time at which the maxima of the rms magnetic field, current and

Lorentz force are attained, are in all cases approximately the same. It is noteworthy however that

the rate of working of the Lorentz force on the flow always peaks before all the other quantities,

sometimes by a substantial fraction. This can be explained at least in comparison to the rms

magnetic field and in the case of constant Ohmic dissipation, in the following way. Recall that

the equation for magnetic energy is

dM
dt

� Rm

	
V

B � � B dV �
	

V

� ��� B
� 2 dV (6.30)

so that Brms grows only when the rate of work of the Lorentz force exceeds that of Ohmic

dissipation. The peak of the magnetic energy, before its decay, corresponds to an exact balance

between the two terms. At some earlier time, the rate of working of the Lorentz force had to

be larger in order to increase M. Therefore the maximum of the field line stretching must occur

before the maximum of Brms.

Table 6.11 shows dimensional values of the ratio of the Lorentz to the Coriolis force,
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Flow Max rms Max rms Max Ratio Max work rates (GW)

B (mT) Lorentz (mN) Lorentz Ohmic heating

t1 2.22 5.89 0.088 -18.07 3.44

KR† 2.12 5.41 0.081 -16.40 3.19

STW† 1.60 3.82 0.058 -11.77 2.62

s2(MDJ) 4.54 931.03 21.33 -661.88 153.79

s2(KR) 2.16 75.86 1.74 -64.47 15.24

s2(IC) 1.90 68.83 1.58 -54.19 12.65

t1s2(MDJ)
�
τ � 0 � 5 � 2.71 128.79 2.05 -98.86 23.18

t1s2(MDJ)
�
τ � 0 � 5 � � 1.14 3.76 0.060 -8.08 1.64

t1s2(MDJ)
�
τ � 1 � 3.33 343.84 6.10 -247.23 57.57

t1s2(KR)
�
τ � 0 � 5 � 1.63 14.53 0.23 -20.78 4.84

t1s2(KR)
�
τ � 1 � 1.88 37.76 0.67 -38.57 8.95

Table 6.11: Geophysically scaled values of the maximum quantities given for computations at
Rm

� 100. The ratio is that of the dimensional Lorentz force to the dimensional Coriolis force.
The Lorentz force work rate and Ohmic heating rate are given in GW.

the maximum value of the work done by the Lorentz force on the flow, and the maximum Ohmic

heating rate. We first draw the reader’s attention to the eigenmode solution
��� � , which has been

scaled to the Earth using the external dipole coefficient h1
1 rather than g0

1. Recall that this is a

factor of six smaller. Therefore, plausibly, the Lorentz force and Ohmic heating could be 36

times larger if we rescaled in a different way. Nonetheless, we see that Brms is 1.14 mT, a similar

magnitude to that for the other flows, and that it has the smallest rms Lorentz force shown. On

these grounds then, we might speculate that it might be possible to see eigenmode solutions in the

Earth of this form, assuming the associated t1 s2 flow is a stationary solution of the geostrophic

balance, since the flow would to first order remain unperturbed by the Lorentz force and hence

remain stationary.

Column six shows the dimensional Ohmic heating; in each case, it is well within the

geophysical values of 1–2 TW. However, in the preceding sections we have seen that for higher

values of Rm, such bounds may be exceeded. For example, the s2(MDJ) flow with Rm
� 1000

has an associated Ohmic heating rate of 27.18 TW; this solution could therefore be excluded on

physical grounds. In practice however, if the growth was ephemeral (e.g. in field recovery after

reversals), the energy dissipated as heat would contribute little to the global energy budget of the

Earth and it would be difficult to justify barring a particular flow type from being important in

the Earth’s dynamo. Flows containing a substantial fraction by rms of s2(MDJ) have the highest

Lorentz forces, their associated working rates and Ohmic heating rates.

Perhaps the geophysically most important results are in column four, where we list the
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ratios of the dimensional Lorentz force and Coriolis force. Here we see that the s2(MDJ), s2(KR),

s2(IC) and t1 s2(MDJ) τ � 0 � 5,1 flows all have a ratio of order unity or greater. This means that

in the fully dynamical system, the flow would be significantly altered by the generated transient

magnetic field growth, even at a geophysically low value of Rm
� 100. The t1, KR and STW

flows have a tiny ratio, indicating that if the flow was dynamically self-consistent, it would be

almost unchanged by the presence of the magnetic field that it generated.

The ratio of Ohmic heating and the rate of work of the Lorentz force lies in the range

0.19 – 0.24, thus appearing to be independent of flow. If we use the value of 2 TW for dissipation

in the Earth, then if these values carry over, the flow in the outer core must do work at a rate

of about 0.4 TW on the magnetic field. This agrees in order of magnitude to the total heat flux

leaving the core, usually taken to be about 7 TW (e.g. Roberts et al., 2003).

6.13 Concluding remarks

In this chapter, we have studied the ability of various flows to support transiently (and in one case

exponentially) growing magnetic field solutions. Without exception, the dominant symmetry in

the non-normal growth was the geophysically relevant m � 0 E A. This is in direct conflict with

Cowling’s theorem, but nonetheless may go some way in explaining the large presence of the

axial dipole field in the Earth. We also saw that in many cases, especially between the t1,

KR and STW flows that this growth was robust: small changes to the flow taking little effect

in the generated fields. The dominant growth mechanism in these flows was shearing of the

poloidal field into toroidal field by strong differential rotation. This was in contrast to the flows

containing a substantial s2 component, whose generation mechanism was advection towards the

z-axis following by field line stretching, increasing the poloidal field energy. For Rm
� 1000,

transient energy growth of O
�
1000 � was possible by both the t1 and s2(MDJ) flows, the relevant

mechanisms explained by simple physical processes.

Kinematic dynamo theory tries to explain the growth of magnetic fields under station-

ary flows until the Lorentz force becomes important. We showed that a large rms field strength

did not necessarily couple with a large rms Lorentz force, so that the boundary of the kinematic

regime could not simply be dictated by ‘large’ magnetic fields. We also investigated the ratio

of the associated Lorentz force with the Coriolis force, and found it in five cases to be O
�
1 � or

greater, indicating the breakdown of kinematic theory, at least at Rm
� 100. Therefore, in such

cases, this would explain the form of magnetic field growth in the kinematic regime without ap-

pealing to eigenmode solutions, whose growth might be doubtful given their extreme sensitivity
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to the flow. In other cases, particularly in the t1, KR and STW flows, the ratio of Lorentz to

Coriolis forces was found to be tiny, and although these were not able to show the most transient

magnetic energy growth, these flows would remain almost untouched by the Lorentz force.

Bringing together the approximate asymptotic scalings of the energy envelope height

of the form Rγ
m for the various flows and the results of the previous section, we see that if γ � 1

then the ratio of the Lorentz to Coriolis forces will asymptotically increase, the latter being linear

in Rm. If γ � 1 however (true for flows with s2(KR) or s2(IC) components), if Rm is large enough

then the Lorentz force will always be of second order importance compared to the Coriolis force.

From an observational point of view, we found that transient energy growth was not

able to explain the records at Steens Mountain of swift directional and intensity changes over

a period of weeks. Indeed, the VGP plots that we computed over 38,000 years showed little

movement from the geographic north pole. However, transient growth could account for the the

fast recovery of field intensity after magnetic reversals occurring over a typical time period of

10,000 years, particularly with flows having a large poloidal overturn component. Even though

the field growth was rapid (on a timescale of less than 1000 years), there was a significant time

delay in the field reaching the Earth’s surface, increasing the time taken for the signal to be

recorded in the paleomagnetic data. This brings the field energy growth timescale more in line

with the paleomagnetic data.
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Chapter 7

Concluding remarks

7.1 Discussion of work carried out

In this thesis, we have investigated the instability of magnetic fields in geophysically motivated

stationary spherical flows of conducting fluid. The study has been two-fold: firstly we addressed

the onset problem of total magnetic energy growth. Using a variational method, we were able

to formulate the relevant equations that could be solved numerically using a Galerkin method,

showing excellent convergence properties. We were able to find which magnetic field structures

grew in magnetic energy the fastest, their associated growth rates and the detail of the physical

mechanism that was applicable.

Secondly, we looked at finite time transient total magnetic energy growth in the same

stationary flows and investigated how large the energy can grow before its eventual decay (should

infinite growth not be supported). In the light of the many anti-dynamo theorems in the literature,

should any fields which are barred from being infinitely sustainable exhibit growth, this may

force us to re-evaluate the relevance of such principles, since over the course of the lifetime of

the instability, the flow pattern may change and therefore the fields may not get an opportunity

to enter their decaying phase. This situation was first considered by Backus (1958) who studied

a cycle of flows, none of which could support dynamo action individually, but when spliced

together in a time sequence could sustain magnetic fields indefinitely. Therefore, for example the

geophysically dominant axisymmetric field, barred by Cowling’s theorem from being sustainable

by a dynamo mechanism, could still be of great importance in the geodynamo. In studying

transiently growing magnetic fields, we may also not only quantify such things as the magnitude

and effect of the associated Lorentz force, but again what physical mechanisms are responsible

for the growth.
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The starting point for our so called kinematic study is the magnetic induction equation

in a spherical geometry, describing the time evolution of a magnetic field under the influences

of the conducting outer core moving at velocity u and magnetic diffusion. Ideally, we would

substitute the true structure of the flow field into this equation; unfortunately this is unknown

and probably will remain so for the foreseeable future. As an alternative, we may attempt to

solve the Navier-Stokes equation, giving the fully dynamical time dependence of u. This is

formidably complex, and in the parameter regime relevant to the Earth, numerically intractable

at the current time. Therefore, we motivate our choice of flow by physical processes: differential

rotation (represented by t1) and axisymmetric convection (represented by s2). Geophysically

we hope these flows are stationary solutions of the magnetostrophic balance, where buoyancy,

pressure and the Coriolis force are in equilibrium. If a magnetic field grows and its Lorentz force

becomes comparable in magnitude to any of these geostrophic components, then the flow will

change and we enter a non-linear regime, signalling the demise of the kinematic assumption.

We can never hope to capture all the features of the flow by simple models; indeed, we hope

that only the large scale flow components are important. Therefore we must make sure that any

dynamo processes that we come up with are robust, that is, not critically dependent on the choice

of flow.

Historically, in attempts to find a generative mechanism inside the Earth’s core that

could explain the presence of the geomagnetic field, workers have applied linear eigenvalue

methods to the induction equation. In some flows, exponentially growing eigenmodes were

found, the existence of which have been attributed to favourable meridional circulation (Roberts,

1972b) and flow helicity (Gubbins et al., 2000a). It was also found that a conducting layer at the

top of the core favoured dynamo action (Hutchenson and Gubbins, 1994). However, the main

drawback of such models is their extreme sensitivity to the precise choice of stationary flow. We

saw in the pseudospectra of chapter five that a change in the flow of a root mean squared value of

a fraction of 1% could result in the cessation of dynamo action; that is, the unstable eigenvalues

are shifted into the stable half-plane. This means that we cannot attribute a physical mechanism

to the generation of magnetic fields in this manner, since a minute change in the flow would not

alter our description of the dynamo process, but it might switch the dynamo off. Magnetic fields

in nature are a robust phenomenon: not only has the Earth had a field for 3 billion years or so, but

other planets and stars (including the sun) possess working dynamos too. We would therefore

not expect the details of the flow to be of critical importance.

Our study of non-eigenmode instabilities is motivated by the success in the fluid dy-

namics literature of using techniques, associated with non-normal problems, to explain transi-
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tion to turbulence of (non-magnetic) plane Poiseuille and Couette flows. In these cases, flow

perturbations transiently grew large enough to push the system into a non-linear regime, before

entering their eventual decaying phase. Non-normal problems also raise the issue of numerical

difficulties when computing eigenvalues. This is due to their expanded pseudospectra (section

5.1.1) which means that larger regions of the complex plane than our convergence tolerance al-

lows behave as ‘almost eigenvalues’, that is,
� � v � σ v

� � 0 for the controlling matrix � and

some value σ , not within the convergence tolerance of the true eigenvalue λ . In the induction

equation, the non-normality is caused by the velocity-field interaction, scaling linearly in Rm.

Therefore as Rm increases, it becomes more and more difficult to find accurate eigenvalues, not

only because higher truncation levels are required but due to the expanded pseudospectra. This

means we must be cautious when locating the eigenvalues for large Rm.

In the onset problem of magnetic energy instability we found robust results, in that

small changes in the flow did not significantly affect the outcome. In particular, the t1, KR

and STW flows, all dominated by differential rotation and differing only by a few percent in

rms, showed almost identical characteristics, in contrast to linear stability analysis showing that

only KR and STW could support growing eigenmodes. The critical field excited in these cases

was m � 1 ES, the associated generation mechanism being field line stretching. In the case of

convectively driven flows represented by s2 components, all three particular choices, including

that containing a quiescent region representing the conducting solid inner core, showed similar

energetic instabilities. These were all of m � 0 E A symmetry and were explained by field line

stretching at the location of radial upwelling, near the origin. At first sight we might have

expected the presence of an inner core to disrupt this process, since the flow is effectively pushed

away from the origin and squashed towards the CMB. However, despite the large scale flow

pattern being slightly altered, the mechanism of instability remains unchanged. This means that

this magnetic instability can occur with or without an inner core, lending weight to the robustness

of this mechanism. When combining together the differentially rotating and convective flows

forming a t1 s2 configuration, we found that if the ratio of poloidal to toroidal flow energies was

above 0.2, then the m � 0 EA field symmetry became favoured. This is a significant finding with

respect to the geodynamo, since we may possibly explain the identical dominant symmetry by a

flow pattern in the outer core which is predominately poloidal, a likely situation since the main

energy source for the geodynamo is compositional convection.

Additional findings from the onset study included the improvement of the bound of

Proctor (1977a) on the minimum Rm required for dynamo action, by a factor of 5–14 times,

depending on the flow. Generically we require Rm
� O

�
10 � , based on the rms flow velocity, to
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get magnetic energy growth. We also investigated the magnitude of the instantaneous magnetic

energy growth as Rm increased, and found it to scale asymptotically linearly in Rm. Physically

this indicates that the higher the flow speed, the easier it is to grow magnetic fields, at least in-

stantaneously. This holds, in particular, for the m � 0 symmetries in the case of flows with a large

poloidal component. Therefore although axisymmetric fields may not be infinitely sustainable

(by applying Cowling’s theorem), their instantaneous growth is asymptotically unbounded. We

compare this asymptotic behaviour to that found in eigenvalue analysis, in which stable eigen-

values often decrease in real part as Rm increases. This implies somewhat counter-intuitively that

it becomes increasingly more difficult to generate field, with more vigorous flows.

In the study of finite time growth of magnetic energy in chapter six, we found without

exception that the dominant symmetry giving rise to the most transient growth was the geo-

physically relevant m � 0 EA. Although changes in the flow affected the amount of energy

amplification possible, the physical mechanisms remained the same. Flows dominated by a t1

flow component sheared poloidal field lines into toroidal field, whereas those dominated by s2

components advected field towards the locations of radial upwelling near the origin where it was

radially stretched, similarly to the instantaneous growth mechanism. Although large transient

energy growth of O
�
1000 � was possible with Rm

� 1000, the initial fields were optimally chosen

and we would not expect to see such amplification in the Earth. However, since the mechanisms

were robust, it is clear that substantial growth could easily take place; this in particular could

explain the swift recovery of the field after magnetic reversals. That the dominant symmetry in

this study was axisymmetric is important as it seemingly directly opposes Cowling’s theorem,

barring all fields of this type from being infinitely sustained. Although such fields will eventu-

ally decay, the Lorentz force may have grown sufficiently to push the system into a non-linear

regime before the energy can begin to decrease. Therefore, neglecting axisymmetric fields on

the grounds of non-infinite sustainability may be folly, since these transient mechanisms may be

fundamentally important in the geodynamo.

We computed the Lorentz forces associated with this transient energy growth and

found that large magnitudes were not necessarily associated with large magnetic fields. Al-

though the Lorentz force scales quadratically in the magnetic field, the all important multiplying

factor seems to vary enormously, depending on the particular situation. In particular, those flows

dominated by a t1 component, although not showing the largest transient effects for Rm
� 100

had the smallest associated Lorentz force. Indeed, its maximum value was about a tenth of the

size of the geophysically scaled Coriolis force, thus flows of this type would not lead to tran-

sition to a non-linear state in the Earth, at least with a geophysical choice of Rm. On the other
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hand, flows dominated by an s2 component showed moderate to large transient growth and very

high Lorentz forces for Rm
� 100, in most cases being of a similar magnitude to the Coriolis

force when appropriately scaled. This observation does not depend on the particular flow choice

involved and again gives a robust result. Therefore, if such transient growth took place in a

convectively driven flow, it would almost certainly lead to a regime where the Lorentz force was

important, signalling the breakdown of the kinematic regime. Another geophysical constraint

that we can apply is that of Ohmic dissipation, the rate at which magnetic energy is lost through

Ohmic heating of the outer core. Roberts et al. (2003) give an upper bound of 1–2 TW that we

can test against our computed fields. For Rm
� 100, all solutions, when scaled to the Earth, have

a maximal Ohmic heating of O(1–100) GW, well within this bound. For Rm
� 1000, the s2(MDJ)

flow gives a heating rate of 27.18 TW and therefore could potentially be excluded on energetic

grounds. However, we note that in this case, there is also a very high Lorentz force, in magnitude

334 times that of the Coriolis force, so that the flow pattern would not remain stationary and the

energy growth may not be as great as the computations suggest. Additionally if the growth was

ephemeral, for example in a recovery after a magnetic reversal, although the Ohmic dissipation

is high it will only be so for a short period and its contribution to the global energy budget will

be small.

From a geomagnetic observational viewpoint, transient magnetic field growth can ex-

plain the rapid recovery of the field after an intensity low during a reversal, typically of around

10–20% of the pre-transitional field (Merrill and McFadden, 1990). Paleomagnetic records in-

dicate in addition that the post-transitional field is in most cases more stable than that before

the transition (Bogue, 2001), suggesting that the axisymmetric poloidal dipole component dom-

inates this growth. We find that our calculations can explain both of these phenomena if the

flow has a significant poloidal component, for example the s2(MDJ) flow giving an rms increase

in field of about 30 for Rm
� 1000. Although the t1 flow also gives this energy amplification,

the generated field is principally toroidal which would not be seen at the Earth’s surface. The

timescale on which this growth takes place is around 1000 years, roughly the same as typical

estimates of 1000–10,000 years (Valet and Meynadier, 1993), and sufficiently rapid that the flow

pattern might be modelled as stationary, given the turnover time of the core of around 500 years.

We have also shown that observations on the Earth’s surface may be delayed by several thousand

years relative to the actual growth occurring inside the core. This means that we may be able

to reduce the observational upper limit of 10,000 to 8,000 years or so, more in line with our

computed values.

Our results cannot explain extremely swift (over days or weeks) field directional and
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intensity changes, such as those seen in the data from Steens Mountain (Prévot et al., 1985;

Mankinen et al., 1985), at least with a geophysical value of Rm. Indeed, VGP paths associated

with transient magnetic energy growth have also been computed, and we found little overlap

with those from field transition data (e.g. Valet and Herrero-Bervera, 2003). Nonetheless, if

the flow patterns were more complicated and indeed time dependent, it is likely that other non-

axisymmetric field components would be of importance and thus the same physical mechanism

may, with a different velocity field, be able to provide VGP paths similar to observations, the

virtual geomagnetic pole wandering on a timescale of 100–1000 years.

It is interesting to note the comparison of whole sphere convective flows and those

containing an inner core. In both the onset and transient growth studies, neither the dominant

field symmetry nor the physical mechanism responsible for field growth is affected. However, in

both cases we find a lesser capacity for instability with an inner core, due primarily to the reduced

flow region. The eigenvalue study of Sarson and Gubbins (1996) showed that the inclusion of the

inner core had significant effects; however, they also found that it may play a role in symmetry

selection, something that our results do not indicate. Our conclusion is that a dynamo may

operate more efficiently without an inner core. Gubbins et al. (2003) argue on energetic grounds

that the inner core must be at least three billion years old in order to supply the compositional

convection required to drive the dynamo. Convective flows without an inner core would be

driven by thermal convection, attributed to the slow cooling of the Earth after its formation. Our

calculations indicate that although this method of convection is far more inefficient than that of

composition, that its dynamo capability is greater and so we may be able to reduce the age of the

inner core. This may explain other studies (e.g. Labrosse et al., 2001), based on thermodynamic

calculations that suggest that the inner core is only one billion years old.

Since the toroidal field can never escape from the outer core through the insulating

mantle, its magnitude may never be known. If transient mechanisms are important in regen-

erating the field after a magnetic reversal however, the poloidal flows causing the growth will

generate mainly poloidal field energy. If during a reversal the field strength was only 10% of

its pre-transitional value, then after the recovery around 90% of the field will be poloidal. This

possibly makes the field initially stable preventing other immediate reversals, in agreement with

paleomagnetic studies (Bogue and Paul, 1993). There may well be significant poloidal decay

as the field eventually settles down to its time averaged state, and the field may plausibly be

somewhere in the region of 30–90% poloidal in energy.
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7.2 Extensions of this study

To extend this study, following Hutchenson and Gubbins (1994) and Sarson and Gubbins (1996)

we could undertake the inclusion of a thin conducting region on top of the core, representing a

stratified layer of light buoyant material or the D � � layer at the base of the mantle Garnero et al.

(1998) that could have large conductance Holme (1998). Bullard and Gubbins (1977) found that

the insulating mantle was partially responsible for the difficulty in finding growing kinematic

dynamo field solutions, trapping the current in thin sheets near the boundary leading to large

Ohmic dissipation. Subsequent studies have indicated that including a thin conducting region is

favourable to the eigenmode instability of magnetic fields, either by reducing the critical mag-

netic Reynolds number or allowing fields which otherwise decayed to grow. We could apply the

analyses of instantaneous energy growth and finite time transience by including a thin quiescent

region just below the CMB in our flows, rescaling Rm to account for the change in radius of

effective dynamo region. Indeed, we could vary the depth of this layer to see if there was an

optimal thickness, as predicted in the eigenmode case by Kaiser and Tilgner (1999). A further

extension would be to see the effect of an insulating inner core. This could be simply accommo-

dated by extending our basis functions radially inwards from the flow region, in the same way

as we did into the mantle and using flows defined only in the outer core.

We have suggested at various points in this thesis that by some mechanism, transient

growth or instantaneous instability of magnetic fields might be continuously excited in the outer

core. It is plausible that stochastic forcing could provide such a stimulus, driven by the turbulent

underlying flow. Mean field dynamo theory is concerned with a similar problem, but in which

the effect of the small scale processes, beyond the resolution of the model, are parameterised

by the so called α-effect, represented by the spatially dependent tensor α (e.g. Moffatt, 1978).

This is a useful concept, although in general α will fluctuate in time and typical formulations

do not capture this important aspect. Such a stochastically driven study has already been carried

out in a cylindrical geometry (Farrell and Ioannou, 1999b) who find that axisymmetric fields

can be sustained by such a mechanism. In fact, it is the fields which dominate the non-normal

analysis of the large scale flow which are physically manifested, seemingly unaware of the small

scales providing the forcing. Understanding the effect of small scales is an important issue,

since it is unlikely that fully dynamical models which can cope with the huge scale disparity

of the geodynamo will be available, at least in the foreseeable future. Although the spherical

geometry of the Earth differs from the cylindrical geometry of Farrell and Ioannou (1999a),

their transience calculations show similar results to those that we found, such as the dominant
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m � 0 field symmetry and the scaling of the energy envelope height of R2 � 3
m , which in our case

was Rγ
m with 0 � 7 � γ � 2, depending on the flow. These indicate that a similar analysis applied

to the Earth may show an identical mechanism.

We found in chapter five that the s2(MDJ) flows supported magnetic energy instability

with the lowest value of Rm, but is this the ‘best’ possible flow configuration? We can envisage

an analysis on the same lines as Love and Gubbins (1996b) and Holme (2003) in addressing

such a problem as an optimisation over the choice of the defining flow scalars. This may also

include simultaneously minimising the Ohmic dissipation and possibly the Lorentz force asso-

ciated with such fields. Additionally, the s2(MDJ) flow supported the most transient magnetic

energy growth, at least in the geophysically appropriate range Rm � 1000. We could apply a

similar study to investigate whether a more ‘efficient’ flow exists for these values of Rm, in-

corporating similar Ohmic dissipation or Lorentz force constraints. Such optimisation schemes

give an alternative way of choosing the flow pattern that we study, instead of being via the fairly

arbitrary though physically motivated manner used here. A different though attractive scheme

would be to study a flow produced by either non-magneto rotating convection (e.g. Zhang, 1992)

or by a fully dynamic magneto-convection model (e.g. Kuang and Bloxham, 1997) and see if the

magnetic instabilities predicted agreed with those of our simple flow models. In the latter case,

it would be also possible to compare the true subsequent time behaviour of the magnetic field

with that as computed by transience calculations, to see if similarities can be found.



187

References

Abramowitz, M., and I. A. Stegun, Pocketbook of mathematical functions, Verlah Harri Deutsch,

1984.

Acheson, D., Elementary Fluid Dynamics, OUP, 1990.

Backus, G., The axisymmetric self-excited fluid dynamo, Ann. Phys., 125, 500–522, 1957.

Backus, G., A Class of Self-Sustaining Dissipative Spherical Dynamos, Ann. Phys., 4, 372–447,

1958.

Backus, G., R. Parker, and C. Constable, Foundations of Geomagnetism, CUP, 1996.

Bloxham, J., and A. Jackson, Time-dependent mapping of the magnetic field at the core-mantle

boundary, J. Geophys. Res., 97, 19,537–19,563, 1992.

Bogue, S., Geomagnetic field behavior before and after the Kauai reverse-normal polarity tran-

sition, J. Geophys. Res., 106, 447–461, 2001.

Bogue, S., and H. Paul, Distinctive field behavior following geomagnetic reversals, Geophys.

Res. Lett., 20, 2399–2402, 1993.

Borba, D., K. Riedel, W. Kerner, G. Huymans, M. Ottaviani, and P. Schmid, The pseudospectrum

of the resitive magnetohydrodynamics operator: Resolving the resistive Alvén paradox, Phys.

Plasmas, 1, 3151–3160, 1994.

Boyd, J., Chebyshev and Fourier Spectral Methods, Dover, 2001.

Braginsky, S., Theory of the hydromagnetic dynamo, Soviet Phys. JETP, 20, 1462–1471, 1965.

Browder, F., The dirichlet problem for linear elliptic equations of arbitrary even order with vari-

able coefficients, Proc. Nat. Aced. Sci., 38, 230–235, 1952.

Browder, F., On the eigenfunctions and eigenvalues of the general linear elliptic differential

operator, Proc. Nat. Aced. Sci., 39, 433–439, 1953.



188

Brummell, N., F. Cattaneo, and S. Tobias, Linear and nonlinear dynamo action, Phys. Lett. A,

249, 437–442, 1998.

Buffett, B., Estimates of heat flow in the deep mantle based on the power requirements for the

geodynamo, Geophys. Res. Lett., 29, 7.1–7.4, 2002a.

Buffett, B., Modelling of nutation and precession: Effects of electromagnetic coupling, J. Geo-

phys. Res., 107, 5.1–5.15, 2002b.

Bullard, E., The magnetic field within the earth, Proc. R. Soc. Lond. A, 197, 433–453, 1949.

Bullard, E., and H. Gellman, Homogeneous dynamos and terrestrial magnetism, Phil. Trans. R.

Soc. Lond. A, 247, 213–278, 1954.

Bullard, E., and D. Gubbins, Generation of magnetic fields by fluid motions of global scale,

Geophys. Astrophys. Fluid Dyn., 8, 43–56, 1977.

Busse, F., A necessary condition for the Geodynamo, J. Geophys. Res., 80, 278–280, 1975.

Busse, F., Convective flows in rapidly rotating spheres and their dynamo action, Phys. Fluids A,

14, 1301–1314, 2002.

Camps, P., M. Prévot, and R. Coe, Revisiting the initial sites of geomagnetic field impulses

during the Steens Mountain polarity reversal, Geophys. J. Int., 123, 484–506, 1995.

Camps, P., R. Coe, and M. Prévot, Transitional geomagnetic impulse hypothesis: Geomagnetic

fact or rock-magnetic artifact?, J. Geophys. Res., 104, 17,747–17,758, 1999.

Canuto, C., M. Hussaini, A. Quarteroni, and T. Zang, Spectral Methods for Fluid Dynamics,

Springer-Verlag, 1988.

Chandrasekhar, S., Hydrodynamic and hydromagnetic stability, OUP, 1961.

Chapman, S., Subcritical transition in channel flows, J. Fluid Mech., 451, 35–97, 2002.

Childress, S., Théorie Magnétohydrodynamique de l’effet Dynamo, 1969, Lecture notes.

Childress, S., and A. Gilbert, Stretch, Twist, Fold: The Fast Dynamo, vol. 37 of Lecture Notes

in Physics: Monographs, Springer-Verlag, 1995, lecture notes.

Coe, R., M. Prévot, and P. Camps, New evidence for extraordinary rapid change of the geomag-

netic field during a reversal, Nature, 374, 687–692, 1995.



189

Constable, C., On rates of occurence of geomagnetic reversals, Phys. Earth Planet. Int., 118,

181–193, 2000.

Cowling, T., The magnetic field of sunspots, Mon. Not. R. Astr. Soc., 94, 39–48, 1933.

Davidson, P., An introduction to magnetohydrodynamics, CUP, 2001.

Dormy, E., J.-P. Valet, and V. Courtillot, Numerical models of the geodynamo and observational

constraints, Geochem. Geophys. Geosyst., 1, 1–42, 2000.

Dudley, M., and R. James, Time-dependent kinematic dynamos with stationary flows, Proc. R.

Soc. Lond. A, 425, 407–429, 1989.

Dziewonski, A., and D. Anderson, Preliminary reference Earth model, Phys. Earth Planet. Int.,

25, 297–356, 1981.

Elsasser, W., Induction effects in Terrestrial magnetism I, Phys. Rev., 69, 106–116, 1946.

Elsasser, W., Induction effects in Terrestrial magnetism III, Phys. Rev., 72, 821–833, 1947.

Farrell, B., and P. Ioannou, Generalized stability theory, part i: Autonomous operators, J. Atmos.

Sci., 53, 2025–2040, 1996.

Farrell, B., and P. Ioannou, Optimal excitation of magnetic fields, Astr. J., pp. 1079–1087, 1999a.

Farrell, B., and P. Ioannou, Stochastic dynamics of field generation in conducting fluids, Astr. J.,

pp. 1088–1099, 1999b.

Fearn, D., Hydromagnetic flow in planetary cores, Rep. Prog. Phys., 61, 175–235, 1998.

Fornberg, B., A practical guide to pseudospectral methods, CUP, 1998.

Fowler, C., The Solid Earth: An Introduction to Global Geophysics, CUP, 1990.
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Appendix A

An inverse model of the Earth’s

magnetic field from satellite data

A.1 Introduction

This appendix details the inversion method used to map satellite data from the Ørsted mission

(1999-2000) to the field on the core-mantle boundary (CMB), being the edge of the dynamo

region, for a specific date: January 1st 2000 (epoch 2000). The procedure followed is similar

to that of many authors (eg. Shure et al., 1982; Bloxham and Jackson, 1992; Olsen et al., 2000;

Olsen, 2002). The data set consists of measurements of the three components of the magnetic

field
�
Bx � By � Bz � (relative to the satellite’s orientation), its intensity F � � �

B2
x � B2

y � B2
z � along

with other information such as the local time, position and attitude. The satellite’s magnetic

instruments were stationed at the end of an 8m long boom, in order to minimise noise from the

main body. They comprise a flux-gate magnetometer (to measure the field vector), an Over-

hauser magnetometer to record the intensity (although mainly used to calibrate the flux-gate

magnetometer) and a star-imager. In general three angles are needed to fix the satellite’s orien-

tation: two to describe the direction of the fixed axis of the imager and one of rotation about that

axis. A slight complication comes about from the errors determining these angles: it is more

difficult to establish the rotational attitude than the directional orientation of the star-imager.

A.2 The magnetic field model

In what follows we model the mantle and lower atmosphere (at least up to satellite altitude)

as electrical insulators; the CMB (radius c � 3485km) and the surface of the Earth (radius
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6371 � 2km) are assumed to be perfectly spherical. From Maxwell’s equations, taking the cur-

rent J � 0 gives

��� B � 0 (A.1)

The field then admits the potential form

B ��� � V (A.2)

with ∇2V � 0 from the solenoidal condition on B. Working in spherical polar coordinates
�
r� θ φ �

we can separate the variables to find, in the region r
�

c, that part of the potential associated with

the internal field:

V � a
L

∑
l � 1

l

∑
m � 0

� a
r � l � 1 � �

gm
l cos

�
mφ � � hm

l sin
�
mφ � � Pm

l

�
cosθ � (A.3)

where Pm
l

�
cos θ � are the associated Legendre polynomials of degree l and order m (see Mac-

robert, 1967, for example or Appendix B.1); we use standard Schmidt quasi-normalisation. In

general equation (A.3) contains a sum involving contributions from the external field, however

we have excluded it here since we do not solve for it: instead we use an existing model and

subtract the signal from the data. Given the Gauss coefficients gm
l and hm

l it is straightforward to

compute B from the internal potential:

Br
� L

∑
l � 1

l

∑
m � 0

�
l � 1 �

� a
r � l � 2 �

gm
l cos

�
mφ � � hm

l sin
�
mφ � � Pm

l

�
cosθ �

Bθ
��� L

∑
l � 1

l

∑
m � 0

� a
r � l � 2 �

gm
l cos

�
mφ � � hm

l sin
�
mφ � � dPm

l

�
cosθ �

dθ

Bφ
� 1

sinθ

L

∑
l � 1

l

∑
m � 0

m
� a

r � l � 2 �
gm

l sin
�
mφ � � hm

l cos
�
mφ ��� Pm

l

�
cosθ � (A.4)

Note that in general the summations extend over all values of l, so there will be an infinity of

unknown coefficients. We truncate the expansion of the internal field at L � 19 in this study,

excluding the monopolar l � 0 term. Although the coefficients are computed up to degree 19,

harmonics of degree greater than 14 are thought to contain significant crustal signals which are

not accounted for in this model (see Langel, 1987).
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A.3 Anisotropic errors

The errors in the attitude measurements determined by the star-imager are anisotropic: it tran-

spires that determining the direction axis of the star-imager is more accurate than the measure-

ment of the rotation about that axis. Values of these errors are 60 � � (60 arc seconds) for the

rotation and 10 � � for the direction angles (Olsen et al., 2000). The nature of these non isotropic

errors mean that the covariance matrix of the field data in the Earth’s frame of reference is not

diagonal: errors in the different field components are correlated. To proceed we must first rotate

the field readings into a frame in which the errors are independent. Such a geometry is described

by the eigenvectors of the covariance matrix, a full treatment of which can be found in Holme

and Bloxham (1996). In addition we augment the error budget by an isotropic error of 2 � 25nT to

account for instrumentation inaccuracies and unmodelled crustal and transient external magnetic

fields.

A.4 Reduction of measured data

In addition to the signal of the internal field, the Ørsted data contains contributions from the

external field and noise. Because we are trying to fit a model for one particular time (January 1st

2000), we must also take account of the fact that the internal field changes slightly over time (the

secular variation). In this respect we use the same model used in Olsen et al. (2000) to subtract

the secular variation from the signal.

A.4.1 Disturbance indexes

The Earth’s external magnetic field is associated with the magnetospheric equatorial ’ring’ cur-

rent which is fed by charged particles from the sun. During magnetic storms this field is much

enhanced and its effect can felt on the Earth’s surface. This effect is quantified by the Distur-

bance storm time or Dst index, which measures the excursion of the horizontal magnetic field

compared with quiet times at fixed observatories.

Another index frequently used is Kp, which is calculated from ground based obser-

vations and measures a global average of magnetic activity from external sources every three

hours. These are then standardised to produce a scale of increasing excitation:

0o � 0 � � 1 � � 1o � 1 � � 2 � � 2o � 2 � �
� � �

� 8 � � 9 � � 9o

For more details on these effects see Kallenrode (2001).



200

A.4.2 Data Selection

Data from geomagnetic quiet time conditions, between December 18, 1999 and January 21,

2000, were selected according to the following criteria:

� Kp � 1 � for time of observation and Kp � 2o for the previous 3 hour interval

�
�
Dst

�
� 10nT and d

�
Dst �
dt � 3nT/hr

� Local time about 22:00 (local night time data)

� Vector data of geomagnetic colatitude θd such that 40 � � θd � 140 �

� Intensity data for
�
90 � � θd

� �
50 �

Local night-time data were used to reduce contributions from ionospheric currents. Geomagnetic

colatitude is similar to the usual geographic colatitude except that it is measured from the geo-

magnetic north pole. Near the geomagnetic poles field aligned currents induce small magnetic

fields which really only contaminate only the vector data, leaving the intensities relatively un-

perturbed. Therefore within 40 � of the geomagnetic poles we use only intensity measurements.

In total, 13869 data were used, comprising 3907 locations sampling the three magnetic

field components, and 2148 locations giving intensity data.

A.4.3 Removal of the external field

Using the model of Olsen et al. (2000), we write the external field potential in the following way:

Vext
� a � 2

∑
l � 1

l

∑
m � 0

� r
a � l � qm

l cos
�
mφ � � sm

l sin
�
mφ � � Pm

l

�
cosθ � �

Dst � r
a

� Q1

� a
r � 2 � � � q̃0

1P0
1

�
cos θ � � � q̃1

1 cosθ � s̃1
1 sinφ � P1

1
�
cos θ ��� � (A.5)

The first sum is the external (approximately dipolar) field due to the quiet-time equa-

torial ring current; the second, proportional to the Dst index, is the contribution from high solar

activity. The factor Q1 represents the magnetic field internal to the Earth induced by the exter-

nal field; this can occur because the mantle is not a perfect electrical insulator and allows small

currents.

The model parameters for the external field are shown in table A.1. To subtract the

external field from the measured vector data is a trivial task. However, reducing the intensity
�
F � data is a non-linear process and requires knowledge of the field vector which is not available
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l m qm
l sm

l q̃m
l s̃m

l

1 0 22 � 43 � 0 � 59
1 1 0 � 84 � 3 � 73 0 � 04 0 � 10
2 0 1 � 57
2 1 0.29 -0.32
2 2 -0.52 -0.04

Table A.1: Model parameters for the external field

at such locations. We use the field model of Olsen et al. (2000) to compute the unknown field at

these locations. Equations (A.6a)-(A.6b) show the reduction; the suffix ‘m’ denoting measured

field, ‘red’ the reduced field and ‘ext’ the external field.

Bred
� Bm

� Bext (A.6a)

F2
red

� �
Bred

� 2 � F2
m
� 2Bm

� Bext � F2
ext (A.6b)

Although the secular variation of the field will be small over a matter of days either

side of epoch 2000 when the measurements were taken, we use the model of Olsen et al. (2000)

to remove the effect. This was done in an identical manner to the removal of the external field.

A.5 Fitting the model

We are now in a position to fit the data to the model of the magnetic field. Strong distortion results

in downwards propagation of a field model due to the high degree harmonics being multiplied

by a factor � a
r
� l � 1

. This means that small errors in the field model fitted at satellite altitude

will be amplified on the CMB. Indeed, in general, errors beyond the resolution of the satellite

instrumentation could in theory be magnified to such an extent as to dwarf all other signal (if l

was large enough). In order to resolve this, we use only harmonics up to degree 19 and facilitate

convergence by a damping scheme.

Let us define a model of the internal field by the vector

m � �
g0

1 � g1
1 � h1

1 � g0
2 � g1

2 � g2
2 � h1

2 � h2
2 � � � � � h19

19 � (A.7)

which completely determines B by relation (A.4). Let � denote a set of observations of the

internally generated field and ˜� the corresponding set of predictions, a function of the model

parameters m; we seek to minimise the difference. In addition we introduce a measure of com-

plexity of the model which we incorporate into the method. The problem of fitting the data is
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one of weighted least squares of the form:

Minimise Φ � � � � ˜� � T C � 1
e � � � ˜� �� ��� �

weighted error

� λ mT C � 1
m m� ��� �

complexity

(A.8)

The matrices C � 1
e and C � 1

m are those of the covariance and complexity norm. The

value λ is a weighting, changing the penalisation of the error or the complexity. If large, the

resulting field will be ‘simple’ (one with a low complexity), which will not necessarily fit the

data very well. If small, we will obtain a good fit to the data but the field may be very complex.

The choice of λ is far from trivial and is discussed presently.

A.6 The measure of field complexity

Since we will be interested in determining the field on the CMB (radius c), we introduce a

measure of complexity which reflects the field variation on this surface. Clearly the notion of

variation is subjective, in particular it could imply any number of spatial derivatives of any of

the field components. Since we will be mainly interested in Br, we use the definition:

C � �
CMB

�
� ∇hBr

�
� 2 dΩ (A.9)

where ∇h is the horizontal projection of the gradient operator and dΩ � sinθ dθ dφ is the ele-

ment of solid angle.

The complexity may be written, on substituting the form for B:

C � 1
c2

19

∑
l � 1

l

∑
m � 0

4π
2l � 1

l
�
l � 1 � 3

� a
c � 2l � 4 � �

gm
l � 2 �

�
hm

l � 2 � (A.10)

This is of the form mT C � 1
m m with

C � 1
m

� diag � 4π
2l � 1

� a
c � 2l

l
�
l � 1 � 3 � (A.11)

where the other multiplicative constants: 1
c2

� a
c
� 4

have been absorbed into λ . Notice that the

complexity of a harmonic of degree l is O � a
c
� 2l

which strongly damps spatially complex terms.

Other (equally plausible) complexity norms are shown in table A.2.
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Norm Entries on diagonal of C � 1
m

�
B2

r dΩ 4π
2l � 1

� a
c
� 2l �

l � 1 � 2

� �
∇2

hBr
� 2

dΩ 4π
2l � 1

� a
c
� 2l

l2 �
l � 1 � 4

Table A.2: Other equally plausible damping norms and their associated matrix entries

A.7 The Covariance Matrix

The form of equation (A.8) may be directly compared to that of multivariate normal analysis.

The matrix C � 1
e is the covariance matrix, measuring the interaction of errors within the set of

observables. If we deal only with those which are independent (rotating the vector measurements

where necessary) then Ce, and therefore C � 1
e , takes on a diagonal form:

C � 1
e

� diag � 1
σ 2

x1

�

1
σ 2

x2

�
� � �

�

1
σ 2

xN
� (A.12)

The constant σ 2
xi

is the variance of observable Xi (either a field vector component or the intensity)

and is assumed to be a known. In the case of Ørsted the variances come from an a posteriori

estimate (see Olsen et al., 2000).

A.8 Choosing the value of λ

A measure of how well the data fit the model is given by the misfit χ , defined by

χ2 � 1
N
� � � ˜� � T C � 1

e � � � ˜� � (A.13)

where N denotes the number of data. On varying the value of λ we derive a ‘trade-off’ curve,

see figure A.1. Plotted is the misfit against the field complexity parameterised by λ . Low values

of λ mean that the field is of high complexity but fits the data well (thus the misfit is low). On

the other hand, high values penalise spatially complex fields and so the resulting field is simple

but has a higher misfit. Any of the models represented in figure A.1 are possible candidates so

we need some way of choosing between them. Multivariate statistics lead us to believe that the

misfit should be distributed about unity with a variance which decreases with N. Thus we choose

the model derived from the value of λ which gives a misfit of unity. In this case, the location

coincides with the ‘knee’ of the curve which separates the two minimisation regimes which also

can be used as method for determining λ .
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Figure A.1: The trade-off curve for the epoch 2000 model: complexity against misfit.

A.9 Finding the minimising model

Setting the derivative of (A.8) with respect to mi, the ith model parameter to zero, and denoting

˜� � f
�
m � gives

0 ��� ∂ fT

∂mi
C � 1

e � � � f
�
m ��� � � � � f

�
m ��� T C � 1

e
∂ f

∂mi
� λ � mT C � 1

m
�

i � λ � C � 1
m m �

i (A.14)

Since all the above are scalars hence equal to their transpose we have in vector form:

λC � 1
m m � AT C � 1

e � � � f
�
m � � (A.15)

where Ai j
� ∂ fi

∂m j
are the Frechet derivatives. Note that since the measurements are rotated so that

the covariance matrix is diagonal, the same treatment must be given to the Frechet derivatives.

In the case where the data are linearly related to the model coefficients (this is true for the vector

but not the intensity data), f
�
m � � Am so

m � � AT C � 1
e A � λC � 1

m
� � 1AT C � 1

e � (A.16)

If the data set contains some observables which are nonlinear in the model m, then we are

forced to adopt an iterative process. Let m̂ be the minimising model and m be the current
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approximation, so that m̂ � m � δm and so, correct to first order in δm:

f
�
m � δm � � f

�
m � � Aδm (A.17)

Rewriting equation (A.15) as an iterative procedure:

λC � 1
m

�
m � δm � � AT C � 1

e � � � f
�
m � δm � � (A.18)

we obtain � λC � 1
m � AT C � 1

e A � δm � AT C � 1
e � � � f

�
m � � � λC � 1

m m (A.19)

This leads to the iterative procedure:

mi � 1
� mi � � λC � 1

m � AT C � 1
e A� ��� �

e

� � 1

��
AT C � 1

e
� � � f

�
mi � �� ��� �

c

� λC � 1
m mi

��

where A will depend on the model m in general. The matrix e above is known as the normal

equations matrix and c is the right hand side vector. These two terms take most of the com-

putation time to calculate; adding in the damping terms and inverting to find the next model

approximation is relatively quick. We solve the system of linear equations using the LU decom-

position (see Press et al., 1992).

A.10 The model for epoch 2000

Using the above methodology, the following model was produced with a misfit of unity. Fig-

ure A.2 shows the radial component of the field at the CMB. This is the only field component

guaranteed to be continuous across the CMB interface as current sheets would introduce dis-

continuities in the tangential components (see Gubbins and Roberts, 1987). Orange is positive

and blue negative; continents are shown for reference. The field is principally an axial dipole;

field lines mainly leave the core in the southern hemisphere and return in the northern hemi-

sphere. Reversed flux patches complicate the picture: two such strong areas are located beneath

the south Atlantic. Patches of equatorially symmetric strong flux intensities have been linked to

the presence of axially aligned flow structures (Gubbins and Bloxham, 1987) although the actual

field morphology is far more complex. More recently, Jackson (2003) has speculated that the

intense flux patches in equatorial regions could be the manifestation of dynamo waves in the

core.
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Figure A.2: The radial component of the Earth’s magnetic field at epoch 2000. Contour interval
is 200 µT. Orange is positive, blue is negative.

Table A.3 shows the model coefficients, which indicate the strength of the correspond-

ing field harmonic at the Earth’s surface. In particular, g0
1 dominates the model by about an

order of magnitude, as would be expected, since the observed field is dominated by an axially

symmetric dipole. The other l � 1 harmonics are equatorially aligned dipoles of longitudinal

orientations φ � π
�
2 and φ � 0 associated with the h1

1 and g1
1 coefficients respectively.
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l m gm
l (nT) hl

m(nT) l m gm
l (nT) hl

m(nT)

1 0 -29616.31 11 0 2.42
1 1 -1729.10 5185.72 11 1 -1.61 0.41
2 0 -2268.36 11 2 -1.69 1.15
2 1 3068.88 -2481.78 11 3 1.35 -0.87
2 2 1670.70 -457.54 11 4 -0.14 -2.50
3 0 1340.00 11 5 0.23 0.90
3 1 -2288.37 -227.94 11 6 -0.76 -0.62
3 2 1250.03 293.14 11 7 0.80 -2.61
3 3 714.03 -491.36 11 8 1.63 -0.89
4 0 932.15 11 9 0.08 -0.98
4 1 786.60 273.32 11 10 0.93 -1.77
4 2 249.82 -231.60 11 11 3.86 -0.41
4 3 -403.40 119.48 12 0 -2.02
4 4 111.24 -303.64 12 1 -0.38 -0.40
5 0 -216.95 12 2 0.29 0.28
5 1 352.07 42.73 12 3 0.77 2.03
5 2 222.09 171.26 12 4 -0.21 -2.30
5 3 -130.46 -132.83 12 5 0.74 0.49
5 4 -168.41 -39.38 12 6 -0.42 0.24
5 5 -12.82 106.45 12 7 0.21 0.07
6 0 71.38 12 8 -0.14 -0.03
6 1 67.39 -16.91 12 9 -0.48 0.25
6 2 74.21 64.26 12 10 -0.23 -0.91
6 3 -160.82 65.35 12 11 -0.12 -0.35
6 4 -5.64 -61.00 12 12 0.15 0.40
6 5 16.89 0.86 13 0 -0.20
6 6 -90.30 43.81 13 1 -0.48 -0.44
7 0 78.98 13 2 0.21 0.11
7 1 -73.70 64.93 13 3 0.05 0.97
7 2 -0.05 -24.78 13 4 -0.27 -0.25
7 3 32.98 6.16 13 5 0.72 -0.47
7 4 9.12 23.99 13 6 -0.23 -0.03
7 5 6.99 14.86 13 7 0.36 0.31
7 6 7.07 -25.31 13 8 -0.16 0.09
7 7 -1.34 -5.72 13 9 0.20 0.21
8 0 24.08 13 10 -0.04 0.11
8 1 6.05 12.24 13 11 0.12 -0.11
8 2 -9.12 -21.01 13 12 0.18 -0.20
8 3 -7.68 8.58 13 13 -0.15 -0.38
8 4 -16.60 -21.38 14 0 -0.07
8 5 8.99 15.29 14 1 0.06 0.08
8 6 6.96 8.77 14 2 -0.04 -0.16
8 7 -7.87 -14.86 14 3 -0.17 0.04
8 8 -7.10 -2.42 14 4 -0.05 0.05
9 0 5.13 14 5 0.03 -0.03
9 1 9.63 -19.92 14 6 -0.02 0.08
9 2 2.87 12.99 14 7 0.01 0.03
9 3 -8.51 12.50 14 8 0.03 0.04
9 4 6.29 -6.22 14 9 0.02 0.05
9 5 -8.70 -8.24 14 10 0.09 -0.01
9 6 -1.46 8.36 14 11 -0.06 -0.01
9 7 9.13 3.91 14 12 0.01 0.05
9 8 -4.19 -8.22 14 13 0.04 -0.01
9 9 -8.17 4.86 14 14 0.06 0.01
10 0 -2.94
10 1 -6.43 1.89
10 2 1.64 0.26
10 3 -2.92 4.14
10 4 -0.29 4.90
10 5 3.63 -5.86
10 6 1.10 -1.13
10 7 2.00 -2.86
10 8 4.41 0.24
10 9 0.42 -2.02
10 10 -0.90 -7.51

Table A.3: Model parameters for epoch 2000, up to degree 14.
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Appendix B

Spherical harmonics

B.1 Derivation

B.1.1 Laplace’s equation

Spherical harmonics arise from solutions of Laplace’s equation ∇2V � 0. In spherical polar

coordinates we need to solve:

1
r

∂ 2 �
rV �

∂ r2 � 1
r2

1
sinθ

∂
∂θ

�
sin θ

∂V
∂θ

� � 1
r2

1

sin2 θ
∂ 2V
∂φ 2

� 0 (B.1)

If we look for separated solutions V
�
r� θ � φ � � R

�
r � Θ

�
θ � Φ

�
φ � and find that:

R
�
r � � rl or r � �

l � 1 �

Θ
�
θ � � Pm

l

�
cos θ �

Φ
�
φ � � sin

�
mφ � or cos

�
mφ � (B.2)

where l and m are integers with m � l. Pm
l

�
z � is an associated Legendre function, being a solution

of
�
1 � z2 � d2Pm

l

dz2
� 2z

dPm
l

dz
� � l �

l � 1 � � m2

1 � z2 � Pm
l

� 0 (B.3)

l is called the degree and m the order.
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B.1.2 Associated Legendre functions

The Legendre polynomials satisfy equation (B.3) but with m � 0. They can be written in closed

form as

Pn
�
z � � 1

2nn!
dn �

z2 � 1 � n

dzn (B.4)

(e.g. Abramowitz and Stegun, 1984). The associated functions are closely related by

Pm
l

�
z � � �

1 � z2 � m
2

dmPl

�
z �

dzm (B.5)

and satisfy the orthogonality relation:

	 π

0
Pm

l

�
cosθ � Pm

k

�
cos θ � sinθdθ � � 2

2l � 1

�
l � m � !�
l � m � ! l � k

0 l �� k
(B.6)

B.1.3 Properties

For clarity we rewrite equation (B.5) for an associated Legendre function as

Pm
l

�
cos θ � � sinm θ

dmPl

�
z �

dzm (B.7)

Since Pl

� � z � � � � 1 � lPl

�
z � using equation (B.4), the following properties hold:

Pm
l

�
θ � π � � � � 1 � l Pm

l

�
θ � (B.8)

Pm
l

�
π � θ � � � � 1 �

�
l � m � Pm

l

�
θ � (B.9)

B.2 Spherical harmonics

We define a spherical harmonic of degree l and order m to be of the form

Y m
l

�
θ � φ � � Am

l Pm
l

�
cosθ � � sin

�
mφ �

cos
�
mφ � � (B.10)

where Am
l are constants, yet to be determined. Integrating over a spherical shell, we see that they

are orthogonal, firstly in l (by the associated Legendre functions) and in m by Fourier theory.

To ease notation, we shall sometimes use Greek subscripts, for example Yα , to denote

a particular spherical harmonic.
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B.2.1 Normalisation

One of the issues that often leads to confusion is that of normalisation. As seems to be standard

in geomagnetism, we use Schmidt quasi-normalised harmonics, defining the remaining multi-

plicative constants as

Am
l

��� 1 m � 0�
2

�
l � m � !�
l � m � ! � 1

2
m � 0

(B.11)

then

	 π

0

	 2π

0
Yα

�
θ � φ � Yβ

�
θ � φ � sin θdφdθ � � 0 α �� β

4π
2lα � 1 α � β (B.12)

Table B.1 shows associated Legendre functions with this choice of normalisation up to degree 3.

l m Am
l Pm

l

�
cos θ �

1 0 cosθ
1 1 sinθ
2 0 1

2

�
3cos2 θ � 1 �

2 1
�

3cosθ sin θ
2 2

�
3

2 sin2 θ
3 0 1

2

�
5cos3 θ � 3cosθ �

3 1
�

3�
8

sinθ
�
5cos2 θ � 1 �

3 2
�

15
2 sin2 θ cos θ

3 3
�

5�
8

sin3 θ

Table B.1: The associated Legendre functions with Schmidt quasi-normalisation up to degree 3.

B.3 Integral identities

We now derive a few useful identities, making use of the surface form of Gauss’s divergence the-

orem (see Backus et al., 1996, p.344). This uses the surface gradient operator � 1
� �

0 �
∂

∂θ �
1

sinθ
∂

∂φ �
and states 	 	

S

�
1
� vdΩ � �

∂S
v � dl (B.13)

where S is an origin-concentric spherical surface with boundary ∂S, dΩ and dl are respectively

elements of solid angle and of the path length and v is some vector.



211

B.3.1 Identity 1
	 2π

0

	 π

0 � ∂Yα
∂θ

∂Yβ

∂φ
� ∂Yα

∂φ
∂Yβ

∂θ � dθdφ � 0 (B.14)

The proof follows from writing it in the form

�
S

�
1

�
Yα � � � 1

� �
Yβ r̂ � dΩ (B.15)

This can be expressed as

�
S

�
1
� � �

1

�
Yα � � �

Yβ � r̂ � dS (B.16)

which vanishes since S has a null boundary curve (which has zero length).

B.3.2 Identity 2
	 2π

0

	 π

0 � ∂Yα
∂θ

∂Yβ

∂θ
� 1

sin2 θ
∂Yα
∂φ

∂Yβ

∂φ � sin θdθdφ � 4π
2lα � 1

δαβ lα
�
lα � 1 � (B.17)

The left hand side of the identity above may be written

�
S

�
1Yα
� �

1Yβ dΩ � 	 � �
1
� �

Yα
�

1Yβ � � Yα∇2
1Yβ � dΩ (B.18)

and reduces to

lβ
�
lβ � 1 � �

S
YαYβ dΩ (B.19)

since the surface S has a null boundary curve and Y m
l is an eigenvector of ∇2

1
� � L2 (where L2 is

the angular momentum operator of section 3.4.1) with eigenvalue � l
�
l � 1 � . The result follows

by our choice of normalisation.

B.3.3 Identity 3
	 ∞

1

	 2π

0

	 π

0

�
�
�
�
� � Y m

l

rl � 1 �
�
�
�
�

2

r2 sinθdθdφdr � �
l � 1 � 4π

2l � 1
(B.20)

To show this, first consider

�
�

Y m
l

rl � 1
� � r � �

l � 2 � � � �
l � 1 � Y m

l �

∂Y m
l

∂θ
�

1
sinθ

∂Y m
l

∂φ
� (B.21)
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Taking the modulus and using identity 2 above, we have

� �
l � 1 � 2 � l

�
l � 1 � � 	 ∞

1
r � �

2l � 2 � dr
	 �Y m

l � 2 dΩ

�
�
2l � 1 � �

l � 1 ��
2l � 1 �

	 �Y m
l � 2 dΩ � �

l � 1 �
	 �Y m

l � 2 dΩ

� �
l � 1 � 4π

2l � 1
(B.22)

B.4 Orthogonality of the decay modes

That the decay modes are orthogonal over all space is already known since the diffusion operator

is self-adjoint (section 3.8.2) and as such has orthogonal eigenvectors (appealing to standard

theory). However, we present here a self-contained derivation of this property.

The decay modes are derived in section 3.4.2 and are all everywhere of time depen-

dence e � d2
α t where � d2

α is the decay rate of mode Bα , and additionally in V :

∂Bα
∂ t

� ∇2Bα (B.23)

These may be written explicitly in V for the poloidal and toroidal cases respectively:

Sα
����� ��� � r jl

�
dP r � r̂ � e � d2

P t (B.24)

Tα
����� � r jl

�
dT r � r̂ � e � d2

T t (B.25)

where dT and dP are the roots of some related spherical Bessel function. In V̂ the toroidal modes

vanish and the poloidal modes are represented there by a potential.

Consider two decay modes, Bα and Bβ . We prove their orthogonality over all space

using a similar method to Backus (1958). Note that since the toroidal modes vanish in V̂ they

are orthogonal over V .

� d2
α

	
V � V̂

Bα
� Bβ dV ��� 	

V

��� ��� Bα
� Bβ dV �

	
V̂

∂Bα
∂ t
� Bβ dV (B.26)

� 	
V

��� � Bβ
� � ��� Bα � � � 	

V

� ��� Bβ � � � ��� Bα � dV �
	

V̂

��� Eα
� Bβ dV (B.27)

where we have used the pre-Maxwell equation � � E � � ∂B
∂ t and the fact the B is divergence-

free.

It is shown below that the first and third terms of equation (B.27) cancel exactly, thus

leaving a symmetric integral in the two decay modes. We may therefore reverse the above
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argument to show that

� d2
α

	
V � V̂

Bα
� Bβ dV ��� d2

β

	
V � V̂

Bα
� Bβ dV (B.28)

so unless α � β then the modes must be the orthogonal in the sense defined, i.e.

	
V � V̂

Bα
� Bβ dV � 0 (B.29)

Some of the poloidal and toroidal decay rates coincide, for example, dP corresponding to a

harmonic of degree l is the same as dT corresponding a harmonic of degree l � 1. However, in

this case, these modes are trivially orthogonal. There is no degeneracy in either of the poloidal

or toroidal decay rates (regarded separately).

It remains therefore to show that the required terms do in fact exactly sum to zero.

Writing them as 	
∂V

Bβ
� � ��� Bα � � dS �

	
V̂

��� �
Eα
� Bβ � dV (B.30)

since � � Bβ
� 0 in V̂ . We invoke continuity of B and of the tangential components of η � � B �

E on the non-slip boundary (by permuting the triple product B � E � dS � B � E � dS) so that

	
∂V

Bβ
� Eα

� dS �
	

∂V̂

�
Eα
� Bβ � � dS � 0 (B.31)

since dS points in opposite directions on either side of r � 1.
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Appendix C

An analytic derivation of Proctor’s

bound using a variational method

C.1 The equations

In section 3.9.6 we derived an equation describing the solution of the minimisation problem:

λP
� min

�
V � V̂

η
� ��� B

� 2 dV
�
V B2 dV

(C.1)

which was:

	
V � V̂

δB � � χV

�
r � � ∇2B � λPB � � χ

V̂

�
r � � ��� �

η ��� B � � � dV � 0 (C.2)

where χV

�
r � � 1 if r � V and is zero otherwise. The magnetic diffusivity η � η

�
r � is 1 in V

and large but finite in V̂ . At the end of the analysis we will let η � ∞ in a well defined manner,

consistent with V̂ being an electrical insulator. We may approach this limit however we choose:

using a purely radial dependence facilitates the analysis. Using the Lemma below equation C.2

becomes:

∇2B � λPB � � ξ � 0 in V (C.3a)

� ��� �
η ��� B � � � ξ � 0 in V̂ (C.3b)

where ξ is an unknown scalar function which is continuous at r � 1.
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C.1.1 Lemma

The following are equivalent for a vector M continuous and differentiable in V and V̂ but not

necessarily on ∂V :

(a) 	
V � V̂

B � MdV � 0 (C.4)

for all continuous vectors B such that ��� B � 0 and B � O
�
r � 3 � at infinity.

(b)

M ��� ξ (C.5)

for some continuous scalar function ξ (differentiable wherever M is) which is finite at

infinity.

The proof is fairly straight-forward. Suppose first that M ��� ξ with both M and ξ everywhere

continuous and differentiable in V and V̂ .

	
V � V̂

B � � ξ dV � 	
V � V̂

��� �
ξ B � dV

� �
∂V

ξ B � dS � �
∂V̂

ξ B � dS � 0 (C.6)

since ξ B � dS � O
�
r � 1 � at infinity and using continuity of B and ξ at r � 1.

For the converse, since ��� B � 0 we can write B � ��� f for some vector potential f.

Then: 	
V � V̂

� ��� f � � M dV � 0 for all vectors f (C.7)

and using standard identities yields:

�
∂V � ∂V̂

�
f � M � � dS �

	
V � V̂

f � � ��� M � dV � 0 (C.8)

Since the above is true for any vector field f, we may choose it such that it is nonzero only in V

or V̂ . In either case, by using standard Calculus of Variations arguments, we may see that the

two volume integrals must individually vanish. This means that � � M � 0 so M � � ξ . The

differentiability and continuity of ξ follows that of M. We now substitute this back in to obtain

�
∂V

ξ B � dS � �
∂V̂

ξ B � dS � 0 (C.9)
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as above, so that ξ is continuous also on ∂V , and hence it is everywhere.
�

C.2 Method of solution

To solve these equations, we expand B in the usual poloidal-toroidal form and ξ in spherical

harmonics

B � ∑
β

Sβ � Tβ
� ∑

β

��� ��� �
Sβ

�
r � Yβ r̂ � � ∑

β

��� �
Tβ

�
r � Yβ r̂ � (C.10)

ξ � ∑
β

ξβ
�
r � Yβ (C.11)

At r � 1 the following four quantities must be continuous: ξβ , Sβ ,
dSβ
dr and η∇2

β Sβ which follow

from the usual continuity conditions of section 3.3.1. Recall the notation:

∇2
β

� d2

dr2
� lβ

�
lβ � 1 �
r2 (C.12)

D2
β

� d2

dr2 � 2
r

d
dr
� lβ

�
lβ � 1 �
r2 (C.13)

where

∇2 ��� ��� �
Yβ Sβ r̂ � ����� ��� �

Yβ ∇2
β Sβ r̂ � (C.14)

∇2Yβ Sβ
� Yβ D2

β Sβ (C.15)

In addition we have that

(a) at r � 0, Sβ and ξβ are non singular,

(b) as r � ∞, we insist that B � O
�
r � 3 � and that ξ � O

�
1 �

C.2.1 Solving in V

In V , the β harmonic of the r̂ component of (C.3a) is

lβ
�
lβ � 1 �
r2 ∇2

β Sβ �
dξβ

dr
� λP

lβ
�
lβ � 1 �
r2 Sβ

� 0 (C.16)



217

On taking the divergence of (C.3a) gives

D2
β ξβ

� 0 (C.17)

so that ξβ is of the form rn where n ��� �
lβ � 1 � or lβ (as can be easily calculated).

In V we choose the non-singular solution ξβ
� Erlβ , for some constant E . On substi-

tuting this into equation (C.16) we get

∇2
β Sβ � λPSβ

��� E
lβ � 1

r
�
lβ � 1 � (C.18)

Fortunately the particular integral is of the form Fr
�
lβ � 1 � and the complementary function is

recognisable from the diffusion problem so that we can write the solution as:

Sβ
�
r � � A

α2 � r jlβ
�
α r � � Cr

�
lβ � 1 � � (C.19)

ξβ
��� �

lβ � 1 � ACrlβ (C.20)

where jl is a spherical Bessel function of order l, and λP
� α2 � 0 [equation C.1 has a strictly

positive minimum, see section 3.7.4]. The constant E has been rewritten as E � � AC
�
lβ � 1 � .

C.2.2 Solving in V̂

In V̂ , taking the divergence of (C.3b) gives D2
lβ

ξβ
� 0 as well. Hence

ξβ
� Gr � �

lβ � 1 � (C.21)

for some constant G. Since η � η
�
r � , the β harmonic of the r̂ component of equation (C.3b) is

η lβ
�
lβ � 1 �
r2 ∇2

β Sβ �
dξβ

dr
� 0 (C.22)

On substituting for ξβ we have

∇2
β Pβ

� G

η lβ rlβ
(C.23)

Writing Sβ
�
r � � rlβ Qβ

�
r � we find that Qβ satisfies

d
dr � dQβ

dr
�

2lβ
r

Qβ � � G

η lβ r2lβ
(C.24)
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so that
dQβ

dr
�

2lβ Qβ

r
��� G

lβ

	 ∞

r

1

η
�
s � s2lβ

ds (C.25)

since
Qlβ

r and Q �lβ vanish at ∞ (because of behaviour of Sβ ).

C.2.3 Matching at r � 1

Matching ξ across r � 1 gives G ��� �
lβ � 1 � AC. Applying continuity at r � 1 of Sβ and

dSβ
dr or

equivalently Qβ and
dQβ
dr yields:

A
α2

�
α j �lβ

�
α � � �

lβ
� 1 � jlβ

�
α � � C � �

2Alβ
α2

�
jlβ

�
α � � C � �

�
lβ � 1 �

lβ
AC K2

lβ
(C.26)

where K2
l

� � ∞
1

ds
η

�
s � s2l , and � denotes the derivative. Either A � 0 or

α j �lβ
�
α � �

�
lβ � 1 � jlβ

�
α � �

�
2lβ � 1 � C �

�
lβ � 1 �

lβ
α2C K2

lβ
(C.27)

Using continuity of η∇2
β Sβ which fixes C in terms of α , we get

�
�
lβ � 1 �

lβ
AC ��� A

�
jlβ

�
α � � C � � AC (C.28)

so that C � lβ jlβ

�
α �

�
lβ � 1 � . Using the standard recurrence relation j �l

�
α � � l � 1

α jl
�
α � � jl � 1

�
α � we find

that:

jlβ
�
α �

�
lβ

�
2lβ � 1 � � �

lβ � 1 � K2
lβ

� ��� �
lβ � 1 � α jlβ � 1

�
α � (C.29)

In the insulating limit as K2
l � 0, we must find minimal positive solutions of

jlβ
�
α � �

lβ � 1

lβ
�
2lβ � 1 � α jlβ � 1

�
α � � 0 (C.30)

We now have an equation giving stationary values of (C.1) of which λP
� α2 is the minimum.

Proctor stated that the lowest mode of l � 1 gives the required result which leads to

j1
�
α ��� 3 � 2α2K2

1 � ��� 2α j0
�
α � (C.31)

reducing to

j1
�
α � � 2

3
α j0

�
α � � 0 (C.32)
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in the insulating limit. The smallest positive root of this is α , the minimum sought being

α2 � 12 � 29 to 2 decimal places.

It is not obvious a priori that l � 1 gives the minimal root. Figure C.1 shows the graphs

of Fl

�
α � � jl

�
α � � l � 1

l
�
2l � 1 � α jl � 1

�
α � for various l. The smallest non-zero solution corresponds to

the lowest mode l � 1.
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Figure C.1: Graphs of Fl

�
α � for various l: the solid line is l=1, the dotted is l=2, the dashed is

l=3, the long dashed is l=4. The lowest nonzero solution for Fl

�
α � � 0 is α2 � 12 � 29, l � 1.

C.2.4 The conducting mantle

The mantle is not a perfect electrical insulator and this will effect the above analysis slightly.

Let us model η
�
r � � K rn in V̂ where we fit K and n using the estimated non-dimensional values

of η
�
1 � � 5000 and η

�
1 � 54 � � 50000 (where η � 1 in V ). These values are taken from the

model of Peyronneau and Poirer (1989) who calculate values of lower mantle conductivity of

100 Sm � 1 at the CMB decreasing to 1Sm � 1 at a depth of 1000 km (corresponding to r � 1 � 54).

The profile of (non-dimensional) magnetic diffusivity then is η � 5000 � r10 � 62 , giving a value

of K2
1 of

K2
1

� 	 ∞

1

ds
5000 s12 � 62 � 1 � 72 � 10 � 5 (C.33)

which in fact leaves the lower bound of 12.29 unchanged (to 2 decimal places). Buffett (2002b)

suggests a highly conducting layer of 210m thickness at the very base of the mantle, which in

non-dimensional terms we model as η � 1. The corresponding value of K 2
1 also leaves the bound

unchanged to 2 decimal places. Thus the inclusion of Earth-like conductivity profiles makes little
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difference to Proctor’s bound, in comparison to the electrically insulating mantle analysis.
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Appendix D

Computation of Virtual Geomagnetic

Poles

We detail below the computation of virtual geomagnetic poles (VGPs), based on Sarson (1994),

Merrill et al. (1998) and Parkinson (1983).

Consider three points on the surface of a unit sphere, labelled A, B and C. These will

later become the location of the VGP, the geographic north pole and the site location.

It is not obvious how to measure an angle, or indeed even how to construct the triangle

ABC on a spherical surface; we proceed in the following way. To make the sides of the spherical

triangle, we draw an arc which lies on the great circle passing through the two end points. A

great circle is defined by the intersection of the spherical surface and a plane passing through 2

points and the origin. How do we measure the length of the arc? Since it is a unit sphere, the arc

length is simply the angle subtended at the origin between lines connecting the two end points.

To measure angles i.e. that between 2 arcs, we define it to be the angle between two

tangents of the great circles (on which the arcs lie) at that point.

Figure D.1 shows the geometry; each vertex also marks the angle at that point. The

length of the associated opposite arc is denoted in small case. We identify two important points:

� The angle A is merely the difference between the azimuthal angles of points B and C. To

see this, consider A to lie on the OZ axis. Points B and C then have an azimuth defined

from A.

� If B lies on the OZ axis, then the arc length BC or BA is simply the colatitude of points C

or A.
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AA

a

B

C
Oa

Figure D.1: Sphere layout

Analogues of the cosine and sine formula for planar triangles may be found (e.g. Parkinson,

1983) to be

cos c � cosa cosb � sina sin b cosC (D.1)

sinA
sina

� sinB
sinb

� sinC
sinc

(D.2)

One last result is that of the computation of the geomagnetic colatitude at a point,

assuming a dipole field. If the field is dipolar with a magnetic north pole at θ � 0 (in some

coordinate system, not necessarily representing the geographic north pole), then

B � � Ar � 2 cosθ (D.3)

for some constant A. The Z and H (local downwards and horizontal) field components at some

geomagnetic colatitude θm, at r � 1 (the surface of the sphere) are

Z � � Br
� 2A cosθm

H � �
Bθ

� � Asinθm (D.4)

The inclination I is given by tan I � Z
�
H � 2 cot θm. Suppose then we take measurements of I at

some geographic location. This is enough to determine θm, the arc length between the sampling

site and the VGP.

All the building blocks are now in position to compute the location of the VGP. Sup-

pose then that point B is the geographic north pole (θ � 0 � φ � 0), A is the VGP
�
θ p � φp) and C

is the site sampled (θs � φs). We take measurements of I and D � tan � 1 �
Y

�
X � , the declination.
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The spherical cosine rule gives, with c � θp and noting that the angle C is the declina-

tion:

cosθp
� cosθs cosθm � sinθs sinθm cosD (D.5)

All of the above quantities are known. To determine φp, we use the spherical sine

formula with angles and sides C and B, noting that angle B is merely the difference in azimuths

of locations A and C.
sinD
sinθp

� sin
�
φp
� φs �

sinθm
(D.6)

This leads to

φp
� φs � sin � 1

�
sinθm sinD

�
sinθp � � 1 � (D.7)

At certain locations these formulae become singular, e.g. if tan I � 0 then θm is unde-

termined. However, this represents the geomagnetic equator, so that θm
� π

2 .


