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Foot friction blisters are one of the most common dermatological injuries experienced by 

those actively involved in outdoor physical pursuits. The frictional interaction between the 

human skin and textile fabric is acknowledged as being an important aspect in blister 

development. Despite growing research in this area, relatively little is known about the 

friction interaction between plantar skin and textiles.  

 

The ultimate aim of this thesis is to achieve enhanced understanding of the complex 

tribological interactions between human plantar skin and sock textiles. The first part of this 

thesis primarily focusses on experimental studies conducted on the sock-insole and skin-sock 

interfaces. Due to the lack of existing standard testing protocols, novel testing protocols were 

developed and used as a standard testing procedure throughout the experimental studies. The 

friction study on the entire plantar region was conducted in dry textile conditions whereas 

the friction study on the plantar aspect of the first metatarsal head (1MTH) was carried out 

in three significantly different moisture conditions (dry, low moisture and wet). Findings 

gained from a friction study on the 1MTH region of the foot were then used for validations 

in the second half of this thesis which concerns the development of a range of prototype 

biofidelic test-beds to mimic the frictional behaviour of 1MTH region.  

 

A set of prototype biofidelic test-beds were developed after considering the appropriate 

geometry, materials and manufacturing processes. Each test-bed is a two-layer polymer-

based physical skin model, with the outer layer representing the epidermal dermal tissue and 



ii 

the inner layer representing the dermal subcutaneous tissues. A steel hemisphere was also 

embedded within the test-bed to simulate the 1MTH bone. Nine test-beds of differing inner 

Young’s modulus were made with four of them having texture on their surface layer, obtained 

from a mould of an actual human foot. All test-beds were subjected to deformation and 

friction tests in order to validate their performances in the respective aspects, when compared 

with data obtained from human testing. 

 

It is hoped that the understanding gained from the study will close the gaps in the existing 

knowledge of plantar skin – sock textile friction which can be applied into future foot friction 

blister studies. 

 

 

Keywords: Skin tribology, plantar skin, first metatarsal head, friction blisters, running socks, 

moisture, biofidelic test-beds 
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Introduction and literature review 

 

 

 

1.1 General introduction 

The plantar aspect of the foot is one of the areas of the human body where the thickest skin 

is found, along with the palms and the back [2]. During walking and running, feet are 

continuously subjected to pressure, impact, friction and shear forces [3], which when 

combined with individual’s skin physiological characteristics and certain environmental 

effects can lead to various dermatological injuries. The incidence of dermatological injuries 

associated with athletic pursuits has significantly increased in the recent decades due to an 

increasing number of people participating in various competitive and recreational sports to 

enhance their physical health and well-being.  

 

 According to Mailler & Adams [4], foot friction blisters are the most common 

dermatological injuries among marathon runners, with an incidence level as high as 39% in 

a survey conducted on 265 entrants after the New York City Marathon in 1994. The 

percentage of blister incidence was also reported to be as high as 24% of 301 experienced 

wilderness hikers [5, 6]. Although friction blisters rarely pose a severe threat to overall health 

they can be painful and often result in significant increase in plantar shear stress [7] which 

may subsequently lead to other types of injuries. For competitive athletes, blisters could 

impede their athletic performance and have an adverse effect on success, as experienced by 

Roger Federer (2005 Australian Open) and Maria Sharapova (2006 Australian Open) [7]. 

Diabetic patients are often advised to get their blisters treated immediately as failure to do 
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this may cause damage to the deeper tissue layers leading to necrosis [8]. Although extensive 

studies have been carried out relating to blister formation, the complex interplay of various 

contact and environmental parameters that contribute to blistering is not fully understood. 

The reason for this is found in limited understanding of the plantar skin friction and how it is 

influenced by loading, contact surface and moisture conditions. 

 

 This thesis describes comprehensive experimental studies carried out over the course 

of three-year PhD study to examine the friction interaction between human plantar skin and 

running sock textile fabrics.  

 

 In this chapter, the fundamental concepts of skin anatomy are described and skin 

mechanical properties are presented. An overview of the theoretical background of skin 

friction is also included, followed by an outline of the complex interplay of various 

parameters influencing the skin friction. Additionally, various experimental techniques used 

for measuring skin properties in previous studies are reviewed to provide better 

understanding of the development of foot friction blisters. 

 

1.2 Structure and function of human skin 

The human integumentary system includes two major components: the skin and its 

derivatives (hair, sebaceous and sweat glands, and nails) accounting for approximately 7% 

of our total body weight [9] as illustrated in Figure 1.1.  Skin being the largest organ in a 

human body with a surface area of 1.5 to 2m2 in a typical adult [10], acts like a shield that 

protects our internal systems against the hostile external world. It is also the principal site for 

interaction with the surrounding surfaces throughout the course of our everyday lives. The 

thickness of the skin varies based on the gender and age of the individual which is due to the 

genetic and hormonal differences [11] as well as its anatomical location [12, 13] on the body. 

Males tend to have much thicker skin than females in most, if not all, anatomic locations [11]. 

The skin on the eyelids and in the post-auricular region is considered to be the thinnest with 

a thickness of approximately 0.5mm in comparison to the skin on palms and plantar aspect 

of the feet which is much thicker [9, 14]. A study by Sun et al. [15] reported plantar thickness 



3 

 

 

ranging from 5.16mm under the big toe to 18.87mm under the heel. In addition, the heel pad 

thickness of elderly (older than 60 years) adults was found to be significantly different than 

that of young adults (less than 40 years). This is due to the thickening of plantar soft tissue 

with age [16]. Certain medical conditions such as diabetes mellitus have also known to cause 

reduction of the plantar thickness which could result in the loss of compliance [17, 18]. 

Most of the human body surface is covered with non-glabrous (hairy) skin whereas 

some other parts such as the palms, fingertips, ears and lips as well as the plantar aspect of 

the feet are covered with glabrous (non-hairy) skin.  The surface of glabrous skin is grooved 

with ridges and furrows to provide friction necessary for gripping [19] and locomotion. 

Although hair follicles are absent in glabrous skin, the eccrine sweat glands, whose ducts 

penetrate the centre of the ridges, are far more concentrated than in non-glabrous skin [9].  

 

Figure 1.1: A schematic diagram of human skin and its derivatives (image reproduced 

from [20]). 
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 Human skin is a complex multi-layered structure comprising of three functional 

layers: namely the epidermis and dermis, which are anchored to each other by a dermal-

epidermal junction, and the hypodermis (also known as the subcutaneous layer). The 

epidermis is the outermost layer that serves as a protection shield against the external 

environment. It also functions to prevent extreme water loss from the body. The dermis is 

the deeper layer, much thicker (5 to 7 times) than the epidermis. It consists of papillary (the 

interface between the epidermis and the dermis) and reticular layers and acts like a scaffold, 

providing the structural support and elasticity to the skin [21]. Within the dermis layer, blood 

vessels, sensory receptors, sweat glands, hair and skin appendages can be found intricately 

woven with a network of closely-packed elastin and collagen fibres, embedded in interstitial 

fluids and water. The reticular layer contains a higher density of elastin and collagen fibres 

compared with the papillary layer. The dermis also helps to regulate the body temperature by 

secreting sweat through sweat pores. The hypodermis is made up of loose connective and 

subcutaneous tissues and attaches the whole skin structure to underlying structures of 

muscles and bones [9]. The hypodermis also serves as a shock absorber (using structural fat 

and stored fat) and as a thermal insulator [21]. It has been shown that with ageing, the skin 

gradually becomes looser and appears wrinkled due to the incremental loss of elastins over 

time [22]. 

 

1.1.1 Epidermis 

Some researchers considered that the role of the epidermal layer in determining the 

mechanical properties of the skin is so small that it can often be neglected [23, 24], with an 

exception for the palms and plantar aspect of the feet. These researchers assumed that the 

collagen-rich dermis dominates the way the skin mechanically behaves. Since the pivotal 

focus of this PhD study is on foot friction blisters, a deeper understanding on the epidermal 

layer structure is therefore important.  

 The epidermal layer is a stratified tissue which can be further divided into five sub-

layers as shown in the Figure 1.2. From the deep to the superficial layers of epidermis: 

stratum basale (also known as stratum germinativum), stratum spinosum, stratum  
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Figure 1.2: A schematic diagram of the epidermis sub-layers and its specialised cells 

(image reproduced from [20]). 

 

granulosum, stratum lucidum and stratum corneum (a cornified layer consisting of flattened 

dead cells). Each sub-layer is defined by the shape, position, morphology and state of 

differentiation of the keratinocyte which is the primary cell of the epidermis, accounting for 

90% to 95% of the epidermal cells [25]. The epidermal layer undergoes constant 

desquamation (shedding) and cell renewal occurs every 25 to 45 days to balance out the cell 

loss [9, 26]. A hydrolipid film composing of water and sebum, which is secreted from sweat 

and sebaceous glands, covers the stratum corneum to keep the skin well-hydrated and to 

prevent water loss [27, 28]. According to Cua et al. [29], there is no significant difference in 

terms of the stratum corneum moisture level in relation to gender. 

The epidermal layer plays a central role in defining the surface properties of human 

skin which can be primarily attributed to the surface roughness, presence of superficial sebum 

and skin moisture. These attributing factors in return influence the friction between the skin 

and contact surface [21, 30, 31] which will be discussed throughout the latter part of this 

chapter. 
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1.3 Skin mechanical properties 

The skin possesses both elastic and viscous properties. The elastic properties of human skin 

are mainly from the dermis, with some contributions from the epidermis whereas the viscous 

properties are due to the displacement of interstitial fluid through the intricate fibrous 

network during skin deformation [12]. In terms of its mechanical behaviour, the skin behaves 

as an anisotropic, non-linear viscoelastic material owing to its multi-layered and non-

homogeneous nature [2, 11, 31-33]. It is generally characterised by a non-linear stress-strain 

relationship as shown in Figure 1.3 below.  

 

Figure 1.3: The non-linear stress-strain relationship exhibited by a normal human skin 

(image reproduced from [28]). 

 

 As discussed earlier, each skin layer is made up of different thicknesses and 

composed of various types of tissues which translates to different mechanical properties. 

Three separate stages can be observed from Figure 1.3. In stage I, a linear stress-strain 

relationship is exhibited by the dermis with a Young’s modulus of 5kPa which is caused by 

the resistance to skin deformation provided by the network of elastin fibres within the layer. 

In stage II, a non-linear stress-strain relationship can be seen starting at 0.3 strain value due 

to the gradual extension of the collagen fibres. In the final stage III, all collagen fibres are 
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fully extended, resulting in another linear stress-strain relationship. The slope of this 

relationship corresponds to the degree of skin stiffness (i.e. the steeper the slope, the stiffer 

the skin becomes). Beyond stage III, yielding and rupture of the collagen fibres occur [23].  

 Additionally, the mechanical properties of the skin are affected by various intrinsic 

and loading parameters as illustrated in Figure 1.4. Environmental conditions such as the 

temperature and relative humidity could also influence the properties of the skin as reported 

by Tomlinson et al. [34]. Geerlings et al. [34, 35] also found that the dynamic shear modulus 

(stiffness) of the skin decreases with increasing relative humidity which concurs with the 

findings reported by Hendriks & Franklin [36]. Another study by Edwards & Marks [37] 

utilised both in-vivo and in-vitro tests to compare the strength and elasticity of skins from 

two different age groups and concluded that the strength and elasticity continued to increase 

during maturation up to a point where these mechanical properties either plateau or reduce. 

This finding was in agreement with results published by Escoffier et al. [11] and Cua et al. 

[12] which had also noted the great reduction of elasticity and recovery capacities in older 

skin (aged 70 years and above) despite the small difference in thickness and extensibility. 

Understanding these findings is important to gain the fundamental knowledge in recruiting 

participants for the human testing.  

 

Figure 1.4: The mechanical properties of human skin are influenced by the loading factors 

(white boxes) and intrinsic skin parameters (grey-filled boxes) 

(image reproduced from [21]). 
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1.4  Frictional behaviour of human skin 

 

1.4.1 Fundamentals of skin tribology 

Skin friction is defined by the coefficient of friction (COF), μ between the skin and the 

interacting surface. COF is the ratio between the friction force, FF acting in the horizontal 

direction of the skin surface and the normal load applied perpendicular to the skin surface, 

FN.  

𝜇 =
𝐹𝐹

𝐹𝑁
 

The COF of human skin is a system property rather than a material property since it is highly 

determined by the contact surface material and its properties, the physiological characteristics 

of the skin itself (e.g. natural hydration state and sebum level), presence of any intermediate 

layers (e.g. added moisture, topical and cosmetic products), the mechanical contact 

parameters (e.g. normal load, sliding velocity and contact pressure), as well as the ambient 

conditions (e.g. ambient temperature and relative humidity) [21]. One of the earliest skin 

friction studies by Naylor [38] found that the human skin obeys Amontons’ Laws as the COF 

of the skin was found to be independent of the applied loads. However, the findings obtained 

from an investigation conducted by Comaish & Bottoms [2] later disputed this and proved 

that human skin deviates from Amontons’ Laws due to its complex viscoelastic nature which 

allows non-linear deformation when subjected to varying load.  

 Cua et al. [29] reported that although the skin dynamic COF varied considerably 

among the anatomical regions of the body, there was no significant variance in relation with 

age and gender. The authors further suggested that dynamic COF is more dependent on the 

water content and presumably sebum secretion. The relationship between skin hydration 

level and friction was also found in another skin friction studies by Derler et al. [39]. Skin 

with high hydration level has a tendency to produce higher friction due to increase in the real 

contact area following water absorption into the stratum corneum.   

 Numerous experimental techniques have been used to study the COF of human skin 

against various probe materials in either linear or rotary fashion. The diversity of 
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experimental techniques and loading conditions has made it extremely challenging to 

compare measurement results across studies. Linear techniques are found to be more 

convenient than the rotary techniques. Once the load is applied to an interface and the sliding 

motion begins, the normal and friction forces can easily be measured. The experimental 

results obtained using this technique are also easier to interpret since the nominal condition 

of the interface is the same. One challenge with the rotary techniques is the non-uniform 

loading distribution experienced by the contact regions which makes result interpretation to 

be slightly tricky [40]. A more detailed review on this particular topic has been published by 

Derler & Gerhardt [21], Sivamani et al. [41], Gitis & Sivamani [42] and Sivamani & Maibach 

[43].  

 Bowden and Tabor [44] proposed a theory on basic friction mechanisms in 1950 

which has now been widely acknowledged and implemented by later studies. According to 

the theory, there are two important mechanisms involved in the frictional behaviour of skin 

in dry condition which are the deformation, Fdef  and adhesion, Fad forces. 

𝐹 = 𝐹𝑑𝑒𝑓 + 𝐹𝑎𝑑 

The deformation mechanism is associated with the incomplete recovery of the energy 

dissipated by skin deformation (also known as hysteresis). However, for dry and smooth 

surfaces, the deformation mechanism of the skin friction is usually ignored. Therefore, the 

skin friction is assumed to be only related to the adhesion mechanism which is determined 

by the molecular attractive forces (e.g. Van der Waals forces, hydrogen bonds, electrostatic) 

as well as the area of contact where the adhesive bonds are formed [44].  

𝐹 = 𝐹𝑎𝑑 = 𝜏𝐴 

where τ is the interfacial shear stress and A is the real contact area at the skin-interacting 

surfaces interface. 

 

1.4.2 Previous experimental methods for measuring skin friction 

A wide range of methodologies have been previously employed to measure and assess skin 

friction against various interacting surfaces as outlined in Table 1.1. Depending on the 
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objective of the studies, researchers often conduct the friction experiments using either 

unidirectional or reciprocating sliding interactions. In general, the measurement protocols 

can be divided into two main categories: a) experiments in which human subjects rub their 

skin against a surface [34] and b) loaded probes that are dragged against human skin [21, 45]. 

Both approaches can offer good insights on the friction mechanisms at the skin-surface 

interface, and the choice of which one to use can depend on equipment availability, 

repeatability, accuracy, ease of use and the extent to which the real-world scenario is 

simulated. 

 

Table 1.1: A summary of some of the previous research on skin friction. 

Tested skin 
Interacting 

surfaces 

Test 

methods 

Applied 

load (N) 
COF Reference(s) 

Dorsum of 

hand 
 

Linear 

movement 
 

(static) 0.25 – 0.55 

0.2 – 0.48 
[2] 

Finger 
Glass and 

steel 

Finger sliding 

against 

surfaces 

15 - 20 0.97 – 1.1 [19] 

Back of heel Rubber Sliding probe   [45] 

Lower leg PE Sliding probe 5 0.5 – 0.6 [46] 

Forehead 

Volar forearm 

Palm 

Abdomen 

Upper back 

Teflon 
Rotating 

probe 
 

0.34 

0.26 

0.21 

0.12 

0.25 

[47] 

Inner forearm Glass Sliding probe  0.27 – 0.36 [48] 

Finger Steel 
UMT rolling 

probe 
0.2 0.33 – 0.55 [49] 

Forearm Steel Moving plate  0.24 – 0.64 [50] 

Index finger Wool fabric 

Finger sliding 

against 

surface 

 0.42  [51] 
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1.5    Plantar skin 

1.5.1 Vertical ground reaction force and peak plantar pressure during 

running 

Running is one of the most common daily routines incorporated in an athlete’s training 

programme. Depending on the running speed, each foot is off the ground between 70 and 80% 

of the time during gait [52]. While on the ground (i.e. during midfoot strike or push-off phase) 

the peak vertical ground reaction force experienced on each foot can approach more than 

twice body weight (i.e > 1600 N for an individual weighing ~ 85kg) [52, 53]. This value is 

further increased when performed on a hard surface combined with sport-specific movements 

such as stopping and braking [54]. Figure 1.5 shows the comparison between the vertical and 

horizontal ground reaction forces obtained from the same subject running at 3m/s. It can be 

seen that the horizontal ground reaction force experienced by the subject is considerably 

lower than the vertical ground reaction forces with a magnitude of approximately 13 times. 

 

 The large magnitude of vertical force may not be damaging when subjected to the 

entire plantar region of the foot. However, during midfoot strike and push-off phase, the 

plantar pressure resulted from the vertical ground reaction force was only distributed laterally 

across the forefoot region. The presence of bony prominences over this region substantially 

increase the peak pressure experienced by the plantar skin. Hennig & Milani [55] reported 

an in-shoe peak pressure of as high as 1018kPa under the first metatarsal head with a relative 

load of 26.5%. This is in agreement with a study carried out by Hayafune et al. [56] looking 

at the distribution of plantar pressure during walking where they found that the first and 

second metatarsal heads and the hallux shared 64% of the total load during the push-off phase. 

They reported a peak pressure value of 373 ± 172kPa under the first metatarsal head, 

accounting for 29.1% of the body weight.  
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Figure 1.5: The vertical and horizontal forces experienced by each foot during running 

(image reproduced and adapted from [57]). 
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1.6   Friction blister formation 

The skin has a unique protective mechanism that enables it to respond and adapt to the 

repetitive mechanical stress such as pressure, impact forces, shear, and friction [58, 59]. For 

example, as we grow older, our plantar skin becomes much thicker compared to our 

abdominal and facial skin since it is subjected to continuous trauma throughout our lives. 

Besides the physiological [60] and environmental factors, the degree of skin response and 

adaptation relies on the following factors [46, 61]: 

1) the type and direction of the mechanical stress applied; 

2) the magnitude of the mechanical stress applied per unit area of the skin; 

3) the duration and rate at which the mechanical stress is applied. 

 

However, during running the mechanical trauma may exceed the skin protective 

capability threshold and result in dermatological injuries such as friction blisters. As 

described in section 1.5, when the foot makes initial contact with the ground during running, 

the impact forces can reach of two to three times body weight [52, 62]. During this contact 

phase, the pressure distribution across the plantar skin in contact is affected by the design 

and fit of the shoe. The contact forces are partly translated into a shear component, causing 

a cyclic shear stress to be exerted to the plantar skin surface. The friction between the foot-

sock interface and the normal pressure distribution limit the level of shear that can be applied. 

Initially, the outermost layer of the skin, the stratum corneum, will just be abraded due to 

skin desquamation (also known as shedding).  

 

However, during prolonged loading, as the repeated shearing cycles persist, the forces 

are transmitted to the deeper epidermal layer. Once the surrounding tissues are unable to 

withstand the amount of forces which have been intensified beyond the threshold point, 

micro-tears start to occur within the stratum spinosum [60, 61, 63]. The number of micro-

tears increases whilst the existing tears enlarge and begin to combine. Eventually, the stratum 

spinosum is separated from the stratum basale forming a vesicle, resulting in friction blisters 

[46]. The vesicle then fills with fluid [61] which has similar electrolyte compositions to the 

serum but only about one-third of the serum protein concentration [64]. The other three 



14 

 

 

epidermal layers on top of the stratum spinosum (stratum corneum, stratum lucidum and 

stratum granulosum) remain intact to form the blister roof [3, 61].  

 

The recovery process is initiated in about 6 hours after blister formation as the cells 

in the blister base begin to absorb the amino acids and nucleosides required for the ‘repair’. 

High mitotic activity can be detected at the base cells within 24 to 30 hours, followed by the 

formation of new granular layer at 48 hours. Finally, a new stratum corneum is visible by 

day 5 [61, 63, 65]. 

 

1.6.1 Risk factors contributing to blistering 

The severity of blistering varies depending on the magnitude of the combined forces, the skin 

location, contact parameters and the environment as reported by Herring & Richie [66]. They 

found that 60.2% of the blister incidences occur in the forefoot region compared to the 

midfoot and rearfoot regions with 33.3% and 6.5% respectively. This can be linked to the 

high peak plantar pressure experienced by the forefoot region, as described earlier in section 

1.5. 

 

 There are several factors that have been identified as influencing the probability of 

blister formation. These can be categorised as intrinsic and extrinsic factors. Intrinsic factors 

are defined as variables related to the subject himself/herself such as skin condition, moisture 

level, poor biomechanics, foot type and deformities. On the other hand, extrinsic factors are 

variables not related to the essential nature of the subject himself/herself which include the 

magnitude of normal and frictional forces, number of shear cycles, poorly-fitted footwear. 

These factors are further elaborated in Tables 1.2 and 1.3 respectively. Sulzberger et al. [61] 

further suggested that blisters may be readily developed if the skin area fulfils both of the 

following pre-requisites: 

 The stratum basale is firmly anchored to the underlying dermis which will allow 

shearing to occur, thus creating an intra-epidermal cleavage (zone of damage); 

 The stratum corneum is thick and more resistant to superficial abrasion compared to 

‘thin’ skin such as the abdominal, thighs and forearms. Therefore, the shearing will 

be translated into the deeper epidermal layer and lead to blistering 



15 

 

 

It can be hypothesised that reducing one or more risk factors could dramatically reduce the 

probability of blister incidence and severity. 

 

Table 1.2: A summary of qualitative correlations between the intrinsic risk factors and 

probability of blistering. 

Intrinsic risk 

factor 
Qualitative correlation Reference(s) 

Skin condition 

 

Diabetic patients with peripheral neuropathy are 

more susceptible to blisters due to poor blood 

circulation resulting from nerve damage. 

Hyperhydrosis (excessive sweating) is also 

thought to increase susceptibility to blisters 

[67] 

Moisture level 

 

Dry skin has been shown to reduce friction, 

whereas moist skin has been shown to increase 

friction due to increase in contact area resulted 

from suppler skin 

[38] 

Poor 

biomechanics 

 

People with poor biomechanics tend to have 

non-uniform plantar pressure distribution, which 

when combined with excessive shearing will 

lead to blistering 

- 

Foot type 

 

People with flat feet (pes planus) and high-arch 

feet (pes cavus) have higher incidence of blisters 

due to non-uniform pressure distribution across 

the feet 

[65] 

Foot deformities 

 

The vertical plantar pressures against the 

metatarsal heads and calcaneus are dramatically 

increased in patient populations with foot 

deformities such as hallux valgus, diabetes 

mellitus with neuropathy and rheumatoid 

arthritis 

[68] 

Body 

temperature 

 

An increased in body temperature, such as from 

vigorous activities, may evoke sweating. Profuse 

sweating increases moisture build-up within an 

in-shoe environment which could then increase 

the likelihood of developing blisters 

[45] 
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Table 1.3: A summary of qualitative correlations between the extrinsic risk factors and 

probability of blistering. 

Extrinsic risk 

factor 
Qualitative correlation Reference(s) 

Intensity of 

activity 

 

High-intensity activities put an individual at 

increased risk for developing blisters due to 

the increased impact forces. 

[65] 

Duration of the 

activity 

 

Long-distance runners tend to have much 

higher chances of developing blisters than 

100-metre runners 

[4] 

Additional load 

 

Heavy loads increase the pressure acting on 

foot skin which over prolonged duration 

could increase the likelihood of blistering 

[69, 70] 

Improper 

footwear 

 

Poorly-fitted footwear causes the anterior of 

the foot to slip and displace within the shoe. 

This could result in an increased shearing 

which has been shown to increase skin 

susceptibility to blistering 

[71] 

Type of socks 

 

Acrylic socks with additional padding and 

double-sock systems have been proven to 

reduce blister incidence and severity among 

runners 

[66, 72] 

Lubricants 

application 

 

Applying lubricating agents increases the 

friction coefficient and blister incidence 

significantly after 3 hours of its application 

[65, 73] 

 

Among the identified risk factors, increase moisture levels within the shoe primarily 

due to high level of perspiration and humid environment has been shown to be the most 

critical factor that poses additional risks to developing blisters. It has been reported that an 

athlete may evoke sweat losses of nearly three litres per hour during a long run in a warm 

and humid environment, resulting in approximately 10% reduction in body weight [74]. 

Presence of water in the skin-sock interface and moisture build-up in the stratum corneum 

[75] could strongly influence the skin friction. A significant increase in friction was observed 

when rubbing wet skin against dry fabrics, with larger increases being found for hairy skin 

(such as the forearms and thighs) compared to glabrous skin (palms and plantar surfaces) 

[76]. A study by Tomlinson et al. [34] (not using fabrics), found an increase in skin-surface 
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friction coefficients in a humid environment and attributed them to physical mechanisms 

including water absorption and capillary adhesion due to meniscus formation. In addition, 

the authors concluded that the effect due to viscous shearing of liquid bridges formed 

between the skin and the interacting surface was negligible.  

 Elevated temperature at the skin surface during rigorous sport activities where the 

feet are subjected to repeated rubbing could also increase the skin moisture levels through 

sweating. This is more prominent for shoes with poor air-permeability that create a barrier 

for heat transfer [74]. Sweat from the body will vaporise into the atmosphere much quicker 

compared to the sweat accumulated within an enclosed shoe environment. This will increase 

the presence of moisture at the plantar skin-sock textile interface and in return influence the 

friction [31, 34, 77]. It is therefore important for sock fabrics to have the capability to “wick” 

and transport the moisture away from the plantar skin into the external environment [78]. 

Furthermore, accumulated moisture at the plantar skin-sock textile interface has potential to 

bridge air gaps between fibres which subsequently increases the contact area between these 

two surfaces. This could lead to an increase in the friction and/or cause lubrication [3], in 

addition to influencing the thermal resistance and thermal conductivity of the sock fabrics 

[79].  

 The socks should not generate additional shear force at skin-sock textile interface 

since this could have a negative impact on the range of movement and could even potentially 

lead to friction blisters [3, 80], which introduce potential discomfort to the wearer [80]. 

 

1.6.2 Previous experimental investigations on friction blisters 

There were few restrictions in using human subjects to conduct in-vivo blister studies 

between late 1950s and 1980s which allowed researchers to recruit as many people as they 

needed to be subjected to temporary pain and injury for the purpose of research.  Naylor [46] 

was the first to publish a quantitative study on experimental friction blisters in 1955 after 

discovering the effect of varying moisture degree on the skin COF just a few months earlier 

[38]. The results obtained from this study confirmed his earlier study that both extremely dry 

and wet skin conditions resulted in a high value of COF in comparison to moist (intermediate 
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degree of moisture) skin. However, a study by Cua et al. [29] in 1990 did not fully concur 

with Naylor’s conclusion as the authors found slight variations for the lower back and dorsal 

forearm.  

 

 

Figure 1.6: The experimental set-up modified from [38] , and used to create blisters in-

vivo. The apparatus is capable of administering linear and twist rubbing onto the 

palmar surface of the volunteers (image reproduced from [61]). 

 

The next definitive friction blister study was conducted by Sulzberger et al. [61] in 

1966 and the authors found that blistering only occurred on the palms and soles. The most 

recent controlled in-vivo blister study was conducted by Hashmi et al. [45] by incorporating 

digital infrared thermographic imaging into the experimental apparatus as shown in Figure 

1.7. The authors reasoned that the thermographic images could be useful in assessing 

temperature changes during blister formation without having to contact the foot skin (non-

invasive assessment method). It was found that the temperature change on the test site from 

baseline to the onset of blister development is 5.1⁰C. An immediate reduction in temperature 

was seen over a period of 60 minutes post-blister testing, which later gradually decreased to 

0.8⁰C slightly above the baseline reading. An ultrasound device was used to confirm the 

blister formation on the test site. 
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Figure 1.7: shows the load application mechanism used to manually apply a compression 

load of 70kPa on the posterior aspect of the heel (images reproduced from [45]). 

 

 

1.6.3 In-silico investigations on friction blisters 

In-silico modelling is a very useful and versatile tool that allows engineers to simulate and 

study realistic events which are usually rather difficult or impossible to be carried out 

physically. This is especially beneficial in skin tribological research which normally 

encompasses a wide range of skin physiological and frictional variations. A number of 

assumptions and model simplifications are always necessary in order to not over-complicate 

the model but the predicted results obtained from finite element simulation can be highly-

comparable with the real case. Pan et al. [81] conducted a series of in-silico studies looking 

at blister deformation and stress under walking and running loading conditions. The authors’ 

work employed a dynamic non-linear finite element model and assumed the skin to be 

hyperelastic, the muscles to be isotropic and elastic, and the bone to be a rigid body.   
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Figure 1.8: The three-dimensional (left) and two-dimensional (right) FE models of blister 

with radius ratio of 0.9 and 0.5 respectively were generated to study fabric-skin 

interactions (images reproduced from [81]). 

 

 

1.6.4 Synthetic test-beds 

Obtaining ethical approval before performing any tests on human subjects can be a difficult 

and time-consuming process. Furthermore, every individual does not produce similar 

response to mechanical stimulus which could be attributed to various reasons, including but 

not limited to, the difference in genetic makeup, medical conditions, gait, choice of footwear, 

and activity levels.  

 Guerra & Schwartz [1, 82] were the first researchers to develop a synthetic blister 

model, named the Synthetic Skin Simulant Platform (3SP), that serves as a research platform 

for friction blistering tests. The 3SP is made of a three-layer composite of elastomeric 

material to simulate the layered skin structure as shown in Figure 1.9 below and Table 1.3 

summarizes what each layer of the 3SP represents and the type of materials used. The authors 

found that the blistered samples exhibit a similar appearance to skin blister, with the layers 

separation occurred between the epidermal simulant layer (ESL)-dermal simulant layer (DSL) 

interface. The degree of the blister area and severity of the surface damage were also found 

to correspond with the friction force. Higher friction force resulted in a larger blister area and 

severe surface damage. However, justifications on the choice of silicone materials used were 

not provided. Furthermore, the authors did not specify which part of the human skin was 

simulated by the 3SP model, hence making results validation and comparison impossible.  
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Figure 1.9: The 3SP layers developed by Guerra & Schwartz (image reproduced from [1]). 

 

Table 1.4: A summary on the element of 3SP (information extracted from [1]). 

Element of 3SP Simulating role 
Type of material / 

adhesive 

Material 

thickness 

(mm) 

Shore 

Hardness 

ESL stratum corneum silicone rubber 0.8 40 A 

ESL-DSL interface 
dermal-epidermal 

junction 

methyl-ethyl-ketone 

adhesive 
- - 

DSL dermis layer 

polyurethane 

elastomer / neoprene 

rubber 

3.18 
40 OO / 

30 A 

DSL-SSL interface - 
silicone-based 

adhesive 
- - 

SSL 
tendons, muscles 

and fat 
latex rubber 3.18 35 A 

SSL-rigid mounting 

substrate interface 
- 

silicone-based 

adhesive 
- - 

Rigid mounting 

substrate 
- 

paper-backed acrylic 

plate 
- - 

 

 

  An artificial fingertip made of a type of silicone rubber was constructed by Shao et 

al. [83] to be used in tactile measurements. The artificial fingertip has similar geometry and 

softness as human fingertip. The development of the artificial fingertip was then evaluated 

in terms of its deformation and friction properties against fifteen surfaces with varying degree 

of surface roughness. They found that the artificial fingertip exhibited different friction 

characteristics than a human fingertip due to the high adhesive shear stress it experienced 

during the sliding test. In comparison with the 3SP model study, this study provides a more 
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systematic approach in developing and testing synthetic skin models. The development of 

the biofidelic prototypes, described in Chapter 5 of this thesis, follows similar systematic 

approach conducted by Shao et al. [83], which allows comparisons to be made between the 

prototypes and human first metatarsal head.  

 

1.6.5 Fabric friction measurement methods 

Different types of fabric possess different degree of frictional properties depending on their 

nature of fabric, materials composition and knit pattern. This in return could influence the 

fabric performance in terms of its quality and comfort. There are two classical methods of 

measuring fabric friction: unidirectional and multidirectional methods.  

 The unidirectional method is the most commonly used measuring method consisting 

of a probe rubbed against the tested fabric which is fixed on the horizontal platform. The 

probe is connected to a sensor that allows the desired force to be applied. The Kawabata 

Evaluation System is one of the devices that operates based on this measuring method [84]. 

It has been widely used since the 1980s to assess the friction and roughness properties of 

fabrics in various loading conditions: compression, pure bending, tensile and shear [85, 86].   

 Bueno et al. [87] found that the Kawabata Evaluation System was not sufficiently 

appropriate to characterise the effects of finishing treatments on fabric friction and later 

developed a multidirectional tribometer.  Unlike the unidirectional method, this device 

allows the friction of the fabric to be evaluated in all directions relative to its surface. 

 

 

1.7   Aims and objectives of the thesis 

The aims of this study are two-fold: 

1) To evaluate the tribological interactions between the skin-sock interface and the 

interplay of contact and moisture parameters contributing to blistering  

2) To design and develop biofidelic test-beds that closely match the mechanical and 

frictional properties of plantar region of the first metatarsal head. These test-beds are 

physical skin models that can be used in future friction blister studies 
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The main objectives of the study were to: 

1) establish a friction methodology to assess the frictional behaviour between the skin-

sock interface. This will include a moisture control and management protocol 

2) devise a standardised protocol for the foot friction testing 

3) assess the friction between the plantar aspect of the first metatarsal head (1MTH) and 

selected sock fabrics in different moisture conditions, using human participants 

4) design and develop a range of biofidelic test-beds that closely-resemble the 

mechanical and frictional properties of the 1MTH plantar region 

5) assess the friction between the biofidelic test-beds and selected sock fabrics in 

different moisture conditions 

6) validate the biofidelic test-beds using the human friction data and recommend 

potential uses of these findings 

The findings obtained from this study will contribute to existing knowledge gaps that are 

required in understanding plantar skin friction and friction blisters. 

 

1.8   Structure of thesis 

This thesis has been organised into six chapters that outline the key concepts of this study, as 

illustrated in Figure 1.10.  
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Figure 1.10: The key concepts outlined by each chapter of this thesis. 

 

 

Chapter 1 presents a detailed review of the relevant literature and encompasses the 

fundamental concept of skin anatomy, skin friction, and skin mechanical properties. The later 

part of this chapter will also include a thorough review of foot friction blisters and various 

experimental techniques used for measuring skin friction and mechanical properties in 

previous studies. 

Chapter 2 outlines the established testing protocols used in the human participant friction 

experiments as well as the equipment utilised to accomplish the purpose of this study. 
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Chapter 3 presents the experimental results obtained from the friction studies on sock-insole 

skin-sock interfaces. A novel moisture management protocol was established and was 

presented at the 12th biennial Footwear Biomechanics Symposium (FBS) of the International 

Society of Footwear Biomechanics Group and published in ‘Tasron D, Maiti R, Hemming M, 

Lewis R, and Carré M. Investigating a methodology to measure moisture in skin–textile 

friction experiments. Footwear Science. 2015; 7(sup1): S15-S6 [88]’. 

Two different foot-sock friction methodologies were also investigated in order to select the 

most appropriate methodology for the friction investigations in this study. The outcome from 

this work was presented at the 11th conference of the International Sports Engineering 

Association (ISEA) and published in ‘Carré M, Tasron D, Lewis R, and Hashmi F. 

Investigating foot-sock friction: A comparison of two different methodologies. Procedia 

Engineering. 2016;147:759-64 [89]’. 

This chapter also includes detailed experimental studies on the plantar skin against five 

different types of running socks. The outcome from this study was presented at the 7th Asia-

Pacific Congress on Sports Technology (APCST) and published in ‘Tasron D, Thurston T, 

and Carré M. Frictional behaviour of running sock textiles against plantar skin. Procedia 

Engineering. 2015; 112: 110-5 [90]’. 

The friction study was also carried out on the first metatarsal head in three different moisture 

conditions. The results from this study was presented at the 11th conference of the 

International Sports Engineering Association (ISEA) and published in ‘Tasron D, Maiti R, 

Hemming M, Lewis R, and Carré M. Frictional interaction between running sock fabrics and 

plantar aspect of first metatarsal head in different moisture conditions. Procedia 

Engineering. 2016; 147: 753-8[91]. 

Chapter 4 describes the entire process involved in designing and developing a set of 

prototype biofidelic test-beds that closely mimic the mechanical and frictional properties of 

the human plantar aspect of the 1MTH.  

Chapter 5 presents detailed comparisons of deformation and friction behaviour of the 

biofidelic test-beds with findings obtained from 1MTH skin-sock fabrics friction study. 
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Chapter 6 provides the main conclusions from this study in reference to the established 

objectives. The contributions of the thesis are also highlighted in this chapter along with a 

number of recommendations for future work. 
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Chapter 2 

 

 

 

 

Equipment, testing procedure and materials 

 

 

All equipment, testing procedure and materials that have been utilised and established are 

outlined in this chapter. Firstly, the sock materials used for testing throughout the PhD study 

are introduced. This is then followed by the descriptions of the development of two different 

devices used to measure the frictional behaviour of the plantar skin which include a foot 

friction rig and an instrumented foot loading device. The standard testing procedure used 

with respect to each equipment was also outlined.  Additionally, this chapter describes the 

non-invasive commercial instruments used to monitor and assess various parameters related 

to skin such as the hydration level (using the Corneometer® CM825), temperature (using the 

Skin Thermometer ST500), deformability of the skin (using the Cutometer® MPA580) and 

skin topography (using an optical coherence tomography). 

 

2.1 Friction equipment: foot friction rig (at The University of Sheffield) 

 

Two approaches were used to measure foot-sock friction. The first approach used a foot 

friction plate rig adapted from a previous study [34], to measure the friction by sliding plantar 

skin against sock fabrics. It was developed at the University of Sheffield and includes two 

50 kg-rated S-shaped load cells, capable of measuring the applied normal and friction forces 

as shown in Figure 2.1. A test plate was mounted on the rig to allow a sufficiently large sock 

test area while allowing the transmission of the normal and shear forces. The rig setup also 

includes a laptop installed with a LabView programme, a National Instruments hi-speed USB 

Carrier (NI 9162) and a National Instruments data acquisition card (N1 9237) as shown in 
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Figure 2.2. The NI 9237 combines the analogue and digital filtering to eliminate the noise 

and optimise the output signals.  

 

Figure 2.1: Foot friction plate rig. The vertical load cell measures the applied normal force 

whereas the horizontal load cell measures the friction force. 

 

  

Figure 2.2: The foot friction rig setup. 

 

Laptop 

Friction rig 

Data acquisition 

system: NI USB-

9237 

Horizontal load 

cell Vertical load 

cell 
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2.1.1 Experimental procedure for foot friction rig 

 

The sock materials were cut along the dorsal (top) line, opened out so that the inside surface 

of the plantar region was facing upwards, and stretched to approximately 50% level of strain 

in both vertical and horizontal directions before being secured to the rig plate with double-

sided adhesive tape. This level of pre-straining had been selected based on the findings from 

the pilot study carried out to assess the effects of strain in sock fabrics on friction, which will 

be described in the following chapter. Anecdotally, the strain level was also found to reflect 

real-world conditions when the sock is being worn. In order to further prohibit any movement 

between the sock and the plate, clamps were also applied around the material sample 

perimeter, as shown in Figure 2.3. A test area of 102 mm×54mm was then marked on the 

plantar region of the sock to ensure that the sliding was performed on the desired region. 

 Participants were instructed to slide their feet across the plate. They needed to lift 

their toes throughout sliding to effectively isolate the 1MTH (see Figure 2.4). A friction test 

protocol was adapted from previous studies [34, 90, 92-95] whereby participants press their 

IMTH region against the test plate and then push their foot forwards across the sock surface, 

maintaining the initial level of normal load and a relatively consistent, self-monitored, sliding 

velocity. This process was repeated for a range of applied normal loads and this was observed 

and checked throughout testing.  

 

Figure 2.3: The set-up of the sock sample for friction testing. 
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Figure 2.4: Friction testing conducted using the foot friction plate rig. 

 

 Figure 2.5 shows a typical example of raw force data collected from a participant 

using the foot friction plate rig.  Both the applied normal load and friction force were 

plotted as a function of time to show the different phases of interaction as the 1MTH slid 

across the tested sock fabric. In phase (I) the applied normal (vertical) load and the friction 

force (horizontal) can be seen gradually increasing as the 1MTH is pressed on the plate and 

is then maintained by the participant. In this phase, there is no relative movement between 

the foot and the sock fabric. This is then followed by phase (II) whereby the friction force 

has reached a level able to overcome the limiting friction and the 1MTH begins to slide 

forward. The average of the stable, central region of both normal and friction forces data 

in phase (II) is selected to generate force values that relate to the dynamic coefficient of 

friction. The dynamic coefficient of friction (DCOF) is calculated by dividing the average 

friction force by the average normal force. 

 

 

 

 

 

Sliding direction of foot 
Sliding direction of foot 



31 

 

 

 

 

 

Figure 3.6: Typical force data output obtained from friction testing using the bespoke 

friction plate rig. 

 Friction testing conducted using the bespoke friction plate rig. 

 

 

 

Figure 2.5: Typical force data output obtained from testing conducted using the foot 

friction plate rig. 

 

2.2 Friction equipment: foot loading device (at The University of Salford, 

UK) 

A second approach, an instrumented foot loading device, was also used to assess the friction 

interaction between the 1MTH and the sock fabrics. The device was designed and developed 

by Dr Farina Hashmi and Ciaran Wright (University of Salford) to apply repetitive 

compression and shear forces on plantar skin without relative sliding occurring. The device 

includes a compression actuator (SMC Pneumatics UK Ltd.), a compression load cell 

(Applied Measurements), a shear actuator (SMC Pneumatics UK Ltd.), a shear load cell 

(Applied Measurements) and an instrumented metal cylindrical probe, as shown in Figure 

2.6.  
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Figure 2.6: The foot loading device: A: instrumented probe; B: Shear load cell; C: slider; 

D: compression load cell; E: bracket; F: shear actuator; G: mounting plate; H: 

compression actuator; I: connecting plate; J: fixing brackets and K: base plate (The 

composite drawing on the right is reproduced from [96] with permission.) 

 

 

 The pneumatic actuators drive the cyclic motion of the probe and it is displacement-

controlled through the use of two solenoid valves and a dedicated computer program, written 

by the research team at the University of Salford. In addition, the two load cells allow the 

compression (normal) and shear (friction) forces to be measured. The probe provides contact 

between the 1MTH skin and tested sock fabric, without interference from adjacent 

metatarsals. The ram pressure setting can be selected up to 0.75mbar to generate the desired 

range of applied compression loads on 1MTH.  

 

 

2.2.1 Development of instrumented probe and platform 

An instrumented probe was developed in order to apply the compression and shear forces 

against the 1MTH skin, simulating the same forward sliding foot movement as the friction 

testing conducted with the foot friction plate rig. In addition, it is important that the 
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instrumented probe has sufficiently large contact area to prevent it from digging into the skin 

during sliding as well as to provide sufficient area to mount the sock fabric on. 

 

 By using the 1 MTH peak pressure data and force values provided by Hayafune et 

al.[56], the contact area was determined to be 0.00052m2, which was comparable to the 

contact area given by a 27 mm diameter probe which is 0.00057m2 . The same probe was 

used throughout testing. A platform was also designed and developed to allow the 

participants to place their 1MTH over the instrumented probe. The platform was made of a 

sturdy wooden structure with two support rails for the Velcro straps that were used to position 

the foot in place. The entire set-up of the instrumented probe and platform is shown in Figure 

2.7. 

 

 

Figure 2.7: The platform and an instrumented probe used for the friction testing. 

 

 

2.2.2 Experimental procedure for foot loading device 

Participants were instructed to remain standing on the platform, as shown in Figures 2.8 and 

2.9, with the probe pressed against the 1MTH region of the foot. Each sock material was 

stretched to approximately 50% strain (similar to the protocol used during friction testing 

using the foot friction plate friction plate rig) before being securely attached to the probe 

using double-sided adhesive tape. Straps were used to aid in the positioning of the 

participant’s foot which also ensured that the conditions were consistent for repeated runs. 

Velcro straps to hold 

foot in place  

Instrumented probe 

Platform 
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Initially, some trial runs were conducted and once the participant was familiar and 

comfortable with the procedure, and the foot positioning was deemed correct, the foot straps 

were applied.  

 

 When testing was initiated, the probe moved downwards away from the foot and was 

driven horizontally in the anterior-posterior direction for 250 mm. It was then driven 

upwards, making contact with the plantar aspect of the foot, before being driven in the 

posterior-anterior direction, whilst sliding across the 1MTH region. This motion made up 

one full loading cycle which was then repeated another time. Three different ram pressure 

settings of 0.2 mbar, 0.4 mbar and 0.6 mbar were used to generate a range of applied 

compression loads for different test-runs. For each pressure setting, the first two loading 

cycles were used to obtain data. Careful observation was made throughout testing to ensure 

that the probe contact remained in the 1MTH skin area for each sliding part of the loading 

cycle.  

 

 

Figure 2.8: Participant standing on the platform whist placing the test foot on the 

instrumented probe. 

Velcro straps to hold 

foot in place  

Instrumented probe 

Platform 
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Figure 2.9: Friction testing conducted using the foot loading device.  

 

 

 

Figure 2.10: Typical force data output obtained from the friction testing conducted using 

the foot loading device. 
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 Figure 2.10 shows a typical raw force data output obtained during testing using the 

foot loading device. The generated forces are shown plotted against the order of data point 

collected and can be divided into five different phases. The cyclic motion begins in phase (I) 

where the probe is pressed against the 1MTH region, before being moved away from the foot 

due to the unloading of the applied normal force. As the probe was driven towards the back 

of the foot, it was not in contact with the foot and therefore no forces were measured as 

indicated by Phase (II). Phase (III) shows the initial compression loading of the probe being 

pressed against the plantar aspect of the foot (more specifically at the rear of the 1MTH) 

before being driven horizontally by the actuator. In phase (IV), the probe actually began to 

move horizontally due to a relative constant shear load and the applied compression loading 

then increased further, thought to be a consequence of the probe sliding over the bony 

prominence in the 1MTH region. This general effect was seen in all the participants but to 

varying degrees depending on their respective anatomical variations. The probe was then 

unloaded in phase (V) and was made to repeat the entire cyclic motion (not shown in Figure 

2.10). 

 Note that the transition between phase (I) and (II), where the probe is in unloading 

phase, is mirrored by the repeating action in the transition between phase (IV) and (V). In 

order to generate a dynamic coefficient of friction, the stable, central region of loading phase 

(IV) was used to obtain the average compression (normal) and shear (friction) force values. 

These values were then averaged with the measurements obtained from the second cyclic 

loading of the friction testing. 

 

2.3 Skin characteristics equipment: Corneometer® CM825 

Some commercially-available devices were used to monitor participant skin characteristics. 

The first was the Corneometer® CM825 (Courage and Khazaka Electronic, Cologne, 

Germany) used to measure and monitor the hydration level of the plantar aspect of the 1MTH 

as well as the tested sock fabrics at specific intervals throughout testing. The Corneometer® 

is widely used due to its ease of use and capability to monitor skin moisture using capacitance 

measurements [97]. Skin surface hydration changes the dielectric constant which alters the 
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capacitance of a measuring capacitor embedded in the probe head. The Corneometer® has 

also been shown to be capable of differentiating between dry and well-hydrated skin [98]. 

The measurement depth of the device is between 10 to 20 µm, ensuring that the measured 

reading only reflects the amount of moisture present within the stratum corneum layer 

without any influence from the moisture within the deeper skin layers (dermis and 

subcutaneous tissue). The moisture measurements are all reported in “arbitrary units” (AU) 

ranging from 0 to 120, where 0 indicates no moisture present whereas 120 indicates a 

maximum measurement according to the capability of the device. 

 

Figure 2.11: The Corneometer® CM 825 device. 

 

2.3.1 Skin moisture control protocol using the Corneometer® CM825 

Prior to any testing, participants were required to clean their foot that was to be tested for 1 

minute using a room temperature water bath, to remove any contaminants and sock fibres. 

The foot was then dried with paper towels and allowed to acclimatise to room conditions for 

between 8 to 10 minutes. Hydration measurements were performed on the 1MTH region at 

specific intervals: 1) prior to cleaning; 2) after cleaning and acclimatisation; 3) prior to 

friction tests and 4) immediately after each friction test. The hydration readings taken after 

cleaning and acclimatisation were considered as the baseline foot hydration level and used 
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for subsequent analyses. Cleaning and acclimatisation was repeated before changing the sock 

materials, halfway through testing, to remove any sweat or contaminant build-up and ensure 

consistency.  

 

2.4 Skin characteristics equipment: Cutometer® MPA580 

A second skin test, the Cutometer® MPA580, was a non-invasive device used to measure 

the deformability of the upper skin layer using vacuum pressure which deforms the skin 

mechanically based on suction principle. The device consists of a handheld probe equipped 

with a suction head (available in 2, 4, 6, and 8 mm diameter aperture) and an operating unit 

which includes a vacuum pump that can generate intended pressure up to 500mbar. The skin 

was drawn into the aperture of the probe head with defined vacuum pressure. An integrated 

optical lens allows the absorption depth of the skin into the probe to be measured by 

converting the change in light intensity into millimetre (mm).  

 There are four different measuring modes offered by the Cutometer which are: 

 Mode 1 – measurement with constant negative pressure 

 Mode 2 – measurement with linear rising and falling negative pressure 

 Mode 3 – measurement with constant followed by linear falling negative pressure 

 Mode 4 – measurement with linear rising negative pressure followed by abrupt 

release of the negative pressure 

 

Each mode gives different set of parameters than the others. Mode 1 has been widely 

documented in literature and the measurements obtained using this particular mode provide 

important insight of the skin mechanical properties. A study by Hashmi & Malone-Lee [99] 

also utilised Mode 1, in varying pressure settings of 100, 200, 300, 400, and 500 mbar, to 

evaluate and compare the elasticity between the weight-bearing and non-weight-bearing foot 

skin. The maximum displacement readings were then plotted against pressure. The non-

weight-bearing dorsal skin was shown to have highest elasticity compared with the other two 

weight-bearing skin areas on the plantar skin. They also found that the displacement readings 

on average were overestimated with fairly low percentages of error for all tested skin sites. 
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 Figure 2.12 shows a typical strain-time curve obtained from a human skin using the 

Cutometer® device.  Each deformation parameter and its representation is briefly explained 

in Table 3.3. 

 

 

Figure 2.12: A typical strain-time curve obtained from the human skin using the 

Cutometer® MPA580 in Mode 1 (image reproduced from [12]). 
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Table 2.1: Deformation parameter and its representation obtained from [11]. 

Parameter Parameter representation 

Ue Immediate deformation denoting the elastic component of the skin 

Uv  
Delayed deformation reflecting the viscoelasticity component of 

the skin 

Uf Maximal deformation  

Ur Immediate retraction 

Ua Final retraction after vacuum removal 

Ua/Uf Gross elasticity of the skin 

Ur/Ue Net elasticity of the skin 

Uv/Ue The viscoelasticity portion on the elastic region of the curve 

Ur/Uf Biological elasticity 

 

 

2.4.1 Experimental procedure for Cutometer® MPA580 

Similar to the skin moisture management protocol using the Corneometer® CM825, 

participants were first required to clean and acclimatised their foot to the room conditions. 

The Cutometer® probe was cleaned using a medical-grade alcohol swab prior to use to ensure 

that no contaminants will be transferred onto the test region. The test region was then marked 

to ensure that the exact same area can be tested. A probe with 8 mm diameter aperture was 

selected for the elasticity measurements to allow full deformation of skin to be measured. 

One full 60-second strain-time cycle, with 30 seconds under negative pressure of 500mbar 

and 30 seconds off-time, was used. The highest negative pressure setting of 500mbar was 

chosen for the measurements of the relatively thicker and stiffer plantar skin.  
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Figure 2.13: A Cutometer® probe in use to obtain elasticity measurements of the plantar 

skin. 

 

2.5 Skin characteristics equipment: Optical Coherence Tomography 

(OCT) 

Optical coherence tomography (OCT) is a non-invasive optical imaging technique widely 

used in the dermatology and medicine for diagnosing skin disease. OCT allows cross-

sectional assessment of living tissues in real-time. The principle of OCT imaging is very 

similar to that of ultrasound imaging, which measures the delays in the echo time reflected 

by the acoustic waves. OCT, on the other hand, measures the time delays of the back-

scattered infrared light and generates a two-dimensional image [100] with a lateral dimension 

of 6 mm  and a penetration depth of approximately 2 mm [31]. Five sub-surface OCT images 

were obtained from a participant’s 1MTH using a VivoSight system (Michelson Diagnostics). 

The measurements were performed before and after 1MTH friction measurements. An 

algorithm, with anisotropic filtering to remove speckle noise and prior knowledge of the 

multiple channel foci in the multi-beam, was used to measure the morphological parameters 

from the images which included the thickness of the stratum corneum (SC) and roughness of 

the outermost skin layer and the SC junction. This study was conducted in collaboration with 

Dr Raman Maiti. 

 

2.6 Tested running sock materials 

In order to assess the frictional interaction between the plantar skin against sock fabrics, a 

variety of running socks were required. Initially, for the preliminary study, five different 
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types of commercially available running socks were selected due to their differing material 

composition and knit patterns. The characteristics of these socks are given in Table 2.2. 

Table 2.2: Characteristics of five different socks used in the preliminary studies. 

Sock Material compositions Knit pattern 

A 75% cotton, 17% polyester, 6% nylon, 2% elastane Terry jersey 

B 100% cotton Simple jersey 

C 40% wool, 31% cotton, 19% nylon, 8% elastane Terry jersey 

D 99% nylon, 1% elastane Simple jersey 

E 100% synthetic nylon Simple jersey 

 

 The simple jersey and terry jersey are the most widely used knit patterns in running 

socks. The single jersey is usually formed with a single yarn of material, producing a 

relatively thin fabric. On the other hand, terry jersey uses a second yarn to create loops with 

the back yarns, producing a thicker fabric compared to the single jersey [3]. The difference 

between these two knit patterns are show in Figure 2.14.  

  

 

 

 

Figure 2.14: The two most commonly used knit patterns in running socks: (a) simple jersey 

and (b) terry jersey (images reproduced from [3]). 

 

 Upon completing the preliminary study, two out of five of these running socks were 

chosen to be used for further friction experiments which are a cotton-rich sock, Sock A and 

a predominantly nylon sock, Sock D. However, due to the limited availability of Sock A, an 

alternative sock was obtained and used. It was manufactured by the same manufacturer as 

(a) (b) 
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Sock A and was made of similar material composition and knit pattern. Table 2.3 provides 

the characteristics of the socks used for further friction testing. 

 

Table 2.3: Characteristics of the selected socks used for further friction testing. 

Sock  Material compositions Knit pattern 

Anti-blister “ABS”  99% nylon and 1% elastane Simple jersey 

Cotton-rich “CRS”  
70% cotton, 29% nylon, and 1% 

elastane 
Terry jersey 

  

 In order to reflect the real-world use, all newly-purchased running socks were hand-

washed using water and a mild liquid detergent and left to air-dry at room temperature for at 

least 72 hours prior to the test. Pre-washing the socks ensured the removal of any 

contaminants trapped within the sock fibres as well as to maintain their dimensional stability. 

 

2.7 Establishing a standard fabric moisture management protocol using 

the Corneometer® CM825 

 

2.7.1 Introduction 

 

It is widely known that natural moisture content in human skin and the presence of moisture 

at the skin-fabric interface can strongly influence the friction [31, 34, 77], as described in 

Chapter 1. However, it was noticed at the beginning of the study, that there was a lack of a 

standard moisture control protocol for textile experiments. This means that research in this 

area can be challenging to carry out and presents difficulties in comparing different studies. 

Presently, quantifying the change in the amount of moisture that has taken place within the 

fabric by weighing them pre- and post-test was the most commonly used technique by 

researchers [101]. In another study by Van Amber et al. [102] the socks were placed in a 

washing machine and submitted to a time-varying wetting cycle prior to testing to achieve 

damp socks (i.e. a technique adapted from a study by Laing et al. [103]). Although these two 

methods may have their own practical advantage in studies conducted in a small scale or in 

accordance to the standard textile testing procedure, they are not considered to be the most 
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time-efficient techniques for a large scale human testing. A large scale human testing may be 

defined as an experiment which involves a large number of participants (i.e. usually more 

than 10 people) and/or long-duration and complex testing procedures. 

 Therefore, a standard moisture control protocol is required to allow the same protocol 

to be easily implemented throughout the study thus ensuring consistency in the measuring 

technique and allowing comparison between studies to be made.  A two-part pilot study was 

therefore undertaken to: (1) establish a moisture control protocol for fabrics, using the 

Corneometer® and (2) to assess the protocol in a participant study. It is worth to note that 

this study was not designed to evaluate the frictional performance of the tested sock materials. 

 

2.7.2 Tested sock fabrics 

The wool-rich (40% wool, 31% cotton, 19% nylon and 8% elastane) and cotton-rich (70% 

cotton, 29% nylon, and 1% elastane) socks were used for purpose of this pilot study. These 

socks were chosen due to the high percentage of hydrophilic fibres composed in the socks 

(i.e. cotton and wool) which will help to absorb and retain the added moisture. The 

characteristics details of the socks could also be found in Table 2.2 and 2.3. 

 

2.7.3 Experimental procedure 

In the first part of this study three specimens of each wool-rich and cotton-rich sock were 

prepared. The sock samples were mounted onto a rigid metal plate and water was applied to 

the inside of the plantar region using a spray bottle. The water was sprayed directly onto a 

targeted area of 40mm radius and each spray delivered approximately 1.4 ± 0.1 ml of water. 

Five Corneometer® readings were then taken in dry condition and also after applications of 

1, 2, 3, 5, and 10 consistent sprays. The measurements were then averaged and plotted with 

standard deviations as displayed in Figure 2.15 below.  
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2.7.4 Results and discussion 

 

Figure 2.15: The Corneometer® readings obtained in relation to the number of calibrated 

sprays. 

 

 It can be seen that in dry condition, both sock materials gave similar Corneometer 

readings, indicating that the results were not influenced by differing capacitance values of 

the materials compositions themselves. The Corneometer readings steadily increased with 

the number of sprays and showed relatively similar trend for both types of socks. These 

findings suggested that the Corneometer® CM825 device can be used as a reliable indicator 

to quantify the amount of moisture in sock fabrics. 

 This protocol was then further assessed in the second part of the study where two 

healthy subjects (one female aged 26 and male aged 31) were recruited to complete a running 

session that included three running sessions of 15-, 30-, and 45-minute duration. It should be 

noted that since the objective of this study is to measure moisture accumulation in the socks, 

the speed of running was not measured. Both subjects were only required to run continuously 

at their comfortable pace for the targeted duration. Prior to running, subjects were required 

to clean their feet with room temperature water and let them acclimatised to the room 



46 

 

 

conditions for 15 minutes. Subjects were then instructed to wear a wool-rich sock on one foot 

and a cotton-rich sock on the other. Both feet were then wrapped with cling film and plastic 

bags to induce maximum sweating throughout the running duration. A total of 10 

Corneometer readings were then obtained on the dorsal and plantar regions of the socks, pre- 

and post- each running session. 

 

Figure 2.16: The Corneometer® readings obtained from each sock material after respective 

running bout: (Top) Subject 1 and (Bottom) Subject 2. 
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 Figure 2.16 shows the average Corneometer readings obtained from both sock 

materials after each running session, for both subjects. The error bars represent the standard 

deviations of the data sets. It can be seen that the moisture levels of the sock materials were 

at the lower end of the Corneometer scale even after a 45-minute run. It can also be deduced 

that Subject 1 produced higher moisture level on the dorsal part of the sock compared with 

Subject 2, suggesting that different individuals vary in the way they regulate moisture within 

a shoe environment.  

 From this two-part pilot study, it can be concluded that the Corneometer shows 

promise as a methodology to monitor moisture change within a sock fabric. When compared 

with the benchmark technique of weighing the sock before and after testing, this newly-

established protocol, which has been implemented and demonstrated in the following studies 

[90, 92-94], was found to be the a quicker approach in measuring moisture levels in both 

human skin and sock fabrics. In addition, the software used with the Corneometer allows the 

measurement data to be recorded automatically onto the computer, hence eliminating the 

need to manually record them. Since the moisture in skin and sock fabrics evaporates into 

the atmosphere over time, the quick Corneometer approach may be able to provide more 

accurate representation of the moisture amount as it allows a high number of measurements 

to be taken within a short window of time.  
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Chapter 3 

 

 

 

Experimental results for studies on sock-insole and 

skin-sock interfaces 

 

 

 

Current knowledge on the sock-on-insole and plantar skin-on-sock interactions is still very 

limited despite extensive advancement in both skin tribology and textile research areas. 

Progress in plantar skin research may have been hindered by the challenges in obtaining 

quantitative physical properties such as coefficient of friction and elastic modulus, in addition 

to the lack of appropriate experimental setup and standard experimental protocol. The 

beginning of this chapter describes a comparison of two different foot – sock friction 

measuring methodologies alongside a few series of pilot studies that were undertaken to 

address this issue. The results from these obtained serve as a starting point and necessary 

foundation to further developing the direction of this PhD research. The latter part of this 

chapter discusses the more in-depth studies carried out on friction between plantar skin in the 

first metatarsal head region and sock fabrics. 
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3.1 Pilot study 1: A comparison of two different methodologies in 

measuring foot-sock friction  

 

3.1.1 Introduction 

 

Two different methodologies for assessing the friction between foot skin and sock fabrics 

were presented and discussed earlier in Chapter 2. The first approach uses a foot friction plate 

rig developed at the University of Sheffield, which requires participants to slide their foot 

over a test plate whilst maintaining a targeted normal load at a relatively consistent sliding 

speed. The second approach uses a pneumatically-driven foot probe loading device designed 

at the University of Salford, which requires the participants to stand still on a platform whilst 

the probe is applied to, and then driven across, the plantar aspect of foot. Both approaches 

allow friction coefficients to be calculated from load data collected during the sliding phase 

of movement. The main purpose of this investigation is to compare the results from both 

methodologies and to consider which approach offers the best promise for continued work in 

the foot-skin friction area. To the author’s knowledge, this type of comparison has not been 

considered prior to this investigation.  

 

3.1.2 Study participants and test conditions 

 

The investigation consists of two separate studies that took place at two different institutions 

and six healthy participants (4 males and 2 females; average age in years, 28.5 ± 5.3 SD) 

were recruited to take part in both studies. The first study was conducted at the University of 

Sheffield (hereafter will be referred to as Study A) whereas the second study was conducted 

three months later at the University of Salford (hereafter will be referred to as Study B). 

Ethics approval for Study A was granted by the Ethics Committee of the Department of 

Mechanical Engineering and Dermatology Research Unit, University of Sheffield 

(application number 002074) whereas for Study B, ethics approval was obtained from the 

University of Salford’s College Research Ethics Panel (application number HSCR15-21).  
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 In order to be eligible for both studies, participants must be aged between 20 to 45 

years old and have healthy plantar skin especially the area under the 1MTH. This age group 

has been selected to be appropriate for the purpose of this investigation for a number of 

reasons. According to a previous research conducted by Escoffier et al. [11], the structure 

and mechanical properties of the skin remain somewhat constant until around 70 years of age. 

However, to achieve the purpose of this investigation, people in the age range of 20 to 45 are 

more likely to be healthy with less risk of having skin pathologies and actively involved in 

running. In addition, this age group is selected due to their availability within the university.  

 Participants with the following conditions were also excluded from taking part in both 

studies: 

 having acute or chronic wounds such as unhealed ulcers and blisters; 

 having any foot skin disorders such as eczema, athletes’ foot, dermatitis, psoriasis, 

or fungal infections; 

 having a known disease such as rheumatoid arthritis, diabetes and cardiovascular 

disease; 

 having any allergies that could be triggered by latex, silicone-based materials, 

surgical spirit or any alcohol based topical preparations; 

 having impaired peripheral that compromises skin integrity and/or neurological 

status. 

 

In addition, all participants underwent the following assessments prior to the start of both 

studies in accordance to the ‘Guidelines for the Prevention and Management of Foot 

Problems for People with Diabetes’. 

 

 Vascular Assessment 

The dorsalis pedis and posterior tibial artery were palpated. If both pedal pulses in 

one foot were not palpable, the participant was identified as “increased risk” and 

therefore was not eligible to participate. 

 



51 

 

 

 Neurological Assessment 

A 10g Monofilament was used to identify neuropathy at three sites which are under 

the hallux and the first and fifth metatarsals. The application of the monofilament was 

repeated twice at the same site but alternated with at least one ‘sham’ application in 

which no filament was applied. If the participant correctly answered 2 out of 3 

applications, protective sensation was considered present at each site. However, if the 

protective sensation was absent with 2 out of 3 incorrect answers and the participant 

was considered to be at risk of ulceration and therefore was not eligible to participate. 

Prior to the recruitment, the author had received sufficient training from an HCPC 

registered podiatrist, Dr Farina Hashmi from the University of Salford. All participants 

provided their informed written consent prior to testing. 

 

 It is worth noting that in both Studies A and B, the testing for each participant took 

between 4 to 4.5 hours to complete. Due to the extended period of testing, recruiting a 

large number of participants who are able to attend both studies at the specified dates was 

not feasible.  A sample size of 6 was therefore decided to be appropriate to achieve the 

objective of both studies. 

  

 In both studies, the tested foot was initially cleaned with water (at room temperature) 

to remove any contaminants and sock fibres and then dried with a paper towel and allowed 

to acclimatise to the room conditions for a period of 10 minutes. The Corneometer® 

CM825 (Courage and Khazaka, Germany) was used to measure and monitor the skin 

hydration of the 1MTH area at specific intervals using following a standard test protocol 

highlighted earlier in Chapter 3, to ensure that comparable test conditions were achieved. 

All testing was performed in laboratory conditions with a temperature of between 20ºC to 

22ºC and a relative humidity of 40 to 60%.  

 

3.1.3 Tested sock materials 

The same two types of commercially available running socks were used in both studies. One 

is marketed as “anti-blister” sock and the other as “cotton-rich” sock. Each sock had different 
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material composition and knit patterns, as provided in Table 3.1. The order of testing for each 

sock material was counter-balanced for each participant.  

 

Table 3.1. Characteristics of the running socks used in this study. 

Sock type Material compositions Knit pattern 
Material 

thickness (mm) 

Anti-blister “ABS”  99% nylon and 1% elastane Simple jersey 1.18 ± 0.04 SD 

Cotton-rich “CRS”  
70% cotton, 29% nylon, and 1% 

elastane 
Terry jersey 2.62 ± 0.08 SD 

 

 

3.1.4 Data and statistical analysis 

Statistical analysis was undertaken using SPSS 22.0 (Chicago, USA). The Shapiro-Wilk test 

was used to confirm that any data sets were normally distributed (at significance level p > 

0.05) before Pearson’s correlation analysis was employed to determine the relationship 

strength between two parameters. 

 

3.1.5 Experimental procedure 

For Study A, friction tests were carried out using the established protocol explained in 

Chapter 2 earlier (please refer to section 2.1 for detailed explanation). Study B was conducted 

using the protocol outlined in Chapter 2 (please refer to section 2.2 for detailed explanations). 

All friction tests were conducted in dry condition where no additional moisture was added to 

the sock materials. Data from both approaches was collected and assessed before being 

compared to each other. 

 

 

3.1.6 Results and discussion 

The generated raw force data from both methodologies have been described in detail in 

Sections 2.1.1 and 2.2.2 respectively. 
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 For comparison, the averaged normal and dynamic (sliding) friction forces from both 

studies are shown in Figure 3.1(a) (for the anti-blister sock) and Figure 3.1(b) (for the cotton-

rich sock). Both studies were able to distinguish between the participants to some degree and 

gave the same general trend whereby the dynamic friction force increases with the normal 

force. Study A achieved normal loads ranging between approximately 10 to 200 N, with the 

upper level more representative of pedestrian loading. Study B was capable of achieving 

normal (compression) loads in the approximate region of 10 to 40 N and in trial runs attempts 

to increase this load level, either through the ram pressure setting or the initial foot 

positioning, led to the risk of discomfort to participants. Although this normal load range is 

lower than that seen in walking and running, it is higher than the level used typically in other 

skin friction studies [51, 104, 105]. Table 3.2 summarises the statistical data obtained from 

both Study A and Study B. 
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Figure 3.1: Normal and friction force data for both studies with linear fits applied to Study 

A data for (a) the anti-blister sock; (b) the cotton-rich sock.  

 

 

 

(b) 

(a) 
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 Both Figure 3.1(a) and Figure 3.1(b) contain linear fits of the participant data from 

Study A. The Pearson’s R2 and p values reported in Table 3.2 indicate the strength and 

significance of the linear fits. Since the participant results obtained from Study B did not 

produce any significant linear fits for both sock types (see Figure 3.2 and Table 3.2), the fits 

were therefore omitted for clarity.  Linear regression was also carried out on the participant 

datasets combined from both studies and the Pearson’s R2 and p values for these are also 

tabulated in Table 3.2, where the dynamic coefficients of friction (DCOF) are also presented 

for Study A. It is worth to note that these DCOF values were not reproduced in Study B (see 

Figure 3.2). 

 It can be seen in Figure 3.1(a) that for the anti-blister sock data, participant results 

were found to compare well between studies and the data for most the participants in Study 

B was also well-described by these linear fits. For the anti-blister sock linear fits based on 

Study A alone, many of the datasets produced strong relationships with R2 equal to 0.95 or 

above. All the datasets gave linear fits that were significant at p < 0.05, except participant 

S06 which also produced the weakest fit at R2 = 0.885. 
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Figure 3.2: Normal and friction force data for Study B: (a) the anti-blister sock; (b) the 

cotton-rich sock. 

 

(a) 

(b) 
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Table 3.2: Summarised statistical data obtained from Study A and Study B. The level of 

significance is indicated by * (p < 0.05). 

Sock 

type 
Subject 

Study A Study B 

R2 value p-value DCOF R2 value p-value 

“ABS” 

S01 0.987 0.001* 0.45 0.021 0.907 

S02 0.970 0.015* 0.59 0.690 0.376 

S03 0.947 0.005* 0.37 0.628 0.418 

S04 0.990 0.005* 0.33 0.938 0.161 

S05 1.000 0.000* 0.34 0.970 0.111 

S06 0.885 0.059 0.34 0.829 0.271 

“CRS” 

S01 0.990 0.005* 0.34 0.279 0.646 

S02 0.975 0.013* 0.40 0.980 0.090 

S03 0.999 0.000* 0.33 0.196 0.708 

S04 0.999 0.000* 0.33 0.299 0.631 

S05 0.978 0.137* 0.30 0.023 0.903 

S06 0.998 0.001* 0.27 0.538 0.476 

 

 On the other hand, analysis of the data from the cotton-rich sock tests in Figure 3.1(b) 

shows less close friction behaviour between the two studies, although the DCOF values from 

the Study A dataset and combined dataset gave good comparison for all of the participants 

except S02 and S04. In terms of sock frictional performance, the cotton-rich sock was 

consistently found to produce lower friction than the anti-blister sock for each set of 

participant data (in the dry conditions tested). This finding was confirmed in an additional 

study that included more participants which is described in the latter part of this chapter. 

In general, both approaches gave similar results in terms of the trends observed and the 

participant and textile-specific friction values produced. This was despite the fact that the 

level of loading differed between the methodologies as well the interaction between foot skin 

and sock; Study A used one area of the foot sliding across the sock surface, whereas Study 

B used one area of sock sliding across the foot surface. This has given confidence that both 

approaches have validity in further studies of skin-fabric frictional interactions. The approach 
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used in Study B is recommended for situations where it is difficult for participants to control 

the loading in a consistent manner and/or in a particular location. However, the approach 

used in Study A (with the current set-up as previously explained in Chapter 2) allows greater 

range of normal loading to be applied, that is more representative of pedestrian interactions, 

and therefore more likelihood that statistical differences can be found between datasets using 

different input parameters.  

 

3.1.7 Conclusion 

Two different methodologies to measure foot skin-fabric frictional interaction was described 

and compared in this investigation. The first testing approach has been selected for use in 

further foot skin-sock friction experiments due to its capability of achieving higher normal 

loading conditions. To the author’s knowledge, this topic has not been investigated in 

previous studies. Therefore, the findings from this comparison can be used to provide some 

insights in deciding the most appropriate methodology for foot skin-fabric frictional testing.  

 

3.2 Pilot study 2: Investigating the friction between a sock and chosen 

shoe insole 

 

3.2.1 Introduction 

As a starting point of the project, a pilot study was carried out to investigate the frictional 

behaviour of a shoe insole, which is one of the important interfaces within the in-shoe 

environment, against five different types of sock materials.   

 

3.2.2 Tested sock materials and insole 

A variety of commercially-available running sock materials were selected due to their 

differing fibre compositions and knit patterns as presented in Table 3.3. All socks were 

obtained from single layer socks except for the double layer sock which consists of an inner 

layer (for skin-sock interface) and an outer layer (for sock-insole interface). For the double 

sock, only the outer layer was used for the pilot study as it directly interacts with the shoe 
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insole during gait. These socks have been reported to be the most commonly-used socks by 

pedestrians and runners alike. In contrast, selecting a ‘standard’ insole to be used for the 

testing was proven to be more challenging due to the limited information available from shoe 

manufacturers on the materials and compositions of their shoe insoles. Upon careful 

observations of multiple insoles from various types of trainers, an insole deemed to be of a 

‘standard’ style was obtained from a running shoe. It consists of a homogenous textile layer 

adhered to a 3mm thick backing foam and has not been submitted to any use prior to the 

friction tests (see Figure 3.3). 

Table 3.3: Characteristics of socks used for the sock-insole pilot study. 

Sock type Fibre compositions Knit pattern 

Cotton-rich 

“Sock A” 
75% cotton, 17% polyester, 6% nylon, 2% elastane Terry jersey 

100% cotton 

“Sock B” 
100% cotton Simple jersey 

Wool-rich  

“Sock C” 
40% wool, 31% cotton, 19% nylon, 8% elastane Terry jersey 

Anti-blister 

“Sock D” 
99% nylon, 1% elastane Simple jersey 

Double-layer 

(outer) 

“Sock E-o” 

54% cotton, 44% nylon and 2% elastane Simple jersey 

 

 

Figure 3.3: Shoe insole selected for testing. 
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3.2.3 Experimental procedure 

 

Since the insole was made up of two distinct layers, two separate friction experiments were 

carried out using the foot friction plate rig. The first experiment was conducted against the 

insole in its entirety (i.e. including the backing foam) whereas the second friction experiment 

was carried out against the textile layer only (i.e. without the backing foam). Similar to the 

friction experimental protocol described in section 2.1 of Chapter 2, the shoe insole was 

mounted and adhered on the plate, as shown in Figure 3.4 and the sock materials were then 

pushed across the insole surface.  

 

 

Figure 3.4: Shoe insole adhered on the foot friction plate rig. 

 

 The tested sock material was mounted on a carrier made of a medium-density fibres 

(MDF) template with a contact area of 5cm2, as shown in Figure 3.5. The MDF was chosen 

to be a suitable material for the mounting as it was relatively stiff compared to the textiles 

and easy to machine and shape. The shape of the template was created by simplifying the 

shape of the forefoot truncated to form a semi-ellipse, with the curved section used at the 

front of the movement direction to prevent digging in from occurring. The contact area was 

obtained by computing: ½ x π x semi-major axis x semi-minor axis of the semi-ellipse. The 

sock materials were strained at 20% level and carefully adhered to the template using double-
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sided adhesive. In each run of tests, ten different ranges of normal load were applied in a 

gradually increasing manner up to 300N and the sliding friction forces were averaged across 

the dynamic region of the raw friction data, as previously explained in Section 2.1.1. All 

friction tests were conducted in a dry condition. 

 

 

Figure 3.5: (left) The MDF mounting used as the sock carrier; and (right) a sock material 

adhered to the template with a 20% strain level. 
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3.2.4 Results and discussion 

 

 

Figure 3.6: The force data show the effects of shoe insole on the average friction force 

produced. 

 

Figure 3.6 shows the plot of the average friction force data produced from the sock-insole 

friction experiments against five different sock materials, both with and without the backing 

foam. Please note that the standard error for each data point was too small and therefore 

omitted to ensure graphical clarity. It can be seen that for both datasets, the average friction 

force values increase with increasing ranges of applied normal loading.  Two distinct trends, 

indicated by the two linear fits, were produced. The friction tests using the full insole 

produced higher dynamic friction values across all sock materials than when using only the 

textile top layer of the insole. An independent-samples t-test was conducted to compare the 

dynamic friction coefficients produced by the sock-insole interactions and a statistical 
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significance difference at a level of p < 0.05 was found between the two datasets showed in 

Figure 3.5; t (98) = 37.2, p = 0.000. The effect size was calculated to be large (eta squared = 

0.93), indicating that the results obtained from the tested insoles are indeed very different. 

This could be attributed to the fact that the backing foam of the insole allows for a much 

higher deformation of the system to occur, hence contributing to the hysteresis component 

of friction. 

 A one-way analysis-of-variance (ANOVA) test was carried out using SPSS 22.0 

(Chicago, USA) to assess the statistical differences between the sock materials in both 

friction experiments. No statistical significance was found between sock materials for the 

full insole friction tests but two of the sock materials (Socks B and C, Socks E-o and C) 

showed statistical significant differences at p < 0.05 when tested just against the textile top 

layer of the insole (see Table 3.4 below). This further showed that the friction forces produced 

by the full insole were dominated by the deformation effect from the backing foam, hence 

minimising the effect of differences between sock materials.  

 Although no conclusive results were obtained from this pilot study, the findings 

provide an insight into the frictional interaction between the shoe insole and sock materials. 

It would certainly be worthwhile to conduct the same friction experiments in the future using 

a variety of running shoe insoles and assess the friction effects produced by different insole 

and backing foam types. This would provide useful information to the shoe manufacturers as 

well as the shoe buyers who have a high tendency of developing friction blisters. The pilot 

study also provides a benchmark friction values that can be used when considering the entire 

foot-sock-shoe insole system. 
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Table 3.4: Summarised statistical data comparing the frictional effects of the sock 

materials against a full insole and against textile top layer. The level of significance is 

indicated by *(p < 0.05). 

Sock type Sock type 
p-values 

Full insole Top layer only 

Sock A Sock B 0.878 0.367 

 Sock C 0.273 0.669 

 Sock D 0.870 0.968 

 Sock E-o 0.282 0.198 

Sock B Sock A 0.878 0.367 

 Sock C 0.818 0.022* 

 Sock D 1.000 0.751 

 Sock E-o 0.828 0.996 

Sock C Sock A 0.273 0.669 

 Sock B 0.818 0.022* 

 Sock D 0.826 0.295 

 Sock E-o 1.000 0.008* 

Sock D Sock A 0.870 0.968 

 Sock B 1.000 0.751 

 Sock C 0.826 0.295 

 Sock E-o 0.836 0.527 

Sock E-o Sock A 0.282 0.198 

 Sock B 0.828 0.996 

 Sock C 1.000 0.008* 

 Sock D 0.836 0.527 

 



65 

 

 

3.3 Pilot study 3: Investigating the effects of strain on the frictional 

behaviour of sock fabrics 

 

3.3.1 Introduction 

A previous study by Troynikov et al. [77] showed that changes in strain present within 

compression garments may have direct influence on the frictional behaviour between the 

fabric and skin. This in return will affect the overall physiological comfort of sport apparel 

including sensorial and tactile components. This can also be applied to all other sport-related 

fabrics including running socks. The aim of this pilot study was to assess the effect of applied 

strains on the frictional interaction of the socks against the top layer of the shoe insole.  

 

3.3.2 Tested sock materials and insole 

The same varieties of running socks used in the previous pilot study (see Table 3.3 above for 

the sock compositions and knit patterns) were selected for the purpose of this study. The 

same insole material was also used for the friction experiments. 

 

3.3.3 Experimental procedure 

The insole top layer material was clamped onto the foot friction plate rig as shown in Figure 

3.4 and the same friction test protocol was followed. As the MDF carriers produced for the 

insole analysis did not allow for a larger variance in strain, a different carrier was therefore 

required. It is important that the shape of the carrier closely-resembles the shape of the 

previous carrier, in order to simulate the forefoot region of the foot. A climbing shoe with a 

non-deformable flat sole surface was chosen to be the most suitable sock carrier as it has a 

relatively larger surface, allowing the sock materials to be mounted and strained at different 

levels (see Figure 3.7).  
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 The sock material was then adhered to the sock carrier at the intended strain level 

using double-sided adhesives and bulldog clips to secure the sock to the climbing shoe. All 

friction tests were only conducted in dry condition and ten values of applied normal load 

were performed for each strain level. The averages of the friction forces were computed and 

plotted against the applied normal loads for all sock materials. 

 

 

Figure 3.7: (left) The carrier used to mount the sock materials at different strain levels; and 

(right) one of the sock materials mounted onto the carrier. 
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3.3.4 Results and discussion 

 

 

Figure 3.8: The average friction force data plotted against the average normal force across 

all sock materials at different strain levels. 
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Figure 3.9: The average coefficient of friction values for each sock material, at varying 

strain levels. 

 

Figure 3.8 shows the average friction force data plotted against the average applied normal 

load for all sock materials at varying strain levels. Please note that some of the sock materials 

were only tested at two different strain levels due to the difficulties in counting the number 

of yarns per 50mm. Only Sock A (a cotton-rich sock) and Sock D (an anti-blister sock) were 

tested at three different strain levels. A strain level of 0.2 can be translated as 20% strain. 

Linear fits were applied to all datasets which produced R2 values of greater than 0.90 across 

all sock materials at all tested strain levels. All fits showed the same trend where the produced 

average frictional forces increased with increasing applied normal load. However, very little 

variance was observed between each sock-strain combination. 

 

 The average coefficient of friction values for each sock material at each strain level 

was then calculated and compared to one another in Figure 3.9. The error bars show the 

calculated standard deviations obtained from the mean. No significant differences were found 



69 

 

 

between the sock-strain combination. This finding did not concur with the previous study 

conducted by Troynikov et al. [77], which could be attributed to the small change in fibre 

deformation between each strain level. In reality, it is nearly impossible to achieve a 

completely unstrained condition of the sock materials which could be due to the nature of the 

fibres and the way the yarns were knitted. It is also noted that at the smallest strain level of 

20% to 30%, the average coefficient of friction values across all sock materials are all nearly 

similar. As the level of strain was increased, a slight reduction in the average coefficient of 

friction values was observed, although no statistical significance was produced (p > 0.05). It 

was difficult to obtain an intermediate strain level for Sock C (a wool-rich sock) due to the 

‘fluffiness’ of the wool fibres.  

 

 For all future studies, straining the sock materials at between 20% and 50% was 

thought to be highly-achievable and easily-reproducible whilst ensuring that the strain is 

representative of a real-world scenario when the socks are being worn.  

 

3.4 Pilot study 4: Investigating the effects of contact area on the frictional 

behaviour of sock fabrics against shoe insole in dry condition 

 

3.4.1 Introduction 

Determining the real contact area of any given sock fabric can be very challenging.  Apparent 

contact area, however, has been shown by previous studies, as discussed in Chapter 1 and 2, 

to have direct influence on the frictional interaction of sock fabrics. Investigating the effects 

of contact area on the frictional interaction between sock materials and shoe insole will 

provide valuable initial information in understanding the way sock fabrics behave in terms 

of friction, and aid in future experimental design. 
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3.4.2 Tested sock materials and insole 

For the purpose of this pilot study, only Sock A (a cotton-rich sock) was used for friction 

testing along with the same insole material used for previous pilot studies. The material 

composition of Sock A can be found in Table 3.3.  

 

3.4.3 Experimental procedure 

The friction experimental setup was similar to the setup used for the previous pilot studies, 

where the insole was mounted onto the friction plate rig. In order to obtain four different 

contact areas of sock materials, three larger MDF templates were made similar to the 

available 5cm2 template, with surface areas of 10cm2, 20cm2, and 40cm2 as shown in Figure 

3.10. The socks were all strained at 20% and the test was only conducted in dry condition. 

Ten different ranges of normal load were applied and the average frictional forces were 

computed for further analysis.  

 

Figure 3.10: The four different MDF templates used in the contact area analysis. 
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3.4.4 Results and discussion 

 

 

Figure 3.11: shows the average frictional force produced by Sock A against the textile top 

insole layer in four different contact areas. 
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Figure 3.12: shows the comparison of the effects of average pressure on the average 

coefficient of friction values produced between Sock A and the textile top insole layer in 

correspondence to the four different contact areas. 

 

The average frictional force produced between Sock A and the shoe insole was plotted 

against the average applied normal loads in Figure 3.11, with ten data points for each contact 

area tested. All results show that the average friction force is proportional to the average 

applied normal loads, similar to results seen in earlier pilot studies. It was found that as the 

contact area increased, the average frictional force also increased. A one-way ANOVA 

analysis was carried out and significant differences were found at a level of p < 0.05 between 

the 40cm2 contact area when compared to all other three contact areas of 5cm2, 10cm2 and 

20cm2 [F (3, 36) = 16.61, p = 0.000]. Post-hoc comparisons using the Bonferroni test 

indicated that the mean DCOF values for 40cm2 contact area (mean = 0.20, SD = 0.01) was 

significantly different when compared with all other three contact areas: 5cm2 (mean = 0.16, 

SD = 0.01), 10cm2 (mean = 0.18, SD = 0.01), and 20cm2 (mean = 0.17, SD = 0.01). The 

effect size was calculated to be large (eta-squared=0.6), indicating that these differences were 
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substantial. The increase in average friction forces could be contributed to the increase of the 

apparent contact area providing greater adhesion component of friction. This demonstrates 

that, similar to human skin, sock materials do not obey Amonton’s Law which states that the 

friction force is independent of the contact area. 

 Since the normal loads were applied over specified areas, the data was also 

represented in terms of the average applied pressure as shown in Figure 3.12. The average 

coefficient of friction values were found to decrease with average applied pressure, up to a 

limiting point of approximately 0.16 where the value remained relatively constant.  

 

3.5 Pilot study 5: Investigating the effects of varying moisture conditions 

on the sock-insole friction behaviour 

 

3.5.1 Introduction 

Moisture build-up within a shoe-environment can occur primarily due to high perspiration 

rate of the feet and warm or humid environment generated within enclosed shoe. Some of the 

moisture will be transported away from the feet into the external environment whilst some 

remaining moisture will be absorbed by the sock fabrics and shoe insole. Therefore, this pilot 

study was carried out to investigate the effects of varying the moisture levels on the sock-

insole frictional behaviour. 

 

3.5.2 Tested sock materials and insole 

Similar to the skin-insole contact area analysis described above, only Sock A (a cotton-rich 

sock) was used for friction testing along with the same insole material used for previous 

pilot studies. The material composition of Sock A can be found in Table 3.3 above. 
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3.5.3 Experimental procedure 

The friction experiments were carried out using the foot friction plate rig. Sock A was 

mounted on the 5cm2 template. The top layer of the insole was adhered on to the test plate. 

Moisture effects were investigated using three conditions: a fully-submerged sock-insole 

interface, a completely dry sock-insole interface, and a somewhat moist sock-insole interface.  

 

 

Figure 3.13: shows the fully-submerged friction testing setup. 

 

 

 For the fully submerged test, a modified plastic tank was fixed to the top of the friction 

plate rig and the entire sock insole interface was fully submerged in water as shown in Figure 

3.13. No water was added to both the sock and insole materials for the completely dry sock-

insole interface test. The mid-level (i.e. moist) sock-insole interface test was achieved by 

firstly submerging them both in water and soaking for approximately 5 minutes. Both 

materials were then removed from the water and placed face down on a layer of absorbent 

cloth with a 2 kg mass applied to squeeze out some water. The mass was left on both sock 

and insole materials for 2 minutes before being removed. An alternative method was 

developed for controlling textile moisture content (see Section 2.7). 
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3.5.4 Results and discussion 

Figure 3.14 presents the results obtained from the sock-insole interface friction tests 

conducted in three different moisture conditions. Both fully-submerged and mid-level 

conditions exhibited much higher friction forces than the dry conditions. A one-way ANOVA 

test was carried out and statistical differences were found at p < 0.05 for all three conditions. 

This was also confirmed by conducting a post-hoc comparisons using the Bonferroni test. 

The results indicated that the mean DCOF value of each moisture condition: dry (mean = 

0.15, SD = 0.01), mid-level (mean = 0.40, SD = 0.01), and submerged (mean = 0.43, SD = 

0.01), is considerably different than the other. Presence of water within the sock and insole 

fabrics increases the adhesion effects of the friction interactions between both materials. This 

is due to the increase in actual contact area resulting from the swollen fibres with moisture 

in the contact. 

 The fully submerged sock-insole interface test was intended to simulate a real-world 

condition where the in-shoe environment (feet, sock, and insole) was completely soaked with 

water such as when running in the rain or through puddles (such as in cross-country). The 

completely dry sock-insole interface test, on the other hand, was intended to simulate a real-

world condition opposite to the fully submerged sock-insole interface test. An example of 

this condition could be for someone who are not susceptible to sweaty feet or when the socks 

and shoes are worn for a very short period of time. Finally, the mid-level (i.e. moist) sock-

insole interface test was intended to simulate real-world conditions that closely-resemble the 

effects of sweaty feet after a long run and/or in hot environments. 

 Interestingly, even in the fully-submerged condition, no drop in friction was seen due 

to a lubricating film of water. It is thought that the textile interface was not capable of setting 

up a trapped film of water in the same way as a shoe can, for instance, on a hard, smooth 

floor. 
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Figure 3.14: shows the average frictional force produced by Sock A against the textile top 

insole layer in three different moisture conditions. 
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3.6 Investigating the frictional behaviour of plantar skin against running 

sock fabrics in dry condition 

 

3.6.1 Introduction 

From previous studies on friction blisters, it is known that the moisture content in the stratum 

corneum [75] and presence of water in the skin-fabric interface could strongly influence the 

friction of skin. Rubbing wet skin against dry fabrics has been shown to result in a significant 

increase in friction with larger increases being found for hairy skin compared to glabrous 

skin [62]. A recent work by Tomlinson et al. [34] (not using fabrics), found an increase in 

skin-surface friction coefficients in a humid environment and attributed them to physical 

mechanisms including water absorption and capillary adhesion due to meniscus formation. 

The authors also concluded that there was negligible effect due to the viscous shearing of 

liquid bridges formed between the skin and the interacting surface. Elevated temperature at 

the skin surface during rigorous sport activities where the feet are subjected to repeated 

rubbing could also increase the skin moisture levels through sweating. This is more 

prominent for shoes with poor air-permeability that represent a barrier to heat transfer. 

Moisture present in the contact could also increase friction due to changes in the properties 

of the sock fibres [3].  

 In this study, the friction coefficients of the plantar skin against five running sock 

materials were assessed and the foot hydration level was monitored using the established 

standardised protocol. 

 

3.6.2 Tested sock materials 

Five different types of commercially available running socks were selected for this study. 

Four of these socks (Sock A, B, C, and D) were the same design to the ones used in the 

previous study. Sock E, however, was a fully nylon sock obtained from the inner sock of the 

double-layer sock. Table 3.5 below provides the characteristics of all five socks. 
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Table 3.5: Characteristics of socks used for in this study. 

Sock types Fibre compositions Knit pattern 

Cotton-rich 

“Sock A” 

75% cotton, 17% polyester, 6% nylon, 2% 

elastane 
Terry jersey 

100% cotton 

“Sock B” 
100% cotton Simple jersey 

Wool-rich “Sock 

C” 

40% wool, 31% cotton, 19% nylon, 8% 

elastane 
Terry jersey 

Anti-blister 

“Sock D” 
99% nylon, 1% elastane Simple jersey 

Double-layer 

(inner) 

 “Sock E” 

100% nylon  Simple jersey 

 

 

3.6.3 Study participants and test conditions 

Twenty-six healthy participants (19 males and 7 females; age: 24.8±4.9 years) were recruited 

from the University of Sheffield. Ethical approval for this study was obtained from the Ethics 

Committee at the University of Sheffield. All participants took part voluntarily and provided 

their written informed consent for the study purpose. Prior to providing their consent, 

participants were informed of the outlined inclusion and exclusion criteria of the eligibility 

for the study. The details on these criteria have already been described in section 3.1.2.  The 

participants were also required to undergo the vascular and neuropathy assessments, 

conducted by the author, at the beginning of the study. All tests took place in a controlled 

laboratory condition with a temperature of between 20 to 22°C and a relative humidity of 40 

to 60%. 

 

3.6.4 Experimental procedure of the foot hydration test 

The foot which was to be tested was cleaned with water (at room temperature) to remove any 

contaminants. Upon removal from the foot bath the foot was dried with paper towels and 

allowed to acclimatise to the room conditions for 10 minutes.  
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The hydration level of the plantar skin was monitored throughout testing using a capacitance-

based device, the Corneometer® CM 825 (Courage and Khazaka, Germany). Three sets of 

hydration measurements were taken on each participant: 1) immediately after removing their 

footwear and before cleaning; 2) after cleaning and acclimatisation, which is also prior to the 

friction tests and 3) immediately after the friction tests to monitor if any large changes had 

taken place during testing. Each set of hydration measurements included 18 data: three 

separate measurements taken at six different plantar regions, as shown in Figure 3.15, to 

allow for an average hydration value of each region to be calculated.  

Figure 3.15: Division of plantar regions for hydration testing: 1- hallux; 2- first metatarsal 

head; 3- between the second and third metatarsal heads; 4- between the fourth and fifth 

metatarsal heads; 5- arch and 6- heel. 

 

 

3.6.5 Experimental procedure of the friction test 

Friction measurements were conducted in dry condition using a foot friction plate rig. The 

sock materials were cut into rectangular samples of approximate size 150 mm×400 mm and 

clamped at either end onto the plate to maintain a consistent level of 50% pre-strain. They 

were then securely attached to the plate using double-sided adhesive tape to ensure no 

movement between the sock and the test plate during testing. 
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 Participants were instructed to slide their foot forward against the sock material whilst 

keeping the sliding velocity fairly consistent by counting to 5 during each test (a protocol 

adapted from [34]). A range of five different normal loads were applied by the participants 

for each sock material, starting with the lowest before increasing incrementally.  The 

maximum loads that could be applied by the participants were measured to be as high as 500 

N. This is more representative of the real-world foot-loading scenarios, than values used in 

previous skin research [51, 104, 105]. All five sock materials were tested under dry 

conditions and the order of testing was randomised for each participant. 

 

3.6.6 Experimental procedure of the contact area test 

In order to assess the contact area over which the normal forces were being applied by the 

participants, the footprint ink method was employed. It is one of the most common methods 

used in determining the skin contact area when in contact with flat surfaces. An A4 graph 

paper was attached onto the test plate of the friction rig. Participants were then instructed to 

press their tested foot on a large inkpad, ensuring that the entire plantar aspect of the foot was 

covered with a thin film of ink. The stained foot was then pressed onto the graph paper at 

intended range of normal load. The test was carried out five times to obtain the contact area 

at five different ranges of normal load up to 500N, starting from the lowest load to the highest. 

 The imprints obtained were then scanned and saved as digital images for analysis.  

The contact area was computed using an image processing software, ImageJ where the total 

number of pixels covered in ink represents the total contact area of the plantar aspect of the 

foot at a particular applied normal load. The data obtained was then normalised by dividing 

the contact areas by the measured length and measured width of the participant’s foot. 

 

3.6.7 Foot hydration analysis 

Figure 3.16 below shows the average hydration values measured across six plantar regions 

for all twenty-six participants. The hydration values obtained after foot cleaning and 

acclimatisation were selected as baseline readings. No consistent trend can be seen in the 

hydration level at different locations. For instance, Participant 23 has a relatively high 
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moisture level in his forefoot but a slightly drier arch and heel. This demonstrates that unlike 

the skin on the forearm and cheeks, the plantar skin is less homogenous. This could be 

attributed to various other participant-specific factors having influence such as gait 

mechanisms, skin condition, and skin care regimen. A study by Laing et al. [106] suggested 

that the variablity in the skin  hydration could be associated with the physical structure of the 

feet. 

 

 

Figure 3.16: The Corneometer readings measured after cleaning and acclimatisation across 

six plantar regions for all 26 participants: 1- hallux; 2- first metatarsal head; 3- between 

the second and third metatarsal heads; 4- between the fourth and fifth metatarsal heads; 

5- arch and 6- heel. 
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3.6.8 Evaluating the friction coefficient of the tested sock materials 

against human plantar skin 

Example force data from one participant is shown in Figure 3.17 (a). Similar trends were 

found for all participants with friction force found to increase linearly with normal force. A 

value of predicted friction force for a 100 N normal force was then interpolated for each 

sock material and this data was collated for further analysis. 

 The friction data obtained from the tests was shown to be widely dispersed across the 

tested sock materials, as seen in Figure 3.17 (b). No statistically significant differences 

(p>0.05) were found when comparing the differences between the sock materials using the 

one-way ANOVA test, suggesting that the individual properties of the plantar skin had more 

of a prominent effect on friction than the knit pattern and composition of sock materials, 

when tested under dry conditions. This however did not concur with the findings obtained by 

Baussan et al. [105] which showed that the inside of a terry jersey knitted sock had a higher 

friction coefficient than that of a simple jersey knitted sock. 
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Figure 3.17: (a) Force data for the five sock materials from one of the participants (Subject 

6); (b) The friction force produced against five sock materials from all 26 participants. 

(a) 

(b) 
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3.6.9 Evaluating the relationship between friction force and average foot 

hydration level 

In order to analyse the relationship between friction force and foot hydration level, the 

friction values for the five socks were averaged for each participant and compared with their 

corresponding average foot hydration level as shown in Figure 3.18. There was a moderate 

positive correlation between the average friction force and hydration level (r = 0.661, p<0.05). 

The error bars show the standard deviations obtained from averaging 18 hydration 

measurements taken across the plantar region of the foot (x-axis) and from averaging the 

friction force values at 100N normal force across all five tested sock materials. Higher foot 

hydration level tended to produce higher friction force when interacted with sock materials. 

This is in agreement with many previous investigations that showed a similar outcome when 

moist skin interacts with other surfaces [34].  Other studies reported that skin surface 

hydration affects the mechanical properties of the skin resulting in a reduced skin tissue 

elastic modulus [104] which could lead to this trend. 

  Please note that in this study, the friction tests were carried out in dry condition whilst 

keeping the foot hydration level fairly similar to the baseline hydration measurements 

obtained prior to each test. However, this does not eliminate the possibility that the foot 

hydration level could fluctuate throughout each test run due to perspiration and increased 

absorption of moisture from high load application. This was reflected in the Corneometer 

readings taken immediately after friction test where the foot hydration values increased 

slightly compared to the baselines. In order to acquire good comparisons between the data, it 

is therefore crucial to consistently monitor the foot hydration level in friction experiments. 
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Figure 3.18: Positive correlation between friction force at 100N normal force and varying 

foot hydration level obtained from 26 participants (r = 0.661, p < 0.05). 

 

3.6.10 Evaluating the effect of contact area against the applied normal 

loading 

In this study, the real contact area of the plantar aspect of the foot was assessed against the 

applied normal loads. Some of the data obtained were not processed due to the false 

measurements recorded in the applied normal load which exceeded 500N, i.e. the maximum 

measurable normal load by the foot friction plate rig. A total of 111 data points was processed 

and normalised by the measured foot length by width, which are presented against their 

corresponding applied normal load in Figure 3.19.   

 It can be seen that the increasing trend of the contact area obeys the power law given 

by the following equation: 

A ∝ 𝐹𝑁
𝑐 
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where A is the normalised contact area, 𝐹𝑁 is the applied normal load and c is the exponent 

of 𝐹𝑁. The normalised contact area was shown to depend on the applied normal load to the 

power of 0.21.  

 Although no statistical correlation (p > 0.05) was found between the participants, a 

significant moderate correlation was obtained between the normalised contact area and the 

applied normal loads (r = 0.450, p < 0.05). Since human skin is considered to be a non-linear, 

anisotropic, heterogeneous viscoelastic material, its contact area increases as the applied 

normal load increases. At a lower range of normal load of less than 100N, a relatively steep 

increase can be seen in the contact area and as the normal load approaches 500N, the 

increment reaches a plateau at an approximate level of 0.45. This could be attributed to the 

stress-strain behaviour of the human skin, as discussed earlier in Chapter 1. At lower range 

of loads, the collagen fibres within the skin dermis lengthen resulting in larger deformations, 

hence the rapid increment in the contact area. However, as the applied normal load increases, 

the skin reaches its maximum extensibility resulting in a much stiffer skin surface, and hence 

only slight increment in contact area. If the applied normal load were to be further increased, 

it can therefore be concluded that the contact area will either increase very slightly or remain 

unchanged. 
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Figure 3.19: Positive correlation between normalized contact area and applied normal load 

(n = 111, r = 0.450, p < 0.05). 

 

3.6.11 Conclusion 

This study has established a standard protocol to assess the frictional behaviour of sock 

materials against human plantar skin in dry conditions. No consistent differences were found 

between the different socks tested. A relationship was found between friction and foot 

hydration, indicating that the control of skin moisture levels within the shoe environment 

could be a key factor to control blisters. It was also found that the contact area of the plantar 

skin increases with increased applied normal load up to a point of approximately 0.45. Other 

factors such as the skin roughness may also influence the friction of plantar skin and this 

warrants further investigation.   
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3.7 Investigating the frictional behaviour of first metatarsal head (1MTH) 

against running sock fabrics in different moisture conditions 

 

3.7.1 Introduction 

As mentioned in the earlier chapters, the lack of a standard moisture control protocol for 

fabric experiments means research related to sock moisture can be challenging to carry out 

and presents difficulties in comparing different studies. Presently, the most commonly used 

technique in quantifying the change in the amount of moisture within the sock is by weighing 

them pre- and post-test to compute the weight difference that has taken place. In another 

study by Van Amber et al. [102] the socks were placed in a washing machine and submitted 

to a time-varying wetting cycle prior to testing to achieve damp socks (i.e. a technique 

adapted from a study by Laing et al. [106]). Although these two methods may have their own 

practical advantage in studies conducted in a small scale or in accordance to the standard 

textile testing procedure, they are not considered to be the most time-efficient techniques for 

human subject testing.  

 In this current study, the application of the standard moisture control protocol was 

extended to assess frictional behaviour of the plantar aspect of the first metatarsal head 

(1MTH), which is one of the most blister-prone areas on the foot [13], against two different 

types of running socks in three moisture conditions (dry, low moisture, wet). The findings 

obtained from this study will be used to build on the knowledge from our earlier studies.  

 

3.7.2 Tested sock materials 

In this study two types of running socks with different material composition and knit patterns 

were selected (see Table 3.6). 
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Table 3.6: Characteristics of the running socks used in this study. 

Sock type Material compositions Knit pattern 
Mean thickness ± 

SD (mm) 

Anti-blister 

“ABS” 
99% nylon and 1% elastane Simple jersey 1.18 ± 0.04 

Cotton-rich 

“CRS” 

70% cotton, 29% nylon, and 

1%elastane 
Terry jersey 2.62 ± 0.08 

 

Three new sock materials were used for each participant with each new sock corresponding 

to each tested moisture condition. The order of the tested sock material was counter-balanced 

for each participant. In order to better reflect the real-world use, all newly-purchased sock 

materials were hand-washed using water and a mild liquid detergent and left to air-dry at 

room temperature for at least 72 hours prior to the test. Pre-washing the socks also ensured 

their dimensional stability and helped to remove any contaminants trapped in the sock fibres. 

 

3.7.3 Study participants and test conditions 

Twenty-six healthy participants (18 males and 8 females; average age in years, 25.4 ± 4.3 

SD) were recruited from the same institution for the purpose of this study. Approval was 

obtained from the Ethics Committee at the University of Sheffield. All participants were 

informed of the entire testing procedure prior to the study and provided their written consent. 

In addition, they were also informed of the outlined inclusion and exclusion criteria of the 

eligibility for the study, as outlined earlier in this chapter.  The participants were also assessed 

for their vascular and neuropathy conditions. All testing was performed in a controlled-

laboratory setting with a temperature of between 20 to 22ºC and a relative humidity of 40 to 

60%. 

 

3.7.4 Experimental procedure of the foot skin characterisation tests: 

hydration, deformability and temperature  

Participants were asked to clean the foot that was to be tested for 1 minute using a room 

temperature water bath in order to remove any contaminants and sock fibres. The foot was 

then carefully dried with paper towels and allowed to acclimatise to room conditions for 10 

minutes. Hydration measurements were taken on the 1MTH region at intervals similar to the 
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previous study: 1) prior to cleaning; 2) after cleaning and acclimatisation; 3) prior to friction 

tests and 4) immediately after each friction test. The hydration measurements taken after 

cleaning and acclimatisation were considered as the baseline foot hydration level and used 

for subsequent analysis. Halfway through testing, cleaning and acclimatisation was repeated 

before changing the sock materials to remove any sweat or contaminant build-up and ensure 

consistency. 

 

3.7.5 Experimental procedure of the friction test 

The foot friction plate friction plate rig was employed for all skin-sock fabric measurements. 

The sock material was cut along the dorsal line and strained to 50% in both vertical and 

horizontal directions before being securely adhered to the rig test plate [15]. The sock was 

placed in such a way that its inside surface facing outwards (i.e. to provide the skin-sock 

interface for the friction tests). Friction tests were performed on the plantar region of the sock 

material within the marked area of 102×54 mm. Participants were instructed to press their 

foot against the sock material and then pushed their foot forward, maintaining the initial level 

of normal load and a relatively consistent, self-monitored, sliding velocity. Participants were 

also required to lift their toes throughout sliding to ensure only the 1MTH region was in 

contact with the sock material during testing, and this was observed and checked throughout. 

 

3.7.6 Moisture application protocol 

In order to achieve to achieve three sock moisture conditions that were significantly different 

from one another: “dry”, “low moisture” and “wet”, the standard moisture control protocol 

was employed. Water was applied to the targeted region of the sock material using a bottled 

sprayer, placed 150 mm away from the sock surface. Each spray delivered approximately 1.4 

mƖ of water. After spraying, moisture was left to absorb into the sock for 1 minute before 

carrying out a set of three Corneometer® measurements, spanning the tested sock region. 

Spraying and measurements were repeated until the intended level of moisture was reached 

(see Table 3.7). Sock moisture was also monitored after each test to ensure the intended 

moisture range was maintained and further sprays were applied if the measurement values 
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fell lower than the intended range. On the other hand, if the moisture level increased above 

the intended range, either due to water being squeezed out from the sock fibres or through 

perspiration, the sock was allowed to dry for a short while before further monitoring. It should 

be noted that since the maximum reading that the Corneometer® was capable of was 120 

AU, some of the "wet" condition samples found at this level may have had slightly higher 

actual amount of moisture present than indicated. 

 

Table 3.7: Corneometer® measurements defined for each moisture condition. 

Moisture 

condition 

Intended Corneometer 

range (AU) 

Measured Corneometer reading ± 

SD (AU) 

ABS socks CRS socks 

Dry 15-17 15.81 ± 0.27 15.98 ± 0.19 

Low Moisture, 

“LMo” 
40-50 46.70 ± 4.39 46.13 ± 5.04 

Wet 110-120 119.35 ± 1.66 118.64 ± 1.76 

 

 For all participants, the order of testing was kept the same, starting with “dry” 

condition followed by “low moisture” and finally “wet”. Tests were carried out five times at 

a range of applied normal loads, for each moisture condition. After each set of tests, an 8-

minute rest period was given to the participants to ensure that the hydration level of the 

1MTH returned to its baseline. The rest period was also included to allow the investigators 

to run a quick check on the sock materials, ensuring that it was still securely adhered to the 

test plate as well as to prevent the participants from being fatigued. Subsequent data analysis 

and an interpolation protocol was used to calculate the friction force that would be required 

to slide the foot for each fabric-moisture combination, when pressed against the sock with 

100 N normal force. 
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3.7.7 Statistical analysis 

All statistical analyses were performed using SPSS 22.0 (Chicago, USA). The Shapiro-Wilk 

test was used to confirm that any data sets were normally distributed (at significance level p > 

0.05) prior to performing the one-way analysis of variance (ANOVA) and Pearson’s 

correlation coefficients among assessed variables. 

 

3.7.8 Investigating the effects of sock moisture level variation on 1MTH 

friction 

One-way ANOVA tests revealed that when moisture data for both sock materials at the same 

intended moisture condition was compared, no statistical differences could be found at the 

level p < 0.05. This demonstrates the ability of the monitoring and control protocol in being 

able to maintain appropriate levels of moisture condition in the sock textiles. 

 

 The friction force data (corresponding to a normal load of 100 N) plotted against sock 

moisture level was presented in both Figures 3.20 (a) and 3.20 (b), for tests on the anti-blister 

and cotton-rich socks, respectively. It can be clearly seen that the three moisture conditions, 

"Dry", "LMo" and "Wet" are distinctively differentiated by the intended range of 

Corneometer® readings (see Table 3.7 above). A number of the "Wet" data can be seen to be 

at the maximum measurement level of 120 AU, meaning they could have been slightly wetter 

than indicated by this value. One-way ANOVA (independent variable: defined moisture 

condition; dependent variable: sock moisture level measured using the Corneometer®) was 

performed to compare the moisture data for each moisture condition. The results confirmed 

statistically significant differences at the level p < 0.05 for tests on both sock materials.  



93 

 

 

 

 

Figure 3.20: Sliding fiction force data plotted against sock moisture level for each 

participant tested wit (a) the anti-blister sock; (b) the cotton-rich sock (n = 26 for each 

sock/moisture combination) 

 

(b) 

(a) 
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 A noticeable increase can be seen in the level of friction forces, necessary for sliding, 

as the sock moisture increases above the dry condition. This was validated by the statistically 

significant differences (p < 0.05) produced by the one-way ANOVA test (independent 

variable: defined moisture condition; dependent variable: friction force at 100N normal load). 

When comparing “wet” with “low moisture” condition data, the slight increase in friction of 

approximately 10% may be due to an increase in contact area between the 1MTH and sock 

surface due to swelling of sock fibres [9] following water absorption. Cotton fibres that make 

up 70% of the cotton-rich sock are more hydrophilic than the nylon fibres that make up 99% 

of the anti-blister sock [9]. This is most likely why a greater effect due to moisture is seen in 

Figure 3.20 (b), compared to Figure 3.20 (a). As mentioned earlier, it should be noted that 

even though the three moisture conditions were found to be statistically different with 

ANOVA, the “wet” condition tests could have included moisture readings somewhat higher 

than the maximum measurable value of 120 AU. 

 

3.7.9 Investigating the effects of foot hydration level on friction 

The relationships between the measured 1MTH moisture prior to friction tests and the sliding 

friction at 100N normal loading, for each textile-moisture combination are presented in 

Figure 3.21. No significant relationships could be found at the level (p < 0.05), for any of the 

textile-moisture combinations. This did not concur with a previous study [12] that found a 

moderate positive correlation between foot moisture and friction. However, in the previous 

study [12], the skin hydration level was averaged over the entire plantar area as opposed to 

being localised in the 1MTH region, as in the current study. A high variation of skin hydration 

level can be seen even within the same individual [16] and the lack of a measurable effect of 

foot moisture in the current study could be attributed to participant-specific factors such as 

skin condition, pressure distribution and foot anatomy.  

 

 It should be noted that the study did not aim to achieve a high range of foot moisture. 

The fact that the foot was well ventilated (not being inside a shoe) and participants were not 

undergoing exertion, meant that higher hydration levels may be found in real-world sports 

scenarios. In addition, although the feet were acclimatised in-between the friction testing, 

some of the water may still be absorbed by the 1MTH skin when it was in contact with the 
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“low moisture” and “wet” fabrics during sliding. This could increase the area of contact 

between the skin and the sock fabric due to increased skin tissue flexibility, as seen in 

previous studies [34, 104]. By monitoring the foot hydration level at specific intervals in 

accordance to the established test protocol ensured that this effect could be considerably 

minimised. 

 

 

Figure 3.21: Sliding friction force data plotted against the measured 1MTH moisture level 

prior to friction tests for each participant, separated by sock moisture condition, tested 

with (a) the anti-blister sock; (b) the cotton-rich sock (n = 26 for each sock/moisture 

combination) 

 

3.7.10 Comparisons of the sock frictional performance across moisture 

conditions 

The sliding friction force data for both sock materials was converted to dynamic coefficients 

of friction (DCOF) by dividing by the 100 N normal load, on which the data was based. This 

data was plotted in Figure 3.22, with each moisture condition indicated. The effect of 

moisture on increasing friction can be seen but a line of gradient 1 allowed comparison 

between socks. In dry conditions, the anti-blister sock produced higher sliding friction than 

(a) 

(b) 
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the cotton-rich sock. However, when moisture was present, the opposite effect was observed 

All six textile-moisture combinations were also compared in Table 3.8 which presents the 

highest friction sock for each comparison, along with the level of significance from a one-

way ANOVA test (independent variable: sock textile-moisture combination; dependent 

variable: DCOF). All comparisons showed statistically significant differences at the level p 

< 0.05 [F (5, 150) = 99.03, p= 0.000] apart from when comparing the low moisture cotton-

rich sock with the wet anti-blister sock. Post hoc comparisons using the Bonferroni test 

indicated that the DCOF values for each sock textile-moisture combination are significantly 

different than the other. The effect size was calculated to be large (eta squared = 0.77), 

indicating the differences were indeed substantial. 

  

 

Figure 3.22: Dynamic coefficient of friction data for both sock materials, plotted against 

one another for comparison. 
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Table 3.8: Comparisons of sock frictional performance in different moisture conditions 

including the values of mean DCOF±SD (▲: highest DCOF;; ═: similar DCOF level). 

The level of significance is indicated by * (p < 0.05). 

 
ABS_Dry 

(DCOF = 0.44 ± 0.10) 

ABS_LMo 

(DCOF = 0.61 ± 0.08) 

ABS_Wet 

(DCOF = 0.69 ± 0.07) 

CRS_Dry 

(DCOF = 0.33 ± 0.07) 
ABS (▲)   p=0.000* ABS (▲)   p=0.000* ABS (▲)       p=0.000* 

CRS_LMo 

(DCOF = 0.67 ± 0.08) 
CRS (▲)   p=0.000* CRS (▲)   p=0.011* ABS ═ CRS  p=0.448 

CRS_Wet 

(DCOF = 0.74 ± 0.08) 
CRS (▲)   p=0.000* CRS (▲)   p=0.000* CRS (▲)       p=0.028* 

 

 In a real-life scenario it is reasonable to expect some degree of moisture in the foot-

sock contact due to perspiration, so comparing the sock frictional performance in "low-

moisture" or "wet" conditions seems to be most appropriate. Based on this assumption, the 

anti-blister sock can be considered as the sock which would have least friction. However, if 

athletes find that they experience drier feet when using a cotton-rich sock, then a real-world 

comparison may be different (i.e. "ABS LMo" vs "CRS Dry" in Table 3.8). There could be 

many reasons why the socks perform differently, as the jersey pattern (simple vs terry) had 

been found in a previous study to have an effect [2] and the different sock fibres (cotton vs 

nylon) will have different tribological properties and hydrophobicity [17]. Further work is 

required to study the separate and combined effects of these factors. 

 

3.7.11 Conclusions 

This study demonstrated the extended application of a moisture control protocol and an 

experimental approach capable of assessing skin-sock friction at appropriate levels of loading 

in the 1MTH region. The desired moisture levels were found to be controllable to a high level 

of repeatability. It was found that by increasing sock moisture above the dry condition will 

increase the foot-sock sliding friction for both sock materials tested. However, no significant 

correlation (p > 0.05) was seen between foot hydration level and sliding friction over the 

hydration range tested. In comparing both socks tested, the anti-blister sock is expected to 
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provide lower friction during intensive athletic events where moisture is present due to 

perspiration. 

 

3.8 Monitoring skin morphological parameters of the 1MTH using an 

Optical Coherence Tomography (OCT) in a skin-fabric friction study 

 

3.8.1 Introduction 

Few studies were conducted to assess changes in skin morphology during tribological 

measurements. The purpose of this study is to monitor skin morphology in the first metatarsal 

head (1MTH) region using optical coherence tomography (OCT) during a skin–sock textile 

friction study. 

 

3.8.2 Experimental method 

Data from twelve male participants (average age, 26.2 years ± 4.7 SD) obtained from the 

1MTH friction study were analysed using the analysis algorithm described in Chapter 2. 

Participants tested with an anti-blister sock first were categorised as Group A whereas those 

tested with a cotton-rich sock first were categorised as Group B. Sub-surface OCT images 

of the 1MTH region (see examples in Figure 3.23) were obtained using a VivoSight system 

(Michelson Diagnostics) before and after friction measurements. The stratum corneum (SC) 

thickness and roughness of the outermost skin layer and the SC junction were then analysed 

and compared for any changes before and after friction tests. 

 

3.8.3 Results and discussion 

As seen in Figure 3.24, participants were found to have different SC thickness measurements 

from one another, but monitoring showed no individual SC thickness changes during the 

friction study. This indicates no measurable effects on SC due to the testing, either due to 

moisture absorption or abrasion. In Figure 3.25, friction was found to be affected by moisture 

condition, but correlations between the friction force at 100N normal load and the measured 

1MTH morphological parameters for the subjects were not found to be significant at level (p 
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< 0.05). This suggests that friction behaviour could be dominated by other factors such as 

individuals’ skin mechanical properties.  

 

 In conclusion, OCT can be used as a technique to continuously monitor skin property 

changes during friction studies which is not only limited to the skin thickness but also the 

skin roughness.  

 

    

 

 

Figure 3.23: The above images show the SC layer taken from subject SA01 (left) before 

the friction test in dry condition and (right) after the friction test in dry condition. The 

yellow curve indicates the outermost SC layer whereas the green curve indicates the SC 

junction detected by the skin layer detection algorithms. 
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Figure 3.24: The diagram shows the SC thickness measured across all participants. Group 

A participants were tested with an anti-blister sock first whereas Group B participants 

were tested with a cotton-rich sock first. From left to right each epidermal thickness 

value corresponds to: (i) before friction test in dry condition; (ii) after friction test in 

dry condition; (iii) before friction test in low moisture condition; (iv) after friction test 

in low moisture condition; (v) before friction test in wet condition; (vi) after friction 

test in wet condition. The error bars indicate the standard errors of the thickness 

measurements taken over the 1MTH region. 
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Figure 3.25: The diagram above shows the friction force at 100N normal load plotted 

against the (a) SC thickness; (b) Ra roughness of the SC top layer; and (c) Ra roughness 

of the detected SC junction for both before and after friction tests across all moisture 

conditions. 

(a) 

(b) 

(c) 
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Chapter 4 

 

 

 

 

Development of biofidelic test-beds 
 

 

 

4.1 Introduction 

Synthetic skin models made of polymeric materials have been proposed and described in a 

number of previous studies for their applications in skin and textile research. In friction blister 

studies, utilising synthetic skin test-beds provide numerous advantages in comparison to 

conducting the research on human participants or animal test subjects. For instance, they 

allow friction tests to be carried out at much higher ranges of applied normal load.  This 

produces frictional data that are more comparable to that experienced by human skin in daily 

life. In addition, the test-beds can also be made to be attachable to measurement 

instrumentation, enabling more controlled loading to be achieved thus increasing the 

reproducibility factor of the study. It can also be assumed that since synthetic test-beds do 

not require any special surface preparation prior to testing, unlike human skin, the testing can 

therefore be carried out in a more time-efficient manner. Additionally, the versatility of 

polymeric materials allows a range of synthetic test-beds to be fabricated in order to represent 

a variation of human skin characteristics (such as thick, thin, young and old skin) as well as 

specific skin conditions (such as callused and dehydrated skin).  

 

 However, there remain challenges in developing test-beds that closely resemble 

human skin still remains. This could partly be attributed to the difficulties in selecting the 

most appropriate type of polymers to represent the different skin layers. To date, there has 

been an increasing amount of research being carried out to address this particular issue 

although no conclusive results have been published. It should also be noted that the 
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complexity in developing the synthetic test-beds extends when taking their deformation and 

frictional properties into account. More often some compromise has to be made in the test-

bed design. This is one of the main reasons why most existing synthetic test-beds are 

‘simplified’ to represent just the basic structure of skin layers (epidermis, dermis and 

hypodermis), without including the muscles, tendons and nerve tissues. A hard-backed 

material may be included in the test-bed to represent the bone, which also functions to hold 

the different polymeric layers together as a solid structure [82, 83].  

 

 This chapter is dedicated to the development of biofidelic test-beds using a novel 

method. The term ‘biofidelic’ simply refers to the close resemblance to pertinent human 

physical characteristics such as the geometry, size, and stiffness. The 1MTH was chosen to 

be the simulated skin area which allows comparisons to be made with the 1MTH-sock fabric 

friction results obtained from the wider study (please refer to Chapter 3). The stages involved 

in the fabrication of the biofidelic test-beds are described along with the equipment, testing 

procedure and materials used. To the author’s knowledge, no previous attempt has been made 

in simulating the 1MTH using polymeric materials. The results obtained from the 

deformation and frictional tests will be included and further discussed in the following 

Chapter 5. 

 

 

4.2 Design Stage 1: Geometry of biofidelic test-beds 

As discussed earlier in Chapter 1, the basic structure of skin comprises the epidermis 

(outermost skin layer), followed by the dermis which is anchored to the deeper layer of the 

subcutaneous tissue (hypodermis). Both dermis and subcutaneous tissue constitute the soft 

tissue of the skin structure. In order to closely simulate the human 1MTH in terms of its 

deformation and friction behaviours, it is firstly important that the geometry of the test-bed 

closely resembles the intended anatomy. Therefore, in the first design stage, a thorough 

review was conducted to obtain data and information from previous literatures on the 

thickness of the different 1MTH skin layers and their Young’s modulus properties, as well 

as the geometry and dimensions of the 1MTH bone.  The results from the review were 

tabulated in Table 4.1 below. 
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Table 4.1: The characteristics of the different layers in human first metatarsal head. 

Layer 

The characteristics of each respective layer obtained from 

previous studies 

Thickness (mm) 
Young’s Modulus 

(kPa) 

Poisson’s 

ratio 

Epidermis 0.55 ± 0.19 [107] 136 [108] 0.48 [108] 

Dermis 3.00 [109] 80 
 

[108] 0.48 [108] 

Epidermis and soft 

tissue 
9.43 ± 1.88 [107] - - 

Fat pad 6.00 ± 1.20 [6] 34 [108] 0.48 [108] 

1MTH 
AP- 60.70 ± 3.86 

ML– 20.66 ± 1.99 [110] 
1500 x 10

6 

[108] 0.48 [108] 

 

 

 

  

 

Figure 4.1: The anterior-posterior and mediolateral dimensions of the 1MTH bone as 

reported in a study by De Groote et. al [110] (the image was adapted from the same 

study). 

 

 

Anterior-posterior (AP) length  
Mediolateral (ML) 

length 
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Figure 4.2: A cross-section of the 1MTH and the soft tissue; MT- metatarsal head (image 

reproduced from [111]. 

 

 

A cross-section of the 1MTH obtained from a study carried out by Wang et. al [111] was 

used as a reference shape for the biofidelic test-beds. 

 

4.2.1 Selecting the geometry of the prototype test-beds 

After collating the required data and information on the geometry of the human 1MTH, a 

decision has to be made in terms of the number of layers that need to be incorporated into the 

test-bed design. As the skin is a non-linear material, simulating all three skin layers in a test-

bed may increase the complexities in controlling desired parameters which will lead to 

considerable inconsistencies during deformation and friction tests. By simplifying the three-

layer physical skin model into a two-layer system, with the first layer simulating the 

combined 1MTH epidermal dermal tissues and the second layer representing the combined 

1MTH dermal and subcutaneous tissues, these issues can be greatly reduced. Besides, in 

order to develop a set of prototype test-beds which vary from one another, it is more 

important that the dimensions and mechanical properties of the layers can easily be 

manipulated to achieve the desired mechanical and frictional behaviours.   
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 Figure 4.3 shows the two-layer skin model which is equivalent to the three-layer 

human 1MTH skin. The equivalent thickness, Leq and Young’s moduli, Eeq of the two-layer 

model were then evaluated using the data obtained in Table 4.1. 

 

 

Figure 4.3: The equivalent two-layer model for the prototype test-beds with its respective 

combined layers. 

 

 

 

 

 

 

 

 

 

 

Figure 4.4: The free-body diagram used to evaluate the equivalent thickness and Young’s 

moduli of the two-layer model for the prototype test-bed. 
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Both layer 1 and layer 2 of the test-bed are assumed to have the same cross-sectional area 

and are subjected to equal normal force. 

𝐴1 =  𝐴2 = 𝐴 

𝐹1 =  𝐹2 = 𝐹𝑁 

 

The Young’s modulus, E is stress, σ divided by strain, ε. Stress is normal force divided by 

the cross-sectional area, A and strain is the change in length, δ divided by the original length, 

L. 

 

𝐸 =

𝐹𝑁
𝐴⁄

𝛿
𝐿⁄

=
𝐹𝑁 . 𝐿

𝐴. 𝛿
 

 

Therefore,  

𝛿1 =
𝐹𝑁 . 𝐿1

𝐴. 𝐸1
 

𝛿2 =
𝐹𝑁 . 𝐿2

𝐴. 𝐸2
 

 

For the equivalent two-layer test-bed, 

 

(𝛿1 + 𝛿2) =
𝐹𝑁

𝐴
 (

𝐿1

𝐸1
+

𝐿2

𝐸2
) =

𝐹𝑁

𝐴

(𝐿1 + 𝐿2)

𝐸𝑒𝑞
  

 

The equivalent Young’s modulus value can then be obtained from the following equation: 

 

𝐸𝑒𝑞 =
(𝐿1 + 𝐿2)

(
𝐿1

𝐸1
+

𝐿2

𝐸2
)
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 Table 4.2 presents the calculated equivalent thickness and Young’s modulus values 

for each combined layer of the two-layer test-bed. Note that the dimension of the bone was 

estimated based on the data reported in the previous literature. These values will be used as 

reference values during the fabrication of the prototype test-beds in design stage 3. 

 

Table 4.2: The equivalent thickness and Young’s modulus values for the simulated 

combined layer of the two-layer skin model 

Simulated combined layer 
Equivalent 

thickness (mm) 

Equivalent 

Young’s modulus 

(kPa) 

Epidermal - dermal tissue 3.43 85.7 

Dermal - subcutaneous tissue 8.88 41.8 

1MTH bone 10.00 1500 x 106 

 

 

 In general, the biofidelic prototype test-bed will have an axisymmetric shape 

resembling the cross-section of the 1MTH shown in Figure 4.2 and comprises two simulated 

combined layers, with the outer layer representing the epidermal-dermal tissues and the inner 

layer representing the dermal-subcutaneous tissues. A material of a hemisphere shape will 

also be incorporated into the test-bed to simulate the 1MTH bone. Figure 4.5 shows the 

schematic drawing of the prototype biofidelic test-bed with the dimensions for each 

respective layer. Note that in the schematic drawing, the biofidelic test-bed was attached to 

a flat plate which provides a firm base for the test-bed. A constraint plate was also included 

in the design of the prototype test-bed to securely hold the test-bed during manual handling 

and testing. 
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Figure 4.5: The schematic drawing of the biofidelic test-bed with the dimensions for each 

respective layer. 

 

 

Figure 4.6: The mechanical sketches of the prototype biofidelic test-bed with a flat base 

and a constraint plate. 

Assembled prototype 

biofidelic test-bed with 

a constraint plate 

Antero-posterior projection of the 

test-bed on a flat base 

Medio-lateral projection of the 

test-bed on a flat base 
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4.3 Design Stage 2: Material selection for the biofidelic test-beds 

 

4.3.1 Selection of candidate materials 

A number of potential candidate materials were identified and tested to be used to simulate 

the combined layer of the biofidelic test-beds, as summarised in Table 4.3. The materials 

were shortlisted from a wide range of polymers which have been commonly used to simulate 

human skin. All materials were subjected to Dynamic Mechanical Analysis (DMA) tests, 

which will be described in the following section. The test results obtained from the DMA 

tests helped to inform the mechanical properties of each material in varying compositions.  

 

 The following factors were taken into consideration during the material selection 

process: 

1) Availability of the material 

2) Versatility of the material 

3) Shelf-life / durability of the material 

4) Ease of use in terms of its working and curing time 

5) Cost of the material 

6) Material storage  
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Table 4.3: A summary of the potential candidate materials for each layer of the prototype 

biofidelic test-beds. E-D denotes the epidermal-dermal tissues whereas D-SC denotes 

the dermal-subcutaneous tissues 

 

 

Simulated 

layer 

Candidate 

material 
Material description 

E-D 
Liquid latex 

(Polycraft) 

 

This is an extremely versatile material which is often 

used in a wide range of manufacturing industries and 

film industries. It cures at room temperature within 

30 to 60 minutes, depending on the thickness of the 

layer. 

 

E-D 

D-SC 

 

Pro-Gel 10  

(PS Composites) 

 

A two-part silicone consisting of part A (base) and 

part B (catalyst). This type of silicone quickly cures 

at room temperature within 20 minutes with a mixing 

ratio of 1:1. A softener may be added to reduce the 

elastic modulus. 

 

D-SC 
Silskin 10 

(Polycraft) 

 

A two-part room temperature vulcanising silicone 

consisting of part A (base) and part B (catalyst). It 

cures at room temperature in 60 minutes. Silicone 

softener can be added to the mixture to soften the 

material but only up to a maximum of 40% of the 

total base and softener mixture. It has a shelf-life of 

18 months. 

 

D-SC 

Magic Power 

Gel 

(Raytech) 

A two-part polyorganosiloxanes silicone consisting 

of part A (base) and part B (softener). It has a 10-

minute working time and cures relatively quickly at 

room temperature. It does not have a shelf-life.  

D-SC 
S-10 RTV  

(Polycraft) 

A two-part silicone consisting of part A (base) and 

part B (catalyst). It cures at room temperature and has 

the longest curingtime of up to 7 days, depending on 

the size of the sample. Silicone softener can be also 

added to the mixture to reduce the elastic modulus. 

1MTH bone Stainless steel  
Hemisphere of steel used to represent the hard bone 

layer. 
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4.3.2 Dynamic Mechanical Analysis (DMA) of candidate materials 

Dynamic Mechanical Analysis (DMA) is a widely-used technique to characterise polymers 

in terms of their viscoelastic behaviour. Prior to the DMA tests, the polymer samples were 

moulded into cylindrical shapes using syringes and left to cure at room temperature for 24 

hours. Each sample was 20.0mm in length and approximately 12.4mm in diameter.  

 

 Two different types of material tests were performed using a Viscoanalyseur 

Metravib VA2000 which are: 1) strain sweep and 2) temperature sweep tests. In the strain 

sweep test, the samples were sinusoidally loaded at 1Hz with an applied dynamic strain in 

the range of 0 to 0.010, with a gradual increment of 0.0001. The Young’s modulus and loss 

factor (tan delta) results were then recorded in the functions of the experimental dynamic 

strain. Prior to the temperature sweep test, the polymer samples were cooled to 0⁰C using 

liquid nitrogen before being subjected to a temperature change up to 40 ⁰C, with a gradual 

increment of 1⁰C per minute. Similar to the strain sweep test, the Young’s modulus and loss 

factor (tan delta) results were obtained as functions of the test temperature. The results of the 

DMA testing were then compared among the samples for the purpose of material selection. 

Both sweep and temperature sweep tests were carried out by technician, Les Morton, and the 

results obtained were fully processed and analysed by the author of this thesis.  

 

 

Figure 4.7: The Viscoanalyseur used for the Dynamic Mechanical Analysis (DMA) 

testing. 
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4.3.3 Material selection and determination of material composition for the 

prototype test-beds 

It was noted that the results obtained from both strain and temperature sweep tests across all 

tested materials were very comparable. Therefore, for purposes of clarity, only sweep test 

results for each material will be presented in this thesis. The results obtained were plotted in 

terms of their Young’s modulus, as shown in Figures 4.8 - 4.11. 

 

 

Figure 4.8: The strain sweep test results obtained for the Pro-Gel 10 at three different 

percentages of softener. 
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Figure 4.9: The strain sweep test results obtained for the Silskin 10 at three different 

percentages of softener. 
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Figure 4.10: The strain sweep test results obtained for the Magic Power Gel at two 

different percentages of softener 
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Figure 4.11: The strain sweep test results obtained for the S10-RTV silicone at three 

different percentages of softener. 
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The average Young’s moduli across all materials were then evaluated and included in Table 

4.4.  

 

Table 4.4: The calculated averaged Young’s modulus values for the tested polymer 

materials.  

Tested material 

Young’s modulus, E (kPa) 

0% 

softener 

20% 

softener 

33.3% 

softener 

40% 

softener 

50% 

softener 

Pro-Gel 10 256.14 231.4 - 71.95 - 

Silskin 10 394.02 101.92 - 31.16 - 

S-10 RTV 282.48 127.68 - 43.82 - 

Magic Power Gel - - 31.09 - 249.9 

 

 

 Two weeks following the strain sweep tests, it was noticed that for the samples made 

with Pro-Gel 10, Silskin 10 and S-10 RTV silicone materials became considerably stiffer 

than when they were first made. This is due to the ongoing cross-linking process at the 

molecular level between the base and the softener. Interestingly, the sample made using the 

polyorganosiloxanes silicone (Magic Power Gel) remained unchanged. The samples made 

with Pro-Gel 10, Silskin 10 and S-10 RTV silicones were submitted to another two strain 

sweep test at two-week interval after that and the Young’s moduli for all samples changed 

quite considerably. This effect was even more pronounced in samples made with the highest 

percentages of softener since the high amount of softener increases the cross-linking rates. 

Therefore, based on these results, the polyorganosiloxanes silicone was selected to be the 

best polymer material to simulate the inner layer of the biofidelic test-beds.  

 

 The strain sweep test results of the Magic Power Gel were then extrapolated (see 

Figure 4.12) to obtain an estimate of a Young’s modulus value comparable to human 1MTH. 

A range of intended Young’s moduli values were used to obtain the percentages of softener 

required for the inner dermal-subcutaneous tissues of the test-beds (see Figure 4.12). 
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Figure 4.12: The extrapolated results obtained from the sweep test for Magic Power Gel. 

 

 

Figure 4.13: The extrapolated results obtained from the sweep test for Magic Power Gel. 
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 Initially, both liquid latex and Pro-Gel 10 silicone were considered for the epidermal-

dermal layer of the test-bed. However, from the pilot study, it was found that Pro-Gel 10 did 

not produce a robust surface for the outer layer of test-bed, in addition to being highly 

adhesive. The surface was easily damaged when subjected to low load friction test of less 

than 50N. Latex was therefore chosen to be the best material to simulate the outer layer of 

the biofidelic test-beds mainly due to its high durability. The liquid latex was also found to 

be highly versatile as it can be used to obtain surface textures from human foot.  

 

 

4.4. Design Stage 3: Fabrication of the prototype biofidelic test-beds 

 

4.4.1 Manufacture of textured surface layer 

In order to obtain the plantar surface impression from a participant’s foot for the manufacture 

of the latex outer skin, a number of approaches using different materials were attempted.  

 

Chromatic Alginate (Polycraft) 

Chromatic alginate is a skin-safe, non-allergenic moulding impression compound that is 

widely-popular among professional modellers and craft-makers. It is made of a type of 

seaweed and is even widely used in dentistry to take dental mouldings. It is easy to use and 

due to its relatively slow setting time, it allows the mixing to be made thoroughly. However, 

the mould could only last for a maximum 7 days before it becomes watery and mouldy. In 

addition, due to its slippery finished surface, liquid latex painting was extremely challenging 

and did not produce the desired outcome. 

 

Plaster of Paris (Polycraft) 

Similar to the Chromatic alginate, Plaster of Paris is a skin-safe, non-allergenic moulding 

impression compound that is frequently used in life-casting human body parts. It can be easily 

mixed with water and it has a much slower setting time compared with the alginate. Once the 

foot was removed from the mould, the imprint was clearly visible with a dry finished surface. 

Latex can be painted on the mould and easily removed once dried. However, some fine debris 
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was left attached to the textured latex and could not be fully removed. Cracks could occur in 

the mould over time as the plaster becomes drier. 

 

 

Figure 4.14: The latex was painted on the foot impression made using the Plaster of Paris. 

 

SILFLO (J & S Davis) 

SILFLO is another type of impression polymer which is frequently used in dentistry and 

dermatology. It comes with a base material and a catalyst which helps to accelerates the 

setting process. It can be easily mixed without added water and self-dries within 5 to 10 

minutes. The base and catalyst were mixed at a 1:2 before applying it onto a participant’s 

skin. The skin was cleaned and acclimatised according to the acclimatisation protocol 

described in Chapter 2. Once it had dried and been removed from the skin, it was placed on 

a solid platform and secured using adhesive tape at its perimeter. The finished surface was 

clearly visible, enabling for the anterior and posterior of the 1MTH to be identified and 

marked prior to latex painting. No air bubbles were seen on the imprint and latex could easily 

be painted onto the surface. It was also noted that, unlike chromatic alginate and Plaster of 

Paris, the impression mould did not shrink in size over time and it was therefore selected as 

the best material to be used for obtaining the foot imprint. As with all polymer materials, 

SILFLO was kept away from direct sunlight and extreme humidity. 
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Figure 4.15: SILFLO used to obtain a negative impression of a participant’s plantar skin 

(Subject S08). 

 

4.4.2 Developing the test-bed mould 

The next stage in fabricating the biofidelic test-beds is the development of the mould with 

the intended dimensions as shown in Figure 4.16. The mould was made of stainless steel. 

 

 

Figure 4.16: The manufactured biofidelic mould made of stainless steel. 
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4.4.3 Degassing vacuum chamber for mixture preparation 

A degassing vacuum chamber allows the removal of air bubbles trapped within the polymeric 

mixture whilst setting, which could otherwise influence the deformation behaviour of the 

test-beds. The degassing chamber was self-assembled in collaboration with another PhD 

student, Almaky Almagirby. The equipment comprises a vacuum pump, a pressure gauge, a 

degassing bowl (chamber), a thick acrylic sheet and an air hose. The transparent acrylic sheet 

allows the polymeric mixture to be observed throughout the degassing procedure to ensure 

that all bubbles are degassed before removing it from the chamber. 

 

 

Figure 4.17: The self-assembled degassing chamber. 

 

4.4.4 Summarised fabrication process for the biofidelic test-beds 

The different steps involved in the fabrication of the biofidelic test-beds can be summarised 

as follows and are shown in Figure 4.18. 

 

Step 1: Initially, a thin layer of liquid latex was evenly painted in the biofidelic mould and 

was left to dry at room condition for at least an hour before painting on another thin layer. 

Extra care was taken during this process to avoid the latex from clumping and air bubbles 

from forming. The latex was painted until the desired thickness was achieved. 
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Step 2: The Magic Power Gel was then mixed at the intended ratio and placed in the 

degassing chamber to remove the trapped air bubbles. The mixture was then carefully poured 

into the painted biofidelic mould with the latex layer already in. The stainless steel 

hemisphere, representing the 1MTH bone, was attached to a steel plate which allowed it to 

be suspended in the polymeric mixture during the curing process. The duration of the curing 

process is highly dependent on the amount of softener added into the silicone mixture. A 

higher percentage of softener will lengthen the curing process.  

 

Step 3: For textured test-beds, the latex texture could be prepared while waiting for the 

sample to be fully cured. Similar to Step 1, a thin layer of liquid latex was evenly painted on 

the surface of the SILFLO foot imprint and was left to dry between 30 and 60 minutes before 

painting another layer. This process was repeated until the desired texture thickness was 

achieved. 

 

Step 4: Once the sample was fully-cured, it was carefully removed from the mould and the 

latex texture was then placed on top of the sample, ensuring that no crinkles were formed on 

its surface and around its structure. The texture was then clamped using a plate to allow the 

latex texture to bond with the latex surface of the sample. This process could take up to 2 

days to ensure that the texture is inseparable from the test-bed. 

 

 Initially eight prototype biofidelic test-beds were developed with four having textured 

surface and the remaining four non-textured. The thickness of each layer was then measured 

to ensure that the targeted thickness (please refer to Table 4.2) for each simulated combined 

layer was achieved. Table 4.5 below summarises the measured thickness and the material 

composition of the prototype biofidelic test-beds. 
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Figure 4.18: The various different steps involved in the fabrication of the biofidelic test-

beds. 

 

 

Table 4.5: Summarised material composition and respective layer thickness for all eight 

prototype biofidelic test-beds. 

Test-bed 

Combined epidermal-dermal tissues 

(Material: Latex rubber) 

 

Combined dermal – 

subcutaneous tissues 

(Material: MagicPower 

Gel) 

Total 

thickness of 

outer layer 

+ inner 

layer + 

bone (mm) 

Non-textured 

(NT) or 

Textured (T) 

Total 

thickness 

(mm) 

Thickness 

of texture 

(mm) 

Percentage 

of softener 

(%) 

E (kPa) 

BFA NT 2.95 - 49.46 40.03 20.66 

BFB NT 3.26 - 46.36 80.06 21.21 

BFC NT 2.82 - 40.17 160.12 20.79 

BFD NT 3.05 - 33.97 240.18 21.68 

BFE T 3.42 0.45 49.46 40.03 21.03 

BFF T 3.47 0.46 46.36 80.06 21.05 

BFG T 3.44 0.47 40.17 160.12 21.50 

BFH T 3.49 0.48 33.97 240.18 21.01 
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4.5 Design Stage 4: Testing prototype biofidelic test-beds 

 

All biofidelic test-beds were submitted to deformation test prior to the friction test in order 

to assess their stiffness and Young’s modulus values. For both indenter and flat plate 

deformation tests, the applied load was limited to 30N in order to prevent the test-beds from 

being damaged under high loads, but still sufficient to provide an insight into their behaviour 

under loading. Also, for the same reason, each test-bed was only tested once to minimise the 

risk of permanent deformation, which will adversely affect the friction tests. 

 

4.5.1 Deformation tests using an indenter and a flat plate 

The deformation test of the biofidelic test-beds was conducted using an indentation device 

equipped with a basic force gauge mounted on a manual test stand and a linear variable 

differential transformer (LVDT). An indenter with a diameter of 20mm and a flat plate with 

a thickness of 17mm were used to evaluate the deformation behaviour of the biofidelic test-

beds. The indentation test was conducted in accordance to the Brinell indentation hardness 

principle (ASTM E10-12). The contact between the samples and the indenter and flat plate 

was fully lubricated with water-based lubricant to eliminate the influence of friction on the 

samples’ deformation behaviour. This is also one of the assumptions provided by the Hertz 

theory of elastic contact, which is one of the classical solutions used by researchers to study 

non-adhesive elastic contact. The indentation device was manually operated to apply the 

intended normal load on the test-bed. Both the force gauge and LVDT was connected to a 

written LabView programme where the load-displacement plot obtained from each test-bed 

could be recorded for further analysis using an Oliver and Pharr approach which will be 

described further in the result section. 
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Figure 4.19: The flat plate and indenter used for the deformation tests, both manufactured 

from stainless steel. 

 

 

          

Figure 4.20: The indentation device used for the deformation test. 
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4.5.2 Friction tests using a dynamic friction rig 

As mentioned earlier in this chapter, one of the main purposes to develop biofidelic test-beds 

is to be able to carry out the friction tests with more controlled high normal loads. In order 

to achieve this purpose, a dynamic friction rig was developed.  

 The foot friction plate rig used in the earlier skin-sock studies was incorporated into 

a dynamic rig, which consists of a movable carrier attached to a linear sliding stage (see 

Figures 4.21 and 4.22). The carrier has a weight holder on its top and a slot was incorporated 

to hold the test-bed during the friction test. The foot friction plate rig was positioned at the 

front of the dynamic rig as shown in Figure 4.23 to ensure that the testing took place on the 

plantar region of the sock, similar to the test protocol on human foot. A holder was attached 

to the weight holder to pull the carrier forward, simulating the forward sliding of human foot 

in the earlier studies. In the absence of added weights, the carrier weighs approximately 10kg. 

Therefore, the lowest amount of normal load that could be applied on the test-bed is ≈100N.  

 

 

Figure 4.21: The developed carrier system with a weight holder and a slot to hold the 

tested test-bed. 

 

Weight holder 

 

Test-bed 

holder 

 



128 

 

 

 

 

Figure 4.22: A schematic illustration of the carrier system  

 

 

 

Figure 4.23: The set-up of the dynamic friction rig. 
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Figure 4.24: The force-time plot obtained from the LabView programme. 

 

 An example of the force-time plot obtained from the dynamic friction rig is shown in 

Figure 4.24. Note the similarity of this plot with the one obtained from the two friction 

methodologies comparative study described earlier in Chapter 2. The dynamic region, 

denoted by (II) in Figure 4.23, was selected for analysis. The movement of the biofidelic test-

bed relative to the sock fabric occurred at the beginning of this dynamic region. The main 

improvement from using this equipment can be seen in the consistent level of the applied 

normal load. The friction test was conducted at 5 different ranges of applied normal loads 

which are: 100 - 120N, 121 - 140N, 141 - 160N, 161 – 180N and 181 – 200N. Each selected 

test-bed was tested twice for each sock-moisture condition and the averaged friction and 

normal forces were used for further analysis. Similar to the protocol used to assess the 

frictional behaviour of the human plantar and 1MTH, dry condition was tested first and later 

followed by the low moisture and wet conditions. A new washed sock was used for each 

moisture condition and the order of the sock was randomised. 
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Chapter 5 

 

 

Deformation and frictional properties of the 

biofidelic test-beds  

 

 

5.1 Introduction  

This chapter presents the results and analysis obtained from the both deformation and 

frictional tests carried out on the biofidelic test-beds using the experimental protocols 

explained in Chapter 4. Comparisons to the human 1MTH data obtained from earlier studies 

are also included in the hope to provide a better overall insight to the performance of the 

biofidelic test-beds, and consider the best way forward for future development. 

 

5.2 Estimating the Young’s modulus of the biofidelic test-beds using an 

analytical approach 

An example of the force-displacement plot obtained from the indentation tests on biofidelic 

test-bed A (BFA) is shown in Figure 5.1 below. It can be seen that the result shows a non-

linear deformation behaviour which does not conform to Hooke’s Law. Therefore, in order 

to estimate the Young’s modulus values of the test-beds, the experimental force-displacement 

curves were analysed using the Oliver and Pharr approach [112], which had also been 

thoroughly reviewed by Herbert et. al. [113]. 

 

A polynomial curve of 4th order was fitted to the loading data which allows the displacement 

to be interpolated at two different applied load values which are 20N and 30N. The 
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experimentally measured stiffness, S can then be evaluated by calculating the gradient of the 

loading curve at the intended applied loads, which in this case at 20N and 30N.  

 

𝑆 =  
𝐴𝑝𝑝𝑙𝑖𝑒𝑑 𝑛𝑜𝑟𝑚𝑎𝑙 𝑓𝑜𝑟𝑐𝑒, 𝑑𝐹

𝐷𝑖𝑠𝑝𝑙𝑎𝑐𝑒𝑚𝑒𝑛𝑡, 𝑑𝛿
 

 

 

 

Figure 5.1: The loading segment of the force-displacement data obtained from biofidelic 

sample A (BFA). 
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where A is the contact area between the indenter tip and the test-bed. However, in practice, 

the test-bed surface can either pile-up or sink-in which effectively means that the 

displacement is not equal to the contact depth. Therefore, the contact area, A is substituted 

by the projected contact area, Ap, which can be evaluated using the following equation: 

 

𝐴𝑝 = 𝜋𝑎2 

 

where a is the contact radius and is related to the displacement by following equation: 

 

𝑎 = √𝑅𝛿 

 

where R is the radius of the indenter. 

 

The reduced Young’s modulus, E* is also related to the elastic modulus of the indented test-

beds according to the following expression: 

 

𝐸∗ =  [
1 − 𝑣𝑖

2

𝐸𝑖
+

1 − 𝑣𝑠
2

𝐸𝑠
]

−1

 

 

where subscripts i and s respectively refer to the indenter and the indented sample (i.e. in this 

case either test-bed or human skin). The Poisson’s ratio is denoted by v. Since the elastic 

modulus of the indenter, Ei >> the elastic modulus of the indented sample, Es it can therefore 

be assumed that the reduced elastic modulus, E* of the indented sample can be evaluated 

using the following equation: 

 

1

𝐸∗ ≈
(1 − 𝑣𝑠

2)

𝐸𝑠
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Since accurate Poisson’s ratio values for human skin and many viscoelastic materials are 

unknown, the value of 0.495 was used for analysis in this case study.  

 

 As mentioned earlier in Chapter 4, all indentation and flat plate tests carried out in 

this study was considered frictionless as the contact between the indenter and the indented 

sample (both test-beds and human 1MTH skin) was fully-lubricated using non-toxic, skin-

safe water-based lubricant. The main rationale for this is to minimise the effect of surface 

friction on the deformation results.  

 

5.3 Analysis of the indentation force-displacement curves  

The raw force-displacement data obtained from the indentation tests conducted on all eight 

biofidelic test-beds were plotted together with the indentation results obtained from the 

1MTH of six male participants, SIT001 to SIT006, (26.3 years ± 3.6 SD) for comparison, as 

shown in Figure 5.2.   

 

 Recall that test-beds A, B, C and D are ‘non-textured’ test-beds whereas test-beds D, 

E, F and G are ‘textured’ test-beds. The average total thickness of the outer latex layer across 

all eight test-beds was measured at 3.24mm ± 0.26 SD whereas the average total thickness 

of all eight test-beds measured at its centre of symmetry was 21.12mm ± 0.34 SD. The inner 

layer of both biofidelic test-beds A and D were made with the highest amount of silicone 

softener (i.e. approximately 50%). This was followed by test-beds B and F with 

approximately 46%, test-beds C and G with about 40% and finally test-beds D and H which 

were made with the least amount of softener (i.e. approximately 34%) (please refer to Table 

4.5 for more details). 
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Figure 5.2. The raw force-displacement data obtained from the indentation tests carried out 

on all biofidelic test-beds (n=8) and human 1MTH (n=6). 

 

 In general, all results in Figure 5.2 show an increase in the displacement as the applied 

force increased during the indentation deformation. It is also noted that all results exhibit a 

non-linear force-displacement relationship. No measurable deformation remained on the 

indented surfaces post-testing and therefore plastic behaviour was not observed. Hence, 

within the tested load range, the test-beds and human skin can be considered to be mainly an 

elastic material.  

 

 However, a clear variation can be seen between the test-beds and the human 1MTH 
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whilst exhibiting much steeper initial gradients in comparison to the human 1MTH data.  This 

effect is even more prominent at low applied load of less and equal to 5N where the human 

1MTH skin deformed at a much larger magnitude than the test-beds. This trend continued 

throughout the tested load range and generally suggests that the test-beds are much stiffer 

than the human 1MTH skin. The maximum deformation exhibited by the test-bed ranges 

between 6.38 and 9.39 mm (mean = 7.75 mm, SD = 1.15 mm) whereas that of the human 

1MTH ranges between 16.96 and 20.36 mm (mean = 19.07 mm, SD = 1.61 mm). In order to 

gain better insight on the deformation behaviour of the test-beds and the human 1MTH, the 

reduced Young’s modulus values, E* were evaluated at two chosen applied indentation loads: 

20N and 30N, using gradients from fitted polynomials (see the example provided in Figure 

5.1). These loads were selected for simple comparison with human data. 

 

5.4 Comparisons of the deformation behaviour of the biofidelic test-beds  

Figure 5.3 illustrates the variations of the calculated reduced Young’s modulus, E* values 

across all biofidelic test-beds and the average Young’s modulus, E* value of the tested 

participants (n=6) obtained from the indentation test results at both 20N and 30N applied 

indentation force. 
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Figure 5.3: The reduced Young’s Modulus, E* values obtained from the indentation tests 

for the biofidelic samples A – H, compared to that of the 1MTH obtained from the 

participants’ 1MTH at two different applied forces: 20 N and 30N.  

 

 A large variation can be seen between the human 1MTH and all eight biofidelic test-

beds, with the percentage difference ranging from about 63% to 82%. Results from the one-

way ANOVA further provides a significant difference at p < 0.05. As discussed earlier, at 

the same applied indentation load, the test-beds exhibited much lower indentation 

displacement in comparison to the human 1MTH. This is reflected in the results presented in 

Figure 5.3, where the reduced Young’s moduli calculated for the biofidelic test-beds were of 

much larger magnitude than the human 1MTH. This could be attributed to the boundary 

effects provided by the constraint plate that was used to securely hold the test-bed in place, 

thus increasing the local stiffness where the indentation load was applied. It was observed 

that in test-bed A, F and H that the reduced Young’s moduli at 30N indentation testing were 

slightly higher than that at 20N. This could be due to a slight reduction in the elastic energy 

dissipated during the further increment of the indentation load to 30N, which causes the test-

bed to resist the deformation load. It was also thought that the boundary effects resulted from 
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the constraint plate may have influenced the localised contact stress which in return influence 

the deformation. 

 

 Figure 5.4 presents the variations of the calculated reduced Young’s modulus, E* 

values across all biofidelic test-beds obtained from the interpolating the flat plate test results 

at both 20N and 30N applied indentation force. Please note that since the flat plate test was 

not conducted on the human 1MTH skin, no direct comparisons can therefore be made. 

However, the results from this test still provide valuable information of the deformation 

behaviour of the biofidelic test-beds when in loaded with a rigid flat plate body.  

 

 Based on the data in Figure 5.4, it can be seen that the results obtained are relatively 

comparable for all biofidelic test-beds, therefore increasing the confidence level of the 

previously obtained Young’s moduli. It can also be safely assumed that the flat plate test 

results were also much stiffer than the indentation results obtained on human 1MTH. 

However, in contrast to contact area experienced by the biofidelic test-beds during the 

indentation test, the contact area experienced during the flat plate test was larger due to the 

larger surface area covered by the flat plate. Pile-up or sink-in effects were not observed 

throughout the test across all eight biofidelic test-beds although the boundary effects may 

still be present.  
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Figure 5.4: The reduced Young’s Modulus, E* values of the biofidelic samples A – H 

obtained from the flat plate tests obtained at two different applied forces: 20 N and 

30N. 

 

 

5.5 Comparison of modulus data for the prototype 

Another important comparison that could be made using the calculated Young’s moduli from 

both indentation and flat plate tests is to determine whether the developed ‘non-textured’ 

biofidelic test-beds A, B, C and D are similar to their counterpart ‘textured’ biofidelic test-

beds E, F, G and H. By theory, it was expected that each ‘non’textured’ test-bed would be 

similar to its counterpart ‘textured’ test-bed, since the inner layer of both test-beds were made 

of the same percentage of softener, despite the presence of the ‘textured’ layer. Therefore, 

any differences would be due to variation in thickness of the outer layer. In order to evaluate 

this, post-hoc Benferroni’s test was conducted post one-way ANOVA test. A summary of 

the results is tabulated in Table 5.1 for the indentation test and Table 5.2 for the flat plate test. 
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Table 5.1: Summarised p-values obtained from the post-hoc Bonferroni’s test comparing 

the reduced Young’s modulus, E* obtained from the indentation tests. Top row – 

indentation test at 20N; bottom row – indentation test at 30N. The level of significance is 

marked by * (p < 0.05). 

Test-

bed 
A B C D E F G H 

A  0.000* 0.000* 0.756 0.003* 1.000 1.000 0.804 

  0.000* 0.000* 1.000 0.015* 1.000 1.000 0.000* 

B   1.000 0.000* 0.005* 0.000* 0.000* 0.000* 

   1.000 0.000* 0.021* 0.000* 0.000* 0.000* 

C    0.000* 0.003* 0.000* 0.000* 0.000* 

    0.000* 0.016* 0.000* 0.000* 0.000* 

D     0.926 1.000 0.017* 0.003* 

     1.000 1.000 0.067 0.013* 

E      0.527 0.000* 0.000* 

      1.000 0.000* 0.000* 

F       0.031* 0.005* 

       0.114 0.023* 

G        1.000 

        1.000 

H         

         

 

 

 The statistical results obtained from the indentation tests showed that test-bed A was 

significantly different (p < 0.05) from test-beds B and C which was expected since the inner 

layer of these test-beds were all made with different percentage of softener. However, no 

significant difference between A and D (p > 0.05), which means that both test-beds are 

indeed very similar despite test-bed A having more percentage of softener than test-bed D. 

Test-bed E was tested significantly different than test-beds G and H (p < 0.05) similarly to 

test-bed F and H (p < 0.05). No significant difference was obtained between test-beds G and 

H (p > 0.05). 
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 When comparing non-textured test-beds (A, B, C, and D) to their counterpart textured 

test-beds (E, F, G and H), significant differences were obtained (p < 0.05), indicating that 

despite the same percentage of softener used for the inner layer, the reduced Young’s 

modulus values produced were in fact different.   

 

Table 5.2: Summarised p-values obtained from the post-hoc Bonferroni’s test comparing 

the reduced Young’s modulus, E* obtained from the flat plate tests. Top row – flat plate 

test at 20N; bottom row – flat plate test at 30N. The level of significance is marked by *  

(p < 0.05). 

Test-

bed 
A B C D E F G H 

A  1.000 1.000 1.000 1.000 1.000 1.000 0.296 

  1.000 1.000 1.000 1.000 1.000 1.000 1.000 

B   1.000 1.000 1.000 1.000 1.000 1.000 

   1.000 1.000 1.000 1.000 1.000 0.234 

C    1.000 1.000 1.000 1.000 1.000 

    1.000 1.000 1.000 1.000 0.437 

D     1.000 1.000 1.000 1.000 

     1.000 1.000 1.000 1.000 

E      1.000 1.000 1.000 

      1.000 1.000 1.000 

F       1.000 1.000  

       1.000 1.000  

G        1.000 

        1.000 

H         
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 The statistical results obtained from the flat plate tests, on the other hand found no 

statistical difference (p > 0.05) at all when comparing all test-beds, which indicates that all 

test-beds behave similarly when deformed under flat plate loading.  

 

 Each test-bed comprises two different layers with the outer latex layer having much 

higher Young’s modulus than the inner silicone layer. Based on the observations made during 

both indentation and flat plate testing, it could be hypothesised that the latex outer layer has 

considerable effect on the overall deformation behaviour of the test-beds. This effect was 

greatly enhanced by the boundary effect resulted from the constraint plate. When compared 

to the experimental design developed for the human indentation testing, where the boundary 

effect from the constraining plate was not present, this would certainly lead to discrepancy 

in the results obtained. Since the test-beds were developed manually in the laboratory, slight 

variations in outer layer thickness were expected although the consequence resulting from it 

was unforeseen.  

 

5.6 Investigating the deformation behaviour of a test-bed with reduced 

overall outer latex layer thickness 

Based on the results obtained from the indentation and flat plate test, it was proposed that 

perhaps by reducing the overall thickness of the outer latex layer would slightly improve the 

reduced Young’s modulus, by minimising the dominant effect of the much stiff latex. 

Another test-bed of similar inner layer composition to test-bed C was developed to 

investigate this hypothesis. The overall outer latex layer thickness was reduced by 

approximately 50%, from 3. 24mm to 1.67mm. All geometrical dimensions were kept the 

same as the previous test-beds. The results obtained from the indentation and flat plate tests 

are presented in Figures 5.5 and 5.6 respectively. 
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Figure 5.5: The reduced Young’s Modulus, E* values of the biofidelic test-bed I (BFI) 

obtained from the indentation tests at two different applied forces: 20 N and 30N, in 

comparison to other test-beds. 
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Figure 5.6: The reduced Young’s Modulus, E* values of the biofidelic test-bed I (BFI) 

obtained from the flat plate tests at two different applied forces: 20 N and 30N, in 

comparison to other test-beds. 

 

 Differences can be seen in the results obtained from carrying out the deformation tests 

on test-bed I which has half the original overall thickness of the outer latex layer of the other 

test-beds. From the indentation test at 20N and 30N, the calculated Young’s moduli were 

reduced to 194.74 kPa and 249.84 kPa respectively whereas from the flat plate test at 20N 

and 30N, the calculated Young’s moduli were reduced to 178.56 kPa and 180.13 kPa. These 

results were supported by the results obtained from the post-hoc Bonferroni statistical test 

where significant differences can be seen between test-bed I when compared with test-beds 

A, D, E, F, G and H (p < 0.05). No significant difference was found when comparing test-

bed I to test-beds B and C, further confirming that the reduction seen in the calculated 

Young’s modulus values could be attributed to the reduction in the outer latex layer thickness. 

This result provides a clear justification to the dominant effect exhibited by the thick latex 

layer thickness during the indentation tests. 
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5.7 Investigating the frictional behaviour of the biofidelic test-beds in 

comparison to the human testing  

Following the deformation tests, the biofidelic test-beds were then subjected to a series of 

friction tests against the anti-blister and cotton-rich socks in three different moisture 

conditions. The protocol of the test was similar to the one previously conducted on 26 

participants to assess the frictional behaviour of the human 1MTH. It was initially thought 

that all test-beds would be subjected to the friction tests. However, test-beds A, E, F, and I 

were excluded after running a quick trial run in dry conditions at 100N normal load due to 

the fact that some of the inner silicone material was squeezed out of the test-beds upon sliding 

against the tested sock fabrics.  These low modulus test-beds were found to not be robust 

enough for further testing. The friction test was therefore carried out on the remaining test-

beds B, C, D (non-textured test-beds) as well as G and H (textured test-beds).   

 

 Similarly, to the friction tests conducted on the human 1MTH, the order of the tested 

sock was randomised. Test-beds B, D, and G were tested with cotton-rich sock first whereas 

test-beds C and H were tested with anti-blister sock first. The moisture condition of the sock 

fabrics was also monitored throughout using the Corneometer® device. Since the outer latex 

layer of the biofidelic test-beds is considered waterproof, moisture from the sock fabrics was 

not be absorbed and retained in the outer layer. However, the moisture level of the test-beds 

was still monitored throughout the friction tests to ensure consistency. The friction tests were 

carried out twice for each sock-moisture condition combination. Figures 5.7 - 5.9 illustrate 

the average friction force at 150N normal load of the biofidelic test-beds in comparison to 

the frictional data obtained from the previous human 1MTH study. In addition, the results 

were also compared with Subject S08 since the textured layers of the test-beds E, F, G and 

H were obtained from a negative impression of the subject’s tested foot. Please note that in 

these figures, the error bars of the biofidelic test-beds represent the standard deviation 

between two repetitions of the friction tests, whereas the error bars presented for Subject S08 

data represent the standard deviations of the averaged friction force data at each normal load 

range. The error bars of the “human feet” data represent the standard deviations obtained 

across all 26 participants from 1MTH friction study.  
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The statistical data obtained by the paired t-test were also provided in Table 5.3 for the anti-

blister sock and in Table 5.4 for the cotton-rich sock.  

 

 

Figure 5.7: Averaged friction force at 150N normal load for the biofidelic test-beds in 

comparison with the human friction data in dry conditions. 
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Figure 5.8: The variations of the averaged friction force at 150N normal load of the 

biofidelic test-beds in comparison to the human friction data in low moisture 

conditions. 
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Figure 5.9: The variations of the averaged friction force at 150N normal load of the 

biofidelic test-beds in comparison to the human friction data in wet conditions. 
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Table 5.3: Summarised average friction force values at 150N normal load for anti-blister 

sock, percentage differences in comparison to subject S08 and human feet (n=26) and 

statistical values obtained from the paired t-test. 

The level of significance is set at (p < 0.05) * 

 

 

 

Sock 

condition 

Tested 

sample 

Average 

friction 

force at 

150N 

normal 

load for 

anti-

blister (N) 

DCOF 

Percentage 

(%) 

difference of 

average 

friction force 

in 

comparison 

to subject S08 

p-value 

Percentage 

(%) 

difference of 

average 

friction 

force in 

comparison 

to human 

feet (n=26) 

p-value 

Dry 

BFB 88.37 0.59 76.88 0.000* 36.10 0.168 

BFC 100.44 0.67 101.05 0.000* 54.70 0.067 

BFD 91.85 0.61 83.85 0.000* 41.47 0.079 

BFG 153.10 1.02 206.45 0.000* 135.80 0.000* 

BFH 64.70 0.43 29.52 0.080 -0.34 1.000 

Subject 

S08 
49.96 0.33     

Human 

feet 
64.93 0.43     

Low 

moisture 

BFB 108.70 0.72 14.22 0.014* 19.86 0.462 

BFC 93.78 0.63 -1.46 0.367 3.41 1.000 

BFD 116.99 0.78 22.93 0.002* 29.01 0.047* 

BFG 130.88 0.87 37.52 0.000* 44.32 0.001* 

BFH 96.88 0.65 1.80 0.167 6.83 1.000 

Subject 

S08 
95.17 0.63     

Human 

feet 
90.69 0.60     

Wet 

BFB 111.34 0.74 0.34 0.018* 14.81 1.000 

BFC 88.13 0.59 -20.57 1.000 -9.13 1.000 

BFD 116.53 0.78 5.03 0.008* 20.16 0.596 

BFG 98.59 0.66 -11.14 0.036* 1.67 1.000 

BFH 120.38 0.80 8.49 0.003* 24.13 0.187 

Subject 

S08 
110.95 0.74     

Human 

feet 
96.98 0.65     
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Table 5.4: Summarised average friction force values at 150N normal load for cotton-rich 

sock, percentage differences in comparison to subject S08 and human feet (n=26) and 

statistical values obtained from the paired t-test. The level of significance is indicated 

by * (p < 0.05). 

Sock 

condition 

Tested 

sample 

Average 

friction 

force at 

150N 

normal load 

for cotton-

rich (N) 

DCOF 

Percentage 

(%) 

difference 

of average 

friction 

force in 

comparison 

to subject 

S08 

p-value 

Percentage 

(%) 

difference of 

average 

friction force 

in 

comparison 

to human 

feet (n=26) 

p-value 

Dry 

BFB 145.42 0.97 226.76 0.000* 176.91 0.000* 

BFC 90.38 0.60 103.08 0.001* 72.09 0.001* 

BFD 85.04 0.57 91.09 0.004* 61.94 0.012* 

BFG 176.37 1.18 296.31 0.000* 235.85 0.000* 

BFH 114.01 0.76 156.19 0.000* 117.11 0.000* 

Subject 

S08 
44.50 0.30     

Human 

Feet 
52.52 0.35     

Low 

moisture 

BFB 122.11 0.81 21.89 0.026* 23.95 0.062 

BFC 98.90 0.66 -1.28 1.000 0.39 1.000 

BFD 86.21 0.57 -13.94 1.000 -12.49 1.000 

BFG 102.37 0.68 2.18 0.162 3.91 0.667 

BFH 118.00 0.79 17.79 0.057 19.78 0.176 

Subject 

S08 
100.18 0.67     

Human 

Feet 
98.51 0.66     

Wet 

BFB 129.03 0.86 8.24 0.086 21.99 0.223 

BFC 112.05 0.75 -6.01 1.000 5.93 1.000 

BFD 126.62 0.84 6.22 0.125 19.71 0.365 

BFG 114.75 0.76 -3.74 0.380 8.48 1.000 

BFH 134.60 0.90 12.92 0.017* 27.26 0.025* 

Subject 

S08 
119.21 0.79     

Human 

Feet 
105.77 0.71     
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 Figure 5.7 shows the average friction force values interpolated at 150N normal force 

for both tested sock materials when tested in dry condition. Compared to the results obtained 

from the previous dry human 1MTH-sock fabric study, the anti-blister sock exhibited 

significantly higher average frictional force of 64.93 ± 15.44N (DCOF:0.43) than that of the 

cotton-rich sock, 52.52 ± 16.25N (DCOF:0.35). It can be seen that the prototype test-beds 

generated much higher average frictional forces than the human readings for both types of 

socks, which could be associated to the high adhesion force produced by the outer latex layer 

during the dry sliding. Test-beds B, C, D, and H produced comparable average frictional 

forces to the human 1MTH for the anti-blister sock as indicated by the lack of significant 

differences when comparing each test-bed with the human 1MTH data (p > 0.05) (please 

refer to Table 5.4 for this). However, none of the tested test-beds produced comparable 

frictional behaviour to the human 1MTH when tested with the cotton-rich sock (p < 0.05). 

For the anti-blister sock, it was also found that the textured test-bed H produced the exact 

same DCOF of 0.43 (p > 0.05) as the human 1MTH, which is also very close to the Subject 

S08’s DCOF of 0.33 (p > 0.05). 

 

 The frictional behaviour of the test-beds against both sock fabrics in low moisture 

condition is presented in Figure 5.8. In the previous low moisture human 1MTH-sock fabric 

study, the cotton-rich sock produced significantly higher average frictional force of 98.51 ± 

15.93N (DCOF:0.66) than that of the anti-blister sock, 90.69 ± 14.06N (DCOF:0.60). 

Comparable results were obtained from test-beds B, C and H for both sock fabrics (p > 0.05). 

In addition, when compared with Subject S08’s frictional data, textured test-bed H gave 

comparable results for both sock fabrics (p > 0.05). Despite not producing comparable 

frictional results for the anti-blister sock, both test-beds D and G were found to generate 

similar frictional behaviour to the human 1MTH (p > 0.05) when tested with the cotton-rich 

sock.  

 

 The frictional results obtained from the wet condition for both sock materials are 

plotted in Figure 5.9. The previous wet human 1MTH-sock fabric friction study showed that 

the cotton-rich sock exhibited significantly higher average frictional force of 105.77 ± 

12.92N (DCOF:0.71) than that of the anti-blister sock, 96.98 ± 14.53N (DCOF:0.65). 
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Interestingly, for the anti-blister sock, all prototype test-beds produced comparable results to 

that of the human 1MTH (p > 0.05). Except for test-bed H, all other four test-beds were found 

to compare quite well to the human frictional data obtained with the cotton-rich sock (p > 

0.05). When compared with Subject S08’s data, the textured test-bed G was found to compare 

well when tested with the cotton-rich sock (p > 0.05) but not when tested with the anti-blister 

sock (p < 0.05). 

 

5.8 Conclusions  

Based on these results, it was found that the frictional performance of the non-textured test-

bed C was found to be very comparable to the human 1MTH for both sock fabrics (p > 0.05), 

whilst generating the same frictional trends seen in the study. In dry condition, the outer latex 

layer was seen to exhibit high adhesion force when slid against the sock fabrics due to its 

highly-adhesive surface. This effect, however, was observed to be less prominent in both low 

moisture and wet conditions where moisture was presence in the interface contact between 

the test-beds and the sock fabrics. The adhesion effect was more pronounced when tested 

with the terry-jersey knitted cotton-rich sock in comparison to the simple jersey anti-blister 

sock. The furry surface of the cotton-rich sock effectively increases the real contact area 

between the test-beds and the sock, leading to an increase in the adhesion force and hence 

the generated frictional force. Similar adhesive effect was seen in the study conducted by 

Shao et al. [114] on a polymer-based finger-tips. The authors suggested that controlling the 

degree of the adhesive shear in frictional test is important although it is one of the most 

challenging tasks in developing artificial test-beds.  

 

 Despite being stiffer than a human 1MTH, test-bed C was found to compare well with 

the human 1MTH deformation data. This could be due to the fact that the test-bed has the 

lowest reduced modulus value compared with the other test-beds (except test-bed I). Test-

bed I, which has lower outer latex layer thickness than test-bed C, was found to have lower 

elastic modulus values, approaching the human 1MTH. This suggests that by reducing the 

thickness of the outer latex layer, a test-bed with much closer elastic modulus with human 

1MTH could be produced. However, decreasing the thickness further in order to achieve 

close deformation behaviour with human data was found to have reduced robustness for 
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friction testing, as seen in test-beds of lower modulus. Therefore, in manufacturing the test-

beds, a compromise has to be made between the thickness of the outer layer and having 

adequate robustness for friction testing. 

 

 Another important aspect that was discovered from this study is that adding texture 

surface which closely resembles human 1MTH imprint did not always results in comparable 

frictional behaviour with human 1MTH. It can be deduced that it is more important to match 

the mechanical properties of the test—bed as a whole to the mechanical properties of the 

human 1MTH.  
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Chapter 6 

 

 

 

 

Conclusions and future work 

 

This final chapter outlines the conclusions from this study in reference to the established 

objectives highlighted in Chapter 1. It includes a complete summary of the main results and 

findings obtained from the study as well as some recommendations of future work for further 

research into the topic of plantar skin friction. 

 

6.1 Conclusions 

At the beginning of this thesis, two different packages of work were described by the two-

fold aims of the study. The first package of work was carried out to gain a better 

understanding of the friction interactions between the plantar skin and selected sock fabrics 

which include the complex interplay of contact and moisture parameters. It is acknowledged 

from previous skin-fabric studies that these parameters are the primary contributors in 

friction blisters development. Despite the on-going extensive research in skin tribology, very 

little is known regarding the effect of plantar skin properties on friction. One of the reasons 

for the lack of research on the plantar skin friction was found to be due to the absence of a 

standard friction testing methodology. The initial stage of the first work package was 

dedicated to address this issue. Two different methodologies in measuring foot skin-sock 

friction were investigated and compared. The first methodology utilised a foot friction plate 

rig that requires the participants to slide their foot against the sock material which is secured 

on the plate rig.  This second approach, on the other hand, utilised a foot loading device with 

an instrumented probe that slides on the participant’s foot. Both methodologies produced 

similar findings, but the first methodology was found to be capable of measuring higher 

normal loading conditions and was therefore selected for use in the remaining foot-skin 

friction studies. A novel moisture control and management protocol was also developed using 
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a commercially-available Corneometer® CM825 device. This protocol provides a quick and 

easy way to monitor the level of moisture on both skin and sock materials during moisture 

application and at specific intervals during the friction test. 

  

 As part of the first work package, a series of pilot studies was carried out on the sock-

insole interface to investigate how the frictional behaviour of the socks was affected by the 

contact area, strain and the different level of moisture presence. It was found that the sock 

materials do not obey Amonton’s Laws as the friction force was found to be dependent of 

the contact area. The pilot test on the effect of strain in sock fabrics showed that different 

level of strain has no significant effect on the sock friction. A strain level between 20 to 50% 

was thought to be achievable and representative of the strain experienced in a real-world 

scenario when the sock is being worn, and hence was used in the remainder of the studies. It 

was found that varying the moisture levels at the sock-insole interfaces influences the sock-

insole friction behaviour. In dry conditions, the socks produced relatively low friction force 

in comparison to the low moisture and wet conditions. Overall, the findings from the pilot 

studies provided valuable information that was later fed into the human participant studies. 

 

 Comprehensive studies were then conducted on healthy human participants starting 

with the entire region of plantar skin in dry condition. It was found that there was a large 

variability in the average foot hydration level due to the low homogeneity of the plantar skin. 

Other participant-specific factors such as gait mechanisms, skin condition, physical structure 

of feet and skin care regimen were also thought to have influence this aspect. Nonetheless, a 

positive correlation was obtained between the average foot hydration level and the friction 

force at 100N normal force. This finding is in agreement with many earlier studies that found 

a similar outcome when moist skin comes in contact with other surfaces. The contact area of 

the foot was also found to plateau at high normal loads due to the skin becoming stiffer as it 

reaches its maximum extensibility, and the contact area not changing significantly.  

 

 Two sock materials were then selected for the further friction test on the plantar aspect 

of the first metatarsal head (1MTH) which are the predominantly nylon anti-blister sock and 

the cotton-rich sock. These two socks were made of different material compositions and knit 



155 

 

 

patterns. The 1MTH was chosen due to the fact that it is the region of the foot that experiences 

the highest normal load during running and that it is located in the forefoot region where 

majority of blister incidences were reported to occur. The frictional behaviour of the 1MTH 

was assessed using the friction methodology in three significantly different moisture 

conditions namely dry, low moisture and wet. When studying the effect of average 1MTH 

hydration level on friction, no significant relationships could be found for all sock-moisture 

combinations. This is in contrast to the findings obtained from the plantar skin-sock friction. 

The high variation of 1MTH skin hydration level within the same individual was suggested 

to be the reason for the lack of a measurable effect of 1MTH moisture. The frictional 

performance of both anti-blister and cotton-rich socks was also compared against one another 

across all three moisture conditions. It was found that that in dry conditions, the anti-blister 

sock gave higher sliding friction than the cotton-rich sock. On the other hand, in both low 

moisture and wet conditions, the cotton rich sock gave higher sliding friction than the anti-

blister sock. This could be attributed to the fact that cotton fibres, which are hydrophilic in 

nature, make up 70% of the cotton-rich material composition. These results were also related 

to the thermophysiological characteristics of the socks which was investigated in 

collaboration with Siti Hana Nasir and Professor Olga Troynikov at the RMIT University 

(please refer to Appendix 10). They found that the cotton-rich sock fabric has a lower 

absorption rate on both its top and bottom surfaces due to its relatively thicker fabric. In 

addition, the cotton-rich sock exhibited lower accumulative one-way transport index (AOTI) 

than the anti-blister sock which means that the anti-blister sock is capable of transporting 

sweat away from the skin surface much quicker than the cotton-rich sock. The anti-blister 

sock fabric was also found to have a better score of the overall moisture management capacity 

(OMMC) than the cotton-rich sock which helps to explain why in the presence of moisture, 

the anti-blister socks produced lower sliding friction than the cotton-rich sock. This indicates 

that the anti-blister sock has better wicking properties than the cotton-rich sock and is better 

at keeping the feet dry within a shoe environment.  

 

 The second package of work involved in the study was to design and develop 

prototype biofidelic test-beds that closely match the mechanical and frictional properties of 

the plantar aspect of the 1MTH. These test-beds are basically two-layer physical models with 
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similar geometry and dimensions to the human 1MTH and made of polymer-based materials. 

Extensive studies were carried out prior to selecting the best combinations of materials to be 

used for the test-beds. Nine different test-beds were developed. Test-beds A, B, C, D and I 

were non-textured whereas test-beds E, F, G, and H were textured. The outer layer of the 

test-bed represents the epidermis and dermis layers of the 1MTH skin whereas the inner layer 

of the test-beds represents the dermis and subcutaneous tissue layers of human 1MTH. The 

outer latex layer was made using liquid latex whereas the inner layer was made with a 

silicone-based material, Magic Power Gel (Raytech), with four different variations of 

Young’s modulus ranging from 40kPa to 240kPa. A steel hemisphere was also included as 

part of the test-bed design to represent the 1MTH bone.  

 

 Deformation tests using a 20mm diameter indenter and a flat plate were carried out 

on all nine test-beds prior to the friction test. The reduced Young’s moduli for the test-beds 

were calculated using the stiffness values extracted from the force-displacement data 

obtained from the indentation tests. It was found that all test-beds produced higher reduced 

Young’s moduli in comparison to the human 1MTH. This was thought to be attributed by the 

boundary effects resulted from the constraint plate used to hold the test-beds in place. A 

dynamic friction rig was also developed in order to carry out friction tests in controlled 

normal loading, ranging from 100N to 200N. The same friction methodology used to test 

human plantar skin was utilised for the friction test on the biofidelic test-beds against the 

anti-blister and cotton-rich socks. Test-beds A, E, F, and I were not included in the friction 

test due to their low robustness. The friction results obtained were then compared with the 

human 1MTH-sock friction data. It was found that test-bed C exhibited the mechanical and 

frictional properties closest to the human 1MTH data. 

 

6.2 Contributions of the thesis 

The main contributions of this thesis are as follows: 

 Two different methodologies in measuring foot skin – sock friction were investigated 

and compared. The use of foot friction rig was found to be appropriate for testing 

involving higher ranges of applied normal loads. 
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 A novel moisture control and management protocol was devised using a 

commercially-available device, Corneometer® CM825 device. This protocol 

provides an efficient way of monitoring the level of moisture on both human skin and 

sock materials during friction testing.   

 A friction protocol to evaluate the frictional behaviour of the skin – sock interface 

was developed. Using the same friction protocol in all friction studies ensures 

repeatability in the procedures involved in friction testing, allowing the results to be 

compared systematically. 

 The friction interaction between the plantar skin and five different sock materials in 

dry condition has been investigated at higher ranges of applied normal loads (i.e. up 

to 500N).  

  The friction interaction between the human 1MTH and two commercially-available 

running socks, the anti-blister and cotton-rich, has been assessed in three different 

moisture conditions: dry, low moisture and wet. 

 A range of biofidelic test-bed prototypes has been designed and developed to closely-

resemble the mechanical and frictional properties of the plantar aspect of the 1MTH. 

 The friction between the biofidelic test-bed and two selected sock fabrics, the anti-

blister and cotton-rich, has been evaluated in three different moisture conditions: dry, 

low moisture and wet. 

 The results obtained from the friction testing of the biofidelic test-beds were validated 

using the human 1MTH friction data. 

 

6.3 Suggested future work 

This study has addressed several aspects of plantar skin-sock friction with the aim to close 

the gaps in the existing knowledge on this topic. However, several questions have arisen 

during the course of the study which were not covered within the scope of the research 

conducted. This provides possibilities to venture in other research directions which would 

further the understanding of plantar skin-sock friction in relation to foot friction blisters. 
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6.3.1 Plantar skin properties 

As mentioned earlier in this chapter, the existing data on the plantar skin properties is still 

very limited in comparison to the other parts of human skin and therefore still poorly 

understood. Even with the existing data, comparisons have been proven to be challenging 

due to the variety of measurement techniques used. Establishing a standard mechanical 

testing protocol to precisely measure the Young’s modulus of the plantar skin would certainly 

allow better measurements and comparisons to be made hence contributing to the further 

understanding of the plantar skin properties. 

 

6.3.2 Testing other running sock materials 

The friction and moisture protocols developed in this study can be extended to study the 

friction interaction between the plantar skin and other running sock materials that are 

frequently used by long-distance runners. The data obtained from the further work can then 

be used to build on the existing plantar skin-sock fabric database allowing better comparisons 

to be made in terms of the socks frictional performance.  

 

6.3.3 Measurements of area of contact during the friction experiments 

Further work needs to be carried out on the effects of contact area during the dynamic friction 

test. As discussed earlier in Chapter 3, plantar skin does not obey Amonton’s Laws and the 

frictional force is not independent of the contact area. This would provide better insight on 

how varying the contact area would influence the plantar skin-sock fabric friction. The skin 

contact area results can then be associated to the hydration level and mechanical properties 

of the plantar skin to study the extent of its variability.  

 

6.3.4 Reinforcing the robustness of the biofidelic test-beds  

A novel approach used to fabricate the biofidelic test-beds is now developed into a protocol 

that can be used to produce new test-beds that more closely match the human mechanical and 

frictional properties. However, the robustness of the test-beds need to be further improved. 

In Chapter 5, the friction test was not able to be conducted on test-beds A, E, F and I due to 

the low robustness of the test-bed design. More improvement is therefore required to enhance 
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the durability and robustness of the test-beds so that they are capable to withstand the high 

normal and shear loads that occur during testing and the surfaces can be improved in terms 

of wear resistance. 

 

6.3.5 Extending results of friction studies to blister formation 

Another important aspect that could be explored is to extend results of friction studies to 

enhance understanding in blister formation. In the current friction studies, plantar skin-sock 

interface was investigated separately to the sock-insole interface to gain better understanding 

of how plantar sock interacts with sock fabrics. The friction protocols developed in this study 

could be applied to study the foot-sock-insole interactions as a whole, including how the 

normal and shear loads are distributed within the shoe. 
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Appendix 7: List of sock textiles used for testing 
 

3.1 Pilot study 1: A comparison of two different methodologies in measuring foot-sock 

friction (please refer to page 49) 

 

Sock type Material compositions Knit pattern 
Mean thickness ± 

SD (mm) 

Anti-blister 

“ABS” 
99% nylon and 1% elastane Simple jersey 1.18 ± 0.04 

Cotton-rich 

“CRS” 

70% cotton, 29% nylon, and 

1%elastane 
Terry jersey 2.62 ± 0.08 

 

 

3.2 Pilot study 2: Investigating the friction between a sock and chosen shoe insole (please 

refer to page 58) 

 

Sock type Material compositions Knit pattern 

Cotton-rich 

“Sock A” 
75% cotton, 17% polyester, 6% nylon, 2% elastane Terry jersey 

100% cotton 

“Sock B” 
100% cotton Simple jersey 

Wool-rich  

“Sock C” 
40% wool, 31% cotton, 19% nylon, 8% elastane Terry jersey 

Anti-blister 

“Sock D” 
99% nylon, 1% elastane Simple jersey 

Double-layer 

(outer) 

“Sock E-o” 

54% cotton, 44% nylon and 2% elastane Simple jersey 
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3.3 Pilot study 3: Investigating the effects of strain on the frictional behaviour of sock 

fabrics (please refer to page 65) 

 

Sock type Fibre compositions Knit pattern 

Cotton-rich 

“Sock A” 
75% cotton, 17% polyester, 6% nylon, 2% elastane Terry jersey 

100% cotton 

“Sock B” 
100% cotton Simple jersey 

Wool-rich  

“Sock C” 
40% wool, 31% cotton, 19% nylon, 8% elastane Terry jersey 

Anti-blister 

“Sock D” 
99% nylon, 1% elastane Simple jersey 

Double-layer 

(outer) 

“Sock E-o” 

54% cotton, 44% nylon and 2% elastane Simple jersey 

 

3.4 Pilot study 4: Investigating the effects of contact area on the frictional behaviour of 

sock fabrics against shoe insole in dry condition (please refer to page 69) 

 

Sock type Fibre compositions Knit pattern 

Cotton-rich 

“Sock A” 
75% cotton, 17% polyester, 6% nylon, 2% elastane Terry jersey 

100% cotton 

“Sock B” 
100% cotton Simple jersey 

Wool-rich  

“Sock C” 
40% wool, 31% cotton, 19% nylon, 8% elastane Terry jersey 

Anti-blister 

“Sock D” 
99% nylon, 1% elastane Simple jersey 

Double-layer 

(outer) 

“Sock E-o” 

54% cotton, 44% nylon and 2% elastane Simple jersey 
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3.5 Pilot study 5: Investigating the effects of varying moisture conditions on the sock-

insole friction behaviour (please refer to page 73) 

 

Sock type Fibre compositions Knit pattern 

Cotton-rich 

“Sock A” 
75% cotton, 17% polyester, 6% nylon, 2% elastane Terry jersey 

100% cotton 

“Sock B” 
100% cotton Simple jersey 

Wool-rich  

“Sock C” 
40% wool, 31% cotton, 19% nylon, 8% elastane Terry jersey 

Anti-blister 

“Sock D” 
99% nylon, 1% elastane Simple jersey 

Double-layer 

(outer) 

“Sock E-o” 

54% cotton, 44% nylon and 2% elastane Simple jersey 

 

3.6 Investigating the frictional behaviour of plantar skin against running sock fabrics in 

dry condition (please refer to page 77) 

 

Sock types Fibre compositions Knit pattern 

Cotton-rich “Sock A” 
75% cotton, 17% polyester, 6% nylon, 2% 

elastane 
Terry jersey 

100% cotton “Sock B” 100% cotton Simple jersey 

Wool-rich “Sock C” 
40% wool, 31% cotton, 19% nylon, 8% 

elastane 
Terry jersey 

Anti-blister “Sock D” 99% nylon, 1% elastane Simple jersey 

Double-layer (inner) 

 “Sock E” 

100% nylon  Simple jersey 
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3.7 Investigating the frictional behaviour of first metatarsal head (1MTH) against 

running sock fabrics in different moisture conditions (please refer to page 88) 

 

Sock type Material compositions Knit pattern 
Mean thickness ± 

SD (mm) 

Anti-blister 

“ABS” 
99% nylon and 1% elastane Simple jersey 1.18 ± 0.04 

Cotton-rich 

“CRS” 

70% cotton, 29% nylon, and 

1%elastane 
Terry jersey 2.62 ± 0.08 

 

4.5.2 Friction tests using a dynamic friction rig (please refer to page 127) 

 

Sock type Material compositions Knit pattern 
Mean thickness ± 

SD (mm) 

Anti-blister 

“ABS” 
99% nylon and 1% elastane Simple jersey 1.18 ± 0.04 

Cotton-rich 

“CRS” 

70% cotton, 29% nylon, and 

1%elastane 
Terry jersey 2.62 ± 0.08 
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Appendix 8: Protocol for Study A (at TUOS) 

 

NO. TASK DONE? 

1 Brief participant on testing protocol and obtain his/her written 

consent. 

 

2 Ask participant remove his/her footwear to allow the Principal 

Investigator to conduct Vascular and Neuropathy Assessments 

on both feet. 

Identify any presence of callus on the test foot. 

 

3 Allow the test foot to acclimatise to the room environments for 

15 minutes. 

 

 

4 Obtain Corneometer (6 readings), Cutometer (1 reading), and 

Thermometer (5 readings) measurements on the 1MTH. [Before 

Cleaning] 

 

5 Obtain an OCT image of the 1MTH [Before Cleaning]  

6 Soak test foot in a water bath (at room temperature) for 30 

seconds. 

 

7 Dry test foot using paper towels and let it acclimatise to the 

room environments for 10 minutes. 

 

8 During acclimatisation, ask participant to fill in the 

questionnaire. 

 

9 Obtain Corneometer (6 readings), Cutometer (1 reading), and 

Thermometer (5 readings) measurements on the 1MTH. [After 

Cleaning] 

  

10 Obtain an OCT image of the 1MTH [After Cleaning]   

11 Obtain Corneometer measurements on the 1MTH (6 readings) 

and the dry sock (3 readings).  [Before Friction Test 1] 

  

12 FRICTION TEST 1 - on a dry sock (at 4 ranges of loads). 

Get 3 Corneometer readings on the sock after each run of 

friction test. 

[After Friction Test 1_load 1, After Friction Test 1_load 2, 

After Friction Test 1_load 3, After Friction Test 1_load 4] 

  

13 Obtain Corneometer (6 readings) and Thermometer (5 readings) 

measurements of the 1MTH [After Friction Test 1] 

  

14 Obtain an OCT image of the 1MTH [After Friction Test 1]   

15 Allow the test foot to acclimatise to the room environments for 

8 minutes. 

  

16 Obtain Corneometer readings on the 1MTH (6 readings) and 

low moist sock (3 readings).  [Before Friction Test 2] 

  

17 Obtain an OCT image of the 1MTH [Before Friction Test 2]   
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NO. TASK DONE? 

18 

FRICTION TEST 2 - on a low moist sock (at 4 ranges of 

loads). 

Get 3 Corneometer readings on the sock after each run of 

friction test. 

[After Friction Test 2_load 1, After Friction Test 2_load 2, 

After Friction Test 2_load 3, After Friction Test 2_load 4] 

 

 

19 
Obtain Corneometer (6 readings) and Thermometer (5 readings) 

measurements of the 1MTH [After Friction Test 2] 

  

20 Obtain an OCT image of the 1MTH [After Friction Test 2]   

21 
Allow foot to acclimatise to the room environments for 8 

minutes. 

  

22 
Obtain Corneometer readings on the 1MTH (6 readings) and 

wet sock (3 readings).  [Before Friction Test 3] 

  

23 Obtain an OCT image of the 1MTH [Before Friction Test 3]   

24 

FRICTION TEST 3 - on a wet sock (at 4 ranges of loads).   

Get 3 Corneometer readings on the sock after each run of 

friction test.  

[After Friction Test 3_load 1, After Friction Test 3_load 2, 

After Friction Test 3_load 3, After Friction Test 3_load 4] 

  

25 
Obtain Corneometer (6 readings) and Thermometer (5 readings) 

measurements of the 1MTH [After Friction Test 3] 

  

26 Obtain an OCT image of the 1MTH [After Friction Test 3]   

27 

Soak foot in a water bath (at room temperature) for 30 seconds, 

dry it using paper towels and let it acclimatise for 10 minutes 

before proceeding to the second part of the test using another 

sock type.  

Repeat step 9 to 26 for the second sock type. 

 



182 

 

 

Appendix 9: Protocol for Study B (at UoS) 

NO. TASK DONE? 

1 Brief participant on testing protocol and obtain his/her written 

consent. 

 

2 Ask participant remove his/her footwear to allow the Principal 

Investigator to conduct Vascular and Neuropathy Assessments 

on both feet. 

Identify any presence of callus on the test foot. 

 

3 Allow the test foot to acclimatise to the room environments for 

15 minutes. 

 

 

4 Obtain Corneometer (6 readings), Cutometer (1 reading), and 

Thermometer (5 readings) measurements on the 1MTH. [Before 

Cleaning] 

 

5 Soak test foot in a water bath (at room temperature) for 30 

seconds. 

 

6 Dry test foot using paper towels and let it acclimatise to the 

room environments for 10 minutes. 

 

7 During acclimatisation, ask participant to fill in the 

questionnaire. 

 

8 Obtain Corneometer (6 readings), Cutometer (1 reading), and 

Thermometer (5 readings) measurements on the 1MTH. [After 

Cleaning] 

  

9 Obtain Corneometer measurements on the 1MTH (6 readings) 

and the dry sock (3 readings).  [Before Friction Test 1] 

  

10 FRICTION TEST 1 - on a dry sock (at 3 pressure levels). 

Check sock alignment on probe, set the pressure level, start 

logging, insert code, click save. 

 

Get 3 Corneometer readings on the sock after each run of 

friction test. 

[After Friction Test 1_pressure 1, After Friction Test 

1_pressure 2, After Friction Test 1_pressure 3] 

  

11 Obtain Corneometer (6 readings) and Thermometer (5 readings) 

measurements of the 1MTH [After Friction Test 1] 

  

12 Allow the test foot to acclimatise to the room environments for 

8 minutes. 

  

13 Obtain Corneometer readings on the 1MTH (6 readings) and 

low moist sock (3 readings).  [Before Friction Test 2] 
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NO. TASK DONE? 

14 FRICTION TEST 2 - on a low moist sock (at 3 pressure levels). 

Check sock alignment on probe, set the pressure level, start 

logging, insert code, click save. 

 

Get 3 Corneometer readings on the sock after each run of friction 

test. 

[After Friction Test 2_pressure 1, After Friction Test 

2_pressure 2, After Friction Test 2_pressure 3] 

 

 

15 
Obtain Corneometer (6 readings) and Thermometer (5 readings) 

measurements of the 1MTH [After Friction Test 2] 
 

 

16 
Allow the test foot to acclimatise to the room environments for 8 

minutes. 

  

17 
Obtain Corneometer readings on the 1MTH (6 readings) and wet 

sock (3 readings).  [Before Friction Test 3] 

  

18 

FRICTION TEST 3 - on a wet sock (at 3 pressure levels). 

Check sock alignment on probe, set the pressure level, start 

logging, insert code, click save. 

 

Get 3 Corneometer readings on the sock after each run of friction 

test. 

[After Friction Test 3_pressure 1, After Friction Test 

3_pressure 2, After Friction Test 3_pressure 3] 

  

 

 

19 
Obtain Corneometer (6 readings) and Thermometer (5 readings) 

measurements of the 1MTH [After Friction Test 3] 

  

20 

Soak foot in a water bath (at room temperature) for 30 seconds, 

dry it using paper towels and let it acclimatise for 10 minutes 

before proceeding to the second part of the test using another 

sock type.  

Repeat step 8 to 19 for the second sock type. 
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Appendix 10: Physical and thermophysiological 

comfort characteristics of anti-blister and cotton-

rich running socks (in collaboration with the RMIT 

University, Australia) 
 

Introduction 

This study was carried out as part of a collaboration project with Siti Hana Nasir and 

Professor Olga Troynikov based at the RMIT University, Melbourne, Australia. The purpose 

of the current study was to assess the properties of two commercially-available running socks 

influencing the thermophysiological comfort of the wearer and relate the findings to the 

frictional performance of the socks which will be described in the following chapter. The 

physical characteristics and thermophysiological tests were conducted by Siti Hana Nasir in 

the RMIT University whereas the friction experiments (described in section 3.6) were 

undertaken by the author of this thesis at the University of Sheffield, UK. The sock materials 

were supplied by the author for testing and the results obtained were processed and analysed 

together by the author and Siti Hana Nasir. 

 

Sock materials and their physical characteristics 

Two types of newly-purchased running socks of differing material compositions and fabric 

construction were selected for the purpose of this study which are a predominantly nylon 

sock and a cotton-rich sock. The characteristics of the socks are exactly the same as the ones 

described in Table 2.4.  

 

 In order to remove any contaminants trapped in the sock fibres as well as to maintain 

their dimensional stability, all socks were hand-washed using water and a mild liquid 

detergent and left to air-dry at room temperature for at least 72 hours prior to the test.  

 

 For the purpose of the physical characteristic tests, five specimens were obtained 

from each sock and the mean values of each measured parameter were included in Table 2.4. 

The number of wales and courses per unit length of fabric sample was measured according 
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to AS 2001.2.6-2001. For any knitted fabrics, the term ‘wales’ refer to the series of loops that 

are interwoven vertically whereas the term ‘courses’ refer to the series of loops that are 

connected horizontally. 

 

 The thickness of fabric samples was measured as the distance between the reference 

plate and parallel presser foot of the thickness tester. The mass per unit area was also 

calculated as the mean mass per unit area of five specimens.  

 

 It was found that despite having lower stitch density (determined by the number of 

wales and courses per cm), the cotton-rich fabric is 44% heavier than that of the 

predominantly nylon anti-blister fabric. It is also noted that due to the plush knitted structure 

on the next-to-skin side of the cotton-rich fabric, it is significantly thicker than the anti-blister 

fabric.  

 

Experimental procedure for the thermophysiological comfort 

The thermophysiological tests were carried out at the RMIT University by Siti Hana Nasir 

and was supervised by Professor Olga Troynikov, which include measuring the thermal 

resistance, water vapour resistance and moisture management properties of both sock fabrics. 

A sweating guarded hot-plate, which has been commonly used to simulate both heat and 

moisture transfer from a body surface to the environment through the fabric layers, was 

utilised to obtain the thermal and water vapour resistance in accordance to the ISO:11092 

standard. However, due to the limited size of the sock fabric samples, some modifications in 

the testing procedure were made.   

 

The liquid water transfer and distribution of each fabric sample in multiple directions 

was measured and recorded using the moisture management tester (MMT). This technique 

was carried out in accordance to the American Association of Textile Chemists and Colorists 

(AATCC) test method 195-2009. Five fabric samples with the size of 80 mm×80 mm were 

obtained from each sock fabric for testing. The fabric was in contact with the sensor rings 

which allows the liquid content and the liquid moisture transfer behaviour between the fabric 

surfaces to be assessed. The top surface on the MMT equipment is normally the next-to-skin 
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side (the surface in contact with the skin) and bottom surface of the fabric is the away-from-

skin side (the surface closest to the neighbouring environment), as shown in Figure A10.1. 

 

Figure A10.1: The moisture management tester (MMT). 

 

 

Sock characteristics relevant to thermophysiological comfort  

The experimental data showed that the anti-blister fabric has a lower thermal resistance and 

water vapour resistance than the cotton-rich fabric by 27% and 41% respectively. The paired 

t-test analysis of the data also shows that, in terms of their thermal resistance and water 

vapour resistance, both anti-blister and cotton-rich sock fabrics behaved significantly 

differently (p < 0.005). The thickness of the cotton-rich sock fabric contributes to higher 

value of thermal and water vapour resistance. Since the cotton-rich fabric is made from plush 

jersey, it increases the air volume contained within the thick knitted structure of the sock. 

This increases the passage of heat through the fabric from the skin to the environment leading 

to an increase in its thermal resistance. Fabric thickness has been reported by many 

researchers as one of the important fabric parameters influencing the thermal and water 

vapour resistance of a fabric [79, 116].  
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 Figure A10.2 presents the results for the main indices of the moisture management 

properties of the sock fabrics. The moisture management capability of the fabric was mainly 

assessed on three indices which include the average moisture absorption rate at the top and 

bottom surfaces, accumulative one-way transport index (AOTI) and overall moisture 

management capacity (OMMC). 

 

 

Figure A10.2: The average moisture absorption rate at the top (next-to-skin side) and 

bottom (away-from-skin side) surfaces for both anti-blister and cotton-rich socks. 

[Grading scale: (1): poor; (2): fair; (3): good; (4): very good; and (5): excellent] 

 

 

 It can be seen from Figure A10.2 that the absorption rate of the anti-blister fabric is 

almost twice as high as the cotton-rich fabric for both the top and bottom surfaces. According 

to Özdil et al. [117], a thinner and finer fabric will have a higher absorption rate compared 

to a thicker fabric due to its comprising finer yarn. The absorption rate on the bottom surface 

is slightly higher than the top surface for both fabrics which indicates that the liquid (sweat) 

diffuses efficiently from the next-to-skin side to the away-from-skin side and spreads on this 

side. In return, the top surface which would be in contact with the wearer’s skin will remain 

drier than the bottom surface which is ideal for the wearer, ensuring comfort throughout. 
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Figure A10.3: The accumulative one-way transport index (AOTI) for both anti-blister and 

cotton-rich socks. 

[Grading scale: (1): poor; (2): fair; (3): good; (4): very good; and (5): excellent] 

 

  Figure A10.3 shows the comparison of the AOTI values measured from both sock 

fabrics, where fabric with lower AOTI value has low capability to quickly transport the liquid 

sweat quicker from next-to-skin side to the external environment. It can be seen that the 

AOTI of anti-blister fabric is slightly higher than that of the cotton-rich fabric, despite no 

significant difference found (p > 0.05). When the values of AOTI were converted into a 

grading scale, it showed that the anti-blister fabric has “good” one-way transport ability (3/5) 

whilst the cotton-rich fabric has “fairly-good” (2.5/5) one-way transport ability.  
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Figure A10.4: The overall moisture management capacity (OMMC) for both anti-blister 

and cotton-rich socks. 

[Grading scale: (1): poor; (2): fair; (3): good; (4): very good; and (5): excellent] 

 

  

  Figure A10.4 illustrates the OMMC values of both sock fabrics. According to the 

grading scale, both fabrics are in the “fair” category in terms of their moisture management 

capacity. The moisture management properties of fabrics are critical in order for active 

sportswear to keep the skin dry and provide maximum comfort to the wearer. Factors such 

as fibre, yarn, fabric construction, and fabrics finishes are important to improve the moisture 

management performance of the fabrics, hence ensuring comfort to the wearer. 

  

Relating the thermophysiological properties of running sock fabrics to 

their frictional performance 

The dynamic coefficient of friction (DCOF) values were computed by dividing the predicted 

sliding friction force data by the 100N normal force for all participants. The mean DCOF 

values for all six fabric-moisture combinations were already presented in Table 3.8 (please 

refer to Section 3.7 in Chapter 3), along with the respective standard deviations and the level 

of significance obtained from an ANOVA test. All other comparisons were statistically 

significant (p < 0.05) apart from when comparing the “low moisture” cotton-rich fabric with 
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“wet” anti-blister fabric. The anti-blister fabric showed a slightly higher sliding friction than 

the cotton-rich fabric in dry condition. However, in the presence of moisture, the anti-blister 

fabric produced lower sliding friction than the cotton-rich fabric. This could be attributed to 

the fact that the anti-blister fabric has slightly better wicking properties compared with the 

cotton-rich fabric. Moreover, the anti-blister fabric demonstrated better water vapour 

transmission and due to its low resistance to water vapour and good one-way transport ability, 

allowing the water vapour from the added moisture to be transported through the air spaces 

and interstices between the sock fabric. 

 

Moisture in the sock is dictated by the tribological properties [105] and hydrophobicity of 

the fabrics. During vigorous physical activity, the amount of perspiration produced could 

exceed the absorption capacity of any sock fabrics. In order for the dry in-shoe environment 

to be maintained, efficient wicking process is certainly required to transport the moisture 

away from the skin surface into the external environment. Based on the findings of this study, 

the anti-blister sock would more likely to remain dry within a shoe environment, hence 

producing lower sliding friction than the cotton-rich sock. This would not only reduce the 

probability of blistering but also help to ensure comfort to the wearer. 

 

 

 

 


