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Abstract 

Analogues were developed for Interplanetary Dust Particles (IDPs) and 

Meteoric Smoke Particles (MSPs). Candidate materials were characterised 

and compared to the present understanding of the nature of IDPs and MSPs. 

Knowledge and understanding from meteoritics was used to inform open 

questions in atmospheric chemistry. The elemental composition, structural, 

surface and size distribution properties of the candidates was compared to 

micrometeorites and remote measurements of MSPs. Both relatively rare 

carbonaceous and the more common ordinary chondritic meteorites and 

terrestrial minerals were shown to be useful analogues for IDPs, whilst 

synthetic materials were identified as analogues for MSPs. 

Uptake of HNO3 and HO2, based on laboratory experiments, was implemented 

in a global modelling study. The uptake processes were assessed to 

determine the region(s) and season(s) in which they would affect atmospheric 

chemistry. This heterogeneous chemistry augmented previous understanding 

of gas-phase chemistry, with a view to understanding all sources and sinks of 

atmospheric species. Whole Atmosphere Community Climate Model 

(WACCM) runs including uptake were compared to control runs with only 

gas-phase chemistry. Uptake of both HNO3 and HO2 was shown to alter 

chemistry in the polar vortex, including effects on many secondary species 

and feedbacks on each other. 

Heterogeneous nucleation kinetics of nitric acid hydrates in Polar 

Stratospheric Clouds (PSCs) was investigated in the laboratory. SiO2 particles 

were used as analogues for MSPs processed in acidic solution and the phase 

which formed was investigated. A newly developed drop freeze assay capable 

of quantifying heterogeneous nucleation kinetics was used. Nucleation events 

observed in µl droplets were parameterised using current theoretical models 

and the results compared to atmospheric observations. The measured 

heterogeneous nucleation kinetics of the Dihydrate, which then readily 

converts to the Trihydrate, on SiO2 were shown to be capable of explaining 

the concentrations of crystals observed in the atmosphere.  
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Chapter 1 

Introduction: Atmospheric Processes Involving Meteoric 

Material 

This chapter sets out the current understanding of processes involving 

meteoric material as it travels through Earth’s atmosphere to the surface 

(summarised in Figure 1.1) and poses related science questions which are 

discussed in the following chapters.  

On atmospheric entry some Interplanetary Dust Particles (IDPs) ablate, both 

through sputtering and frictional heating, releasing constituents into the gas 

phase. Those IDPs which do not ablate completely sediment rapidly to the 

surface. Material which ablates is chemically transformed into Meteoric 

Smoke Particles (MSPs). These are aerosol particles small enough 

(<100 s nm radius) that they do not sediment gravitationally but are 

transported by the residual atmospheric circulation. This transport carries 

MSPs down the winter polar vortex, where they take up HNO3, HO2 (catalysing 

production of H2O2), and H2SO4. In the stratosphere, MSPs are entrained into 

(and at least partially dissolve in) acidic liquid droplets (Junge layer aerosol) 

either by taking up H2SO4 and H2O or by colliding with existing droplets. At 

low temperatures these droplets take up more H2O and HNO3 and form 

crystalline solids, likely through heterogeneous nucleation on MSP surfaces. 

The crystals then grow by taking up more HNO3 and H2O and sediment to 

lower altitudes, causing denitrification of the stratosphere and transporting 

MSPs to the troposphere and ultimately to the Earth’s surface. 

This chapter introduces each of these processes and poses science questions 

which are addressed in the following chapters. 
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Figure 1.1: Summary of processes involving meteoric material as it travels to 
the Earth’s surface. 
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1.1 Interplanetary Dust; Content and Composition, Meteoric 

Ablation and Recondensation 

The majority of Interplanetary Dust Particles (IDPs), which produce meteors 

(sometimes visible in the night sky) when they enter the Earth’s atmosphere, 

come from the Jupiter family comets (≥90 %) and the asteroid belt or Oort 

cloud comets (≤10 %) with a minor contribution from Halley-type comets 

[Nesvorný et al., 2011; Nesvorný et al., 2010]. IDPs from these sources are 

slowed (their orbits are circularised by Poynting-Robertson drag) and then 

gravitationally drawn toward the inner solar system. Those which reach Earth 

mostly have radii from 10-50 μm (0.01 to 1 µg mass assuming 3 g cm-3 

density) [Carrillo-Sánchez et al., 2015; Nesvorný et al., 2011]. Cometary and 

asteroidal IDPs would differ mostly in that cometary dust would be expected 

to be have a greater degree of H2O processed minerals such as 

phyllosilicates. 

Most of the information available regarding the content and composition of 

IDPs comes from studies of material collected from melted polar snowpack 

[Maurette et al., 1987; Taylor et al., 1998], deserts [Kohout et al., 2014], ocean 

sediments and stratospheric flights [Blanchard et al., 1980; Rietmeijer, 2000; 

Zolensky and Lindstrom, 1992]. Particles collected at the surface are generally 

termed Micro-Meteorites (MMs) whilst those retrieved from the stratosphere 

are more commonly referred to as IDPs, however both are thought to originate 

from the same extra-terrestrial sources.  

Particles collected from these locations show differing levels of thermal 

processing related to atmospheric entry and weathering by the terrestrial 

environment [Taylor et al., 2012]. These range from unmelted particles, which 

contain mineral grains with nm to 10s μm diameters, to cosmic spherules 

which have melted to a significant extent but not completely evaporated. The 

surfaces of MMs can be processed, mainly by hydrolysis reactions at the high 

pressures experienced in polar ice caps. Nevertheless, the large sample sizes 

available allow statistically reasonable statements to be made regarding the 

nature and origins of IDPs in general [Jessberger et al., 2001; Kohout et al., 

2014; Taylor et al., 2012]. Taylor et al. [2012] examined more than 5000 MM 

particles recovered from the South Polar Water Well in the year 2000 and 

found that 75 % of these were fine grained aggregates of Carbonaceous 

Ivuna (CI-) or Carbonaceous Mighei (CM-) chondritic elemental composition, 

10 % were coarse grained (>10s μm scale) anhydrous minerals and 

<10 % were Ordinary Chondrites (OCs). Less than 1 % of these MMs had 

achondritic compositions, Calcium Aluminum Inclusions (CAIs) or 
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recognisable chondrules. The porosity of IDPs is similar to Carbonaceous 

Chondrite meteorites (CCs) (bulk density 2 g cm-3 [Jessberger et al., 2001]), 

however those of OCs are rather higher (>3 g cm-3), since these have 

undergone mild metamorphism which reduces porosity [Consolmagno et al., 

2008]. 

Complimentary information has been obtained from extra-terrestrial 

observations and capture and return missions. Such studies are limited in that 

they typically examine only a single parent body (asteroid or comet) and may 

therefore not represent the variability present in sources of IDPs. Exceptions 

include the Long Duration Exposure Facility (LDEF), which used impact 

features on Al plates which were exposed to space in near Earth orbit for over 

5 years to determine a size distribution for incoming material based on an 

assumed velocity distribution [Love and Brownlee, 1993], and particles 

captured in aerogel aboard the MIR space station [Hörz et al., 2000]. Studies 

of single parent bodies have yielded some interesting results; the comet 

81P/Wild 2 has a near CI composition [Rietmeijer, 2015] whilst 

67P/Churyumov-Gurasimenko has an Fe/Na ratio enriched with respect to CI 

by a factor of 1.5 to 15 [Hilchenbach et al., 2016], 9P/Tempel 1 ejecta also 

shows good agreement with solar or CC composition [Lisse et al., 2006]. 

These observations of single bodies by a variety of techniques (capture and 

return atomic spectroscopy, in-situ atomic spectroscopy and remote infra-red 

emission spectroscopy respectively) are in good general agreement with the 

terrestrial observations. 

Those IDPs which reach the Earth’s atmosphere are frictionally heated 

according to their mass, velocity and entry angle with respect to the zenith 

[Vondrak et al., 2008]. IDPs then lose mass; partially by molecular sputtering 

but mainly because the melting point of constituent phases is reached and 

material is able to diffuse to the molten surface and evaporate. More volatile 

elements such as Na and K are lost first, a process known as differential 

ablation [Janches et al., 2009]. Unablated particles are large enough that they 

rapidly sediment to the surface, whilst ablated material remains in the 

mesosphere to take part in atmospheric chemistry. 

The mass flux of IDPs to the Earth’s atmosphere is highly uncertain, with 

estimates ranging from several to several hundred metric tons per day (t d-1) 

[Plane, 2012]. A number of atmospheric processes not previously studied 

could be used to constrain this flux, known as the Meteoric Input Function 

(MIF). 
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Atmospheric chemistry of meteoric metals involves Fe, Mg, Na, K, Ca and Si 

(and other metals) along with atmospheric constituents such as O3, O2, H2O 

and CO2 and has been recently reviewed by Plane et al. [2015]. Example 

chemical schemes are shown in Figure 1.2 for Fe and Na containing species.  

 

 

Figure 1.2:  Chemical schemes showing interactions between metal species 
(Na and Fe) produced from meteoric ablation and how they come to 
produce meteoric smoke particles. Reproduced from Plane et al. [2015]. 

 

In general, the interplay of a wide variety of reactions leads to layers of neutral 

atomic metals, with ionic species prevailing above and stable molecular 

reservoirs below. One important process which produces links between these 

various schemes is the hydrolysis of SiO2 to sililic acid (Si(OH)4), as shown in 

Figure 1.3, which can then undergo dehydration reactions with metal 

hydroxides to produce metal silicates. For example the reaction of Si(OH)4 

with FeOH is exothermic by 21 kJ mol-1 [Plane et al., 2016]. 
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Figure 1.3:  Potential energy surface for hydrolysis of SiO2 to Si(OH)4 

calculated with the Gaussian 09 suite of programs [Frisch et al., 2009]. 

Molecular geometries were optimised using hybrid Density Functional Theory 

(h-DFT). The B3LYP method with the 6-311+G(2d,p) triple zeta basis set was 

used. The resulting rotational constants and vibrational frequencies were then 

used in master equation calculations to calculate potential energy changes, 

which were further improved (to ±15 kJ mol-1) using the complete basis set 

method [Montgomery et al., 2000]. Both steps in the hydrolysis are found to 

be exothermic by nearly 300 kJ mol-1. Reproduced from [Plane et al., 2016]. 
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These molecular species including silicates, oxides and carbonates can then 

polymerise to produce meteoric smoke particles (MSPs). These have yet to 

be collected and characterised fully [Hedin et al., 2014], however they have 

been observed remotely and in situ [Hervig et al., 2009; Plane et al., 2014; 

Rapp et al., 2012; Robertson et al., 2014]. Whilst these studies can inform the 

composition of MSPs [Hervig et al., 2012], only laboratory work has given any 

insight into the likely morphology of these particles, which is crucial for 

examining their surface properties [Saunders and Plane, 2006]. The current 

hypothesis, supported by these laboratory studies, is that molecules add to 

primary aerosols until at some radius these primary aerosols grow faster by 

agglomeration than by condensation. This leads to aerosol with a fractal, 

soot-like morphology which in the atmosphere is transported by the residual 

atmospheric circulation toward the winter polar vortex and down into the 

stratosphere [Bardeen et al., 2008; Dhomse et al., 2013]. 

In order to assess the impact of IDPs and MSPs on the atmosphere it is 

necessary to produce surfaces which are chemically analogous. In the 

literature, a variety of materials have been employed to investigate a wide 

range of processes. For example, samples of several well characterised CCs 

along with various terrestrial minerals have been used to examine the impact 

on IDPs of capture in low density silicon and of atmospheric entry [Burchell et 

al., 2006; Court and Sephton, 2011; Toppani et al., 2001]. 

Although ground CC samples are often used as analogues for IDPs, the fine 

grained nature of MMs (and IDPs) is significantly different to CCs, which are 

composed of μm scale grains of mineral aggregates, single minerals, 

chondrules etc. [Jessberger et al., 2001]. This means that, even though the 

bulk composition of IDPs closely resembles CI or CM meteorites, individual 

particles of ground meteorite samples will frequently not represent the 

composition of IDPs. Chapter 2 of this thesis will examine materials which can 

be used as analogues for IDPs and MSPs in a variety of applications. 
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1.2 Meteoric Smoke; Perturbations to Gas-Phase Species 

The growth, transport and deposition of MSPs has been investigated by a 

variety of modelling studies [Bardeen et al., 2008; Dhomse et al., 2013; 

Saunders et al., 2007]. It is common to assume that the fractal morphology 

can be well represented by a distribution of spherical particles in bins of 

geometrically increasing radius, agglomerating collisionally. This has obvious 

implications for the available surface area of MSPs, but also affects their 

optical and dynamical (transport) properties. Saunders et al. [2007] 

demonstrated that including the fractal nature of particles in a 1D atmospheric 

simulation significantly changed their atmospheric abundance. As shown in 

Figure 1.4, fractal particles are effectively less dense than spherical particles 

of the same mass and therefore sediment more slowly. This results in 

increased concentrations of MSPs in the middle atmosphere. 

 

Figure 1.4:  Difference in total number concentration of MSPs 
(>0.5 nm radius) considering fractal (f) or spherical (s) particles. Various 
scenarios are shown representing different total mass input of ablated 
meteoric material (factor shown × 44 t d-1). Reproduced from Saunders 
et al. [2007]. 
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The extinction due to fractal aerosol can be treated using refractive indices 

given by the volume average of the refractive indices of the aerosol primary 

spheres and the medium, which in this case is air [Sorensen, 2001]. The 

resulting changes to extinction are rather complex since a spherical particle 

will have a smaller diameter but higher effective (volume averaged) refractive 

index than a fractal particle of the same mass. Because MSPs have not yet 

been collected for analysis [Hedin et al., 2014], there is no constraint available 

on the volume filling properties (fractal dimension, Df) of MSPs and since 

introducing this degree of freedom would have a significant impact on 

computational efficiency, spherical approximations - with appropriate 

caveats - remain commonplace [Bardeen et al., 2008; Frankland et al., 2015; 

Neely et al., 2011]. 

Models of MSP transport allow researchers to investigate their interactions 

with chemical constituents in an atmosphere. Uptake, the simplest of these 

interactions, of H2SO4 onto MSPs has been suggested as a route for the 

formation of Junge layer aerosol and as an explanation of anomalous 

extinction observed in the upper stratosphere [Neely et al., 2011; Saunders et 

al., 2012]. Molecules which are taken up onto particle surfaces can also go on 

to react, with the MSPs effectively catalysing slow reactions. For example, 

Summers and Siskind [1999] proposed that the MSP-catalysed reaction of O 

with H2 could be a significant source of H2O in the mesosphere. Open 

questions which will be addressed in this thesis include the interaction of 

HNO3, which is produced by auroral precipitation [Verronen et al., 2011], and 

HO2 with MSPs. 

Modelling studies have shown that gas-phase chemistry alone cannot 

reproduce observations of HNO3, particularly when solar proton events occur 

[Funke et al., 2011; Jucks et al., 1999; Kvissel et al., 2012]. To fully understand 

any species’ concentration it is necessary to understand all pathways for 

production and loss of that species. Recent progress has been made on the 

auroral production pathway of HNO3 [Verronen et al., 2016]; however, this 

introduces significant HNO3 into the mesosphere where, in the absence of 

sunlight, uptake to MSPs may be a significant loss pathway. 
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An uncertainty is also outstanding in the abundance of HOx species (defined 

in Figure 1.6) in the mesosphere, known as the HOx dilemma [Millán et al., 

2015]. This is shown in Figure 1.5, where measurements of atmospheric HO2 

from the Mesospheric Limb Sounder (MLS) radiometer are compared to 

simulations from the Whole Atmosphere Community Climate Model with 

Specified Dynamics (SD-WACCM). Several studies have attempted to explain 

this discrepancy with modifications to gas phase chemistry schemes. Siskind 

et al. [2013] showed that increasing the rate coefficient for the reaction of H 

with O2, producing HO2, by a factor of 1.5 (which is within the error bounds of 

measured rates) improved agreement between modelled and measured OH 

abundance but did not present a comparison for HO2. Pickett et al. [2008] 

showed that for northern hemisphere summer, rate constants within the stated 

error of the JPL 2006 recommendation could explain the observed HO2 but 

did not discuss seasonal trends. To the author’s knowledge, no study has thus 

far assessed whether uptake to and/or reaction on MSPs could significantly 

impact the mesospheric HOx budget. 

Since Figure 1.5 shows that WACCM currently underestimates HO2 

abundance our intention is to determine whether uptake to MSPs is an 

important loss process rather than to suggest that including uptake alone will 

improve the agreement. In fact uptake of other species such as HNO3 – and 

subsequent indirect chemical effects on HO2 – could improve the agreement 

between model and observations. 
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Figure 1.5:  Zonal and monthly mean Atmospheric HO2 for January 2005 as 
simulated in SD-WACCM (top two panels), as measured by MLS (third 
panels) and difference (bottom panels) in terms of mixing ratio (left 
panels) and concentration (right panels). There is clearly a significant 
flaw in our understanding of mesospheric HO2. Reproduced from Millán 
et al. [2015]. 
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Figure 1.6 summaries the chemistry of NOx (oxidised nitrogen compounds, 

including HNO3) and HOx in the middle atmosphere, including the primary gas 

phase production and destruction pathways of HNO3 and HO2 (for definitions 

of rate constants and term symbols shown in Figure 1.6 see Brasseur and 

Solomon [1998]).  

When the atmosphere is unperturbed by solar protons, HNO3 is produced by 

reaction of NO2 with OH: 

NO2 + OH  →  HNO3    (R1.1) 

and removed by photolysis, reaction with OH and transport (either gas phase 

or by sedimentation of condensed phase particles, see Section 1.3): 

HNO3 + OH  →  NO3 + H2O   (R1.2) 

HNO3 + hν  →  NO2 + OH   (R1.3) 

where hν represents a photon. Since OH is a photoproduct, this means that 

HNO3 is both produced and destroyed in the presence of sunlight. 

HO2 is produced by reaction of H with O2 (and collisional stabilisation by a 

third body; m), OH with O3 (a reversible equilibrium) and OH with H2O2: 

H + O2 + m →  HO2    (R1.4) 

OH + O3 ⇌  HO2 + O2   (R1.5) 

OH + H2O2 →  HO2 + H2O   (R1.6) 

and removed by reaction with O and NO: 

HO2 + O →  OH + O2   (R1.7) 

HO2 + NO →  OH + NO2   (R1.8) 

This implies that removal of HNO3 and HO2 by MSPs would have secondary 

impacts on all of the species involved in these reactions. Example HO2 and 

HNO3 profiles are shown in Chapter 3 (Figure 3.4). 

Following solar proton events, HNO3 can also be created by conversion of 

N2O5 on protonated water clusters H+.(H2O)n [Kvissel et al., 2012]: 

 N2O5 + H+.(H2O)n → H+.(H2O)n-1 +2 HNO3  (R1.9) 
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Figure 1.6:  Chemistry of HOx and NOx in the middle atmosphere, showing 
production and destruction pathways for HO2 and HNO3. Interactions 
with MSPs at any stage in these can alter the balance of the 
atmosphere’s chemical constituents, both by directly removing species 
via reactive uptake and by secondary impacts of the loss of the species 
taken up. Note also that there is an indirect relationship between these 
chemical schemes via the reactions of NO and NO2 with HO2. 
Reproduced from Brasseur and Solomon [1998], see that reference for 
definitions of terms and rate coefficients. 

 

 

 

 

 



34 
 

1.3 Interactions with Stratospheric Aerosol 

1.3.1  MSPs in the Stratosphere 

Saunders et al. [2012] showed that the interaction between MSPs and H2SO4 

could potentially control the gas phase abundance of H2SO4 and cause at 

least partial dissolution of MSPs into liquid droplets. Recent studies using 

airborne particle counters with heated and unheated inlets have shown that a 

significant fraction (as much as 80 %) of stratospheric aerosol particles 

contain non-volatile (thermo-stable to over 200 °C) components [Campbell 

and Deshler, 2014; Curtius et al., 2005; Weigel et al., 2014]. There may be a 

contribution to this from precipitates left by evaporating solution droplets; 

however, electron microscopy shows that some MSPs and other materials are 

able to persist as solids [Ebert et al., 2016]. Single particle mass spectrometry 

measurements of mid-latitude aerosol also suggest the presence of solid Si 

and Al containing particles [Murphy et al., 2014]. Figure 1.7 shows the ratio of 

a variety of elemental isotopes to 56Fe. The broad (in comparison to other 

metals) peaks shown for 28Si and 27Al suggest that these are produced from 

solid particles, since ionisation of solid particles is less uniform than liquid 

droplets, whereas other metals produce sharp peaks and are therefore likely 

present in liquid solutions. 



35 
 

 

Figure 1.7:  Single particle mass spectrometry of stratospheric (top three 
panels) and sea salt (bottom panel, for comparison) aerosol. The width 
of these signals is due to the accuracy of integrating mass spectral peak 
areas. The wider signals for 28Si and 27Al are indicative that these are 
less uniformly ionised, likely because they are present as solid particles 
whilst other components are dissolved in liquid droplets. Reproduced 
from Murphy et al. [2014]. 
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The composition of non-volatile (stable under an electron beam) particles 

collected in the stratosphere in two size fractions (<400 and 400-3000 nm 

diameter) was investigated by Ebert et al. [2016] using electron microscopy. 

Polished boron substrates [Choël et al., 2005], suitable for SEM and X-ray 

microanalysis since boron is unlikely to be present in the stratosphere, were 

exposed for 20 minutes to a 7.7 cm3 s-1 flow of stratospheric aerosol. With the 

aircraft cruising at a fixed altitude at 750 km hour-1 [Stefanutti et al., 1999], this 

corresponds to a cylindrical volume with circular cross section equal to the 

inlet size and total volume of 9240 cm3. Particles with diameter of 1 µm will be 

sedimenting rapidly and have residence times in this volume on the order of 

tenths of a µs. This implies that the particles collected were in flux through the 

horizontal area of 3.7 × 10-4 cm2 sampled in each flight. On examination under 

the electron microscope, several tens to hundreds of particles were found in 

the larger size fraction. It is difficult to explain how these particles, as sampled, 

could be of extraterrestrial origin; Carrillo-Sánchez et al. [2015] described a 

global flux of 1 µm radius unablated MMs of approximately 

2 × 10-12 g cm-2 day-1, equivalent to less than 9 × 10-6 particles passing 

through such a horizontal area in the time sampled. This, combined with the 

spherical nature of many of the constituent particles, would seem to exclude 

the possibility of the collected particles being directly formed of un-ablated 

IDPs, many of which do not undergo significant melting [Taylor et al., 2012]. 

Since ablated material, after forming MSPs, is only likely to grow larger than 

100 nm radius by agglomeration within liquid droplets [Bardeen et al., 2008], 

the origin of the collected particles, most likely MSPs or artefactual 

observations, remains an open question. 

Ebert et al. [2016] discuss contamination of the sample surface and conclude 

that this is not likely to be significant. In addition, the chemical composition of 

the particles captured is reasonable for the types of material expected in the 

stratosphere [Kremser et al., 2016], suggesting that these particles could be 

agglomerates of MSPs. 

Micron scale particles have previously been collected on electron microscope 

grids exposed on aircraft in the stratosphere but have tended to be 

morphologically fractal agglomerates of smaller particles [Bigg, 2012]. 

Figure 1.8 compares electron microscope images of particles collected by 

Bigg [2012] with those collected by Ebert et al. [2016]. The fractal particle 

would clearly have a longer residence time in the stratosphere than the 

relatively compact particle, despite both being made up of agglomerated 

smaller particles. One possibility is that the particles observed by Ebert et al. 
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[2016] are formed when multiple smaller particles impact the sample collector. 

These could be contained in a single droplet or there may be some movement 

of droplets and particles after the initial collection (residues were detected of 

volatile sulfate phases). Since the presence of volatile material in the smaller 

size fraction prevented a quantitative assessment, it is not possible to 

determine whether the mass of small particles can be reconciled with a 

reasonable abundance of MSPs. 

Making the assumption that these particles are formed from MSPs, they may 

give useful insight into the types of solid material present in the stratosphere. 

This in turn can inform our understanding of the processing and transport of 

MSPs and particularly their interactions with other stratospheric aerosols. 

 

 

Figure 1.8:  Comparison of particles collected on aircraft flights in the 
stratosphere by Bigg [2012] (a) with those collected by Ebert et al. [2016] 
(b). The arrow in panel (a) indicates a region of residual sulfate material. 
A fractal agglomerate such as that shown in panel (a) would reside in the 
stratosphere significantly longer than the relatively compact particle 
shown in panel (b). 

 

The particles collected by Ebert and co-workers were found to have a wide 

variety of compositions including silicates, Fe rich, Ca rich, C/Si, mixed 

metal / oxides, Pb rich, soot and Al oxides. MSPs would likely fall into the Fe 

rich, Ca rich, mixed metal / oxide or silicate categories (classification was by 

the major peaks and many particles observed were agglomerates of different 

types). Metal containing silicates were ubiquitous and were classified as 

silicates, which dominated the total in many cases. Figure 1.9 shows the 

numbers of particles of each class collected in eleven flights. 
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Figure 1.9:  Particles (400 nm to 3 μm diameter) collected on boron impactors 
during 11 flights in the RECONCILE campaign (late Arctic winter). 
Samples were exposed for 20 minutes each through a 
0.75 mm diameter pinhole with a 7.7 cm-3 s-1 flow of stratospheric air. 
Flights 1-5 sampled at least partially within Polar Stratospheric Clouds 
(PSCs). The total number of particles observed is shown above the bar 
for each flight. Reproduced from Ebert et al. [2016]. 

 

A significant reduction was observed (see Figure 1.9) in the number of Fe rich 

and mixed metal / metal oxide particles (a smaller fraction of the total 

observed non-volatile residuals) in Polar Stratospheric Clouds (PSCs) 

compared to elsewhere in the stratosphere. Comparing two flights (8 & 10) 

well removed from PSCs with the best PSC track (flight 2, all flights in PSC 

also include some sampling in nearby air masses): mixed metal / oxide 

particles fall from 44 % by number to 0 observations respectively; Fe-rich 

particles fall from 29 % to 1 % and silicates fall from 26 % to 13 %. The total 

number of observed particles also falls from 194 and 101 to just 72 in flights 

8, 10 and 2, respectively [pers. comms., M. Ebert., U. Darmstadt, 2016]. This 

suggests that some particle types are removed by the clouds, most likely due 

to heterogeneous nucleation of crystalline phases on the surface of the solid 

particles, which are then removed when they grow and sediment out of the 

cloud. 
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1.3.2  Polar Stratospheric Clouds (PSC) 

PSCs are clouds visible near the winter pole, formed when Junge layer 

aerosol (droplets of 70-80 wt % aqueous H2SO4 [Junge et al., 1961]) are 

cooled in the winter vortex and take up HNO3 and H2O from the surrounding 

atmosphere. PSCs are known to be responsible for the depletion of O3 in the 

polar spring for several reasons. Firstly, heterogeneous chemistry on the 

surface of PSC aerosol activates chlorine compounds which catalytically 

destroy O3. Secondly growth and sedimentation of these aerosols removes 

HNO3 from the stratosphere, slowing formation of ClONO2, shifting the 

balance of Cl chemistry to more active catalysts of O3 destruction. PSC have 

been observed for as long as explorers have visited the south pole and were 

notably described by Scott and Jones [2006]: 

“The light was especially good today; the sun was directly reflected by a single 

twisted iridescent cloud in the North, a brilliant and most beautiful object” 

Robert Falcon Scott, diary entry for August 1, 1911, after Solomon [1999] 

The iridescent nature of these clouds, leading to their alternative description 

as ‘nacreous clouds’ is a result of the size distribution of the aerosol of which 

they are composed, with particle radius in the hundreds of nm, comparable to 

visible light. 

Figure 1.10 (a) shows the equilibrium concentration of droplets as these 

clouds cool, calculated using the online Aerosol Inorganic Model (e-AIM, 

[Clegg et al., 1998]) assuming atmospheric volume mixing ratios of 

10 ppb HNO3, 0.1 ppb H2SO4 and 4 ppm H2O. H2SO4 droplets are diluted by 

uptake of H2O from around 200 K, and contain significant concentrations of 

HNO3 below 197 K. Below 190 K, continued uptake of H2O again leads to 

dilution of the acidic droplets. 

Observations have shown that at temperatures below 194 K these droplets 

often crystallise and grow large enough that they sediment out of the 

stratosphere [Peter and Grooß, 2012]. The crystalline phase which forms is 

thought to be composed of Nitric Acid Trihydrate (NAT) [Höpfner et al., 2006b; 

Voigt et al., 2000], and removal by sedimentation of this material leads to 

denitrication of the stratosphere, which has significant impacts on polar ozone 

depletion [Solomon, 1999]. No laboratory study to date, however, has 

observed nucleation of NAT at a rate large enough to describe the observed 

PSCs [Knopf et al., 2002]. Instead Nitric Acid Dihydrate (NAD) is thought to 

nucleate first, but rapidly transform to NAT [Grothe et al., 2008]. 
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Where the atmosphere reaches temperatures below 188 K, H2O ice can also 

form. Since H2O ice can form a nucleus for NAT formation, this is one pathway 

by which NAT is formed in the atmosphere.  Studies have shown that up to 

80 % of NAT clouds can be explained by nucleation on H2O ice formed in 

air-masses cooled by gravity wave activity [Mann et al., 2005]. 

Figure 1.10 (b) shows the Saturation ratio (Sx, a measure of the 

thermodynamic stability of a phase, see Section 1.3.3) of NAT, NAD and H2O 

ice, as a function of temperature. Sx ≥ 1 implies that the phase is stable. The 

temperature at which each phase is stable (Tx) is marked on Figure 1.10 with 

vertical lines. There is clearly a significant temperature regime in a cooling 

air-mass where Nitric Acid Hydrate (NAX) phases are stable but H2O ice is 

not. Kinetics of crystalline PSCs formed in the absence of H2O ice have 

therefore been commonly parameterised by a constant number of nucleation 

events per volume per time, Jhet,vol / cm-3 s-1, which is applied in any model 

grid box where NAT is thermodynamically stable [Carslaw et al., 2002; Larsen 

et al., 2004]. Recent studies have shown, however, that biasing all aerosol 

processes colder by 1.5 K improved agreement with observed cloud 

[Brakebusch et al., 2013]. This could be indicative of an important kinetic 

limitation on the nucleation of NAX phases. 
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Figure 1.10:  Concentration (a) and associated saturation ratio (b) of droplets 
in equilibrium with a gas phase containing 0.4 ppb HNO3, 0.1 ppb H2SO4 
and 4 ppm H2O as a function of temperature. Horizontal and vertical 
green lines demonstrate the temperature and concentration at which the 
solution is saturated with respect to Nitric Acid Trihydrate (NAT), Nitric 
Acid Dihydrate (NAD) and H2O ice. After Carslaw et al. [1997]. 
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1.3.3  Nucleation Theory 

To facilitate consideration of the problem of nucleation kinetics in PSC we 

must first examine current theoretical and technical methods for evaluating 

such kinetics. Note that in this thesis only nucleation by particles immersed in 

droplets (as opposed to particles impacting droplets or deposition of gas 

phase species onto particles) is considered since that is the likely mode of 

nucleation in PSCs [Hoyle et al., 2013]. 

The key factors for nucleation kinetics are the temperature, T / K, and the 

saturation ratio for the NAX phase which nucleates, SNAX. SNAX is a measure 

of how thermodynamically stable or metastable the supercooled solution is 

when compared to the system with a solid phase present. It is given by the 

ratio of the free energy, ΔG / kJ mol-1, of the supercooled liquid to the system 

in thermodynamic equilibrium. This ratio is equivalent to that of the activity, 

ay / mol dm-3, product of the components of the solid to the equilibrium 

constant for the dissociation of the solid, Ks,NAX: 

𝑆𝑁𝐴𝑋 =
Δ𝐺𝑠𝑢𝑝𝑒𝑟𝑐𝑜𝑜𝑙𝑒𝑑

Δ𝐺𝑒𝑞𝑢𝑖𝑙𝑖𝑏𝑟𝑖𝑢𝑚
=

𝑎𝑁𝑂3
−×𝑎

𝐻+×𝑥𝑎𝐻2𝑂

𝐾𝑠,𝑁𝐴𝑋
  (1.1) 

where Ks,NAX is given by the product of activities of the components at 

equilibrium. Ks,NAX is a function of temperature, independent of the 

concentration of the solution, since on nucleation of a solid the crystal will 

grow, consuming liquid phase components and moving the concentration to 

equilibrium. This is related to the concept of a phase diagram, a plot of the 

melting points (or equivalently of equilibrium concentrations) against 

temperature. 

The phase diagram for the HNO3 / H2O system is shown in Figure 1.11. An 

example hypothetical path through the phase diagram is shown for a solution 

of constant 30 wt % HNO3. The solution cools to 210 K, at which point H2O 

ice nucleates (indicated by a star). The H2O ice crystal grows, consuming H2O 

and concentrating the solution, until equilibrium is reached. On further cooling 

the concentration of the solution will follow the H2O ice melting curve, bringing 

it into a region where NAD becomes stable and can nucleate (shown here at 

around 195 K). Examining the phase diagram can provide an understanding 

of observations, in this example that could be the observation of a NAD phase 

which would not be stable in a 30 wt % aqueous HNO3 solution in the absence 

of H2O ice. 
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Figure 1.11  Phase diagram showing the melting points of H2O ice, NAT and 
NAD in a region relevant to PSCs. A hypothetical pathway through the 
phase diagram is shown for a 30 wt % aqueous solution of HNO3. The 
likely behaviour of the solution on nucleation (indicated by a star) of H2O 
ice at 210 K is also shown. 

Solid phases, even when thermodynamically stable, may not spontaneously 

form due to a kinetic barrier, allowing liquids to supercool. Nucleation of solid 

phases requires a number of molecules to come together in a physical 

structure similar to the crystalline phase. This is known as the critical cluster. 

The energy barrier for formation of this critical cluster, ΔG* / kJ mol-1, is related 

to the surface tension, Γ / n m-1, the volume of one molecular equivalent of the 

solid, Vmol / cm-3, T and SNAX by [Zobrist et al., 2007]: 

Δ𝐺∗ =
16𝜋

3

𝑉𝑚𝑜𝑙
2 Γ3

(𝑘𝐵𝑇 𝑙𝑛(𝑆𝑁𝐴𝑋))
2    (1.2) 

where kB (1.38 × 10-23 m2 kg s-2 K-1) is the Boltzmann constant. 

The homogeneous rate constant for formation of critical clusters, Jhom / s-1, 

and thereby nucleation, has been described by the Classical Nucleation 

Theory (CNT) and is given by [Murray et al., 2012]: 

𝐽ℎ𝑜𝑚 =
𝑘𝐵

ℎ
𝑒

−Δ𝐹
𝑘𝐵𝑇⁄

𝑒
−Δ𝐺∗

𝑘𝐵𝑇⁄
   (1.3) 
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where h (6.63 × 10-34 m2 kg s-1)  is the Planck constant and ΔF (kJ mol-1) is 

the activation energy for diffusion. From measurements of the diffusion 

coefficient of HNO3 on H2O ice it has been shown that ΔF can be 

approximated by a fixed value of 2000 kB [Luo et al., 2003]. 

CNT can be extended to consider the presence of a heterogeneous interface 

with the supercooled liquid which reduces the kinetic barrier to nucleation. 

Practically, this is achieved by multiplying ΔG* by a parameter known as the 

effectiveness factor, fhet. fhet is a dimensionless quantity related to the contact 

angle, φ / °, between the heterogeneous nucleus and the supercooled liquid: 

𝑓ℎ𝑒𝑡 =
1

4
cos(2 + 𝜑) cos(1 − 𝜑)2  (1.4) 

The heterogeneous nucleation rate, Jhet / cm-2 s-1, also differs from the 

homogeneous rate in that it is multiplied by the number of molecules, 

nmol,int ≈ 3 × 1014 cm-2
 [Zobrist et al., 2007], at the interface of the supercooled 

liquid with the heterogeneous nucleus: 

𝐽ℎ𝑒𝑡 =
𝑛𝑚𝑜𝑙,𝑖𝑛𝑡𝑘𝐵

ℎ
𝑒

−Δ𝐹
𝑘𝐵𝑇⁄

𝑒
−

Δ𝐺∗𝑓ℎ𝑒𝑡
𝑘𝐵𝑇⁄

 (1.5) 

The rate of nucleation events in a given gas volume, R / cm-3 s-1, is then given 

by [Murray et al., 2012]: 

   𝑅 =
𝑑𝑁𝑙𝑖𝑞

𝑑𝑡
= 𝐽ℎ𝑒𝑡𝐴𝑠𝑁𝑙𝑖𝑞  (1.6) 

where dNliq is the number of liquid droplets, Nliq, containing surface area As in 

that volume, which nucleate in time dt. Solving this differential equation over 

a fixed time period, ∆t, and recognising that the number of nucleation events, 

∆NNAX, is given by the difference between the number of droplets at the 

beginning, Nliq,i, and end of that time period gives the expression: 

∆𝑁𝑁𝐴𝑋 = 𝑁𝑙𝑖𝑞,𝑖(1 − 𝑒𝑥𝑝(−𝐽ℎ𝑒𝑡𝐴𝑠∆𝑡))  (1.7) 

This inherently assumes that all of the surface area in each droplet nucleates 

with the same efficiency. Real material, however, is likely to have many 

different sites on its surface, which will nucleate a crystalline phase with 

different efficiency. 

The probability of a site activating nucleation is dependent on both 

temperature and time. Treating a heterogeneous surface as having a single, 

uniform nucleation efficiency will tend to over-represent the time dependence 

of nucleation (see Figure 1.12). Conversely, in some cases nucleation has 

been found to be time independent [Murray et al., 2012], allowing the 

nucleation kinetics to be treated by a simple temperature dependent model 

whereby the fraction of droplets which have crystallised, fNAX, is given by: 
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𝑓𝑁𝐴𝑋 =
𝑁𝑁𝐴𝑋

𝑁𝑙𝑖𝑞
= 1 − exp (−𝑛𝑠𝐴𝑠)   (1.8) 

where ns / cm-2 is the cumulative density of sites which are active at 

temperatures greater than the current temperature. 

Where time and temperature dependences are both important, it is possible 

to model the nucleation kinetics with a quantified time dependence [Herbert 

et al., 2014]. Figure 1.12 compares experimental data of nucleation events 

observed over time and at Tiso; a constant temperature, to several theoretical 

models. Assuming that the surface facilitating nucleation is uniform predicts 

much more crystallisation of droplets than treating a range of activities and the 

stochastic nature of nucleation. 

 

Figure 1.12  Comparison of observed H2O ice nucleation in H2O droplets 
containing heterogeneous nuclei in an isothermal experiment at 
262.15 K. The solid black lines and grey shaded area represent the 
range of liquid fractions expected if the heterogeneous nucleus had a 
uniform ability to nucleate crystallisation. The dashed black line and blue 
shaded area represent the range of liquid droplets predicted by a model 
which treats a range of activity across the surface of the heterogeneous 
nucleus and the stochastic nature of nucleation by that surface. 
Reproduced from Herbert et al. [2014], see that publication for further 
details including definitions of symbols. 
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Recent modelling studies of the formation of PSCs have shown that 

heterogeneous nucleation, described by CNT with a distribution of differently 

active surface sites, can improve agreement with observations [Engel et al., 

2013; Hoyle et al., 2013]. Figure 1.13 compares PSCs measured by the 

CALIOP satellite to those modelled over several days using either a 

heterogeneous parameterisation or a constant nucleation rate per volume 

(cm-3 s-1). The heterogeneous parameterisation clearly better reproduces the 

observed cloud. 

 

Figure 1.13:. Comparison of polar stratospheric cloud over a few days 
(horizontal panels) measured by the CALIOP satellite borne LIDAR (top 
row) and modelled using CLaMS (the Chemical Lagrangian Model of the 
Stratosphere) using a heterogeneous nucleation parameterisation 
(second row) and using a constant nucleation rate per volume (third row). 
The number of hours spent below the saturation point of NAT (TNAT, 
fourth row) and 4 K lower is shown for information. Reproduced from 
Hoyle et al. [2013]. 

Whilst this shows compelling evidence that the heterogeneous nucleation 

pathway is important for the formation of PSCs, the generic nature of the 

heterogeneous aerosol modelled leaves an open question as to whether 

nucleation is dominantly triggered by MSPs or by tropospheric aerosol. The 

precise NAX phase which forms is also unclear. Both NAD and NAT are 

known to have α- and β- polymorphs, with differing stabilities [Grothe et al., 

2008]. Balloon-borne mass spectrometry has shown that the particles contain 
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a molecular ratio of three H2O molecules to one HNO3 [Voigt et al., 2000]. 

Satellite interferometry shows the presence of a spectral band at 820 cm-1
 

[Höpfner et al., 2006b], which is likely due to the presence of NAT (both the 

α- and β- modifications show this feature [Weiss et al., 2016]). Höpfner et al. 

[2006b] demonstrated that the equivalent feature for the α-NAD at 810 cm-1 

was not present in the atmospheric spectrum, however the peak for β-NAD at 

816 cm-1 is much harder to distinguish from the NAT peak. This is important 

since direct nucleation of NAT has not been observed in laboratory 

experiments at a sufficiently high rate to explain observed cloud [Knopf et al., 

2002]. Grothe et al. [2008] was able to produce NAT through thermal 

treatment of the thermodynamically less stable NAD phases. Such direct 

nucleation of a less stable (lower kinetic barrier) phase, known as Ostwald’s 

step rule, is known to occur in the water ice system [Malkin et al., 2012]. 

Formation of NAT PSCs likely proceeds either heterogeneously on a surface 

which has not yet been examined, or via formation of either NAD polymorph 

which then rapidly transforms to NAT. Transformation to NAT is unlikely to 

occur in the bulk solid, since significant molecular rearrangement would be 

required. Instead, nucleation of secondary crystalline phases in the residual 

solution, possibly encouraged by freeze concentration affecting the saturation 

or barrier to nucleation, could be followed by liquid-mediated transfer of mass 

from one crystal to the other. Similar processes have been suggested in the 

(NH4)2SO4 / H2O system to explain the crystalline phases observed [Murray 

and Bertram, 2008]. 
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1.4 Aims and Contents of this Thesis 

This thesis aims to address some of the issues described above. 

In order to inform the general issue of how much meteoric material impacts 

the Earth on a daily basis, the following questions have been investigated: 

1. What materials are suitable for use as analogues to meteoric material 

in atmospheric studies? 

This was investigated by preparation and characterisation of a range 

of materials and a consideration of their similarity (or not) to 

atmospheric materials. 

 

2. Can uptake of reactive species to MSPs change the balance of 

chemistry in the mesosphere and stratosphere? 

This was investigated by measurement of the uptake coefficients for 

HNO3 and HO2 on MSP analogues and a global modelling study of how 

sensitive the atmospheric gas phase abundances of a range of species 

are to this process. 

 

3. Can heterogeneous nucleation of crystalline phases on MSP surfaces 

explain the concentrations of crystals observed in the atmosphere? 

This was investigated by measurement of kinetics of nucleation by an 

MSP analogue and application of these kinetics in an atmospheric 

model. 

Each of these processes has a sensitivity to the available amount of meteoric 

material, which could inform the total daily meteoric input to the Earth’s 

atmosphere. 
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To describe the results of these investigations, this thesis has been structured 

to broadly discuss processes from the top of the atmosphere moving down in 

altitude. 

Chapter 2 describes investigations of analogues which can be used to 

simulate IDPs and MSPs in investigations of meteor ablation and surface 

science. Materials were prepared by chemical synthesis from precursors and 

mechanical grinding of terrestrial minerals and meteorites. The elemental 

composition, crystallographic, surface and size distribution properties of the 

products were analysed using a suite of techniques. The materials were then 

compared to current understanding of IDPs and MSPs in the upper 

mesosphere. 

Chapter 3 discusses reactive uptake of HNO3 and HO2 from the gas phase to 

the surface of these particles in the lower mesosphere and upper 

stratosphere. Uptake coefficients measured in the laboratory were used to 

parameterise the impact of MSPs on HNO3 and HO2 in WACCM-CARMA. 

Comparison of model runs with and without reactive uptake was used to 

characterise changes in the availability of HNO3 and HO2.  

Chapter 4 describes measurements of the nucleation kinetics of NAX phases 

on SiO2 particles (analogues for MSPs) under conditions relevant to PSCs in 

the lower stratosphere. Droplets of HNO3 in aqueous solutions and with 

suspended SiO2 were cooled and nucleation events observed. The nucleation 

was then parameterised using two theoretical models and a box model of 

equilibrium droplet concentration used to compare the results to observations 

of crystal concentrations and a parameterisation commonly used in 

atmospheric models. 
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Chapter 2 

Synthesis and Characterisation of Analogues for 

Interplanetary Dust and Meteor Smoke Particles 

As described in Chapter 1, many atmospheric processes are controlled by 

extra-terrestrial material. Investigating and particularly quantifying the effects 

of these processes requires suitable samples which are chemically similar to 

the environmental material. This chapter describes development and 

characterisation of analogues for both Interplanetary Dust (IDPs) and 

Meteoric Smoke Particles (MSPs); aerosol which form chemically from 

material ablated from IDPs. These analogues include amorphous materials 

with elemental compositions similar to the olivine mineral solid solution series, 

a variety of iron oxides, undifferentiated meteorites (chondrites) and minerals 

which can be considered good terrestrial proxies to some phases present in 

meteorites. The products have been subjected to a suite of analytical 

techniques to demonstrate their suitability as analogues for the target 

materials. 

2.1  Introduction and Methods 

Analogues have been prepared both by processing mineral and meteorite 

samples, and by chemical synthesis from appropriate precursors. The genesis 

of the various samples is described in Table 1 along with their proposed 

application, specific surface area and mass density as appropriate. Note that 

throughout this thesis any crystalline materials will be referred to by their 

names, whilst chemical compositions will be used for materials without 

significant crystal structure. 

Here MSPs, IDPs and meteorite samples are collectively referred to as 

meteoric material. Particles collected by aircraft in the stratosphere are often 

termed IDPs [Bigg, 2012], whilst those collected terrestrially are called 

MicroMeteorites (MMs) [Taylor et al., 2012]. In order to determine the most 

appropriate analogue material, the key difference is between ablated and 

unablated material. In this chapter, IDPs should be taken to refer to unablated 

material, MSPs to ablated matter, and MMs specifically to material recovered 

terrestrially. 
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* Terrestrial mineral samples were obtained from the University of Leeds, School of Earth and Environment research collections 

 

Table 2.1  Genesis, proposed analogue use, BET surface area and bulk density of samples described in this chapter. 

Analogue Genesis Analogue for BET surface area / m2 g-1 Mass density / g cm-3 

Mg2SiO4 MgCl2 + Na4SiO4 MSPs 102 ± 5  

MgFeSiO4 Fe(SO4)2(NH4)2 + MgCl2 + Na4SiO4 MSPs 358 ± 16 2.647 ± 0.004 

Enstatite / Hematite From MgFeSiO4 as above, sintered at 1273 K for 24 hours MSPs 3.07 ± 0.03  

Fe2SiO4 Fe(SO4)2(NH4)2 + Na4SiO4 MSPs 244 ± 2 3.2638 ± 0.0007 

Goethite Fe(SO4)2(NH4)2 + NaOH + compressed air MSPs 41.4 ± 0.4 3.964 ± 0.006 

Hematite From Goethite as above, dehydrated at 573 K for 24 hours MSPs 34.4 ± 0.2  

Peridot Olivine* Skarvebergbukren, Norway N/62 IDPs n/a  

Albite* Almeklovdalen, Norway N/37 IDPs n/a  

Labradorite* University of Leeds research collection IDPs n/a  

Anorthite* Japan via. Gregory, Botley & co., Chelsea IDPs n/a  

Chergach Meteorite Meteorites-for-sale.com IDPs n/a 3.5 [Weisberg et al., 2009] 

Allende Meteorite Institute of Space Sciences (CSIC-IECC) research collection IDPs n/a 2.9 [Clarke et al., 1971] 

Murchison Meteorite Institute of Space Sciences (CSIC-IECC) research collection IDPs n/a 2.9 [Fuchs et al., 1973] 

NWA 5515 Meteorite Meteorites-for-sale.com IDPs n/a 2.7[Opeil Sj et al., 2012] 
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2.1.1  Meteorite Samples 

Samples of the Allende (CV3) [Clarke et al., 1971], Murchison (CM2) [Fuchs 

et al., 1973], North West Africa 5515 (NWA, CK4) [Weisberg et al., 2009] and 

Chergach (H5) [Weisberg et al., 2008] meteorites were ground by hand using 

a pestle and mortar and then sieved (Endecottes test sieves, pore sizes of 38, 

106, 150, 250 and 355 µm) to obtain size fractions relevant for use as IDP 

analogues (tens to hundreds of µm radius [Bardeen et al., 2008; Bigg, 2012; 

Carrillo-Sánchez et al., 2015]). These meteorites represent several 

carbonaceous groups and one ordinary chondrite. Allende and Murchison 

have notably been used in a number of previous studies investigating IDP 

behaviour whilst NWA and Chergach have been included to represent outlier 

groups in the likely IDP flux (see Section 2.3) [Burchell et al., 2006; Court and 

Sephton, 2011; Toppani et al., 2001]. 

 

2.1.2  Terrestrial Minerals 

Terrestrial minerals were also used here as analogues for fine and coarse-

grained anhydrous IDP material. These were obtained by grinding peridot 

olivine, labradorite, anorthite and albite followed by size separation. These 

minerals were chosen as example members of solution series.  Other 

members of such series or other minerals could also be used, either alone or 

in mixtures, to obtain a wider range of compositions. Similar terrestrial 

minerals have been used in the past to investigate IDP processing. These 

include simulated changes in pyrrhotites during aerobraking eg. [Greshake et 

al., 1998] and olivine and pyroxene as a “thermometer” for the temperatures 

reached by meteors [Sandford and Bradley, 1989]. 

 

2.1.3  Synthetic Samples 

Sol-gel synthetic routes to produce both crystalline mineral samples and 

amorphous materials of suitable composition were also used. Sol-gel 

synthesis uses a viscous solution to kinetically hinder reactions and facilitate 

formation of highly ordered inorganic materials [Mann et al., 1997]. 

Directly synthesised compounds include amorphous materials with 

compositions covering the olivine solid solution series (MgxFe2-xSiO4 where 

0 ≤ x ≤ 2) and goethite. These can be annealed to produce secondary 

products including hematite and mixtures of crystalline phases such as 

enstatite and hematite. 
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MgxFe2-xSiO4 compounds were synthesised by stirring at room temperature 

for 7 days a mixture of stoichiometric amounts (relative to 0.1 mol l-1 product) 

of MgCl2 (Aldrich), Fe(SO4)2(NH4)2 (Sigma-Aldrich) and Na4SiO4 (Alfa Aesar) 

[Frankland et al., 2015]. Solutions immediately turn blue when Fe is present 

but otherwise are colourless. All solutions are viscous but do not pass the 

inversion test. After purification, annealing of this amorphous product at 

1273 K for 24 hours was also used to generate a mixture of crystalline 

enstatite and hematite. 

To investigate the formation of a ferrihydrate impurity in MgxFe2-xSiO4 a 

synthesis was also performed where HCl (Fisher Scientific, 37% analytical 

reagent grade) was added dropwise to bring the pH to 7 (the Na4SiO4 is made 

from a mixture of NaOH and Na3SiO3, giving an alkaline solution).  

Here we report a novel method to produce pure goethite and, by processing 

this, hematite. Goethite was obtained by stirring a solution of 0.1 mol l-1 each 

of Fe(SO4)2(NH4)2 and NaOH (Fisher Scientific, analytical reagent grade) for 

3 days with a flow of compressed air bubbling through the reacting solution. 

The purified goethite product of this reaction was dehydrated by annealing at 

573 K for 24 hours to produce hematite. 

A direct synthesis of monodisperse, regular cubes of hematite has also been 

performed [Hiranuma et al., 2014; Ozaki et al., 1984; Sugimoto et al., 1993]. 

A solution of 2 M FeCl3 (Fison’s Scientific Equipment) was added slowly with 

stirring to 5.4 N NaOH, the resulting viscous solution was stirred for a further 

10 minutes then transferred to a Teflon reaction bomb. This was aged at 

100 °C for 8 days. 

All reaction products were collected and dried in petri dishes. Residual 

byproducts were removed using repeated dialysis (at least 15 hours total) in 

a Soxhlet apparatus with the particles held in water permeable tubing 

(Snakeskin 7000 MWCO). 

Purified products, along with samples of meteoritic and terrestrial materials, 

were then subjected to a suite of characterisation techniques in order to 

assess their appropriateness as analogues for IDPs and MSPs. Mass yields 

after purification are >90 %, although the possibility that H2O is adsorbed to 

the large surface area of the synthetic particles adds an upward bias to such 

measurements. In any case, approximately 20 g of MgxFe2-xSiO4 and 3-5 g 

goethite can be produced in a typical 2 l batch synthesis, providing sufficient 

material for characterisation and further studies. 
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2.2 Characterisation of Analogues  

A thorough characterisation of each of the products described above is 

required to inform their use as analogues for IDPs and/or MSPs. The 

properties which are required for a given analogue depend on the application 

to which it is put. This is compounded by the differing size scales of IDPs (up 

to several tens to hundred µm radius) and MSPs (single molecules which 

polymerise and agglomerate to several hundred nm radius), which restricts 

somewhat the techniques available for the characterisation of each analogue. 

Where ablation is examined, it is important to understand the elemental 

composition and crystal structure, particularly as this has implications for 

melting and evaporation. In studies of catalysis, however, the surface 

properties of a sample are of paramount importance. Such properties have 

been investigated for samples of the products discussed in Section 2.1. 

2.2.1  Elemental composition 

The elemental composition of a material has clear relevance to studies of 

virtually all properties of meteoric material and is arguably the most widely 

applicable characterisation of both environmental and analogous samples. 

Taylor et al. [2012]_ENREF_59 examined around 5000 MMs from the South 

Polar Water Well and showed that IDPs have likely compositions similar to CI 

or CM meteorites. Whilst there is considerable uncertainty in the mineral 

composition of MSPs e.g. [Hervig et al., 2012], the elemental ratios of the 

metals (primarily Fe, Mg) and SiO2 available for their formation are relatively 

well known [Plane et al., 2015]. 

Elemental compositions were measured by Energy Dispersive X-Ray 

Spectroscopy in combination with Scanning Electron Microscopy (SEM-EDX, 

Joel JSM 6610LV coupled to an Oxford Instruments INCA X max80 EDS). 

The carbon signal is omitted due to interference from carbon tape used as an 

SEM substrate, while the oxygen signal is affected by surface adsorbed water. 

This technique is limited by statistical uncertainty, since values are measured 

for individual particles or agglomerates rather than large, representative 

samples, and by reduced sensitivity to lighter elements. There is also a 

potential effect of particle size; since a flat surface is required for quantitative 

measurements, single particles are used and measurements of the smaller 

size fractions therefore survey less material. This could lead to an 

underrepresentation of rare component phases and elements. Average 

values with a 95% standard error (typically from 4-8 measurements) are given 

in this chapter. Inductively Coupled Plasma – Atomic Emission Spectroscopy 
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(ICP-AES, ICAP 6500 ThermoElectron) has been used for two meteoritic 

samples. Solutions were prepared from approximately 0.025 g of each sample 

fluxed with 0.05 g of Li-metaborate and dissolved in 30 ml HNO3 1 molal and 

1 drop of HF. Four standard reference materials provided by the US 

Geological Survey were used for external calibration; internal calibration of the 

equipment was carried out before the measurements and rodhium was used 

as internal standard. Three determinations of the elemental composition were 

carried out and averaged for each meteorite, showing standard errors lower 

than 5% for most elements. 

2.2.1.1  Meteorite Samples 

_ENREF_60Several size fractions (particles of <19 µm and >177.5 µm radii) 

of the Chergach and NWA (particles of 19-53 µm and 125-177.5 µm radii) 

meteorites were analysed by SEM-EDX. The composition of the Allende and 

Murchison meteorite samples were measured by ICP-AES. Elemental 

compositions of all four meteorites are compared to CI, CM composition and 

to their respective groups [Hutchison, 2004] in Figure 2.1. Note that the 

differences between standard compositions are generally smaller than the 

standard errors in the compositions. This is due to the coarse grained nature 

of meteorites in general. After grinding, grains of individual minerals distort the 

measured composition away from the mean of a larger sample. 

In the Chergach sample shown in Figure 2.1 a) Si, Cr, Mn, Mg, Ca, K and P 

all agree within error with the standard compositions. Na and Al are enhanced 

(although Al is in agreement with the CM compositions) suggesting that the 

sample contained albite. Fe, Ni and S are depleted, suggesting that minor 

phases such as Fe-Ni metallic alloys and metal sulfides or sulfates are 

underrepresented in the sample. The Chergach meteorite has a rather Mg rich 

olivine content, with much of the Fe being contained in a metallic or alloy form, 

consistent with an enhancement of major phases over minor in these 

measurements [Weisberg et al., 2008]. Differences in the two size fractions 

are generally smaller than the uncertainty. However, major constituent 

elements are enhanced in the smaller size fractions, whilst minor elements 

are depleted. This suggest that some softer phases are enhanced in the 

smaller size fractions, whilst phases which grind less easily are enhanced in 

larger size fractions. In compositional terms Chergach (and potentially other 

OCs) appears a reasonable approximation for IDPs, containing many of the 

same phases. This is significant since OCs are generally more available than 

CCs. 
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Figure 2.1: Elemental compositions, normalised to Si, comparing each of the 
meteorites used in this study to the composition of CI, CM and its own 
group [Hutchison, 2004]. a) Two size fractions (<19 µm and >177.5 µm) 
of the Chergach (H5) meteorite. b) The Allende (CV3) and Merchison 
(CM2) meteorites. c) The North West Africa 5515 (CK4) meteorite, 
125-177.5 µm size fraction. Error bars show the 95 % confidence interval 
of 4-8 measurements. Measurement techniques vary, see text for 
details. 
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The Murchison and Allende meteorites, shown in Figure 2.1 b), have been 

included here as examples of carbonaceous chondrites which are commonly 

used as analogues for IDPs [Burchell et al., 2006; Court and Sephton, 2011; 

Toppani et al., 2001]. Allende has suffered some degree of thermal 

metamorphism so has compositions within the CI-CM range for all elements 

except Mg, Na and K. The Allende meteorite is known to have an Fe rich 

olivine matrix, accounting for the Mg depletion. The low abundance of 

relatively volatile elements such as Na and K is typical of CV meteorites but 

is known to be extreme in the case of Allende [Clarke et al., 1971]. However, 

these elemental constituents and their relatively volatile phases (melting 

points <1500 K) are present in all samples observed. The Murchison sample 

agrees well with the CM (or CI) elemental composition, a fact which, combined 

with its relatively large available mass (>100 kg) has led to its wide use as an 

IDP analogue [Burchell et al., 2006]. 

The 125-177.5 µm radius size fraction of the NWA meteorite sample, shown 

in Figure 2.1 c), is significantly enriched in Ca and depleted in Na. In addition 

minor elements including Ti, Mn, K, P, Co and S are below the limit of 

detection. In the 19-53 µm radius size fraction, SEM-EDX analysis shows a 

highly heterogeneous composition, with each particle appearing to represent 

a single phase (elemental ratios consistent with Andesine, Olivine and Augite 

were observed). This suggests a large content of refractory (melting point 

>2000 K) and coarse grained components, inconsistent with the bulk of the 

IDP flux. This highlights the fact that not all CC meteorites are inherently 

suitable as IDP analogues in all applications. Such materials can be useful, 

however for examining extreme events, e.g. differential ablation of particles 

with large entry velocities. 

Ground meteorites are therefore variably suitable analogues for IDPs in terms 

of elemental composition, however they do contain many relevant phases 

(see Section 2.2.3) and since the ablation process is dominantly controlled by 

the melting point of the phase [Vondrak et al., 2008], should act as satisfactory 

analogues in particular cases.  
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2.2.1.2  Terrestrial Minerals 

Peridot olivine, labradorite, anorthite and albite samples have also been 

subjected to SEM-EDX analysis. The olivine was found to be Fo90 forsterite 

(ratios of Mg:Fe = 10 ± 4 and (Fe+Mg):Si = 1.9 ± 0.6) with some content of Ni, 

Ca and Al, consistent with the volcanic basalt casing around the peridot in 

which the olivine formed. The labradorite was measured as having An55 

composition (ratios of Na:Ca = 0.8 ± 0.2 and 

(Na+Ca):(Si+Al) = 0.244 ± 0.014). The anorthite sample was found to have 

An97 composition (ratios of Na:Ca = 0.04 ± 0.02 and 

(Na+Ca):(Si+Al) = 0.27 ± 0.04). The albite sample was found to have a 

composition consistent with such an An0-10 sodium feldspar (ratios of 

Al:Si = 0.344 ± 0.013 and Na:Si = 0.33 ± 0.04). The reproducibility (standard 

errors typically <20 %) of these measurements and their agreement with 

expected ratios for each mineral support the use of the SEM-EDX 

characterisation technique so long as numerous spectra are measured for 

each sample. 

2.2.1.3  Synthetic Samples 

SEM-EDX has been used extensively here to assess the composition of the 

synthetic products, particularly with regards to the removal of NaCl and 

Na2SO4 salt byproducts. In general it was found that around 10 hours of 

processing in the Soxhlet apparatus was sufficient to remove these 

byproducts. This validates the synthesis described above.  

Compositions were confirmed for goethite (Fe:O = 0.6 ± 0.4), hematite 

(Fe:O = 0.7 ± 0.3), Mg2SiO4 (Mg:Si = 2.0 ± 0.5) and Fe2SiO4 

(Fe:Si = 2.4 ± 0.8). When a ratio of precursors designed to produce MgFeSiO4 

was used, a ratio of Mg:Fe = 0.43 ± 0.12 and (Fe+Mg):Si = 1.8 ± 0.3 was 

measured. The overabundance of Fe can partially be explained by the 

presence of a ferrihydrite or goethite impurity (see Section 2.2.3); however, 

since the ratio of Fe+Mg to Si is not less than 2 it is possible that Mg 

accommodation into the synthetic MgxFe2-xSiO4 is less effective than that of 

Fe. This measured composition did not significantly vary on annealing to 

enstatite / hematite. 

Note that oxygen ratios are reported for the crystalline iron oxides, but not for 

amorphous silicates. Indeed, the measured variability of the Fe:O ratio is 

larger than that other elemental ratios. This is due to contamination by surface 

adsorbed H2O despite storing the samples in a vacuum dessicator for several 

weeks prior to composition measurements. This is thought to be a greater 



- 59 - 

 

issue for the amorphous silicates due to their relatively large surface area with 

respect to the iron oxides (hundreds as opposed to several m2 g-1 respectively, 

see Table 2.1 and Section 2.2.4). For applications where surface reactivity is 

important, this surface water could be removed by heating in a vacuum, 

though potential phase changes in the dust by such annealing should be 

considered where this is carried out (see Section 2.2.3). In generally, target 

compositions could be successfully synthesised and assayed using the 

techniques described here. Of the elements described here, Fe is the most 

abundant in Earth’s atmosphere. Mg and Si have a slightly lower abundance 

with Na, K etc. present in smaller amounts [Plane et al., 2015]. The synthetic 

materials presented here therefore represent suitable analogues for MSPs in 

terms of their elemental composition. 

 

2.2.2  Textural Analysis and Compositional Mapping 

The homogeneity of analogues is one of the key differences between ground 

bulk samples and IDPs. This can be evident in the elemental or mineralogical 

composition of the analogue material. Particle topography and homogeneity, 

both within each particle and across whole samples, was assessed using 

SEM-EDX mapping (FEG-SEM – FEI Nova 450) with EDX (AMTEK) at 18 kV) 

for the Chergach and Allende meteorites. Particles forming the Allende CV3 

carbonaceous chondrite are heterogeneous even to the naked eye, with some 

white and some rounded glassy particles evident. These correspond 

respectively with Ca- and Al-rich inclusions and chondrules. Chergach 

particles, on the other hand, appear more homogeneous within each size 

fraction because of the recrystallization shown in this petrologic type (H5) of 

ordinary chondrites. These trends hold through to the microscopic scale, as 

demonstrated by the following analysis. 

Figure 2.2 shows a micrograph and co-located compositional maps for a 

particle of Chergach. The Mg rich olivine matrix is clearly demonstrated, with 

smaller grains of a variety of phases evident. These potentially include metallic 

Fe (top left, bottom centre) and albite / feldspar (regions with Na and Ca). 
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Figure 2.2: SEM-EDX mapping for a particle of the Chergach meteorite. Si is 
omitted due to interference from the substrate. The bulk Fo82 olivine is 
clearly shown in the Mg panel. Grains are visible containing Fe & Ca 
(lower centre), Na & K (lower right and centre right), and each of those 
elements individually. 
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Figure 2.3 shows a wide angle micrograph of a section of the Allende 

meteorite before grinding. Large features (100s of µm) are visible including a 

barred olivine chondrule (A), a porphyritic olivine chondrule (B), the fine 

grained carbonaceous matrix (C) and a metal sulfide inclusion (D). The scale 

of this image makes it clear that, while the mean of a large sample of particles 

may be a CI or CM (or in this case CV) composition as are IDPs, a ground 

sample of the meteorite will contain an overabundance of coarse and simple 

mineral grains, which would be representative of only a small fraction of IDPs. 

 

Figure 2.3: Backscatter electron image of a thin section of the Allende 
meteorite before grinding demonstrating the scale of individual features 
such as a barred olivine chondrules (A), a porphoritic olivine chondrule 
(B), the fine grained carbonaceous matrix (C) and a metal sulphide 
inclusion (D). 
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Figure 2.4 shows an aggregate particle of Allende, where a region of 

scoreacious material is in contact with a fine grained region (boundary marked 

by a dashed white line). EDX mapping, performed on the region shown by the 

white box on the micrograph, shows that the scoreacious region is depleted 

in volatile elements such as S, likely indicating loss of volatile phases such as 

troilite or more likely metal sulfate [Burgess et al., 1991]. The fine grained 

region also shows a more heterogeneous content, with some Ca containing 

domains evident. This suggests that the scoreacious (right-hand) region has 

undergone significantly more heating, sufficient for volatile phases to 

evapourate and leave only the anhydrous metal silicate content. The left-hand 

region, however, has undergone less thermal alteration and resembles more 

closely a fine grained IDP. 

Figure 2.5 shows two grains of Allende, one single mineral grain (left) and one 

fine aggregate (right). The single mineral particle appears to be a sodalite or 

nepheline (sodium silicate, albite is not present in significant quantities in the 

Allende meteorite [Clarke et al., 1971]). The fine grained aggregate 

demonstrates the Fe rich olivine matrix of the Allende meteorite, with a 

heterogeneous content of Na, Al, Ca and some detectable Ni.  

These examples have been selected to provide a flavour of the variability in 

the chondrites examined here. Such heterogeneous compositions are 

common in IDPs, however the fine grained nature of the majority of IDPs 

means that large grains such as those observed here are rare. Other authors 

have reported on the particle to particle variability inherent in ground 

meteorites [Jessberger et al., 2001], however the direct comparison presented 

here allows some clear conclusions to be drawn. The variability displayed here 

for the Allende meteorite demonstrates the need to characterise samples well. 

In analysis of the surface or bulk properties this heterogeneity could have 

significant consequences. For example the rates of catalytic processes or 

early or late release of an ablating material could be dominantly controlled by 

a statistically uncommon particle or active site.  One further observation is that 

the elemental heterogeneity in Chergach is not significantly different to that in 

Allende. While the texture of the grains is significantly different, grains of 

similar elements are present with a similar heterogeneity. This suggests that 

Chergach and other OC meteorites may be similar to the comparatively rare 

CC meteorites as IDP analogues. 
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Figure 2.4: SEM-EDX mapping for a particle of the Allende meteorite, 
showing both fine aggregate and scoreacious regions. The fine 
aggregate material has a higher S content and is more heterogeneous 
than the scoreacious region. 
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Figure 2.5: SEM-EDX mapping two particles of the Allende meteorite, 
showing one single mineral particle and one fine aggregate grain. Si can 
be included here since a Cu substrate was used. The single mineral (left) 
particle shows a homogeneous composition consistent with nepheline or 
sodelite, whilst the fine aggregate appears to have an olivine matrix 
containing grains of diverse composition. 
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SEM images of the cubic hematite synthesised in a pressure bomb are shown 

in Figure 2.6. Particles were deposited to the surface of the Si substrates used 

by evaporation of an aqueous suspension. 

Figure 2.6 (a) shows that the size distribution of the particles produced is 

narrow. Indeed, Ozaki et al. [1984] described the product as “monodisperse”. 

The clumping of particles in some areas suggests that particles were 

agglomerated in suspension (see Section 2.2.5). Agglomeration of particles in 

suspension would affect their behaviour in e.g. surface science experiments 

because of changes in available surface area and in optical experiments 

because of changes to the effective size distribution. 

Figure 2.6 (b) shows the size, shape and surface morphology a group of six 

particles. The reproducible rounded cuboid shape of the particles allows them 

to pack densely together, whilst the textured surface facilitates contact 

between particles. The surface morphology shown here would lead to an 

available surface area similar to that calculated assuming that the particles 

are spherical. Insufficient (<1 g) material was recovered in this synthesis to 

perform a BET analysis. The limited availability of pressure bombs, relatively 

long synthesis time (8 days) and low yield of this process limit its application 

as a method for producing MSP analogues. For applications where relatively 

small amounts of material are required, however, this could be a useful 

method for producing uniform, easily characterised material. 

One caveat to the use of this material is that a small fraction of the cubic 

particles shatter, as shown in Figure 2.6 (c). This breaking of the cubic shape 

reveals a polycrystalline interior structure with a variety of types of exposed 

surface. Hiranuma et al. [2014] showed that grinding a sample of particles 

produced using this synthesis to expose more of this interior surface increased 

their activity as Ice Nucleating Particles (INP), demonstrating the importance 

of rare sites and heterogeneity in some surface science experiments. This is 

one example of why thorough characterisation of analogues can be extremely 

important. 

 



- 66 - 

 

 

Figure 2.6: SEM images of hematite particles synthesised in a pressure bomb 
[Sugimoto et al., 1993]. (a) a wide angle view showing a relatively 
monodisperse size distribution. (b) a collection of particles showing 
shape, size and surface morphology. (c) image of some cracked 
particles, showing high stress interior fractures. 
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2.2.3  Crystal Structure 

The crystal structure of the analogue used can be important for many 

applications. It is crucial, for example, in studying the differential ablation of 

IDPs since each constituent element will be released dependent upon its 

vapour pressure over the phase it is contained in. 

The crystal structure of the analogues was investigated by powder X-Ray 

Diffraction (XRD, Bruker D8 equipped with a germanium monochromator, 

using Cu K-α radiation). Measured patterns were compared to literature 

structures via a Rietveld refinement. This involves reproducing a pattern by 

comparison to one or more crystal structures. Inputs such as the 

crystallographic space group, lattice parameters and atomic positions allow 

the prediction of patterns which can be compared to the experimental 

observations. Factors such as nanocrystallinity and sample displacement can 

also be simulated to investigate peak shifts and broadening effects. Here this 

was carried out using the TOPAS software [McCusker et al., 1999]. 

 

2.2.3.1  Meteorite Samples and Terrestrial Minerals 

XRD analysis was only performed for the Chergach H5 OC due to the limited 

availability of other samples. Observed patterns for the albite and peridot 

olivine samples are compared to that of Chergach in Figure 2.7. Measured 

patterns (in black) can be reproduced by Rietveld refinements (in red). For 

peridot olivine a forsterite structure produces good agreement, for albite a 

structure of that mineral agrees well, and for Chergach structures of forsterite, 

albite and ferrosilite combine to give a good representation of the data. Whilst 

ferrosilite is not likely present in significant quantities, the enstatite end 

member of the same solid solution series has a similar structure. This 

suggests that in structural terms Chergach chondrite can be represented 

simply by a mixture of terrestrial minerals. Comparison to the SEM-EDX 

mapping, particularly the similarity of the heterogeneous phases present 

suggests that this can also be extended to other meteorites and IDPs. It is 

worth noting that the sample likely contains many other minor phases which 

are below the limits of detection here.  
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Figure 2.7: Observed powder X-Ray Diffraction (XRD) patterns for peridot 
olivine, albite and the Chergach meteorite. The black lines show 
measured data and the red lines show Rietveld refinements. Peridot 
olivine is compared to a forsterite structure, albite to a structure of that 
material and the Chergach meteorite to a combination of both with 
ferrosilite. Data have been scaled and offset to show an appropriate 
scale in each case. 

 

In ablation experiments, individual minerals are useful to characterise phase 

changes as a function of heating [Sandford and Bradley, 1989]. Mixtures of 

minerals may be valuable to compare to meteoritic aggregates or even to IDPs 

if available, and hence evaluate the effect of grain aggregation and porosity 

on the release of the elemental constituents. Consideration should be given, 

however, to the variation of melting points across solid solution series e.g. 

[Bowen, 1913]. In the specific case of the Chergach meteorite (olivine 

composition Fo81.6 [Weisberg et al., 2008]), the melting point of major phases 

may be similar to the olivine used here, however for a more general study 

such considerations should be taken into account and terrestrial mineral 

analogues chosen with care. Terrestrial minerals can also be of great value in 

calibrating instruments, providing simple systems with known elemental ratios 

which are easy to characterise and available in greater supply than meteorite 

samples.  
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2.2.3.2  Synthetic Samples 

XRD patterns for the synthetic samples discussed in this study are shown in 

Figure 2.8. Reitveld refinement (see Section 2.2.3) has a variable, though 

generally good, ability to reproduce the observed patterns and in some cases 

providing useful information regarding the synthetic product.  

 

Figure 2.8: XRD patterns for synthetic samples produced in this study. 
Measured data are in black and fits from Rietveld refinement in red. Data 
have been scaled and offset to show an appropriate scale in each case. 

 

MgxFe2-xSiO4 materials are mainly amorphous by XRD. In the case of Fe2SiO4 

the broad crystalline peaks observed can be fitted with a goethite phase. For 

MgFeSiO4 the similarly broad peaks are compared to a 6 line ferrihydrite 

phase. Ferrihydrite is a hydrated iron oxide similar to goethite. The broadness 

of these peaks, particularly that around 35°, is an indication of an amorphous 

phase or of crystals on the nm scale. For MgFeSiO4 the pattern has been fitted 

assuming crystallites of 2.5 nm radius and for Fe2SiO4 the crystallites were 

assumed to have radii of 5.2 nm. This nanocrystallinity is discussed further in 

the context of the particle morphologies in Section 2.2.4. Implications of this 

crystallinity in terms of using these materials as analogues for MSPs are 

discussed in Section 2.3.  

Performing the synthesis of MgFeSiO4 at pH 7 did not reduce the presence of 

the ferrihydrite impurity shown in Figure 2.8. This suggests that the impurity 

may form very rapidly at the beginning of the synthesis, perhaps forming a 

nucleus for MgFeSiO4 to subsequently deposit onto. Hydrated Fe oxides are 
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also a likely component of MSPs [Hervig et al., 2012], so the presence of this 

impurity phase does not significantly reduce the application as an MSP 

analogue. In fact, the overabundance of Fe with respect to Mg and Si in the 

mesosphere suggests that some Fe oxides or oxy-hydroxides are likely 

present alongside silicates in MSPs. 

For an annealed sample of MgFeSiO4 strong crystalline peaks are observed, 

which can be fitted with a hematite phase. Repeated SEM-EDX analysis 

shows that the composition does not change, suggesting that Mg and Si are 

present as an amorphous or nanocrystalline MgSiO3 phase. 

The XRD pattern of synthetic goethite is well fitted by assuming a structure of 

that mineral. Upon annealing a sample of this material at 573 K for 24 hours 

the XRD pattern could be modelled reasonably well by a hematite structure, 

consistent with the dehydration of the goethite [Gualtieri and Venturelli, 1999]. 

The fit in this case is imperfect, notably some peaks show significant 

broadening and the relative peak intensities are not well represented. Since 

peak broadening due to crystalline size is angle dependent this is likely an 

indication of relatively small crystallites (perhaps 50-100 nm in radius) but a 

crystallites size which gave a good fit was not found. Peak intensity variations 

are likely due to some preferred orientation. Implications of this crystallinity in 

terms of using these materials as analogues for MSPs are also discussed in 

Section 2.3. 

 

2.2.4  Surface Area and Morphology 

Surface properties are of paramount importance for the heterogeneous 

reactivity of an atmospheric solid and therefore an analogue intended to 

investigate such phenomena. The upper limit to the available reactive surface 

area was measured for the materials discussed here by the Brunauer, Emmet 

and Teller (BET, Micrometrics ASAP 2020) method. The results are shown in 

Table 2.1. The anomalously high specific surface area for the MgxFe2-xSiO4 

materials is due to their unusual surface morphology.   

This was investigated by Transmission Electron Microscopy (TEM, FEI Tecnai 

F20 200kV FEGTEM fitted with a Gatan Orius SC600 CCD camera), with a 

representative micrograph shown in Figure 2.9. The thin, folded sheet like 

nature of the material leads to a large surface potentially being available for 

uptake and reaction of gases. 



- 71 - 

 

 

Figure 2.9: Typical transmission electron microscope image of the MgFeSiO4 
described in this study showing ‘folded sheet like’ morphology. Insert 
shows an example of nanocrystalline domains on the sheet surface. 

The inset to Figure 2.9 shows that at atomic resolution nanocrystalline 

domains can be seen on the surface of the MgFeSiO4. The scale of these 

domains is close to the 2.5 nm radius required to resolve the ferrihydrate 

peaks in the XRD analysis discussed above. This is compelling evidence that 

these crystalline domains produce the peaks seen in the XRD patterns and 

can therefore be considered an upper limit to their size. The implications of 

this nanocrystallinity in terms of using these materials as analogues for MSPs 

are discussed in Section 2.3. 

The surface area which is actually involved in reaction will depend on the 

reactivity in a given system, however this large upper limit allows 

measurement of processes which are relatively slow [Frankland et al., 2015]. 

The question of available surface area is also pertinent in the environment, 

since fractal or dendritic particles are often represented as spheres for 

reasons of computation efficiency [Saunders et al., 2007]. Atmospheric 

processing by H2O and acidic gases may also change the available surface 
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area over time. Any use of such materials for surface science should include 

a careful study of the available surface area. In contrast, crystalline materials 

such as the goethite and hematite analogues presented here generally have 

BET surface areas close to that calculated by assuming spherical particles of 

reasonable size distribution (see Section 2.2.5). In that case the available 

surface area in a given experiment can often be well approximated by 

considering the experimental geometry (e.g. a coated flow tube), or assuming 

that layered samples of particles are close packed spheres with associated 

pore spaces [Keyser et al., 1991]. 

 

2.2.5  Size Distribution and Density 

The size distribution of an analogue can be important for many reasons. For 

example a layered sample of uniform sized particles might be expected to 

close pack with open pores, whilst a more heterogeneous distribution might 

have these pores between larger particles filled by smaller particles. 

Evaporation of particles may be kinetically controlled by the surface for smaller 

particles or diffusion through the molten bulk of larger particles. Density is also 

important in thermal studies since it impacts the conductivity of the material 

and in surface studies since the density of active sites is likely related to the 

density of a particular surface feature (eg. a particular ion or structural defect). 

For dense, approximately spheroidal particles such as the hematite, goethite, 

enstatite / hematite and ground meteorites and minerals described here 

measuring the particle size distribution, which results from grinding, is 

important for designing experiments and interpreting results. For particles on 

the µm scale, optical microscopy can be used to probe such properties. Here 

we have used a backlit optical microscope equipped with an objective with a 

magnification of 10 to image arrays of particles. Typically around 3 dozen 

images containing 300-600 individual particles were produced and used to 

determine the size distribution of the sample using the following algorithm. 

First, particles were differentiated from the image background by the pixel 

brightness; second, to account for particles lying on top of each other in the 

images, the identified particles were artificially eroded until they separate and 

then rebuilt until they touch; particles in contact with the image edge were 

discarded; a minimum particle size was set to remove a background of smaller 

particles from each image; the area of each particle was then calculated 

(pixels were converted to µm2 by reference to a standard 1 µm image). Control 

of the minimum size and pixel brightness threshold allow the analysis to 

function even for moderately transparent or reflective particles. Each particle 
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area was converted to an equivalent circular radius, and the resulting particle 

size distribution was then fitted to a log-normal distribution and normalised to 

a probability density function for comparison. 

The erosion and reconstruction process introduces several uncertainties into 

the analysis. First, the volume of a particle which lies on top of another is not 

counted, giving a downward bias in the estimated size, while imperfect 

separation of particles where the distance of contact is similar to the particle 

dimensions leads to an upward bias. Treating particle radius based on area is 

a major assumption of this method. For example, if the particle contacts a 

substrate or gas medium in profile then this may be valid, provided that the 

particles lay similarly in situ to their position on the microscope slide. However 

if volume properties (such as optical extinction) of the material is to be 

investigated then this method would likely overestimate the volume 

distribution, since gravitational settling on the surface of the microscope slide 

will tend to favour the particles laying horizontally. This would result in the 

shortest available vertical dimension (which is neglected here). 

Example images for two of the meteorites and two of the terrestrial minerals 

discussed here are shown along with the measured size distributions for the 

Chergach meteorite in Figure 2.10. Figure 2.10 (b) shows the result of 

analysing Figure 2.10 (a), some overlapping particles have been separated 

and all which were touching the image edge have been discarded. The sizes 

of the remaining particles are used in determining the size distributions. These 

observed distributions have mean sizes within the stated pore size of the 

sieves used for separation.  
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Figure 2.10: Example microscope images of the 75-125 µm radius fraction 
for (a) the Chergach meteorite, (c) the Allende meteorite, (d) the peridot 
olivine and (e) the albite samples. (b) shows the particles found by the 
image analysis software (described in Section 2.2.5) in (a) (scale as (a)). 
(f) shows a comparison of the measured probability density functions for 
each of the Chergach size bins investigated in this study. Mean radii are 
marked and limits set by sieves used for separation are given in the 
legend. 
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In general, materials which form needle-like particles (e.g. albite, see Figure 

2.10 e) give slightly larger sizes in this analysis since they are better able to 

penetrate the pores in the sieves. Where each particle has been treated as an 

elypsoid with semi-major (longest) and semi-minor (shortest) axes of 

symmetry, this is shown for two size bins of the Chergach sample in 

Figure 2.11 by plotting the ratio of axes against the semi-major axis. There is 

a clear trend within both size bins for the larger particles to be less spherical.  

 

Figure 2.11: The ratio of the semi-major to semi-minor axes against the 
equivalent spherical radius of two size distributions of Chergach 
particles. The trend of larger particles having smaller ratios shows that 
larger particles are less spherical. 

 

Size analysis techniques for smaller particles generally involve suspending 

particles in either a gaseous (e.g. Scanning Mobility Particle Size (SMPS) 

analysis [Liu and Deshler, 2003]) or liquid (e.g. Dynamic Light Scattering 

(DLS) [Chu, 2008]) medium. Aggregation can influence the results of these 

experiments such that in some cases only the limits of particle sizes are 

measurable. Measurements by both SMPS and DLS have shown that the 

MgxFe2-xSiO4 analogues discussed here have primary particle radii on the 

order of 200-500 nm. This is demonstrated by example SMPS (TSI-3080)  

spectra shown in Figure 2.12. Here particles were levitated into an N2 flow 

using a loudspeaker, passed through an impactor (TSI 1034900, nozzle 

diameter 0.71 mm, D50 = 1286 nm) and the size distribution measured 

downstream. TEM imaging shows the presence of some particles on smaller 

scales (down to 10s of nm). 
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Figure 2.12: Example SMPS size distributions for the MgFeSiO4 analogue 
entrained in a gas flow using an acoustic dust levitator. A log normal 
distribution with mean radius of 288 nm and width 0.341 respectively is 
shown for comparison (Pers. Comms. D. Moon, University of Leeds, 
2015). 

Proper measurement and interpretation of particle sizes is extremely specific 

to the application in question, however one general point to note is that while 

generating analogues to IDPs on the appropriate scale is relatively easy, the 

relatively small size of MSPs (molecular dimensions up to 100 nm radii 

[Bardeen et al., 2008]) means that manufacturing analogues for these 

particles in sufficient quantity for many experiments is extremely challenging. 

Instead (as here) analogues likely to behave similarly are generated and the 

measured properties (e.g. rates or extinctions) extrapolated to 

atmospherically relevant particle sizes. 

Another volume dependent quantity which can be important for experimental 

applications is the mass density of the analogue. Mass densities for some of 

the analogues discussed here are given in Table 1. The synthetic samples 

have densities significantly lower than for their equivalent bulk minerals, 

including those materials which are crystalline. This suggests a significant 

porosity, in agreement with the morphology described above for the 

MgxFe2-xSiO4 materials. Jessberger et al. [2001] also noted a significant 

porosity in collected micrometeorites and IDPs. 
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2.3 Discussion 

2.3.1  General 

The meteorite samples discussed here represent a range of types (CC and 

OC, differing metamorphic groups). Whilst CC materials such as CI and CM 

appear to dominate the IDP flux, design of experiments using meteorites as 

IDP analogues is generally restricted to those types for which large masses 

of sample are readily available. The elemental composition, heterogeneity and 

crystal structure data presented indicate, however, that in many cases OC 

meteorites or even single minerals represent suitable analogues to IDPs (even 

beyond the 10 % of IDPs which are OC material). Murchison is a good 

example of an aqueously altered chondrite (group 2) and contains significant 

hydrated minerals such as philosylicates, as found in fine grained IDPs [Taylor 

et al., 2012]. These phases will dehydrate and recrystallise when heated and 

so will most likely ablate similarly to the feldspathic minerals present in OCs. 

In addition, analysis of the NWA meteorite shows that there are large 

deviations within CC meteorites, and that many of these may be useful only 

for examining extreme or rare cases of IDPs. For example, studies are 

underway at the University of Leeds into differential ablation using a new 

Meteor Ablation Simulator (MASI) instrument [Gómez Martín et al., 2016 - 

Unpublished results]. Kearsley et al. [2009] produced cometary analogues for 

impact studies in aerogel and Al foil by aggregating mineral fragments using 

an acrylic adhesive. These analogues provide excellent insights into the 

collection of IDPs and cometary dust in aerogel. However, from the point of 

view of chemical ablation studies, which take place on a relatively long time 

scale compared to impact and where the adhesive may cause undesired 

interferences, further characterisation experiments are required. The 

adhesive coating would also be likely to interfere with surface science 

experiments, where the mineral surface should be exposed to be observed 

directly. 

Saunders and Plane [2011] have described a method of producing MSP 

analogues by photolysis of chemical precursors which then recondense in the 

gas phase. Amorphous MgxFe2-xSiO4 materials and Fe oxides are produced 

with a primary particle radius of 5-10 nm. These small primary particles 

agglomerate to produce fractal-like particles, likely a good representation of 

environmental MSPs. These particles have been probed for their optical 

properties and ice nucleating ability [Saunders et al., 2010; Saunders and 

Plane, 2006]. We note that the amorphous nature found for those particles is 

similar to that described here. Where the primary particle radius is 5-10 nm, 
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this sets the upper limit of the crystallite size similar to MgxFe2-xSiO4 sheets 

with maximum thicknesses / domain radii of several nm (Figure 2.9). 

One significant difference is that the photochemical methods are able to 

produce Fe oxides which are amorphous, whereas we only observe crystalline 

products. This may simply be due to the size of the crystallites formed. 

Whereas in the photochemistry experiments many particles nucleate, take up 

the available precursor and at some point grow faster by agglomeration than 

deposition to existing particles, our solution phase synthesis allows relatively 

fewer particles to grow to larger sizes at which their crystallinity is measurable. 

Since MSP remain at small sizes, the photochemical method is likely more 

representative, so that care should be taken when using the materials 

synthesised by sol-gel processes as analogues for MSP. 

Biermann et al. [1996] used micrometeorites as analogues for MSP nucleating 

crystallisation in polar stratospheric clouds and found that nucleation rates 

were not high enough to explain observed cloud. As the authors in that study 

observed, micrometeorites are generally compact, dense particles coated with 

magnetite crystals, which form due to serpentenisation of olivine after the IDPs 

reach the surface. MSPs which are present in stratospheric droplets, on the 

other hand, will have been processed and largely dissolved by the acidic 

content of those droplets [Saunders et al., 2012]. Murphy et al. [2014] used 

single particle mass spectrometer measurements to show that silicon and 

aluminium in such droplets are generally solid while most other metals are in 

solution. A silica or alumina substrate would therefore seem more appropriate 

for investigating nucleation in polar stratospheric clouds. 

Nachbar et al. [2016]_ENREF_15 used photolysis of chemical precursors to 

produce very small (several nm radii) particles, which were held in an ion trap 

at supersaturated conditions and used to measure nucleation kinetics and 

particle growth of CO2 phases. These particles are alike both in size and 

composition to MSPs and therefore are highly appropriate as MSP analogues. 

As with the photochemical technique of Saunders and Plane [2011], the 

difficulty in using this material to investigate a wider range of applications lies 

in producing bulk amounts (e.g. typically several grams are required for uptake 

experiments). 
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2.3.2  Recommended Analogues for Specific Applications 

With this discussion in mind, conclusions can now be drawn about which 

materials are most suitable for use as analogues to meteoric material in 

certain circumstances. The following are specific examples and each case 

should be taken individually. 

Studies of the ablation of IDPs 

CI or CM chondrites, where available, remain the best known analogue for 

unablated IDPs. Where sample availability is an issue these can be 

substituted with OCs. The major caveat to this is that chondrules will be 

overrepresented as a volume or mass fraction of the total material. Such 

studies should therefore be supplemented by studies of individual materials 

so that signals due to different components of the MM sample can be 

understood. 

Surface reactivity of unablated MM 

Since surface reactivity of a mixed material can be disproportionately 

controlled by individual components of the mixture the true surface area of the 

active material in that case would be difficult to estimate. CI/CMs are therefore 

not suitable for use as analogues for the surface reactivity of IDPs since it is 

known that this would over represent some surfaces. Instead, reactivity of a 

range of individual minerals should be measured and atmospheric surface 

areas of each estimated. 

Surface reactivity of MSPs 

Further to the above discussion of reactivity of unablated MM, the fractal 

agglomerate nature of MSPs should be considered whenever their reactivity 

is investigated. These amorphous or nano-crystalline materials may have 

significantly different reactivity to bulk crystalline minerals. Amorphous 

materials of reasonable composition are therefore the most appropriate 

candidates. Careful consideration of the composition of the atmosphere 

should also be made in these studies. It is thought (see Chapter 1) that MSPs 

in Earth’s atmosphere are composed of metal silicates or oxides, however in 

reducing atmospheres (e.g. Titan) the composition may be quite different. The 

photochemical method described by Saunders and Plane [2006] notably 

produces such amorphous materials with a fractal morphology similar to that 

expected of MSPs, however this technique is limited in its ability to produce 

large sample masses for surface science studies. Sol-gel techniques should 

therefore be used where more sample is required. 
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Crystal nucleation in polar stratospheric cloud by MSPs 

This has been included here as a special case of MSP reactivity since 

meteoric material is often speculated to be the nucleating material in polar 

stratospheric clouds. As MSPs are transported into the stratosphere they will 

take up sulfuric acid and partially dissolve in the resulting acidic liquid (see 

Chapters 1 and 4). [Bogdan et al., 2003] suggested that the high temperature 

preparation of fumed silica may result in a material which is morphologically 

similar to MSPs. Indeed electron micrographs from that study compare most 

favourably to those taken by Saunders and Plane [2006] of photochemically 

produced MSP analogues, as shown in Figure 2.13. Fumed silica therefore 

ought to be a good analogue for MSPs which cause nucleation in the 

stratosphere. 

 

Figure 2.13: (a) TEM image of photochemically produced Fe2SiO4 MSP 
analogues with a fractal morphology likely representative of the 
atmospheric material (reproduced from Saunders and Plane [2006]). (b) 
TEM image of fumed silica showing a remarkably similar morphology 
(reproduced from Bogdan et al. [2003]). 
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2.4 Conclusions 

This chapter has demonstrated the preparation of a variety of analogues for 

IDPs and MSPs. The methods involved can be employed by other researchers 

since they are simple and use materials which are widely available to the 

scientific community. No general comments are made here as to the best 

analogue to use for a given application. Instead some common issues are 

raised in order to help researchers choose materials for a wide range of 

applications. 

It has been shown that reasonable analogues for IDPs can be produced by 

grinding and size segregating meteoritic material. The elemental composition 

of such analogues will vary slightly from the target material but phases which 

are present in IDPs will be well represented in ground meteorites. OCs are 

scarce in micrometeorite collections but samples of OC meteorites are much 

easier to source than CCs. Although ground OCs produce denser, more 

compact analogues, elemental compositions and mineralogy are reasonably 

close to those of average IDPs. Terrestrial materials such as peridot olivine, 

labradorite, anorthite and albite, when similarly ground, are good analogues 

for individual phases within IDPs, particularly for applications such as 

instrument calibration where paucity of sample can be an issue. In the cases 

of both meteorites and terrestrial minerals it was shown that mechanical 

sieving can reliably produce target particle size fractions which are 

representative of IDPs. 

Chemical syntheses were presented for compounds with elemental 

compositions similar to the olivine solid solution series. These are thought to 

be nanocrystalline folded sheets. The large surface area presented by this 

morphology allows measurement of relatively unreactive processes which 

occur at the interface, whilst the elemental composition is similar to that 

expected for MSPs. 

A chemical synthesis was also presented for crystalline goethite, which could 

be dehydrated to produce hematite. These are potential components of MSPs. 

The crystalline nature of these materials may not be representative of MSPs; 

nevertheless for some applications they may still be considered suitable 

analogues. 

Finally, it is clearly of great importance that in laboratory experiments where 

analogues are used for IDP or MSP materials, careful attention is paid to 

characterising the analogue and ensuring that the limitations of its applicability 

are understood. 



- 82 - 

 

Chapter 3 

Reactive Uptake of HNO3 and HO2 in the Middle Atmosphere 

Heterogeneous uptake of reactive species to the surface of Meteoric Smoke 

Particles (MSPs) can perturb the atmospheric composition in the upper 

stratosphere and mesosphere, as discussed in Chapter 1. This chapter 

describes global modelling studies of the uptake of two species, HNO3 and 

HO2. Parameterisations of uptake based on laboratory experiments have 

been included alongside MSPs in the Whole Atmosphere Community Climate 

Model (WACCM) coupled to the Community Aerosol and Radiation Model for 

Atmospheres (CARMA). Comparison of model runs with and without uptake 

shows significant impacts of MSPs on atmospheric concentrations of HNO3, 

and HO2. 

Whilst the effect on HO2 is confined to the polar vortex in the upper 

stratosphere, HNO3 is removed throughout the winter hemisphere. The effect 

of uptake to MSPs on HNO3 is overestimated at altitudes below 35 km since 

interactions with H2SO4, which will deactivate the surfaces of the particles, 

have not been included in these model simulations. For HNO3, the uptake 

coefficient was varied to investigate the potential impact of temperature 

dependent uptake on the results. 
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3.1  Methods 

In order to assess the impacts of MSPs on the atmospheric concentrations of 

reactive species (unablated IDPs will be tens to hundreds of µm in radius and 

thus sediment too quickly to perturb concentrations) models which treat both 

MSPs and heterogeneous uptake are required. 

A clarifying note on terminology; here altitudes are presented in terms of 

pressures. These can be approximately converted to altitudes via the scale 

height [Yung and DeMore, 1999], however as pressure is the more physically 

relevant unit it is used throughout this chapter. Reference to altitudes “above” 

a certain pressure should be taken to mean “at higher altitude” rather than “at 

higher pressure (i.e. lower altitude)”. 

Agglomeration and transport of MSPs and heterogeneous uptake to their 

surfaces was modelled (see acknowledgements for details of collaborations) 

in the 3-dimentional (global) model WACCM-CARMA [Bardeen et al., 2008]. 

WACCM is a numerical model extending from the surface to 140 km. Here we 

have used version 4 (with NCAR Community Earth System Model 1.0.3 as 

common numerical framework), which has 88 hybrid σ-pressure vertical 

coordinate levels (each having pressure of 1000 - n × 5.96 × 10-6 hPa) with 

latitudinal, longitudinal and time resolution of 1.9 ° and 2.5 ° and 30 minutes, 

respectively [Feng et al., 2013]. The model has a very detailed description of 

atmospheric processes, including nonlocal thermodynamic equilibrium, 

radiative transfer, auroral processes, ion drag, and molecular diffusion of 

major and minor species and an interactive chemistry module, thereby 

resolving most known neutral chemistry and major ion chemistry in the middle 

and upper atmosphere. Each field is calculated at 30 minute time steps. 

To facilitate comparison between model runs, allowing investigation of single 

additional processes, WACCM-CARMA was run with Dynamics Specified 

(SD-WACCM) from the Goddard Earth Observing Systems model (GEOS-5). 

GEOS-5 data for the years 2005 to 2010 was combined with (“nudged”) 1 % 

of the WACCM meteorological fields (temperature, winds, surface pressure, 

specific humidity, surface wind stress, latent and sensible heat flux etc…) at 

every model dynamics time step. This nudging factor then reduces linearly 

from 1 to 0 % between 50 and 60 km, above which the model is free-running. 
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3.1.1 Modelling Atmospheric Meteoric Smoke Particles 

Particles of molecular radius (r = 0.2 nm) were injected into WACCM-CARMA 

from 75-100 km, with the peak injection at 83 km - the altitude where MSPs 

are known to form [Hervig et al., 2009; Plane et al., 2014; Rapp et al., 2012; 

Robertson et al., 2014]- and allowed to agglomerate collisionally. The total 

injection rate is scaled to give a global flux of ablated particles of 44 t d-1 (see 

Section 1.1). This is clearly a simplification of the full nucleation / condensation 

/ agglomeration growth processes which lead to MSPs in the atmosphere, 

however similar modelling which treated 0.2 nm particles forming from 

reaction of precursors and also allowed condensational growth of smaller 

particles lead to similar size distributions; with the largest particles reaching 

100 nm diameters (pers. comms. J. M. C. Plane, Leeds University, 2013). 

As discussed in Chapter 1, MSPs are assumed to be compact spheres with 

associated surface area. At the sizes reached sedimentation is negligible, so 

MSPs are transported by the atmospheric circulation. Since they form 

relatively evenly across the mesosphere, this means that they are carried to 

and concentrated in the polar vortex, which transports them from the 

mesosphere to stratosphere. This much of the process has been modelled 

using WACCM [Bardeen et al., 2008]. 

Further transport processes have been examined using other global models. 

The results show that a minor population of MSPs then spread out and are 

transported to low latitudes, where tropospheric folding allows them to cross 

the tropopause [Dhomse et al., 2013]. Most are incorporated into Polar 

Stratospheric Cloud (PSC) aerosol, which grow large enough to sediment and 

cross the polar tropopause (modelled deposition rates are at least 10 times 

higher at midlatitudes compared to equatorial regions). Once in the 

troposphere MSPs will reach the ground by a variety of wet and dry deposition 

mechanisms. Modelling of transport and deposition of radioactive 238Pu oxide 

nano-particles formed on ablation of a satellite power unit has shown that this 

transport from ablation to deposition takes around 4 years [Dhomse et al., 

2013]. 
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3.1.2 Modelling Heterogeneous Uptake in the Atmosphere 

Robust modelling of atmospheric species clearly requires a treatment of all 

effective sources and sinks of that species. This chapter aims to demonstrate 

whether uptake to MSPs can impact the atmospheric concentrations of HNO3 

and HO2. 

Uptake of a gas-phase species, x, to a solid surface is a first order process 

where the rate constant is given by the product of the rate of collisions, k* / s-1, 

with the surface and the probability that a collision results in loss from the gas 

phase; the uptake coefficient, . This gives the rate equation: 

𝑑[𝑥]

𝑑𝑡
= − 𝑘∗[𝑥]    (3.1) 

where t is time. k* is related to the molecular mean speed, 𝑐̅ / cm s-1, and 

available surface area, as / cm2, by: 

𝑘∗ =
1

4

𝑎𝑠

𝑉
𝑐̅ 

where V / cm3 is the gas volume under consideration. 𝑐̅ is given by: 

𝑐̅ = √
8𝑘𝐵𝑇

𝜋𝑚𝑥
 

where kB is the Boltzmann constant, T the ambient temperature and mx / kg is 

the molecular mass of the species of interest. This inherently neglects 

diffusion of the gas phase species into the bulk of larger particles, however 

the speculative mechanisms of uptake in the cases of both HO2 and HNO3 

suggest that diffusion will be minor. 

This kinetic expression was applied in SD-WACCM, along with the available 

surface area of MSPs and the atmospheric concentration of either HNO3 or 

HO2. This involves an inherent assumption that uptake to the surface is 

irreversible. In reality there may be a reduction in the available surface area 

of MSPs; otherwise evaporation, possibly following a reaction, may make 

these sites available again (see Section 3.2.6).  

Values of  based on laboratory measurements (see Section 3.1.3 and 

acknowledgements) have been used as the basis for SD-WACCM simulations 

of atmospheric uptake. A variety of model runs investigating the uptake of 

HNO3 and HO2 onto MSPs were carried out and are summarised in Table 3.1. 

A control run was performed to evaluate WACCM as a tool by comparison to 

observations. This also establishes a baseline for atmospheric concentrations 

of species of interest. Individual processes were then introduced to the model 

and any differences assessed to evaluate the sensitivity of the atmosphere to 
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those processes in relation to others which are already included. HNO3 of 

0.002, 0.02 and 1 were applied to represent; the value measured at room 

temperature, a factor of 10 increase to account for the effects of low 

temperature and the maximum possible uptake, respectively. This is intended 

as a study of the sensitivity of uptake to , which could inform future studies 

aiming to properly quantify the impacts of heterogeneous uptake. A further run 

was performed with HO2 of 0.2, chosen as the measured room temperature 

value with a factor ~3 increase to account for temperature dependence. 

 

Table 3.1  WACCM-CARMA (version 4, CESM 1.0.3) runs carried out. All use 
the MSP scheme of Bardeen et al. [2008] with a total ablated mass flux 
of 44 t d-1. This is injected as 0.2 nm radius particles between 
75 and 100 km, with the peak injection rate at 83 km to simulate the 
formation of MSP from the mesospheric metal layers. 

Run Species taken up Uptake Coefficient 

Control None - 

HNO3 measured HNO3 0.002 

HNO3 T HNO3 0.02 

HNO3 max HNO3 1 

HO2 HO2 0.2 

 

During transport, MSPs interact with a number of species other than the HNO3 

and HO2 discussed here. Notable interactions which have not been treated 

here include H2O and H2SO4. Previous modelling has shown that below 

~40 km (2 hPa) MSPs start to take up H2SO4 [Neely et al., 2011; Saunders et 

al., 2012]. This will block access to active sites on the surface of the MSPs 

and eventually leads to their incorporation into stratospheric sulfate aerosol. 

Modelling this process is beyond the aims of this study, since it would require 

tracking of several arrays of particles, interacting with each other and 

gas-phase species, which would be computationally expensive for the multiple 

runs required here (see Table 3.1). Impacts observed at low altitudes will 

therefore be overestimated since this reduction of activity has not been 

included. Possible interactions of H2O with the uptake process are discussed 

in Section 3.1.3. 
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3.1.3 Measurement of Uptake Coefficients 

Laboratory measurements of uptake coefficients can be carried out in many 

ways. In most cases, a flow of gas containing the target species is allowed to 

interact with the target aerosol and the loss of species compared to an 

experiment in the absence of aerosol is used to evaluate the uptake coefficient 

via the solution to equation (3.1): 

 =
4𝑉

𝑎𝑠𝑐̅
ln (

[𝑥]0

[𝑥]𝑡
)    (3.2) 

In some methods work is carried out in the Knudsen regime, where the 

gas-phase pressure is low enough such that gas-surface interactions 

dominate over gas-gas [Hanisch and Crowley, 2001]. In others corrections are 

applied for diffusion of the target species through a gaseous medium to the 

heterogeneous surface [Matthews et al., 2014]. 

Here  values measured on the Mg2xFe2-2xSiO4 analogues described in 

Chapter 2 in two experimental studies have been adapted for atmospheric 

applications. See the acknowledgements in the front matter of this thesis for 

full details of collaborations in these studies. 

HNO3 values were measured in a Knudsen cell, where a sample of particles 

was held behind a movable flap and HNO3 / He gas mixtures were passed 

through the cell and measured with a mass spectrometer (QMS, Hiden 

HPR-60 EPIC).  Particles were isolated or allowed to interact with the gas flow 

and any observed drop in signal was used to calculate HNO3 values. See 

Frankland et al. [2015] for further details. Experiments were carried out with 

and without H2O coating the particle surface. An example is given in 

Figure 3.1, where uptake of both H2O and HNO3 is evident. The H2O signal 

gradually returned to the background level over the one hour exposure, 

suggesting that the surface became saturated with H2O. The HNO3 signal, 

however, did not recover indicating that the surface was not saturated on this 

timescale. 
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HO2 values were measured by entraining particles in a flow of N2 (using 

agitation from a loud speaker) and passing them down a flow tube with a flow 

of HO2 / N2. Particle size distributions were measured by a Scanning Mobility 

Particle Sizer (SMPS, TSI, 3080, see Figure 2.12), total number concentration 

was measured by a Condensation Particle Counter (CPC, TSI 3775) and the 

HO2 signal is measured by the Florescence Assay by Gas Expansion (FAGE) 

technique. Upstream of the flow tube, particles were conditioned in a drift tube 

at variable relative humidity. HO2 / N2 gas mixtures were introduced into the 

flow tube using a sliding injector so that the contact time with the particles 

could be varied. See James et al. [2016] for further details. Figure 3.2 shows 

an example of the effect of different number concentrations of MSPs on the 

HO2 signal. There is a clear loss of signal when particles are introduced (a), 

which gives a straight line when plotted as a natural logarithm (b). By 

equation (3.2), the gradient of this line is then (HO2 𝑐̅ as t) / 4. Figure 3.3 then 

shows a plot of (HO2 𝑐̅ as t) / 4 against contact time, from which a linear fit 

allows HO2 to be calculated. The uptake coefficients measured in each study 

are summarised in Table 3.2. 
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Figure 3.1  Mass Spectrometer signals for (a) H2O and (b) daughter species 
of HNO3. The black arrows indicate times at which the gas flows were 
allowed to contact the surface of MSP analogues by opening and closing 
a movable flap. Exposure to the particles creates a clear signal drop, 
indicating that gas-phase species have been taken up on the solid 
surfaces. See Frankland et al. [2015] for further details. 
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Figure 3.2  (a) The anti-correlation of HO2 signal to number concentration of 
Fe2SiO4 MSP analogue particles (at 9.9 % RH with an injector to detector 
distance of 70 cm). (b) Example plot showing the HO2 signal variation 
with Fe2SiO4 aerosol number concentration, also at 9.9 % RH for three 
fixed contact times as shown in the legend. Means and standard 
deviations of three condensation particle counter and FAGE 
measurements are shown (as points and error bars, respectively). 
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Figure 3.3   Plot of the dimensionless quantity (HO2 𝑐̅ as t) / 4 as a function 

of reaction time for uptake of HO2 onto fayalite at a RH = 9.9%. The 

linear least-squares fit to these point yields (HO2 𝑐̅ as) / 4 as the 

gradient; (6.3 ± 1.4) × 10-6 in this case; from which 

HO2 = (7.3 ± 0.4) × 10-2 was obtained. The error bars represent 2 

standard deviations in the individual exponential fits, examples of which 

are given in Figure 3.2 (b). 

 

Table 3.2  Uptake coefficients measured in the laboratory. 

MSP analogue 

(see Chapter 2) 

Gas-Phase 

species 
H2O conditions 

Uptake 

Coefficient 

MgFeSiO4 HNO3 Dry 0.0018 ± 0.0003 

MgFeSiO4 HNO3 Pre-saturated 0.0019 ± 0.0005 

MgFeSiO4 HO2 10 % RH 0.069 ± 0.012 

MgFeSiO4 HO2 20 % RH 0.186 ± 0.017 

Fe2SiO4 HO2 9.9 % RH 0.073 ± 0.004 

Mg2SiO4 HO2 11.6 % RH 0.0043 ± 0.0004 
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Although H2O readily coated the surface of the MSP analogues (see 

Figure 3.1 (a)), pre-saturating the surface with H2O was found to have a 

negligible effect on the measured HNO3. This suggests that the two species 

occupy different active sites on the surface. In the atmosphere, then, uptake 

of H2O may not significantly affect the uptake of HNO3. 

HO2 was found to strongly depend on the conditioning RH (increasing by a 

factor of ~2.5 between 10 and 20 % RH). Recent measurements have shown 

that HO2 uptake tends to be more rapid for higher RH (See Figure 3 in Lakey 

et al. [2015] and Figure 6 in Matthews et al. [2014]. This is either due to 

dissolution of Transition Metal Ions (TMI, although note that as droplet size 

increases the concentration of TMI decreases so that the uptake would begin 

to reduce again in large droplets) or a HO2.H2O complex may form on the 

surface and react more rapidly than HO2 radicals in a similar mechanism 

[Stone and Rowley, 2005]. As the ambient conditions move toward the low 

RH present in the middle atmosphere (see Figure 3.5 (e)) a kinetic steady 

state will be reached where a mechanism not involving H2O will dominate. 

This will cause the uptake coefficient to stabilise, as seen for example in 

measurements on humic acid (Figure 3 in Lakey et al. [2015]). Measurements 

of HO2 at lower RH could not be carried out since H2O is required to produce 

HO2 in the experiment. The uptake coefficient of ~0.07 measured on 

MgFeSiO4 and Fe2SiO4 likely holds for lower RH at room temperature.  

At colder atmospheric temperatures the uptake coefficient is likely to increase. 

If the rate determining step in the uptake process is accommodation on the 

surface then  will be identical to the accommodation coefficient, which is 

known to increase at lower temperatures [Hayward et al., 1967]. If there is a 

significant thermodynamic barrier to uptake, for example if a chemical reaction 

is required, then the reverse temperature dependence may be true. In 

Section 3.2.6 it is argued that there are not likely to be significant energy 

barriers on the reaction surface of the HO2 uptake process, so the former 

temperature dependence is the more likely. Uptake coefficients as shown in 

Table 3.1 were therefore chosen to determine whether uptake of HNO3 or HO2 

can significantly perturb the atmosphere. 
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3.2 Results 

3.2.1 Evaluation of SD-WACCM 

To assess the validity of SD-WACCM as a tool for atmospheric modelling, 

January 2005 monthly and zonally averaged data from the control run is 

compared to measurements from the Mesospheric Limb Sounder (MLS) 

radiometer aboard the AURA satellite in Figure 3.4. The model data have 

been sampled using the averaging kernels from the satellite data to facilitate 

a like with like comparison. There is broad agreement in the magnitude and in 

the latitude and altitude trends of both species. 

Since evaluating WACCM’s ability to accurately model the atmosphere is not 

an aim of this thesis, detailed comparisons of these data will not be made 

here, though they are present in the literature [Livesey et al., 2011; Millán et 

al., 2015]. Here we will simply say that WACCM is considered a suitable tool 

for assessing whether introduction of a new process significantly perturbs the 

model, and therefore whether that process is likely to be important in the 

atmosphere.  
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Figure 3.4  Comparison of abundance (ppb) of HNO3 and HO2 from a WACCM-CARMA control run (without any heterogeneous uptake, 
bottom panels) to observations from the MLS radiometer aboard the AURA satellite. HNO3 is shown in the left panels and HO2 on 
the right. WACCM data has been sampled at the same averaging kernels as the observations. Colour bars shown apply to both 
panels vertically and should be interpreted with care since non-linear colouring has been used to accentuate some features.
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3.2.2 First Order Effects of Uptake 

The effect of introducing heterogeneous uptake is shown in Figure 3.5. 

Percentage differences in mixing ratio from the control run, zonally averaged 

at 80° S are shown for the (a) HNO3 measured, (b) HNO3 T, (c) HNO3 max 

and (d) HO2 runs. Percentage Relative Humidity (RH, panel (e)) and available 

surface area of MSPs / µm2 cm3 (f) are also shown for information. Losses of 

both HNO3 and HO2 clearly correlate to the presence of MSPs, with both 

occurring in the winter months as mesospheric air masses travel down the 

polar vortex. The effect of the uptake coefficient is demonstrated in 

comparison of panels (a), (b) and (c). At HNO3 = 0.002, some periodic loss of 

HNO3 was observed at and below the 5 hPa, at HNO3 = 0.02 this increases to 

almost complete (>80 %) loss with the effect also visible at all altitudes in 

some years and at HNO3 = 1 this almost complete loss is evident at all 

altitudes. A periodic loss of up to 60 % of HO2 was also observed between 

1 and 0.1 hPa (panel (d)). Similar trends are seen in the Northern polar winter 

(data not shown), but are complicated by the variability of the boreal polar 

vortex. 

There is a notable difference in the altitude behaviour of HNO3 and HO2. 

Whilst reactive uptake removes HNO3 over the full altitude range investigated, 

HO2 only changes significantly above 1 hPa. This implies that a different loss 

mechanism is dominant for HO2 at lower altitudes; however for HNO3 no other 

mechanism considered is faster than heterogeneous uptake. Regional trends 

in the results are discussed below in light of their latitude dependence 

(Figure 3.7). 

Since both experimental studies showed the importance of the presence of 

H2O, the percentage RH from the control run is shown in panel (e). This shows 

that this region of the upper stratosphere and mesosphere is remarkably dry, 

with significant RH occurring only in the summer mesosphere and winter 

stratosphere. HNO3 uptake was shown to be independent of pre-saturating 

the MSP analogue surface with H2O (see Section 3.1.3), implying that the 

significant H2O concentrations concurrent with the MSP presence likely do not 

impact on the HNO3 loss. Since HO2 loss is confined to higher altitudes and 

winter months, the uptake process will likely proceed via a mechanism which 

does not involve H2O. The presence of H2O and other species is also 

discussed further below in light of the latitude dependence and mechanisms 

of uptake (Figure 3.7 and Section 3.2.6, respectively). 
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Figure 3.5  % difference in mixing ratio between control run and runs with (a) HNO3 uptake using the measured uptake coefficient 
(HNO3 measured), (b) HNO3 uptake with a 10 fold increase on the measured uptake coefficient to account for temperature 
dependence (HNO3 T), (c) HNO3 with the maximum uptake which is physically possible (HNO3 max) and (d) HO2 with an uptake 
coefficient ~3 times larger than that measured, to account for temperature dependence. % relative humidity (e) and the available 
surface area of MSPs / µm2 cm-3 (f) from the control run are shown for information. All data are shown zonally averaged at 80° S. 
Colour bars should be interpreted with care since non-linear colouring has been used to accentuate some features.
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3.2.3 Trends in the Effects of Uptake 

Figure 3.6 shows the percentage change in HNO3 at the 10 hPa level, zonally 

averaged at 80° S with means of August 2007-2009 shown as data points and 

standard deviations as error bars. The dashed line is a guide to the eye, 

showing that at low HNO3, the loss of HNO3 is more sensitive to HNO3 than at 

higher HNO3, where availability of HNO3 becomes rate limiting. Such sensitivity 

is advantageous in atmospheric modelling of the uptake process, given that 

the temperature dependence of HNO3 is difficult to quantify experimentally 

(see Section 3.1.3). Where suitable atmospheric observations are available, 

this could be used to quantify the most appropriate  values for atmospheric 

modelling (see Chapter 6). 

 

 

Figure 3.6 % change in HNO3, zonally averaged at 80° S and 10 hPa. 

Points are the mean of August 2007, 2008 and 2009 with standard 

deviations shown as error bars. The dashed line is simply a guide to 

the eye, showing that at higher HNO3 the impact on atmospheric HNO3 

is less sensitive to changes in HNO3. 
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Figure 3.7 shows the latitude dependence of the percentage difference in 

HNO3 (panels (a),(b) and (c)) and HO2 (d), zonally averaged for June 2009. 

The difference evident between HNO3 and HO2 in the altitude dependence 

over time is also seen here. This is reasonable since the major loss pathways 

(aside from heterogeneous uptake, see Section 1.2 and Figure 1.6 [Brasseur 

and Solomon, 1998]) for HNO3 are photolysis and reaction with OH which do 

not occur in the dark polar vortex (photolysis lifetime of HNO3 is 104 s above 

1 hPa in the summer but photolysis is negligible in the winter and typical OH 

concentrations at 1 hPa near the poles in the control run are on the order of 

1 × 103
 cm-3 in winter, which given the rate coefficient 

b27 = 7.2 × 10-15 exp(785/T) molecules-1 cm3 s-1
 implies a lifetime for HNO3 

destruction by OH which is longer than the winter months). For HO2 though, 

the major loss pathway is chemical reaction with O3, which is competitive in 

the polar vortex (typical winter O3 concentrations at 1 hPa near the poles on 

the order of 1 × 1010 cm-3 and rate coefficient of 

1.4 × 10-14 exp(-580/T) molecules-1 cm3 s-1 giving e-folding lifetimes of 

approximately 1 day). 

This is significant since removal of HNO3, as demonstrated here but not 

included in the HO2 run, will have impacts on other species, particularly NOx 

and O3 (see Section 3.2.4), and therefore by slowing chemical loss could alter 

the importance of heterogeneous uptake relative to gas-phase loss of HO2.
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Figure 3.7  Latitude dependence of % difference in mixing ratio for June 2009 between the control run and runs (a) HNO3 measured, 
(b) HNO3 T, (c) HNO3 max and (d) HO2. For HNO3 the entire southern hemisphere is affected, whereas for HO2 the loss due to 
heterogeneous uptake is negligible at latitudes lower than ~50° S.  The colour bar shown applies to all panels and should be 
interpreted with care since non-linear colouring has been used to accentuate some features.
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One important implication of the fact that HNO3 uptake affects all latitudes is 

that the impact could be cumulative over multiple years as air masses 

depleted in HNO3 and associated species are able to spread throughout the 

atmosphere. Such a cumulative effect is not observed in the WACCM runs, 

suggesting that the various sources of these species throughout the year are 

able to compensate for the loss of HNO3 in the winter polar vortex. The lack 

of treatment of interactions of MSP with H2SO4 and H2O are also important 

here, since coating of surfaces and, eventually, incorporation into 

stratospheric sulfate aerosol will make the active surfaces of MSP 

inaccessible to HNO3. The uptake of H2SO4 in the atmosphere has been 

investigated previously and found to occur below 40 km (~2 hPa) [Neely et al., 

2011; Saunders et al., 2012]. This means that much of the uptake observed 

at lower altitudes and after transport to lower latitudes is likely spurious. 

Nevertheless, in the HNO3 T and HNO3 max runs there is a clear change 

above this altitude. Considering these two uptake processes in isolation and 

without treatment of the interaction between MSP and H2SO4 will not be 

sufficient to quantify these impacts, particularly in relation to the temperature 

dependence of . As a result, no comparison is made in this study between 

the results of SD-WACCM runs and atmospheric observations, with a view to 

quantifying the loss of HNO3 to MSPs and ultimately the MIF. Re-evaluating 

HNO3 uptake to MSPs in a model which treats the MSP/H2SO4 interaction is 

clearly a topic for future work (see Chapter 6). 
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3.2.4 Indirect Effects of Uptake on Other Species 

Such extreme removal of a chemical species has clear implications for related 

chemistry, as discussed in Chapter 1 (See Figure 1.6). To understand the 

importance of these uptake processes in the atmosphere it is necessary to 

consider them in relation to other production and loss processes of those 

species. It is also likely that removal of one species will have indirect 

implications for other species. Figure 3.8 shows percentage difference in NO2 

(for all 3 HNO3 runs, panels (a-c)) and total NOx (for the HNO3 T and HNO3 

max runs, panels (e) and (f)) along with NO2 as a percentage of the total NOx 

(primarily NO and NO2 but also including NO3 and N2O5) mixing ratio in the 

control run (d). 

Significant losses are seen in both NO2 and NOx. Interestingly, the loss of 

these species occurs in the summer months. This is because the conversion 

from HNO3 to other NOx species is via photolysis to NO2 and OH, which 

cannot occur in the dark winter vortex (see Section 3.2.3). The seasonal 

nature of this loss means that air from lower altitudes has more opportunity to 

mix to the altitudes at which significant loss was observed, implying that the 

interaction of MSPs with H2SO4 is likely more important here and that this 

therefore represents an upper limit to the effect. 

NO2 and NOx show remarkably similar behaviour, despite the dominant 

species varying over seasons and altitudes. This suggests that in the summer 

months at least there is relatively rapid exchange between the various NOx 

species. Reduction from  NO2 → NO is facilitated by photolysis (lifetime at 

1 hPa on the order of 100 s in summer), whilst NO is oxidised to NO2 by O3 

with a minor contribution from ClO (lifetimes at 1 hPa near the winter poles of 

several hours and several days, respectively). Hence a removal of HNO3 by 

MSPs can be considered a more general removal of oxidised reactive nitrogen 

species along with the O3 required to produce NO2 from NO (and some 

formation of Cl from ClO), and the OH which reacts with NO2 to produce 

HNO3. Frankland et al. [2015] also observed a direct uptake of NO2 to MSP 

analogues, which has not been tested for atmospheric significance to date. 
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Figure 3.8  Effect of HNO3 removal on other species: % difference in NO2 mixing ratio between control run and runs (a) HNO3 measured, 
(b) HNO3 T, (c) HNO3 max, (d) NO2 as a percentage of total NOx and % difference in total NOx mixing ratio for (e) HNO3 T and (f) 
HNO3 max. All data are shown zonally averaged at 80° S. The colour bars should be interpreted with care since non-linear colouring 
has been used to accentuate some features. 
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HO2, meanwhile, is produced from the reaction of H and O2 (which requires a 

third body collision partner) and is equilibrated with OH via O3. Removal of 

HO2 therefore implies removal of OH, which will slow production of HNO3 from 

NO2. This provides a link between the chemistry of HO2 and HNO3, suggesting 

that there may be additional implications of both uptake processes occurring 

simultaneously. This chemistry is summarised in Figure 1.6, reproduced from 

Brasseur and Solomon [1998]. 

3.2.5 Interactions Between HO2 and HNO3 

There are clear chemical links between the two species investigated here (see 

Section 1.2). Figure 3.9 shows the percentage change in HO2 in the 

HNO3 measured and HNO3 T runs and the percentage change in HNO3 in the 

HO2 run. All runs show some effects of the chemical relationship between the 

two species. Removal of HO2 leads to reduced HNO3 since HO2 is in 

equilibrium with OH, which reacts with NO2 to produce HNO3. This would 

reinforce the HNO3 loss observed if both uptake processes occurred 

simultaneously. Removal of HNO3 will have a more subtle effect on HO2, since 

the effect on other NOx species will be delayed until the summer months. 

Following this seasonal change, reduced NOx will lead to increased HO2, 

since NO2 reversibly reacts with HO2 to give HO2NO2 (note the similar pattern 

of NO2 loss in Figure 3.8 (b) and HO2 gain in Figure 3.9 (b), particularly the 

extreme values in 2006 and 2009).  

Since the observed change in HO2 is confined to relatively low altitudes, it is 

likely subject to biases caused by the lack of treatment of deactivation of 

MSPs by H2SO4. The negligibly small effect of HNO3 uptake on HO2 at 

altitudes above 1 hPa also means that HNO3 uptake is not likely able to 

reconcile HO2 modelling with observations (see Figure 1.5). Coupled with the 

interactions between reactive species there is clearly scope for a future project 

to investigate the combined effect of both uptake processes, including a 

treatment of the interaction between H2SO4 and MSP. 
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Figure 3.9  Relationship between HNO3 and HO2: % difference in HO2 mixing 
ratio zonally averaged at 80 ° S between control run and runs (a) HNO3 
T, (b) HNO3 max, (c) % difference in HNO3 between control and HO2 run. 
The colour bar on (b) also applies to (a) and both colour bars should be 
interpreted with care since non-linear colouring has been used to 
accentuate some features. 
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3.2.6 Effect of Uptake on MSPs 

Uptake of species to a surface has the potential to block active sites, changing 

the nature of the material and, in the extreme, coating the surface completely. 

For example it has been shown that acetylene likely covers the surface of 

IDPs as they sediment through Titan’s atmosphere, until at lower altitudes 

sufficient temperatures are reached for cyclo-trimerisation to convert the 

acetylene to benzene [Frankland et al., 2016].  

In this global modelling study no change to the MSPs has been considered as 

a result of uptake of HNO3 or HO2. It has been shown in the past that an 

additional 2-5 ppb of alkaline metals globally would be able to completely 

neutralise stratospheric HNO3 [Prather and Rodriguez, 1988]. Above 2 hPa, 

where H2SO4 should not significantly affect uptake, HNO3 mixing ratios in the 

control simulation are typically less than 0.1 ppb (see Figure 3.4 (b)). 

Assuming that MSPs are 46 % Fe or Mg by mass (olivine composition) then 

the mixing ratio of these metals in the middle atmosphere is around 5 ppb. 

This suggests that there will not be sufficient HNO3 to alter the uptake 

efficiency of MSPs. 

Electronic structure calculations, performed at UoL (see acknowledgements) 

suggest that HO2 taken up to MSPs is likely to be highly reactive with 

gas-phase HO2, leading to a catalysis of the HO2 self-reaction, producing 

H2O2 without deactivating MSP active sites. Figure 3.10 shows that when an 

HO2 binds to an Fe, a second HO2 is able to abstract the H atom of the 

chemisorbed adduct, and that a third HO2 is then able to displace the O2 left 

bound to the surface. All steps of this process are exothermic and lack 

significant thermodynamic barriers, suggesting that  the uptake coefficients 

measured in the laboratory represent accommodation coefficients for HO2 

from the gas phase onto HO2 adsorbed to Fe atoms on the particle surface 

(reaction step from Figure 3.10 (b) to (c)) and that the uptake coefficient will 

therefore likely increase with decreasing atmospheric temperature. 

Interestingly, if the initial HO2 binds to an Mg site, the H migrates to an 

adjacent O, forming a very stable structure. Further HO2 are unable to interact 

with this Mg and the site is deactivated. This may explain the much smaller 

HO2 measured on Mg2SiO4 compared to the Fe containing analogues. 
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Figure 3.10  Electronic structure calculations at the B3LYP/6-311+g(2d,p) 
level of theory with enthalpies in kJ mol-1 in brackets: (a) HO2 uptake on 
an exposed Fe atom on the MgFeSiO4 surface leads to a chemisorbed 
adduct (b);  a second HO2 can now abstract the adsorbed H atom via 
transition state (c) to form (d), where O2 is bound to the Fe atom, which 
can then be displaced by a further HO2 to yield (b).  When HO2 adds to 
an exposed Mg atom, chemisorption leads to the very stable structure 
(e). 
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3.3 Conclusions 

This work has shown that both HNO3 and HO2 may be perturbed in the polar 

vortex by reactive uptake onto MSPs. Whilst the effect on HO2 is confined to 

the polar vortex, with other loss processes dominating elsewhere, the effect 

on HNO3 was observed over the entire winter hemisphere. This effect is 

overestimated below 2 hPa, because the model did not include a treatment of 

the interaction of MSPs with H2SO4, which will coat and deactivate the MSP 

surfaces. 

Uptake processes of these few species have wide ranging effects on a variety 

of chemistry in the middle atmosphere, including feedbacks on each other. 

A further study is therefore timely, which investigates these uptake processes 

in tandem with H2SO4 and direct NO2 uptake. Future studies should also aim 

to constrain the atmospheric uptake coefficients, particularly their temperature 

dependences, by comparing output from there more sophisticated modelling 

studies to atmospheric observations of species which are directly or indirectly 

impacted by the uptake processes. 
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Chapter 4 

Nucleation of Nitric Acid Hydrates Under Conditions 

Relevant for Polar Stratospheric Clouds 

The phase chemistry and nucleation kinetics of solid Polar Stratospheric 

Clouds (PSCs) are a significant uncertainty in atmospheric modelling of 

chemistry in the polar vortex and particularly of the ozone hole [Brakebusch 

et al., 2013]. As discussed in Sections 1.3 and 2.3.2, nucleation of crystalline 

phases in PSCs likely proceeds heterogeneously on silica, following 

dissolution of other components of meteoric smoke particles. Here we present 

laboratory measurements of heterogeneous nucleation kinetics relevant to 

PSCs, parameterisations of the data and comparison of the results to the 

observed concentrations of crystalline aerosols in PSCs.  

Kinetic parameterisations assuming Nitric Acid Dyhydrate (NAD) nucleated 

first showed significant trends. Similar trends where not observed when Nitric 

Acid Trihydrate (NAT) was assumed to form first, suggesting that NAD is the 

primary nucleating phase. XRD experiments showed that within 10 min at 

stratospheric temperatures all crystalline phases had converted to NAT, 

suggesting that liquid mediated phase transformation had occurred. 

Treating the heterogeneous surfaces as having a uniform activity and using 

the classical nucleation theory to calculate heterogeneous nucleation rate 

coefficients, Jhet, leads to an over prediction of crystal concentrations in PSC 

since the time dependence of nucleation is over predicted. Conversely, 

parameterising the laboratory data by the cumulative density of sites which 

are active at temperatures higher than the current temperature, ns, under 

predicts crystal concentrations in PSC, possibly since the time dependence is 

neglected. Further experiments are needed in order to quantify the time 

dependence of the nucleation process and produce a parameterisation which 

can be used in atmospheric models. 
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4.1 Methods 

Two drop freeze assay techniques were used to examine nucleation in 

droplets under conditions relevant to PSCs. The first set of experiments 

probed the kinetics of nucleation as a function of temperature, concentration 

of HNO3, [HNO3], and availability of heterogeneous SiO2, thought to be a good 

analogue for MSPs processed in acid sulfate aerosol (see Section 2.3.2). The 

second set of experiments examined the phases which following nucleation. 

In the first set of experiments, a drop freeze assay technique developed to 

examine nucleation of H2O ice in the troposphere was adapted for conditions 

relevant to PSCs. Nucleation events were observed using a video camera 

(Microsoft Lifecam HD). Temperature was controlled by a Stirling engine 

(Grant -Asymptote, EF600). Temperature was measured by a PID sensor 

(Eurotherm 2416) embedded in the cooling stage of the EF600 and confirmed 

by a calibrated temperature probe (netsushin PT100), inserted into an 

aluminium block between the sample and the EF600 cold stage. Temperature 

and video frame were both logged digitally along with the computer clock so 

that the temperature in each video frame was known. 20-30 one µl droplets 

were pipetted (Ependorff, multipette plus) onto a hydrophobic silanised glass 

slide (Hampton Research HR3-231), a viton o-ring was used as a spacer and 

the cell was sealed with a second slide (see Figure 4.1 (a)). Nucleation is 

visible in this system since liquid droplets are transparent, whilst droplets 

where nucleation has occurred are opaque. 

In the second set of experiments, the phase which formed following nucleation 

was investigated in an X-Ray Diffractometer (XRD, Bruker D8 advance). 

Droplets were pipetted onto a glass slide and covered with a piece of Kapton 

film (0.3 mm thickness, Certiprep), separated from the substrate slide by a 

viton o-ring. The sample was placed on an Al block and cooled by a flow of 

liquid N2 (Anton Parr TTK450 temperature controlled stage). Scans with a 

fixed 2-θ range of 10 °, centred on 36 °, with 1 min integration of signal (i.e. 

one scan K-1) were performed throughout cooling and warming ramps. The 

minimum temperature was held for 10 min to allow a wide angle scan to be 

collected. 
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Suspensions of fumed SiO2 (99.8 %, Aldrich, BET surface area of 195 m2 g-1) 

in ultra-pure H2O (milli-Q) were made up by stirring for at least 12 hours. These 

suspensions (or pure H2O, similarly stirred) were then used to dilute HNO3 

(65%, AnalaR NORMAPUR) to the desired concentration. Control 

experiments were carried out in which no SiO2 was added investigated the 

effect of adding SiO2. 

1 µl droplets were then pipetted onto the substrate slide within the viton 

spacer, and the cell sealed. This volume of droplet was chosen by estimating 

the atmospheric ns and calculating the surface area per droplet required to 

probe this ns in laboratory experiments, assuming 1 wt % of a heterogeneous 

material with a surface area of 200 m2 g-1. 

Experiments were mainly carried out at the highest HNO3 concentrations 

reached in the atmosphere in the absence of significant gravity wave activity 

[Carslaw et al., 1997]. When gravity waves cause rapid cooling of the 

stratosphere, non-equilibrium conditions can occur whereby higher 

concentrations are reached [Meilinger et al., 1995]. However, in such rapidly 

cooling air masses, H2O ice is likely to form and facilitate β-NAT formation 

[Koop et al., 1995]. This study aims to investigate formation of solid PSCs 

under synoptic conditions (without gravity wave perturbations). 

Concentrations were therefore chosen which covered the region where (at 

stratospheric temperatures) H2O ice is not stable ([HNO3]>42 wt %) and 

similar concentrations where H2O ice is stable (39 wt % >[HNO3]<42 wt %). 

Droplet arrays in both setups were cooled at 3 K min-1 from room temperature 

to 230 K and then at 1 K min-1 to 182 K (base temperature for the EF600). 

Warming was then carried out at 1 K min-1 to 250 K , to observe melting of 

H2O and Nitric Acid hydrate (NAX) phases. To prevent water ice formation in 

both experimental setups, a flow of dry zero-grade N2 (BOC) was passed over 

the sealed cell during cooling until ~230 K, and the cell isolated at lower 

temperatures. This cooling rate is significantly faster than the synoptic 

stratosphere (where cooling of several K can take 10-20 hours [Hoyle et al., 

2013]) but has been chosen since longer experiments (at slower cooling rates) 

would not allow collection of a statistically large dataset within a reasonable 

time frame. 
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4.2 Results 

4.2.1  Observed Crystallisation 

Nucleation events were observed in all EF600 experiments, with transparent 

droplets turning to opaque crystals. The video frame where opacity was first 

observed in each droplet was noted and the corresponding stage temperature 

determined by comparing both data sets to the computer clock. The 

corresponding SNAD and SNAT values were then calculated using the online 

Aerosol Inorganic Model (e-AIM) as described in Section 1.3.3 [Clegg et al., 

1998]. 

Figures 4.1 (a-c) show examples of droplet arrays at different stages in the 

experiment. The droplets do not freeze with any visually discernible spatial 

pattern, suggesting that the nucleation events are controlled by the contents 

of the droplets, rather than any temperature gradient across the sample. 

Observed fraction frozen data from example experiments with addition of SiO2 

are compared to control experiments in Figure 4.1 (d). There is a clear 

heterogeneous effect when SiO2 is added. Indeed, the temperature at which 

events were observed was found to be dependent on the available amount of 

SiO2 and on [HNO3]. Figure 4.1 (e) shows the data set compared to the 

melting curves for H2O ice and NAD. The temperatures at which events were 

observed falls off from the NAD melting curve, suggesting a trend in the 

saturation ratio with respect to NAX, SNAX (see Section 1.3.2). 

An atmospheric trajectory showing the equilibrium droplet concentrations 

against temperature of an air mass with 0.4 ppb HNO3, 0.1 ppb H2SO4 and 

4 ppm H2O is shown in Figure 4.1 (e) (see Section 1.3.2 and Figure 1.10). 

This shows that the majority of experiments are conducted at [HNO3] which 

exist in droplets at equilibrium with the synoptic polar stratosphere. 

Experiments were also carried out at higher concentrations to evaluate 

nucleation in a region where H2O ice was not stable. 

In many experiments, several drops nucleate either significantly before or 

significantly after the majority (see Figure 4.1 (d)). These events are caused 

by rare, highly active sites or a rare lack of active sites respectively. As only a 

few of these events are observed they are statistically less significant, 

representing the tails of the Poisson probability distribution for nucleation 

[Herbert et al., 2014]. Figure 4.1 (e) shows only the 25-80 % frozen data for 

clarity and some data was systematically disregarded in parameterising the 

kinetics of nucleation (see Section 4.2.2 for details). 
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Figure 4.1 (a) an array of particles sealed in the experimental cell, situated on the aluminium cooling stage of an EF600 Stirling engine 
and fitted with a PT100 temperature sensor. (b) a partially crystallised array of droplets during cooling. (c) a partially melted array 
of droplets during warming. (d) fraction of droplets frozen at each temperature for control and heterogeneous experiments at 
several HNO3 concentrations. (e) Observed fraction frozen (20-85 %) for control (red circles) and heterogeneous (blue squares) 
experiments. The colour of each point indicates the fraction frozen. Labels indicate the mass percentage of SiO2 in the aqueous 
suspension used to dilute the HNO3. The melting temperatures for NAD and H2O ice and the equilibrium concentration reached in 
an atmospheric trajectory (see Section 1.3.2, Figure 1.10 for details) are included for comparison. 
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Crystalline phases were observed in XRD patterns measured during cooling 

ramps, at base temperature and on warming. On warming, different 

experiments show a reproducible XRD pattern. Several patterns measured on 

warming from 182-183 K are compared to potential constituent phases in 

Figure 4.2. Good agreement is apparent with a pattern generated from the 

structure of β-NAT [Taesler et al., 1975]. There is some offset in 2-θ, possibly 

because of sample height displacement. The geometry of the system is such 

that the stated 2-θ is valid for the surface of the supporting slide. However, the 

1 µl droplets used here are around 1 mm deep, so XRD signal from the 

droplets occurs at slightly lower 2-θ. Patterns observed on cooling and at base 

temperature vary between experiments (data not shown), suggesting that the 

rate of heterogeneous nucleation for several phases is competitive or that 

phase transformation is sometimes too rapid to allow observation of the 

initially formed phase. 

The dependence of nucleation efficiency on the amount of heterogeneous 

material present is also significant since it implies that contamination of the 

system is unlikely to be responsible for the observed heterogeneous effect. 

Possible contamination by material less representative of stratospheric 

aerosol could lead to a “false positive” identification of an atmospherically 

relevant material. On the basis of the trends observed here, however, it 

appears that the SiO2 was responsible for nucleation in these experiments. 

The observations from XRD experiments suggest that, whilst the final phase 

formed is β-NAT, more complex mixtures of phases initially form and 

subsequently relax to the thermodynamically most stable phase on the 

timescale of these laboratory experiments (several minutes), which are 

significantly shorter than the lifetimes of PSCs (days to weeks [Höpfner et al., 

2006a]). Phase transformation is likely facilitated by nucleation of several 

crystalline phases followed by liquid mediated transfer of material to the 

thermodynamically most stable phase. The observation, in XRD patterns 

measured on cooling, of competitive nucleation between multiple phases is 

significant, since multiple nucleation events would be required for this process 

to occur. This has been proposed in the past in order to explain the 

dependence of phases formed on the presence of residual liquids [Murray and 

Bertram, 2008]. This is significant since in the atmosphere the residual H2SO4 

in droplets may remain liquid and be available to mediate phase 

transformation.
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Figure 4.2 X-Ray Diffraction (XRD) patterns measured on warming of arrays 
of droplets (at 182-183 K) compared to patterns generated from 
structures of possible consituent phases [Lebrun et al., 2001a; Lebrun et 
al., 2001b; Taesler et al., 1975; Weiss et al., 2016]. In each experiment 
the patern resembles that of β-NAT with an offset in 2-θ, most likely due 
to the significant displacement in sample height as the X-Rays pass 
through the droplets. 

 

As droplets are warmed the crystalline phases melt, with the aqueous phase 

concentration following the melting curve. The result is that there is a gradual 

reduction in the crystalline content of droplets, making exact melting points 

difficult to determine from camera images (See Figure 4.X (c)). The edges of 

droplets become less clear and a radial gradient in the shade of the material 

becomes evident for all droplets simultaneously. Taking the mean 

temperature and standard deviation of the first frame in each experiment 

where this is clear gives a measure of the start of observable melting of 

231.2 ± 0.7 K (in agreement with the H2O ice / NAT eutectic point at 230.4 K, 

see Figure 1.11). This suggests that on warming there is some H2O ice 

present, and that the melting of NAT becomes observable only when the H2O 

ice has melted. The temperature at which crystalline material is no longer 

visible is within 2 K of melting temperature for each experiment (data not 

shown). The intensity of β-NAT peaks in XRD experiments also reduce, 
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indicating melting, over a similar temperature range. The observation that 

melting begins around the eutectic point of H2O ice and NAT suggests that 

the temperature control is effective, and the variability about that point can be 

used as an indication of the uncertainty in temperature measurements. For 

the EF600 temperature stage This measurement and comparison of the 

calibrated PT100 with the EF600 internal thermocouple has been used to 

estimate the maximum uncertainty in temperature at ± 2 K. The observation 

that melting finishes near the temperature where the solid phase is no longer 

stable shows that the droplet concentration is accurate, i.e. there has not been 

significant dissolution of either the SiO2 nuclei or of the substrate slide during 

the course of the experiment. 

 

4.2.2  Nucleation Kinetics 

The trends in observed nucleation with [HNO3] and available SiO2 immediately 

evident in the observed nucleation events have been evaluated kinetically. 

Since the experimental cooling rates used in this study were limited to a 

regime much faster than those experienced in the synoptic atmosphere, both 

the nucleation rate coefficients, Jhet (which overestimate the importance of 

time dependence for a non-uniform surface), and the cumulative density of 

sites active at a given temperature, ns (which neglects time dependence), 

have been evaluated for the full data set (see Section 1.3.3 for details). 

In determining experimental Jhet values, observed fraction frozen data were 

averaged over five events. This gave a mean and 95 % confidence interval of 

T and SNAX over which Jhet was calculated from equation (1.7). Up to 2 

sporadic points were removed from the beginning or end of each data set until 

the range defined by the uncertainty (propagated from the 95 % confidence 

intervals) in the SNAD was not consistent with values less than one and so that 

no data points were separated by more than 2 K. For each resulting Jhet value, 

Equation (1.5) was solved for φ, which was then plotted against SNAD and SNAT 

as shown in Figure 4.3. There is a clear trend of activity with SNAD, whilst the 

data with respect to SNAT show no discernible trend. The trend in φ with SNAD 

has been parameterised by a quadratic equation, fitted to the data weighted 

by the 95 % confidence intervals. This parameterisation is used to evaluate 

nucleation in an atmospheric context in Section 4.3. In terms of both SNAD and 

SNAT, where the substrate is assumed to facilitate heterogeneous nucleation 

the surface appears to nucleate more efficiently than the particulate SiO2. 
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Figure 4.3 Contact angle, φ, vs. SNAX for the mean of Jhet over 5 observed events (see equation 1.5). Error bars are propagated from 
the 95 % confidence intervals of the mean temperature at which events occurred. Filled points represent experiments where SiO2 
was added, while open points show control experiments (assuming that the aqueous HNO3 solutions froze by heterogeneous 
nucleation on the hydrophobic silanised substrates). The trend with SNAD has been parameterised (solid line shows the fit and 
dashed lines the confidence interval) for evaluation in atmospheric models.
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Figure 4.4 shows the relationship between ns (calculated by equation (1.8)) 

and SNAD and SNAT. Whilst there is a clear trend in SNAD, the data show 

significant scatter when plotted against SNAT. Error bars were calculated by 

simulating a range of concentrations of heterogeneous nuclei and distributing 

their surface area randomly amongst the droplets. Repeating this process 

many times for different concentrations, a distribution of concentrations is 

found which can explain the observed fraction frozen and a 95 % confidence 

interval on the fraction frozen given by that distribution [Harrison et al., 2016]. 

At greater [HNO3], the data fall away from this trend. This may suggest a 

change in mechanism but is complex since this trend with [HNO3] was not 

observed in the parameterisation with φ. An asymptotic fit was performed to 

the ns vs. SNAD data at atmospherically relevant [HNO3], weighted to the 95 % 

confidence intervals, which can be used to assess the kinetics of this process 

in the atmosphere. 

The observation of trends in both models with SNAD but not SNAT is compelling 

evidence that the phase which nucleates first is one of the NAD polymorphs. 

This is consistent with Ostwald’s law of stages, which states that the phase 

which nucleates first will be that with the smallest energetic barrier to 

nucleation, rather than the most stable phase [Malkin et al., 2012]. A process 

of transformation from thin films of NAD to NAT has been demonstrated in the 

past, however temperatures above 200 K were required [Grothe et al., 2008]. 

The presence of a liquid phase, mediating transfer of material from one 

crystallite to the other, may increase the rate of this process at lower 

temperatures. This provides an important reconciliation between the 

observation that PSCs are composed of β-NAT [Höpfner et al., 2006b; Voigt 

et al., 2000], whilst the rates of nucleation of that phase have been found to 

be too slow to explain the extent of solid PSCs [Knopf et al., 2002]. 

Interestingly, the control experiments seem to follow similar trends in 

nucleation kinetics when the substrate is assumed to be the heterogeneous 

nucleus. This agreement between nucleation behaviours suggests that these 

different forms of silica have a similar ability to heterogeneously nucleate 

NAD. Whilst it has been shown that Junge layer droplets contain solid silica 

[Murphy et al., 2014], the exact nature of the surfaces of these particles has 

not been probed. The observation that several kinds of silica nucleate similarly 

in these experiments suggests that the atmospheric silica may also nucleate 

similarly, giving confidence that the nucleation kinetics measured in this study 

can be applied in atmospheric modelling of PSCs. 
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Figure 4.4 ns vs. (a) SNAD (labelled with [HNO3]) and (b) SNAT. Square and triangular points show experiments with SiO2 in suspension 
while circles are used for control experiments, assuming that nucleation occurs on the hydrophobic silanised glass substrate. 
Triangular points show experiments at [HNO3] greater than those expected to exist in the synoptic polar stratosphere. Error bars 
were calculated by simulating a range of concentrations of heterogeneous nuclei and distributing their surface area randomly 
amongst the droplets (see Harrison et al. [2016] for details). The clear trend in SNAD at atmospherically relevant [HNO3] (square 
points only) has been parameterised for evaluation in atmospheric models.
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4.3 Implications for Nucleation of Nitric Acid Hydrates on 

Polar Stratospheric Clouds 

A 1-Dimensional atmospheric box model has been developed to investigate 

the implications of the observed nucleation kinetics in an atmospheric context. 

The model simulated cooling from 200 to 180 K at a rate of 0.23 K hour-1, 

consistent with the synoptic polar stratosphere (i.e. without perturbation by 

gravity wave cooling) [Hoyle et al., 2013]. Concentrations of 10 ppb HNO3, 

0.1 ppb H2SO4 and 4 ppm H2O were simulated and the equilibrium 

concentration of droplets and SNAT and SNAD calculated using the e-AIM model 

(see Section 1.3.2). Droplet concentration was initially set at 20 cm-3, each 

containing a heterogeneous surface area of 5 × 10-10 cm2 (estimated based 

on recent global simulations of MSPs (pers. comms. J. M. C. Plane, University 

of Leeds, 2016 after Bardeen et al. [2008]). This surface area is calculated 

from numerical simulations of the growth and transport of meteoric smoke 

particles, assuming that all particles are spherical and that the meteoric input 

to the Earth’s atmosphere is 44 ton day-1. The true value may be rather larger, 

since there is significant uncertainty in the meteoric input (a potential factor of 

2 increase in mass of MSPs [Carrillo-Sánchez et al., 2015]) and since particles 

are likely to be fractal agglomerates of smaller spheres (potentially an order 

of magnitude increase [Saunders et al., 2007; Saunders and Plane, 2011]). 

Two parameterisations of nucleation kinetics were included separately in the 

box model. As described in Section 4.2.2, NAD was assumed to nucleate first 

but rapidly transform to NAT. The number of NAT crystals predicted by each 

model was then compared to that given by assuming a constant nucleation 

rate per atmospheric volume, Jhet,vol = 8 × 10-6 cm-3 hour-1 for all time steps 

where SNAT>1 [Grooß et al., 2005]. This Jhet,vol  produces 1 × 10-4 cm-3 crystals 

by 191 K, in agreement with atmospheric observations [Voigt et al., 2005]. 

Processes other than nucleation (e.g. growth and sedimentation of crystals) 

were not included. 

In the first model, the φ parameterisation shown in Figure 4.3 was used to 

calculate a saturation dependent Jhet from equation (1.5). This was then taken 

together with the available number of liquid droplets and the heterogeneous 

surface area in each droplet to calculate a number of nucleation events in 

each time step. The cumulative number of crystals is shown in Figure 4.5. This 

model produces significantly more crystals than the atmospheric 

observations, due to the overestimation of time dependence inherent in 

assuming a uniform ability to induce heterogeneous nucleation. 
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In the second model, the ns parameterisation shown in Figure 4.4 was used 

to calculate a fraction frozen in each time step of the box model by 

equation (1.8). This was then combined with the number of liquid droplets 

remaining from the previous time step to calculate concentrations of crystals, 

which are plotted in Figure 4.5. The ns model cannot produce as many crystals 

as are observed in the atmosphere, even when extrapolated past the SNAD 

region in which it was constrained by the laboratory data. 

 

Figure 4.5 Number of crystals formed in a 1D atmospheric box model using 
various parameterisations. The solid, horizontal, grey line indicates the 
concentration observed in the atmosphere [Voigt et al., 2005]. The solid 
black line shows the prediction of a constant, volume based nucleation 
rate parameterisation. The dashed lines show two models based on 
parameterisations of the laboratory data presented in this study. Since 
these two lines bound the observed concentration of crystals, the 
nucleation of NAD on silica could be an accurate model for crystallisation 
of PSCs. 

The fact that the number of crystals produced by the ns and φ models bounds 

the atmospheric observation suggests that nucleation of NAD on silica is a 

likely candidate for the mechanism by which PSCs crystallise. In addition both 

parameterisations predict that droplets will supercool by approximately 1.5 K 

below the temperature at which TNAT is stable. This suggests a basis for recent 

observations that adding a 1.5 K bias to all aerosol processes in an 
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atmospheric model improved agreement with observations of O3 [Brakebusch 

et al., 2013]. 

The results of the atmospheric modelling demonstrate the importance of 

quantifying the time dependence of nucleation in this case. The assumption 

that the surface is uniformly active in the φ parameterisation leads to an 

overestimation of the importance of time dependence and crystallisation 

which is far too rapid, whereas neglecting the time dependence entirely 

through an ns parameterisation produces too few crystals. 

Quantifying the time dependence of nucleation requires consideration of the 

heterogeneous ability of a surface to facilitate nucleation. One way to do this 

would be to extend the CNT approach by fitting a distribution of contact angles 

to the data [Hoyle et al., 2013]. This should in principle be possible with the 

current data set, and is a key topic for future work. 

A second approach is based on the finding that the temperature dependence 

of the nucleation rate coefficient controls the cooling rate dependence of 

nucleation [Herbert et al., 2014]. This leads to the Framework for Reconciling 

Observable Stochastic Time dependence (FROST), which involves modelling 

the natural logarithm of Jhet as a linear function of the temperature, where the 

gradient, λ / K-1, and intercept, ɸ, of the linear dependence is an empirical 

quantity determined from experimental data: 

ln(𝐽ℎ𝑒𝑡) = −𝜆𝑇 + 𝜙 

ɸ is related to the probability of a site having a particular activity, whilst λ 

determines the time dependence. ∆𝑁𝑁𝐴𝑋 is then given by equation (1.7), 

evaluated and summed across a distribution of differently active surface sites. 

λ and ɸ can be determined from experiments so long as the cooling rate is 

varied by an order of magnitude. The large temperature range which must be 

covered (approximately 180-280 K) in order to assess nucleation in this 

system means that slower cooling rates than the 1 K min-1 used here lead to 

extremely time consuming experiments. Faster cooling rates are also not 

possible due to the limited cooling power of the apparatus. λ and ɸ can also 

be determined from constant temperature experiments, which should in 

principle be possible here, by cooling as rapidly as possible to a temperature 

where nucleation is expected to occur, then observing nucleation over time at 

a constant temperature. Such experiments are also a key topic for future work. 
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4.4 The Effect of H2SO4 in the Atmosphere 

In the atmosphere, droplets actually follow pathways through a 3 dimensional 

phase diagram. H2SO4 is mentioned in Section 4.2.1 as a possible liquid 

medium which could facilitate transfer of material between crystallites of 

different phases. It is worth noting, though, that any effect of H2SO4 on the 

kinetics of nucleation has been neglected here by performing experiments in 

HNO3 / H2O binary solutions. 

In the polar vortex Junge layer aerosol, composed of 70 wt % H2SO4 in 

aqueous solution, take up HNO3 and H2O from the gas phase as the ambient 

temperature decreases (see Section 1.3.2, Figure 1.10). Droplets reach 

saturation with respect to NAT at around 194 K, when the equilibrium 

concentration of HNO3 is only 2 wt %, and with respect to NAD at 193 K and 

4 wt %, all with equilibrium H2SO4 concentrations in excess of 50 wt %. 

Although the data presented here show significant trends at similar SNAX, 

changes in the nature of the heterogeneous substrate or interference with 

kinetic pathways could cause significant changes in the nucleation kinetics 

when H2SO4 is present. 

Performing nucleation experiments across the entire 3-Dimensional phase 

diagram would be prohibitively time consuming and has not been undertaken 

here. There is, however, clearly a need for future studies to investigate any 

possible impacts of H2SO4 on this system. 
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4.5 Conclusions 

Nucleation kinetics have been observed on a reasonable analogue for MSPs, 

fumed SiO2, partially dissolved in PSC aerosol. Nucleation was found to occur 

at higher temperatures when greater concentrations of heterogeneous 

material were added, suggesting that it was this heterogeneous material which 

controlled the nucleation kinetics. 

Nucleation was found to follow distinct trends in SNAD but no discernible trend 

in SNAT when the data were fitted to several theoretical frameworks. 

Interestingly, the control experiments also fitted to these trends, suggesting 

that nucleation in these experiments was controlled by the hydrophobic 

silanised glass slides used as substrates, and that this significantly different 

material acted similarly to the fumed SiO2 as a NAX nucleus. 

Experiments with XRD detection showed that on cooling and at base 

temperature, an initially complex and poorly reproducible mixture of phases 

converts consistently to β-NAT, likely through liquid mediated transfer of 

material between crystallites of different phases, on timescales much shorter 

than those for which PSCs persist in the atmosphere. This provides a 

reconciliation of the observations that PSCs are composed of β-NAT [Höpfner 

et al., 2006b; Voigt et al., 2000], but that nucleation rates of that phase are too 

slow to explain the extent of crystalline PSCs [Knopf et al., 2002].  

The observed rates of nucleation have been applied in a 1D atmospheric 

model and the concentration of crystals formed compared to observations of 

PSCs. It was found that a parameterisation of the material through CNT as 

having a single, saturation dependent contact angle overestimated the 

atmospheric concentration of crystals, whilst a parameterisation using the 

density of sites which were active at a given temperature underestimated the 

observations. 

These results suggest that nucleation of NAD on silica is a possible candidate 

for the mechanism of PSC crystallisation. Future work should focus on 

quantifying the time dependence of heterogeneous nucleation on analogues 

for MSPs, and applying that nucleation in a global model, assuming that 

nucleation produces NAD which then rapidly converts to NAT. 
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Chapter 5 

Conclusions 

Meteoric material has a variety of impacts on the physical and chemical state 

of atmospheric constituents. Chapter 1 of this thesis sets the scene, laying out 

the state of the field for some of these processes and identifying problems 

which were investigated in the rest of the thesis. 

Chapter 2 addresses the science question of suitable analogues for 

Interplanetary Dust Particles (IDPs) and Meteoric Smoke Particles (MSPs) in 

atmospheric science. Materials were prepared by chemical synthesis from 

precursors and mechanical grinding of terrestrial minerals and meteorites. 

The elemental composition, crystallographic, surface and size distribution 

properties of the products were analysed using a suite of techniques. The 

materials were then compared to current understanding of IDPs and MSPs. A 

summary of materials which were successfully identified as analogues for this 

meteoric material is given in Section 2.3.2. 

Chapter 3 addresses reactive uptake of HNO3 and HO2 from the gas phase to 

the surface of MSPs and the possibility that this could alter the atmospheric 

abundance of these species. Uptake coefficients measured in the laboratory 

were used to parameterise the impact of MSPs on HNO3 and HO2 in 

WACCM-CARMA. Comparison of model runs with and without reactive 

uptake was used to characterise changes in the availability of HNO3 and HO2. 

Impacts on the atmospheric abundance were indeed observed. However, the 

effects were in atmospheric locations where measurements of the gas phase 

concentration are relatively sparse, so the sensitivity of the atmosphere to 

reactive uptake to MSPs could not be used to quantify the meteoric input to 

the Earth. 

Chapter 4 addresses measurements of the nucleation kinetics of Nitric Acid 

hydrate (NAX) phases on SiO2 particles as an analogue for MSPs under 

conditions relevant to Polar Stratospheric Clouds (PSCs). Droplets of HNO3 

in aqueous solutions and with suspended SiO2 were cooled and nucleation 

events observed. The nucleation was then parameterised using two 

theoretical models and a box model of equilibrium droplet concentration used 

to compare the results to observations of crystal concentrations and a 

parameterisation commonly used in atmospheric models. This was found to 

be a possible mechanism for nucleation of PSCs. However, a specific 

recommendation of a kinetic parameterisation for this process in global 

modelling studies cannot yet be made since the results showed that the time 



- 125 - 

 

dependence of the process, which has not yet been quantified, may be 

important. 

More detailed conclusions for each chapter are given below. 

5.1 Synthesis and Characterisation of Analogues for 

Interplanetary Dust and Meteor Smoke Particles 

Materials useful as analogues for both IDPs and MSPs were identified from 

the candidates proposed (see Table 2.1). 

Ground meteorites and terrestrial minerals were identified as useful 

analogues for components of IDPs. The differential ablation of meteors is 

controlled by the melting points of their component phases. Hence the 

crystallographic and compositional properties of the analogues are key. 

Individual terrestrial minerals (Olivine, Albite, Labradorite and Anorthite) were 

shown to be useful as analogues for constituents of IDPs since their elemental 

composition and crystallographic properties were similar to observations of 

micrometeorites collected from the South Polar water well (which are the most 

comprehensive source of information available to researchers regarding the 

nature of IDPs).  

Ground samples of the Allende (CV3) and Murchison (CM2) chondritic 

meteorites, were found to have elemental composition similar to 

micrometeorites. The Chergach (H5) chondritic meteorite was found to be 

similar in composition of some elements to IDPs and to be composed of 

phases which are known to be present in IDPs. The similarity of Chergach to 

IDPs suggests that ordinary chondrites can under some circumstances be 

useful analogues for IDPs. This is significant because ordinary chondrites are 

much more widely available in meteorite collections than carbonaceous 

chondrites (CCs). The North West Africa 5515 (NWA, CK4) meteorite was 

found to represent and outlier in the distribution of IDPs, having extremely high 

Ca content. This is significant because it demonstrates that CCs are not 

necessarily good analogues for the majority of IDPs but also because 

investigating outliers in the distribution can be useful for understanding 

processes which are rare but can be important (the relatively refractory nature 

of Ca containing phases such as anorthite means that they are ablated from 

relatively few IDPs, yet Ca species have been observed in the mesosphere). 

Chemical synthesis methods were described which were able to produce 

amorphous silicates and crystalline iron oxides and oxy-hydroxides which are 

candidates for the composition of MSP particles. The complex surface 
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morphology of some of these materials means that they have very large 

available surface area (several hundreds of m2 g-1), making them ideal for 

surface science studies. 

General recommendations for which analogue to use in certain situations is 

given in Section 2.3.2. 

5.2 Reactive Uptake of HNO3 and HO2 in the Middle 

Atmosphere 

Significant uptake of both HNO3 and HO2 was observed on the amorphous 

MgFeSiO4 described in Chapter 2 as useful analogues for MSPs (see 

Table 3.2). 

Comparison of WACCM runs (see Table 3.1) with reactive uptake show that 

HNO3 and HO2 are likely perturbed compared to a control in the polar vortex 

by reactive uptake onto MSPs. Whilst the effect on HO2 is confined to the polar 

vortex, with other loss processes dominating elsewhere, the effect on HNO3 

was observed over the entire winter hemisphere. This effect is overestimated 

below 2 hPa, because the model did not include a treatment of the interaction 

of MSPs with H2SO4, which will coat and deactivate the MSP surfaces. 

Increasing the uptake coefficient to account for the effect on the uptake of 

lower atmospheric temperatures shows increased reductions in atmospheric 

species. This increase with the uptake coefficient is more sensitive to the 

uptake coefficient at lower uptake coefficients than when the value 

approaches unity. 

Uptake processes of these few species have wide ranging effects on a variety 

of chemistry in the middle atmosphere, including feedbacks on each other. 

Removal of HNO3 in the winter leads to losses of NOx species in the summer 

(since HNO3 is readily photolysed to NO2 and OH). Removal of reactive 

nitrogen is known to have significant impacts on the ozone hole, since growth 

and sedimentation of PSCs has a similar affect, known as denitrification. 

Removal of NOx leads to increased HO2 since HO2 is removed by reaction 

with NO2 and reduced to OH by NO. HNO3 is also reduced when HO2 is 

removed since HO2 is in equilibrium with OH (via reaction with O3) and OH 

reacts with NO2 to produce HNO3. 
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5.3 Nucleation of Nitric Acid Hydrates Under Conditions 

Relevant to Polar Stratospheric Clouds 

Nucleation of NAX phases was found to occur at higher temperatures when 

greater concentrations of heterogeneous SiO2 were added, suggesting that 

this heterogeneous material can control the kinetics of nucleation. 

Nucleation was found to follow distinct trends in the saturation ratio with 

respect to Nitric Acid Dihydrate, SNAD, but no discernible trend in saturation 

ratio with respect to Nitric Acid Trihydrate, SNAT, when the data were fitted to 

several theoretical frameworks. The control experiments also fitted to these 

trends, suggesting that nucleation in these experiments was controlled by the 

hydrophobic silanised glass slides used as substrates, and that this 

significantly different material acted similarly to the fumed SiO2 as a NAX 

nucleus. 

Experiments with XRD detection showed that on cooling and at base 

temperature, an initially complex and poorly reproducible mixture of phases 

converts consistently to the β- polymorph of NAT. This likely proceeds through 

liquid mediated transfer of material between crystallites of different phases, 

on timescales much shorter than those for which PSCs persist in the 

atmosphere. This provides a reconciliation of the observations that PSCs are 

composed of β-NAT, but that nucleation rates of that phase are too slow to 

explain the extent of crystalline PSCs.  

The observed rates of nucleation have been applied in a 1D atmospheric 

model and the concentration of crystals formed compared to observations of 

PSCs. It was found that a parameterisation of the material through CNT as 

having a single, saturation dependent contact angle overestimated the 

atmospheric concentration of crystals, whilst a parameterisation using the 

density of sites which were active at a given temperature underestimated the 

observations. 

These results suggest that nucleation of NAD on silica is a possible candidate 

for the mechanism of PSC crystallisation since it was shown to control the 

nucleation and to be capable of producing sufficient concentrations of crystals 

in an atmospheric setting. 
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5.4 Synthesis of Results 

As meteoric material is processed in and transported through the Earth’s 

atmosphere it also impacts a range of aspects of the environment. These 

include effects on the gas phase abundances of species and the physical state 

of polar stratospheric clouds. Kinetics of each of these processes were 

quantified here using appropriate analogues for the meteoric material in 

question and their atmospheric significance investigated with a view to 

constraining the amount of meteoric material which reaches Earth each day. 

The results suggest that whilst these processes do represent sensitivities of 

the atmosphere to the availability of meteoric material, further work is required 

before these can be used as a means to quantitatively constrain the meteoric 

input. 
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Chapter 6 

Future Work 

As discussed in Chapter 5, the work described in this thesis represents 

significant progress in quantifying some of the impacts of meteoric material on 

Earth’s atmosphere. Significant open questions remain regarding some of 

these processes. These include controlled synthesis of analogues for 

Interplanetary Dust Particles (IDPs) made from mixtures of single minerals, 

laboratory measurements of the temperature dependence of uptake 

coefficients, quantification of the time dependence of heterogeneous 

nucleation of Nitric Acid hydrate (NAX) phases by SiO2 as an analogue for 

Meteoric Smoke Particles (MSPs) and more sophisticated modelling of 

atmospheric processes. 

6.1 Future Laboratory Studies 

The analogues for IDPs discussed in Chapter 2 could be further developed by 

combining mixtures of single minerals to create aggregate particles. This 

would facilitate production of large quantities of IDP analogues from readily 

available precursors. Some form of fixative would be required to hold the 

constituent particles together and this would have to be considered in any 

application of these analogues. 

Laboratory studies able to measure the temperature dependence of the 

uptake coefficient would be invaluable in informing atmospheric modelling. 

Designing an instrument able to make these measurements is extremely 

difficult. The importance of diffusion and wall losses in the flow tube technique 

reported in Chapter 3 would be compounded by cooling the system. A 

Knudsen cell could be cooled, though maintaining vacuum pressure in the 

Knudsen regime could be an issue. A low pressure dual flowtube system 

reported by Frankland et al. [2016] was able to measure acetylene uptake as 

a function of temperature with implications for the atmosphere of Titan. This 

alternative method, with appropriate detection of HNO3 by mass spectrometry 

and HO2 by FAGE, should be applied to measuring uptake coefficients in the 

atmospherically relevant temperature regime, potentially from room 

temperature to dry ice conditions (180 K, relevant to the upper stratosphere / 

lower mesosphere where uptake has been shown to be important). 

As discussed in Chapter 4, heterogeneous nucleation of NAX phases on SiO2 

has the potential to produce the concentration of NAX crystals observed in the 

atmosphere. In order to correctly predict the atmospheric crystal concentration 
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based on the laboratory results, however, the time dependence of the 

nucleation must be quantified. Experiments either observing the nucleation 

rates at fixed temperature or observing with a varied cooling rate could allow 

this quantification. Varied cooling rates need to span at least a factor of 10. 

Experiments should focus to begin with on a single set of HNO3 and SiO2 

concentrations (40 % HNO3 and 6 % SiO2 would place these results well in 

relation to the current data set) but then ideally confirm that the results hold 

for a broader range of conditions. A further important development would be 

to examine the effect of H2SO4 in solution. The nucleation rate is dependent 

on diffusion to form the initial critical cluster of molecules with the structure of 

the solid, so the viscosity change implied by the presence of sulfuric acid could 

affect the observed nucleation. This should be approached in two ways; small 

amounts (<5 %) H2SO4 can be added to the solutions used here and a fully 

atmospheric concentration (5-20 % HNO3,  50-25 % H2SO4) can be employed 

(SNAD is similar under these conditions to that measured here). Examining the 

entire phase diagram is clearly not time efficient, but it may be possible to 

modify the kinetics observed here from a relatively small number of 

experimental observations. 

It would also be extremely valuable to measure the uptake coefficient for 

H2SO4 on meteoric smoke. This could be achieved using the dual flow tube 

system developed by Frankland et al. [2016] which at dry ice temperature 

(~180 K) and low pressure (~10 torr) would be a good approximation of the 

relevant atmospheric conditions. An inherent difficulty in these experiments is 

the low volatility of H2SO4. Detection of low gas phase concentrations of this 

material can be facilitated by a Chemical Ionisation Mass Spectrometry 

(CIMS) instrument, which would need to be constructed. 
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6.2 Future Atmospheric Modelling Studies 

Following these laboratory measurements there is also scope for significant 

further modelling and comparison to measurements. As shown in Chapter 3, 

there is significant chemical interplay between HNO3 and HO2 so that 

modelling studies looking at both uptake processes in tandem are timely. 

Comparison of the output of these studies to atmospheric observations could 

help to constrain the atmospheric uptake coefficient and ultimately the 

availability of MSPs in the atmosphere. In addition these studies should 

include a treatment of deactivation of interaction of MSPs by H2SO4 in the 

lower stratosphere. This has been achieved by Neely et al. [2011] by treating 

three separate arrays of MSPs, sulfate aerosol and ‘cores’ (MSPs in sulfate) 

in a similar manner to that used here. Treatment of the deactivation of MSPs 

by sulfate aerosol could then be achieved simply by treating uptake to the 

MSP field but not the cores. 

Preferably informed by low temperature measurements of the uptake 

coefficients, model runs should be conducted which include a description of 

all of these uptake processes and the resulting change in a wide range of 

atmospheric species should be investigated. For the species discussed here 

(particularly HO2) there are not sufficient atmospheric measurements to 

constrain the impact of uptake. However, many more measurements exist of 

species which will be affected indirectly, such as O3, which is very widely 

measured and involved in the chemistry of both HNO3 and HO2 (see 

Figure 1.6). 

Full treatment of these processes would then allow a model to incorporate 

partial dissolution of MSPs in stratospheric droplets, nucleation of NAX in 

PSCs on the SiO2 remaining and resulting transport of MSPs into the 

troposphere. This would also give a firm mechanistic and kinetic 

understanding of the impact of heterogeneous chemistry in PSCs, which has 

been shown to be critical for modelling of the ozone hole. The outcome of 

these studies should be compared to the observations extinction due to MSPs, 

refractory aerosols in the stratosphere and to measurements of meteoric 

material in ice cores, in order to constrain the meteoric input to the Earth. 
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