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Abstract 
 

The American Joint Committee on Cancer (AJCC) staging system 

based on tumour histopathological  characteristics (Breslow thickness, 

ulceration and mitotic rate) is used in clinical practice to assess melanoma 

patients’ prognosis. Although a reasonable predictor of deaths from melanoma 

(area under the curve 0.68), AJCC staging does not always provide an 

accurate assessment of individual risk. Recent studies have shown that gene 

expression levels within the tumour are associated with survival from 

melanoma, and there is also preliminary evidence that a patient’s genotype 

may influence survival. Combining clinical data with gene expression data may 

improve prediction, but so far no study has analysed the combined effects of 

the three different types of factor on melanoma-specific survival (MSS). 

This study used patient and tumour characteristics, whole-genome gene 

expression levels, and genome-wide single nucleotide polymorphism (SNP) 

data to identify predictors of MSS in a training set of ~2000 patients from the 

Leeds Melanoma Cohort (LMC). The selected clinical and genomic predictors 

were combined to build melanoma prognostic models in a test set of 190 

patients from LMC, using several approaches. In addition, heritability of 

survival from melanoma and of Breslow thickness (the most important predictor 

of MSS) was estimated using genome-wide SNP data. 

In the training set, five established clinical predictors (age, sex, tumour 

site, Breslow thickness and presence of ulceration) were associated with MSS; 

in addition penalized Cox regression identified 16 gene expression levels and 

13 SNPs predictive of MSS. In the test set, the selected genomic predictors did 

not substantially improve on the predictive performance of the clinical factors. 

The 16 gene expression levels were also predictive, but were highly correlated 

with the clinical predictors, especially Breslow thickness, suggesting gene 

expression influences MSS through clinical predictors. The heritability analyses 

in this study provided some evidence that germline SNPs influence Breslow 

thickness. 
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Chapter 1 Introduction 
 

1.1 Background of the research 
1.1.1 Melanoma  

Melanoma is a type of skin cancer arising from melanocytes, the 

pigment-producing cells. A diagnosis suggestive of melanoma can be 

motivated by naked eye inspection based on ABCDE rules but clinical 

diagnosis requires histopathological confirmation. The ABCDE mnemonic is A 

for asymmetrical nevi, B for irregular border, C for multiple colours, D for large 

(>5mm) diameter and E for evolving size, shape and colour. When lesions are 

removed, histopathological investigation confirms both the diagnosis of 

melanoma and the histological subtype of this cancer. There are four major 

subtypes of melanoma with different appearance and histological 

characteristics: superficial spreading melanoma (SMM), nodular melanoma 

(NM), lentigo maligna melanoma (LMM) and acral lentiginous melanoma (ALM) 

(Burns et al., 2004).  

SSM is the commonest type of melanoma which spreads horizontally 

and grows in diameter. The commonest sites of SSM are female leg and male 

back. NM is the second most common subtype and has a nodular appearance 

that grows vertically and grows in depth. It is a fast growing tumour compared 

to other subtypes and the common site is trunk. LMM appear particularly on 

chronically sun-exposed sites such as the face, mostly on the upper cheek, 

temple or forehead. It has a flat, brown or black and irregular pigmentation 

appearance and has a long period of horizontal growth phase over months or 

years. In time, a raised central nodule will develop which indicates transition to 

the vertical growth phase. ALM is the rarest subtype and found mainly on the 

sole of the foot and on the palm of the hand and has a large, thinly pigmented 

appearance. Other less common types of melanoma are subungual melanoma 

(found on the nail), mucosal melanoma (found in the oral cavity, on the genital 

mucosa and in the perianal area) and ocular melanoma (found on the eye) 

(Burns et al., 2004).  
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1.1.2 Epidemiology of melanoma 
Melanoma predominantly occurs among fair-skinned individuals and it is 

the fifth most common cancer in the United Kingdom. In Europe, the most 

recent estimated annual age-standardized incidence and mortality rates of 

melanoma on the skin were 11.1 per 100,000 and 2.3 per 100,000, 

respectively (Ferlay et al., 2013). The incidence of melanoma varies across 

countries, with highest incidence rates reported in Australia and New Zealand 

followed by countries in North America (United States and Canada) and then in 

Northern Europe, particularly Scandinavia. Incidence has increased in the last 

50 years, but recent reports indicate stabilization in the countries with highest 

rates but a continued increase in rates elsewhere, especially Southern and 

Western Europe. The increase in incidence rates is likely due in part to 

improved screening and early detection of cancer, but is primarily due to 

changes in sun-related behaviour such as the increasing trend of holidaying in 

sunny places (Erdmann et al., 2013). 
The established risk factors for melanoma are nevi phenotypes 

(characterized by the presence of large numbers of nevi and atypical nevi), 

pigmentation phenotypes (characterized by fair skin, inability to tan, red hair 

and freckling) and presence of family history of melanoma (Gandini et al., 

2005a; Gandini et al., 2005b;  Chang et al., 2009a; Olsen et al., 2010). The 

main environmental risk factor associated with melanoma risk is sun exposure 

(ultraviolet radiation), especially recreational sun exposure such as sunbathing 

(Chang et al., 2009b). Also, the use of indoor tanning beds has been reported 

as a risk factor for melanoma (Boniol et al., 2012).  

Linkage studies using families with melanoma have identified major 

high-penetrance genes that increase risk for melanoma, such as germline 

mutations in CDKN2A and a less common mutation in CDK4 genes (Kamb et 

al., 1994; Hussussian et al., 1994; Zuo et al., 1996). Large families study by 

Goldstein et al. (2006) reported about 40% of high risk families have germline 

CDKN2A mutations and 2% of the families carried germline CDK4 mutations. 

However, these mutations are rare and only explain a small proportion of 

melanoma cases overall. 

Over the past few years, genome-wide association studies (GWAS) 

have identified more common low-penetrance genetic variants associated with 



 
 

 3 

melanoma phenotypes (physical characteristics that associated with melanoma 

such as nevi and pigmentation) and melanoma risk. Several genetic variants in 

the region of CDKN2A/MTAP, PLA2G6 and IRF4 were associated with 

development of nevi and melanoma risk (Bishop et al., 2009; Falchi et al., 

2009; Duffy et al., 2010a). For pigmentation, genetic variants identified in the 

regions of MC1R, ASIP, OCA2, SLC45A2, TYR and TYRP1 were associated 

with this trait and also with melanoma risk (Duffy et al., 2010b). Various 

inherited variants identified in the region of other loci such as TERT (Rafnar et 

al., 2009), CASP8, ATM, CCND1, MX2 (Barrett et al., 2011), ARNT, PARP1 

(MacGregor et al., 2011) and FTO (Iles et al., 2013) were associated with 

melanoma risk. However, the mechanisms of action of these variants on 

melanoma risk is still unknown. 

 

1.1.3 Survival from melanoma 
Melanoma has a good prognosis in patients with a thin tumour, but it 

can be lethal in patients with advanced disease where cancer has spread to 

the lymph nodes and/or other body organs. The 10-year survival rate for 

patients with thin, non-ulcerated melanomas with mitosis less than 1/mm2 

(stage IA) is about 93%, but the survival rate falls to 39% for patients with thick 

and ulcerated melanomas (stage IIC). For patients with stage III melanomas 

(without nodal or intralymphatic metastases), their 5-year survival rates range 

from 70% to 40% depending on the number of metastatic nodes. Among 

patients with stage IV melanomas (distant metastatic), their 1-year survival 

rates range from 62% to 33% depending on the site of distant metastases 

(Balch et al., 2009). 

For melanoma, the American Joint Committee on Cancer (AJCC) 

staging system is used to evaluate a patient’s prognosis and to determine 

appropriate treatment and follow-up (Garbe et al., 2010). The final version of 

the AJCC staging system was based on analysis of 30,946 patients by Balch et 

al. (2009). The final AJCC staging uses three primary tumour histopathological 

characteristics (Breslow thickness, ulceration and mitotic rate), lymph node 

metastasis, site of distant metastasis and serum lactate dehydrogenase level 

(LDH) as criteria for the tumour-node-metastasis (TNM) classification (Table 

1.1) and group staging (Table 1.2) for melanoma (Balch et al., 2009).
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Table 1.1 TNM classification for cutaneous melanoma  
Classification   
T Thickness (mm) Ulceration status/Mitoses 

T1 ≤ 1.00 a: without ulceration and mitosis < 
1/mm2 
b: with ulceration or mitosis ≥ 
1/mm2 

T2 1.01 – 2.00  a: without ulceration  
b: with ulceration  

T3 2.01 – 4.00  a: without ulceration  
b: with ulceration 

T4 > 4.00 a: without ulceration  
b: with ulceration 

N Number of metastasis 
nodes  

Number of metastatic burden  

N0 0 NA 
N1 1 a: micrometastasis* 

b: macrometastasis† 
N2 2 – 3  a: micrometastasis* 

b: macrometastasis† 
c: in transit metastasis/satellites 
without metastatic nodes 

N3 4+ metastatic nodes, or 
matted nodes, or in transit 
metastases/satellites with 
metastatic nodes  

 

M Site  Serum LDH 
M0 No distant metastases NA 

M1a Distant skin, 
subcutaneous, or nodal 
metastases  

Normal  

M1b Lung metastases  Normal 
M1c All other visceral 

metastases 
Any distant metastases 

Normal  
 
Elevated  

NA: not applicable  
*Micrometastases are diagnosed after sentinel node biopsy 
†Macrometastases are defined as clinically detectable nodal metastases confirmed 
pathologically  

Table from Balch et al. (2009). 
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Table 1.2 Clinical staging for cutaneous melanoma 
Staging  T N M 

Stage I    
IA T1a N0 M0 
IB T1b 

T2a 
N0 
N0 

M0 
M0 

Stage II    

IIA T2b 
T3a 

N0 
N0 

M0 
M0 

IIB T3b 
T4a 

N0 
N0 

M0 
M0 

IIC T4b N0 M0 
Stage III Any T N > N0 M0 
Stage IV Any T Any N M1 

                            Table from Balch et al. (2009). 

 

Although the AJCC stage is a powerful prognostic tool, assessment of 

individual risk and identification of patients who might benefit from aggressive 

therapy based on the AJCC staging system are still insufficient. For example, 

among patients with thin melanoma (Breslow thickness ≤1mm), at least 6% 

relapsed and 4% died from this disease even if diagnosed at a very early stage 

(stage IA and IB) (Gimotty et al., 2004). This shows that the current AJCC 

stage still cannot fully explain the variation in survival and there is a need to 

identify new prognostic biomarkers to refine the prognosis for individual 

patients beyond the AJCC staging.  
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1.2 Prognostic factors for primary cutaneous melanoma  
1.2.1 Clinical and histopathological characteristics  

The established prognostic factors for reduced melanoma survival are 

tumour thickness (with worse prognosis for thicker melanomas), the presence 

of ulceration, high mitotic rate, site of primary melanoma (melanoma on the 

trunk, head and neck have worse prognosis than melanoma on the 

extremities), male sex and age (with worse prognosis in older patients) (Thorn 

et al., 1994; Lindholm et al., 2004; Leiter et al., 2004; Buettner et al., 2005; 

Balch et al., 2009).  

Of all the prognostic factors, tumour thickness (also known as Breslow 

thickness) is the strongest predictor for melanoma survival (Balch et al., 2009). 

The thickness is measured in millimetre (mm) from the surface of the tumour to 

the deepest point where the tumour penetrates the skin layers (Breslow, 1970). 

Ulceration in melanoma is defined as absence of intact epidermis. The 

presence of ulceration strongly influences survival, but Breslow thickness 

remains the stronger predictor (Balch et al., 2009). For patients with ulcerated 

tumours, their survival is lower compared to those without ulceration in the 

same thickness group, but survival is similar compared to those without 

ulceration in the next thickness group according to the T classification in Table 

1.1 (Balch et al., 2009). Mitotic rate reflects the proliferation of the tumour and 

is measured as the number of mitoses per mm2. Mitotic rate was a strong 

independent predictor of survival after tumour thickness, and was added in the 

final version of the AJCC staging replacing Clark invasion level for defining the 

T1a and T1b subcategory in the TNM classification (Balch et al., 2009). 

Other tumour factors that have been reported to be associated with 

melanoma survival but are not part of the AJCC staging are the presence of 

tumour-infiltrating lymphocytes (TILs), the presence of vascular or lymphatic 

invasion and the presence of tumour regression. TILs are lymphocytes that 

infiltrate tumours and disrupt the tumour cells. TILs can be categorized as 

absent (no lymphocytes mixed with melanoma cells), non-brisk (focal 

infiltration) or brisk (involves the entire base of the tumour). Several studies 

have reported that presence of TILs associated with better survival in primary 

melanoma (Azimi et al., 2012; Thomas et al., 2013), and higher TILs grade 
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remained as a significant predictor for MSS independent of age, sex, tumour 

site and the AJCC staging (Thomas et al., 2013).  

A few studies have reported the association of the presence of vascular 

or lymphatic invasion in primary melanoma with poor prognosis (Kashani-Sabet 

et al., 2002; Xu et al., 2012). However, as this factor is not routinely reported in 

primary melanoma histology report, it has not been assessed in large studies 

for primary melanoma such as the AJCC database.  

Tumour regression refers to the interaction between the tumour cells 

with the host immune system that leads to replacement of tumour tissue with 

non-malignant tissue. The prognostic value of regression in primary melanoma 

remains unclear, with some studies reporting that presence of regression is 

associated with poor prognostic outcome in patients with thin melanomas 

(Shaw et al., 1992; Guitart et al., 2002) and others finding no evidence that 

regression influences survival (Brogelli et al., 1992; Burton et al., 2011).  
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1.2.2 Gene expression signatures 
Gene expression is the level of transcription of the deoxyribonucleic acid 

(DNA), a process where ribonucleic acid (RNA) is copied from DNA. DNA 

microarray experiments measure the messenger RNA (mRNA) expression 

level of thousands of genes simultaneously. DNA microarrays are small 

platforms of glass or silica containing single-stranded DNA sequences, called 

probes. From cell culture or tissue samples, mRNA is extracted and used to 

derive complementary DNAs (cDNAs). The cDNAs are then labelled using 

fluorescent dyes and hybridized to DNA microarrays. After washing off 

unbound or weakly bound material, the platform is scanned to detect label’s 

signal. The signal intensity gives an approximation of the relative proportion for 

each gene labelled sequence and therefore an estimate of gene expression in 

the sample (Nguyen et al., 2002).  

In melanoma, numerous studies used microarray data to investigate 

gene expression patterns related to survival in metastatic melanomas such as 

Mandruzzato et al. (2006), Alonso et al. (2007), John et al. (2008), Bogunovic 

et al. (2009), and Mann et al. (2013) in Table 1.3. However, microarray data 

have not been widely used to identify gene expression patterns related to 

survival in primary melanoma. 

The first gene expression profiling in primary melanoma was reported by 

Winnepenninckx et al. (2006), who identified a 254-gene expression signature 

that was associated with 4-year distant metastatic-free survival in 58 patients 

using a pangenomic 44,000 60-mer oligonucleotide microarray, validated in 17 

independent primary melanoma patients. The authors then compared the 

predictive accuracy of the gene signature with standard prognostic factors used 

in tumour staging (tumour thickness and presence of ulceration) and found 

similar prognostic accuracy (29% misclassification rate using 254-gene 

signature and 28% misclassification rate using prognostic factors). Although 

the gene signature did not show better prognostic value than the standard 

measures, this study had shown the potential use of gene expression as 

prognostic factor for primary melanoma. Among the genes identified in the 

gene signature were those involved in DNA replication such as 

minichromosome maintenance genes. Twenty-three of the genes were 

examined at protein level using immunohistochemical analysis, and found to be 
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associated with overall survival (calculated from time of diagnosis to time of 

death from any cause) in independent patients. In multivariable model that 

included Breslow thickness, age, ulceration and sex, MCM4 and MCM6 

remained associated with overall survival.  

Conway et al. (2009) reported the second gene expression profiling in 

primary melanoma using formalin-fixed, paraffin-embedded tissue and 

identified osteopontin (SPP1) as predictive of relapse-free survival (calculated 

from time of diagnosis to time of first relapse) in the training set. The finding 

was validated in an independent test set in an unadjusted analysis. Unlike the 

training set, the predictive ability of SPP1 was not maintained in the validation 

set when adjusted for the most important histological predictors, Breslow 

thickness, presence of ulceration and mitotic rate in the multivariate analysis. In 

tumour cells, SPP1 is involved in cell adhesion, chemotaxis, prevention of 

apoptosis, invasion and migration. Rangel et al. (2008) had previously reported 

that increased SPP1 expression (examined using immunohistochemical 

staining method) was associated with reduced relapse-free survival and 

disease-specific survival (calculated from time of diagnosis to time of death 

from melanoma) in primary melanoma. 

In an examination of 57 stage IV metastatic melanomas, Jonsson et al. 

(2010) identified gene signatures for four tumour subtypes, which they called 

proliferative, high immune response, pigmentation and normal-like, using 

unsupervised hierarchical clustering. When used to predict overall survival, a 

significant difference was observed between the four subtypes, with the 

proliferative subtypes having worse survival compared to the other three 

groups. The four group classifier was validated in an independent sample of 44 

stage III and IV melanomas using in-house data and expression datasets from 

four independent studies and publicly available cell line data. The results from 

the validation, however, varied, with the prediction capability holding up in 

some datasets but not in others.  

In 223 primary melanomas, Harbst et al. (2012) replicated the study by 

Jonsson et al. (2010) and found that the 4-class molecular structure in 

metastatic melanoma also exists in primary melanoma. The authors further 

refined the four subtypes into two subtypes which can distinguish low grade 

tumours (high immune/normal like) and high grade tumours 
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(proliferative/pigmentation), and noted that low grade tumours have higher 

expression of immune genes whereas high grade tumours have higher 

expression of proliferation and DNA damage signalling genes. The authors 

also found that the high grade tumour group was significantly associated with 

increased tumour thickness, mitotic rate, ulceration and poorer overall survival 

and relapse-free survival. When validated in two expression datasets from 

independent studies, the 2-molecular grade remained as an independent 

prognostic factor alongside AJCC stage.  

A more recent study by Nsengimana et al. (2015) replicated the 4-class 

gene signature in Jonsson et al. (2010) and the 2-grade gene signature in 

Harbst et al. (2012). Both gene signatures were predictive of MSS (calculated 

from time of diagnosis to time of death from melanoma) and, as previously 

reported, also correlated with Breslow thickness, presence of ulceration and 

mitotic rate. The 2-grade gene signature also remained an independent 

predictor when adjusted for AJCC stage. When assessed for its predictive 

ability, the area under the receiver operating characteristic curve (AUC)  for the 

AJCC alone was 0.66, 0.68. and 0.75 for relapse, deaths from melanoma, and 

all-causes deaths, respectively. The inclusion of the 2-molecular grade in a 

combined model with AJCC stage improved the AUC by 2%-4% for relapse 

(0.68), deaths from melanoma (0.72) and all deaths (0.78) compared to AJCC 

stage alone. Although the improvement in the AUC was not dramatic, this 

study suggested an added prognostic value of molecular classification in 

predicting melanoma survival.  

In a cross-validation of gene expression signatures by Schramm et al. 

(2012), it was reported that gene signatures identified from different studies 

consistently contain immune-related genes, suggesting that immune-related 

genes may have an important role in melanoma progression and survival 

outcomes. This motivated Sivendran et al. (2014) to explore the association of 

immune-genes with melanoma outcomes. They selected 446 candidate 

immune-genes from reported studies and identified a 53-gene panel of 

immunoregulatory genes in 40 stage II and stage III primary melanomas 

associated with non-progression (whether patient progressed to unresectable 

stage III or stage IV), relapse-free survival (calculated from date of diagnosis to 

date of recurrence) and disease-specific survival (calculated from date of 
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diagnosis to date of death from melanoma) in multivariable analysis. The 

associations were validated in 48 independent patients.  

In another more recent study, Gerami et al. (2015) selected a set of 28 

genes associated with melanoma metastasis, based on data mining of publicly 

available datasets. The gene set was measured in 268 primary melanomas 

and using radial basis machine modelling, the authors classified patients into 

low risk and high risk groups.  A significant difference was noted in disease-

free survival (calculated from time of diagnosis to time of any metastasis or 

local regional recurrence including involvement of sentinel nodes, in transit 

metastasis or distant metastasis) between the two risk groups. When included 

in a multivariable analysis with AJCC stage, Breslow thickness, ulceration, 

mitotic rate and age, the defined signature was an independent predictor of 

metastatic risk suggesting that the gene signature provides additional 

information.  

Collectively, these studies reported gene signatures that are associated 

with survival outcomes in primary melanoma, and recent studies support the 

prognostic potential for adding gene signature into the current staging system. 

However, the use of a gene signature as a prognostic tool in clinical practice is 

so far not implemented. Further study to validate the published models are 

needed before implementation of gene signature in clinical practice.  
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1.2.3 Germline genetic variants  
Many studies focusing on the genetic susceptibility to melanoma have 

been carried out but there is limited research looking at the influences of 

genetic variants on survival from melanoma. Rendleman et al. (2013) have 

showed for the first time that genetic variants associated with melanoma risk or 

melanoma-associated phenotypes may have roles in melanoma outcomes and 

that there is a potential for combining histopathological characteristics with 

genetic variant information for prognostic prediction. In their study, Rendleman 

et al. (2013) examined the effect of 108 susceptibility variants identified from 

previous GWAS of susceptibility on melanoma survival. They found two SNPs 

(rs7538876 in RCC2 and rs9960018 in DLGAP1) significantly associated with 

both reduced overall survival and recurrence-free survival, and also 

demonstrated that inclusion of the two SNPs with tumour stage and histological 

subtype slightly improved the prediction of 3-year recurrence compared to a 

model with tumour stage and histological subtype alone (AUC 82% versus 

78%). This study however requires further validation in an independent sample.   

Few studies based on candidate gene analysis have reported 

associations between melanoma survival and genetic variants. In addition to its 

major role in pigmentation, the MC1R gene has non-pigmentary biological 

functions such as apoptosis and DNA repair through MITF, the major regulator 

of melanocyte development. This motivated the Leeds Melanoma Group to 

explore the role of MC1R variants on melanoma survival using a large 

collaborative dataset (Davies et al., 2012). Results from Davies et al. (2012) 

suggest that there is a survival benefit for melanoma patients with inherited 

MC1R susceptibility variants, and a similar result was also noted by Taylor et 

al. (2015a).  

The Leeds Melanoma Group has reported the association of higher 

serum vitamin D levels with increased survival within thickness group (Newton-

Bishop et al., 2009); this also motivated the group to examine the causal 

association of SNP rs228679, in GC gene coding for the vitamin D-binding 

protein, which is associated with lower serum Vitamin D levels with survival 

from melanoma (Davies et al., 2014a). In the meta-analysis of seven cohorts, 

Davies et al. (2014a) found that inheritance of the minor allele of the GC SNP 

associated with increased risk of death from melanoma. Recently, Orlow et al. 
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(2016) reported significant association between vitamin D receptor SNP 

rs2239182 with MSS, suggesting that vitamin D receptor gene may influence 

survival from melanoma.  

In another study, Davies et al. (2014b) explored the association of 

genetic variants in the PARP1 gene, involved in DNA repair, with melanoma 

survival. The meta-analysis results from this study shows that inheritance of 

the minor allele in the PARP1 variant rs2249844 was associated with 

increased risk of death from melanoma. The association between PARP1 

variant and MSS were also reported by Law et al. (2015b).  

To date, there is no published study exploring the association of genetic 

variants at genome-wide level with melanoma survival, mainly due to the 

limited availability of large melanoma cohorts with reliable follow-up and 

genetic data available, hence the lack of power to detect association at a 

genome-wide significance level. Results based on candidate gene analyses 

suggest that genetic variants may have a role in melanoma survival. Therefore, 

this study will aim to identify genetic variants that may predict melanoma 

survival by using genome-wide data.   

 

1.2.4 Other factors  
1.2.4.1 Somatic mutation status  

Mutations in the BRAF and NRAS genes lead to activation of the 

mitogen-activated protein kinase pathway that contributes to tumour growth in 

melanoma (Swick and Maize, 2012). Most studies focus on the common 

V600E BRAF mutation but other mutations with less defined properties are 

also found in BRAF.  Several studies (Maldonado et al., 2003; Devitt et al., 

2011; Thomas et al., 2015) have reported the association of BRAF and NRAS 

mutations in tumours with melanoma survival, but evidence in the literature has 

not been established. 

For BRAF mutations, a meta-analysis showed that patients with BRAF-

mutant tumours have increased risk of death compared to those with BRAF 

wild-type tumours (Maldonado et al., 2003). In contrast, smaller studies of 

primary melanomas reported no independent association of BRAF mutation 

status with survival (Shinozaki et al., 2004; Akslen et al., 2005; Ellerhorst et al., 

2011). 
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Similarly, for NRAS mutations, one study reported that patients with 

NRAS-mutant tumours had increased risk of death from melanoma and 

increased risk for recurrence (Devitt et al., 2011). In other studies, no 

association was found between NRAS mutation status and overall survival, 

relapse-free survival, and MSS (Akslen et al., 2005; Ellerhorst et al., 2011). In a 

more recent report by Thomas et al. (2015) based on 912 primary melanoma 

patients, no association was found between NRAS or BRAF mutation status 

and MSS when adjusted for age, sex, site, AJCC stage, TIL grade and study 

centre. However, when subgroup analysis was conducted, the authors found 

independent association of NRAS or BRAF mutations with MSS in higher risk 

tumours (T2b or higher stage), but significant associations were not seen in 

lower  risk tumours (T2a or lower), which may indicate that mutational status 

has a prognostic role in higher AJCC stage primary melanomas. 

 

1.2.4.2 Serum vitamin D level  
Vitamin D is a fat soluble hormone and is synthesized in the skin in 

response to sun exposure. Apart from its role in calcium and phosphate 

intestinal absorption and bone homeostasis, Vitamin D also has an important 

role in cell growth, differentiation, and apoptosis, and in the regulation of 

tumour/immune system interaction (Deeb et al., 2007; Fleet et al., 2012). The 

Leeds Melanoma Group has reported the association of higher serum vitamin 

D levels with lower risk of relapse and lower Breslow thickness at diagnosis 

(Newton-Bishop et al., 2009). Another study by Nurnberg et al. (2009) 

supported the possible role of vitamin D in melanoma progression, as they 

found that serum vitamin D levels were significantly reduced in stage IV 

melanoma patients as compared to stage I melanoma patients. However, the 

concern with this association is that higher vitamin D levels might be acting as 

a marker of healthier lifestyles rather than contributing directly to melanoma 

survival, as thinner, healthier and more active people were shown to have 

higher vitamin D levels, leaving open the possibility that the association with 

high vitamin D levels might be due to other aspects of healthier lifestyles.  
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1.3 Methods for combining clinical and genomic data  
A motivation for integrating different types of data as predictor variables 

is to allow for a more thorough exploration and modelling of complex traits to 

identify key factors that can explain or predict disease risk or outcomes (Ritchie 

et al., 2015). Several studies in melanoma have suggested the potential benefit 

of combining gene expression or genetic variant data with the standard clinical 

and histopathological factors to improve prognostic prediction for melanoma 

patients (Harbst et al., 2012; Nsengimana et al., 2015; Rendleman et al., 

2013). However, no studies so far have explored the combined effect of patient 

and histopathological characteristics, gene expression and large-scale genetic 

variation on survival from melanoma. Hence, this study will combine the three 

different types of data to build survival models and subsequently prognostic 

prediction models for melanoma patients.  A survival model is a model that can 

be used to identify factors that influence the time to an event.  A prognostic 

model is the use of multiple prognostic factors in combination to predict the risk 

of developing future clinical outcomes in individual patients (Steyerberg et al., 

2013).  

A review by Ritchie et al. (2015) summarized two main approaches for 

combining multiple -omics data, which are multi-staged analysis and meta-

dimensional analysis. The multi-staged approach involves integrating 

information in a linear or a hierarchical manner. This approach is suitable when 

the complex-trait aetiology is assumed to be hierarchical, such that variation at 

the DNA level will lead to changes in gene expression, leading to changes in 

protein and finally affecting the phenotype. The basic approach of multi-stage 

analysis is to find associations first between different types of data then 

subsequently between the data types and the phenotype of interest. For 

example, the first step is to find SNPs that are associated with the phenotype. 

Second, the significant SNPs are then tested for association with another level 

of -omic data such as gene expression levels. Third, the SNPs that associated 

with gene expression levels which are called eQTL SNPs are then tested for 

association with the phenotype of interest (Ritchie et al., 2015).  

An example of a recent study that applied a multi-staged integrative 

approach is by Huang et al. (2015), where they developed susceptibility 

models for childhood asthma based on mediation effect  (genetic effect on 
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disease risk mediated through gene expression) or alternative effect (genetic 

effect through other biological pathways or environmental risk factors). Under 

the mediation effect model, Huang et al. (2015) first found a set of expression 

quantitative trait loci (eQTL) SNPs and then jointly modelled the eQTL SNPs 

with the corresponding gene expression on the occurrence of asthma by using 

logistic regression analysis, adjusting for covariates. Using the integrative 

approach, they successfully identified novel susceptibility genes for childhood 

asthma and also confirmed several previously reported susceptibility genes. An 

advantage of this integrative approach over the standard GWAS analysis is 

that it incorporates biological information into the model which may give more 

insights into how the genetic variants and gene expression interact to influence 

the phenotype.  

In a recent study, Gusev et al. (2016) introduced a new approach to 

identify gene expression that  associated with complex traits in individuals 

without directly measured expression levels by imputing the cis-genetic 

component gene expression, and then relating the imputed gene expression to 

the trait of interest. This new approach uses a smaller set of individuals with 

both gene expression and genotype data available as a training panel to 

impute the cis-genetic component gene expression (using only SNPs within 

1Mb of gene present in the GWAS data). The imputed gene expression is a 

linear model of genotypes with weight based on correlation between SNPs and 

gene expression in the training data while accounting for linkage disequilibrium 

(LD) among cis-SNPs (Gusev et al., 2016). The advantage of this new 

approach is that it could also be implemented when only GWAS summary 

statistics are available.  From GWAS summary statistics, z score or 

standardized effect size of SNP for the trait is computed. The imputed gene 

expression from summary statistics is the linear combination of the z score with 

weight precompiled from the reference panel (Gusev et al., 2016). Using the 

new approach, Gusev et al. (2016) imputed gene expression using summary 

statistics from three recent GWAS for various traits (high-density lipoprotein, 

low-density lipoprotein, total cholesterol, triglycerides, height and BMI) to 

identify new expression-trait associations, and found 665 significant gene-trait 

associations, of which 69 did not overlap with genome-wide significant  SNPs 

in the corresponding GWAS. The authors further evaluated the significance of 
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the 69 new expression-trait associations conditional on the SNP-trait effects at 

the locus using permutation test, and found the permutation test was significant 

for 54 genes, indicating the potential use of this approach to identify new 

expression-trait associations. The potential advantages of this approach over 

standard GWAS are that the “gene” is a more interpretable biological unit than 

the SNP, lower number of cis-genetic component gene expressions reduced 

multiple testing burden, and combining cis-SNPs into a single predictor may 

capture heterogeneous signal better than individual SNPs.  

The meta-dimensional approach involves integrating multiple different 

data types simultaneously to build a multivariable model associated with the 

outcome, as it is assumed that multiple levels of molecular variation contribute 

to disease aetiology in a complex way. This approach can combine different 

types of data by combining multiple data matrices for each sample into one 

large matrix before constructing a model using suitable statistical methods, or 

by generating multiple models first using different types of data, and then 

generating a final model from the multiple models (Ritchie et al., 2015).  

An example of study that applied a meta-dimensional approach is by 

Mankoo et al. (2011), who integrated copy number variation, methylation, 

microRNA and gene expression data to predict time to recurrence and survival 

in ovarian cancer. Their approach involves data reduction within each type of -

omics data using Cox lasso regression analysis, which also does variable 

selection, and then combining the selected variables from each type of data in 

a standard Cox regression analysis. In another study, Gentles et al. (2015) 

integrated clinical prognostic index (a score created using selected clinical 

predictors from a larger study; age, sex and stage) with molecular prognostic 

index (a score created using selected nine gene expression levels from a 

training dataset) to create a composite risk model score (integrating clinical 

prognostic index and molecular prognostic index) to stratify patient overall 

survival into low- and high-risk for early-stage non-small cell lung cancer. 

Results in Gentles et al. (2015) shows that the composite risk model score 

(Hazard ratio (HR)=3.43, 95% confidence interval=2.18 to 5.39, P-

value<0.001) has greater prognostic power for survival compared to using the 

molecular prognostic index alone (HR=2.28, 95% confidence interval=1.48 to 

3.53, P-value<0.001) in stage I patients in the validation cohorts, indicating that 
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integration of gene expression with clinical data improves the prognostic model 

compared with using either data alone.  

The major challenges when using the meta-dimensional approach to 

combine different types of -omics data are the high-dimensionality of the 

genomic data, where the number of samples are much smaller than the 

number of predictor variables, and high correlation between the variables. 

Another challenge is to identify the best method to combine multiple types of 

data in a meaningful way as different types of data have different scales. The 

advantage of the meta-dimensional approach is that it allows for exploration of 

interactions between different types of -omics data that may be missed in a 

single type of data analysis (Ritchie et al., 2015). 

In data with high-dimensionality and multicollinearity, standard 

regression methods are subject to instability of coefficients and model over-

fitting, which occurs when model predicts the outcome for the samples within 

the data extremely well but performs poorly in other data (Hastie et al., 2001). 

Model regularization techniques are increasingly used in high-dimensional 

settings. The techniques control the model complexity to prevent over-fitting 

the model to the training data, hence improving the model’s generalizability to 

new samples. Model regularization is based on penalization of the model 

complexity through penalty terms (Hastie et al., 2001; Okser et al., 2014). 

Finding the optimal value of the penalty is crucial to prevent over-fitting. Cross-

validation, in which some proportion of the dataset is used to build the model 

and a subset is used for testing the model, can be used to find the optimal 

value of the penalty (Hastie et al., 2001).  

When combining clinical and genomic data to build survival prediction 

models, Bovelstad et al. (2009) has shown that penalized regression methods 

using ridge regression (L2 penalty) and lasso (L1 penalty) outperform 

univariable and other multivariable regression methods such as principal 

components regression (PCR), supervised PCR, partial least squares (PLS) 

regression, and supervised PLS  regression in multiple genomic datasets. To 

deal with the high-dimensional problem, Bovelstad et al. (2009) explored the 

use of dimension reduction techniques, based on shrinkage methods 

(penalized regression) and linear combinations (PCR and PLS). In the PCR 

method, Bovelstad et al. (2009) used principal components analysis (PCA) to 
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find a linear combination of the genomic variables (the combination that 

captures most of the variance present in the data), and then including the 

principal components as covariates with clinical variables in a multivariable Cox 

regression. The PCR has no guarantee that the selected principal components 

are associated with survival because the survival times are not used when 

forming the principal components. Hence, supervised PCR was conducted 

using pre-selected genes that correlated to survival first using univariate 

selection, and then apply the PCA to this subset. PLS regression is similar to 

PCR, but unlike PCR, PLS construct the linear combinations using the 

outcome variable for guidance, so the linear combinations is the product of the 

variance of the components and the correlation between the components and 

the survival. For the supervised PLS regression, it also involves initial gene 

selection step before applying the PLS method.  

Various strategies to integrate different types of data were discussed in 

Ritchie et al. (2015), but there is still no gold standard method for data 

integration. Therefore, methods to combine different types of data will be 

explored in this study.  
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1.4 Aims and Objectives 
1.4.1 Aims 
This study aims to explore the inter-relationships between different types of 

factors associated with survival from melanoma and to build survival models 

and subsequently prognostic prediction models for melanoma patients.  

 

1.4.2 Research Objectives 
i. To determine the relationship of patient and tumour characteristics, 

gene expression levels, and genetic variants with survival from 

melanoma. 

ii. To estimate the proportion of variance in survival from melanoma 

and other important factors such as Breslow thickness that can be 

explained by genetics. Heritability analysis using the genome-wide 

complex trait analysis (GCTA) tool by Yang et al. (2011) will be 

applied to use unrelated individuals and genome-wide SNP data in 

the analysis.   

iii. To determine the inter-relationships between different types of 

factors associated with melanoma survival (such as gene expression 

levels with clinical predictors, genetic variants with clinical predictors, 

gene expression levels with genome-wide SNPs, and susceptibility 

SNPs with expression levels of nearby genes).  

iv. To combine different types of factors (patient and tumour 

characteristics, gene expression levels and genetic variants) to build 

melanoma survival models and subsequently prognostic prediction 

models. Different statistical methods to combined different types of 

data will be explored. 

v. To compare different statistical methods to combine different types of 

data to improve the methods for integrating clinical and genomic data 

in survival model.  
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Chapter 2 Materials and methods 

 

2.1 Study population 
Patients in this study are from the Leeds Melanoma Cohort (LMC) 

consisting of 2,184 melanoma cases recruited between 2001 and 2012 from 

various centres within the Yorkshire and Northern region of the United 

Kingdom and followed up for survival. Cases were identified and ascertained 

by clinicians, pathologists and the cancer registry.  

The cohort study collected detailed clinical and genetic data for each 

patient. After consenting to participate in the study, cases were asked to 

complete postal and telephone questionnaires, to undergo physical 

examination of their skin and to give their blood samples for the extraction of 

DNA and other measurements such as vitamin and protein levels.  For those 

who gave consent to the use of their stored tissue, blocks and slides were 

obtained from the local hospital for investigation. Slides were prepared from 

blocks for histological examination and tissue was taken from the tumour for 

extraction of DNA and RNA for allele screening and expression arrays.  

Cases were followed up annually for up to 5 years (active follow-up). 

Data from the GP records and linkage to Office for National Statistics (ONS) 

death data were also used (passive follow-up). At the annual follow-up, the 

consenting cases were asked to complete a further questionnaire by telephone 

and to consider giving another blood sample to be used to determine which 

proteins or other constituents of blood are important for prognosis for 

melanoma patients.  
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2.2 Study variables  
The study variables used in this study are the survival outcome, and the three 

different types of factors; patient and tumour characteristics, gene expressions, 

and genotypes. 

 

2.2.1 Survival outcome 
MSS is the outcome of interest in this study. Patients who are still alive 

or died from other causes are censored observations. Survival time for event of 

interest was calculated from the time of diagnosis to time of death from 

melanoma. For censored observations, survival time was calculated from death 

of diagnosis to last follow-up time for those who are still alive or died from other 

causes. Survival status was determined by looking at the definitive cause of 

death from the ONS and death certificate.  

 

2.2.2 Patient and tumour characteristics 
The following patient and tumour characteristics were included as 

potential prognostic factors in the survival models:  

• Age at diagnosis 

• Sex 

• Breslow thickness 

• Mitotic rate 

• Type of melanoma (superficial spreading/ nodular/ lentigo maligna, acral 

lentiginous/ unclassified and other) 

• Tumour site (limbs/ head or neck/ trunk/ other)  

• Presence of ulceration (no/yes) 

• Presence of lymphocytic infiltration (no/yes) 

• Presence of lymphatic or vascular infiltration (no/yes) 

• Presence of histological regression (no/yes) 

• Hair colour at age 18 (black or brown/ red/ blonde) – self-reported  

• Eye colour (brown/ green or hazel/ blue/ grey or pale blue) – self-

reported
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2.2.3 Genotype data 
Genome-wide genotype data are available for 1,994 cases in the LMC. 

Patients were genotyped at ~800K variants using the Illumina Human Omni 

Express Exome chip.  

 

2.2.3.1 Sample handling and DNA preparation (performed by lab 
technician) 

DNA was extracted from blood samples and the DNA concentration and 

quantity was examined for quality control (QC) before processing on the 

Illumina arrays.  

 

2.2.3.2 Sample QC (performed by Dr John Davies)  
Genotypes were called using Illumina’s BeadStudio software. Samples were 

excluded for any of the following reasons: 

i. Sex as inferred from genotyping not matching reported sex 

ii. Call rate of less than 97% (of the total number of SNPs on the array) 

iii. Evidence on non-European ancestry from PCA 

iv. Evidence of first-degree relationship with another individual 

v. Samples from individuals who had not given appropriate consent  

After excluding samples using the exclusion criteria above, only 1907 samples 

were eligible for analysis.  

 

2.2.3.3 SNP QC (performed in PLINK)  
The following criteria were used for SNP exclusion: 

i. Missing rate of more than 3% 

ii. Minor allele frequency (MAF) of less than 5% 

iii. Hardy-Weinberg equilibrium (HWE) test P-value of less than 10-4 

 

 Additional genome-wide genotype data were obtained for two melanoma 

cohorts from Cambridge, UK (n=494) and Houston, US (n=1522). The 

additional genotype data were used for heritability analysis described in 

Chapter 4. Patients from the Cambridge cohort were genotyped using the 

Illumina Human Omni Express Exome chip for ~800 SNPs. In the Houston 

cohort, patients were genotyped using Illumina Human Omni Quad chip for 
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about ~100K SNPs. Similar criteria were applied for SNP QC in the two 

cohorts.  

 

2.2.4 Gene expression data 
The gene expression data used in this study are from 699 samples on 

the Illumina Whole Genome DASL chip that includes 29,354 probes and has 

between one to eight probes representing each gene from 20,819 genes. 

Samples were not randomly chosen from the cohort for the microarray 

analysis. Individuals with tumour thickness more than 0.75mm and with the 

longest follow-up period were selected in order to increase the power of the 

study to identify biomarkers associated with melanoma outcomes. Individuals 

with thinner tumours were not selected as they are usually cured by excision of 

the tumour.  

 

2.2.4.1 Sample preparation (performed by lab technician)  
Samples for expression arrays were obtained from the primary tumour 

tissue. Formalin-fixed paraffin-embedded tissue blocks were used to extract 

the RNA. Sampling of the tumour from tissue blocks was performed using 

tissue microarray needle inserted horizontally through the most invasive part of 

the tumour and containing the fewest immune and stromal cells to reduce 

contamination during extraction of the RNA. A cross-section of the tumour was 

taken for hematoxylin and eosin staining to accurately identify a suitable area 

to sample from the tissue block.  The RNA was extracted from the tissue core 

using an RNA kit.  

 

2.2.4.2 Microarray data pre-processing (performed by Dr Jeremie 
Nsengimana) 

The pre-processing of the microarray data was conducted within the 

Genomestudio software supplied by Illumina. The steps included examination 

of the number of probes detected in each sample, followed by background 

correction to remove non-specific signal (i.e. the expression that is identified by 

the negative control probes that are present on the array) from total signal, and 

then normalization to remove non-biological variation between samples.  
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The first step in the microarray data pre-processing is the removal of 

unsuccessful samples based on the number of genes detected in each sample. 

However, no samples were excluded from the expression dataset as explained 

in the next paragraph.  

The normalization method for the expression data was done within R 

software using the R package SWAMP. This package allows adjustment to be 

made to correct for the differences between chips, and hence no samples were 

excluded in the dataset. Quantile normalization was applied on the expression 

data. The method ranked the genes in each sample and calculated the 

average gene expression across samples, then used this value as a reference 

sample. Each gene value was then replaced by the average expression on 

each sample and the genes’ order was reverted back to the original order to 

obtain the normalized signals. Several normalization methods (average 

method, rank invariant, cubic spline and quantile) were available. The quantile 

normalization method was chosen as this method produced the most similar 

distributions of gene intensities between the samples compared to other 

normalization methods. 

 

2.2.4.3 Probe QC  
Probe QC was performed to filter probes detected in a small proportion 

of samples (which may indicate low expression) and probes with low variance 

(which are likely to be affected by noise). Filtering probes detected in a low 

proportion of samples (chosen threshold less than 5% of samples) was based 

on the proportion of samples detecting each probe at P-value<0.05. The 

detection P-value is calculated within the Illumina software and provides the 

significance level that the signal is detected (probability that the signal from a 

given probe is greater than the signal from the background noise). There were 

5.5% probes on the expression data with low proportion of samples detected. 

After removal of probes detected in a low proportion of samples, there were 

27,730 probes retained in the data.  

Filtering of probes with low variance was based on the distribution of 

expression levels of all probes in the data. The variance of each probe on the 

Whole Genome DASL was calculated and a histogram of the variance 

distribution was plotted to determine the cut-off value for low variance in the 
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data. After filtering probes based on low proportion of samples detected, 134 

out of 27,730 probes with low variance (variance < 0.045) were excluded, 

further reducing the probes to 27,596.  

For further analysis, the expression level of each probe on the Whole 

Genome DASL arrays was transformed to a log2 scale so that an increase in 

one unit corresponds to a doubling of expression levels. Then, the log2 

expression level for each gene was standardised so that all genes have a 

mean of 0 and variance of 1 to convert all genes to a comparable scale.  Each 

probe was analysed individually as suggested by Illumina.  
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Chapter 3 Survival analyses of single types of variable 
 

The aim in this chapter is to: 

i. Determine the relationship of patient and tumour characteristics, gene 

expression levels, and germline genetic variants with MSS 

	

3.1 Introduction  
The established clinical prognostic factors in primary melanoma as 

described in Chapter 1 are age, sex, tumour site, tumour thickness, presence 

of ulceration, and mitotic rate. A prognostic factor is defined as a measure at a 

given starting point such as diagnosis of disease, that is associated with a 

subsequent endpoint such as death (Riley et al., 2013). The advances in 

technology allow for generation of -omics data such as genomic, 

transcriptomic, and proteomic, that could be used to identify new prognostic 

biomarkers that may have better predictive accuracy than clinical data alone.  

This chapter explores the relationships between clinical predictors, such 

as patient and tumour characteristics, and -omics data, such as gene 

expression levels and genetic variants, with MSS. For the purpose of building 

prognostic prediction models, samples used in this study were split into a 

training set that will be used to develop models and a test set that will be used 

to assess the predictive performance of the models. Analyses in this chapter 

were conducted mainly in a training set (to identify the important predictors for 

MSS) that excludes samples in the test set which will be used in Chapter 6 (to 

build the prognostic models and to assess predictive performance).  

 

3.2 Methods  
3.2.1 Samples 

Samples used for analysis in this chapter are as described in Chapter 2. 

Analyses in this chapter excluded samples from patients with survival analysis 

exclusion criteria (patients with multiple melanomas, who were recruited into 

the study more than two years after diagnosis, or were missing cause of death) 

and those in the test set that have been kept aside for analysis in Chapter 6.   
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3.2.2 Study variables  
3.2.2.1 Clinical predictors  

Twelve patient and tumour characteristics were included as potential 

prognostic factors for MSS which include age (in years), sex (categorized as 

female and male), Breslow thickness (in mm), type of melanoma (categorized 

as superficial spreading, nodular, lentigo maligna, acral lentiginous, 

unclassified, and other), tumour site (categorized as limbs, head/neck, truck, 

and other), presence of ulceration (categorized as no and yes), mitotic rate (per 

mm2), presence of lymphocytic infiltration (categorized as no and yes), 

presence of lymphatic or vascular infiltration (categorized as no and yes), 

presence of histological regression (categorized as no and yes), hair colour at 

age 18 (categorized as black/brown, red, and blonde), and eye colour 

(categorized as brown, green/hazel, blue, and grey/pale blue). For the 

categorical variables, the category with the best expected outcome (based on 

the literature) were coded as the reference group. Samples with missing data 

were excluded from the final analysis.  

 

3.2.2.2 Whole-genome gene expression  
Whole-genome gene expression data used in this chapter are from 699 

samples using Illumina Whole Genome DASL chip which consists of 29,354 

probes. As explained in Chapter 2 (§ 2.2.4), these samples were not randomly 

selected from the cohort but were enriched for patients with thicker tumours.  

Patients with gene expression data were randomly split into a training 

set (2/3) and a test set (1/3) by Dr. Jeremie Nsengimana. A total of 464 

patients were used as a training set and 235 as a test set. The data split based 

on Dr. Nsengimana’s analysis was used, to be consistent with other analyses 

by researchers in the group. The QC for gene expression data was as 

described in Chapter 2. After QC, 424 patients from the training set (excluding 

patients with survival analysis exclusion criteria) and 27,596 probes were 

retained for analysis.  
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3.2.2.3 Genome-wide single nucleotide polymorphism (SNP)  
Genome-wide SNP data and QC used in this chapter are as described 

in Chapter 2. After SNP QC, the genome-wide SNP data still contains a very 

large number of SNPs (> 500,000 SNPs). Therefore, results from survival 

genome-wide association analysis conducted by Dr. John Davies were used to 

screen SNPs across the genome as potential predictors for MSS and to reduce 

dimensionality.  

 A total of 7414 SNPs from across the genome with P-values < 0.01 in 

univariable Cox models (excluding patients in the test set) were selected as 

potential predictors. The threshold P-value < 0.01 was chosen to include as 

many SNPs as possible, but also reduce the set of potential predictors for the 

penalized Cox regression analysis. After QC, 1543 patients (excluding patients 

with survival analysis exclusion criteria and those in the test set) and 5651 

SNPs were retained for further analysis.  

 

3.2.3 Statistical analysis  
The survival outcome in these analyses was MSS. The survival time was 

calculated from the time of diagnosis until the time of death from melanoma or 

until last follow-up time for censored observations who did not experience the 

event of interest (death from melanoma) in this study. Three main survival 

analyses were conducted in this chapter as follows: 

 

1. Survival analysis to determine the relationship between clinical 

predictors and MSS: The associations of 12 clinical predictors with MSS 

were first explored in the whole cohort (n=1985) using Cox proportional 

hazards regression analysis for three models; univariable model, 

adjusted for age and sex, and further adjusted for Breslow thickness, as 

age, sex, and Breslow thickness are the most important predictors for 

survival in primary melanoma. The next analysis explored the 

association of five established clinical predictors with MSS in 1795 

patients (excluding test set samples). A multivariable Cox regression 

was performed to determine the effect of the predictors on MSS in 

multivariable analysis. 
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2. Survival analysis to determine the relationship between gene expression 

levels and MSS: After QC, lasso penalized Cox regression analysis was 

performed in 424 patients to identify the important gene expression 

levels that predict MSS. After selecting a set of gene expression levels 

important for MSS from the penalized Cox model, univariable Cox 

regression was performed to identify the effect of each expression level 

on MSS. A univariable analysis of each probe was also performed to 

compare the top probes in univariable Cox models and the selected 

probes in the penalized model. 

 

3. Survival analysis to determine the relationship between genetic variants 

and MSS: After QC, lasso penalized Cox regression analysis was 

performed in 1543 patients to identify the important SNPs that predict 

MSS. After selecting a set of SNPs important for MSS from the 

penalized Cox model, univariable Cox regression was performed to 

identify the effect of each SNP on MSS. A univariable analysis of each 

SNP was also performed for comparison with the penalized model.  
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3.2.3.1 Descriptive analysis 
Descriptive statistics were calculated on clinical and tumour 

characteristics and survival variables for all patients in the cohort. Numerical 

variables were assessed for normality; the median and range were reported for 

variables with a skewed distribution, otherwise mean and standard deviation 

(SD) for normally distributed variables. For categorical variables, the frequency 

and percentage of each category were reported.  

 

3.2.3.2 Univariable and multivariable Cox regression 
A common approach in modelling time to event data is to use a Cox 

proportional hazards model which has the form:  

ℎ " # = ℎ% " exp(#*) 

where ℎ% " 	is baseline hazard function at time t, X is the vector of explanatory 

variables  and * is the vector of coefficients for each variable. The parameter - 

is estimated using the maximum likelihood estimate from the partial likelihood:  

. * = 	
exp(#/*)

exp(#0*)0∈2345	6

 

where 7 is the set of indices for the failures and 84 is the set of indices for 

patients at risk at time "4. 

The hazard ratio exp(β) is the ratio of the rate at which patients in the 

two (or more) groups defined by the corresponding covariate are experiencing 

an event (Hosmer and Lemeshow, 1999). The Cox model involves the 

assumption that the regression effect * is constant over time; this is the 

proportional hazards assumption.  

Univariable Cox regression analysis was performed to provide a 

preliminary idea of which variables had possible prognostic importance. 

Multivariable Cox regression was performed for the selected established 

clinical predictors to identify the effect of each predictor on MSS when 

adjusting for other predictors. The regression coefficient (β), hazard ratio (HR), 

standard error (SE) of the β and P-value were reported.  
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3.2.3.3 Penalized Cox regression  
In a high-dimensional data setting, reliable estimation of parameters  *	 

using a Cox model is no longer possible when the number of predictors p is 

much larger than the number of samples N (p >> N). One of the strategies for 

dealing with high-dimensional data is penalized regression, which is a 

regularization or shrinkage method that introduces some constraint on the 

parameters to be estimated (Hastie et al., 2001).  

For generalized linear regression, Tibshirani (1996) described the least 

absolute shrinkage and selector (lasso) technique as a variable selection 

method using L1 penalty; this adds a penalty to the log-likelihood, comprised of 

the sum of the absolute values of the coefficients (∑⏐*0⏐). This method is 

attractive in the high-dimensional setting because it can shrink some of the 

coefficients to zero and thus can be used for variable selection. For survival 

analysis, Tibshirani (1997) proposed a similar strategy for L1-penalized Cox 

regression to estimate * which minimizes the penalized log-likelihood function:  

 

* 9 = argmin
@

− log . * +	9 * E  

where . * 	is the partial likelihood and 9>0 is the regularization parameter 

which controls the amount of regularization applied to the estimate (Tibshirani, 

1997). To increase the computational efficiency of the estimation method used 

in Tibshirani (1997), a more efficient algorithm was proposed by Park and 

Hastie (2007) for both generalized linear models and Cox models.  Another 

commonly used penalized regression method is ridge regression which uses L2 

penalty that comprises the sum of square of the coefficients (∑ *0F). Although 

ridge regression shrinks the coefficients towards zero, it does not select 

variables as lasso does because it does not set any coefficients to zero. 

For a case where there are only two predictors, Figure 3.1 shows some 

insight of why lasso  often produces coefficients that are exactly zero and ridge 

regression does not.  The constraint region when using the lasso constraint 

(∑⏐*0⏐≤t) is the rotated square  (left diagram). The lasso solution finds the first 

point that touches the constraint region which sometimes occurs at a corner, 

and this corresponds to a zero coefficient. With ridge regression (∑ *0F≤t), the 
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constraint region is the circle (right diagram), which has no corners for the 

contours to hit, hence does not result in zero coefficients.   

 

 

Figure 3.1 Estimation diagram for the lasso and ridge regression 
(Based on Tibshirani, 1996). 

 

Coxpath algorithm  

In this chapter, the method proposed by Park and Hastie (2007) for 

fitting L1-penalized Cox regression was applied to select important gene 

expression levels and SNPs for MSS. Park and Hastie (2007) introduced the 

Coxpath algorithm that implements the “predictor-corrector” method to 

determine the entire path of the coefficient estimates as the regularization 

parameter 9 varies * 9 : 0 < 9 < 9JKL . The algorithm starts from 9JKL, the 

largest lambda that makes any coefficients non-zero and computes a series of 

solution sets, each time estimating the coefficients with a smaller λ based on 

the previous estimate. With each step, the penalty is lowered and this results in 

more coefficients becoming non-zero. The iteration stops when the set of non-

zero coefficients is not augmented anymore and this is usually when the 9 = 0, 

reducing to the standard Cox proportional hazards model estimates.  

The estimate of the coefficient and the step size of λ between iterations 

are determined by the predictor-corrector method which consists of three 

steps: determining the step size in λ, predicting the corresponding change in 

the coefficients, and correcting the error in the previous prediction. This 

algorithm provides the exact order of the active set changes which can be used 
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to identify the order in which the variables  enter or leave the model. The 

coxpath function by Park and Hastie (2007) was implemented in the R package 

glmpath.  

 

K-fold cross-validation 

Once a path of solutions is calculated, an optimal 9 value needs to be 

selected so that the corresponding model will be the best model while avoiding 

over-fitting the data. The most widely used method to select the best model is 

cross-validation. There are other methods for doing this such as using Akaike 

or Bayesian information criteria, but these methods have been shown to over-

fit in survival predictions using high-dimensional data (Schumacher et al., 

2007). 

In K-fold cross-validation, data is split into K equal parts, then one part is 

set aside as a test set (to evaluate model performance, for example by 

calculating the prediction error) and other remaining parts are used as a 

training set (to build a model). This procedure will be done for k = 1, 2,…,K by 

keeping one fold outside as a test set in each cycle. After cycling through the 

procedure, the errors from each k will be combined to obtain the prediction 

error of the overall model. Repeating this process for a grid of 9 values, the 

value that minimizes the prediction error will be selected to find the best model. 

For a continuous outcome, squared error is used to evaluate a model’s test 

performance, and for a categorical outcome, misclassification error could be 

used (Hastie et al., 2001).  

For survival data, the use of squared error is inappropriate due to 

censoring. In Cox regression setting, the cross-validated partial log-likelihood 

(cvpl) introduced by Verweij and van Houwelingen (1993) is often used to 

evaluate the predictive ability of a survival model. Verweij and van 

Houwelingen (1993) used a leave-one-out cross-validation method to compute 

the cvpl which measures how well every observation M can be predicted using 

the other observations. 
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This calculates the contribution of observation M to the partial log-

likelihood:  

N/(*) = N * −	NO/ *  

where		N * 	 is the full log-likelihood model and  NO/ *  is the log-likelihood 

when the observation M	is left out. Cvpl is given by:  

 

PQRN = 	 N/(*O/)

S

/TE

 

where *O/ is the value of * that maximizes the log-likelihood when observation 

M is left out.  A large value of the cvpl indicates a model that fits new 

observation well (Verweij and van Houwelingen, 1993). Leave-one-out cross-

validation (K = n), where n is the sample size, takes a lot of computation time, 

because it requires fitting U models, each containing U − 1 observations. Some 

studies such as  Bovelstad et al. (2007) have modified the leave-one-out cross-

validation to K-fold cross-validation to select the optimal tuning parameter for 

the L1- and L2 penalized Cox regression in their analyses. Their method splits 

the data into a training set and a test set, and instead of calculating the cvpl 

when observation M is left out, it calculates the cvpl when the kth fold, k = 1, 2, 

…, K, is left out. 

Model selection for lasso penalized Cox models in this chapter was 

performed using an internal cross-validation cv.coxpath function in the glmpath 

package which computes the cross-validated (minus) log-partial likelihood for 

coxpath. A 10-fold cross-validation was performed for a grid of values of 9; the 

optimal value of 9 is chosen to correspond to the value which has the smallest 

cross-validation error. 
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3.3 Results  
3.3.1 Clinical predictors and survival  

Table 3.1 shows the descriptive analysis for clinical and tumour 

characteristics of patients in the whole cohort. A total of 199 patients with 

multiple melanomas, recruited into the study more than two years after 

diagnosis or missing cause of death were excluded from the survival analysis. 
A total of 1985 individuals in LMC with mean age of 54.3 years (SD=13.7) were 

included for survival analysis.  The number of deaths from melanoma in this 

analysis is 349 (17.6%). The median survival time for those who have died is 

3.2 years, and the median follow-up time for survivors is 7.5 years. Patients in 

this analysis are cases with primary melanoma, and the majority (56%) were in 

AJCC stage I. The majority of patients were female (56.6%), most had 

superficial spreading melanoma (57.8%), the most common site of tumour was 

on the limbs (44.1%), and most had no ulceration (79.6%).  

Table 3.2 shows the exploratory analysis of  the association of clinical 

predictors with  MSS in the whole cohort of 1985 patients.  In univariable 

analysis,  age, sex, tumour type, tumour site, Breslow thickness, mitotic rate, 

presence of ulceration, presence of TILs, and presence of vascular infiltration 

showed significant association with  MSS.  Factors that remained significant  

after controlling for three established predictors (age, sex, and Breslow 

thickness) are melanoma type (acral lentiginous, with worse prognosis than the 

most common type),  tumour site (trunk and other, with worse prognosis than 

limbs),  mitotic rate, presence of ulceration, presence of TILs, and presence of 

vascular infiltration.  

Table 3.3 shows the association of five established clinical predictors 

(age, sex, tumour site, Breslow thickness, and presence of ulceration) with 

MSS in the cohort excluding 190 patients that will be used for a test set in 

Chapter 6 (n=1795). All predictors were significantly associated with MSS in 

univariable analysis and remained significant in multivariable analysis except 

for some differences between tumour sites. 
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Table 3.1 Clinical and tumour characteristics of patients in the whole cohort 
(n=1985) 
Variables  n missing n (%) 
Age (years) 0 54.3 (13.7) 
Sex  0  
   Female   1123 (56.6) 
   Male   862 (43.4) 
Tumour type  0  
   Superficial spreading  1148 (57.8) 
   Nodular  402 (20.3) 
   Lentigo maligna melanoma  34 (1.7) 
   Acral lentiginous  58 (2.9) 
   Unclassified  165 (8.3) 
   Other  178 (9.0) 
Tumour site  0  
   Limbs  875 (44.1) 
   Head/neck  196 (9.9) 
   Trunk  698 (35.1) 
   Other  216 (10.9) 
Breslow thickness (mm) 49 1.5 (0.2 – 20)* 
Mitotic rate (per mm2) 293 2 (0 – 83)* 
Presence of ulceration  15  
   No  1569 (79.6) 
   Yes   401 (20.4) 
Presence of TILs 440  
   No  232 (15.0) 
   Yes  1313 (85.0) 
Presence of histological regression  499  
   No  1205 (81.1) 
   Yes  281 (18.9) 
Presence of vascular infiltration  263  
   No  1600 (92.9) 
   Yes  122 (7.1) 
Hair colour at age 18 81  
   Black/brown  1308 (68.7) 
   Red   227 (11.9) 
   Blonde   369 (19.4) 
Eye colour  85  
   Brown  309 (16.3) 
   Green/hazel  567 (29.8) 
   Blue  803 (42.3) 
   Grey   221 (11.6) 
AJCC stage 4  
   Stage I  1094 (56.0) 
   Stage II  588 (30.1) 
   Stage III  266 (13.6) 
   Stage IV   6 (0.3) 
Follow-up time for patients who are still alive† 0 7.50 (0.45 – 14.69)* 
Survival time for patients who have died†  3.20 (0.38 – 14.48)* 
Survival status  0  
   Alive/censored   1636 (82.4) 
   Died from melanoma   349 (17.6) 

*Median (range) †MSS time calculated in years  



  

 
4

0
 

Ta
bl

e 
3.

2 
A

ss
oc

ia
tio

n 
of

 c
lin

ic
al

 p
re

di
ct

or
s 

w
ith

 M
S

S
 in

 th
e 

w
ho

le
 c

oh
or

t (
n=

19
85

*)
 

V
a

ri
a

b
le

 
n

 
U

n
iv

a
ri

a
b

le
 C

o
x
 m

o
d

e
l 

M
u

lt
iv

a
ri

a
b

le
 C

o
x
 m

o
d

e
l 

(A
d

ju
s
te

d
 f

o
r 

a
g

e
 a

n
d

 s
e

x
) 

M
u

lt
iv

a
ri

a
b

le
 C

o
x
 m

o
d

e
l 

(A
d

ju
s
te

d
 f

o
r 

a
g

e
, 

s
e

x
 a

n
d

 

B
re

s
lo

w
 t

h
ic

k
n

e
s
s
) 

β 
H

R
 

S
E

 
P

-v
a

lu
e

 
β 

H
R

 
S

E
 

P
-v

a
lu

e
 

β 
H

R
 

S
E

 
P

-v
a

lu
e

 

 

A
ge

 (y
ea

rs
) 

1
9

8
5

 
0

.0
4

 
1

.0
4

 
0

.0
1

 
2

.0
 x

 1
0

-1
6
 

- 
- 

- 
- 

- 
- 

- 
- 

S
ex

  
1

9
8

5
 

 
 

 
 

 
 

 
 

 
 

 
 

  
 F

e
m

a
le

  
1

1
2

3
  

- 
- 

- 
- 

- 
- 

- 
- 

- 
- 

- 
- 

  
 M

a
le

  
8

6
2

  
0

.5
9

 
1

.8
1

 
0

.1
1

 
3

.7
 x

 1
0

-8
 

- 
- 

- 
- 

- 
- 

- 
- 

Tu
m

ou
r 

ty
pe

  
1

9
8

5
 

 
 

 
 

 
 

 
 

 
 

 
 

  
 S

u
p

e
rf

ic
ia

l 
s
p

re
a

d
in

g
 

1
1

4
8

  
- 

- 
- 

- 
- 

- 
- 

- 
- 

- 
- 

- 

  
 N

o
d

u
la

r 
4

0
2

  
0

.8
3

 
2

.3
0

 
0

.1
2

 
1

.4
 x

 1
0

-1
1
 

0
.7

0
 

2
.0

2
 

0
.1

2
 

1
.6

 x
 1

0
-8

 
0

.2
0

 
1

.2
2

 
0

.1
3

 
0

.1
4

 

  
 L

e
n

ti
g

o
 m

a
li
g

n
a

  
  

 

  
 m

e
la

n
o

m
a

 

3
4

  
-0

.1
6

 

 

0
.8

5
 

 

0
.5

1
 

 

0
.7

5
 

 

-0
.7

1
 

0
.4

9
 

0
.5

1
 

0
.1

7
 

-0
.7

8
 

0
.4

6
 

0
.5

1
 

0
.1

3
 

  
 A

c
ra

l 
le

n
ti
g

in
o

u
s
 

5
8

  
1

.1
5

 
3

.1
7

 
0

.2
4

 
1

.4
 x

 1
0

-6
 

0
.9

8
 

2
.6

7
 

0
.2

4
 

4
.5

 x
 1

0
-5

 
0

.7
7

 
2

.1
6

 
0

.2
4

 
1

.4
 x

 1
0

-3
 

  
 U

n
c
la

s
s
if
ie

d
 

1
6

5
 

-0
.0

2
 

0
.9

8
 

0
.2

3
 

0
.9

2
 

0
.0

6
 

1
.0

6
 

0
.2

3
 

0
.8

1
 

-0
.3

0
 

0
.7

4
 

0
.2

7
 

0
.2

7
 

  
 O

th
e

r 
1

7
8

  
0

.4
2

 
1

.5
2

 
0

.1
9

 
0

.0
3

 
0

.3
8

 
1

.4
7

 
0

.1
9

 
0

.0
4

 
-0

.4
9

 
0

.6
3

 
0

.2
4

 
0

.0
5

 

Tu
m

ou
r 

si
te

  
1

9
8

5
 

 
 

 
 

 
 

 
 

 
 

 
 

  
 L

im
b

s
 

8
7

5
  

- 
- 

- 
- 

- 
- 

- 
- 

- 
- 

- 
- 

  
 H

e
a

d
/n

e
c
k
 

1
9

6
  

0
.6

6
 

1
.9

4
 

0
.1

9
 

4
.9

 x
 1

0
-4

 
0

.3
5

 
1

.4
2

 
0

.1
9

 
0

.0
7

 
0

.1
2

 
1

.1
3

 
0

.2
0

 
0

.5
5

 

  
 T

ru
n

k
 

6
9

8
  

0
.7

0
 

2
.0

1
 

0
.1

3
 

2
.1

 x
 1

0
-7

 
0

.5
5

 
1

.7
3

 
0

.1
4

 
1

.2
 x

 1
0

-4
 

0
.4

9
 

1
.6

2
 

0
.1

4
 

6
.4

 x
 1

0
-4

 

  
 O

th
e

r 
2

1
6

  
1

.5
0

 
4

.4
7

 
0

.1
5

 
2

.0
 x

 1
0

-1
6
 

1
.2

2
 

3
.4

0
 

0
.1

6
 

1
.1

 x
 1

0
-1

4
 

0
.6

3
 

1
.8

8
 

0
.1

8
 

6
.3

 x
 1

0
-4

 

B
re

sl
ow

 th
ic

kn
es

s 
(m

m
) 

1
9

3
6

 
0

.2
2

 
1

.2
4

 
0

.0
1

 
2

.0
 x

 1
0

-1
6

 
0

.2
1

 
1

.2
4

 
0

.0
1

 
2

.0
 x

 1
0

-1
6

 
- 

- 
- 

- 

M
ito

tic
 r

at
e 

(p
er

 m
m

2 ) 
1

6
9

2
 

0
.0

5
 

1
.0

5
 

0
.0

0
4

 
2

.0
 x

 1
0

-1
6
 

0
.0

5
 

1
.0

5
 

0
.0

0
4

 
2

.0
 x

 1
0

-1
6
 

0
.0

3
 

1
.0

3
 

0
.0

1
 

2
.1

 x
 1

0
-8

 

P
re

se
nc

e 
of

 u
lc

er
at

io
n 

 
1

9
7

0
 

 
 

 
 

 
 

 
 

 
 

 
 

  
 N

o
 

1
5

6
9

  
- 

- 
- 

- 
- 

- 
- 

- 
- 

- 
- 

- 

  
 Y

e
s
  

4
0

1
  

1
.3

8
 

3
.9

7
 

0
.1

1
 

2
.0

 x
 1

0
-1

6
 

1
.2

1
 

3
.3

6
 

0
.1

1
 

2
.0

 x
 1

0
-1

6
 

0
.8

0
 

2
.2

3
 

0
.1

2
 

1
.1

 x
 1

0
-1

0
 

P
re

se
nc

e 
of

 T
IL

s 
1

5
4

5
 

 
 

 
 

 
 

 
 

 
 

 
 

  
 N

o
 

2
3

2
  

- 
- 

- 
- 

- 
- 

- 
- 

- 
- 

- 
- 

  
 Y

e
s
 

1
3

1
3

  
-0

.6
9

 
0

.5
 

0
.1

4
 

1
.9

 x
 1

0
-6

 
-0

.8
0

 
0

.4
5

 
0

.1
4

 
3

.5
 x

 1
0

-8
 

-0
.7

1
 

0
.4

9
 

0
.1

4
 

1
.1

 x
 1

0
-6

 



  

 
4

1
 

P
re

se
nc

e 
of

 v
as

cu
la

r 
in

fil
tr

at
io

n 
 

1
7

2
2

 
 

 
 

 
 

 
 

 
 

 
 

 

  
 N

o
 

1
6

0
0

  
- 

- 
- 

- 
- 

- 
- 

- 
- 

- 
- 

- 

  
 Y

e
s
 

1
2

2
  

1
.3

4
 

3
.8

2
 

0
.1

5
 

2
.0

 x
 1

0
-1

6
 

1
.3

4
 

3
.8

3
 

0
.1

5
 

2
.0

 x
 1

0
-1

6
 

0
.9

0
 

2
.4

6
 

0
.1

6
 

1
.7

 x
 1

0
-8

 

P
re

se
nc

e 
of

 h
is

to
lo

gi
ca

l 
re

gr
es

si
on

 
1

4
8

6
 

 
 

 
 

 
 

 
 

 
 

 
 

  
 N

o
 

1
2

0
5

  
- 

- 
- 

- 
- 

- 
- 

- 
- 

- 
- 

- 

  
 Y

e
s
 

2
8

1
  

-0
.0

8
 

0
.9

3
 

0
.1

6
 

0
.6

3
 

-0
.1

7
 

0
.8

4
 

0
.1

6
 

0
.2

9
 

-0
.1

3
 

0
.8

8
 

0
.1

6
 

0
.4

4
 

H
ai

r 
co

lo
ur

 a
t a

ge
 1

8 
1

9
0

4
 

 
 

 
 

 
 

 
 

 
 

 
 

  
 B

la
c
k
/b

ro
w

n
 

1
3

0
8

  
- 

- 
- 

- 
- 

- 
- 

- 
- 

- 
- 

- 

  
 R

e
d

  
2

2
7

  
-0

.3
1

 
0

.7
3

 
0

.1
9

 
0

.1
0

 
-0

.2
1

 
0

.8
1

 
0

.1
9

 
0

.2
5

 
-0

.2
3

 
0

.7
9

 
0

.1
9

 
0

.2
3

 

  
 B

lo
n

d
e

  
3

6
9

  
-0

.2
3

 
0

.7
9

 
0

.1
5

 
0

.1
2

 
-0

.1
6

 
0

.8
5

 
0

.1
5

 
0

.2
7

 
-0

.1
0

 
0

.9
0

 
0

.1
5

 
0

.4
9

 

E
ye

 c
ol

ou
r 

 
1

9
0

0
 

 
 

 
 

 
 

 
 

 
 

 
 

  
 B

ro
w

n
 

3
0

9
  

- 
- 

- 
- 

- 
- 

- 
- 

- 
- 

- 
- 

  
 G

re
e

n
/h

a
z
e

l 
5

6
7

  
-0

.2
2

 
0

.8
1

 
0

.1
7

 
0

.1
9

 
-0

.1
3

 
0

.8
8

 
0

.1
7

 
0

.4
5

 
-0

.1
8

 
0

.8
4

 
0

.1
7

 
0

.3
0

 

  
 B

lu
e

 
8

0
3

  
-0

.1
2

 
0

.8
9

 
0

.1
6

 
0

.4
4

 
-0

.1
4

 
0

.8
7

 
0

.1
6

 
0

.3
8

 
-0

.1
8

 
0

.8
4

 
0

.1
6

 
0

.2
6

 

  
 G

re
y
  

2
2

1
  

-0
.0

7
 

0
.9

3
 

0
.2

0
 

0
.7

3
 

-0
.0

5
 

0
.9

5
 

0
.2

0
 

0
.7

9
 

-0
.0

4
 

0
.9

6
 

0
.2

1
 

0
.8

6
 

 *E
x
c
lu

d
in

g
 p

a
ti
e

n
ts

 w
it
h

 m
u

lt
ip

le
 m

e
la

n
o

m
a

s
, 

re
c
ru

it
e

d
 i
n

to
 t

h
e

 s
tu

d
y
 m

o
re

 t
h

a
n

 2
 y

e
a

rs
 a

ft
e

r 
d

ia
g

n
o

s
is

 a
n

d
 m

is
s
in

g
 c

a
u

s
e

 o
f 

d
e

a
th

 

T
IL

s
: 

 T
u

m
o

u
r-

in
fi
lt
ra

ti
n

g
 l
y
m

p
h

o
c
y
te

s
  

M
S

S
: 

M
e

la
n

o
m

a
-s

p
e

c
if
ic

 s
u

rv
iv

a
l 
 

 



 

 

 42 

Table 3.3 Association of selected established clinical predictors with MSS in 
the training set (n=1795a) 

Predictors  n Univariable Cox model Multivariable Cox model
b,c

 

 

β HR SE P-value β HR SE P-value 

Age (years) 1795 0.04 1.04 0.01 1.3 x 10
-15

 0.03 1.03 0.01 8.4 x 10
-8

 

Sex  1795         

   Female  1022 - - - - - - - - 

   Male  773 0.67 1.95 0.12 8.8 x 10
-9

 0.33 1.38 0.13 0.01 

Tumour site 1795         

   Limbs 794 - - - - - - - - 

   Head/neck 171 0.73 2.08 0.20 2.7 x 10
-4

 0.11 1.12 0.22 0.61 

   Trunk 642 0.71 2.02 0.14 1.0 x 10
-6

 0.44 1.55 0.15 4.2 x 10
-3

 

   Other 188 1.48 4.41 0.17 2.0 x 10
-16

 0.37 1.45 0.21 0.07 

Breslow 

thickness 

(mm) 

 

 

1752 0.21 1.24 0.01 2.0 x 10
-16

 

 

0.16 1.18 

 

0.02 

 

 

2.0 x 10
-16

 

Presence of 

ulceration  

 

1780     

    

   No 1447 - - - - - - - - 

   Yes  333 1.36 3.89 0.12 2.0 x 10
-16

 0.75 2.12 0.14 4.7 x 10
-8

 

 
a
 Excluding patients with multiple melanomas, recruited into the study more than 2 years after 

diagnosis, missing cause of death and those in the test set 

MSS: Melanoma-specific survival  
b 
n= 1747, 48 patients were excluded due to missing values  

c
 Proportional hazards assumption was checked and not violated (Table 1 in Appendix II) 
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3.3.2 Gene expression levels and survival  

  Table 3.4 shows 16 gene expression levels with non-zero coefficients 

selected by penalized Cox regression at the chosen penalty, in the order in 

which probes entered the model. However, two of the 16 selected probes (in 

HLA-DQB2 and CIAPIN1) have very small coefficients in the penalized model. 

In univariable analysis, all selected probes were highly associated with MSS. 

For eight selected probes, high expression was protective for survival and for 

the remaining eight probes high expression was associated with increased risk 

of death. Eleven of the selected probes were among the top 20 probes 

associated with MSS in univariable Cox analysis as shown in Table 3.5.  

  The selected probes show low to moderate pairwise correlation 

(Pearson’s correlation) as shown in Table 3.6. The highest correlation was 

observed between probe ILMN_1778401 (HLA-B) and ILMN_1764109 (C1R) 

with r=0.61. For the top 20 probes in univariable analysis, four pairs show 

strong correlation and the rest mostly show moderate correlation (Table 3.7).  
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Table 3.4 16 probes selected by penalized Cox model of MSS at cross-
validated penalty in the training set (n=424a) 
Probe Gene Chr Penalized 

Cox 

model 

Univariable Cox model 

β β HR SE P-value 

ILMN_1701441 LPAR1 9 -0.05 -0.47 0.62 0.07 9.9 x 10
-12

 

ILMN_3249501 ZNF697 1 0.17 0.62 1.85 0.09 2.8 x 10-
12

 

ILMN_1749829 DLG1 14 0.10 0.53 1.70 0.09 1.3 x 10
-9

 

ILMN_1731206 NKD2 5 -0.05 -0.44 0.65 0.07 2.3 x 10
-10

 

ILMN_1764109 C1R 12 -0.03 -0.57 0.56 0.08 1.1 x 10
-11

 

ILMN_2056167 OSTC 4 0.03 0.46 1.58 0.08 5.2 x 10
-8

 

ILMN_3238435 SNORA12 10 -0.05 -0.49 0.61 0.07 2.0 x 10
-11

 

ILMN_1695959 C21orf63 21 -0.06 -0.44 0.65 0.07 1.7 x 10
-9

 

ILMN_1741648 

 

HLA-
DQB2 

6 

 

-0.002 

 

-0.45 

 

0.64 

 

0.08 

 

3.5 x 10
-9 

 

ILMN_1784238 SEC22B 1 0.04 0.43 1.54 0.07 1.8 x 10
-10

 

ILMN_1778401 HLA-B 6 -0.02 -0.42 0.66 0.07 8.4 x 10
-9

 

ILMN_1759729 NDUFA8 9 0.03 0.64 1.89 0.11 4.5 x 10
-9

 

ILMN_2344221 IGSF5 21 0.04 0.39 1.48 0.08 1.0 x 10
-6

 

ILMN_2095633 FGF22 19 -0.03 -0.45 0.64 0.10 4.8 x 10
-6

 

ILMN_1700547 CHST9 18 0.01 0.36 1.43 0.08 1.7 x 10
-5

 

ILMN_1735199 CIAPIN1 16 0.001 0.61 1.85 0.12 4.1 x 10
-7

 
a 
Excluding patients with multiple melanomas, recruited into the study more than 2 years after 

diagnosis, missing cause of death and those in the test set 

Chr: Chromosome  
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Table 3.5 Top 20 probes associated with MSS in univariable Cox analysis 
(n=424a) 

Probe Gene Chr Univariable Cox model 

β HR SE P-value 

ILMN_3249501 ZNF697 1 0.62 1.85 0.09 2.76 x 10
-12

 

ILMN _1701441 LPAR1 9 -0.47 0.62 0.07 9.87 x 10
-12

 

ILMN _1764109 C1R 12 -0.57 0.56 0.08 1.10 x 10
-11

 

ILMN _3238435 SNORA12 10 -0.49 0.61 0.07 2.04 x 10
-11

 

ILMN _1768227 DCN 12 -0.55 0.58 0.08 5.53 x 10
-11

 

ILMN _2334210 ITGB4 17 -0.55 0.57 0.09 1.57 x 10
-10

 

ILMN _1784238 SEC22B 1 0.43 1.54 0.07 1.78 x 10
-10

 

ILMN _1731206 NKD2 5 -0.44 0.65 0.07 2.28 x 10
-10

 

ILMN _2313079 NLRP1 17 -0.50 0.61 0.08 1.07 x 10
-9

 

ILMN _1749829 DLG1 14 0.53 1.70 0.09 1.31 x 10
-9

 

ILMN _1763837 ANPEP 15 -0.47 0.62 0.08 1.62 x 10
-9

 

ILMN _1695959 C21orf63 21 -0.44 0.65 0.07 1.74 x 10
-9

 

ILMN _1670305 SERPING1 11 -0.52 0.60 0.09 2.31 x 10
-9

 

ILMN _1757415 C1orf163 1 0.71 2.04 0.12 3.19 x 10
-9

 

ILMN _1741648 HLA-DQB2 6 -0.45 0.64 0.08 3.49 x 10
-9

 

ILMN _1794612 UBA7 3 -0.50 0.61 0.09 3.76 x 10
-9

 

ILMN _1759729 NDUFA8 9 0.64 1.89 0.11 4.48 x 10
-9

 

ILMN _1737650 DIO2 14 -0.45 0.64 0.08 5.91 x 10
-9

 

ILMN _1702787 SEMA4A 1 -0.45 0.64 0.08 7.33 x 10
-9

 

ILMN _1778401 HLA-B 6 -0.42 0.66 0.07 8.37 x 10
-9

 
a 
Excluding patients with multiple melanomas, recruited into the study more than 2 years after 

diagnosis, missing cause of death and those in the test set 

Chr: Chromosome  

11 probes highlighted were selected by the penalized Cox regression in Table 3.4
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3.3.3 Genetic variants and survival 
  Table 3.8 shows 13 SNPs with non-zero coefficients selected by 

penalized Cox model at the chosen penalty in order of probes that entered the 

model. In univariable analysis, all SNPs were highly significantly associated 

with MSS. The minor alleles of four SNPs were associated with better survival, 

while the minor alleles of the remaining 9 SNPs were associated with 

increased risk of death. When compared to the top 20 SNPs in the univariable 

analysis, 9 SNPs from the penalized model were among the top 20 SNPs 

(Table 3.9).  

  Of the 13 SNPs selected by the penalized model, three pairs of SNPs 

showed high correlation as shown in Table 3.10. Two pairs were in almost 

complete LD, with r≥0.96  and were located very closely in the genome 

(RS2902554 and RS9957831; RS2392477 and RS10233832), but none of the 

other pairs were correlated (|r|<0.1). In contrast, for the top 20 SNPs from 

univariable analysis, there were 24 pairs that were strongly correlated as 

shown in Table 3.11 This shows that using univariable Cox analysis to select 

potential predictors for MSS will results in selecting many highly correlated 

SNPs, whereas penalize regression is quite successful at selecting 

independent SNPs.  
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3.4 Discussion 
3.4.1 Clinical predictors and  survival  

Results in the multivariable analyses are consistent with the literature on 

clinical predictors of melanoma survival, which include age, sex, tumour site, 

tumour type, Breslow thickness, presence of ulceration, and mitotic rate (Thorn 

et al., 1994; Lindholm et al., 2004; Buettner et al., 2005; Balch et al., 2009). 

The evidence for the association between presence of TILs and survival varies 

in the literature for primary melanoma. The main reason for this inconsistency 

is thought to be due to inter-observer variability between the pathologists that 

assessed the tumour slide (Thomas et al., 2013). For the presence of vascular 

infiltration, most evidence of association with survival has been observed in 

metastatic melanoma.  

Only five clinical predictors (age, sex, tumour site, Breslow thickness, 

and presence of ulceration) were eventually considered for inclusion in the 

multivariable analysis of all predictors which will be used to build prognostic 

prediction models for melanoma survival in Chapter 6. Although mitotic rate 

was highly significant in univariable analysis and after adjusting for the three 

established predictors, it was not included for further analysis as data is 

unavailable for many individuals in the test set. In the AJCC staging system, 

mitotic rate information is used mainly for patients with thin tumours (less than 

1 per mm2) to determine whether the patient is in stage IA or IB (Balch et al., 

2009). As the LMC is enriched for cases with thicker tumours, mitotic rate is 

less relevant than Breslow thickness and presence of ulceration for patients in 

this cohort. Presence of TILs was also not included for further analysis 

because predictors subject to inter-observer variability are not suitable for 

building a prognostic prediction model, as they may give rise to different 

predictive ability when tested in new data or future individuals (Moons et al., 

2012).  

 

3.4.2 Gene expression levels and survival   
Until recently, due to limitations in obtaining fresh tissue for microarray 

profiling analysis, there are not many studies reporting gene expression 

signatures for survival outcomes in primary melanoma. As reviewed in Chapter 
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1 (§ 1.2.2), only a few studies have conducted gene expression profiling in 

primary melanoma to identify new prognostic biomarkers for melanoma 

outcomes (Winnepennincxk et al., 2006; Conway et al., 2009; Jewell et al., 

2010; Sivendran et al., 2014; Gerami et al., 2015) or to identify molecular 

classifications for melanoma which may be related to prognosis (Harbst et al., 

2012; Nsengimana et al., 2015).     

In metastatic melanoma, gene expression profiling was used to predict 

survival outcomes (Mandruzzato et al., 2006; John et al., 2008; Bogunovic et 

al. 2009; Mann et al., 2013; Cirenajwis et al., 2015), tumour progression and 

metastasis (Haqq et al., 2005; Jaegar et al., 2007; Riker et al., 2008), and 

immunotherapy response (Johnson et al., 2015). A cross-validation of gene 

expression signatures from different studies (Winnepennincxk et al., 2006; 

John et al, 2008; Bogunovic et al. 2009; Conway et al., 2009; Jonsson et al., 

2010) by Schramm et al. (2012) found that most of the studies contain 

immune-related genes in their gene signatures, which suggests that immune-

related genes may have an important role in melanoma progression and 

outcome.  

The penalized Cox regression analysis using whole-genome gene 

expression data in this chapter selected 16 gene expression levels that are 

associated with MSS (LPAR1, ZNF697, DLG1, NKD2, C1R, OSTC, SNORA12, 

C21ORF63, HLA-DQB2, SEC22B, HLA-B, NDUFA8, IGSF5, FGF22, CHST9, 

and CIAPIN1), of which three were immune-related genes (C1R, HLA-DQB2, 

and HLA-B). Descriptions of the selected genes are shown in Table 3.12.  Little 

is known about the effect of these genes in cancer progression, but expression 

levels of three genes (HLA-B, CIAPIN1, and NKD2) were reported to be 

associated with prognosis in other cancers.  

HLA-B is involved in immunity and its association with uveal melanoma 

has been reported by Blom et al. (1997). Their study reported that low 

expression of HLA-A and -B was associated with improved survival in uveal 

melanoma, however, this has not been validated in a larger sample.  

Cytokine-induced anti-apoptosis molecule 1 (CIAPIN1) is a newly 

identified apoptosis-related molecule that has been shown to be a mediator of 

the RAS signalling pathway. CIAPIN1 expression has been reported to be 
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associated with several cancers such as gastric cancer, liver cancer, 

esophageal cancer, lung cancer, lymphoma and kidney cancer and it was 

suggested that CIAPIN1 might involved in tumorigenicity and carcinogenesis. 

Shi et al. (2010) reported that high expression level of CIAPIN1 in tumour 

tissue was associated with longer survival in 273 patients with colorectal 

cancer (P = 0.0002 from Kaplan-Meier survival analysis). In multivariable 

analysis, expression of CIAPIN1 remained as prognostic factors for colorectal 

cancer survival alongside cancer stage, distant organ metastasis, regional 

lymph node metastasis and local recurrence. Chen et al. (2012) examined the 

association of the expression of CIAPIN1 in tumor tissue with survival in 

patients with pancreatic cancer and found that loss of CIAPIN1 expression 

directly correlated with decreased survival. While increased expression of 

CIAPIN1 in colorectal and pancreatic cancer seems to improved survival, the 

opposite effect was observed for melanoma survival in this study (Table 3.4).  

Naked cuticle homolog 2 (NKD2) is involved in the Wnt signalling 

pathway. In a study by Zhao et al. (2015), they  identified NKD2 as a novel 

suppressor of osteosarcoma tumor growth and metastasis in both mouse and 

human osteosarcoma. They identified downregulation of NKD2 in metastatic 

osteosarcoma cells and re-expression of NKD2 correlated with downregulation 

of signalling pathways that drive cell motility, angiogenesis and growth 

signalling.  
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Table 3.12 Description of the genes selected by penalized Cox model 
Gene  Description  

 
 

Gene 
type 

Biological 
process/molecular 

functions  

Tissue 
relevance 

LPAR1 
 
 
 

Lysophosphatidic acid 
receptor 1 
 
 

Known 
protein 
coding 

Activation of MAPK 
activity; G-protein 
coupled receptor 
signalling pathway  

Unknown 

ZNF697 
 
 

Zinc finger protein 697 
 
 

Known 
protein 
coding 

Regulation of 
transcription; DNA 
template  

Unknown 

DLG1 
 
 
 

Disc, large homolog 1 
(Drosophila) 
 
 

Known 
protein 
coding 

Regulation of 
transcription from 
RNA polymerase II 
promoter 

Increased 
expression 

in 
melanoma 

NKD2 
 
 
 
 

Naked cuticle homolog 2 
 
 
 
 

Known 
protein 
coding 

Wnt signalling 
pathway; calcium ion 
bonding; protein 
binding; growth factor 
binding 

 

C1R 
	
	

Complement component 1 
	
	

Known 
protein 
coding	

Immune response; 
proteolysis;  
complement activation 

Unknown 

OSTC 
 

 

Oligosaccharyltransferase 
complex subunit 
 

Known 
protein 
coding 

Protein binding  
 
 

Unknown 

SNORA12 
 
 

Small nucleolar RNA  
 
 

Non- 
coding 
RNAs 

Unknown 
 
 

Unknown 

C21ORF63 
 

Unknown  
 

Unknown Unknown 
 

Unknown 

HLA-DQB2 
 
 
 
 
 
 
 
 
	

Major histocompatibility 
complex, class II, DQ beta 
2 
 
 
 
 
 
 
	

Known 
protein 
coding	

Regulation of immune 
response; antigen 
binding; T cell 
receptor signalling 
pathway; interferon-
gamma-mediated 
signalling pathway; 
MHC class II receptor 
activity; antigen 
binding 

Unknown	

SEC22B 
 
 

SEC22 homolog B, vesicle 
trafficking protein  
 

Known 
protein 
coding 

Protein transport; 
Protein binding 
 

Unknown 

HLA-B 
 
 
 
 
 

Major histocompatibility 
complex, class I, B 
 
 
 
 

Known 
protein 
coding 

Regulation of immune 
response; interferon-
gamma-mediated 
signalling pathway; 
antigen binding 

Unknown 

NDUFA8 
 
 
 

 

NADH: ubiquinone 
oxidoreductase subunit A8 
 
 
 

Known 
protein 
coding 

NADH dehydrogenase 
(ubiquinone) activity; 
protein complex 
binding 
 

Unknown 

IGSF5/ 
JAM4 

	

Immunoglobulin 
superfamily member 5  
	

Known 
protein 
coding 

Protein binding  
	

Unknown	



 
 

 57 

FGF22 
 
 
 
 
 
 
	

Fibroblast growth factors 
22: large family of 22 
signalling molecules 
 
 
 
 
	

Known 
protein 
coding	

Responsible for 
regulating a range of 
cellular processes 
including proliferation, 
survival, migration, 
differentiation and 
response to injury 
 

Increased 
expression 
in stroma 

cells	

CHST9 
 
 

Carbohydrate (N-
acetylgalactosamine 4-0) 
sulfotransferase 9 

Known 
protein 
coding 

Carbohydrate 
metabolic process  

 

Unknown 

CIAPIN1 
 
 
 
 
 
 

Cytokine induced apoptosis 
inhibitor 1 
 
 
 
 
 

Known 
protein 
coding 

Apoptotic process; 
methylation; protein 
binding; 
methyltransferase 
activity; electron 
carrier activity; ion 
binding  

Unknown 

  Source: www.ensembl.org 
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3.4.3 Genetic variants and survival  
The penalized Cox model using SNP data selected 13 SNPs that are 

important for MSS. The association of these SNPs with melanoma or other 

cancers has never been reported before and there is little known about the 

selected SNPs in the literature. The selected SNPs however, might just be 

tagging another causal variant in LD. Therefore, the gene that is located 

nearest to the SNP is more relevant than the selected SNPs. Table 3.13 shows 

the gene that is located nearest to the selected SNPs and its functions. Of the 

13 SNPs, only nine were located near to a gene. However, the associations of 

the nine genes with melanoma has never been reported before.  

To date, no genome-wide study of melanoma survival has been 

published. Several candidate gene studies, as reviewed in Chapter 1 (§ 1.2.3), 

have reported significant associations between melanoma survival and genetic 

variants such as MC1R variants (Davies et al., 2012; Taylor et al., 2015a), 

vitamin D receptor variants (Davies et al., 2014a; Orlow et al., 2016), and 

PARP1 variants (Davies et al., 2014b; Law et al., 2015b). There were also 

other significant associations reported for other variants, such as variants in 

angiogenesis (development of new blood vessels) and lymphangiogenesis 

(development of new lymphatic vessels) genes (Park et al., 2013), variants in 

nucleotide excision repair genes (Li et al., 2013), and variants in fanconi 

anemia pathway genes (Yin et al., 2015), but these have not been replicated. 
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Table 3.13 Gene located nearest to the selected SNPs and its functions  
SNP Functional class 

of the SNP 
Chr 

 
Gene 

 
Biological process/molecular 

functions of the gene 
RS17837209 Intron variant 13 FAM124A Protein binding 

RS9957831 unknown 18 unknown unknown 

RS4768090 Intron variant 12 LOC1053697
43 

unknown 

RS2902554 unknown 18 unknown unknown 

RS5770310 unknown 22 unknown unknown 

RS10233832 Intron variant 7 ELMO1 Protein binding 

RS17379771 Utr variant 3 
prime 

5 GDNF Protein binding; transport activity; 
growth factor activity 

RS16956192 Intron variant 17 SLC13A5 Transporter activity 

RS2392477 Intron variant 7 ELMO1 Protein binding 

RS6689263 unknown 1 unknown unknown 

RS11639902 Intron variant 16 PHLPP2 Epidermal growth factor receptor 
signalling pathway;  protein binding 

RS12519276 Intron variant 5 GDNF-AS1 unknown 

RS10941528 Intron variant 5 C7 Complement activation; protein 
binding 

Chr: Chromosome 
Source: http://www.ncbi.nlm.nih.gov/SNP/ 
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In summary, most significant -omic (gene expression and SNP) 

predictors for melanoma survival identified in this chapter have not been 

reported in the literature before. The selected gene expression levels are highly 

significantly associated with MSS in the training set; however, the selected 

SNPs did not meet genome-wide significance. The significant predictors from 

different types of data will be combined to determine the combined effect of 

clinical and -omics data on MSS and to build prognostic prediction models for 

melanoma survival in Chapter 6.  
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Chapter 4 Heritability analysis 
 
The aims in this chapter are to: 

i. Estimate the heritability of survival from melanoma  

ii. Estimate the heritability of Breslow thickness 

 

4.1 Introduction 
4.1.1 Heritability analysis 

Heritability summarizes how much of the variation in a trait is due to 

variation in genetic factors. High heritability implies strong resemblance 

between genetically related people for a specific trait, whereas, low heritability 

implies a low level of resemblance. The total phenotypic variance (VP) of a trait 

can be partitioned into two components, the genetic variance (VA) and the 

residual variance (VR) which includes environmental effects. Heritability in this 

chapter will refer to the narrow-sense heritability (h2), which is the ratio of 

additive genetic to the total phenotypic variance: h2=VA/VP (Visscher et al., 

2008). 

Heritability can be estimated from related and unrelated individuals. 

Classical methods for estimating heritability in human traits are based on 

studying twins or families. In twin studies for example, heritability can be 

estimated by comparing the concordance rates of monozygotic and dizygotic 

twin pairs. If more closely related individuals are more similar for the trait under 

study, this demonstrates evidence of heritability (Thomas, 2004). Recently 

developed methods can estimate heritability from genome-wide genotype data 

in seemingly unrelated individuals (Yang et al., 2011). Relatedness can be 

estimated based on genetic similarities between individuals and measured by 

the kinship coefficient. Yang et al. (2011) developed a tool called genome-wide 

complex trait analysis (GCTA) that can be used to estimate heritability in 

unrelated individuals based on SNPs data (see §4.2.5). The GCTA tool 

estimates the variation explained by common SNPs, though is likely to 

underestimate the overall heritability as it is very unlikely that all the causal 

variants are all captured by the SNPs used in GWAS particularly those with low 

MAF.   



 
 

 62 

4.1.2 Survival from melanoma 
The strongest known influences on survival from melanoma are tumour 

characteristics such as tumour thickness, presence of ulceration and mitotic 

rate. In addition, demographic variables such as age at diagnosis and sex also 

influence a patient’s survival (Balch et al., 2009). This chapter aims to 

determine whether genetic variants are also related to variation in survival from 

melanoma. 
 

4.1.3 Breslow thickness 
Breslow thickness is a measure of tumour thickness in melanoma. It is 

measured in millimetres from the surface of the melanoma to the deepest point 

where the tumour penetrates the skin layers (Breslow, 1970). Breslow 

thickness is one of the most important prognostic factors in melanoma; 

individuals having a thinner tumour at diagnosis have better prognosis 

compared to those with a thicker tumour (Balch et al., 2009).  

Several factors influence Breslow thickness at diagnosis such as 

awareness of risk in the population, patients’ behavioural characteristics, and 

how fast the tumour is growing. In a population with high incidence of 

melanoma where awareness of risk is high such as in Australia, people tend to 

be diagnosed early and present with thinner tumours at diagnosis (Baade et al., 

2012). At diagnosis, men tend to have thicker tumours compared to women 

(Balch et al., 2009). Further factors that may influence Breslow thickness are 

gender differences in patients’ behavioural characteristics in using health 

screening services and seeking medical care, which may influence why there is 

a difference in Breslow thickness between males and females. Another factor is 

how fast the tumour is growing, which could be under genetic control. In a 

study by Liu et al. (2006) which assessed melanoma rate of growth, they 

identified patients with thicker tumours to have faster growing melanomas. 

However, no study so far has shown evidence that genetics influence tumour 

thickness. Hence, this chapter aims to determine how much genetic factors 

contribute to the variation in Breslow thickness at presentation between 

individuals. 
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4.2 Methods 
4.2.1 Samples 

Samples used for analysis in this chapter are from the LMC as 

described in Chapter 2. For heritability analysis of Breslow thickness, two 

additional cohorts from Cambridge and Houston were used (see Chapter 2).   

 

4.2.2 Phenotype data  
4.2.2.1 Survival from melanoma 

Survival from melanoma was analysed as a dichotomous trait. Samples 

were treated as a case-control study to carry out the heritability analysis where 

cases are those who have died from melanoma within a specific time period 

and controls are those who survived for at least the same length of time. 

Samples in the cohort were followed-up passively after recruitment into the 

study as described in Chapter 2. The research team receive information about 

patient deaths when the ONS send updated information every four months; 

otherwise patients are still alive until last follow-up.   

Survival data were available for 2184 samples in the LMC. Of these 

samples, 1907 individuals had genotype data for analysis, and 5 individuals 

had unknown cause of death. Individuals with missing melanoma survival 

status were excluded from the analysis leaving 1902 samples. The number of 

individuals who were alive and the number who had died from melanoma were 

calculated for different lengths of follow-up period to decide on appropriate 

lengths of follow-up time to observe reasonable numbers in each category.  

From Table 4.1, 5-year and 10-year follow-up periods were chosen as 

the cut-off times to determine the numbers of individuals who survived and died 

from melanoma. The 5-year follow-up time was chosen as 79% of the cohort 

had been followed up for this time and 237 deaths had occurred within this 

period. As there were not many individuals who had been followed up for more 

than 10 years, this time was chosen as the second cut-off time, to maximize 

the number of individuals who had died while still retaining 44% of the cohort in 

the analysis.  
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Table 4.1 Number of patients who are known to have survived or died 
from melanoma by time in the LMC (n=1902) 
Time  Number of patients 

known to be alive at 

that time 

Number of patients 

known to have died by 

that time 

Total followed 

up for that 

time 	

5 years 1257 237 1494	
6 years 1081 277 1358	

7 years 899 291 1190	

8 years 764 301 1065	

9 years 633 305 938	

10 years 517 313 830	
11 years 397 316 713	

12 years 214 318 532	

13 years 74 322 396	

14 years 9 324 333	

 

 

4.2.2.2 Breslow thickness 
Breslow thickness was analysed as a quantitative trait. A total of 2129 

samples from Leeds, 496 samples from Cambridge and 1572 samples from 

Houston have Breslow thickness information. However, only 1858, 494 and 

1552 samples from Leeds, Cambridge and Houston, respectively had both 

Breslow thickness and genotype data, so could be included in the analysis. 

Figure 4.1 shows that the Breslow thickness distributions in the Leeds and 

Houston cohorts look quite similar, whereas patients in the Cambridge cohort 

have fewer thicker tumours. As the distributions in all cohorts were skewed, 

Breslow thickness was log-transformed to make the distribution more normally 

distributed, and the log-transformed values were then used in the heritability 

estimation.  
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Figure 4.1 Histogram for Breslow thickness distribution in Leeds, 
Houston, and Cambridge 
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4.2.3 Genotype data 
Genotype data used in this chapter were as described in Chapter 2. 

Genotype data for samples from the Cambridge and Houston cohorts were 

extracted for the subset of samples with Breslow thickness data only. After 

dropping samples according to the exclusion criteria described in Chapter 2, 

the number of remaining samples eligible for analysis in the Leeds, Cambridge 

and Houston cohorts were 1907, 494 and 1522, respectively.  

 

4.2.4 QC measures 
QC was performed in PLINK as described in Chapter 2. After QC, SNP 

thinning was also performed in PLINK to exclude SNPs in high LD using a cut-

off of r2 < 0.2. LD thresholds that have been used in other studies of heritability 

studies range from 0.1 to 0.3 (Ehret et al., 2012; Taylor et al., 2015b).  

Speed et al. (2012) pointed out that LD patterns contribute to  SNP-

based h2 estimate; causal variants in regions of strong LD tend contribute to 

overestimation of h2, whereas those in low LD contribute to underestimation. 

Using a very high r2 threshold retained more SNPs in LD, and h2 could be 

overestimated, while using a very low r2 threshold could remove SNPs with 

non-redundant information, and h2 could be underestimated. Therefore, an r2 

threshold of 0.2 was chosen in this analysis as it could provide a balance of 

these problems. After QC and SNP thinning, there were 92,968 SNPs retained 

in the Leeds cohort, 92,801 SNPs retained in the Cambridge cohort, and 

100,119 SNPs retained in the Houston cohort. Only autosomal SNPs were 

used in the heritability analysis (Table 4.2).  
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Table 4.2 QC for samples with genotype data in the Leeds, Cambridge 
and Houston cohort 

 Leeds cohort Cambridge cohort Houston cohort 
No. of samples 1907 494 1522 
No. of SNPs in 
genotype data 

880,209 914,986 1,012,457 

No. of SNPs after QC 
(Missing rate <3%, 
HWE test P-value 
>10-4 and MAF >5%) 

556,632 578,587 718,174 

No. of SNPs after 
SNP thinning (r2<0.2) 

92,968 92,801 100,119 

No. of autosomal 
SNPs  

92,781 92,615 99,801 

 

 

4.2.5 Statistical analysis  
After QC and SNP thinning, the GCTA tool by Yang et al. (2011) was 

used to estimate the proportion of variation explained by all SNPs for survival 

from melanoma and for Breslow thickness. The method estimates the variance 

in the trait explained by genotyped SNPs in LD with unknown causal variants. 

The first step in the GCTA tool is to calculate the pairwise genetic relationships 

between individuals using autosomal SNPs. This creates a genetic relationship 

matrix (GRM). The next step is to exclude one of any pair of closely related 

individuals using a recommended cut-off kinship coefficient of 0.025 for genetic 

relatedness, which corresponds to cousins two to three times removed. The 

new GRM is a GRM of unrelated individuals (Yang et al., 2011). The last step 

was to fit a mixed linear model to estimate the phenotypic variance captured by 

all SNPs in the form of: 

                                                       y = Xβ + ! + ε 

where y is a vector of phenotype values, β is a vector of fixed effects of 

variables X such as age, and sex, ! is a vector of random genetic effects, and ε 

is a vector of residuals. The variance-covariance matrix of ! is A"!#, where A is 

the GRM. The phenotypic variance (V) can be partitioned into the variance 

explained by the genetic factors "!# 	and the residual variance ("%#): 
V = A"!#+ I"%# 
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The GCTA outputs give estimates for the genetic variance, "!# (shown 

as VG in the table of results), residual variance, "%# (shown as Ve in the table of 

results), and phenotype variance, V (shown as Vp in the table of results). The 

estimate of heritability is calculated as the ratio of genetic variance and 

phenotype variance (h2=VG/Vp). A P-value from the likelihood ratio test (LRT) is 

also produced which tests whether the heritability is greater than zero.  

The GCTA tool can also be used to estimate the heritability of a 

dichotomous trait, such as disease phenotype. For this, the heritability is 

interpreted on a liability scale. This liability model assumes that case/control 

status is determined by whether or not an individual’s liability, an unobservable 

normally distributed random variable, lies above or below a threshold. The 

estimated heritability on the observed binary scale can be transformed to the 

underlying liability scale by using linear transformations to estimate the 

proportion of variance on the liability scale. For the linear transformations, the 

disease prevalence of case/control study needs to be specified in the GCTA 

(Lee et al., 2011).  

For the analysis to estimate heritability in survival from melanoma, the 

survival status was analysed as case-control study where cases are those who 

have died from melanoma and controls are those who have survived within the 

chosen time period. Two analyses were conducted to estimate the heritability 

of survival from melanoma within 5-year and 10-year follow-up periods. The 

proportion of cases who died from melanoma (17%) in the Leeds cohort was 

specified to transform the heritability on the observed scale to the liability scale.  

For the estimation of heritability in Breslow thickness, two main analyses 

were performed; separate analyses within the Leeds, Cambridge and Houston 

cohorts, and a combined cohort analysis using the combined samples from the 

three cohorts to increase the power to detect heritability. In the combined 

cohort analysis, only those SNPs common to the three datasets were used. 

There were 518,421 SNPs common to the three cohorts but only 91,217 SNPs 

passed the second QC and SNP thinning process, and 91,072 autosomal 

SNPs were used in the analysis. Heritability estimation in the combined cohort 

analysis was adjusted for centre as differences between the cohorts could be a 

potential confounding factor. As age and sex are associated with Breslow 

thickness (Nagore et al., 2006), another analysis further adjusting for age and 
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sex was performed to potentially improve the power to detect heritability by 

removing non-genetic components of variance. The log-transformed Breslow 

thickness was adjusted for the effect of age and sex by fitting a linear 

regression model, then using the residual from the regression analysis as the 

new adjusted Breslow thickness value in GCTA. The adjusted Breslow 

thickness value was also used in the individual cohort analysis.  

We used the online calculator to calculate the power to detect whether 

heritability is greater than zero for our data when using the GCTA tool 

(Visscher et al., 2014).  

 

Several subgroup analyses were conducted for the estimation of heritability of 

Breslow thickness using the combined cohort as follows: 

1. Heritability analysis using SNPs from even chromosomes only and 

SNPs from odd chromosomes only. This analysis was conducted as the 

initial results showed some evidence of heritability and therefore, it is of 

interest to partition the heritability into group of chromosomes to 

determine whether there is a polygenic effect or whether the heritability 

is clearly largely due to one region 

2. Heritability analysis in individuals with thicker tumours only (Breslow 

thickness > 1.0mm) to determine whether variation in Breslow thickness 

is more heritable within those with thicker tumours at presentation. Very 

thin tumours were excluded from this analysis as they may not be 

informative.  

3. Heritability analysis by sex to compare the heritability estimates between 

males and females.  

4. Heritability analysis using different thresholds (r2=0.3 and r2=0.4) for 

SNP thinning to determine their effect on heritability estimates within 

individual cohorts.  
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4.3 Results  
4.3.1 Heritability of survival from melanoma 

Table 4.3 shows the estimate of heritability of 5-year and 10-year 

survival in melanoma. Of the 1494 individuals that had been followed-up for 5 

years, 1257 survived and 237 died from melanoma (Table 4.1). Only 1479 

individuals were included in the analysis after excluding 15 individuals who 

were related to other members of the cohort (kinship coefficient >0.025). Of the 

830 individuals with up to 10-years follow-up, 517 survived and 313 died from 

melanoma.  Only 822 individuals were retained for the analysis after removing 

8 individuals due to relatedness. The proportion of phenotypic liability variation 

in 5-year and 10-year survival from melanoma explained by common SNPs 

was estimated to be 71% and 40%, respectively, but neither estimate was 

significantly greater than zero. However, this analysis does not have enough 

power to detect heritability, and thus cannot show clear evidence of heritability 

in survival from melanoma.  

As we don’t actually know how much of the variation in survival can be 

explained by SNPs, we assumed that SNPs could only explain a small 

proportion of the variations in survival, and calculated the power to detect h2 if 

true heritability is 15% in Table 4.3. Lower percentage was used for this 

calculation as heritability is likely to be underestimated by GCTA.  
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Table 4.3 Estimation of heritability in survival from melanoma  
GCTA outputs Within 5-years  

follow-up time  

Within 10-years  

follow-up time 

VG (SE) 0.04 (0.03) 0.07 (0.09) 

Ve (SE) 0.09 (0.03) 0.16 (0.09) 

Vp (SE) 0.13 (0.01) 0.24 (0.01) 

VG/Vp (SE) 0.31 (0.24) 0.30 (0.42) 
*The estimate of variance 
explained on the observed 
scale is transformed to that 
on the liability scale  

0.71(0.55) 0.40(0.56) 

logL 742.429 180.042 

logL0 741.596 170.769 

LRT 1.67 0.55 

df 1 1 

P-value 0.09 0.23 

n 1479 822 

Power to detect h2 if true 
heritability is 15% 

6.1% 6.0% 

*using linear transformations  
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4.3.2 Heritability of Breslow thickness 
4.3.2.1 Individual cohort analysis 

The sample characteristics for the samples included in this analysis are 

shown in Table 4.4. A total of 1858 individuals (56.9% females) were included 

in the Leeds cohort with mean age of 55 years (SD=13.3). In the Cambridge 

cohort, only 494 individuals (47.8% females) had both Breslow thickness and 

genotype data. The mean age of participants from the Cambridge cohort was 

similar to the Leeds cohort at about 55 years (SD=10.5). In the Houston cohort, 

there were 1552 individuals (41.2% females) with both Breslow thickness and 

genotype data. Samples in the Houston cohort were slightly younger with mean 

age of 52 years (SD=14.5).  

 

Table 4.4 Characteristics of samples with both Breslow thickness and 
genotyped data in Leeds, Cambridge and Houston cohorts  

 Leeds cohort 
(n=1858) 

Cambridge 
cohort 

(n=494) 

Houston 
cohort 

(n=1552) 
Age, years 
   Mean (SD) 
   Min, Max  

 
54.6 (13.3)  

17, 90 

 
55.4 (10.5)  

22, 69 

 
52.2 (14.5) 
16.1, 94.1 

Sex 
   Male, n (%) 
   Female, n (%) 

 
801 (43.1) 

1057 (56.9) 

 
258 (52.2) 
236 (47.8) 

 
912 (58.8) 
640 (41.2) 

Breslow thickness, mm 
   Median (Range)  

1.5  
(0.2 – 20) 

0.8 
(0.03 – 9.4) 

1.1 
(0.1 – 35) 

Breslow thickness within male 
   Median (Range) 

1.7  
(0.2 – 17) 

0.8  
(0.03 – 6.5) 

1.3 
(0.1 – 28) 

Breslow thickness within female 
   Median (Range) 

1.4  
(0.2 – 20) 

0.9  
(0.2 – 9.4) 

0.93 
(0.13 – 35) 

 

 

The numbers of individuals included in the analysis after removing 

related individuals were 1839, 493 and 1510 in the Leeds, Cambridge, and 

Houston cohorts, respectively. The estimated proportion of variance in Breslow 

thickness explained by common SNPs was 32% (SE=0.19) in the Leeds 

cohort, 0% (SE=0.71) in the Cambridge cohort, and 30% (SE=0.24) in the 

Houston cohort (Table 4.5). At a 5% significance level, the heritability estimate 

was significantly greater than zero only in the Leeds cohort. 
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Exploration of the relationship of Breslow thickness with age and sex 

showed strong association of Breslow thickness with these factors within each 

cohort (Table 4.6). Breslow thickness was adjusted for age and sex within each 

cohort and residual values were used to estimate the heritability. The estimated 

proportion of variance in adjusted Breslow thickness that can be explained by 

common SNPs was 35% (SE=0.19) in the Leeds cohort, 0% (SE=0.70) in the 

Cambridge cohort, and 33% (SE=0.24) in the Houston cohort (Table 4.7). The 

heritability estimates were higher for the adjusted Breslow thickness in the 

Leeds and Houston cohorts compared to the unadjusted estimates as 

expected, as adjusting for age and sex removed some of the variability due to 

non-genetic factors.  To calculate the power to detect h2 of Breslow thickness in 

this analysis,  we also assumed a lower true heritability and used 15% true 

heritability in the calculation.  

 

Table 4.5 Estimation of heritability in Breslow thickness in individual 
cohort analysis (Using SNP thinning r2<0.2)  

GCTA outputs Leeds cohort 
 

Cambridge 
cohort 

 

Houston 
cohort 

 
VG (SE) 0.17 (0.1) 0.00 (0.49) 0.26 (0.21) 

Ve (SE) 0.36 (0.1) 0.70 (0.49) 0.60 (0.21) 

Vp (SE) 0.54 (0.02) 0.69 (0.04) 0.86 (0.03) 

VG/Vp (SE) 0.32 (0.19) 0.00 (0.71) 0.30 (0.24) 
logL -348.529 -161.146 -646.421 

logL0 -350.120 -161.145 -647.215 

LRT 3.180 0.000 1.588 

df 1 1 1 

P-value 0.037 0.50 0.10 

n 1839a 493b 1510c 

Power to detect h2 if 
true heritability is 15% 

14% 5% 11% 

a 19 individuals excluded from the genotype data in Leeds, leaving only 1888 samples for 
analysis. 1839 samples had both Breslow thickness and genotype information. 
b 1 individual excluded from the genotype data in Cambridge, leaving only 493 samples for 
analysis.  
c 42 individuals excluded from the genotype data in Houston, leaving only 1510 samples 
for analysis. 
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Table 4.6 Association of log Breslow thickness with age and sex in each 
cohort  

 Leeds cohort 

(n=1858) 

Cambridge cohort 

(n=494) 

Houston cohort 

(n=1552) 

 β 

(95%CI) 

P-value* β 

(95%CI) 

P-value* β 

(95%CI) 
P-value* 

Age 0.01 
(0.008, 
0.013) 

2x10-16 0.01 
(0.003, 
0.02) 

5.41x10-3 0.03 
(0.02, 
0.04) 

2x10-16 

Sex 
(Female) 

-0.13 
(-0.19, 
-0.06) 

1.87x10-4 -0.27 
(-0.42, 
-0.13) 

2.75x10-4 -0.32 
(-0.41, 
-0.22) 

3.19x10-11 

*using simple linear regression  

 

Table 4.7 Estimation of heritability in adjusted Breslow thickness in 
individual cohort analysis (Using SNP thinning r2<0.2)  

GCTA outputs Leeds cohort 

 

Cambridge 

cohort 

 

Houston 

cohort 

 

VG (SE) 0.18 (0.10) 0.00 (0.47) 0.26 (0.19) 

Ve (SE) 0.34 (0.09) 0.67 (0.47) 0.54 (0.19) 

Vp (SE) 0.51 (0.02) 0.67 (0.04) 0.80 (0.03) 

VG/Vp (SE) 0.35 (0.19) 0.00 (0.70) 0.33 (0.24) 
logL -308.400 -152.721 -588.643 

logL0 -310.277 -152.719 -589.556 

LRT 3.754 0.000 1.827 

df 1 1 1 

P-value 0.026 0.50 0.09 

n 1839 493 1510 
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4.3.2.2 Combined cohort analysis  
For the combined cohort analysis, the three cohorts provided 3904 

individuals with both Breslow thickness and genotype data; 71 related 

individuals were removed, leaving 3833 individuals for the analysis. In the 

combined cohort, common SNPs explained about 21% (SE=0.09) of the 

variation in Breslow thickness when adjusted for centre only and the estimate 

reduced to 18% (SE=0.09) when further adjusted for age and sex effect (Table 

4.8). Both estimates show some evidence of heritability in Breslow thickness 

(P-value=0.01 and P-value=0.03).   

 

Table 4.8 Estimation of heritability in Breslow thickness in combined 
cohort analysis (Using SNP thinning r2<0.2)  

GCTA outputs Adjusted for center 

 

Adjusted for age, sex and 

center  

VG (SE) 0.15 (0.06) 0.11 (0.06) 

Ve (SE) 0.54 (0.06) 0.53 (0.06) 

Vp (SE) 0.68 (0.02) 0.65 (0.01) 

VG/Vp (SE) 0.21 (0.09) 0.18 (0.09) 
logL -1198.264 -1088.512 

logL0 -1200.896 -1090.274 

LRT 5.263 3.523 

df 1 1 

P-value 0.01 0.03 
n 3833 3833 

Power to detect h2 if 
true heritability is 15% 

44.4% 
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4.3.2.3 Heritability analysis by groups of chromosomes  
The proportion of variance in Breslow thickness than can be explained 

by common SNPs from odd numbered chromosomes was 8% (SE=0.06) and 

11% (SE=0.06) from even numbered chromosomes (Table 4.9). Although only 

the heritability estimate from even chromosomes was significantly greater than 

zero, the estimates were similar.   

 

Table 4.9 Estimation of heritability in Breslow thickness by groups of 
chromosomes 

GCTA outputs Using SNPs from odd 

chromosomes only 

Using SNPs from even 

chromosomes only 

VG (SE) 0.06 (0.04) 0.08 (0.04) 

Ve (SE) 0.63 (0.04) 0.61 (0.05) 

Vp (SE) 0.68 (0.02) 0.68 (0.02) 

VG/Vp (SE)  

(Adjusted for centre) 
0.08 (0.06) 0.11 (0.06) 

logL -1200.0611 -1199.321 

logL0 -1200.896 -1200.896 

LRT 1.67 3.15 

df 1 1 

P-value 0.09 0.04 
n 3833 3833 

 

 
4.3.2.4 Heritability analysis in individuals with thicker tumours   

There were 2526 individuals with Breslow thickness > 1.0mm in the 

combined cohort but 45 closely related individuals were excluded. A total of 

1378 individuals (423 from Leeds, 280 from Cambridge, and 675 from 

Houston) with Breslow thickness < 1.0mm were excluded from the analysis. 

Table 4.10 shows the proportion of variance in Breslow thickness of > 1.0mm 

that can be explained by common SNPs was 21% (SE=0.14), which was 

similar to the estimate from the overall combined results (Table 4.8).  
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Table 4.10 Estimation of heritability in Breslow thickness in individuals 
with thicker tumours in the combined cohort analysis  

GCTA outputs Individuals with Breslow thickness > 1.0mm 

VG (SE) 0.08 (0.05) 

Ve (SE) 0.29 (0.05) 

Vp (SE) 0.37 (0.01) 

VG/Vp (SE)  

(Adjusted for centre) 
0.21 (0.14) 

logL -7.030 

logL0 -8.083 

LRT 2.107 

df 1 

P-value 0.07 
n 2481 

Power to detect h2 if true 
heritability is 15% 

21.8% 
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4.3.2.5 Heritability analysis by sex  
There were 1951 females (excluding 4 individuals with extreme Breslow 

thickness value) and 1947 males (excluding 2 individuals with extreme Breslow 

thickness value) in the combined cohort samples. After removing closely 

related individuals (32 females and 39 males), only 1919 females and 1908 

males were retained for analysis within each group. The proportion of variance 

in Breslow thickness that can be explained by common SNPs was 25% 

(SE=0.19) within females and 17% (SE=0.19) within males, although neither 

estimate is significantly greater than zero (Table 4.11).  

 

Table 4.11 Estimation of heritability in Breslow thickness by sex in the 
combined cohort analysis 

GCTA outputs Within females  Within males  

VG (SE) 0.15 (0.11) 0.12 (0.13) 

Ve (SE) 0.46 (0.11) 0.59 (0.13) 

Vp (SE) 0.61 (0.02) 0.71 (0.02) 

VG/Vp (SE)  

(Adjusted for centre) 
0.25 (0.19) 0.17 (0.19) 

logL -490.072 -631.707 

logL0 -490.962 -632.106 

LRT 1.78 0.83 

df 1 1 

P-value 0.09 0.18 
n 1919 1908 

Power to detect h2 if 
true heritability is 15% 

14.9% 14.8% 
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4.3.2.6 Heritability analysis using different r2 threshold for SNP pruning 
in individual cohort   

The heritability estimates when using different LD thresholds for SNP 

thinning are shown in Table 4.12 to 4.14 for each cohort. In the Leeds cohort, 

all heritability estimates using different r2 thresholds were significant, with 

higher estimates when using higher r2 thresholds. In the Cambridge cohort, 

using different r2 thresholds does not make any difference to estimates as the 

analysis is under-powered to detect heritability in this cohort. In the Houston 

cohort, using higher r2 thresholds results in lower heritability estimates but were 

not significant; these results were not as expected, but this could be due to the 

relatively small sample size and consequent instability of estimates.  

 

Table 4.12 Estimation of heritability in Breslow thickness in Leeds cohort 
using different SNP thinning thresholds  

GCTA outputs r2<0.2 

 

r2<0.3 r2<0.4 

VG (SE) 0.17 (0.1) 0.18 (0.1) 0.21 (0.1) 

Ve (SE) 0.36 (0.1) 0.35 (0.1) 0.33 (0.1) 

Vp (SE) 0.54 (0.02) 0.54 (0.02) 0.54 (0.02) 

VG/Vp (SE)  0.32 (0.19) 0.34 (0.20) 0.39 (0.20) 
logL -348.529 -348.290 -348.011 

logL0 -350.120 -349.812 -349.812 

LRT 3.180 3.043 3.602 

df 1 1 1 

P-value 0.037 0.040 0.029 
n 1839 1838 1838  
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Table 4.13 Estimation of heritability in Breslow thickness in Cambridge 
cohort using different SNP thinning thresholds  

GCTA outputs r2<0.2 

 

r2<0.3 r2<0.4 

VG (SE) 0.00 (0.49) 0.00 (0.53) 0.00 (0.54) 

Ve (SE) 0.70 (0.49) 0.70 (0.53) 0.70 (0.53) 

Vp (SE) 0.69 (0.04) 0.69 (0.04) 0.69 (0.04) 

VG/Vp (SE)  0.00 (0.71) 0.00 (0.76) 0.00 (0.77) 
logL -161.146 -161.145 -161.145 

logL0 -161.145 -161.145 -161.145 

LRT 0.000 0.000 0.000 

df 1 1 1 

P-value 0.50 0.50 0.50 
n 493 493 493 

 

Table 4.14 Estimation of heritability in Breslow thickness in Houston 
cohort using different SNP thinning thresholds  

GCTA outputs r2<0.2 

 

r2<0.3 r2<0.4 

VG (SE) 0.26 (0.21) 0.17 (0.23) 0.07 (0.23) 

Ve (SE) 0.60 (0.21) 0.69 (0.23) 0.79 (0.23) 

Vp (SE) 0.86 (0.03) 0.86 (0.03) 0.86 (0.03) 

VG/Vp (SE)  0.30 (0.24) 0.20 (0.26) 0.08 (0.27) 
logL -646.421 -647.249 -647.596 

logL0 -647.215 -647.531 -647.643 

LRT 1.588 0.565 0.094 

df 1 1 1 

P-value 0.10 0.22 0.38 
n 1510 1510 1510  
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4.4 Discussion  
4.4.1 Heritability of survival from melanoma 
 The total proportion of liability variation explained by common SNPs for 5-

year and 10-year survival estimated in the Leeds cohort were 71% (SE=0.55, 

P-value=0.09) and 40% (SE=0.56, P-value=0.23), respectively. However, the 

analysis does not have adequate power to detect heritability, and the results do 

not provide clear evidence of heritability in survival from melanoma. To date, 

there is no published evidence for association of common SNPs with 

melanoma survival from genome-wide analysis perhaps because a large 

sample size is required to identify genome-wide significant SNPs. As a result, 

most of the published studies were based on candidate genes only such as 

PARP1 (Davies et al., 2014b; Law et al., 2015a) and MC1R (Davies et al., 

2012; Taylor et al., 2015a), and some of the studies focus primarily on the 

effect of melanoma risk loci on melanoma survival (Rendleman et al., 2013). 

Results from these studies suggest that inherited variants may have a role in 

melanoma survival, but so far none have explained much of the variation in 

survival from melanoma.  

 Since survival from melanoma is strongly influenced by tumour 

characteristics such as Breslow thickness, ulceration and mitotic rate (Balch et 

al., 2009), which could themselves be under genetic control, and since other 

non-genetic factors are known to influence survival such as age and sex 

(Thorn et al., 1994; Lindholm et al., 2004), there could be stronger evidence of 

genetic influences on these prognostic factors rather than on survival.  
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4.4.2 Heritability in Breslow thickness  
This study provides heritability estimates for Breslow thickness from 

different populations. The individual cohort heritability estimates vary from 0% 

(SE=0.71, P-value=0.5) in Cambridge, 30% (SE=0.24, P-value=0.1) in Houston 

to 32% (SE=0.19, P-value=0.04) in Leeds. A statistically significant heritability 

estimate (at the 5% level) was only seen in the Leeds cohort, and this was 

consistent whether or not adjustment was made for age and sex (unadjusted 

P-value=0.04 and adjusted P-value=0.03). Results from the individual cohort 

analyses are limited by the small sample size and hence underpowered to 

detect heritability, especially in the Cambridge cohort. The estimated powers to 

detect heritability greater than zero if true heritability assumed to be 15% are 

5%, 11% and 14% in Cambridge, Houston and Leeds, respectively.  

In addition, differences in the Breslow thickness distribution between the 

cohorts are likely to contribute to the differences in the heritability estimates. In 

particular, the Cambridge cohort comprised mostly individuals with thin Breslow 

thickness. Houston and Leeds cohorts on the other hand had similar Breslow 

thickness distributions. Therefore, discrepancies in the heritability estimates in 

the cohort-level analysis could be due to differences between the Breslow 

thickness distributions of the three cohorts.  

In the combined cohort analysis, a statistically significant heritability 

estimate was seen in both analysis adjusting for centre only (h2=0.21, 

SE=0.09, P-value=0.01) and adjusting for centre, age and sex (h2=0.18, 

SE=0.09, P-value=0.03). Although further adjustment by age and sex did not 

increase the heritability estimate as might be expected, the significant estimate 

provides further support that there is evidence of heritability in Breslow 

thickness.  

To date, there is no published report of heritability of Breslow thickness 

from twin and family studies for direct comparison with the GCTA estimates. 

Such studies are not feasible to conduct in melanoma as it is not possible to 

obtain a large cohort of related individuals all diagnosed with melanoma. The 

newer GCTA tool based on common SNPs that are in LD with causal SNPs 

allows heritability to be estimated without using twin or family data. However, 

heritability estimates from the GCTA are likely to be underestimates of the true 

narrow-sense heritability, due to imperfect LD between genotyped SNPs and 



 
 

 83 

unknown causal variants. Lower heritability estimates from the GCTA 

compared to twin and family studies have been observed in other traits. For 

example, in height, the heritability estimate from the GCTA was 45% (Yang et 

al., 2010), lower than the 80% variance estimated from twin studies 

(Silventoinen et al., 2003). In pediatric obesity, measured by BMI, the GCTA 

tool estimated heritability of 30% for BMI, whereas an estimate from standard 

twin analysis was 82% (Llewellyn et al., 2013).   

In the subgroup analysis, no clear conclusion can be made about the 

heritability estimate by groups of chromosomes, by sex, in individuals with 

thicker tumours only, and in analyses using different LD thresholds as these 

analyses were underpowered to detect heritability.  

In summary, results in this study are largely limited by the small sample 

size. No clear conclusion can be made about the evidence of heritability in 

survival from melanoma. This study however provides reasonable evidence of 

heritability of Breslow thickness; we estimated that about 21% of the 

phenotypic variance in Breslow thickness can be explained by common SNPs, 

and this is likely to be an underestimate of the overall heritability.  
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Chapter 5 Inter-relationships between different types of 
predictors 

 

The aims in this chapter are to: 

i. Determine the association of selected gene expression levels (and gene 

expression score) with clinical predictors 

ii. Determine the association of selected SNPs (and SNP score) with 

clinical predictors  

iii. Carry out genome-wide association studies of the selected gene 

expression levels (expression level of 16 genes that associated with 

MSS) 

iv. Determine the association of top melanoma susceptibility SNPs with 

MSS and clinical predictors  

v. Determine the association of top melanoma susceptibility SNPs with the 

expression levels of nearby genes  

vi. Determine the association of other SNPs in the regions around 

melanoma susceptibility SNPs with the expression levels of nearby 

genes  

 

5.1 Introduction  
In this chapter the inter-relationships between different types of factors 

associated with melanoma, such as patient and tumour characteristics, gene 

expression levels, and SNP genotypes, are explored. In the survival analysis of 

whole-genome gene expression levels with MSS in Chapter 3, 16 gene 

expression levels were identified as important predictors showing significant 

association with MSS in the training set (see Table 3.4). However, the role of 

selected genes was mostly still unclear, as discussed in Chapter 3. Hence, this 

chapter will explore the association of the 16 selected gene expression levels 

with clinical predictors to further understand how the selected genes impact on 

survival (Aim i).  

Analysis in Chapter 3 also identified 13 SNPs associated with MSS (see 

Table 3.8). Similar to selected gene expression levels, little information is 

available about the role of the selected SNPs in melanoma. Therefore, this 
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chapter will also explore the association of the selected SNPs with clinical 

predictors (Aim ii).  

Many studies have shown the existence of genetic variants that control 

gene expression in various human cells and tissues, for example, in 

lymphoblastoid cell lines (LCLs) (Morley et al., 2004; Stranger et al., 2005; Nica 

et al., 2011; Bryois et al., 2014), whole blood (Schramm et al., 2014), skin 

tissue (Nica et al., 2011), adipose tissue (Nica et al., 2011), type 2 diabetes 

(Morris et al., 2012), and colorectal cancer (Ongen et al., 2014). The analysis 

of eQTL associates genetic variants with gene expression to identify genetic 

variants that regulate the expression of a particular gene. The regulatory 

variants could be local, mapping close to the physical location of the affected 

gene (cis-eQTL), or distant, mapping elsewhere in the genome (trans-eQTL) 

(Rockman & Kruglyak, 2006). Recently, some studies have also shown that 

there is a measurable genetic component to the control of gene expression 

levels. In Wright et al. (2014), 777 gene expression levels in the peripheral 

blood (4.2% of the genes on the microarray) were shown to be heritable with 

mean heritability of 0.10. In Grundberg et al. (2012), the mean heritability 

estimates for gene expression levels from LCLs, skin, and adipose tissue were 

0.21, 0.16, and 0.26 respectively. As the LMC only have gene expression 

measured on a subset of samples, it would be of interest to determine whether 

gene expression levels could be predicted by SNPs, as this could provide a 

proxy measure of the expression levels for patients where these have not been 

measured but with available genetic data. Therefore, this chapter will carry out 

GWAS of the expression levels for 16 genes associated with MSS in Chapter 3 

to determine whether gene expression levels could be predicted from the 

genome (Aim iii).  

To date, GWAS have successfully identified 20 melanoma susceptibility 

loci (Table 5.1), of which 15 were established earlier (Bishop et al., 2009; 

Rafnar et al., 2009; Barrett et al., 2011; MacGregor et al., 2011; Iles et al., 

2013) and  five were newly found in a recent large meta-analysis (Law et al., 

2015a). The mechanism of action for most of the loci is still unclear, although 

several are in regions related to pigmentation (SLC45A2, TYR, MC1R, and 

ASIP), nevus count (TERT, CDKN2A, and PLA2G6) or DNA repair pathways 

(PARP1 and ATM). To further understand the possible role of susceptibility loci 
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in MSS, and whether this might act through regulation of gene expression in 

the tumour, the association of the top SNP reported from each of the loci in 

Table 5.1 with MSS and clinical predictors (Aim iv), and expression levels of 

the nearby genes is assessed (Aim v).  

GWAS tend to highlight the most significant SNP (often referred as the 

top SNP) identified in each region; however, it is still unclear whether the 

identified SNPs are the causal SNPs. Furthermore, Barrett et al. (2015) found 

evidence for multiple independent associations in some of the melanoma 

susceptibility regions in a fine-mapping study. Therefore, the eQTL analysis 

between the top SNP and gene expression levels will be extended to include 

other SNPs in the susceptibility regions (Aim vi).  

Six main analyses will be conducted in this chapter: (i) an association 

analysis for the selected gene expression levels (and gene expression score) 

with clinical predictors, (ii) an association analysis for the selected SNPs (and 

SNP score) with clinical predictors, (iii) a genome-wide eQTL analysis for the 

16 selected gene expression levels, (iv) an association of top melanoma 

susceptibility SNPs with MSS and clinical predictors, (v) an eQTL analysis for 

the top SNP in each melanoma susceptibility locus, and lastly (vi) an extension 

of the eQTL analysis to include other SNPs in the region within each 

susceptibility locus. 

In §5.2, the datasets used in this chapter and the analyses mentioned 

above are further described. In §5.3, the results of each analysis are 

presented, and the findings are discussed in §5.4.  
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Table 5.1 20 melanoma risk loci 
Region Top SNP Genea Putative functional 

role of the gene in 
melanoma 

Loci status  

1q21.3 RS12410869 ARNT Unclear  Established  
1q42.12 

 
RS1858550 

 
PARP1 DNA maintenance 

pathways 
Established 

2p22.2 
 

RS6750047 
 

RMDN2 
(CYP1B1) 

Unknown  New** 

2q33-q34 RS7582362 CASP8 Unclear Established 
5p15.33 

 
RS380286 

 
TERT/ 

CLPTM1L 
Nevus count  Established 

5p13.2 
 

RS250417 
 

SLC45A2 Pigmentation Established 

6p22.3 RS6914598 CDKAL1 Unknown  New** 
7p21.1 RS1636744 AGR3 Unknown  New**  
9p21 

 
RS7852450 

 
CDKN2A/ 

MTAP 
Nevus count Established 

9q31.2 
 
 

RS10739221 
 
 

TMEM38B 
(RAD23B, 

TAL2) 

Unknown  New**  

10q24.33 RS2995264 OBFC1 Unknown  New**  
11q13 RS498136 CCND1 Unclear Replicated* 

11q14-q21 RS1393350 TYR Pigmentation Established 
11q22-q23 

 
 

RS73008229 
 
 

ATM Role in DNA 
maintenance 

pathways 

Established 

15q13.1 RS4778138 OCA2 Unclear  Replicated* 
16q12.2 RS12596638 FTO Unclear Established 
16q24.3 RS75570604 MC1R Pigmentation  Established 
20q11.2-

q12 
RS6088372 

 
ASIP Pigmentation Established 

21q22.3 RS408825 MX2 Unclear Established 
22q13.1 RS2092180 PLA2G6 Nevus count Established 

 

a The top SNP is in or near the gene, hence the region was given the nearest gene’s name for 
convenience, but it is still unclear whether this is the causal gene 
* Replicated in Law et al. (2015a) 
**New loci identified in Law et al. (2015a) 
The top SNP given is the most significant SNP from the latest GWAS meta-analysis of 
melanoma susceptibility in Law et al. (2015a)  
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5.2 Methods 
5.2.1 Samples 

Samples used in this chapter are those from patients with both gene 

expression and SNP genotype data available. Of the 699 samples with whole-

genome gene expression data available, only 619 have genotype data.  The 

remaining samples have no genotype data for various reasons such as failed 

genotyping, no blood sample for DNA extraction, failed DNA extraction, and 

insufficient DNA for genotyping. 

 

5.2.2 Study variables and analyses  
The datasets used in this chapter are the Illumina whole-genome gene 

expression data (n=699) and the genome-wide genotype data (n=1907) as 

described in Chapter 2. The QC methods for each dataset were as described 

in Chapter 2. Imputed SNP data were also used as further described in 

§5.2.2.4. For the clinical predictors, only five established clinical predictors 

(age, sex, Breslow thickness, presence of ulceration and tumour site) were 

included in the analysis. 

 

The following section provides more description of the variables and analysis 

methods used for each analysis in the following order: 

(i) Analysis 1: Association analysis of the selected gene expression levels 

(and gene expression score) with clinical predictors 

(ii) Analysis 2: Association analysis of the selected SNPs (and SNP score) 

with clinical predictors 

(iii) Analysis 3: Genome-wide eQTL analysis of the 16 selected gene 

expression levels  

(iv) Analysis 4: Association of top melanoma susceptibility SNPs with MSS 

and clinical predictors 

(v) Analysis 5: eQTL analysis of the top SNP in each melanoma 

susceptibility locus 

(vi) Analysis 6: eQTL analysis including other SNPs in the region within 

each locus 
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5.2.2.1 Analysis 1 
To determine the association of the 16 selected gene expression levels 

from Chapter 3 with clinical predictors, five established clinical predictors for 

MSS were selected as the dependent variables: age at diagnosis in years, sex 

(coded as 0 for female and 1 for male), tumour site (coded as 0 for limbs and 1 

for rest of the body), log-transformed Breslow thickness, and presence of 

ulceration (coded as 0 for no and 1 for yes). In 699 samples with gene 

expression data available, simple linear regression was used to explore the 

associations of the log2 transformed expression level of the 16 genes with age 

and log-transformed Breslow thickness, whereas simple logistic regression was 

used for the association of the log2 transformed expression levels with sex, 

tumour site, and presence of ulceration.  In addition, a gene expression score 

which summarises the 16 gene expression levels, weighting them according to 

their effect on MSS was also used to explore the effect of the combined 

expression levels on the clinical predictors. The score was calculated in a way 

that patient with higher gene expression score have higher risk of death from 

melanoma. A more detailed explanation on the calculation of the gene 

expression score is shown in Chapter 6 § 6.2.4.1 and an example of the 

calculation is shown in § 6.2.3.1. Estimates from the penalized Cox regression 

in Chapter 3 (Table  3.4) were used to create the gene expression score for the 

remaining 275 samples that were not included in the training set analysis 

(n=424). Similar statistical methods as the individual association analysis were 

applied for the gene expression score, although the analysis was only 

conducted on samples after excluding the training set. Results significant at a 

level of 5% were highlighted.  

 
5.2.2.2 Analysis 2 

To determine the association of the 13 selected SNPs from Chapter 3 

with clinical predictors, five established clinical predictors as in Analysis 1 were 

again selected as the dependent variables. In 1907 samples with genotype 

data available, simple linear regression was performed to explore the 

associations of the SNP genotypes (coded as 0, 1, and 2) with age and log-

transformed Breslow thickness, and simple logistic regression analysis for the 

SNP genotypes with sex, tumour site, and presence of ulceration, using an 
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additive model (trend test).  A SNP score was also created to explore the 

association of the combined SNPs on the clinical predictors. The SNP score 

was also calculated in a way that patient with higher SNP score have higher 

risk of death from melanoma. Detailed explanation on the calculation of the 

SNP score is also shown in Chapter 6 § 6.2.4.1 and § 6.2.3.1. Estimates from 

the penalized Cox regression in Chapter 3 (Table  3.8)  were used to create the 

SNP score on 364 samples that were not included in the training set analysis 

(n=1543). A similar method to the individual SNP association was used to test 

the association of the SNP score with the clinical predictors; the analysis was 

restricted to those samples not in the training set.  

 
5.2.2.3 Analysis 3 

To determine whether gene expression levels could be predicted from 

the genome, the association of genome-wide SNPs with 16 selected gene 

expression levels from melanoma tumours was explored. The genome-wide 

SNP data (~500K SNPs after QC) were combined with the expression data of 

the 16 genes in 619 samples with both expression and genotype data. A 

genome-wide eQTL analysis was conducted for each gene expression probe 

using Plink version 1.9 (Purcell et al., 2007). Simple linear regression was used 

to test the association of SNP genotypes (coded as 0, 1, and 2) with 

expression level (log2 scale) for each gene using an additive genetic model 

(trend test). For an additive effect of a SNP, the regression coefficient 

represents the effect of each copy of the minor allele. For each gene, the 

number of SNPs that reached P-value < 5.0 x 10-8 (indicating genome-wide 

significance) and P-value < 1.0 x10-5  (indicating suggestive association) were 

reported, as well as the most significant SNP and its P-value. For associations 

that reached the genome-wide significance level, further analysis adjusting for 

the top SNP was performed to identify any secondary association. A 

Manhattan plot with lines drawn at  P-value  1.0 x10-5 and 5.0 x 10-8 (if 

applicable) was created for each gene following the association tests.  
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5.2.2.4 Analysis 4 
To determine the association of top melanoma susceptibility SNPs with 

MSS, the list of the 20 top SNPs from Table 5.1 was used as a reference. Of 

the 20 SNPs, only four can be extracted from the Leeds genome-wide 

genotype data. Therefore, imputed SNP data were used for this analysis. 

Genotype imputation is a method of predicting genotypes that have not been 

directly typed in the study sample using an external high-density reference 

panel of phased haplotypes (Marchini and Howie, 2010). The imputation was 

performed by Dr Mark Iles using IMPUTE version 2 (Howie et al., 2009) and 

the 1000 Genomes as reference panel. Prior to imputation, SNPs were filtered 

for MAF < 0.03, P-value of < 10-4 for HWE test or missingness > 0.03, and 

individuals with call rates < 0.97, identified as first degree relatives and/or 

identified as non-European by PCA were excluded. After the imputation, only 

those SNPs with INFO score > 0.5 and MAF > 0.01 were selected for analysis.  

For the imputed SNPs, gene dosage (expected genotype count) was 

calculated for each SNP for use in the analysis. In 1733 patients (excluding 

patients with missing cause of death, having multiple melanomas, and 

recruited into the study 2 years after diagnosis), simple Cox regression 

analysis was performed to determine the association of top susceptibility SNPs 

with MSS assuming an additive model. Results significant at a level of 5% were 

highlighted. 

To determine the association of top melanoma susceptibility SNPs with 

clinical predictors, five established clinical predictors as in Analysis 1 were 

again selected as the dependent variables. Imputed  SNP data were also used 

to perform the analysis  for SNPs that are not available in the genotyped 

dataset. Simple linear regression analysis was performed to determine the 

association of the top susceptibility SNPs with age and log-transformed 

Breslow thickness, and simple logistic regression for the association of the top 

susceptibility SNPs with sex, tumour site, and presence of ulceration. Results 

significant at a level of 5% were highlighted. 
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5.2.2.5 Analysis 5 
To determine the association of the top melanoma susceptibility SNPs 

with the expression levels of nearby genes in each locus, the 20 top SNPs from 

Table 5.1 were again analysed. The expression levels for genes in each of the 

20 melanoma susceptibility loci were identified from the Leeds whole-genome 

gene expression data. Four loci contain more than one mapped gene; 

RMDN2/CYP1B1, TERT/CLPTM1L, CDKN2A/MTAP, and 

TMEM38B/RAD23B/TAL2.  

For these loci, the expression levels for all genes were used to perform 

the eQTL analysis as it is still unclear which gene is involved in these loci. For 

nine genes (ARNT, CASP8, TERT, SLC45A2, AGR3, CDKN2A, TMEM38B, 

ATM, and PLA2G6), more than one probe was available, as shown in Table 

5.2, and in this case, all probes were analysed separately as probes may 

measure distinct transcripts and this was recommended by the manufacturer 

(Illumina).  

Using Plink software, simple linear regression was conducted to 

determine the association of each melanoma susceptibility SNP with the 

expression level (log2 scale) of a nearby gene, assuming an additive model. 

Gene dosage (expected genotype count) was calculated for the imputed SNPs 

for use in the analysis. Results significant at a level of 5% were highlighted. 
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Table 5.2 Gene expression probes from the whole genome gene 
expression data for the 20 melanoma susceptibility loci 

Gene  No. of 
probes 

Probes 

ARNT 2 ILMN_1762582, ILMN_2347314 

PARP1 1 ILMN_1686871 

RMDN2 1 ILMN_1812302 

CYP1B1 1 ILMN_1693338 

CASP8 4 ILMN_1673757, ILMN_1787749, ILMN_1809313, 
ILMN_2377733 

TERT 2 ILMN_1796005, ILMN_2373119 

CLPTM1L 1 ILMN_1752802 

SLC45A2 4 ILMN_1654165, ILMN_1685259, ILMN_2246188, 
ILMN_2320391 

CDKAL1 1 ILMN_1788022 

AGR3 2 ILMN_1728787, ILMN_2050246 

CDKN2A 3 ILMN_1717714, ILMN_1744295, ILMN_1757255 

MTAP 1 ILMN_1753639 

TMEM38B 2 ILMN_1669940, ILMN_2093980 

RAD23B 1 ILMN_1722662 

TAL2 1 ILMN_2135833 

OBFC1 1 ILMN_1789186 

CCND1 1 ILMN_1688480 

TYR 1 ILMN_1788774 

ATM 4 ILMN_1713630, ILMN_1716231, ILMN_1779214, 
ILMN_2370825 

OCA2 1 ILMN_1746116 

FTO 1 ILMN_2288070 

MC1R 1 ILMN_1653319 

ASIP 1 ILMN_1791647 

MX2 1 ILMN_2231928 

PLA2G6 2 ILMN_1697654, ILMN_1798955 
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5.2.2.6 Analysis 6 
To determine the association of other SNPs in the susceptibility region 

with the expression levels of nearby genes, other SNPs surrounding the top 

SNPs were included in the analysis. SNPs within 500Kb on either side of the 

top SNPs were identified for this analysis as shown in Table 5.3. Imputed SNP 

data were also used for this analysis to increase the coverage of the SNPs in 

the defined region. The association of the imputed SNPs (gene dosage) within 

each region with the expression levels (log2 scale) of the nearby genes (using 

all probes available for each gene) were then explored using simple linear 

regression in Plink software. A Manhattan plot was created for each region 

following the association tests. In each plot, the top susceptibility SNP shown 

by red square to highlight the association of the top SNP in comparison to 

other SNPs. As testing the association of multiple SNPs simultaneously causes 

multiple testing issues, correction was made for this as further described 

§5.2.3.2.  

Table 5.3 List of 20 melanoma risk loci and the number of imputed SNPs 
in each defined regiona  

Region Top SNP Gene Number of genotyped and 
imputed SNPs surrounding 
the top SNP in the defined 

regiona 
1q21.3 RS12410869 ARNT 2533 

1q42.12 RS1858550 PARP1 3361 
2p22.2 RS6750047 RMDN2 (CYP1B1) 4590 

2q33-q34 RS7582362 CASP8 2810 
5p15.33 RS380286 TERT/ CLPTM1L 4582 
5p13.2 RS250417 SLC45A2 2160 
6p22.3 RS6914598 CDKAL1 3620 
7p21.1 RS1636744 AGR3 4644 
9p21 RS7852450 CDKN2A/ MTAP 3938 

9q31.2 RS10739221 TMEM38B 
(RAD23B, TAL2) 

3232 

10q24.33 RS2995264 OBFC1 3353 
11q13 RS498136 CCND1 3922 

11q14-q21 RS1393350 TYR 2889 
11q22-q23 RS73008229 ATM 2643 

15q13.1 RS4778138 OCA2 1763 
16q12.2 RS12596638 FTO 3785 
16q24.3 RS75570604 MC1R 4344 

20q11.2-q12 RS6088372 ASIP 2564 
21q22.3 RS408825 MX2 3812 
22q13.1 RS2092180 PLA2G6 3175 

a 500 Kb on either side of the top SNP  
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5.2.3 Statistical methods 
5.2.3.1 Simple linear regression  

Simple linear regression is used to identify  the relationship of one 

explanatory variable with a continuous outcome. The lm function in R software 

was used to determine whether clinical predictors (age and log-transformed 

Breslow thickness) are associated the selected gene expression levels 

(Analysis 1), selected SNPs (Analysis 2), and top susceptibility SNPs (Analysis 

4). Plink software was used to determine whether gene expression levels can 

be predicted from the whole-genome SNPs (Analysis 3) and to determine 

whether expression levels of nearby genes are associated with top 

susceptibility SNPs (Analysis 5 and 6).   

 

5.2.3.2 Simple logistic regression 
Simple logistic regression is used to identify  the relationship of one 

explanatory variable with a binary outcome. The glm function in R software was 

used to determine whether clinical predictors (sex, tumour site, and presence 

of ulceration) are associated with the selected gene expression levels (Analysis 

1), selected SNPs (Analysis 2), and top susceptibility SNPs (Analysis 4). 

 

5.2.3.3 Simple Cox regression 
Simple Cox regression is used to identify  the relationship of one 

explanatory variable with a survival outcome. The coxph function in the survival 

package in R software was used to perform the association of top melanoma 

susceptibility SNPs with MSS.  

 
5.2.3.4 Multiple testing correction 
Multiple testing occurs when testing the association of multiple SNPs 

simultaneously. Multiple test correction was performed using the method by 

Benjamini and Yekutieli (2001) to account for the hypotheses tested not being 

independent  (due to LD), with a 10% false discovery rate (FDR). 
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5.3 Results  
5.3.1 Association of selected gene expression levels (and gene 

expression score) with clinical predictors 
Table 5.4 shows the association of each selected expression level with 

five clinical predictors using all samples with gene expression data in the 

cohort (n=699). Of the 16 selected gene expression levels, only expression 

level of CHST9 did not show association with any clinical predictors, while all 

others show  significant association at least with Breslow thickness. There 

were 10 gene expression levels that associated with age at diagnosis, three 

associated with sex, seven associated with  tumour site, 15 associated with 

log-transformed  Breslow thickness, and 11 associated with presence of 

ulceration. Interestingly, the directions of effect for the expression level that 

associated with more than one factors are always consistent. For example, 

expression level of NKD2 that associated with all clinical predictors shows that 

doubling its expression level associated with reduced age at diagnosis, 

reduced log-transformed Breslow thickess, reduced the odds for male sex, 

reduce odds for tumour on the rest of the body, and reduced odds for presence 

of ulceration.  

For age at diagnosis, log-transformed Breslow thickness, and presence 

of ulceration, several of the expression levels showed very strong association, 

especially with Breslow thickness. The strongest associations with P-value <10-

16 were seen between NKD2 expression level (coefficient= -0.24, P-value=2 x 

10-16) and HLA-DQB2 expression level (coefficient= -0.25, P-value=2 x 10-16) 

with log-transformed Breslow thickness.  

When using the gene expression score in 275 samples (after excluding 

patients from the training set used to estimate the weights),  the score was 

significantly associated with all clinical predictors, with the strongest 

association also seen with Breslow thickness, followed by age at diagnosis, 

presence of ulceration, sex, and tumour site.  
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Table 5.4 Association of the selected gene expression levels (and gene 
expression score) with clinical predictors in all samples with gene 
expression data (n=699) 

 Age at 
diagnosis 
(years)a 

Sex 
(Female 
vs male)b 

Tumour 
site (Limbs 
vs rest of 
the body)b 

Log-
transformed 

Breslow 
thicknessa 

Presence of 
ulceration 

(No vs yes)b 

ILMN_1701441 
(LPAR1) 

2.3 x 10-6 
(-2.30) 

0.29 4.8 x 10-3 
(0.79) 

5.5 x 10-13 
(-0.16) 

2.2 x 10-5 
(0.70) 

ILMN_3249501 
(ZNF697) 

0.16 0.39 0.38 7.7 x 10-5 
(0.09) 

0.05 

ILMN_1749829  
(DLG1) 

1.1 x 10-5 

(2.14) 
0.04 

(1.16) 
0.09 1.6 x 10-9 

(0.14) 
1.9 x 10-4 

(1.36) 
ILMN_1731206  
(NKD2) 

1.2 x 10-11 

(-3.27) 
4.2 x 10-3 

(0.81) 
4.4 x 10-5 

(0.70) 
2.0 x 10-16 

(-0.24) 
4.4 x 10-12 

(0.54) 
ILMN_1764109  
(C1R) 

3.2 x 10-4 

(-1.75) 
0.15 0.04 

(0.85) 
9.9 x 10-9 

(-0.13) 
2.5 x 10-3 

(0.79) 
ILMN_2056167 
(OSTC) 

0.01 

(1.26) 
0.43 0.09 7.8 x 10-6 

(0.10) 
0.38 

ILMN_3238435 
(SNORA12) 

0.05 0.66 8.4 x 10-4 
(0.75) 

2.0 x 10-11 
(-0.15) 

2.5 x 10-5 
(0.70) 

ILMN_1695959 
(C21orf63) 

5.5 x 10-6 

(-2.21) 
0.12 0.06 2.3 x 10-4 

(-0.09) 
0.08 

ILMN_1741648  
(HLA-DQB2) 

2.4 x 10-5 

(-2.06) 
0.07 6.0 x 10-4 

(0.76) 
2.0 x 10-16 

(-0.25) 
5.4 x 10-13 

(0.54) 
ILMN_1784238 
(SEC22B) 

0.01 
(1.21) 

0.17 0.94 6.6 x 10-6 
(0.10) 

4.2 x 10-3 
(1.27) 

ILMN_1778401  
(HLA-B) 

0.15 0.11 0.01 
(0.82) 

2.6 x 10-6 
(-0.11) 

3.4 x 10-4 
(0.76) 

ILMN_1759729 
(NDUFA8) 

0.09 0.13 1.2 x 10-3 
(1.38) 

3.5 x 10-5 
(0.10) 

4.4 x 10-3 
(1.34) 

ILMN_2344221  
(IGSF5) 

2.0 x 10-5 

(2.08) 
0.36 0.06 1.7 x 10-8 

(0.13) 
9.1 x 10-3 

(1.23) 
ILMN_2095633 
(FGF22) 

7.1 x 10-7 

(-2.41) 
0.02 

(0.84) 
0.12 4.8 x 10-8 

(-0.13) 
1.0 x 10-4 

(0.71) 
ILMN_1700547 
(CHST9) 

0.10 0.13 0.39 0.82 0.44 

ILMN_1735199 
(CIAPIN1) 

0.08 0.50 0.96 9.1 x 10-6 
(0.10) 

0.07 

Gene 
expression 
score* 

3.3 x 10-5 
(8.33) 

0.02 
(2.10) 

0.04 
(2.01) 

2.0 x 10-7 
(0.51) 

3.6 x 10-4 
(3.60) 

a P-values from simple linear regression; values in bracket are coefficients for significant 
association with P-value<0.05           
b P-values from simple logistic regression: values in bracket are odds ratio for significant 
association with P-value<0.05                
*Association of gene expression score with clinical predictors was explored in 275 
samples 
The highlighted cells indicate significant association at P-value<0.05
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5.3.2 Association of selected SNPs (and SNP score) with clinical 
predictors  

Table 5.5 shows the association of each selected SNP with five clinical 

predictors in all samples with genotyped data in the cohort (n=1907). Of the 13 

selected SNPs, two shows significant association with age at diagnosis, none 

was associated with sex, one was significantly associated with  tumour site, 

one was significantly associated with log-transformed  Breslow thickness, and 

two were significantly associated with presence of ulceration. However, the 

evidence for association for these SNPs was marginal with strongest P-value 

of 0.02 for the presence of ulceration. When using the SNP score in 364 

samples,  the score show significant association with log-transformed Breslow 

thickness only (P-value=0.01).  

 

Table 5.5 Association of the selected SNPs (and SNP score) with clinical 
predictors in all samples with gene expression data (n=1907) 

 Age at 
diagnosis 
(years)a 

Sex 
(Female 
vs male)b 

Tumour site 
(Limbs vs 
rest of the 

body)b 

Log-
transformed 

Breslow 
thicknessa 

Presence of 
ulceration 

(No vs yes)b 

RS17837209 0.11 0.93 0.76 0.73 0.42 
RS9957831 0.63 0.31 0.16 0.17 0.97 
RS4768090 
 

0.03 
(1.02) 

0.32 0.03 
(1.17) 

0.34 0.02 
(1.22) 

RS2902554 0.50 0.34 0.06 0.36 0.80 
RS5770310 0.61 0.34 0.58 0.18 0.82 
RS10233832 0.05 0.19 0.62 0.57 0.42 
RS17379771 0.25 0.77 0.98 0.23 0.71 
RS16956192 0.35 0.65 0.42 0.17 0.17 
RS2392477 0.14 0.32 0.69 0.87 0.73 
RS6689263 0.86 0.18 0.90 0.06 0.44 
RS11639902 
 

0.60 0.89 0.10 0.05 0.02 
(0.82) 

RS12519276 
 

0.04 
(0.88) 

0.43 0.50 0.04 
(0.05) 

0.34 

RS10941528 0.09 0.34 0.40 0.16 0.06 
SNP score* 
 

0.61 0.64 0.51 0.01 
(-1.14) 

0.18 

a P-values from simple linear regression; values in bracket are coefficients for significant 
association with P-value<0.05           
b P-values from simple logistic regression: values in bracket are odds ratio for significant 
association with P-value<0.05                
*Association of SNP score with clinical predictors was explored in 364 samples 
The highlighted cells indicate significant association at P-value<0.05 
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5.3.3 Genome-wide association study of the selected gene expression 
levels (expression levels of 16 genes that are associated with 
MSS) 

Table 5.6 shows the results for genome-wide eQTL analysis for each 

gene, and Figure 5.1 to 5.16 shows the Manhattan plot for each analysis. The 

SNP with the strongest association with each expression level, together with 

the number of SNPs that reached P-value < 5 x 10-8 and P-value < 1 x10-5 are 

shown in the Table 5.6. Of the 16 gene expression levels, only those of HLA-

DQB2 and NDUFA8 show association with SNPs reaching genome-wide 

significance level (P-value < 5 x 10-8). For expression level of eight genes 

(LPAR1, DLG1, NKD2, C1R, HLA-B, IGSF5, FGF22, and CIAPIN1), the 

strongest association reached P-value < 10-7. For expression level of six genes 

(ZNF697, OSTC, SNORA12, C21orf63, SEC22B, and CHST9), their strongest 

association reached P-value < 10-6. Of these associations, four show cis-eQTL 

associations (LPAR1, NKD2, HLA-DQB2, and HLA-B) as the top SNPs are 

located on the same chromosome as the genes (results highlighted in Table 

5.6).  For the associations that are only marginally significant, these could be 

false positive associations.  

For HLA-DQB2, the SNP RS5019296 was the most predictive of HLA-

DQB2   expression with coefficient of -0.76 (P-value=3.0 x 10-14);  the effect of 

each minor allele is estimated to reduce the expression level by 0.76 units on 

the log2 transformed scale. The 29 SNPs associated with HLA-DQB2 

expression at the genome-wide significance level have MAF > 5% (Table 5.7), 

and the Manhattan plot for eQTL analysis in Figure 5.9 shows high peak 

associations at chromosome 6. As the associated SNPs were located close to 

the region of HLA-DQB2 in chromosome 6, these associations represent a cis-

eQTL. All the associated SNPs however, were highly correlated with one 

another as shown in Table 5.9. When conditioned on the most significant SNP 

(RS5019296), the strongest association reached P-value < 10-6 (RS6901084), 

hence suggesting a secondary association (Table 5.7), despite the strong LD 

between these SNPs (r = 0.9). When further analysis conditioning on two SNPs 

(RS5019296 and RS6901084) was performed to identify other SNPs that could 

predict the expression level, none of the SNPs reached P-value < 10-5. 

However, because of the strong LD in this region, it is unclear which of the 
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SNPs showing association in simple linear regression were regulatory in the 

eQTL.  

For NDUFA8, the SNP RS17398871 shows the strongest association 

with the expression level, with coefficient of -0.25 (P-value=1.0 x 10-8);  the 

effect of each minor allele is estimated to reduce 0.25 unit of log2 transformed 

expression level (Table 5.8). As both of the SNPs identified at genome-wide 

significance level are located on chromosome 2 and NDUFA8 gene located on 

chromosome 9, these associations represent a trans-eQTL. Both of the 

associated SNPs were highly correlated (r=0.99) and when adjusting for the 

most significant SNP, the second SNP (RS2192689) was no longer significant 

(P-value=0.95).  
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Table 5.6 Genome-wide eQTL analysis for 16 gene expression levels 
(n=619) 

Probe Gene 
(Chr) 

Simple linear regression 
No. of 

SNPs with  
P  

< 5 x 10-8 

No. of 
SNPs with  

P  
< 1 x 10-5 

Top SNP and 
its position on 
chromosome 

 

P-value* 

ILMN_1701441 
 

LPAR1 
(9) 

- 18 RS1331250 
(9:32191942) 

1.6 x 10-7 
 

ILMN_3249501 
 

ZNF697 
(1) 

- 7 RS2345782 
(12:126373092) 

2.6 x 10-6 

 
ILMN_1749829 

 
DLG1 
(14) 

- 8 RS2147356 
(13: 33474475) 

3.2 x 10-7 
 

ILMN_1731206 
 

NKD2 
(5) 

- 12 RS10515509 
(5:139290054) 

2.2 x 10-7 
 

ILMN_1764109 
 

C1R 
(12) 

- 5 RS6817112 
(4:154080813) 

2.0 x 10-7 

 
ILMN_2056167 

 
OSTC 

(4) 
- 2 RS185063 

(16:84456705) 
1.7 x 10-6 

 
ILMN_3238435 

 
SNORA12 

(10) 
- 3 RS2944776 

(8:141541881) 
4.5 x 10-6 

 
ILMN_1695959 

 
C21orf63 

(21) 
- 4 RS6029941 

(20:35519475) 
2.1 x 10-6 

 
ILMN_1741648 

 
HLA-DQB2 

(6) 
29 57 RS5019296 

(6:32733446) 
3.0 x 10-14 

 
ILMN_1784238 

 
SEC22B 

(1) 
- 6 RS2382215 

(2:148977189) 
2.5 x 10-6 

 
ILMN_1778401 

 
HLA-B 

(6) 
- 15 RS6912584 

(6:28309590) 
9.1 x 10-7 

 
ILMN_1759729 

 
NDUFA8 

(9) 
2 31 RS17398871 

(2:58481589) 
1.0 x 10-8 

 
ILMN_2344221 

 
IGSF5 

(21) 
- 13 RS12147287 

(14:101554839) 
1.6 x 10-7 

 
ILMN_2095633 

 
FGF22 

(19) 
- 13 RS13333251 

(16:86290512) 
3.2 x 10-7 

 
ILMN_1700547 

 
CHST9 

(18) 
- 7 RS1004551 

(3:134519445) 
4.8 x 10-6 

 
ILMN_1735199 

 
CIAPIN1 

(16) 
- 19 RS4142346 

(20:39513865) 
2.1 x 10-7 

 
*Additive model  
Chr: Chromosome 
The highlighted rows indicate associations are cis-eQTLs as the top SNPs located on the 
same chromosome as the genes  
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Table 5.7 Association of HLA-DQB2 expression level with the 29 SNPs 
identified at genome-wide significance level (n=619) 

SNP Chr Position MAF Simple linear 
regression 

Adjusting for the 
most significant 

SNP 
(RS5019296) 

β P-value β P-value 
RS5019296 6 32733446 0.46 -0.76 3.0 x 10-14 - - 
RS1573649 6 32731258 0.46 -0.76 4.4 x 10-14 NA NA 
RS9276598 6 32733987 0.46 -0.76 4.4 x 10-14 NA NA 
RS7382794 6 32734030 0.46 -0.76 4.4 x 10-14 NA NA 
RS6903130 6 32732210 0.46 -0.76 4.4 x 10-14 NA NA 
RS6902723 6 32731960 0.46 -0.76 4.4 x 10-14 NA NA 
RS9276595 6 32733931 0.46 -0.74 1.2 x 10-13 NA NA 
RS9276586 6 32732937 0.46 -0.74 1.6 x 10-13 NA NA 
RS1573648 6 32731439 0.46 -0.74 2.1 x 10-13 NA NA 
RS2006165 6 32728787 0.47 0.65 1.3 x 10-10 -0.68 2.4 x 10-4 
RS1023449 6 32727905 0.46 0.65 2.4 x 10-10 0.06 0.73 
RS2395256 6 32728588 0.47 0.64 2.4 x 10-10 0.06 0.73 
RS2213572 6 32719804 0.47 0.64 2.4 x 10-10 -0.70 1.1 x 10-4 
RS2213568 6 32711576 0.47 0.64 2.4 x 10-10 0.06 0.73 
RS4248169 6 32728554 0.47 0.64 2.6 x 10-10 -0.71 1.3 x 10-4 
RS9276558 6 32724061 0.47 0.64 2.7 x 10-10 -0.71 1.1 x 10-4 
RS7453920 6 32730012 0.47 0.64 3.9 x 10-10 -0.77 4.7 x 10-5 
EXM-RS9276431 6 32712247 0.47 0.63 5.4 x 10-10 -0.01 0.98 
RS2071551 6 32729459 0.47 0.63 6.5 x 10-10 -0.77 4.8 x 10-5 
RS2301271 6 32725193 0.47 0.63 6.5 x 10-10 -0.77 4.8 x 10-5 
EXM-RS2213567 6 32711655 0.47 0.62 7.6 x 10-10 0.01 0.95 
RS2051549 6 32730086 0.46 0.62 1.1 x 10-9 -0.03 0.89 
EXM-RS6936428 6 32739174 0.38 -0.63 1.7 x 10-9 0.06 0.75 
RS6457661 6 32737494 0.39 -0.62 4.8 x 10-9 0.14 0.47 
RS6901084 6 32736936 0.39 -0.62 4.8 x 10-9 -0.87 3.1 x 10-6 
EXM-RS1585891 6 32736722 0.39 -0.62 5.9 x 10-9 0.14 0.47 
RS2859071 6 32703366 0.48 0.59 5.9 x 10-9 -0.05 0.79 
EXM-RS7773149 6 32706042 0.48 0.58 1.6 x 10-8 -0.87 1.1 x 10-6 
RS9276370 6 32707295 0.48 0.58 1.6 x 10-8 -0.14 0.44 

NA: coefficient for the SNP was not estimable due to collinearity  

 

Table 5.8 Association of NDUFA8 expression level with the SNPs 
identified at genome-wide significance level (n=619) 

SNP Chr Position MAF Simple linear 
regression 

Conditioning on the 
most significant 

SNP (RS17398871) 
β P-value β P-value 

RS17398871 2 58481589 0.09 -0.25 1.0 x 10-8 - - 
RS2192689 2 58475916 0.09 -0.25 2.8 x 10-8 0.01 0.95 
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Figure 5.1 Genome-wide eQTL analysis for LPAR1 expression level (Chr 9) 

 

Figure 5.2 Genome-wide eQTL analysis for ZNF697 expression level (Chr 1) 

 

Figure 5.3 Genome-wide eQTL analysis for DLG1 expression level (Chr 14) 
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Figure 5.4 Genome-wide eQTL analysis for NKD2 expression level (Chr 5) 

 

Figure 5.5 Genome-wide eQTL analysis for C1R expression level (Chr 12) 

 

Figure 5.6 Genome-wide eQTL analysis for OSTC expression level (Chr 4) 
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Figure 5.7 Genome-wide eQTL analysis for SNORA12 expression level(Chr 10) 

 

Figure 5.8 Genome-wide eQTL analysis for C21orf63 expression level (Chr 21) 

 

Figure 5.9 Genome-wide eQTL analysis for HLA-DQB2 expression level (Chr 6) 
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Figure 5.10 Genome-wide eQTL analysis for SEC22B expression level (Chr 1) 

 

Figure 5.11 Genome-wide eQTL analysis for HLA-B expression level (Chr 6) 

 

Figure 5.12 Genome-wide eQTL analysis for NDUFA8 expression level (Chr 9) 
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Figure 5.13 Genome-wide eQTL analysis for IGSF5 expression level (Chr 21) 

 

Figure 5.14 Genome-wide eQTL analysis for FGF22 expression level (Chr 19) 

 

Figure 5.15 Genome-wide eQTL analysis for CHST9 expression level (Chr 18) 
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Figure 5.16 Genome-wide eQTL analysis for CIAPIN1 expression level (Chr 16) 
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5.3.4 Association of top melanoma susceptibility SNPs with MSS 
and clinical predictors 

The associations between the top melanoma susceptibility SNPs with 

MSS are shown in Table 5.10. Of the 20 top SNPs, only the top SNP in PARP1 

(RS1858550) was predictive of MSS (HR=0.77, P-value=2.3 x 10-3); each copy 

of the minor allele is associated with reduced risk of death from melanoma.  

Table 5.11 shows the association of the 20 top melanoma susceptibility 

SNPs with five clinical predictors. As highlighted in Table 5.11, at the nominal 

5% significance level two SNPs (RS498136 in CCND1 and RS75570604 in 

MC1R) were significantly associated with age at diagnosis, three (RS1858550 

in PARP1, RS2995264 in OBFC1, and RS73008229 in ATM) were significantly 

associated with sex, three (RS6750047 in RMDN2, RS250417 in SLC45A2, 

and RS10739221 in TMEM38B) were significantly associated with log-

transformed Breslow thickness, and one (RS1393350 in TYR) was associated 

with presence of ulceration. None of the SNPs were associated with tumour 

site. For the significant associations, the highest P-value was P<10-3, and only 

seen for association with age and sex.  
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Table 5.10 Association of top melanoma risk SNPs with MSS (n=1733) 
Loci Top SNP 

(Position) 
β 

 
HR SE P-value 

ARNT RS12410869 
(1: 150856153) 

-0.06 
 

0.94 
 

0.09 
 

0.48 
 

PARP1 RS1858550 
(1:226608104) 

-0.26 
 

0.77 
 

0.09 
 

2.3 x 10-3 

 
RMDN2 

(CYP1B1) 
RS6750047 

(2:38276549) 
0.01 

 
1.01 

 
0.08 

 
0.89 

 
CASP8 RS7582362 

(2:202176294) 
-0.07 

 
0.93 

 
0.09 

 
0.42 

 
TERT/ 

CLPTM1L 
RS380286 

(5:1320247) 
-0.06 

 
0.94 

 
0.08 

 
0.46 

 
SLC45A2 RS250417 

(5:33952378) 
-0.57 

 
0.56 

 
0.51 

 
0.26 

 
CDKAL1 RS6914598 

(6:21163919) 
0.12 

 
1.13 

 
0.09 

 
0.18 

 
AGR3 RS1636744 

(7:16984280) 
-0.02 

 
0.98 

 
0.08 

 
0.82 

 
CDKN2A/ 

MTAP 
RS7852450 

(9:21825075) 
-0.03 

 
0.98 

 
0.08 

 
0.77 

 
TMEM38B 

(RAD23B, TAL2) 
RS10739221 

(9:109060830) 
-0.18 

 
0.83 

 
0.10 

 
0.07 

 
OBFC1 RS2995264 

(10:105668843) 
-0.08 

 
0.93 

 
0.14 

 
0.60 

 
CCND1 RS498136 

(11:69367118) 
-0.07 

 
0.94 

 
0.09 

 
0.45 

 
TYR RS1393350 

(11:89011046) 
0.03 

 
1.03 

 
0.09 

 
0.69 

 
ATM RS73008229 

(11:108187689) 
-0.08 

 
0.92 

 
0.12 

 
0.50 

 
OCA2 RS4778138 

(15:28335820) 
-0.10 

 
0.90 

 
0.13 

 
0.44 

 
FTO RS12596638 

(16:54115829) 
-0.03 

 
0.97 

 
0.11 

 
0.80 

 
MC1R RS75570604 

(16:89846677) 
0.17 

 
1.19 

 
0.12 

 
0.16 

 
ASIP RS6088372 

(20:32586748) 
0.10 

 
1.11 

 
0.11 

 
0.37 

 
MX2 RS408825 

(21:42743496) 
-0.05 

 
0.95 

 
0.09 

 
0.54 

 
PLA2G6 RS2092180 

(22:38571563) 
0.11 

 
1.12 

 
0.08 

 
0.17 

 
The highlighted row indicate significant association at P-value < 0.05  
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Table 5.11 Association of top melanoma risk SNPs with clinical 
predictors (n=1907) 

Loci Top SNP 
(Position) 

Age at 
diagnosis 
(years)a 

Sex 
(Female 
vs male)b 

Tumour 
site 

(Limbs 
vs rest 
of the 
body)b 

Log- 
trans-

formed 
Breslow 

thick-
nessa 

Presence 
of 

ulceration 
(No vs 
yes)b 

ARNT RS12410869 
(1: 150856153) 

0.97 0.15 0.12 0.37 0.49 

PARP1 RS1858550 
(1:226608104) 

0.24 0.02 
(0.84) 

0.98 0.58 0.56 

RMDN2 
(CYP1B1) 

RS6750047 
(2:38276549) 

0.89 0.97 0.53 0.04 
(0.05) 

0.37 

CASP8 RS7582362 
(2:202176294) 

0.38 0.94 0.98 0.23 0.65 

TERT/ 
CLPTM1L 

RS380286 
(5:1320247) 

0.09 0.77 0.31 0.22 0.15 

SLC45A2 RS250417 
(5:33952378) 

0.71 0.64 0.52 0.02 
(-0.27) 

0.60 

CDKAL1 RS6914598 
(6:21163919) 

0.77 0.55 0.15 0.08 0.14 

AGR3 RS1636744 
(7:16984280) 

0.70 0.78 0.59 0.14 0.52 

CDKN2A/ 
MTAP 

RS7852450 
(9:21825075) 

0.35 0.07 0.76 0.77 0.68 

TMEM38B 
(RAD23B, 

TAL2) 

RS10739221 
(9:109060830) 

0.92 0.39 0.78 0.04 
(-0.06) 

0.23 

OBFC1 RS2995264 
(10:105668843) 

0.75 0.02 
(1.28) 

0.17 0.44 0.71 

CCND1 RS498136 
(11:69367118) 

8.2 x 10-3 
(-1.20) 

0.73 0.89 0.27 0.42 

TYR RS1393350 
(11:89011046) 

0.91 0.55 0.45 0.88 0.02 
(0.83) 

ATM RS73008229 
(11:108187689) 

0.17 9.9 x 10-3 

(1.30) 
0.08 0.80 0.80 

OCA2 RS4778138 
(15:28335820) 

0.47 0.13 0.86 0.84 0.85 

FTO RS12596638 
(16:54115829) 

0.13 0.18 0.83 0.79 0.72 

MC1R RS75570604 
(16:89846677) 

0.03 
(1.36) 

0.11 0.62 0.32 0.63 

ASIP RS6088372 
(20:32586748) 

0.16 0.72 0.90 0.78 0.19 

MX2 RS408825 
(21:42743496) 

0.15 0.85 0.59 0.91 0.40 

PLA2G6 RS2092180 
(22:38571563) 

0.46 0.25 0.64 0.89 0.42 

a P-values from simple linear regression; values in bracket are coefficients for significant 
association with P-value <0.05           
b P-values from simple logistic regression: values in bracket are odds ratio for significant 
association with P-value <0.05                
The highlighted cells indicate significant association at P-value < 0.05  
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5.3.5 Association of top melanoma susceptibility SNPs with the 
expression levels of nearby genes  

Table 5.12 shows the association of top melanoma susceptibility SNPs 

with the expression levels of nearby genes using simple linear regression for 

each locus. For genes with more than one probe, all probes were used to test 

the association. Of the 20 SNPs analysed, five (RS12410869 in ARNT, 

RS6750047 in RMDN2, RS6914598 in CDKAL1, RS6088372 in ASIP, and 

RS408825 in MX2 region) show significant association with gene expression at 

the 5% significance level.   
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Table 5.12 Association of top melanoma risk SNPs with expression levels 
of nearby genes in melanoma tumours (n=619) 

Loci Top SNP 
(Position) 

Probe (Gene) β (SE) P-value 

ARNT RS12410869 
(1: 150856153) 

ILMN_1762582  
(ARNT) 

-0.23 (0.03) 8.27 x 10-11 

 RS12410869 
 

ILMN_2347314 
(ARNT) 

-0.06 (0.03) 0.05 

PARP1 RS1858550 
(1:226608104) 

ILMN_1686871 
(PARP1) 

0.05 (0.05) 0.36 

RMDN2 
(CYP1B1) 

RS6750047 
(2:38276549) 

ILMN_1812302 
(RMDN2) 

0.01 (0.04) 0.77 

 RS6750047 ILMN_1693338 
(CYP1B1) 

0.19 (0.07) 8.65 x 10-3 

CASP8 RS7582362 
(2:202176294) 

ILMN_1673757 
(CASP8) 

-0.03 (0.04) 0.47 

 RS7582362 ILMN_1787749 
(CASP8) 

0.03 (0.09) 0.74 

 RS7582362 ILMN_1809313 
(CASP8) 

0.01 (0.06) 0.92 

 RS7582362 ILMN_2377733 
(CASP8) 

-0.02 (0.05) 0.74 

TERT 
(CLPTM1L) 

RS380286 
(5:1320247) 

ILMN_1796005 
(TERT) 

-0.003 (0.06) 0.96 

 RS380286 ILMN_2373119 
(TERT) 

-0.02 (0.07) 0.77 

 RS380286 ILMN_1752802 
(CLPTM1L) 

-0.02 (0.07) 0.79 

SLC45A2 RS250417  
(5:33952378) 

ILMN_1654165 
(SLC45A2) 

0.14 (0.33) 0.68 

 RS250417 ILMN_1685259 
(SLC45A2) 

0.04 (0.28) 0.90 

 RS250417 ILMN_2246188 
(SLC45A2) 

0.16 (0.31) 0.61 

 RS250417 ILMN_2320391 
(SLC45A2) 

-0.11 (0.34) 0.75 

CDKAL1 RS6914598 
(6:21163919) 

ILMN_1788022 
(CDKAL1) 

-0.08 (0.04) 0.03 

AGR3 RS1636744 
(7:16984280) 

ILMN_1728787 
(AGR3) 

-0.02 (0.04) 0.68 

 RS1636744 ILMN_2050246 
(AGR3) 

-0.05 (0.04) 0.26 

CDKN2A 
(MTAP) 

RS7852450 
(9:21825075) 

ILMN_1717714 
(CDKN2A) 

-0.07 (0.08) 0.38 

 RS7852450 ILMN_1744295 
(CDKN2A) 

0.04 (0.07) 0.57 

 RS7852450 ILMN_1757255 
(CDKN2A) 

-0.15 (0.09) 0.14 

 RS7852450 ILMN_1753639 
(MTAP) 

0.05 (0.05) 0.35 

TMEM38B 
(RAD23B, 
TAL2) 

RS10739221 
(9:109060830) 

ILMN_1669940 
(TMEM38B) 

-0.02 (0.04) 0.55 
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 RS10739221 ILMN_2093980 
(TMEM38B) 

0.07 (0.07) 0.33 

 RS10739221 ILMN_1722662 
(RAD23B) 

0.03 (0.03) 0.43 

 RS10739221 ILMN_2135833 
(TAL2) 

0.04 (0.04) 0.25 

OBFC1 RS2995264 
(10:105668843) 

ILMN_1789186 
(OBFC1) 

0.02 (0.05) 0.69 

CCND1 RS498136 
(11:69367118) 

ILMN_1688480 
(CCND1) 

0.03 (0.03) 0.41 

TYR RS1393350 
(11:89011046) 

ILMN_1788774 
(TYR) 

-0.11 (0.06) 0.06 

ATM RS73008229 
(11:108187689) 

ILMN_1713630 
(ATM) 

0.06 (0.09) 0.48 

 RS73008229 ILMN_1716231 
(ATM) 

-0.02 (0.04) 0.72 

 RS73008229 ILMN_1779214 
(ATM) 

0.003 (0.05) 0.95 

 RS73008229 ILMN_2370825 
(ATM) 

0.06 (0.06) 0.28 

OCA2 RS4778138 
(15:28335820) 

ILMN_1746116 
(OCA2) 

-0.23 (0.21) 0.28 

FTO RS12596638 
(16:54115829) 

ILMN_2288070 
(FTO) 

0.07 (0.07) 0.33 

MC1R RS75570604 
(16:89846677) 

ILMN_1653319 
(MC1R) 

-0.11 (0.06) 0.08 

ASIP RS6088372 
(20:32586748) 

ILMN_1791647 
(ASIP) 

-0.27 (0.12) 0.03 

MX2 RS408825 
(21:42743496) 

ILMN_2231928 
(MX2) 

-0.26 (0.05) 1.32 x 10-6 

PLA2G6 RS2092180 
(22:38571563) 

ILMN_1697654 
(PLA2G6) 

0.03 (0.03) 0.22 

 RS2092180 ILMN_1798955 
(PLA2G6 

-0.03 (0.05) 0.51 

The highlighted rows indicate significant association at P-value < 0.05  
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5.3.6 Association of other SNPs in the susceptibility regions with 
the expression level of nearby genes  

Table 5.13 shows the association of other SNPs in the regions 

(analysed as genotype dosage) with the expression levels of nearby genes in 

each locus. Figures 5.17 to 5.57 in Appendix I shows the Manhattan plot for 

association test in each locus. When including other SNPs in the region, 

significant associations were found in two regions (ARNT and MX2) after 

multiple testing corrections (10% FDR).  

In the ARNT region, 361 SNPs were associated with the expression 

level from probe ILMN_1762582 after multiple testing correction (Figure 5.17). 

However, when conditioned on the most significant SNP (RS11204735, P-

value=2.4 x 10-12) in simple linear regression, no further associations were 

seen in the 361 SNPs at 5% significance level. All SNPs identified in the simple 

linear regression were highly correlated with SNP RS11204735; therefore, it is 

unclear which SNP is causal. 	

In the MX2 region, 18 SNPs showed significant association with MX2 

expression level after multiple testing correction (Figure 5.55). After 

conditioning on the most significant SNP in simple linear regression 

(RS376364, P-value=6.7 x 10-7), none of the SNPs remained significant at the 

5% significance level. As all SNPs identified in the simple linear regression 

were also highly correlated with one another, it is again unclear which SNP is 

causal.  
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Table 5.13 Association of other SNPs in the susceptibility region with 
expression level of nearby gene (n=619) 

Region 
(Total no. 
of SNPs in 
the region†) 

Probe Total 
no. of 

sig 
SNPs* 

Top SNP 
(Position) 

β (SE) P-value* 

ARNT 
(2533) 

ILMN_1762582  
(ARNT) 

361 RS11204735 
(1:150841667) 

0.23 (0.03) 2.37 x 10-12 

 ILMN_2347314 
(ARNT) 

- RS146468719 
(1:151000790) 

-0.12 (0.04) 1.77 x 10-3 

PARP1 
(3361) 

ILMN_1686871 
(PARP1) 

- RS114646469 
(1:226601738) 

-0.56 (0.20) 5.96 x 10-3 

RMDN2 
(CYP1B1) 
(4590) 

ILMN_1812302 
(RMDN2) 

- RS10166521 
(2:38116186) 

-0.17 (0.06) 2.64 x 10-3 

 ILMN_1693338 
(CYP1B1) 

- RS336031 
(2:38265130) 

-0.26 (0.07) 2.16 x 10-4 

CASP8 
(2810) 

ILMN_1673757 
(CASP8) 

- RS6747200 
(2:202418976) 

0.09 (0.04) 8.82 x 10-3 

 ILMN_1787749 
(CASP8) 

- RS11890734 
(2:202384886) 

-0.50 (0.17) 3.23 x 10-3 

 ILMN_1809313 
(CASP8) 

- RS553977725 
2:202303828 

0.85 (0.32) 7.76 x 10-3 

 ILMN_2377733 
(CASP8) 

- RS78982960 
2:202395313 

0.31 (0.09) 7.27 x 10-4 

TERT 
(CLPTM1L) 
(4582) 

ILMN_1796005 
(TERT) 

- RS145297127 
(5:1343525) 

-0.80 (0.21) 1.12 x 10-4 

 ILMN_2373119 
(TERT) 

- RS148487301 
(5:1318797) 

-0.49 (0.16) 2.98 x 10-3 

 ILMN_1752802 
(CLPTM1L) 

- RS183615159 
(5:1187235) 

1.24 (0.33) 2.27 x 10-4 

SLC45A2 
(2160) 

ILMN_1654165 
(SLC45A2) 

- RS10044427 
(5:33811670) 

-0.32 (0.11) 5.36 x 10-3 

 ILMN_1685259 
(SLC45A2) 

- RS10044427 
(5:33811670) 

-0.29 (0.10) 3.34 x 10-3 

 ILMN_2246188 
(SLC45A2) 

- RS112493515 
(5:33789210) 

0.84 (0.32) 7.97 x 10-3 

 ILMN_2320391 
(SLC45A2) 

- RS10941098 
(5:33816914) 

-0.26 (0.09) 4.92 x 10-3 

CDKAL1 
(3620) 

ILMN_1788022 
(CDKAL1) 

- RS145289628 
(6:21337898) 

0.42 (0.09) 2.37 x 10-5 

AGR3 
(4644) 

ILMN_1728787 
(AGR3) 

- RS41363746 
(7:17140827) 

-0.46 (0.11) 1.85 x 10-5 

 ILMN_2050246 
(AGR3) 

- RS2892833 
(7:16913557) 

-0.16 (0.05) 4.34 x 10-4 

CDKN2A 
(MTAP) 
(3938) 

ILMN_1717714 
(CDKN2A) 

- RS112793495 
(9:22018696) 

-1.09 (0.34) 1.49 x 10-3 

 ILMN_1744295 
(CDKN2A) 

- RS112793495 
(9:22018696) 

-0.96 (0.33) 3.43 x 10-3 

 ILMN_1757255 
(CDKN2A) 

- RS143469042 
(9:21602348) 

1.62 (0.60) 7.30 x 10-3 

 ILMN_1753639 
(MTAP) 

- RS11787926 
(9:21575784) 

0.49 (0.18) 5.76 x 10-3 

TMEM38B 
(RAD23B, 

ILMN_1669940 
(TMEM38B) 

- RS112167989 
(9:109224990) 

0.26 (0.09) 9.66 x 10-3 
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TAL2) 
(3232) 

ILMN_2093980 
(TMEM38B) 

- RS7046731 
(9:109270933) 

-0.34 (0.12) 4.57 x 10-3 

ILMN_1722662 
(RAD23B) 

- RS56927240 
(9:109148074) 

0.53 (0.16) 1.42 x 10-3 

ILMN_2135833 
(TAL2) 

- RS62575303 
(9:109006118) 

0.40 (0.11) 4.53 x 10-4 

OBFC1 
(3353) 

ILMN_1789186 
(OBFC1) 

- RS35478175 
(10:105553793) 

0.15 (0.06) 0.01 

CCND1 
(3922) 

ILMN_1688480 
(CCND1) 

- RS3212892 
(11:69465860) 

0.38 (0.11) 5.58 x 10-4 

TYR 
(2889) 

ILMN_1788774 
(TYR) 

- RS6483008 
(11:88999996) 

0.90 (0.28) 1.33 x 10-3 

ATM 
(2643) 

ILMN_1713630 
(ATM) 

- RS4356187 
(11:108355227) 

-0.21 (0.06) 5.56 x 10-4 

 ILMN_1716231 
(ATM) 

- RS877474 
(11:108382303) 

-0.23 (0.10) 0.02 

 ILMN_1779214 
(ATM) 

- RS79942405 
(11:108381644) 

-0.25 (0.08) 1.25 x 10-3 

 ILMN_2370825 
(ATM) 

- RS72992174 
(11:108330256) 

-0.39 (0.14) 6.22 x 10-3 

OCA2 
(1763) 

ILMN_1746116 
(OCA2) 

- RS1129038 
(15:28356859) 

0.41 (0.15) 5.23 x 10-3 

FTO 
(3785) 

ILMN_2288070 
(FTO) 

- RS58687241 
(16:54023335) 

0.24 (0.07) 3.01 x 10-4 

MC1R 
(4344) 

ILMN_1653319 
(MC1R) 

- RS9939542 
(16:90053048) 

-0.13 (0.04) 2.37 x 10-3 

ASIP 
(2564) 

ILMN_1791647 
(ASIP) 

- RS6059655 
(20:32665748) 

0.39 (0.14) 6.02 x 10-3 

MX2 
(3812) 

ILMN_2231928 
(MX2) 

18 RS376364 
(21:42746568) 

-0.27 (0.05) 6.65 x 10-7 

PLA2G6 
(3175) 

ILMN_1697654 
(PLA2G6) 

- RS11798033 
(22:38653322) 

0.41 (0.13) 1.05 x 10-3 

 ILMN_1798955 
(PLA2G6) 

- RS143452361 
(22:38431407) 

0.77 (0.26) 3.43 x 10-3 

The highlighted rows indicate significant associations after multiple testing corrections using 
Benjamini and Yekutielli (2001) method (10% FDR) 
 

† 500kb on either side of the top melanoma susceptibility SNP in each region 
 
* The P-values shown were P-values before correction, and highlighted as significant if they 
meet the 10% FDR  
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5.4 Discussion 
5.4.1 Understanding the gene expression and SNP associations by 

relating them to clinical predictors 
When the associations of the 16 gene expression levels with five 

established clinical predictors for MSS were explored, most of the selected 

gene expression levels showed significant association with clinical predictors; 

10 gene expression levels associated with age at diagnosis, 3 associated with 

sex, 7 associated with tumour site, 15 associated with log-transformed Breslow 

thickness, and 11 associated with presence of ulceration. When using the gene 

expression score, associations remained significant for all clinical predictors; 

higher gene expression score associated with increased age, increased log-

transformed Breslow thickness, and increased odds for being male, having 

tumour at the rest of the body, and presence of ulceration, which are 

unfavourable predictors for melanoma survival (Thorn et al., 1994; Lindholm et 

al., 2004; Leiter et al., 2004; Buettner et al., 2005; Balch et al., 2009).  

As shown in Table 5.14, the significant gene expression levels that are 

associated with good prognosis according to one clinical predictor, also 

consistently have similar direction of effect on other predictors, and likewise for 

genes that are associated with poor prognosis. For example, doubling 

expression level of NKD2 is associated with younger age at onset, decreased 

Breslow thickness, reduce odds for male sex, reduced odds for tumour site at 

the rest of the body (vs limbs), and reduced odds for presence of ulceration. 

This is not altogether surprising, because many of the clinical predictors are 

correlated with each other (see Table 6.5 in Chapter 6). Results in this analysis 

shows that gene expression levels are associated with important clinical 

predictors for melanoma survival; hence, increased expression levels for the 16 

top gene expression levels identified in Chapter 3 may affect MSS through the 

clinical predictors.  

For the 13 selected SNPs, significant associations with clinical 

predictors were seen for 3 SNPs only (RS4768090 with age at diagnosis, 

tumour site, and presence of ulceration; RS11639902 with presence of 

ulceration; RS12519276 with age at diagnosis, and log-transformed Breslow 

thickness). However, these associations were not as strong as the associations 

of gene expression levels with clinical predictors, suggesting that genetic 
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variants may have no strong influence on the clinical predictors. On the other 

hand, these associations could only be false positives as most of the 

associated SNPs were only marginally significant. 

 

Table 5.14 Summary of the significant associations of 16 gene expression 
levels with clinical predictors 

 Significant associations with good 
prognostic indicators 

Significant associations 
poor prognostic indicators 

Genes with 
negative 

coefficient 

Interpretations Genes with 
positive 

coefficient 

Interpretations 

Age at 
diagnosis 

LPAR1, 
NKD2, C1R, 

C21orf63, 
HLA-DQB2, 
and FGF22 

Doubling the 
expression level of 

6 genes 
associated with 

reduced age 

DLG1, 
OSTC, 

SEC22B, 
and IGSF5 

Doubling the 
expression level 

of 4 genes 
associated with 
increased age 

Log-
transfromed 
Breslow 
thickness 

LPAR1, 
NKD2, C1R, 
SNORA12, 
c21orf63, 

HLA-DQB2, 
HLA-B, and 

FGF22 
 

Doubling the 
expression level of 

8 genes 
associated with 

decreased 
Breslow thickness 

ZNF692, 
DLG1, 
OSTC, 

SEC22B, 
NDUFA8, 

IGSF5, and 
CIAPIN1 

Doubling the 
expression level 

of 7 genes 
associated with 

increased 
Breslow thickness 

 Significant associations with good 
prognostic indicators 

Significant associations with 
poor prognostic indicators 

Genes with 
OR <1 

Interpretations Genes with 
OR >1 

Interpretations 

Sex (female 
vs male) 

NKD2 and 
FGF22 

Doubling the 
expression level of 

2 genes 
associated with 
reduced odds of 

male sex 

DLG1 Doubling the 
expression level 

of 1 gene 
associated with 

increased odds of 
male sex 

Tumour site 
(limbs vs 
rest of the 
body) 

LPAR1, 
NKD2, C1R, 
SNORA12m 
HLA-DQB2, 
and HLA-B 

Doubling the 
expression level of 

6 genes 
associated with 
reduced odds of 

tumour at the rest 
of the body 

NDUFA8 Doubling the 
expression level 

of 1 gene 
associated with 

increased odds of  
tumour at the rest 

of the body 
Presence of 
ulceration 
(absence vs 
presence)  

LPAR1, 
NKD2, C1R, 
SNORA12, 
HLA-DQB2, 
HLA-B, and 

FGF22 

Doubling the 
expression level of 

7 genes 
associated with 

reduced odds for 
presence of 
ulceration 

 

DLG1, 
SEC22B, 
NDUFA8, 

and IGSF5 

Doubling the 
expression level 

of 4 genes 
associated with 
increased odds 
for presence of 

ulceration 
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5.4.2 GWAS of 16 gene expression levels 
When GWAS of the 16 expression levels were performed, results show 

that SNPs could predict the expression level of two genes (HLA-DQB2 and 

NDUFA8) at genome-wide significance level. For the other 14 expression 

levels, while not reaching the genome-wide significance level, the strongest 

associations reached P-value<10-6 (for 6 genes) and P-value<10-7 (for 8 

genes), which indicates suggestive association.  

For the two expression levels with associations that attained genome-

wide significance levels, there were 29 and 2 eQTL SNPs for HLA-DQB2 and 

NDUFA8, respectively. Further analysis conditioning on the top SNP for HLA-

DQB2 shows other significant SNPs that reached P-value<10-6, indicating that 

eQTL signals for HLA-DQB2 could be explained by more than one SNP. For 

NDUFA8, no further associations were found when conditioned on the most 

significant SNP from the simple linear regression, suggesting that the eQTL 

signals for NDUFA8 could be explained by one SNP. However, it is unclear 

which SNP is the causal SNP due to high LD between the SNPs.  

Using the National Centre for Biotechnological Information (NCBI)  

eQTL browser, one of the 29 SNPs associated with HLA-DQB2 expression 

level in the simple linear regression was found as an eQTL SNP in liver tissue 

(RS1573649, P-value=1.1 x 10-14 from Kruskall-Wallis test). This SNP was the 

second most significant SNP in the current analysis and was also highly 

correlated with the most significant SNP (RS5019296), suggesting that these 

the SNPs could have a genuine eQTL signal in melanoma tissue. For NDUFA8 

expression, no SNPs were identified as eQTLs in other tissues.  

As results in this analysis show that gene expression levels in the 

tumour are associated with SNPs to some degree, future analysis could 

explore how well gene expression levels could be predicted for patients without 

expression data but with genotype data.  A recent study by Gusev et al. (2016)  

as  described in Chapter 1 has introduced a new method using a smaller set of 

individuals with both gene expression and genotype data available as a 

reference panel to impute gene expression data in patients where expression 

levels were not measured.  
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5.4.3 Investigation of melanoma susceptibility SNPs 
When the associations of the 20 top melanoma susceptibility SNPs with 

MSS were explored, only SNP RS1858550 in PARP1 was predictive of MSS 

(P-value=2.3 x 10-3). When corrected for multiple testing using a Bonferroni 

correction for 20 tests, this association is only borderline significant at the 5% 

level. However, association of the risk variants in PARP1 with melanoma 

survival has been previously reported by Davies et al. (2014b) and Law et al. 

(2015b). For susceptibility SNPs in other loci, no significant associations were 

seen, but it cannot be concluded from our results that these SNPs have no 

effect on MSS as the analysis does not have adequate power to detect weak 

associations.  

Of the 20 top susceptibility SNPs, two SNPs (RS498136 in CCND1 and 

RS75570604 in MC1R) were significantly associated with age at diagnosis, 

three (RS1858550 in PARP1, RS2995264 in OBFC1, and RS73008229 in 

ATM) were significantly associated with sex, three (RS6750047 in RMDN2, 

RS250417 in SLC45A2, and RS10739221 in TMEM38B) were significantly 

associated with log-transformed Breslow thickness, and one (RS1393350 in 

TYR) was associated with presence of ulceration. However, the associations 

for these SNPs were not strong, suggesting that risk variants may not have 

strong effects on the important clinical predictors for melanoma survival and 

some are likely to be false positives especially the SNPs with marginal 

significant. As SNPs on autosomal chromosomes are unlikely to be related to 

sex in general populations, the significant associations between the three 

susceptibility SNPs with sex could be false positives too.  

Previous studies have explored the association of melanoma 

susceptibility SNPs with factors that are associated with risk of developing 

melanoma, such as nevus count, pigmentation and telomere length (Barrett et 

al., 2011; Iles et al., 2013; Law et al., 2015a); however, the association of 

susceptibility SNPs with the established clinical predictors for melanoma 

survival is still unclear in the literature.  

When the association of the 20 top susceptibility SNPs with the 

expression levels of nearby genes was investigated, only five were associated 

with expression levels in neighbouring genes at the 5% significance level: 

RS12410869 was associated with ARNT expression (P-value=8.2 x 10-11), 
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RS6750047 with RMDN2 expression (P-value=8.7 x 10-3), RS6914598 with 

CDKAL1 expression (P-value=0.03), RS6088372 with ASIP expression (P-

value=0.03), and RS408825 with MX2 expression (P-value=1.3 x 10-6). 

However, using the NCBI eQTL browser, none of the 20 melanoma 

susceptibility SNPs were identified as eQTLs in other tissues.  

When including other SNPs in the susceptibility loci, evidence of eQTLs 

were found in two regions (ARNT and MX2). A total of 361 SNPs in the ARNT 

region were associated with the expression level from probe ILMN_1762582 in 

simple linear regression, but no further associations were observed at 5% level 

of significance after conditioning on the most significant SNP (RS11204735, P-

value=2.4 x 10-12). In the MX2 region, 18 SNPs were associated with 

expression levels from probe ILMN_2231928 in simple linear regression, but 

none were significant after conditioning on the most significant SNP 

(RS376364, P-value=6.7 x 10-7). Using the NCBI eQTL browser, two of the 361 

associated SNPs in the ARNT region were also eQTL SNPs in liver tissue: 

RS1088395 (P-value=3.9 x 10-11 from Kruskall-Wallis test) and RS3768015 (P-

value=7.7 x 10-10 from Kruskall-Wallis test). Both SNPs were also highly 

correlated with the most significant SNP (RS11204735) in this analysis. For 

MX2, none of the associated SNPs were found as eQTL in other tissues.  

In summary, results in this analysis suggest that a melanoma 

susceptibility SNP in PARP1 is associated with MSS. Also, susceptibility SNPs 

may not have a strong effect on the clinical prognostic factors for melanoma. It 

is unclear which SNP has the regulatory effect on ARNT and MX2 expression 

due to strong LD between the SNPs, but results suggest that the cis-eQTL 

signals for both ARNT and MX2 can be explained by one SNP.  
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Chapter 6 Models combining different types of variable 
 
The aims in this chapter are to: 

 

i. Combine the selected predictors from different types of variable to 

build MSS models using different approaches  

ii. Assess the predictive performance of the prognostic models 

 

6.1 Introduction 
A prognostic factor is defined as a measure at a given starting point 

such as diagnosis of disease, that is associated with a subsequent endpoint 

such as death (Riley et al., 2013). A prognostic model is the use of multiple 

prognostic factors in combination to predict the risk of developing future clinical 

outcomes in individual patients (Steyerberg et al., 2013). Prognostic models 

can be used to guide clinical decisions for a patient’s treatment (Steyerberg et 

al., 2013). Current prognostic models for primary melanoma are based on the 

AJCC staging system, which is comprised of tumour and histology 

characteristics, such as tumour thickness, presence of ulceration, and mitotic 

rate. Several studies, as discussed in Chapter 1, have looked into incorporating 

gene expression data with clinical data to improve current prognostic models 

for primary melanoma, and reported potential use of gene expression data as 

predictors for melanoma outcome (Conway et al., 2009; Harbst et al., 2012; 

Nsengimana et al., 2015). There are also a few studies that suggested the 

potential use of genetic variants as predictors for melanoma survival 

(Rendlemen et al., 2009; Davies et al., 2012; Davies et al., 2014a; Davies et 

al., 2014b; Taylor et al., 2015a; Orlow et al., 2016). However, no published 

study so far has explored the joint effect of clinical factors, gene expression 

levels and genetic variants on melanoma survival. Hence, this chapter will 

explore the combined effect of clinical predictors, gene expressions, and 

genetic variants on MSS, and assess how well these variables predict 

melanoma survival both individually and jointly.  
The next section describes the analyses for combining clinical 

predictors, gene expression levels and genetic variants to build prognostic 

models for melanoma survival. The data (clinical factors, whole-genome gene 
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expression data, and genome-wide SNP data) used for analyses in this chapter 

were described in Chapter 2. Each type of data was analysed separately using 

a training set to identify the important predictors associated with MSS. Then, 

the selected predictors from the training set analyses were combined in an 

independent test set using three approaches (described in §6.2.2), and the 

predictive performance of models built in each approach was assessed. The 

splitting of data into a training set and a test set was as described in Chapter 3 

(see §3.2.2.2). Four models were fitted, and this will be described further in 

§6.2.3. Section 6.3 presents the results from the four fitted models, and in 

Section 6.4 the results are discussed, comparing the predictive performance 

between the three approaches and the four models applied in this chapter. 

 

6.2 Methods 
6.2.1 Methods for integrating data 

One strategy for building a prognostic model is to develop a model using 

a discovery dataset and to assess the model’s predictive performance using an 

independent validation dataset, ideally using external data from a different 

source. When using the same data to build the prognostic model and to assess 

its performance, over-fitting occurs, and the model developed is not expected 

to perform as well when applied to new data. When external data are not 

available for validation, available datasets that are large enough can be 

randomly split into a 2/3 training set to develop the model and a 1/3 test set to 

assess the model (Harrell et al., 1996; Harrell, 2001).  

When using -omics data to build prognostic models, using ordinary 

regression to select important features is subject to over-fitting and unstable 

coefficients due to high-dimensionality and collinearity. Hence, the use of 

multiple -omics datasets to develop new prognostic models presents a 

challenge. The two main approaches to integrate different types of -omics data 

as discussed by Ritchie et al. (2015) in Chapter 1 (see §1.3) are multi-staged 

analysis (involves integrating information in a hierarchical manner) and meta-

dimensional analysis (involves integrating multiple different types of data 

simultaneously).  
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Multi-staged analysis starts by finding associations between two or three 

different types of data, then uses results derived from the first level analysis to 

look for associations with another type of data in the second level analysis. 

Several studies have implemented this method to integrate genomic and 

transcriptomic data to identify eQTL patterns, which were then used in 

subsequent analysis. For example, Curtis et al. (2012) analysed the 

association of copy number variants, SNPs, and somatic copy number 

aberrations with gene expression levels to identify eQTL patterns (genome-

wide eQTL, cis-eQTL, and trans-eQTL) in breast cancer patients. The authors 

then found that cis-copy number aberrations dominated the expression 

landscape, and used the top 1000 cis-associated genes as input for cluster 

analysis to identify novel subgroups of breast tumours. Burkhardt et al. (2015) 

also explored the association of SNPs and gene expression to identify eQTL 

patterns in whole blood, which were then used to identify novel regulatory 

mechanisms for amino acids and acylcarnites (compounds for the metabolism 

of fatty acids) in whole blood. Similarly, Gusev et al. (2016) integrated SNPs 

and gene expression data to identify eQTLs for height, and subsequently 

correlated these with the trait.   

In meta-dimensional analysis, various studies used data reduction first 

before integrating different types of high-dimensional data. Data reduction 

methods that are commonly used are cluster analysis or penalized regression 

analysis. Several studies have implemented cluster analysis to reduce the 

dimension of gene expression data. In Pittman et al. (2004), cluster analysis 

was used to create clusters of genes, which were used to construct 

metagenes, an aggregate measure of expression of sets of genes. Then, the 

metagenes were integrated with clinical data to predict recurrence in breast 

cancer patients using classification tree models. In Verhaak et al. (2010), 

cluster analysis was used to identify gene-expression based subtypes of 

glioblastoma multiforme, a common brain tumour in adults. The tumour 

subtypes were then combined with genomic data (somatic mutations and DNA 

copy number) to identify the genomic patterns differentiating the subtypes.  In 

Gentles et al. (2015), cluster analysis was performed before selecting gene 

expression signatures for data integration to identify different clusters of 

survival-associated genes representing different biological features. The top 
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five most significant genes from each cluster were used to compute a 

molecular prognostic index, which was then combined with a clinical prognostic 

index into a composite risk model for patient survival in  non-small cell lung 

cancer patients. 

An example of a study that implemented penalized regression analysis 

for data reduction is by Mankoo et al. (2011), who used lasso penalized Cox 

regression to perform feature selection to derive molecular signatures from 

multiple genomic data (mRNA expression, microRNA expression, DNA 

methylation, and copy number aberration). The resulting molecular signatures 

for each type of data were then integrated to predict progression-free survival 

and overall survival in ovarian cancer patients. 
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6.2.2 Overview of the methods 
This section presents an overview of the approaches taken here to 

combine the selected predictors, explained in more detail in §6.2.3 and §6.2.4.  

The test set samples used to combine different types of predictor in this 

chapter was based on the split of gene expression data (n=699) into a training 

set (n=464) and a test set (n=235) as described in Chapter 3 §3.2.2.2. The final 

test samples consist of 190 samples with both gene expression and genotype 

data available. The analysis of each type of data in the training set excluded 

samples in the final test set samples and those with survival analysis exclusion 

criteria (patients with multiple melanomas, who were recruited into the study 

more than two years after diagnosis, or were missing cause of death).  

In the training set, the important clinical predictors, gene expression 

levels, and genetic variants for MSS were identified. As the number of 

predictors for gene expression and genotype data is large (p >> N), a data 

reduction strategy is required to avoid over-fitting. Lasso penalized Cox 

regression was implemented to select the important predictors from -omics 

data as it not only reduces the dimensionality of data, but can also be used as 

a variable selection method. Unlike other prognostic studies in primary 

melanoma that use -omics data (Winnepenninckx et al., 2006; Conway et al., 

2009; Davies et al., 2012; Rendleman et al., 2013; Davies et al., 2014a; Davies 

et al., 2014b; Gerami et al., 2015), the feature that is relatively new in this 

analysis is the application of penalized Cox regression to identify -omics 

predictors associated with MSS. The analyses to identify important predictors 

from different types of data were conducted separately as follows:  

• Clinical predictors: A training set consisting of 1,795 patients with clinical 

data available (excluding test set samples and those with survival 

analysis exclusion criteria) was used to explore the associations of five 

established clinical predictors with MSS using multivariable Cox 

regression  

• Gene expression levels: A training set consisting of 424 patients with 

gene expression data available (excluding test set samples and those 

with survival analysis exclusion criteria) was used to explore the 
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associations of whole-genome gene expression levels (29,354 probes) 

with MSS using lasso penalized Cox regression   

• SNPs: A training set consisting of 1,543 patients with genotype data 

available (excluding test set samples and those with survival analysis 

exclusion criteria) was used to explore the associations of selected 

SNPs across the genome (7,414 SNPs with P-values < 0.01 in 

univariable Cox models) with MSS using lasso penalized Cox regression  

 

In the test set, combined data survival models were developed using the 

selected clinical predictors, gene expression levels and SNPs from the training 

set. Survival analysis exclusion criteria used in the training set were also 

applied in the test set. Three approaches were explored to combine the 

selected predictors from different types of data as follows:  

• The first approach was based on external estimation. This approach 

assesses how well a prediction score developed in one dataset 

performs in independent data by using the estimates from the study that 

identified the predictor. Over-fitting does not occur as no re-estimation is 

done in the independent data. To apply this approach, a clinical score, 

gene expression score and SNP score were computed using estimates 

from the training set (estimates from multivariable Cox regression for 

clinical predictors and estimates from penalized Cox regression for both 

gene expression levels and SNPs). Then, the predictive performance of 

the scores was assessed individually and jointly using the C-index and 

AUC as further explained in §6.2.4.  

• The second approach was based on risk scores. A clinical score, gene 

expression score and SNP score were also computed for this approach, 

but the effect of the scores on MSS was re-estimated in the test set 

using univariable and multivariable Cox regression. The scores were 

standardized before fitting the Cox regression as each score was on a 

different scale. The predictive performance of the scores was also 

assessed using the C-index and AUC individually and jointly. The scores 

were also calculated in a subset of 365 patients in the training set 

(samples with both gene expression and genotype data) to assess the 

predictive performance of the scores in the training set (these estimates 
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were expected to be subject to over-fitting, as the same data were used 

to build and assess the model; however, this was conducted as a 

baseline comparison).  

• The third approach was based on variable selection. This approach 

was implemented to assess how well the individual predictors selected 

from the training set predict MSS in a new dataset; this was expected to 

give better estimates as the effect of each predictor was re-estimated in 

the new data. The selected predictors from the training set were 

combined using lasso penalized Cox regression analysis to deal with the 

high number of predictors and multicollinearity problem. The predictive 

performance of the full model, the model with selected predictors only, 

the model with selected -omic predictors only, and the model with 

Breslow thickness only was assessed using the C-index and AUC. 
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6.2.3 Models  
Four models were fitted to combine the selected predictors and were compared 

in terms of predictive performance: 

i. Model 1 Combined data survival models using variables selected from 

the training set in Chapter 3 

ii. Model 2 Combined data survival models with prior cluster analysis 

iii. Model 3 Combined data survival models using Lund clusters 

iv. Model 4 Combined data survival models using clinical predictors and 

Lund classification  

	

Model 1 (§6.2.3.1) was the main model to combine the selected 

predictors. However, as gene expression levels were found to be much more 

predictive of MSS than SNPs in the Chapter 3, alternative models were 

developed with the aim of improving predictive performance by investigating 

different methods of analysing the gene expression data as described further in 

Model 2 (§6.2.3.2) and Model 3 (§6.2.3.3).  

Model 4 (§6.2.3.4) was not a new alternative model, but a classifier 

developed in another study conducted in Lund (Harbst et al., 2012). This was 

analysed to determine how well it performed in the LMC to provide a 

comparison with a predictor that has been reported in the literature.  
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6.2.3.1 Model 1 Combined data survival models using variables 
selected from the training set in Chapter 3 

Model 1 combines the selected five clinical predictors, 16 gene 

expression levels and 13 SNPs found in the training set (Chapter 3) using the 

external estimation, risk score, and variable selection approaches as 

described in §6.2.2. A flow chart of the analyses based on Model 1 is shown in 

Figure 6.1. 
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Analysis in the training set 
5 established clinical 

predictors:  
Age, sex, Breslow 

thickness, presence of 
ulceration, and tumour 

site 

 Whole genome gene 
expression data: 

• 699 patients (464 for 
training set and 235 
for test set) 

• 29,354 probes 

 Genome-wide 
genotyped data (~800K 

SNPs): 
• 1,907 patients 
• Selected 7,414 

SNPs with P-
value <0.01 at 
univariable Cox 
model 

     
Multivariable Cox 

regression in 1,975 
patientsa 

 Quality control: 
• 424 patients in 

training seta 
• 27,596 probesb  

 Quality control:  
• 1,543 patientsa  
• 5,651 SNPsc 

     
  Lasso penalized Cox 

regression in 424 patients: 
• 16 probes were 

selected at the 
chosen cross-
validated penalty 

 Lasso penalized Cox 
regression in 1543 

patients: 
• 13 SNPs were 

selected at the 
chosen cross-
validated penalty 

     
5 clinical predictors, 16 gene expression levels and 13 SNPs 

 
Analysis in the test set 

Combining the selected variables in the test set using 3 approaches (n=190a,d) 
     

Approach 1 
(External  estimation) 

 Approach 2 
(Risk score) 

 Approach 3 
(Variable selection) 

     
A clinical score, gene 
expression score and 

SNP score were created 
using estimates from the 

training set 

 A clinical score, gene 
expression score and SNP 
score were created using 

estimates from the training 
set - Univariable and 

multivariable Cox regression 
was fitted combining the risk 

scores 

 Univariable Cox and lasso 
penalized Cox regression 
was fitted combining the 

selected variables 

     
Assessment of model 

predictive performance 
using C-index (using 

β=1 for all scores and β 
from training set as 
weight) and AUC 

 Assessment of model 
predictive performance 
using C-index (β for all 

scores were re-estimated in 
the test set) and AUC 

 Assessment of model 
predictive performance 
using C-index and AUC 

for full model, model with 
selected predictors only, 

model with Breslow 
thickness only, and model 

with selected -omic 
predictors only 

Figure 6.1 Model 1 Combined data survival models 

a Excluding patients with multiple melanomas, who were recruited into the study more than 2 
years after diagnosis, or were missing cause of death  
b Excluding probes with low proportion of samples detected and low variance 
c Excluding SNPs with missing rate > 3%, MAF < 5% and P-value<10-4 for HWE test 
d Patients with both gene expression and genotypes data in the test set (n=190) 
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The idea of a risk score is explained further in §6.2.4.1, and below are 

example calculations to create the clinical score, gene expression score, and 

SNP score in the test set for Model 1. To calculate the clinical score in the test 

set, estimates from the multivariable Cox regression in Chapter 3 (Table 3.3) 

were used: 

Clinical score = Age*0.03 + Sex(Male)*0.33 + Site†(Head/Neck)*0.11 + 
Breslow thickness*0.16 + Presence of ulceration (Yes)* 0.75 

 
† If tumour site is trunk, the calculation is Site (Trunk)*0.44 
† If tumour site is other, the calculation is Site (Other)*0.37 

 

To calculate the gene expression score in the test set, estimates from 

the penalized Cox regression in Chapter 3 (Table 3.4) were used: 

Gene expression score = ILMN_1701441*-0.05 + ILMN_3249501*0.17 + 
ILMN_1749829*0.10 + ILMN_1731206*-0.05 + ILMN_1764109*-0.03 + 
ILMN_2056167*0.03 + ILMN_3238435*-0.05 + ILMN_1695959*-0.06 + 

ILMN_1741648*-0.002 + ILMN_1784238*0.04 + ILMN_1778401*-0.02 + 
ILMN_1759729*0.03 + ILMN_2344221*0.04 + ILMN_2095633*-0.03 + 

ILMN_1700547*0.01 + ILMN_1735199*0.001 
 

To calculate the SNP score in the test set, estimates from the penalized 

Cox regression in Chapter 3 (Table 3.8) were used: 

SNP score = RS17837209*0.16 + RS9957831*0.02 + RS4768090*0.04 + 
RS2902554*0.05 + RS5770310*0.02 +RS10233832*-0.01 + RS17379771*0.02 
+ RS16956192*0.04 + RS2392477*-0.02 + RS6689263*-0.02 + RS11639902*-

0.01 + RS12519276*0.01 + RS10941528*0.002 
 

To calculate the C-index based on external estimation approach, the 

calculated clinical score, gene expression score and SNP score was used as 

the predictor in the model: 

Predictor using β=1 for all scores = Clinical score*1 + Gene expression 
score*1 + SNP score*1 

 

Predictor using β from training set (from Table 6.2) as weight =   Clinical 
score*0.30 + Gene expression score*0.70 + SNP score*0.55
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6.2.3.2 Model 2 Combined data survival models with prior cluster 
analysis 

Model 2 is similar to Model 1 except in the analysis of gene expression 

probes, which were selected for inclusion in the model after a prior cluster 

analysis. A flow chart of the analyses based on Model 2 is shown in Figure 6.2. 

The motivation for performing the cluster analysis was to give a better 

chance of including genes from different pathways among those selected in the 

penalized Cox regression analysis, as the previous analysis (Model 1) might 

select genes that are dominated by one pathway. This approach was based on 

Gentles et al. (2015) as discussed in 6.2.1.   

Before cluster analysis, probes were filtered to select those associated 

with MSS at P-value less than 0.05 using univariable Cox regression. A total of 

8,326 probes were selected for cluster analysis as further explained in 

§6.2.4.4. After deciding the number of clusters based on the dendrogram, the 

top 10 probes from each cluster were selected for penalized Cox regression of 

MSS. Only 10 probes from each cluster were selected for penalized regression 

as selecting too many probes from each cluster may cause the penalized 

model to select probes that were mainly or entirely from one cluster only, thus 

more likely to give similar results to Model 1.  

After selecting probes from the penalized model, the selected gene 

expression levels were combined with the selected clinical predictors and 

SNPs using similar methods to Model 1. 
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Analysis in the training set 
5 established clinical 

predictors:  
Age, sex, Breslow 

thickness, presence of 
ulceration, and tumour 

site 

 Whole genome gene 
expression data: 
• 699 patients (464 

for training set 
and 235 for test 
set) 

• 29,354 probes 

 Genome-wide genotyped 
data (~800K SNPs): 
• 1,907 patients 
• Selected 7,414 

SNPs with P-value 
<0.01 at 
univariable Cox 
model 

     
Multivariable Cox 

regression in 1,975 
patientsa 

 Quality control: 
• 424 patients in 

training seta 
• 27,596 probesb  

 Quality control:  
• 1,543 patientsa  
• 5,651 SNPsc 

     
  Cluster analysis: 

• Selected 8,326 
probes with P-
value < 0.05 from 
univariable Cox 
model for cluster 
analysis  

• Grouped probes 
into 4 clusters 
based on 
dendrogram 

• Selected top 10 
probes from each 
cluster (40 
probes) for 
penalized Cox 
regression 

  

     
  Lasso penalized Cox 

regression in 424 
patients: 

• 22 probes were 
selected at the 
chosen cross-
validated penalty 

 Lasso penalized Cox 
regression in 1543 

patients: 
• 13 SNPs were 

selected at the 
chosen cross-
validated penalty 

     
5 clinical predictors, 22 gene expression levels and 13 SNPs 

 
Analysis in the test set 

Combining the selected variables in the test set using 3 approaches* (n=190a,d) 
a Excluding patients with multiple melanomas, who were recruited into the study more than 
2 years after diagnosis, or were missing cause of death  
b Excluding probes with low proportion of samples detected and low variance 
c Excluding SNPs with missing rate > 3%, MAF < 5% and P-value<10-4 for HWE test 
d Patients with both gene expression and genotypes data in the test set (n=190) 
* Similar to approaches used in Model 1	

Figure 6.2 Model 2 Combined data survival models with prior cluster 
analysis
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6.2.3.3 Model 3 Combined data survival models using Lund clusters 
Model 3 differs from Model 2 in that the gene expression probes were 

selected from clusters based on a previously published cluster analysis (Harbst 

et al., 2012) as described in Chapter 1 §1.2.2. Figure 6.3 shows the flow chart 

of the analyses based on Model 3.  

In Model 3, selection of the gene expression levels was performed using  

clusters of patients created by Harbst et al. (2012) in Lund to identify whether 

the model could be improved by using these clusters, which have a biological 

interpretation. In primary melanoma, Harbst et al. (2012) conducted an 

unsupervised hierarchical cluster analysis and found that patients can be 

classified into four molecular subgroups (high-immune, normal-like, 

pigmentation and proliferative) based on their gene expression signature. A list 

of 503 genes and their average gene expression values (across the four 

subgroups) that were used to classify patients was supplied by the Lund group. 

As the list contains gene names instead of probe names, there were some 

genes with more than one average expression values across the four 

subgroups. For the genes with several average expression values, only one 

value (the highest average expression value) was retained, leaving only 486 

genes from which to create gene clusters based on Lund clusters.  

Cluster membership for each gene in the list was defined by looking at 

the gene’s average expression value across the four subgroups. When a 

cluster had the highest average expression for a gene compared to the other 

three clusters, the gene was assigned to that cluster. After identifying the 

gene’s membership cluster in Lund’s list, the gene names were matched to the 

whole genome DASL gene expression data in Leeds. There were 160 genes 

(228 probes) identified from the high-immune cluster, 136 genes (224 probes) 

from the normal-like cluster, 85 genes (142 probes) from the pigmentation 

cluster and 69 genes (100 probes) from the proliferative cluster. Of the 486 

genes listed from Lund, only 450 genes were available in the LMC gene 

expression data (36 genes excluded).  

In the training set, a univariable Cox regression was performed to 

identify the top 10 probes associated with MSS within each cluster. A total of 

40 probes were then selected for penalized Cox regression. Only 10 probes 

were selected from each cluster to avoid selecting too many genes from the 
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same cluster in the final model. After selecting probes from the penalized 

model, the selected gene expression levels were combined with the selected 

clinical predictors and SNPs using similar methods to Model 1.  



 
 

 139 

Analysis in the training set 
5 established clinical 

predictors:  
Age, sex, Breslow 

thickness, presence of 
ulceration, and tumour 

site 

 Whole genome gene 
expression data: 
• 699 patients (464 

for training set and 
235 for test set) 

• 29,354 probes 

 Genome-wide genotyped 
data (~800K SNPs): 
• 1,907 patients 
• Selected 7,414 

SNPs with P-value 
<0.01 at 
univariable Cox 
model 

     
Multivariable Cox 

regression in 1,975 
patientsa 

 Quality control: 
• 424 patients in 

training seta 
• 27,596 probesb  

 Quality control:  
• 1,543 patientsa  
• 5,651 SNPsc 

     
  Based on Lund 4 

clusters** 
• Univariable Cox 

regression was 
performed to 
identify top 10 
probes associated 
with MSS within 
each cluster  

• Selected 40 
probes for 
penalized Cox 
regression 

  

     
  Lasso penalized Cox 

regression in 424 
patients: 

• 18 probes were 
selected at the 
chosen cross-
validated penalty 

 Lasso penalized Cox 
regression in 1543 

patients: 
• 13 SNPs were 

selected at the 
chosen cross-
validated penalty 

     
5 clinical predictors, 18 gene expression levels and 13 SNPs 

 
Analysis in the test set 

Combining the selected variables in the test set using 3 approaches* (n=190a,d) 

Figure 6.3 Model 3 Combined data survival models using Lund clusters

a Excluding patients with multiple melanomas, who were recruited into the study more than 2 
years after diagnosis, or were missing cause of death  
b Excluding probes with low proportion of samples detected and low variance 
c Excluding SNPs with missing rate > 3%, MAF < 5% and P-value<10-4 for HWE test 
d Patients with both gene expression and genotypes data in the test set (n=190) 
* Similar to approaches used in Model 1 
 
**160 genes (228 probes) from high-immune cluster; 136 genes (224 probes) from 
normal cluster; 85 genes (142 probes) from pigmentation cluster; 69 genes (100 probes) 
from proliferative cluster  
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6.2.3.4 Model 4 Combined data survival models using clinical predictors 
and Lund classification  

Model 4 combines the selected five clinical predictors with the Lund 

molecular classification of patients created by Harbst et al. (2012) to determine 

how well their model performs in the LMC.  

The initial molecular classification developed by Harbst et al. (2012) 

classified patients into 4-molecular subgroups (high-immune, normal-like, 

pigmentation and proliferative). Later, they also found that patients can be 

classified into 2-molecular grades (low risk and high risk) which differed in 

terms of survival. 

The C-index was calculated for each model combining the clinical score 

with the 2-molecular grades to determine whether the Lund classification could 

improve the clinical model. Patient classification in the test set was based on 

the 2-molecular grading (90 identified as low-grade and 96 as high-grade) as 

the test sample is too small when using the 4-molecular subgroups: 43 

identified as high immune, 47 as normal-like, 74 as pigmentation, 22 as 

proliferative, and 4 unclassified. Figure 6.4 shows the Model 4 analyses flow 

chart. 
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Analysis in the training set 
5 established clinical predictors: 

Age, sex , Breslow thickness, 
presence of ulceration, and tumour 

site 

 Lund molecular classificationb: 
4-molecular class and 2-molecular 

grade 

   

Multivariable Cox regression in 1975 
patientsa 

  

 
Analysis in the test set (n=190a,d) 

     

Approach 1 
(External estimation) 

 Approach 2 
(Risk score) 

 Approach 3 
(Variable selection) 

     
Assessment of model 

predictive performance 
using C-index (using 
estimates from the 
training set for the 

clinical scorec and Lund 
2-molecular grade) and 

AUC 

 Univariable and 
multivariable Cox 

regression combining a 
clinical scorec  and Lund 

2-molecular grade 

 Univariable and 
multivariable Cox 

regression combining 
five clinical predictors 
and Lund 2-molecular 

grade 

     

  Assessment of model 
predictive performance 
using C-index (β for 
clinical score and Lund 
2-molecular grade was 
re-estimated) and AUC 

 Assessment of model 
predictive performance 
using C-index and 
AUC; full model, model 
with significant 
predictors only, and 
model with Breslow 
thickness only 

     
a Excluding patients with multiple melanomas, who were recruited into the study more than 2 
years after diagnosis, or were missing cause of death  
b Based on Harbst et al. (2012) 
c Calculated using estimates from multivariable Cox regression of 5 clinical predictors in the 
training set 
d Patients with both gene expression and genotypes data in the test set (n=190) 

Figure 6.4 Model 4 Combined data survival models using clinical 
predictors and Lund classification 
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6.2.4 Statistical methods 
6.2.4.1 Risk scores  

“Risk score” in this study refers to a summary of the effect of several 

predictors weighted by their estimated effect size. Harrell (2001) suggested 

that in the presence of a large number of predictors, an alternative to including 

individual predictors in a model is to calculate a summary index of the related 

variables to reduce the number of predictors and to deal with correlation. 

Studies such as Gentles et al. (2015) have used summary scores instead of 

individual variables to develop their prognostic models. The clinical score in 

this chapter is the weighted sum over all selected clinical predictors (age, sex, 

Breslow thickness, presence of ulceration, and tumour site) and is  calculated 

for each individual in the test set sample.  

Clinical score = Σi βi ci, 

where ci is the value of variable i, and βi is the coefficient obtained from the 

multivariable Cox regression in the training set.  

The gene expression score in this chapter is the weighted sum over all 

gene expression levels selected by the penalized Cox model and is calculated 

for each individual in the test set sample.  

Gene expression score = Σi βi gi, 

where gi is the gene expression level, and βi is the estimate obtained from 

penalized Cox regression in the training set.  

The SNP score in this chapter is the sum of genetic effects of trait-

associated alleles weighted by their estimated effect sizes. The sum is over all 

trait-associated variants selected by the penalized Cox model and is calculated 

for each individual in the test set sample. Genetic risk scores (or polygenic risk 

scores) are now being used widely in genetic epidemiology (Dudbridge, 2013).  

SNP score = Σi βi si, 

where si  is the number of risk alleles carried by the individual at variant i (0, 1 

or 2), and βi is the estimate obtained from penalized Cox regression in the 

training set. 
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6.2.4.2 Univariable and multivariable Cox regression  
Cox  proportional hazards regression was performed to determine the  

significant predictors for MSS. This method has been described in Chapter 3. 

The Cox model was fitted using coxph function in the survival package in R 

software.  

The Cox model is a semi-parametric model, it leaves the baseline 

hazard (h0(t)) function unspecified, but assumes covariates enter the model 

linearly (Hosmer and Lemeshow, 1999). The hazard function for subject j at 

time is given by: 

hj(t) = h0(t) exp(ß1xj1 + ß2xj2 + ß3xj3 + … + ßpxjp) 
where ßi is the coefficient and xji is the predictor, i = 1, …, p. 

The  Cox  model also assumes proportional hazards, where the effect of 

predictor X does not vary with time t. Residuals can be used to check the 

model assumptions. The most commonly used residuals for the Cox model are 

Schoenfeld residuals and Martingale residuals (Hosmer and Lemeshow, 1999).  

Schoenfeld residuals represent the difference between the observed 

covariate and the expected covariate given the risk set at that time. The 

residuals are calculated for each covariate and can be used to check the 

proportional hazards assumption by plotting against time. Using a formal 

statistical test is a better method to assess the proportional hazards 

assumption than a graphical assessment. Therefore, coxzph function in the 

survival package was used to perform the Schoenfeld residuals test. The test 

provide P-value for individual predictor and a global test P-value for overall 

assumption of proportional hazards for all of the predictors. A P-value of less 

than 0.05 indicates the assumption is violated.  

Martingale residuals represent the difference between the observed 

number of deaths (0 or 1) for subject j, and the expected number based on the 

fitted model. The residuals are defined for the jth individual. Martingale 

residuals versus individual covariates can be plotted to check the linearity 

assumption of the covariate. A local linear regression curve that is parallel to 

the zero line in the plot indicates assumption of the linearity is fulfilled. 
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6.2.4.3 Penalized Cox regression  
Penalized Cox regression was applied to select the important gene 

expression levels and SNPs in the training set. This method was described in 

Chapter 3 (see  §3.2.3.3). 
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6.2.4.4 Cluster analysis  
Gene expression clustering is used to group together genes based on 

similar patterns of gene expression so that genes within the same cluster have 

high similarity to each other, and genes in other clusters are less similar. The 

similarity between two expression patterns can be measured using proximity 

measures such as distance and correlation (Jiang et al., 2004). The two most 

commonly used similarity measures for gene expression data are Euclidean 

distance and Pearson’s correlation coefficient. In comparison of clustering 

methods for gene expression data, Gibbons and Roth (2002) shows that 

Euclidean distance performs better when applied to log ratio gene expression 

data, while Pearson’s correlation performs better for non-ratio based data such 

as those from Affymetrix array technology. 

In this analysis, hierarchical clustering was applied using the hclust 

package in R software using Euclidean distance as the similarity measure, and 

complete linkage (calculating the largest distance between any two members) 

as the method to calculate the distance between clusters. Other methods 

available include simple linkage (calculating the shortest distance between any 

two members) and average linkage (calculating the average distance between 

any two members), but the complete linkage method was chosen in this 

analysis as it has been found to outperform other methods (Gibbons and Roth, 

2002).  

Hierarchical clustering generates clusters that subdivide into a series of 

smaller clusters forming a tree-shaped data structure called a dendrogram. 

Through visual inspection for the most obvious cluster patterns, the 

dendrogram can be cut at some level to obtain a specified number of clusters. 

Then, the number of specified clusters can be used to reorder genes in the 

original dataset so that genes with similar expression patterns are grouped 

together.   
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6.2.4.5 Model predictive performance using C-index 
Assessment of predictive accuracy for survival models include 

calibration and discrimination. Harrell et al. (1996) described calibration as a 

measure of agreement between the observed outcomes and predictions, and 

discrimination as a measure of the model’s ability to distinguish individuals who 

experience the outcome from those who remained event free.  Calibration in 

survival modelling can be assessed by creating risk groups (based on 

categorizing a prognostic score), and graphically comparing the Kaplan-Meier 

estimates of survival probabilities in these groups with the predicted survival 

from the prognostic model for the patients in each group. A model is well-

calibrated if the Kaplan-Meier survival curves are close to the predicted survival 

curves. However, there is no consensus on the number of risk groups to be 

created and where to position the cut-off points. Categorizing a continuous 

score will also lead to loss of information and inaccurate prediction. Therefore, 

only discrimination was used to assess model performance in this analysis.  

A commonly used measure of predictive discrimination is the 

concordance index or C-index. The C-index is defined by Harrell et al. (1996) 

as the proportion of all usable patient pairs in which the predictions and 

outcomes are concordant. In survival modelling, the C-index is computed by 

identifying all possible pairs of subjects whose survival time can be ordered 

(where one has died at time t and the other survived up to at least that time), 

and then calculating the number of pairs that are concordant; the pair is 

concordant if the subject with higher predicted survival is the one who survived 

longer.  

The C-index is obtained by summing the number of concordant pairs 

and dividing it with the number of all usable pairs. The C-index for censored 

data can be obtained by ignoring the pairs that cannot be used; if both subjects 

are censored at the same time, or if one subject has died and the follow-up 

time of the other is less than the failure time of the first. The C-index can 

measure predictive performance of a model derived from a set of covariates in 

a model. It estimates the probability of concordance between the predicted and 

observed survival, with a value that ranges from 0.5 (no predictive 

discrimination) to 1.0 (perfectly discriminating model) (Harrell et al., 1996).  
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The C-index in this chapter was calculated for all models, based on the  

external estimation, risk score and variable selection approaches. The 

calculation of C-index for external validation was performed using rcorr.cens 

function in the Hmisc package by Harrell (2001) implemented in R software. A 

linear predictor, lp (lp=coefficient*score) was obtained for each score (clinical 

score, gene expression score, and SNP score). Then, lp was used in the model 

to calculate the C-index for each score individually and jointly. The calculation 

of the C-index when re-estimating the coefficients in new data was performed 

using the validate.cph function in the rms package by Harrell (2001), 

implemented in R software for resampling validation of the Cox model accuracy 

indexes. Bootstrapping was used to correct for possible over-fitting (Harrell, 

2001); this can be performed in the validate.cph function and the number of 

500 resamples was chosen to obtained a more stable estimate of the C-index.  

The C-index was estimated by averaging the C-index calculated from the 500 

bootstrap samples.  

Below is shown an example of a C-index calculations using rcorr.cens 

function, for the clinical  score, gene expression score, SNP score, and the 

combined score in the external estimation approach for Model 1. The number 

of all usable pairs that contribute to the C-index estimates were similar in all 

models.   

 

! − index	for	clinical	score	 =
123456	78	97:976;<:=	><?6@

123456	78	<AA	2@<4A5	><?6@
=

9946

12946
= 0.7685 

 

! − index	for	gene	expression	score	 =
8258

12946
= 0.6381 

 

! − index	for	SNP	score	 =
5570

12946
= 0.4304 

 

! − index	for	combined	score	 =
8590

12946
= 0.664 
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6.2.4.6 Model predictive performance using AUC 
The AUC measures predictive performance for models with a binary 

outcome; however, this was estimated in this analysis for comparison with the 

literature, as previous studies (Rendleman et al., 2013; Nsengimana et al., 

2015) used AUC to assess their models’ performance. An AUC value closer to 

1 indicates a model with good predictive ability, while AUC value of 0.05 

indicates no predictive ability (Harrell, 2001). 

The AUC was estimated following a logistic regression to predict death 

from melanoma (coded as 0 for No and 1 for Yes) for all models based on the 

external estimation, risk score, and variable selection approaches. The AUC 

estimated in this analysis does not take into account the variable length of 

follow-up in time-to-event data as it uses a binary outcome variable. Therefore, 

the estimates are not accurate to assess model performance for survival 

models.  

For comparisons with the C-index, the AUC was calculated for each 

score individually and for the combined score, for both external estimation and 

the risk score approach. For the variable selection approach, the AUC was 

calculated for the full model, the model with the selected predictors only, the 

model with Breslow thickness only, and the model with the selected -omic 

predictors only.  
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6.3 Results  
The sample characteristics in the test set are shown in Table 6.1. The 

test set samples initially comprised 216 patients with both gene expression and 

genotype data available, but reduced to 190 after excluding those with survival 

analysis exclusion criteria.  

There were 6 and 11 patients with missing values for Breslow thickness 

and presence of ulceration variables, respectively. To avoid further reduction in 

the test set samples, missing values were replaced using a simple imputation 

method as the percentage of missing values was very small in both variables. 

For Breslow thickness, simple imputation was conducted by replacing the 

missing value with the mean value. For ulceration, it was assumed that 

ulceration was absent for those without pathology information for ulceration.  

The median age for patients in the test set is 59 years. The majority of 

patients were female (53.2%), the most common tumour type was superficial 

spreading melanoma  (49.5%), most had no ulceration (65.4%), the most 

common site of tumour was on the limbs (42.6%), and the most common 

disease stage was AJCC stage II (48.4%). The number of deaths in the test set 

is 45 (23.7%) with median survival time of 3.1 years among those who died. 

Median follow-up for survivors is 7.2 years.    
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Table 6.1 Sample characteristics in the test set (n=190) 
Variables  n missing  n (%) 
Age (years) 0 58.7 (21.1 – 78.2)* 
Sex  0  
   Female  101 (53.2) 
   Male  89 (46.8) 
Tumour type 0  
   Superficial spreading  94 (49.5) 
   Nodular  56 (29.5) 
   Lentigo maligna melanoma  2 (1.0) 
   Acral lentiginous  6 (3.2) 
   Unclassified  19 (10.0) 
   Other  13 (6.8) 
Breslow thickness (mm) 6 2.5 (0.7 – 15)* 
Presence of ulceration 11  
   No  117 (65.4) 
   Yes  62 (34.6) 
Tumour site  0  
   Limbs  81 (42.6) 
   Head  25 (13.2) 
   Trunk  56 (29.5) 
   Other  28 (14.7) 
AJCC stage 4  
   Stage I  58 (31.2) 
   Stage II  90 (48.4) 
   Stage III  38 (20.4) 
Follow-up time for patients who are still alive† 0 7.2 (1.6 – 13.6)* 
Survival time for patients who died† 0 3.1 (0.9 – 9.2)* 
Survival status 0  
   Censored   145 (76.3) 
   Died of melanoma   45 (23.7) 

* Median (Range)   †MSS calculated in years 
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6.3.1 Model 1 Combined data survival models using variables 
selected from the training set in Chapter 3 

Table 6.2 and Table 6.3 show the association of risk scores with MSS in 

the training set and test set, respectively. In the training set, all scores were 

significantly associated with MSS in both univariable and multivariable analysis 

(Table 6.2). However, these results are over-fitted as similar data were used to 

obtained the estimates used in the calculation of risk scores.  

In the test set (Table 6.3), both clinical score and gene expression score 

were strongly associated with MSS in the univariable analysis, but only clinical 

score remained associated in the multivariable analysis. The clinical score and 

gene expression score show significant moderate correlation with each other 

(Table 6.4), thus could have affected the significance of the gene expression 

score in the multivariable analysis. When the correlation between the clinical 

predictors and the gene expression were explored further (Table 6.5), three 

clinical predictors (age, Breslow thickness, and presence of ulceration) were 

significantly correlated with the gene expression score. Age and Breslow 

thickness were are also highly correlated with each other.  

Borderline significance was observed for the SNP score in both the 

univariable and multivariable analyses in the test set (Table 6.3). However, the 

direction of effect of the SNP score in the test set is opposite that observed in 

the training set. Therefore, the SNP score may not have a strong effect on 

MSS.  

 

Table 6.2 Cox model combining risk scores* in the training set (n=365**)  
Predictors  
 

Univariable Cox model Multivariable Cox model 
β HRd SE P-value β HRd SE P-value 

Clinical scorea 0.64 1.90 0.08 4.6 x 10-14 0.30 1.34 0.09 6.2 x 10-4 
Gene 
expression 
scoreb 

0.86 
 

2.35 
 

0.08 
 

2.0 x 10-16 

 
0.70 

 
2.01 

 
0.09 

 
1.5 x 10-13 

 
SNP scorec  0.69 2.00 0.09 8.9 x 10-16 0.55 1.74 0.09 4.6 x 10-10 
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Table 6.3 Cox model combining risk scores* in the test set (n=190**) 
Predictors  
 

Univariable Cox model Multivariable Cox model† 
β HRd SE P-value β HRd SE P-value 

Clinical scorea 0.86 2.36 0.14 4.8 x 10-10 0.80 2.23 0.15 1.2 x 10-7 
Gene 
expression 
scoreb 

0.46 
 

1.58 
 

0.15 
 

1.8 x 10-3 

 
0.17 

 
1.19 

 
0.18 

 
0.34 

 
SNP scorec  -0.33 0.72 0.17 0.05 -0.33 0.72 0.17 0.05 

 

*calculated using estimates from multivariable Cox model for clinical predictors and from 
penalized Cox model for gene expression and SNPs data 
**Subset of patients with both gene expression and genotype data 
a created from 5 clinical predictors 
b created from 16 gene expression levels selected by penalized Cox model 
c created from 13 SNPs selected by penalized Cox model 
d HR per 1 standard deviation; All scores were standardized prior to univariable and 
multivariable Cox regression as each score was on a different scale as shown in Figure 6.5 
† Proportional hazards assumption was checked using Schoenfeld residuals test and not 
violated (results shown in Table 2 in Appendix II)  

 

Table 6.4 Pairwise correlation between the scores in the test set (n=190) 
 Clinical  score Gene expression 

score 
SNP score 

Clinical score  1 0.40 (1.0x 10-8) -0.06 (0.45) 
Gene expression score  1 0.01 (0.85) 
SNP score   1 

P-values are shown in brackets  
 

Table 6.5 Pairwise correlation between clinical predictors and gene 
expression score in the test set (n=190) 

 Age Sex Breslow Ulceration Site 

Gene 
expression 

score 

Age 
1 
 

0.17 
(0.02) 

0.23  
(1.4 x 10-3) 

0.13  
(0.07) 

0.08  
(0.25) 

0.28  

(7.8 x 10-5) 

Sex  1 
0.04 

(0.60) 
0.10  

(0.21) 
0.22 

(2.5 x 10-3) 
0.11  

(0.14) 
Breslow 
thickness   1 

0.36  
(4.6 x 10-7) 

0.22  
(2.0 x 10-3) 

0.32  
(5.9 x 10-6) 

Ulceration    1 
0.21  

(3.3 x 10-3) 
0.25  

(4.4 x 10-4) 

Site     1 
0.14  

(0.06) 
Gene 
expression 
score      1 

P-values are shown in brackets  
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Figure 6.5 Histograms of clinical score, gene expression score and SNP 
score
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Table 6.6 presents the univariable analysis of the selected variables (5 

clinical predictors, 16 gene expression levels and 13 SNPs) in the test set. Age 

at diagnosis, site of tumour (trunk, and other site compared with limbs as 

baseline), Breslow thickness, presence of ulceration, and expression level of 

eight genes (LPAR1, NKD2, C1R, OSTC, HLA-DQB2, HLA-B, NDUFA8, and 

IGSF5) show significant association with MSS in the univariable analysis. No 

significant association was observed for any of the selected SNPs. 

Table 6.7 shows the variables chosen by penalized Cox model when 

combining the selected variables in the test set. Eight variables with non-zero 

coefficients were selected at the chosen penalty; Breslow thickness, presence 

of ulceration, expression level of HLA-DQB2, expression level of OSTC, 

expression level of C1R, age at diagnosis, SNP RS9957831, and site. 

  



 
 

 155 

Table 6.6 Univariable analysis of the selected variables (5 clinical 
predictors, 16 gene expression levels and 13 SNPs) in Model 1 in the 
test set (n=190) 

Predictors  
 

Univariable Cox model 
β HR SE P-value 

Age at diagnosis 0.04 1.04 0.01 3.1 x 10-3 
Sex (Male) 0.07 1.07 0.30 0.82 
Breslow thickness 0.22 1.25 0.04 1.9 x 10-8 
Presence of ulceration 1.33 3.78 0.31 1.3 x 10-5 
Site (Head) 0.16 1.17 0.58 0.78 
Site (Trunk) 0.75 2.13 0.39 0.05 
Site (Other) 1.58 4.87 0.40 7.6 x 10-5 
ILMN_1701441 (LPAR1) -0.45 0.64 0.16 0.01 
ILMN_3249501 (ZNF697) 0.09 1.09 0.17 0.59 
ILMN_1749829 (DLG1) 0.21 1.23 0.16 0.20 
ILMN_1731206 (NKD2) -0.33 0.72 0.13 0.01 
ILMN_1764109 (C1R) -0.48 0.62 0.14 4.2 x 10-4 
ILMN_2056167 (OSTC) 0.56 1.76 0.16 4.4 x 10-4 

ILMN_3238435 (SNORA12) -0.21 0.81 0.16 0.20 

ILMN_1695959 (C21ORF63) -0.16 0.85 0.14 0.27 
ILMN_1741648 (HLA-DQB2) -0.71 0.49 0.15 4.1 x 10-6 
ILMN_1784238 (SEC22B) 0.19 1.21 0.15 0.21 
ILMN_1778401 (HLA-B) -0.36 0.70 0.14 0.01 
ILMN_1759729 (NDUFA8) 0.38 1.46 0.16 0.02 
ILMN_2344221 (IGSF5) 0.33 1.39 0.12 0.01 
ILMN_2095633 (FGF22) -0.22 0.80 0.17 0.19 
ILMN_1700547 (CHST9) 0.08 1.08 0.15 0.60 
ILMN_1735199 (CIAPIN1) -0.04 0.96 0.13 0.77 
RS17837209 -1.02 0.36 0.60 0.09 
RS9957831 -0.60 0.55 0.36 0.09 
RS4768090 -0.04 0.96 0.24 0.88 
RS2902554 -0.47 0.63 0.35 0.18 
RS5770310 -0.30 0.74 0.22 0.17 
RS10233832 0.07 1.07 0.23 0.76 
RS17379771 0.17 1.18 0.22 0.45 
RS16956192 0.09 1.09 0.30 0.77 
RS2392477 0.09 1.10 0.23 0.68 
RS6689263 -0.05 0.95 0.31 0.88 
RS11639902 -0.24 0.79 0.23 0.29 
RS12519276 -0.10 0.90 0.22 0.64 
RS10941528 0.25 1.28 0.22 0.27 

The highlighted rows indicate the significant predictors at P-value < 0.05  
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Table 6.7 Variables chosen* by penalized Cox model of MSS when 
combining the selected variables  (5 clinical predictors, 16 gene 
expression levels and 13 SNPs) in the test set (n=190)  

Predictors  
 

Penalized 
Cox model  

Univariable Cox model 

β β HR SE P-value 
Breslow thickness 0.14 0.22 1.25 0.04 1.9 x 10-8 
Ulceration  
(absence vs presence) 0.41 1.33 3.78 0.31 1.3 x 10-5 
ILMN_1741648  
(HLA-DQB2) -0.05 -0.71 0.49 0.15 4.1 x 10-6 
ILMN _2056167 (OSTC) 0.47 0.56 1.76 0.16 4.4 x 10-4 
ILMN _1764109  
(C1R) -0.12 -0.48 0.62 0.14 4.2 x 10-4 
Age at diagnosis 0.01 0.04 1.04 0.01 3.0 x 10-3 
RS9957831 -0.17 -0.60 0.55 0.36 0.09 
Site  
(limbs vs the rest of the 
body) 0.01 0.90 2.45 0.34 0.01 

* In order of the variables that  entered the model 
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The C-index and AUC estimates of the scores in the training set and test 

set are shown in Table 6.8. In the training set, the gene expression score (C-

index=0.78) shows a higher predictive performance than the clinical score and 

SNP score, and jointly, the scores improved the predictive performance as 

might be expected (C-index=0.84). However, these results are over-fitted as 

the same data were used to developed and to assess the model. In the test 

set, the clinical score shows the highest predictive performance in both the 

external estimation and risk score approach (C-index=0.77). When combining 

the scores, no improvement was seen in the C-index in the external estimation 

(C-index=0.66 when using β=1 as weight; C-index=0.65 when using β from 

training set as weight), while similar C-index was seen in the risk score 

approach (C-index=0.76). The AUC estimates were comparable to the C-

indices, where the clinical score has the highest predictive performance, and 

shows similar performance to the combined score.  

The C-index and AUC estimates of the models based on the variable 

selection approach are shown in Table  6.9. The C-indices of the model with 

eight selected predictors, the model with Breslow thickness only, and the 

model with selected -omic predictors only are 0.77, 0.70, and 0.72 respectively. 

Whereas, the AUC estimates for these models are 0.80, 0.72, and 0.74 

respectively. Both the C-index and AUC increased in the model with eight 

selected predictors compared to the model with Breslow thickness only, but 

were no better than the clinical score.  
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Table 6.8 C-index and AUC estimates of clinical score, gene expression 
score and SNP score in the training and test set 

 
C-index 

Clinical 
score 

Gene 
expression 

score 

SNP score Combined 
score   

Training set (n=365)a 0.704 0.784 0.716 0.836 
Test set (n=190)  
(external estimation 
and using β=1 for all 
scores as weight)  

0.769 0.638 0.43 0.664 

Test set (n=190) 
(external estimation 
and using β from 
training setb as weight)  

0.769 0.638 0.43 0.655 

Test set (n=190)a  
(risk score approach)  

0.770 0.639 0.566 0.760 

AUC in the test setc 0.764 0.625 0.584 0.771 
a C-index was estimated using bootstrapping method 
b From Table 6.2  
c AUC following logistic regression predicting of death from melanoma  

 

Table 6.9 C-index and AUC estimates of the selected model in the test set 
(n=190)  

 Full model (5 
clinical 

predictors, 
16 gene 

expression 
level, and 13 

SNPs) 

Model with 8 selected 
predictors (Breslow 

thickness, ulceration, 
HLA-DQB2 expression 
level, OSTC expression 
level, C1R expression 

level, age, RS9957831, 
and site) 

Model 
with 

Breslow 
thickness 

only 

Model with 
4 selected 

-omic 
predictors 

only  

C-index a 0.716 0.765 0.70 0.720 
AUC 0.885 0.799 0.716 0.737 

a C-index was estimated using bootstrapping method 
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6.3.2 Model 2 Combined data survival models with prior cluster 
analysis  

The gene expression levels selected using cluster analysis and 

penalized regression are presented in Table 6.10 in order of the probes that 

entered the model. Based on the cluster dendrogram from the cluster analysis 

(Figure 6.6), four clusters were chosen to group the probes. The top 10 most 

significant probes within each cluster were selected for penalized Cox 

regression, and the penalized Cox model selected 22 probes at the cross-

validated penalty in the training set. There were seven probes  (C1R, 

C21orf63, SEC22B, HLA-DQB2, TMEM64, WDR3, and ANPEP) selected from 

the first cluster, seven probes (ZNF6970,  DLGAP5, NKD2, OSTC, C1orf163, 

TBC1D7, and DGKA) from the second cluster, five probes  (CENPM,  

SEMA4A, JMY, ALDH2, and BCL11B)  from the third cluster, and three probes 

(NDUFA8, ORC6L, and TIPIN)  from the fourth cluster. All 22 probes were 

significantly associated with MSS in univariable analysis. 
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Table 6.10 22 gene expression levels selected by penalized Cox model 
from 4 gene clusters in the training set (n=424) 
Probe Chr Cluster Penalized 

Cox 
model 

Univariable Cox model 

β β HR SE P-value 
ILMN_3249501 
(ZNF6970) 

1 2 
0.38 0.62 1.85 0.09 2.8 x 10-12 

ILMN_1749829 
(DLGAP5) 

14 2 
0.05 0.52 1.68 0.10 1.5 x 10-7 

ILMN_1731206 
(NKD2) 

5 2 
0.09 0.66 1.93 0.13 1.6 x 10-7 

ILMN_1764109 
(C1R) 

12 1 
-0.05 -0.33 0.72 0.06 6.9 x 10-8 

ILMN_2056167 
(OSTC) 

4 2 
0.02 0.50 1.64 0.09 6.4 x 10-8 

ILMN_1695959 
(C21orf63) 

21 1 
0.18 -0.45 0.64 0.08 3.2 x 10-8 

ILMN_1784238 
(SEC22B) 

1 1 
0.08 -0.43 0.65 0.08 1.1 x 10-7 

ILMN_1741648  
(HLA-DQB2) 

6 1 
0.07 -0.41 0.66 0.08 1.4 x 10-7 

ILMN_1759729 
(NDUFA8) 

9 4 
0.01 -0.47 0.62 0.08 1.6 x 10-9 

ILMN_1757415 
(C1orf163) 

1 2 
0.13 0.53 1.70 0.09 1.3 x 10-9 

ILMN_2150402 
(TMEM64) 

8 1 
-0.11 -0.44 0.65 0.07 2.3 x 10-10 

ILMN_1731070 
(ORC6L) 

16 4 
-0.13 -0.57 0.56 0.08 1.1 x 10-11 

ILMN_2368721 
(CENPM) 

22 3 
0.10 0.46 1.58 0.08 5.2 x 10-8 

ILMN_1711254 
(WDR3) 

1 1 
-0.22 -0.44 0.65 0.07 1.7 x 10-9 

ILMN_1702787 
(SEMA4A) 

1 3 
0.06 0.43 1.54 0.07 1.8 x 10-10 

ILMN_1761939 
(TIPIN) 

15 4 
-0.14 -0.45 0.64 0.08 3.5 x 10-9 

ILMN_1762080 
(JMY) 

5 3 
0.24 0.64 1.89 0.11 4.5 x 10-9 

ILMN_1661622 
(TBC1D7) 

6 2 
0.08 0.71 2.04 0.12 3.2 x 10-9 

ILMN_1793859 
(ALDH2) 

12 3 
0.03 0.51 1.67 0.09 5.2 x 10-8 

ILMN_2319910 
(DGKA) 

12 2 
0.04 0.57 1.77 0.11 1.2 x 10-7 

ILMN_1667885 
(BCL11B) 

14 3 
0.08 0.57 1.78 0.10 2.9 x 10-8 

ILMN_1763837 
(ANPEP) 

15 1 
-0.10 -0.45 0.64 0.08 7.3 x 10-9 

Chr: Chromosome  
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In Table 6.11, all scores were significantly associated with MSS in both 

univariable and multivariable analysis, as expected, in the training set. In Table 

6.12, similar results were observed as in the Model 1 (Table 6.3), where clinical 

score and gene expression score show significant association with MSS in the 

univariable analysis, but only clinical score remained significant in the 

multivariable analysis in the test set.  

 

Table 6.11 Cox model combining risk scores* in the training set (n=365**) 
Predictors  
 

Univariable Cox model Multivariable Cox model 
β HRd SE P-value β HRd SE P-value 

Clinical 
scorea 0.64 1.90 0.08 4.6 x 10-14 0.27 1.31 0.09 2.1 x 10-3 
Gene 
expression 
scoreb 

1.06 
 

2.90 
 

0.10 
 

2.0 x 10-16 

 
0.88 

 
2.40 

 
0.12 

 
5.8 x 10-14 

 
SNP scorec  0.69 2.00 0.09 8.9 x 10-16 0.54 1.72 0.09 1.2 x 10-9 

 

 

Table 6.12 Cox model combining risk scores* in the test set (n=190**) 
Predictors  
 

Univariable Cox model Multivariable Cox model† 

β HRd SE P-value β HRd SE P-value 
Clinical 
scorea 0.86 2.36 0.14 4.8 x 10-10 0.83 2.29 0.15 4.3 x 10-8 
Gene 
expression 
scoreb 

0.39 
 

1.48 
 

0.14 
 

0.01 
 

0.09 
 

1.10 
 

0.17 
 

0.58 
 

SNP scorec  
-0.33 0.72 0.17 0.05 -0.33 0.72 0.17 0.05 

 

 

*calculated using estimates from multivariable Cox model for clinical predictors and from 
penalized estimates for gene expression and SNPs data 
**Subset of patients with both gene expression and genotype data 
a created from 5 clinical predictors 
b created from 22 gene expression levels selected by penalized Cox model 
c created from 13 SNPs selected by penalized Cox model 
d HR per 1 standard deviation; All scores were standardized prior to univariable and 
multivariable Cox regression 
† Proportional hazards assumption was checked using Schoenfeld residuals test and not 
violated (results shown in Table 3 in Appendix II)  
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Table 6.13 shows the univariable analysis for the 22 gene expression 

levels in the test set. This table only shows univariable analysis for the gene 

expression levels as results for the five clinical predictors and 13 SNPs are 

similar to Model 1 in Table 6.6. In the test set, expression level of 12 genes 

(TMEM64, ORC6L, CENPM, TIPIN, JMY, DLGAP5, ANPEP, OSTC, C21orf63, 

SEC22B, HLA-DQB2, and NDUFA8) shows significant association with MSS in 

univariable analysis.  

Table 6.14 shows the predictors selected by penalized Cox regression 

when combining five clinical predictors, 22 gene expression levels, and 13 

SNPs in the test set. Nine predictors with non-zero coefficients were selected 

at the cross-validated penalty; Breslow thickness, presence of ulceration, 

expression level of HLA-DQB2, expression level of OSTC, expression level of 

C1R, age at diagnosis, SNP RS9957831, expression level of ANPEP, and site. 

Eight of the selected predictors were similar to the predictors selected in Model 

1 except the expression level of ANPEP.  

 

Table 6.13 Univariable analysis of the selected 22 gene expression levels 
in the test set (n=190) 

Predictors  
 

Univariable Cox model 
β HR SE P-value 

ILMN_3249501 (ZNF697) 0.09 1.09 0.17 0.59 
ILMN_1749829 (DLGAP5) 0.21 1.23 0.16 0.20 
ILMN_1731206 (NKD2) -0.33 0.72 0.13 0.01 
ILMN_1764109 (C1R) -0.48 0.62 0.14 4.2 x 10-4 
ILMN_2056167 (OSTC) 0.56 1.76 0.16 4.4 x 10-4 
ILMN_1695959 (C21orf63) -0.16 0.85 0.14 0.27 
ILMN_1784238 (SEC22B) 0.19 1.21 0.15 0.21 
ILMN_1741648 (HLA-DQB2) -0.71 0.49 0.15 4.1 x 10-6 
ILMN_1759729 (NDUFA8) 0.38 1.46 0.16 0.02 
ILMN_1757415 (C1orf163) 0.14 1.15 0.18 0.45 
ILMN_2150402 (TMEM64) 0.21 1.23 0.16 0.19 
ILMN_1731070 (ORC6L) 0.34 1.4 0.17 0.04 
ILMN_2368721 (CENPM) 0.18 1.2 0.16 0.25 
ILMN_1711254 (WDR3) 0.19 1.21 0.15 0.20 
ILMN_1702787 (SEMA4A) -0.38 0.68 0.12 1.7 x 10-3 
ILMN_1761939 (TIPIN) 0.07 1.07 0.14 0.61 
ILMN_1762080 (JMY) -0.04 0.97 0.16 0.82 
ILMN_1661622 (TBC1D7) 0.38 1.46 0.14 0.01 
ILMN_1793859 (ALDH2) -0.53 0.59 0.13 5.6 x 10-3 
ILMN_2319910 (DGKA) -0.45 0.64 0.13 4.4 x 10-5 
ILMN_1667885 (BCL11B) -0.44 0.64 0.13 7.9 x 10-4 
ILMN_1763837 (ANPEP) -0.48 0.62 0.15 9.3 x 10-4 
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The highlighted rows indicate the significant predictors at P-value < 0.05  

Table 6.14 Variables chosen* by penalized Cox model of MSS when 
combining the selected variables  (5 clinical predictors, 22 gene 
expression levels and 13 SNPs) in the test set (n=190)  

Predictors  
 

Penalized 
Cox model  

Univariable Cox model 

β β HR SE P-value 
Breslow thickness 0.14 0.22 1.25 0.04 1.9 x 10-8 
Ulceration (absence vs presence) 0.41 1.33 3.78 0.31 1.3 x 10-5 
ILMN_1741648 (HLA-DQB2) -0.04 -0.71 0.49 0.15 4.1 x 10-6 
ILMN_2056167 (OSTC) 0.46 0.56 1.76 0.16 4.4 x 10-4 
ILMN_1764109 (C1R) -0.10 -0.48 0.62 0.14 4.2 x 10-4 
Age at diagnosis 0.01 0.04 1.04 0.01 3.1 x 10-3 
RS9957831 -0.18 -0.60 0.55 0.36 0.09 
ILMN_1763837 (ANPEP) -0.03 -0.48 0.62 0.15 9.3 x 10-4 
Site (limbs vs the rest of the body) 0.003 0.90 2.45 0.34 0.01 

* In order of the variables that  entered the model 
 

 

Table 6.15 presents the C-index and AUC estimates for scores in the 

training set and test set for Model 2. Similar results were seen as in the Model 

1 (Table 6.8), where the combined score improved the C-index in the training 

set, but not in the test set. The AUC estimate for the combined score also 

shows no improvement compared to the individual scores.  

Table 6.16 presents the C-index and AUC estimates for models from the 

variable selection approach. The C-indices of the model with nine selected 

predictors, the model with Breslow thickness only, and the model with selected 

-omic predictors only are 0.76, 0.70, and 0.71 respectively, which are similar to 

the estimates in Model 1. The AUC for these models were also comparable to 

the Model 1 estimates.   
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Table 6.15 C-index and AUC estimates of clinical score, gene expression 
score and SNP score in the training and test set 

 
C-index 

Clinical 
score 

Gene 
expression 

score 

SNP score Combined 
score   

Training set (n=365)a 0.704 0.794 0.716 0.839 
Test set (n=190)  
(external estimation 
and using β=1 for all 
scores as weight)  

0.769 0.621 0.43 0.66 

Test set (n=190) 
(external estimation 
and using β from 
training setb as 
weight)  

0.769 0.621 0.43 0.609 

Test set (n=190)a  
(risk score approach)  

0.769 0.623 0.568 0.763 

AUC in the test setc 0.764 0.611 0.584 0.772 
a C-index was estimated using bootstrapping method 
b From Table 6.11 
c AUC following logistic regression predicting of death from melanoma 
 

 

Table 6.16 C-index and AUC estimates of the selected model in the test 
set (n=190)  

 Full model 
(5 clinical 
predictors, 

22 
expression 
level, and 
13 SNPs) 

Model with 9 selected 
predictors (Breslow 

thickness, ulceration, 
HLA-DQB2 expression 
level, OSTC expression 
level, C1R expression 

level, age, RS9957831, 
ANPEP expression 

level, and site) 

Model 
with 

Breslow 
thickness 

only 

Model with 5 
selected  

-omic 
predictors 

only 

C-index a 0.725 0.761 0.70 0.714 
AUC 0.918 0.800 0.716 0.739 

a 
C-index were estimated using bootstrapping method
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6.3.3 Model 3 Combined data survival models using Lund clusters 
to select gene expression levels for penalized Cox regression  

The gene expression levels selected from four Lund clusters and 

penalized regression are shown in Table 6.17 in order of the probes that 

entered the model. After including the top 10 probes from each cluster for 

penalized Cox regression, the model selected 18 probes at cross-validated 

penalty in the training set. All 18 probes were significantly associated with MSS 

in univariable analysis.  

 

Table 6.17 18 gene expression levels selected by penalized Cox model 
from 4 Lund clusters in the training set (n=424) 

Probe Cluster Penali-
zed  
Cox 

model 

Univariable Cox model 

β β HR SE P-value 
ILMN_1741648  
(HLA-DQB2) 

Normal-like  
-0.06 -0.45 0.64 0.08 3.49 x 10-9 

ILMN_1673721 (EXO1) Proliferative 0.15 0.61 1.83 0.11 1.07 x 10-8 
ILMN_1664516 (CENPF) Proliferative 0.03 0.51 1.66 0.10 1.70 x 10-7 
ILMN_1661622 (TBC1D7) Pigmentation  

0.10 0.50 1.64 0.09 6.40 x 10-8 
ILMN_1736096 (DLL3) Pigmentation 0.08 0.51 1.66 0.10 1.05 x 10-6 
ILMN_1720373 (SLC7A5) Pigmentation  

0.14 0.44 1.55 0.09 1.90 x 10-6 
ILMN_1738832 (SACS) Proliferative 0.11 0.46 1.58 0.10 1.38 x 10-6 
ILMN_1658143 (RFC3) Proliferative 0.06 0.56 1.75 0.11 1.13 x 10-7 
ILMN_1751161 (COL7A10) Normal-like  

-0.10 -0.38 0.68 0.08 1.25 x 10-6 
ILMN_1795930 (PTGER4) High-

immune 
 

-0.12 -0.43 0.65 0.08 3.2 x 10-7 
ILMN_1676191 (DARS2) Pigmentation 0.06 0.58 1.79 0.12 7.43 x 10-7 
ILMN_1727087 (GJA1) Normal-like -0.03 -0.44 0.65 0.09 9.59 x 10-7 
ILMN_2043918 (DLEU1) Pigmentation 0.02 0.47 1.61 0.11 1.42 x 10-5 
ILMN_1713088 (MSI2) Pigmentation 0.02 0.57 1.77 0.12 2.53 x 10-6 
ILMN_1705477 (CAMK1D) Normal-like  

-0.01 -0.39 0.68 0.08 2.11 x 10-6 
ILMN_1770692 (WDR12) Pigmentation 0.02 0.56 1.75 0.12 1.93 x 10-6 
ILMN_2051373 (NEK2) Proliferative 0.03 0.42 1.52 0.09 8.29 x 10-6 
ILMN_1808071 (KIF14) Proliferative 0.002 0.43 1.54 0.09 3.23 x 10-6 

Selected probes: 1 from high-immune cluster (PTGER4); 4 from normal-like cluster (COL7A10, 

CAMK1D, GJA1, HLA-DQB2); 7 from pigmentation cluster (DARS2, WDR12, DLEU1, MSI2, 

TBC1D7, DLL3, SLC7A5); 6 from proliferative cluster (NEK2, EXO1, SACS, RFC3, CENPF, 

KIF14)
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Table 6.18 shows analysis in the training set to estimate the effect of 

risk scores on MSS. As expected, results in Table 6.18 also show that all 

scores were significantly associated with MSS in both univariable and 

multivariable analysis.   

In Table 6.19, similar results were seen as in Model 1 and Model 2 

(Table 6.3 and Table 6.12), where the clinical score and gene expression score 

show significant association with MSS in the univariable analysis, but only 

clinical score remained significant in the multivariable analysis in the test set.  

 

 

Table 6.18 Cox model combining risk scores* in the training set (n=365**) 
Predictors  
 

Univariable Cox model Multivariable Cox model 
β HRd SE P-value β HRd SE P-value 

Clinical 
scorea 0.64 1.90 0.08 4.6 x 10-14 0.33 1.40 0.09 2.8 x 10-4 
Gene 
expression 
scoreb 

0.81 
 

2.24 
 

0.10 
 

8.9 x 10-16 

 
0.54 

 
1.72 

 
0.12 

 
2.7 x 10-6 

 
SNP scorec  0.69 2.00 0.09 8.9 x 10-16 0.55 1.74 0.09 1.8 x 10-10 

 

 

Table 6.19 Cox model combining risk scores* in the test set (n=190**) 
Predictors  
 

Univariable Cox model Multivariable Cox model† 
β HRd SE P-value β HRd SE P-value 

Clinical 
scorea  0.86 2.36 0.14 4.8 x 10-10 0.78 2.17 0.16 1.9  x 10-6 
Gene 
expression 
scoreb 

0.55 
 

1.74 
 

0.16 
 

3.8 x 10-4 

 
0.19 

 
1.20 

 

 
0.19 

 
0.32 

 
 
SNP scorec  -0.33 0.72 0.17 0.05 -0.35 0.71 0.17 0.05 

 
*calculated using estimates from multivariable Cox model for clinical predictors and from 
penalized estimates for gene expression and SNPs data 
**Subset of patients with both gene expression and genotype data 
a created from 5 clinical predictors 
b created from 18 gene expression levels selected by penalized Cox model 
c created from 13 SNPs selected by penalized Cox model 
d HR per 1 standard deviation; All scores were standardized prior to univariable and 
multivariable Cox regression 
† Proportional hazards assumption was checked using Schoenfeld residuals test and not 
violated (results shown in Table 4 in Appendix II)  
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Table 6.20 shows the univariable analysis of the 18 gene expression 

levels in the test set. Seven of the 18 gene expression levels (HLA-DQB2, 

CENPF, TBC1D7, DLL3, SACS, GJA, and CAMK1D) were significantly 

associated with MSS in univariable analysis. Univariable analysis for the five 

clinical predictors and 13 SNPs were not shown in this table as results were 

similar to Model 1 in Table 6.6. 

When combining the five clinical predictors, 18 gene expression levels 

and 13 SNPs using penalized Cox regression analysis, the model selected 

nine predictors with non-zero coefficients at cross-validated penalty (Table 

6.21). Six of the selected predictors (Breslow thickness, presence of ulceration, 

expression level of HLA-DQB2, age at diagnosis, SNP RS 9957831, and site) 

were similar to the predictors selected in Model 1 (Table 6.7). The other three 

selected predictors were expression level of DLL3, expression level of CENPF 

and SNP RS1737977.  

 

Table 6.20 Univariable analysis of the selected 18 gene expression levels 
in the test set (n=190) 

Predictors  
 

Univariable Cox model 

β HR SE P-value 
ILMN_1741648 (HLA-DQB2) -0.71 0.49 0.15 4.1 x 10-6 
ILMN_1673721 (EXO1) 0.24 1.27 0.15 0.12 
ILMN_1664516 (CENPF) 0.45 1.57 0.17 0.01 
ILMN_1661622 (TBC1D7) 0.38 1.46 0.14 0.01 
ILMN_1736096 (DLL3) 0.40 1.49 0.16 0.01 
ILMN_1720373 (SLC7A5) 0.26 1.29 0.17 0.13 
ILMN_1738832 (SACS) 0.32 1.38 0.13 0.01 
ILMN_1658143 (RFC3) 0.27 1.31 0.15 0.07 
ILMN_1751161 (COL7A10) -0.16 0.85 0.13 0.20 
ILMN_1795930 (PTGER4) -0.24 0.79 0.13 0.06 
ILMN_1676191 (DARS2) 0.36 1.43 0.2 0.07 
ILMN_1727087 (GJA1) -0.46 0.63 0.15 2.1 x 10-3 
ILMN_2043918 (DLEU1) 0.30 1.36 0.16 0.06 
ILMN_1713088 (MSI2) 0.31 1.37 0.20 0.12 
ILMN_1705477 (CAMK1D) -0.36 0.70 0.12 3.4 x 10-3 
ILMN_1770692 (WDR12) 0.26 1.29 0.18 0.14 
ILMN_2051373 (NEK2) 0.16 1.18 0.16 0.29 
ILMN_1808071 (KIF14) 0.21 1.23 0.17 0.22 

The highlighted rows indicate the significant predictors at P-value < 0.05  
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Table 6.21 Variables chosen by penalized Cox model of MSS when 
combining the selected variables  (5 clinical predictors, 18 gene 
expression levels and 13 SNPs) in the test set (n=190)  

Predictors  
 

Penalized 
Cox 

model  

Univariable Cox model 

β β HR SE P-value 
Breslow thickness 0.12 0.22 1.25 0.04 1.9 x 10-8 
Ulceration (absence vs 
presence) 0.46 1.33 3.78 0.31 1.3 x 10-5 
ILMN_1741648 (HLA-DQB2) -0.10 -0.71 0.49 0.15 4.1 x 10-6 
Age at diagnosis 0.01 0.04 1.04 0.01 3.1 x 10-3 
RS9957831 -0.15 -0.6 0.55 0.36 0.09 
ILMN_1736096 (DLL3) 0.003 0.40 1.49 0.16 0.01 
Site (limbs vs the rest of the 
body) 0.0001 0.90 2.45 0.34 0.01 
ILMN_1664516 (CENPF) 0.0002 0.45 1.57 0.17 0.01 
RS17379771 0.0004 0.17 1.18 0.22 0.45 

 

 

 

Table 6.22 shows the C-index and AUC estimates for scores in the 

training set and test set for Model 3. These results are similar to Model 1 

(Table 6.8) and Model 2 (Table 6.15), where no improvements were seen in 

the combined score C-indices and AUC in the test set compared to the 

individual scores.   

The C-index and AUC estimates for models based variable selection 

approach are shown in Table 6.23. Similar to results in Model 1 (Table 6.9) and 

Model 2 (Table 6.16), the model with the selected predictors by the penalized 

Cox analysis shows higher C-index and AUC estimates (C-index = 0.75 and 

AUC=0.81)  than the model with Breslow thickness alone (C-index = 0.70 and 

AUC=0.72).  
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Table 6.22 C-index estimates of clinical score, gene expression score and 
SNP score in the training and test set 

 
C-index 

Clinical 
score 

Gene 
expression 

score 

SNP score Combined 
score   

Training set (n=365)a 0.704 0.732 0.716 0.819 
Test set (n=190)  
(external estimation 
and using β=1 for all 
scores as weight)  

0.769 0.657 0.43 0.680 

Test set (n=190) 
(external estimation 
and using β from 
training setb as 
weight)  

0.769 0.657 0.43 0.644 

Test set (n=190)a  
(risk score approach)  

0.771 0.658 0.570 0.762 

AUC in the test setc 0.764 0.649 0.584 0.771 
 

a C-index were estimated using bootstrapping method 
b From Table 6.18 
c AUC following logistic regression predicting of death from melanoma 
 

 

Table 6.23 C-index and AUC estimates of the selected model in the test 
set (n=190)  

 Full 
model  

Model with 9 selected 
predictors (Breslow 

thickness, ulceration, 
HLA-DQB2 expression 
level, age, RS9957831, 
DLL3 expression level, 
site, CENPF expression 
level, and RS17379711) 

Model 
with 

Breslow 
thickness 

only 

Model with 5 
selected  

-omic 
predictors 

only 

C-index a 0.676 0.746 0.70 0.704 
AUC 0.856 0.810 0.716 0.745 

a 
C-index was estimated using bootstrapping method   
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6.3.4 Model 4 Combined data survival models using clinical 
predictors and Lund classification only 

Of the 699 patients with gene expression data in the Leeds cohort, only 

677 could be classified using the Lund 4-class molecular classification; 174 

classified as high immune, 197 classified as normal-like, 222 classified as 

pigmentation, 84 classified as proliferative, and 22 unclassified. When using 

the 2-class molecular grading, 371 and 306 patients were identified as low-

grade and high-grade, respectively. In the test set, 90 patients were identified 

as low-grade and 96 patients as high-grade. Four patients in the test set were 

unclassified.  

The association of the 2-molecular grade and the selected clinical 

predictors with MSS were explored in the training set using 450 patients that 

can be classified with the Lund classification. In the univariable analysis, the 2-

molecular grade shows significant association with MSS along with the five 

clinical predictors (Table 6.24). In the multivariable analysis,  only age at 

diagnosis, Breslow thickness and the 2-molecular grade remained as the 

significant predictors for MSS.   

In the test set, the 2-molecular grade, age at diagnosis, site, Breslow 

thickness, and presence of ulceration shows significant association with MSS 

in univariable analysis, but only Breslow thickness remained significant in 

multivariable analysis (Table 6.25).  

 

 



 
 

 172 

Table 6.24 Cox model combining the selected clinical predictors and 
Lund 2-molecular grade in the training set* (n=450) 

Predictors  
 

Univariable Cox model Multivariable Cox model 
β HR SE P-value β HR SE P-value 

Age at diagnosis 0.04 1.04 0.01 3.3 x 10-6 0.03 1.03 0.01 4.9 x 10-4 
Sex (female vs 
male) 0.55 1.73 0.18 

2.0 x 10-3 
0.30 1.35 0.19 0.11 

Site (limbs vs the 
rest of the body) 0.61 1.84 0.19 

1.6 x 10-3 
0.26 1.30 0.21 0.21 

Breslow thickness  0.14 1.15 0.02 5.0 x 10-10 0.10 1.11 0.03 6.3 x 10-4 
Ulceration 
(absence vs 
presence) 0.72 2.05 0.18 4.9 x 10-5 0.36 1.44 0.20 0.07 
Lund 2-molecular 
grade 
(low-grade vs 
high-grade) 0.93 2.55 0.18 3.2 x 10-7 0.58 1.79 0.19 2.7 x 10-3 

* Excluding the test set samples and those with survival analysis exclusion criteria  
 

 

Table 6.25 Cox model combining the selected clinical predictors and 
Lund 2-molecular grade in the test set (n=190) 

Predictors  
 

Univariable Cox model Multivariable Cox model 
β HR SE P-value β HR SE P-value 

Age at diagnosis 0.04 1.04 0.01 3.1 x 10-3 0.02 1.02 0.01 0.12 
Sex (female vs 
male) 0.07 1.07 0.30 0.82 0.35 1.35 0.33 0.87 
Site (limbs vs the 
rest of the body) 0.90 2.45 0.34 0.01 0.37 1.44 0.39 0.35 
Breslow thickness  0.22 1.25 0.04 2.0 x 10-8 0.13 1.14 0.05 0.01 
Ulceration (absence 
vs presence) 1.33 3.78 0.31 1.6 x 10-5 0.73 2.07 0.37 0.05 
Lund 2-molecular 
grade 
(low-grade vs high-
grade) 1.22 3.38 0.34 3.5 x 10-4 0.49 1.63 0.39 0.21 
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Table 6.26 shows the C-index and AUC estimates for the clinical score 

and the 2-molecular grade in the test set. The C-index for the clinical score in 

both the external estimation and risk score approach was higher than the 2-

molecular grade only. When combining the clinical score with the 2-molecular 

grade,  no improvement was seen in the C-index for both approaches. For the 

AUC estimates, results were similar to the C-index estimates for both the 

individual predictor and the combined predictors.  

Table 6.27 shows the C-index and AUC estimates for all six variables in 

the test set as only Breslow thickness shows significant association with MSS 

in multivariable analysis in Table 6.25. Both estimates were higher for the full 

model compared to Breslow thickness alone, but were similar to the clinical 

score.  

 

Table 6.26 C-index and AUC estimates for clinical score* and Lund 
classification in the test set (n=190)  

 Clinical 
score only 

Lund  
2-molecular grade 

only  

Clinical score + 
Lund  

2-molecular grade 
C-index (external 
estimation approach)a 

0.769 0.648 0.756 

C-index (risk score 
approach)b  

0.767 0.650 0.766 

AUCc 0.764 0.638 0.765 
* calculated using estimates from multivariable Cox regression of 5 clinical predictors in the 
training set (in Chapter 3)   
a Estimates from the Lund study (Harbst et al., 2012) for the 2-molecular grade were for overall 
survival and relapse-free survival only. Therefore, estimates from the training set (Table 6.24) 
were used in this analysis  
b C-index was estimated using bootstrapping method (B=500) 
c AUC  following logistic regression predicting of death from melanoma 

 

 

Table 6.27 C-index and AUC estimates for clinical predictors and Lund 
classification in the test set (n=190)  

 Full model (Age, sex, site, Breslow 
thickness, presence of ulceration 

and Lund 2-molecular grade 

Model with 
Breslow thickness 

only 

C-index a 0.738 0.70 
AUC 0.784 0.716 

a 
C-index was estimated using bootstrapping method   
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6.3.5 Correlation between the gene expression scores from 
different approaches  

Table 6.28 shows the pairwise correlation between the gene expression 

scores from Model 1 to Model 3. Gene scores from all models were strongly 

correlated with each other, with the strongest correlation from gene expression 

score in Model 1 and Model 2. Figure 6.7 shows a scatterplot of clinical score 

against gene expression score from Model 1 to identify the distribution of the 

scores for patients who were still alive and those who have died. For patients 

who are still alive, there is a moderate correlation between their clinical score 

and gene expression score. In Table 6.4, moderate correlation (r=0.4) was 

found between the clinical score and gene expression score.  

 

Table 6.28 Pairwise correlation between the gene expression scores from 
different approaches in the test set (n=190)  

 Gene 
expression 
score from 

Model 1 

Gene 
expression 
score from 

Model 2 

Gene 
expression 
score from  

Model 3 
Gene expression score from Model 1 1 0.93 0.83 
Gene expression score from Model 2  1 0.82 
Gene expression score from Model 3   1 
P-value for all pairwise correlations is <2.2x10-16   
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Figure 6.7 Scatterplot of clinical score versus gene expression score 
from Model 1 approach
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6.4 Discussion  
6.4.1 Predictive performance of each model  

This chapter provides estimates of predictive ability for models 

developed from clinical predictors, gene expression levels, and genotype data. 

The predictive ability of these models was assessed in a test set of 190 

samples with gene expression data and genotyped data available. As tumour 

sampling for gene expression profiling in the cohort was not random (samples 

were extracted from patients with thicker tumour for adequate extraction of 

RNA), this may explain the high proportion of deaths from melanoma among 

the 699 patients with gene expression data (23.7% in the test set and 17% in 

the training set). The split of the data into a training set and a test set among 

those with gene expression data however, was performed randomly.  

Based on the risk score approach, the clinical score consistently shows 

the highest C-index compared to gene expression score and SNP score in all 

models in the test set (Model 1 C-indices: clinical score=0.77, gene expression 

score=0.64, and SNP score=0.57; Model 2 C-indices: clinical score=0.77, gene 

expression score=0.62, SNP score=0.58; Model 3 C-indices: clinical 

score=0.77, gene expression score=0.66, and SNP score=0.57). Similar 

results were observed in the three models when the external estimation 

approach was applied to compute the C-indices. Among the scores, the 

predictive ability of the SNP score was the lowest. This was not unexpected as 

the selected 13 SNPs from the training set did not meet a genome-wide 

significance level and none of the selected SNPs showed significant 

association with MSS in the test set in Table 6.6. The association of the SNP 

score with MSS in the test set was also not significant in any model (Table 6.3, 

Table 6.12, and Table 6.19), which may suggest that SNPs do not have a 

strong effect on MSS compared to clinical predictors and gene expression 

levels.   

When the clinical score, gene expression score and SNP score were 

combined, no improvement in the C-indices was seen in all models in both the 

external estimation and risk score approach. The C-index (based on risk score 

approach) and AUC estimate for the combined score in Models 1 to 3 was 

0.76, which was similar to the estimates  for clinical score only. As the 

estimates of C-index in this analysis are quite variable, our results cannot 
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conclude that combining the scores does not improve the predictive ability of 

the model. Results in this analysis are consistent with the literature (Lindholm 

et al., 2004; Buettner et al., 2005; Balch et al., 2009) which shows the 

established clinical predictors as strong predictors for melanoma survival. In 

the test set, Breslow thickness is the most significant predictor for melanoma 

survival as shown in the univariable analysis in Table 6.6.  

In a recent melanoma prognostic survival model developed using clinical 

information only from Queensland Cancer Registry, Baade et al. (2015) 

reported that Breslow thickness explained most of the variation in their final 

prognostic model (including age, Breslow thickness, tumour site, presence of 

ulceration, presence of positive lymph nodes, and presence of metastasis). 

Their reported C-index for the melanoma severity index (calculated using 

variables in the final model) was 0.88, which indicates a good predictive ability. 

The high C-index in their study may be due to the extra variables used to 

calculate  their index, and the study was based on a very large sample size 

(n=28,654 with 17,000 melanoma deaths) in comparison to the small test set 

used in this analysis.   

Based on the variable selection approach, all models with the selected 

predictors only (C-index of Model 1 with 8 predictors=0.77; C-index of Model 2 

with 9 predictors=0.76; C-index of Model 3 with 9 predictors=0.75) show higher 

predictive ability than the model with Breslow thickness only (C-index=0.70). 

The C-index for models with the selected -omic predictors only (Model 1=0.72; 

Model 2=0.71; Model 3=0.70) is comparable to the C-index of Breslow 

thickness alone in all models, which shows that the selected -omic predictors 

have similar predictive ability to Breslow thickness alone. Four clinical 

predictors (Breslow thickness, presence of ulceration, age at diagnosis and 

site) were selected in all models. However, since the C-indices for all models 

with the selected predictors were higher than the C-index for Breslow thickness 

alone, this shows the potential for improving the predictive ability when 

combining different types of predictors in the model. 

When the clinical score was combined with the Lund 2-molecular grade, 

the C-index remained 0.77. The Lund 2-molecular grade had been previously 

assessed for its prognostic value in 300 patients in the LMC by Nsengimana et 

al. (2015), who reported an increase in the AUC for predicting death from 
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melanoma from 0.68 when using AJCC stage alone to 0.72  when combining 

the AJCC stage and molecular grade. Similar AUC was found in Nsengimana 

et al. (2015) and in this analysis for the 2-molecular grade (0.65 vs 0.64).  

Some improvement was observed for the combined AJCC and molecular 

grade in Nsengimana et al. (2015) probably due to AJCC stage alone being 

less predictive compared with all the clinical predictors (age, sex, Breslow 

thickness, presence of ulceration and tumour site) used in this analysis.  

In summary, results in this chapter indicate that clinical score is the best 

predictor of melanoma survival. Several gene expressions were also predictive 

of survival in the variable selection approach. However, as gene expressions 

seems to act through the clinical variables, it does not help in the final model.  

 

6.4.2 Predictive performance between models  
In addition to estimates of predictive ability from different types of data, 

these analyses also provide estimates of predictive ability for a gene 

expression score created using different approaches, and using different sets 

of probes. The C-indices for the gene expression score from Model 1 (16 

probes selected using penalized Cox regression only), Model 2 (22 probes 

selected using clustering analysis and penalized Cox regression), and Model 3 

(18 probes selected using Lund clustering and penalized Cox regression), were 

0.64, 0.62, and 0.66, respectively. The C-indices for the three models were 

fairly similar. However, using only point estimates of the C-indices does not 

allow us to test whether the C-indices truly differ between the models. This 

could be shown using confidence intervals of the C-indices, but the current R 

package used to calculate the C-indices does not provide confidence interval 

values. Bootstrapping could be used in future analysis to calculate the 

confidence interval for C-index estimates. 

The scores were highly correlated as shown in Table 6.27. As shown in 

Figure 6.8, there were 9 similar probes selected by Model 1 and Model 2 

(r=0.93), while only 1 similar probes were chosen by Model 1 and Model 3 

(r=0.83), and Model 2 and Model 3 (r=0.82), respectively. Between the three 

models, there was only one overlapped probe (HLA-DQB2).  

In summary, although different set of probes were selected by different 

models, the gene expression scores were highly correlated with each other, 
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and has only small variations in their predictive ability which was not adequate 

to improve the overall combined score predictive ability. 

 

 

 

Figure 6.8 Number of overlapped probes between the three models 
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Chapter 7 Discussion and conclusions 
 

7.1 Summary of main findings  
This study uses clinical predictors, gene expression levels and genetic 

variants to build prognostic models for MSS, and explore the inter-relationships 

between these factors. In the survival analyses of single types of variable in 

Chapter 3, all the five established clinical predictors (age, sex, tumour site, 

Breslow thickness, and presence of ulceration) were significantly associated 

with MSS, consistent with previous studies. The penalized Cox model selected 

16 gene expression levels (LPAR1, ZNF697, DLG1, NKD2, C1R, OSTC, 

SNORA12, C21ORF63, HLA-DQB2, SEC22B, HLA-B, NDUFA8, IGSF5, 

FGF22, CHST, and CIAPIN1), and  13 SNPs (RS17837209, RS9957831, 

RS4768090, RS2902554, RS5770310, RS10233832, RS17379771, 

RS16956192, RS2392477, RS6689263, RS11639902, RS12519276, and 

RS10941528) that were significantly associated with MSS in the training set.   

When the selected variables were combined in the test set in Chapter 6, 

using estimates from the training set, the results showed that combining the 

clinical score, gene expression score, and SNP score did not improve the 

predictive ability of the model compared to using the clinical score alone. The 

clinical score provides the highest predictive ability, and the SNP score the 

lowest. The clinical score and gene expression score was moderately 

correlated. Based on the variable selection approach, where the training set is 

only used to select variables, the predictive ability of the selected predictors 

using penalized Cox models were higher than the predictive ability of Breslow 

thickness alone, which may indicate the potential for improving the predictive 

ability when combining different types of predictors in the model.  

When the associations of the selected 16 gene expression levels and 13 

SNPs with the five established clinical predictors were explored in Chapter 5, 

most of the selected gene expression levels showed significant association 

with clinical predictors (10 significant associations with age at diagnosis, 3 with 

sex, 7 with tumour site, 15 with log-transformed Breslow thickness, and 11 with 

presence of ulceration), while only three selected SNPs showed significant 

association with clinical predictors, with only marginally significant associations. 
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Interestingly, the expression levels of just one of the selected genes (CHST9) 

showed no association with any of the clinical predictors.  

GWAS of the 16 expression levels show that SNPs are associated with 

the expression level of two genes (HLA-DQB2 and NDUFA8) at a genome-

wide significance level, while others showed suggestive associations. 

Investigation of the melanoma susceptibility SNPs shows that one susceptibility 

SNP (RS1858550 in PARP1) was significantly associated with MSS. Of the 20 

top susceptibility SNPs, two SNPs (RS498136 in CCND1 and RS75570604 in 

MC1R) were significantly associated with age at diagnosis, three (RS1858550 

in PARP1, RS2995264 in OBFC1, and RS73008229 in ATM) were significantly 

associated with sex, three (RS6750047 in RMDN2, RS250417 in SLC45A2, 

and RS10739221 in TMEM38B) were significantly associated with log-

transformed Breslow thickness, and one (RS1393350 in TYR) was associated 

with presence of ulceration, mostly with only marginally significant 

associations. This suggests that genetic risk variants may not have strong 

effects on the important clinical predictors for melanoma survival. Evidence of 

eQTL associations (with the expression level of nearby genes) at the 5% 

significance level were seen in five of the susceptibility SNPs (RS12410869 

with ARNT expression, RS6750047 with RMDN2 expression, RS6914589 with 

CDKAL1 expression, RS6088372 with ASIP expression, and RS408825 with 

MX2 expression). When including other SNPs in the susceptibility loci and 

accounting for multiple testing, evidence of eQTLs were found in two regions 

only (ARNT and MX2).  

When the heritability of survival in melanoma and Breslow thickness 

were estimated using GCTA  in Chapter 4, no evidence of heritability was 

found for the 5-year and 10-year survival from melanoma. However, there was 

some evidence of heritability of Breslow thickness (h2=0.21, P-value=0.01 

when adjusting for centre only and h2=0.18, P-value=0.03 when adjusting for 

centre, age and sex).  
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7.2 Final discussion  
7.2.1 Heritability of survival from melanoma and Breslow thickness 

The heritability analysis in this study did not find evidence of heritability 

of survival from melanoma, possibly due to limited sample size. However, a 

large Swedish study by Brandt et al. (2011) using the Swedish Family Cancer 

database reported a familial risk of dying from melanoma, with increased death 

from melanoma in offspring (standardized mortality rate of 2.13) and siblings 

(standardized mortality rate of 3.11), suggesting that there may be a genetic 

component in survival from melanoma. Therefore, future collaborative work 

between different research groups is needed to increase the sample size in 

order to identify genetic determinants for melanoma progression and survival.  

Unlike cancer progression and survival, susceptibility to cancer is known 

to be heritable. Using genome-wide SNP data on a large sample and the 

GCTA tool, Zaitlen et al. (2013) reported significant heritability estimates for 

breast cancer and prostate cancer of 12% and 20%, respectively. For 

melanoma, all 20 susceptibility loci identified so far explain 19% of the familial 

relative risk (Law et al., 2015a). Evidence of heritability of susceptibility to 

melanoma is important as this provide insight into the biology of the disease. 

However, to date, no study has reported evidence of heritability of survival from 

any cancer using genome-wide SNP data.  

This study found some evidence of heritability of Breslow thickness, 

suggesting the role of genetic factors, perhaps in the speed with which 

melanoma tumours grow. As Breslow thickness is the most important predictor 

for melanoma survival, future studies to identify genetic determinants of 

Breslow thickness are important to increase the understanding of how 

melanoma progresses.  
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7.2.2 Prognostic models for melanoma-specific survival 
In agreement with other studies (Balch et al., 2009; Baade et al., 2015), 

our results found Breslow thickness to be the strongest prognostic factor for 

MSS in primary melanoma. The best predictor of melanoma survival in this 

study is the clinical score, consistent with other findings that found clinical 

variables to have higher predictive ability than individual -omic (Yuan et al., 

2014). 

Yuan et al. (2014) used data from The Cancer Genome Atlas project to 

evaluate whether integrating clinical features with different types of -omic data 

(somatic copy-number alteration, DNA methylation, mRNA expression, 

microRNA expression, and protein expression) could improve prognostic 

models for four types of cancers (kidney, glioblastoma multiforme, ovarian and 

lung). They reported that model predictive power for three cancers (kidney, 

ovarian, and lung) improved only when integrating the clinical features with 

molecular subtypes derived from expression data, but not when using the 

gene-level features. However, the magnitude of gains in predictive power 

assessed by the C-index were small. Also, they point out that molecular 

subtypes are higher-level assemblies of individual gene features, thus may act 

as a more robust predictor than individual genes or a smaller set of genes.  

In Harbst et al. (2012), their molecular classifiers for melanoma (4-

molecular classification and 2-molecular grade) derived from gene expression 

data were associated with survival, but the importance of the classifier was 

assessed in terms of hazard ratios and P-values only, and not the added 

predictive ability. When assessed using AUC to predict death from melanoma 

in Nsengimana et al. (2015), who used a similar dataset to the one in this 

study, combining the Lund 2-molecular grade with AJCC stage improved the 

AUC by 4%. The discrepancy between results in this study and that of 

Nsengimana et al. (2015) may be due to AJCC stage being less predictive than 

the combined clinical predictors (age at diagnosis, sex, tumour site, Breslow 

thickness, and presence of ulceration) used in this study. Therefore, more 

studies in different populations should be performed to validate the predictive 

ability of the Lund classifiers. 

In a recent study by Vazquez et al. (2016), it was found that adding 

whole-genome gene expression or methylation profiles to clinical covariates 
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showed improvement in the AUC by up to 7% compared to clinical covariates 

alone in prediction of survival of breast cancer patients. An important difference 

between the study by Vazquez et al. (2016) and this study is their modelling 

approach, which used Bayesian generalized additive models, which are able to 

integrate data from multiple -omics, cope with high-dimensional inputs, 

accommodate interactions between different high-dimensional inputs, and 

assign different regularization parameters for different sets of inputs, allowing 

the model to weight different information from clinical covariates and from 

different -omics. A modelling approach that integrates -omic predictors with 

clinical covariates at the initial stage may perform better than an approach that 

analyzes the -omic data alone initially, as performed in this study, where the 

selection of gene expressions and SNPs was performed using penalized Cox 

regression separately in the training set. Although the association of the 

selected gene expression levels with MSS were highly significant in the test set 

as well as the training set, they seem to act through the clinical variables and 

do not improve the predictive ability of the final model. Therefore, future 

analysis should include clinical variables when performing the penalized Cox 

regression to find gene expression levels that predict MSS over and above the 

effect of the clinical predictors.  

When using different methods to select the gene expression levels 

predictive of  MSS, the expression level of HLA-DQB2 was consistently 

selected by the three models in Chapter 6, suggesting that immune-related 

genes could be important for MSS. There is increasing evidence suggesting 

the predictive potential of immune-related genes in melanoma survival. In a 

review by Schramm et al. (2012), they found immune-related genes featured 

heavily in gene signatures identified from different studies. In Harbst et al. 

(2012), patients identified as having low-grade tumours using their molecular 

classifier have higher expression of immune-related genes. Further studies that 

looked into the association of immune genes with survival outcomes found 

significant association between the identified gene signatures and survival 

outcomes (Sivendran et al., 2014; Gerami et al., 2015). However, these studies 

rely only on hazard ratios and P-value to assess the effect of the gene 

signature on the survival outcomes, rather than assessing the predictive ability 

of the gene signatures. Future studies to identify prognostic biomarkers should 
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also consider assessing the markers’ predictive ability in addition to the clinical 

predictors important in melanoma survival.  

 

7.3 Strengths and limitations 
The strength of this study is the availability of detailed clinical, survival, 

and genomic data in a large cohort of incident melanoma cases, allowing data 

integration analysis to explore the combined effect of different types of data on 

melanoma survival. The LMC also has the largest number of melanoma 

patients with whole-genome gene expression data compared to other studies 

to date. Besides that, this study was able to focus on melanoma-specific 

survival, rather than overall survival, which is more relevant for studying 

disease-specific risk factors.  

Several precautions were taken in this study to not introduce bias in 

survival analysis. Reliable sources of information (ONS and death certificate) 

were used for ascertainment of cases who died from melanoma. Patients who 

were recruited into the study more than two years after diagnosis were 

excluded, as recruiting cases into the study a long time after diagnosis can 

introduce bias. Methods that deal with left-censoring could be explored to allow 

inclusion of prevalent cases in future survival analysis (Azzato et al, 2009). The 

major advantage of using prevalent cases is gain in power, but this method will 

not make much different in the LMC as most of the cases are incident (only 

1.5% (n=32) of cases in the cohort were recruited into the study more than two 

years after diagnosis). Potential issues of using prevalent cases in survival 

analysis are the possibility of missing individuals who died within a short period 

of time of their diagnosis and the effect of violation of the proportional hazards 

assumption, as shown in Azzato et al. (2009).  

The main limitation of this study is the sample size. In Chapter 4, the 

heritability analysis does not have adequate power to detect heritability, hence 

the results do not provide clear evidence of heritability in survival from 

melanoma. This study was also underpowered to detect genome-wide 

significance for the survival GWAS in Chapter 3. Although the LMC has the 

largest number of melanoma patients with whole-genome gene expression 

data, splitting the patients into a training set (to develop the model) and a test 
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set (to test the model) in Chapter 3 limit the number of patients in each dataset. 

Results in the test set were inconclusive due to small sample size (n=190).  

In Chapter 5, the eQTL analysis to identify whether the 20 melanoma 

susceptibility SNPs have a possible role in regulation of gene expression levels 

limits the analysis to genes located near the SNP. This limits the multiple 

testing but may miss other genes associated with the SNPs, as regulatory 

variants could be distant from the gene in the genome (trans-eQTLs).   

In addition, the prognostic models in this study focus very much on 

clinical predictors, gene expression and SNP data. Therefore, the prognostic 

models may miss other important predictors for melanoma such as tumour 

mutation status, TILs, and serum vitamin D level. Inclusion of these factors in 

the prediction model may improve the model’s predictive ability. For example, 

inclusion of more predictors in Baade et al. (2015) contributes to a high C-index 

for the prognostic model. Epigenetics data could be included as potential 

predictors too as recent studies have shown association of DNA methylation 

(Roh et al., 2016) and microRNAs (Jayawardana et al., 2015; Saldanha et al., 

2016) with melanoma outcomes.  

Also, patients were not randomly selected for the microarray analyses, 

and hence may not be representative of patients with primary melanoma. 

There is a selection bias, as only samples from patients with thicker tumours 

(>0.75 mm) were selected for the microarray analysis, which was done to allow 

for adequate RNA extraction. Furthermore, thinner tumours might not be big 

enough to sample for research while leaving enough for clinical usefulness. 

The LMC is also enriched for cases with thicker tumours as patients with 

Breslow thickness < 0.75 mm were not recruited into the study after 2005, in 

order to maximise the value of the sample as a cohort looking at prognostic 

outcomes (Conway et al., 2009). As the gene expression levels from patients 

with thicker tumours could be different from patients with thinner tumour, 

results in this study may not be entirely generalizable.  
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7.4 Conclusions  
In summary, the results in this study show that clinical predictors are the 

best predictors of survival, with Breslow thickness the strongest predictor, 

confirming current knowledge regarding the influence of clinical predictors on 

melanoma survival. The 16 gene expression levels associated with MSS in this 

study were also strongly predictive, but were highly associated with clinical 

predictors, especially Breslow thickness, suggesting gene expression 

influences MSS through clinical predictors. This study also shows there is a 

potential of combining different types of factors to improve the prognostic 

model for MSS based on the variable selection approach. In addition, results of 

the heritability analysis provide evidence that germline SNPs influence Breslow 

thickness.  

 

7.5 Future recommendations 
There are several recommendations for future work following the analyses 

in this study: 

• Firstly, this study gives evidence that Breslow thickness is heritable. 

Future analysis should focus on increasing the sample size for this 

analysis. We are currently collaborating with a group in Australia to 

improve the heritability estimate for Breslow thickness using genome-

wide SNP data.  

• Secondly, GWAS of the 16 gene expression levels indicates that gene 

expression levels in the tumour may be partially predicted by SNPs. The 

use of genome-wide SNP data could be explored in the future to predict 

gene expression levels in patients who have not had gene expression 

levels measured but with available SNP data.   

• Lastly, most of the gene expression probes selected in this analysis are 

highly correlated with the clinical predictors, especially Breslow 

thickness, presence of ulceration, and age at diagnosis. Therefore, for 

future analysis, penalized Cox regression of the whole-genome gene 

expression data should be performed including the clinical predictors in 

the model, in order to identify gene expression levels that predict MSS 

over and above the effect of the clinical predictors. 
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Appendix I 
 

 
Figure 5.17 Manhattan plot for eQTL analysis for SNPs in ARNT region and ILMN 

1762582 expression level 
 

 
Figure 5.18 Manhattan plot for eQTL analysis for SNPs in ARNT region and ILMN 

2347314 expression level 
 

 
Figure 5.19 Manhattan plot for eQTL analysis for SNPs in PARP1 region and ILMN 

1686871 expression level 
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Figure 5.20 Manhattan plot for eQTL analysis for SNPs in RMDN2 region and ILMN 

1812302 expression level 
 
 

 
Figure 5.21 Manhattan plot for eQTL analysis for SNPs in RMDN2 region and ILMN 

1693338 expression level 
 
 

 
Figure 5.22 Manhattan plot for eQTL analysis for SNPs in CASP8 region and ILMN 

1673757 expression level 
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Figure 5.23 Manhattan plot for eQTL analysis for SNPs in CASP8 region and ILMN 

1787749 expression level 
 
 

 
Figure 5.24 Manhattan plot for eQTL analysis for SNPs in CASP8 region and ILMN 

1809313 expression level 
 
 

 
Figure 5.25 Manhattan plot for eQTL analysis for SNPs in CASP8 region and ILMN 

2377733 expression level 
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Figure 5.26 Manhattan plot for eQTL analysis for SNPs in TERT region and ILMN 

1796005 expression level 
 
 

 
Figure 5.27 Manhattan plot for eQTL analysis for SNPs in TERT region and ILMN 

2373119 expression level 
 
 

 
Figure 5.28 Manhattan plot for eQTL analysis for SNPs in TERT region and ILMN 

1752802 expression level 
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Figure 5.29 Manhattan plot for eQTL analysis for SNPs in SLC45A2 region and ILMN 

1654165 expression level 
 
 

 
Figure 5.30 Manhattan plot for eQTL analysis for SNPs in SLC45A2 region and ILMN 

1685259 expression level 
 
 

 
Figure 5.31 Manhattan plot for eQTL analysis for SNPs in SLC45A2 region and ILMN 

2246188 expression level 
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Figure 5.32 Manhattan plot for eQTL analysis for SNPs in SLC45A2 region and ILMN 

2320391 expression level 
 
 

 
Figure 5.33 Manhattan plot for eQTL analysis for SNPs in CDKAL1 region and ILMN 

1788022 expression level 
 
 

 
Figure 5.34 Manhattan plot for eQTL analysis for SNPs in AGR3 region and ILMN 

1728787 expression level 
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Figure 5.35 Manhattan plot for eQTL analysis for SNPs in AGR3 region and ILMN 

2050246 expression level 
 
 

 
Figure 5.36 Manhattan plot for eQTL analysis for SNPs in CDKN2A region and ILMN 

1717714 expression level 
 
 

 
Figure 5.37 Manhattan plot for eQTL analysis for SNPs in CDKN2A region and ILMN 

1744295 expression level 
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Figure 5.38 Manhattan plot for eQTL analysis for SNPs in CDKN2A region and ILMN 

1757255 expression level 
 
 

 
Figure 5.39 Manhattan plot for eQTL analysis for SNPs in CDKN2A region and ILMN 

1753639 expression level 
 
 

 
Figure 5.40 Manhattan plot for eQTL analysis for SNPs in TMEM38B region and 

ILMN 1669940 expression level 
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Figure 5.41 Manhattan plot for eQTL analysis for SNPs in TMEM38B region and 

ILMN 2093980 expression level 
 
 

 
Figure 5.42 Manhattan plot for eQTL analysis for SNPs in TMEM38B region and 

ILMN 1722662 expression level 
 
 

 
Figure 5.43 Manhattan plot for eQTL analysis for SNPs in TMEM38B region and 

ILMN 2135833 expression level 
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Figure 5.44 Manhattan plot for eQTL analysis for SNPs in OBCF1 region and ILMN 

1789186 expression level 
 
 

 
Figure 5.45 Manhattan plot for eQTL analysis for SNPs in CCND1 region and ILMN 

1688480 expression level 
 
 

 
Figure 5.46 Manhattan plot for eQTL analysis for SNPs in TYR region and ILMN 

1788774 expression level 
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Figure 5.47 Manhattan plot for eQTL analysis for SNPs in ATM region and ILMN 

1713630 expression level 
 
 

 
Figure 5.48 Manhattan plot for eQTL analysis for SNPs in ATM region and ILMN 

1716231 expression level 
 
 

 
Figure 5.49 Manhattan plot for eQTL analysis for SNPs in ATM region and ILMN 

1779214 expression level 
 



 
 

 199 

 
Figure 5.50 Manhattan plot for eQTL analysis for SNPs in ATM region and ILMN 

2370825 expression level 
 
 

 
Figure 5.51 Manhattan plot for eQTL analysis for SNPs in OCA2 region and ILMN 

1746116 expression level 
 
 

 
Figure 5.52 Manhattan plot for eQTL analysis for SNPs in FTO region and ILMN 

2288070 expression level 



 
 

 200 

 
Figure 5.53 Manhattan plot for eQTL analysis for SNPs in MC1R region and ILMN 

1653319 expression level 
 
 

 
Figure 5.54 Manhattan plot for eQTL analysis for SNPs in ASIP region and ILMN 

1791647 expression level 
 
 

 
Figure 5.55 Manhattan plot for eQTL analysis for SNPs in MX2 region and ILMN 

2231928 expression level 
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Figure 5.56 Manhattan plot for eQTL analysis for SNPs in PLA2G6 region and ILMN 

1697654 expression level 
 
 

 
Figure 5.57 Manhattan plot for eQTL analysis for SNPs in PLA2G6 region and ILMN 

1798955 expression level 
 
 



 
 

  202 

Appendix II 
 

Checking proportional hazards assumption for the 
multivariable Cox model in Table 3.3 in Chapter 3 

 

Table 1 Schoenfeld residuals test for variables in the multivariable Cox 
model in Table 3.3 
 rho chisq P-value 

Age 0.02 0.07 0.79 
Sex (Male) -0.06 1.06 0.30 
Tumour site (Head/Neck) -0.03 0.26 0.61 
Tumour site (Trunk) 0.04 0.41 0.52 
Tumour site (Other) 0.07 1.50 0.22 
Breslow thickness -0.05 0.56 0.45 
Presence of ulceration  -0.11 3.65 0.06 
GLOBAL NA 8.81 0.27 

 

P-value for individual predictor and global test is not significant. Proportional 
hazards assumption is not violated 
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Model fitness assessment for the combined models in the test 
set (risk score approach) 

 
1. Model 1 Combined data survival models (Model fitted in 
Table 6.3) 
 

1.1 Checking linearity for continuous predictors using Martingale 
residuals 

 
Figure 1. Martingale residuals versus covariate for clinical score, gene 
expression score and SNP score  

 

Nonlinearity appear to be slight for clinical score and SNP score.  
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1.2 Checking proportional hazards assumption using Schoenfeld 
residuals test 

 

Table 2 Schoenfeld residuals test for variables in the multivariable Cox 
model in Table 6.3 
	 rho	 chisq	 P-value	

Clinical score	 -0.09	 0.34	 0.56	
Gene expression score	 0.08	 0.29	 0.59	
SNP score	 -0.02	 0.01	 0.92	
Global 	 NA	 0.45	 0.93	

 
P-value for individual predictor and global test is not significant. Proportional 
hazards assumption is not violated 
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2. Model 2 Combined data survival models with prior cluster 
analysis (Model 1 fitted in Table 6.12) 
 

2.1. Checking linearity for continuous predictors using Martingale 
residuals 

 

Figure 2. Martingale residuals versus covariate for clinical score, gene 
expression score and SNP score  

 

Nonlinearity appear to be slight in all scores.  

 

1 2 3 4 5

-1
.0

0.
0
0.
5
1.
0

Clinical score

re
si
du
al
s

-1 0 1 2

-1
.0

0.
0
0.
5
1.
0

Gene expression score
re
si
du
al
s

0 1 2 3

-1
.0

0.
0
0.
5
1.
0

SNP score

re
si
du
al
s



 
 

  206 

2.2 Checking proportional hazards assumption using Schoenfeld 
residuals test 

 

Table 3 Schoenfeld residuals test for variables in the multivariable Cox 
model in Table 6.12 
	 rho	 chisq	 P-value	

Clinical score	 -0.09	 0.36	 0.55	
Gene expression score	 0.09	 0.35	 0.56	
SNP score	 -0.02	 0.01	 0.93	
Global 	 NA	 0.50	 0.92	

 

P-value for individual predictor and global test is not significant. Proportional 
hazards assumption is not violated. 
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3. Model 3 Combined data survival models using Lund cluster 
(Model fitted in Table 6.19) 
 

3.1. Checking linearity for continuous predictors using Martingale 
residuals 

 
Figure 3. Martingale residuals versus covariate for clinical score, gene 
expression score and SNP score  

 

Nonlinearity appear to be slight in clinical score and SNP score 
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3.2 Checking proportional hazards assumption using Schoenfeld 
residuals test 

 

Table 4 Schoenfeld residuals test for variables in the multivariable Cox 
model in Table 6.19 
	 rho	 chisq	 P-value	

Clinical score	 -0.05	 0.10	 0.75	
Gene expression score	 -0.02	 0.02	 0.89	
SNP score	 -0.01	 0.01	 0.97	
Global 	 NA	 0.23	 0.97	
 

P-value for individual predictor and global test is not significant. Proportional 
hazards assumption is not violated.  
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