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Abstract

We investigate a class of noncommutative algebras, which we call connected quan-

tized Weyl algebras, with a simple description in terms of generators and relations. We

already knew of two families, both of which arise from cluster mutation in mutation-

periodic quivers, and we show that for generic values of a scalar parameter q these are

the only examples.

We then investigate the ring-theoretic properties of these two families, determining

their prime spectra, automorphism groups and some results on their Krull and global

dimensions. The theory of ambiskew polynomial rings and generalised Weyl algebras

is useful here and we obtain a description of the height 1 prime ideals in certain

generalised Weyl algebras, along with some results on the dimension theory of these

rings. We also investigate the semiclassical limit Poisson algebras of the connected

quantized Weyl algebras, and compare the prime spectra and Poisson prime spectra of

the corresponding rings.

We also show that the quantum cluster algebra without coefficients for an acyclic

quiver is simple, and extend this result to find a simple localisation in the case where

there are coefficients. Finally, we investigate quantum cluster algebra structures related

to the connected quantized Weyl algebras discussed earlier, and use these to illustrate

the previous result.

1



Acknowledgements

I would like to thank my supervisor, Prof David A Jordan, for his guidance, support and

encouragement throughout the four years. It has been a great privilege to have a supervisor

who has worked so closely with me and I wish him all the best in his retirement.

I would also like to thank my parents Tom and Helen, and my sadly departed grandpar-

ents James and Christine Wiegold, for instilling from an early age a love of mathematics,

which remains to this day, despite the trials and tribulations of a PhD. I hope you would be

proud of one of your grandchildren following in your footsteps.

I would like to thank Esther Holland for her love and support over the last year, and

for her proofreading of the final draft, even managing to understand some of it despite

working in a different discipline! I would also like to thank all my friends and family who

have provided love and support at difficult times and happiness and companionship at good

times: particular thanks here go to my parents, my sister Naomi, Rachel Sheridan, and Daisy

Black, but there are many others.

Finally, I would like to thank the Engineering and Physical Sciences Research Council

for providing the funding for this research.

2



Contents

1 Introduction 5

2 Background 8

2.1 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2 Noncommutative Noetherian rings . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2.1 Basics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2.2 Localisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2.3 Skew polynomial rings . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2.4 Quantum spaces and quantum tori . . . . . . . . . . . . . . . . . . . 18

2.2.5 Uniform rank . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.2.6 Localisation under ring constructions . . . . . . . . . . . . . . . . . . 20

2.2.7 Dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.3 Ambiskew polynomial rings and generalised Weyl algebras . . . . . . . . . . 26

2.4 Poisson algebras and the semiclassical limit . . . . . . . . . . . . . . . . . . . 29

2.4.1 Poisson algebras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.4.2 The semiclassical limit . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.5 Quantum cluster algebras . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.5.1 Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.5.2 Classical or commutative cluster algebras . . . . . . . . . . . . . . . . 36

2.5.3 Some results on quantum cluster algebras . . . . . . . . . . . . . . . 37

3 Prime ideals in ambiskew polynomial rings and generalised Weyl algebras 40

3.1 Simple localisation for ambiskew polynomial rings with central Casimir elements 40

3.2 Height two primes in generalised Weyl algebras . . . . . . . . . . . . . . . . 43

3.3 Uniform rank . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.4 Global dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4 Connected quantized Weyl algebras - definition and classification 58

4.1 Definition and first properties . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.2 Classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

5 Connected quantized Weyl algebras - ring-theoretic properties 74

5.1 Normal elements in Lqn . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

3



5.2 The central element Ω in Cq
n . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

5.3 Prime ideals in Lqn . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

5.4 Prime ideals in Cq
n . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

5.5 Automorphism groups of Lqn and Cq
n . . . . . . . . . . . . . . . . . . . . . . . 91

5.6 Krull and global dimensions in Lqn . . . . . . . . . . . . . . . . . . . . . . . . 94

5.7 Global dimensions in Cq
n . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

5.8 Krull and global dimensions in Cq
3 . . . . . . . . . . . . . . . . . . . . . . . . 101

6 Poisson algebras associated to connected quantized Weyl algebras 103

6.1 Analogues of the normal elements in LPn and CP
n . . . . . . . . . . . . . . . . 103

6.2 Poisson prime ideals in LPn . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

6.3 Poisson prime ideals in CP
n . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

7 Acyclic quantum cluster algebras and prime ideals 111

7.1 Simple localisations of Sq(x,L) . . . . . . . . . . . . . . . . . . . . . . . . . 111

7.2 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

8 Quantum cluster algebra structures on connected quantized Weyl algebras117

8.1 A quantum cluster algebra structure on Lq
2

n . . . . . . . . . . . . . . . . . . 117

8.2 A quantum cluster algebra containing Cq2

n . . . . . . . . . . . . . . . . . . . 125

8.2.1 Mutation-periodic quivers . . . . . . . . . . . . . . . . . . . . . . . . 126

8.2.2 The quiver P
(1)
n+1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

8.2.3 The set of cluster variables . . . . . . . . . . . . . . . . . . . . . . . . 132

8.2.4 Some ring-theoretic properties . . . . . . . . . . . . . . . . . . . . . . 141

9 References 143

4



1 Introduction

Informally, a quantum algebra is a family Aq of noncommutative k-algebras with a pa-

rameter q ∈ k (where k is a field) such that A1 is commutative. We say that Aq is a

“noncommutative deformation” or “quantization” of the commutative ring A1. Such a fam-

ily Aq induces a Poisson algebra structure on A1, known as the semiclassical limit Poisson

bracket. This Poisson algebra structure can be thought of as a “first order approximation”

to the noncommutative algebras.

The terminology (and only the terminology!) here comes from physics: in quantum

mechanics, position (x) and momentum (p) satisfy xp − px = i~, where ~ is the reduced

Planck constant. If one “sends ~ to 0” - that is, increases the scale of x and p - one obtains

a commutative relation, which is the relation that holds in classical physics.

One particular class of commutative rings and their quantizations that we will be inter-

ested in is that of cluster algebras and quantum cluster algebras, which were introduced,

respectively, by Fomin and Zelevinsky in [11] and by Berenstein and Zelevinsky in [6]. These

are constructed by starting with a quiver and a set of generators for a (quantum) algebraic

torus, then using an iterative process known as seed mutation to produce more generators

for the cluster algebra. This gives the (quantum) cluster algebra a combinatorial structure

which can then be applied to algebraic questions (most famously the theory of total pos-

itivity and canonical bases in semisimple groups, which they were originally created for).

From an algebraic point of view, this process produces ring presentations with large num-

bers of generators and relations - often infinitely many generators even when the resulting

(quantum) cluster algebra is Noetherian - but very simple relations.

The definitions and already-known results described above, along with the other back-

ground material required, are found in Section 2.

The specific story of this thesis begins with the papers [14] and [13], the relevant aspects of

which are reproduced in Sections 8.2.1 and 8.2.2. In these papers Fordy and Marsh describe

a1 Poisson algebra - a subalgebra of a cluster algebra, although they do not describe it as such

- with an automorphism of finite order under which the Poisson bracket is invariant. When

one passes to the analogous quantum algebra, one obtains an algebra with a generating set

such that every pair of generators generates a subalgebra isomorphic either to a quantum

1I say “a”, but actually this is a family of algebras, one for each odd positive integer, and the quantum

algebra Cq
n is actually a family with two parameters, one running again over odd positive integers, the other

over the base field of the algebra.
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plane or a quantized Weyl algebra. This ring we denote by Cq
n, where n is an odd integer

and q is a generic element of the base field k, and is the main object of study of the thesis.

The main focus of Section 4 is to classify the rings which share the property of Cq
n

described above, that is, that they have a generating set such that every pair of generators

generates a subalgebra isomorphic either to a quantum plane or a quantized Weyl algebra,

and there are sufficiently many where it is a quantized Weyl algebra. It turns out that,

provided q is sufficiently generic, there are very few such rings: there is another ring, which

we denote Lqm, where m is a positive integer and q is a generic element of k, such that Lqm

embeds naturally into Cq
n provided m < n, but these two are the only examples.

In the case when q = 1 we also obtain a classification result; here any ring satisfying this

property is a polynomial ring over a Weyl algebra, making it a well understood ring.

In Section 5 we investigate various ring-theoretic properties of Lqn and Cq
n, for suitably

generic values of q. The main question is the prime spectrum of these rings, which for Lqn turns

out to be relatively straightforward: if n is odd, the prime spectrum of Lqn is homeomorphic

to that of k[x], which is isomorphic to Lq1; while if n is even, the prime spectrum of Lqn is

homeomorphic to that of the quantized Weyl algebra, which is isomorphic to Lq2. For Cq
n,

the prime spectrum is more complicated: there is a central element Ω, so Ω − λ generates

a prime ideal for any λ ∈ k, but although this ideal is maximal for most values of λ, for

countably many λ, there is a single maximal ideal strictly containing (Ω−λ)Cq
n. Further, for

each a ≥ 1, two of these maximal ideals are such that the uniform rank of the corresponding

simple factor of Cq
n equals a. We also determine the automorphism groups of Lqn and Cq

n,

and the Krull and global dimensions of these rings and some of their factor rings.

For many of these results about Cq
n, the technique is to pass to a localisation of Cq

n which

has the structure of an ambiskew polynomial ring, prove a more general result, and then

pass that result back to Cq
n. Ambiskew polynomial rings are a construction introduced by

Jordan in the 1990s which include many classic examples of noncommutative algebras, most

notably the enveloping algebra U(sl2) and its quantization Uq(sl2). As the name suggests,

they are iterated skew polynomial extensions of a base ring in two variables, with a symmetry

between the two indeterminates.

The ambiskew polynomial rings we consider will be conformal, meaning they have a

normal Casimir element z. Factoring out a Casimir element from an ambiskew polynomial

ring gives a construction called a generalised Weyl algebra. These had been introduced by

Bavula prior to that of ambiskew polynomial rings; in fact, any ambiskew polynomial ring

can be presented as a generalised Weyl algebra, though we will not make use of this.
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In Section 3, we prove the results about ambiskew polynomial rings and generalised Weyl

algebras which we need for Section 5, building on the work of Bavula, Jordan and Wells on

the simplicity of these rings and their dimension theory. Specifically, we give conditions for a

simple localisation of an ambiskew polynomial ring in the case of a central Casimir element,

and describe the unique maximal ideal of a generalised Weyl algebra in the case where one

condition of the simplicity criterion for generalised Weyl algebras developed by Bavula does

not hold.

In Section 6, we investigate the Poisson prime spectra of the semiclassical limit Poisson

algebras of the families (Lqn)q 6=0 and (Cq
n)q 6=0. These correspond to the prime spectra of

the corresponding noncommutative algebras, although in the case of CP
n there are only two

exceptional height 2 Poisson maximal ideals, as opposed to countably infinitely many in the

noncommutative case. (However, we note that setting q = 1 in the formula that describes

the λ such that (Ω− λ)Cq
n is not maximal gives only two distinct values for λ.)

In Sections 7 and 8 we return to the cluster algebras where the story began. Section

8 describes a quantum cluster algebra structure on Lqn and determines a quantum cluster

algebra that contains Cq
n. (It is not known whether there is a quantum cluster algebra

structure on Cq
n itself, but it seems unlikely). Both these quantum cluster algebras arise

from acyclic quivers, and in Section 7 we produce a simple localisation for a quantum cluster

algebra arising from an acyclic quiver, extending a result of Zwicknagl.

The reader may notice that the presentation in this introduction is not the same order

as the presentation in the thesis. The order in the thesis ensures that things build up

mathematically, so no result requires a result from later in the thesis, whereas the order in

this introduction is more-or-less chronological, showing the order in which the results were

developed and how they led to each other.
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2 Background

The aim of this section is to set up the definitions, notations and standard theorems about

the various structures we will use.

2.1 Notation

Most notation is standard; the following are potential areas of confusion.

N denotes the natural numbers; we consider 0 to be a natural number. N+ denotes the

strictly positive integers.

A ⊂ B denotes “A is a subset of B”; it does not imply A 6= B.

2.2 Noncommutative Noetherian rings

2.2.1 Basics

The books [18] and [33] provide a fuller introduction to this topic.

For us, a ring is unital and associative but not necessarily commutative.

A domain is a ring in which every non-zero element is regular, i.e. not a zero-divisor. (It

is not required to be commutative). A field is a commutative ring in which every non-zero

element has a multiplicative inverse (a noncommutative ring with this property is a division

ring). We will use the notation R∗ for the set of non-zero elements of a domain R.

For our purposes, a k-algebra is a ring R with a homomorphism k → Z(R), where Z(R)

denotes the centre of R. Generally k will be a field, in which case the homomorphism is

injective and we identify k with its image in R. If k is a field then a k-algebra is also a

k-vector space. Most of our rings will be k-algebras for some (arbitrary) field k. When we

talk of homomorphisms between k-algebras we will mean k-algebra homomorphisms unless

otherwise stated.

Definition 2.1. A two-sided ideal P of a ring R is a prime ideal of R if, for any two-sided

ideals A and B of R, AB ⊂ P implies A ⊂ P or B ⊂ P .

A two-sided ideal P of a ring R is a completely prime ideal of R if, for any elements

a and b of R, ab ∈ P implies a ∈ P or b ∈ P - that is, if the factor ring R/P is a domain.

From now on, we will use “ideal” to mean “two-sided ideal”, and explicitly write “left

ideal” or “right ideal” when discussing one-sided ideals.
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We denote the set of prime ideals of a ring R, which is called the spectrum of R, by

Spec R. For our purposes, we will think of this as a partially ordered set under inclusion,

though one can put various topologies on it.

Proposition 2.2. A completely prime ideal is a prime ideal.

Proof. This follows from [33, 0.2.3(i)].

Remark. In commutative algebra the definition given above for “completely prime ideal”

would normally be given as the definition of “prime ideal”. However, for a commutative ring

all prime ideals are completely prime, so there is no inconsistency.

Definition 2.3. A ring R is left Noetherian if it satisfies the ascending chain condition

on left ideals, that is, if I1 ⊂ I2 ⊂ I3 ⊂ · · · is a chain of left ideals of R then there exists

n ∈ N such that Im = In for all m ≥ n.

Similarly a ring is right Noetherian if it satisfies the ascending chain condition on right

ideals.

A ring is Noetherian if it is both left and right Noetherian.

Proposition 2.4. ([18, Remark after Prop 1.2]). If R is a left (resp. right) Noetherian ring

and I is a two-sided ideal of R then R/I is also left (resp. right) Noetherian.

Definition 2.5. For a ∈ N+, q an element of some ring R, define [a]q := 1 + q + · · ·+ qa−1.

If R is a field, then [a]q = 1−qa
1−q and so if qa 6= 1, [a]q 6= 0

2.2.2 Localisation

In commutative algebra, given an integral domain R and a prime ideal P of R, one can

localise R at P , constructing a ring RP which contains R, but in which every non-zero

element of R \ P is a unit. There is then a one-to-one correspondence between ideals of RP

and ideals of R containing P , which is crucial to the study of prime ideals in R.

In noncommutative algebra, a similar technique works, but more care is needed. In the

following definition, it is possible - with some extra work - to remove the requirement that X
only contains regular elements of R. However, we will not need this, so state the definition

in this form for simplicity.

Definition 2.6. ([33, 2.1.3]). Let R be a ring, and X a multiplicatively closed set of regular

elements of R - that is, if x, y ∈ X then xy ∈ X , and no element of X is a zero-divisor. Then

a (right) localisation of R with respect to X is a ring extension Q of R such that:
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(i) for all x ∈ X , x is a unit in Q;

(ii) for all q ∈ Q, q = rx−1 for some r ∈ R, x ∈ X .

Remark. The term “quotient ring” is unhelpful, as it can refer both to the above construction

and to the construction R/I where I is a two-sided ideal of R. We will use the terms

“localisation” for the first and “factor ring” for the second throughout.

Definition 2.7. ([33, 2.1.6]). A set X of elements of a ring R is called a right Ore set if

it is a multiplicatively closed set of regular elements of R and, for every r ∈ R and x ∈ X ,

there exist r′ ∈ R and x′ ∈ X such that rx′ = xr′.

Theorem 2.8. ([33, 2.1.12, 2.1.4]). Let R be a ring and X a multiplicatively closed set of

regular elements of R. Then a right localisation of R with respect to X exists if and only if

X is a right Ore set. If it does exist, it is unique up to isomorphism and we will denote it

by RX .

One can similarly define left localisations and left Ore sets, and the analogue of the above

theorem holds; we denote the left localisation by XR.

Proposition 2.9. ([18, Proposition 6.5]). Let R be a ring and let X be a right and left Ore

set in R. Then XR = RX .

A key technique in investigating the prime spectrum of a ring is to localise, investigate

the prime spectrum of the localisation and then pass back to the original ring. If the original

ring is Noetherian then passing between the two is straightforward:

Theorem 2.10. ([33, 2.1.16(vii)]). Let R be a Noetherian ring, and X a right Ore set in

R. Then there is a one-to-one inclusion-preserving correspondence between Spec RX and

{P ∈ Spec R : P ∩ X = ∅} given by P ′ 7→ P ′ ∩R, P 7→ PRX .

([18, Exercise 6C]). Furthermore, RX is a Noetherian ring.

When R is not necessarily Noetherian we need to be more careful. We will need the follow-

ing two results, both of which are immediate from the previous theorem if R is Noetherian.

Proposition 2.11. Let R be a domain and X a right Ore set in R. If I ∩ X 6= ∅ for any

non-zero ideal I of R, then RX is simple. If in addition RX is right Noetherian then the

converse holds.
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Proof. Suppose first J∩X 6= ∅ for any ideal J of R. If ICRX then I∩RCR and I = (I∩R)RX

by [33, 2.1.16(iii)], so I 6= 0 =⇒ I∩R 6= 0 =⇒ I∩R∩X 6= ∅ =⇒ I∩X 6= ∅ =⇒ I = RX .

Suppose now that RX is simple and right Noetherian, and let I be a non-zero ideal of

R. Then IRX is a non-zero two-sided ideal of RX by [33, 2.1.16(vi)], and so 1 ∈ IRX ; but

IRX = {is−1 : i ∈ I, s ∈ X}, so I ∩ X 6= 0.

The next result generalises [29, Lemma 3.1], where the Ore set Y is {yi}i≥1 for some

regular y ∈ R.

Lemma 2.12. Let R be a ring and Y a right and left Ore set in R such that any two elements

of Y commute. If RY is simple and I is a non-zero ideal of R then I ∩ Y 6= 0.

Proof. Let J := {y−1iz−1 : y, z ∈ Y , i ∈ I} ⊂ RY . We claim that J is an ideal of RY . If

j1 = y−1
1 i1z

−1
1 ∈ J and j2 = y−1

2 i2z
−1
2 ∈ J then

j1 + j2 = y−1
1 i1z

−1
1 + y−1

2 i2z
−1
2

= y−1
1 y−1

2 y2i1z2z
−1
2 z−1

1 + y−1
2 y−1

1 y1i2z1z
−1
1 z−1

2

= (y1y2)−1(y2i1z2 + y1i2z1)(z1z2)−1 since elements of Y commute.

This is an element of J since Y is multiplicatively closed and I is an ideal of R.

If j = y−1iz−1 ∈ J and c = rx−1 ∈ RY where r ∈ R, x ∈ Y , then

cj = rx−1y−1iz−1

= y′−1r′iz−1 ∈ J for some y′ ∈ Y , r′ ∈ R since Y is right Ore.

Similarly if j = y−1iz−1 ∈ J and c = x−1r ∈ YR = RY then jc ∈ J , so we’ve shown our

claim.

So J is a non-zero ideal of the simple ring RY , so 1 ∈ J . Therefore 1 = y−1iz−1 for some

y, z ∈ Y , i ∈ I so i = yz ∈ I ∩ Y .

2.2.3 Skew polynomial rings

One key construction of noncommutative rings for our purposes is that of skew polynomial

rings. These are rings whose additive structure is the same as that of a polynomial ring,

but where the multiplication has been “twisted” by an automorphism and a derivation of

the base ring. More formally:

Definition 2.13. Let R be a ring and α an automorphism of R. Then a (left) α-derivation

of R is a homomorphism of the additive abelian groups δ : R 7→ R such that

δ(rs) = α(r)δ(s) + δ(r)s for all r, s ∈ R
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If R is a k-algebra then a k-algebra α-derivation additionally satisfies δ(λ) = 0 for all

λ ∈ k.

Remark. One can similarly define a right α-derivation, in which case various aspects of the

following definition are also reversed. The book [18] uses the same convention as we do,

while the book [33] uses the opposite convention. From now on, all α-derivations are left α-

derivations, but we will happily cite the latter book and trust the reader - with this warning

- to make the appropriate left/right changes.

Definition 2.14. ([18, p34]). Let R be a ring, α an automorphism of R, and δ an α-

derivation of R.

We write S = R[x;α, δ], and call S a skew polynomial ring over R if S is a ring

extension of R with an x ∈ S such that:

(i) S is a free left R-module with basis {1, x, x2, · · · };

(ii) xr = α(r)x+ δ(r) for all r ∈ R.

If α is the identity automorphism or δ is the zero α-derivation, then we omit them and

write S = R[x; δ] or S = R[x;α] - or, if both if these, occur, then S is just a polynomial ring

over R and we write S = R[x].

We write S = R[x±1;α], and call S a skew Laurent polynomial ring over R if S is

a ring extension of R with an x ∈ S such that:

(i) x is a unit in S;

(ii) S is a free left R-module with basis {· · · , x−2, x−1, 1, x, x2, · · · };

(iii) xr = α(r)x for all r ∈ R.

Again, if α is the identity automorphism then S is just the Laurent polynomial ring over

R and we write S = R[x±1].

Remark. It is not actually required for this construction that α be an automorphism, but we

will not be considering more general skew polynomial rings, and the results below are easier

to state if α is always assumed to be an automorphism.

Proposition 2.15. Given a ring R, an automorphism α of R, and an α-derivation δ of R,

the skew polynomial ring R[x;α, δ] exists and is unique.

Given a ring R and an automorphism α of R, the skew Laurent polynomial ring R[x±1;α]

exists and is unique.
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Proof. [18, Proposition 2.3] gives existence and [18, Corollary 2.5] gives uniqueness for skew

polynomial rings, while [18, Exercises 1M and 1N, extending Lemma 1.11 and Corollary

1.12] give the results for skew Laurent polynomial rings.

Proposition 2.16. Let R be a ring, α an automorphism of R, and δ an α-derivation of R.

(i) R[x;α, δ] can also be described as the ring generated by R and x subject to the relations

ax = xα(a) + δ(a) for all a ∈ R.

(ii) If R is a domain then R[x;α, δ] is a domain also.

(iii) If R is right (resp. left) Noetherian then R[x;α, δ] is right (resp. left) Noetherian also.

Proof. (i) See [33, 1.2.4].

(ii) See [33, 1.2.9(i)].

(iii) See [33, 1.2.9(iv)].

Proposition 2.17. Let R be a ring and α an automorphism of R.

(i) R[x±1;α] can also be described as the ring generated by R and x±1 subject to the rela-

tions ax = xα(a) for all a ∈ R, plus the relation xx−1 = 1 = x−1x.

(ii) If R is a domain then R[x±1;α] is a domain also.

(iii) If R is right (resp. left) Noetherian then R[x±1;α] is right (resp. left) Noetherian also.

(iv) The set X = {xi : i ∈ N} is a right and left Ore set in R[x;α], and R[x±1;α] = R[x;α]X .

Proof. (i) See [33, 1.4.3].

(ii) See [33, 1.4.5].

(iii) See [33, 1.4.5].

(iv) See [18, Exercise 10D].
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Definition 2.18. An iterated skew polynomial ring over a ring R is a ring of the form

R[x1;α1, δ1][x2;α2, δ2] · · · [xn;αn, δn]

where each αi is an automorphism of R[x1;α1, δ1] · · · [xi−1;αi−1, δi−1] and each δi is an αi-

derivation of the same ring.

An iterated skew Laurent polynomial ring over a ring R is a ring of the form

R[x±1
1 ;α1][x±1

2 ;α2] · · · [x±1
n ;αn]

where each αi is an automorphism of R[x±1
1 ;α1] · · · [x±1

i−1;αi−1].

Example 2.19. The quantum plane, sometimes denoted kq[x, y] or Oq(k2), is the k-algebra

generated by x and y subject to the relation xy − qyx = 0, where q ∈ k× is some scalar.

This is an iterated skew polynomial ring k[x][y;α] where α(x) = qx. The name and notation

come from the fact that this is a quantization of the commutative ring k[x, y] - in the sense

that O1(k2) = k[x, y] - which in algebraic geometry is the coordinate ring of the plane k2

and so is sometimes denoted O(k2).

The (2-dimensional) quantum torus, sometimes denoted kq[x
±1, y±1] or Oq((k×)2), is

the k-algebra generated by x±1 and y±1 subject to the relation xy−qyx = 0, where q ∈ k× is

some scalar. This is an iterated skew Laurent polynomial ring k[x±1][y±1;α] where α(x) = qx.

In a similar fashion, this is a quantization of the commutative Laurent polynomial ring

k[x±1, y±1] = O((k×)2), the coordinate ring of the 2-dimensional torus.

Note that in the rest of this work, we will use a third different notation for the quantum

plane, the quantum torus, and their higher-dimensional analogues: see Section 2.2.4.

The first Weyl algebra, usually denoted A1(k) or just A1, is the k-algebra generated

by x and y subject to the relation xy − yx = 1. This is an iterated skew polynomial ring

k[x][y; δ] where δ(x) = 1.

The first quantized Weyl algebra, usually denoted Aq1(k) or just Aq1, is the k-algebra

generated by x and y subject to the relation xy − qyx = 1 − q. This is an iterated skew

polynomial ring k[x][y;α, δ] where α(x) = qx and δ(x) = 1− q.

Definition 2.20. If R is a k-algebra, x, y ∈ R, q ∈ k, we will sometimes write [x, y]q :=

xy − qyx. This is called the q-commutator of x and y. If [x, y]q = 0 then we say x and y

q-commute; we say x and y skew-commute if there exists some q ∈ k such that x and y

q-commute.

For instance, in the quantum plane Oq(k2), [x, y]q = 0 and xa skew-commutes with yb for

all a, b ∈ N.
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Remark. Often, the first quantized Weyl algebra is described as the k-algebra generated

by x and y subject to the relation xy − qyx = 1. Provided q 6= 1, these two algebras

are isomorphic. We use the above convention for two reasons: firstly, the relation can be

rewritten yx − q−1xy = 1 − q−1, giving a symmetry between x and y up to replacing q by

q−1; secondly, since the case q = 1 is then commutative, this allows us to form a semiclassical

limit Poisson algebra as in Section 2.4.

Proposition 2.21. Let R be a k-algebra, α a k-algebra automorphism of R, and δ a k-

algebra α-derivation of R. Suppose R is generated as a k-algebra by a set X ⊂ R. Then

R[x;α, δ] can also be described as the k-algebra generated by R and x subject to the relations

ax = xα(a) + δ(a) for all a ∈ X.

Let R be a k-algebra and α a k-algebra automorphism of R. Suppose R is generated

as a k-algebra by a set X ⊂ R. Then R[x±1;α] can also be described as the k-algebra

generated by R and x±1 subject to the relations ax = xα(a) for all a ∈ X, plus the relation

xx−1 = 1 = x−1x.

Proof. Let S denote R[x;α, δ], respectively R[x±1;α], and let T denote the k-algebra gen-

erated by R and x, respectively R and x±1, subject to the relations ax = xα(a) + δ(a) for

all a ∈ X (with the notational convention that δ = 0 in the skew Laurent case). So by

Proposition 2.16 (i) or Proposition 2.17 (i) respectively, there is a surjection ψ : T → S

which is the identity on R and sends x to x.

We note that if a ∈ R is such that, in T , ax = xα(a) + δ(a) and b ∈ R is such that, in

T , bx = xα(b) + δ(b) then, again with calculations taking place in T :

(a+ b)x = ax+ bx = xα(a) + xα(b) + δ(a) + δ(b) = xα(a+ b) + δ(a+ b);

(ab)x = a(xα(b) + δ(b)) = xα(a)α(b) + δ(a)α(b) + aδ(b) = xα(ab) + δ(ab); and

(λa)x = λ(xα(a) + δ(a)) = xλα(a) + λδ(a) = xα(λa) + δ(λa) for any λ ∈ k.

Therefore, the set {a ∈ R : ax = xα(a) + δ(a) in T} is a subalgebra of R. But this

subalgebra contains X, and so equals R since X generates R.

So again by Proposition 2.16 (i) or Proposition 2.17 (i) respectively, there is a surjection

φ : S → T which is the identity on R and sends x to x. But since they are both surjections,

φ must be the inverse of the map ψ, and so they must be isomorphisms. Since they are both

the identity on R and send x to x, we can use these maps to identify S and T .

Proposition 2.22. Let k be a ring, X a set, F the free k-algebra generated by X, I an ideal

of F generated by a set Y , and α a function X → F . Using the universal property for F

we can extend α to a k-algebra homomorphism F → F , which we can then compose with the
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natural map F → F/I to get a k-algebra homomorphism F → F/I. We claim this induces

a k-algebra homomorphism F/I → F/I if and only if α(I) ⊂ I. Further, if α defined an

automorphism of F and α(I) = I then the induced homomorphism F/I → F/I is also an

isomorphism.

If in addition to the above we have a function δ : X → F , we can extend δ to a k-algebra

α-derivation of F using the definition of an α-derivation. We claim this induces a k-algebra

α-derivation of F/I if and only if δ(I) ⊂ I.

Proof. Denote by π the natural map F → F/I.

Define α∗ : F/I → F/I by α∗(x) = π(α(x∗)) where x∗ is such that π(x∗) = x. This is

well-defined since if π(z∗) = π(x∗) = x then z∗−x∗ ∈ I, so π(α(z∗)) = π(α(x∗)+α(z∗−x∗)) =

π(α(x∗)) = α∗(x) since α(I) ⊂ I. That α∗ is a homomorphism follows from the fact that α

and π are homomorphisms - for example, α∗(x + y) = π(α(x∗ + y∗)) = πα(x∗) + πα(y∗) =

α∗(x) + α∗(y).

If α(I) = I and α is a automorphism then α∗(a) = 0 iff α(a∗) ∈ I iff a∗ ∈ I iff a = 0,

and so α∗ is injective, while if a ∈ F/I, there exists b∗ ∈ F such that π(α(b∗)) = a since α

is surjective, and so α∗(π(b∗)) = a, so α∗ is surjective, and so an automorphism.

The same argument as in the first part lets us define δ∗ : F/I → F/I by δ∗(x) = π(δ(x∗))

where π(x∗) = x. Then since δ∗(xy) = π(δ(x∗y∗)) = π(α(x∗)δ(y∗) + δ(x∗)y∗) = α∗(x)δ∗(y) +

δ∗(x)y, δ∗ is an α∗-derivation.

When applying this proposition to a k-algebra defined by generators and relations, we

will not formally pass up to the free algebra, but rather “check that all the relations are

preserved by α”, as in the following example. This is a shorthand, though – what we are

actually doing is what is described above.

Example 2.23. The quantum space with parameters qij for 1 ≤ i, j ≤ n, where qij ∈ k and

qijqji = 1, is the k-algebra generated by x1, . . . , xn subject to the relations xixj = qijxjxi for

all i, j. This is an iterated skew polynomial ring k[x1][x2;α2] · · · [xn;αn] where αj(xi) = qijxi

for i < j.

Proof. We prove this by induction on n. If n = 1 this is trivial. For n > 1, the subalgebra

Rn−1 generated by x1, . . . , xn−1 is also a quantum space, and so by induction it is an iterated

skew polynomial ring. We check that αn defines an automorphism of Rn−1: if i < j < n then

αn(xixj − qxjxi) = qinqjnxixj − qjnqinqxjxi = qinqjn(xixj − qxjxi), so by Proposition 2.22 αn

does define an automorphism of Rn−1. Then by Proposition 2.21, Rn−1[xn;αn] is indeed the

described quantum space.
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Example 2.24. The second quantized Weyl algebra with parameter q is the k-algebra

generated by x1, x2, y1, and y2 subject to the relations xiyi = qyixi for i = 1, 2, x1x2 =

x2x1, y1y2 = y2y1, and xiyj = yjxi for i 6= j. This is an iterated skew polynomial ring

k[x1][y1;α1, δ1][x2][y2;α2, δ2] where αi(xi) = qxi for i = 1, 2, α2(x1) = x1, α2(x2) = x2,

δi(xi) = 1− q for i = 1, 2, δ2(x1) = δ2(x2) = 0.

Proof. Certainly the subalgebra S of this second quantized Weyl algebra generated by x1, y1

and x2 equals k[x1][y1;α1, δ1][x2]. We check that α2 defines an automorphism of S: α2(x1y1−
qy1x1−(1−q)) = x1y1−qy1x1−(1−q), α2(x1x2−x2x1) = q(x1x2−x2x1), and α2(y1x2−x2y1) =

q(y1x2 − x2y1), so by Proposition 2.22 αn does define an automorphism of S. Now we check

that δ2 defines an α2-derivation of S: δ2(x1y1 − qy1x1 − (1 − q)) = 0, δ2(x1x2 − x2x1) =

(x1(1−q)+0)−(0+(1−q)x1) = 0, and δ2(y1x2−x2y1) = (y1(1−q)+0)−(0+(1−q)y1) = 0,

so by Proposition 2.22, δ2 does define an α2-derivation of S. Then by Proposition 2.21,

S[y2;α2, δ2] is indeed the second quantized Weyl algebra.

Definition 2.25. Let R be a k-algebra, and let X be some finite set of elements of R, with

some total ordering so that we can write X = {x1, . . . , xn}. Then the family (xa11 · · ·xann )ai∈N

is a PBW basis for R if it is a basis for R, that is, it spans R as a k-vector space and is

linearly independent over k.

Remark. This is a family, as in [35, 1.1 and 6.5.1], rather than a set, so it can have repeated

elements - but if it does, then it is certainly not linearly independent.

Proposition 2.26. Let R = k[x1][x2;α2, δ2] · · · [xn;αn, δn] be an iterated skew polynomial

ring. Then R has a PBW basis with respect to the set {x1, . . . , xn}.

We conclude this section with some results about prime ideals in skew polynomial and

skew Laurent rings. The first is a standard characterisation of simplicity in skew Laurent

rings.

Definition 2.27. Let A be a ring, and α an automorphism of A. Then A is α-simple if it

has no non-trivial α-stable (that is, α(I) ⊂ I) ideals.

Definition 2.28. Let A be a ring, and u ∈ A a unit. Then a 7→ u−1au is an automorphism

of A. Such an automorphism is called an inner automorphism of A.

Theorem 2.29. ([33, 1.8.5]). Let A be a ring, and α an automorphism of A. Then A[x±1;α]

is simple if and only if A is α-simple and no power of α is an inner automorphism of A.
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The next result follows the proof of [33, 9.6.9(i)], and in fact follows from that result, but

we prove it here to avoid unnecessarily setting up the machinery of tensor products.

Theorem 2.30. Let k be a field, let A be a simple k-algebra such that Z(A) = k, and let I

be an ideal of A[t]. Then I is generated by an element of k[t].

Proof. Consider the polynomials in I of minimal degree d. Their leading coefficients form

an ideal of A, so there must be some monic polynomial p in I of degree d. Then for every

a ∈ A, ap− pa is an element of I of degree < d, so must be zero. Therefore each coefficient

in p must be central in A, so in k, that is, p ∈ k[t].

Now consider the polynomials in I which are not in pA[t], and consider such a polynomial

q of minimal degree among such polynomials. If q has leading coefficient a and degree e then

r = q − apte−d is an element of I of degree less than e, so by the minimality of e, r ∈ pA[t],

and so q = apte−d + r ∈ pA[t], contradicting that q /∈ pA[t]. Therefore no such q exists and

I = pA[t].

Finally, we give a result that allows us to show that certain normal elements in a skew

polynomial ring generate completely prime ideals.

Lemma 2.31. ([27, Proposition 1]). Let σ be an automorphism and δ a σ-derivation of a

domain A. Let R = A[x;σ, δ]. Let c be a normal element of R of the form dx + e, where

d, e ∈ A and d 6= 0. Let β be the automorphism of R such that cr = β(r)c for all r ∈ R.

Then β(A) = A, d is normal in A and β(a)d = dσ(a) for all a ∈ A. Furthermore, if e is

regular modulo Ad then R/Rc is a domain.

2.2.4 Quantum spaces and quantum tori

Definition 2.32. Let k be a field, let x = (xv)v∈Q be a tuple indexed by some finite set Q,

and let L = (Lvw)v,w∈Q, where the Lvw are integers such that Lvw = −Lwv for v, w ∈ Q,

that is, L is a skew-symmetric integer matrix indexed by Q. Then the quantum space

Sq(k,x,L) - which we will shorten to Sq(x,L) if the base field is unambiguous - is the

k-algebra generated by the set x subject to the relations xvxw = qLvwxwxv for all v, w ∈ Q.

If we denote by W the set of all monomials in x within Sq(k,x,L), we can define the

quantum torus Tq(k,x,L) - or as before, Tq(x,L) if the base field is unambiguous - as

Sq(k,x,L)W . Alternatively, this is the k-algebra generated by x±1 := x ∪ {x−1
v : v ∈ Q},

subject to the relations xvx
−1
v = x−1

v xv = 1 as well as xvxw = qLvwxwxv for all v, w ∈ Q.

If we have an ordering of the elements of Q then we can give x the same ordering,

which allows us, by Propositions 2.21 and 2.22, to construct Sq(k,x,L) as an iterated skew
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polynomial ring over k, and Tq(k,x,L) as an iterated skew Laurent polynomial ring over

k. This gives a PBW basis for Sq(x,L) or Tq(x,L) consisting of monomials in x or in x±1

respectively.

In Section 2.2.3 we had the quantum plane, the quantum torus and the quantized Weyl

algebra. The above are higher-dimensional versions of the first two, which we will use

extensively. There are several higher-dimensional versions of the quantized Weyl algebra,

with the one found in (e.g.) [2, 1.4] being perhaps the most common, but the following

simpler version from [2, 1.5] is of more relevance to us:

Definition 2.33. Let k be a field, let n ∈ N+, let Λ = (λij)1≤i,j≤n be a multiplicatively

skew-symmetric n×n matrix of non-zero elements of k, and let q = (qi)1≤i≤n be an n-tuple of

non-zero elements of k. Then the nth quantized Weyl algebra Aq,λ
n is the k-algebra generated

by a set of generators {xi, yi : 1 ≤ i ≤ n} and relations, for 1 ≤ i < j ≤ n,

xixj = λijxjxi yjyi = λjiyiyj

xiyj = λjiyjxi xjyi = λijyixj

xjyj = qjyjxj + 1

In [2, 1.5] it is also shown that Aq,λ
n is an iterated skew polynomial ring over k.

2.2.5 Uniform rank

For the purposes of this section, all modules are right R-modules.

Definition 2.34. ([33, 2.2.1, 2.2.5]). Let M be an R-module. An essential submodule of

M is a submodule N such that N ∩X 6= 0 for all nonzero submodules X of M .

A moduleM is a (right) uniform module ifM is non-zero and every non-zero submodule

of U is an essential submodule.

The next result gives a useful characterisation of uniform modules.

Lemma 2.35. ([33, 2.2.5]). A nonzero module U is uniform if and only if, given u1, u2 ∈ U
both nonzero, there exist r1, r2 ∈ R such that u1r1 = u2r2 6= 0.

Definition 2.36. ([33, 2.2.10]). The uniform rank of a module M , (also variously called

the Goldie rank; the rank; the uniform dimension; the Goldie dimension; or the dimension

of M), is ∞ if M contains an infinite direct sum of non-zero submodules, or otherwise is

the unique n such that M contains an essential submodule which is a finite direct sum of n

uniform submodules.

The right uniform rank of a ring R is the uniform rank of R as a right R-module.
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The next result confirms that the uniform rank is well-defined.

Theorem 2.37. Let M be an R-module which does not contain an infinite direct sum of

non-zero submodules. Then:

(i) M contains an essential submodule which is a finite direct sum of uniform submodules,

with say n summands ([33, 2.2.8]);

(ii) any direct sum of nonzero submodules has at most n summands ([33, 2.2.9(i)]); and

(iii) a direct sum of uniform submodules of M is essential in M if and only if it has n

summands ([33, 2.2.9(ii)]).

Remark. Any Noetherian module - in particular, any finitely generated module over a

Noetherian ring - must have finite uniform rank.

Example 2.38. ([33, 2.2.11]). Any right Ore domain has right uniform rank 1.

Let R = k[x, y]/(x, y)n. Then R has right uniform rank n.

Let R = Mn(S), where S has right uniform rank s. Then R has right uniform rank ns.

Remark. These examples illustrate that in some sense the uniform rank of a ring - at least

for Noetherian rings - measures how far the ring is from being a domain.

Lemma 2.39. ([33, 2.2.12(v)]). Let X be a right Ore set of regular elements of a ring R.

Then RX and R have the same right uniform rank.

2.2.6 Localisation under ring constructions

In the above, we have described a number of methods to construct new rings from an original

ring R. We will often have an Ore set in R and wish to pass this Ore set to the new ring we

have constructed. This section provides results that allow us to do this. First, we consider

factor rings by some ideal I of R.

Lemma 2.40. Let R be a ring, I a two-sided ideal in R, X a right Ore set in R such that

{r ∈ R : rs ∈I for some s ∈ X} = I. Then the image X̄ of X in R/I is a right Ore set in

R/I, and there is a surjective map

θ : RX → (R/I)X̄ such that θ(rx−1) = r̄x̄−1 and ker θ = IX .

Thus we can identify (R/I)X̄ with RX/IX .
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Proof. First we check that X̄ is a right Ore set in R/I. Let ā ∈ R/I, s̄ ∈ X̄ , and pick lifts

to a and s to R and X respectively. Then there exist x ∈ X and r ∈ R s.t. ax = sr. Then

āx̄ = s̄r̄ and x̄ ∈ X̄ , so X̄ is a right Ore set in R/P .

To get existence of θ, we note that the composition of natural maps R→ R/I → (R/I)X̄

takes any element of X to an invertible element, and so the above map factors through RX ,

giving θ such that θ(rx−1) = r̄x̄−1, which is clearly surjective.

We now need to consider ker θ. Suppose θ(rx−1) = 0, that is, r̄x̄−1 = 0 in (R/I)X̄ . By

[18, Lemma 10.1(c)], this holds iff there exists z̄ ∈ X̄ such that r̄z̄ = 0 in R/I, i.e. iff there

exists z ∈ X s.t. rz ∈ I. But the condition {r ∈ R : rs ∈I for some s ∈ X} = I then tells

us that r ∈ I. Thus rx−1 ∈ ker θ iff r ∈ I, i.e. ker θ = IX .

Corollary 2.41. Let R be a right Noetherian ring, P a prime ideal in R and X a right Ore

set in R such that X ∩ P = ∅. Then the image X̄ of X in R/P is a right Ore set in R/P ,

and we can identify (R/P )X̄ with RX/PX .

Proof. By [18, Lemma 10.19], (R/P ) is X -torsionfree as an R-module, which is equivalent

to assR/PX = {r ∈ R : rs ∈P for some s ∈ X} = P , so we can apply Lemma 2.40.

Next, we consider skew polynomial extensions.

Lemma 2.42. Let R be a ring, α an automorphism of R, δ an α-derivation of R, and X a

right Ore set in R such that α(X ) = X . Then X is a right Ore set in R[x;α, δ].

Proof. We note that if y is regular in R then y is regular in R[x;α, δ], so X is a set of regular

elements in R[x;α, δ]. Then the result follows from [15, Lemma 1.4].

Finally, we have a number of results describing the interactions between two Ore sets in

R.

Lemma 2.43. Let R be a ring, and X and Y two right Ore sets in R such that, for any

x ∈ X and y ∈ Y, there exists qxy ∈ k× such that xy = qxyyx. Then X is a right Ore set in

RY .

By symmetry, Y is also a right Ore set in RX , and (RX )Y = (RY)X .

Proof. Let x ∈ X and r ∈ RY . We can write r = sy−1 where s ∈ R and y ∈ Y . Since

X is a right Ore set in R, there exist s′ ∈ R and x′ ∈ X such that sx′ = xs′. Then

sy−1x′ = qx′ysx
′y−1 = qx′yxs

′y−1, so defining r′ = qx′ys
′y−1 we have rx′ = xr′. Therefore X

is a right Ore set in RY .
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For the second part, (RX )Y is a right localisation of RY with respect to X , since all x ∈ X
are units in (RX )Y , and (rx−1)y−1 = (qyxry

−1)x−1, and so we’re done by the uniqueness of

localisations.

Lemma 2.44. Let R be a ring, X a right Ore set in R, and Y a set of regular normal

elements in R such that for all y ∈ Y, if αy is the automorphism defined by ry = yαy(r),

then αy(X ) = X . Then the multiplicative closure Z of X ∪ Y is a right Ore set in R also.

Further, RZ = (RY)X .

Proof. Any element of Z is regular in R, since any element of X or Y is. Using the condition

on the automorphisms αy, any element of Z can be written xy where x ∈ X and y is in the

multiplicative closure of Y . Let xy ∈ Z and r ∈ R. Then since X is a right Ore set in R,

there exist x′ ∈ X , r′ ∈ R such that rx′ = xr′, so rx′y = xr′y = xyαy(r
′). Thus Z satisfies

the right Ore condition also.

Now (RY)X is a ring extension of R such that any element of Z is a unit in (RY)X , and

that any element of (RY)X can be written as ry−1x−1 = r(xy)−1 for some r ∈ R, x ∈ X ,

y ∈ Y . Therefore it is a right localisation of R with respect to Z, and so by Theorem 2.8 we

can identify RZ = (RY)X .

Lemma 2.45. Let R be a domain, and let X be a right Ore set in R. Suppose S is a ring

such that R ⊂ S ⊂ RX . Then the right quotient ring SX exists, and SX = RX .

Proof. We claim that RX is a right quotient ring of S with respect to X as in Definition 2.6.

That is, since S is a domain and R ⊂ S ⊂ RX , we need to show that for all x ∈ X , x is a

unit in RX , and that every element of RX can be written in the form sx−1 for some s ∈ S,

x ∈ X . Since RX is a right quotient ring of R with respect to X , x is a unit in RX for all

x ∈ X , and every element of RX can be written in the form rx−1 for some r ∈ R, x ∈ X
- but since R ⊂ S, an element of this form is automatically of the form sx−1 for s ∈ S,

x ∈ X .

Corollary 2.46. Let R be a domain and let X ⊂ Y be right Ore sets in R. Then RX ⊂ RY

in a natural way, and so (RX )Y = RY .

2.2.7 Dimensions

Definition 2.47. ([33, 7.1.2, 7.1.8]). Let R be a ring. A right R-module P is projective if

there is a free module F and a module M such that F ∼= P ⊕M .
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A finite projective resolution of length n of a right R-module M is an exact sequence

0→ Pn → · · · → P0 →M → 0

where each Pi is projective.

The projective dimension of M , denoted pd M , is the minimal length of a finite

projective resolution for M , or ∞ if no finite projective resolution for M exists.

The right global dimension of R is rgld R := sup{pd M : M a right R-module}.
The left global dimension of R is defined analogously.

Definition 2.48. ([33, 7.1.3]). A right R-module I is injective if, given a module M such

that I ⊂M , there exists K ⊂M such that M = I ⊕K.

A finite injective resolution of length n of a right R-module M is an exact sequence

0→M → I0 → · · · → In → 0

where each Ii is injective.

The injective dimension of M , denoted id M , is the minimal length of a finite injective

resolution for M , or ∞ if no finite injective resolution for M exists.

Lemma 2.49. ([33, 7.1.8]). rgld R := sup{id M : M a right R-module}.

Thus the global dimension of a ring in some sense measures how “complex” its modules

can get.

Theorem 2.50. Let R be a ring.

(i) If R is Noetherian then lgld R = rgld R.

(ii) rgld Mn(R) = rgld R.

(iii) If x is a regular normal nonunit in R then either rgld R/xR = ∞ or rgld R/xR ≤
rgld R− 1.

(iv) If σ is an automorphism of R and δ is a σ-derivation of R then

(a) rgld R ≤ rgld R[x;σ, δ] ≤ rgld R + 1, provided rgld R <∞;

(b) rgld R[x;σ] = rgld R + 1;

(c) rgld R ≤ rgld R[x±1;σ] ≤ rgld R + 1, with equality in the second if σ = 0.
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(v) If X is some right Ore set in R then rgld R ≥ rgld RX , with equality iff there is a

simple right R-module M with pd M = n and MX 6= 0.

Proof. (i) See [33, 7.1.11].

(ii) See [33, 3.5.10 (vi)].

(iii) See [33, 7.3.5 (ii)].

(iv) (a) See [33, 7.5.3 (i)].

(b) See [33, 7.5.3 (iii)].

(c) See [33, 7.5.3 (ii, iv)].

(v) See [33, 7.4.3, 7.4.4].

Another method for measuring the “size” of a ring is its Krull dimension. For a

commutative ring R, this is defined as maximal length of a chain of prime ideals in R,

and is a key notion there. However, prime ideals are significantly rarer in noncommutative

algebra, due to the existence of simple rings that are not division rings. For a commutative

Noetherian ring, having Krull dimension 0 is equivalent to being Artinian, and so Krull

dimension describes “how far the ring is from being Artinian”, and it is this description that

the noncommutative Krull dimension maintains. We will not give technical details of the

construction, which can be found in [33, §6], but instead quote some results for calculating

Krull dimension.

We will denote the (right) Krull dimension of a ring R by K. dim R. If R is Noetherian

then this always exists by [33, 6.2.3].

Theorem 2.51. Let R be a right Noetherian ring.

(i) K. dim R ≥ the classical Krull dimension of R.

(ii) If R is commutative then K. dim R = the classical Krull dimension of R.

(iii) K. dim Mn(R) = K. dim R.

(iv) If σ is an automorphism of R and δ is a σ-derivation of R then

(a) K. dim R ≤ K. dim R[x;σ, δ] ≤ K. dim R+1, with equality in the second if δ = 0;
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(b) K. dim R ≤ K. dim R[x±1;σ] ≤ K. dim R + 1, with equality in the second if

σ = 0.

(v) If X is some right Ore set in R then K. dim R ≥ K. dim RX .

Proof. (i) See [33, 6.4.5].

(ii) See [33, 6.4.8].

(iii) See [33, 6.5.1 (iii)].

(iv) (a) See [33, 6.5.4 (i)].

(b) See [33, 6.5.4 (ii)].

(v) See [33, 6.5.3 (ii) (b)].

Lemma 2.52. Let R ⊂ S be rings, with R Noetherian, such that S is a faithfully flat right

and left R-module. Then K. dim R ≤ K. dim S and rgld R ≤ rgld S.

Proof. For Krull dimension, consider the map θ : I 7→ IS = I ⊗ S from right R-modules to

right S-modules. Since RS is flat, this preserves inclusions and J ⊗ S/I ⊗ S = (J/I) ⊗ S.

Since SR is faithfully flat, J/I ⊗ S = 0 iff J/I = 0, and so θ preserves strict inclusions.

Therefore by [33, 6.5.3(i)], K. dim R ≤ K. dim S.

For global dimension, this is [33, 7.2.6].

Lemma 2.53. Let R and S be rings. Then K. dim (R⊕S) = sup{K. dim R,K. dim S} (if

K. dim R and K. dim S exist) and rgld (R⊕ S) = sup{rgld R, rgld S}.

Proof. For Krull dimension, we use [33, 6.1.14], noting that any left ideal of R⊕ S must be

of the form I ⊕ J where I is a left ideal of R and J is a left ideal of S.

For global dimension, this is [34, Exercise 157].

Theorem 2.54. ([8, Theorem A]). Let T = Tq(x,L) be a quantum torus. Given a set of the

form y = {y1, · · · , ym}, where each yi is a monomial in x, let S(y) denote the subalgebra of

T generated by y. Given a subalgebra S of T , let rk S = inf{|y| : S = S(y)}, where |y| is

the cardinality of the set y. Then

rgld T = K. dim T = sup{rk S : S is a commutative subalgebra of T}

.
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A third notion of “dimension” in noncommutative ring theory is that of Gelfand-Kirillov

dimension, usually known as GK dimension. This is a measure of the rate of growth of the

algebra with respect to (any) generating set. We will mostly use this as a tool, rather than

as a goal in itself.

Lemma 2.55. ([33, 8.2.2]). Let R and S be k-algebras. If S is a subalgebra or a homomor-

phic image of R then GK dim S ≤ GK dim R.

Lemma 2.56. Let R and S be k-algebras which are Noetherian domains with GK dim R =

GK dim S, and let φ : R→ S be a surjective homomorphism. Then φ is an isomorphism.

Proof. By [30, Corollary 3.16], the kernel of φ must have height 0, that is, kerφ = 0.

Theorem 2.57. ([1, Theorem 1.3.1]). Let A be a finitely-generated k-algebra, let α be an

automorphism of A and let δ be an α-derivation of A. Suppose there is a finite dimensional

generating subspace B for A containing 1 such that δ(B) ⊂ B2 and α(B) ⊂ B. Then

GK dim A[x;α, δ] = GK dim A[x±1;α] = GK dim A+ 1.

2.3 Ambiskew polynomial rings and generalised Weyl algebras

One particular class of iterated skew polynomial rings we will be interested in is that of

ambiskew polynomial rings. In the generality we will consider here, these are certain

iterated skew polynomial rings of the form R = A[y;α][x;α−1, δ].

Definition 2.58. Let A be a ring, α an automorphism of A, and v a central element of

A. Then we can extend α−1 to A[y;α] by setting α−1(y) = y, and we can construct an

α−1−derivation δ of A[y;α] by setting δ(A) = 0 and δ(y) = v. (We use Proposition 2.22

to confirm that these constructions are valid: α−1(ya − α(a)y) = yα−1(a) − ay = 0 and

δ(ya − α(a)y) = yδ(a) + δ(y)a − aδ(y) − δ(α(a))y = va − av = 0). Then the ambiskew

polynomial ring R(A,α, v) is the iterated skew polynomial ring A[y;α][x;α−1, δ]. By

Proposition 2.21 this is the ring generated by A, x and y subject to the relations

ya = α(a)y for all a ∈ A;

xa = α−1(a)x for all a ∈ A;

xy − yx = v.

It is clear from these relations that we could alternatively write

R(A,α, v) = A[x;α−1][y;α, γ]
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where α(x) = x, γ(A) = 0, γ(x) = −v. The symmetry between the two iterated skew

polynomial rings is the source of the term “ambiskew”.

Remark. More general ambiskew polynomial rings - most notably, allowing v to be γ-normal

in A for any automorphism γ of A which commutes with α - can be constructed: see e.g.

[29].

On the other hand, when ambiskew polynomial rings were first introduced, in [25], the

base ring was commutative and they were always what is now known as conformal.

Example 2.59. The first Weyl algebra is an ambiskew polynomial ring over k with α being

the identity on k and v = 1. Similarly, the nth Weyl algebra is an ambiskew polynomial ring

over the (n− 1)th Weyl algebra with α being the identity and v = 1.

Definition 2.60. Let A, α, v be as in Definition 2.58. Suppose there exists a central element

u ∈ A such that v = u − α(u). Then z := xy − u = yx − α(u), which we call a Casimir

element, is central in R(A,α, v). In this case we call u a splitting element for R, and say

R is conformal or a conformal ambiskew polynomial ring; if no such u exists then we

say R is singular.

Proposition 2.61. If u is a splitting element for R and a ∈ A is such that α(a) = a then

u − a is also a splitting element for R; conversely if u and u′ are splitting elements for R

then α(u− u′) = u− u′.
In particular, if u ∈ A is a splitting element for R, R is a k-algebra and α is a k-

automorphism then u− λ is also a splitting element for any λ ∈ k.

Theorem 2.62. ([29, Theorem 3.10]). Let R = R(A,α, v) be an ambiskew polynomial ring,

where A is a k-algebra for some field k of characteristic 0. Then R is simple if and only if:

(i) A is α-simple, that is, A has no α-invariant non-zero proper ideals;

(ii) R is a singular ambiskew polynomial ring;

(iii) for all m ≥ 1, v(m) :=
∑m−1

i=0 αi(v) is a unit in A.

Definition 2.63. Suppose R = R(A,α, v) is a conformal ambiskew polynomial ring with

splitting element u, and consider the ring R/zR where z := xy−u as before. Then A∩zR = 0

so we can identify elements of A with their images in R/zR, and denote by X and Y the
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images of x and y respectively in R/zR. So we find that R/zR is the ring generated by A,

X and Y subject to the relations

Y a = α(a)Y for all a ∈ A;

Xa = α−1(a)X for all a ∈ A;

XY = u;

Y X = α(u).

Given a ring A, an automorphism α of A and a central element u of A, the ring T = T (A,α, u)

generated by A, X and Y subject to the above relations is called a generalized Weyl

algebra over A, following [3] and [4] (and subsequent papers). As for ambiskew polynomial

rings, this definition can be extended to the case where u is normal.

Remark. Given a generalised Weyl algebra T = T (A,α, u) one can construct the ambiskew

polynomial ring R = R(A,α, u− α(u)) which is conformal with splitting element u, so T is

isomorphic to R/zR where z is the Casimir element.

Remark. Any ambiskew polynomial ring is isomorphic to a generalised Weyl algebra in the

following way: let R = R(A,α, u) be an ambiskew polynomial ring, and then construct

the generalised Weyl algebra T = T (A[xy], α, xy) where α is extended to A[xy] by setting

α(xy) = xy − v. For proof, see [28, 2.6 Corollary].

Remark. If T (A,α, u) is a generalised Weyl algebra then there is a natural Z-grading on

T (A,α, u) with deg Y = 1, deg X = −1, deg a = 0 for a ∈ A.

Lemma 2.64. ([26, 5.2]). Let T (A,α, u) be a generalised Weyl algebra. Then

XmY m = Πm−1
i=0 α

−i(u) and Y mXm = Πm
i=1α

i(u).

Lemma 2.65. Let T (A,α, u) be a generalised Weyl algebra. If A is a domain then T (A,α, u)

is a domain.

Proof. T (A,α, u) embeds into A[y±1;α] via a 7→ a for a ∈ A, x 7→ uy−1 and y 7→ y; if A is a

domain then A[y±1;α] is also by Proposition 2.17 (ii).

There is a simplicity criterion for generalised Weyl algebras similar to Theorem 2.62.

This result generalises to the case where v is normal ([29, Theorem 5.4]).

Theorem 2.66. ([5, Theorem 4.2]). Let T = T (A,α, u) be a generalised Weyl algebra. Then

T is simple if and only if
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(i) A is α-simple

(ii) α has infinite order

(iii) u is regular

(iv) uA+ αm(u)A = A for all m ≥ 1

2.4 Poisson algebras and the semiclassical limit

The quantum torus, quantum plane, and quantized Weyl algebra are all examples of quan-

tum algebras - each is a noncommutative k-algebra with a scalar parameter q, such that

when q = 1 the algebra is commutative. For example, if we consider the quantum plane,

O1(k2) = k[x, y], the commutative polynomial ring in two variables. (This is the classical

coordinate ring of the plane, hence the name “quantum plane”).

The semiclassical limit Poisson algebra of such a family is a way to put additional

structure on this commutative ring such that it “remembers” some aspects of the noncom-

mutative family it came from. This has the advantage that the semiclassical limit, being

commutative, is usually easier to work with, but preserves enough of the structure that in-

vestigating it still provides insight into the original quantum algebra. Sometimes, this link

can be made more formal, though currently these tend to be in quite specific cases. The

survey article [16] provides an excellent introduction and overview of this topic.

We now proceed with the formal definitions. We work over a fixed field k.

2.4.1 Poisson algebras

Definition 2.67. A Poisson algebra is a commutative k-algebra A together with a Lie

bracket {−,−} on A such that {a,−} is a k-algebra derivation of A for all a. That is, {−,−}:

(i) is k-bilinear;

(ii) is antisymmetric;

(iii) satisfies the Jacobi identity, that is, {a, b}+ {b, c}+ {c, a} = 0 for all a, b, c ∈ A; and

(iv) satisfies the Leibniz rule, that is, {a, bc} = b{a, c}+ c{a, b} for all a, b, c ∈ A.

Many of the techniques we use in noncommutative algebra have analogues for Poisson

algebras. Again, one of the most important is localisation.
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Lemma 2.68. Let A be a Poisson algebra, and let X be a multiplicatively closed set of

regular elements in A. Then the Poisson bracket on A extends uniquely to AX , with

{ax−1, by−1} = {a, b}x−1y−1 − {a, y}bx−1y−2 − {x, b}ax−2y−1 + {x, y}abx−2y−2

where a, b ∈ A and x, y ∈ X .

Proof. That this defines a Poisson bracket is a straightforward check. The uniqueness follows

from using the Leibniz rule to determine {ax−1, by−1} from the Poisson bracket on A.

Definition 2.69. Let A be a Poisson algebra. Then an ideal P of A (as an associative

algebra) is a Poisson ideal if it is also a Lie ideal, that is {a, p} ∈ P for all a ∈ A, p ∈ P .

A Poisson ideal P of A is a Poisson prime ideal if IJ ⊂ P implies either I ⊂ P or

J ⊂ P , where I and J are Poisson ideals of A. We denote by PSpec A the partially ordered

(by inclusion) set of Poisson prime ideals of A.

We say a Poisson algebra is Poisson simple if it has no non-trivial Poisson ideals.

The Poisson centre of a Poisson algebra A is ZP (A) := {a ∈ A : {a, r} = 0 for all r ∈
A}. If a ∈ ZP (A) we say a is Poisson central in A.

A Poisson homomorphism between two Poisson algebras A and B is a ring homomor-

phism between A and B which is also a Lie algebra homomorphism. A Poisson automor-

phism of a Poisson algebra A is a Poisson homomorphism from A to A which is a bijection,

and therefore is a ring isomorphism and a Lie isomorphism.

Proposition 2.70. ([10, Lemma 3.3.2]). Let A be a Noetherian Poisson algebra (A is

Noetherian as an associative algebra) over a field of characteristic 0. Then an associative

ideal of A is Poisson prime if and only if it is both a prime ideal and a Poisson ideal.

Proposition 2.71. Let A be a Noetherian Poisson algebra over a field of characteristic 0,

and let X be a multiplicatively closed set of regular elements in A. Then there is a one-to-

one inclusion-preserving correspondence between PSpec AX and {P ∈ PSpec A : P ∩X = ∅}
given by P ′ 7→ P ′ ∩ A, P 7→ PAX .

Proof. If P ′ is a Poisson ideal of AX then P ′ ∩ A is a Poisson ideal of A: if p ∈ P ′ ∩ A and

a ∈ A then {p, a} ∈ P ′ since P ′ is a Poisson ideal of AX and {p, a} ∈ A since p, a ∈ A;

similarly, if P is a Poisson ideal of A then PAX is a Poisson ideal of AX , since if a ∈ P ,

x, y ∈ X and b ∈ A then all the terms in {ax−1, by−1} are in PAX .

Therefore, the one-to-one inclusion-preserving correspondence from Theorem 2.10 be-

tween Spec AX and {P ∈ Spec A : P ∩ X = ∅} given by P ′ 7→ P ′ ∩ A, P 7→ PAX restricts

to PSpec AX and vice versa.
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Definition 2.72. A Poisson maximal ideal in a Poisson algebra A is a Poisson ideal

which is maximal among Poisson ideals, that is, there is no Poisson ideal strictly containing

it other than A.

Proposition 2.73. A Poisson maximal ideal is a Poisson prime ideal.

Proof. This is immediate from [10, Lemma 3.3.2].

2.4.2 The semiclassical limit

Definition 2.74. (See e.g. [9, III.5.4]). Let R be a commutative k-algebra and let h ∈ R.

(Normally, we will take R = k[t±1] and h = t or h = 1 − t). Let A be an R-algebra with h

regular in A such that A/hA is commutative. Then, for all a, b ∈ A, ab− ba ∈ hA, and since

h is regular in A, 1
h
(ab− ba) is well-defined. So define {a+ hA, b+ hA} = 1

h
(ab− ba) + hA.

We call A/hA with this bracket the semiclassical limit Poisson algebra of the family

(A/(h− q)A)q∈k, h−q not a unit in R.

In some sense this bracket gives a “first-order” impression of the noncommutative algebra:

if ab − ba = hx1 + h2x2 + · · · , then {a + hA, b + hA} = x1 + hA, but all further terms are

lost.

Proposition 2.75. The bracket on A is a well-defined Poisson bracket on A/hA.

Proof. If a + hA = a′ + hA then a − a′ = rh for some r ∈ A; then 1
h
(a′b − ba′) + hA =

1
h
(ab− ba) + 1

h
(rhb− brh) + hA = 1

h
(ab− ba) + (rb− br) + hA; since A/hA is commutative,

rb−br ∈ hA. Therefore {−, b+hA} is well-defined for all b; similarly or by the antisymmetry,

the bracket as a whole is well-defined.

It is a standard result that taking {a, b} := ab− ba defines a Lie bracket on any algebra

A, and this passes through to the bracket we have defined on A/hA.

Finally, {a + hA, bc + hA} = 1
h
(abc − bca) + hA = 1

h
(bac − bca) + 1

h
(abc − bac) + hA =

b{a+ hA, c+ hA}+ c{a+ hA, b+ hA}.

Example 2.76. Let A be the k-algebra generated by x, y, and t±1 such that t is central, so A

is a k[t±1]-algebra, and xy − tyx = 0. Let h = t − 1; then A/hA is commutative, while for

q 6= 1, A/(h+ 1− q)A = A/(t− q)A ∼= Oq(k×). Then the semiclassical limit Poisson algebra

of this family is A/hA ∼= k[x, y] with {x, y} = yx (since xy−(h+1)yx = 0 so xy−yx = hyx).

Definition 2.77. Let x = (xv)v∈Q be a tuple indexed by some finite set Q, and let L =

(Lvw)v,w∈Q, where the Lvw are integers such that Lvw = −Lwv for v, w ∈ Q, that is, L
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is a skew-symmetrix integer matrix indexed by Q. Then the Poisson space, which we

denote SP (k,x,L), or SP (,L) if the base field is unambiguous, is the Poisson algebra whose

underlying associative algebra is the polynomial ring in the elements of x, with Poisson

bracket defined by {xv, xw} = Lvwxvxw.

Also the Poisson torus, which we denote TP (k,x,L), or TP (x,L) if the base field is

unambiguous, is the Poisson algebra whose underlying associative algebra is the Laurent

polynomial ring in the elements of x, with Poisson bracket defined by {xv, xw} = Lvwxvxw.

Alternatively, TP (k,x,L) = SP (k,x,L)W , where W is the set of non-zero monomials in x.

Alternatively, SP (k,x,L) is the semiclassical limit of the family (Sq(k,x,L))q 6=0 while

TP (k,x,L) is the semiclassical limit of the family (Tq(k,x,L))q 6=0.

Theorem 2.78. (This is analogous to [32, Proposition 1.3]). Let TP (k,x,L) be a Poisson

torus over a field of characteristic 0. Then TFAE:

(i) If (ai)i∈Q is a tuple such that
∑

i∈Q Lijai = 0 then ai = 0 for all i ∈ Q.

(ii) TP (k,x,L) is Poisson simple.

(iii) ZP (TP (k,x,L)) = k.

Proof. This is a direct consequence of [36, Lemma 1.2]; although the proof there is only

stated in the case k = C, it is still valid over arbitrary fields of characteristic 0.

2.5 Quantum cluster algebras

2.5.1 Definition

This section follows the scope of the definition and much of the notation from [21, §2.3].

Results with proofs here were left as exercises in those notes. As discussed in the introduction,

quantum cluster algebras are defined by an iterative process known as seed mutation, and

create quantum algebras with large numbers of generators but relatively simple relations.

They were first introduced in [6] (although their classical counterparts were a few years

earlier in [11]).

We will use a less general setting than that which is set up in [6], in order to be able to

describe the combinatorics in terms of quivers, since all the examples we are interested are

covered by this setting; this also (hopefully!) simplifies the notation. Other than the Laurent

phenomenon, all the results of this section that we quote from [6] are straightforward checks

in the current setting.

Before we start, we fix a field k and a non-zero scalar q ∈ k.
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Definition 2.79. A quiver Q consists of a finite set of vertices, which we also call Q, and,

for each pair of vertices v, w ∈ Q, an integer Bvw representing the number of arrows from v

to w. If Bvw is negative, then we interpret this as representing arrows from w to v, and so

we insist that Bvw = −Bwv. We also require that Bvv = 0 for all v ∈ Q, that is, there are no

loops in our quiver. (One could call this a directed multigraph without 1- or 2-cycles).

An ice quiver, or from now on just a quiver is a quiver (in the above sense) Q whose

vertices have been partitioned into two subsets Qmut and Qfroz, known as mutable and

frozen vertices respectively. Pictorially, we represent this by putting a square around a

frozen vertex. We also require that if v and w are both frozen vertices then Bvw = 0. If we

restrict to looking at just Qmut and arrows between vertices in Qmut then we get a quiver

with no frozen vertices which we call the principal part of Q.

We note the conditions above mean that all the information about Q is contained in the

integers (Bvw)v∈Q,w∈Qmut . We can treat this as an integer “matrix” B with rows parametrised

by Q and columns by Qmut. This matrix is skew-symmetric in the sense that the principal

part, that is, the restriction of B to Qmut, is skew-symmetric.

It will be helpful at times to give the vertices of Q an ordering, that is, we label the

vertices of Q by v1, . . . , vn, where n = |Q|. For convenience, we assume that vertices v1,

. . . , vm ∈ Qmut and vm+1, . . . , vn ∈ Qfroz, where m = |Qmut|. We will then use the shorthand

Bij = Bvivj , for vi ∈ Qmut and vj ∈ Q.

Remark. In [6], quantum cluster algebras are defined with the matrix B only required to be

skew-symmetrizable, that is, there exists some matrix D = (Duv)u,v∈Q with Duv = 0 if u 6= v

and Duu > 0 for all u ∈ Q, such that DB is skew-symmetric.

Definition 2.80. A (quantum) seed is a triple Q = (Q,x,L) where Q is an (ice) quiver,

x = (xv)v∈Q is a tuple - called a cluster - indexed by Q, and L = (Lvw)v,w∈Q is a skew-

symmetric integer matrix also indexed by Q, such that BTL = dI for some positive integer

d. Here I is the matrix with rows parametrised by Qmut and columns parametrised by Q

such that for v ∈ Q and w ∈ Qmut, Ivw = 1 if v = w while Ivw = 0 otherwise. This last

requirement is known as the compatibility condition.

Remark. Given a quantum seed Q = (Q,x,L) one can form the quantum space Sq(x,L) and

its localisation the quantum torus Tq(x,L). In the absence of any other ambient ring (see

Definition 2.91 later), we will work in Tq(x,L).

Remark. If Q is an ice quiver then the partition of Q into mutable and frozen vertices

extends to x and then to L, with the obvious notation xmut := (xv)v∈Qmut , xfroz := (xv)v∈Qfroz
,

Lmut := (Lvw)v,w∈Qmut and Lfroz := (Lvw)v,w∈Qfroz
.
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Often the elements of xfroz are referred to as “coefficients”.

Definition 2.81. (Quiver mutation) Let Q be a quiver and v ∈ Q a vertex. Then we can

construct a new quiver Q′, which we call the mutation of Q at v with the same vertex set

but different arrows. The arrows in Q′ are given by

B′uw =

−Buw u = v or w = v

Buw + |Buv |Bvw+Buv |Bvw|
2

otherwise.

Alternatively, and possibly more informatively, this process can be described in three

stages:

• Reverse any arrows starting or ending at v.

• “Complete triangles”, that is, for every pair of vertices u and w and pair of arrows u

to v and v to w, add an arrow w to u.

• Remove 2-cycles, that is, if we have arrows u to w and w to u, remove one from each

direction until they are all in the same direction.

Remark. Quiver mutation is a “local” process, i.e. when we mutate at a vertex v, the only

vertices that change are those that have arrows to or from v: if Buv = 0, then B′uw = Buw

for all w ∈ Q.

Definition 2.82. (Seed mutation) Let Q = (Q,x,L) be a seed, and v ∈ Q a vertex.

Then we can construct a new seed Q′, which we call the mutation of Q at v, by saying

Q′ = (Q′,x′,L′), where Q′ is as above and x′ and L′ are defined as follows:

Pick an ordering on the vertices of Q, with vk = v.

Let ei denote the ith basis vector in Zn, where n = |Q|. Let

b+
k := −ek +

∑
Bik>0

Bikei

b−k := −ek −
∑
Bik<0

Bikei

For (a1, . . . , an) ∈ Zn, define

λ(a1, . . . , an) =
1

2

∑
i<j

aiajLji

M(a1, . . . , an) = qλ(a1,...an)xa11 · · ·xann
Then define x′ by x′v = M(b+

k ) +M(b−k ), and x′u = xu for u 6= v. Thus x′u ∈ Tq(x,L) for all

u ∈ Q.
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Proposition 2.83. x′v is well-defined, that is, picking a different ordering on Q gives the

same element of Tq(x,L).

Proof. By [6, Lemma 4.4], M(a) is well-defined for a ∈ Zn.

Remark. In the light of this, we can write b±v for v ∈ Q, and M(b±v ) is then well-defined.

λ(b±v ) is not, but if we have picked an order on the vertices of Q then we will write λ(b±v )

to avoid having to identify k such that vk = v.

Proposition 2.84. ([6, Proposition 4.7] and [6, Proposition 4.9]). There exists a matrix

L′ = (L′uv)u∈Q′,v∈Q′ such that:

(i) x′ux
′
w = qL

′
uwx′wx

′
u for all u,w ∈ Q; and

(ii) B′TL′ = dI.

Therefore Q′ = (Q′,x′,L′) is a seed with Sq(x
′,L′) ⊂ Tq(x,L).

Remark. It is a straightforward check that L′ is given by L′vv = 0, L′vw =
∑

Buv>0BuvLuw −
Lvw for w 6= v, L′wv = −L′vw, and L′uw = Luw when u 6= v and w 6= v.

Proposition 2.85. ([6, Proposition 4.10]). Seed mutation is involutive, i.e. mutating at

the same vertex v twice yields the original seed.

Definition 2.86. Two seeds are mutation equivalent if there exists a sequence of seed

mutations taking one to the other.

Remark. By Proposition 2.85, this is an equivalence relation.

Perhaps the most surprising property of cluster mutation is known as the Laurent phe-

nomenon: however many mutations you perform, you never leave the quantum torus gen-

erated by the initial seed. It would not be an understatement to say that this is the “funda-

mental theorem of (quantum) cluster algebras”.

Theorem 2.87 (Laurent phenomenon). ([6, Corollary 5.2]). Let Q = (Q,x,L) be a

seed, and let x◦v be a cluster variable from some seed which is mutation equivalent to Q.

Then x◦v ∈ Tq(x,L).

Definition 2.88. The quantum cluster algebra Aq(Q) starting from a particular initial

seed Q = (Q,x,L) is the subalgebra of Tq(x,L) generated by the union of all the clusters

belonging to seeds mutation equivalent to the initial seed.
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2.5.2 Classical or commutative cluster algebras

Since the focus of this thesis is on noncommutative algebras, we have presented the quantum

side of cluster algebras first, but we will have use for a commutative - or “classical” version as

well. If one takes a quantum seed Q and sets the parameter q to be 1, then the torus T1(x,L)

becomes a commutative Laurent polynomial ring, and so the quantum cluster algebra A1(Q)

is a commutative ring too. But then the matrix L becomes irrelevant, so we remove the

requirement for it to exist. Formally:

Definition 2.89. A classical seed Q = (Q,x) consists of a quiver Q and a set of cluster

variables (xv)v∈Q.

The mutation of a classical seed at v ∈ Q is the seed Q = (Q′,x′), where Q′ is the

quiver mutation of Q at v and x′ is given by

x′w = xw if v 6= w

x′v = x−1
v (Πbwv>0x

bwv
w + Πbwv<0x

−bwv
i )

Two seeds are mutation equivalent if there exists a sequence of seed mutations taking one

to the other.

Given a classical seed Q the classical cluster algebra A(Q) is the subalgebra of the

Laurent polynomial T1(x) generated by the union of all the cluster variables belonging to

seeds mutation equivalent to Q.

This definition makes sense, since the Laurent phenomenon still holds:

Theorem 2.90. ([11, Theorem 3.1]). Let Q = (Q,x) be a seed, and let x◦v be a cluster

variable from some seed which is mutation equivalent to Q. Then x◦v ∈ T1(x).

Remark. As remarked earlier, from a historical point of view, this presentation is backwards

- commutative cluster algebras were introduced first, in [11], a few years before quantum

cluster algebras in [6].

Given a classical seed, one can create a quantum seed with the same quiver if and only

if there exists a skew-symmetrix integer matrix L indexed by Q such that the compatibility

condition BTL = dI holds. Since dI has rank equal to |Qmut|, which is the maximum rank of

B(Q), if the latter fails to have full rank then there is no quantum seed with the quiver Q.

For example, in the following quiver B(Q) has rank 2 whereas I has rank 3 so no quantum

seed with quiver Q exists:
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· ·

·
If, however, such an L does exist, then it also induces a Poisson structure on the Lau-

rent polynomial ring T1(x), given by {xv, xw} = Lvwxvxw. The matrix L mutates as in

the quantum case, with {x′v, x′w} = L′vwx
′
vx
′
w by essentially the same proof, meaning this

bracket extends to the cluster algebra A(Q). Such a bracket is sometimes known as a log-

canonical Poisson bracket. In this case, A(Q) with the log-canonical Poisson bracket is

the semiclassical limit of the family (Aq(Q))q 6=0.

2.5.3 Some results on quantum cluster algebras

Definition 2.91. One frequent question regarding (quantum) cluster algebras is: what

(quantum) algebras can be given a quantum cluster algebra structure? Given a k-algebra A

which is a domain, a seed within A will be a seed Q = (Q,x,L), such that Sq(x,L) ⊂ A

- that is, the elements of x are pairwise skew-commuting elements of A, and L describes

those skew-commutators. Then we ask: if x◦v is a cluster variable from some seed which is

mutation equivalent to Q, does x◦v ∈ A? If it does, then Aq(Q) ⊂ A, so does the set of all

such cluster variables generate A as a k-algebra? If it does, then Aq(Q) = A, and we say

the initial seed Q describes a cluster algebra structure on A.

In this situation we will sometimes abuse notation to avoid naming the vertices of Q, and

instead refer to them by the corresponding element of x.

Example 2.92. [Quantized coordinate rings of M2(k) and SL2(k)] The quantized coordi-

nate ring of 2 × 2 matrices is the ring Oq(M2(k)) := 〈a, b, c, d : ab = qba, ac = qca, bd =

qdb, cd = qdc, bc = cb, ad−da = (q−q−1)bc〉. This ring has a central element Dq := ad−qbc,
called the quantum determinant ; the factor ring Oq(SL2(k)) := Oq(M2(k))/(Dq−1) is called

the quantized coordinate ring of SL2(k).

Both these rings have quantum cluster algebra structures. For Oq(M2(k)), one can the

following as the initial seed:

a b

c Dq
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For Oq(SL2(k)), one can take the following as the initial seed:

a b

c

In both cases it is straightforward to check that the initial seed is indeed a seed (i.e. that

the skew-commutation matrix, which is determined by the relations in the respective ring, is

compatible with the quiver illustrated), and that a′ = d, so the seeds above describe cluster

algebra structures on the respective rings.

Other examples of rings with quantum cluster algebra structures include quantum Schu-

bert cell algebras ([19]), quantum Grassmannians ([22], [23]), and quantum double Bruhat

cells (conjectured in [6], proved in [20]).

Definition 2.93. The neighbourhood of a vertex v ∈ Q is the subgraph of Q with vertex

set {v} ∪ {w ∈ Q : Bwv 6= 0} and all edges from Q between those vertices.

We remarked earlier that quiver mutation was a local process in the sense that if one

is mutating at v, and Bwv = 0, then B′wu = Bwu for all u ∈ Q. So the only vertices that

are affected by the quiver mutation are the vertices in the neighbourhood of v. Therefore if

we have a description for a class of seeds that describes the neighbours of each vertex, and

wish to show that mutation remains in this class of seeds, one only needs to check that the

mutated vertex and its neighbours still satisfy the description.

Definition 2.94. A quiver Q is acyclic if it contains no cycles, that is, vertices v0, . . . , vn

with v0 = vn and arrows from vi to vi+1 for i = 0, . . . , n− 1.

Theorem 2.95. ([6, Theorem 7.5]). Let Q = (Q,x,L) be a seed such that the principal

part of Q - that is, Q with the frozen vertices removed - is acyclic, and assume that q is

transcendental over Z. The Aq(Q) is generated as a k-algebra by x ∪ {x′v : v ∈ Qmut}.

Definition 2.96. A (quantum) cluster algebra is said to be of finite type if the set of

distinct seeds is finite.

Theorem 2.97. ([12, Theorem 1.4] in the commutative case; [6, Remark 6.3], combining

[12, Theorem 1.4] with [6, Theorem 6.1], in the quantum case). A (quantum) cluster algebra

starting from initial seed Q is of finite type if and only if there exists some seed Q′ which

is mutation equivalent to Q, such that the principal part of Q′ is a disjoint union of finitely

many orientations of simply laced Dynkin diagrams (that is, Dynkin diagrams of type A, D

or E).

38



Remark. Let Q = (Q,x,L) be a seed and let v ∈ Qmut. Let x̄ = x\{xv} and L̄ = L restricted

to x̄. Let A = Sq(x̄, L̄) or Tq(x̄, L̄), and let R be the subalgebra of Tq(x,L) generated by

A, xv and x′v. Then R can be presented as a generalised Weyl algebra with u normal (that

is, following the more general definition of [29] rather than the one given in Definition 2.63)

over A with xv and x′v taking the roles of X and Y respectively.
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3 Prime ideals in ambiskew polynomial rings and gen-

eralised Weyl algebras

3.1 Simple localisation for ambiskew polynomial rings with central

Casimir elements

The aim of this section is to provide a simple localisation of the conformal ambiskew polyno-

mial ring R(A,α, v). The main result, Theorem 3.3, is analogous to [29, Theorem 4.7], and

follows a similar proof. That result uses a more general definition of an ambiskew polynomial

ring which does not require v to be central, which in turn implies that a Casimir element will

not be central either. If such a Casimir element exists then one can localise at the powers

of the Casimir element, and [29, Theorem 4.7] gives conditions for this localisation to be

simple. However, if v and the Casimir element z are central, then this localisation will not

be simple, since z − λ is another central Casimir element for any λ ∈ k which will generate

a non-zero ideal in the localisation. So in this situation the natural localisation to consider

is the localisation at the set of non-zero elements of k[z].

Definition 3.1. Let k be a field, A a k-algebra, α a k-automorphism of A and v a central

element of A. Then define v(0) := 0 and v(m) := Σm−1
l=0 α

l(v) for all m ≥ 1.

Proposition 3.2. ([29, equation (2)]). Working in R(A,α, v), where A, α and v are as in

Definition 3.1, for all m ≥ 0, xym − ymx = v(m)ym−1.

Proof. When m = 0 this is trivial; otherwise,

xym − ymx = y(xym−1 − ym−1x) + vym−1

= yv(m−1)ym−2 + vym−1 by induction

= (α(v(m−1)) + v)ym−1

= v(m)ym−1.

Theorem 3.3. Let k be an algebraically closed field, A a k-algebra, α some k-automorphism

of A, and v a central element of A. Suppose also that {c ∈ A : c central in A and α(c) =

c} = k.

Let R = R(A,α, v) be the ambiskew polynomial ring defined by the above, and assume

that R is conformal with splitting element u - so z := xy − u is a Casimir element for R,

u + λ is also a splitting element for any λ ∈ k, and z − λ is also a Casimir element for R

for any λ ∈ k. Let Z = k[z]∗ := k[z] \ {0}.
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Then the ring S = RZ is simple if and only if the following hold:

(i) A is α-simple;

(ii) for all m ≥ 1, αm is not an inner automorphism of A;

(iii) for all m ≥ 1, there exists a non-zero polynomial p (which may depend on m) over k

such that p(u) ∈ v(m)A.

To prove this, we use the following lemma which corresponds to, and uses the same proof

as, [29, Lemma 4.1].

Lemma 3.4. Let Y := {yi : i ∈ N}. The ring S is simple if and only if SY is simple and,

for all m ≥ 1, there exists a non-zero polynomial p over k such that p(u) ∈ v(m)A.

Proof. For the statement of the lemma to make sense, we must show that Y is a right Ore

set in S. Certainly Y is a right Ore set in A[y;α], since y is normal in that ring, then by

Lemma 2.42, since α−1(Y) = Y , Y is a right Ore set in R, and hence by Lemma 2.43, Y is

a right Ore set in S. Similarly, Y is a left Ore set in R and in S.

Suppose that S is simple. Then SY is simple by [18, Proposition 10.17(a)]. Let m ≥ 1.

Let J be the k-subspace of R spanned by the elements of the form xiayj, where i, j ∈ N
and a ∈ A, such that one of i > 0, j ≥ m or a ∈ v(m)A. We claim J is a right ideal of

R: certainly Jy ⊂ J , JA ⊂ J , and, using Proposition 3.2, xiayjx ∈ J if i > 0 or j > m.

Then using Proposition 3.2 again, ayjx = xα(a)yj − v(j)ayj−1, so ayjx ∈ J if j = m or if

a ∈ v(m)A. So J is a right ideal of R. Let I := annR(R/J). This is a non-zero proper ideal

of R contained in J . (It’s non-zero because ym ∈ I). Since S = RZ is simple, there exists,

by Lemma 2.12, some element of Z ∩ I. That is, there is some non-zero polynomial p such

that p(z) ∈ I ⊂ J .

We note that x ∈ J , and urxy = xα(ur)y ∈ J for 0 ≤ r < n. So since p(xy − u) ∈
J, p(−u) ∈ J . But J ∩ A = v(m)A, so p(−u) ∈ v(m)A.

Conversely, suppose SY is simple and that, for all m ≥ 1, there exists some non-zero

polynomial p such that p(u) ∈ v(m)A. Let I be some non-zero ideal of S; then by Lemma

2.12 ym ∈ I for some m ≥ 0. Choose the least such m and suppose m 6= 0. Then there exists

a non-zero polynomial p such that p(u) ∈ v(m)A. By Proposition 3.2, v(m)ym−1 ∈ I and so

v(m)Aym−1 ⊂ I, so p(u)ym−1 ∈ I. Assume that p has minimal degree such that p(u)ym−1 ∈ I,

and assume that the degree of p is at least 1. So, since k is algebraically closed, factorise p

as p′(u)(u− λ) for some λ ∈ k, where p′(u) necessarily has lower degree than p.
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Consider (z + λ)p′(u)ym−1 = p′(u)xym − p′(u)(u − λ)ym−1 = p′(u)xym − p(u)ym−1 ∈ I.

But z+λ is invertible in S, so p′(u)ym−1 ∈ I, contradicting the minimality of the degree of p.

Therefore p is a constant polynomial, and so ym−1 ∈ I; but this contradicts the minimality

of m. Therefore m = 0, 1 ∈ I and so S is simple.

Proof of Theorem 3.3. As in [29], RY can be identified with A[y±1;α][z]; also, by Lemma

2.43, (RY)Z = SY .

Suppose (i) - (iii) hold. Then by (i) and (ii) and [33, 1.8.5], A[y±1;α] is simple. Further,

the condition {c ∈ A : c central in A and α(c) = c} = k is equivalent to Z(A[y±1;α]) = k.

So by Theorem 2.30, any prime ideal of RY = A[y±1;α][z] contains an element of Z. Thus

by Proposition 2.11, (RY)Z = SY is simple. Then by Lemma 3.4 and (iii), S is simple.

Conversely, suppose S is simple. Then, by Lemma 3.4, (iii) holds and SY = (RY)Z is

simple. So by Lemma 2.12 any ideal of RY = A[y±1;α][z] must contain an element of Z.

We claim this implies that A[y±1;α] is simple: if I is a non-zero ideal of A[y±1;α] then

Ik[z] is a non-zero ideal of A[y±1;α][z], so by the above contains some non-zero element of

k[z]; but this can only happen if 1 ∈ I, so we’ve shown our claim.

Therefore, by [33, 1.8.5], (i) and (ii) hold.

Showing condition (ii) is often straightforward.

Lemma 3.5. In the situation of Theorem 3.3, if αm(v) 6= v for all m ≥ 1, then condition

(ii) holds. Further, if v is a regular non-unit and condition (i) holds then this is always true.

Proof. v is central in A, so if αm is inner then αm(v) = v. So if the latter is not true for any

m ≥ 1 then condition (ii) holds.

If v is a regular non-unit and αm(v) = v then v · · ·αm−1(v) is a central α-invariant non-

zero non-unit in A, and so generates a nontrivial α-stable ideal of A. So if condition (i) holds

and v is a regular non-unit then αm(v) 6= v for all m ≥ 1.

Example 3.6. Let k be an algebraically closed field of characteristic 0. The universal en-

veloping algebra of sl2, denoted U(sl2), is the k-algebra generated by e, f , and h subject

to the relations he− eh = 2e, hf − fh = −2f , and ef − fe = h. This algebra has been ex-

tensively studied so the results of this section do not discover anything that was not already

well-known, but it is a useful example to illustrate the results of Sections 3.1-3.3. We will

see the example for which these results were developed in Section 5.4.

If A = k[h] and α is the k-automorphism of A defined by α(h) = h + 2 then U(sl2) =

R(A,α, h) with x = e and y = f . This is a conformal ambiskew polynomial ring with splitting
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element u = −1
4

(h−1)2 and associated central Casimir element z = ef+ 1
4
(h−1)2. (The usual

Casimir element for U(sl2), which is usually denoted Ω = 2ef + 2fe + h2 = 4ef − 2h + h2,

satisfies Ω = 4z − 1).

Since k is characteristic 0, the condition {c ∈ A : c central in A and α(c) = c} = k

holds and A is α-simple. Condition (ii) is also clear (or one can use Lemma 3.5). Finally,

v(m) = m(h+m− 1) so taking p(t) = t+ 1
4
m2, we have p(u) = 1

4
(m+ t− 1)(m− t+ 1) and

so condition (iii) is satisfied. Therefore we can apply Theorem 3.3 showing that U(sl2)k[z]\0

is simple.

3.2 Height two primes in generalised Weyl algebras

In Theorem 2.66 we gave a simplicity criterion for generalised Weyl algebras. In this section,

we investigate what happens when one of the conditions from that theorem fails: specifically,

if uA + αm(u)A 6= A for some m ≥ 1. The final result will assume that uA + αm(u)A = A

for all but one value of m, and in that situation uA+ αm(u)A will be a maximal ideal in A,

but some of the intermediate results will have weaker hypotheses.

Lemma 3.7. Suppose Au+Aαm(u) = A. Let J be an ideal of T . If Y m ∈ J then Y m−1 ∈ J ;

if Xm ∈ J then Xm−1 ∈ J .

Proof. If Y m ∈ J then uY m−1 = XY m ∈ J and αm(u)Y m−1 = Y mX ∈ J . So since

uA+ αm(u)A = A, Y m−1 ∈ J .

Similarly, if Xm ∈ J then Y Xm = α(u)Xm−1 and XmY = α−(m−1)Xm−1 ∈ J . Since

α(u)A+ α−(m−1)(u)A = α−(m−1)(uA+ αm(u)A) = A, Xm−1 ∈ J .

Corollary 3.8. Suppose Au + Aαm(u) = A for 0 < m < n. Let J be an ideal of T , such

that either Y m ∈ J or Xm ∈ J , for some 0 ≤ m ≤ n− 1. Then 1 ∈ J .

Definition 3.9. Let T = T (A,α, u) be a generalised Weyl algebra such that, for some fixed

n ∈ N:

1. Au+ Aαm(u) = A for 0 < m < n;

2. Au+ Aαn(u) 6= A.

For any ideal I of A containing Au+ Aαn(u), we define

Im :=


A if m ≥ n or m ≤ −n

α−(n−1)(I) ∩ · · · ∩ αm(I) if − (n− 1) ≤ m ≤ 0

α−(n−1−m)(I) ∩ · · · ∩ I if 0 ≤ m ≤ n− 1

and then I := Σm∈N(ImY
m + I−mX

m).
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Remark. This definition is X-Y symmetric in the following sense: we note that T (A,α, u) =

T (A,α−1, α(u)) where the roles of X and Y have been switched. If I is an ideal of A con-

taining Au+Aαn(u), then J := α−(n−1)(I) is an ideal of A containing Aα(u) +Aα−(n−1)(u).

So we can define Jm and J as in Definition 3.9. Then we have Jm = I−m for all m, and so

J = I.

Proposition 3.10. If m ≥ 0, then Im ⊂ Im+1 and α(Im) ⊂ Im+1; similarly, if m ≥ 0 then

I−m ⊂ I−m−1 and α−1(I−m) ⊂ I−m−1.

Proof. This is immediate from the definition of Im.

Lemma 3.11. Let T and I be as in Definition 3.9. Then I is a graded ideal of T .

Proof. Since Im is an ideal of A for each m, IA ⊂ I and AI ⊂ I.

For all m ≥ 0,

• (ImY
m)Y = ImY

m+1 ⊂ Im+1Y
m+1;

• Y (ImY
m) = α(Im)Y m+1 ⊂ Im+1Y

m+1;

• (I−mX
m)X = I−mX

m+1 ⊂ I−(m+1)X
m+1;

• X(I−mX
m) = α−1(I−m)Xm+1 ⊂ I−(m+1)X

m+1.

And for all m ≥ 1,

• (ImY
m)X = ImY

m−1α(u) = Imα
m(u)Y m−1 ⊂ (Im ∩ α−(n−m)(I))Y m−1 = Im−1Y

m−1;

• X(ImY
m) = (α−1(Im)u)Y m−1 ⊂ (α−1(Im) ∩ I)Y m−1 = Im−1Y

m−1;

• (I−mX
m)Y = I−mX

m−1u = (I−mα
−(m−1)(u))Xm−1 ⊂ (I−m ∩ α−(m−1)(I))Xm−1 =

I−(m−1)X
m−1;

• Y (I−mX
m) = (α(I−m)α(u))Xm−1 ⊂ (α(I−m) ∩ α−(n−1)(I))Xm−1 = I−(m−1)X

m−1.

Thus I is a graded ideal of T .

Lemma 3.12. Let T , I, and I be as in Definition 3.9. Then Y mXmA+ I = A for 0 ≤ m ≤
n− 1.
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Proof. We prove this by induction on m; when m = 0 the statement is trivial. So assume

m > 0, in which case

Y mXmA+ I =
(
Πm
i=1α

i(u)
)
A+ I

=
(
Πm−1
i=1 α

i(u)
)

(αm(u)A+ uA) + I since u ∈ I

= Y m−1Xm−1A+ I since αm(u)A+ uA = A

= A by induction.

Corollary 3.13. Y n−1Xn−1A + I = A, and so, since Xn−1Y n−1 = α−(n−1)(Y n−1Xn−1),

Xn−1Y n−1A+ α−(n−1)(I) = A.

Definition 3.14. Let T be as in Definition 3.9, and let x ∈ T . For m ∈ Z, define xm ∈ A
to be the coefficient of Y m (if m ≥ 0) or X−m (if m ≤ 0) in x. That is, x = x−rX

r + · · · +
x0 + · · ·+ xsY

s, for some r and s (which will always exist) such that xt = 0 if t < r or t > s.

If J is a subset of T then for m ∈ Z define Jm := {xm : x ∈ J }.

Lemma 3.15. Let T be as in Definition 3.9. If J is an ideal of T then Jm is an ideal of A.

Proof. Given a ∈ Jm, pick some y(a) ∈ J such that y(a)m = a, which must exist by the

definition of Jm.

If a ∈ Jm and r ∈ A then ry(a) ∈ J , and (ry(a))m = ra, so ra ∈ Jm; similarly

y(a)α−m(r) ∈ J , and (y(a)α−m(r))m = ar, so ar ∈ Jm. If a, b ∈ Jm then y(a) + y(b) ∈ J ,

so a+ b = (y(a) + y(b))m ∈ Jm. Therefore Jm is an ideal of A.

Lemma 3.16. Let T , I, and I be as in Definition 3.9. If I is a maximal ideal of A, then I
is a maximal ideal of T .

Proof. Let J be an ideal of T with J ⊃ I, and assume that J 6= T .

Suppose there exists x ∈ J with xn−1 /∈ In−1 = I. Then, since I is maximal, Jn−1 = A,

so we may assume that in fact xn−1 = 1. Since Y m ∈ I ⊂ J for m ≥ n, we may also assume

that xm = 0 for m ≥ n. Now consider y := Xn−1xXn−1 ∈ J . For m ≥ −(n− 2), ym = 0, so

since Xm ∈ J for m ≥ n, this tells us that Xn−1Y n−1Xn−1 ∈ J .

However, Xn−1Y n−1Xn−1A + α−(n−1)(I)Xn−1 = AXn−1 by Corollary 3.13, so since

α−(n−1)(I)Xn−1 ⊂ I ⊂ J , this means Xn−1 ∈ J , which is a contradiction since Corol-

lary 3.8 then implies 1 ∈ J .

Therefore Jn−1 = In−1 = I.

Next, for any x ∈ J , consider y := Y jxY i−j for 0 ≤ j ≤ i ≤ n− 1. This is an element of

J with yn−1 = αj(xn−1−i). So αj(xn−1−i) ∈ I, that is, xn−1−i ∈ α−j(I). Combining this for
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0 ≤ j ≤ i and referring back to the definition of In−1−i, we get xn−1−i ∈ In−1−i, and hence

Jn−1−i = In−1−i for 0 ≤ i ≤ n− 1.

By the same argument with X and Y reversed, J−(n−1−i) = I−(n−1−i) for 0 ≤ i ≤ n− 1,

and so J = I. Therefore I is maximal.

Lemma 3.17. Let T be as in Definition 3.9. Let I = Au + Aαn(u), and let I be as in

Definition 3.9. Then any prime ideal J of T containing Xn and Y n must contain I.

Proof. We claim first that if Xn ∈ J then Y n−1Xn−1I ⊂ J . We note that Y n−1Xn−1

commutes with elements of A, since by Lemma 2.64, Y n−1Xn−1 = (Πn−1
j=1α

j(u)).

Firstly, Y n−1Xn ∈ J , and so Y n−1Xn−1I−rX
r ⊂ J for all r ≥ 1.

Secondly, Y n−1Xn−1u = Y n−1XnY ∈ J and Y n−1Xn−1αn(u) = Y n−1α(u)Xn−1 =

Y nXn ∈ J ; putting these two together, Y n−1Xn−1I ⊂ J , and since Ir ⊂ I for all r ≥ 0,

Y n−1Xn−1IrY
r ⊂ J for all r ≥ 0.

Combining these, we’ve shown our claim.

But now we know that TY n−1Xn−1I ⊂ J , and TY n−1Xn−1 and I are both left ideals of

T . So, since J was assumed to be prime, either TY n−1Xn−1 ⊂ J or I ⊂ J .

Suppose TY n−1Xn−1 ⊂ J . Then we note that XnY = α−(n−1)(u)Xn−1 and Y Xn =

α(u)Xn−1. So α−(n−1)(I)Xn−1 ⊂ J and Xn−1Y n−1Xn−1 ∈ J , so by Corollary 3.13,

AXn−1 ⊂ J . But this implies 1 ∈ J by Lemma 3.8, which is a contradiction since J
is prime.

Therefore if J is prime and contains both Xn and Y n, we must have I ⊂ J .

Theorem 3.18. Let T = T (A,α, u) be a generalised Weyl algebra, with some n ∈ N+ such

that:

(i) Au+ Aαm(u) = A for m > 0 but m 6= n;

(ii) M := Au+ Aαn(u) is a maximal ideal in A;

(iii) A is α-simple;

(iv) αm is not an inner automorphism for any m ≥ 1;

(v) u is regular.

Then we can define ideals Mm of A for m ∈ Z as in Definition 3.9, and then the ideal

M of T in Definition 3.9. Then M is the unique non-trivial prime ideal of T .
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Proof. As remarked in [29, Notation 5.3], since u is regular, X = {X i : i ∈ N} and Y =

{Y i : i ∈ N} are left and right Ore sets in T with TX = A[X±1;α−1] and TY = A[Y ±1;α],

and with the assumptions we have on A and α, TX and TY are simple. So by Lemma 2.12

any non-zero prime ideal of T must contain some element of X and some element of Y .

By Corollary 3.8 if an ideal of T contains Xr or Y r for 0 < r < n it contains 1. By

Lemma 3.7 if an ideal of T contains Xr (resp. Y r) for r > n it contains Xn (resp. Y n).

Therefore any non-zero prime ideal of T must contain Xn and Y n. So by Lemma 3.17, any

non-zero prime ideal of T must contain M - but M is maximal by Lemma 3.16, so we’re

done.

Example 3.19. Let k be an algebraically closed field of characteristic 0, and let A = k[h],

α(h) = h + 2, and u = −1
4

(h − 1)2, as in Example 3.6, so R = R(A,α, h) = U(sl2). There

is a central Casimir element z = xy − u, so for each λ ∈ k the factor rings R/(z − λ)R are

generalised Weyl algebras T (A,α, u+ λ).

Conditions (iii) - (v) of Theorem 3.18 are clearly satisfied. For (i) and (ii), A(u + λ) +

Aαm(u+ λ) = A iff the polynomials u+ λ and αm(u+ λ) have no common roots. The roots

of u + λ are h = ±(2λ
1
2 + 1); plugging these into αm(u + λ) = −1

4
(h + 2m − 1)2 + λ gives

−m(±λ 1
2 + m). Since we only care about m > 0, there is therefore one root in common

if λ = m2 and no roots otherwise; in the terms of the theorem, A(u + λ) + Aαm(u + λ) is

maximal if λ = m2 and equals A otherwise.

Therefore, if λ = m2 then by Theorem 3.18 there is a unique maximal ideal of R strictly

containing (z − λ)R, while otherwise, by Theorem 2.66, (z − λ)R is maximal.

3.3 Uniform rank

We recall that the uniform rank of a ring in some sense measures how far a ring is from

being a domain, and that for example the uniform rank of k[x, y]/(x, y)r = r for any r ≥ 1.

We observe that, in the setting of Theorem 3.18, that, modulo M, Xn = Y n = 0 but

Xn−1 6= 0 6= Y n−1, and so one might expect the uniform rank of T/M to be n. Since if

n = 1, T/M∼= A/M , we clearly need A/M to be a ring of right uniform rank 1, and we will

also assume that A/M is a domain; by the Remark after Theorem 2.37, this combination is

equivalent to A/M being a right Ore domain. We will remain in this setting for the rest of

this section.

Definition 3.20. Let T = T (A,α, u) satisfy the requirements of Theorem 3.18, with addi-

tionally the maximal ideal M = Au+ Aαn(u) being such that A/M is a right Ore domain.
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Write M (−r) := α−r(M), for r ∈ N.

Let I(r) :=

n−1⋂
i=0
i 6=r

M (−i)

T +M. This is a graded right ideal in T which containsM; so

let J (r) := I(r)/M, which is a graded right ideal in T/M.

We aim to show that J (0)⊕· · ·⊕J (n−1) = T/M, and that J (r) is a uniform T/M-module,

so therefore T/M has right uniform dimension n.

Lemma 3.21. Let R be a ring, and let I and J be ideals generated by finitely many central

elements i1, . . . , ir and j1, . . . , js respectively. Then IJ = JI.

Proof. Both IJ and JI are the ideal generated by the central elements {iajb : 1 ≤ a ≤ r, 1 ≤
b ≤ s} (noting iajb = jbia).

Lemma 3.22. Let R be a ring, and let I and J be right ideals in R such that IJ = JI and

I + J = R. Then IJ = I ∩ J .

Proof. For any right ideals, (I+J)(I∩J) ⊂ JI+IJ ⊂ I∩J . If I+J = R then I∩J = JI+IJ

and if IJ = JI then JI + IJ = IJ , so if we have both then I ∩ J = IJ .

Lemma 3.23. Let T = T (A,α, u), n and M satisfy the requirements of Definition 3.20.

If 0 ≤ i < j < n then M (−i) +M (−j) = A.

Proof. M (−i) +M (−j) = Aα−i(u) + Aαn−i(u) + Aα−j(u) + Aαn−j(u)

= α−j(Au+ Aαj−i(u)) + Aαn−i(u) + Aαn−j(u)

= A, since Au+ Aαj−i(u) = A by assumption.

Lemma 3.24. Let T = T (A,α, u), n and M satisfy the requirements of Definition 3.20.

Let i, j1, . . . , jr be distinct integers between 0 and n− 1 inclusive. Then

M (−i) +
r∏

k=1

M (−jk) = A.

Proof. We prove this by induction on r. When r = 1, this is immediate from Lemma 3.23,

so assume r > 1.
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M (−i) +
r∏

k=1

M (−jk) = M (−i) +M (−i)M (−jr) +
r∏

k=1

M (−jk)

= M (−i) +

(
M (−i) +

r−1∏
k=1

M (−jk)

)
M (−jr)

= M (−i) + AM (−jr) by induction

= A by Lemma 3.23.

Lemma 3.25. Let T = T (A,α, u), n and M satisfy the requirements of Definition 3.20.

Let j1, . . . , jr be distinct integers between 0 and n− 1 inclusive. Then

r⋂
i=1

M (−ji) =
r∏
i=1

M (−ji).

Proof. We prove this by induction on r. When r = 1 this is trivial, so assume r > 1.

Since
r−1∏
i=1

M (−ji) and M (−jr) commute by Lemma 3.21, and
r−1∏
i=1

M (−ji) +M (−jr) = A by

Lemma 3.24, the conditions of Lemma 3.22 are satisfied, and so,
r⋂
i=1

M (−ji) =

(
r−1⋂
i=1

M (−ji)

)
∩M (−jr)

=

(
r−1∏
i=1

M (−ji)

)
∩M (−jr) by induction

=

(
r−1∏
i=1

M (−ji)

)
M (−jr) by Lemma 3.22

=
r∏
i=1

M (−ji).

Lemma 3.26. Let T = T (A,α, u), n and M satisfy the requirements of Definition 3.20.

For 0 ≤ r ≤ n − 1, J (0) ⊕ · · · ⊕ J (r) is a direct sum of right T/M-modules, and equals((
n−1∏
i=r+1

M (−i)

)
T +M

)/
M.

Proof. We prove these simultaneously by induction on r. The case r = 1 is just the definition

of J (0).

We need to show two things: that (J (0) ⊕ · · · ⊕ J (r−1)) ∩ J (r) = 0, and that

(J (0) ⊕ · · · ⊕ J (r−1)) + J (r) =

((
n−1∏
i=r+1

M (−i)

)
T +M

)/
M.
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For the first,((
n−1∏
i=r

M (−i)

)
T +M

)
∩ I(r)

=

(
n−1∏
i=r

M (−i)

)
T ∩

(
n−1∏
i=0
i 6=r

M (−i)

)
T +M by definition of I(r)

=

(
n−1⋂
i=0

M (−i)

)
T +M by Lemma 3.25

=M by definition of M.

This is equivalent to

(((
n−1∏
i=r

M (−i)

)
T +M

)/
M

)
∩ J (r) = 0 as T/M-modules, so

by induction, (J (0) ⊕ · · · ⊕ J (r−1)) ∩ J (r) = 0.

For the second,

(
J (0) ⊕ · · · ⊕ J (r−1)

)
+ J (r)

=

((
n−1∏
i=r

M (−i)

)
T +

(
n−1∏
i=0
i 6=r

M (−i)

)
T +M

)/
M by induction

=

((
n−1∏
i=r+1

M (−i)

)(
M (−r) +

r−1∏
i=0

M (−i)

)
T +M

)/
M

=

(
n−1∏
i=r+1

M (−i)T +M

)/
M by Lemma 3.24.

Corollary 3.27. Taking r = n− 1, we get J (0) ⊕ · · · ⊕ J (n−1) = T/M.

Lemma 3.28. Let T = T (A,α, u), n and M satisfy the requirements of Definition 3.20.

Recall that J (r) is a graded right ideal of T/M. Let J
(r)
m = I

(r)
m /Mm for m ∈ Z, so

J (r) = Σm∈N(J
(r)
−mX

m + J
(r)
m Y m). Then

J (r)
m :=



0 if m ≥ n− r or m ≤ −r − 1∏n−1
i=−m
i 6=r

M (−i)
/∏n−1

i=−mM
(−i) if − r ≤ m ≤ 0

∏n−1−m
i=0
i 6=r

M (−i)
/∏n−1−m

i=0 M (−i) if 0 ≤ m ≤ n− r − 1.
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Proof.

Recall that Mm :=


A if m ≥ n or m ≤ −n∏n−1

i=−mM
(−i) if − (n− 1) ≤ m ≤ 0∏n−1−m

i=0 M (−i) if 0 ≤ m ≤ n− 1

and that I(r)
m =

n−1∏
i=0
i 6=r

M (−i) +Mm. Then we apply Lemma 3.24, to get

I(r)
m =


Mm if m ≥ n− r or m ≤ −r − 1∏n−1

i=−m
i 6=r

M (−i) if − r ≤ m ≤ 0∏n−1−m
i=0
i 6=r

M (−i) if 0 ≤ m ≤ n− r − 1.

Then the result follows since J
(r)
m = I

(r)
m /Mm.

Lemma 3.29. Let T = T (A,α, u), n and M satisfy the requirements of Definition 3.20.

Let m ≥ 0. If b+M−m is a non-zero element of J
(r)
−m, then bXmY m+M = b

∏m−1
i=0 α−i(u)+

M is also a non-zero element of J (r).

Let m ≥ 0. If b+Mm is a non-zero element of J
(r)
m , then bY mXm+M = b

∏m
i=1 α

i(u)+M
is also a non-zero element of J (r).

Therefore, if a is a non-zero element of J (r), then there exists m ∈ N such that one of

aXm or aY m has non-zero coefficient in degree 0.

Proof. Suppose b + M−m is a non-zero element of J
(r)
−m, so b ∈ I

(r)
−m with b /∈ M−m. Then

b /∈M (−r). Also, by Lemma 3.28, we must have 0 ≤ m ≤ r, so
∏m−1

i=0 α−i(u) /∈M (−r).

We note that, by assumption, M is a completely prime ideal of A, and so M (−r) is also

a completely prime ideal of A for any r ≥ 0.

Now b
∏m−1

i=0 α−i(u) /∈ M (−r), since M (−r) is completely prime. Therefore bY mXm =

b
∏m−1

i=0 α−i(u) /∈ M0 since M0 ⊂ M (−r). Therefore bY mXm +M is a non-zero element of

J (r)/M
Similarly, suppose b + Mm ∈ J (r)

m is a non-zero element of J
(r)
m , so b ∈ I(r)

m with b /∈ Mm,

and so b /∈ M (−r). By Lemma 3.28, 0 ≤ m ≤ n − r − 1, so
∏m

i=1 α
i(u) /∈ M (−r). Therefore

b
∏m

i=1 α
i(u) /∈ M (−r), and so is not in M0, and so bY mXm +M = b

∏m
i=1 α

i(u) +M is a

non-zero element of J (r).

For the final part, pick m such that a has non-zero coefficient in degree m or −m, and

apply the appropriate previous part.
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Lemma 3.30. Let T = T (A,α, u), n and M satisfy the requirements of Definition 3.20.

Let a = a−rX
r + · · ·+ a0 + · · ·+ an−rY

n−r ∈ I(r), so a+M∈ J (r). Then a
∏n−1

i=0
i 6=r

α−i(u) +

M = a0

∏n−1
i=0
i 6=r

α−i(u) +M, which is non-zero in J (r) iff a0 /∈M0.

Proof. For j > 0, the coefficient of Xj in a
∏n−1

i=0
i 6=r

α−i(u) is a−j
∏n−1

i=0
i 6=r

α−i−j(u). Since 0 < j ≤ r,

α−(r−j)−j(u) = α−r(u) is one of the terms in that product. And since a−j ∈
∏n−1

i=m
i 6=r

M (−i),

a−j
∏n−1

i=0
i 6=r

α−i−j(u) ∈
∏n−1

i=mM
(−i) =M−j.

Similarly, for j > 0 the coefficient of Y j in a
∏n−1

i=0
i 6=r

α−i(u) is aj
∏n−1

i=0
i 6=r

αj−i(u). Since 0 <

j ≤ n − r − 1, αj−(j+r))(u) = α−r(u) is one of the terms in that product. And since

aj ∈
∏n−1

i=m
i 6=r

M (−i), aj
∏n−1

i=0
i 6=r

α−i−j(u) ∈
∏n−1

i=mM
(−i) =Mj.

Therefore a
∏n−1

i=0
i 6=r

α−i(u)+M = a0

∏n−1
i=0
i 6=r

α−i(u)+M. To complete the proof, we note that

if a0 /∈M0 then a0 /∈M (−r), and that
∏n−1

i=0
i 6=r

α−i(u) /∈M (−r) also. Since A/M (−r) is a domain,

a0

∏n−1
i=0
i 6=r

α−i(u) /∈M (−r) ⊃M0, and therefore is non-zero in J (r).

Lemma 3.31. Let T = T (A,α, u), n and M satisfy the requirements of Definition 3.20.

Then J (r) is a uniform T/M-module for each 0 ≤ r ≤ n− 1.

Proof. We use Lemma 2.35, that is, J (r) is uniform iff for all non-zero a1, a2 ∈ J (r)/M, there

exist r1, r2 ∈ T/M such that a1r1 = a2r2 6= 0.

So let a1, a2 be non-zero elements of J (r). By Lemmas 3.29 and 3.30, there exist r′1, r
′
2

such that a1r
′
1 and a2r

′
2 are homogeneous of degree 0. Next:

J
(r)
0 =

∏n−1
i=0
i 6=r

M (−i)

∏n−1
i=0 M

(−i)
∼=

A

M (−r)

Since A/M (−r) ∼= A/M , and the latter is a right uniform ring by assumption, A/M (−r)

is a uniform right A/M (−r)-module. So J
(r)
0 is a uniform right A/M (−r)-module, and so

J
(r)
0 is a uniform right A/M0-module. Therefore there exist r′′1 , r

′′
2 ∈ A/M0 such that

a1r
′
1r
′′
1 = a2r

′
2r
′′
2 6= 0, and thus J (r) is a uniform T/M-module.

Theorem 3.32. Let T (A,α, u) be a generalised Weyl algebra such that, for some fixed n ∈ N:

1. Au+ Aαm(u) = A for 0 < m < n and for n < m;

2. M := Au+ Aαn(u) is a maximal ideal in A;
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3. A/M is a uniform ring and a domain.

Then the factor ring T/M has uniform rank n.

Proof. Each J (r) is a uniform submodule of T/M by Lemma 3.31, and J (0)⊕ · · · ⊕ J (n−1) =

T/M by Corollary 3.27. Therefore T/M has uniform rank n.

Example 3.33. The exceptional height 2 maximal ideals of U(sl2) we found in Example 3.19,

which strictly contain (z −m2)U(sl2), have uniform rank m.

3.4 Global dimensions

The aim of this section is to generalise the work of [25], predominantly §3, and [24], pre-

dominately §6 and 7, to the case of a noncommutative base ring sufficiently to be able to

determine the global dimensions of the rings we consider in Section 5. We could not obtain

a complete generalisation of those results in the general setting, but the results that are

available we present here.

The setup will be as follows: let k be an algebraically closed field, let K be a simple

ring with centre k, and let Z be a commutative finitely generated k-algebra which is an

integral domain. Let A = K ⊗k Z, let α be a k-automorphism of A such that α(K) = K

(we automatically have α(Z) = Z since Z(A) = Z), and let u ∈ Z be such that α(u) 6= u.

So we can construct the ambiskew polynomial ring R = R(A,α, u− α(u)).

By [33, 9.6.9] the map I 7→ K ⊗ I is a one-to-one correspondence between the ideals of

Z and the two-sided ideals of A, and this correspondence sends prime ideals to prime ideals.

We will at various times also assume that A is α-simple; we will state this when needed.

Write Rx for the localisation of R at the set {xi : i ≥ 1}, and similiarly Ry. Note that

Rx = A[x±1;α−1][z] and Ry = A[y±1;α][z], where z = xy − u as in Definition 2.60.

Definition 3.34. An R-module X is x-torsion if, for all m ∈ X, there exists r ≥ 0 such

that xrm = 0.

An R-module X is said to be xy-torsion if it is both x-torsion and y-torsion.

Definition 3.35. We will say A = K ⊗k Z is nice if, in addition to the requirements above:

1. All maximal ideals of Z are isomorphic in the sense that, for any two maximal ideals

M , M ′ of Z, there exists a k-automorphism γ of Z such that γ(M) = M ′. Examples

of such Z include polynomial rings in finitely many variables over a field, and Laurent

polynomial rings in finitely many variables over a field.
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2. K is a constructible k-algebra as in [33, 9.4.12], that is, it can be obtained from k by

a finite number of ring extensions, each being either an almost normalising extension

([33, 1.6.10]), which includes skew polynomial or skew Laurent extensions), or a finite

module extension. In particular, this holds if K can be constructed as an iterated skew

polynomial or skew Laurent ring over k.

Lemma 3.36. Suppose that Z is finitely generated as a commutative k-algebra and K is a

constructible k-algebra. Then the only primitive ideals of A = K ⊗k Z are the ideals K ⊗M
where M is a maximal ideal of Z.

Proof. In the first case, by [33, 9.4.21], A satisfies the Nullstellensatz over Z. Then by the

primitive property ([33, 9.2.3]) and the correspondence above, the result follows.

Definition 3.37. (cf. [25, 3.1]).

Let M be a maximal right ideal of A such that there exists λ ∈ k such that u− λ ∈ M .

(We note that this λ must be unique). Let V (M) denote the following right R-module:

V (M) =
⊕

i≥0
A

α−i(M)
as an A-module;

(a+ α−i(M))y = α−1(a) + α−(i+1)(M) for i ≥ 0, a ∈ A;

(a+ α−i(M))x = α(a)(α(u)− λ) + α−(i−1)(M) for i ≥ 1, a ∈ A; and

(a+M)x = 0 for a ∈ A.

(We note that α(a)α(u− λ) ∈ α(M), and so this last is consistent with the pattern from

the previous line; however, we must define it separately since 0 + α(M) /∈ V (M)).

It is easy to check that this is a well-defined R-module structure.

Lemma 3.38. Let M be a maximal right ideal of A such that there exists λ ∈ k such that

u− λ ∈ M . Suppose M is such that αi(Z ∩M) 6⊂ αj(Z ∩M) for i, j ≥ 0 with i 6= j. Then

any non-zero submodule of V (M) must have the form

Wj =
⊕

i≥j
A

α−i(M)
where j ≥ 0 is such that u− λ ∈ α−j(M).

Proof. Firstly, we check that any such W is in fact a submodule. The only non-trivial check

is that (a+ α−j(M))x ∈ Wj for a ∈ A.

(a+ α−j(M))x = α(a)(α(u)− λ) + α−(j−1)(M)

= (α(u)− λ)α(a) + α−(j−1)(M)

= 0 + α−(j−1)(M) as α(u)− λ ∈ α−(j−1)(M),

since u− λ ∈ α−j(M).

So any such Wj is a submodule of V (M). We note also that 1 + α−j(M) generates Wj

as an R-module.
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Now let V ′ be any non-zero submodule of V (M).

Any element of V (M) can be written in the form Σn
i=0(ai + α−i(M)), for some ai ∈ A

and n ∈ N. Define the lower degree of an element of V written in this form to be

inf{i : ai /∈ α−i(M)}, and define the length of an element of V written in this form to be

|{i : ai /∈ α−i(M)}|.
Let p be an element of V ′ which has minimal lower degree amongst elements of V ′, and

call this degree j.

Now since M is a maximal right ideal of A, A/α−j(M) is a simple right A-module, so

there exists a ∈ A such that pa = (1 +α−j(M)) + Σn
i=j+1(ai +α−i(M)), for some ai ∈ A and

n ∈ N.

Considering pax = (α(u)−λ+α−(j−1)(M))+· · · , since p has minimal lower degree among

elements of V ′, we see that α(u)− λ ∈ α−(j−1)(M), and so u− λ ∈ α−j(M).

We now aim to show that 1 + α−j(M) ∈ V ′. Let p′ := Σn
i=j(ai + α−i(M)) ∈ V ′ be

an element of V ′ with lower degree j, and suppose p′ has minimal length among elements

of V ′ with lower degree j. Suppose p′ has length > 1, that is, there exists k > j with

ak /∈ α−k(M). Then since α−j(M) ∩ Z 6= α−k(M) ∩ Z, there exists z ∈ α−k(M) ∩ Z with

z /∈ α−j(M). Then since α−j(M) is a maximal right ideal of A, there exists b ∈ A with

zb+ α−j(M) = 1 + α−j(M).

Now consider p′zb = (aj + α−j(M)) + Σn
i=j+1(zaib + α−i(M)). This has smaller length

than p′, since zakb ∈ α−k(M), which is a contradiction to the minimality of the length of p′.

Therefore p′ has length 1, and so 1 + α−j(M) ∈ V ′, and we obtain V ′ = Wj.

Corollary 3.39. Let M be a maximal right ideal of A such that there exists λ ∈ k such that

u − λ ∈ M . If M is such that αi(Z ∩M) 6⊂ αj(Z ∩M) for i, j ≥ 0 with i 6= j, then V (M)

has a unique simple quotient, determined by the least j ≥ 0 is such that u − λ ∈ α−j(M).

We denote this simple module by L(M).

We note here that if z = xy − (u− λ) with u− λ ∈ M , z annihilates V (M) and so also

L(M).

Lemma 3.40. (cf. [25, 3.10]). Suppose every maximal ideal of Z has infinite order under

α, i.e. if N is a maximal ideal of Z then αi(N) 6= N for all i ≥ 1. Let X be a simple

right R-module which is xy-torsion. Then X is isomorphic to L(M) for some M such that

L(M) 6= V (M).

Proof. This is proved as in [25, 3.10].
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Lemma 3.41. Suppose A = K ⊗k Z is nice in the sense of Definition 3.35, and rgld A = d.

Then for any maximal ideal M ⊂ Z, there exists a maximal right ideal J of A such that

pd A/J = d and M ⊂ J .

Proof. By [33, 1.6.14] and [33, 1.1.3], K is (left and right) Noetherian, so by the Hilbert

basis theorem, A = K ⊗k Z is Noetherian. Then by [7, Prop 1.1], there exists a maximal

right ideal J of A such that pd A/J = d.

By Lemma 3.36, annA(A/J) = K⊗M0 for M0 some maximal ideal of Z, and so M0 ⊂ J .

Then by assumption, there exists a k-automorphism γ of Z such that γ(M0) = M . Then

M ⊂ (γ ⊗ idK)(J) and pd A/(γ ⊗ idK)(J) = d. So (γ ⊗ idK)(J) is the ideal we require.

Theorem 3.42. Suppose A = K⊗k Z is nice in the sense of Definition 3.35, Z is α-simple,

and rgld A = d. Then if λ ∈ k and j ∈ N are such that:

1. A(u− λ) + Aαm(u− λ) = A for 0 < m 6= j;

2. A(u− λ) + Aαj(u− λ) = M is a maximal ideal in A.

Then there exists a maximal right ideal J of A containing M such that L(J) has projective

dimension d+ 2 (as an R-module). Therefore, rgld R = d+ 2.

Proof. By Lemma 3.41, there exists a maximal right ideal J of A containing M such that

pd (A/J)A = d. Since Z is α-simple, αi(Z ∩M) 6= Z ∩M for all M and all i 6= 0, and we

know u−λ ∈ α−j(M), so by Corollary 3.39, L(J) is finitely generated over A. Furthermore,

as an A-module, L(J) =
⊕j−1

i=0 A/α
−i(M), and so p.d. L(J)A = d. Therefore by [33, 7.9.16]

(twice), pd L(J)R = d+ 2, and so rgld R ≥ d+ 2.

On the other hand, by [33, 7.5.3(i)], since rgld A = d, rgld R ≤ d + 2, and so rgld R =

d+ 2.

We now turn our attention to the factor rings T (u) := R/zR, where z = xy − u.

Lemma 3.43. Suppose we know that rgld Rx = rgld Ry = d + 1. Let X be a simple right

R-module which is not xy-torsion. Then pd XR ≤ d+ 1.

Proof. Either Xx 6= 0 or Xy 6= 0, so wlog Xy 6= 0. If pd XR = d + 2 then rgld R = d + 2 >

rgld Ry contradicting Theorem 2.50 (v).

Theorem 3.44. Suppose A is nice and Z is α-simple, and also that rgld T (u) 6= ∞. Then

rgld T (u) = d + 1 iff there exists a maximal ideal N of Z containing both u and αj(u) for

some j ≥ 1.

56



Proof. Firstly, we note that by Theorem 2.50 (iii), rgld T (u) ≤ d+ 1, since rgld R ≤ d+ 2.

If there exists such an N , then by Theorem 3.42, there exists a maximal right ideal M of

A containing N such that pd L(J)R = d + 2 and z annihilates L(J). Then by [33, 7.3.5(i)]

pd L(J)T (u) = d+ 1, since we cannot have pd L(J)T (u) =∞. So rgld T (u) = d+ 1.

Conversely, if there doesn’t exist such anN , then for any maximal ideal M of A containing

u, L(M) = V (M). So by Lemma 3.40, any simple R-module X annihilated by z - that is,

any simple T (u)-module - is not xy-torsion. So by Lemma 3.43, pd XR ≤ d+ 1, and by [33,

7.3.5(i)] pd XT (u) ≤ d. Finally, by [7, Prop 1.1], it suffices to check the global dimension of

T (u) on simple T (u)-modules.

Lemma 3.45. Let J be a right ideal of A such that α(J) = J and pd (A/J)A = r. Then

rgld T (u) ≥ r + 1 for all u.

Proof. Define a right R-module Wu in a similar fashion to before: as an A-module, Wu =

A/J , and

(a+ J)y = α−1(a) + J for a ∈ A;

(a+ J)x = α(a)u+ J for a ∈ A.

Again, it is easy to check this is a well-defined R-module structure. And a(xy−u) = 0 for

all a ∈ A, so Wu is a T (u)-module. Applying [33, 7.9.16] twice, pd (Wu)R = r + 2, then by

[33, 7.3.9], either pd (Wu)T (u) =∞ or pd (Wu)T (u) = r+1; either way, rgld T (u) ≥ r+1.

Note that this implies that we must always have rgld T (u) ≥ 1.
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4 Connected quantized Weyl algebras - definition and

classification

4.1 Definition and first properties

Recall the higher quantized Weyl algebras Aq,Λ
n of Definition 2.33. These have the following

property: they are generated by a finite set of elements X, together with a relation of the

form xy−qxyyx = rxy for each pair x, y of elements in X. (For Aq,Λ
n , X = {xi, yi : 1 ≤ i ≤ n},

and rxy = 0 unless {x, y} = {xi, yi} for some i).

We ask the question: what other rings have this property? A first observation is Aq,Λ
n

is built up of several copies of Aq1 (for different values of q), with any two generators from

different copies of Aq1 skew-commuting, so we should first investigate those rings which cannot

be split up in this fashion. More formally:

Definition 4.1. Let R be a k-algebra, where k is a field, and X ⊂ R be a finite generating

set for R. We say X presents R as a quantum space with Weyl relations if:

1. for every two elements x and y of X, they satisfy a relation of the form xy−qxyyx = rxy,

where qxy ∈ k× and rxy ∈ k;

2. R has a PBW basis with respect to X, that is, we can write X = {x1, . . . , xn} (putting

an ordering on X) such that the set of monomials of the form xa11 · · ·xann form a basis

for R.

Definition 4.2. If X presents R as a quantum space with Weyl relations then we can form

the associated graph G(R,X) of this presentation as follows: let the vertex-set of G(R,X)

be X, and say that x, y ∈ X have an edge between them iff rxy 6= 0.

A connected quantized Weyl algebra is a quantum space with Weyl relations whose

associated graph is connected.

Example 4.3. The first quantized Weyl algebra is a connected quantized Weyl algebra. Higher

quantized Weyl algebras are quantum spaces with Weyl relations, but not - at least with

respect to the normal presentation - connected quantized Weyl algebras.

Proposition 4.4. Let R be a k-algebra, and suppose X ⊂ R presents R as a quantum space

with Weyl relations. Then

(i) qyx = q−1
xy and ryx = −rxyq−1

xy for all x, y ∈ X, that is, the relations xy − qxyyx = rxy

and yx− qyxxy = ryx are the same relation;
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(ii) If x, y, z ∈ X with rxy 6= 0 then qzxqzy = 1;

(iii) If x, y, z ∈ X with rxy 6= 0 and ryz 6= 0 then qxy = qyz = qzx;

(iv) R is generated by X with respect to the relations {xy − qxyyx = rxy : x, y ∈ X};

(v) If Y ⊂ X and S is the subalgebra of R generated by Y , then Y presents S as a quantum

space with Weyl relations.

Proof. (i) We have xy − qxyyx = rxy, so yx− q−1
xy xy = −q−1

xy rxy.

But we also have yx− qyxxy = ryx.

Subtracting these two equations, we get xy(qyx − q−1
xy ) = ryx + q−1

xy rxy. If qyx 6= q−1
xy

then this violates the PBW basis condition, so we must have qyx = q−1
xy , in which case

we also get ryx + q−1
xy rxy = 0.

(ii) Pick an ordering of X, and let a < b < c be elements of X. Consider cba ∈ R. We

can write this in terms of this basis in two ways, by writing it first as (cb)a or as c(ba).

These give us, respectively:

cba = qcbqcaqbaabc+ rcba+ rcaqcbb+ rbaqcbqcac;

cba = qbaqcaqcbabc+ rbac+ rcaqbab+ rcbqbaqcaa.

Comparing coefficients of a gives us rcb(1− qbaqca) = 0 (1), comparing coefficients of b

gives us rca(qcb−qba) = 0 (2), and comparing coefficients of c gives us rba(qcbqca−1) = 0

(3). Relabelling appropriately, these three give us the desired result in all cases (when

combined with (i)). For example, if x < y < z then we take a = x, b = y, c = z; by

(i), rxy 6= 0 implies ryx 6= 0, so (3) implies qzyqzx = 1 as desired.

(iii) From parts (i) and (ii), rxy 6= 0 implies qyz = qzx and ryz 6= 0 implies qxy = qzx.

(iv) Pick an ordering on X such that R has a PBW basis with respect to that ordering. Let

F be the free k-algebra on X, and let I be the ideal of F generated by {xy − qxyyx =

rxy : x, y ∈ X}. These relations show that the monomials in X form a spanning set

for F/I, so the natural surjection F/I → R must be an isomorphism, since it maps a

spanning set for F/I to a basis for R.

(v) Order Y by restricting our order on X to Y . Relations between elements of Y of the

appropriate form hold in S because they hold in R. As in (iv), this shows that the

monomials in Y span S, while the monomials in Y are linearly independent since the
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monomials in Y are a subset of the monomials in X which form a basis for R, so are

linearly independent.

Proposition 4.5. Let R be a k-algebra, X ⊂ R a generating set, and let qxy ∈ k×, rxy ∈ k,

each for x, y ∈ X, be such that qyx = q−1
xy and ryx = rxyq

−1
xy . Then the following are equivalent:

1. X presents R as a quantum space with Weyl relations, with xy − qxyyx = rxy for

x, y ∈ X.

2. We can write X = {x1, . . . , xn} such that R = Rn := k[x1][x2;α2, δ2] · · · [xn;αn, δn],

where αi is the k-automorphism of Ri−1 := k[x1] · · · [xi−1;αi−1, δi−1] given by αi(xj) =

qxixj , 1 ≤ j ≤ i − 1, and δi is the αi-derivation of Ri−1 given by δi(xj) = rxixj ,

1 ≤ j ≤ i− i.

Proof. 2 =⇒ 1: By Proposition 2.21, the definitions of the αi and δi show that Rn has the

appropriate presentation, and Rn has a PBW basis with respect to the same ordering of X

by 2.26.

1 =⇒ 2: We must first show that the given αi and δi do extend to valid automorphisms

and αi-derivations respectively on Ri−1. By Proposition 4.4(iv) and Proposition 2.22 it

suffices to check that αi(x)αi(y)− qxyαi(y)αi(x) = rxy and δi(x)y + αi(x)δi(y)− qxyδi(y)x−
qxyαi(y)δi(x) = 0 for all x, y ∈ X. The first of these becomes qxixqxiy(xy − qxyyx) = rxy,

equivalently qxixqxiy = 1, which holds by Proposition 4.4(ii); while the second becomes

rxixy + qxixrxiyx− qxyrxiyx− qxyqxiyrxixy = 0, which again follows from Proposition 4.4(ii).

So we have shown that Ri exists for all i. Now we claim by induction that Ri equals the

subalgebra of R generated by x1, . . . , xi. For i = 1 this is trivial, and for higher i it follows

direct from the definition of Ri−1[xi;αi, δi] given the choices of αi and δi and the PBW basis

condition, which guarantees that the subalgebra of R generated by x1, . . . , xi is free as a left

module over Ri−1.

Corollary 4.6. Any quantum space with Weyl relations is a Noetherian domain.

Corollary 4.7. Let X present R as a quantum space with Weyl relations. Then

GK dim.R = |X|

Proof. This follows from Proposition 4.5 by repeated application of Theorem 2.57.

Proposition 4.8. Let X present R as a quantum space with Weyl relations. Then R has a

PBW basis with respect to any ordering of X.
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Proof. Given an ordering on X, the relations that hold in R show that any element of R can

be written as a sum of monomials in X with respect to that ordering, so those monomials

span X.

Now suppose that the monomials in X with respect to our ordering are not linearly

independent, and let p be some non-trivial sum of monomials in X which equals 0 in R.

Pick x and y ∈ X which are adjacent in our ordering, and consider a new ordering on X

which has x and y switched. Then the relation yx = qyxxy + ryx allows us to rewrite p

with respect to the new ordering, and there is a one-to-one correspondence between the

monomials of highest total degree in p and the monomials of highest total degree in our

rewriting of p, so p is still a non-trivial sum of monomials. So the monomials in X with

respect to our new ordering are not linearly independent. But since the symmetric group

on n elements is generated by the transpositions of adjacent numbers, this means that the

monomials in X with respect to any ordering are not linearly independent, a contradiction

to our assumptions.

Corollary 4.9. Let X present R as a quantum space with Weyl relations, and write X =

{x1, . . . , xn} for any ordering of the elements of X. Then R can be written as an iterated

skew polynomial ring R[x1][x2;α2, δ2] · · · [xn;αn, δn], where the αi and δi are automorphisms

and αi-derivations respectively of the appropriate rings, as in Proposition 4.5.

4.2 Classification

Definition 4.10. The ring Lqn, where n ∈ N and q ∈ k×, is generated by Xn = {x1, . . . , xn}
with relations

xixi+1 − qxi+1xi = 1− q, for 1 ≤ i ≤ n− 1;

xixj − qxjxi = 0, for i < j, j 6= i+ 1, j − i ≡ 1 mod 2;

xixj − q−1xjxi = 0, for i < j, j 6= i+ 1, j − i ≡ 0 mod 2.

Definition 4.11. The ring Cq
n, where n is an odd positive integer and q ∈ k×, is generated

by Yn = {x1, . . . , xn} with relations

xixi+1 − qxi+1xi = 1− q, for 1 ≤ i ≤ n− 1;

xnx1 − qx1xn = 1− q;
xixj − qxjxi = 0, for i < j, j 6= i+ 1, j − i ≡ 1 mod 2;

xixj − q−1xjxi = 0, for i < j, j 6= i+ 1, j − i ≡ 0 mod 2, (i, j) 6= (1, n).

Proposition 4.12. Provided q 6= 1, Lqn and Cq
n are both connected quantized Weyl algebras

with respect to the generating sets Xn and Yn respectively.
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Proof. The main part is to show that they are quantum spaces with Weyl relations with

respect to these generating sets; if they are, then the associated graphs are an n-vertex path

for Lqn and an n-vertex cycle for Cq
n, which are both connected. (It is here that the condition

q 6= 1 is required, since L1
n and C1

n are commutative polynomial rings. It is possible to use

relations of the form xixj − qxjxi = 1 rather than xixj − qxjxi = 1 − q, in which case L1
n

and C1
n are indeed connected quantized Weyl algebras; however, many of the calculations

are easier in the form we use, and as we shall see later, the case q = 1 is not our primary

concern anyway.)

By induction and Proposition 4.5, it suffices to show that the maps αn and δn of Proposi-

tion 4.5 define valid automorphisms and αn-derivations on Lqn−1, and so by Proposition 2.22

it suffices to show that they preserve the defining relations of Lqn−1.

We first consider the automorphism and derivation of Lqn−1 required for Lqn. Define

αn(xi) = q(−1)n−i
xi.

For 1 ≤ i ≤ n− 2,

αn(xixi+1 − qxi+1xi − (1− q)) = q(−1)n−i(−1)n−i−1

(xixi+1 − qxi+1xi)− (1− q)

= (1− q)− (1− q)

= 0 as required.

For i < j − 1 < n− 1,

αn(xixj − q(−1)j−i+1

xjxi) = q(−1)n−i(−1)n−j

(xixj − q(−1)j−i+1

xjxi)

= 0 as required.

These combine to show that αn is a k-automorphism of Lqn−1.

Now define δn(xn−1) = 1− q−1, and δn(xi) = 0 otherwise.

For i < n− 2,

δn(xixi+1 − qxi+1xi − (1− q)) = 0 as required.

Considering i = n− 2,

δn(xn−2xn−1 − qxn−1xn−2 − (1− q)) = αn(xn−2)(1− q−1)− q(1− q−1)xn−2

= 0 as required.

For i < j < n− 1,

δn(xixj − q(−1)j−i+1

xjxi) = 0 as required.

For i < n− 1,

δn(xixn−1 − q(−1)n−1−i+1

xjxi) = αn(xi)(1− q−1)xi − q(−1)n−i

(1− q−1)xi

= 0 as required.
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These combine to show that δn is an αn-derivation of Lqn−1. So Lqn is indeed a connected

quantized Weyl algebra.

Now let n be odd. We note that the automorphism of Lqn−1 required for Cq
n is the same

αn defined above. Define γn(x1) = 1− q, γn(xn−1) = 1− q−1, and γn(xi) = 0 otherwise.

γn(x1x2 − qx2x1 − (1− q)) = (1− q)x2 − qαn(x2)(1− q)

= (1− q)x2 − qq−1x2(1− q)

= 0 as required.

For 2 < j < n− 1,

γn(x1xj − q(−1)j−1+1

xjx1) = (1− q)xj − (1− q)q(−1)jαn(xj)

= (1− q)xj − (1− q)qq(−1)j(−1)n−j

xj

= (1− q)xj − (1− q)qq(−1)n

= 0 as required.

δn(x1xn−1 − qxn−1x1) = (1− q)xn−1 + αn(x1)(1− q−1)

− q(1− q−1)x1 − qαn(xn−1)x1

= (1− q)xn−1 + qx1(1− q−1)− q(1− q−1)x1 − qq−1xn−1

= 0 as required.

These, together with the fact that δn(xi) = γn(xi) for i 6= 1, show that γn is an αn-

derivation of Lqn−1. So Cq
n is indeed a connected quantized Weyl algebra.

Remark. The associated graph of (Lqn, Xn) is an n-vertex path:

x1 x2 · · · xn−1 xn

The associated graph of (Cq
n, Yn) is an n-vertex cycle (depicted for n = 5):

x1 x2

x5 x3

x4

Proposition 4.13. Let X present R as a connected quantized Weyl algebra. Then there

exists q ∈ k× such that qxy ∈ {q, q−1} for all x 6= y ∈ X.
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Proof. We prove this by induction on n = |X|. When n = 1 or n = 2 this is trivial. When

n > 2, pick x ∈ X such that removing x from G(R,X) does not disconnect the graph, and

let S be the subalgebra of R generated by X \ {x}. Then by Proposition 4.4 (v), X \ {x}
presents S as a connected quantized Weyl algebra, so by induction, there exists q ∈ k× such

that qyz ∈ {q, q−1} for all y 6= z ∈ X \ {x}.
Now since G(R,X) is connected, there exists y ∈ X such that rxy 6= 0. So by Proposition

4.4 (ii), for all z ∈ X \ {x, y} we have qzx = qyz ∈ {q, q−1}. Finally since n > 2 and

G(S,X \ {x}) is connected, there must be t ∈ X \ {x, y} such that rty 6= 0, and so by

Proposition 4.4 (ii) we have qyx = qxt ∈ {q, q−1}.

Definition 4.14. Let X present R as a quantum space with Weyl relations, and let q ∈ k×.

We say (R,X) is a q-quantum space with Weyl relations, or q-qswr for short, if

qxy ∈ {q, q−1} for all x 6= y ∈ X.

If X in fact presents R as a connected quantized Weyl algebra then we say (R,X) is a

connected q-quantized Weyl algebra, or q-cqwa for short.

Remark. Not every quantum space with Weyl relations is a q-qswr, but by Proposition 4.13,

any connected quantized Weyl algebra is a q-qcwa for some q ∈ k.

Remark. Any q-qswr (resp. q-qcwa) is a q−1-qswr (resp. q−1-qcwa).

The next result, which is a basic result from graph theory, will allow us to prove results

on connected quantized Weyl algebras by induction: using this and Proposition 4.4 (iv), if

X presents R as a connected quantized Weyl algebra, then there exists v ∈ X such that

X \ {v} presents the subalgebra S of R generated by X \ {v} as a connected quantized Weyl

algebra, so we can apply induction to (S,X \ {v}).

Proposition 4.15. Let G be a connected graph. Then there exists v ∈ G such that G \ {v}
is still connected.

Proof. Any connected graph has a spanning tree (i.e. a subgraph with the same vertices but

possibly fewer edges which is connected and acyclic); any tree has a leaf (a vertex of degree

1). Removing this leaf leaves the spanning tree connected, so must leave the original graph

connected.

We will be aiming to show that a q-cqwa is always isomorphic to one of our known

examples (when q2 6= 1, these are Lqn and Cq
n). To perform the induction described above,

we will want to replace (S,X \ {v}) by our known example in such a way that adding v

back in gives us a q-qswr again. The following definition turns out to be what we need, as

Proposition 4.20 shows.
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Definition 4.16. Let R be a k-algebra, q ∈ k×, and X and Y be generating sets for R

such that (R,X) and (R, Y ) are both q-qswrs. (We note that we must have |X| = |Y | by

Proposition 4.7). Then we say that Y is q-compatible with X if, given any ring extension

T ⊃ R and z ∈ T such that, for all x ∈ X, there exists qxz ∈ {q, q−1}, rxz ∈ k such that

xz − qxzzx = rxz, then, for all y ∈ Y , there exists qyz ∈ {q, q−1} and ryz ∈ k such that

yz − qyzzy = ryz.

If X is q-compatible with Y and Y is q-compatible with X then we say X and Y are

q-compatible.

Suppose further we have a bijection φ : X → Y . We say Y is graph-q-compatible with

X if: for x ∈ X and x′ ∈ X, rφ(x)φ(x′) is nonzero if and only if rxx′ is nonzero, and rφ(x)z is

nonzero if and only if rxz is nonzero. If X is also graph-q-compatible with Y then we say

X and Y are graph-q-compatible. If this is the case, G(R,X) and G(R, Y ) are isomorphic

graphs (but this is a stronger condition than that).

Proposition 4.17. Let R be a k-algebra, q ∈ k×, and X, Y and Z be generating sets for

R such that (R,X), (R, Y ) and (R,Z) are all q-qswrs. If X and Y are q-compatible and Y

and Z are q-compatible then X and Z are q-compatible; the same is true if “q-compatible”

is replaced by “graph-q-compatible”.

Proof. This is immediate from the definitions.

Definition 4.18. Let (R,X) and (S, Y ) be q-qswrs. We say a ring isomorphism φ : R→ S

is a q-qswr isomorphism if φ(X) and Y are q-compatible. If φ(X) and Y are graph-q-

compatible then we say φ is a graph-q-qswr isomorphism while if φ(X) = Y then we say

φ is a strong q-qswr isomorphism.

Remark. If (R,X) and (S, Y ) are strongly q-qswr isomorphic q-qswrs, and Y ′ is another

generating set for S such that (S, Y ′) is a q-qswr, then (R,X) and (S, Y ′) are (graph-)q-

isomorphic if and only if Y and Y ′ are (graph-)q-compatible.

Proposition 4.19. Let (R,X) and (S, Y ) be q-qswrs. If φ : R → S is a (graph) q-qswr

isomorphism then φ−1 is also a (graph) q-qswr isomorphism.

Let (R,X), (S, Y ), and (T, Z) be q-qswrs. If φ : R → S and ψ : S → T are (graph)

q-qswr isomorphisms then ψ ◦ φ : R→ T is a (graph) q-qswr isomorphism.

Proof. Since φ(X) and Y are (graph) q-compatible, their images X and φ−1(Y ) under φ

must be (graph) q-compatible also.
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Since φ(X) and Y are (graph) q-compatible, their images ψ ◦ φ(X) and ψ(Y ) must be

(graph) q-compatible; therfore since ψ(Y ) and Z are (graph) q-compatible, by Proposition

4.17, ψ ◦ φ(X) and Z are (graph) q-compatible.

Proposition 4.20. Let (R,X) be a q-qswr. Let Y ⊂ X and let S be the subalgebra of R

generated by Y , so by Proposition 4.4 (v), (S, Y ) is a q-qswr. Let Y ′ be a generating set for S

such that (S, Y ′) is a q-qswr and Y and Y ′ are q-compatible. Finally let X ′ := Y ′ ∪ (X \ Y ).

Then (R,X ′) is a q-qswr and X and X ′ are q-compatible.

The same is true if “q-compatible” is replaced by “graph-q-compatible”.

Proof. Certainly, X ′ generates R, since Y ′ generates S and S ∪ (X \ Y ) generates R. Also,

relations of the form xy − qxyyx = rxy, with qxy = q±1 if x 6= y, hold for all x, y ∈ X ′: if

x, y ∈ Y ′ or x, y ∈ (X \ Y ) then this follows from (S, Y ′) or (R,X) (respectively) being

q-qswrs; while if x ∈ (X \ Y ) and y ∈ Y or vice versa, this follows from the q-compatibility

of Y and Y ′, the fact that R is a ring extension of S, and the fact that (R,X) is a q-qswr.

To show that R has a PBW basis with respect to X ′, let m = |S| and n = |R|,
and order X such that Y = {x1, . . . , xm}; then by Corollary 4.9, R can be written as

S[xm+1;αm+1, δm+1] · · · [xn;αn, δn]; meanwhile, if we write Y ′ = {y1, . . . , ym} for any order-

ing then S = k[y1] · · · [ym;αm, δm]; putting these together, and applying Proposition 4.5,

we’re done.

To show that X ′ is q-compatible with X, let T ⊃ R be a ring extension of the appropriate

form, and let x ∈ X ′. If x ∈ Y ′ then q-compatibility of Y and Y ′ gives a relation of the

required form, while if x /∈ Y ′ then x ∈ X, so a relation of the required form already holds.

The same proof shows that X is q-compatible with X ′, so X and X ′ are q-compatible.

To show that X and X ′ are graph-q-compatible if Y and Y ′ are graph-q-compatible, let

φ : Y → Y ′ be the designated bijection, and extend φ to a bijection X → X ′ by setting

φ(x) = x. Then for x, x′ ∈ X, rφ(x)φ(x′) is nonzero if and only if rxx′ by the graph-q-

compatibility of Y and Y ′ if at least one of x and x′ is in Y , or because φ(x) = x and

φ(x′) = x′ otherwise; while for x ∈ X, z ∈ T where T is a ring extension of R of the

appropriate form, rφ(x)z is nonzero if and only if rxz is nonzero by the graph-q-compatibility

of Y and Y ′ if x ∈ Y , or by x = φ(x) if not.

A lot of the above is unnecessary if we are only considering q-qswrs with q2 6= 1: here

we only need to rescale elements of our generating set by non-zero scalars, in which case

we get graph-q-compatibility. However, when we consider the case q2 = 1 later we will get

q-compatibility without graph-q-compatibility.
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Lemma 4.21. Let (S, Y ) be a q-qswr, and let y′ = λyy for all y ∈ Y , where each λy ∈ k×.

Then Y ′ := {y′ : y ∈ Y } is graph-q-compatible with Y .

Proof. First we must show that (R, Y ′) is a q-qswr. Certainly Y ′ generates R, and any

monomial in Y ′ is a scalar multiple of one in Y , so if the monomials in Y form a basis

for R then the monomials in Y ′ do so too. Next, if x, y ∈ Y with xy − qxyyx = rxy then

x′y′ − qxyy′x′ = λxλyrxy, so setting qx′y′ = qxy and rx′y′ = λxλyrxy, we have x′y′ − qx′y′y′x′ =
rx′y′ as required, and further, rx′y′ is nonzero if and only if rxy is.

Let T be a ring extension of S and let z ∈ T be such that, for all y ∈ Y , there exists

qyz ∈ {q, q−1}, ryz ∈ k such that yz − qyzzy = ryz. Then y′z − qyzzy′ = λyryz, and so Y ′ is

q-compatible with Y ; the reverse holds by symmetry. Further, ry′z = λyryz, so ry′z is nonzero

if and only if ryz is;

Our aim is to show that, for q2 6= 1, any q-cqwa is either Lqn or, if n is odd, Cq
n. There

will be two parts: first, show that, up to graph-q-qswr isomorphism, these are the only

possibilities whose associated graphs are the associated graphs of Lqn or Cq
n (which are an

n-vertex path and an n-vertex cycle respectively); second, show that those associated graphs

are the only possibilities for a q-cqwa.

Lemma 4.22. Let q ∈ k× be such that q2 6= 1.

(i) Let (R,X) be a q-qswr such that G(R,X) is an n-vertex path. Then R is graph-q-qswr

isomorphic to Lqn.

(ii) Suppose our base field k has square roots, and let (R,X) be a q-qswr such that G(R,X)

is an n-vertex cycle, where n is odd. Then R is graph-q-qswr isomorphic to Cq
n.

Proof. (i) We prove this by induction on n. We will find a set X ′ which is q-compatible

with X such that (R,X ′) is strongly q-qswr isomorphic to Lqn.

When n = 1, (R,X) is strongly q-qswr isomorphic to Lq1 since they are both polynomial

rings in one variable over k.

When n = 2, we can write X = {x, y} such that R is generated by x and y subject

to the relation xy − qyx = r for some r 6= 0. Letting y′ = (1 − q)r−1y, X ′ := {x, y′}
is graph-q-compatible with X by Lemma 4.21, and xy′ − qy′x = 1 − q so (R,X ′) is

strongly q-qswr isomorphic to Lq2.

When n > 2, let z be one of the end vertices of the path, and let S be the subalgebra

of R generated by Y := X \{z}, so by Proposition 4.4 (v), S is a q-qswr. By induction,
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S is graph-q-qswr isomorphic to Lqn−1, so let Y ′ be a generating set for S such that

(S, Y ′) is strongly q-qswr isomorphic to Lqn−1 and Y and Y ′ are graph-q-compatible.

Then let X ′ := Y ′ ∪ {z}, so (R,X ′) is a q-qswr and X and X ′ are graph-q-compatible

by Proposition 4.20. In particular G(R,X ′) is an n-vertex path with z being one of

the end vertices.

Let x ∈ X ′ and y ∈ X ′ be the two vertices nearest to z, that is, rxy 6= 0 and ryz 6= 0.

Either qxy = q or qxy = q−1; since Lqn−1
∼= Lq

−1

n−1 and all q-qswr properties are invariant

under switching q for q−1, by switching q and q−1 if necessary we can assume qxy = q.

Set z′ := (1 − q)r−1
yz z and set X ′′ := Y ′ ∪ {z′}, so (R,X ′′) is a q-qswr and X ′′ and X ′

are graph-q-compatible by Proposition 4.20.

By Proposition 4.4 (iii), qyz = qzx = q, and then by Proposition 4.4 (ii), qzt = q−1
yt for

t /∈ {y, z}; therefore qyz′ = qz′x = q and qz′t = q−1
yt for t /∈ {y, z}. Also ryz′ = 1− q and

rtz′ = 0 for t ∈ X ′′ with t 6= y. Checking this with the definition of Lqn (Definition 4.10),

(R,X ′′) is strongly q-qswr isomorphic to Lqn, and so since X ′′ is graph q-compatible

with X, we’re done.

(ii) When n = 1, R is strongly q-qswr isomorphic to Cq
1 since they are both polynomial

rings in one variable over k.

Otherwise, let z ∈ X, and let S be the subalgebra of R generated by X \ {z}, so by

Proposition 4.4 (v), S is a q-qswr. By the previous part, S is graph-q-qswr isomorphic to

Lqn−1, so let Y ′ be a generating set for S such that (S, Y ′) is strongly q-qswr isomorphic

to Lqn−1 and Y and Y ′ are graph-q-compatible. Then let X ′ := Y ′ ∪ {z}, so (R,X ′)

is a q-qswr and X and X ′ are graph-q-compatible by Proposition 4.20. In particular

G(R,X ′) is an n-vertex cycle.

There are two pairs (x, y) with x, y ∈ X ′ such that rxy 6= 0 and ryz 6= 0; consider the

pair such that qxy = q. By Proposition 4.4 (iii), qyz = qzx = q, and then by Proposition

4.4 (ii), qzt = q−1
yt for t /∈ {y, z}.

Let w ∈ X ′ be such that w 6= y but rzw 6= 0. Relabel the elements of Y ′ with y := y1,

x := y2, . . . , w := yn−1, so yi and yi+1 are always adjacent in G(S, Y ′). ryiyi+1
= 1 − q

but ryiyj = 0 if |i − j| > 1, while r := rzy1 6= 0 and s := ryn−1z 6= 0 but rzyi = 0

otherwise.

Let y′i := ryi if i is even, y′i := syi if i is odd, and z′ := (1 − q)z. So X ′′ := {y′i : 1 ≤
i ≤ n − 1} ∪ {z′} is graph-q-compatible with X ′, qt′u′ = qtu for t, u ∈ X ′. If t, u ∈ X ′
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then rt′u′ = 0 if rtu = 0, and otherwise we have rzy1 = ryiyi+1
= ryn−1z = (1− q)rs.

Finally let t′ := (rs)−
1
2 t for t ∈ X ′′, so X ′′′ := {t′ : t ∈ X ′′} is graph-q-compatible with

X ′′ and so with X, and (R,X ′′′) is strongly q-qswr isomorphic to Cq
n.

Lemma 4.23. Let X present R as a connected quantized Weyl algebra with q2
ab 6= 1 for some

a, b ∈ X, and let x ∈ X. Then there are at most two elements y ∈ X such that rxy 6= 0, that

is, no vertex of G(R,X) has degree greater than 2.

Proof. Suppose there are three such elements, y, z, and w. Then by Proposition 4.4 (iii)

applied three times, qyx = qxz = qwx = qxy and so q2
xy = 1, contradicting Proposition 4.13

and the assumption.

Theorem 4.24. Let k be a field with square roots, and let (R,X) be a q-cqwa with q2 6= 1.

Then if n is even, (R,X) is graph-q-qswr isomorphic to Lqn, while if n is odd, (R,X) is

graph-q-qswr isomorphic to either Lqn or Cq
n.

Proof. We prove this by induction on n := |X|. When n = 1 or n = 2 then G(R,X) is an

n-vertex path, so we’re done by by Lemma 4.22.

So suppose n > 2. Let x ∈ X be such that x does not disconnectG(R,X), and let S be the

subalgebra of R generated by Y := X \{x}. Then by induction, there is Y ′ such that (S, Y ′)

is a q-qswr, Y and Y ′ are graph-q-compatible, and (S, Y ′) is strongly q-qswr isomorphic to

either Lqn−1 or Cq
n−1, with the latter only possible if n is even. Let X ′ := Y ′ ∪ {x}, so by

Proposition 4.20, (R,X ′) is a q-qswr and X and X ′ are graph-q-compatible. In particular,

G(R,X ′) is isomorphic to G(R,X) and so is connected.

Suppose first that n is even and (S, Y ′) is strongly q-qswr isomorphic to Cq
n−1. Then there

must exist y ∈ Y ′ such that rxy 6= 0, but such a y would then have degree 3 in G(R,X ′),

contradicting Lemma 4.23.

x1 x2

x x5 x3

x4

Here x5 contradicts Lemma 4.23.

So (S, Y ′) must be strongly q-qswr isomorphic to Lqn−1. Let u and v denote the two

elements of Y ′ of degree 1 in G(S, Y ′), that is, the end vertices of the path. If y ∈ Y ,
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y /∈ {u, v} then ryx = 0, since if not then this y has degree 3 in G(R,X ′), contradicting

Lemma 4.23.

u = x1 x2 · · · xn−1 v = xn

x

Here x2 contradicts Lemma 4.23.

So since G(R,X ′) is connected, at least one of rux and rvx must be nonzero. If only one is,

then G(R,X ′) is an n-vertex path, and so by Lemma 4.22 (i), (R,X ′) is graph-q-isomorphic

to Lqn, while if both are non-zero and n is odd then G(R,X ′) is an n-vertex cycle and so by

4.22 (ii) (R,X ′) is graph-q-isomorphic to Cq
n.

u = x1 x2 · · · xn−1 v = xn

x

Here (R,X ′) is graph-q-isomorphic to Lqn by Lemma 4.22 (i).

There remains one case: if n > 2 is even and both rux 6= 0 and rvx 6= 0. In this case,

let w ∈ Y ′ be such that rwu 6= 0, as the diagram below illustrates. Then Proposition 4.4

(iii) gives qxu = quw and Proposition 4.4 (ii) using rxv 6= 0 gives qxu = quv. But checking the

definition of Lqn−1, quv = q−1
uw, since u, v, and w correspond to x1, xn−1, and x2 respectively.

This contradicts the assumption that q2 6= 1, so this case cannot arise.

u = x1 w = x2 · · · xn−1 v = xn

x

When n is even, this fails (as described above) since q2 6= 1.

So we have completed the classification of q-cqwas in the case q2 6= 1. The classification

when q2 = 1 is very different. On the one hand, one can construct a q-qswr generated by a

set X given any choice of values of rxy for x, y ∈ X (providing ryx = rxyq
−1
xy ); on the other,

when q = 1, it turns out that any 1-qswr is in fact isomorphic to a polynomial ring over a

Weyl algebra.
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Theorem 4.25. Let X be a finite set, let q = ±1, and let rxy ∈ k for x, y ∈ X be such that

ryx = qrxy. Let R be the ring generated by X subject to the relations xy− qyx = rxy for each

x, y ∈ X. Then X presents R as a quantum space with Weyl relations.

Proof. We show this by induction on |X|. Let {x1, . . . , xn} be an ordering of X with respect

to which R has a PBW basis. Let S be the subalgebra of R generated by Y = {x1, . . . , xn−1}.
By induction and Proposition 4.5, it suffices to check that the automorphism of S given by

α(xi) = qxi and the α-derivation of S given by δ(xi) = rxnxi are well-defined, that is, by

Proposition 2.22, that they preserve the defining relations of S.

Any such defining relation is of the form xixj − qxjxi = rij. Noting that q2 = 1,

α(xixj − qxjxi) = q2xixj − q3xjxi = xixj − qxjxi = rxixj as required, while δ(xixj − qxjxi) =

qxirxnxj + rxnxixj − q2xjrxnxi − qrxnxjxi = 0 as required, so we’re done.

Lemma 4.26. Let (R,X) be a 1-qswr. Let x, y ∈ X, µ ∈ k×, and λ ∈ k. Define x′ :=

µx− λy, and define X ′ := {x′} ∪X \ {x}. Then X and X ′ are 1-compatible.

Proof. First, using Proposition 4.21 to replace x with µx, we may assume µ = 1.

First we need to check that (R,X ′) is a 1-qswr. Certainly X ′ generates R. Given

z ∈ X \ {x}, xz − zx = rxz and yz − zy = ryz, so x′z − zx′ = rxz − λryz. So the elements of

X ′ satisfy relations of the appropriate form.

Order X with x and then y first, and order X ′ the same way but with x replaced by x′.

Then we know the monomials in X ′ span R; we need to check they are linearly independent.

Suppose they are not, so p is some non-trivial sum of monomials in X ′ that equals 0 in R.

Then we can use x′ = x− λy together with xy− yx = rxy to write p as a sum of monomials

in X, and by considering the terms of highest degree in x′ in p, which correspond exactly

with the terms of highest degree in x in our rewriting of p, this is still a non-trivial sum.

But then p cannot be 0, since the monomials in X are linearly independent, so we have a

contradiction.

Now let T be a ring extension ofR and let z ∈ T be such that, for all w ∈ X, wz−zw = rwz

for some rwz ∈ k. Then x′z − zx′ = rxz − λryz. So X ′ is 1-compatible with X; the reverse is

also true by symmetry.

Theorem 4.27. Let (R,X) be a 1-qswr. Then there exists X ′ such that (R,X ′) is a q-qswr,

X and X ′ are 1-compatible, and G(R,X ′) is isomorphic to a disjoint union of 2-vertex paths

and single vertices, and so (R,X) is 1-qswr isomorphic to a polynomial ring over a Weyl

algebra.
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Proof. Pick any x ∈ X, let Y = X \ {x}, and let S be the subalgebra of R generated by Y .

Then by induction, there exists Y ′ such that (S, Y ′) is a 1-qswr, Y and Y ′ are 1-compatible

and G(S, Y ′) is isomorphic to a disjoint union of 2-vertex paths and single vertices. Let

X ′ = Y ′ ∪ {x}, so by Proposition 4.20, (R,X ′) is a 1-qswr and X and X ′ are 1-compatible.

x

◦ ◦ ◦ ◦ ◦ ◦
A typical example of the setting.

Suppose y, z ∈ Y ′ are such that rxy and rzy are nonzero - so by the properties of G(S, Y ′),

ryt = 0 = rzt for all t ∈ X ′\{x, y, z}. (But rxz may be zero or not.) Then let x′ = rzyx−rxyz,

and let X ′′ = Y ′ ∪ {x′}, so by Lemma 4.26 X ′ and X ′′ are 1-compatible. We note that

rx′y = rzyrxy − rxyrzy = 0 and rx′z = rzyrxy, while for t ∈ X ′ \ {x, y, z}, rx′t = rxt. So

replacing x by x′ reduces its degree in the associated graph by 1.

x

◦ ◦ y z ◦ ◦

Here we can replace x by x′ = rzyx− rxyz; the new graph is then:

x′

◦ ◦ y z ◦ ◦

Now we can replace x′ by x′′ = ryzx− rxzy; the new graph is then:

x′′

◦ ◦ y z ◦ ◦

We can similarly remove the leftmost edge.

Therefore, we may assume that all of the neighbours of x in G(R,X ′) are isolated vertices

in G(S, Y ′). Suppose there are two such neighbours y and z, that is, rxy and rxz are nonzero

but ryt = rzt = 0 for all other t. Let y′ = rxzy − rxyz, and let X ′′ = {y′} ∪X ′ \ {y}, so by

Lemma 4.26 X ′ and X ′′ are 1-compatible. We note that rxy′ = rxzrxy − rxyrxz = 0, ry′z = 0,

and ry′t = 0 = ryt otherwise. So replacing y by y′ reduces the degree of x in the associated

graph by 1.
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x

◦ ◦ ◦ ◦ y z

Here we can replace y by y′ = rxzy − rxyz; the new graph is then:

x

◦ ◦ ◦ ◦ y′ z

So we may assume that x has at most one neighbour in G(R,X ′). But then G(R,X ′) is

of the required form.

Finally we note that if x and y are such that rxy 6= 0, by Proposition 4.21 we may replace

x by x′ := r−1
xy x, so rx′y = 1. Therefore if G(R,X ′) is of the described form then (R,X) is

1-qswr isomorphic to a polynomial ring over a Weyl algebra.

Theorem 4.28. Let r ≥ 1, s ≥ 0 be integers. Then Ar[z1, . . . , zs] is 1-qswr isomorphic to a

1-cqwa.

Proof. Let G be the associated graph of Ar−1[z1, . . . , zs+1], and let G′ = G∪ {x}, where x is

adjacent in G′ to every vertex of G. Then by Theorem 4.25, there exists a 1-qswr (R,X) with

G(R,X) ∼= G′, which is therefore a 1-cqwa since G′ is connected. Then following through

the proof of Theorem 4.27, one sees that G(R,X) is 1-qswr isomorphic to Ar[z1, . . . , zs].

Remark. This does not hold for r = 0 and s > 1, since any 1-cqwa with more than 2

generators is noncommutative, but A0[z1, . . . , zs] is a commutative polynomial ring.

Remark. The classification of −1-cqwas is harder, since neither Lemma 4.23, restricting the

possible associated graphs, nor Lemma 4.26, allowing us to change generators to modify

the associated graph, applies. One might conjecture that −1-cqwas - indeed −1-qswrs - are

classified by their associated graphs, but even this seems unlikely: consider a −1-cqwa whose

associated graph is a 4-cycle, so r12, r23, r34 and r41 are non-zero. If one attempts to rescale

the generators using Lemma 4.21, the quantity r12r
−1
23 r34r

−1
41 is invariant.
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5 Connected quantized Weyl algebras - ring-theoretic

properties

5.1 Normal elements in Lq
n

We note that there is a natural embedding Lqm ↪→ Lqn for m ≤ n by extending the natural

embedding Xm ↪→ Xn, and similarly a natural embedding Lqm ↪→ Cq
n for m ≤ n by extending

the natural embedding Xm ↪→ Yn. We will use these embeddings implicitly from now on.

We define an automorphism θ : Cq
n → Cq

n by extending the map xn 7→ x1, xi 7→ xi+1

otherwise. If m < n then the restriction of θ to Lqm gives a partial function, which we also call

θ, defined on Lqm−1, whose range θ(Lqm−1) is the subalgebra of Lqm generated by x2, . . . , xm.

Furthermore, this definition of θ (as a partial function Lqm−1 → Lqm−1) is independent of the

choice of n, as is the definition of θ(xi)

To reduce the number of calculations we need to make, recall the opposite ring of a ring

R, usually denoted Rop, which has the same elements and additive structure as R, but the

product of two elements in Rop is their product in the opposite order in R. When discussing

this we will continue to suppress multiplication in R, using ·op to denote multiplication in

the opposite ring, so a ·op b = ba.

This is useful because there is an isomorphism ∗m : Lqm → (Lqm)op given by extending the

map xi 7→ xm+1−i. We note that whenever they are both defined, ∗n = θn−m ◦ ∗m.

Definition 5.1. Define elements zn ∈ Lqn recursively by setting z−1 = 0, z0 = 1, and for

n > 0, zn = zn−1xn − zn−2.

Proposition 5.2. We describe some basic properties of these elements.

(i) zn = x1θ(zn−1)− θ2(zn−2) for all n > 0.

(ii) ∗n(zn) = zn for all n ≥ 0.

(iii) xizn = znxi (for 1 ≤ i ≤ n, n > 0 odd);

xizn = q(−1)i−1
znxi (for 1 ≤ i ≤ n, n > 0 even).

Thus, zn is normal in Lqn, and central if n is odd.

(iv) zizj = qijzjzi, where qij =


1, if max{i, j} is odd or both i, j even;

q, if i odd, j even, i < j;

q−1, if i even, j odd, i > j.
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(v) If 1 ≤ i+ r ≤ j, with i ≥ 1 and r ≥ 0, θr(zi)zj = pijrzjθ
r(zi), where

pijr =


1 if j is odd or i is even;

q if j is even, i is odd and r is even;

q−1 if j is even, i is odd and r is odd.

(vi) zixj = xjzi (for i even, i+ 1 < j);

zixj = q(−1)jxjzi (for i odd, i+ 1 < j).

Proof. (i) We prove this by induction on n.

When n = 1, x1θ(zn−1)− θ2(zn−2) = x1 = z1 as required.

When n = 2, x1θ(zn−1)− θ2(zn−2) = x1x2 − 1 = z2 as required.

When n > 2,

zn = zn−1xn − zn−2

= x1θ(zn−2)xn − θ2(zn−3)xn − x1θ(zn−3) + θ2(zn−4) by induction

= x1θ(zn−1)− θ2(zn−2).

(ii) We prove this by induction on n. When n = 0 or n = 1 this is trivial, so assume n > 1.

∗n(zn) = ∗n(x1θ(zn−1)− θ2(zn−2))

= ∗n(x1) ·op ∗nθ(zn−1)− ∗nθ2(zn−2)

= xn ·op ∗n−1(zn−1)− ∗n−2(zn−2) since ∗n = θn−m ◦ ∗m
= xn ·op zn−1 − zn−2 by induction

= zn−1xn − zn−2

= zn as required.

(iii) We prove this by induction on n. When n = 1 this is trivial, since z1 = x1.

For the case n = 2,

x1z2 = x1x1x2 − x1

= x1(qx2x1 + 1− q)− x1

= qx1x2x1 − qx1

= qz2x1.

∗2(x2z2 − q−1z2x2) = z2x1 − q−1x1z2 by (ii)

= 0 by the previous calculation.
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Therefore since ∗2 is an isomorphism, x2z2 − q−1z2x2 = 0, and we’ve proved the result

when n = 2.

If n is even and i ≤ n− 2 then

xizn = xi(zn−1xn − zn−2)

= zn−1xixn − zn−2q
(−1)i−1

xi by induction

= q(−1)i−1

zn−1xnxi − q(−1)i−1

zn−2xi

= q(−1)i−1

znxi.

If i > 2 and n is even then

∗n(xizn − q(−1)i−1

znxi) = znxn−i+1 − q(−1)i−1

xn−i+1zn by (ii)

= 0 by the previous calculation.

Meanwhile if n is odd and i ≤ n− 2 then

xizn = xi(zn−1xn − zn−2)

= q(−1)i−1

zn−1xixn − zn−2xi by induction

= zn−1xnxi − zn−2xi

= znxi.

If i > 2 and n is odd then

∗n(xizn − znxi) = znxn−i+1 − xn−i+1zn by (ii)

= 0 by the previous calculation.

We are almost done, but there remains the case when n = 3 and i = 2, which is not

covered by any of the above:

x2z3 = x2x1x2x3 − x2x1 − x2x3

= q−1x1x2x2x3 + (1− q−1)x2x3 − q−1x1x2 − (1− q−1)− x2x3

= x1x2x3x2 + q−1(1− q)x1x2 − q−1x2x3 − q−1x1x2 − (1− q−1)

= x1x2x3x2 − x1x2 − x3x2 − q−1(1− q)− (1− q−1)

= z3x2.

(iv, v) (iv) is a special case of (v). For j odd this is immediate from part (iii).

For j even, we prove this by induction on i for fixed j. When i = 0 this is trivial, while

when i = 1 this is immediate from part (iii).
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For all odd i > 1, θr(zi)zj = θr(zi−1)xi+rzj − θr(zi−2)zj

= q(−1)rθr(zi−1)zjxi+r − q(−1)rzjθ
r(zi−2)

= q(−1)rzjθ
r(zi−1)xi+r − q(−1)rzjθ

r(zi−2)

= q(−1)rzjzi.

Meanwhile, for all even i > 1, θr(zi)zj = θr(zi−1)xi+rzj − θr(zi−2)zj

= q(−1)(r+1)θr(zi−1)zjxi+r − zjθr(zi−2)

= zjθ
r(zi−1)xi − zjθr(zi−2)

= zjθ
r(zi).

(vi) We prove this by induction on i. When i = 0 this is trivial and when i = 1 this follows

from z1 = x1 and the definition of Lqn.

When i > 1 is even and j > i+ 1,

zixj = zi−1xixj − zi−2xj

= q(−1)j−i

zi−1xjxi − xjzi−2 by induction and the definition of Lqn

= q(−1)j−i

q(−1)jxjzi−1xi − xjzi−2 by induction

= xjzi since i is even.

When i > 1 is odd and j > i+ 1,

zixj = zi−1xixj − zi−2xj

= q(−1)j−i−1

zi−1xjxi − q(−1)jxjzi−2 by induction and the definition of Lqn

= q(−1)j−i−1

xjzi−1xi − q(−1)jxjzi−2 by induction

= q(−1)jxjzi since i is odd.

Proposition 5.3. For all i ≥ 1,

(i) zixi+1 = xi+1zi + (1− q)zi−1 (if i is even);

(ii) zixi+1 = qxi+1zi + (1− q)zi−1 (if i is odd);

(iii) x1θ(zi) = θ(zi)x1 + (1− q)θ2(zi−1) (if i is even);

(iv) x1θ(zi) = qθ(zi)x1 + (1− q)θ2(zi−1) (if i is odd).

Proof. (i) For all even i ≥ 1,
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zixi+1 = zi−1xixi+1 − zi−2xi+1 by definition of zi

= zi−1(qxi+1xi + 1− q)− zi−2xi+1 by the definition of Lqn

= xi+1zi−1xi − xi+1zi−2 + (1− q)zi−1 by Proposition 5.2 (vi)

= xi+1zi + (1− q)zi−1.

(ii) For all odd i ≥ 1,

zixi+1 = zi−1xixi+1 − zi−2xi+1 by definition of zi

= zi−1(qxi+1xi + 1− q)− zi−2xi+1 by the definition of Lqn

= qxi+1zi−1xi − qxi+1zi−2 + (1− q)zi−1 by Proposition 5.2 (vi)

= qxi+1zi + (1− q)zi−1.

(iii) For all even i ≥ 1,

∗i+1(x1θ(zi)− θ(zi)x1) = zixi+1 − xi+1zi by Proposition 5.2 (ii)

= (1− q)zi−1 by (i)

= ∗i+1((1− q)θ2(zi−1)).

Since ∗i+1 is an isomorphism, x1θ(zi) = θ(zi)x1 + (1− q)θ2(zi−1).

(iv) For all odd i ≥ 1,

∗i+1(x1θ(zi)− qθ(zi)x1) = zixi+1 − qxi+1zi by Proposition 5.2 (ii)

= (1− q)zi−1 by (i)

= ∗i+1((1− q)θ2(zi−1))

.

Since ∗i+1 is an isomorphism, x1θ(zi) = qθ(zi)x1 + (1− q)θ2(zi−1).

Corollary 5.4. For all i ≥ 1,

(i) xi+1zi = qzixi+1 + (1− q)zi+1 (if i is even);

(ii) qxi+1zi = qzixi+1 + (1− q)zi+1 (if i is odd);

(iii) θ(zi)x1 = qx1θ(zi) + (1− q)zi+1 (if i is even);

(iv) qθ(zi)x1 = qx1θ(zi) + (1− q)zi+1 (if i is odd).

Proof. (i), (ii) Subtract (1 − q)(zi+1 + zi−1) = (1 − q)zixi+1 from both sides in Proposition

5.3 (i), (ii).
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(iii), (iv) Subtract (1 − q)(θ2(zi+1) + zi−1) = (1 − q)x1θ(zi) from both sides in Proposition

5.3 (iii), (iv).

Corollary 5.5. For all i ≥ 1,

(i) zai xi+1 − xi+1z
a
i = (1− q)[a]q−1zi−1z

a−1
i (if i is even);

(ii) zai xi+1 − qaxi+1z
a
i = (1− q)[a]qzi−1z

a−1
i (if i is odd);

(iii) zix
a
i+1 − xai+1zi = (1− q)[a]qzi−1x

a−1
i+1 (if i is even);

(iv) zix
a
i+1 − qaxai+1zi = (1− q)[a]qzi−1x

a−1
i+1 (if i is odd);

(v) xa1θ(zi)− θ(zi)xa1 = (1− q)[a]qx
a−1
1 θ2(zi−1) (if i is even);

(vi) xa1θ(zi)− qaθ(zi)xa1 = (1− q)[a]qx
a−1
1 θ2(zi−1) (if i is odd).

Proof. In all cases, this is by induction on a, and a = 1 comes from the appropriate section

of Lemma 5.3. We note that [a− 1]q + qa−1 = [a]q and q[a− 1]q + 1 = [a]q.

(i) For all even i ≥ 1,

zai xi+1 = za−1
i xi+1zi + (1− q)za−1

i zi−1 by Proposition 5.3 (i)

= (xi+1z
a−1
i + (1− q)[a− 1]q−1zi−1z

a−2
i )zi

+ (1− q)q−(a−1)zi−1z
a−1
i

by induction

= xi+1z
a
i + (1− q)[a]q−1zi−1z

a−1
i .

(ii) For all odd i ≥ 1,

zai xi+1 = qza−1
i xi+1zi + (1− q)za−1

i zi−1 by Proposition 5.3 (ii)

= q(qa−1xi+1z
a−1
i + (1− q)[a− 1]qzi−1z

a−2
i )zi

+ (1− q)zi−1z
a−1
i

by induction

= qaxi+1z
a
i + (1− q)[a]qzi−1z

a−1
i .

(iii) For all even i ≥ 1,

zix
a
i+1 = xi+1zix

a−1
i+1 + (1− q)zi−1x

a−1
i+1 by Proposition 5.3 (iii)

= xi+1(xa−1
i+1 zi + (1− q)[a− 1]qzi−1x

a−2
i+1 )

+ (1− q)zi−1x
a−1
i+1

by induction

= xai+1zi + (1− q)(q[a− 1]q + 1)zi−1x
a−1
i+1

= xai+1zi + (1− q)[a]qzi−1x
a−1
i+1 .
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(iv) For all odd i ≥ 1,

zix
a
i+1 = qxi+1zix

a−1
i+1 + (1− q)zi−1x

a−1
i+1 by Proposition 5.3 (iv)

= qxi+1(qa−1xa−1
i+1 zi + (1− q)[a− 1]qzi−1x

a−2
i+1 )

+ (1− q)zi−1x
a−1
i+1

by induction

= qaxai+1zi + (1− q)(q[a− 1]q + 1)zi−1x
a−1
i+1

= qaxai+1zi + (1− q)[a]qzi−1x
a−1
i+1 .

(v) For all even i ≥ 1,

∗i+1(xa1θ(zi)− θ(zi)xa1) = zix
a
i+1 − xai+1zi by Proposition 5.2 (ii)

= (1− q)[a]qzi−1x
a−1
i+1 by (iii)

= ∗i+1((1− q)[a]qx
a−1
1 θ2(zi−1)

Therefore, since ∗i+1 is an isomorphism, xa1θ(zi)− θ(zi)xa1 = (1− q)[a]qx
a−1
1 θ2(zi−1).

(vi) For all odd i ≥ 1,

∗i+1(xa1θ(zi)− qaθ(zi)xa1) = zix
a
i+1 − qaxai+1zi by Proposition 5.2 (ii)

= (1− q)[a]qzi−1x
a−1
i+1 by (iii)

= ∗i+1((1− q)[a]qx
a−1
1 θ2(zi−1)

Therefore, since ∗i+1 is an isomorphism, xa1θ(zi)− qaθ(zi)xa1 = (1− q)[a]qx
a−1
1 θ2(zi−1).

5.2 The central element Ω in Cq
n

Recall that Cq
n is a skew polynomial ring over Lqn−1. So the elements z1, . . . , zn−1 are all

elements of Cq
n. However, the element zn−1xn − zn−2 of Cq

n is not normal in Cq
n, so we need

a replacement.

Lemma 5.6. In Cq
n, zn−1xn = xnzn−1 + (1− q)(zn−2 − θ(zn−2)).

Proof. zn−1xn = x1θ(zn−2)xn − θ2(zn−3)xn

= x1θ(zn−2xn−1)− θ2(zn−3xn−2)

= x1θ(qxn−1zn−2 + (1− q)zn−3)− θ2(xn−2zn−3 + (1− q)zn−4)

= qx1xnθ(zn−2) + (1− q)x1θ(zn−3)− xnθ2(zn−3) + (1− q)θ2(zn−4)

= (xnx1 − (1− q))θ(zn−2)− xnθ2(zn−3) + (1− q)zn−2

= xnzn−1 + (1− q)zn−2 − (1− q)θ(zn−2).
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Definition 5.7. In Cq
n, define Ωn = zn−1xn − zn−2 − qθ(zn−2). In general we will shorten

this to Ω unless the context makes the ambient ring unclear.

Lemma 5.8. θ(Ω) = Ω.

Proof. θ(Ω) = θ(zn−1xn)− θ(zn−2)− qθ2(zn−2)

= θ(xnzn−1 + (1− q)(zn−2 − θ(zn−2)))

− θ(zn−2)− qθ2(zn−2)

by Lemma 5.6

= x1θ(zn−1)− qθ(zn−2)− θ2(zn−2)

= x1θ(zn−2)xn − x1θ(zn−3)− θ2(zn−3)xn

+ θ2(zn−4)− qθ(zn−2)

by definition of zi

= zn−1xn − zn−2 − qθ(zn−2) by Proposition 5.2 (i)

= Ω.

Theorem 5.9. xiΩ = Ωxi for 1 ≤ i ≤ n.

Proof. It suffices to check that xiΩ = Ωxi for one valid i, using the automorphism θ and

Lemma 5.8.

When n > 3, x2Ω = x2zn−1xn − x2zn−2 − qx2θ(zn−2)

= q−1zn−1x2xn − zn−2x2 − qθ(zn−2)x2

= zn−1xnx2 − zn−2x2 − qθ(zn−2)x2

= Ωx2.

When n = 3, x1Ω = x1x1x2x3 − x1x1 − qx1x2 − x1x3

= x1(qx2x1 + 1− q)x3 − x1x1 − qx1x2 − x1x3

= qx1x2x1x3 − x1x1 − qx1x2 − qx1x3

= x1x2(x3x1 − (1− q))− x1x1 − qx1x2 − qx1x3

= x1x2x3x1 − x1x1 − x1x2 − qx1x3

= x1x2x3x1 − x1x1 − qx2x1 − (1− q)− x3x1 + (1− q)

= Ωx1.

5.3 Prime ideals in Lq
n

Definition 5.10. Denote by zn the set {z1, . . . , zn}
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Let Aij =


0, if max{i, j} is odd or both i, j even

1, if i odd, j even, i < j

−1, if i even, j odd, i < j

.

Let An be the matrix (Aij)
n
i,j=1. This corresponds with Proposition 5.2 (iv), so that the

quantum space Sq(zn,An) is naturally contained within Lqn.

Lemma 5.11. (i) Let Xn denote the set of non-zero monomials in zn and their non-zero

scalar multiples. This is a right Ore set in Lqn and (Lqn)Xn = Tq(k, zn,An).

(ii) (Lqn)Xn−1 = Tq(k, zn−1,An−1)[zn;αn] where αn(zi) = qAnizi. (If n is odd then αn is the

identity automorphism).

Proof. (i) We show that Xn is a right Ore set in Lqn by induction on n. When n = 1,

X1 = k[x]∗, which is an Ore set in Lq1 since the latter is commutative. So by induction,

suppose we know Xn−1 is a right Ore set in Lqn−1. We recall that Lqn = Lqn−1[xn;σn, δn]

where σn(xi) = q±1xi for each i. Since σn(Xn−1) = Xn−1, by Lemma 2.42, Xn−1 is a

right Ore set in Lqn. Now Xn is the multiplicative closure of Xn−1 ∪{zn}, so by Lemma

2.44, Xn is a right Ore set in Lqn also, since zn is normal in Lqn.

Since Sq(k, zn,An) ⊂ Lqn and Sq(k, zn,An)Xn = Tq(k, zn,An), we have Tq(k, zn,An) ⊂
(Lqn)Xn . Then, since xi = z−1

i−1(zi + zi−2), we have xi ∈ Tq(k, zn,An) for 1 ≤ i ≤ n, and

so Tq(k, zn,An) = (Lqn)Xn .

(ii) We have already shown that Xn−1 is a right Ore set in Lqn. By the same argument as in

(i), Tq(k, zn−1,An−1)[zn;αn] ⊂ (Lqn)Xn−1 , and then the calculation xi = z−1
i−1(zi + zi−2)

shows xi ∈ Tq(k, zn−1,An−1)[zn;αn] for 1 ≤ i ≤ n, and so Tq(k, zn−1,An−1)[zn;αn] =

(Lqn)Xn .

Lemma 5.12. Let K be a field, and q ∈ K be such that q is not a root of unity. Then

Tq(K, zn,An) is simple if and only if n is even.

Proof. Given integers m1, . . . ,mn, we say property (*) holds if A1jm1 + · · ·+Anjmn = 0 for

j = 1, . . . , n. By [32, Proposition 1.3], Tq(K, zn,An) is simple if and only if the only n-tuple

m1, . . . ,mn which satisfies property (*) is m1 = · · · = mn = 0.

If n is odd then Anj = 0 for all j, so taking m1 = · · · = mn−1 = 0 and mn non-zero

means (*) holds, so Tq(K, zn,An) cannot be simple. (Alternatively, we can observe directly

that zn is then a central non-unit, so generates a non-trivial two-sided ideal).
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If n is even, suppose m1, . . . ,mn are such that property (*) holds. Considering j = 2

tells us that m1 = 0, since Ai2 = 0 unless i = 1 and A12 = 1. Then considering j = 4 tells us

that m3 = 0, since Ai4 = 0 unless i = 1 or i = 3, and both A14 and A34 = 1; since m1 = 0 we

must also have m3 = 0. Continuing similarly, mk = 0 for all odd k. Similarly, considering

j = n − 1 tells us that mn = 0, since Ai,n−1 = 0 unless i = n, and An,n−1 = −1, and then

considering j = n − 3 tells us mn−2 = 0, and continuing similarly mk = 0 for all even k.

Thus mk = 0 for all k, and so by the cited proposition, Tq(K, zn,An) is simple.

Lemma 5.13. Let I be a (two-sided) ideal in some ring extension R of Lqn (e.g. R = Lqm,

m ≥ n, or R = Cq
m, odd m > n), and assume that q is not a root of unity.

Let w ∈ R be such that wxi = qrixiw for 1 ≤ i ≤ n, where ri ∈ Z for each i, and let

ti ∈ N for each i.

Suppose I contains t = zt11 · · · z
tn−1

n−1 w. Then I contains w.

Proof. For any element u of the form u = zu11 · · · z
un−1

n−1 w, define c(u) := Σn−1
i=1 iui. Let t ∈ I

be such that c(t) is minimal among elements of I of this form. If c(t) = 0 then t = w and so

w ∈ I as required, so suppose c(t) > 0. Then there exists some i < n such that ti 6= 0. Take

the biggest such i and consider txi+1. By Corollary 5.5 (i), (ii), together with Proposition

5.2 (vi), there exist m,m′ ∈ Z such that

txi+1 = zt11 · · · z
ti
i wxi+1

= qmxi−1z
t1
1 · · · z

ti
i w + qm

′
(1− q)[ti]q−1zt11 · · · z

ti−1+1
i−1 zti−1

i w, if i is even, or

txi+1 = zt11 · · · z
ti
i wxi+1

= qmxi−1z
t1
1 · · · z

ti
i w + qm

′
(1− q)[ti]qzt11 · · · z

ti−1+1
i−1 zti−1

i w, if i is odd.

Since q is not a root of unity, [ti]q−1 and [ti]q are both non-zero, so in either case, we can

define t′ := zt11 · · · z
ti−1+1
i−1 zti+1

i w ∈ I, and then c(t′) < c(t), contradicting the minimality of

t.

Corollary 5.14. Recall the set Xn−1 from Lemma 5.11, of non-zero scalar multiples of

monomials in zn−1, and let I be a proper ideal of Lqn. Then I ∩ Xn−1 = ∅.

Proof. A generic element of Xn−1 is of the form λzt11 · · · z
tn−1

n−1 , where λ ∈ k× and ti ∈ N;

if such an element is in I, then taking w = λ, we can apply Lemma 5.13 to get λ ∈ I, a

contradiction since I is proper.

Proposition 5.15. Any prime ideal of Lqn is completely prime.

Proof. This follows from [17, Theorem 2.3]. Conditions (a) and (b) are clear. For condition

(c), note that δiαi(zj) = αiδi(zj) = 0 if j < i − 1. If i is odd then, by Proposition 5.3,
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δiαi(zi−1) = (1 − q)zi−2 = q−1αiδi(zi−1), while if i is even, δiαi(zi−1) = q(1 − q)zi−2 =

qαiδi(zi−1). Then condition (d) and the condition on the subgroup of k× generated by the

λij - which is just the subgroup of k× generated by q - follow from the fact that q is not a

root of unity.

Lemma 5.16. If n is odd, (zn − λ)Lqn is a completely prime ideal of Lqn for each λ ∈ k.

If n is even, znL
q
n is a completely prime ideal of Lqn.

Proof. We show this by induction using Lemma 2.31; the case n = 0 is trivial. If n > 0 and

then in the setting of that Lemma we have c = zn − λ; d = zn−1; and e = −zn−2 − λ, where

λ = 0 if n is even and λ ∈ k if n is odd. By induction, zn−1L
q
n−1 is a completely prime ideal

in Lqn−1. Since zn−1 has degree 1 in xn−1 but e has degree 0 in xn−1, e is non-zero, and so

regular, modulo zn−1L
q
n−1. Therefore we can apply Lemma 2.31, and cLqn is a completely

prime ideal in Lqn.

Theorem 5.17. Let n be odd, assume that k is algebraically closed, and assume q is not a

root of unity. Then the prime ideals of Lqn are 0 and the ideals (zn − λ)Lqn for each λ ∈ k.

Proof. We know that Lqn is a domain, so together with Lemma 5.16, the given ideals are all

prime ideals of Lqn.

By Lemma 5.11, (Lqn)Xn−1 = Tq(k, zn−1,An−1)[zn]. Let I be a non-zero ideal of (Lqn)Xn−1 .

By Lemma 5.12, Tq(k, zn−1,An−1) is a simple ring, so we can apply Theorem 2.30, so I =

p(Lqn)Xn−1 , where p ∈ k[zn]. Since zn is central and k is algebraically closed, if I is prime

then p = zn − λ for some λ ∈ k.

We recall Theorem 2.10: there is a one-to-one correspondence between {P ∈ Spec Lqn :

P ∩Xn−1 = ∅} and Spec (Lqn)Xn−1 given by P 7→ P (Lqn)Xn−1 . Since (zn−λ)Lqn maps to (zn−
λ)(Lqn)Xn−1 under this correspondence, using the fact that this correspondence is bijective

we therefore have {P ∈ Spec Lqn : P ∩ Xn−1 = ∅} = {(zn − λ)Lqn : λ ∈ k} ∪ {0}.
But by Corollary 5.14, {P ∈ Spec Lqn : P ∩Xn−1 = ∅} = Spec Lqn, and so we’re done.

Lemma 5.18. Let n be even, λ ∈ k×, and define Pλ := znL
q
n + (zn−1−λ)Lqn. Then Pλ is an

ideal of Lqn with Lqn/Pλ isomorphic to Lqn−1/(zn−1 − λ)Lqn−1; in particular Pλ is a completely

prime ideal of Lqn−1.

Proof. Firstly, zn−1 is central modulo znL
q
n, since it commutes with xi for 1 ≤ i ≤ n−1, and

by Corollary 5.4 (ii) xnzn−1 − zn−1xn ∈ znLqn. Therefore Pλ is an ideal of Lqn.

Secondly, since xn = λ−1zn−2 modulo Pλ, L
q
n/Pλ is generated by x1, . . . , xn−1. So there

are homomorphisms Lqn/Pλ → Lqn−1/(zn−1 − λ)Lqn−1 and vice versa given by x̄i 7→ x̄i for
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1 ≤ i ≤ n− 1 (it is easy to check that these are well-defined), and these are inverses to each

other, and so isomorphisms.

Theorem 5.19. Let n be even, and assume k is algebraically closed and q is not a root of

unity. Then the prime ideals in Lqn are 0, znL
q
n and (zn−1 − λ)Lqn + znL

q
n for each λ ∈ k×.

Proof. We know that Lqn is a domain, so together with Lemmas 5.16 and 5.18, the given

ideals are all (completely) prime ideals of Lqn.

By Lemma 5.11 (Lqn)Xn−1 = Tq(k, zn−1,An−1)[zn;α] for an appropriate automorphism α.

Let T = Tq(k, zn−1,An−1)[zn;α] and consider the prime spectrum of T . The set U = {zin :

i ∈ N} is an Ore set in T , and TU = Tq(k, zn,An), which is simple by Lemma 5.12. Therefore

any ideal of T must contain some power of zn; since zn is normal in T , any prime ideal of T

must contain zn.

The ideal znT is a completely prime ideal of T , since T/znT ∼= Tq(k, zn−1,An−1) which is

a domain. Also, Tq(k, zn−1,An−1) = Tq(k, zn−2,An−2)[z±1
n−1], which is a Laurent polynomial

ring over a simple ring by Lemma 5.12, so we can apply Theorem 2.30: any ideal I of

Tq(k, zn−1,An−1) is of the form pTq(k, zn−2,An−2) with p ∈ k[z±1
n−1]. Since k is algbraically

closed, if I is prime then p = zn−1−λ for some λ ∈ k×, and in this case Tq(k, zn−1,An−1)/I ∼=
Tq(k, zn−2,An−2), which is simple, so such an I is maximal.

Therefore the prime spectrum of T consists of: 0; znT ; and znT + (zn−1 − λ)T , for each

λ ∈ k×.

Now we apply Theorem 2.10, recalling that T = (Lqn)Xn−1 : there is a one-to-one corre-

spondence between {P ∈ Spec Lqn : P ∩ Xn−1 = ∅} and Spec T given by P 7→ PT . Since by

Corollary 5.14, {P ∈ Spec Lqn : P ∩ Xn−1 = ∅} = Spec Lqn, this correspondence is between

Spec Lqn and Spec T . But this correspondence sends the known prime ideals of Lqn, as listed

above, to the prime ideals of T , and therefore those ideals are the only prime ideals of Lqn.

5.4 Prime ideals in Cq
n

In this section, we will always assume n is odd, so Cq
n exists.

We begin by summarising for easy reference the results of Proposition 5.3, Corollary 5.4

and Lemma 5.6.

Proposition 5.20. For i < n− 1,

zixi+1 = xi+1zi + (1− q)zi−1 (if i is even) (1);

zixi+1 = qxi+1zi + (1− q)zi−1 (if i is odd) (2);

xi+1zi = qzixi+1 + (1− q)zi+1 (if i is even) (3);
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qxi+1zi = qzixi+1 + (1− q)zi+1 (if i is odd) (4);

x1θ(zi) = θ(zi)x1 + (1− q)θ2(zi−1) (if i is even) (5);

x1θ(zi) = qθ(zi)x1 + (1− q)θ2(zi−1) (if i is odd) (6);

θ(zi)x1 = qx1θ(zi) + (1− q)zi+1 (if i is even) (7);

qθ(zi)x1 = qx1θ(zi) + (1− q)zi+1 (if i is odd) (8);

zn−1xn = xnzn−1 + (1− q)(zn−2 − θ(zn−2)) (9).

Lemma 5.21. For i < n− 1,

qθ(zi)zi − θ(zi−1)zi+1 = qθ(zi−1)zi−1 − qθ(zi−2)zi (if i is odd); or

θ(zi)zi − θ(zi−1)zi+1 = qθ(zi−1)zi−1 − θ(zi−2)zi (if i is even).

Proof. When i is odd:

qθ(zi)zi − θ(zi−1)zi+1 = qθ(zi−1)xi+1zi − qθ(zi−2)zi − θ(zi−1)zixi+1

+ θ(zi−1)zi−1

= qθ(zi−1)xi+1zi − qθ(zi−2)zi − qθ(zi−1)xi+1zi

− (1− q)θ(zi−1)zi−1 + θ(zi−1)zi−1 by 5.20 (2)

= qθ(zi−1)zi−1 − qθ(zi−2)zi.

When i is even:
θ(zi)zi − θ(zi−1)zi+1 = θ(zi−1)xi+1zi − θ(zi−2)zi − θ(zi−1)zixi+1

+ θ(zi−1)zi−1

= θ(zi−1)xi+1zi − θ(zi−2)zi − θ(zi−1)xi+1zi

− (1− q)θ(zi−1)zi−1 + θ(zi−1)zi−1 by 5.20 (1)

= qθ(zi−1)zi−1 − θ(zi−2)zi.

Corollary 5.22. In Lqm, for 0 ≤ i ≤ m− 1, i odd, qθ(zi)zi − θ(zi−1)zi+1 = q
i+1
2 .

In Lqm, for 0 ≤ i ≤ m− 1, i even, θ(zi)zi − θ(zi−1)zi+1 = q
i
2 .

Proof. When i = 0, this is trivial, and otherwise it follows by induction using Lemma

5.21.

Lemma 5.23. θ−1(zn−1)zn−1 = qzn−1θ
−1(zn−1) + (1− q)(q n−1

2 − qz2
n−2).
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Proof. θ−1(zn−1)zn−1 = θ−1(zn−1)zn−2xn−1 − θ−1(zn−1)zn−3

= qzn−2θ
−1(zn−1)xn−1 − zn−3θ

−1(zn−1)

= qzn−2xn−1θ
−1(zn−1) + qzn−2(1− q)(θ−1(zn−2)− zn−2)

− qzn−3θ
−1(zn−1)− (1− q)zn−3θ

−1(zn−1)

= qzn−1θ
−1(zn−1) + (1− q)(qzn−2θ

−1(zn−2)− zn−3θ
−1(zn−1)− qz2

n−2)

= qzn−1θ
−1(zn−1) + (1− q)(q

n−1
2 − qz2

n−2).

(The last equality is by Corollary 5.22, which gives qθ(zn−2)zn−2 − θ(zn−3)zn−1 = q
n−1
2 ).

To describe the prime ideals in Cq
n we will use the more general results we proved in

Section 3. We cannot apply these results directly to Cq
n, but we can apply them to a

localisation of Cq
n and then pass back to Cq

n.

Lemma 5.24. Let A := (Lqn−2)Xn−2, v := (1 − q)(q n−3
2 z−1

n−2 − zn−2), and let α be the auto-

morphism of A given by α(xi) = q(−1)ixi.

Define φ : R(A,α, v) → (Cq
n)Xn−2 by φ(a) = a for a ∈ A; φ(x) = θ−1(zn−1); and

φ(y) = z−1
n−2zn−1. Then φ is an isomorphism.

Proof. By Lemma 5.11, Xn−2 is a right Ore set in Lqn−2, then by Lemma 2.42 (applied twice)

it is a right Ore set in Cq
n, so (Cq

n)Xn−2 exists.

We check φ is well-defined, i.e. it preserves the defining relations of R(A,α, v):

φ(ya) = z−1
n−2zn−1a = α(a)z−1

n−2zn−1 = φ(α(a)y);

φ(xa) = θ−1(zn−1)a = α−1(a)θ−1(zn−1) = φ(α−1(a)x);

φ(xy) = θ−1(zn−1)z−1
n−2zn−1

= q−1z−1
n−2θ

−1(zn−1)zn−1

= z−1
n−2zn−1θ

−1(zn−1) + q−1z−1
n−2(1− q)(q

n−1
2 − qz2

n−2)

= z−1
n−2zn−1θ

−1(zn−1)− (1− q)(zn−2 − q
n−3
2 z−1

n−2)

= φ(yx+ v).

Thus φ is well-defined.

Since xn−1 = z−1
n−2(zn−1−zn−3) and xn = (θ−1(zn−1)−θ(zn−3))z−1

n−2, the k-algebra (Cq
n)Xn−2

is generated by A, zn−1, and θ−1(zn−1), and therefore φ is surjective.

We use a GK dimension argument to complete the proof. By repeated application of

Theorem 2.57, GK dim R(A,α, v) = n, while by Corollary 4.7, GK dim Cq
n = n. Therefore
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by two applications of Lemma 2.55, GK dim R(A,α, v) ≥ GK dim (Cq
n)Xn−2 ≥ GK dim Cq

n,

and so GK dim (Cq
n)Xn−2 = n also. Therefore, by Lemma 2.56, φ is an isomorphism.

From now on we will identify R(A,α, v) and (Cq
n)Xn−2 via this isomorphism.

Lemma 5.25. R(A,α, v) is a conformal ambiskew polynomial ring with splitting element

u = q
n−3
2 z−1

n−2 + λ + qzn−2 for any λ ∈ k. The corresponding Casimir element is equal to

Ω− λ, and thus R(A,α, v)/(Ω− λ)R(A,α, v) is a generalised Weyl algebra.

Proof. By definition, u is a splitting element for R(A,α, v) if u − α(u) = v. For u =

q
n−3
2 z−1

n−2 + λ+ qzn−2, we have

u− α(u) = q
n−3
2 z−1

n−2 + λ+ qzn−2 − q · q
n−3
2 z−1

n−2 − λ− zn−2

= (1− q)(q
n−3
2 z−1

n−2 − zn−2)

= v as required.

The Casimir element is given by xy − u:

xy − u = θ−1(zn−1)z−1
n−2zn−1 − (q

n−3
2 z−1

n−2 + λ+ qzn−2)

= θ−1(zn−1)z−1
n−2zn−2xn−1 − θ−1(zn−1)z−1

n−2zn−3 − (q
n−3
2 z−1

n−2 + λ+ qzn−2)

= θ−1(zn−1)xn−1 − q−1z−1
n−2zn−3θ

−1(zn−1)− (q
n−3
2 z−1

n−2 + λ+ qzn−2)

= Ω + θ−1(zn−2) + qzn−2 − q−1z−1
n−2zn−3θ

−1(zn−1)− (q
n−3
2 z−1

n−2 + λ+ qzn−2)

= Ω− λ+ (q − q)zn−2 + q−1z−1
n−2(qzn−2θ

−1(zn−2)− zn−3θ
−1(zn−1)− q

n−1
2 )

= Ω− λ.

Recall that by Corollary 5.22, qθ(zn−2)zn−2 − θ(zn−3)zn−1 = q
n−1
2 , which gives the last

equality after applying θ−1.

Lemma 5.26. Let λ ∈ k, let u = q
n−3
2 z−1

n−2+λ+qzn−2, let A and α be as in Lemma 5.24, let q

be not a root of unity, and let m ≥ 1. Then Au+Aαm(u) = A unless λ = ±q n−3
4 q

1−m
2 (qm+1),

in which case Au+ Aαm(u) is a maximal ideal of A.

Proof. First, we note that A = Tq(zn−3,An−3)[z±1
n−2], and by Lemma 5.12, Tq(zn−3,An−3) is

simple. Therefore the maximal ideals of A are of the form (zn−2−λ)A, for λ ∈ k×, and these

ideals are completely prime.

We also recall that α(zn−2) = q−1α(zn−2).

Now suppose Au + Aαm(u) is proper. Then there exists some maximal ideal M of A

such that Au ⊂ M and Aαm(u) ⊂ M . By the above, there exists µ ∈ k× such that

M = (zn−2 − µ)A. Then, since u = 0 = αm(u) modulo M , we obtain

q
n−3
2 µ−1 + λ+ qµ = 0; and
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q
n−3
2 qmµ−1 + λ+ q1−mµ = 0.

Eliminating µ−1, we get (qm − 1)λ+ (qm+1 − q1−m)µ = 0, that is, λ = −q1−m(1 + qm)µ,

since qm − 1 6= 0 by assumption; in particular, since µ 6= 0, λ 6= 0 also.

Substituting back in, we get

q
n−3
2 q1−m(1 + qm)2λ−1 − (1 + qm)λ+ qmλ = 0

q
n−3
2 q1−m(1 + qm)2 − λ2 = 0

Therefore λ = ±q n−3
4 q

1−m
2 (1 + qm).

Conversely, if λ = εq
n−3
4 q

1−m
2 (1 + qm) with ε = ±1, then

u = (1 + εq
n−3
4 q

m−1
2 z−1

n−2)(qzn−2 + εq
n−3
4 q

1−m
2 ); and

αm(u) = (1 + εqmq
n−3
4 q

m−1
2 z−1

n−2)(q1−mzn−2 + εq
n−3
4 q

1−m
2 ).

Therefore Au+Aαm(u) ⊂ (zn−2+εq
n−3
4 q

m−1
2 )A, and in fact, since (qzn−2+εq

n−3
4 q

1−m
2 ) and

(1+εqmq n−3
4
q

n−1
2 z−1

n−2) generate distinct prime ideals of A, Au+Aαm(u) = (zn−2+εq
n−3
4 q

m−1
2 ),

which is maximal.

Lemma 5.27. Let R be a simple ring with centre k, let A = R[t±1], and let α be an

automorphism of A such that α(t) = λt, where λ ∈ k× is not a root of unity. Then A is

α-simple.

Proof. First, by Theorem 2.30, any non-zero ideal I of A is generated by a non-zero element

of k[t±1].

Let I be an α-stable ideal of A, and let p(t) be an element of I ∩ k[t±1] that, among

non-zero elements of I ∩ k[t±1], has the minimal number of non-zero terms. If p(t) has only

one non-zero term then p(t) = art
r for some r ∈ Z and ar ∈ k×, which is a unit in A and

so I = A. Otherwise, p(t) =
∑s

i=1 ait
ri , where s > 1, the integers ri for 1 ≤ i ≤ s are all

distinct, and ai ∈ k× for 1 ≤ i ≤ s. Then p(t)−λ−rsα(p(t)) =
∑s

i=1(1−λri−rs)aitri . If i 6= s,

1− λri−rs 6= 0 since ri 6= rs and λ is not a root of unity. So p(t)− λ−rsα(p(t)) is an element

of I ∩ k[t±1] with s− 1 non-zero terms, a contradiction to the minimality of p(t).

Lemma 5.28. Work in the Laurent polynomial ring k[t±1]. Suppose λi, µi ∈ k for i = 1, 2,

with each µi 6= 0. Let u = λ1t
−1 + λ2t and v = µ1t

−1 + µ2t. Then there exists a polynomial

p(x) ∈ k[x] such that p(u) ∈ vk[t±1].
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Proof. Let a = u2 −
(
λ2

1

µ1

t−1 +
λ2

2

µ2

t

)
v

= λ2
1t
−2 + 2λ1λ2 + λ2

2t
2 −

(
λ2

1

µ1

t−1 +
λ2

2

µ2

t

)(
µ1t
−1 + µ2t

)
= λ2

1t
−2 + 2λ1λ2 + λ2

2t
2 − λ2

1t
−2 − λ2

2t
2 − λ2

1µ2

µ1

− λ2
2µ1

µ2

= 2λ1λ2 −
λ2

1µ2

µ1

− λ2
2µ1

µ2

∈ k.

.

Therefore p(x) = x2 − a is a polynomial such that p(u) =
(
λ21
µ1
t−1 +

λ22
µ2
t
)
v ∈ vk[t±1].

Lemma 5.29. For any λ ∈ k, (Ω− λ)Cq
n is a completely prime ideal in Cq

n.

Proof. We show this using Lemma 2.31. In the setting of that Lemma, we have R = Cq
n,

A = Lqn−1, c = Ω− λ, d = zn−1 and e = −zn−2 − qθ(zn−2)− λ. By considering total degree,

we cannot have e ∈ dR, and so, since by Lemma 5.16, R/dR is a domain, e is regular modulo

Ad. Therefore we can apply Lemma 2.31 to show that R/cR is a domain, that is, (Ω−λ)Cq
n

is a completely prime ideal in Cq
n.

Theorem 5.30. The prime ideals of Cq
n (n odd) are: 0; (Ω − λ)Cq

n, for all λ ∈ k; and

for λ = ±q n−3
4 q−

a−1
2 (qa + 1) (1 ≤ a ∈ N), maximal ideals Pλ strictly containing (Ω − λ)Cq

n

corresponding to the ideals found in Theorem 3.18. Further, Cq
n/Pλ has uniform dimension

a.

Proof. First, we describe the prime ideal structure of the ambiskew polynomial ring R =

R(A,α, v) = (Cq
n)Xn−2 , where A, α and v are as in Lemma 5.24.

We note the following properties of A, α and v:

(i) A is α-simple;

(ii) for m ≥ 1, αm is not an inner automorphism of A;

(iii) in particular, for m ≥ 1, αm 6= 1;

(iv) u is a regular element of A.

Of these, (i) is given by Lemma 5.27; (ii) holds since zn−2 is central in A but not fixed

by any power of α; and (iv) holds since A is a domain.

We claim that R(A,α, v) is of the form required for Theorem 3.3 to apply. Conditions

(i) and (ii) of that Theorem are points (i) and (ii) above. Condition (iii) follows from

Lemma 5.28, recalling u = q
n−3
2 z−1

n−2 + qzn−2 and v = (1 − q)(q
n−3
2 z−1

n−2 − zn−2), so for all
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m, u and v(m) =
∑m−1

i=0 αi(v) are of the correct form to apply that lemma with v(m) in the

role of v. Finally, the condition {c ∈ A : c central in A and α(c) = c} = k is clear since

Z(A) = k[z±1
n−2], α(zn−2) = q−1zn−2, and q is not a root of unity.

By Lemma 5.25, Ω is a central Casimir element for R(A,α, v). So applying Theorem 3.3,

Rk[Ω]∗ is simple, and so any non-zero prime ideal of R must contain some element of k[Ω]∗.

Since k is algebraically closed any such element can be written as a product of linear

terms, and since Ω is central, any prime ideal must therefore in fact contain a linear term,

i.e. Ω− λ for some λ. Further, by Lemma 5.29, (Ω− λ)R is a completely prime ideal of R.

Lemma 5.26 gives the conditions on Au+Aαm(u) required for Theorem 2.66 and Theorem

3.18 to apply; the other conditions for those theorems are given by points (i) to (iv) at the

start of the proof. So if λ = ±q n−3
4 q−

a−1
2 (qa + 1) for some integer a ≥ 1, then by Theorem

3.18 there is a unique non-zero prime ideal Sλ of R strictly containing (Ω − λ)R; while if

λ 6= ±q n−3
4 q−

a−1
2 (qa + 1) for any integer a ≥ 1 then by Theorem 2.66, R/(Ω− λ)R is simple.

Therefore, the prime ideals of R are: 0; (Ω − λ)R, for each λ ∈ k; and for each λ of

the form λ = ±q n−3
4 q−

a−1
2 (qa + 1), where a ≥ 1 is an integer, a maximal ideal Sλ containing

(Ω− λ)R.

Next, we note that by Lemma 5.13, {P ∈ Spec Cq
n : P ∩Xn−2 = ∅} = Spec Cq

n, and so by

Theorem 2.10 there is a 1-1 correspondence between Spec Cq
n and Spec R given by P 7→ PR,

P ′ 7→ P ′ ∩ Cq
n.

By Lemma 5.29, for any λ ∈ k, (Ω − λ)Cq
n is a prime ideal of Cq

n, and this is sent to

(Ω − λ)R under the correspondence above. So the prime ideals of Cq
n are: 0; (Ω − λ)Cq

n

for any λ ∈ k; and for each λ of the form λ = ±q n−3
4 q−

a−1
2 (qa + 1) for some integer a ≥ 1,

maximal ideals Pλ corresponding to the maximal ideals Sλ of R, with Sλ ⊃ (Ω−λ)R and so

Pλ ⊃ (Ω− λ)Cq
n.

By Theorem 3.32, R/Sλ has right uniform rank a when λ = ±q n−3
4 q−

a−1
2 (qa + 1). So,

since by Corollary 2.41, (Cq
n/Pλ) ¯Xn−2

= (Cq
n)Xn−2/(Pλ)Xn−2 = R/Sλ, and by Lemma 2.39, the

right uniform ranks of (Cq
n/Pλ) ¯Xn−2

and Cq
n/Pλ are equal, Cq

n/Pλ has right uniform rank a

when if λ = ±q n−3
4 q−

a−1
2 (qa + 1).

5.5 Automorphism groups of Lq
n and Cq

n

We have already met the k-automorphism θ of Cq
n defined by θ(xn) = x1, θ(xi) = xi+1

otherwise. It is clear from the defining relations of Cq
n that there is a k-automorphism ι of

Cq
n defined by ι(xi) = −xi for each i.

Similarly, it is clear from the defining relations of Lqn that for each ν ∈ k× there is a
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k-automorphism ιν of Lqn defined by ι(xi) = ν(−1)ixi for each i.

To show that these are the only automorphisms of Cq
n, respectively Lqn, we will need the

following observation about the elements zn and Ω.

Lemma 5.31. For each n ≥ 0, the element zn of Lqn can be written as x1 · · ·xn+ smaller

terms, where the smaller terms have degree at most 1 in each xi, 1 ≤ i ≤ n.

For each odd n ≥ 1, the element Ω of Cq
n can be written as x1 · · ·xn+ smaller terms,

where the smaller terms have degree at most 1 in each xi, 1 ≤ i ≤ n.

Proof. Let us say that a balanced term of degree < n (with respect to a PBW basis of

monomials in elements x1, . . . , xn) is a (scalar multiple of a) monomial of total degree < n

with degree at most 1 in each x1, for 1 ≤ i ≤ n.

We show the first part by induction; certainly this is true for n = 0 (where the statement

is vacuous) and n = 1 (since z1 = x1). For n > 1, by induction, zn−1 = x1 · · ·xn−1+

balanced terms of degree < n − 1, so zn−1xn = x1 · · · xn + balanced terms of degree < n.

Also, by induction, all the terms of zn−2 are balanced terms of degree < n, so, recalling that

zn = zn−1xn− zn−2, we can write zn = x1 · · ·xn + balanced terms of degree < n, as required.

Similarly, in Cq
n, by the previous part zn−1xn = x1 · · ·xn+ balanced terms of degree < n,

and all the terms of zn−2 and qθ(zn−2) are balanced terms of degree < n, and so recalling

that Ω = zn−1xn − zn−2 − qθ(zn−2), we can write Ω = x1 · · ·xn + balanced terms of degree

< n, as required.

Theorem 5.32. (i) Let Cr denote the cyclic group with r elements. The k-automorphism

group of Cq
n is isomorphic to Cn × C2, with generators by θ and ι. Since n is odd we

therefore have AutkC
q
n
∼= C2n.

(ii) The k-automorphism group of Lqn is isomorphic to k× via k 3 ν 7→ ιν ∈ Autk(L
q
n).

Proof. (i) For this part, to simplify notation let xn+i = xi, or alternatively consider the

indices on the xi modulo n.

Firstly, we note that θι = ιθ and that θn = ι2 = 1, so the subgroup of Autk(C
q
n)

generated by θ and ι is isomorphic to Cn × C2.

Let ψ : Cq
n → Cq

n be a k-automorphism. We note that ψ must send height 1 primes to

height 1 primes, and so since the only elements that generate (Ω− λ)Cq
n are non-zero

constant multiples of Ω− λ, we must have ψ(Ω) = µΩ− λ for some µ ∈ k×, λ ∈ k.

By Lemma 5.31, Ω = x1 · · ·xn+terms of degree < n, where the terms of smaller degree

have degree at most 1 in each xi. If p is such a term of degree < n, then ψ(p) must have

92



total degree less than the total degree of ψ(x1 · · ·xn). Therefore, the total degree of

ψ(Ω) equals the total degree of ψ(x1 · · ·xn), which equals the sum of the total degrees

of ψ(x1), . . . , ψ(xn). Since we’ve already observed that the total degree of ψ(Ω) is n,

each of ψ(x1), . . . , ψ(xn) must therefore have total degree 1 (noting that they cannot

have total degree 0).

Suppose i 6= j, and that ψ(xi) and ψ(xj) both have non-zero degree in xk for some k.

Then ψ(xi)ψ(xj)−q±1ψ(xj)ψ(xi) = c(1−q±1)x2
k+ other terms, where c ∈ k×; however,

we note that for any i 6= j, one of xixj−qxjxi and xjxi−qxixj has total degree ≤ 0, so

applying ψ, one of ψ(xi)ψ(xj)− qψ(xj)ψ(xi) and ψ(xj)ψ(xi)− ψ(xi)ψ(xj) must have

total degree ≤ 0. This is a contradiction, and therefore ψ(xi) and ψ(xj) cannot both

have non-zero degree in xk for any k.

Therefore the sets {r : ψ(xi) has non-zero degree in xr} for 1 ≤ i ≤ n form a partition

of {1, . . . , n}; since each of them has at least one element and there are n of them, they

each have precisely one element.

That is, there exists a permutation π of {1, · · · , n} such that ψ(xi) = µπ(i)xπ(i) + λπ(i)

for some µi ∈ k×, λi ∈ k. But we can apply [31, Proposition 2.1] to show that λi = 0

for each i.

Let 1 ≤ i ≤ n, and let a = π−1(i), b = π−1(i + 1). So one of xaxb − qxbxa and

xaxb − q−1xbxa must be an element of k.

ψ(xaxb − q−1xbxa) = µiµi+1(xixi+1 − q−1xi+1xi)

= µiµi+1(xixi+1 − q−2xixi+1 + q−2(1− q))
.

Therefore xaxb − q−1xbxa cannot have degree ≤ 0, and so xaxb − qxbxa equals either 0

or 1− q.

ψ(xaxb − qxbxa) = µiµi+1(xixi+1 − qxi+1xi)

= (1− q)µiµi+1

We cannot have µiµi+1 = 0, so we must have µiµi+1 = 1, and π−1(i) + 1 = π−1(i + 1)

modulo n.

Since n is odd, µiµi+1 = 1 for each i implies either µi = 1 for all i or µi = −1 for all i.

Therefore there exists µ ∈ {±1} and r ∈ Z such that, for 1 ≤ i ≤ n, ψ(xi) = µxi+r. If

µ = 1 then ψ = θr while if µ = −1 then ψ = ιθr. Therefore Autk(C
q
n) is generated by

θ and ι, as required.

(ii) Let ψ : Lqn → Lqn be a k-automorphism. As in part (i), since ψ sends prime ideals of

93



height 1 to prime ideals of height 1, and the same is true of their generators, ψ(zn) =

µzn − λ for some µ ∈ k×, λ ∈ k. Then by the same argument using Lemma 5.31 and

[31, Proposition 2.1] as was applied to Ω in part (i), applied here to zn, there exists

µi ∈ k×, for 1 ≤ i ≤ n, and some permutation π ∈ Sn, such that ψ(xi) = µπ(i)xπ(i) for

1 ≤ i ≤ n.

Again in a similar fashion to part (i), by considering the images under ψ of the skew

commutators between xπ−1(i) and xπ−1(i+1), we must have µiµi+1 = 1 for 1 ≤ i ≤ n− 1

and π(i+ 1) = π(i) + 1 for 1 ≤ i ≤ n− 1. Therefore π(i) = i.

Thus ψ(xi) = µixi for some µi ∈ k×, fixed r ∈ Z, such that µiµi+1 = 1 for 1 ≤ i ≤ n−1.

But then we have ψ = ιµ2 .

Finally, k× 3 ν 7→ ιν ∈ Autk(R) is clearly an injective homomorphism k× → Autk(L
q
n),

and is surjective by the above, and so an isomorphism.

5.6 Krull and global dimensions in Lq
n

Many of these results hold for both Krull and global dimension; in this case dim means

either. For paired references the first reference is for Krull dimension and the second is for

global dimension.

Definition 5.33. Let Γ ∈ {−,+}n−1. Then zn−1,Γ is the (n − 1)-tuple of elements of Lqn

defined by:

(i) (zn−1,Γ)n−1 =

zn−1 if Γn−1 = −

θ(zn−1) if Γn−1 = +
;

(ii) for 1 ≤ i ≤ n− 2, if (zn,Γ)i+1 = θr(zi+1) then (zn,Γ)i =

θr(zi) if Γi = −

θr+1(zi) if Γi = +
.

If 1 ≤ m < n− 1, then zm,Γ is the m-tuple of elements of Lqn with (zm,Γ)i = (zn−1,Γ)i for

1 ≤ i ≤ m.

For 1 ≤ m ≤ n− 1, let Am,Γ be the m×m matrix such that, for all 1 ≤ i, j ≤ m,

(zm,Γ)i(zm,Γ)j = q(Am,Γ)ij(zm,Γ)j(zm,Γ)i

(This exists by, and can be found from, Proposition 5.2 (v)).
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With this definition, for any 1 ≤ m ≤ n− 1, Sq(zm,Γ,Am,Γ) ⊂ Lqn.

Finally, for 1 ≤ m ≤ n − 1 let Xm,Γ denote the set of non-zero monomials in zm,Γ and

their non-zero scalar multiples.

Example 5.34. If Γ = (−,−, · · · ,−) then zn−1,Γ = (z1, z2, . . . , zn−1) = zn−1.

We will need the following generalisation of Lemma 5.11.

Lemma 5.35. Let n ≥ 1. Let Γ ∈ {−,+}n−1.Then:

(i) Xn−1,Γ is a right Ore set in Lqn and (Lqn)Xn−1,Γ
= Tq(k, zn−1,An−1)[zn;αn] where αn is

the automorphism of Tq(k, zn−1,An−1) given by αn(θr(zi)) = q(−1)rAnizi. (If n is odd

then αn is the identity automorphism).

(ii) If Γn−1 = −, then Xn−1,Γ is a right Ore set in Lqn−1, while if Γn−1 = +, then Xn−1,Γ is

a right Ore set in θ(Lqn−1); either way, the localisation equals Tq(zn−1,Γ,An−1,Γ).

(iii) If n is even then Xn−1,Γ is a right Ore set in Cq
n+1 and (Cq

n+1)Xn−1,Γ is an ambiskew

polynomial ring R(A,α, u). If (Γn−1)n−1 = − then A = (Lqn−1)Xn−1,Γ
, u = q

n−3
2 z−1

n−2 +

λ + qzn−2, x = θ−1(zn−1), and y = z−1
n−2zn−1, while if (Γn−1)n−1 = + then A =

(θ(Lqn−1))Xn−1,Γ
, u = q

n−3
2 θ(z−1

n−2) + λ+ qθ(zn−2), x = zn−1, and y = θ(zn−2)−1θ(zn−1).

Proof. (i) We show that Xn−1,Γ is a right Ore set in Lqn by induction on n. When n = 1,

X1 = k×, which is an Ore set in Lq1.

So by induction, suppose we know Xn−2,∆ is a right Ore set in Lqn−1 for any ∆ ∈
{−,+}n−2. This tells us that Xn−2,Γ is a right Ore set in Lqn−1 for any Γ ∈ {−,+}n−1

such that Γn−1 = −, while Xn−2,Γ is a right Ore set in θ(Lqn−1) (that is, the subring of

Lqn generated by x2, . . . , xn) for any Γ ∈ {−,+}n−1 such that Γn−1 = +.

There are two cases depending on the value of Γn−1. If Γn−1 = −, then Xn−1,Γ is the

multiplicative closure of Xn−2,Γ ∪ {zn−1}, so by Lemma 2.44, Xn−1,Γ is a right Ore set

in Lqn−1, since zn is normal in Lqn−1. Then we recall that Lqn = Lqn−1[xn;σn, δn] where

σn(xi) = q±1xi for each i, so since σn(Xn−1,Γ) = Xn−1,Γ, by Lemma 2.42, Xn−1,Γ is a

right Ore set in Lqn.

If Γn−1 = +, the proof is similar, using Corollary 4.9 to show that Lqn is a skew

polynomial extension θ(Lqn−1)[x1;σ, δ] for appropriate σ, δ.

Since Sq(k, zn−1,Γ,An−1,Γ)[zn;αn] ⊂ Lqn and

Sq(k, zn−1,Γ,An−1,Γ)Xn−1,Γ
[zn;αn] = Tq(k, zn−1,Γ,An−1,Γ)[zn;αn]
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we have Tq(k, zn−1,Γ,An−1,Γ)[zn−1, αn] ⊂ (Lqn)Xn−1,Γ
. Then, using powers of θ ap-

plied to the relations xi = z−1
i−1(zi + zi−2) and x1 = θ(zi−1)−1(zi + θ2(zi−2), we have

xi ∈ Tq(k, zn−1,Γ,An−1,Γ)[zn;αn] for 1 ≤ i ≤ n, and so Tq(k, zn−1,Γ,An−1,Γ)[zn;αn] =

(Lqn)Xn−1,Γ
.

(ii) We showed in (i) that Xn−1,Γ is a right Ore set in the appropriate ring, and the second

part is proved as in (i).

(iii) If Γn−1 = −, this follows from Lemma 5.24 and localising both sides at Xn−3,Γ. If

Γn−1 = +, then the same is true but we must apply θ before localising.

Lemma 5.36. Let Γ ∈ {−,+}n−1. Then dimTq(zn,Γ,An,Γ) =

n/2 if n is even

(n+ 1)/2 if n is odd
.

Proof. Assume first that n is even. We will aim to apply Theorem 2.54.

If b ∈ Zn is a row vector, write zb
n,Γ :=

∏n
i=1(zn,Γ)bii .

If a,b ∈ Zn, then za
n,Γ and zb

n,Γ commute if and only if aAn,ΓbT = 0.

Suppose r is a positive integer such that there exists a set B = {b1, · · · ,br} of r linearly

independent integer vectors such that the subalgebra S(B) of Tq(zn,Γ,An,Γ) generated by

{zbi
n,Γ : 1 ≤ i ≤ r} is commutative. Then let B be the matrix with rows b1,b2, . . .br. Since

the bi are linearly independent, rank(B) = r, and since S(B) is commutative, BAn,ΓBT = 0.

We recall the following standard properties of rank (where the matrices are such that the

products are defined):

(i) if Y is an n× n matrix of rank n then rank (XY ) = rank (X) and rank (Y Z) = rank

(Z);

(ii) rank(XY ) + rank(Y Z) ≤ rank(Y ) + rank(XY Z).

Taking X = B, Y = An,Γ, Z = BT , and noting that An,Γ has rank n, we get 2r ≤ n.

Finally we note that since all the elements of {(zn,Γ)i : i odd} commute, we can achieve

equality, and thus dim Tq(zn,Γ,An,Γ) = n/2.

Now, if n is odd, let Γ′ ∈ {+,−}n−2 such that Γ′i = Γi for 1 ≤ i ≤ n− 2. Then

Tq(zn,Γ,An,Γ) =

Tq(zn−1,Γ′ ,An−1,Γ′)[zn] if Γn = −

Tq(θ(zn−1,Γ′),An−1,Γ′)[zn] if Γn = +

Therefore, by Theorem 2.51 (iv) (b) or Theorem 2.50 (iv) (c), dimTq(zn,Γ,An,Γ) = (n −
1)/2 + 1 = (n+ 1)/2.
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Corollary 5.37. Let Γ ∈ {−,+}n−1. Then:

(i) dim(Lqn−1,Γ)Xn−1,Γ
= (n− 2)/2 if n is even.

(ii) dim(Lqn−1)Xn−1,Γ
= (n− 1)/2 if n is odd.

(iii) dim(Lqn)Xn−1,Γ
= (n+ 2)/2 if n is even.

(iv) dim(Lqn)Xn−1,Γ
= (n+ 1)/2 if n is odd.

Proof. (i), (ii) By Lemma 5.35 (ii), (Lqn−1)Xn−1,Γ
= Tq(zn−1,Γ,An−1,Γ), so apply Lemma 5.36.

(iii), (iv) By Lemma 5.35 (i), (Lqn)Xn−1,Γ
= Tq(zn−1,Γ,An−1,Γ)[zn;α] for some (possibly iden-

tity) automorphism α of Tq(zn−1,An−1), so apply Lemma 5.36 together with Theorems

2.51 (iv) (a) and 2.50 (iv) (b).

Lemma 5.38. For i ≥ 1,

ziθ(zi) = qθ(zi)zi + (1− q)q
i−1
2 if i is odd;

ziθ(zi) = qθ(zi)zi + (1− q)q
i
2 if i is even.

Proof. If i is odd,

ziθ(zi) = ziθ(zi−1)xi+1 − ziθ(zi−2)

= θ(zi−1)zixi+1 − θ(zi−2)zi

= qθ(zi−1)xi−1zi + (1− q)θ(zi−1)zi−1

− qθ(zi−2)zi − (1− q)θ(zi−2)zi

by Proposition 5.3 (ii)

= qθ(zi−1)zi + (1− q)q
i−1
2 by Corollary 5.22.

If i is even,

ziθ(zi) = ziθ(zi−1)xi+1 − ziθ(zi−2)

= qθ(zi−1)zixi+1 − θ(zi−2)zi

= qθ(zi−1)xi+1zi + (1− q)qθ(zi−1)zi−1

− qθ(zi−2)zi − (1− q)θ(zi−2)zi

by Proposition 5.3 (i)

= qθ(zi)zi + (1− q)q
i
2 by Corollary 5.22.

Corollary 5.39. For a ≥ 1 and i ≥ 1,

zai θ(zi) = qaθ(zi)z
a
i + (1− q)q

i−1
2 [a]qz

a−1
i if i is odd;

zai θ(zi) = qaθ(zi)z
a
i + (1− q)q

i
2 [a]qz

a−1
i if i is even.
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Proof. Let s(i) =

(1− q)q i−1
2 if i is odd

(1− q)q i
2 if i is even

, so ziθ(zi) = qθ(zi)zi + s(i). Then we proceed

by induction, with the case a = 1 being the just-stated equality. For a > 1,

zai θ(zi) = qza−1
i θ(zi)zi + s(i)za−1

i

= qaθ(zi)z
a
i + qs(i)[a− 1]qz

a−1
i + s(i)za−1

i by induction

= qaθ(zi)z
a
i + s(i)[a]qz

a−1
i .

Lemma 5.40. Assume q ∈ k is not a root of unity.

Let R be a prime factor ring of Lqn (including R = Lqn), or let R be a factor ring of Cq
n+1

(including R = Cq
n+1). Then

dimR = sup{dim(RXn−1,Γ
) : Γ ∈ {−,+}n−1}.

Proof. The proof is the same in both cases.

For j = 0, . . . , n−1, define Vj,Γ to be the set of non-zero monomials in {(zn−1,Γ)i : n−j ≤
i ≤ n− 1}. As in the proof of Lemma 5.35, repeated application of Lemma 2.44 and Lemma

2.42, using Corollary 4.9, together with Lemma 5.13 and Corollary 2.41 if R is neither Lqn

nor Cq
n+1, shows that Vj,Γ is a right Ore set in R.

We say a j-fold localisation of R is a localisation of the form RVj,Γ for Γ ∈ {−,+}n−1.

The only 0-fold localisation of R is R itself while Vj,Γ = Xj,Γ so our aim is to show that

dimR = sup{dimS: S a (n− 1)-fold localisation of R}.
Given a j-fold localisation S of R, there exist two (j + 1)-fold localisations of R which

contain S, which we denote S− and S+. (One of these is RVj+1,Γ
and the other is RVj+1,Γ′

where Γ′ = Γ except that Γ′n−(j+1) = −Γn−(j+1)). If (zn−1,Γ)n−j = θr(zn−j), then S− =

Sθr(zn−(j+1)) and S+ = Sθr+1(zn−(j+1)), where for y ∈ S, Sy denotes the localisation of S at the

set {yi : i ∈ N}.
We claim that Si ⊕ S+ is a faithfully flat extension of S. Let M be an S-module which

is θr(zn−j)-torsion and θr+1(zn−j)-torsion. If M 6= 0, let a ∈ N be minimal such that there

exists m ∈ M nonzero with θr(zan−j)m = 0 and θr+1(zn−j)m = 0, and suppose a ≥ 1. Then

by Corollary 5.39, s(i)[a]qθ
r(za−1

i )m = 0, where s(i) is as Corollary 5.39. Both s(i) and [a]q

are non-zero scalars, so θr(za−1
i )m = 0, contradicting the minimality of a. Therefore a = 0

and m = 0, so M = 0. Therefore Si ⊕ S+ is a faithfully flat extension of S.

Therefore, by Lemmas 2.52 and 2.53, dimS ≤ dim(Si ⊕ S+) ≤ sup{dimS−, dimS+},
while by Theorems 2.51 (v) and 2.50 (v), dimS− ≤ dimS and dimS+ ≤ dimS. Therefore

dimS = sup{dimS−, dimS+}. Combining this for all S, we’re done.
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Theorem 5.41. (a) If n is even,

(i) dimLqn = (n+ 2)/2;

(ii) dimLqn/znL
q
n = n/2;

(iii) dimLqn/((zn−1 − λ)Lqn + znL
q
n) = (n− 2)/2 for all λ ∈ k×.

(b) If n is odd,

(i) dimLqn = (n+ 1)/2;

(ii) dimLqn/(zn − λ)Lqn = (n− 1)/2, for all λ ∈ k.

Proof. We combine Lemma 5.35 and Corollary 2.41 to localise at Xn−1,Γ for any Γ, Lemma

5.37 to determine the dimension of the localisation and Lemma 5.40 to pass back to the

original ring.

5.7 Global dimensions in Cq
n

We aim to apply the results of Section 3.4 to determine the global dimension of Cq
n and some

of its factor rings. Fix n odd and fix q ∈ k× such that q is not a root of unity.

If Γ ∈ {−,+}n−2, assume without loss of generality that Γn−2 = −. (If Γn−2 = + we

apply θ−1 to all that follows). Then define S = (Cq
n)Xn−2,Γ

. Then we recall that by Lemma

5.35 (iii), S is an ambiskew polynomial ring with A = (Lqn−2)Xn−2,Γ
, u = q

n−3
2 z−1

n−2 +λ+qzn−2,

x = θ−1(zn−1), and y = z−1
n−2zn−1. Letting K = (Lqn−3)Xn−3,Γ

or K = (θ(Lqn−3))Xn−3,Γ
as

appropriate, and Z = k[z±1
n−2], we have A = K⊗k Z, and this K and Z satisfy the conditions

of Lemma 3.41, with rgld A = (n− 1)/2; also α(zn−2) = q−1zn−2, so Z is α-simple.

As in Section 3.4, write T (u) := S/(xy − u), so T (u) is a generalised Weyl algebra over

A, and write d = rgld A.

Corollary 5.42. rgld S = d+ 2 = (n+ 3)/2.

Proof. We apply Theorem 3.42. The existence of appropriate λ and j is shown in Lemma

5.26, while by Lemma 5.37 rgld A = (n− 1)/2, so rgld S = (n− 1)/2 + 2 = (n+ 3)/2.

Corollary 5.43. rgld T (u) =∞ iff u has a repeated irreducible factor.

Proof. Consider the ambiskew polynomial ring S ′ = R(Z, α, u − α(u)), and write T ′(u) =

S ′/(xy − u)R. We note that z1, . . . , zn−3 commute or skew-commute with x, y and zn−2 and

each other, so T (u) can be written as a iterated skew Laurent extension of T ′(u). So by

Theorem 2.50 (iv) (c), rgld T (u) = ∞ iff rgld T ′(u) = ∞. And by [24, 7.8] rgld T ′(u) = ∞
iff u has a repeated irreducible factor.
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Corollary 5.44. rgld T (u) ≥ d = (n− 1)/2 for any u.

Proof. Let v = zn−2,Γ (so if Γi = − for all i, v = zn−2), and let J be the right ideal of

A generated by {(v2 − 1, v4 − 1, . . . , vn−3 − 1}. Clearly, α(J) = J . Let C denote the

(commutative) subalgebra of A generated by {v1,v3, . . . ,vn−2}. We note that, as a (right)

C-module, A/J ∼= C, and so is finitely generated and free. (To see this, it’s clear that as an

C-module, A/J is a quotient of C, but if x is a non-zero element of J it must have non-zero

degree in some v2i, and so J ∩ C = {0}).
Then by (n − 3)/2 applications of [33, 7.9.16], we have pd (A/J)A = (n − 3)/2, and so

by Lemma 3.45, rgld T (u) ≥ (n− 1)/2 for any u.

Corollary 5.45. Let u = q
n−3
2 z−1

n−2 + λ+ qzn−2. Then there are three cases:

(i) λ = ±q n−3
4 q−

a−1
2 (qa + 1) for some integer a ≥ 1, in which case T (u) is not simple and

rgld T (u) = d+ 1 = (n+ 1)/2;

(ii) λ = ±2q
n−1
4 , in which case T (u) is simple and rgld T (u) = ∞. (We note that this is

the case a = 0 from (i));

(iii) otherwise, T (u) is simple and rgld T (u) = d = (n− 1)/2.

Proof. (ii) u = q
n−3
2 z−1

n−2 +λ+ qzn−2. By the quadratic formula, u has a repeated irreducible

factor iff λ2 − 4q
n−1
2 = 0, i.e. λ = ±2q

n−1
4 . So the result follows by Corollary 5.43.

(i), (iii) There exists a maximal ideal N of Z containing both u and αj(u) iff Au+Aαj(u) 6=
A. By 5.26, this occurs iff λ = ±q n−3

4 q−
a−1
2 (qa + 1) for some integer a ≥ 1 (which then

equals j), so the result follows by Corollary 3.44. This also shows that rgld T (u) ≤ d

otherwise.

Corollary 5.46. (a) rgld Cq
n = (n+ 3)/2.

(b) Let R = Cq
n/(Ω− λ)Cq

n. Then there are three cases:

(i) λ = ±q n−3
4 q−

a−1
2 (qa+ 1) for some integer a ≥ 1 in which case R is not simple and

rgld R = (n+ 1)/2;

(ii) λ = ±2q
n−1
4 in which case R is simple and rgld R =∞;

(iii) otherwise, R is simple and rgld R = (n− 1)/2.

Proof. This is immediate by applying Lemma 5.40 to the previous results from this section.
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5.8 Krull and global dimensions in Cq
3

We apply the results of [24] to (Cq
3)z1 by considering it as an ambiskew polynomial ring as

in Lemma 5.24. By Lemma 5.40, dim((Cq
3)/I)z1 = dim(Cq

3)/I, for any prime ideal I of Cq
3 ,

where dimdenotes either Krull dimension or right global dimension.

Write R = Cq
3 and S = (Cq

3)z1 .

Lemma 5.47. K. dim S/I = 2− ht I.

Proof. If ht I = 2, S/I is finite dimensional over k, and thus Artinian, so K. dim S/I = 0.

By [24, 5.4], if ht I = 1 then K. dim S/I = 1.

When I = 0 we use [25, 5.6] to show that all finite dimensional right S-modules are

semisimple; then by [24, 3.7], we have K.dim S = 2.

The condition in [25, 5.6] is that for every maximal ideal M of A there is at most one

positive integer d such that u−αd(u) ∈M , and if such an integer exists, M2+(u−αd(u))A =

M .

For the first part, u − αd(u) = qz1(1 − q−d) + z−1(1 − qd). By the quadratic formula

(assuming char k 6= 2) this has roots

±
√
−4q(1− q−d)(1− qd)

2q(1− q−d)
If two roots of this form are equal then we must have (1−qd)(1−q−s) = (1−q−d)(1−qs) =

qd−s(qd − 1)(q−s − 1) for some d, s ∈ N. Thus qd−s = 1 and so since q is not a root of unity,

d = s. The requirement M2 + (u − αd(u))A = M simply requires that u − αd(u) doesn’t

have a repeated root, which again since q is not a root of unity is the case.

Corollary 5.48. K.dim R/I = 2− ht I.

Corollary 5.49. (a) rgld R = 3.

(b) Let I = (Ω− λ)R. Then there are three cases:

(i) λ = ±q−a−1
2 (qa + 1) for some integer a ≥ 1 in which case R/I is not simple and

rgld S/I = 2;

(ii) λ = ±2q
1
2 in which case S/I is simple and rgld R/I = ∞ (we note that this is

the case a = 0 from (i));

(iii) otherwise, R/I is simple and rgld R/I = 1.
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(c) If I is a height 2 prime in R, rgld R/I = 0.

Proof. (a), (b) This is immediate from Corollary 5.46, or by applying the results of [24].

(c) If I is a height 2 prime ideal in S, S/I is simple Artinian, so by the Artin-Wedderburn

theorem it is a matrix ring over a division ring, and so by Theorem 2.50 (ii), rgld S/I =

0; then we apply Lemma 5.40 to get rgld R/I = 0.
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6 Poisson algebras associated to connected quantized

Weyl algebras

For each positive integer n, (Lqn)q 6=0 is a family of noncommutative algebras in the sense of

Definition 2.74, with L1
n commutative, so we can construct the semiclassical limit Poisson

algebra, which we denote LPn . As a commutative ring, LPn = k[x1, · · · , xn], with Poisson

bracket given by

{xi, xi+1} = 1 + xi+1xi for 1 ≤ i < n;

{xi, xj} = xjxi if 1 ≤ i < i+ 1 < j ≤ n and j − i is odd;

{xi, xj} = −xjxi if 1 ≤ i < i+ 1 < j ≤ n and j − i is even.

Similarly, for each odd positive integer n, (Cq
n)q 6=0 is a family of algebras in the sense of

Definition 2.74, with C1
n commutative, so we can construct the semiclassical limit Poisson

algebra, which we denote CP
n . As a commutative ring, CP

n = k[x1, · · · , xn], with Poisson

bracket given by

{xi, xi+1} = 1 + xi+1xi for 1 ≤ i < n;

{xn, x1} = 1 + x1xn

{xi, xj} = xjxi if 1 ≤ i < i+ 1 < j ≤ n and j − i is odd;

{xi, xj} = −xjxi if 1 ≤ i < i+ 1 < j ≤ n, j − i is even, and (i, j) 6= (1, n).

The aim of this section is to determine the Poisson prime ideals of LPn and CP
n . For the

former, they precisely correspond with the prime ideals in the corresponding noncommutative

algebra (at least for generic q), but for the latter they do not. (Since CP
n has prime ideals

which are not completely prime, this is unsurprising).

6.1 Analogues of the normal elements in LP
n and CP

n

Definition 6.1. As in the noncommutative case, LPm embeds naturally into LPn and CP
n if

m < n. Then again as in the noncommutative case, we define z0 = 1, z1 = x1, and for n ≥ 3,

define zn ∈ LPn by zn = zn−1xn − zn−2.

Similarly, we define θ : CP
n → CP

n to be the Poisson automorphism given by xi 7→ xi+1

for 1 ≤ i ≤ n − 1 and xn 7→ x1, and then we define CP
n 3 Ωn := zn−1xn − zn−2 − θ(zn−2).

(As before, if the context is clear then we will write just Ω).

Remark. If we treat LPn and Lqn for q 6= 0 as factor rings of a larger algebra A as in Definition

2.74, then the zi ∈ LPn are images of the same elements of A as the zi ∈ Lqn are, and so we
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can read off brackets involving the zi from calculations of commutators in Lqn. The same is

true for Ωn ∈ CP
n .

Proposition 6.2. (i) For 1 ≤ i ≤ j, {xi, zj} =


0 if j is odd;

xizj if i is odd and j is even;

−xizj if i is even and j is even.

(ii) For all 1 ≤ i, {zi, xi+1} =

−zi−1 if i is even;

zixi+1 − zi−1 if i is odd.

(iii) For all 1 ≤ i, {x1, θ(zi)} =

−θ2(zi−1) if i is even;

x1θ(zi)− θ2(zi−1) if i is odd.

(iv) Denote by zn the set {z1, . . . , zn}

Let Aij =


0, if max{i, j} is odd or both i, j are even

1, if i odd, j even, i < j

−1, if i even, j odd, j < i

,

and then let An = (Aij)
n
i,j=1. (This is the same as in Definition 5.10).

Then for 1 ≤ i ≤ j, {zi, zj} = Aijzizj, so SP (zn,An) ⊂ LPn .

(v) For 1 ≤ i ≤ n, {xi,Ωn} = 0.

(vi) In CP
n , {zn−1, xn} = zn−2 − θ(zn−2).

(vii) In CP
n , {θ−1(zn−1), zn−1} = θ−1(zn−1)zn−1 − 1 + z2

n−2.

Proof. (i) This comes from Proposition 5.2 (iii).

(ii) This comes from Proposition 5.2 (iv).

(iii) This comes from Proposition 5.3 (i), (ii).

(iv) This comes from Proposition 5.3 (iii), (iv).

(v) This comes from Theorem 5.9.

(vi) This comes from Lemma 5.6.

(vii) This comes from Lemma 5.23.
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6.2 Poisson prime ideals in LP
n

Lemma 6.3. (This is analogous to Lemma 5.11). Let Xn denote the set of non-zero scalar

multiples of non-zero monomials in zn, and for n odd, let Yn denote the multiplicative closure

of Xn−1 ∪ k[zn]∗.

(i) (LPn )Xn−1 = TP (k, zn−1,An−1)[zn] where {zi, zn} = Ainzizn. (We note that if n is odd

then zn is Poisson central in this ring).

(ii) For n odd, (LPn )Yn = TP (k(zn), zn−1,An−1).

Proof. (i) Let B denote TP (k, zn−1,An−1)[zn] with the given Poisson bracket. Then we

have B = SP (k, zn,An)Xn−1 , and since SP (k, zn,An) ⊂ LPn , B ⊂ (LPn )Xn−1 , and the

calculation xi = z−1
i−1(zi − zi−2) shows xi ∈ B for 1 ≤ i ≤ n, so B = (LPn )Xn−1 .

(ii) SP (k, zn,An)Yn = TP (k(zn), zn−1,An−1), and so as before TP (k(zn), zn−1,An−1) ⊂
(LPn )Yn , and xi ∈ TP (k(zn), zn−1,An−1) for 1 ≤ i ≤ n, so TP (k(zn), zn−1,An−1) =

(LPn )Yn .

Lemma 6.4. (This is analogous to Lemma 5.12). Let K be any field of characteristic 0.

Then TP (K, zn,An) is Poisson simple if and only if n is even.

Proof. The matrix An and the condition from Theorem 2.78 are the same as in Lemma 5.12,

where we already showed that An satisfies that condition.

Lemma 6.5. (This is analogous to Lemma 5.13). Let I be a Poisson ideal in some Poisson

algebra R ⊃ LPn (e.g. R = LPm, m ≥ n, or R = CP
m, m > n and m odd). If I contains zi for

some 1 ≤ i ≤ n− 1, then I contains 1.

Proof. By Proposition 6.2 (ii), if zi ∈ I then zi−1 ∈ I, so by induction, since z0 = 1, 1 ∈ I.

Corollary 6.6. (This is analogous to Corollary 5.14). Let I be a prime ideal of LPn . Then

I ∩ Xn−1 = ∅.

Proof. Suppose I contains an element of Xn−1. Then since I is prime, I contains zi for some

1 ≤ i ≤ n− 1, and so by Lemma 6.5, I contains 1, a contradiction.

Lemma 6.7. (This is analogous to Lemma 5.16). If n is odd, (zn−λ)LPn is a Poisson prime

ideal of LPn for each λ ∈ k.

If n is even, znL
P
n is a Poisson prime ideal of LPn .
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Proof. First, by Proposition 6.2 (i), for n odd (zn−λ) is Poisson central in LPn , so (zn−λ)LPn

is a Poisson ideal of LPn , while for n even {zn, LPn } ⊂ znL
P
n so znL

P
n is a Poisson ideal of LPn .

Therefore, if we can show these ideals are prime ideals then we’re done by Proposition 2.70.

We show this by induction using Lemma 2.31; the case n = 0 is trivial. If n > 0 and

then in the setting of that Lemma we have c = zn − λ; d = zn−1; and e = −zn−2 − λ, where

λ = 0 if n is even and λ ∈ k if n is odd. By induction, zn−1L
P
n−1 is a completely prime ideal

in LPn−1. Since zn−1 has degree 1 in xn−1 but e has degree 0 in xn−1, e is non-zero, and so

regular, modulo zn−1L
P
n−1. Therefore we can apply Lemma 2.31, and cLPn is a completely

prime ideal in LPn .

Theorem 6.8. (This is analogous to Theorem 5.17). Let n be odd, and assume k is alge-

braically closed and characteristic 0. Then the non-trivial Poisson prime ideals of LPn are

the ideals (zn − λ)LPn for λ ∈ k.

Proof. We know that LPn is a domain, so together with Lemma 6.7, the given ideals are all

Poisson prime ideals of LPn .

By Lemma 6.3 (i), (LPn )Xn−1 = TP (k, zn−1,An−1)[zn]. By Lemma 6.4, TP (k, zn−1,An−1)

is a simple Poisson algebra, so (zn − λ)(LPn )Xn−1 is a maximal Poisson ideal of (LPn )Xn−1 for

each λ ∈ k.

Also, by Lemma 6.3 (ii), ((LPn )Xn−1)k[zn]∗ = (LPn )Yn = TP (k(zn), zn−1,An−1), which is

simple by Lemma 6.4, so any Poisson ideal of (LPn )Xn−1 must contain an element of k[zn]∗.

Therefore PSpec (LPn )Xn−1 consists of 0 together with (zn − λ)(LPn )Xn−1 for each λ ∈ k.

By Proposition 2.71, there is a one-to-one correspondence between {P ∈ PSpec LPn :

P ∩ Xn−1 = ∅} and PSpec (LPn )Xn−1 given by P 7→ P (LPn )Xn−1 . Since (zn − λ)LPn maps

to (zn − λ)(LPn )Xn−1 under this correspondence, using the fact that this correspondence is

bijective we therefore have {P ∈ PSpec LPn : P ∩ Xn−1 = ∅} = {(zn − λ)LPn : λ ∈ k} ∪ {0}.
But by Corollary 6.6, {P ∈ PSpec LPn : P ∩ Xn−1 = ∅} = PSpec LPn , and so we’re

done.

Lemma 6.9. (This is analogous to Lemma 5.18). Let n be even, λ ∈ k×, and define

Pλ := znL
P
n + (zn−1 − λ)LPn . Then Pλ is a Poisson ideal of LPn with LPn /Pλ isomorphic to

LPn−1/(zn−1 − λ)LPn−1; in particular Pλ is a Poisson prime ideal of LPn−1.

Proof. Firstly, zn−1 is Poisson central modulo znL
P
n , since it Poisson commutes with xi for

1 ≤ i ≤ n−1, and by Proposition 6.2 (ii) {zn−1, xn} = zn−1xn−zn−2 = zn ∈ znLPn . Therefore

Pλ is a Poisson ideal of Lqn.

106



Secondly, since xn = λ−1zn−2 modulo Pλ, L
P
n /Pλ is generated by x̄1, . . . , x̄n. So there

are homomorphisms LPn /Pλ → LPn−1/(zn−1 − λ)Lqn−1 and vice versa given by x̄i 7→ x̄i for

1 ≤ i ≤ n− 1 (it is easy to check that these are well-defined), and these are inverses to each

other, and so isomorphisms.

Theorem 6.10. (This is analogous to Theorem 5.19). Let n be even, and assume k is

algebraically closed and characteristic 0. Then the prime ideals in LPn are 0, znL
P
n and

(zn−1 − λ)LPn + znL
P
n for each λ ∈ k×.

Proof. We know that LPn is a domain, so together with Lemmas 6.7 and 5.18, the given ideals

are all (completely) prime ideals of Lqn.

By Lemma 6.3 (i) (LPn )Xn−1 = TP (k, zn−1,An−1)[zn]. Let T = TP (k, zn−1,An−1)[zn] and

consider PSpec T . The set U = {zin : i ∈ N} is an Ore set in T , and TU = TP (k, zn,An),

which is Poisson simple by Lemma 6.4. Therefore any Poisson ideal of T must contain some

power of zn, so any Poisson prime ideal of T must contain zn.

Further, the ideal znT is a Poisson prime ideal of T , since T/znT ∼= TP (k, zn−1,An−1)

which is a domain. Also, TP (k, zn−1,An−1) = TP (k, zn−2,An−2)[z±1
n−1], which is a Laurent

polynomial ring over a Poisson simple ring by Lemma 6.4, so as in the proof of Theorem 6.8,

the Poisson prime ideals of TP (k, zn−1,An−1) are 0 and the ideals generated by (zn − λ) for

λ ∈ k×.

Therefore the prime spectrum of T consists of: 0; znT ; and znT + (zn−1 − λ)T , for each

λ ∈ k×.

Now we apply Proposition 2.71, recalling that T = (LPn )Xn−1 : there is a one-to-one

correspondence between {P ∈ PSpec LPn : P ∩ Xn−1 = ∅} and PSpec T given by P 7→ PT .

Since by Corollary 6.6, {P ∈ PSpec LPn : P ∩Xn−1 = ∅} = PSpec Lqn, this correspondence is

between PSpec LPn and PSpec T . But this correspondence sends the known prime ideals of

LPn , as listed above, to the prime ideals of T , and therefore those ideals are the only prime

ideals of LPn .

6.3 Poisson prime ideals in CP
n

Lemma 6.11. Let I be a Poisson ideal of CP
n containing µ1θ

i+1(zn−i−2) + µ2zi, where 0 ≤
i ≤ n− 2 and µi ∈ k for i = 1, 2. Then I also contains µ1θ

i+2(zn−i−3) + µ2zi+1.

Therefore, if I contains µ1θ(zn−2) + µ2, I also contains µ1 + µ2zn−2.

Proof. When i is odd, using Proposition 6.2 (ii) and (iii),
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{µ1θ
i+1(zn−i−2) + µ2zi, xi+1} = −µ1θ

i+1(zn−i−2)xi+1 + µ1θ
i+1(zn−i−3)− µ2zi−1

= − (µ1θ
i+1(zn−i−2) + µ2zi)xi+1

+ µ1θ
i+1(zn−i−3) + µ2zixi+1 − µ2zi−1

= −(µ1θ
i+1(zn−i−2) + µ2zi)xi+1 + µ1θ

i+1(zn−i−3) + µ2zi+1.

Therefore µ1θ
i+1(zn−i−3) + µ2zi+1 ∈ I as desired.

When i is even, again using Proposition 6.2 (ii) and (iii),

{µ1θ
i+1(zn−i−2) + µ2zi, xi+1} = µ1θ

i+1(zn−i−3) + µ2zixi+1 − µ2zi−1

= µ1θ
i+1(zn−i−3)− µ2zi+1.

Therefore µ1θ
i+1(zn−i−3) + µ2zi+1 ∈ I as desired.

The second part follows by repeated application of the first.

Lemma 6.12. Assume k is algebraically closed. Let I be a Poisson prime ideal of CP
n which

contains zn−1. Then I contains Ω− λ for some λ ∈ k.

Proof. If I = CP
n this is trivial. Otherwise, by Proposition 6.2 (vi), zn−2 − θ(zn−2) ∈ I. But

then I ∩ LPn−1 is a nontrivial Poisson ideal of LPn−1 strictly containing zn−1L
P
n−1, and so by

Theorem 6.10, I ∩ LPn−1 must contain some non-unit element of k[z±1
n−2]. Then since I is a

prime ideal, it must contain zn−2 − µ for some µ ∈ k.

Putting these together gives zn−1xn + zn−2 − θ(zn−2) − 2(zn−2 − µ) ∈ I, and therefore

Ω + 2µ ∈ I.

Lemma 6.13. Let I be a nontrivial Poisson ideal of CP
n which contains zn−1 and Ω− λ for

some λ ∈ k. Then λ = ±2.

Proof. By Proposition 6.2 (vi), zn−2 − θ(zn−2) ∈ I, while by the definition of Ω, −zn−2 −
θ(zn−2)−λ ∈ I. Putting these together, −2zn−2−λ ∈ I and −2θ(zn−2)−λ ∈ I; therefore, by

Lemma 6.11, −2−λzn−2 ∈ I. But then if λ 6= ±2, I = CP
n , contradicting our assumption.

Lemma 6.14. (i) Let Zn denote the multiplicative closure of Xn−1 ∪ k[Ω]∗.

Then (CP
n )Zn = TP (k(Ω), zn−1,An−1).

(ii) (CP
n )Xn−1 = TP (k, zn−1,An−1)[Ω], where Ω is Poisson central.

(iii) (CP
n )Xn−2 = TP (k, zn−2,An−2)[zn−1][θ−1(zn−1)], with appropriate Poisson bracket.

Proof. For the first two, as in the proof of Lemma 6.3, SP (k, zn−1,An−1)[Ω] ⊂ CP
n , giving

TP (k(Ω), zn−1,An−1) ⊂ (CP
n )Zn and TP (k, zn−1,An−1)[Ω] ⊂ (CP

n )Xn−1
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Then xi = z−1
i (zi+1 + zi−1) gives xi ∈ TP (k, zn−1,An−1)[Ω] ⊂ TP (k(Ω), zn−1,An−1) for

1 ≤ i ≤ n − 1; this then gives θ(zn−2) ∈ TP (k, zn−1,An−1)[Ω], and so xn = z−1
n−2(Ω +

zn−2 + θ(zn−2)) ∈ TP (k, zn−1,An−1)[Ω], giving equality in the two equations in the previous

paragraph.

For the third, SP (k, zn−2,An−2)[zn−1][θ−1)(zn−1)] ⊂ CP
n , so

B := TP (k, zn−2,An−2)[zn−1][θ−1)(zn−1)] ⊂ (CP
n )Xn−2 ; the relation xi = zi−1

i−1(zi + zi−2) gives

xi ∈ B for 1 ≤ i ≤ n−1, while the relation xn = z−1
n−2(θ−1(zn−1)+θ(zn−2)) gives xn ∈ B.

Lemma 6.15. (This is analogous to Lemma e̊fomegaminuslambdaiscp).

For any λ ∈ k, (Ω− λ)CP
n is a Poisson prime ideal in CP

n .

Proof. Since Ω − λ is Poisson central in CP
n , (Ω − λ)CP

n is a Poisson ideal of CP
n , so, if we

can show that it’s a prime ideal then we’re done by Proposition 2.70.

We show this using Lemma 2.31. In the setting of that Lemma, we have R = CP
n ,

A = Lqn−1, c = Ω−λ, d = zn−1 and e = −zn−2−θ(zn−2)−λ. By considering total degree, we

cannot have e ∈ dR, and so, since by Lemma 5.16, R/dR is a domain, e is regular modulo

Ad. Therefore we can apply Lemma 2.31 to show that R/cR is a domain, that is, (Ω−λ)CP
n

is a prime ideal in CP
n .

Theorem 6.16. (This is analogous to Theorem 5.30). The Poisson prime ideals in CP
n (n

odd) are: 0, (Ω− λ)CP
n , and two exceptional Poisson maximal ideals containing Ω± 2.

Proof. By Lemma 6.14, (CP
n )Zn = TP (k(Ω), zn−1,An−1), which is simple by Lemma 6.4.

Therefore any Poisson prime ideal P of CP
n must contain some element of Zn, and so either

Ω − λ for some λ ∈ k, or some element of zn−1. If zn−1 ∈ P then there exists λ ∈ k such

that Ω−λ ∈ P by Lemma 6.12, while if zi ∈ P for 1 ≤ i < n− 1, then 1 ∈ P by Lemma 6.5.

Therefore any Poisson prime ideal of CP
n must contain Ω − λ, and since, by Lemma 6.14,

(CP
n )Xn−1 = TP (k, zn−1,An−1)[Ω], (Ω− λ)(CP

n )Xn−1 is a Poisson maximal ideal in (CP
n )Xn−1 .

Therefore by Proposition 2.71, noting that by Lemma 6.15, (Ω−λ)CP
n is a Poisson prime

ideal in CP
n , we obtain {P ∈ PSpec CP

n : P ∩ Xn−1} = {0} ∪ {(Ω− λ)CP
n : λ ∈ k}.

By Lemmas 6.5, 6.12, and 6.13, the only situation in which a Poisson prime ideal of CP
n

can have non-empty intersection with Xn−1 is if it contains Ω± 2 and zn−1.

Let λ = ±2, and I be a Poisson prime ideal of CP
n containing Ω − λ and zn−2. Then

applying the logic of the previous paragraph to θ−1(CP
n ), I must also contain θ−1(zn−2). And

by the proof of Lemma 6.13, I must also contain 2zn−2 + λ.

Therefore any Poisson prime ideal of CP
n strictly containing (Ω − λ)CP

n must contain

zn−1, θ−1(zn−1) and 2zn−2 + λ. Therefore the same must be true of any Poisson prime ideal

of (CP
n )Xn−2 strictly containing (Ω− λ)(CP

n )Xn−2 .
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By Lemma 6.14, (CP
n )Xn−2 = TP (k, zn−2,An−2)[zn−1][θ−1(zn−1)], with appropriate Poisson

bracket. Let I be the ideal of (CP
n )Xn−2 generated by zn−1, θ−1(zn−1), and 2zn−2 +λ. This is a

Poisson ideal: the only non-trivial check is that {θ−1(zn−1), zn−1} = θ−1(zn−1)zn−1−1+z2
n−2 ∈

I, but this holds for either value of λ since z2
n−2 − 1 = (zn−2 − 1)(zn−2 + 1). Therefore

(CP
n )Xn−2/I = TP (k, zn−2,An−2), which is Poisson simple, and so I is a Poisson maximal

ideal in (CP
n )Xn−2 . Further, I contains Ω − λ, and we’ve already shown that is the only

Poisson prime ideal of (CP
n )Xn−2 strictly containing (Ω− λ)(CP

n )Xn−2 .

Therefore, by Proposition 2.71, {P ∈ PSpec CP
n : P ∩ Xn−2 = ∅} consists of the ideals

described in the statement of the Theorem. But by Lemma 6.5, {P ∈ PSpec CP
n : P∩Xn−2 =

∅} = PSpec CP
n , and so we’re done.

Remark. There is a general conjecture that, given a family of quantum algebras Aq paramet-

rised by a scalar q, and the semiclassical limit Poisson algebra A of that family, then there

should be an inclusion-preserving bijection between Spec Aq, for suitably generic q, and

PSpec A. (The bijection is inclusion-preserving if and only if it is a homeomorphism with

respect to the Zariski topologies on Spec Aq and PSpec A).

When n is odd, provided q is not a root of unity and the base field k is algebraically

closed and characteristic 0, by Theorems 5.17 and 6.8, there is a bijection between Spec Lqn

and PSpec LPn sending 0 to 0 and (zn − λ)Lqn to (zn − λ)LPn , and this bijection is inclusion-

preserving. Similarly, when n is even and under the same conditions, by Theorems 5.19 and

6.10 there is an inclusion-preserving bijection between Spec Lqn and PSpec LPn .

There is not, however, an inclusion-preserving bijection between Spec Cq
n and PSpec CP

n ,

since the former has infinitely many height 2 prime ideals whereas the latter only has 2

such. The natural map is a surjection from Spec Cq
n to PSpec CP

n : the values of λ for which

exceptional height 2 primes exist in Cq
n are all such that, when one sets q to 1, they equal

±2, so the countably many exceptional height 2 prime ideals in Cq
n each map under this

surjection to one of the two exceptional height 2 Poisson prime ideals in CP
n .

There is, however, an inclusion-preserving bijection between PSpec CP
n and the set of

completely prime ideals in Spec Cq
n; since for a Noetherian ring no Poisson prime ideal can

fail to be completely prime, this is perhaps the best we can hope for.
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7 Acyclic quantum cluster algebras and prime ideals

Throughout this section we only consider quantum cluster algebras starting from an acyclic

initial seed Q.

The aim of this section is to find a minimal multiplicatively closed set S such that Aq(Q)S

is simple. In the case where there are no coefficients, it turns out that Aq(Q) is itself simple;

this result had already appeared in [37, Theorem 5.1], with the peculiar-looking additional

condition
n∑
j=1

(B−1)ij(max(Bij, 0),min(Bij, 0)) 6= 0 for 1 ≤ i ≤ n.

First, we find a minimal multiplicatively closed set S such that Sq(x,L)S is simple.

7.1 Simple localisations of Sq(x,L)

Definition 7.1. Let Q = (Q,x,L) be a (quantum) seed.

Define W to be the set of monomials in x with nonnegative degree in each variable, so

Tq(x,L) = Sq(x,L)W .

Define X := {zw ∈ Sq(x,L) : z ∈ Z(Tq(x,L))\{0}, w ∈ W}, and Y := X∩Sq(xfroz,Lfroz).

Proposition 7.2. ([6, 11.2]).

Write T = Tq(x,L), and assume q is not a root of unity.

(i) The monomials in x that are central in T form a k-basis for Z(T ).

(ii) I 7→ IT and J 7→ J ∩ Z(T ) define a one-to-one correspondence between the two-sided

ideals of Z(T ) and the two-sided ideals of T .

Proposition 7.3. (i) The localisation Sq(x,L)X is simple Noetherian.

(ii) Z(Tq(x,L)) ⊂ Tq(xfroz,Lfroz).

Proof. (i) Since W ⊂ X , Sq(x,L)X = Tq(x,L)X .

Let I be a non-zero two-sided ideal of Tq(x,L). By Propostion 7.2 (ii), I contains an

element z ∈ Z(Tq(x,L)). Let w ∈ W be such that zw ∈ Sq(x,L); such a w exists

by taking w to be the product of the denominators of terms in z. Then zw ∈ I, so

I ∩X 6= ∅. Since this holds for any I, by Proposition 2.11, Tq(x,L)X is simple, and so

Sq(x,L)X is simple.

Since Sq(x,L) is Noetherian Sq(x,L)X is also Noetherian.

111



(ii) Let xa be a monomial in Tq(x,L). Then xa is central if and only if La = 0, so if

xa is central then BTLa = 0, so by the compaitibility condition from Definition 2.80,

there exists an integer d > 0 such that dIa = 0. That is, for any mutable u ∈ Q,

dau = 0, and so au = 0. Therefore xa ∈ Tq(xfroz,Lfroz); so by Proposition 7.2 (i),

Z(Tq(x,L)) ⊂ Tq(xfroz,Lfroz).

Lemma 7.4. Let Q = (Q,x,L) be a seed, and X be as above. Then Aq(Q)X exists and

equals Sq(x,L)X . Therefore any prime ideal of Aq(Q) contains an element of X .

Proof. We recall the Laurent phenomenon (Theorem 2.87), which tells us that Sq(x,L) ⊂
Aq(Q) ⊂ Tq(x,L).

With W as above also, we have W ⊂ X , so by Corollary 2.46, Tq(x,L) ⊂ Sq(x,L)X .

Thus Sq(x,L) ⊂ Aq(Q) ⊂ Sq(x,L)X , so we can apply Lemma 2.45 to get that Aq(Q)X exists

and equals Sq(x,L)X .

Since Sq(x,L)X is simple Noetherian, we can apply Lemma 2.11 to show that any prime

ideal of Aq(Q) contains an element of X .

Lemma 7.5. Let Q be an acyclic quiver. Then Q contains a sink.

Proof. Suppose not. Pick a vertex v1 ∈ Q, then define recursively a sequence of vertices

v1, v2, . . . such that there is an arrow vi → vi+1 for all i ≥ 1. This is possible since each

vi is not a sink. Since Q is finite, there must exist i and j such that vi = vj. But then

vi → vi+1 → · · · → vj = vi is a cycle in Q, a contradiction.

Lemma 7.6. Let Q be an acyclic quiver. Then there exists an ordering of the vertices of Q,

v1, . . . , vn, such that there are no arrows from vj to vi for j > i.

Proof. By the previous lemma, Q has a sink. Call this vertex vn. Then by induction (the

case where Q has one vertex is trivial, and a subgraph of an acyclic graph is still acyclic),

there exists an ordering of Q \ vn with no arrows from vj to vi for n > j > i. And since vn

is a sink, there are no arrows from vn to vj for j < n.

Lemma 7.7. Let Q = (Q,x,L) be a seed and let v ∈ Q. Then there exists s ∈ Z and λ ∈ k×

such that

xvx
′
v − qsx′vxv = λ Π

Bvw<0
x−Bvw
w

Remark. The precise value of scalar λ does depend on the ordering on Q, but its existence

does not.
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Proof. By definition of x′v, there exist non-zero scalars µ+ and µ− such that

x′v = x−1
v µ+ Π

Bvw>0
xBvw
w + x−1

v µ− Π
Bvw<0

x−Bvw
w

Using the skew-commutation relations between xv and the other xw, we get

x′v = µ+q

∑
Bvw>0

−LvwBvw ∏
Bvw>0

xBvw
w x−1

v + µ−q

∑
Bvw<0

LvwBvw

Π
Bvw<0

x−Bvw
w x−1

v .

Thus, setting s =
∑

Bvw>0

LvwBvw, we get

xvx
′
v − qsx′vxv = µ−

(
1− q

∑
Bvw<0

LvwBvw

q

∑
Bvw>0

LvwBvw
) ∏
Bvw<0

x−Bvw
w

= µ−

(
1− q

∑
w∈Q

LvwBvw
) ∏
Bvw<0

x−Bvw
w

= µ−
(
1− qd

) ∏
Bvw<0

x−Bvw
w .

In this d is the integer such that BTL = dI, which is strictly positive and so λ := µ−(1−qd)
is a non-zero scalar.

Corollary 7.8. With s and λ as above, and a ≥ 1,

xavx
′
v − qasx′vxav = λq−(a−1)s[a]qt−s

∏
Bvw<0

x−Bvw
w xa−1

v

In particular, if q is not a root of unity, there exists a non-zero scalar µ such that

xavx
′
v − qasx′vxav = µ

∏
Bvw<0

x−Bvw
w xa−1

v

Proof. We prove this by induction on a; if a = 1 then this is immediate from the previous

lemma. Write x− := λ
∏

Bvw<0

x−Bvw
w , and note that xvx− = q

∑
Bvw<0

−LvwBvw

x−xv. So write

t :=
∑

Bvw<0

− LvwBvw. With this notation,

xavx
′
v = q(a−1)sxvx

′
vx

a−1
v + q(a−1)s[a− 1]qt−sxvx−x

a−2
v

= qasx′vx
a
v + q(a−1)sx−x

a−1
v + q(a−2)s[a− 1]qt−sqtx−x

a−1
v

= qasx′vx
a
v + q(a−1)sx−x

a−1
v + q(a−1)s[a− 1]qt−sqt−sx−x

a−1
v

= qasx′vx
a
v + q(a−1)s[a]qt−sqt−sx−x

a−1
v .
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Theorem 7.9. Let Q = (Q,x,L) be a seed such that the principal part of Q - that is, Q

with the frozen vertices removed - is acyclic. Assume that q is not a root of unity. Let Y be

as in Definition 7.1. Then any non-zero ideal of Aq(Q) contains an element of Y.

Conversely, any element of Y is normal in Aq(Q), so generates a non-trivial ideal of

Aq(Q). If y ∈ Y is irreducible, that is, there do not exist y′, y′′ ∈ Y \ k× such that y = y′y′′,

then y generates a prime ideal of Aq(Q).

Proof. Let I be a non-zero ideal of Aq(Q), so, by Lemma 7.4, I must contain some element

of X .

Order the mutable vertices of Q using Lemma 7.6. Let Q+ = {mutable vertices of

Q} ∪ {0}. Order Q+ by extending the order on the mutable vertices of Q by saying 0 < v

for all v. (‘0’ will represent being an element of Y).

For y ∈ X define m(y) ∈ Q+ to be 0 if y ∈ Y , and otherwise m(y) is the maximal vertex

v such that y has non-zero degree in xv.

Let v ∈ Q+ be minimal such that m(y) = v for some y ∈ I ∩X . If v = 0 then we’re done.

Otherwise, let z ∈ I∩X have minimal degree in xv among elements of {y ∈ I∩X : m(y) = v}.
Write z = yΠ

w
xaww xavv , where y ∈ Y .

Now since x′v skew-commutes with xw for all w 6= v, and commutes with y for all y ∈ Y ,,

by Corollary 7.8 there exists an integer t and a non-zero scalar ν such that

zx′v − qtx′vz = νy
(

Π
w<v

xaww

)(
Π

Bvw<0
x−Bvw
w

)
xav−1
v

But Bvw < 0 =⇒ w < v, so writing a′w =

aw if Bvw ≥ 0

aw −Bvw if Bvw < 0
, we get

zx′v − qtx′vz = νy
(

Π
w<v

xa
′
w
w

)
xav−1
v .

Therefore, zx′v − qtx′vz ∈ I ∩ X , and if av > 1 then m(zx′v − qtx′vz) = v and zx′v − qtx′vz
contradicts the minimality of the degree of xv in z. If av = 1 then m(zx′v − qtx′vz) < v

contradicting the minimality of v. Either way we have a contradiction, so we must have had

v = 0 and I contains an element of Y .

Corollary 7.10. In the setting of Theorem 7.9, Aq(Q)Y is simple.

Proof. Every element of Y is normal in Aq(Q), so Y is a right Ore set in Aq(Q) and the

localisation exists. Now apply Lemma 2.11.
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Corollary 7.11. Let Q = (Q,x,L) be a seed with no frozen variables such that Q is acyclic.

Then Aq(Q) is simple.

Having described the height 1 primes, a natural question is whether there exist quantum

cluster algebra structures on the factor rings. In the case of a central coefficient, there exists

a natural candidate:

Conjecture 7.12. ([21, Proposition 3.3]). Let Q = (Q,x,L) be a seed with v ∈ Qfroz such

that Lvw = 0 for all w, so xv is central in Aq(Q). Then removing v from Q gives valid initial

data for a quantum cluster algebra; it is conjectured that this is a quantum cluster algebra

on Aq(Q)/(xv − 1).

7.2 Examples

We use the standard notation that frozen vertices are represented by boxes.

Example 7.13 (The first quantized Weyl algebra). The first quantized Weyl algebra Aq
2

1 :=

k〈x, y : xy − q2yz = 1− q2〉 has a quantum cluster algebra structure given by

x q−1z

where z := xy − 1 is the normal element in Aq
2

1 , and mutation at x turns out to give y.

So Theorem 7.9 recovers the fact that the prime ideal generated by z is in fact the only

height one prime in Aq
2

1 .

Example 7.14. We recall that Oq(M2(k)) has a quantum cluster algebra structure with the

following as the initial seed:

a b

c Dq

Here the centre of the quantum torus is the Laurent polynomial ring in Dq and bc−1, so

the set Y consists of non-zero polynomials in b, c, and Dq which are homogeneous in b and c.

Similarly, we recall that Oq(SL2(k)) has a quantum cluster algebra structure with the

following as the initial seed:

a b

c
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Here the centre of the quantum torus is the Laurent polynomial ring in bc−1, so the set

Y consists of non-zero homogeneous polynomials in b and c.

We note also that sinceOq(SL2(k)) = Oq(M2(k))/(Dq−1), the quantum cluster structure

on Oq(SL2(k)) is an example of Theorem 7.12.

We will see further examples in Section 8.
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8 Quantum cluster algebra structures on connected

quantized Weyl algebras

8.1 A quantum cluster algebra structure on Lq2
n

We aim to give a quantum cluster algebra presentation of the ring Lq
2

n . The initial seed will

be the following, where ẑi is a non-zero scalar multiple (the precise value to be defined later)

of zi for all i.

ẑ1 ẑ2 · · · ˆzn−1 ẑn

Proposition 8.1. Let Q = (Q,x,L) be a seed, and v ∈ Q a vertex.

Let Q̃ be the seed formed by taking Q and adding an extra vertex w, any arrows from

w to other vertices of Q that we choose, and a central cluster variable xw. We can mutate

this seed at the vertex v, giving a seed Q̃′. Now construct a seed Q̂′ from Q̃′ by replacing all

instances of xw in x′v by 1, removing w and any arrows to or from it from Q̃′, and removing

xw from x̃′. Then the seeds Q̂′ and Q′ are identical.

Informally, “adding vertices labelled by 1 doesn’t change anything”.

Proof. If u and t are vertices in Q then B̃′ut depends only on B̃ut, B̃uv and B̃tv, which are

all equal to their counterparts in B, and so B̃′ut = B′ut. Thus B̂′ut = B′ut for any u, t ∈ Q̂′,
and since Q̂′ and Q′ have the same vertex set, these quivers are identical.

If we pick an ordering on the vertices of Q then we note that λ(b±v ) = λ(b̃±v ), since

L̃uw = 0 for all u, and so M(b̃±v ) = x
(b̃±v )w
w M(b±v ). Thus x̂′v = x′v as elements of Tq(x,L), and

so x̂′ = x′ as subsets of Tq(x,L), and so also L̂′ = L′.

Definition 8.2. For integers j ≥ 0, define t(j) :=

j/2 if j is even

(j − 1)/2 if j is odd
.

Define ẑj := q−t(j)zj, that is, a rescaled version of zj, where zj ∈ Lqj is as in Definition

5.1.

Consider the following picture, where 0 ≤ k ≤ j−1 and i+ j ≤ n. If any of the variables

associated to vertices are θr(z0) for some r - that is, if k = 0 or k = j − 1 - then we remove

that vertex and any arrows to or from it. When j = 1, and so k = 0 and k = j − 1, then we

remove both those vertices, leaving just the vertex labelled by θi(ẑj) = xi+1.
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θi+k+1( ˆzj−k−1)

θi(ẑj)

θi(ẑk)

We say that the vertex labelled θi(ẑj) has a smaller neighbourhood, while the other

two vertices each have a larger neighbourhood.

A Lq
2

n -seed is a seed contained within Lq
2

n with n vertices in the quiver and

1. the variable associated to each vertex is θi(ẑj) for some 0 ≤ i, j with i+ j ≤ n;

2. it has precisely one frozen vertex, with associated variable ẑn;

3. each unfrozen vertex has a smaller neighbourhood and a larger neighbourhood, and no

arrows to or from it otherwise;

4. the frozen vertex has a smaller neighbourhood and no arrows to or from it otherwise.

Lemma 8.3. The neighbourhood of any mutable vertex in a Lq
2

n -seed is one of the following:

(i)

θr+i+j+2(ẑk)

θr+i+1(ẑj) θr( ˆzi+j+k+2)

θr( ˆzi+j+1)

θr(ẑi)
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(ii)

θr+i+k+2(ẑj)

θr+k+1( ˆzi+j+1)

θr+k+1(ẑi) θr( ˆzi+j+k+2)

θr(ẑk)

where i, j, k ≥ 0 are such that i+ j + k + 2 ≤ n, and the vertex we are considering has

θr( ˆzi+j+1) associated to it.

If any of i, j, or k equal 0 then some of the vertices in this diagram will not be present,

but we can use Proposition 8.1 to add vertices “labelled by 1” in their place to make the

neighbourhood of this form.

Proof. The vertex must have both a smaller neighbourhood and a larger neighbourhood;

the two cases arise from there being two vertices in Definition 8.2 which have a larger

neighbourhood.

Lemma 8.4. Suppose i, j, k ≥ 0 are such that i+ j + k+ 2 ≤ n, and we have a vertex with

ˆzi+j+1 associated to it, such that its neighbourhood is the following:

θi+j+2(ẑk)

θi+1(ẑj) ˆzi+j+k+2

ˆzi+j+1

ẑi

Then ˆzi+j+1
′, i.e. the new variable obtained by mutating at ˆzi+j+1, equals θi+1( ˆzj+k+1).

As before, if any of i, j, k are 0 then some of the vertices in this diagram will not be

present, but we can use Proposition 8.1 to add vertices “labelled by 1” in their place without

changing anything.

To show this we will need the following calculation:
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Lemma 8.5. For all non-negative integers i, j, k, and also for k = −1, the following holds:

zi+j+1θ
i+1(zj+k+1) = θi+1(zj)zi+j+k+2 + qjziθ

i+j+2(zk) (if j is even);

zi+j+1θ
i+1(zj+k+1) = θi+1(zj)zi+j+k+2 + qj+1ziθ

i+j+2(zk) (if i and j are both odd);

zi+j+1θ
i+1(zj+k+1) = q2θi+1(zj)zi+j+k+2 + qj+1ziθ

i+j+2(zk) (if i is even and j is odd).

Proof. We consider first the case when k = 0. In this case we wish to show

zi+j+1θ
i+1(zj+1) = θi+1(zj)zi+j+2 + qjzi if j is even;

zi+j+1θ
i+1(zj+1) = θi+1(zj)zi+j+2 + qj+1zi if j odd and i odd;

zi+j+1θ
i+1(zj+1) = q2θi+1(zj)zi+j+2 + qj+1zi if j odd and i even.

We note that, by Proposition 5.2 (v), θi+1(zj)zi+j+2 = qsijzi+j+2θ
i+1(zj), with

sij =


0 if j is even;

0 if i+ j is odd;

1 if i and j are both odd.

These skew commutators allow us to rewrite the relations slightly, so that we wish to show

zi+j+1θ
i+1(zj+1) = zi+j+2θ

i+1(zj) + qjzi if j is even; (1)

zi+j+1θ
i+1(zj+1) = q2zi+j+2θ

i+1(zj) + qj+1zi if j is odd. (2)

We show these by induction on j. If j = 0 then (1) becomes just zi+1xi+2 = zi+2 + zi, i.e.

the definition of zi+2.

If j > 0 is even then

zi+j+1θ
i+1(zj+1)− zi+j+2θ

i+1(zj)

= zi+j+1θ
i+1(zj)xi+j+2 − zi+j+1xi+j+2θ

i+1(zj)− zi+j+1θ
i+1(zj−1) + zi+jθ

i+1(zj)

= zi+j+1θ
i+1(zj)xi+j+2 − zi+j+1θ

i+1(zj)xi+j+2

+ (1− q2)zi+j+1θ
i+1(zj−1)− zi+j+1θ

i+1(zj−1) + zi+jθ
i+1(zj)

(since xi+j+2θ
i+1(zj) = θi+1(xj+1zj) = θi+1(zjxj+1 − (1− q2)zj−1)) by Proposition 5.3

= zi+jθ
i+1(zj)− q2zi+j+1θ

i+1(zj−1)

= qjzi by induction.
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If j > 0 is odd then

zi+j+1θ
i+1(zj+1)− q2zi+j+2θ

i+1(zj)

= zi+j+1θ
i+1(zj)xi+j+2 − q2zi+j+1xi+j+2θ

i+1(zj)− zi+j+1θ
i+1(zj−1) + q2zi+jθ

i+1(zj)

= zi+j+1θ
i+1(zj)xi+j+2 − zi+j+1θ

i+1(zj)xi+j+2

+ (1− q2)zi+j+1θ
i+1(zj−1)− zi+j+1θ

i+1(zj−1) + q2zi+jθ
i+1(zj)

(since q2xi+j+2θ
i+1(zj) = θi+1(zjxj+1 − (1− q2)zj−1)) by Proposition 5.3

= q2(zi+jθ
i+1(zj)− zi+j+1θ

i+1(zj−1))

= q2qj−1zi by induction

= qj+1zi.

So we have shown the result in the case k = 0. We note that with the convention z−1 = 0,

the result makes sense for k = −1 as well. and in that case is simply the skew-commutation

relation between zi+j+1 and θi+1(zj) from Proposition 5.2 (v).

Now we show the general case by induction on k: if λ =

q2 if j is odd and i is even

1 otherwise

and µ =

qj if j is even

qj+1 if j is odd
(note that these are independent of the value of k) then, just

using the definition of zr for various r and reordering,

zi+j+1θ
i+1(zj+k+1)− λθi+1(zj)zi+j+k+2 − µziθi+j+2(zk)

= zi+j+1θ
i+1(zj+k)xi+j+k+2 − zi+j+1θ

i+1(zj+k−1)

− λ(θi+1(zj)zi+j+k+1xi+j+k+2 − θi+1(zj)zi+j+k)

− µ(ziθ
i+j+2(zk−1)xi+j+k+2 − ziθi+j+2(zk−2))

= (zi+j+1θ
i+1(zj+k)− λθi+1(zj)zi+j+k+1 − µziθi+j+2(zk−1))xi+j+k+2

− (zi+j+1θ
i+1(zj+k−1)− λθi+1(zj)zi+j+k − µziθi+j+2(zk−2))

= 0 by induction.

Proof of Lemma 8.4. We choose the following ordering on the vertices of the neighbhourhood

of our vertex:
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θi+j+2(ẑk)
5

θi+1(ẑj)
2

ˆzi+j+k+2
3

ˆzi+j+1
1

ẑi
4

Therefore b+
1 =

(
−1 1 1 0 0

)T
and b−1 =

(
−1 0 0 1 1

)T
.

The table below calculates λ(b+
1 ) and λ(b−1 ), depending on the parity of i, j and k.

i j k L12 L13 L23 L14 L15 L45 λ(b+
1 ) λ(b−1 )

even even even 0 2 0 0 0 0 1 0

even even odd 0 0 0 0 -2 0 0 -1

even odd even 2 0 0 0 0 0 1 0

even odd odd 2 0 -2 0 0 0 2 0

odd even even 0 0 0 -2 0 0 0 -1

odd even odd 0 0 0 -2 0 2 0 -2

odd odd even 0 2 2 0 0 0 0 0

odd odd odd 0 0 0 0 -2 -2 0 0

We now calculate qt(j+k+1)M(b+
1 ) and qt(j+k+1)M(b−1 ), since we want to show

M(b+
1 ) +M(b−1 ) = q−t(j+k+1)θi+1(zj+k+1)

We know qt(j+k+1)M(b+
1 ) = qaz−1

i+j+1θ
i+1(zj)zi+j+k+2, where a = λ(b+

1 ) + t(i + j + 1) −
t(j) − t(i + j + k + 2) + t(j + k + 1). The following table calculates a, again depending on

the parity of i, j and k:

122



i j k λ(b+
1 ) t(i+ j + 1) −t(j) −t(i+ j + k + 2) t(j + k + 1) a

even even even 1 i+j/2 −j/2 −(i+j+k+2)/2 j+k/2 0

even even odd 0 i+j/2 −j/2 −(i+j+k+1)/2 j+k+1/2 0

even odd even 1 i+j+1/2 −(j−1)/2 −(i+j+k+1)/2 j+k+1/2 2

even odd odd 2 i+j+1/2 −(j−1)/2 −(i+j+k+2)/2 j+k/2 2

odd even even 0 i+j+1/2 −j/2 −(i+j+k+1)/2 j+k/2 0

odd even odd 0 i+j+1/2 −j/2 −(i+j+k+2)/2 j+k+1/2 0

odd odd even 0 i+j/2 −(j−1)/2 −(i+j+k+2)/2 j+k+1/2 0

odd odd odd 0 i+j/2 −(j−1)/2 −(i+j+k+1)/2 j+k/2 0

Similarly, we know qt(j+k+1)M(b−1 ) = qbz−1
i+j+1ziθ

i+j+2(zk), where b = λ(b−1 ) + t(i + j +

1)− t(j)− t(i+ j + k + 2) + t(j + k + 1). The following table calculates b depending on the

parity of i, j and k:

i j k λ(b−1 ) t(i+ j + 1) −t(i) −t(k) t(j + k + 1) b

even even even 0 i+j/2 −i/2 −k/2 j+k/2 j

even even odd -1 i+j/2 −i/2 −(k−1)/2 j+k+1/2 j

even odd even 0 i+j+1/2 −i/2 −k/2 j+k+1/2 j + 1

even odd odd 0 i+j+1/2 −i/2 −(k−1)/2 j+k/2 j + 1

odd even even -1 i+j+1/2 −(i−1)/2 −k/2 j+k/2 j

odd even odd -2 i+j+1/2 −(i−1)/2 −(k−1)/2 j+k+1/2 j

odd odd even 0 i+j/2 −(i−1)/2 −k/2 j+k+1/2 j + 1

odd odd odd 0 i+j/2 −(i−1)/2 −(k−1)/2 j+k/2 j + 1

Combining these together, we get

qt(j+k+1) ˆzi+j+1
′ =


z−1
i+j+1(θi+1(zj)zi+j+k+2 + qjziθ

i+j+2(zk)) (j even)

z−1
i+j+1(θi+1(zj)zi+j+k+2 + qj+1ziθ

i+j+2(zk)) (j odd, i odd)

z−1
i+j+1(q2θi+1(zj)zi+j+k+2 + qj+1ziθ

i+j+2(zk)) (j odd, i even)

So by Lemma 8.5 we get ˆzi+j+1
′ = θi+1( ˆzj+k+1), as required.

Lemma 8.6. Any mutation of a Lq
2

n -seed yields another Lq
2

n -seed.

Proof. If we have an Lq
2

n -seed and a mutable vertex in it, then the neighbourhood of our

vertex will be of one of the two forms from Lemma 8.3. Suppose first that the neighbhourhood

is of the first form. By applying an appropriate power of θ to all the calculations involved,

we may assume r = 0, so the neighbourhood is:
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θi+j+2(ẑk)

θi+1(ẑj) ˆzi+j+k+2

ˆzi+j+1

ẑi

Lemma 8.4, together with an easy check of the quiver mutation, shows that mutating at

ˆzi+j+1 gives the following local picture:

θi+j+2(ẑk)

θi+1(ẑj) ˆzi+j+k+2

θi+1( ˆzj+k+1)

ẑi

Furthermore, if all the vertices in the picture satisfied the requirements of Definition 8.2

before the mutation, they continue to do so after the mutation: the four vertices (including

the one we mutate at) that started with larger neighbourhoods in the picture still have larger

neighbourhoods in the picture, while the two vertices that started with smaller neighbour-

hoods in the picture still have smaller neighbhourhoods in the picture, and there are no

other arrows that have not been accounted for in the above. So if the previous seed was an

Lq
2

n -seed, then the mutated seed is too.

Further, the neighbourhood is now in the second form from Lemma 8.3; since seed mu-

tation is involutive, starting from a vertex whos neighbourhood is of the second form within

a Lq
2

n -seed gives a Lq
2

n -seed with the neighbourhood of the mutated vertex being of the first

form.

Either way, if we start with an Lq
2

n -seed and mutate it we get a Lq
2

n -seed.

Theorem 8.7. Let the following diagram describe a seed Q within Lq
2

n :

ẑ1 ẑ2 · · · ˆzn−1 ẑn
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Then Aq(Q) = Lq
2

n .

Proof. The initial seed is clearly an Lq
2

n -seed, so all seeds mutation equivalent to it are Lq
2

n -

seeds also. So all the cluster variables are all elements of Lq
2

n , so the quantum cluster algebra

is a subalgebra of Lq
2

n . And the new cluster variable obtained by mutating at ẑi equals xi+1

for 1 ≤ i ≤ n−1, so together with ẑ1 = x1 we have all the generators of Lq
2

n . So the quantum

cluster algebra does in fact equal Lq
2

n .

Corollary 8.8. The commutative cluster algebra with initial seed

z1 z2 · · · zn−1 zn

is isomorphic to a polynomial ring in n variables.

Proof. Take q = 1.

Remark. I have no idea whether this is already known.

We can use this, together with Theorem 7.9, to recover some of the results of Section 5.3.

Corollary 8.9. If n is even, k is algebraically closed, and q is not a root of unity, then any

prime ideal of Lqn contains zn, while if n is odd, any prime ideal of Lqn contains zn − λ for

some λ. Further, if n is odd then Lqn/(zn − 1) is simple.

Proof. Let Q = (Q,x,L) denote the initial seed described above. If n is even, Z(Tq(x,L)) =

k, while if n is odd, Z(Tq(x,L)) = k[z±1
n ]. So the set Y of Definition 7.1 is {zin : i ≥ 0} if

n is even and k[zn]∗ if n is odd. The result then follows by Theorem 7.9, together with the

algebraic closure of k allowing complete factorisation of elements of k[zn] into linear terms.

Theorem 7.12 tells us that Lqn/(zn − 1) has a quantum cluster algebra structure with

initial seed

¯̂z1
¯̂z2 · · · ¯̂zn−1

By Corollary 7.11, this quantum cluster algebra is simple, so Lqn/(zn − 1) is simple.

8.2 A quantum cluster algebra containing Cq2
n

In Section 4 we defined connected quantized Weyl algebras in terms of their generators and

relations. However, the ring Cq
n (and so by extension its subring Lqn) first arose in the work

of Fordy and Marsh in [14] and [13], as a subalgebra of a cluster algebra arising from certain

mutation-periodic quivers. The next two subsections provide an exposition of the parts of

this work relevant to our topic, first in the context of commutative Poisson algebras, following

the example of the papers just mentioned, and then the analogous quantum algebras.
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8.2.1 Mutation-periodic quivers

Definition 8.10. Let Q be a quiver with vertices v0, . . . , vn−1.

Let φ(Q) be the quiver with the same vertex set as Q but with φ(B)vivj = Bvi−1vj−1
,

where the latter indices are taken modulo n - that is, if we draw the vertices in a circle

labelled clockwise, then φ(Q) is Q rotated one place clockwise.

Let Q(s) denote the quiver obtained from Q by mutating at v0, then v1, and so on up to

vs−1 - so Q = Q(0) and Q′ = Q(1).

We say - following [14] - that Q is mutation-periodic with period s if φs(Q) = Q(s).

Example 8.11. The quiver P
(1)
n , depicted below, is mutation-periodic with period 1 with the

ordering given:

v0 v1

v2

v3

vn−1 vn−2

since the quiver obtained by mutating at v0 is

v0 v1

v2

v3

vn−1 vn−2

Definition 8.12. Given two quivers Q1, Q2 with the same vertex set, with arrows given by

B1 and B2 respectively, we can add these quivers by defining Q1 +Q2 to be the quiver with

again the same vertex set and arrows given by (B+)uv := (B1)uv + (B2)uv.

Definition 8.13. Let R
(k)
n , 1 ≤ k ≤

⌊
n
2

⌋
denote the quiver with n vertices, ordered v0, . . . ,

vn−1, and a single arrow from v0 to vk.

If Q is a quiver with vertices v0, . . . , vn−1, let ψ(Q) denote the quiver with the same

vertex set as Q but any arrows at vertex v0 reversed.

126



Let P
(k)
n =

∑n−k−1
i=0 φi(R

(k)
n )−

∑n−1
i=n−k φ

i(R
(k)
n ), for 1 ≤ k < n

2
, and P

(k)
n =

∑n−k−1
i=0 φi(R

(k)
n )

if k = n
2
.

Proposition 8.14. P
(k)
n is a mutation-periodic quiver of period 1.

Proof. The terms which give arrows in P
(k)
n to or from vertex 0 are R

(k)
n and −φn−k(R(k)

n ).

Both of these are arrows away from P
(k)
n , so mutating at vertex 0 simply reverses these

arrows. Thus:

P (k)′
n = P (k)

n − 2R(k)
n + 2φn−k(R(k)

n )

=

(
n−k−1∑
i=0

φi(R(k)
n )

)
−R(k)

n + φn−k(R(k)
n )−

(
n−1∑
i=n−k

φi(R(k)
n )

)
+ φn−k(R(k)

n )− φn(R(k)
n )

=
n−k∑
i=1

φi(R(k)
n )−

n∑
i=n−k+1

φi(R(k)
n )

= φ(P (k)
n )

It turns out that every mutation-periodic quiver of period 1 is made up of quivers of this

form:

Theorem 8.15. [14, Thm 6.7] Let bi ∈ Z for 1 ≤ i ≤ r. Then
∑r

i=0 biP
(i)
n is mutation-

periodic of period 1 iff the bi all have the same sign; however if it is not mutation-periodic

then one can add “correction terms” to make it mutation-periodic: that is, there exist ek,i ∈ Z
such that Q =

∑r
i=0 biP

(i)
n +

∑r−1
k=1

∑r−2k
i=0 ek,iφ

k(P
(i)
n−2k) is mutation-periodic. Furthermore,

every period 1 mutation-periodic quiver is of this form.

Given a mutation-periodic quiver of period 1, one can form a (commutative) seed simply

by associating to vi the variable wi in the function field F = k(w0, . . . , wn−1). Then seed

mutation at v0 gives a new seed, with quiver isomorphic to the initial quiver, but “rotated”

one place and with a new element w′0 ∈ F at v0 = φ(vn−1). This seed mutation extends

φ to F , with φ(wi) = wi+1 for 0 ≤ i < n − 1 and φ(wn−1) = w′0. With this in mind,

we define wn := w′0. Repeating this process - this time, of course, mutating at v1 instead

- we get wn−1 := w′1, and so on, giving a sequence (wi)i∈N of rational functions from F -

actually, by the Laurent phenomenon, Laurent polynomials in the wi. Since seed mutation

is involutive, we can also go in the other direction - so starting by mutating the initial seed

at vn−1, extending the sequence wi to i ∈ Z. And with this choice of nomenclature, for each

i the map φ : F → F maps (wi, . . . , wn+i−1) to (wi+1, . . . , wn+i).
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Remark. If we pick initial values for w0, . . . , wn−1 then this sequence of functions becomes a

sequence of rational numbers defined by a recurrence relation of the form wn+iwi = Π1 + Π2,

where the Πj are monomials in wi+1, . . . , wn+i−1. If we take w0 = · · · = wn−1 = 1 then by

the Laurent property, we get the surprising result that wi ∈ N for all i.

For example, the Somos 4 sequence defined by wiwi+4 = wi+1wi+3 + w2
i+2, w1 = w2 =

w3 = w4 = 1, always takes integer values, since it arises from the following mutation-periodic

quiver:

· ·

· ·

8.2.2 The quiver P
(1)
n+1

If n is an odd integer, then we form a commutative seed with quiver P
(1)
n+1, which we denote

(P
(1)
n+1,w). in the following natural fashion:

w0 w1

w2

w3

wn wn−1

Proposition 8.16.

Let Lvivj =


0 if i+ j is even

1 if i+ j is odd, 0 ≤ i < j ≤ n

−1 if i+ j is odd, 0 ≤ j < i ≤ n

Then L is compatible with P
(1)
n+1, and so Pn+1 := (P

(1)
n+1,w,L) is a quantum seed. In

addition, any other integer matrix compatible with P
(1)
n+1 is an integer multiple of L.

If we mutate Pn+1 at vertex w0, so P
(1)′
n+1 = φ(Pn+1), then L′φ(v)φ(w) = Lvw: therefore,

there is a well-defined map φ : Tq(w,L)→ Tq(w
′,L′) given by wi 7→ wi+1 for 0 ≤ i ≤ n− 1,

wn 7→ w′0.

Proof. (BTL)jk =
∑

iBvivjLvivk = Bvj−1vjLvj−1vk +Bvj+1vjLvj+1vk , where addition of subsub-

scripts is taken modulo n+ 1.
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If 0 < j < n then (BTL)jk = Lvj−1vk − Lvj+1vk . Checking this with the definition of L

gives (BTL)jk = 0 when j 6= k and (BTL)jj = 2.

If j = 0 then (BTL)jk = −Lvnvk − Lv1vk ; this equals 0 when k 6= 0 and 2 when k = 0.

If j = n then (BTL)jk = Lvn−1vk + Lv0vk ; this equals 0 when k 6= n and 2 when k = n.

Thus BTL = 2In+1 and L is compatible with the above quiver.

Let A be such that BTA = λIn+1, for some non-zero scalar λ. Then by uniqueness of

inverses for square matrices, A = λ
2
L; A is then an integer matrix only if λ ∈ 2Z, and the

uniqueness of L is shown.

If neither v nor w equals vn - so neither φ(v) nor φ(w) equals v0 then L′φ(v)φ(w) =

Lφ(v)φ(w) = Lvw directly from the definition of L. Otherwise, the definition of seed mu-

tation give us w′0 = w−1
0 + qw−1

0 w1wn. From this we get that wiw
′
0 = w′0wi if i is even and

wiw
′
0 = qw′0wi if i is odd, and so L′viv0 =

0 if i is even

1 if i is odd
, so L′viv0 = Lvi−1vn as desired.

With this in mind, we will write wn+1 := w′0, so the mutated seed P′n+1 is given by:

wn+1 w1

w2

w3

wn wn−1

Furthermore, the rule for defining the skew-commutators holds with this notation, that

is, L′ is given by L′vivj =


0 if i+ j is even

1 if i+ j is odd, 1 ≤ i < j ≤ n+ 1

−1 if i+ j is odd, 1 ≤ j < i ≤ n+ 1

Repeating this process, as in the commutative case, by mutating P′n+1 at v1 and so

on, we get a sequence of cluster variables wi for all i ∈ N, defined recursively by wi :=

w−1
i−n−1 + qw−1

i−n−1wi−nwi−1.

Similarly (or using the involutive property of seed mutation), mutating Pn+1 at vn gives

φ−1(Pn+1), with w−1 := w′n = w−1
n + q−1w−1

n w0wn−1, and repeating this lets us define w−i

for all i ∈ N.

As in the commutative case, we extend the map φ to the quantum seeds, so φ(wi) = wi+1.
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Definition 8.17. Next we consider what happens when we mutate Pn+1 at some other

vertex. If we mutate at v1 then

x1 := w′1 = q
1
2 (w0w

−1
1 + w−1

1 w2).

Similarly if we mutate Pn+1 at vi for 1 ≤ i ≤ n− 1 we get a mutated variable

xi := w′i = q
1
2 (wi−1w

−1
i + w−1

i wi+1).

If we mutate φ(Pn+1) at vn - so mutating first at v0 and then at vn - then we get

xn := w′n = q
1
2 (wn−1w

−1
n + w−1

n wn+1).

(The following proposition explains the notation xi).

Proposition 8.18. (i) xi+1 = φ(xi), for 1 ≤ i ≤ n− 1.

(ii) φ(xn) = x1.

(iii) (a) x1x2 = q2x2x1 + (1− q2).

(b) x1xi = q2xix1 for 1 < i < n, i even.

(c) x1xi = q−2xix1 for 1 < i < n, i odd.

(iv) The elements x1, . . . , xn of Tq(w,L) satisfy the defining relations for Cq2

n .

Proof. (i) φ(xi) is obtained by mutating first at v0 and then at vi+1, so when i = n − 1,

xi+1 = φ(xi) follows directly from the definition. If 1 < i+ 1 < n, mutating at v0 does

not change vi+1 or any of its neighbours, so cannot change w′i+1, so φ(xi) = xi+1.

(ii) φ(xn) = q
1
2 (wnw

−1
n+1 + w−1

n+1wn+2)

= q
1
2 (wnw

−1
n+1 + q−1wn+2w

−1
n+1)

= q
1
2 (wn(w−1

0 + qw−1
0 w1wn)−1 + (q−1w−1

1 + w−1
1 w2wn+1)w−1

n+1)

= q
1
2 (wn(1 + qw1wn)−1w0 + q−1w−1

1 (1 + qw1wn)−1w0 + w−1
1 w2)

= q
1
2 ((1 + qw1wn)−1wnw0 + q−1(1 + qw1wn)−1w−1

1 w0 + w−1
1 w2)

= q
1
2 ((1 + qw1wn)−1(wnw1 + q−1)w−1

1 w0 + w−1
1 w2)

= q
1
2 ((1 + qw1wn)−1(qw1wn + 1)w0w

−1
1 + w−1

1 w2)

= w0w
−1
1 + w−1

1 w2

= x1
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(iii) (a) x1x2 = q(w0w
−1
1 + w−1

1 w2)(w1w
−1
2 + w−1

2 w3)

= q(w0w
−1
1 w1w

−1
2 + w0w

−1
1 w−1

2 w3 + w−1
1 w2w1w

−1
2 + w−1

1 w2w
−1
2 w3)

= q(q2w1w
−1
2 w0w

−1
1 + q2w−1

2 w3w0w
−1
1 + w1w

−1
2 w−1

1 w2 + q2w−1
2 w3w

−1
1 w2)

= q2x2x1 + q(1− q2)w1w
−1
2 w−1

1 w2

= q2x2x1 + (1− q2)w1w
−1
1 w−1

2 w2

= q2x2x1 + (1− q2)

(b) For 1 < i < n, i even,

x1xi = q(w0w
−1
1 + w−1

1 w2)(wi−1w
−1
i + w−1

i wi+1)

= q(w0w
−1
1 wi−1w

−1
i + w0w

−1
1 w−1

i wi+1 + w−1
1 w2wi−1w

−1
i + w−1

1 w2w
−1
i wi+1)

=
q(q2wi−1w

−1
i w0w

−1
1 + q2w−1

i wi+1w0w
−1
1

+ q2wi−1w
−1
i w−1

1 w2 + q2w−1
i wi+1w

−1
1 w2)

= q2xix1.

(c) For 1 < i < n, i odd,

x1xi = q(w0w
−1
1 + w−1

1 w2)(wi−1w
−1
i + w−1

i wi+1)

= q(w0w
−1
1 wi−1w

−1
i + w0w

−1
1 w−1

i wi+1 + w−1
1 w2wi−1w

−1
i + w−1

1 w2w
−1
i wi+1)

=
q(q−2wi−1w

−1
i w0w

−1
1 + q−2w−1

i wi+1w0w
−1
1

+ q−2wi−1w
−1
i w−1

1 w2 + q−2w−1
i wi+1w

−1
1 w2)

= q−2xix1.

(iv) This follows directly from (iii) together with the properties φ(xi) = xi+1 and φn(xi) =

xi.

Remark. The subalgebra of Aq(Pn+1) generated by the xi is therefore a factor ring of Cq2

n -

it might not be the full ring.

Remark. This raises the question of whether there might be a quantum cluster algebra

structure on Cq
n itself. Although proving non-existence of such structures is in general hard,

it seems unlikely here given what we know about the prime ideal structure of Cq
n: firstly,

quantum cluster algebras tend to be more well-behaved than Cq
n, with no prime ideals that

are not completely prime; second, we know by Corollary 7.10 that if the quiver is acyclic -

and most quivers are mutation-equivalent to an acyclic one - Ω− λ must be a frozen cluster

variable, and the only one, which limits the possibilities for an initial seed quite considerably.

Extending the results of Section 7 might give an approach to settling this question.

131



8.2.3 The set of cluster variables

The aim of this section is to show that any cluster variable of the cluster algebra Aq(Pn+1)

is one of the wi, i ∈ Z, or is of the form θi(ẑj), where 0 ≤ i ≤ n − 1, 1 ≤ j ≤ n − 1, and

ẑj is as in Definition 8.2. As just remarked, we might not actually have θi(ẑj), we may have

its image in some factor ring of Cq2

n instead, but we will abuse notation slightly and write

θi(ẑj) anyway.

Definition 8.19. To do this we claim that any seed obtained by mutating the initial seed

is of the following form, which we call a Cq2

n -seed:

θs( zi1−s−1 )

ws wi1

θi1( zi2−i1−1 )

wi2

wn+s wir

θir( zn+s−ir−1 )

In this diagram:

zb represents a Lq
2

b -seed, as in Definition 8.2, except that we do not freeze ẑb, and instead

the arrows to or from the zb are drawn to or from ẑb.

θa( zb ) is similar but with θa applied to every variable of the Lq
2

b -seed.

r is an integer between 0 and n−1, and s = i0 < i1 < · · · < ir < ir+1 = n+s are integers.

If ir = ir−1 + 1 then we would get a 1 which we remove.

If r = 0 then we interpret this as follows:
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ws

θs( zn−1 )

wn+s

where the double-headed arrow represents an arrow of weight 2.

We call ws a quasi-source, wn+s a quasi-sink, and the other wi link nodes.

We note that since there are b vertices in the quiver for a θa(Lq
2

b )-seed, there are n + 1

vertices in a quiver of this form, as there should be.

We also note that applying φ to every vertex of a Cq2

n -seed yields another Cq2

n -seed.

Proposition 8.20. The neighbourhoods of a vertex (the vertex we are considering is circled

in the diagrams below) in a Cq2

n -seed take the following form, up to translation by φ, and

removing vertices labelled by θl(ẑ0) for some l:

(i)
ˆzi−1 θi( ˆzj−i−1)

wi

w0 wj

where 0 < i < j < n, w0 can be a quasi-source or a link node, wi is a link node, and

wj can be a quasi-sink or a link node (but since j < n at least one of w0 and wj must

be a link node).

(ii)
ˆzi−1 θi( ˆzj−i−1)

ˆzj−1

w0 wj

where 0 < j < n, 0 ≤ i ≤ j, w0 can be a quasi-source or a link node, and wj can be

a quasi-sink or a link node (but since j < n at least one of w0 and wj must be a link

node).

133



(iii)
ˆzi−1

wn w0

wi

where 0 < i < n, w0 is a quasi-source, wn is a quasi-sink, and wi is a link node.

(iv)
wi

w0 wn

θi( ˆzn−i−1)

where again 0 < i < n, w0 is a quasi-source, wn is a quasi-sink, and wi is a link node.

(v)
w0 ˆzi−1

wi

wn θi( ˆzn−i−1)

where again 0 < i < n, w0 is a quasi-source, wn is a quasi-sink, and wi is a link node.

(vi)
w0 ˆzi−1

ˆzn−1

wn θi( ˆzn−i−1)

where 0 ≤ i ≤ n− 1.
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(vii)
w0 ˆzn−1

wn

(viii)
wn ˆzn−1

w0

(In the last three it is clear that w0 is a quasi-source and wn is a quasi-sink.)

(ix)
θi+j+2(ẑk)

θi+1(ẑj) ˆzi+j+k+2

ˆzi+j+1

ẑi

where 0 ≤ i, j, k and i+ j + k + 2 ≤ n− 1.

(x)
θi+k+2(ẑj)

θk+1( ˆzi+j+1)

θk+1(ẑi) ˆzi+j+k+2

ẑk

where 0 ≤ i, j, k and i+ j + k + 2 ≤ n− 1.
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Proof. Every vertex in the pictures in Definition 8.19 has a neighbourhood that is in one of

these forms, whatever the value of r in that definition.

Proposition 8.21. The skew commutation relations involving the xi and the wj are:

wiwj = wjwi if i+ j is even, i < j;

wiwj = qwjwi if i+ j is odd, i < j;

wixj = qxjwi if i+ j is even, i < j;

wixj = q−1xjwi if i+ j is odd, i < j;

xiwj = qwjxi if i+ j is even, i < j;

xiwj = q−1wjxi if i+ j is odd, i < j.

So, for i ≤ j, we have:

wiθ
j(zk) = θj(zk)wi if k is even;

wiθ
j(zk) = qθj(zk)wi if k is odd and i+ j is odd;

wiθ
j(zk) = q−1θj(zk)wi if k is odd and i+ j is even.

While for k < i, we have:

zkwi = wizk if k is even;

zkwi = q−1wizk if k is odd and i is even;

zkwi = qwizk if k is odd and i is odd.

Proof. For the relations involving wi and xj, we use xi = q
1
2 (wi−1w

−1
i + w−1

i wi+1), and then

check that the relations hold in Tq(w,L). For example, if i < j and i+j is odd, wi commutes

with wj−1 and wj+1, and wiw
−1
j = q−1w−1

j wi, so since xj = q
1
2 (wj−1w

−1
j + w−1

j wj+1), wixj =

q−1xjwi. The remaining cases are similar.

The remaining relations follow, either by induction on k or by considering the numbers

of xr of each parity in each term of zk.

Lemma 8.22. Suppose the circled vertex has the following neighbourhood:

ˆzi−1 θi( ˆzj−i−1)

wi

w0 wj

where 0 < i < j < n, w0 can be a quasi-source or a link node, wi is a link node, and wj

can be a quasi-sink or a link node (but since j < n at least one of w0 and wj must be a link

node).
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Mutating at the circled vertex gives

ˆzi−1 θi( ˆzj−i−1)

ˆzj−1

w0 wj

where w0 and wj are of the same type (quasi-source, quasi-sink or link node) they started

as.

Proof. The quiver mutation is easy to check. For the variable mutation, label the vertices

as follows:

ˆzi−1
1

θi( ˆzj−i−1)
4

wi
3

w0
2

wj
5

Therefore b+
3 =

(
1 0 −1 0 1

)T
and b−3 =

(
0 1 −1 1 0

)T
.

We know w′i = qλ(b+
3 ) ˆzi−1w

−1
i wj + qλ(b−3 )w0w

−1
i θi( ˆzj−i−1), and we wish to show w′i = ˆzj−1,

so we wish to show zj−1 = qazi−1w
−1
i wj + qbw0w

−1
i θi(zj−i−1), where a = t(j − 1) + λ(b+

3 )−
t(i− 1) and b = t(j − 1) + λ(b+

3 )− t(j − i− 1).

The following table calculates λ(b±3 ), depending on the parity of i and j:

i j L15 L13 L35 L24 L23 L34 λ(b+
3 ) λ(b−3 )

even even 1 1 0 -1 0 -1 0 0

odd even 0 0 1 0 1 0 1 1

even odd 1 -1 1 0 0 0 -1 0

odd odd 0 0 0 1 1 -1 0 -1

The following table calculates a and b, depending on the parity of i and j:

i j t(j-1) -t(i-1) λ(b+
3 ) -t(j-i-1) λ(b−3 ) a b

even even (j-2)/2 -(i-2)/2 0 -(j-i-2)/2 0 (j-i)/2 i/2

odd even (j-2)/2 -(i-1)/2 1/2 -(j-i-1)/2 1/2 (j-i)/2 i/2

even odd (j-1)/2 -(i-2)/2 -1/2 -(j-i-1)/2 0 (j-i)/2 i/2

odd odd (j-1)/2 -(i-1)/2 0 -(j-i-2)/2 -1/2 (j-i)/2 i/2
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So we wish to show:

zj−1 = q(j−i)/2zi−1w
−1
i wj + qi/2w0w

−1
i θi(zj−i−1)

We prove this by induction on j; the base cases needed are j = i, which is clear, and

j = i+ 1, which we prove by induction on i. Here the base case is i = 1, where the RHS is

q1/2w−1
1 w2 + q1/2w0w

−1
1 = x1 = z1 which equals the LHS.

For the induction step,

q1/2zi−2w
−1
i−1wi + q(i−1)/2w0w

−1
i−1 = zi−1 by the induction hypothesis

q−1/2zi−2wi + q(i−1)/2w0 = zi−1wi−1

q1/2zi−1w
−1
i wi+1 + qi/2w0w

−1
i = zi−1xi − q1/2zi−1wi−1w

−1
i + qi/2w0w

−1
i

= zi−1xi − q1/2(q−1/2zi−2wi + q(i−1)/2w0)w−1
i + qi/2w0w

−1
i

= zi−1xi − zi−2

= zi.
Now the induction step for the induction on j:

q(j−i)/2zi−1w
−1
i wj + qi/2w0w

−1
i θi(zj−i−1)

= q(j−i)/2zi−1w
−1
i (q−1/2wj−1xj−1 − q−1wj−2) + qi/2w0w

−1
i (θi(zj−i−2)xj−1 − θi(zj−i−3))

= (q(j−i−1)/2zi−1w
−1
i wj−1 + qi/2w0w

−1
i θi(zj−i−2))xj−1

− (q(j−i−2)/2zi−1w
−1
i wj−2 + qi/2w0w

−1
i θi(zj−i−3))

= zj−2xj−1 − zj−3 by the induction hypothesis

= zj−1

Corollary 8.23. Suppose the circled vertex has the following neighbourhood:

w0 ˆzi−1

wi

wn θi( ˆzn−i−1)

where 0 < i < n.

Mutating at the circled vertex gives
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w0 ˆzi−1

ˆzn−1

wn θi( ˆzn−i−1)

Proof. The quiver mutation is as usual easy to check. To check the variable mutation we note

that the calculations in Lemma 8.22 hold for j = n, and are precisely the calculations needed

here (since the “extra” arrow from w0 to wn does not affect the variable mutation).

Lemma 8.24. Suppose the circled vertex has the following neighbourhood:

ˆzi−1

wn w0

wi
where 0 < i < n, so wn is a quasi-sink, w0 is a quasi-source and wi is a link node.

Mutating at the circled vertex gives

ˆzi−1

wn wn+i

wi
where wn is a link node, wn+I is a quasi-sink and wi is a quasi-source, and so the seed

remains a Cq2

n -seed, since this is φi applied to

θn−i( ˆzi−1)

wn−i wn

w0

Proof. The quiver mutation is easy to check. For the variable mutation, label the vertices

as follows:
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ˆzi−1
2

wn
3

w0
1

wi
4

Therefore b+
1 =

(
−1 0 1 1

)T
and b−1 =

(
−1 1 0 0

)T
.

We know wn = qλ(b+
3 )w−1

0 ˆzi−1 + qλ(b−3 )w−1
0 wnwi, and wish to show w′n = wn+i, so we wish

to show wn+i = qaw−1
0 zi−1 + qbw−1

0 wnwi, where a = λ(b+
3 ) − t(i − 1) and b = λ(b−3 ). The

following table calculates a and b:

i L13 L14 L34 L12 λ(b+
3 ) λ(b−3 ) -t(i-1) a b

even 0 1 -1 -1 0 0 -(i-2)/2 1 -(i-1)/2

odd 1 1 0 0 2/2 0 -(i-1)/2 1 -(i-1)/2

So we wish to show:

wn+i = q−(i−1)/2w−1
0 zi−1 + qw−1

0 wnwi

We prove this by induction on i. The base cases are i = 0, which is clear, and i = 1,

which becomes wn+1 = w−1
0 + qw−1

0 wnw1 which is the definition of wn+1. For the induction

step:

q−(i−1)/2w−1
0 zi−1 + qw−1

0 wnwi

= q−(i−1)/2w−1
0 (zi−2xi−1 − zi−3) + qw−1

0 wn(q−1/2wi−1xi−1 − q−1wi−2)

= q−1/2(q−(i−2)/2w−1
0 zi−2 + qw−1

0 wnwi−1)xi−1 − q−1(q−(i−3)/2w−1
0 zi−3 + w−1

0 wnwi−2)

= q−1/2wn+i−1xn+i−1 − q−1wn+i−2 by induction and xj = xn+j

= wn+i

Corollary 8.25. Suppose the circled vertex has the following neighbourhood:

wn ˆzn−1

w0

Mutating at the circled vertex gives:

wn ˆzn−1

w2n
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which is φn applied to

w0 ˆzn−1

wn

Proof. The quiver mutation is as usual easy to check. To check the variable mutation we

note that the calculations in Lemma 8.24 hold for i = n, and are precisely the calculations

needed here.

Theorem 8.26. Mutating a Cq2

n -seed gives a Cq2

n seed.

Proof. Proposition 8.20 gave 10 cases for the neighbourhood of a vertex in a Cq2

n -seed.

Lemma 8.22 shows that (i) mutates to (ii), and vice versa since seed mutation is involu-

tive; Corollary 8.23 shows that (iii) mutates to (iv) and vice versa; Lemma 8.24 shows that

(v) mutates to (vi) and vice versa; Corollary 8.25 shows that (vii) mutates to (viii) and vice

versa; and Lemma 8.6 shows that (ix) mutates to (x) and vice versa. So all the cases are

covered, so any mutation of a Cq2

n -seed gives another Cq2

n -seed.

Remark. The above all still holds in the commutative case. Further, in the commutative

case one can take n to be even, since there is no requirement for there to exist a compatible

matrix L, and the above all still holds.

8.2.4 Some ring-theoretic properties

For ease of notation, fix n odd and q a non-zero scalar in k which is not a root of unity, and

then write Q := Aq(Pn+1).

Proposition 8.27. Q is generated by {w0;x1, x2, . . . , xn}.

Proof 1. By Theorem 8.26 and the definition of a quantum cluster algebra, Q is generated

by {wi : i ∈ Z} ∪ {θi(zj) : i ∈ Z, 1 ≤ j ≤ n − 1}. The definitions of the zj and the fact

that θn = 1 allow us to reduce this to {wi : i ∈ Z} ∪ {x1, . . . , xn}. The relations of the

form xiwi− qwixi = q
1
2 (q−1− q)wi+1 and xiwi− q−1wixi = q

1
2 (1− q−2)wi−1 then allow us to

remove all but one of the wi from the generating set, wlog w0.

Proof 2. By Theorem 2.95, Q is generated by {w−1, . . . , wn+1;x1, . . . , xn−1}; if we add xn

this is still true, then we apply the same argument as in Proof 1 to reduce this generating

set to {w0;x1, x2, . . . , xn}.
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Theorem 8.28. Q is simple.

Proof. The quiver P
(1)
n−1 is acyclic, so this follows directly from Corollary 7.11.

Theorem 8.29. Q is Noetherian.

Proof. We construct an iterated skew polynomial ring in n+ 2 generators that surjects onto

Q.

We start with R0 := k[v1][v2;α1], where α1(v1) = qv1.

Define R1 := R0[y1; β1, δ1] where β1(v1) = q−1v1, β1(v2) = qv2, δ1(v1) = q−
1
2 (q − q−1)v2,

and δ2(v2) = 0.

Define R2 := R1[y2; β2, δ2] where β2(v1) = q−1v1, β2(v2) = qv2, β2(y1) = q2y1, δ2(v1) = 0,

δ2(v2) = q−
1
2 (1− q2)v1 and δ2(y1) = 1− q2.

For 3 ≤ i ≤ n − 1, define Ri := Ri−1[yi; βi, δi], where βi(vj) =

qvj if i+ j is even

q−1vj if i+ j is odd

for j = 1, 2; βi(yj) =

q2yj if i+ j is odd

q−2yj if i+ j is even
for 1 ≤ j < i; δi(vj) = 0 for j = 1, 2 and

1 ≤ j ≤ i− 1; δi(yj) = 0 for 1 ≤ j < i− 1; and δi(yi−1) = 1− q2.

Finally define Rn := Rn−1[yn; βn, δn], where βn(vj) =

qvj if n+ j is even

q−1vj if n+ j is odd
for j =

1, 2; βn(yj) =

q2yj if n+ j is odd

q−2yj if n+ j is even
for 1 ≤ j < i; δn(vj) = 0 for j = 1, 2; δn(yj) = 0 for

1 < j < n− 1; δn(yn−1) = 1− q2; and δn(y1) = 1− q−2.

At each stage it is straightforward to check that βi is an automorphism of Ri−1 and δi is

a βi-derivation of Ri−1. (It suffices to check that βi and δi preserve the defining relations of

Ri−1).

Then we define γ : Rn → Q by γ(vi) = wi for i = 1, 2, and γ(yi) = xi for 1 ≤ i ≤ n.

It is straightforward to check that γ is well defined, i.e. that the defining relations of Rn

are all satisfied by their images in Q. And γ is surjective, by Proposition 8.27. So Q is a

homomorphic image of Rn, which is a Noetherian ring, and so is Noetherian itself.
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