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Abstract

The synthesis and characterization of a novel iron-N -heterocyclic carbene

(iron-NHC) supported on expanded high amylose corn starch (HACS), using a

convergent strategy, and its application as efficient catalyst for fructose to HMF

conversion is reported. The NHC ligand was prepared via a multi-step approach

and tethered on to suitably derivatized (succinimidyl carbonate, DS =

0.33±0.11) expanded HACS in good yield (61.5%). The synthesis was carried

out using green(er) solvents such as propylene carbonate and CPME in

preference of DMF and CH2Cl2 where appropriate. An iron-loading of 0.26

mmol/g was achieved. Present of iron was confirmed qualitatively by colour

change and quantitatively by ICP in addition to complementary XPS, TGA,

STA and TEM analysis. However, it is assumed that all iron detected is

complexed to the NHC ligand and not trapped within the mesoporous structure

of the starch support.

After modification, BET surface area and pore volume dropped from 186.65 m2/g

and 0.91 cm3/g for expanded starch to 135.49 m2/g and 0.60 cm3/g for the final

Fe-NHC catalyst. The drop in pore volume may be due to possible blocking and

filling of the porous structure by the ligand and iron.

The Fe-NHC was proved to be heterogeneous as no discernible iron leaching was

observed and it showed good performance for the dehydration of fructose to 5-

hydroxymethyl furfural (HMF) when the reaction was explored at 100 ◦C and

varying time (0.5 h, 1 h, 3 h and 6 h). Best yield (63.54%) was achieved at t=1

h with a fructose to HMF conversion of 75.83% and HMF selectivity of 83.79%.

Interestingly, under nitrogen flow, poor conversion was reported.

Catalyst re-usability investigation showed that it can be re-used for up to 4 times

without significant loss in performance. Comparison of catalytic activity to other

heterogeneous catalysts, e.g. Amberlyst-15, Montmorillonite K-10 and ZSM-30

reported relatively similar behaviour.
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Chapter 1

Introduction

Chemistry has a direct impact on the world, some good and some bad. Thus,

all chemical processes must be managed carefully so that more good is done

than harm. For example, mis-use, abuse and over-production of chemicals and

their articles all have a detrimental effect on climate change, environment and

health. To this effect, on 25th of September 2015, 193 member countries of the

United Nations (UN) approved the importance of achieving global sustainability

via adoption of 17 Sustainable Development Goals (SDGs) (Figure 1.1) designed

to protect the planet and its inhabitants. [1]

Figure 1.1: Sustainable Development Goals (SDGs).

15



Introduction 16

In particular, SDG 12 strives to control the environmental impact of wastes

through responsible consumption and production, resource efficiency and

circular- rather than linear-thinking, i.e., doing more with less. Interestingly,

pioneered over 25 years ago by Anastas and Warner, the 12 guiding principles

(Figure 1.2) of green chemistry are commensurate with today's UN sustainable

development goals. Green chemistry is an attitude that affords policy to

improve chemical products and processes for the purpose of reducing their

damage on human health as well as on the environment completely. [2]

Figure 1.2: Principles of green chemistry.

According to principle 7, where possible, petroleum resources should be avoided

and replaced by renewable feedstocks. Our reliance on crude oil, a finite source,

as a feedstock for our continual and future energy, chemical and materials needs is

incommensurate for a sustainable 21st Century. However, the planet is not short

of under-utilised or waste biomass, both land and marine. In particular, primary

and secondary agricultural residues, forestry wastes, food supply chain wastes

are a rich source of cellulose, lignin, proteins, lipids, carbohydrates, sugars, etc,

all of which are examples of renewable materials. [2] Starch is considered one

of the most abundant biopolymer types in the world and it has some important

industrial applications. For example, chemically modified corn starch is used as a
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filler and structural component in many (bio)composites, as a separation medium

in chromatography and as a catalytic support. [3]

Catalysis is an important facet of green chemistry. Principle 9 states, “Catalytic

reagents (as selective as possible) are superior to stoichiometric reagents.” [2]

Catalysis minimizes the energy of the reaction and achieves selectivity which

hence reduces waste. [2], [4] and [5] In industry, more than 90% of chemical

reactions are accomplished using catalysts. [6] Catalysts are generally divided

into two categories, homogeneous and heterogeneous. Heterogeneous catalysts

are usually solids (and powders) which can be easily recovered from a reaction

mixture thus affording recyclability. [7] Carbonaceous materials make good

catalyst supports because of their robustness to harsh chemical environments,

high porosity, high surface area, good electron conductivity, low reactivity and

the fact they may be produced from residual biomass. [8]

1.1 Overview of Aims and Rationale

The overall aim of this research (summarized in Figure 1.3 ) was to investigate

the synthesis of a novel iron-nitrogen heterocyclic carbene (Fe-NHC) supported

on expanded starch (1) as a potential catalyst for the dehydration of fructose

(2) to 5-hydroxymethyl furfural (HMF) (3), an important platform molecule i.e.,

chemical building block derived from biomass. HMF is considered a renewable

material and an excellent platform molecule because it can be acquired from

biomass through chemical dehydration using homogeneous and/or heterogeneous

acid catalysts. [9] and [10] However, the chemical transformation of biomass

to platform molecules can be extremely challenging due to complex chemistries

and/or is tediously slow. Thus, new materials, e.g., catalysts, need to be explored

so that efficient and selective transformations can take place.

The synthesis of Fe-NHC (1) using a convergent strategy, from expanded high

amylose corn starch (HACS) (4) and N -(3-aminopropyl)imidazole (7), is depicted

in Scheme 1.1.

The detailed aims and objectives were:

i. to adopt existing synthetic procedures (see Scheme 1.1) but where possible look

to replace non-green solvents, for example, DMF with green(er) solvents such as

propylene carbonate and CPME;
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Figure 1.3: Overview of fructose (2) to 5-hydroxymethyl furfural (3) reaction
using Fe-NHC (1) .

ii. to investigate the extent of iron-loading on the NHC, with an assumption that

it is related to the degree of substitution (DS) of starch, i.e. greater the DS the

greater the extent of iron-loading;

iii. to explore the catalytic potential of (1) for the conversion of fructose (2) to

HMF (3) at fixed temperature (100 ◦C) and varying time (0.5 h, 1 h, 3 h and 6

h);

iv. to explore catalyst re-usability and compare catalytic activity with respect

to other heterogeneous catalysts, e.g. Amberlyst-15, Montmorillonite K-10 and

ZSM-30, and ;

v. to investigate changes in porosity during chemical derivatization. Mesoporosity

and high surface area of expanded HACS are significant factors in defining the

final catalyst performance because it is important for the iron particles to be

spread and stabilized in the mesoporous support so they can contact a large

number of catalytically active atoms. [11]

1.1.1 Why carbenes?

Carbenes are an interesting group of carbon containing compounds comprising

a divalent carbon atom with two unshared valence electrons. [12]

N -Heterocyclic carbenes (also called Arduengo carbenes) [13] are defined as

“heterocyclic species containing a carbene carbon and at least one nitrogen atom
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Scheme 1.1: Synthesis of iron-NHC catalyst (1).

within the ring structure.” [14] NHCs are special among other carbenes because

they are stable, directly synthesized, can attach to metals with different

oxidation states and can form organometallic complexes that are stable as

catalysts (see Figure 1.4). The stability of NHCs can be explained by their

ability to form a σ-bond using their sp2 hybridized lone pair with a σ-accepting
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orbital of the transition metal. [12] and [14]

The general design of a supported NHC catalyst is shown in Figure 1.5. The

NHC is usually tethered on to a polymer support via a short linker or spacer.

Figure 1.4: Examples of different types of NHCs.

[14]

Figure 1.5: General design of a heterogeneous NHC-metal complex catalysts.

[15]

NHC catalysts for fructose to HMF conversion have been reported in the

literature. For example, G. Yang et al used a NHC-Cr/ionic liquid system to

convert fructose and glucose in to HMF in good yield and high re-usuability [16]

whilst Y. Kim et al showed Fe-NHCs tethered on to polysterene resins as good

catalysts for HMF production (73% selectivity; 97% conversion). [17] Although,

these are relevant examples, they are slightly flawed due to the use of toxic

chromium in the first example and a non-renewable support (polystyrene) in

the second case.

1.1.2 Why expanded starch as a support?

In this research, expanded high amylose corn starch (4) was used as a support

because it is (bio)renewable, and readily available from a variety of waste biomass

types. Importantly, to the best of our knowledge the tethering of a Fe-NHC on

to starch has not been reported before.
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Starch consists of two polymers of glucose; amylose and amylopectin (Figure 1.6

and 1.7). Corn starch for instance contains 28% amylose and 72% amylopectin

[18] whereas high amylose corn starch, e.g. HYLON VII, consists of 71%

amylose. [19] Amylose is a linear molecule of (1→4) linked α-D-glucopyranosyl

units. Amylopectin on the other hand is the highly branched component of

starch that is composed of chains of α-D-glucopyranosyl attached with each

other generally by (1→4) linkages and at the branch points of (1→6) bonds.

[20] Within the anhydroglucose unit of starch, there are three hydroxyl groups:

C2; C3; and; C6, which are available for chemical modification. Thus the

theoretical maximum degree of substitution (DS) is 3. The C6-OH has the

highest probability for substitution due to least steric hindrance. [21]

Figure 1.6: Structure of amylose.

[22]

Figure 1.7: Structure of amylopectin.

[22]

1.1.3 Why iron?

Depletion of elements without their recovery and reuse makes the periodic table

unsustainable. Elemental sustainability is of global concern. [23]

All elements within the earth's crust are available in limited quantities.

Aluminium, iron and silicon, are highly abundant compared to platinum, silver

and selenium for instance. As shown in Figure 1.8, plentiful elements are among

those which have present known reserves (known weights of metals that can be
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economically and legally extracted using existing techniques) that are

considered to be expended in less than 50 years if their extraction levels remain

unchanged. [24]

NHC complexes have been prepared using different metals such as palladium [25]

and gold [26]. According to Figure 1.8, the remaining years for gold are 5-50

years whereas for palladium 50-100 years. Compared to these elements, iron is

abundant, of low toxicity and benign, widely recycled and, thus, conforms to

elemental sustainability. In addition, the chemistry of iron compounds shows a

wide-range of geometric and electronic possibilities. For example, its oxidation

states range from low valent (Fe(0) and Fe(I)) to high-valent (Fe(II) , Fe(III)

Fe(IV) and Fe(V)) (Figure 1.9 shows NHC complexes of Fe(0), Fe(II), Fe(III),

and Fe(IV)). The coordination at the iron center affords different geometries, for

example, tetrahedral, octahedral trigonal bipyramidal, square planar or three-

coordinate iron complexes. [27]

Figure 1.8: Remaining years until depletion of known reserves of elements.

[23]

W. Fehlhammer et al reported the synthesis of Fe-NHC compounds via base-

induced deprotonation of a particular imidazolium salts (Figure 1.10, route D).

[27], [28] and [29] Butyllithium, metal alkoxides or sodium hydride are usually

used as bases whereas Fe(II) and Fe(III) salts of bromide and chloride are used

as the metal precursors. [27]
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Figure 1.9: NHC complexes of Fe(0), Fe(II), Fe(III), and Fe(IV).

[30]

Figure 1.10: Common synthetic routes toward Fe-NHC complexes.

[27]
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1.1.4 Why fructose to HMF conversion?

In 2004, the US department of energy (DoE) identified 12 platform molecules or

building blocks derived from biomass that could replace their existing synthetic,

petroleum-derived counterparts. [31] HMF (3) is a listed platform molecule [32]

and the presence of both hydroxymethyl (-CH2OH) and aldehyde (-CHO) groups

in its structure makes it a reactive molecule affording further products (see Figure

1.11). HMF (3) is a precursor for 2,5-dimethylfuran (DMF), a biofuel and in

the production of downstream products such as levulinic acid, 2,5-diformylfuran

(DFF), 5-hydroxy-4-keto-2-pentenoic acid, 2,5-furandicarboxylic acid (FDA) and

2,5-dihydroxymethylfuran. [33] and [34]

However, the conversion of carbohydrates to HMF (3) alone is not easy since

many side reactions and byproducts are formed. Traditionally, dehydration of

hexoses such as D-fructose in the presence of either homogeneous and/or

heterogeneous acid catalysts produces HMF (3). [35] and [36] For example, J.

Zhao et al reported sulfonated carbon spheres as solid acid catalysts for the

dehydration of fructose to HMF (90% yield, 160 ◦C, 1.5 h) in DMSO as solvent.

[37] J. Chen et al reported recyclable sulfonic acid-functionalized metal-organic

frameworks (MOF-SO3H) for 100% fructose conversion affording 90% HMF

yield (120 ◦C, 1 h) in DMSO as solvent. [38]

Z. Xue et al reported Nb-containing catalysts (Nb-NNTMPA) synthesized from

the reaction of niobium chloride and methylenephosphonic acid (NTMPA) in

pseudo-ionic liquid comprising N,N' -dimethylacetamide (DMA) and NaBr to

furnish HMF in excellent yield (85.6%). [39] A. Dibenedetto et al successfully

used cerium(IV) phosphates for the dehydration of fructose to HMF in aqueous

media both in batch and flow conditions; when in batch mode selectivity was

high (93%) but yield moderate (52%) whilst flow conditions (170 ◦C single pass)

gave equally high selectivity (95%) but very poor yield (24%) because the

phosphate group was thought to leach from cerium(IV) phosphate as

phosphoric acid causing catalyst de-activation. [40]
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T. Wang et al have shown a variety of metal- and mixed-metal oxides coupled with

microwave irradiation capable of successfully dehydrating fructose to HMF, e.g.,

ZrO2, WOx/ZrO2, MoOx/ZrO2, SO4
2−/ WOx

− ZrO2 and SO4
2−/MoOx ZrO2,

in dimethyl sulfoxide. The SO4
2−/WOx

−ZrO2 catalyst showed the best activity

with 83.90% 5-HMF yield and 95.80% fructose conversion which was achieved

within 5 minutes at 150 ◦C. [43] X. Tong et al reported Ge(IV) catalysts for

production of HMF from both fructose and sucrose. At 150 ◦C for 100 min,

fructose and sucrose dehydration to HMF gave 62% and 37% yield, respectively

in the presence of a dual GeO2/Ge3N4 catalyst. In addition, using sulfated GeO2

(SO4
2−/GeO2) catalyst and fructose as a starting material, 68% HMF yield was

gained in DMSO. [44]

The reaction pathway of acid catalysed dehydration of fructose is summarized

in Figure 1.12. According to literature there are two possible pathways for the

mechanism of the fructose dehydration to HMF. The first involves a series of

reactions that start with fructofuranose ring while the second supports a sequence

of reactions taking place via open-chain intermediates. [45] Partially dehydrated

intermediates are produced as a result of elimination of one or two water molecules

from fructose as a start of HMF formation. A further third dehydration affords

the product (HMF). However, inter-molecule condensation side reactions of these

intermediates lead to formation of side products such as insoluble humins and

soluble polymers. [45]

In comparison to aldohexoses, ketohexoses form HMF with higher selectivity and

efficiency due to the higher degree of enolisation which is a rate determining step

in the formation of fructose. [46] This can be explained by the higher abundance

of acyclic fructose and hence it can form less stable ring structure. Another reason

is that difructose and dianhydrides are formed by fructose which can reduce the

production of by-products due to the blockage of the reactive groups. [33]

In the high temperature dehydration of hexoses in aqueous acidic solution,

formic acid and levulinic acid are formed accompanied with HMF in a

rehydration reaction. [46]

A full mechanistic understanding of the fructose to HMF dehydration reaction is

further complicated because fructose has three types of structural isomers (Figure

1.13): keto-D-fructose; D-fructofuranose, and; D-fructopyranose. The latter two

have two diastereoiomers, so the difficulty is in finding out which isomers are



Introduction 27

Figure 1.12: Reaction pathways of acid catalysed dehydration of fructose.

[47]

Figure 1.13: Tautomeric forms of D-fructose in solution.

[48]
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responsible for the production of HMF. [49] Due to the existence of five tautomers

in solution, fructose has a complex 1H NMR spectrum.

Fructose dehydration reaction in water is a nonselective reaction because it

leads to the formation of many by-products other than HMF. Using

non-aqueous solvent such as DMSO can help to reduce the formation of these

side products. [46] However recent studies showed better results with respect to

the use of acetonitrile and acetone with low concentration of fructose, yet this

still leads to low HMF yield. [47] K. Shimizu et al investigated removal of water

(0.97 x105 Pa) from the reaction to afford near quantitative yield of HMF in the

presence of solid acid catalysts. [50]

Certain ionic liquids, e.g., 1-butyl-3-methylimidazolium tosylate ([BMIM] [TSO],

have been used successfully to yield HMF (96%, 0.5 h, 80 ◦C). [51] J. Chheda

et al reported the use of biphasic systems (organic extracting phase containing

dichloromethane or a 7:3 (w/w) MIBK:2-butanol mixture and reactive aqueous

phase adjusted with DMSO) affording 89% selectivity for HMF from fructose.

Continual separation of HMF prevented further side reactions. [52] However,

due to the high solubility of HMF in water as well as in the organic phase, the

use biphasic system requires large volumes of solvent which is considered as a

disadvantage. [53]

1.1.5 Summary

The importance of platform molecules as a cornerstone for our energy, chemicals

and materials requirements for a future sustainable 21st century is critical as crude

oil reserves decline. The development of new catalysts that offer high yield and

high selectivity of platform molecules such as HMF is a growing area of research.

However, production of HMF from biomass is straightforward but dependent on

a multitude of variables as depicted in Figure 1.14. [54]

Thus, in order to add new knowledge to this important but complicated

reaction, herein, the synthesis, characterization and application of a novel

Fe-NHC supported on to expanded starch (1), as a catalyst, for the dehydration

to fructose (2) to HMF (3) is now discussed. Chapter 2 reports experimental

procedures whilst Chapter 3 gives an in-depth discussion of the synthetic
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procedures and catalytic potential of the Fe-NHC. Conclusions and further

perspectives are offered in Chapter 4.

Figure 1.14: HMF formation rate determining factors.



Chapter 2

Experimental

2.1 Materials and Reagents

Expanded high amylose corn starch (HACS) (4) was provided by the Green

Chemistry Centre of Excellence, University of York. Propylene carbonate

(purity 99.7%), iron(III) chloride (purity 97%), potassium-tert-butoxide

(KtOBu) (purity 98%), triethyl amine (purity ≥ 99%), D-(-)-fructose (2)

(purity ≥ 99%), Di-tert-butyl dicarbonate (8), N -(3-aminopropyl)imidazole

(purity ≥ 97%), 2,4,6-trimethylbenzyl chloride (10) (purity 98%),

trifluoroacetic acid (TFA) (purity 99%), dimethyl sulfoxide-d6 (DMSO-d6) (99%

atom D), Chloroform-d (CDCl3) (99.8% atom D), Amberlyst-15 and

Montmorillonite K-10 were purchased from Sigma-Aldrich. N,N′-Disuccinimidyl

carbonate (DSC) (5) (purity ≥ 95.0%) was obtained from Fluka and

4-dimethylaminopyridine (DMAP) (purity 99%) from Acros chemicals Ltd.

Cyclopentyl methyl ether (CPME) was obtained from ZEON corporation,

Japan whilst ZSM-30 was acquired from RS Minerals, UK. All materials were

used without further purification.

30
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2.2 Instrumentation

2.2.1 Attenuated Total Reflection Infrared Spectroscopy

(ATR-IR)

The Attenuated Total Reflection Infrared (ATR-IR) was performed on a Bruker

Vertex 70 ATR controlled using OPUS software. 128 background scans 64 sample

scans were recorded for each sample. Where appropriate, Far infrared (FIR) was

performed on a Burker Tensor 37 with platinum ATR with 4 cm−1 resolution, 24

background scans and 24 sample scans.

2.2.2 Porosimetry

BET surface area measurements (nitrogen adsorption/desorption measurements)

of expanded HACS (4) and its modified compounds were determined using a

Micromeritics ASAP 2020 surface area and porosity analyzer. The sample (about

20 mg) was degassed at 120 ◦C for 240 min using a flow of N2. The mass was

corrected after the degassing. The data was processed using ASAP software.

Specific surface areas were calculated using the Brunauer, Emmett and Teller

(BET) equation. [55]

p

v(po − p)
=

1

vmc
+ c− 1p

vmcpo
(2.1)

where p= equilibrium pressure, p◦= saturation pressure, v= volume of gas

adsorbed, vm= volume of gas adsorbed in one unimolecular layer, c= BET

constant which equals

e
E1−EL

RT (2.2)

where E1 is the heat adsorption of the first layer and ET is the heat of liquification.

2.2.3 Scanning Electron Microscopy (SEM) and

Transmittance Electron Microscopy (TEM)

Scanning electron microscopy images were obtained with the assistance of Dr

Meg Stark, Department of Biology, University of York, UK and transmittance
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electron microscopy images were taken with the help of Dr Meg Stark and Dr

Anna Simon, Bioscience Technology Facility, Biology Department, University of

York. Scanning electron microscopy micrographs were recorded using a JEOL

JSM-6490 LV with 5 Kv scanning electron microscope. Samples were put on

SEM stubs and coated with gold and palladium before analysis. Resolutions

used were x1000, x2000, x5000 and x10000. TEM imaging was performed using

a Tecnai 12 BioTWIN from FEI that is operated at 120 kV with a SIS Megaview

3 camera. A 200 Mesh copper grids with pioloform coating were used.

2.2.4 Solid State 13C NMR

Solid state 13C-MAS NMR analysis was carried out with the support of Dr. Pedro

M. Aguiar and Julia Walton, Department of Chemistry, University of York, UK.
13C 1H CPMAS spectra were attained using a 400 MHz Bruker Avance III HD

spectrometer fitted out with a Bruker 4 mm H(F)/X/Y triple-resonance probe

and 9.4 T Ascend superconducting magnet. The CP experiments were carried

out a 1.5 ms linearly-ramped contact pulse, optimized recycle delays of 3 seconds,

spinning rates of 12000 +
− 2 Hz (or 9000 Hz), spinal-64 heteronuclear decoupling

(at rf =85 kHz) and are a sum of 512 co-added transients. Chemical shifts are

stated with respect to TMS, and adamantane (29.5 ppm) was used as an external

secondary reference.

2.2.5 Simultaneous Thermal Analysis (STA)

Simultaneous Thermal Analysis (STA) was carried out using Stanton Redcroft

STA 625. About 0.01 g of the sample was weighed in an aluminum crucible. The

system was purged with nitrogen and then with air at a flow rate of 50 ml/min

to 600 ◦C with a heating rate of 20 ◦C/min.

2.2.6 Inductively Coupled Plasma-Mass Spectroscopy

(ICP-MS)

Inductively Coupled Plasma Mass Spectroscopy (ICP) was obtained with the help

of Andrea Muñoz, Green Chemistry Centre of Excellence, Chemistry Department,
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University of York, using an Agilent 7700x fitted with standard Ni sample and

skimmer cones and coupled to a Mass Spectrometer (MS). The samples were

run in He mode. The sample introduction line was rinsed for 60 sec between

samples using 5% HCl and 2% HNO3 (30 sec with each compound). Samples

were prepared by acid digestion ((5 ml) 75% HCl:25% HNO3), Fe-NHC (50 mg,

80 ◦C, 4 h). The resultant digest was filtered and diluted with ultra-pure deionized

water to 100 ml and further dilution to 10 ml.

2.2.7 Nuclear Magnetic Resonance (NMR)

Liquid 1 H NMR (64 scans) and 13C NMR (1024 scans) spectra were obtained

using a Jeol ECS 400 A NMR operating at 400 MHz and 100 MHz, respectively.

Spectral referencing was with respect to tetramethylsilane.

2.2.8 High Performance Liquid Chromatography (HPLC)

High performance liquid chromatography was carried out by Amanda Dixon,

Department of Chemistry, University of York using Shimadzu Dominance RP-

HPLC with CNW Athena C18-WP (250 x 4.6 mm, 5 µm) column maintained at

35 ◦C with 0.8 ml/min flow rate and eluting with 75% H2O:25% acetonitrile.

2.2.9 Mass Spectrometry (MS)

Mass Spectrometry analysis was carried out by Karl Heaton, Department of

Chemistry, University of York, using Bruker micrOTOF time of flight mass

spectrometer. Data were acquired in the mass range 100 m/z to 480 m/z and

using positive mode electrospray ionisation. A 4500 V capillary voltage, 1.5 bar

nebuliser pressure, 8 L/min drying gas flow and 160 ◦C drying gas temperature

were used. Spectra were calibrated using mass values obtained from a sodium

formate internal standard and mass measurement errors were calculated using

Bruker Data Analysis software.
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2.2.10 X-ray Photoelectron Spectroscopy (XPS)

X-ray Photoelectron Spectroscopy (XPS) was carried out by Dr. Billy Murdoch,

National EPSRC XPS Users Service (NEXUS), Newcastle University.

2.3 Determination of Degree of Substitution

(DS)

Degree of substitution was determined according to the literature method as

following [56] and [57]: the appropriate DSC activated expanded HACS (6) (0.5

g) and 75% ethanol in distilled water (25 ml) were mixed and stirred at 50 ◦C for

30 min. The mixture was then allowed to cool to room temperature. An aqueous

solution of potassium hydroxide (0.5 N, 20 ml) was then added to the mixture

and stirred at room temperature for 72 h followed by addition of phenolphthalein

(2 drops) indicator. The solution was titrated with hydrochloric acid (0.5 N).

Expanded HACS (4) sample (unmodified) was treated the same way. These

processes were repeated 3 times and the average was recorded. The % of DSC

was found according to the following equation:

%DSC =
[(Vo − Vn)×N × 0.1421× 100]

M
(2.3)

Where, 142.1 is the molar mass of the DSC group. Vo is the used volume of HCl

for titration of unmodified expanded HACS, Vn is the used volume of HCl for

titration of DSC activated expanded HACS, N is the normality of HCl used and

M is the weight of the sample used.

DS was found using the following equation:

DS =
162×%DSC

[14210− (142.1×%DSC)]
(2.4)

Where, 162 is repeat unit starch molar mass and 14210 is the molar mas of DSC

group multiplied by 100. The percentage of DSC groups and D.S for compounds

(6a) and (6b) is reported in the Chapter 3 and the raw data are provided in

AppendexA.
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2.4 Conversion Study

2.4.1 Nuclear Magnetic Resonance (NMR)

1H and 13C NMR spectra were gained using Bruker Avance III HD 500. For the
1H the acquisition time is 4.1 sec and 8000 Hz spectral width, prescan delay of

6.5 µ sec and 16 scans. For the 13C the acquisition time is 1.0 sec and 31250 Hz

spectral width, prescan delay of 6.5 µ sec and 16 scans.

2.5 Synthesis of NHC ligand (12)

2.5.1 1-[(N -Tert-butoxycarbonyl)aminopropyl]imidazole

(9)

Under a nitrogen purge, a solution of di-tert-butyl dicarbonate (8) (50.0 g,

230.8 mmol) in CPME (25 ml) was added dropwise to a stirred mixture of

N -(3-aminopropyl)imidazole (7) (23.0 g, 191.7 mmol), NaHCO3 (38.0 g, 456.0

mmol) and CPME (50 ml). The reaction was stirred for 4 h at room

temperature, filtered to remove solid NaHCO3 and the solution was transferred

to a separating funnel containing deionized water (200 ml). The organic layer

was isolated whilst the aqueous layer was extracted with ethyl acetate (3 x 150

ml). The combined organic fractions were dried (MgSO4) and the solvent was

removed in vacuo to afford the desired

1-[(N -tert-butoxycarbonyl)aminopropyl]imidazole (9), 30.8 g (74.4%), a clear

orange oil. 1H NMR (400 MHz, CDCl3, TMS) (δ ppm): 7.5 (s, 1H), 7.0 (s, 1H),

6.9 (s, 1H), 4.7 (s, 1H), 4.0 (t, 2H), 3.1 (q, 2H), 1.9 (quint, 2H), 1.4 (s, 9H, 3 x

CH3);
13C NMR (101 MHz, CDCl3, TMS) (δ ppm): 156.2 (-NH-CO2-R), 137.2,

129.7, 118.9, 83.0, 56.4, 44.4, 31.7, 28.3, 23.6; IR (cm−1): 3343, 2931, 2866, 1700

(-C=O str), 1489, 1366 (CH3), 1250 (C-O-C); MS m/z (225.29 for C11H19N3O2,

[M + H ]+, found 226.1554).
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2.5.2 1-[N -Tert-butoxycarbonyl)-3-aminopropyl]-3-

(2,4,6-trimethyl benzyl) imidazolium chloride

(11)

1-[(N -Tert-butoxycarbonyl)aminopropyl]imidazole (9) (30.8 g, 154.1 mmol),

2,4,6-trimethylbenzyl chloride (10) (28.6 g, 151.3 mmol) in CPME (90 ml) were

stirred at 80 ◦C for 18 h. Thereafter, the product was washed with CPME (5 x

50 ml) and dried (in vacuo) to afford the desired

1-[N -tert-butoxycarbonyl)-3-aminopropyl]-3-(2,4,6-trimethylbenzyl)imidazolium

chloride (11), 48.1 g (79%), a clear yellow oil. 1H NMR (400 MHz, CDCl3,

TMS) (δ ppm): 10.8 (s, 1H), 7.5 (s, 1H), 6.9 (s, 2H), 6.7 (s, 2H), 6.0 (s, 1H), 5.5

(s, 2H), 4.4 (t, 2H), 3.2 (q, 2H), 2.2 (s, 9H, CH3 mesityl), 2.1 (quint, 2H), 1.4 (s,

9H, 3 x CH3);
13C NMR (400 MHz, CDCl3, TMS) (δ ppm): 156.2, 139.9, 138.1 ,

137.7, 130.0, 129.2, 83.0, 79.2, 56.4, 47.8, 47.4, 31.9, 30.8, 28.5, 23.6, 21.1, 19.8,

19.2; IR (cm−1), 3386 (N-H), 2866, 2956 (C-H), 1698 (-C=O str), 1612 (C=C

aromatic), 1516 (C-N (imidazole ring)), 1365 (CH3), 1251 (C-O-C); MS m/z

(358.5 for C21H32N3O2, [M+], found 358.2487).

2.5.3 1-[Aminopropyl]-3-(2,4,6-trimethylbenzyl)

imidazolium chloride (12)

A mixture of

1-[N -tert-butoxycarbonyl)-3-aminopropyl]-3-(2,4,6-trimethylbenzyl)imidazolium

chloride (11) (48.05 g, 121.95 mmol), trifluoroacetic acid (243.9 ml) and

methanol (300 ml) was heated at 50 ◦C for 18 h. Thereafter, the mixture was

evaporated (rotary) to remove methanol and trifluoroacetic acid. The resultant

crude residue was washed with CPME (5 x 50 ml) and dried (in vacuo) to

afford the desired 1-[aminopropyl]-3-(2,4,6-trimethylbenzyl)imidazolium chloride

(12), 34.00 g (95%), a clear, brown, viscous oil. 1H NMR (400 MHz, CDCl3,

TMS) (δ ppm): 9.4 (s, 1H), 8.6 (s, 3H), 7.6 (s, 1H), 6.9 (s, 2H), 6.8 (s, 1H), 5.3

(s, 2H), 4.4 (s, 2H), 3.0 (s, 2H), 2.3 (s, 2H), 2.2 (s, 9H); 13C NMR (400 MHz,

CDCl3, TMS) (δ ppm): 138.2, 130.0, 129.0, 118.0, 114.3, 47.8, 47.4, 31.2, 30.5,

28.3, 21.0, 19.5, 19.4 ; IR (cm−1), 3400 (N-H), 3136 (NH2), 2975, 1616 (C=C

aromatic), 1508 (C-N (imidazole ring)), 718 (NH2 wagging); MS m/z (258.38 for

C16H24N3, [M+], found 258.1973).
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2.6 Synthesis of Fe-NHC (1)

2.6.1 Succinimidyl carbonate expanded starch (6a−b)

The general procedure for making succinimidyl carbonate expanded starch (6a−b)

is described below and the exact reagent quantities are listed in Table 2.1.

Table 2.1: Summary of the amount of reactants used in preparing
succinimidyl carbonate expanded starch (6a−b)

DSC (5) DMAP PC (4) Reaction Yield

(g) (mmol) (g) (mmol) (ml) (g) (mmol) time (h) %

(6a) 15 58.55 6 49.1 50 3 18.5 18 60.0

(6b) 30 117.11 12 98.2 150 3 18.5 18 68.6

The approprate amounts of N,N′-disuccinimidyl carbonate (5) and DMAP were

added to a stirred mixture of expanded HACS (4) (3 g, 18.5 mmol) in propylene

carbonate. The mixture was heated to 80 ◦C for 18 h, cooled and centrifuged

(3000 rpm, 4 mins). The supernatant was removed and the pellet was washed

with propylene carbonate (5 x 25 ml) and acetonitrile (3 x 40 ml). Each wash

was centrifuged (3000 rpm, 4 mins) to remove solvent. After the final wash, the

product was dried under vacuum at 80 ◦C for 3 h to yield the desired succinimidyl

carbonate expanded starch (6), as a white solid. The yields are reported in Table

A.2. 13C NMR (400 MHz, TMS, admantane) (δ ppm): 173.4 (N-C=O), 156.4

(C-C=O), 101.2 (O-C-O), 82.1, 72.9, 62.3 (C-O-C=O), 39.1; IR (cm−1), 3356

(OH str), 2950, 1735 (-O-CO-O-), 1654 (-CO-NR-CO-), 1250, 1151, 1079, 1021,

(931, 861, 764) (anhydroglucose stretching vibration).

.

2.6.2 Expanded starch immobilized ligand (13)

Disuccinimidyl carbonate activated expanded HACS (6a) (2.5 g), NHC ligand

(12) (26.7 g, 8.0 mmol) and triethyl amine (6.7 ml, 46.9 mmol) in propylene

carbonate (50 ml) were allowed to react in a round bottom flask at 80 ◦C for 18

h with stirring. Thereafter, the resultant mixture was cooled and centrifuged
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(3000 rpm, 4 mins). The supernatant was discarded and the pellet was washed

with propylene carbonate (3 x 50 ml) and acetonitrile (3 x 40 ml). Each wash

was centrifuged (3000 rpm, 4 mins) to remove solvent. After the final wash, the

product was dried under vacuum at 80 ◦C for 3 h to yield the desired expanded

starch immobilized ligand (13), 41.8%, as a white solid. 13C NMR (400 MHz,

TMS, admantane) (δ ppm): 156.4 (O-C=O-NH-), 139.2 (aromatic carbons),

130.1 (CH2 imidazole), 101.2 (O-C-O), 82.1, 72.9, 62.3 (C-O-C=O), 40.0 (CH2

aminopropyl), 20.2 (CH3 mesityl); IR (cm−1), 3356 (OH str), 2950, 1726 (

-O-CO-NH-), 1649 (-CO-NR-CO-), 1256, 1152, 1078, 1021, (932, 856, 767) (

anhydroglucose stretching vibration).

2.6.3 Fe-NHC catalyst (1)

In an inert atmosphere of nitrogen, a solution of iron(III) chloride (0.6 g, 4.0

mmol) in propylene carbonate (10 ml) was added to a stirred mixture of starch

immobilized ligand (13) (2.0 g), potassium-tert-butoxide (0.5 g, 4.4 mmol) and

propylene carbonate (50 ml). The reaction mixture was heated at 80 ◦C for 18

h, cooled and centrifuged (3000 rpm, 4 mins). The supernatant was discarded

and the pellet was washed with propylene carbonate (3 x 50 ml), brine solution

(50 ml), deionized water (2 x 50 ml) and methanol (3 x 40 ml). Each wash was

centrifuged to remove solvent. After the final wash, the product was dried under

vacuum at 80 ◦C for 3 h to yield the desired Fe-NHC catalyst (1), 61.5%, a light

brown solid . 13C NMR (400 MHz, TMS, admantane) (δ ppm): 156.4 (O-C=O-

NH-), 139.2 (aromatic carbons), 130.1 (CH2 imidazole), 101.2 (O-C-O), 82.1,

72.9, 62.3 (C-O-C=O), 40.0 (CH2 aminopropyl), 20.2 (CH3 mesityl); IR (cm−1),

3355 (OH str), 2950, 1728 (-O-CO-NH-), 1654 (-CO-NR-CO-), 1258, 1152, 1079,

1021, (932, 858, 764) ( anhydroglucose stretching vibration).

2.7 Fructose (2) conversion to HMF (3)

The general procedure for making 5-(hydroxymethyl)furfural (3) is described

below:

Four screw-top vials (45 mm length, 20 mm diameter), equipped with a

magnetic stirrer, containing fructose (2) (91.5 mg, 0.5 mmol), DMSO-d6 (2 ml)
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and Fe-NHC catalyst (1) (10.0 mg) were heated to 100 ◦C in a specially

constructed multipoint hotplate. After 0.5 h, the first vial was removed, cooled,

filtered (pipette plugged with cotton wool) and stored in a freezer (-20 ◦C) to

minimize further reaction. The second, third and fourth vials were removed

from heat after 1 h, 3 h and 6 h, respectively and treated in the same way. All

solutions were analyzed by 1H NMR, 13C NMR and HPLC as described in the

discussion section (see later).

The above procedure was also used with other heterogeneous catalysts

(Amberlyst-15, Montmorillonite K-10 and ZSM-30) comparison test

experiments.

2.7.1 Sample preparation for conversion study

A solution of D-fructose (2) (91.5 mg) and Fe-NHC catalyst (1) (10 mg) in

DMSO-d6 (2 ml) was mixed in a small vial. It was put in a sonication path for 3

minutes to allow mixing up the reactant. Some of the sample was then transferred

to an NORELL S400 NMR tube (4 cm sample depth) for the study.The spectra

were recorded starting from 25 ◦C with 5 ◦C increase each time until 100 ◦C. At

100 ◦C, the spectra were then taken immediately (0 h) and after 0.5 h, 1 h, 3 h

and 6 h.

2.7.2 Catalyst recycling study

Appropriate amounts of fructose (2), DMSO-d6 and the Fe-NHC catalyst (1)

(as given in Table 2.2) were heated in a screw-top vial (85 mm length, 25 mm

diameter) in a specially constructed multipoint equipped with a magnetic stirrer

hotplate to 100 ◦C. After 6 h, the vial was removed, cooled and the solution was

centrifuged (3000 rpm , 4 mins) to separate the catalyst. The supernatant was

kept in the freezer (-20 ◦C) to minimize further reaction prior to analysis by 1H

NMR, 13C NMR and HPLC. The separated catalyst was washed with ethanol (3

x 30 ml). Each wash was centrifuged (3000 rpm, 4 mins) to remove solvent.
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After the final wash, the product was dried under vacuum at 80 ◦C for 3 h.

Table 2.2: Amounts of reactants used in the Fe-NHC catalyst (1) recycling
experiments

Experiment Fructose (2) (mg) Fe-NHC catalyst (1) (mg) DMSO-d6 (ml)

1 st 640.5 70.0 14.0

2 nd 502.9 50.5 11.0

3 rd 371.5 40.6 8.1

4 th 266.3 29.1 5.8

5 th 219.6 24.0 4.8



Chapter 3

Results and Discussion

This chapter is divided in to three parts, namely:i. synthetic overview and

characterization of expanded starch supported Fe-NHC catalysts (1), which

discusses the synthetic strategy employed, mechanisms where appropriate, and

associated characterization studies to confirm the identity of intermediates and

final product(s);ii. characterisation of Fe-NHC bio-based catalyst (1), which

discusses results from different analytical techniques employed to determine

presence and concentration of iron (FIR, TEM, CPMAS, ICP-MS, XPS), and

assesses changes in porosity (surface area and pore volume) and surface texture

(SEM), and;iii. fructose (2) to HMF (3) conversion, which discusses the

application of Fe-NHC (1) as a catalyst for fructose dehydration to HMF in the

presence of DMSO as solvent. The progress of the reaction is monitored by

NMR spectroscopy and mechanisms for products observed are proposed where

appropriate. Interestingly, the progress of the reaction differed based on the

exernaal atmosphere, either air or nitrogen The effectiveness of (1) as a catalyst

is compared with commercially available heterogeneous acid catalysts, e.g.,

Amberlyst-15, Montmorillonite K-10 and, ZSM-30.

41
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3.1 Synthetic overview and characterization of

expanded starch supported Fe-NHC

catalysts (1)

The desired expanded starch supported Fe-NHC catalyst (1) was successfully

synthesized using a convergent strategy, as outlined in Scheme 1.1

(Introduction, p. 23), from the appropriate NHC ligand (12) and succinimidyl

carbonate activated expanded HACS (6) followed by complexation with

iron(III) chloride. As discussion of the individual steps employed in the

synthesis of (1) now follows.

3.1.1 Conversion of expanded HACS (4) to succinimidyl

carbonate derivatives (6a−b)

Expanded HACS (4) suspended in propylene carbonate was successfully

converted in to succinimidyl carbonate derivative (6), in the presence of

N,N′-disuccinimidyl carbonate (5) and catalyzed by DMAP, in good yield

(60%). The mechanism of this reaction is shown in Figure 3.1. DMAP can

function either as a base in which case it may deprotonate hydroxyl moieties on

starch or may act as nucleophile and react with N,N′-disuccinimidyl carbonate

(5) to give the more reactive acyl pyridinium salt enabling facile reaction with

the hydroxyl groups on starch. In both cases, DMAP is regenerated and thus

functions as a catalyst.

In certain cases, this conversion has been carried in dimethyl formamide

(DMF), [58] a toxic dipolar aprotic solvent, which is removed by washing with

copious amounts of water post reaction resulting in considerable amounts of

aqueous waste. The latter is usually incinerated but because DMF is a nitrogen

containing solvent, NOx emissions are produced. On the other hand, propylene

carbonate (used in this case and other conversions within Scheme 1.1) is a

green(er) alternative produced from (waste) carbon dioxide and propylene

oxide. Unlike DMF, incineration of propylene carbonate affords carbon dioxide

and water only.
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Figure 3.1: Suggested mechanism for the DSC activation of expanded HACS
(4).

The theoretical degree of substitution (DS) of starch (4) is 3 because it

comprises three hydroxyl moieties per each anhydroglucose unit, i.e., at C2, C3

and C6. As the stoichiometry of starch (4) with respect to N,N′-disuccimidyl

carbonate (5) is 1:3, initially the conversion to its succinimidyl carbonate

derivative (6) was performed using a slight excess of (5), i.e., 3.16 molar

equivalents or 0.16 molar excess, to afford a DS of 0.33±0.11 corresponding to

20.92±4.88% of succinimidyl carbonate. The low DS may be due to

inaccessibility of the hydroxyl moieties within starch despite using expanded

HACS (4) and due to steric hindrance associated with the bulky succinimdyl

carbonate group. It is envisaged that substitution has most likely taken place

preferentially on the C6-OH because it is least hindered. In an extreme attempt

to increase the DS, twice the concentration of N,N′-disuccinimidyl carbonate

(5), (6.22 molar equivalents or 3.22 molar excess) was used for the conversion of

(4) to (6). Surprisingly, the resulting DS was slightly lower 0.28±0.05

(18.70±1.72% succinimdyl carbonate) thus suggesting the difficulty converting

(4) in to (6) with high DS even with an extreme excess of (5).
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The ATR-IR spectrum of succinimidyl carbonate derivative (6) in comparison

with expanded HACS (4) is shown in Figure 3.2. The appearance of two new

absorption bands in the spectrum of (6) at 1735 cm−1 and 1654 cm−1 provide clear

evidence for the inclusion of the succinimidyl carbonate moiety corresponding to

the carbonyl stretching frequency of the starch-carbonate ester (starch-O-CO-

O-) and imidyl (-CO-NR-CO-) moiety, respectively. Furthermore, the spectra

indicate distinctive bands of starch such as the broad O-H stretching vibration

at 3356 cm−1 and associated absorption bands at 1259 cm−1, 1151 cm−1, 1079

cm−1 and 1021 cm−1 characteristic of C-O bond stretching. The C-H stretch was

evident at 2950 cm−1. Weak absorption bands 931 cm−1, 861 cm−1 and 764 cm−1

are related to the anhydroglucose ring stretching vibrations. [59]

Figure 3.2: ATR-IR spectra of expanded HACS (4) and succinimidyl
carbonate derivative (6).

Cross polarization magic angle spinning (CPMAS) 13C NMR was also used to

characterize (6) as shown in Figure 3.3 which also displays the spectrum for

expanded HACS (4) for reference. Both spectra show characteristic signals for

the anhydroglucose unit of starch: 101.2 ppm is attributed to C1; C2, C3 and C5

are centred at 72.9 ppm; 82.1 ppm corresponds to C4, and; 62.3 ppm represents

C6. [60] On closer inspection of the intensity ratio of the C1 signal with respect

to C6 signal for both expanded HACS (4), C1(1):C6(1.33) and its succinimidyl

carbonate derivative (6) reveals a decrease in upon derivatisation, C1(1):C6(1.08)

thus indicating attachment at C6. Additionally, the chemical shift of the C6

signal moves upfield from 62.3 ppm to 61.9 ppm upon derivatisation. Similarly, a
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comparison of the intensity ratio of the C1 signal with respect to the broad signal

at centred at 72.9 ppm representing C2, C3 and C5 shows a decrease in this ratio

post derivation from C1(1):C2,C3,C5(4.33) to C1(1):C2,C3,C5(3.75) suggesting

substitution may also be occurring at OH groups of C2 and C3.

Importantly, the appearance of new signals in the spectrum of (6) at 173.4 ppm

(peak numbered 8) and 156.4 ppm (peak numbered 7) provide conclusive evidence

for derivatization because they correspond to the carbonyl of the imide (N-C=O)

and the carbonyl of the carbonate (O-C=O) moieties, respectively. Furthermore

the methylene carbons (-CH2-, peak numbered 9) of the succinimdyl ring are

observed at 39.1 ppm.

Figure 3.3: CPMAS 13C NMR spectra of expanded HACS (4) and
succinimidyl carbonate derivative (6).

3.1.2 NHC Ligand synthesis (12)

In order to synthesize the desired NHC ligand (12) a t-BOC

protection-deprotection strategy was employed so as to ensure the correct

regiochemistry of substituents on initial imidazole (7). The terminal NH2

(aminopropyl moiety) was protected thus leaving the imidazole N available for

N -alkylation with 2,4,6-trimethylbenzyl chloride to afford (11). Trifluoroacetic

acid-mediated removal (deprotection) of t-BOC from (11) furnished the desired

NHC ligand (12). A more detailed discussion of these steps is given as follows.
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3.1.2.1 Conversion of N -(3-aminopropyl)imidazole (7) to 1-[(N -tert-

butoxycarbonyl)aminopropyl]imidazole (9)

The t-BOC protection of N -(3-aminopropyl)imidazole (7) was successfully

achieved in the presence of di-tert-butyl dicarbonate (8) to afford the desired

1-[(N -tert-butoxycarbonyl)aminopropyl]imidazole (9) in good yield (74.4%).

t-BOC protection is commonly performed in CH2Cl2 [61] and CHCl3 [62], but

in this instance CPME was employed, a green(er) solvent. CPME is more akin

to THF but is water immiscible and has been shown to be viable alternative to

CH2Cl2 in the preparation of (9). Characteristic 1H NMR (3 x CH3, 9 H, 1.40

ppm) and 13C NMR ( -NH-CO2-R, 156.2 ppm) and main IR absorption bands

for the t-BOC moiety (-C=O str, 1700 cm−1) were observed commensurate with

literature values. [61] and [63] The mechanism of t-BOC protection is shown in

Figure 3.4.

Figure 3.4: Mechanism of t-BOC protection (conversion of (7) to (9)).

3.1.2.2 Conversion of (9) to 1-[N -tert-butoxycarbonyl)-3-

aminopropyl]-3-(2,4,6-trimethylbenzyl)imidazolium chloride

(11)

Compound (9) was successfully reacted with 2,4,6-trimethylbenzyl chloride (10)

in CPME instead of CH2Cl2 as solvent to furnish the desired
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1-[N -tert-butoxycarbonyl)-3-aminopropyl]-3-(2,4,6-trimethylbenzyl)imidazolium

chloride (11) in high yield (72%). 1-[N -Substituted]-3-azoles (e.g (9)) are

quaternised easily with alkyl halides (e.g (10)) at the imine nitrogen

(3-position) as the latter possesses a lone pair of electrons not involved in the

aromatic sextet of the heterocycle and is thus amenable to nucleophilic

substitution. As shown in Figure 3.5, the mechanism may be either SN1 or SN2

as resonance stabilization of the benzyl cation and steric considerations (favours

SN1) but the solvent, CPME, a dipolar aprotic solvent, favours SN2 as it does

not solvate the nucleophile but importantly will solvate the transition state as

charge builds up.

Figure 3.5: SN1 and SN2 mechanism for conversion of (9) to (11) .

The ATR-IR of (11) in comparison with its precursor (9) is shown in Figure

3.6. The intensity of absorption bands akin to the C-H stretch centred at

approx. 3000 cm−1 increase in the spectrum of (11) coupled with perturbation

of absorption bands between 1600 - 1000 cm−1 associated with the inclusion of

the 2,4,6-trimethyl benzyl moiety.

The alkylation of the ligand is further proved by the presence of the 1H NMR

peak at 2.2 ppm (s, 9H) as well as the peak at 6.7 (s, 2H) that are related to

2,4,6-trimethylbenzyl chloride (10) (CH3 groups and CH2, respectively). 13C

NMR signals for these peaks were assigned at 19.8 and 21.1 ppm whereas the

peaks at 129.2, 138.1 and 139.9 are assigned to CH3-C=C-, CH3-C=C-C-N- and

CH3-C-C-, respectively.
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Figure 3.6: ATR-IR spectra of protected ligand (9) and alkylated ligand
(11).

3.1.2.3 Conversion of 1-[N -tert-butoxycarbonyl)-3-aminopropyl]-3-

(2,4,6-trimethylbenzyl)imidazolium chloride (11) to

1-[aminopropyl]-3-(2,4,6-trimethylbenzyl) imidazolium

chloride (12)

Compound (11) was successfully deprotected in the presence of trifluoroacetic

(TFA) in methanol to yield the desired

1-[aminopropyl]-3-(2,4,6-trimethylbenzyl) imidazolium chloride (12) in high

yield (95%). The mechanism of t-BOC deprotection via TFA is shown in Figure

3.7.

Deprotection of (11) was evidenced by ATR-IR by the disappearance of the

carbonyl absorption (1700 cm−1) of the t-BOC moiety. Similarly, the

corresponding carbon signal (156 ppm) in the 13C NMR also disappeared on

conversion of (11) to (12).
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Figure 3.7: Mechanism of TFA deprotection (conversion of (11) to (12)).

3.1.3 Ligand immobilization on to succinimidyl carbonate

expanded starch (6), i.e., preparation of (13)

Using our convergent strategy as outlined in Scheme 1.1, deprotected NHC ligand

(12), in the presence of triethyl amine as base and propylene carbonate as solvent,

was immobilized successfully on to succinimidyl carbonate activated expanded

HACS (6) in moderate yield (41.8%). The mechanism for this conversion is

shown in Figure 3.8 and for clarity substitution (attachment) is shown at the C6

hydroxyl moiety only.

A comparison of the stacked ATR-IR spectrum of (6) and the newly formed

immobilized ligand (13) (Figure 3.9) shows the latter contains characteristic

absorption band of its precursor, i.e., (6). Greatest perturbation is seen in the

carbonyl region (1630-1740 cm−1) where the absorbance band of carbonyl

stretch associated with the imidyl (-CO-NR-CO-) moiety within (6) decreases

in intensity on the formation of (13) coupled with an increase in intensity of a
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Figure 3.8: Mechanism of ligand immobilization on to succinimidyl carbonate
expanded starch (6) (preparation of (13)).

Figure 3.9: ATR-IR spectrum of succinimedyl carbonate derivative (6) and
ligand immobilized starch (13).

broad carbonyl stretch centred at 1700 cm−1 most likely due to the new

-O-(C=O)-NH- moiety.



Results and Discussion 51

Furthermore, the CPMAS 13C spectrum of (13) in comparison with (6) as shown

in Figure 3.10 reveals the appearance signals in the aliphatic region (10 - 60 ppm)

corresponding to carbons associated with methyl groups (-CH3) of the mesityl

moiety and the methylene carbons (-CH2-) of the aminopropyl group. The mesityl

moiety is further evidenced with weak signals in the aromatic region (110 - 140

ppm) which also contains signals for the imidazoyl ring. A tentative assignment of

the signals with respect to the carbons within (13) is shown in Figure 3.10 where

we also assume that the signal at 47.3 ppm corresponds to N-C-mesityl. [60]

The characteristic signals of expanded starch remain and interestingly the signal

associated with succinimidyl carbon (approx. 173 ppm) in (6) disappears on

conversion to (13). The remaining carbonyl signal (approx 165 ppm) is assumed

to correspond to the newly formed O-(C=O)-NH- moiety which appears to have

the same chemical shift as for O-(C=O)-O-.

Figure 3.10: CPMAS 13C NMR spectra of succinimidyl carbonate derivative
(6) and ligand immobilized starch (13).

3.2 Characterization of Fe-NHC bio-based

catalyst (1)

The desired Fe-NHC catalyst (1) was successfully acquired from the reaction

between (13), in the presence of potassium tert-butoxide as base and propylene

carbonate as solvent, and iron(III) chloride in good yield (61.5%). At a simplistic
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level, iron was assumed to have been incorporated based on visual inspection of

compound (1); a light brown appearance compared with respect to its precursor

(13) as shown in Figure 3.11.

Figure 3.11: Photographic images of (A) immobilized ligand starch (13) (B)
Fe-NHC catalyst (1).

Far Infrared (FIR) spectroscopy was undertaken to evidence Fe-Cl bond as its

absorption band usually appears in the region 330 - 384 cm−1. [64] However, as

shown by Figure 3.12, a comparison of the FIR spectrum for expanded HACS

(4), succinimidyl carbonate activated HACS (6), ligand grafted DSC activated

HACS (13) and the desired Fe-NHC catalyst (1) provided inconclusive evidence.

Minor perturbations are observed and it may be that the Fe-Cl absorption band is

present but masked by the very percentage of carbon-hydrogen-nitrogen-oxygen

skeletal vibrations.

Figure 3.12: FIR spectrum for expanded HACS (4), succinimidyl carbonate
activated HACS (6), ligand immobilized starch (13) and Fe-NHC catalyst (1).
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Similarly, comparison of the CPMAS 13C spectrum of (13) with respect to (1)

showed no significant change in chemical shift value. Stronger perturbation was

expected at the carbene centre (see Figure 3.13) but was not evident due to poor

signal to noise ratio. The latter is common with iron containing sample as it

may be that some (or all) of the iron atoms possess a d -configuration with a net

non-zero spin. If so, then this will impede the ability to acquire good quality

spectra. In particular, those signals arising from sites near the iron (within ca.

2-10 Angstroms) may not be observed at all, thus reducing signal intensity.

Figure 3.13: CPMAS 13C NMR spectra of immobilized ligand (13) and
Fe-NHC catalyst (1).

Thus, other analytical methods, direct and indirect, were used to evidence

presence and concentration of iron, for example, ICP, TEM, TGA, XPS, and

porosimetry. Direct iron loading was determined by ICP-MS which revealed

0.26 mmol/g Fe. The raw data and the corresponding conversion calculation are

given in AppendixA. However, the iron loading is not strictly speaking all

iron(III) chloride as it accounts for any species detected, for example, the

sample may be contaminated with iron oxide or may still have an excess of

(non-complexed) iron(III) chloride species. Transmission electron microscopy

was used to image the sample to see the distribution of iron species.
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3.2.1 Transmission Electron Microscopy (TEM)

TEM images are recorded as a result of strong elastic and inelastic scattering

interaction between atoms (thin specimen) and a beam of transmitted electrons

producing high resolution images. [65] TEM is perhaps the most significant

method for the description of small supported particles morphology. [66] TEM

supplies information about particle size, shape and web construction in addition

to the chemical composition of discrete particles. [67] The TEM image of Fe-

NHC catalyst (1) is shown in Figure 3.14, which reveals both discrete particles

and large clusters or aggregates (50 nm diameter).

Figure 3.14: TEM micrograph of Fe-NHC catalyst (1).

3.2.2 Simultaneous Thermal Analysis (STA)

Simultaneous thermal analysis (STA) is a dual technique that monitors mass loss

and the energy associated with a phase change with respect to temperature. [68]

STA was used to examine the thermal decomposition of expanded HACS (4) and

its modified compounds (6), (13) and (1) as shown in figure 3.15. The thermal

decomposition of expanded starch (4) (corn starch) was as per literature [245-333
◦C] [69]; Initial loss of moisture (approx. 9% water) both physi- and chemi-sorbed

from 25 ◦C to 135◦C is observed followed by main degradation and decomposition

(Td, 326 ◦C) of glycosidic bonds and the carbohydrate skeleton from 300-350 ◦C

corresponding to approximately 70% mass loss. Further heating from 400-600 ◦C

afforded a further much smaller mass loss of approximately 5%. Approximately,

18% of residue remained at the end of the analysis. The thermal decomposition

of the subsequent compounds, i.e., succinimidyl carbonate starch (6) and ligand

grafted starch (13) showed a similar decomposition profile to expanded starch
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(4). Both show an initial mass (approx. 5%) from 25-135 ◦C again due to bound

water within starch but a small and gradual mass loss is observed from 135-200
◦C, which may be due to residual propylene carbonate solvent. Interestingly,

conversion of (4) to (6), lowers the decomposition temperature from 326 ◦C (4)

to 313 ◦C (6) indicating that the structure and packing within starch has been

disrupted. In particular, the extensive inter- and intra-hydrogen bonding network

associated with the hydroxyl groups of starch is disrupted as modification (DS,

0.33±0.11%) reduces the number of hydroxyl groups. Evidence for substitution

may also be considered by the fact that approx. 24% of residue is left at the

end of decomposition (600 ◦C) of (6) compared with approx. 18% residual mass

for (4). The extra mass is from the additional elemental contribution (mainly

carbon) from succinimidyl carbonate moiety.

Figure 3.15: STA for expanded HACS (4), succinimidyl carbonate activated
HACS (6), ligand grafted DSC activated HACS (13) and Fe-NHC catalyst (1).

Similarly, the greatest residual mass is observed for decomposition of (13)

which has the greatest proportion of carbon with respect compounds (4) and

(6), which also has the lowest decomposition temperature (Td, 297 ◦C) due to

greatest structural and chemical modification. The thermogram for the Fe-NHC

catalyst (1) shows slight enhancement in thermal stability (Td, 301 ◦C) with

respect to its precursor ((13), Td 297 ◦C) which may be related to additional
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energy associate with iron-carbene complexation, i.e., Fe-NHC. Interestingly,

slightly less residual mass was observed at 600 ◦C for (1) than for ((13)

probably due to iron itself triggering or catalyzing decomposition of starch.

However, this is to be further investigated. Elemental analysis of the residue

showed 27% of iron.

3.2.3 Porosimetry and Scanning Electron Microscopy

The BET surface area, pore width and pore volume of expanded HACS (4) and

its subsequent compounds (6), (13) and, (1) were determined using nitrogen

adsorption porosimetry (see Table 3.1 and Figure 3.16). As shown in Figure

3.16, all isotherms exhibit classical hysteresis loops indicative of mesoporosity.

On modification of expanded HACS (4) through to the desired Fe-NHC (1) the

BET surface area decreased: 186.7 m2/g (4); 189.5 m2/g (6); 186.0 m2/g (13),

and; 135.5 m2/g (1). The subsequent decrease in surface area and pore volume

may be explained by possible blocking and filling of the porous structure both

by the ligand and importantly iron.

Table 3.1: Porosimitry data for expanded HACS (4) and its subsequent
compounds (6), (13) and, (1).

BET surface Desorption pore Desorption average

area (m2/g) volume (cm3/g) pore width (nm)

Expanded HACS (4) 186.7 0.91 18.4

DSC activated HACS (6) 189.5 0.83 16.9

Ligand grafted starch (13) 186.0 0.81 16.1

Fe-NHC catalyst (1) 135.5 0.60 16.3

The pore size distribution shows a broad peak within the mesoporous region (2-50

nm). [70] These data prove that activation of the expanded HACS, grafting of

the ligand and coordination of iron maintains porosity with significant retention

of mesopores.
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Figure 3.16: Adsorption-desorption isotherms plot for (A) expanded HACS
(4) (B) succinimidyl carbonate activated HACS (6) (C) ligand immobilized

starch (13) and (D) Fe-NHC catalyst (1).

Figure 3.17: BJH of expanded HACS (4), (6), (13) and, (1).
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Scanning Electron Microscopy (SEM)

To further investigate changes in surface structure (topography) and porosity,

SEM (see Figure 3.18) was performed on expanded HACS (4), succinimidyl

carbonate activated HACS (6), ligand immobilized starch (13) and Fe-NHC

catalyst (1). Although, the images reveal limited information it can be seen

that the extent of pitting and mesh-like network (surrogate for porosity)

decreases on the surface from (4) to (6) to (13) to (1) which may also be

related to the corresponding decrease in BET surface area discussed earlier.

Figure 3.18: SEM micrographs of (A) expanded HACS (4) (B) succinimidyl
carbonate activated HACS (6) (C) ligand immobilized starch (13) and (D)

Fe-NHC catalyst (1) (1 (x1000) and 2 (x10000) resolution).
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3.2.4 X-ray Photoelectron Spectroscopy (XPS)

Photoelectron spectroscopy is a technique that studies the electronic state and

composition of the sample's surface region. It uses photo-ionization and the

emitted photoelectron's kinetic energy distribution analysis. In X-Ray

Photoelectron Spectroscopy (XPS), X-rays (photon energy = 200-2000 eV) are

used to observe core-levels. [71] and [72]

XPS was used to characterize expanded HACS (4) and Fe-NHC (1) catalyst

as shown in Figure 3.19 . The spectrum of expanded HACS (4) has two main

absorption bands typically at 283.45 and 530.87 eV corresponding to C1s and O1s

energy levels, respectively. However, the Fe-NHC catalyst (1) has four absorption

peaks at about 283.45, 399.88, 533.78 and 711.34 eV corresponding to C1s, N1s,

O1s and Fe2p, respectively, providing clear evidence for the presence of iron and

nitrogen in addition to the expected carbon and oxygen.

The binding energy and detailed chemical states of C, O, N and Fe are listed in

Table 3.2 and the correlated spectra are shown in Figures 3.20 and 3.21. As can

be seen, the binding energy at 283.29, 284.81, 286.22 and 288.49 eV are assigned

to corresponding chemical states C-C, C-O-H and C-O-C respectively. Analyzing

the states of oxygen showed that the binding energy at around 531.26, 534.58 eV

corresponding chemical state were C-O and O-H, respectively.

For Fe-NHC catalyst (1), the binding energy at 283.41, 284.90, 286.19 and

287.70 eV are related to chemical states C-C, C-O-H C-O-C and C-N

respectively. Studying the states of oxygen revealed that the binding energy at

around 531.35 and 533.39 eV corresponding chemical state were C=O and O-H

respectively. For nitrogen , binding energy at 388.55 and 400.34 eV were

assigned to C=N and C-N chemical states, respectively, whereas for Fe, binding

energy at 710.59 and 723 eV were related to Fe(III)2p3/2 and Fe(III)2p1/2

chemical states, respectively.
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Table 3.2: XPS data analysis for expanded starch (4) and Fe-NHC catalyst
(1)

Sample Element Binding Energy / eV Chemical state

Expanded starch (4) C 1s 283.29 C-C

284.81 C-O-H

286.22 C-O-C

O 1s 531.26 C-O

534.58 O-H

Fe-NHC catalyst (1) C 1s 283.41 C-C

284.90 C-O-H

286.19 C-O-C

287.70 C-N

O 1s 531.35 C=O

533.39 O-H

N 1s 388.55 C=N

400.34 C-N

Fe 2p 710.59 Fe(III)2p3/2

723.00 Fe(III)2p1/2

Figure 3.19: XPS survey data of (A) expanded HACS (4) (B) Fe-NHC
catalyst (1)).
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Figure 3.20: XPS data of (A1) C1s expanded HACS (4) (A2) O1s expanded
HACS (4) (B1) C1s Fe-NHC catalyst (1) (B2) O1s Fe-NHC catalyst (1).

Figure 3.21: XPS survey data of (A) N1s Fe-NHC catalyst (1) (B) Fe2p
Fe-NHC catalyst (1)).
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3.3 Fructose (2) conversion to HMF (3)

conversion

Initially, a series of control experiments were undertaken in the absence of

fructose (2), i.e., DMSO-d6 and Fe-NHC catalyst (1), in order to confirm the

carbohydrate (starch) support was itself not acting as a sacrificial or competing

substrate with respect to fructose and to investigate iron leaching. At a

simplistic level, DMSO-d6 (2 ml) was added to Fe-NHC catalyst (1) (10 mg)

and heated to 100 ◦C for 0.5 h, 1 h, 3 h and 6 h. The mixture was filtered and

analysed by NMR spectroscopy (Figures 3.22 and 3.23). Both 1H and 13C NMR

spectroscopy showed no significant spectral change. The standard 1H NMR

signal for the non-deuterated CH3-group in DMSO-d6 was observed at 2.4 ppm

with no other clearly discernible signals even after 6 h at 100 ◦C. Similarly, the
13C NMR spectrum (Figure 3.23) showed a characteristic signal for the CH3

carbon in DMSO-d6 at 39.55 ppm. Thus, with the proviso that a very low

concentration of catalyst (1) (0.5 mg/ml DMSO) no breakdown of substrate

(starch) observed. The starch support is tolerant to attack by the iron-NHC

tether. However, it may be that the substrate is being attacked but the

concentration of species formed is beyond the detection limits of the instrument.

A higher concentration of catalyst to DMSO-d6 should be explored.

Figure 3.22: Stacked 1H NMR spectra of Fe-NHC catalyst (1) + DMSO-d6.
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Figure 3.23: Stacked 13C NMR spectra of Fe-NHC catalyst (1) + DMSO-d6.

In addition, a control reaction between fructose and DMSO in the absence of

catalyst has conducted. The HPLC results shown in Table 3.3 reveal very low

conversion (14%) and yield (12%) even after 6 h at 100 ◦C.

Table 3.3: HPLC results for fructose and DMSO reaction in the absence of
catalyst.

Time (h) Conversion (%) Yield (%) Selectivity(%)
0.5 0 0 0
1 1 1 1
3 9 7 78
6 14 12 84

To investigate iron leaching from Fe-NHC catalyst (1), then Fe-NHC catalyst (20

mg) was added to DMSO-d6 (4 ml). The mixture was heated for 6 h at 100 ◦C

with constant stirring, cooled and filtered. The filtrate was analysed by ICP-MS

to reveal negligible trace of iron in solution (3.5 x 10−7 mmol Fe) which may due

to surface trapping of residual iron(III) chloride and/or iron oxide. Nevertheless,

it can be assumed that the Fe-NHC catalyst (1) is neither being sacrificed nor

does it leach any complexed iron. Thus, its application as a catalyst for fructose

(2) to HMF (3) conversion is discussed in the following sections.
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3.3.1 Insitu NMR study: Influence of temperature and

time

In order to investigate the effect of temperature (and time) with respect to

fructose dehydration, an insitu NMR experiment was undertaken. The desired

catalyst (1), DMSO-d6 with the appropriate amount of fructose (2) were placed

inside a standard NMR tube and subjected to variable temperature NMR

spectroscopy from 25 ◦C to 100 ◦C. 1H and 13C NMR spectra were recorded at

regular intervals and are stacked in Figures 3.24 and 3.25.

At 25 ◦C the NMR shows signals corresponding to fructose and its tautomers

(3.0 ppm - 4.5 ppm). It is not until about 70 ◦C that new signals begin to

appear (8.13 ppm; may be due to formic acid [73] and at 9.65 ppm; possibly

aldehydic group of furfural). At 80 ◦C and beyond the intensity of the signal at

3.1 ppm increases and is associated with water [74] and [75] but also,

importantly, signals in the aromatic (furanic) region now are more prevalent.

The signal at 6.17 ppm is tentatively attributed to C-3 alkene hydrogen in the

intermediate

(4R,5R)-4-hydroxy-5-hydroxymethyl-4,5-dihydrofuran-2-carbaldehyde (3b) (see

Figure 3.29) coupled with the signal at 9.50 ppm corresponding to the aldehydic

group. [46] At 100 ◦C (0 t) the intensity of signals at 8.13 ppm and 9.65 ppm

corresponding to formic acid and furfural, respectively and the formation of

HMF (3) was detected by the presence of the signal at 5.61 ppm (CH2OH).

At 100 ◦C with increasing time (3 h) characteristic signals for HMF were clearly

evident. Similarly, the 13C NMR spectra (Figure 3.25) clearly shows the

tautomeric behaviour of fructose with a range of complex signals from 60 ppm

to 104 ppm. The appearance of HMF and or furanic compounds was far less

evident most likely due to very low concentrations, i.e., beyond scope of

detection.

The insitu NMR study clearly revealed a temperature dependence for fructose to

HMF conversion. No conversion was detected below 80 ◦C. The best temperature

that gave clearly discernable 1H NMR signals for HMF (3) was 100 ◦C. When

held at this temperature then increasing time shows a corresponding increase in

signals for HMF. Thus, armed with this knowledge the dehydration reaction was

further investigated at 100 ◦C as discussed as follows.
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3.3.2 In an atmosphere of air (1H and 13C NMR study)

The results and discussion introduced in this section represent the dehydration

of D-fructose (2) catalyzed by Fe-NHC (1) at 100 ◦C in DMSO-d6 for 0.5 h, 1 h,

3 h and 6 h in an air atmosphere. At a purely qualitative level the dehydration

of fructose (2) is characterized by a darkening of the reaction color from clear

pale yellow (0.5 h) to light brown (1 h to 3 h) to dark brown (6 h) over time

as shown in Figure 3.26. The onset of the dark brown colour is characteristic of

HMF decomposition to levulinic acid and humins (see later) as discussed earlier.

[76]

Figure 3.26: Color change as the reaction of fructose proceeds with time.

The progress of the dehydration reaction was monitored by nmr spectroscopy (1H

and 13C) both insitu and batch. Figure 3.27 shows the stacked 1H NMR spectra

at 100 ◦C for the dehydration of fructose (2) in the presence of Fe-NHC catalyst

(1) at t= 0.5 h, 1 h, 3 h and 6 h. The signal at 2.45 ppm is assigned to DMSO-d6

[75] whilst complex multiplets for fructose are in the region 3-5 ppm. [77] As can

be seen from figure 3.27, two, new, weak signals appear at 9.5 ppm and 8.1 ppm

in the spectrum after 0.5 h. On closer inspection of the t= 0.5 h spectrum also

shows very weak signals at 7.45 ppm, 6.55 ppm and 4.45 ppm which develop in

intensity as the reaction proceeds over time. HMF (3) is clearly evident after 3 h

((1 H, H-C=O, 9.49 ppm), (1H, O=C-C=CH, 7.45 ppm), (1H, H2C-C=CH-, 6.55

ppm) and (2H, HO-CH2 -C=CH, 4.45 ppm)) coupled with significant reduction

in the signals for fructose. The signal at 8.08 ppm was assigned to formic acid

which is formed due to the addition of two water molecules as a consequence of

the reverse hydrolysis reaction that is considered as one of the side reactions of

fructose conversion to HMF. [78], [79], [80] and [81] Interestingly, the intensity of

HMF signals declined slightly after 6 h reaction time which may be due to the

re-hydration side reaction to formic acid and levulinic acid. This observation is
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confirmed by HPLC results given later in which the HMF yield calculated after

6 h reaction time is less than that at t = 3 h.

Figure 3.27: 1H NMR spectra for the dehydration of fructose (2) to HMF
(3) over Fe-NHC catalyst (1).

Although, our control experiment showed no detectable conversion of fructose (2)

to HMF (3) at 100 ◦C in absence of any Fe-NHC catalyst (1) (see Table 3.3), A.

Amarasekara et al [46] have investigated the mechanism of fructose dehydration

in DMSO at 150 ◦C via NMR. As well as noting changes in the anomeric and

tautomeric forms of fructose, e.g., -furanose, -pyranose, -pyranose, they proposed

the following mechanism (Figure 3.28) based in the elimination of three water

molecules from the two furanose forms as a dehydration reaction leading to HMF.

[46]

In our situation conversion occurs at 100 ◦C in the presence of Fe-NHC catalyst

(1). Based on the work of J. Guan et al [82] we propose the following mechanism

(Figure 3.29) for conversion of fructose (2) to HMF (3). The iron (Fe3+) co-

ordinates with the carbonyl and adjacent OH within fructose to form a metal-

fructofuranose complex. A series of three dehydrations (-3 H2O) induced by the

catalyst attaching and detaching the fructose ring structure affords the desired

HMF (3).
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Figure 3.28: Proposed mechanism for the dehydration of D-fructose furanose
form (αf/β f) to 5-hydroxymethylfurfural in dimethyl sulfoxide at 150 ◦C.

[46]

Figure 3.29: Proposed mechanism for the dehydration of fructose (2) to
HMF (3) in dimethyl sulfoxide over Fe-NHC catalyst (1).
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The complementary 13C NMR investigation (see Figure 3.30) also revealed a

decrease in signals of fructose coupled with an increase in signals for HMF with

respect to time. The signals for DMSO-d6 are present at 39.5 ppm whilst those

for fructose are in the range 60 - 105 ppm. [80] The spectrum after 6 h begins

to show carbon signals characteristic of HMF ((56.43 ppm, HO-CH2-C=CH-),

(110.24 ppm, HO-CH2-C=CH-), (152.25 ppm, O=HC-CH=C-), (162.66 ppm,

HO-CH2-C=CH2-) and 178.53 ppm, O=CH-C=CH)). [83] The signals at 31.19

ppm and 204.9 ppm are attributed to a carbonyl containing species yet to be

fully determined. The signal at 163.45 ppm most likely corresponds to formic

acid which agrees with its 1H NMR peak observed.

Figure 3.30: 13C NMR spectra for the dehydration of fructose (2) to HMF
(3) over Fe-NHC catalyst (1).

3.3.3 In an atmosphere of air (Quantification via HPLC)

The progress of the reaction was also monitored by HPLC in order to better

investigate yield and selectivity. The results are represented graphically in

Figure 3.31 and raw HPLC data is given in the AppendixA . After 0.5 h, high

selectivity (86.43%) with moderate HMF yield (50.62%) was obtained thus

indicating effectiveness of our novel Fe-NHC (1) as a catalyst for fructose (2)

dehydration to HMF (3). The high selectivity at this time could be explained
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by the low probability of re-hydration at this point compared to proceeding

times. The best HMF yield was obtained at t= 1 h with 63.54%. Whereas for

fructose conversion to HMF is 75.83% and 83.79% for HMF selectivity. Three

hours reaction time appears to give best fructose conversion (85.09%),

selectivity (74.05%) and HMF yield (63.45%). Thereafter, although fructose

conversion is the highest (88.64%) for 6 h reaction time both HMF yield and

selectivity drop significantly. As proposed earlier this may be due to

re-hydration to levulinic acid that has reported a percentage area of 9.90% at

4.74 min retention time which is supported by the NMR analysis discussed

before. Some other side products are recorded at different retention times.

Among them, 3-furoic acid is identified at 7.88 min with 4.24% area.

Figure 3.31: HMF yields, fructose conversion and selectivity in % for
dehydration of fructose (2) to HMF (3) over Fe-NHC catalyst (1).

3.3.4 Catalyst recycling and reuse

Catalyst recycling and re-use was investigated in DMSO-d6 at 100 ◦C with each

experiment being monitored by NMR (qualitative) and HPLC (quantitative). As

shown by the quantitative data in Figure 3.34, the desired Fe-NHC catalyst (1)

can be re-used up to four times (4x) without significant loss in performance;

HPLC results reported 73.77%, 66.82%, 71.85%, 72.37% and 46.76% HMF yields

with lowest fructose conversion of 88.03% for the second run and lowest selectivity

of 52.81% for the last cycle. The NMR spectra reported (Figure 3.32 and 3.33)

show the existence of HMF signals in all 5 cycles of use.
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Figure 3.32: Stacked 1H NMR spectra of Fe-NHC catalyst (1) recycling
experiments.

Figure 3.33: Stacked 13C NMR spectra of Fe-NHC catalyst (1) recycling
experiments.
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Figure 3.34: HPLC results (HMF yield, fructose conversion and HMF
selectivity) of Fe-NHC (1) catalyst recycling experiments.

3.3.5 Fe-NHC catalyst (1) comparison with other

heterogeneous catalysts (Amberlyst-15,

Montmorillonite K-10 and ZSM-30)

The acid-catalysed dehydration of fructose (2) to HMF (3) has been well

investigated using a variety of heterogeneous catalysts, namely: Amberlyst-15,

Montmorillonite K-10 and ZSM-30. Thus, in order to compare activity between

these catalysts and our catalyst (1) a series of standard reactions were

undertaken using the same amount of fructose and DMSO at 100 ◦C with the

appropriate catalyst. Literature data was not used because lack of knowledge of

exactly how the study was performed would add huge uncertainty when trying

to compare data. Our methodology removes variables and introduces

consistency of approach. The reactions were monitored by NMR and the

resultant spectra are shown in Figures 3.35 3.36, 3.37, 3.38, 3.39 and 3.40 while

the HPLC results are given in Figures 3.41 and 3.42 .

Over Amberlyst-15, HMF yield increased with time with a maximum value at t

=6 h. The behaviour of Montmorillonite K-10 and ZSM-30 catalysts is similar

to Fe-NHC catalyst in which the HMF yield had its highest value at t= 3 h.
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Figure 3.35: 1H NMR spectra of fructose conversion to HMF reaction when
using Amberlyst-15 catalyst.

Figure 3.36: 13C NMR spectra of fructose conversion to HMF reaction when
using Amberlyst-15 catalyst.
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Figure 3.37: 1H NMR spectra of fructose conversion to HMF reaction when
using Montmorillonite K-10 clay catalyst.

Figure 3.38: 13C NMR spectra of fructose conversion to HMF reaction when
using Montmorillonite K-10 clay catalyst.
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Figure 3.39: 1H NMR spectra of fructose conversion to HMF reaction when
using ZSM-30.

Figure 3.40: 13C NMR spectra of fructose conversion to HMF reaction when
using ZSM-30.
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Figure 3.41: HMF % yield of fructose conversion to HMF reaction when
using Amberlyst-15, Montmorillonite K-10 and ZSM-30.

Figure 3.42: HPLC results calculations (HMF % yield, fructose conversion
to HMF and HMF selectivity) of fructose conversion to HMF reaction when

using (A) Amberlyst-15 (B) Montmorillonite K-10 and (C) ZSM-30.
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3.3.6 Fructose dehydration in inert atmosphere (N2): an

unusual concept

The reaction of fructose was attempted in an inert atmosphere of nitrogen. The

product was analyzed and characterized in the same way as the reaction without

nitrogen flow and using the same amounts of reagents as mentioned in section

2.7.

The 1H NMR spectrum of the reaction under nitrogen flow (displayed in Figure

3.47) with Fe-NHC catalyst (1) reveals the absence of any HMF signals within

all the reaction times. However, the spectra demonstrate the presence of new

signals. The signal at 1.2 ppm is believed to be linked to humic acids and the

one at 9.6 ppm to intermediate (3b) (see Figure 3.29). [54], [84] and [85]

The stacked 13C NMR spectra of this reaction shown in Figure 3.48, also show no

dehydration occurred to form HMF, thus complementing the 1H NMR (Figure

3.47). The carbon signal at 33 ppm is believed to be attributed to humic acid

too. [54], [84] and [85] Although both 1H and 13C NMR showed no clear evidence

of HMF, the latter was detected by HPLC as shown in Figure 3.43 albeit in small

amounts.

It can be noticed from the HPLC results that there is a relatively good conversion

of fructose reaction (Figure 3.43). However, the HMF yield obtained from these

reactions and the HMF selectivity is quite low which means that fructose is

converted to other products with higher percentage areas rather than to HMF.

This was found clearly in the results and the expected products are tentatively

thought to be formic acid (RT: 4.2 min), levulinic acid (RT: 4.8 min), furfural

(RT: 8.5 min), 2-furoic acid (RT: 6.5 min), 3-furoic acid (RT: 7.5 min).

Figures 3.46, 3.45 and 3.46 provide a more close comparison between the HPLC

results obtained in both air and N2 atmosphere. With respect to HMF % yield

and selectivity, it is clear from the graphs that in air atmosphere, the catalyst

performance is better. As mentioned earlier, a relatively good conversion of

fructose was reported but not to HMF.
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Figure 3.43: HMF yields,
fructose conversion and selectivity
in % for dehydration of fructose
(2) to HMF (3) over Fe-NHC

catalyst (1) (N2 flow).

Figure 3.44: Comparison of
fructose selectivity obtained from
conversion of fructose (2) to HMF
(3) over Fe-NHC catalyst (1) (air

atmosphere and N2 flow).

Figure 3.45: Comparison
of HMF yields obtained from
conversion of fructose (2) to HMF
(3) over Fe-NHC catalyst (1) (air

atmosphere and N2 flow).

Figure 3.46: Comparison of
fructose conversion obtained from
conversion of fructose (2) to HMF
(3) over Fe-NHC catalyst (1) (air

atmosphere and N2 flow).
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Figure 3.47: Stacked 1H NMR spectrum of fructose conversion to HMF with
Fe-NHC (1) under N2 flow.

Figure 3.48: Stacked 13C NMR spectrum of fructose conversion to HMF with
Fe-NHC (1) under N2 flow.



Chapter 4

Conclusions and Future Work

i. The synthesis of Fe-NHC tethered to expanded high amylose corn starch

(HACS) can be successfully accomplished using a convergent strategy that

adopts green(er) solvents such as propylene carbonate and CPME in preference

of DMF and CH2Cl2 where appropriate. The degree of substitution (DS) is

difficult to exceed beyond 0.33±0.11% even under forcing conditions. Further

work needs to be undertaken as the synthesis of (1) currently still uses an

excess of reagents and solvents. Protection and deprotection strategy is used

which is incommensurate with the principles of green chemistry. First Pass

Metrics need to be considered in more detail. [86] For the purpose of increasing

the awareness of chemists about the importance of using more efficient chemical

synthesis procedures, many metrics have been suggested in the recent years.

One of them is E-Factor, which can be calculated by the following equation:

E − Factor =
Total waste (kg)

kg product
(4.1)

It focuses on the waste amount which is formed for a particular amount of

product. It is efficient to use this by industry to help decreasing the quantity of

waste produced. Mass intensity is another metric and it is found as following:

Mass Intensity (MI) =
Total amount used in aprocess/step (kg)

Product amount (kg)
(4.2)

Mass Intensity pays consideration to the stoichiometry, the yield, the reagent

and the solvent used in the reaction mixture represented in weight rather than

in percentage. [87], [88] and [89]

81
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ii. Fe can be successfully complexed to NHC with a loading of 0.26 mmol/g based

on a DS of 0.33±0.11%. The presence and amount of Fe can be characterized

both qualitatively (colour) and quantitatively (ICP). XPS provides clear evidence

for iron species whereas TEM provides evidence for iron clusters. Care needs to

be taken as it is assumed that all iron present is co-ordinated to the NHC and

not trapped within the mesoporous structure of the starch support. The effect

of stirring rate needs to be considered to investigate diffusion in and out of the

mesopores.

Further work needs to be done to improve DS. This may be reviewing the

chemistry to activate starch as very high DS can be achieved for reactions such

as acetylation. A high DS may lead to a higher iron-loading but as shown in

this thesis 0.26 mmol/g Fe serves as an excellent catalyst for fructose

dehydration. Thus, it may be that a lower loading may work equally well this

is to be investigated.

iii. The Fe-NHC catalyst (1) appears to be heterogeneous as no discernible iron

leaching was observed. Catalyst (1) is novel and converts fructose to HMF above

80 ◦C in DMSO in air at best after 1 h. Poor conversion is noted when the reaction

is carried out under a flow of nitrogen. Further work needs to be undertaken

to investigate atmosphere dependency. An inert atmosphere of nitrogen, which

is also oxygen and moisture free, inhibits HMF formation whereas in an open

atmosphere the conversion proceeds well. Moisture in the air may be catalyzing

the conversion of fructose to HMF.

iv. Catalyst (1) can be re-used up to 4 x without any adverse drop in conversion or

selectivity and is comparable with other heterogeneous catalysts, e.g. Amberlyst-

15, Montmorillonite K-10 and ZSM-30.

v. Mesoporosity remains despite a series of chemical conversions but BET surface

drops especially when iron is included. Finally, although this thesis looks at

fructose to HMF conversion, catalyst (1) should be investigated in other heavily

used synthetic transformations, for example, oxidations [90], amidations reliant

on stoichiometric reagents [91] and carbon-carbon bond forming reactions that

currently use palladium catalysts. [92]
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Appendix A

The Vn values, % of DSC groups and D.S are summarized in Tables A.1 and A.2

( V0 = 16.7 ml) .

Table A.1: Vn recorded values for DS determination.

Vn1 Vn2 Vn3
3.16 molar equivalent of DSC 15.3 15.4 14.6
6.22 molar equivalent of DSC 15.5 15.1 15.2

Table A.2: DSC percentage and D.S of disuccinimidyl carbonate activated
expanded HACS (6).

% DSC D.S
3.16 molar equinelant of DSC 20.27±5.21 0.33±0.11
6.22 molar equinelant of DSC 18.13±2.59 0.28±0.05
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Calculation of Fe loading on Fe-NHC catalyst (1) from ICP-AES data

The concentration of Fe in the Fe-NHC catalyst (1) is 14287863.09 ppb which is

equal to 14289 ppm. Therefore the Fe loading of the catalyst was calculated as

below.

Mass of Fe = 14289 ppm x 0.05 g (mass of sample) = 714.45 g

Number of moles of Fe (mol) = mass of Fe / Molar mass of Fe = 714.45 g /

55.845 g/mol = 12.79 mol

Number of moles of Fe (mmol) = 12.79 mol / 1000 = 0.01279 mmol

So the loading level of Fe = 0.01279 mmol / 0.05 g (mass of sample) = 0.2559

mmol/g.
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Figure A.1: HPLC chromatogram for fructose (2) conversion to HMF (3)
using Fe-NHC catalyst (1) (air) (30 min).

Figure A.2: HPLC chromatogram for fructose (2) conversion to HMF (3)
using Fe-NHC catalyst (1) (air) (1 h).
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Figure A.3: HPLC chromatogram for fructose (2) conversion to HMF (3)
using Fe-NHC catalyst (1) (air) (3 h).

Figure A.4: HPLC chromatogram for fructose (2) conversion to HMF (3)
using Fe-NHC catalyst (1) (air) (6 h).
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Figure A.5: HPLC chromatogram for catalyst reusability test (first).

Figure A.6: HPLC chromatogram for catalyst reusability test (second).
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Figure A.7: HPLC chromatogram for catalyst reusability test (third).

Figure A.8: HPLC chromatogram for catalyst reusability test (fourth).
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Figure A.9: HPLC chromatogram for catalyst reusability test (fifth).



Abbreviations

ATR-IR Attenuated total reflection

BET Brunauer Emmett Teller

BJH Barrett Joyner and Halenda

CHyM Centre of Hyperpolarisation in Magnetic resonance

CMF Chloromethyl furfural

CPME Cyclopentyl methyl ether

DFF Diformyl furan

DMAP Dimethyl aminopyridine

DMF Dimethylformamide

DMSO Dimethyl sulfoxide

DS Degree of substitution

DSC Disuccinimidyl carbonate

Fe-NHC Iron-nitrogen heterocyclic carbene

FIR Far infrared

HACS High amylose corn starch

HMF Hydroxymethyl furfural

HPLC High performance liquid chromatography

ICP-MS Inductively coupled plasma-mass spectroscopy

IR Infrar red spectroscopy

MAS NMR Magic angle spinning nuclear magnetic resonance

NHCs Nitrogen heterocyclic carbenes

NMR Nuclear magnetic resonance

PC Propylene carbonate

PMI Process mass intensity
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ppb part per billion

ppm part per million

rpm revolution per minute

SDGs Sustainable development goals

SEM scanning electron microscopy

STA Simultaneous thermal analysis

t-Boc tert-Butyloxycarbonyl

TEA Triethylamine

TEM Transmission electron microscopy

TFA Trifluoroacetic acid

TMS Tetramethylsilane

XPS X-Ray Photoelectron Spectroscopy

ZSM Zeolite Socony Mobil



References

[1] Sustainable Development Knowledge Platform;. Accessed: 2016-10-25.

https://sustainabledevelopment.un.org/sdgs. Available from: https:

//sustainabledevelopment.un.org/sdgs.

[2] Anastas PT, Warner JC. Principles of green chemistry Green chemistry:

Theory and practice. Oxford university press New York. 1998;p. 11–56.

[3] Doi S, Clark JH, Macquarrie DJ, Milkowski K. New materials based on

renewable resources: chemically modified expanded corn starches as catalysts

for liquid phase organic reactions. Chem Commun. 2002;(22):2632–2633.

[4] Cioc RC, Ruijter E, Orru RV. Multicomponent reactions: advanced tools

for sustainable organic synthesis. Green Chem. 2014;16(6):2958–2975.

[5] Matlin SA, Mehta G, Hopf H, Krief A. The role of chemistry in inventing a

sustainable future. Nat Chem. 2015;7(12):941–943.

[6] Rodriguez-Reinoso F. The role of carbon materials in heterogeneous

catalysis. Carbon. 1998;36(3):159–175.

[7] Lancaster M. Green chemistry: an introductory text. Royal Society of

Chemistry; 2010;p.86-88.

[8] Lam E, Luong JH. Carbon materials as catalyst supports and catalysts

in the transformation of biomass to fuels and chemicals. ACS Catal.

2014;4(10):3393–3410.

93

https://sustainabledevelopment.un.org/sdgs
https://sustainabledevelopment.un.org/sdgs
https://sustainabledevelopment.un.org/sdgs


References 94

[9] Yang Y, Hu Cw, Abu-Omar MM. Conversion of carbohydrates and

lignocellulosic biomass into 5-hydroxymethylfurfural using AlCl3.6H2O

catalyst in a biphasic solvent system. Green Chem. 2012;14(2):509–513.

[10] Climent MJ, Corma A, Iborra S. Conversion of biomass platform

molecules into fuel additives and liquid hydrocarbon fuels. Green Chem.

2014;16(2):516–547.

[11] Auer E, Freund A, Pietsch J, Tacke T. Carbons as supports for industrial

precious metal catalysts. Appl Catal. 1998;173(2):259–271.

[12] de Frémont P, Marion N, Nolan SP. Carbenes: Synthesis, properties, and

organometallic chemistry. Coord Chem Rev. 2009;253(7):862–892.

[13] Arduengo AJ, Harlow RL, Kline M. A stable crystalline carbene. J Am

Chem Soc. 1991;113(1):361–363.

[14] Hopkinson MN, Richter C, Schedler M, Glorius F. An overview of N -

heterocyclic carbenes. Nature. 2014;510(7506):485–496.

[15] Ranganath KVS, Onitsuka S, Kiran Kumar A, Inanaga J. Recent progress

of N -heterocyclic carbenes in heterogeneous catalysis. Catal Sci Tech.

2013;3(9):2161–2181.

[16] Yong G, Zhang Y, Ying JY. Efficient Catalytic System for the Selective

Production of 5-Hydroxymethylfurfural from Glucose and Fructose. Angew

Chem Int Ed. 2008;47(48):9345–9348.

[17] Kim YH, Shin S, Yoon HJ, Kim JW, Cho JK, Lee YS. Polymer-supported

N -heterocyclic carbene-iron(III) catalyst and its application to dehydration

of fructose into 5-hydroxymethyl-2-furfural. Catal Commun. 2013;40:18–22.

[18] Jenkins PJ, Donald AM. The influence of amylose on starch granule

structure. Int J Biol Macromolec. 1995;17(6):315–321.

[19] Shi YC, Capitani T, Trzasko P, Jeffcoat R. Molecular Structure of a Low-

Amylopectin Starch and Other High-Amylose Maize Starches. J Cereal Sci.

1998;27(3):289–299.



References 95
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