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Abstract
This thesis investigates self-assembled monolayers (SAMs) of molecules of various
complexity with a special focus on fabrication of surfaces that could exhibit an
intrinsic active function, more precisely a capability to switch between two stable
states upon external stimuli (spin crossover phenomenon) or to expose functional
groups upon irradiation with light, i.e. photocleavage of a SAM.

SAM formation of a complex novel molecule, lipoic acid ester of α-hydroxy-1-acetyl-
pyrene (reagent 1), was studied in chapter 3. It contains i) a dithiolane headgroup
capable of binding to gold surfaces via two sulfur atoms, and ii) a chromophore
that makes it light sensitive (photocleavable) and leads to a deprotection of lipoic
acid molecule upon exposure to soft UV (365 nm). Reagent 1 successfully forms
SAM1, but it interacts with the gold surface weaker than conventional thiol based
SAMs, due to cross-linking of dithiolane headgroups. Nevertheless, SAM1 is a
relatively stable monolayer and exerts a higher barrier against diffusion of copper
ions towards gold surface in electrochemical deposition than SAMs of similarly com-
plex molecules but with thiol headgroups or shorter alkanethiol SAMs terminated
with carboxylic acid groups (COOH). SAM1 undergoes photolysis upon soft UV
(365 nm) irradiation, but only in the acidic catalyst 100 mM HCl in isopropanol
(IPA). Unexpectedly, this also leads to a removal of the resulting lipoic acid mono-
layer, thus ultimately leading to SAM1 with lower surface coverage, and changes
packing and ordering. SAMs of alkanethiols terminated with COOH and of varying
chain length were investigated in order to better understand the cause for the in-
stability of lipoic acid monolayer. Loss of molecules from the surfaces was found to
be a common issue in the COOH SAMs, however, the severity of the loss is strongly
related to the initial SAM thickness. Thin SAMs like DTBA SAM yield huge
(∼50 %) loss, while thick SAMs like MUA SAM show no detectable loss.

On the other hand, photo-patterned SAM1 produces especially high selectivity of
Cu deposition between UV treated and non-treated regions, which is associated
to this loss of surface coverage, packing and ordering. Surprisingly, reagent 1 also
interacts with glass and silicon oxide surfaces to form hydrophobic films that exhibit
green fluorescence under soft UV light. Such surfaces are photo-sensitive and can
be photo-patterned in the air or in the acidic catalyst to produce non-fluorescent
hydrophilic regions due to photo-bleaching of pyrene groups and photo-deprotection
of lipoic acid molecules, respectively. The films and patterns stored under ambient
conditions are detectable for at least 35 days. Formation of those films is associated
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with an interaction of pyrene group with adsorbates on the surfaces, while film
growth is attributed to the cross-linking of dithiolane headgroups.

SAM fabrication of metal complexes was explored in chapter 4. Two novel ligands L1

and L2, and their corresponding Fe(II) complexes C1 and C2, which can exhibit spin
crossover (SCO) behaviour in bulk, were investigated. Both ligands successfully form
SAMs. However, SAM L1 does not coordinate Fe(II), while its preformed complex
C1 is not stable on Au surface and forms SAM L1 instead of SAM C1. In contrast,
SAM L2 coordinates Fe(II) at nearly 100 % yield, which leads to almost the same
chemical composition as in a SAM of its preformed Fe(II) complex C2 (SAM C2).
Although complex C2 with MeCN as the sixth exogenous ligand (SEL) exhibits low
spin (LS) state in bulk at room temperature, only high spin (HS) state was detected
in SAM C2. Complex C2 exhibits a unique property of changing its spins state in
certain solvents, because a solvent molecule can easily displace the sixth exogenous
ligand (SEL). However, rinsing SAM C2 with such solvents did not lead to a spin
transition, and LS state was never observed for the SAM. This implies that the
strength of the ligand field may need to be increased or SEL with a higher affinity
coordinated to complex C2, in order to change the spin state by rinsing or to detect
SCO in SAM C2.

A long-chain alkanethiololigoethyleneglycol (LCAT-OEG) type molecule terminated
with the azide group (reagent 2) was investigated for the facilitation of click chem-
istry on gold surfaces (chapter 5). Reagent 2 forms a good quality SAM (SAM2),
and the concentration of reagent 2 in the SAM can be reduced in a controlled and
predictable manner by the addition of LCAT-OEG-1 or LCAT-OEG-4 to the
growth solution. QCMD measurements indicate that the whole surface of SAM2
successfully undergoes click reaction with cycloalkyne in aqueous solution without
any catalyst.

Finally, simple alkanethiol and aromatic type SAMs were investigated for use in
surface-enhanced Raman spectroscopy (SERS) with nanoparticle-on-mirror config-
uration and for studying plasmonic systems, due to their ability to yield optimum
precision over the control of thickness and dielectric function (chapter 5).
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Chapter 1

Introduction

Self-assembly is a process when disordered individual building blocks form an or-

ganised structure(s) due to local interactions between themselves and without any

external stimuli.[1–3] This phenomena is prevalent in nature, and spans the scale

from molecules to galaxies and various types of interactions.[3]

Molecular self-assembly has drawn a lot of attention due to its direct relevance to bio-

logical systems, supramolecular chemistry and ‘bottom-up’ fabrication in nanotech-

nology.[4] In particular, 2D molecular assemblies called self-assembled monolayers

(SAMs) have been adopted in many disciplines, primarily due to their spontaneous

self-assembly on various substrates into highly packed, ordered and oriented mono-

layers, which allow easy manipulation of surface functionality via flexible modifica-

tion of chemical groups in molecular chain and its terminals.[1,2] SAMs can control

a number of surface properties, for example, wetting and adhesion,[5] fluorescence,[6]

electron transfer,[7] bio-compatibility and cell adhession,[8] chemical resistance, mo-

lecular recognition,[9] and nano fabrication.[10] SAMs have been applied in many

different fields, such as biosensors,[11] cell biology,[8] oriented nucleation of crystal,

1
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alignment of liquid crystals, organic molecular electronics, component surface modi-

fication for nanoelectromechanical systems (NEMS), microelectromechanical sys-

tems (MEMS), and functionalisation of nanostrucutres, to name a few.[4]

The aim of this thesis is to explore SAMs of various complexity with a special focus

on fabrication of surfaces that could exhibit an intrinsic active function. The com-

plexity ranges from: (i) simple alkanethiol and aromatic type SAMs to give optimal

precision for optical spectroscopy (e.g. surface-enhanced Raman spectroscopy) and

to study plasmonic systems; (ii) azide terminated SAMs to facilitate click chem-

istry on gold surfaces; (iii) a more complex SAM of larger molecules containing

chromophore that turns it into a light sensitive (more specifically photocleavable)

system capable of exposing functional groups; and finally to (iv) bi-stable metal

complexes (spin crossover compounds) that exhibit reversible switching between

two stable states with distinctively different properties upon external stimuli, such

as light irradiation, magnetic field, change in temperature or pressure. For a better

understanding of this study, the outline of this thesis is presented at the end of this

chapter, while the rest of the chapter provides a general background including SAM

formation, SAM patterning and photolysis, electrochemical deposition of metals on

SAMs, spin crossover (SCO) phenomena, and click chemistry.

1.1 Self-assembled monolayers (SAMs)

Self-assembled monolayers (SAMs) are molecular assemblies that form spontan-

eously upon exposure to surfactants (solution or gas phase). Initial work in this

field can be traced back to the adsorption of monomolecular layer of alkyl amine on

a clean platinum surface reported by Zisman in 1946;[12] however, at the time the po-

tential of such self-assemblies was not widely recognised. A few decades later, chem-

ical functionalisation of hydroxylated surfaces (usually silicon) using chlorosilane
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derivatives gained some attention,[13–15] which eventually led to the developement of

silane SAM on hydroxylated glass by Sagiv in 1980.[16]

However, silane SAMs have been reported to have reproducibility issues due to

sensitivity of silanes to moisture.[17,18] In contrast, Nuzzo and Allara developed and

reported SAMs formed on gold surface from dilute solutions of dialkyl disulfides

in 1983,[19] which yielded high reproducibility and high degree of controlling chem-

ical and physical properties of the surface.[19,20] Since then various SAMs have been

reported on various substrates, however, alkanethiolates on gold are the most com-

monly adopted and studied SAMs to date.

Figure 1.1: Structure of a surfactant molecule that forms a SAM. Tilt angle
from the surface normal is indicated by α, and twist angle by β. Taken from

reference[21].

In general, surfactants that form SAMs can be considered to consist of three parts:

head group, (alkyl) chain and functional (or end) group, as shown in figure 1.1. Each

part plays a unique role in self-assembly. The first part, head group, usually possesses

a strong affinity towards a specific surface and often forms a chemical bond. There-

fore, it is largely responsible for initiating and driving the self-assembly. It has been

speculated[1,4] and later experimentally shown that both alkanethiols and disulfides

form Au-S (40-50 kcal/mol)[1,4,22] bonds.[23–26] Alkanethiols proceed via cleavage of

S-H (∼87 kcal/mol)[1] bond and formation of H2 (∼104 kcal/mol)[1] by-product,[23–25]

which is energetically more favourable by 10-30 kcal/mol (or 5-15 kcal/mol per al-

kanethiolate). On the other hand, disulfides undergo only cleavage of S-S (∼62 kcal/mol)[4]
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bond,[23,26–28] which is energetically more favourable by 18-38 kcal/mol per disulfide

molecule (or 9-24 kcal/mol per alkanethiolate). Although Au-S bond is weaker than

both S-C (∼62 kcal/mol)[29] and C-C (∼83 kcal/mol)[29] bonds, it is still a relatively

strong bond. The second part, chain, is usually responsible for enhancing packing,

order and orientation of molecules within a SAM due to intermolecular interac-

tions. The stability of a SAM increases by 1-2 kcal/mol per each methylene (-CH2-)

group[4,22] in the chain due to van der Waals’ interaction. Because this energy scales

with chain length, long chain (consisting of 10-12 or more carbons[1,30]) alkanethiol

SAMs yield a higher order, closer packing and a smaller area per molecule on gold

surfaces. Dominance of chain-chain interaction over molecule-substrate interaction

is most evident in dialkyl monosulfide SAMs.[31,32] Incorporation of specific chemical

groups into alkyl chain can exert other – more important – interactions, e.g. amide

groups increase chain-chain interaction by 6 kcal/mol[22] due to hydrogen bonding.

On the other hand, chain-chain interaction can be suppressed due to the presence

of bulky and non-interacting chemical groups. The third and final part, functional

(or end) group, predominantly determines the physical and chemical properties of

the surface. Various end groups have been reported, but the most commonly used

are hydroxyl (-OH),[20] carboxylic acid (-COOH), amine (-NH2),[20] perfluorocarbon

(-CF3) and aromatic hydrocarbon.

SAMs with sulfur head groups can be formed on a number of metals like silver,[20]

copper,[20] platinum, mercury, iron, to name a few. However, most of the studies

or applications have been reported on gold, which does not have a stable native

oxide, and thus experiments can be carried out under standard laboratory condi-

tions. Typically SAMs are formed on thin polycrystalline gold films prepared by

evaporation under high vacuum (HV). Lowest surface energy for gold is Au(111)

reconstruction, which is predominately formed in the polycrystalline films.[2]

SAM adsorption time typically varies from minutes to several hours, depending on
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Figure 1.2: A schematic representation of hexagonal (
√

3 ×
√

3)R30° structure
formed by alkanethiolates on gold surfaces in a highly ordered and densely packed

SAM. Taken from reference[33].

molecular structure, solution concentration (usually in the range of µM to mM)

and solvent.[34] Long chain (10-12 or more carbons) alkanethiols can produce highly

ordered and crystalline monolayers with sulfur atoms binding to threefold hollow

sites on Au(111) lattice and arranging themselves in a hexagonal (
√

3 ×
√

3)R30°

structure,[1] as shown in figure 1.2. The spacing between sulfur atoms bound to gold

is ∼5 Å[35] (area of 21.6 Å2[2,36] per molecule), while the van der Waals diameter of

an alkyl chain is ∼4.6 Å[35] (cross-section area of 18.4 Å2.[2]) Therefore, chains are

expected to tilt away from the surface normal by about 30°, in order to lower the

energy, due to the van der Waals interaction between chains. Fourier Transform

Infrared (FTIR) studies have shown average molecular tilt angle of 20-35°.[30,35]

Later, however, studies using helium diffraction revealed a c(4 × 2) superstructure

on top of (
√

3×
√

3)R30° lattice, and in the last decade the standard model has been

progressively more challenged,[37–39] especially for low- and medium-coverage SAMs.

Based on theoretical as well as experimental work, a number of bonding motifs

between thiolates and gold has been proposed, such as disulfide bonding, a complex
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of gold adatom and a thiolate, a polymeric chain formed of bridging thiolates in

between gold adatoms, as shown in figure 1.3.

Figure 1.3: A schematic of various proposed bonding motifs between thiolates
and gold proposed. From the standard model to the right: disulfide bonding, a
complex with gold adatom and a thiolate, a polymeric chain formed of bridging

thiolates in between gold adatoms. Taken from reference[37].

This section on SAMs was designed to serve as a brief introduction, for more details

the reader is referred to the review papers,[1,4,34,35,37–41] which are just a few of many

that have been published on various aspects of SAMs.

1.2 Photo-patterning of SAMs

Although SAMs offer a versatile and inexpensive method to tune surface chemical

and physical properties by chemical substitution in surfactant molecules, this could

be taken a step further by introducing patterning of SAMs. Such additional sur-

face modification further broadens the potential for applicability.[4,34,42–50] Patterned

SAMs can be used for spatially selective immobilisation of biological species or nan-

oparticles, directing nanoparticle assembly on the surface, to control the alignment

of liquid crystals, selective biomineralisation, growth of metal nanostructures, to

name a few.[4,42–50]

A variety of approaches have been developed for patterning SAMs: (i) soft litho-

graphy, for example micro-contact printing (µCP), microtransfer molding (µTM),
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micromolding in capillaries (MIMIC), and microfluidics assisted patterning;[43,44,46,47,51–55]

(ii) scanning probe lithography, for example nanoshaving, nanografting, and dip-pen

nanolithography;[42,44,56,57] and (iii) photolithography, for example electron-beam

lithography (EBL), scanning near-field photolithography (SNP), X-ray irradiation,

and ultraviolet/visible light irradiation.[7,41,44,45,47,58]

Here, the use of photolithography is proposed due to its wide uptake within the

semiconductor community. More specifically, ultraviolet light (UV) is used, because

(i) it does not require sophisticated instrumentation, and (ii) is widely accessible

in scientific research environments. Irradiation of alkanethiolate SAMs with 254 nm

or shorter wavelength UV in the presence of air usually causes photo-oxidation of

thiolate group into sulfonate group.[4,41] Because sulfonate group interacts weakly

with the gold surface, the oxidised molecules are easily rinsed away or displaced

by other thiols.[4,41] This provides the basis for the photo-patterning. On the other

hand, irradiation of a SAM with UV (254 nm) under inert atmosphere does not

induce any damage.[59] Furthermore, it has been shown that when alkyne groups are

incorporated, molecules within a SAM undergo cross-linking; this strengthens their

interaction with the gold surface.[59] Areas that have not been exposed to UV, and

are thus not cross-linked, can be desorbed by electrochemical reductive stripping

or other methods.[59] Both methods lead to non-selective chemical patterning, i.e.

they do not expose any new surface chemical functionality upon irradiation with

UV.[4,41]

On the other hand, soft UV (i.e. 365 nm) is significantly weaker and does not

affect thiolate bond under most conditions. Therefore, it can be used to induce

specific functional group transformations and to fabricate well-defined patterns on

both gold and silica substrates.[60–64] Soft UV can be used to activate reversible pho-

tochemical switching in a SAM,[60,65] deprotect a specific functional chemical group

(e.g. carboxylic acid group,[61] amine group,[62] aniline group[66]) in a SAM, or to
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fabricate robust templates for reversible metallisation,[61] to name a few. Another

advantage of the photocleavable SAM (as oppose to a SAM that can only be ox-

idised) is the ability to pattern it with a resolution higher than the wavelength of

the light (if configuration of the molecule allows two-photon absorption).[61] The

ability to photo-deprotect a SAM with soft UV is also advantageous for drug de-

livery. Light with ∼800 nm wavelength can penetrate relatively deep into biological

tissue, where up-converting nanoparticles can be used to convert 960 nm light to

∼365 nm light, and thus activate photo-deprotection reaction in the SAM bound to

the nanoparticle.[63,64]

Although self-assembled monolayers (SAMs) can accommodate many preparative

photochemical reactions, ortho-nitrobenzyl derivatives have been studied the most[62,66]

due to high yields in their photochemical reactions in a solution. However, reactions

in a SAM environment do not necessarily proceed in the same way and do not neces-

sarily give the same yield. SAMs containing ortho-nitrobenzyl derivatives, without a

catalyst, give 50-80 % yield.[67,68] Consequently, alternative systems, such as photo-

reduction of azides,[69] photo-reaction of azides with amines,[70] CH bond insertion

reactions of benzophenone derivatives,[71,72] and the photocleavage of N-alkyl pi-

colinium (NAP) esters[73] have been investigated.

A study on SAMs of the novel molecule reagent 1 (see figure 3.1), which is based

on photo-deprotection of α-esters with 1-acetylpyrene,[74] is presented in chapter 3.

Pyrene group is expected to produce a better photo-reaction yield.
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1.3 Spin crossover (SCO) phenomena

Spin crossover (SCO) is an ability to switch between two stable spin states in cer-

tain metal complexes due to external stimuli, such as change in temperature or

pressure, light irradiation or pulsing magnetic field, interaction with solvents or

adjacent molecules.[75] Such a phase transition occurs in certain transition metal

complexes due to the rearrangement of 3d electrons, and leads to a low spin (LS)

state with a minimum number of unpaired electrons or a high spin (HS) state with

a maximum number of unpaired electrons in the d orbital. This rearrangement in

electronic structure yields a change in conductivity, magnetic susceptibility, colour

and other properties. Thus, such intrinsic bistability is promising for developing

molecular switches, data storage devices, optical displays.[76,77] Since the first SCO

compound was reported by Cambi in 1931,[78] the field has expanded enormously

and various compounds have been reported with abrupt spin transition, tunable

transition temperature, hysteresis loop, and multiple transitions.[76,79]

1.3.1 Metal complexes

Metal complexes are chemical compounds that contains a metal ion or atom in a

centre bonded to surrounding molecules or ions. Consequently, many metal con-

taining compounds are metal complexes.[80] Molecules or ions bound to metal centre

in a complex are called ligands. They bind (coordinate) to a metal centre through

a dative covalent (coordination) bond, which is weaker than an ionic or covalent

bond, but stronger than a hydrogen or van der Waals interaction. The basis of

modern theory of coordination chemistry was developed by Alfred Werner, who was

awarded the first Nobel prize award in inorganic chemistry in 1913 for proposing the

octahedral configuration of transition metal complexes. All metals form complexes,

but their properties depend strongly on the electronic structure. Complexes can be
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neutral, cationic or anionic, which is determined by the charges of the metal ion and

its ligands. A number of sites on the central ion that ligands can bind to is called

coordination number. It depends on the size, charge and electronic configuration of

the metal centre and the ligands. Coordination number determines the coordination

geometry (see figure 1.4 for linear, tetrahedral and octahedral forms), and can vary

from 2 to more than 12, but most common values are 2, 4 and 6. Metal compl-

exation was initially of great interest to inorganic chemists. It has, however, over

the years also gained the attention of organic and physical chemists, biochemists

and molecular biologists. It also has been applied in photography, extraction and

plating of silver and gold, softening of hard water and dissolution of scale.

(a) Linear (2 ligands)

(b) Tetrahedral (4 ligands)

(c) Octahedral (6 ligands)

Figure 1.4: The most common coordination geometries in complexes of trans-
ition metals. Metal centre and ligands are represented by blue and purple spheres,

respectively. Taken from reference[81].

1.3.2 Ligand and Crystal field theories

Metal complexes possess unique and interesting properties. Some of these properties,

however, had not been explained until crystal field theory (CFT) and ligand field

theory (LFT) were developed. CFT is a relatively simple ionic model that considers

interactions between the metal centre and ligands to be purely electrostatic. Except
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for the determination of how many ligands can physically fit around a metal centre,

ligands are treated as point charges. Therefore CFT describes a metal complex

as a distribution of negative point charges attracted to a positively charged metal

ion. However, electrons in the outer layers of a metal cation and electrons in the

ligand repel each other due to electrostatic repulsion of the like charges. As ligands

approach a metal ion, electrons of the ligands are closer to certain d or f orbitals of

the metal ion. This raises the required energy for electrons to stay in those particular

orbitals (of the metal ion), and therefore leads to a splitting of their degeneracy.

The most common configuration is octahedral, where six ligands form an octahedron

around metal cation (figure 1.4c). Such an arrangement in Cartesian coordinates

correspond to ligands positioned along x, y and z axes. For transition metals (d-block

elements), this leads to an overlap of d-orbitals (see figure 1.5b) with the ligands,

more specifically d
x

2−y
2 with electrons of four ligands positioned on the x and y axes,

and d
z

2 with electrons of two ligands positioned on the z axis, while other orbitals

point between the ligands. Consequently, d
z

2 and d
x

2−y
2 orbitals (collectively called

eg
a) are higher in energy than dxy, dxz and dyz (collectively called t2g

a), as shown

in figure 1.5a. Difference between the two energy levels is known as crystal field

splitting (∆o) and its value depends on the strength of interaction between metal

ion and ligands. Ligands that bind strongly lead to high overlap with eg orbitals and

produce high ∆o values that are greater than electron pairing energy. Consequently

it is more energetically favourable to completely fill t2g orbitals by pairing electrons

before starting to fill eg, which leads to low spin (LS) due to the lowest number

of unpaired electrons. On the other hand, weak ligands produce low values of ∆o

that are smaller than electron pairing energy and electrons partially fill eg and t2g

orbitals, before electrons start pair-up and fully fill each orbital, which leads to high

spin (HS) due to the largest possible number of unpaired electrons. This explains

some magnetic and structure properties of metal complexes. Also some of the colour
a This label is based on orbital symmetry, and does not indicate energy level on its own.
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properties can be explained by electron excitation from t2g to eg orbitals following

absorption of photons with the same energy as ∆o.

Figure 1.5: Diagrams of a) CFT description of d-orbital degeneracy splitting
in octahedral complexes of transition metals caused by a spherical distribution of

six charges, b) geometries of 3d orbitals. Taken from reference[81].

LFT is more sophisticated, but also more complex than CFT. It can be considered

as an extension to CFT, because it describes complexes in the same way, but treats

bonding as dative covalent (coordination) based on molecular orbital theory (MO),

where each ligand donates two electrons (lone pair) per bond. Therefore, LFT can

explain bonding of neutral ligands, and give a more accurate description of ligands’

strength, magnetic and colour properties. In LFT description of an octahedral com-

plex of a transition metal, ligands also approach along the x, y and z axes. The

overlap of two ligand lone pairs with d
z

2 and d
x

2−y
2 orbitals is treated as a formation
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of molecular orbitals (σ-bonding), i.e. formation of bonding and anti-bonding orbit-

als. The other four lone pairs form bonding (and anti-bonding) molecular orbitals

with 4s and 4p metal orbitals, while the dxy, dxz and dyz orbitals remain non-bonding

as shown in figure 1.6.

Figure 1.6: Diagrams of LFT description of d-orbital degeneracy splitting in
octahedral complexes of transition metals that originates from formation of mo-

lecular orbitals. Taken from a public domain source.

LFT also explains more accurately than CFT the variation in coordination strength

among ligands by the presence of additional π-bonding. It can occur between dxy,

dxz and dyz (otherwise non-bonding) and any of ligand’s π and π*, or p orbitals that

are not involved in σ-bonding already. They can be categorised into two groups:

metal-to-ligand π-bonding (π backbonding) and ligand-to-metal π-bonding. The

former leads to the donation of electrons by the metal centre to the ligands (π-

acceptor, such as CN-, CO), which significantly strengthens the metal-ligand bond
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and increases ∆o, while the latter leads to the donation of electrons by the ligands

(π-donors, such as I-) to the metal centre and reduces ∆o.

A partial list of ligands and metal ions in order of increasing ∆o

O2
2- < I- < Br- < S2- < SCN- < Cl- < NO3

- < N3
- < F- < OH- < C2O4

2- ≈ H2O <

NCS- < MeCN < pyridine < NH3 < en (ethylenediamine) < bipy (2,2’-bipyridine)

< phen (1,10-phenanthroline) < NO2
- < PPh3 < CN- ≈ CO

and Mn2+ < Ni2+ < Co2+ < Fe2+ < V2+ < Fe3+ < Cr3+ < V3+ < Co3+ < Mn4+ <

Mo3+ < Rh3+ < Ru3+ < Pd4+ < Ir3+ < Pt4+.

The order of ligands is independent of the identity of the metal centre of the complex,

and likewise the order of metal ions is largely independent of identity of the ligand.

However, the order of increasing ligand field strength does not necessarily correlate

to the order of increasing binding affinities of the ligands. Depending on a charge

of metal complex, weak field anionic ligands (e.g. Cl- or N3
-) can exhibit much

higher affinity than strong field neutral ligands (e.g. MeCN or pyridine),[82] which is

attributed to a greater stabilisation energy gained from binding anionic ligand than

from complex transition from LS to HS state.

In metal complexes with other coordination geometries, ligands interact with differ-

ent metal centre orbitals, which can lead to various grouping and arrangement of

the orbitals with more than two distinct energy levels.
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1.4 Click chemistry

Click chemistry[83] is a quick, reliable, efficient, biocompatibile, highly selective

and versatile method to join two molecular units together.[83–87] Therefore, it is

widely used in areas such as material science,[88–90] biosciences,[88,89,91–96] and drug

developement.[88,89,92,96,97] Furthermore, click chemistry and requirements for the

chemical reactions performed on a surface share the same characteristics.[98] Con-

sequently, a number of the application of click reactions in SAM environment have

been reported, for example, incorporation of functional groups,[98–103] control of cell

adhesion due to the ease of precise conjugation of peptides at a desired density

via click chemistry on otherwise bioinert SAMs,[99] investigation of biomimetic elec-

trocatalysis under rate limited electron transfer,[104] application in micro printing

(µCP) due to fast reaction rates in click chemistry,[105,106] and use in production of

SAMs with chemical gradients and patterns.[91,105]
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1.5 Thesis outline

This thesis investigates fabrication of SAMs to yield surfaces with an intrinsic act-

ive function. The current chapter provides an introduction to this thesis, the aim

and objectives as well as relevant background knowledge. The rest of the thesis is

organised into the following chapters:

Chapter 2 describes characterisation techniques and details preparation methods for

the fabrication, photolysis, and photo-patterning of SAMs on gold surfaces.

Chapter 3 characterises 1-acetylpyrene protected carboxylic acid SAMs, describes

effects of its photolysis under soft ultraviolet light (365 nm) irradiation in various

catalysts and the resulting monolayers. Probable pathways of the photolysis are

discussed with a special focus on instability of the resulting lipoic acid monolayer

under the photolysis conditions. Also, photo-patterning of the SAM and its use as

a template for selective metallisation with copper (ECD) on the photolysed regions

are demonstrated. Finally, a brief study on formation of fluorescent hydrophobic

layers (not SAMs) on glass and silicon oxide surfaces and their photo-patterning,

that produces hydrophilic non-fluorescent regions, is presented.

Chapter 4 discusses SAM fabrication of two novel ligands and their corresponding

Fe(II) complexes that exhibit SCO behaviour in bulk. It demonstrates that SAM of

one of the ligands does not coordinate Fe(II), and its preformed Fe(II) complex is

not stable on gold surface and forms a monolayer of just the ligand. On the other

hand, SAM of the other ligand successfully coordinates Fe(II), and does so at nearly

100 % yield; furthermore, its preformed Fe(II) complex also successfully forms a

SAM. Finally, possible causes that might be preventing (i) SCO behaviour and (ii)

change of spin state or ligand exchange in the SAM upon rinsing with appropriate

solvent are discussed, and a number of solutions are proposed.
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Chapter 5 consists of three parts. The first presents a study on UV and acid impact

on stability of lipoic acid SAM. It also shows that the loss of molecules under soft

UV irradiation in acidic conditions is a general phenomenon among conventional

thiol SAMs terminated with COOH groups. It is also shown that severity of the loss

is high in thin SAMs, while long chain SAMs are not affected. The possibility to use

patterned short chain COOH-terminated SAM is also investigated. The second part

discusses a characterisation of azide-terminated SAMs, formation of mixed SAMs

with alkanethiololigoethyleneglycols of different chain length, and demonstrates suc-

cessful click reaction on the SAM surface under aqueous conditions without the need

of any catalyst. Finally, the third part demonstrates that relatively simple alkyl and

aryl type SAMs can give optimal precision for the studies of surface-enhanced Ra-

man spectroscopy (SERS) in nanoparticle-on-mirror configuration.

Chapter 6 contains conclusions and suggestions for further studies in each area.
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Chapter 2

Experimental methods

2.1 X-ray Photoelectron Spectroscopy (XPS)

X-ray Photoelectron Spectroscopy (XPS), also known as Electron Spectroscopy for

Chemical Analysis (ESCA),[1] is a powerful surface sensitive technique providing

qualitative and quantitative data. This method is extremely useful to study SAMs

structure, because it probes the outer ∼10 nm of a surface and provides not only

elemental composition and surface coverage, but also chemical state of elements.[1]

XPS relies on photoelectric effect to identify specific atoms on a surface. If an

incident photon has an energy (frequency) equal to or higher than the binding

(ionisation) energy of an electron in an atom, an electron (conventionally referred

to as a photoelectron) can be ejected and its kinetic energy can be described by

Einstein’s equation:

KE = hν − BE (2.1)

where KE is the kinetic energy of the ejected electron, hν is the energy of a photon

and BE is the binding energy of the electron in an atom, which depends on an

element, orbital and chemical state of the atom. When irradiated with a beam

25
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of light, the number of generated photoelectrons is proportional to the number

of incident photons that have sufficient energy (frequency). However, if energy

(frequency) of incident photons is below the binding energy of the electrons, no

electrons are ejected, regardless of beam intensity (number of photons) or irradiation

time. Weakly bound outer shell (valence) electrons can be ejected with a UV light,

however, probing inner shell (core) electrons requires photons of much higher energy,

such as X-rays.

During XPS measurements, a sample is usually irradiated with X-rays of a known

energy (typically 1.2 - 1.5 keV). A set of lenses is used to capture and direct emitted

photoelectrons towards the analyser and detector, where the number of electrons

is recorded as a function of their kinetic energy, in order to produce photoelectron

spectra. Although soft X-rays penetrate deep into a sample, ejected (photo)electrons

(∼1 keV) rapidly lose their kinetic energy through inelastic scattering.[1] An average

distance that an electron travels between two inelastic collision is called ‘inelastic

mean free path’ (IMFP), often noted with a symbol λ. A number of factors influence

the IMFP length, but it mostly depends on the energy of photoelectron and type

of material that it travels through. Photoelectrons that do not experience inelastic

collisions form peaks in XPS spectra, while the rest contribute to the background. If

I0 is the number of electrons generated at depth x below the sample surface/vacuum

interface and θ is the take off angle, the number of electrons reaching the surface is

given by:

I = I0e
−x

λ sin θ , (2.2)

which closely relates to Beer-Lambert law in optics.[1] The integrated area under a

curve defined by the equation above shows that 95% of all detected photoelectrons

come from within a depth of 3λ sin θ, which is defined as XPS sampling depth and
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typically is of the order of 3 - 10nm. Therefore, such strong electron interaction with

matter allows XPS technique to probe the outermost layers of a sample surface.

Each peak in the XPS spectra relates to the energy state that electrons were ejected

from, which can be described using three principle quantum numbers: (i) energy

level n = 1, 2, .. of the electron; (ii) the electron’s orbital angular momentum, l,

which can have any positive integer value between 0 and n − 1; and (iii) spin of

the electron, s, which has either a value of −1/2 (spin down) or +1/2 (spin up).[1]

A particular peak is labelled in the form of ‘nlj’, where j = |l + s| refers to total

angular momentum of the electron based on j-j coupling nomenclature.[1] Typically

only electrons from subshells l = 0, 1, 2 and 3 appear in XPS spectra and it is

conventional to refer to them in ‘nlj’ as s, p, d and f, respectively. For example,

the most intense peaks of oxygen and carbon atoms are labelled as O1s1/2 and

C1s1/2, because they are produced by electrons ejected from ‘s’ subshell (l = 0) in

the first energy level (n = 1). It is common to drop the subscript, when referring

to subshell ‘s’, which, regardless of energy level, has zero angular momentum and

leads to the same total angular momentum j = |0 ± 1/2| = 1/2 and energy state for

both spin-up and spin-down electrons. Consequently, shortened labels, for example

O 1s or C 1s, are more common. In all other subshells, the electron has non-zero

orbital angular momentum, which interacts with the intrinsic spin of the unpaired

electron (left behind after its partner was photoejected from the orbital) and leads

to spin-orbit splitting with two distinct energy levels. As a result, doublet appears

instead of a single peak. For example, in XPS spectra of gold, the strongest feature

is a doublet arising from photoelectrons in ‘f’ subshell (l = 3) in the fourth energy

level (n = 4). Due to spin-orbit coupling, the total angular momentum is equal to

j = |3 − 1/2| = 5/2 for spin-down electron and j = |3 + 1/2| = 7/2 for spin-up

electron, which leads to two different energy states corresponding to Au 4f5/2 and

Au 4f7/2 peaks in the XPS spectra. Each state has different (2j + 1) degeneracy,

which in turn determines the ratio of the peak areas in a doublet.
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XPS data presented in this thesis were collected using two instruments. Vast ma-

jority of samples were analysed using ThermoVG ESCA-Lab 250 system with a

monochromated Al Kα (1486.7 eV) X-ray source (15 kV 150 W), with a beam spot

diameter of 500 µm, and with activated magnetic lens ‘Large Area XL’. Pass en-

ergy was set to 150 eV and 20 eV to acquire survey and high resolution spectra,

respectively. However, some of the XPS spectra presented in chapters 3 and 5 were

acquired with a Thermo Scientific K-Alpha XPS system at the National ERSRC

XPS Users’ Service (NEXUS) at Newcastle University. Samples were irradiated

with a monochromated Al Kα (1486.7 eV) X-ray source (12 kV 36 W), with a beam

spot diameter of 400 µm, and with activated standard lens. Pass energy was set to

200 eV and 40 eV to acquire survey and high resolution spectra, respectively.

All of the spectra were obtained with an electron take-off angle of 90°. High res-

olution spectra were fitted using CasaXPS (version 2.3.16) peak fitting algorithms.

All spectra have been referenced to alkyl/aryl C 1s peak at 284.5 eV, unless stated

otherwise.

2.2 Contact Angle measurements (CA)

Surface wettability is a useful technique for studying surface disorder and composi-

tion. It is particularly useful for monitoring SAM quality, change in the hydrophobi-

city of SAM surface and mixing of multiple components in a SAM.[2–4]

By placing a small droplet of liquid on a flat surface, contact angle can be obtained,

which provides information about surface free energy. Surface energy can be ex-

pressed as linear combination of polar (polar interaction and hydrogen bonding)

and dispersive (van der Waals) parts, which can be studied individually by probing

the chosen surface with polar (e.g. water) or non-polar (e.g. hexadecane) liquid.
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Work of adhesion due to all interactions between solid and liquid mediums surroun-

ded by vapour is given by:

WSLV = γSV + γLV − γSL, (2.3)

where γ is the interfacial tension (surface tension or surface free energy per unit

area) between liquid-vapour γLV , solid-vapour γSV and solid-liquid γSL interfaces

measured in units of N m-1 or J m-2. Consequently, total surface energy can be

written as:

WT otal = γLV (Ac + Af ) − WSLV Af , (2.4)

where Ac is curved and Af is flat areas of a droplet. If the contact line of intersection

of the three interfaces is moved infinitesimally, then the equation can be rewritten

as:

0 = γLV (dAc + dAf ) − WSLV dAf , (2.5)

which gives Young’s equation after cosθ = dAc

dAf
substitution and combination with

equation 2.3:

γLV cos θ = γSV − γSL, (2.6)

which directly relates contact angle at the edge of a liquid drop and surface tension

between solid, liquid and gas phases. Contact angle can be measured on static, ad-

vancing and receding droplets. In practise, hysteresis exists between advancing and

receding angles, which most often originate from pinning due to surface roughness

and chemical heterogeneity.[5,6] Hysteresis of ∼10° is typical even for highly ordered

SAMs.
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Wetting can be used to study mixed SAMs consisting of components with different

hydrophobicities. Contact angle can be predicted using Cassie equation, which

averages adhesion energies of each component[7]

cos θ =
∑

n

fn cos θn (2.7)

or Israelachvili-Gee equation, which averages molecular polarisation[8]

(1 + cos θ)2 =
∑

n

fn(1 + cos θn)2, (2.8)

where fn refers to the fractional area of the surface that makes contact angle θn.

It has been shown that fitting both equations to experimental data produces small

differences due to the inherent spread of data.[9]

Contact angle measurements were obtained using FTA4000 (First Ten Angstrom,

USA) goniometer. Typically advancing and receding angles were measured to de-

termine SAM characteristics and qualitatively describe surface composition or pres-

ence of possible functional groups.

2.3 Ellipsometry

Ellipsometry is an established technique for determining the thickness and/or re-

fractive index of thin films. It measures the change in polarisation of light upon

specular reflection from (or transmission through) the sample of interest by ac-

quiring ellipsometric angles Ψ and ∆ related to change in amplitudes and phase

respectively. Using various models, Ψ and ∆ can be related to a number of proper-

ties, for example optical constants (complex refractive index or dielectric function)

and thickness of films, interface roughness and mixing. Due to high sensitivity of
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∆ in sub-10nm regime, ellipsometry is ideal for studying SAMs thickness. Meas-

urements can be obtained at a single wavelength and angle of incidence, however,

usually multiple wavelengths and/or angles are used to extract more information

and at the higher precision, especially for complex multilayer samples.

2.3.1 Polarisation states

Polarisation is the direction (axis) that the electric field component of an electro-

magnetic wave is oscillating along. If the direction of the oscillation is constantly

changing, then the polarisation state can be defined by tracing the tip of the electric

field vector over one oscillation cycle. Polarised light can be considered to be a

superposition of two light waves (components) in orthogonal (for example Cartesian

x and y) planes. If both components oscillate in phase, than linearly polarised light

is produced in the x − y plane and ratio of the amplitudes determines the angle

between the x (or y) axis and direction of polarisation (e.g. 45° when both com-

ponents have equal amplitudes). If both components have the same amplitude, but

there is a 90° phase shift in oscillation between the two waves, then circular polarisa-

tion is obtained. In all the other cases, elliptically polarised light is produced. Any

polarisation state can be fully characterised with two parameters Ψ and ∆, which

will be discussed in following sections.

2.3.2 Light interaction with interface: Fresnel coefficients

For studies of light interaction with surfaces and interfaces, it is convenient to con-

sider light as a superposition of the p-component, which lies in the plane of incidence,

and the s-component, which lies in the perpendicular plane. Depending on an ex-

perimental set up and a sample (e.g. angle of incidence, refractive index of medium
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on each side of the interface, roughness of the interfaces etc.), molecules interact dif-

ferently with s- and p- components and usually refract (transmit) and reflect them

with different amplitudes and/or phases. If incident light is linearly polarised, then

reflection from an interface between two transparent media leads to a different linear

polarisation state, while reflection from an interface where at least one medium is

absorbing produces elliptical polarisation. In this case, the strength of ellipticity

depends on angle of incidence and absorption coefficient of the medium.

Complex Fresnel coefficients determine the amplitudes of reflected and transmitted

light. They can be derived by (i) considering a ratio of complex amplitudes of

reflected (or transmitted) and incident light for both s- and p- components, and

then (ii) matching tangential electric E and magnetic H fields across an interface

rp01 = Er
p

Ei
p

= N1 cos θ0 − N0 cos θ1

N1 cos θ0 + N0 cos θ1
= tan(θ0 − θ1)

tan(θ0 + θ1)
(2.9)

rs01 = Er
s

Ei
s

= N0 cos θ0 − N1 cos θ1

N0 cos θ0 + N1 cos θ1
= − sin(θ0 − θ1)

sin(θ0 + θ1)
(2.10)

tp01 = Et
p

Ei
p

= 2N0 cos θ0

N1 cos θ0 + N0 cos θ1
= 2 sin θ1 cos θ0

sin(θ0 + θ1) cos(θ0 − θ1)
(2.11)

ts01 = Et
s

Ei
s

= 2N0 cos θ0

N0 cos θ0 + N1 cos θ1
= 2 sin θ1 cos θ0

sin(θ0 + θ1)
(2.12)

where rp01 refers to the complex Fresnel coefficient for p-polarised light propagating

through medium 0 and reflected by the interface with medium 1; superscripts i, r

and t refer to incident, reflected and transmitted lights, N0 and N1 correspond to the

complex refractive index of medium 0 and 1, θ0 and θ1 denote incident and refracted

angles, respectively. Similarly, rs01 coefficient refers to s-polarised light, while tp01

and ts01 coefficients correspond to transmitted light.
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It is useful to note that if the direction of propagation of refracted wave in medium

1 is reversed, i.e. light propagates through medium 1 before it interacts with the

same interface at angle θ1 (which is equal to the refracted angle in the previous set

up), then Fresnel coefficients r10 and t10 are related to r01 and t01 by

r10 = −r01 (2.13)

t10 = 1 − r2
01

t01
(2.14)

Equations above apply to both p and s polarisations, thus the subscripts are dropped.

2.3.3 Relating Ψ and ∆ to measured complex reflection ratio

ρ

In order to determine the polarisation state, the ellipsometer obtains Ψ and ∆ by

measuring complex reflectance ratio ρ given by

ρ = Rp

Rs

= tan(Ψ)ei∆ (2.15)

where Rp and Rs refer to overall complex-amplitude reflection coefficients (equal to

individual or a combination of complex Fresnel coefficients) for p- and s- compon-

ents, respectively. They also correspond to the ratio of total reflected wave (after

interaction with all interfaces and media present in the sample) and total incident

wave for each component, as shown by the following equations

Rp = Er
p

Ei
p

= |Er
p|eiδ

r
p

|Ei
p|eiδ

i
p

= |Er
p|

|Ei
p|

ei(δr
p−δ

i
p) (2.16)

Rs = Er
s

Ei
s

= |Er
s |eiδ

r
s

|Ei
s|eiδ

i
s

= |Er
s |

|Ei
s|

ei(δr
s−δ

i
s), (2.17)
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where E is the electric field amplitude, δ is the phase offset, i and r superscripts

refer to incident and reflected waves, p and s subscripts correspond to p and s

components, i preceding δ or parenthesis denotes the imaginary unit. By combining

equations 2.15, 2.16 and 2.17, it can be shown that Ψ is related to the ratio of

(normalised to the initial values) reflected amplitudes of p and s components

tan Ψ = |Er
p|/|Ei

p|
|Er

s |/|Ei
s|

(2.18)

and ∆ describes the difference between the phase shifts in each component

∆ = (δr
p − δi

p) − (δr
s − δi

s) (2.19)

Various information, such as optical constants and thickness of each medium, surface

roughness, interfacial mixing etc. can be extracted from Ψ and ∆ using appropriate

models.

2.3.4 Relating Ψ and ∆ to physical properties of two- and

three-layer models

Light interaction with a sample can be modelled in various ways depending on

its complexity. The simplest approach is a two-layer model consisting of semi-

infinite ambient and sample of interest media, as illustrated in figure 2.1. Light

incident onto the interface of the media is reflected and transmitted with amplitudes

defined by complex Fresnel coefficients 2.9-2.10 and 2.11-2.12, respectively. Because

the sample is treated as a semi-infinite medium, refracted light, which probes the

thickness of the medium, is not reflected back towards the interface and consequently

cannot be detected when the ellipsometer is operated in reflection mode. Thus,
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Figure 2.1: Oblique reflection and transmission of light by a two-layer optical
system, where θ0 and θ2 correspond to angles of incidence (reflection) and refrac-
tion, respectively. The substrate is denoted as medium 2, in order to keep the
consistent numbering with figure 2.2. One semi-infinite medium usually represents
ambient and another the sample of interest, which can be just a clean substrate of
a complex sample. Although thickness cannot be obtained of either of the media,
due to very definition of such models, complex refractive index can be determined.
Both transmitted and reflected light consist of only one wave with relative amp-
litudes (r02, t02)Ei defined by Fresnel coefficients. The second medium is denoted
as ‘Medium 2 (Substrate)’ for easier comparison with the three-layer model that

will be discussed later.

thickness of the sample cannot be obtained, due to the very definition of the two-

layer model. However, other properties, for example complex refractive index, can

still be determined. Because total reflected light consists of only one wave, which is

reflected from only one interface, overall complex-amplitude and Fresnel coefficients

are equal (Rp = rp, Rs = rs), thus Ψ and ∆ can be related to the complex refractive

index by combining equations 2.15, 2.9 and 2.10 into the following expression

tan(Ψ)ei∆ = Rp

Rs

= rp01

rs01
= N1 cos θ0 − N0 cos θ1

N1 cos θ0 + N0 cos θ1
· N0 cos θ0 + N1 cos θ1

N0 cos θ0 − N1 cos θ1

= −cos(θ0 + θ1)
cos(θ0 − θ1)

(2.20)

Often samples are more complex and require more sophisticated methods, that can

accurately model them as well as extract more information from the acquired data.
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Figure 2.2: Oblique reflection and transmission of light by a three-layer optical
system. Two semi-infinite media usually represent ambient and substrate, while
medium of finite thickness d1 correspond to the film of interest. Symbols θ0, θ1
and θ2 denote angles of incidence in the ambient, refraction in the film and in
the substrate, respectively. Reflected light consists of multiple waves with various
relative magnitudes (r01, t01r12t10e−i2β, t01r12(r10r12)t10e−i4β, ...)Ei , which are
defined by Fresnel coefficients (equations 2.9-2.12) and film thickness phase β
(equation 2.21). Such a three layer model assumes smooth and parallel interfaces.

This can be achieved by considering a three-layer model, which can easily be ex-

panded for multilayer samples. It consists of a finite thickness medium (e.g. film)

sandwiched between semi-infinite ambient and substrate media. In contrast to the

two-layer model, refracted light wave (t01) into the medium 1 by the first interface

(medium 0 - medium 1) does interact with the second interface (medium 1 - medium

2). Although the part of the wave that is refracted into medium 2 cannot be recor-

ded, another part is reflected back towards the first interface, where fraction of it

is transmitted into medium 0 and can be detected. This detectable wave (t01r12t10)

now has a phase difference of e−i2β relative to the non-refracted wave (r01). Symbol

β corresponds to the phase change in radians as wave propagates once between two

interfaces

β = 2π
d1

λ
N1 sin(θ1) (2.21)

where λ is the wavelength of light (in vacuum), θ1 is the angle of refraction in

medium 1, d1 and N1 refers to the thickness and complex refractive index of the

medium 1, respectively.
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As shown in the figure 2.2, when light refracts into medium 1 (t01), it then reflects

multiple times from each interface, but with subsequently smaller amplitude, because

on each interaction a fraction of it refracts into medium 0 or medium 2. Therefore

total reflected and total transmitted light by the three-layer system correspond to

multiple waves with varying amplitudes. If the complex amplitude of incident light

is set to unity, then reflected and transmitted waves have the same magnitude as

the overall complex-amplitude coefficients

R = r01 + t01r12t10e
−i2β + t01r12(r10r12)t10e

−i4β + t01r12(r10r12t10)2e−i6β + ... (2.22)

T = t01t12e
−iβ + t01(r12r10)t12e

−i3β + t01(r12r10)2t12e
−i5β + ... (2.23)

which are infinite geometric series and can be re-written as

R = r01 + t01r12t10e
−i2β

1 − r10r12e
−i2β (2.24)

T = t01t12e
−iβ

1 − r10r12e
−i2β (2.25)

and simplified further by substitution of equations 2.13-2.14

R = r01 + r12e
−i2β

1 + r01r12e
−i2β (2.26)

T = t01t12e
−i2β

1 + r01r12e
−i2β (2.27)

Subscripts p and s are dropped again, because those expressions are generic and

valid for light in both polarisations.

Substitution of 2.26 into 2.15 gives ρ or Ψ and ∆ as functions of complex Fresnel

coefficients and film thickness phase β

ρ = tan(Ψ)ei∆ = Rp

Rs

= rp01 + rp12e
−i2β

1 + rp01rp12e
−i2β · 1 + rs01rs12e

−i2β

rs01 + rs12e
−i2β (2.28)
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Additionally, the above relationship can be expressed as a function of complex in-

dices, film thickness, angle of incidence and wavelength ρ = f(N0, N1, N2, d1, θ0, λ),

when substituted with equations 2.9, 2.10 and 2.21.

The function defined by the equation 2.28 has two important aspects. Firstly, by

plugging-in complex Fresnel coefficients 2.9-2.10, it can be shown that when d1 = 0

the expression simplifies to a two-layer model defined by equation 2.20. Thus, it

allows one to use a two-layer model as a base for a three-layer system, which is

particularly beneficial when working with ultra thin layers (i.e. thickness is equal

to a fraction of probing wavelength). Various substrate imperfections, which have

a significant contribution in the determination of film thickness, can be taken into

account by performing ellipsometry measurements on a clean substrate and applying

a two-layer model to extract effective optical constants for the use in a three-layer

model.

Secondly, if the thin film (medium 1) is non-absorbing, i.e. refractive index N1

is real, then function ρ, described by the equation 2.28, is periodic w.r.t. the film

thickness. In other words, identical data is obtained, when ellipsometry is performed

under the same conditions on two samples that are indistinguishable, except that

one of them has film thickness d, while the other one has thickness d + mβ
2π

, where m

is a positive integer. If measurements are performed at angle of incidence θ0 = 70°

in air (i.e. N0 = 1) on thin films with refractive index N1 = 1.45 at wavelengths

400 nm < λ < 800 nm, then the minimum periodic thickness is ∼180 nm < β
2π

<

∼360 nm. Nevertheless, performing measurements at multiple wavelengths and/or

angles of incidence increases substantially the magnitude of the period β
2π

. If the

film (medium 1) is absorbing, then periodicity diminishes and ρ values represent a

spiral curve (in polar coordinates) connecting two discrete points corresponding to

a two-layer model, where the first layer is always a semi-infinite ambient (medium
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0), and the second layer is either a semi-infinite substrate (medium 2) ρ02 = rp02
rs02

or

a semi-infinite film (medium 1) ρ01 = rp01
rs01

.

2.3.5 Simplified film thickness calculations using linear ap-

proximation

If thickness of the film in a three-layer model changes by an increment (small fraction

of the wavelength of probing light), reasonably accurate results can be produced by

a linear approximation of equation 2.20 given by

δρ

ρ
= Kδd1 (2.29)

where

K = −i
4π

λ

√
N2

1 − N2
0 sin2(θ0)[

rp12

rp01 + rp12
− rp01rp12

1 + rp01rp12
− rs12

rs01 + rs12
+ rs01rs12

1 + rs01rs12
]

(2.30)

and δd1 is an increment in film thickness. This approach is extremely applicable,

because it works for arbitrary values of d1, including when d1 = 0. Equation 2.29

can also be rearranged for δΨ or δ∆

δΨ = 1
2 sin(2Ψ)Re(δρ

ρ
) (2.31)

δ∆ = Im(δρ

ρ
) (2.32)

Therefore, it can be used with effective optical constants of a substrates measured

with ellipsometry and determined with a two-layer model. On the other hand, it is

necessary to know an approximate complex refractive index of the film.
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2.3.6 Experimental details

A Jobin-Yvon UVISEL phase modulated spectroscopic ellipsometer was used for the

SAMs studies. A polariser, that is placed between the light source and a sample,

produces linearly polarised light. Interaction with a surface produces elliptically

polarised light, which is then modulated at 50kHz frequency, as it passes through a

photoelastic modulator. Before the light is detected, it passes through another po-

lariser (usually called the analyser), which produces linearly polarised light again. A

single wavelength is extracted using the monochromator placed between the analyser

and the detector. Unless stated otherwise, data were obtained at 70° angle of incid-

ence and at wavelengths between 300 - 800 nm in 5 nm steps in both configuration

II and III.

DeltaPsi2 software was used for data acquisition and fitting. SAMs on gold were

treated as three-layer systems, where substrate was modelled using ellipsometry

data obtained from freshly piranha cleaned gold (also referred as a ‘reference’) and

refractive index of the film was assumed to be transparent (non-absorbing) and

modelled with Cauchy’s dispersion

n(λ) = ninf + A

λ2 + B

λ4 (2.33)

k(λ) = 0 (2.34)

which describes real n(λ) and imaginary k(λ) parts of refractive index as functions

of wavelength λ, where A, B and ninf are coefficients determined by fitting. The

latter was constrained tightly around ninf = 1.5, which is commonly observed for

hydrocarbons. Values of thickness were obtained using both tightly constrained

around 70°and fixed at 70°angle of incidence.
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Typically ellipsometry measurements were obtained from three areas on each sample

(including references). At least two samples were used per each type of SAM. Ref-

erence gold samples were always taken from the same evaporation batch and at

least three reference samples were used. References were cleaned for 2-3 minutes in

piranha solution and rinse with copious amounts of milli-Q water immediately prior

to ellipsometer measurements. Additionally C18 (1-Octadecanethiol) SAMs were

prepared and measured as an additional control.

2.4 Fourier Transform Infrared Reflection

Absorption Spectroscopy (FT-IRRAS)

FT-IR is a widely used technique for probing molecular structure of compounds in

gaseous, liquid and solid forms. Due to strong sensitivity and certain selection rules,

it is also a powerful method to study molecular orientation in SAMs.[10,11]

It is based on excitation of vibrational states in intra-molecular bonds by absorp-

tion of infrared light (IR). Unique bond and molecular vibrational energies produce

fingerprints in IR region, which can be used to identify certain molecules, functional

groups, bonds, molecular conformations, intra- and intermolecular interactions. Ab-

sorbed light is usually expressed in wavenumber ν̃, which is related to wavelength

λphoton and frequency νphoton by the following expression, where c is speed of light in

vacuum

ν̃ = 1
λphoton

= νphoton

c
(2.35)

Any molecular vibration can be described by a superposition of fundamental vi-

brations. The number of those vibrations in a molecule depends on its degrees of

freedom and structural symmetry. A molecules that consists of N atoms has 3N
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degrees of freedom, three of which are translational, two or three (for linear or non-

linear molecules, respectively) are rotational and the rest are vibrational. Therefore,

linear molecules have 3N-5, while non-linear molecules have 3N-6 fundamental vi-

brations, which can be categorised into two modes: (i) stretching (high in energy) -

continuous change in distance between atoms at a fixed bond angle; and (ii) bending

(low in energy) - change in bond angle between individual or groups of atoms. The

modes can be specified further, stretching into symmetric and antisymmetric, and

bending into scissoring, rocking, wagging and twisting.

However, not all types of bond vibrations can be detected. A set of so called selection

rules determines, if a particular vibration is IR active (i.e. absorbs IR light). Let’s

consider bonds as quantum harmonic oscillator (QHO) with energy levels given by:

Ev = (v + 1
2)hνvib, (2.36)

where the vibrational quantum number v = 0, 1, 2, . . . , defines the vibrational energy

state and h is Planck’s constant. Frequency νvib of a dipole oscillation (modelled as

a spring that obeys Hooke’s law) is defined as:

νvib = 1
2π

√
k

m
, (2.37)

where k is a force (spring) constant and m is reduced mass of the dipole bond.

Therefore, the energy difference between two vibrational levels is equal to

∆E = ∆vhνvib, (2.38)

where positive integers of ∆v correspond to an excitation of vibrational state due to

photon absorption, and negative integers correspond to a relaxation of vibrational

state by photon emission.



Chapter 2. Experimental methods 43

Quantum harmonic oscillator imposes two rules. The first (often called coarse)

selection rule only allows transitions that lead to a change in dipole moment, and the

greater the change the more easily radiation is absorbed. That is, the probability

of excitation is proportional to the square of the transition dipole moment. For

example, diatomic molecules that are composed of the same chemical element, such

as N=N, have no dipole moment. On the other hand, C02 has a dipole moment,

which changes during the bending or the asymmetric stretching (therefore are IR

active and can be detected), however, the symmetric stretching creates zero dipole

moment and does not change it (and therefore is IR inactive).

The second (also referred to as specific) selection rule only allows transitions between

adjacent energy levels, which leads to ∆v = ±1 and energy difference of ±hνvib for

the allowed transitions. Therefore, frequencies of the absorbed IR light directly

correspond to frequencies of fundamental vibrations (νphoton = νvib) of the bonds

present in a sample. However, this is not a strict rule, because it is very specific to

the harmonicity of oscillations. Molecular bonds posses anharmonic character, due

to asymmetric potential felt by atoms, possibility of bond dissociation, vibrational

and rotational interactions, effects of molecular environment etc. Therefore, a better

representation is given by QHO with added anharmonicity using perturbation the-

ory or Morse oscillator, which is less commonly used in spectroscopy. On one hand,

both anharmonic methods, in agreement to experimental observations, account for

(i) smaller gaps between higher energy levels (i.e. ∆En↔n−1 > ∆En−1↔n−2) and

(ii) overtone transitions (i.e. when |∆v| > 1) and combination bands, but with

small probabilities. On the other hand, both approaches are more complex, while

at low νvib produce energy levels similar to those predicted by QHO. At room tem-

perature most molecules are in ground vibrational state, thus almost exclusively

fundamental (i.e. from ground state v = 0 to first excited state v = 1) transitions

take place. Therefore, anharmonic oscillators determine correct selection rules, while
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QHO provides a quick and easy method to calculate usually accurate enough ener-

gies for fundamental transitions.

IR spectra is acquired by measuring transmittance as a function of IR wavelength

(wavenumber or frequency). The spectra can be built-up a piece at a time by

measuring transmittance over a set of narrow ranges of wavelengths using a mono-

chromator, however, it is a slow process, especially, when high resolution is desired.

Fourier transform infrared spectroscopy (FT-IR) is a technique that simultaneously

collects data over a wide spectral range. It uses Michelson interferometer[12] to peri-

odically create different modulation of multiple wavelengths, which interact with a

sample at the same time. Then, it uses Fourier transform to decode light intensity

at each modulation into intensity at each wavelength.

Typically IR or FT-IR spectroscopy on bulk materials is performed in transmis-

sion. However, such a configuration faces a number of limitation, when it comes to

characterisation of thin films, especially when they are placed on a non-transparent

(to IR) substrates. IR or FT-IR reflection absorption spectroscopy (IRRAS or FT-

IRRAS) allows one to study as thin as single molecular layer films on metal surfaces

and determine molecular orientation due to angle and surface selection rules. Light

can only be absorbed, if dipole transition has a component parallel to the axis of

electric field oscillation in the electromagnetic wave. Typically, this has no effect in

bulk samples, because molecules tend to have varying, usually random, orientation

and inevitably, for each unique vibration there is always a fraction of molecules that

are aligned appropriately with the electric field component of the electromagnetic

wave. On the other hand, molecules have a particular orientation with respect to

surface in ordered thin films, such as SAMs (e.g. highly packed alkanethiol SAMs

on gold have a tilt angle of ∼30° from the surface normal). Therefore, changing light

polarisation allows for the probing of bond vibrations of chosen angles. A molecule

with dipole moments adsorbed onto a surface induces the image of opposite charges
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in the substrate. Consequently, the charge image reinforces dipole moments that

are perpendicular to the surface, but cancels out those that are parallel. Thus, only

those vibrations stay IR active that have a component of dipole transition in the

former orientation, and the larger the component (or the smaller the angle between

dipole transition and surface normal) the higher the enhancement. Comparison of

IR absorption intensities can reveal the angle of vibrations or bonds.[10,11] For SAMs

on metal surfaces, it is convenient to choose p-polarised light, because it consists

almost entirely of component perpendicular to the surface when incident at grazing

angles.

FT-IR and FT-IRRAS spectra were acquired using a Bruker IFS 66v/S spectro-

meter operated with liquid nitrogen cooled MCT detector, and evacuated optics

and sample chambers. Unless stated otherwise, 1000 scans at 2 cm-1 resolution

were recorded for each spectrum. Bulk materials were studied in transmission using

KBr pellets that contained uniformly dispersed 0.1-1.0% (w/w) of the correspond-

ing compound, and reference spectra were obtained from pure KBr pellets. Pellets

were formed by compressing 100-200 mg of the powder between two polished stain-

less steel pellets (13 mm in diameter) under 8-10 tons for 3-5 minutes. SAMs were

probed in reflection configuration (FT-IRRAS) using p-polarised light incident on

the samples at 80° angle from the surface normal; reference spectra were obtained

from piranha cleaned gold surface.

2.5 Sample preparation

2.5.1 Substrate cleaning

Microscope glass slides were cleaned by ultrasonication in 10% Decon90 solution

in Milli-Q for 15 min, rinsed 10 times with Milli-Q, ultrasonicated in isopropyl
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alcohol for 15 min, dried under nitrogen stream, ultrasonicated in dichloromethane

(DCM) for 15 min and dried under stream of nitrogen again. Immediately before

evaporation of gold, the slides were cleaned in piranha solution (70:30 of H2SO4 :

H2O2, by volume) for 10 min, rinsed with Milli-Q 10 times and dried with nitrogen

stream. The same procedure was performed for pieces of silicon wafer, but cleaned

in piranha for 2 min, in order to minimise surface roughening.

2.5.2 Gold deposition

Piranha cleaned microscope glass slides or pieces of silicon wafer were loaded into

an Edwards Auto 306 thermal evaporator. Adhesion layer of 5 nm of chromium and

then 150nm of gold were evaporated at 0.1-0.2 nm/s rate at a base pressure of 10-6

mbar.

2.5.3 SAM formation

Immediately before using, gold coated substrates were cleaned in piranha solution

for 2 minutes, then rinsed with Milli-Q 10 times and dried under nitrogen stream.

Unless stated otherwise, gold coated substrates were then immersed into 0.5-1.0 mM

solution of corresponding reagent in DCM overnight at room temperature. Finally,

samples were taken out and rinsed with DCM, dried with nitrogen, rinsed with

Milli-Q and dried with a stream of nitrogen again. Aluminium foil was used to wrap

glassware containing light sensitive solutions.
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2.5.4 UV irradiation

Samples were irradiated with soft UV (365 nm) light using either (i) Blak-Ray

B100AP lamp with nominal power of 4.0-4.2 mW/cm2 at the sample or (ii) fluor-

escence microscope with x4 objective producing ∼35 W/cm2. In both cases, UV

filters were used to only pass a narrow range of wavelengths centred around 365

nm. The Blak-Ray lamp allowed for the illumination of large areas (of the order

of cm2), while the microscope offered ∼10 times short irradiation time over a beam

spot of 6 mm in diameter. The output power was regularly checked and exposure

time altered, in order to reproduce the consistent input of energy per area.
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Chapter 3

Characterisation of

Photocleavage of Acetylpyrene

SAM

Some of the data presented in this chapter on the photo-cleavage and photo-patterning

of Lipoic Acid Ester of α-Hydroxy-1-acylpyrene SAMs with soft UV are included in

the publication (in preparation):

L. Pukenas, P. Prompinit, B. Nishitha, D. J. Tate, N. D. Pradeep Singh, C. Wälti,

S. D. Evans and R. J. Bushby. Soft UV Photo-patterning and Metallization of Self-

Assembled Monolayers of the Lipoic Acid Ester of α-Hydroxy-1-acylpyrene: The

Generality of Acid Catalysed Removal of Thiol-on-Gold SAMs using Soft UV Light.

(in preparation)

This chapter investigates the formation, photocleavage, photo-patterning and po-

tential application of a novel self-assembled monolayer (SAM) of lipoic acid ester

of α-hydroxy-1-acetylpyrene (reagent 1). Reagent 1 contains 1-acetylpyrene as a

photo-protecting group, which can be removed under soft UV (365 nm) irradiation

in solution,[1] thus exposure of its SAM to UV light should lead to a monolayer

49
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terminated with carboxylic acid group. The main objectives of this study were as

follows:

• Characterise a novel SAM of reagent 1 (figure 3.1).

• Characterise photolysis of SAM1 (figure 3.2a).

• Investigate catalytic effects of solvents, their aqueous mixtures and presence

of protons on the photo-deprotection in SAM1.

• Demonstrate application of photo-patterned SAM1 for selective metallisation

by electrochemical deposition (ECD) of copper on UV treated regions.

The study presented in this chapter has revealed that UV (365 nm) treatment of

SAM1 does not produce a monolayer terminated with carboxylic acid group (figure

3.2a), but leads to a less dense SAM1 (figure 3.2b). Although it could not be

shown directly in this study, the unexpected outcome of the UV treatment has

been attributed to the successful photo-deprotection of a fraction of SAM1 and the

removal of the resulting lipoic acid molecules due to their instability under the

photolysis conditions (Scheme B, figure 3.12).

An unusual effect of reagent 1 film (not SAM) formation on glass (figure 3.19)

and silicon oxide (figure 3.22) surfaces was observed. Reagent 1 does not interact

chemically with the surfaces, nevertheless, relatively strong adsorption and fluor-

escence of the films have drawn attention and a brief photo-patterning study was

performed to investigate:

• Pattern formation of non-fluorescent hydrophilic regions.

• Stability of the patterns under ambient conditions over a period of days.

• Stability of the patterns under typical cleaning procedures.
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(a) Reagent 1 (b) Lipoic acid (ALA)

(c) SAM1 (d) ALA SAM

Figure 3.1: Molecular structures of a) reagent 1 and product after its photolysis
b) lipoic acid (ALA), and schematics of their corresponding SAMs c) SAM1

and d) ALA SAM.

(a) Expected outcome

(b) Observed outcome

Figure 3.2: Schematics of the a) expected and b) observed outcomes of SAM1
photolysis .

3.1 Introduction

As discussed in the ‘Introduction’ chapter, self-assembled monolayers (SAMs) can

accommodate many preparative photochemical reactions, however, most of photo-

chemistry work has been carried out on ortho-nitrobenzyl derivatives,[2,3] due to their



Chapter 3. Characterisation of Photocleavage of Acetylpyrene SAM 52

high yields in photo-chemical reactions, in dilute solutions. Nevertheless, photo-

reactions in a SAM environment do not necessarily have the same yields, and, for

SAMs containing ortho-nitrobenzyl derivatives, drop in yield to 50-80 % has been

observed, unless catalysed.[4,5] This poor yield inspired investigation of alternative

systems, such as photo-reduction of azides,[6] photo-reaction of azides with amines,[7]

CH bond insertion reactions of benzophenone derivatives,[8,9] and the photocleavage

of N-alkyl picolinium (NAP) esters.[10] Reagent 1a (figure 3.1) is based on photo-

deprotection of α-esters with 1-acetylpyrene,[1] where photo-reaction takes place by

invoking heterolysis of the α-carbon-to-oxygen bond.[1,11] This design was chosen

for reagent 1a in order to produce a better selectivity of metallisation than that

reported for photo-patterned SAM containing ortho-nitrobenzyl group.[12] Better se-

lectivity might be anticipated if the pyrene group acts as a stronger barrier against

diffusion of metal (copper) ions towards the gold surface, and lower packing of mo-

lecules in the resulting SAM upon removal of bulkier pyrene groups with soft UV.

3.2 Characterisation and study of photo-reaction

in SAM1

This section discusses characterisation of fresh SAM1 and lipoic acid (ALA)

SAM formed from dilute (1 mM) dichloromethane (DCM) solutions over night at

room temperature. Also this section presents a study of photolysis in SAM1, which

successfully occurs upon irradiation with soft UV under the acidic catalyst (100 mM

HCl in IPA). Fresh and treated samples were characterised with ellipsometry, wet-

ting, Fourier Transform Infrared (FTIR) and X-ray Photoelectron Spectroscopy

(XPS) measurements.
a Synthesised by Prof. R. J. Bushby (School of Chemistry, University of Leeds, UK) based on

the procedure described in the reference[1].
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3.2.1 Ellipsometry and Wetting measurements

Wettability data and thickness obtained from ellipsometry measurements of SAM1

before and after exposure to soft UV (365 nm, 4 mW cm−2) under various condi-

tions are shown in table 3.1. Ellipsometric thicknesses of fresh SAM1 (16 ± 1) Å

and ALA SAM (9 ± 2) Å are in a good agreement with the expected values of

15.8 Åb and 7.9 Å,b respectively. The advancing water contact angle of (88 ± 2)°

on fresh SAM1 is comparable to the reported value for pyrene-terminated silane

SAMs (85 ± 1)°,[13] while fresh ALA SAM is hydrophilic in character with advan-

cing and receding contact angles (30 ± 2)° and (7 ± 2)°, which are typical for other

COOH-terminated SAMs discussed in this thesis. The cause for the higher advan-

cing contact angles for COOH SAMs presented in this thesis than reported in the

literature for such acids is attributed to slightly different conditions of SAMs form-

ation, namely SAMs were formed from a solution without addition of any acid and

using pure DCM rather than ethanol (EtOH) as a solvent, in order to keep exper-

imental parameters consistent with those used for SAM1 formation. It has been

reported that quality of COOH-terminated SAMs highly depends on preparation

conditions,[14–20] however, slightly disordered COOH-terminated SAMs were useful

in providing more accurate control samples for SAM1, which would be expected

to produce slightly disordered lipoic acid monolayer due to removal of the bulky

pyrene group.

Upon exposure to soft UV (365 nm, 4 mW cm−2) for 1.5 h in the presence of the acidic

catalyst (100 mM HCl in IPA), SAM1 thickness decreases to (4 ± 2) Å. That is

∼4 Å thinner than expected or measured thickness for fresh ALA SAM. Prolonged

exposures of up to 5 h does not yield any further significant change in the SAM

thickness. Immersion of fresh SAM1 into the acidic catalyst in the dark for 1.5 h
b Based on conventional 30° tilt angle from the surface normal and molecule’s chain length

calculated with HyperChem package (semi-empirical AM1).
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Table 3.1: Ellipsometric thickness and contact angles of fresh SAM1, SAM1
treated under various conditions, fresh ALA SAM and C18 SAM.

SAM Ellipsometric thickness (Å) Water contact angles (°)

Measured Expectedb Advancing Receding Hysteresis
C18 SAM 22 ± 2 22 111 ± 1 103 ± 2 8
SAM1 16 ± 1 16 88 ± 2 62 ± 6 26
SAM1+DarkHCl

1.5 h 17 ± 1 16

SAM1+UVHCl
1.5 h 4 ± 2 8 89 ± 2 44 ± 7 45

SAM1+UVHCl
2.5 h 4 ± 1 8 89 ± 1 58 ± 4 31

SAM1+UVHCl
5 h 5 ± 1 8 92 ± 2 61 ± 1 31

SAM1+UVIP A
1.5 h 16 ± 1 8 87 ± 2 51 ± 3 36

SAM1+UVIP A
2.5 h 15 ± 1 8 88 ± 1 48 ± 4 40

SAM1+UVIP A
5 h 15 ± 1 8 89 ± 2 46 ± 3 43

SAM1+UV50 %IP A
1.5 h 16 ± 1 8

SAM1+UV50 %MeOH
1.5 h 16 ± 1 8

SAM1+UV50 %MeCN
1.5 h 14 ± 1 8

ALA SAM 9 ± 2 8 30 ± 2 7 ± 2 23
- UV refers to soft UV (365 nm, 4 mW cm−2).
- HCl (superscript) refers to acid catalyst 100 mM HCl in IPA.
- Ellipsometric thickness was obtained using refractive index of 1.45 in Cauchy’s equation.
- Uncertainties refer to whichever is the larger (i) standard deviation of sample-to-sample
values or (ii) average of standard deviations from each sample (originating from variation in
a single measurement or measurement-to-measurement).

does not affect its thickness. Ellipsometry also shows no change in SAM1 thickness

when exposed to soft UV (365 nm, 4 mW cm−2) in pure isopropanol (IPA) for 1.5 h,

while longer exposures of 2.5 h and 5 h reduce its thickness only by 1 Å, which is

within the experimental error of the fresh SAM1 thickness. Furthermore, despite

reported considerably faster rates of photo-deprotection in a closely related molecule

in aqueous mixtures (50:50) of solvents (i.e. IPA, MeOH or MeCN) rather than

pure solvents,[1] UV treatment (365 nm, 4 mW cm−2, 1.5 h) of SAM1 in the above

mentioned mixtures does not yield any significant change in the thickness.

All treated samples of SAM1 show effectively the same advancing contact angle
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as a fresh SAM1 monolayer. Taking into account the ellipsometry measurements

discussed above, this is not surprising, except for the UV treated SAM1 in the

acidic catalyst, which is expected to have an advancing angle close to that of the

fresh ALA SAM. Although some of the treated SAM1 samples do show a decrease

in the receding contact angle, it is still 6-7 times higher compared to fresh ALA

SAM. The increase in CA hysteresis, could indicate higher surface roughness due

to increased physical or chemical disorder in the SAM, or chemical heterogeneity in

the SAM.
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3.2.2 FT-IRRAS

Effects of UV treatment and role of the catalysts were investigated by studying

chemical information and structure of the monolayers using Fourier Transform In-

frared (FTIR) spectroscopy in reflectance and transmission configurations on fresh

and treated SAMs, as well as their corresponding reagent molecules dispersed in

KBr pellets.

3.2.2.1 Fresh SAM1 and ALA SAM

IR spectra of SAM1 and reagent 1 dispersed in KBr matrix (figure 3.3a and 3.3b

respectively) show very similar characteristics, with some peaks absent in SAM1

due to the surface selection rule. Strong peaks at 1740 cm−1 and 1685 cm−1 in

the spectrum of the KBr pellet correspond to the stretching mode of the C=O

bond in the ester[1,15,16,21] and aryl ketone[1,22] groups, respectively. Equal intensit-
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Figure 3.3: Infrared spectra of a) fresh SAM1, b) reagent 1 dispersed in KBr
matrix, c) fresh ALA SAM, and d) lipoic acid dispersed in KBr matrix.

ies, in the KBr, indicate similar amounts of both groups, which is in agreement
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with molecular structure of reagent 1 shown in figure 3.1a. In SAM1 spec-

trum, these peaks are shifted to slightly higher wavenumbers at 1744 cm−1 and

1695 cm−1 with the latter being ∼20 % weaker in intensity than the former. This

could indicate some loss in the aryl ketone group in fresh SAM1, or more likely

could reflect orientational differences. In both spectra, other peaks are assigned

to C=C stretching (1630–1380 cm−1) and C-C deformations, C-H stretching, C-H

bending (1325–850 cm−1) in aromatic pyrene group.[14,23–25] However, some peaks in

1400–1100 cm−1 region might arise from C-O stretching in ester group.[14–16,25]

(a) Cyclic dimeric form
of hydrogen bonding

(νC=O = ∼1680 cm−1)

(b) Acyclic dimeric form
of hydrogen bonding

(νC=O = ∼1716 cm−1)

(c) Monomeric (no hydrogen bonding)
form (νC=O = ∼1745 cm−1)

Figure 3.4: Schematics showing different interactions between lipoic acid mo-
lecules in ALA SAM induced by molecular arrangement and hydrogen bonding

or its absence.

IR spectra of ALA SAM and lipoic acid molecules dispersed in KBr pellet (fig-

ure 3.3c and 3.3d, respectively) have similar characteristics. Strong C=O peak is

located at ∼1717 cm−1 rather than ∼1740 cm−1 in ALA SAM spectrum, which

implies presence of acyclic[14,18,25] dimers (figure 3.4b), due to hydrogen bonding in

carboxylic acid groups. Nevertheless, shoulder on the left-side could be assigned

to a peak at ∼1735 cm−1 suggesting that fraction of molecules in the SAM have
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carboxylic acid groups in monomeric form (figure 3.4c).[14,15,18,25–27] The main peak

in the spectra of lipoic acid compound in KBr matrix is a convolution of peaks

located at ∼1705 cm−1 and ∼1692 cm−1 indicating that carboxylic acid groups are

predominantly in a form of cyclic[14,18] dimers (figure 3.4a), but a noticeable fraction

of molecules could be in a different state or in a form of acyclic dimers.[14,18,25]

3.2.2.2 Effects of UV treatment on SAM1

After exposure of SAM1 to soft UV (365 nm, 4 mW cm−2, 1.5 h) in the acidic cata-

lyst (100 mM HCl in IPA) most of the peaks disappear (see figure 3.5d), but weak

C=O peaks at 1744 cm−1 and 1695 cm−1 are still detectable. The shape of those

peaks does not change, i.e. their relative intensities suggest similar ratio of ester

and aryl ketone groups as in fresh SAM1. Furthermore, broad peak present in the

range of 1400–1475 cm−1 in both IR spectra of lipoic acid (figure 3.3c and 3.3d)

was not detected in the treated SAM1. The diminishing of peaks corresponding to

vibrations in aromatic rings (pyrene group) could be caused by a loss of molecules

from the surface.

No significant changes appear in IR absorption of SAM1 after it was kept in the

dark in the acidic catalyst (100 mM HCl in IPA) for 1.5 h (figure 3.5c). Also, no

effects are noticeable in IR spectra of SAM1 due to UV irradiation in pure IPA

(figure 3.5b) or aqueous mixtures (50:50) of IPA, MeOH or MeCN solvents (figure

3.6b, 3.6c and 3.6d, respectively).
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Figure 3.5: Infrared spectra of a) fresh SAM1, b) SAM1 after UV irradiation
for 1.5 h in IPA, c) SAM1 kept for 1.5 h in 100 mM HCl in IPA in dark, d) SAM1
after UV irradiation for 1.5 h in 100 mM HCl in IPA, and e) fresh ALA SAM.
Exposure to UV light for 1.5 h is equivalent to 22 J cm−2 (4 mW cm−2, 365 nm).
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Figure 3.6: Infrared spectra of a) fresh SAM1, b) SAM1 after UV irradiation
for 1.5 h in 50 % IPA, c) SAM1 after UV irradiation for 1.5 h in 50 % MeOH, and
d) SAM1 after UV irradiation for 1.5 h in 50 % MeCN. Exposure to UV light for

1.5 h is equivalent to 22 J cm−2 (4 mW cm−2, 365 nm).
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3.2.3 XPS

X-ray Photoelectron Spectroscopy (XPS) measurements were carried out to obtain

additional chemical information of fresh and treated SAMs, and to quantify changes

in chemical composition, especially in UV treated samples under acidic conditions.

Unless stated otherwise, binding energies are referenced to alkyl carbon in C 1s at

284.5 eV and spectra are scaled so that intensity of Au 4f7/2 peak in each set of

measurements would reach the same (arbitrary chosenc) value.

3.2.3.1 Photoreaction in SAM1 in 100 mM HCl in IPA

This section quantitatively discusses the effect of UV irradiation under acidic cata-

lyst based on differences in binding energies, relative ratios of carbon, oxygen, sul-

phur and gold, and their chemical species in fresh SAM1, treated SAM1 (365 nm,

4 mW cm−2, 1.5 h) in 100 mM HCl in IPA, and fresh ALA SAM.

Fitted peaks in the carbon C 1s spectra of fresh SAM1 and ALA SAM (figure

3.7a and 3.7c, respectively) represent carbon species in their corresponding reagent

molecules (see figures 3.1a and 3.1b for the structures). The peak located at 284.5 eV

is commonly attributed to alkyl/aryl (C-C/C=C) carbon,[28–32] the peak at 286.3 eV

is associated with C-S carbon,[31,32] and the peak at 288.6 eV is usually assigned

to carbon in carbonyl groups (C=O).[25,27,31,33–36] The latter shows higher binding

energy (288.9 eV) in fresh ALA SAM, due to slight differences between ester and

carboxylic acid chemical environments. Both fresh and treated SAM1 show an

additional peak at 287.2 eV that is attributed to ether carbon (C-O)[25,32,36,37] in

the ester group. Similar binding energies of alkyl/aryl (C-C/C=C) and C-S carbon

lead to a severe overlap of the peaks, but only the former can be fitted accurately,

due to its much stronger intensity. That in turn reduces accuracy of the position
cThe arbitrary value, in fact, corresponds to initial Au 4f7/2 peak intensity in one of the samples.
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High resolution XPS spectra of C 1s region
Signal with fitted components Overlaid signal
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Figure 3.7: XPS C 1s spectra with fitted components of a) fresh SAM1, b)
SAM1 irradiated with UV for 1.5 h in 100 mM HCl in IPA and c) fresh ALA
SAM. Figure d) shows overlaid spectra (without fitted components) from a), b)

and c) figures in black, red and blue respectively.

and intensity of the C-S component. Fitted peaks in treated SAM1 spectra have

practically identical binding energies as in fresh SAM1 spectra, suggesting presence

of the same chemical species.

The overlaid C 1s spectra (figure 3.7d) of the SAMs show the differences in chem-

ical composition of carbon between fresh SAM1, treated SAM1 and fresh ALA

SAM. Although the carbonyl (C=O), ether (C-O) and alkyl/aryl (C-C/C=C) car-

bon peaks drop in intensity following the UV treatment of SAM1 in the acidic

catalyst, quantitative analysis of integrated peak areas presented in table 3.2 re-

veals that relative to carbonyl carbon (C=O), there is no change in ether carbon

(C-O) and carbon bonded to sulfur (C-S), while 7 % drop in total carbon falls within
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experimental uncertainty. That contrasts with the expected drop of 100 % in ether

carbon and ∼50 % in total carbon for the photo-deprotection with 100 % yield. Fur-

thermore, carbonyl (C=O) carbon peak does not shift to higher binding energy upon

UV exposure. It should also be noted that table 3.2 shows only ∼40 % more car-

bonyl (C=O) carbon than ether (C-O) carbon in fresh SAM1, despite the expected

2:1 ratio, respectively.

Table 3.2: Relative ratios of carbon chemical species (based on peak areas) in
fresh SAM1, treated SAM1 and fresh ALA SAM.

SAM
Carbonyl
carbon
(C=O)

Ether
carbon
(C-O)

Carbon
(C-S)

Total
carbon

SAM1 1.0 0.7 0.9 16.7
SAM1+UVHCl

1.5 h 1.0 0.7 0.9 15.6
ALA SAM 1.0 - 0.5 7.3
UV refers to soft UV (365 nm, 4 mW cm−2).
HCl (superscript) refers to acid catalyst 100 mM HCl in IPA.

XPS spectra of the oxygen (O 1s) region in figures 3.8a-c can be fitted with two

components - ether (C-O) and carbonyl (C=O) oxygen, which again is in agreement

with the molecular structures (figures 3.1a and 3.1b). While the former peak is ob-

served at 533.3 eV[25,32,37,38] for all the SAMs, the latter is found at 531.7 eV[25,32,37,38]

for fresh and treated SAM1, but at 531.9 eV for ALA SAM. The subtle increase

in the binding energy is associated with differences in ester and carboxylic acid

chemical environments.

Table 3.3: Relative ratios of oxygen chemical species (based on peak areas) in
fresh SAM1, treated SAM1 and fresh ALA SAM.

SAM Carbonyl
oxygen (C=O)

Ether oxygen
(C-O)

Total oxygen

SAM1 1.4 1.0 2.5
SAM1+UVHCl

1.5 h 1.6 1.0 2.6
ALA SAM 1.2 1.0 2.2
UV refers to soft UV (365 nm, 4 mW cm−2).
HCl (superscript) refers to acid catalyst 100 mM HCl in IPA.



Chapter 3. Characterisation of Photocleavage of Acetylpyrene SAM 63

High resolution XPS spectra of O 1s region
Signal with fitted components Overlaid signal
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Figure 3.8: XPS O 1s spectra with fitted components of a) fresh SAM1, b)
SAM1 irradiated with UV for (365 nm, 4 mW cm−2, 1.5 h) in 100 mM HCl in
IPA, and c) fresh ALA SAM. Figure d) shows overlaid spectra (without fitted

components) from a), b) and c) figures in black, red and blue respectively.

The overlaid O 1s spectra of the three SAMs (figure 3.8d) indicate that a similar

amount of ether (C-O) oxygen, but higher levels of carbonyl (C=O) oxygen are

present in fresh SAM1 than in fresh ALA SAM, which reflect differences in the

molecular structures (see figure 3.1a and 3.1b). Nevertheless, table 3.3 indicates only

∼40 % more carbonyl (C=O) oxygen than ether (C-O) oxygen in fresh SAM1, des-

pite the expected 2:1 ratio, respectively. In case of photo-deprotection of carboxylic

acid group in SAM1, only the second (C=O) component is expected to decrease,

however, treated SAM1 shows a drop in both peaks and by a similar fraction. Also,

binding energy (BE) of carbonyl (C=O) oxygen does not change. The XPS data

suggest that SAM1 treated with UV in the acid catalyst is less densely packed than

either fresh SAM1 or ALA SAM.
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All of the SAMs show a double peak in S 2p region with a shoulder at higher

binding energy (figures 3.9a-c). The spectra can be fitted with two spin-orbit

doublets, one at S 2p3/2 = (161.8 ± 0.1) eV and S 2p1/2 = (163.0 ± 0.1) eV is assigned

to thiolates (R-S-Au),[21,28,39,40] while the other one at S 2p3/2 = (163.3 ± 0.2) eV

and S 2p1/2 = (164.5 ± 0.2) eV is commonly attributed to unbound thiols/disulf-

ides (R-S-H/R-S-S-R).[21,41–44] Although presence of the strong second doublet (i.e.

component corresponding to unbound thiols/sulfides) is not common in alkanethiol-

based SAMs,[21,28,39,40,44] it is reported in lipoic acid SAMs.[33,45]

Based on integrated peak areas (table 3.4), proportion of the second doublet is

∼46 % in ALA SAM, ∼34 % in SAM1 and ∼24 % in the treated SAM1. This

High resolution XPS spectra of S 2p region
Signal with fitted components Overlaid signal
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Figure 3.9: XPS S 2p spectra with fitted components of a) fresh SAM1, b)
SAM1 irradiated with UV for (365 nm, 4 mW cm−2, 1.5 h) in 100 mM HCl in
IPA and c) fresh ALA SAM. Figure d) shows overlaid spectra (without fitted

components) from a), b) and c) figures in black, red and blue respectively.
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Table 3.4: Relative ratios of sulfur chemical species (based on peak areas) in
fresh SAM1, treated SAM1 and fresh ALA SAM.

SAM Thiolates
(R-S-Au)

Unbound
thiols/disulfides
(R-S-Au/R-S-S-

R)

Total sulfur

SAM1 0.61 0.34 1.00
SAM1+UVHCl

1.5 h 0.72 0.24 1.00
ALA SAM 0.51 0.46 1.00
UV refers to soft UV (365 nm, 4 mW cm−2).
HCl (superscript) refers to acid catalyst 100 mM HCl in IPA.

is attributed to cross-linking of dithiolane groups and discussed in detail in section

3.2.4.

The overlaid S 2p spectra in figure 3.9d reveal higher amounts of sulphur in fresh

ALA SAM than in fresh SAM1, which is expected and originates from a com-

bination of lower signal attenuation (due to lower thickness of ALA SAM) and

suspected higher packing compared to SAM1. Therefore, the signal in S 2p region

(at least the component corresponding to bound sulphur) is also expected to in-

crease in treated SAM1 (in case of photo-deprotection), however, intensity of both

doublets drops, which is a typical sign of loss of material from the gold surface.

Based on C 1s, O 1s, S 2p and Au 4f regions, relative ratios (w.r.t. total sul-

fur) of chemical elements and their species in SAM1 and ALA SAM are in a

reasonable agreement with the calculated ratios from their corresponding molecular

structures (table 3.5). There are distinct differences in relative ratios of carbon and

oxygen species between SAM1 and ALA SAM. Nevertheless, only small fractional

changes in relative ratios are observed after SAM1 is treated with UV light under

the acidic conditions. Furthermore, most ratios change in the opposite direction

than expected, i.e. carbonyl, ether and total carbon, in addition to carbonyl and

total oxygen, increase w.r.t. sulfur, but their amounts should decrease, in case
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Table 3.5: Relative ratios of chemical elements and their species (based on peak
areas) in fresh SAM1, treated SAM1 and fresh ALA SAM.

Carbon Oxygen Gold Sulfur
SAM C=O C-O C-S Total C=O C-O Total
Expected
(SAM1) 2 1 2 26 2 1 3 n/a 2

SAM1 1.8 1.2 1.7 29.9 1.8 1.3 3.2 27 2.0
SAM1+UVHCl

1.5 h 2.1 1.4 2.0 32.3 2.4 1.5 3.9 46 2.0

ALA SAM 1.3 - 0.7 9.3 1.2 1.0 2.1 21 2.0

Expected (ALA
SAM) 1 - 2 8 1 1 2 n/a 2

UV refers to soft UV (365 nm, 4 mW cm−2).
HCl (superscript) refers to acid catalyst 100 mM HCl in IPA.

of photo-deprotection. An increase of the gold peak relative to that of sulfur cor-

responds to a less dense organic film (composed of fewer molecules) rather than

thinner SAM (composed of shorter molecules). Despite the slight increase in the

relative chemical ratios, which for most elements and their species is around 17 %,

the chemical composition is much closer to reagent 1 than lipoic acid molecule.
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3.2.4 Discussion

Contact angle, ellipsometry, FTIR and XPS data indicate that reagent 1 and lipoic

acid successfully form SAMs. However, XPS reveals an unusual feature – a high

amount (30-50 %) of sulfur – that is usually attributed to unbound thiol/disulfide

(R-S-H/R-S-S-R) groups,[21,41–44] in SAM1 and ALA SAM (table 3.4). There is a

number of explanations for this:

(i) a fraction of molecules are bound to gold surfaces via the carboxylic acid (in

ALA SAM) or the pyrene (in SAM1) groups, which results in a fraction of

dithiolane head groups being exposed to SAM-air interface;

(ii) an additional layer is formed on top of the SAMs (due to interactions between

functional groups, i.e. carboxylic acid for ALA SAM and pyrene for SAM1,

or a simple physisorption of molecules on top of the SAMs) that results in

dithiolane head groups of the second layer not exposed to the gold surface;

(iii) intermolecular interactions dominate over the head group-substrate interaction

– as reported in some dialkyl monosulfide SAMs[44] – which lead to trapping

ca. 35-45 % of the molecules in such a way, that prevents their dithiolane head

groups from interacting with the gold surface and forming Au-S bonds;

(iv) most of the molecules are bound to the gold surface via only one of the two

sulfur atoms;

(v) molecules (dithiolane head groups, to be more precise) are cross-linked.

The first explanation is unlikely to be correct, because thiolate bonds (Au-S) are

reported to dominate over gold interaction with both the carboxylic acid group[46–50]

and pyrene group.[51,52] Therefore, this could not lead to such a large fraction of mo-

lecules bound to gold surfaces via their functional group. Furthermore, the second S
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2p doublet has a low intensity in XPS spectra of DTBA SAM, MHA SAM, MOA

SAM and MUA SAM (see section 5.1.3), all of which have the same carboxylic

acid functional group, all of which were formed in the same way as ALA SAM,

and all of which show equivalent characteristics in contact angle and ellipsometry

data (see section 5.1.1).

The second explanation is also unlikely to be correct. In addition to the previous

argument, there are two other reasons: (i) the second S 2p doublet does not de-

crease after rinsing with copious amounts of organic solvents, but drops after UV

treatment, (ii) there is little difference between the obtained (with ellipsometry) and

the expected thickness for ALA SAM and for SAM1 (see table 3.1).

The third explanation is also not likely. Even though the strength of intermolecu-

lar attraction is increased by van der Waals’ interaction of 1-2 kcal/mol per each

methylene (-CH2-) group[53,54] in the alkyl chain, and hydrogen bonding of up to

∼7 kcal/mol[55,56] between carboxylic acid groups in ALA SAM, this is not enough

to overcome Au-S (40-50 kcal/mol)[53,54,57] bond (in contrast to some dialkyl mono-

sulfide SAMs[44]). This is concluded because no evidence of such trapping of mo-

lecules have been observed in similarly thick MOA SAM and significantly thicker

MUA SAM (see section 5.1.3), even though both SAMs should exhibit stronger in-

termolecular interaction than ALA SAM. Although SAM1 is considerably thicker

than ALA SAM, that is mostly due to the addition of pyrene group. If pyrene

functional groups would exert strong enough π-π interactiond in SAM1, then this

would also lead to formation of the double layer, which is not the case as discussed

earlier.

The fourth explanation is possible, but it describes only an intermediate state. Once

the molecule is bound to a gold surface via only one sulfur, the other sulfur atom
d Based on reported studies, the strength of π-π interactions between pyrene groups are most

likely to be in the range of 2-10 kcal/mol, but could be as high as ∼20 kcal/mol[58–62]
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becomes a radical, and either binds to the gold surface to form thiolate group (Au-S),

abstracts a hydrogen atom from the environment to form thiol group (S-H), or forms

a disulfide bond (S-S) with another molecule.

The fifth and final explanation, i.e. a cross-linking of the dithiolane head groups,

is thought to be the most probable case. This is due to the fact that other ex-

planations contradict the acquired data, the fact that numerous reports have been

published that lipoic acid and its derivatives undergo polymerisation and form linear

polydisulfides,[63–74] and the fact that polymerisation has been an issue in the syn-

thesis of reagent 1. The presence of the ring strain in dithiolane head group reduces

the energy of a typical S-S bond (∼62 kcal/mol)[53] by 15-25 kcal/mol.[66,75] This fa-

vours reversible reduction of lipoic acid to dihydrolipoic acid, and ring-opening di-

sulfide exchange polymerisation. Such polymerisation can be induced thermally,[63]

chemically,[64,65] photochemically[66,67] or electrochemically[68] in a solution. Also, di-

thiolane groups incorporated into large molecules were used to fabricate multilayer

films on solid substrates using self-organising surface-initiated polymerisation (SO-

SIP) method.[69–74] Based on the literature, cross-linking of dithiolane groups in

ALA SAM and SAM1 could lead to formation of long polymers anchored to the

gold surfaces (see figure 3.10). However, disulfide bonds in a close vicinity to gold

surface will energetically favour breakage and formation of two Au-S bonds instead.

Furthermore, the second S 2p doublet corresponds to half, or less, of the total sul-

fur in ALA SAM and SAM1 (see table 3.4), which indicates that on average

there is one or more thiolate (Au-S) bonds per molecule and would suggest mainly

formation of dimers on the gold surfaces. Formation of dimers is not surprising,

if lipoic acid molecules are considered to bind to gold surfaces in MOA (as op-

posed to MHA) configuration, because it prevents the second sulfur atom from

binding to the gold surface due to steric hindrance. Consequently, in the vicinity

of another lipoic acid molecule bound to gold surfaces in MOA configuration,

both molecules can form intermolecular disulfide bond. A possible explanation, in
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terms of SAM stability, is the fact that this configuration could increase the dens-

ity of molecules on the surface (i.e. a number of molecules per sulfur bonding

site), which would strengthen intermolecular interactions and compensate the unfa-

vourable formation of S-S (∼62 kcal/mol)[53] bonds instead of twice as many Au-S

(40-50 kcal/mol)[53,54,57] bonds. Nevertheless, cross-linking could also lead to a small

fraction of trimers and maybe even longer oligomers on the surface. Relative reduc-

tion of the second S 2p doublet after the UV treatment in the acidic catalyst could

be explained by a loss of intermediate segments in trimers and longer oligomers due

to breakage of disulfide (S-S) bonds. Also, it could be explained by a weakening of

intermolecular interactions (due to loss of molecules from the gold surface) leading

to an energetically more favourable state, in which a fraction of molecules are bound

to gold surfaces via both sulfur atoms. The same explanation could be applied to

SAM1. Furthermore, growth of the fluorescent reagent 1 films on silicon oxide

and glass surfaces is assigned to the cross-linking of reagent 1 molecules (discussed

in section 3.3.2). Proposal of such a configuration in ALA SAM and SAM1 could

be studied in detail by investigating SAMs of dihydrolipoic acid and lipoic acid

derivatives (for example, molecules with shorter alkyl chains, different functional

groups, or with one sulfur atom per molecule). This is, however, beyond the scope

of this study.

Figure 3.10: An example of polymerised reagent 1 and lipoic acid on gold
surface due to opening of dithiolane rings and formation of disulfide bonds between
neighbouring molecules. However, the most likely configuration is a cross-linking
of only few molecules that leads mostly to dimers (n = 0) and perhaps a small

fraction of trimers (n = 1) or longer oligomers.
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Additionally, XPS spectroscopy of SAM1 samples consistently show lack of carbonyl

(C=O) carbon and oxygen w.r.t. to ether (C-O) carbon and oxygen (this analysis

is independent of normalisation of spectra intensities), as shown in tables 3.2 and

3.3. The discrepancy between relative ratios of species of chemical elements (this

analysis is affected by the choice of reference for normalisation of spectra intensities)

and molecular structure becomes evident, when spectra are normalised to ethyl

oxygen (more appropriate for analysis of molecular structure), rather than gold

(more appropriate for studying change in surface coverage), and suggest presence of

∼ 1.4 instead of 2.0 carbonyl oxygen per molecule (see section A.1 for further details).

On the other hand, IR spectroscopy shows near equal amount of aryl ketone (C=O)

and ester (C=O) bonds in SAM1 and reagent 1 in KBr pellet (figure 3.3), which

agrees with the molecular structure (figure 3.1a) and suggests that discrepancy in

XPS data might be due to damage induced during XPS measurements. One of

the possibilities is a partial reduction of aryl ketone C=O to CHOH in the same

way that aryl nitro is reduced to aryl amine group by the exposure to X-rays.

Cyclic voltammetry measurements indicate that aryl ketone reduces at ∼0.255 V

more negative potential than aryl nitro (1.386 V vs Ag/AgNO3), but still requires

less energy than reduction of aliphatic ketone.

UV treatment of SAM1 (365 nm, 4 mW cm−2) for 1.5 h in the presence of acidic

catalyst (100 mM HCl in IPA) reduces ellipsometric thickness to 4 Å, which is ∼4 Å

thinner than expected or measured thickness for fresh ALA SAM, as shown in

table 3.1. That is not entirely unexpected, bulky pyrene group in reagent 1 pre-

vents high density packing in the SAM, and the resulting photo-deprotected lipoic

acid monolayer inherits this level of density, which is, of course, lower than that of

ALA SAM formed from solution of lipoic acid molecules. Surprisingly though,

contact angle (CA) data (table 3.1) suggest no change to the surface chemistry,

despite the expected decrease of ∼50-80° in receding and advancing angles. That

could be explained by a decrease in surface coverage, but no chemical change in
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the molecules. Prolonged exposure for up to 5 h does not yield further change in

thickness or advancing angle, but an increase in receding angle by ∼15° (table 3.1);

this could be indicative of a severe removal of the monolayer, because the resulting

surface characteristics are common to freshly cleaned gold surfaces covered with ad-

ventitious hydrocarbons due to short exposure to ambient conditions. Decrease in

intensity of FTIR and XPS spectra after the treatment for 1.5 h in the acidic condi-

tions also suggest partial loss of the SAM. The shape and relative intensities of the

peaks, corresponding to C=O bond in ester and ketone environments, in IR spectra

do not change, and no other changes appear in this region that would be indicative

of the ester deprotection (figure 3.5). Although peaks corresponding to vibrations

in aromatic rings (pyrene group) diminishes, that is attributed to (i) a decrease

in intensity due to the decrease in surface coverage and (ii) greater impact of the

surface selection rule following an increase in angle between axes of vibrations and

the surface normal caused by higher disorder in the SAM. After the UV treatment

of SAM1, intensity in all of the XPS spectra drops, but relative ratios of chemical

elements hardly change, and any subtle changes show the opposite trend then ex-

pected for the photo-deprotection of lipoic acid (table 3.5). This confirms that no

significant changes occur in the chemical composition. Nevertheless, intensity of Au

4f spectra increase, which is an exception, but also an indication of loss of molecules

from the surface, in agreement with the indications from the other techniques.

Further investigations revealed that the process described above is a photo-chemical

reaction. Both treatment of SAM1 for up to 5 h with the soft UV light in IPA

without HCl acid, and incubation of SAM1 in the acidic catalyst in the dark for

1.5 h does not affect the characteristics of SAM1. Despite the reported study of

higher photo-deprotection rates in aqueous solvent mixtures,[1] no important changes

were detected due to exposure to UV for 1.5 h under such conditions (table 3.1 and

figure 3.6).
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Table 3.6: Fraction of chemical elements and their species left in SAM1 and
ALA SAM after the soft UV treatment in the acidic catalyst. Analysis is based
on XPS spectra normalised to have equal Au 4f7/2 peak areas before and after the

treatment, therefore, amount of gold stays at 100 %.

Carbon Oxygen Gold Sulfur

SAM C=O C-O C-C
C=C Total C=O C-O Total Total S-S

S-H S-Au Total

SAM1+
UVHCl

1.5 h
66% 68% 60% 62% 74% 67% 71% 100% 40% 67% 57%

ALA
SAM+
UVHCl

1.5 h

63% - 66% 68% 72% 64% 69% 100% 32% 75% 58%

UV refers to soft UV (365 nm, 4 mW cm−2).
HCl (superscript) refers to acid catalyst 100 mM HCl in IPA.

Photolysis of SAM1 can take a number of possible pathways. Exposure to the

soft UV in the acid might lead to (i) breakage of disulfide bonds between cross-

linked reagent 1 molecules and thus removal of cross-linked molecules that are

not bound to gold (Scheme A, figure 3.12), (ii) photo-deprotection followed by

breakage of S-Au bond of the resulting lipoic acid molecules (Scheme B, figure

3.12), or (iii) breakage of S-Au bond of reagent 1 (Scheme C, figure 3.12). The

first pathway is likely to contribute, because a larger fraction the disulfide-like sulfur

than thiolate-like sulfur is lost due to the treatment, however, that is not the only

or main pathway, given that SAM1 still contains a significant amount of unbound

thiols after the treatment (table 3.4). In order to gain a better understanding of

the photolysis mechanism, stability of ALA SAM was investigated under the same

photocleavage conditions. XPS, FTIR, CA and ellipsometry data suggest a limited

stability of ALA SAM (see chapter 5). XPS provides the most quantitative data,

but also the most suitable for cross-comparison. As summarised in table 3.6, ALA

SAM and SAM1 show a surprisingly similar fractional drop of chemical elements

and their species due to the treatment. However, this does not identify the pathway

of the photolysis in either of the SAMs. In order to understand if the instability
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of the ALA SAM arises from its unique head group or its short chain length, the

stability of DTBA SAM, MHA SAM, MOA SAM and MUA SAM under the

same conditions was investigated, because these SAMs have the same carboxylic acid

end group, but a conventional thiol head group and varying chain lengths centred

around the chain length of lipoic acid. Full study on stability of these SAMs and

ALA SAM are presented in chapter 5, however, figure 3.11 summarises their XPS

data. The figure clearly shows that fractional loss of molecules from gold surface

is related the chain length, which strongly suggests that loss of molecules is due to

breakage of S-Au bond in short chain SAMs, while long chain SAMs are practically

unaffected. Short chain SAMs lead to thin film thickness that allows penetration of

the catalyst to the gold-SAM interface, where S-Au bond is likely to be broken in

presence of soft UV. Longer SAMs not only have greater thickness, but also stronger

van der Waals interactions between the chains, which lead to higher packing and

creates additional barrier for the catalyst to penetrate to the gold surface; also strong

van der Waals interactions help to keep SAMs together, even if a small fraction of

S-Au bonds are affected, which could be the case in MOA SAM (see chapter 5).

Because average of fractional loss in ALA SAM fits almost perfectly into the middle

between average fractional loss in MHA SAM and MOA SAM, which represent

the two possible arrangements for lipoic acid molecule to bound to gold through

one sulfur atom, the instability of lipoic acid is highly likely to be be predominantly

caused by its short chain length and not by its unique head group.

It is most likely that photolysis in SAM1 proceed via photo-deprotection of SAM1

to ALA SAM, which is then removed by the breakage of Au-S bond(Scheme B,

figure 3.12), because figure 3.11 shows almost identical fractional loss in SAM1 and

ALA SAM, but also suggests that SAM’s stability depends on its thickness (and

packing), while cyclic voltammetry (presented in section 3.3.1.1) and ellipsometry

(table 3.1) measurements suggest that SAM1 has higher packing and thickness,
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(a) Based on number of carbons (b) Based on initial SAM thickness

Figure 3.11: Fractions of carbonyl (C=O) carbon (yellow circles), total oxygen
(blue triangles pointing up) and total sulfur (green triangles pointing down) left
in SAM1, ALA SAM, DTBA SAM, MHA SAM, MOA SAM, and MUA
SAM after exposure to soft UV (365 nm, 4 mW cm−2, 1.5 h) in the acidic catalyst
(100 mM HCl in IPA) are plotted against a) number of carbons in the chain and
b) initial SAM thickness. ALA is assigned an average chain length of 7 carbons,
while SAM1 is plotted next to ALA for comparative purposes only. Analysis is
based on XPS spectra normalised to have equal Au 4f7/2 peak areas before and
after the treatment, therefore, amount of gold (black squares) stays at 100 %,
which also visually indicates the expected level of chemical elements and their

species for the SAMs that do not exhibit loss of surface coverage.

respectively, than ALA SAM. The fact that photolysis of reagent 1 films does

lead to deprotection of lipoic acid (at least when not in a close proximity to a gold

surface) is supported by the fact that physisorbed films on silicon oxide or glass are

transformed from hydrophobic to hydrophilic upon irradiation with soft UV in air

or in acid, as discussed in section 3.3.2.



Chapter 3. Characterisation of Photocleavage of Acetylpyrene SAM 76

Figure 3.12: Three possible pathways for photolysis to take place in SAM1.
Scheme A - breakage of disulfide (S-S) bonds between the cross-linked mo-
lecules, and therefore removal of cross-linked segments only. Scheme B - photo-
deprotection that yields lipoic acid monolayer, which is not stable under the UV
treatment conditions and consequently is removed from gold surface. Scheme C

- breakage of S-Au bond in SAM1 without the photo-deprotection reaction.
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3.3 Photo-patterning

Following the photo-deprotection study, suitability of SAM1 on gold and reagent

1 films formed on silicon oxide and glass surfaces were investigated for photo-

patterning purposes. All samples were photo-patterned through a chromium mask

under an optical microscope with soft UV (365 nm, 22 J cm−2, 36 mW cm−2, 10 min),

unless stated otherwise. A chromium mask was separated from the sample using

organic spacers with thicknesses varying from a few to tens of microns, in order

to prevent mechanical damage and to accommodate the acidic catalyst (100 mM

HCl in IPA). Some reagent 1 films on silicon oxide and glass were successfully

photo-patterned in air.

3.3.1 Selective copper deposition on photo-patterned SAM1

The following sections present a study of electrochemical deposition (ECD) of copper

on photo-patterned SAM1. High selectivity of metallisation is expected due differ-

ence in order and packing between UV treated and non-treated regions under the

acid. It was advantageous to use specially designed samples that had the evaporated

gold film limited to a circle of 6mm in diameter. This way, the size of the gold film

is similar to that of a focussed light beam produced by an optical microscope. This

allows one to control the fraction of the total area that is exposed to UV and sub-

sequently metalised with copper. Cyclic voltammetry of fresh, uniformly photolysed

and photo-pattered SAM1, as well as fresh ALA SAM, was conducted in 10 mM

CuSO4 in 10 mM H2SO4 electrolyte, in order to identify a range of most suitable

potentials for the copper deposition. Copper films were deposited at a number of

potentials within the determined range using both constant potential and sweeping
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potential methods. Quality of copper films and selectively of depositions were stud-

ied with an optical microscope. Stability and reversibility of copper deposition and

oxidation were also investigated.
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3.3.1.1 Cyclic Voltammetry (CVs)

First of all, cyclic voltammetry on a clean gold electrode (figure 3.13) in 10 mM

CuSO4 in 10 mM H2SO4 electrolyte was performed at 10 mV s−1 scan rate and used

as a reference within the potential range of −0.30 V to 0.40 V. Copper electrodepos-

ition can be achieved by reducing Cu2+ ions at a more negative potential than open

circuit potential (OCP).[76] In this study, OCP was observed at +0.02 V and peak

potential (Ep) for the highest reduction rate was found at −0.07 V for this system.

Figure 3.13 shows hardly any changes over nine consecutive cycles, which indicates

stability of the system and reversibility of copper reduction onto and oxidation from

the gold surface. The same values were repeatedly obtained across multiple samples

of clean gold electrodes, and therefore were used as controls for comparison of dif-

ferent sample batches. For the investigated conditions, under potential deposition

(UPD) of copper was not observed on any of the samples.[76]
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Figure 3.13: Cyclic voltammograms (CVs) of 10 mM CuSO4 in 10 mM H2SO4
solution on a clean gold electrode. Ten cycles were performed at 10 mV s−1 scan
rate. The first cycle is omitted, the black solid line represents the second cycle,
light grey solid lines represent the 3rd-9th cycles, and the black dashed line rep-

resents the tenth cycle.
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Figure 3.14 shows CVs performed under the same conditions, but on electrodes with

fresh SAM1, soft UV (365 nm, 22 J cm−2, 36 mW cm−2, 10 min) treated and pat-

terned SAM1 under acidic conditions (100 mM HCl in IPA), and fresh ALA SAM.

CVs of all of the SAM-modified electrodes show significantly lower Ep potential (i.e.

2-3 times compared to clean gold electrode), which is assigned to the barrier-like

behaviour of the SAMs. On clean gold electrode, Cu2+ ions can reduce directly

onto the gold surface at potentials slightly more negative than OCP and initiate

nucleation. However, when gold electrode is covered with a SAM, copper deposition

most likely takes place either by a charge (electron) transfer from gold surface to

SAM-electrolyte interface, or by penetration of Cu2+ ions towards the gold surface

through defects in the SAM.[76,77] In either case, energy barrier increases, as reflec-

ted by the more negative Ep potentials and the fact that over potential deposition

(OPD) values are significantly more negative than OCP. The order of Ep values is

the inverse to that of ellipsometric thicknesses:

fresh SAM1 (−0.24 V) < ALA SAM (−0.22 V) < UV treated SAM1 (−0.21 V)

fresh SAM1 (16 Å) > ALA SAM (9 Å) > UV treated SAM1 (4 Å)

with an exception of UV patterned SAM1 that shows the lowest Ep of −0.18 V,

but expected to have ellipsometric thickness equal to the average of fresh and fully

treated SAM1. As discussed in section 3.2.4, a decrease in thickness of SAM1

upon exposure to UV light is associated to the decrease in surface coverage rather

than the decrease in chain length of the molecules. The same is expected for the

UV treated regions in patterned SAM1, however, that still does not account for

the lowest Ep value.

Similarly to bare gold, electrode modified with fresh SAM1 shows hardly any change

over nine consecutive cycles (figure 3.14a) indicating stability of the SAM on the

gold surface and reversible copper deposition.
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Figure 3.14: Cyclic voltammograms (CVs) of 10 mM CuSO4 in 10 mM H2SO4
solution on a) fresh SAM1, b) patterned (50 µm x 50 µm stripes) SAM1 with
UV in acid, c) SAM1 treated with UV in acid, d) fresh ALA SAM. Ten cycles
were performed at 10 mV s−1 scan rate on each sample. First cycle is omitted,
black solid line represents the second cycle, light grey solid lines represent 3-9
cycles and black dashed line represents the tenth cycle. Acid refers to 100 mM

HCl in IPA, UV refers to exposure of 22 J cm−2 (36 mW cm−2, 365 nm).
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In contrast, CVs in figure 3.14d reveal considerably lower stability of ALA SAM

on the electrode upon reversible copper deposition. Most notably, the Ep shifts

by 0.02 V to a less negative potential and OPD changes from −0.14 V to −0.07 V.

On one hand, this could originate from distortion of the SAM during cyclic copper

deposition leading to an increase of permanent defects in the monolayer. On the

other hand, ligand replacement in COR and COOR terminated SAMs by Cu2+

ions has been reported,[78,79] which could result in formation of unidentate Cu-O

complex and eventually lead to copper nucleation sites that are not completely

removed during oxidation phase. CVs shown in figures 3.14b and 3.14c indicate

slight instability in both UV patterned and uniformly treated SAM1. This could

be indicative of higher number of defects in the SAMs due to UV induced decrease

in surface coverage, or due to presence of small fraction of deprotected lipoic acid

molecules within the SAMs.

Double peak has been reported in CVs of photo-patterned SAMs,[12,80] where each

peak corresponds to maximum reduction rate of copper on each region. However,

this is not evident in CVs of photo-patterned SAM1 (figure 3.14b). Because total

areas of both UV treated and non-treated regions are equal, and because separation

between Ep potentials (for each region in patterned SAM1) is similar to the separ-

ation in the reported photo-patterned SAM,[12,80] the absence of the double peak is

attributed to suppression of electrodeposition rate on non-treated region due to (i)

radial diffusion of Cu2+ ions in electrolyte near electrode caused by close proximity

of regions with high and low Ep potentials, and (ii) additional gradient towards UV-

treated region due to stronger barrier against penetration of Cu2+ ions exerted by

polycyclic pyrene than CF3 groups. Indeed the latter is evident after the first half of

a CV cycle is performed (i.e. voltage sweep from stage 1 to 5 in figure 3.14b), when

copper is mainly deposited on UV-treated regions, in contrast to the small difference

between the amounts of deposited copper on treated and non-treated regions in the

reported patterned SAM.[80]
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3.3.1.2 Electrochemical deposition of Cu - constant potential

A number of SAM1 samples were patterned and subsequently metallised with cop-

per using electrochemical deposition (ECD) at various potentials around the Ep

value of −0.18 V determined from the cyclic voltammetry studies shown in figure

3.14b and discussed in the previous section. ECD was performed for 20 s at various

constant potentials in the same electrolyte (10 mM CuSO4 in 10 mM H2SO4) that

was used for cyclic voltammetry.

Electrochemical deposition potential
−0.15 V −0.20 V
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Figure 3.15: High magnification optical images of photo-patterned SAM1
(365 nm, 22 J cm−2, 36 mW cm−2, 10 min) after electrochemical deposition of cop-
per for 20 s in 10 mM CuSO4 in 10 mM H2SO4 electrolyte at a constant potential
of a) −0.15 V, b) −0.20 V, c) −0.15 V, and d) −0.20 V. Figure a) and b) corres-
pond to one sample, and figure c) and d) correspond to another sample. Darker
areas correspond to UV-treated regions and higher quantities of reduced copper.

Generally reduction of Cu2+ ions at −0.10 V or less negative potentials does not pro-

duce significant amount of copper across the whole area of interest. On the other
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hand, reduction at −0.25 V or more negative potentials leads to large amounts of

reduced copper, but poor selectivity between UV treated and non-treated regions.

ECD performed in the range of −0.15 V to −0.20 V produces selective copper de-

position on the UV treated samples, however, the level of selectivity varies from

sample to sample. Figures 3.15a and 3.15c present optical images of two samples

prepared in identical way (copper reduced at −0.15 V), but the latter shows much

greater selectivity. Similarly, figures 3.15b and 3.15d show optical images of the

same samples after copper reduction at −0.20 V), but this time the former shows

better selectivity.
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Figure 3.16: Optical images of photo-patterned SAM1 (365 nm, 22 J cm−2,
36 mW cm−2, 10 min) after electrochemical deposition of copper for 20 s in 10 mM
CuSO4 in 10 mM H2SO4 electrolyte. Figures a) and b) show difference between
consecutive (but after oxidation phase in between) copper reductions, while figure
b) also shows variation within macroscopic area of the sample. Likewise, figures
c) and d) show differences within macroscopic areas and between the copper re-
ductions. Darker areas correspond to UV-treated regions and higher quantities of

reduced copper.
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Furthermore, copper reduction is not uniform on macroscopic level and between dif-

ferent electrodepositions on the same samples (see figure 3.16), even though copper

is oxidised between the depositions. This is attributed to effects of sudden initial-

isation of nucleation sites on the sample surface upon sudden application of electric

field across the electrochemical cell. Improved deposition results obtained using

sweeping potential deposition are discussed in the following section.

3.3.1.3 Electrochemical deposition of Cu - sweeping potential

ECD produces better and more consistent results, when performed using sweeping

potential (at 10 mV s−1 scan rate) between 0.00 V and various negative potentials.

First of all, this method yields a uniform copper deposition on macro scale and

between the samples (figure 3.17), which is attributed to a gradual initiation of

nucleation sites and their growth on the surface.

a) b) c)

Figure 3.17: Optical images of photo-patterned SAM1 (365 nm, 22 J cm−2,
36 mW cm−2, 10 min) after electrochemical deposition of copper by sweeping po-
tential (at 10 mV s−1 scan rate) from 0.00 V to −0.30 V for one cycle on a) sample
1, b) sample 2, and sweeping for ten cycles on c) sample 2. Figure b) shows de-
posited copper on relative fresh sample 2 (only three cyclic voltammograms were
recorded beforehand), while optical image shown in figure c) was taken of depos-
ited copper after over 80 cycles of copper reduction at various potentials and seven
oxidations were performed beforehand. Darker areas correspond to UV-treated

regions and higher quantities of reduced copper.

Furthermore, sweeping potential between 0.00 V and −0.30 V for one cycle produces

a more selective copper deposition on the surface (figures 3.17a, 3.17b and 3.18a)

than a reduction at a constant potential of −0.25 V for 20 s. Moreover, even after 10
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such cycles, the pattern was still clearly evident (figure 3.17c and 3.18b), which were

performed after more than 80 reduction cycles and seven oxidations. Nevertheless, a

significant amount of copper was present on non-treated regions. Highest selectivity

of copper deposition is achieved by sweeping potential between 0.00 V and −0.18 V

(which is the determined Ep value for patterned SAM1 from CVs in figure 3.14b).

Figure 3.18c shows optical image of the patterned SAM after 10 such cycles

a) b) c)

Figure 3.18: High magnification optical images of photo-patterned SAM1
(365 nm, 22 J cm−2, 36 mW cm−2, 10 min) after electrochemical deposition of cop-
per by sweeping potential (at 10 mV s−1 scan rate) from 0.00 V to −0.30 V for a)
one cycle, b) ten cycles, and c) sweeping potential from 0.00 V to −0.18 V for ten
cycles. Figure a) shows deposited copper on relative fresh sample 2 (only three
cyclic voltammograms were recorded beforehand), while optical image shown in
figure b) was taken of deposited copper after over 80 cycles of copper reduction at
various potentials and seven oxidations were performed beforehand. Darker areas

correspond to UV-treated regions and higher quantities of reduced copper.
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3.3.2 Fluorescent and hydrophilic/hydrophobic patterns

It has been observed that prolonged SAM1 formation (over 24 h) on evaporated

gold electrodes on microscope slides leads to green fluorescence (upon exposure to

soft UV, i.e. 365 nm) of the glass surface that is not covered with gold, as shown

in the figure 3.19a. Fluorescence itself is not surprising, because pyrene is the func-

tional group in reagent 1, and pyrene’s derivatives are valuable molecular probes

in fluorescence spectroscopy due to high quantum yield and lifetime. However, it

was unexpected to discover that fluorescence does not disappear or distinctly de-

crease upon extensive rinsing and ultrasonication for up to 30 min in pure DCM,

the solvent that is used to prepare reagent 1 solution for SAM formation. It was

also discovered that glassware used for SAM formation also becomes fluorescent and

could not be cleaned with DCM rinse or ultrasonication. A brief study is presented

in the following sections on reagent 1 films on glass and silicon oxide surfaces, and

their photo-patterning to produce patterns of non-fluorescent hydrophilic regions.

3.3.2.1 Reagent 1 film on glass

Green fluorescence only appears on glass substrates, partly covered with evaporated

gold electrode, used to form SAM1 (figure 3.19a), but not on the such substrates

used to form ALA SAM (figure 3.19c). Fluorescence disappears after exposure to

soft UV (365 nm, 22 J cm−2, 36 mW cm−2, 10 min), as shown in the optical image

(figure 3.19b) around the top part of gold electrode, and fluorescence disappears

on both sides of glass substrates, i.e. on the top side in contact to acidic catalyst

(100 mM HCl in IPA) and the back side that is exposed to air. Similarly, photo-

patterning of SAM1 on gold electrodes leads to a pattern of non-fluorescent regions

on glass around the electrode. Figure 3.21a-d compares white and dark field optical

images of two representative samples. Dark field optical images were acquired by

illuminating sample with 365 nm light, but light illuminated and reflected by the
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sample, in addition to background light, was not filtered before capturing with

black and white camera. Thus, patterns on gold electrode in dark field images

(figure 3.21) are attributed to reflections of background and fluorescent light by the

electrode rather than fluorescence of SAM1 on gold surface. Fluorescence, and

therefore patterns of non-fluorescent regions, are observable for at least 35 days of

storage under ambient conditions, as shown in the figures 3.21e-f.

(a) SAM1 (b) SAM1 + UV (c) ALA SAM

Figure 3.19: Photos taken with an ordinary camera of a) glass substrate fluor-
escent in green after formation of SAM1 on gold electrode, b) loss of the fluor-
escence after exposure to UV (365 nm, 22 J cm−2, 36 mW cm−2, 10 min), and c)
non-fluorescent glass substrate after formation of ALA SAM on gold electrode.

The non-fluorescent regions show hydrophilic character, thus rinsing UV treated

samples with water produces a pattern of confined water features on both sides

of glass (figure 3.20). Quality of the patterns improves after rinsing surfaces with

DCM.

a) b) c)

Figure 3.20: Photos taken with an ordinary camera of a) photo-patterning
SAM1 on gold electrode on glass substrate, followed by formation of b)-c) pattern

of confined water features upon rinsing with water.
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Figure 3.21: Optical images acquired on a fluorescence microscope of photo-
patterned SAM1 (365 nm, 22 J cm−2, 36 mW cm−2, 10 min) with deposited cop-
per. Fresh a)-b) sample 1 and c)-d) sample 2, e)-f) sample 3 after 15 days,
and g)-h) sample 4 after 35 days. No filters were used to capture light form the
samples, but images on the left and on the right were acquired when samples were
illuminated with white and UV (365 nm) light, respectively. Darker areas corres-
pond to higher amounts of deposited copper on UV-treated regions in images on

the left, but lack of green fluorescence in images on the right.
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3.3.2.2 Reagent 1 film on silicon oxide

Formation of reagent 1 layers and their photo-patterning were also investigated on

silicon wafer. Reflectivity of silicon in visible region allows to qualitatively study

structure of reagent 1 films and structural changes induced by soft UV photo-

patterning and rinsing with chemicals (e.g. solvents and detergents) on micro scale.

Silicon’s reflectivity also enhances green fluorescence of reagent 1 films (figure 3.19

vs 3.22), but patterns of non-fluorescent (figure 3.22a) and hydrophilic (figure 3.22b

and 3.22c) regions are formed in the same way as on glass substrates. The latter

can also be observed after rinsing with DCM, because that leads to condensation

of water micro-droplets from moisture in the air. Water repeatedly formed better

quality hydrophilic patterns after a rinse with DCM.

a)

b)

c)

Figure 3.22: Photos taken with an ordinary camera of a) photo-patterned re-
agent 1 film on a piece of silicon wafer with UV (365 nm) showing the loss of
green fluorescence, and the formation of hydrophilic pattern of water droplets

upon the rinse with b) water, or c) DCM.

Features observed with optical microscope on a smooth and mirror-like silicon sur-

face can be unambiguously assigned to reagent 1 film, in contrast to transparent

and relatively uneven microscope glass slides that give rise to various back-reflections

and scattered light.
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Figures 3.23a, 3.24a and 3.24e indicate that uniformity of the films is comparable to

that of drop-cast films rather those obtained by self-assembly, spin coating, thermal

evaporation etc. Also, the fact that various features can be observed in optical

microscopy indicate that the films have greater thickness than SAM1 by orders of

magnitude.

Figures 3.23b, 3.24b and 3.24f show optical images captured when photo-patterned

samples were illuminated with soft UV light. Images were acquired with black and

white camera, thus bright and dark regions mainly correspond to green fluorescence

(as shown in figure 3.22a) and its absence, respectively. Despite the evident pat-

terns in the images, there are no sign of them in ordinary optical images (samples

illuminated with white light) presented in figures 3.23a, 3.24a and 3.24e. Further-

more, images in figures 3.23c, 3.23e and 3.23g indicate that structure of the film at

micro scale is not affected with a rinse of water, unless it is rinsed with DCM first;

in which case reagent 1 molecules are washed away from both UV treated and

non-treated regions, because initially stripes have the same intensity of fluorescence

as the surrounding region, but it drops in the the former upon rinsing with DCM.

Further rinse with water enhances the pattern in ordinary images and cause visible

deterioration of the film in UV treated areas (figure 3.23g).

Finally, images in figure 3.24 indicate that reagent 1 films are removed from regions

not exposed to UV, mostly removed from the regions exposed to UV for 10 min and

hardly removed from the regions exposed to UV for 40 min by a rinse with 10 %

Decon90 solution. Additionally, it was observed that formation of the film was most

pronounced on substrates, that were piranha cleaned days after ultrasonication in

10 % Decon90 for 15 min (following by appropriate rinsing and drying and the ultra-

sonication in a solvent, such as DCM), and severely suppressed when the procedure

was performed immediately before the piranha etching. That is indicative that re-

agent 1 is potentially interacting strongly with adventitious species adsorbed onto
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glass and silicon oxide surfaces rather than the substrates themselves; also it suggest

that piranha etching (at least during the first 2-5 min) does not remove those specific

species from the surfaces.
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Figure 3.23: Optical images acquired on a fluorescence microscope of re-
agent 1 layers on a silicon wafer a)-b) after photo-patterning (365 nm, 22 J cm−2,
36 mW cm−2, 10 min), followed by c)-d) a rinse with water, then e)-f) a further
rinse with DCM, and g)-h) a rinse with water again. No filters were used to cap-
ture light form the sample, but images on the left and on the right were acquired
when the sample was illuminated with white and UV (365 nm) light, respectively.
Darker areas in images on the right correspond to a lack of green fluorescence and

scratch marks (in white in images on the left) identifying region of interest.
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Figure 3.24: Optical images acquired on a fluorescence microscope of reagent
1 layers on a silicon wafer after photo-patterning (365 nm, 36 mW cm−2) a)-b)
region 1 for 10 min and e)-f) region 2 for 40 min and effects of rinsing the sample
with 10 % Decon90 solution on c)-d) region 1 and g)-h) region 2. No filters were
used to capture light form the sample, but images on the left and on the right
were acquired when the sample was illuminated with white and UV (365 nm) light,
respectively. Darker areas in images on the right correspond to a lack of green

fluorescence and scratch marks (in white in images on the left) in region 1.
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3.3.3 Discussion

Cyclic voltammetry of SAM1 modified electrodes in 10 mM CuSO4 in 10 mM H2SO4

shows considerably higher Ep potential (0.07 V more negative) than reported for

photo-patternable system based on ortho-nitrobenzyl and perfluoro groups.[12,80] It

indicates that SAM1 acts as a stronger barrier against diffusion of Cu2+ ions to-

wards gold surface, which most likely originates from both chemical properties of

pyrene group and higher packing in the SAM. The latter is likely to play an import-

ant role, as ALA SAM also yields a higher Ep value than any of the SAMs (some

of which with higher thickness) in the reported study.[12,80] Furthermore, the fact

that UV treated SAM1 yields lower Ep value than fresh ALA SAM, can also be

explained by the fact that UV treatment reduces packing in SAM1. The instability

of CVs performed on electrodes modified with ALA SAM in the acidic electrolyte

(10 mM CuSO4 in 10 mM H2SO4) might be related to the instability observed un-

der acidic (100 mM HCl in IPA) UV treatment conditions (section 3.2.4), but could

also correspond to a chemical interaction of copper with carboxylic acid group or

permanent disruption of the SAM by formation and growth of copper nucleation

sites. Reasons mentioned above are believed to be the cause for relatively little

metallisation on non-treated regions, even after first half of a CV cycle is performed

(i.e. voltage sweep from stage 1 to 5 in figure 3.14b), which is in contrast to the

reported system, which exhibits a severe metallisation at this stage.[80]

The weaker Ep potential of photo-patterned SAMs (−0.18 V) than uniformly treated

(with UV in the acid catalyst) SAM1 (−0.21 V), and the shift of the potential

towards a more negative value (−0.20 V) in consecutive CV cycles in the former

SAM are perplexing. Nevertheless, it was found that the highest selectivity of copper

occurs around potential of −0.18 V, whether electrochemical deposition is performed

at constant or sweeping potential. The former method gave lower reproducibility

rate and poor uniformity on micro scale, both of which are attributed to a phase of
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quick and spontaneous initialisation of nucleation sites that is immediately followed

by a phase of rapid growth of the sites, due to sudden activation of the potential

across the electrochemical cell. On the other hand, sweeping potential method led to

a much higher reproducibility and a better uniformity on micro scale, attributed to a

prolonged phase of initialisation of nucleation sites, followed by a smooth transition

into the phase of growth of nucleation site.

Non-fluorescence of SAM1 illustrates the quenching effect - a well known property

of gold that also occurs in gold thin films. However, reagent 1 films (not SAMs)

on silicon oxide or glass substrates exhibit green fluorescence due to absence of gold.

It is thought that films are formed due to strong interaction between reagent 1

and adventitious species that are not removed by piranha etching (during the first

2-5 min), as layers cannot be rinsed away with DCM, which is the solvent used to

dissolve the molecules in the first place, but a brief rinse with 10 % Decon90 solution

almost completely removes the films. Also, the films only form effectively on samples

that were not immediate cleaned with 10 % Decon90 solution before etching with

piranha solution. More specifically, the pyrene end group in reagent 1 is associated

with the interaction, because no formation of lipoic acid, DTBA, MHA, MOA or

MUA layers have been observed. Nevertheless, it is thought that the growth of the

layers might result from the cross-linking of dithiolane head groups in reagent 1,

as is the case in SAM1. This could explain the lack of uniformity and considerable

thickness of the layers. However, it is not understood whether prolonged exposure

to soft UV induces any chemical reactions between (i) reagent 1 and the surfaces or

(ii) the cross-linked molecules in the layer, that could prevent removal of molecules

when the surface is rinsed with 10 % Decon90 solution.

Loss of fluorescence upon prolonged exposure to soft UV (365 nm in air or in acidic

catalyst 100 mM HCl in IPA) could be attribute to the effect of photo-bleaching,

because no structural changes appear in the film on the micro scale. However,
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exposure to the UV also turns hydrophobic regions into hydrophilic, which could

only be explained by appearance of polar groups on the surface; a process that is not

natural under ambient conditions. Given that reagent 1 undoubtedly photocleaves

in dilute solutions to release lipoic acid,[1] it is likely that the same process takes place

in these films. That would explain why patterns also appears in ordinary optical

images and why quality of hydrophilic patterns of water improve after a rinse with

DCM. It cannot be excluded that exposure to UV also breaks up disulfide bonds in

the cross-linked film and, therefore, a rinse with DCM also removes chunks of cross-

linked lipoic acid and cross-linked reagent 1 molecules. Surprisingly, samples

stay fluorescence, and patterns stay hydrophilic for at least 35 days under ambient

conditions, which indicates high stability of the formed layers.
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3.4 Conclusions

A novel molecule containing functional carboxylic acid group protected with 1-

acetylpyrene was used to form self-assembled monolayers (SAM1) on gold surfaces.

Photo-deprotection of carboxylic acid group in SAM1 was investigated by treating

it with soft UV (365 nm, 4 mW cm−2) light for various time periods and in various

catalysts. It was found that irradiation under pure IPA or aqueous mixtures (50:50)

of IPA, MeOH and MeCN for 1.5 h (and in some cases up to 5 h) has no significant

impact on SAM1 thickness, contact angles, IR absorption or chemical composition.

On the other hand, exposure of the SAM to soft UV in 100 mM HCl in IPA for 1.5 h

leads to a severe decrease in thickness (4 times), however, it does not change the

contact angles, which are distinctively different from the angles usually observed on

surfaces containing carboxylic acid groups. Furthermore, despite the drop in absorp-

tion, IR spectra does not change in shape, suggesting that total amount of material

decreases, but relative ratio of ester and aryl ketone groups stays the same, thus

indicating no emergence of deprotected carboxylic acid groups on the gold surface.

Finally, XPS spectra and quantitative analysis do not show any change in relative

amounts of chemical elements or their species, except a significant increase of gold

signal w.r.t. all other elements. However, such treatment performed in the dark

does not yield any significant changes. Therefore, the acquired data suggest that

photo-reaction takes place under the acidic conditions, but ultimately it leads to a

loss of reagent 1 molecules from the surface, rather than a monolayer terminated

with carboxylic acid group.

Three possible pathways for the photolysis in SAM1 are proposed (figure 3.12): (i)

Scheme A - loss of cross-linked molecules from the surface, due to breakage of S-S

bond; (ii) Scheme B - photo-deprotection that yields lipoic acid molecules, which

are unstable under the UV treatment conditions and consequently removed from the

gold surface; (iii) Scheme C - removal of reagent 1 molecules from the surface,
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due to breakage of S-Au interaction. Taken into account investigations of (i) cyclic

voltammetry on SAM1 and ALA SAM, (ii) reagent 1 film formation on silicon

oxide and glass surfaces, and their photo-patterning, and (iii) the stability of DTBA

SAM, MHA SAM, MOA SAM and MUA SAM (see chapter 5 for details),

Scheme B is likely to be dominating and Scheme A partially contributing, while

Scheme C is unlikely, but can not be fully excluded from the photolysis in SAM1.

This unexpected outcome of SAM1 treatment triggered investigation of stability

of ALA SAM and SAMs of conventional thiolates of various chain lengths with

carboxylic acid end group, which is presented in chapter 5.

Although UV treatment of SAM1 under such conditions does not lead to a mono-

layer terminated with carboxylic acid group, the induced disorder and lower packing

of reagent 1 molecules proved to be more beneficial in highly selective metallisation

Copper can be successfully and reversibly deposited (ECD) multiple times on the

treated regions on photo-patterned SAM1 samples, which could possibly be used

for selective fabrication of nanostructures of metals or alloys.[81–83] Furthermore,

little copper is found on non-treated regions even when ECD is performed at more

negative than usual potentials, and at the end of the reduction phase in CV sweeps,

which contrasts with reported photo-patternable SAM based on ortho-nitrobenzyl

and perfluoro groups.[12,80]

Although SAM1 does not fluoresce due to quenching by gold, it was discovered that

reagent 1 molecules form fluorescent (in green) films on silicon oxide and glass sur-

faces. Films can not be removed with a thorough rinse or prolonged ultrasonication

in DCM, even though it is used to dissolve reagent 1 molecules in the first place.

On the other hand, films are easily rinsed away with 10 % Decon90 solution, which

indicates that films physisorb rather than chemisorb onto the surfaces. Furthermore,

it was noticed that while all of the substrates were etched with piranha immediately

before immersion into reagent 1 solution in DCM, layers were effectively formed
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only on the substrates that were cleaned with 10 % Decon90 solution not imme-

diately before piranha etching. Thus, film formation is assigned to interaction of

reagent 1, more precisely pyrene group, with the adventitious contamination on sil-

icon oxide and glass surface that is not removed by piranha etching (at least during

the first 2-5 min). The films yield high thickness, and the growth of the thickness

is attributed to cross-linking of the molecules via disulfide bonds after opening of

the dithiolane rings, a phenomena that has been observed in reagent 1 synthesis,

SAM1, and ALA SAM. Photo-patterning in the air or in the acid leads to the

creation of non-fluorescent hydrophilic regions attributed to photo-bleaching and

photo-deprotection of lipoic acid molecules in the films. Such patterns are stable for

at least 35 days under ambient conditions.
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Chapter 4

SAMs for spin crossover (SCO)

surfaces

Some of the data presented in this chapter on the study of SAM formation of ligand

L1 and its Fe(II) complex have been included in the publication L. Pukenas et al.,

J. Mater. Chem. C 3, 7890–7896 (2015).

This chapter investigates the formation of novel self-assembled monolayers (SAMs)

that could have a potential to exhibit spin crossover (SCO) behaviour. New de-

rivatives L1 and L2 of ligands bpp and Py5, respectively, contain thiomorpholine

head group that facilitates self-assembly on gold surface. The main objectives of

this study are as follows:

• to form SAMs of ligands only, i.e. SAM L1 and SAM L2 (figure 4.1).

• to coordinate Fe(II) to SAM L1 and SAM L2 (figure 4.2).

• to form SAMs of Fe(II) complexes, i.e. SAM C1 and SAM C2 (figure 4.3).
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• to perform ligand exchange at the sixth exogenous ligand (SEL) positions in

SAM C2 by rinsing with solvents, in order to change spin state of the iron

centres (figure 4.4).

(a) SAM L1 (b) SAM L2

Figure 4.1: Schematic model of the novel SAMs.

Figure 4.2: Schematic detailing Fe coordination to SAM L1 and SAM L2 in
MeCN or H2O.

(a) SAM C1 (b) SAM C2 with exogenous ligand L

Figure 4.3: Schematic model of the novel SAMs.

The study presented in this chapter has revealed that both ligand L1 and L2 success-

fully form SAMs, however, SAM L2 does not show any signs of Fe(II) coordination.
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Figure 4.4: Schematic detailing reversible ligand exchange by rinsing SAM C2
with MeCN and MeOH.

Also, instead of forming SAM C1, complex C1 produces SAM L1 indicating de-

metallisation during SAM formation. Complex C2 successfully forms SAM C2 in

MeOH and MeCN solutions, and shows the same characteristics as SAM L2 after

Fe(II) coordination. However, successful ligand exchange and therefore change in

spin state was not detected and SCO behaviour was not ‘unlocked’ in SAM C2.

4.1 Introduction

Since the first observation of the SCO phenomena nearly a century ago,[2] the field

has expanded and a wide range of ligands have been synthesised to form complexes

of transition metals with desired and fine tuned SCO properties. Recently, atten-

tion has shifted towards studies of SCO in nanoscale materials,[3–6] that not only

opened opportunities for new applications, but also led to enhancement of some

SCO properties.[7,8] However, the majority of work has been undertaken on coordin-

ation polymers,[9,10] and less so on molecular SCO compounds. Most of the fabric-

ated structures include continuous films,[3–5] but other structures, such as patterned

films[3] or nanoparticles,[3,4,11] have also been developed. Spin coating and thermal

vacuum deposition have attracted attention for production of homogeneous films.

The latter is of particular interest, as it provides fine control over film thickness,

and allows for the study of SCO behaviour across a wide range - from multilayer

stacking of hundreds of nanometres down to isolated molecules at sub-monolayer

level.[3–5,12–21] It has been discovered that while complexes in thin films still exhibit
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SCO behaviour,[13–15,19–21] the substrate can alter the SCO properties[15,17,19,22] and

often leads to ‘pinned’ states[13,15,17,22,23] in sub-monolayers, monolayers and the first

few layers within multilayer films. These effects originate from direct contact with

solid surfaces[17,19] that react chemically with ligands and induce conformational

changes in the complex (e.g. changing coordiantion number and geometry[15]), or

cause packing constraints in the adjacent layers.[18,19] It is possible that such issues

could be overcome using self-assembled monolayers (SAMs), that offer a fine control

over monolayer properties, for example, molecular orientation, packing, interaction

with substrate, and intermolecular interactions. However, despite reported 2D self-

assembly of SCO nanoparticles,[7] SAMs of ligands,[23,24] metal complexes[25,26] and

different type molecular spin state switches,[27,28] SAMs of SCO complexes have not

been reported yet. In this chapter the potential of ligand L1 and L2 to be used for

SAMs of SCO complexes is investigated.
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4.2 SAMs of bpp-type tridentate ligand L1 and

its Fe(II) complex C1

The study of iron(II) complexes of tridentate ligand bpp (figure 4.5a), its deriv-

atives and their magnetic properties in bulk was pioneered by M. Halcrow and

coworkers.[29,30] Various reported substitution patterns highlight the flexibility of

bpp to accommodate a variety of substituents, while preserving SCO behaviour

of the complex.[30–32] Furthermore, surface nanostructures[33–36] and single-molecule

junctions[37,38] have been successfully fabricated using derivatives of Fe(II) complex

of bpp.

(a) Ligand bpp (b) Reagent Py-SH

(c) Ligand bpp-
SH (d) Tetrafluoroborate salt of bpp-SH complex

(e) Ligand L1 (f) Perchlorate salt of complex C1

Figure 4.5: Molecular structures of ligand ligand bpp, reagent Py-SH, ligand
bpp-SHa and its bpp-SH complex,a ligand L1

b and its complex C1.b Com-
plexes bpp-SH and C1 contain BF4

- and ClO4
- counter ions, respectively, in

their crystalline form.

In order to form a SAM of bpp and ultimately of its complex exhibiting SCO be-

haviour, a new ligand 4-mercapto-2,6-di[pyrazol-1-yl]pyridine (ligand bpp-SH) was
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synthesised.a As shown in figure 4.5c, it is a derivative of ligand bpp containing a

thiol group attached to the pyridine ring. However, X-ray Photoelectron Spectro-

scopy (XPS) spectra clearly indicate a severe decomposition of the molecule on the

gold surface. SAMs formed from a solution of preformed Fe(II) complex of bpp-SH

(figure 4.5d) yield the same signs of the decomposition, despite showing presence of

iron on the surface. The instability of ligand bpp-SH is attributed to desulfurisation

that leads to formation of atomic sulfur on gold surface, that has been reported for

reagent Py-SH[40,41] (figure 4.5b), which is the ‘backbone’ of ligand bpp-SH. Des-

ulfurisation in SAM Py-S on gold is rapid (within 10 min) in ethanolic solution,[40]

but much slower (within hours) in aqueous solution.[40] Indeed, a similar trend was

observed in SAM bpp-SH formed for varying amount of time in 1 mM bpp-SH

in aqueous 0.1 M NaOH. Nevertheless, immersion into the solution even as short as

10 s led to profound decomposition of ligand bpp-SH on the surface. Data on the

study of SAM formation of ligand bpp-SH and its Fe(II) complex are not presented

in this thesis, but have been published.[1]

In the light of these results, a new ligand 4-(thiomorpholin-4-yl)-2,6-di[pyrazol-1–

yl]pyridine (ligand L1)b with a more remotely bound sulfur (figure 4.5e) and its

complex C1
b (figure 4.5f) were investigated for the purpose of SAM formation. The

following sections will discuss the formation and characterisation of SAM L1, SAM

C1 and Fe(II) coordination to SAM L1.

a Synthesised by L. J. Kershaw Cook at Prof. M. A. Halcrow research group, School of Chem-
istry, University of Leeds, UK. Procedure described in the references[1,39].

b Synthesised by A. Santoro at Prof. M. A. Halcrow research group, School of Chemistry,
University of Leeds, UK. Procedure described in the reference[1].
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4.2.1 Ellipsometry and Wetting measurements

Wettability data and ellipsometric thickness of SAM L1, SAM L1+Fe(1m), SAM

L1+Fe(30m) and SAM C1 are summarised in table 4.1. Fresh SAM L1 yields

thickness of 9 Å,c which is considerably lower than the expected value of 13 Åd

corresponding to crystallographic length of extended ligand L2. This indicates that

molecules are tilted at an angle of 46° from the surface normal or surface coverage

of 69 %.

Table 4.1: Thickness and contact angles of SAM L1, SAM L1+Fe(1m),
SAM L1+Fe(30m) and SAM C1

Ellipsometric thickness (Å) Contact Angles (°)
SAM Experimentalc Expected Advancing Receding
SAM L1 9 ± 1 13d 84 ± 2 57 ± 7
SAM L1+Fe(1m) 8 ± 1 14e 82 ± 3 53 ± 5
SAM L1+Fe(30m) 6 ± 1 14e 87 ± 4 51 ± 9
SAM C1 8 ± 1 20d 78 ± 3 50 ± 13

SAM L1 exposure to ∼5 mM Fe(ClO4)2 in MeCN for 1 min does not show expected

increase in thickness, while prolonged (30 min) exposure of the SAM noticeably

reduces its thickness. Furthermore, SAM C1 yields the same thickness as SAM

L1 within the experimental uncertainty, despite the fact that extended length of

complex C1 is nearly two times larger. Due to the molecular structure of complex

C1, it is unlikely that the complex binds to gold surface through both thiomorpholine

rings, or that the tilt angle from the surface normal increases much beyond the level

calculated in SAM L2. Wettability data reveal slight spread of the contact angles,

however, due to variation in the acquired values and similar width of hysteresis

loops, significant difference in surface energy is not evident between SAM L1, SAM
c Given the nature of the molecular structures it is quite possible that the refractive index (1.45)

used in the experimental modelling underestimates the molecular thickness. Refractive index of
1.45 is for condensed alkanes, the ligands and complexes here are of lower density and may lead to
lower refractive indices.

d Based on X-ray crystallography performed by A. Santoro at Prof. M. A. Halcrow research
group, School of Chemistry, University of Leeds, UK.

e Estimation based on crystallographic length of ligand L1.
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L1+Fe(1m), SAM L1+Fe(30m) and SAM C1. Overall, the data suggest fairly

similar thickness and surface chemistry in all of the SAMs.

4.2.2 XPS

4.2.2.1 SAM L1 and SAM C1

Figure 4.6 presents the XPS spectra of the regions corresponding to chemical ele-

ments in ligand L1 and additionally includes spectra of oxygen 1s region, in order to

investigate the quality of SAM L1 and stability of ligand L1 when in direct contact

with gold surface.
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Figure 4.6: High resolution XPS spectra of SAM L1.
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The spectrum of S 2p region in figure 4.6a shows three peaks resulting from two spin-

orbit doublets. The first at S 2p3/2 = 161.8 eV and the second at S 2p3/2 = 163.5 eV

are commonly assigned to bound and unbound thiols,[42–44] respectively. On the

other hand, presence of those spin-orbit doublets has been reported in SAMs with

thiomorpholine, thiomorpholine-like and dialkyl monosulfide head groups,[45–50] and

were attributed to different sulfur interactions with gold, rather than an indication

of molecules bound to gold surface in an unexpected manner (i.e. through their

functional group).

Table 4.2: Integrated (normalised using R.S.F.) and fractional XPS peak areas
of N 1s region and fitted components in SAM L1 and SAM C1.

Peak area (x 1000 CPS eV)
[Fraction of the region (%)]

N 1s

Region Component
A B

BE (eV) - 399.6 401.4
BE std. dev. (eV) - 0.1 0.1
SAM L1 4.3 [100] 2.8 [64] 1.5 [36 ]
SAM C1 3.2 [100] 2.1 [64] 1.2 [38 ]
1) Components were constrained to have the same FWHM within each spectrum.
Across the samples FWHM varied within 1.4-1.6 eV.
2) Binding energies are associated as follows:[24]

- Component A: nitrogen in pyridine, thiomorpholine and N2 position in pyrazole.
- Component B: nitrogen in N1 position in pyrazole.

The spectrum of N 1s region shows two clearly resolved peaks at 399.6 eV and

401.4 eV (see figure 4.6b and table 4.2) assigned to nitrogens in (i) pyridine, thiomor-

pholine and N2 position in pyrazole, and (ii) N1 position in pyrazole, respectively.[24]

The peak with lower BE has nearly a two times larger area than the other peak,

which agrees with the molecular structure shown in figure 4.5e.

The C 1s region shows a peak with a shoulder, which can be fitted with four compon-

ents (see figure 4.6c and table 4.3), three of which have BE comparable to reported

values: component A to carbon in meta-positions of pyridine, pyrazole C3 and C4;

component B to carbon in para-position of pyridine, pyrazole C5; and component
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C to carbon in ortho-positions of pyridine.[24] Availability of literature on SAMs

containing thiomorpholine head group is limited, especially those containing XPS

studies. The carbons in thiomorpholine are expected to show similar binding ener-

gies to the corresponding carbon atoms in pyridine. Table 4.3 presents the fractional

percentage of each component, in addition to peak areas of the whole region and

fitted components. The approximate ratio of fitted components is 5:3:2:0.3, re-

spectively, however, due to strong overlap of the peaks, even a slight change in the

peak shape strongly affects the mathematical fitting and consequently the relative

amounts of the chemical species. This limits accuracy of the peak positions and in-

tegrated areas of the fitted components, which are consequently used for indicative

purposes only.

Table 4.3: Integrated (normalised using R.S.F.) and fractional XPS peak areas
of C 1s region and fitted components in SAM L1 and SAM C1. Due to low

confidence in accuracy, presented values are for indicative purposes only.

Peak area (x 1000 CPS eV) [Fraction of the region (%)]
C 1s

Region Component
A B C D

BE (eV) - 284.8 285.7 286.9 288.7
BE std. dev. (eV) - 0.1 0.2 0.1 0.3
SAM L1 18.6 [100] 8.3 [45] 6.0 [32] 3.5 [19] 0.6 [3 ]
SAM C1 14.7 [100] 8.5 [58] 3.8 [26] 1.8 [12] 0.5 [4 ]
1) Components were constrained to have the same FWHM within each spectrum. Across the samples
FWHM varied within 1.2-1.4 eV.
2) Binding energies are associated as follows:[24]

- Component A: carbon in meta-positions of pyridine, pyrazole C3 and C4.
- Component B: carbon in para-position of pyridine, pyrazole C5.
- Component C: carbon in ortho-positions of pyridine.

The presence of oxygen is attributed to the underlying hydrocarbon contamina-

tion, as it has been reported, that even freshly cleaned gold surface under ambient

conditions contains a few angstroms thick layer of adventitious hydrocarbons,[43,51]

which is displaced efficiently, only if the head group has a strong affinity towards

gold[43,51,52] and head groups can pack effectively.[53]
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Figure 4.7: High resolution XPS spectra of SAM L1 (in black) and SAM C1
(in red).

Figure 4.7 compares the XPS spectra of SAM L1 and SAM C1, where the most

important result is Fe 2p spectrum in figure 4.7a shows little if any presence of iron.

Although two bumps could be resolved at 710 eV and 725 eV, the signal intensity is

too low for any meaningful interpretation. In fact, this perturbation in the back-

ground is of a similar intensity to spectrum of Fe 2p acquired on gold, that was
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exposed to ∼5 mM Fe(ClO4)2 in MeCN solution for 30 min. Furthermore, figure

4.7b shows no peaks that would indicate presence of the ClO4
- counter ions. Fi-

nally, the N 1s region yields the same spectra (figure 4.7d), while differences in the

S 2p and C 1s regions are minute between the SAMs. Overall, XPS spectra suggest

rather similar chemical composition in both SAMs.

4.2.2.2 Fe(II) coordination to SAM L1

Figure 4.8 compares the XPS spectra of SAM L1 and SAM L1 exposed to ∼5 mM

Fe(ClO4)2 in MeCN for 1 min and 30 min. Exposure to the Fe(II) solution for 1 min

yields the same spectra in all the regions, except S 2p, where a slight increase in

intensity is assigned to an artefact caused by baseline correction, due to weak and

noisy signals in the region. On the other hand, immersion of SAM L1 into the Fe(II)

solution for 30 min leads to a weak peak in Fe 2p region, however, its intensity is

too low for any meaningful analysis, while the N 1s spectrum suggests partial loss of

nitrogen atoms and change in their chemical state. Spectra of the Cl 2p regions does

not indicate any presence of the ClO4
- counter ion in any of the SAMs, suggesting

that either it is readily removed during washing or that it was not present at all.
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Figure 4.8: High resolution XPS spectra of SAM L1 (in black), SAM
L1+Fe(1m) (in blue) and SAM L1+Fe(30m)(in red) exposed to ∼5 mM

Fe(ClO4)2 in MeCN for 0 min, 1 min and 30 min, respectively.



Chapter 4. SAMs for SCO surfaces 120

4.2.3 Discussion

XPS spectra of SAM L1 show presence of sulfur, carbon and nitrogen, in agree-

ment with the molecular structure (figure 4.5e), but yield S:C:N relative ratio of

1:17:4 instead of 1:15:6, respectively. The slight excess of carbon is expected due to

adventitious contamination, however, lower average amount of nitrogen per sulfur is

attributed to traces of thiomorpholine and 4-(thiomorpholin-4-yl)-2,6-difluoro-pyri-

dine from final steps of ligand L1 synthesis. Relative ratio of the nitrogen species

is close to 1:2, in agreement to the amounts of assigned nitrogen atoms discussed in

section 4.2.2.1.

The S 2p region (figure 4.6a) shows presence of bound and unbound thiols to gold.

Although, such a large proportion of unbound thiols in a conventional alkanethiol

SAM would indicate serious issues with SAM quality, those doublets are commonly

observed in SAMs with thiomorpholine, thiomorpholine-like and dialkyl monosulf-

ide head groups.[45–50] Nevertheless, low surface coverage is indicated by the weak

XPS signal, especially in S 2p region (compared to SAMs of molecules with similar

length) and detected oxygen, which could originate from hydrocarbons, that have

been reported to reversibly adsorb onto gold surface prior formation of a well packed

SAM.[43,51–53] Low surface coverage could be assigned to weak affinity of the head

group and bulky structure of the molecules preventing close packing. Such observa-

tion is in agreement with the ellipsometry measurements, which indicate that SAM

L1 thickness is 9 Å, while X-ray crystallography dataf indicate that the length of lig-

and L1 is 13 Å; such a difference between the ellipsometric thickness and the length

of individual molecules could indicate that (i) molecules in the SAM are tilted at an

angle of ∼46° from the surface normal, (ii) cover ∼70 % of the gold surface, or (iii)

a combination of both.
f See footnote d on page 113.
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Ellipsometry and XPS data do not show any significant differences between SAM

L1 and SAM C1, suggesting demetallisation in complex C1 during SAM formation.

Similarly, there is little difference between SAM L1 and SAM L1+Fe(1m) indic-

ating no Fe(II) coordination to immobilised ligand L1 on gold surface. On the other

hand, a peak is present in Fe 2p spectra in SAM L1+Fe(30m) (figure 4.8a), but

the intensity is too weak for a meaningful interpretation, while N 1s region (figure

4.8d) shows a decrease in intensity and a change in shape suggesting decomposition

of ligand L1 in the SAM. Also, SAM L1+Fe(30m) shows decrease in ellipsometric

thickness.

Finally, the SAMs yield slightly different contact angles, however, due to the spread

in the values, CA data do not indicate a significant difference in the surface energy

among the SAMs.

Overall, ligand L1 is stable on gold surface and successfully forms a SAM. Whilst the

low surface coverage for SAM L1 indicates it is not well packed. Short exposure to

∼5 mM Fe(ClO4)2 in MeCN does not lead to Fe(II) coordination, while prolonged

exposure suggests decomposition of ligand L1 on the surface. Complex C1 also

forms a SAM, but all the characteristics suggest that it is SAM L1 and not SAM

C1, which is attribute to demetallisation complex C1 during SAM formation.
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4.3 SAMs of caged pentadentate ligand L2 and its

Fe(II) complex C2

The caged pentadentate ligand Py5 displayed in figure 4.9a was initially synthes-

ised for biomimetic purposes.[54–56] It is designed to simulate specific attributes of

the Lewis acidic iron site in mammalian lipoxygenases (LOs) and successfully re-

produces many similar structural and spectroscopic properties, which allow to study

mechanism of catalysed dioxygenation of fatty acids in lipids containing a cis,cis-1,4-

pentadiene structure.[54–56] However, new applications of Py5 have emerged since.

Its Fe(II) complex (figure 4.9b) with MeCN as the SEL has been reported as a po-

tential alternative to clinically used drugs cisplatin and bleomycin in killing cancer

cells,[57,58] and its Co(II) complex with bromide anion (Br-) or chloride anion (Cl-)

as the SEL have been reported to show promising properties for water splitting into

oxygen and hydrogen.[59–61]

(a) Ligand Py5 (b) Fe(II) complex of Py5

Figure 4.9: Molecular structures of Py5 and its Fe(II) complex. The later has
a charge (X), which depends on a sixth exogenous ligand (L), and therefore forms
a salt accompanied by a counter ion (Y). A number of Py5 derivatives have been

reported with different group (R) attached to the tertiary carbon atoms.

Ligand Py5 also exhibits a number of desirable properties for studying SCO in

SAMs. Firstly, its caged structure, containing five coordination sites, yields a

stronger chelation to a metal centre than the tridentate ligand L1, which formed

a SAM, but did not coordinate to Fe(II), while its preformed complex demetallised
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during SAM formation, as discussed in section 4.2. Secondly, Py5 metal complex

can accommodate a labile SEL, which allows to easily change not only how the

metal complex reacts with other molecules,[56,57] but also its spin state[54–57,62,63] and

SCO behaviour.[56,62] Py5 complex of Fe(II) in crystaline form exhibits abrupt spin

transition at ∼90 K with strong hysteresis with MeOH[56,63] as the SEL, gradual

spin transition at ∼155 K with minor hysteresis with azide (N3
-)[63] as the SEL, but

HS state with Cl-[62,63] or weaker SELs[62,63] and LS state with MeCN[54,56,57,62,63] or

stronger SELs[62,63] in the temperature range 5-295 K. Ability to chose a stable spin

state over a wide range of temperature is beneficial for obtaining reference data.

For example, XPS spectra in Fe 2p region have been shown to vary significantly

between different compounds of Fe(II) HS, Fe(III) LS or Fe(III) HS species, which

can make qualitative or at least quantitative differentiation of certain iron oxida-

tion and spin states challenging in unknown or mixed samples without reference

spectra.[64–70] Weak SELs in Fe(II) complex of Py5 should yield a set of very similar

Fe 2p spectra corresponding to HS state, and likewise strong SELs in the complex

should yield another set of practically identical Fe 2p spectra corresponding to LS

state. Therefore, those two types of spectra could be used as accurate references

to follow SCO transition in the complex containing SELs of intermediate strength

(e.g. MeOH). The same method could be applied in following SCO in Py5 complex

of Fe(III), however, it has been reported as unstable under ambient conditions.[55,56]

Thirdly, bidentate or polydentate ligands could be used as SEL to create homo-

geneous or heterogeneous bilayers or multilayers structures in a controlled manner.

Finally, SEL in Fe(II) complex of Py5 can be easily replaced by dissolving in a solu-

tion containing a large excess of a desired ligand (with cyanide anion (CN-) being

an exception).[56,62] This should allow easy and reversible replacement of SELs in

immobilised complexes on a surface, i.e. in a SAM, simply by rinsing with appro-

priate solutions, that could ‘unlock’ their multifunctionality, given that properties

of such complexes do not change in close proximity to the surface.
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(a) Ligand L2 (b) Perchlorate salt of complex C2

Figure 4.10: Molecular structures of ligand L2
g and its complex C2

g. The later
contains H2O as the SEL and ClO4

- counter ion in a crystalline form.

New ligand 4-(thiomorpholin-4-yl)-2,6-di[hydroxydi(pyridin-2-yl)methyl]pyridine (lig-

and L2) shown in figure 4.10a was synthesised,g as a derivative of Py5 with thio-

morpholine head group that should form self-assembled monolayer on gold surface.

Fe(II) complex of ligand L2 with H2O as the SEL (complex C2) shown in figure

4.10b was also synthesisedg and crystalised, which, in a similar manner to Fe(II)

complex of Py5, exhibits LS or HS state depending on the SEL. The following sec-

tions will discuss the formation and characterisation of SAM L2, SAM C2, SEL

exchange in SAM C2 by rinsing, and Fe(II) coordination to SAM L2.

4.3.1 SAM L2 and SAM C2

SAMs of just ligand L2 and of the pre-formed complex C2 were formed as depic-

ted in figures 4.11a and 4.11b, accordingly. XPS, contact angle and ellipsometry

measurements were performed to characterise SAM formed from CHCl3 solution of

ligand L2 (SAM L2), SAM formed from MeOH solution of complex C2 (SAM

C2 [MeOH]), and SAM formed from MeCN solution of complex C2 (SAM C2

[MeCN]).
g Synthesised by A. Santoro at Prof. M. A. Halcrow research group, School of Chemistry,

University of Leeds, UK.
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(a) SAM L2

(b) SAM C2

Figure 4.11: SAM L2 is neutral, however SAM C2 is expected to be positively
charged, because perchlorate counter ion has been detected in dropcast and in
powder samples of complex C2 salt, but not in the SAM. Three types of SEL -

H2O, MeOH and MeCN (denoted as (L) in SAM C2) were studied.

Formation of SAM L2 was also attempted in other solvents (e.g. MeOH, nitrometh-

ane (MeNO2)), but the SAMs suffered either from strongly enhanced reactivity of

impurities towards gold surface or partial decomposition of ligand L2. MeOH and

MeCN solutions were used to form SAM C2, because in solution complex C2

coordinates solvent molecule as SEL, and obtains HS and LS state at room temper-

ature, respectively. Consequently, SAM C2 is expected to be in the corresponding

states.

Different SELs lead to changes in composition of chemical elements and their species.

However, expected differences between H2O and MeOH coordinated to complex C2

are smallq, and correspond to HS in both cases. Furthermore, there is a significant

probability that thin water film is formed on top of SAM C2 and MeOH is replaced

by H2O, when samples are exposed to ambient conditions. Therefore, both states

are treated as one, while the SEL is denoted as MeOH/H2O.
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4.3.1.1 XPS

XPS spectra show some variation in O 1s and C 1s regions across the samples of

SAM C2 [MeOH] and SAM C2 [MeCN]. Consequently two sets of spectra for

each of those SAMs, but only one representative set of spectra for SAM L2 are

presented and discussed in this section.

All of the SAMs show a single peak in N 1s region (figure 4.12a) corresponding

to a single componenth with ∼1.5 eV FWHM (see table 4.7, and figures B.1b and

B.2b in the appendix) indicating that nitrogen atoms in the molecules of the formed

SAMs have very similar chemical environments. Equal intensity and the same bind-

ing energy of the peak in N 1s region among spectra of all the SAMs are simply

a direct consequence of using this peak to normalise intensitiesi and binding en-

ergies (referenced to 399.7 eV, which is comparable to reported values for nitrogen

in pyridinej[24,41,72,73]) for XPS spectra of the mentioned SAMs above, and SAM

L2+Fe(1m) and SAM L2+Fe(30m) discussed in the following sections.

The presence of iron in the spectra of SAM C2 in figure 4.12b reflects the main

difference between ligand L2 and complex C2 (figures 4.10a and 4.10b, respectively).

Due to weak signal and often complex background in Fe 2p region, baseline correc-

ted spectra are subject to a significant variation limiting precision and accuracy of

the analysis. Nevertheless, the baseline corrected spectra of Fe 2p region in figure

4.12b show surprisingly good agreement across the SAMs and their samples (when

intensitiesi and binding energiesm are normalised to N 1s region). Consequently,
h A shoulder at 398.3 eV in SAM L2 spectrum is most likely an artefact, as it was not evident

in other samples of SAM L2.
i All of the spectra in this set were normalised to have equal integrated area of N 1s region,

and, for convenience, it was set to a value of six, which is the number of nitrogen atoms in ligand
L2. Expected changes in the amount of nitrogen atoms per molecule in SAM C2 due to different
SELs are described in footnote k and discussed in the section 4.3.1.2.

j Based on poly(2-vinylpyridine) (P2VP) and poly(4-vinylpyridine) (P4VP) in reference[71].
k Number of nitrogen atoms per complex depends on the sixth exogenous ligand (L), as shown

in figure 4.11b. For L = H2O or L = MeOH there are 6 nitrogen atoms, but for L = MeCN there
are 7 nitrogen atoms per complex.
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Figure 4.12: High resolution XPS spectra (normalised and referenced to N 1s
region) of SAM L2 (in red), SAM C2 [MeOH] (in black) and SAM C2

[MeCN] (in blue).

Table 4.4: Integrated and normalised (using R.S.F.) XPS peak areas in N 1s
and Fe 2p regions and their relative ratios in SAM L2, SAM C2 [MeCN] and

SAM C2 [MeOH].

Peak area (x 1000 CPS eV)
[relative to N 1s region]i

SAM Region
N 1si Fe 2p

SAM L2 expected [6.0] [-]
SAM C2 expected [ 6.0k] [1.0]
SAM L2 1.1[6.0] - [-]

SAM C2 [MeOH] 1.7[6.0] 0.3[1.0]
2.0[6.0] 0.4[1.2]

SAM C2 [MeCN] 1.4[6.0] 0.3[1.2]
2.0[6.0] 0.3[1.0]

SAM C2 formed from MeOH and MeCN have the same average ratio of nitrogen

to iron, as shown in table 4.4. Furthermore, average N:Fe ratio is 6.0:1.1, respect-

ively, in SAM C2 [MeOH] and in SAM C2 [MeCN], which is almost equal to

the expected ratio 6.0:1.0 for complex C2 with SELs that do not contain nitro-

gen. Broad Fe 2p3/2 peak (∼3 eV FWHM) and presence of the Fe 2p3/2 satellite

have been reported to originate from unpaired 3d electrons.[74,75] Their respective
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positions at 710.1 eV and 714.4 eV, and Fe 2p1/2 at 723.5 eV (see table 4.5) have

been observed in both Fe(II) (in HS state) and Fe(III) (in both HS and LS states)

compounds.[64–70,75–77] Therefore, precise state of Fe centre in SAM C2 could be

determined only by comparison to a set of Fe 2p reference spectra of complex C2

or closely related compound containing iron of a known oxidation and spin sates.

Although the state of the SAMs at this stage could not be conclusively assigned,

almost identicall suggest the same spin and oxidation state in both cases.

Table 4.5: Binding energies (BEs) of fitted components in N 1s and Fe 2p region
of XPS spectra of SAM C2 [MeOH] and SAM C2 [MeCN].

Component
N 1s Fe 2p

A 3/2 1/2
Main peak Satellite Main peak

BE (eV) 399.7m 710.1 714.4 723.5
BE std. dev. (eV) n/a 0.2 0.4 0.2
1) Across the samples FWHM of component A in N 1s varied within 1.4-1.9 eV.
2) Component A in N 1s is attributed to nitrogen in pyridine and thiomorpholine
rings.j[24,41,72,73]

XPS spectra of O 1s region (figure 4.13a) show consistent amounts of oxygen in

SAM C2 [MeCN], but a noticeable difference in SAM C2 [MeOH] samples. On

the other hand, the amount of oxygen in the former is similar to the average in

the later, and oxygen levels in SAM L2 are similar to the lower limit in SAM

C2 [MeOH]. Analysis of quantitative peak areas (presented in table 4.6) shows a

severe excess of oxygen, i.e. 2-5 times more relative to nitrogen/iron than expected,

which corresponds to extra 5-9 atoms per molecule. It has been reported, that even

freshly cleaned gold surface under ambient conditions contain a few angstroms thick
l The difference between two Fe 2p spectra of SAM C2 [MeOH] (in black in figure 4.12b) is

believed to be an artefact of low signal to noise ratio, because (i) both samples were prepared in
the same way, (ii) the sharp peak at ∼ 708 eV could only be associated with LS state in a fraction
of Fe(II) centres, which would lead to a decrease in intensity of Fe 2p3/2 satellite peak and a slight
change in intensity and position of Fe 2p1/2 peak, but none of the two are evident in the spectra,
and (iii) similar features do appear only in some consecutively acquired spectra on the same sample
(e.g. figures B.5a and B.5b; B.6b, B.6c and B.6c; B.8b, B.8c and B.8d)

m All the spectra were referenced to 399.7 eV, therefore it does not have any deviation.
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Figure 4.13: High resolution XPS spectra of SAM L2 (in red), SAM C2
[MeOH] (in black) and SAM C2 [MeCN] (in blue).

layer of adventitious hydrocarbons,[43,51] which is displaced efficiently, only if head

group has a strong affinity towards gold[43,51,52] and head groups are able to pack

effectively.[53] However, SAM C2 [MeOH] and SAM C2 [MeCN] yield more

oxygen than SAM L2 on average by 1.9 and 1.3 atoms per molecule, respectively.

Under ideal conditions, increase in all the other elements, except iron and gold,

should correspond only to the change of SEL.

Based on mathematical fitting, the spectra of O 1s region consist of at least two

components located at 531.7 eV and 532.9 eV (see table 4.7, and figures B.1d and

B.2d in the appendix). The later is assigned to originate from O-H oxygen bound

to tertiary carbon[71] (which is present in ligand L2 and complex C2), but also

has been reported for oxygen in O-H (bound to secondary or primary carbon),[71,78]

C-O-C[71,78] and water,[72,79] that could originate from adventitious hydrocarbon con-

tamination or moisture, due to sample exposure to ambient conditions. The former

component has a BE, which is comparable to the reported values of oxygen in Fe

hydroxides,[64,66,79] oxidised sulfur (e.g. sulfone)n and ClO4
- counter ion[80] (but pres-

ence of ClO4
- is excluded, the detected signal of Cl, presented in figure B.13 in the

n Based on poly(hexamethylene sulphone) (PHMS), poly(ether sulphone) (PES) and poly(so-
dium 4-styrenesulphonate) (PSS) in reference[71].
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appendix, suggests much lower levels of Cl impurities, while BE indicates that Cl is

not in a form of ClO4
-).[80] Finally, XPS spectra of freshly cleaned Au show presence

of oxygen and can be fitted with the same two components, and they grow upon

immersion to Fe solution. However, as this does not lead to detectable peaks of

Fe or Cl on treated gold surface, this is attributed to an increase of hydrocarbon

contamination on the surface due to extended exposure to ambient conditions.

Table 4.6: Integrated and normalised (using R.S.F.) XPS peak areas in N 1s,
O 1s and C 1s regions and their relative ratios in SAM L2, SAM C2 [MeOH]

and SAM C2 [MeCN].

Peak area (x 1000 CPS eV)
[relative to N 1s region]o

SAM Ref.o Region
N 1s

Region O 1s C 1s

SAM L2 expected [6.0] [2.0] [31.0]
SAM C2 expected [ 6.0p] [ 3.0q] [31.0q]
SAM L2 1.1[6.0] 1.4 [7.9] 8.9[49.7]

SAM C2 [MeOH] 1.7[6.0] 2.2 [7.6] 11.7[41.1]
2.0[6.0] 4.0[11.9] 18.2[54.7]

SAM C2 [MeCN] 1.4[6.0] 2.1 [9.3] 9.5[41.0]
2.0[6.0] 3.0 [9.1] 15.7[46.8]

Weak intensity, subtle features indicating presence of a shoulder or a double peak

in the spectra, low signal-to-noise ratio and large FWHM of the fitted components

lead to relatively large variation in peak positions, that in turn gives low confidence

in accuracy of the peak areas of the fitted components. Therefore, values presented

in the table 4.7 are for indicative purposes only rather than for a detailed analysis
o See footnotei on page 126.
p See footnotek on page 126.
q Number of oxygen and carbon atoms per complex depends on the sixth exogenous ligand

(L), as shown in figure 4.11b. For L = H2O there are 3 oxygen and 31 carbon atoms, for L =
MeOH there are 3 oxygen and 32 carbon atoms, for L = MeCN there are 2 oxygen and 33 carbon
atoms per complex. However, due to large number of carbon atoms in ligand L2, fractional change
in carbon is 3 % or 6 %, and even less, when adventitious carbon is treated as a baseline. Such
small changes are challenging to detect accurately given noisy XPS spectra, signal attenuation and
adventitious carbon.
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of relative amounts of the oxygen species. Also, large excess of total oxygen limits

accuracy of assignment of the actual oxygen species present in the samples.

Table 4.7: Binding energies (BEs) and relative peak areas (normalised using
R.S.F.) of fitted components in XPS spectra of N 1s, O 1s and C 1s regions of
SAM L2, SAM C2 [MeOH] and SAM C2 [MeCN]. Due to low confidence in

accuracy, presented values are for indicative purposes only.

relative to N 1s regionr

Ref.r Component
N 1s N 1s O 1s C 1s

Region A A B A B C D
BE (eV) - 399.7s 531.7 532.9 284.9 285.8 287.1 288.5
BE std. dev. (eV) - n/a 0.2 0.2 0.1 0.2 0.2 0.3
SAM L2 6.0 6.0 1.8 6.0 31.2 13.0 3.0 2.3

SAM C2 [MeOH] 6.0 5.7 3.4 4.3 19.7 15.8 3.8 1.0
6.0 6.2 3.9 8.0 28.4 19.2 4.8 1.1

SAM C2 [MeCN] 6.0 5.9 2.7 6.5 17.1 16.5 4.8 1.9
6.0 5.9 3.2 6.0 20.9 18.3 5.3 1.3

1) Components were constrained to have the same FWHM within each spectrum of each region. Across the
samples FWHM in N 1s, O 1s and C 1s varied within 1.4-1.9 eV, 1.5-2.0 eV and 1.3-1.7 eV, respectively.
2) Component A in N 1s is attributed to nitrogen in pyridine and thiomorpholine rings.j[24,41,72,73]

3) For assignment of components in O 1s and C 1s regions, please see the text.

Figure 4.13b shows little fluctuation in carbon in SAM C2 [MeCN], but significant

variation in SAM C2 [MeOH], nevertheless the higher level of carbon in SAM

C2 [MeOH] is practically the same as in SAM L2. Although fractional excess

of carbon (20-60 % relative to nitrogen/iron) is considerably smaller compared to

oxygen, however, that is equal to 6-19 atoms of carbon per complex, which is up to

two times larger than excess in oxygen (5-9 atoms per complex).

C 1s region can be fitted with at least four components at locations 284.9 eV,

285.8 eV, 287.1 eV and 288.5 eV (see table 4.7, and figures B.1c and B.2c in the

appendix). Subtle features, such as shoulders, severely affect the mathematical fit-

tings. Therefore, the outcome of the fitted components is highly sensitive even to
r See footnotei on page 126.
s See footnotem on page 128.
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smallest changes of signal in the peak. Consequently, that leads to a relatively sig-

nificant variation in their position and affects accuracy of the integrated peak areas.

Furthermore, due to significant excess of carbon, there is a high possibility that

more than four species with unique BE are present in the samples, which in turn

could dramatically affect the peak positions and therefore the peak areas of all or at

least of some components. Overall, accurate assignment of carbon species and their

relative amounts is rather challenging. As in the case of oxygen, values presented

in the table 4.7 are for indicative purposes only. Nevertheless, majority of carbons

are in pyridine and thiomorpholine rings not neighbouring nitrogen atoms, which

are assigned to component A at 284.9 eV,j while carbons next to nitrogen atoms are

associated to component B at 285.8 eV.j Binding energies of tertiary carbont and

carbon atoms in exogenous MeCNu or MeOH[71] ligand are similar, and lies in the

region coinciding with the components B and C, i.e. in the range of 285.8-287.1 eV.
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Figure 4.14: High resolution XPS spectra of SAM L2 (in red), SAM C2
[MeOH] (in black) and SAM C2 [MeCN] (in blue).

Weak and noisy signal in S 2p region (figure 4.14a) is usually associated with low

amount of sulfur on gold surface,[42,81] or signal attenuation in thick SAMs (i.e. two
tBased on poly(vinyl alcohol) (PVA), poly(vinyl methyl ether) (PVME), poly(bisphenol A

carbonate) (PBAC), poly(alpha-methylstyrene) (P-alpha-MS), Poly(isobutylene) (PIB), P2VP and
P4VP in reference[71].

u Based on poly(acrylonitrile) (PAN) and poly(methacrylonitrile) (PMAN) in reference[71].
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or more times thicker than SAM L2 or SAM C2).[42] However, in contrast to O 1s

and C 1s, the spectra of S 2p region, which exhibit two non-overlapping broad asym-

metric peaks, are almost identical in all SAM C2 samples, irrespectively of SAM

formation conditions. Furthermore, the lower BE peak (161-164 eV) in SAM C2 and

SAM L2 overlay almost perfectly, and lie in the regions where spin-orbit doublets

are usually assigned to bound and unbound thiols.[42–44] As mentioned earlier in the

characterisation of SAM L1, that does not necessarily indicate presence of mo-

lecules bound to gold surface in an unexpected manner (e.g. bound to gold through

pyridine rings or lying sideways on the surface), because presence of those spin-orbit

doublets has been reported in SAMs with thiomorpholine, thiomorpholine-like and

dialkyl monosulfide head groups.[45–50] Both SAM L2 and SAM C2 yield the same

ratio of nitrogen/iron to thiomorpholine-like sulfur (161-164 eV), independently of

SAM formation conditions. The higher BE peak at 167-170 eV is in the region of

spin-orbit doublets often attributed to oxidised sulfur (e.g. sulfone, sulfonate).v Al-

though unexpected, it is only present in SAM C2 and in complex C2 powders, and

in both cases peaks of oxidised and thiomorpholine-like sulfur are more or less equal.

Although, great care was taken in sample preparation, acquisition optimisation and

baseline correction of XPS spectra, signal quality in S 2p region is low and data

analysis is prone to erroneous interpretation, and especially with respect to the

fitting of spin-orbit doublets corresponding to the sulfur species presented in table

4.9 and figures B.1a and B.2a (in the appendix).

XPS spectra of Au 4f region in figure 4.14b show varying levels of detected gold, but

average values are similar in SAM C2 [MeOH] and in SAM C2 [MeCN], which

are ∼30 % lower than in SAM L2, and is associated with the fact that these SAMs

are less densely packed or thinner.[42,81] On the other hand, the weaker Au 4f signal
v See footnoten on page 129.
w See footnotei on page 126.
x See footnotek on page 126.
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Table 4.8: Integrated and normalised (using R.S.F.) XPS peak areas in N 1s, S
2p and Au 4f regions, and their relative ratios in SAM L2, SAM C2 [MeOH]

and SAM C2 [MeCN].

Peak area (x 1000 CPS eV)
[relative to N 1s region]w

SAM Ref.w S 2p region Au 4f
N 1s

Region Total 161 to
164 eV

167 to
170 eV Region

SAM L2 expected [6.0] [1.0] [1.0] [-] [-]
SAM C2 expected [ 6.0x] [1.0] [1.0] [-] [-]
SAM L2 1.1[6.0] 0.2[1.1] 0.2[1.2] 0.0[0.0] 20.0[112.1]

SAM C2 [MeOH] 1.7[6.0] 0.6[2.0] 0.4[1.3] 0.2[0.8] 18.6 [65.3]
2.0[6.0] 0.8[2.4] 0.3[0.9] 0.4[1.3] 31.2 [94.1]

SAM C2 [MeCN] 1.4[6.0] 0.5[2.0] 0.3[1.1] 0.2[1.0] 16.6 [71.7]
2.0[6.0] 1.1[3.1] 0.5[1.5] 0.5[1.3] 30.8 [91.8]

in SAM C2 than in SAM L2 could originate from the addition of coordinated

Fe(II) with SEL.

It is normal practice to use the Au 4f (or C 1s) peak to reference the spectral

positions, however, for the spectra presented in this section, that leads to inconsistent

shifts in other regions. On the other hand, referencing to pyridine peak in N 1s

shows reasonably consistent BE in most of the regions (as shown in the figures in

this section), but evident shifts in Au 4f region, which most likely indicates partial

coverage and charging.

Overall, XPS spectra of N 1s, Fe 2p and S 2p (thiomorpholine-like) show good

agreement in binding energies and relative peak areas across SAM L2, SAM C2

[MeOH] and SAM C2 [MeCN] samples.

y See footnotem on page 128.
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Table 4.9: Binding energies (BEs) of fitted components in N 1s and Fe 2p
regions of XPS spectra of SAM C2 [MeOH] and SAM C2 [MeCN]. Due to
low confidence in accuracy, presented peak positions are for indicative purposes

only.

Component
Ref.y S 2p Au 4f
N 1s 3/2 7/2 5/2

A A B C D A A
BE (eV) 399.7y 161.8 163.4 167.7 168.9 83.8 87.5
BE std. dev. (eV) n/a 0.1 0.1 0.5 0.4 0.2 0.2
1) Components were constrained to have the same FWHM within each spectrum of each region.
Across the samples FWHM in N 1s, S 2p and Au 4f varied within 1.4-1.9 eV, 0.9-1.4 eV and
0.8-1.0 eV, respectively.
2) Component A in N 1s is attributed to nitrogen in pyridine and thiomorpholine rings.j[24,41,72,73]

3) Component A in Au 4f is assigned to atomic gold.
4) Binding energies in S 2p are associated as follows:
- Component A and B: thiomorpholine-like sulfur.[45–50]

- Component C and D: oxidised sulfur (e.g. sulfone, sulfonate).v
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4.3.1.2 Discussion

The three most important aspects of the data presented in the previous section are:

(i) detected iron in SAM C2 (figure 4.12b); (ii) as in the case of SAM L1, presence

of S 2p spin-orbit doublets, that have been reported in SAMs with thiomorpholine

and thiomorpholine-like head groups, which are assigned to originate from slightly

different interaction of sulfur atom with gold surface in thiomorpholine compared

to conventional thiol; and (iii) consistent ratios of N:Fe:S (thiomorpholine-like) in

the samples (tables 4.4 and 4.8), which are also close to the expected ratios of 6:0:1

and 6:1:1 for SAM L2 and SAM C2 [MeOH], respectively. That indicates that

not only ligand L2, but also the SCO complex C2 is stable on gold surface, which

is in contrast to complex C1 discussed in section 4.2.2.1. Furthermore, S 2p region

suggests that SAMs are formed in a similar way to SAM L1, while the broad Fe

2p3/2 peak and presence of its satellite peak in Fe 2p region reveal that 3d electrons

are unpaired in both SAM C2 [MeOH] and SAM C2 [MeCN], which are only

common to HS states.

The single component in the N 1s region in all of the samplesh indicates that ni-

trogen atoms in thiomorpholine and in pyridine rings have similar environments

and supports previously discussed (section 4.2.2.1) assignment of nitrogen atoms in

spectra of SAM L1 (figure 4.6b). Moreover, binding energy of nitrogen in pyridine

does not change significantly, due to coordination of Fe, because the spectra are

referenced to pyridine nitrogen at 399.7, but there is little or no variation in peak

positions in O 1s, C 1s and S 2p regions.

If complex C2 is dissolved in MeOH, then SEL H2O is replaced by MeOH. Con-

sequently, MeOH is expected to be the SEL in SAM C2 [MeOH]. However, it is

challenging to detect the difference in chemical composition with XPS, because it

changes only by one carbon atom, which is equivalent to ∼3 %. Moreover, there is a
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possibility, that once SAMs are exposed to ambient conditions during sample trans-

fer or characterisation, H2O from moisture displaces MeOH as the SEL. Therefore,

both states are treated as one with SEL denoted as MeOH/H2O.

If complex C2 is dissolved in MeCN, SEL H2O is replaced by MeCN. Similarly to

the previous case, MeCN is expected to be the SEL in SAM C2 [MeCN]. However,

XPS data suggest that it is not the case, because the BE of nitrogen in MeCN (i.e.

nitrile group) is expected to be within or around the peak observed in N 1s region,z

but integrated regions (tables 4.4 and 4.8) suggest similar ratio of S:N for SAM L2

and SAM C2, and S:N:Fe for SAM C2 [MeOH] and SAM C2 [MeCN], and

those ratios correspond to six nitrogens per molecule. Furthermore, complex C2 is

in LS state, when SEL is MeCN, but, as discussed earlier, Fe 2p spectra indicate

that both SAM C2 [MeOH] and SAM C2 [MeCN] are in the same state and

that it is HS state. Most likely explanation for this case would be replacement of

SEL MeCN with H2O from moisture upon exposure to ambient conditions.

Nevertheless, it cannot be ruled out that MeCN stays coordinated to the complex

(at least in a fraction of the molecules). Firstly, in case the seventh nitrogen is

present in the complex, expectedaa drop in SAM C2 [MeCN] is 14 % in S 2p

and Fe 2p regions, which could be comparable to variation introduced from baseline

correction, due to weak and noisy signal in S 2p and Fe 2p regions, and complex

background in the latter. Secondly, there is a possibility that Fe(II) is oxidised to

Fe(III). Although, Fe(III) complex of closely related ligand Py5 has been reported

to be unstable under ambient conditions,[55,56] close proximity to gold surface could

affect electronic configuration in complex C2. In case SAM C2 contains Fe(III)
z Peak position is expected within the range 398-400 eV, based on reported BE of nitrogen in

condensed MeCN[82], in polymers containing nitrile group - PAN and PMAN[71], and in thiocyanate
anion[68–70].

aa The replacement of MeOH/H2O with MeCN as the SEL and vice versa changes the amount
of nitrogen, but does not affect the levels of sulfur or iron. However, that does change XPS spectra
in S 2p, Fe 2p and other regions, because all of the spectra are normalised to have equal integrated
area in N 1s region. Expected quantitative changes in XPS spectra, due to replacement of SEL,
are calculated and discussed in section B.1.
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centres, switching between LS and HS states would lead to subtle changes in XPS

spectra of Fe 2p region,[67] which, of course, would be challenging to differentiate.

Finally, it has been reported that direct contact of complexes with gold surfaces can

cause unexpected effects, such as change in coordination number and geometry of a

complex, suppressed transition, reduced ligand field strength.[23]

Neither the O 1s, nor the C 1s regions provide important quantitative informa-

tion about the SAMs, because there is a significant variation in the signal in some

samples, and potential for confounding signals from contamination. While bind-

ing energies of the fitted components are comparable to the reported values of the

expected species, most of the peaks are in the region that is also associated with

oxygen and carbon in adventitious hydrocarbon contamination. Such contamina-

tion is small in well packed conventional thiol SAMs, such as C18 SAM. Therefore,

observed high excess of carbon and oxygen could indicate poorly packed and dis-

ordered SAM originating from ineffective displacement of hydrocarbons reversibly

adsorbed to gold surface (naturally occurring when handling even freshly cleaned

gold surfaces under ambient conditions[43,51]) during SAM formation, due to a com-

bination of weak head group affinity towards gold[43,51,52] and bulky shape of the

molecules preventing close packing of head groups.[53] In addition to a possibility of

non-displaced natural contamination, signal in Cl 2p (not from ClO4
-[80]), F 1s and

Br 3p were detected by XPS (figure B.13 in the appendix), which could indicate

presence of chloride, fluoride and bromide traces from synthesis of the compounds

and could contain varying amounts of oxygen and carbon. Finally, higher levels of

impurities could be attracted to SAM C2 by the unscreened Fe ions (ClO4
- counter

ions are detected in powder and drop-cast samples of reagent complex C2, but not

in SAM C2).

Oxidation of sulfur is associated with synthesis of complex C2 or its storage, but

not the process of SAM C2 formation, because almost equal amounts of oxidised
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and thiomorpholine-like sulfur are present in powder, dropcast and SAM samples of

complex C2, but not in analogous samples of ligand L2. Therefore, higher quality

SAM C2 could potentially be achieved by coordinating Fe(II) to SAM L2, which

will be characterised in section 4.3.3.

One of the main concerns, low signal quality in the XPS spectra, could be improved

by performing area scans, that would allow to average scans acquired over multiple

spots on the sample without inducing damage due to prolonged exposure to the

incident X-rays. However, other important issues, such as excess of carbon, oxygen

and presence of impurities could originate from low surface coverage, which is indic-

ated by large ratios of underlying gold atoms per molecule (70:1 to 120:1) compared

to a well packed alkanethiol SAM (20:1). Perhaps the best improvement would be

an alternative head group, for example a thiol, to lead to better quality SAMs.
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4.3.2 Ligand exchange in SAM C2 by rinsing

As mentioned above, molecules of certain solvents (used to dissolve complex C2)

can replace the SEL, which in turn affect the spin state. For molecules immobilised

on a surface, i.e. SAMs, ligand exchange should take place simply by rinsing with

appropriate solvent, as depicted in diagram in figure 4.15. This section presents

XPS data of fresh SAM C2 [MeOH] and SAM C2 [MeCN], and rinsed with

MeCN and MeOH, respectively.

Figure 4.15: Schematic detailing reversible ligand exchange by rinsing SAM
C2 with MeCN and MeOH.

XPS spectra of SAM C2 [MeOH] and SAM C2 [MeCN] presented in the pre-

vious section did not show significant enough changes in N 1s and Fe 2p regions to

clearly indicate the change of Fe spin state or of the SEL. The uncertainty was partly

attributed to variation in signal, but further complications arose from the excess sig-

nal in O 1s and C 1s regions, that are associated with underlying contamination.

Data presented in this section has been acquired on the same samples before and

after rinsing, this way contributions from the underlying contamination and impur-

ities were eliminated, so changes in the data presented in this section should closely

represent change of the SEL. Samples were rinsed with a corresponding pure solvent

using a glass pipette for 1 min at room temperature.

4.3.2.1 SAM C2 [MeOH] - rinsing with MeCN

Figure 4.16 compares spectra of SAM C2 [MeOH] before and after the rinse with

MeCN. Figure 4.16a shows no significant change in N 1s region, because it was used
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to normalised spectra just like in section 4.3.1.1, but figure 4.16b shows no evident

change in Fe 2p region either. In order to enhance XPS signal, Fe 2p region was also

acquired with higher pass energy (i.e. PE=30 eV and PE=40 eV), but the spectra

in figure B.4 (in the appendix) still show no change in the shape, while variation in

intensity is attributed to baseline correction of the complex background.

 

 

 
 

 

 

 

 
  

 

 

 

 
 

  
 

 

 

 

 

 
 

   

  
  

 

 
 

   
 

 

 

  

 

 

 
 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 
 

 

 

 
 

  

 

 

 
  

 

  

 

 

 

 

 
 

 

 

 

   

 
 

 

 

 
 

 

 
 

 

 

  
 

 

  
 

 

 
 

 

 
 

   

 
 

 

 

 

  
  

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 
 

 
 

  

 

 

 

 

 
 

 

  
 

 
 

 

 

 

 
 

 

 

 
 

 

 
 

 

 

 
  

 
  

 

 

 

  0.0K

0.5K

1.0K

1.5K

396398400402404
Binding Energy (eV)

C
ou

nt
s 

pe
r 

se
co

nd
 (

C
P

S
)

N1s

(a) Nitrogen N 1s region

                                                                              

 
 

 

 

 

 
 

 

 
 

 

 

 

 

 
 
 

 

 

 

 

 

  
  

 
 

  

   
 

  

 

 

 

 

 

 

  
 

 

 

 
 

 
  

  

 

 

  

 
 

 
 

 

 

 

  

 
  

 

  
 
 

 

 

 

 
 
 
 

 

 

 

 

 

 

  

 

 

 

  

 

 

 

 

 

 
 

 
 

 
 

 

 

 

 

 

 

 

 

 
  

 

 

 
 

  

 
 

 

 

  
 

 

 
 
 

 

 

 

  
 

 

 

 

 

 

 

 

 

 

 
 

  

 

 

 
 

 

  

 
 
  

 

  
 

  

 

 

 

  

 

  
 
 

 

 

 

 

 

  

 
 

 

 
 

 

 

 

  
 

 

 

 

 
 

 

 

 

 

 

 
 

  
 

 

 
 

 

 

 

 

 

 

 

 

  
 

   

  

 

 

 

  
 

 

 
 

 

  

 

   

  

   
 

 

 

  

  

                                                                                                
 

 

 

 

 

 

 

  

 

 

 

 
 

  

 

 

 
 
 

 

 
 

 

 

 

  
 

  
 

 
 

 

 

 
 

 

 

 

 
 

 

  

 
 

 

 

 
 

 

 

  

 

 

 

 

 

 

 

 

 
 

 
 

 
 

 

 

  

 

 

  

 

 

  

 

 

 

 
 

 

 

 

  
 

 

  

 

 

 

 

 

 
 

 

 

 

  

 

 
 

 

 

 

 

 

 

 

 
  

 

 

 

 

 

 

 
 

 

  
  

 

 

 

 

 

 

 

  
  

 

 

 

 

 

 

 
 

 

  
 
 
 

 

 

 

 
  

 

 

 

 

 
 

 
 

 
 

 

 

 

 

 
 

 

 

 

 

 

  

 

 

 

 

 

 

 

 
  

 

 
 

 

 

 

 
 
 

 
 

 

 

  

 

 

 
 

 

 
 

 

 

 

 

 

 

 

 

 

 

  
 

 
 
 

 

 

 
 

 
  

 

 
 

 

 

 0.0K

0.2K

0.4K

0.6K

705710715720725730
Binding Energy (eV)

C
ou

nt
s 

pe
r 

se
co

nd
 (

C
P

S
)

Fe2p

(b) Iron Fe 2p region

        
 

 
 

 
 

  
  

 
 

 

 

 
 

 
 

 
 

  

 
  

 

    
 

 
 

 

  

 
 

 

 

 

 

 

 

 

 
 

 

 
 

 

 
 

 

 

  
  

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 
 

 

 
   

 
 

 
  

 

 
 

 
  

  

                     

 
 

  
 

 
 

 

 
  

 

    
 

 

 

 

 
   

 
 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
   

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 
  

    

 
 

  

 

     
 

 

 
 

0K

1K

2K

3K

528530532534536538
Binding Energy (eV)

C
ou

nt
s 

pe
r 

se
co

nd
 (

C
P

S
)

O1s

(c) Oxygen O 1s region

 
 

 
  

  
  

  
  

  
   

 
        

 

 
 

 
     

 

  
  

 
 

     

  

 

 
     

  
 

 
 

 
 

  

 
 

  

 

 

 
 

 

 

 

 

 

 

 

 

 

 
  

  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 
  

 
 

 
 

  
 

  
   

 
    

 
 

        
  

 
 

 
 

    
   

 
 

 
   

  

 
   

  

 
   

  
 

 
        

    
 

 
  

 
 

  
 

 

  

 
 

 

 

 

 

 

 

 

 

 

 

  
 

    

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 
    

  
 

 
  

  
 

 
  0K

1K

2K

3K

4K

282284286288290292
Binding Energy (eV)

C
ou

nt
s 

pe
r 

se
co

nd
 (

C
P

S
)

C1s

(d) Carbon C 1s region

           

 

 

 
  

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

  

 

 

 

 

 

 

 

 

 

 

 
 

 

 

  

 

 
 

 

 

 

 

 

 

 

 

 
  

 

 
 

 
 

 

 

 

 

 

 

 

 

 

 
 

  

 

 

 

 
 

 

 

 

 

 

 

  
 

 

 

 
 

 

  
 

 

 

 
 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 
  

 
 
 
 

 

 

 

 
 
 

 

 

 

 

 

 

 

 

 

 

 

 
 

 
 

 

 

 

 

 

 

 

 

 

 

  

  

 

 

 

 

 

 

 

                  

 

 

 

 

 

 

   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 
 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

  

 

 

 

 

 

 

 
 

 

 

 

 
 

 

 

 

 
  

   

 

 

 

  

 

 
  

 

 

 

 

 
 

 
 

 

 
 

 

 

 

  

 

 

 

 
 

 

 

 

 

 
 

 

 
 

 
 

 

 

 

 

 

 
 

  

 

 

 
 

 
 
   

 

 

 

  

 

 

 

 

 

 

  

 

 

   

 

 

 

 
 

 

 

  0.0K

0.1K

0.2K

160165170
Binding Energy (eV)

C
ou

nt
s 

pe
r 

se
co

nd
 (

C
P

S
)

S2p

(e) Sulfur S 2p region

                                      
 

 
 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 
 

 
               

 
 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 
                                                        

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

                
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 
                   0K

50K

100K

150K

200K

82.585.087.590.0
Binding Energy (eV)

C
ou

nt
s 

pe
r 

se
co

nd
 (

C
P

S
)

Au4f

(f) Gold Au 4f region

Figure 4.16: High resolution XPS spectra of SAM C2 [MeOH] before (in
black) and after (in red) rinsing with MeCN. Complexes in the SAM are expected
to switch from HS to LS state, however, there are no significant changes in N 1s,

Fe 2p, S 2p, O 1s and C 1s regions.
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Similarly there are no significant differences in O 1s and C 1s regions (figures 4.16c

and 4.16d). Although S 2p signal is weak, figure 4.16e indicates almost identical

composition and quantity of sulfur species. However, the Au 4f spectra are quite

different. The change of 0.1 eV in BE is within instrument’s resolution, but the peak

area is about 40 % higher after the rinse.

As a control, a second sample of SAM C2 [MeOH] was prepared, taken out of

the growth solution, rinsed with pure MeOH, dried under stream of nitrogen and

immediately rinsed with MeCN. Comparison of XPS spectra of this sample and the

first sample (SAM C2 [MeOH] before it was rinsed with MeCN) is presented in

figures B.6 and B.7 (in the appendix), and again show no important differences.

A further rinse of the second sample with MeCN did not yield any changes either,

except a small drop in oxidised sulfur and tiny increase in Au 4f signal (figures B.8

and B.9 in the appendix).

4.3.2.2 SAM C2 [MeCN] - rinsing with MeOH

Although, MeCN coordinates to transition metals stronger than H2O or MeOH, a

reverse ligand exchange has been reported in Fe(II) complex of closely related ligand

Py5.[56,62] Figure 4.17 compares spectra of SAM C2 [MeCN] before and after

rinsing with MeOH. It also contains reference spectra of samples discussed in the

previous section, i.e. sample 1 (SAM C2 [MeOH] before rinsing with MeCN) and

sample 2 (SAM C2 [MeOH] rinsed with MeCN immediately after SAM formation).

Once again, the spectra are normalised using N 1s region. Fresh and rinsed SAM

C2 [MeCN] yield similar spectra in N 1s, Fe 2p and S 2p regions. Spectra of Fe

2p region in figure B.5 (in the appendix) were acquired at higher pass energies (i.e.

PE=30 eV and PE=40 eV), however, there are no noticeable changes in the shape

of the spectra, either. Amounts of oxygen and carbon slightly increase and reach
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levels comparable to the reference spectra, while peak area in Au 4f region increases

by 65 % after the rinse.
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Figure 4.17: High resolution XPS spectra of SAM C2 [MeCN] before (in
black) and after (in red) rinsing with MeOH. For the comparison purposes,
spectra of the first sample (SAM C2 [MeOH] before the rinse with MeCN)
and the second sample (SAM C2 [MeOH] rinsed with MeCN immediately after

SAM formation) are added (in blue).
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4.3.2.3 Discussion

Successful replacement of H2O with MeCN at SEL position in SAM C2 [MeOH]

would lead to an increase in nitrogen, however, because all of the spectra are norm-

alised to have equal integrated areas in N 1s region, this would lead to an apparent

drop in peak areas of 14 % in S 2p and Fe 2p, 12 % in C 1s and 22 % in O 1s re-

gion, as explained in section B.1. No such drops are evident in XPS data (figure

4.16) of rinsed SAM C2 [MeOH]. In fact, the differences between spectra of fresh

and rinsed SAM C2 [MeOH] are effectively negligible and indicate that relative

ratio of N, Fe, S, C and O chemical elements and their species do not change upon

rinsing with MeCN, which leads to a conclusion that ligand exchange does not take

place. The second sample of SAM C2 [MeOH], which was rinsed immediately

after SAM formation, gives the same outcome, and further rinse with MeCN had no

effect either.

The same – but positive – changes in the peak areas are expected in case of successful

replacement of MeCN with MeOH at the SEL position in SAM C2 [MeCN] upon

rinsing with MeOH. Once again, no such changes can be seen in Fe 2p and S 2p

regions (figure 4.17 and B.8). Although, there is an increase in O 1s and C 1s regions

after the rinse, the increase is relative. Absolute quantities of all elements other than

gold decrease, therefore relative growth of O 1s and C 1s, but not S 2p and Fe 2p,

is likely to originate from the higher loss of complex C2 molecules from the surface

than the underlying contamination during the rinsing step. Again, this leads to the

same conclusion that ligand exchange does not take place.

Furthermore, there is little difference between fresh SAM C2 [MeOH] and SAM

C2 [MeCN] (figure 4.17). This suggests presence of the same SEL in SAM C2

under all investigated conditions so far, in agreement with the discussion of data in

section 4.3.1.1. This also explains, why the shape of spectra in Fe 2p region does

not change and always corresponds to the same state. SAM C2 [MeOH] samples
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were prepared using complex C2 powder without exposure to MeCN, therefore those

molecule cannot contain MeCN at the SEL position and should have only six nitro-

gen atoms, which is supported by the quantitative analysis of peak areas in tables

4.4 and 4.8. Likewise, SAM C2 [MeCN] samples were prepared using complex

C2 without exposure to MeOH and cannot contain it at the SEL position. Because

solvent molecules coordinate to the SEL position in complex C2 in solution, the

most likely explanation is that SAM C2 contains MeOH or MeCN depending on

the solvent of the growth solution, however, upon exposure to ambient conditions,

H2O from moisture coordinates to the SEL position. Such coordination pathway

also explains why spectra of Fe 2p region always indicate HS state.

Finally, it is important to highlight that upon rinsing SAM C2 with the same type of

solvent that was used in growth solution, intensity of signal in Au 4f region increased

slightly. However, when SAM C2 is rinsed with a different solvent (e.g. SAM C2

[MeOH] is rinsed with MeCN), intensity increases 40-65 %, which indicates loss

of complex C2 from the surface and suggests weak affinity of thiomorpholine head

group towards gold surface.
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4.3.3 Fe coordination to SAM L2

As in the case of SAM L1, coordination of Fe(II) was attempted on SAM L2,

in order to construct SCO complex on the surface. SAM L2 was formed from

chloroform (CHCl3) solution and then immersed into ∼5 mM Fe(ClO4)2 in MeCN

or in H2O for 1 min and for 30 min, in order to coordinate Fe(II) to ligand L2 in

SAM L2, as depicted in figure 4.18.

Figure 4.18: Schematic detailing Fe coordination to SAM L2 in MeCN or H2O.

4.3.3.1 Fe(II) coordination in MeCN solution

Figure 4.19 compares XPS spectra of fresh SAM L2, SAM L2 after immersion into

∼5 mM Fe(ClO4)2 in MeCN for 1 min and for 30 min, and fresh SAM C2. Figure

4.19b shows no iron in fresh SAM L2, but, in contrast to SAM L1, presence of Fe

even after 1 min of coordination. There are significantly (2-2.5 times) more iron in

SAM L2 after 1 min than after 30 min of immersion time, however, it is the latter,

that shows the same signal strength and shape in Fe 2p region as SAM C2, which

indicates the same N:Fe ratio in both SAMs.

Similar trend appears in O 1s region - fresh SAM L2, SAM L2 exposed to ∼5 mM

Fe(ClO4)2 in MeCN for 30 min, and fresh SAM C2 shows similar peak shapes

and intensities, but after just 1 min of coordination to SAM L2 the main oxygen

peak almost doubles in intensity and a distinct shoulder appears at 530.3 eV (figure

B.3d in the appendix), which falls within the region reported for oxygen in iron

oxides.[64,66,79]
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Figure 4.19: High resolution XPS spectra of SAM L2 (in purple), SAM
L2+Fe(1m) and SAM L2+Fe(30m) exposed to ∼5 mM Fe(ClO4)2 in MeCN

(in red and blue, respectively), and SAM C2 (in green).

There are similar amounts of thiomorpholine-like sulfur in all of the SAMs, while

oxidised sulfur appears only in fresh SAM C2 (figure 4.19e). SAM L2+Fe(30m)

and SAM C2 show almost equivalent levels and species of carbon and gold, while

amount of carbon is noticeably higher in SAM L2 and SAM L2+Fe(1m).
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The gold signal is strongest in SAM L2, which is in agreement with the increase

of signal in other regions in other SAMs, however, the stronger signal in SAM

L2+Fe(1m) than in SAM L2+Fe(30m) does not correlate with higher levels of

Fe, which are expected to additionally attenuate signal from gold surface. SAM

L2+Fe(1m) with highest levels of iron yield lowest BE in Au 4f, SAM C2 and

SAM L2+Fe(30m) show very similar intermediate BE, and SAM L2 containing

no iron at all show the highest BE in Au 4f.

Overall, SAM C2 and SAM L2+Fe(30m) yield fairly similar spectra. In fact,

all of the SAMs, except SAM L2+Fe(1m), yield similar S:N:O:Fe ratios.bb Com-

parable fractional increase of iron and oxygen in SAM L2+Fe(1m) suggests that

excess iron is in a form of Fe-OR.

4.3.3.2 Fe(II) coordination in aqueous solution

Figure 4.20 compares spectra of SAM L2+Fe(1m) and SAM L2+Fe(30m) pre-

pared by immersion into the Fe(II) solution in H2O and in MeCN. Intensity of Fe

2p3/2 peak in both SAMs exposed to Fe(II) solution in H2O is even stronger than

recorded for SAM L2+Fe(1m) exposed to the solution in MeCN. However, due

to similar intensities of Fe 2p1/2 peaks, variation in Fe 2p3/2 might originate from

the background correction. These SAMs also yield rather similar spectra in O 1s

region, and all SAMs show similar spectra in S 2p region. On the other hand, both

SAMs exposed to the Fe(II) solution in H2O yield equivalent spectra in C 1s, and

show noticeably stronger peak at ∼285 eV compared to SAM L2+Fe(1m) treated

in Fe(II) solution in MeCN. Finally, the intensity in Au 4f region is different for

all the SAMs, but, SAMs exposed to aqueos solution of Fe(II) show weaker signal,

which correlates with presence of higher carbon (and possibly iron) levels in those
bb Similar S:N:O ratio in SAM L2, because there is no iron.
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SAMs. On the other hand, the BEs in these SAMs do not follow the same trend as

in the data discussed in section 4.3.3.1.
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Figure 4.20: High resolution XPS spectra of SAM L2+Fe(1m) and SAM
L2+Fe(30m) exposed to ∼5 mM Fe(ClO4)2 in MeCN (in red and blue, re-
spectively), and SAM L2+Fe(1m) and SAM L2+Fe(30m) exposed to ∼5 mM

Fe(ClO4)2 in H2O (in green and purple, respectively).

Overall, SAM L2+Fe(1m) and SAM L2+Fe(30m) produced by exposing to the

Fe(II) solution in H2O, and SAM L2+Fe(1m) produced by exposing to the MeCN
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solution yield similar or almost identical relative amounts and species of N, O, S, and

Fe. Lower peak intensity of Au 4f in SAM L2+Fe(1m) and SAM L2+Fe(30m)

produced by exposing to the Fe(II) solution in H2O does correlate to the higher

levels or carbon, however, the shift of the peak positions to higher BE does not

follow the trend observed in the data discussed in section 4.3.3.1. Rinsing SAM

L2+Fe(1m) and SAM L2+Fe(30m) (produced by exposing to the aqueous Fe(II)

solution) with MeCN did not yield any important changes in the spectra (see figures

B.10, B.11 and B.12 in the appendix).
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4.3.3.3 Discussion

SAM L2, just like SAM L1, is composed of a ligand molecules, i.e. Fe(II) centres

are absent. However, unlike in SAM L1, immersion into ∼5 mM Fe(ClO4)2 in

MeCN or in H2O yields evident iron coordination. Different immersion times (i.e.

1 min and 30 min) into the Fe(II) solution in H2O yield practically identical spectra

in N 1s, S 2p, C 1s regions, and only slightly different spectra in Fe 2p, O 1s and Au

4f regions, which suggest effectively the same chemical composition in the resulting

SAMs (see figure 4.20).

Short immersion time (i.e. 1 min) into the Fe(II) solution in MeCN has similar

effect on SAM L2 as immersion into the H2O solution discussed abovecc. On the

other hand, longer immersion time (i.e. 30 min) into the Fe(II) solution in MeCN

does lead to unexpectedly different XPS spectra compared to the shorter immersion

time, i.e. severe drop in peak areas in Fe 2p, O 1s and C 1s regions. Surprisingly,

such spectra are practically identical to that of SAM C2
dd (see figure 4.19), which

suggest successful formation of complex C2 by coordination of Fe(II) to ligand L2

immobilised on the gold surface, this is effectively a conversion of SAM L2 into

SAM C2, but without introduction of the oxidised sulfur.

Furthermore, SAM L2+Fe(30m) from the Fe(II) solution in MeCN and fresh

SAM L2 show more or less identical spectra, except the latter yields slightly higher

levels of carbon (assigned to adventitious contamination), obviously no iron peaks,

and therefore stronger signal in Au 4f region. Therefore, abnormally high levels of

Fe, in addition to significant increase of oxygen and carbon, in the other SAMs are

attributed to excess iron, which is 2.5-3.0 times higher than expected. It most likely

originates from a rapid coordination of multiple Fe(II) ions to each ligand L2, due
ccCompared to SAM L2 immersed into ∼5 mM Fe(ClO4)2 in MeCN, SAM L2 exposed to the

analogous solution in H2O for 1 min show very similar spectra in N 1s, S 2p, O 1s regions, small
drop in Fe 2p and more significant drop in C 1s regions, which in turn leads to increase in Au 4f
peak. Such spectra similarities suggest similar chemical composition.

dd Except the peak associated with oxidised sulfur in S 2p spectrum of SAM C2.
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to high concentration (5 mM) of Fe(II) ions in the solutions. However, over time

(30 min) a more energetically favourable state is reached, where there is only one

iron molecule per ligand L2, as pyridine coordinate stronger than H2O or MeCN.

Absence of significant increase in N 1s regions implies that H2O molecules coordinate

to available sites on Fe(II) ions.
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4.4 Conclusions

SAMs of two new ligands tridentate L1 and pentadentate L2, which are promising

in designing SCO complexes, were successfully formed and characterised. Both lig-

ands facilitate their self-assembly on gold through the thiomorpholine head group,

however, their coordination properties are rather different, which became evident

in early stages of this study. Neither coordination of Fe(II) to SAM L1, nor SAM

formation of its preformed complex C1 has been achieved. In fact, XPS charac-

terisation revealed that SAM L1 is hardly different from SAM formed in solution

of complex C1, implying demetallisation in complex C2 during SAM formation.

On the other hand, SAM L2 successfully coordinates Fe ions (with ∼100 % yield)

and its preformed complex C2 successfully forms SAMs. Indeed, XPS spectra of

the former and the latter are more or less identical, except the presence of oxidised

sulfur in SAM C2.

It was observed that in presence of high concentration of Fe ions coordination takes

place in two stages. In the first stage, iron ions rapidly (within less than a minute)

coordinate to pyridine rings, that results in multiple iron ions per ligand L2 molecule.

In the second stage, system slowly (less than 30 min in MeCN, but longer in H2O)

approaches its minimum energy, where pyridine displaces H2O or MeCN ligands, to

leave a single iron ion per ligand L2.

Due to pentadentate nature of ligand L2, complex C2 can accommodate a labile

sixth exogenous ligand (SEL), that determines if complex exhibits SCO behaviour

or stays ‘locked’ in HS or LS state. Although, MeOH and MeCN leads to HS (at RT)

and LS state in solution, respectively, Fe 2p region indicates HS state in both types

of SAM. While there is a number of potential complications (direct contact with gold

can suppress SCO behaviour and weaken ligand coordination,[23] vacuum can lead

to loss of coordinated MeCN,[56] Fe(II) could oxidise to Fe(III), XPS measurements
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themselves could induce damage to name a few), it is unclear if ligand substitution

does take place at all. However, comparison of SAM C2, formed under different

conditions, rinsed with different solvents or having Fe(II) coordinated in different

solvents, suggests that H2O from moisture replaces an existing SEL upon sample

exposure to ambient conditions.

A significantly higher level of carbon and oxygen than expected for adventitious

contamination, especially in SAM L2 and SAM C2, presence of impurities, weaker

XPS signal in S 2p region than in other SAMs of comparable thickness, increasing

intensity in Au 4f upon rinsing samples with different solvent have been attributed

to weak interaction between thiomorpholine and gold surface.
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Chapter 5

Characterisation of simple

ω-alkanethiol, aromatic, COOH-

and azide-terminated SAMs

Some of the data presented in this chapter on the stability of COOH-terminated

SAMs under soft UV in acidic conditions are included in the publication (in prepar-

ation):

L. Pukenas, P. Prompinit, B. Nishitha, D. J. Tate, N. D. Pradeep Singh, C. Wälti,

S. D. Evans and R. J. Bushby. Soft UV Photo-patterning and Metallization of Self-

Assembled Monolayers of the Lipoic Acid Ester of α-Hydroxy-1-acylpyrene: The

Generality of Acid Catalysed Removal of Thiol-on-Gold SAMs using Soft UV Light.

(in preparation)

Some of the data presented in this chapter on the study of SAM formation of azide

terminated and other long-chain alkanethiololigoethyleneglycols (LCAT-OEG), their

mixing and facilitation of click chemistry on the surface are included in the public-

ation:

162
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J. Murray, D. Nowak, L. Pukenas, R. Azhar, M. Guillorit, C. Wälti, K. Critchley,

S. Johnson and R. S. Bon. Solid phase synthesis of functionalised SAM-forming

alkanethiol-oligoethyleneglycols. J. Mater. Chem. B, 2(24), 3741-3744 (2014)

Data of ellipsometry measurements of BPDT SAM and BPT SAM, and of C4

SAM, C5 SAM, C9 SAM, C12 SAM and C18 SAM for surface enhanced Ra-

man spectroscopy and plasmonic systems are included in the following publications:

F. Benz, C. Tserkezis, L. O. Herrmann, B. de Nijs, A. Sanders, D. O. Sigle, L.

Pukenas, S. D. Evans, J. Aizpurua, and J. J. Baumberg. Nanooptics of molecular-

shunted plasmonic nanojunctions. Nano Letters, 15(1), 669-674 (2015)

F. Benz, B. de Nijs, C. Tserkezis, R. Chikkaraddy, D. O. Sigle, L. Pukenas, S.

D. Evans, J. Aizpurua, and J. J. Baumberg. Generalized circuit model for coupled

plasmonic systems. Optics Express, 23(26), 33255-33269 (2015)

This chapter is split into three parts. The first part presents the characterisation of

self-assembled monolayers (SAMs) terminated with carboxylic acid (COOH) group

and their stability under irradiation with soft UV (365 nm, 4 mW cm−2) for 1.5 h in

the acidic catalyst (100 mM HCl in IPA) using ellipsometry, wetting measurements,

XPS and FTIR spectroscopy. SAMs based on dithiolane head group (ALA SAM)

and conventional thiol head group (DTBA SAM, MHA SAM, MOA SAM and

MUA SAM) were investigated. The main objectives of this study were as follows:

• to investigate the stability of COOH SAM based on dithiolane head group

(lipoic acid SAM), which is the protected group in SAM1.
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• to investigate the stability of COOH SAMs based on conventional thiol head

group (DTBA SAM, MHA SAM, MOA SAM and MUA SAM).

• to determine if the instability of ALA SAM originates from its low thickness

or unconventional dithiolane head group that is prone to cross-linking.

• to investigate the suitability of the SAMs for photo-patterning and selective

copper electrochemical deposition.

The second part presents the characterisation of SAM formation using azide ter-

minated long-chain alkanethiololigoethyleneglycol (LCAT-OEG) and its ability to

facilitate click chemistry on the surface. The main objectives of this study were as

follows:

• to determine the quality of azide terminated SAM (SAM2) and alcohol ter-

minated LCAT-OEG SAMs (LCAT-OEG-4 SAM, LCAT-OEG-1 SAM)

(see figure 5.9).

• to investigate the mixing of reagent 2 with LCAT-OEG-4 or LCAT-OEG-

1 in a SAM environment (see figure 5.10b).

• to investigate click chemistry of SAM2 surface using strained cyclooctyne

under catalyst-free aqueous conditions (see figure 5.10c).

Finally, the third part discusses the use of BPDT SAM and BPT SAM to study

how molecular conductivity affects a surrounding plasmonic junction, and the use

of simple alkanethiol SAMs to evaluate a generalised circuit model for coupled plas-

monic systems.
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5.1 Stability of COOH-terminated SAMs under

soft UV in acidic conditions

The study on photolysis of SAM1, presented in chapter 3, produced some unexpec-

ted results (figure 3.2). It was found that the photo-reaction in SAM1 only takes

place upon UV irradiation in the acidic catalyst (100 mM HCl in IPA), however,

it leads to a loss of molecules instead of the expected deprotection of carboxylic

acid (COOH) monolayer. Three photolysis pathways were proposed (figure 3.12),

however, the most likely pathway (Scheme B in figure 3.12) is associated with the

instability of lipoic acid. In the light of such results and to confirm the proposal,

this chapter presents a study on the stability of ALA SAM under the photolysis

conditions. For a better understanding of whether the possible instability could be

related to thin SAM thickness or the unconventional dithiolane head group prone

to cross-linking (figure 3.10), this chapter also includes an investigation of other

COOH-terminated SAMs of similar thickness, but with thiolate rather than dith-

iolane head group, i.e. DTBA SAM, MHA SAM, MOA SAM and MUA

SAM.
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5.1.1 Ellipsometry and Wetting measurements

Wettability data and thickness obtained from ellipsometry measurements of DTBA

SAM, MHA SAM, ALA SAM, MOA SAM and MUA SAM before and after

exposure to soft UV (365 nm, 4 mW cm−2) for 1.5 h in the acidic catalyst (100 mM

HCl in IPA) are shown in table 5.1. Fresh SAMs yield ellipsometric thicknesses in

a good agreement with the expected values.a The UV treatment does not affect

the thickness of MOA SAM and MUA SAM, but significantly reduces (to 2-3 Å)

the thickness of DTBA SAM, MHA SAM and ALA SAM. Nevertheless the

thicknesses of the latter three SAMs fall into the region, where accuracy is low

due to the contamination layer of hydrocarbons few angstroms thick always being

present on clean gold (which is used as a reference), that has been briefly exposed

to ambient conditions (even if it was piranha cleaned immediately beforehand),[1,2]

in addition to the usual instrumental error and sample-to-sample variation of at

least 1-2 Å. Consequently, treated DTBA SAM might have an actual thickness

lower than 3 Å, while MHA SAM has a thickness higher than 2 Å and ALA SAM

higher than 3 Å. Furthermore, additional hydrocarbon contamination will arise in

disordered SAMs, which again will have a greater fractional impact on the thickness

in SAMs with poor surface coverage and lower initial thickness.

All SAMs (except MOA SAM) show wetting (<10°) receding contact angle, which

is typical for SAMs terminated with carboxylic acid group. High advancing angle

(45°) on DTBA SAM, and in turn large hysteresis (40°), indicates high chemical

or physical surface roughness, which usually is indicative of disordered SAM. Other

SAMs (except MOA SAM) show lower advancing angles (∼30°), but they are still

higher than reported wetting angles for carboxylic acid terminated SAMs, which

is attributed to lower packing, ordering and a possibility that a small fraction of

the surfaces are covered with a double layer. It has been reported that the quality
a Based on conventional 30° tilt angle from the surface normal and molecule’s chain length

calculated with HyperChem package (semi-empirical AM1).
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Table 5.1: Ellipsometric thickness and contact angles of fresh and UV treated
under acidic conditions DTBA SAM, MHA SAM, ALA SAM, MOA SAM

and MUA SAM.

SAM
Ellipsometric
thickness (Å) Water contact angles (°)

Measured Expecteda Advancing Receding Hysteresis
C18 SAM 22 ± 2 22 111 ± 1 103 ± 2 8
DTBA SAM 6 ± 2 6 45 ± 2 5 ± 1 40
DTBA SAM+UVHCl

1.5 h 3 ± 2 6 94 ± 4 51 ± 4 43

MHA SAM 8 ± 1 8 32 ± 9 6 ± 2 26
MHA SAM+UVHCl

1.5 h 2 ± 2 8 79 ± 8 49 ± 6 30

ALA SAM 9 ± 2 8 30 ± 2 7 ± 2 23
ALA SAM+UVHCl

1.5 h 3 ± 2 8 70 ± 2 18 ± 4 52

MOA SAM 10 ± 1 10 39 ± 4 19 ± 2 20
MOA SAM+UVHCl

1.5 h 10 ± 1 10 63 ± 2 26 ± 1 37

MUA SAM 15 ± 1 14 29 ± 12 5 ± 1 24
MUA SAM+UVHCl

1.5 h 14 ± 1 14 67 ± 4 22 ± 6 45
- UV refers to soft UV (365 nm, 4 mW cm−2).
- HCl (superscript) refers to acid catalyst 100 mM HCl in IPA.
- Ellipsometric thickness was obtained using refractive index of 1.45 in Cauchy’s equation.
- Uncertainties refer to whichever is the larger (i) standard deviation of sample-to-sample
values or (ii) average of standard deviations from each sample (originating from variation in
a single measurement or measurement-to-measurement).
- Higher receding angle on MOA SAM than MHA SAM, ALA SAM and MUA SAM
most likely originates from adventitious hydrocarbon contamination, that COOH SAMs are
prone to. Indeed, reproducibility of COOH SAMs with appropriate contact angles and
ellipsometric thicknesses was low, and a number of samples were excluded as unreliable.
Limited number of samples or measurements resulted in unusually small or large
uncertainties for certain SAMs.

of COOH-terminated SAMs is sensitive to their preparation conditions[3–9] with op-

timum results achieved in ethanolic solutions containing a small amount of additional

acid. SAMs presented in this chapter were formed from DCM solutions and did not

contain any additional acid, in order to keep consistent formation conditions to those

of SAM1. It was difficult to achieve high reproducibility of samples (of the SAMs

presented in this chapter) that would yield low contact angles. The fact that MOA

SAM yields substantially higher receding angle than all other SAMs and slightly
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higher advancing angle than MHA SAM, ALA SAM and MOA SAM, shows

how prone to the adventitious surface contamination COOH-terminated SAMs can

be.

Following the UV treatment, the contact angles drastically increase for both DTBA

SAM and MHA SAM. The advancing angle reaches ∼87° and the receding angle

increases to ∼50°, which indicate that a small amount of COOH groups are exposed

to the surface for the water droplet to interact with, and are usually observed for

adventitious hydrocarbons film on clean gold surface. Treated ALA SAM, MOA

SAM and MUA SAM yield similar contact angles, however, compared to the

fresh SAMs, advancing angles increase to ∼67°, while receding angle increase to

∼22°, but the latter is hardly different from that of fresh MOA SAM. Those

angles, especially the receding, are significantly smaller than that of DTBA SAM

and MHA SAM. While the increase in the angles for ALA SAM could originate

from a loss of molecules, for MOA SAM and MUA SAM, this is likely a result of

partial surface esterification, which has been reported to take place on comparable

time-scale.[3,4]

Fresh SAMs (except DTBA SAM) show somewhat typical hysteresis of ∼20° for

SAMs on thermally evaporated (relatively rough) gold thin films. High hysteresis

(∼40°) loop in both fresh and UV treated DTBA SAM is attributed to disorder.

Similar hysteresis in fresh and treated MHA SAM is associated with uniform

surface chemistry in fresh (COOH groups) and treated (CH2 or CH3 groups) state,

while large hysteresis (∼45°) in the treated ALA SAM, MOA SAM and MUA

SAM might be indicative of chemically heterogeneous surfaces consisting of a small

quantity of CH3 groups (due to esterification[3,4]) that leads to high advancing angles,

but there are still COOH groups present which leads to rather hydrophilic surface.
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5.1.2 FTIR

The effects of acid concentration and UV irradiation on the stability of ALA SAM,

as well as the stability of DTBA SAM, MHA SAM and MOA SAM under UV

in 100 mM HCl in IPA, were investigated by studying the chemical information and

structure of the monolayers using FTIR spectroscopy in reflectance configuration on

fresh and treated SAMs.
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Figure 5.1: Infrared spectra of a) fresh ALA SAM, b) ALA SAM after UV
irradiation for 1.5 h in IPA, c) ALA SAM after immersion for 1.5 h in 100 mM
HCl in IPA in the dark, d) ALA SAM after UV irradiation for 1.5 h in 1 mM
HCl in IPA, e) ALA SAM after UV irradiation for 1.5 h in 100 mM HCl in IPA,
Exposure to UV light for 1.5 h is equivalent to 22 J cm−2 (4 mW cm−2, 365 nm).

Comparison of IR spectra of ALA SAM and lipoic acid molecules dispersed in

KBr pellet (figure 3.3c and 3.3d, respectively) as well as assignment of the strong

double peak to carbonyl C=O bond in acyclic dimers (peak 1715 cm−1)[3,7,10] and

in monomers (peak 1740 cm−1),[2–4,7,10,11] have already been discussed in chapter 3.

This section focusses on the stability of ALA SAM. Figure 5.1 shows stacked IR

spectra, which indicate that both UV treatment in pure IPA (figure 5.1b) and an

immersion into 100 mM HCl in IPA in the dark for 1.5 h (figure 5.1c) yield almost

the same IR spectrum, showing a drop of ∼25 % in intensity of the double peak

at 1715-1740 cm−1. This could be indicative of (i) a loss of COOH groups; (ii) the
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removal of any fractions of a double layer; or (iii) conformational changes within the

SAM. UV treatments in 1 mM HCl in IPA (figure 5.1d) and 100 mM HCl in IPA

(figure 5.1e) for 1.5 h also yield almost identical spectra, but show ∼55 % drop in

intensity of the double peak. Such a strong decrease is indicative of loss of COOH

groups.
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Figure 5.2: Infrared spectra of a) fresh DTBA SAM, b) DTBA SAM after
UV irradiation for 1.5 h in 100 mM HCl in IPA, c) fresh MHA SAM, d) MHA
SAM after UV irradiation for 1.5 h in 100 mM HCl in IPA, e) fresh MOA SAM,
and f) MOA SAM after UV irradiation for 1.5 h in 100 mM HCl in IPA. Exposure

to UV light for 1.5 h is equivalent to 22 J cm−2 (4 mW cm−2, 365 nm).

Figure 5.2 compares the IR spectra of fresh and UV treated in 100 mM HCl in IPA

for 1.5 h DTBA SAM, MHA SAM and MOA SAM. Fresh SAMs yield similar

spectra to that of fresh ALA SAM, with the main difference being the shape and

intensity of the double peak in the 1715-1740 cm−1 region. The IR spectra of MHA

SAM and MOA SAM are almost identical, differing only by a small change in

the proportions of the peaks in 1715-1740 cm−1 region assigned to C=O in acyclic

dimers and monomers. On the other hand, fresh DTBA SAM yields a weaker and

broader double peak in the same region, which could be indicative of substantially

lower quantity of COOH groups, originating from the loss of molecules, that in turn
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leads to lower packing and order, conformational changes and loss of signal due to

stronger effect of the surface selection rule.

An exposure to soft UV for (365 nm, 4 mW cm−2, 1.5 h) in the acidic catalyst

(100 mM HCl in IPA) leads to a complete loss of the double peak (1715-1740 cm−1)

in IR spectra of DTBA SAM and MHA SAM (see figure 5.2b and 5.2d) The

disappearance of the peaks in IR spectra of SAMs usually is indicative of a severe,

but not necessarily total loss of molecules from the surface. At lower coverage mo-

lecules might be lying flat on the surface with the axis of bond vibrations parallel to

the gold surface and therefore ‘invisible’ to IR spectra due to the surface selection

rule. On the other hand, the UV treatment has only a subtle effect on the double

peak in IR spectra of MOA SAM (figure 5.2f), i.e. the peak at 1712 cm−1 show

an increase, while the peak 1740 cm−1 show a drop in intensity suggesting that the

treatment has a minimal effect on MOA SAM structure.



Chapter 5. Characterisation of miscellaneous SAMs 172

5.1.3 XPS

X-ray Photoelectron Spectroscopy (XPS) measurements were carried out to ob-

tain additional chemical information of fresh and treated SAMs terminated with

carboxylic acid group, and to quantify effects of the UV treatment under acid. Un-

less stated otherwise, binding energies are referenced to alkyl carbon in C 1s at

284.5 eV and spectra are scaled so that intensity of Au 4f7/2 peak in each set of

measurements would reach the same (arbitrary chosenb) value.

Figure 5.3 shows XPS spectra with fitted components of fresh and UV treated

ALA SAM. In terms of positions of the fitted components and their relative

peak areas, Fresh ALA SAM yields similar spectra to fresh DTBA SAM (figure

C.1), MHA SAM (figure C.2), MOA SAM (figure C.3) and MUA SAM (fig-

ure C.4), except for the amount of alkyl/aryl carbon due to varying chain length,

and high quantity (∼50 %) of unbound sulfur in fresh ALA SAM due to cross-

linking of the molecules (see section 3.2.3 in chapter 3). As discussed in section

3.2.3.1, components in C 1s region are assigned to alkyl/aryl carbon (284.5 eV),[12–16]

C-S carbon (∼286.0 eV)[15,16] and C=O carbon (∼289.1 eV)[2,10,15,17–20]; compon-

ents in O 1s region are attributed to C=O oxygen (∼532.0 eV)[10,16,21,22] and C-O

oxygen (∼533.5 eV)[10,16,21,22]; spin-orbit doublets in S 2p associated with bound

thiols (S 2p3/2 at ∼161.9 eV)[1,12,23,24] and unbound thiol or disulfide (S 2p3/2 at

∼163.1 eV).[25–27]

Figure 5.3 allows for a direct comparison of the spectra of fresh and UV treated in

acid ALA SAM. It visually shows that the chemical composition does not change,

because positions of the peaks do not shift and their relative ratios do not change,
bThe arbitrary value, in fact, corresponds to the initial Au 4f7/2 peak intensity in one of the

samples.
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Figure 5.3: XPS spectra with fitted components of fresh (on the left) and UV-
treated (on the right) ALA SAM. Spectra correspond to C 1s (top row), O 1s
(middle row) and S 2p (bottom row). UV-treated samples were exposed to soft
UV (365 nm, 4 mW cm−2) for 1.5 h in the acidic catalyst (100 mM HCl in IPA).

however, intensities of the peaks decrease by a similar fraction (except the dis-

proportionately high loss of unbound sulfur, see sections 3.2.3 and 3.2.4 for the

explanation), which is indicative of a partial SAM loss from the surface.
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Figure 5.4: XPS spectra of fresh (in black) and UV treated in acid (in red)
SAMs. Spectra correspond to S 2p (top row), O 1s (middle row) and C 1s (bottom
row) of MHA SAM (left column), ALA SAM (middle column) and MOA
SAM (right column). Multiple spectra were recoded for each state of each SAMs.



Chapter 5. Characterisation of miscellaneous SAMs 175

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 
 

 
 

 

 
 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 
 

 
 

 
 

 
 

 

 

 

 

 

 

 

 

 
 

 

 

 

 
 

 
 

 

 

 
 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 
 

 

 

 
 

 
 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 
 

 
 

0.
00

K

0.
05

K

0.
10

K

0.
15

K

16
0.

0
16

2.
5

16
5.

0
16

7.
5

17
0.

0
B

in
di

ng
 E

ne
rg

y 
(e

V
)

Counts per second (CPS)

 
 

 
 

 
 

 

 

 

 

 
 

 

 

 

 

 
 

 

 

 

 
 

 

 

 

 
 

 
 

 

 
 

 

 

 
 

 

 

 

 

 
 

 

 

 
 

 

 
 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 

 

 

 

 

 

 

 

 
 

 

 
 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 
 

 
 

 
 

0.
00

K

0.
05

K

0.
10

K

0.
15

K

16
0.

0
16

2.
5

16
5.

0
16

7.
5

17
0.

0
B

in
di

ng
 E

ne
rg

y 
(e

V
)

Counts per second (CPS)

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 

 
 

 
 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 
 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 
 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 
 

 

 
 

 
 

 

 0
.0

K

 0
.1

K

 0
.2

K

 0
.3

K

52
8

53
0

53
2

53
4

53
6

53
8

B
in

di
ng

 E
ne

rg
y 

(e
V

)

Counts per second (CPS)

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 

 

 

 

 
 

 
 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 

 

 

 
 

 
 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 
 

 
 

 
 

 

 
 

 0
.0

K

 0
.1

K

 0
.2

K

 0
.3

K

 0
.4

K

52
8

53
0

53
2

53
4

53
6

53
8

B
in

di
ng

 E
ne

rg
y 

(e
V

)

Counts per second (CPS)

 

 
 

 
 

 

 
 

 
 

 
 

 
 

 

 
 

 
 

 

 

 
 

 

 

 

 
 

 

 

 
 

 
 

 

 

 
 

 

 
 

 

 

 
 

 

 

 

 

 
 

 

 

 

 

 

 
 

 

 
 

 
 

 
 

 

 

 
 

 

 

 
 

 

 

 
 

 
 

 
 

 
 

 

 

 
 

 
 

 

 

 

 

 
 

 

 

 
 

 

 
 

 
 

 
 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 
 

 
 

 0
.0

K

 0
.2

K

 0
.4

K

 0
.6

K

28
2

28
4

28
6

28
8

29
0

29
2

B
in

di
ng

 E
ne

rg
y 

(e
V

)

Counts per second (CPS)

 
 

 
 

 
 

 
 

 

 
 

 
 

 
 

 
 

 
 

 
 

 

 

 
 

 

 

 
 

 
 

 
 

 
 

 
 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 
 

 
 

 
 

 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 

 
 

 

 

 
 

 
 

 
 

 
 

 
 

 
 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 
 

 
 

 
 

 
 

 

 0
.0

K

 0
.5

K

 1
.0

K

 1
.5

K

28
2

28
4

28
6

28
8

29
0

29
2

B
in

di
ng

 E
ne

rg
y 

(e
V

)

Counts per second (CPS)

Figure 5.5: XPS spectra of fresh (in black) and UV treated in acid (in red)
SAMs. Spectra correspond to S 2p (top row), O 1s (middle row) and C 1s (bottom

row) of DTBA SAM (left column) and MUA SAM (right column).
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XPS spectra in figures 5.4 and 5.5 reveal that instability of molecules under soft UV

(365 nm) irradiation in acid is a common issue among COOH SAMs, but only affects

thin monolayers. For example, figure 5.5 shows no substantial change in MUA

SAM, but a diminishing of the peaks, especially those related to carboxylic acid

and thiolate groups, in DTBA SAM. Moreover, treated DTBA SAM also yields a

relative increase of alkyl carbon, usually associated with adventitious hydrocarbons,

and the appearance of oxidised sulfur species. Figure 5.4 clearly indicates that the

severity of fractional loss gradually increases with decreasing SAM thickness, i.e.

MHA SAM is affected more (∼50 % left) than MOA SAM (∼80 % left), while

ALA SAM, which yields intermediate thickness, shows an average stability of the

two (∼65 % left).

Quantitative analysis of stability of the SAMs, based on integrated peak areas, is

summarised in table 5.2. It shows that alkyl carbon does not decrease as much as

other chemical species in MHA SAM, i.e. its relative amount increases, which

is an indication of increasing levels of adventitious hydrocarbons, but not as much

as in DTBA SAM. Although visual differences in spectra in figures 5.4 and 5.5

suggest that MHA SAM is more stable than DTBA SAM, the tabulated data

suggest that DTBA SAM and MHA SAM have a similar stability. However,

this quantitative analysis could overestimate the stability of DTBA SAM due to

weaker peaks and lower signal-to-noise ratio in spectra of fresh DTBA SAM than

MHA SAM, all of which limit accuracy of the fitted components. Nevertheless,

the rest of the data in tabulated and plotted forms (figures 5.6a and 5.6b) show the

same trend as spectra in figures 5.4 and 5.5.
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Table 5.2: Fraction of chemical elements and their species left in DTBA SAM,
MHA SAM, ALA SAM, MOA SAM and MUA SAM after the soft UV
treatment in the acidic catalyst. Analysis is based on XPS spectra normalised to
have equal Au 4f7/2 peak areas before and after the treatment, therefore, amount

of gold stays at 100 %.

Carbon Oxygen Gold Sulfur

SAM C=O C-C
C=C Total C=O C-O Total Total Total

DTBA SAM+UVHCl
1.5 h 50% 153% 118% 41% 61% 48% 100% 47%

MHA SAM+UVHCl
1.5 h 51% 88% 74% 41% 51% 45% 100% 50%

ALA SAM+UVHCl
1.5 h 63% 66% 68% 72% 64% 69% 100% 58%

MOA SAM+UVHCl
1.5 h 76% 82% 80% 80% 77% 79% 100% 76%

MUA SAM+UVHCl
1.5 h 103% 87% 94% 101% 101% 104% 100% 92%

UV refers to soft UV (365 nm, 4 mW cm−2).
HCl (superscript) refers to acid catalyst 100 mM HCl in IPA.

(a) Based on number of carbons (b) Based on initial SAM thickness

Figure 5.6: Fractions of carbonyl (C=O) carbon (yellow circles), total oxygen
(blue triangles pointing up) and total sulfur (green triangles pointing down) left in
ALA SAM, DTBA SAM, MHA SAM, MOA SAM, and MUA SAM after
exposure to soft UV (365 nm, 4 mW cm−2, 1.5 h) in the acidic catalyst (100 mM
HCl in IPA) are plotted against a) number of carbons in the chain and b) initial
SAM thickness. ALA is assigned an average chain length of 7 carbons. Analysis
is based on XPS spectra normalised to have equal Au 4f7/2 peak areas before
and after the treatment, therefore, amount of gold (black squares) stays at 100 %,
which also visually indicates the expected level of chemical elements and their

species for the SAMs that do not exhibit loss of surface coverage.
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5.1.4 Photo-patterning and selective metallisation

Following the photo-sensitivity study, the suitability of short chain COOH-terminat-

ed SAMs for photo-patterning and selective metallisation with copper were invest-

igated. All samples were photo-patterned in the same way as SAM1 discussed in

section 3.3 in chapter 3, i.e. samples were irradiated through a chromium mask

under an optical microscope with soft UV (365 nm, 22 J cm−2, 36 mW cm−2, 10 min),

unless stated otherwise. A chromium mask was separated from a sample using or-

ganic spacers with thicknesses varying from a few to tens of microns, in order to

prevent mechanical damage and to accommodate the acidic catalyst (100 mM HCl in

IPA). Electrochemical deposition (ECD) was used to deposit copper on the samples

at constant or sweeping (10 mV s−1 scan rate) potentials in the range of 0.0 to −0.3 V

in 10 mM CuSO4 in 10 mM H2SO4 electrolyte. All potentials stated in this section

are referenced to Ag/AgCl.

Optical images in figure 5.7 indicate that only ALA SAM yield a reasonable pattern

for selective copper deposition at constant (−0.1 V) or sweeping (0.4 to −0.3 to

0.0)V potential. None of the other SAMs show any sign of selective metallisation by

sweeping potential, while DTBA SAM and MHA SAM yield copper on photo-

patterned regions after deposition at a constant potential (−0.1 V), but metallisation

is not uniform across the whole sample or selectivity is poor.

Although, each (photo-patterned) SAM yield slightly different peak potential (Ep)

values, optical images in figure 5.7 are representative of the findings: (i) DTBA

SAM samples yield similarly poor selectivity at −0.02 V, −0.04 V and −0.08 V,

(ii) MHA SAM sample showed little copper at −0.02 V and −0.04 V, some partial

metallisation at −0.08 V and progressively less selective metallisation at −0.12 V and

−0.15 V than at −0.10 V, finally (iii) MOA SAM samples showed small quantities

of copper on the surface after deposition negative potentials of −0.04 V, −0.08 V,

−0.10 V, −0.12 V, −0.15 V and −0.20 V, while −0.25 V and −0.30 V potentials led
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Electrochemical deposition potential

Constant at −0.10 V Sweeping (0.4 to -0.3 to
0.0)V

D
T

B
A

SA
M

a) b)
M
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c) d)
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e) f)

M
O
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g) h)

Figure 5.7: Optical images of photo-patterned (365 nm, 22 J cm−2, 36 mW cm−2,
10 min) and metallised a)-b)DTBA SAM, c)-d) MHA SAM, e)-f) ALA SAM
and g)-h) MOA SAM. Copper was electrochemically deposited from 10 mM
CuSO4 in 10 mM H2SO4 electrolyte at a constant (−0.10 V, 20 s) (left column) or
sweeping (0.4 to -0.3 to 0.0)V (right column) potential. Darker areas correspond

to UV-treated regions and higher quantities of reduced copper.
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to partial metallisation that did not resemble in any way the shape of the expected

pattern. This contrasts with the highly selective metallisation of photopatterned

SAM1 in the range of −0.15 to −0.20 V.

Poor selectivity of metallisation is indicative of a small difference between Ep values

of treated and non-treated regions, i.e. similarly low values in DTBA SAM and

MHA SAM, but high in MOA SAM. High selectivity on ALA SAM could be

indicative of the transition between high stability and packing of MOA-like SAM

and low stability and packing of MHA-like SAM

Electrochemical deposition potential

Constant at −0.10 V Constant at −0.20 V Sweeping (0.4 to -0.3 to
0)V

A
LA

SA
M

a) b) c)

Figure 5.8: Optical images patterned ALA SAM samples. Despite identical
procedures of photo-patterning (365 nm, 22 J cm−2, 36 mW cm−2, 10 min) and cop-
per electrodeposition, figures a) and c) show significantly lower selectivity than
figures 5.7e and 5.7f, respectively. Optical image of patterned ALA SAM after
Cu deposition at constant potential of b) −0.20 V show slightly higher quality,

but still much lower than in 5.7e.

However, photo-patterning of ALA SAM yields low reproducibility. A number of

patterned ALA SAM samples led to poor copper selectivity following deposition

at constant −0.10 V (figure 5.8a) and at sweeping (figure 5.8c) potentials. Slight

improvements were obtained at more negative potentials of −0.20 V (figure 5.8b)

and −0.25 V, but the overall quality of such patterns is much lower than shown in

figure 5.7e or 5.7f. This could be indicative of the variation in SAM quality, for

example, packing or cross-linking of the molecules, induced by slight variation of

SAM formation conditions (i.e. SAM formation time, temperature).
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5.1.5 Discussion

Fresh SAMs yield expected characteristics, except the advancing water contact

angles (table 5.1). High advancing angle (45°) on DTBA SAM is an indication

of substantially disordered SAM, which is also supported by the large hysteresis

(∼40°) loop, and by the broad and weak double peak in IR spectra assigned to car-

bonyl (C=O) bond (1715-1740 cm−1 in figure 5.2). MHA SAM, ALA SAM and

MUA SAM show slightly lower (∼30°), but still not the wetting angles reported for

carboxylic acid (COOH) terminated SAMs. Since the SAMs do yield wetting angles

for a receding water droplet, this is attributed to a slightly lower than optimum qual-

ity of COOH SAMs. It has been reported that COOH SAMs are highly sensitive to

their formation conditions,[3–9] which were purposely not optimised in this study (i.e.

formed from DCM rather than EtOH solution and without any additional acids) for

the following two reasons: (i) to maintain consistency with SAM1 formation condi-

tions; and (ii) to form slightly disordered and less densely packed SAMs in order to

have more accurate controls for the expected slightly disordered monolayer of lipoic

acid resulting from photocleavage of bulky pyrene groups in SAM1 (see chapter

3). Higher advancing (39°) and especially the receding (19°) angles on MOA SAM

than MHA SAM, ALA SAM and MUA SAM are assigned to originate from

adventitious hydrocarbon contamination, that COOH SAMs are prone to. Indeed,

reproducibility of COOH SAMs with appropriate contact angles and ellipsometric

thicknesses was low, and a number of samples were excluded as unreliable.

Exposure of DTBA SAM and MHA SAM to soft UV (365 nm, 4 mW cm−2) for

1.5 h in acidic catalyst 100 mM HCl in IPA dramatically reduces thickness (to 2-3 Å)

and turns surfaces from hydrophilic (typical for COOH groups) into hydrophobic

(typical for adventitious hydrocarbons), as shown in table 5.1. Moreover, peaks

associated with carbonyl C=O bond disappear in IR spectra (1715-1740 cm−1 in

figure 5.2). All of the above suggest at least a partial loss of molecules in each
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SAM. That is confirmed by XPS, which also indicates that molecules still present

on the gold surfaces are intact and do not disintegrate, except for a weak signal in

S 2p region associated with oxidised sulfur in treated DTBA SAM. Surprisingly,

quantitative analysis of XPS data suggests that as much as ∼50 % of the molecules

are still present in both SAMs (table 5.2). This suggests that the partial loss of the

monolayers leads to a high disorder and an increases in tilt angle from the surface

normal, which results in a more parallel alignment of the C=O bonds with the

gold surface. Therefore, the stronger impact of the surface selection rule could lead

to strongly suppressed and most likely undetectable signal in FT-IRRAS spectra,

despite the presence of a fraction of molecules on the surface. XPS data also show

a relative increase in alkyl carbon in both SAMs (table 5.2) indicating an increase

of adventitious hydrocarbons, which are likely to cover the top of the disordered

and poorly packed SAMs. That would prevent water droplets from interacting with

hydrophilic COOH groups, and would explain the hydrophobic nature of the treated

SAMs. This explanation is also in line with the fact that DTBA SAM shows

higher increase of adventitious hydrocarbons and higher contact angles than MHA

SAM. While for DTBA SAM ellipsometry also indicates that ∼50 % of molecules

are left on the surface, for MHA SAM ellipsometry suggests that only ∼25 %

of the initial monolayer is still present, which does not agree with the XPS data.

However, ellipsometric thickness measurements are subject to limited accuracy and

precision for values below 10 Å, and even more so for values below 5 Å, due to sample-

to-sample variation and instrumental uncertainty of at least 1-2 Å, contamination

layer of hydrocarbons few angstroms thick being always present on reference samples

(freshly cleaned gold) that are exposed to ambient conditions,[1,2] and the fact that

increasing adventitious contamination (as indicated by XPS) also contributes to the

ellipsometry measurements. Therefore the actual thickness (or fraction of molecules

on the surface) might be lower in DTBA SAM and higher in MHA SAM than

indicated in table 5.1. On the other hand, visual comparison of XPS spectra of
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fresh and treated DTBA SAM in figures 5.5 and C.1 indicate that less than 50 %

of carbonyl carbon and sulfur is left on the surface, which suggests that quantitative

analysis of DTBA SAM might overestimate the amount of molecules left in the

SAM due to weak and broaden peaks, in addition to low signal-to-noise ratio. Finally

sample-to-sample variation was observed and attributed to slight changes in SAM

formation conditions (e.g. immersion time and ambient temperature) and photo-

deprotection conditions (e.g. UV intensity at the sample) that might affect SAM

stability and severity of the SAM removal, respectively.

In contrast to thin DTBA SAM and MHA SAM, the thick MUA SAM does

not yield any substantial change in ellipsometric thickness (table 5.1) or XPS spectra

(figures 5.5 and C.4) following the analogous UV treatment. Nevertheless, receding

and advancing contact angles increase (table 5.1) and reach similar values to those

of treated ALA SAM and MOA SAM. The increase in advancing angle in ALA

SAM, MOA SAM and MUA SAM is mainly associated with esterification of

small fraction of COOH by the HCl acid, which has been reported to take place on a

comparable time scale.[3,4] On the other hand, low receding angles indicate presence

of the COOH groups, and the resulting high hysteresis (∼45°) confirms chemical

heterogeneity at the surface of the SAMs.

XPS data of slightly thinner MOA SAM indicate that ∼80 % of intact molecules

stay in the SAM upon the UV treatment. This is in agreement with slight changes of

the double peak in IR spectra (1715-1740 cm−1 in figure 5.2), however, the fact that

no changes are detected by the ellipsometry is attributed to a combination of the

instrumental uncertainty and sample-to-sample variation. Lower loss of molecules

in MOA SAM than in DTBA SAM and MHA SAM is attributed to suppressed

penetration of the catalyst to the gold-SAM interface by the higher thickness and

better packing in MOA SAM due to stronger van der Waals interaction originating

from longer alkyl chains. The fact that MOA SAM preserves most of its properties,
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despite the 20 % loss of molecules, could be indicative that van der Waals interaction

is strong enough to keep the resulting monolayer together.

Some of the effects of the treatment on ALA SAM are intermediate of those ob-

served for MHA SAM and MOA SAM: (i) intensity of carbonyl (C=O) double

peak in IR spectra (1715-1740 cm−1 in figure 5.1) drops to ∼45 % of its initial value,

which is around the midpoint between the observed small changes in MOA SAM,

but complete disappearance in MHA SAM; (ii) XPS data suggest that ∼65 % of

the monolayer stays on the surface, which again is the mid-point between ∼50 % and

∼80 %. On the other hand, in contrast to MHA SAM, XPS data of ALA SAM do

not show any substantial increase in adventitious hydrocarbons (table 5.1), and yield

contact angles similar to those of hydrophilic MOA SAM and MUA SAM rather

than those of MHA SAM (table 5.1). Although the dramatic drop in thickness

(to 3 Å) is similar to that of MHA SAM and DTBA SAM, as discussed earlier,

ellipsometry measurements in this range requires cautious interpretation due to lim-

ited accuracy and low fractional precision. Overall, ALA SAM retains most of

its properties, despite the fact that its stability is intermediate when compared to

MHA SAM and MOA SAM.

The fact that FTIR and XPS indicate a gradual increase in stability with increasing

ellipsometric thickness of the fresh SAMs, and that the trend is linear (figure 5.4) in

the range of MHA SAM, ALA SAM and MOA SAM, suggest that the primary

reason for the loss of molecules in ALA SAM is its thin thickness rather than

its unconventional dithiolane head group. Nevertheless, XPS does indicate that

dithiolane head group lowers the stability, because S 2p regions clearly show higher

fractional loss of unbound sulfur (or disulfide) than bound to gold sulfur (figure 5.3).

It is not surprising that fresh ALA SAM shows intermediate thickness (table 5.1)

when compared to fresh MHA SAM and MOA SAM. Lipoic acid can bind to
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gold through just one sulfur atom, that leads to MHA-like or MOA-like configura-

tion depending on which sulfur atom does bind to the surface. Assuming near equal

proportions of the two, the resulting monolayer could be treated as an equimolar

SAM of MHA and MOA. Of course, fresh ALA SAM is likely to have a complex-

ity similar to that proposed for SAM1 in figure 3.12, which includes both molecules

that are cross-linked (figure 3.10) and molecules that are bound to gold surface via

both sulfur atoms.

Selective metallisation following photo-patterning of DTBA SAM, MHA SAM,

ALA SAM, MOA SAM and MUA SAM under the same conditions as SAM1

(see section 3.3) revealed that only ALA SAM can produce copper patterns (fig-

ures 5.7e and 5.7f) of comparable quality to SAM1 (figures 3.15b, 3.16c and 3.18c).

Although deposited copper on DTBA SAM and MHA SAM does show a pattern,

selectivity on the former is low (figure 5.7a), while surface coverage on the latter is

poor (figure 5.7c). Moreover, only electrochemical deposition at constant potentials

lead to appearance of the patterns, while sweeping potential method leads to a uni-

form copper coverage (figures 5.7b and 5.7d). Metallised pattern on MOA SAM

has not been observed at all, despite ECD at sweeping potential or at constant poten-

tials of up to −0.30 V, which is significantly more negative than optimum potentials

for patterned ALA SAM (−0.10 to −0.20 V) or SAM1 (−0.16 to −0.20 V). In

contrast to SAM1, reproducibility of metallised patterns on ALA SAM is low

(figure 5.8), while optimum deposition parameters vary from sample to sample.

Poor quality of copper deposition on photo-patterned DTBA SAM and MHA

SAM most likely results from small difference in Ep values between the treated and

non-treated regions, which are attributed to relatively high disorder in non-treated

regions anyway. On the other hand, little copper is observed on MOA SAM due

to its higher Ep value, that indicates higher order in the SAM, which does not de-

crease significantly upon the UV treatment. The possibility to produce selective

metallisation on patterned ALA SAM is attributed to the fact that the SAM can
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accommodate both MHA-like disordered and MOA-like ordered state, but also

to the loss of cross-linked molecules due to UV exposure in acid. However, slight

changes in ALA SAM formation condition (e.g. immersion time, ambient tem-

perature) could lead to stronger MHA-like or MOA-like character and also affect

the extent of cross-linking, all of which affect the stability of the SAM and therefore

the level of disorder induced by the UV irradiation in acid.

Overall, this study revealed that thin COOH-terminated SAMs (i.e. DTBA SAM,

MHA SAM, ALA SAM and MOA SAM) have limited stability, while thick

MUA SAM is not affected under UV irradiation in the acidic conditions. Instabil-

ity of ALA SAM is attributed mostly to its short chain length, and partially to

the cross-linking of its dithiolane head groups. Consequently, acidic catalysts for

the photo-deprotection of such SAMs should be used with caution. On the other

hand, this study suggests that reducing density of molecules and increasing disorder

in a SAM might be equally, or even more, beneficial than reducing SAM thickness,

in order to achieve high selective metallisation by electrochemical deposition, as

demonstrated on photo-patterned SAM1 in chapter 3.
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5.1.6 Conclusions

The stability of carboxylic acid (COOH) terminated SAMs under irradiation of soft

UV in an acidic catalyst was investigated. A range of COOH SAMs with varying

thickness were exposed to UV light (365 nm, 4 mW cm−2) for 1.5 h in 100 mM HCl in

IPA, and characterised with ellipsometry, wetting measurements, FTIR and XPS. It

was found that thin SAMs show limited stability under such condition. The instabil-

ity of the SAMs results in the removal of intact molecules from the gold surface rather

than their partial disintegration on the surface. It was observed that the severity of

a loss of molecules increases gradually, as the thickness of COOH SAMs decreases,

i.e. DTBA SAM and MHA SAM yield at least 50 % loss, while MUA SAM

does not show any detectable signs of instability. Furthermore, FTIR and XPS data

suggest a linear trend between fractional loss of molecules and initial SAM thickness

in the range of MHA SAM, ALA SAM and MOA SAM. Consequently, the in-

stability of ALA SAM is primarily assigned to its low thickness, and also partially

attributed to the detected cross-linking of dithiolane head groups. Therefore, acidic

catalyst should be used with caution in photo-deprotections of thin (i.e. alkyl chain

consists of fewer than 10 -CH2- units) COOH-terminated monolayers.

Subsequently, the suitability of the unstable COOH-terminated SAMs for photo–

patterning and metallisation was investigated. It was observed that only ALA

SAM yield patterns of selective metallisation with comparable quality to SAM1.

However, the sample-to-sample reproducibility is poor and not even remotely com-

parable to SAM1 system. Nevertheless, this study has revealed that reducing the

packing and ordering of molecules within a SAM might be equally, or maybe even

more, beneficial than reducing SAM thickness by photocleavage, in order to achieve

high selectivity of metallisation, as demonstrated on SAM1 in chapter 3.
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5.2 Azide-terminated SAMs for click chemistry

on a surface

Self-assembled monolayers (SAMs) of functionalised long-chain alkanethiolates

(LCATs) on metals[28] is a versatile platform for selective immobilisation of mo-

lecules, biological species or nanoparticles. SAMs used for biological applications

usually require incorporation of oligoethylene glycol (OEG) units to reduce non-

specific protein adsorption.[29] Furthermore, SAM-based studies usually investigate

more than just one-type SAM system, while some applications require more than

just a single functional group within a SAM.[30–32] Thus, if it is required to fine-

tune surface chemistry for the control of immobilisation, density and orientation

of the active sites, it is essential to have an easy access to a variety of functional

groups. However, commercial availability of long-chain alkanethiolates incorporating

oligoethylene glycol units (LCAT-OEGs) with various functional groups is severely

limited, while their synthesis tends to be strenuous.

This chapter presents the characterisation of SAMs formed using molecules synthes-

isedc by a new versatile solid phase synthesis approach that gives access to a range

of functionalised LCAT-OEGs. This is achieved through a minimised intermediate

purification and a flexible late-stage functionalisation, which is ideal for applications

requiring quick and iterative fine-tuning of SAM properties.

To demonstrate the available versatility, three molecules reagent 2c (figure 5.9a),

LCAT-OEG-4c (figure 5.9c) and LCAT-OEG-1c (figure 5.9e) containing a num-

ber of functionalities are investigated. Firstly, all three molecules contain amide as

linker, which has been reported to improve the stability of a SAM due to formation
c Synthesised by J. Murray at R. S. Bon research group, School of Chemistry, University of

Leeds, UK. Procedure described in the reference[33].
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(a) Reagent 2 (b) SAM2

(c) LCAT-OEG-4 (d) LCAT-OEG-4 SAM

(e) LCAT-OEG-1 (f) LCAT-OEG-1 SAM

Figure 5.9: Molecular structures of reagent moleculesc and their corresponding
SAMs.

of hydrogen bonds between the chains.[34,35] Secondly, molecules incorporate differ-

ent number of ethylene glycol units, that are used to prevent non-specific binding of

biological macromolecules such as proteins.[29] Finally, LCAT-OEG-4 and LCAT-

OEG-1 contain alcohol end group, while reagent 2 contains azide functional group

to facilitate click chemistry[36] on the surface. As discussed in the ‘Introduction’

chapter, click chemistry[36] is a quick, reliable, efficient, biocompatibile, highly select-

ive and versatile method to join two units together,[36–40] which is applied in material

science,[41–43] biosciences,[30,41,42,44–48] and drug developement.[41,42,44,48,49] Also, it has

been shown to be particularly useful for performing reactions on a surface[50] and

for SAM based applications[30–32,50–56] (see section 1.4 in the ‘Introduction’ chapter

for more details).
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The rest of this section is split into three parts. The first part shows that the

above discussed molecules form dense, ordered and high quality SAM2 (figure 5.9b),

LCAT-OEG-4 SAM (figure 5.9d) and LCAT-OEG-1 SAM (figure 5.9f). The

second part demonstrates that the amount of reagent 2 in a SAM can be success-

fully reduced by the addition of diluent LCAT-OEG-4 or LCAT-OEG-1. It is

also shown that molar concentration of reagent 2 in a SAM can be easily predicted.

Finally, the third part demonstrates that SAM2 successfully performs click chem-

istry to yield high surface coverage of amine terminated strained cyclooctyned

(figure 5.10a) in aqueous catalyst-free solution under ambient conditions.

(a) strained cyclooctyne (b) Mixed SAM of reagent 2 with LCAT-
OEG-4 (n=4) or LCAT-OEG-1 (n=1)

(c) Click reaction: catalyst-free strain-promoted azide-alkyne cycloaddition

Figure 5.10: Molecular structure of strained cyclooctyned and schematic
diagrams of mixed SAMs and click reaction on SAM2. The chain in strained

cyclooctyne is bent for presentation purposes only.

d Synthesised by J. Murray at R. S. Bon research group, School of Chemistry, University of
Leeds, UK.
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5.2.1 Pure SAM2, LCAT-OEG-4 SAM and LCAT-OEG-1

SAM

This section discusses fabrication and characterisation of SAM2 using ellipsometry,

contact angle, FTIR and XPS measurements. Additionally SAMs formed by diluents

LCAT-OEG-4 and LCAT-OEG-1 are investigated, in order to obtain reference

spectra for the study of mixed SAMs discussed in section 5.2.2. LCAT-OEG-4

was chosen due to its very similar molecular structure and composition to reagent

2, which should mix well, while the shorter LCAT-OEG-1 was chosen because it

is more distinguishable with spectroscopic techniques, even though it might not mix

as well.

5.2.1.1 Ellipsometry and Wetting measurements

Wettability data and thickness obtained from ellipsometry measurements of pure

SAM2, LCAT-OEG-4 SAM and LCAT-OEG-1 SAM are shown in table 5.3.

Expectede thickness values of SAM2 and LCAT-OEG-1 SAM agree with the el-

lipsometric thickness values within their uncertainty. LCAT-OEG-4 SAM, how-

ever, yields a 10 % higher value than expected, which can be indicative of 15° instead

of 30° tilt angle from the surface normal, or the more likely case of some adventitious

contamination attracted by the high energy of the alcohol (-OH) terminated surface.

LCAT-OEG-4 SAM and LCAT-OEG-1 SAM yield similar hydrophilic contact

angles that are comparable to those reported in the literature,[57] while SAM2 shows

lower angles than reported,[58] which is attributed to the hydrophilic OEG chain be-

low the azide end group. Low contact angle hysteresis (∼11°) is comparable to that

of C18 SAM (∼8°) and indicative of a high order and packing in the SAMs, which

is in agreement with the ellipsometry data.
e See footnote a on page 166.
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Table 5.3: Ellipsometric thickness and contact angles of pure (non-mixed)
SAM2, LCAT-OEG-4 SAM and LCAT-OEG-1 SAM.

SAM
Ellipsometric
thickness (Å) Water contact angles (°)

Measured Expectede Advancing Receding Hysteresis
C18 SAM 22 ± 2 22 111 ± 1 103 ± 2 8

SAM2 34 ± 1 33 58 ± 3 46 ± 2 12
LCAT-OEG-4 SAM 32 ± 1 29 39 ± 2 30 ± 1 9
LCAT-OEG-1 SAM 23 ± 2 21 38 ± 1 25 ± 4 13
- Ellipsometric thickness was obtained using refractive index of 1.45 in Cauchy’s equation.
- Uncertainties refer to whichever is the larger (i) standard deviation of sample-to-sample
values or (ii) average of standard deviations from each sample (originating from variation in
a single measurement or measurement-to-measurement).

5.2.1.2 XPS

X-ray Photoelectron Spectroscopy (XPS) measurements were carried out to obtain

additional chemical information of the pure SAMs, and to characterise differences

in chemical composition. The latter is important for quantifying the mixing of

reagent 2 with LCAT-OEG-4 or LCAT-OEG-1 in SAMs which is presented in

the following sections. Binding energies are referenced to alkyl carbon in C 1s at

284.9 eV and spectra are scaled so that intensity of alkyl carbon component in C 1s

in each set of measurements would reach the same (arbitrary chosenf) value.

Figure 5.11 shows the spectra of SAM2 with fitted components, which are at the

same positions in the spectra of LCAT-OEG-4 SAM and LCAT-OEG-1 SAM,

except the peaks due to azide group in N 1s. The component at 400.1 eV in the

N 1s region is attributed to the amide group.[20] Additional peaks at 401.7 eV and

405.2 eV are detected only in SAM2 spectra and correspond to lateral and cent-

ral (electron-deficient) nitrogen in azide group, respectively, with the latter peak
fThe arbitrary value, in fact, corresponds to initial intensity of alkyl carbon component in C

1s in one of the samples.
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being (2.1 ± 0.3) times smaller in area than the former, all in agreement with lit-

erature (once discrepancies due to different spectra referencing methods are taken

into account).[20,21,58] A substantial drop in intensity of 401.7 eV and 405.2 eV peaks,

indicating up to ∼60 % loss of azide group, was observed, while signal of other peaks

(i.e. amide peak in N 1s, other peaks in C 1s and O 1s) did not change. However,

acquisition parameters have been improved to limit degradation of azide group to

∼20 %, for more details please see section C.5. Spectra of C 1s can be fitted with

three components corresponding to alkyl carbon at 284.9 eV,[12,20,59] carbon in OEG

chain (C-O) and bound to nitrogen (C-N) at 286.9 eV,[20,22,59] and carbonyl carbon

(C=O) in amide group at 288.3 eV.[20,22] Spectra of O 1s can be fitted with two

components corresponding to carbonyl oxygen in amide group at 531.8 eV[20,22] and

oxygen in OEG chain (C-O) at 533.4 eV.[16,20,22] Finally, S 2p region shows strong

presence of the spin-orbit doublet at 161.8 eV (S 2p3/2) and 163.0 eV (S 2p1/2) as-

signed to thiols bound to gold (thiolates),[1,12,23,24] while the weak spin-orbit doublet

at 163.4 eV (S 2p3/2) and 164.6 eV (S 2p1/2) are assigned to thiols not bound to

gold.[25–27]

Table 5.4: Relative ratios of chemical elements and their species in pure SAM2,
LCAT-OEG-4 SAM and LCAT-OEG-1 SAM based on integrated and nor-
malised (using R.S.F.) peak areas in XPS spectra of C 1s, N 1s and Au 4f regions.
Alkyl carbon in C 1s is set to be equal to 10 in all of the spectra, because that is
the amount of such atoms in all of the molecules. Uncertainties are presented in

table C.1 in the appendix.

Carbon Nitrogen Gold

SAM C=O C-O
C-N C-C Total Total Total

SAM2 1.7 12.8 10 24.6 3.5 15.7
Expected* 1 12 10 23 4

LCAT-OEG-4 SAM 1.5 11.0 10 22.6 1.1 15.9
Expected* 1 10 10 21 1

LCAT-OEG-1 SAM 1.6 4.1 10 15.7 1.2 14.9
Expected* 1 4 10 15 1
* Expected values based on the corresponding molecular structures shown in figures 5.9.
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Table 5.5: Relative ratios of chemical elements and their species in pure SAM2,
LCAT-OEG-4 SAM and LCAT-OEG-1 SAM based on integrated and nor-
malised (using R.S.F.) peak areas in XPS spectra of O 1s and S 2p regions. Alkyl
carbon in C 1s is set to be equal to 10 in all of the spectra, because that is the
amount of such atoms in all of the molecules. Uncertainties are presented in table

C.1 in the appendix.

Oxygen Sulfur

SAM C=O C-O Total Total

SAM2 1.0 5.1 6.1 0.7
Expected* 1 5 6 1

LCAT-OEG-4 SAM 1.0 5.0 6.1 0.7
Expected* 1 5 6 1

LCAT-OEG-1 SAM 1.0 1.9 2.9 0.7
Expected* 1 2 3 1
* Expected values based on the corresponding molecular structures
shown in figures 5.9.

Relative ratios (normalised to alkyl carbon component in C 1s) of chemical elements

and their species in the SAMs are summarised in tables 5.4 and 5.5. As shown in

the tables, the relative ratios are in a good agreement with the expected values

based on molecular structure (figures 5.9), except the lack (∼30 %) of sulfur in all

of the SAMs attributed to signal attenuation, and the excess (∼60 %) of carbonyl

carbon in amide group. Almost identical ratios are obtained when XPS data are

normalised to the carbonyl oxygen component in O 1s. The spectra in figure 5.12

visualise the differences between the pure SAMs, which are used to determine the

fraction of reagent 2 in the mixed SAMs in later sections. SAM2 and LCAT-

OEG-4 yield substantially different N 1s spectra, but the difference in C 1s is rather

subtle originating from a 9 % change in the amount of carbon, which is comparable

to the deviation (see table C.1) between the spectra. On the other hand, SAM2

and LCAT-OEG-1 SAM yield significantly different spectra in the N 1s, C 1s and

O 1s regions.
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Figure 5.11: XPS spectra with fitted components of a) N 1s, b) C 1s, c) O 1s
and d) S 2p regions of SAM2.
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Figure 5.12: Overlaid XPS spectra of a) N 1s, b) C 1s, c) O 1s and d) S 2p
regions of SAM2 (solid line), LCAT-OEG-4(dashed line) and LCAT-OEG-1

(dotted line).
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5.2.2 Mixed SAM2

For certain applications, it is important to control the density of immobilised spe-

cies. If immobilisation is based on specific chemical interactions, the density of

bound species can be controlled by controlling the number of chemically active sites

on the surface. In the case of click chemistry on SAM2, the active sites are the azide

groups. Therefore, the ability to predict or fabricate surfaces with a desired concen-

tration of azide groups is of great importance. Consequently, this section presents

a study on mixing reagent 2 with diluents LCAT-OEG-4 and LCAT-OEG-1

in the SAM environment. SAM2OEG4
50% and SAM2OEG4

19% were formed from EtOH

solution of LCAT-OEG-4 containing 50 % and 19 % molar fractions of reagent 2

respectively. In the same manner SAM2OEG4
50% and SAM2OEG4

19% were formed, but

LCAT-OEG-1 was used instead of LCAT-OEG-4.

5.2.2.1 Ellipsometry and Wetting measurements

Wettability data and thickness obtained from ellipsometry measurements of pure

SAM2, LCAT-OEG-4 SAM and LCAT-OEG-1 SAM are shown in table 5.6.

Ellipsometry data do not show any clear trends of mixing (figure 5.13a), in fact

SAM2OEG4
50% and SAM2OEG4

19% yield 6-26 % higher thickness values than pure SAM2.

Similarly, thickness values of SAM2OEG1
50% and SAM2OEG1

19% are also significantly too

high. Higher than expected SAM thickness is usually an indication of adventitious

contamination, which was already discussed as the most probable reason for the

smaller discrepancy between expected and measured thickness in pure SAMs. Higher

levels of contamination could be caused by a combination of prolonged exposure to

ambient conditions due to characterisation by other techniques and higher disorder

in the SAMs, i.e. both SAMs formed from 19 % reagent 2 solution show higher

contact angle hysteresis and yield the highest thickness values.
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Figure 5.13: Plotted ellipsometry and wetting measurements data of pure and
mixed SAMs against fractional molar concentration (%) of reagent 2 in the SAM
formation solution. Plotted a) thickness values of SAM2 diluted with LCAT-
OEG-4 (open circles) and LCAT-OEG-1 (open squares) do not show any linear
trend. On the other hand, plotted b) cosine of the contact angles show a linear
change in SAM2 diluted with LCAT-OEG-4 (triangles facing up) and LCAT-
OEG-1 (triangles facing down). Filled and open symbols correspond to advancing
and receding angles, respectively. Solid and dotted lines represent the line of best
fit for the Cassie equation for the contact angles (for the triangles facing up and

down, respectively).

On the other hand, the fact that SAM2 yields slightly lower surface energy than

SAMs of the diluents LCAT-OEG-4 and LCAT-OEG-1, and the fact that mixed

SAMs yield intermediate contact angles compared to those of pure SAMs, provided

an alternative way to study the mixing. The degree of mixing was estimated by

analysis of the angles based on the Cassie equation.[60] Figure 5.13b shows plotted

cosine values of the contact angles against the fractional molar concentration (%)

of reagent 2 in SAM formation solutions, which are in a good agreement with the

plotted lines corresponding to the expected linear change in cosine of the contact

angles with the change of fractional molar concentration (%) of reagent 2 on the

surface. This indicates that SAMs yield similar fractional molar concentration to

that of the corresponding solutions.
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Table 5.6: Ellipsometric thickness and contact angles of pure SAMs
(SAM2, LCAT-OEG-4 SAM and LCAT-OEG-1 SAM) and mixed SAMs

(SAM2OEG4
50% , SAM2OEG4

19% , SAM2OEG1
50% and SAM2OEG1

19% ).

SAM
Ellipsometric
thickness (Å) Water contact angles (°)

Measured Expectede Advancing Receding Hysteresis
C18 SAM 22 ± 2 22 111 ± 1 103 ± 2 8

SAM2 34 ± 1 33 58 ± 3 46 ± 2 12

SAM2OEG4
50% 36 ± 1 33† 50 ± 2 39 ± 1 11

SAM2OEG4
19% 43 ± 2 32† 46 ± 2 31 ± 2 15

LCAT-OEG-4 SAM 32 ± 1 29 39 ± 2 30 ± 1 9

SAM2OEG1
50% 32 ± 1 29† 50 ± 2 40 ± 3 10

SAM2OEG1
19% 38 ± 4 25† 43 ± 2 21 ± 2 22

LCAT-OEG-1 SAM 23 ± 2 21 38 ± 1 25 ± 4 13
† Expected value was calculated based on experimentally obtained values from pure SAM2
and either LCAT-OEG-4 SAM or LCAT-OEG-1.
- Ellipsometric thickness was obtained using refractive index of 1.45 in Cauchy’s equation.
- Uncertainties refer to whichever is the larger (i) standard deviation of sample-to-sample
values or (ii) average of standard deviations from each sample (originating from variation in
a single measurement or measurement-to-measurement).
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5.2.2.2 XPS

X-ray Photoelectron Spectroscopy (XPS) measurements were carried out on mixed

SAMs in order to provide another (independent) method of evaluating mixing on

reagent 2 and the diluents in a SAM environment. The amount of mixing was

determined by evaluating the fractional difference in chemical composition of the

mixed SAMs with respect to the obtained reference spectra of pure SAM2, LCAT-

OEG-4 SAM and LCAT-OEG-1 SAM.

The spectra presented in this section were processed in the same manner as the

spectra discussed in section 5.2.1.2. Although it was mentioned in the same sec-

tion that normalisation to the carbonyl oxygen component in O 1s provides equally

consistent data analysis of pure SAMs spectra, it was found, however, that normal-

isation of mixed SAMs spectra to the carbonyl oxygen component leads to slightly

less satisfactory results, and in the case of SAM2OEG1
19% leads to abnormal results.

Thus, only the data normalised to alkyl carbon in C 1s are presented in this section.

It is challenging to determine the mixing of reagent 2 with the diluents by XPS,

because the molecules have very similar chemical composition (see figures 5.9), there-

fore there is not much difference between their XPS spectra. As discussed in section

5.2.1.2, only the azide group leads to a significant difference between XPS spectra

of reagent 2 and LCAT-OEG-4. Although LCAT-OEG-1 differs from reagent

2 by additional changes in oxygen C-O peak in O 1s and carbon C-O (and C-N)

peak in C 1s, both of them are subject to variations caused by adventitious con-

tamination. Therefore, quantification of the amount of azide group on the surface is

vital for determining the fractional molar concentration of reagent 2 in the SAMs.

However, due to X-ray induced reduction of azide group by up to 60 %, twenty XPS

measurements were performed on each type of SAM to obtain statistically reliable

values of integrated peak areas, as discussed in section C.5. Assuming the rate of
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azide group reduction is independent of the molar concentration in the SAM, ac-

curate mixing ratios can be determined by comparing peak areas in N 1s spectra of

the mixed SAMs with those of the pure SAMs.

Table 5.7: Relative ratios of chemical elements and their species in mixed
SAM2, LCAT-OEG-4 SAM and LCAT-OEG-1 SAM based on integrated
and normalised (using R.S.F.) peak areas in XPS spectra of N 1s, O 1s, C 1s and
Au 4f regions. Alkyl carbon in C 1s is set to be equal to 10 in all of the spectra,
because that is the amount of such atoms in all of the molecules. Uncertainties

are presented in table C.1 in the appendix.

Carbon Oxygen Nitro-
gen Gold

SAM C=O C-O
C-N Total C=O C-O Total Total Total

SAM2OEG4
50% 2.0 12.7 24.9 1.0 5.6 6.6 2.3 15.4

Expected* 1 11.9† 23.6† 1 5 6 2.3†

SAM2OEG4
19% 1.7 12.4 24.2 1.0 5.5 6.6 1.6 13.8

Expected* 1 11.3† 23.0† 1 5 6 1.55†

SAM2OEG1
50% 2.2 8.1 20.5 1.1 3.8 4.9 2.0 14.5

Expected* 1 8.5† 20.2† 1 3.5 4.5 2.4†

SAM2OEG1
19% 1.9 5.8 17.8 1.4 2.5 4.0 1.8 12.1

Expected* 1 5.8† 17.4† 1 2.6 3.6 1.6†

* Expected values based on the corresponding molecular structures shown in figures 5.9.
† Expected value was calculated based on experimentally obtained values from pure SAM2,
LCAT-OEG-4 SAM and LCAT-OEG-1 SAM presented in tables 5.4 and 5.5.

Tables C.2, C.3, C.4, C.5 and C.6 in the appendix detail integrated peak areas for

each XPS measurement on each SAM type, while the summary is provided in table

5.7 (for uncertainties please refer to table C.1 in the appendix), whereas figures 5.14

and 5.15 visualise the differences by showing representative spectra of the pure and

mixed SAMs. Quantitative analysis of integrated peak areas of total carbon, C-O

(and C-N) carbon, total oxygen, oxygen in amide group (except for SAM2OEG1
19% )

and oxygen in OEG chain (C-O) yield relative ratios within 10 % of the expected

values.

Based on the analysis, N 1s region suggests that SAM2OEG4
50% and SAM2OEG4

19% con-

tain 50 % and 21 % of reagent 2, respectively, which are in a close agreement with
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Figure 5.14: Overlaid XPS S 2p spectra of SAMs with 100 % (in red), 50 %
(in green) 19 % (in blue) and 0 % (in black) molar fraction of reagent 2 on the
surface. Mixed SAMs contain LCAT-OEG-4 (left column) and LCAT-OEG-1

(right column), as the diluent. Intensity of the spectra is not normalised.

the fractional molar concentrations in the corresponding SAM formation solutions.

Analysis of C-O (and C-N) peak in C 1s yields much higher percentages (94 % and

75 %, respectively), which are attributed to the effects of variation in adventitious

contamination.

Mixing in SAM2OEG1
50% and SAM2OEG1

19% can be determined by evaluating N 1s region,

the peak corresponding to oxygen in OEG chain (C-O), and the peak corresponding

to carbon bound to oxygen (C-O) or nitrogen (C-N). The analysis suggests 36 %,

59 % and 46 % of reagent 2 are in the former SAM. Although the percentages

are spread out, their average of 47 % is ∼3 % lower than the concentration of the

solution. The same regions suggest 25 %, 21 % and 20 % of reagent 2 are in the

latter SAM, giving an average of 22 %, which in this case is ∼3 % higher than the

concentration of the solution.

Overall, XPS data indicate ∼20 % and ∼50 % fraction of reagent 2 in the mixed

SAMs formed from solutions containing 19 % and 50 % of fractional molar concen-

tration of reagent 2.
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Figure 5.15: Overlaid XPS spectra of SAMs with 100 % (in red), 50 % (in green)
19 % (in blue) and 0 % (in black) molar fraction of reagent 2 on the surface.
Mixed SAMs contain LCAT-OEG-4 (left column) and LCAT-OEG-1 (right
column), as the diluent. Spectra correspond to N 1s (top row), C 1s (middle row)

and O 1s (bottom row). Intensity of the spectra is not normalised.
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5.2.3 Click chemistry on the SAM surface

Following the successful fabrication, characterisation and mixing with the diluents,

the intrinsic function of SAM2 to facilitate click chemistry was investigated. This

section presents a study, using ellipsometry and Quartz Crystal Microbalance with

Dissipation (QCMD) techniques, of click reaction on the gold surface by performing

cycloaddition between strained cycloalkyne and azide endgroup of SAM2, without

the use of any catalyst.
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Figure 5.16: QCMD spectra of SAM2 rinsed for 40 min with a) pure milliQ
grade water, b)-c) 240 µM strained cyclooctyne solution in milliQ grade water.
Figure d) overlays the 7th harmonics from figures a), b) and c). Solutions were

rinsed at 100 µl s−1 rate.

Figure 5.16 shows the change in frequency and dissipation due to a 40 min rinse (at

100 µl s−1 rate) of SAM2 with pure milliQ grade water (figure 5.16a) and 240 µM

of strained cyclooctyne in milliQ grade water (figure 5.16b and 5.16c). There
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are no evident changes, other than the drift, in figure 5.16a, but a clear difference

in frequency appears in figures 5.16b and 5.16c after the rinse with the solution

of strained cyclooctyne. Although it is difficult to see in the latter two figures

that dissipation returns to drift level after the rinse with strained cyclooctyne

solution, this is clearly shown in figure 5.16d, where the 7th harmonics from the

other three figures are overlaid.

Table 5.8: Calculated mass of chemically bound strained cyclooctyne layer
to SAM2 using Sauerbrey equation and each harmonic from the acquired QCMD

data

.

Harmonic Chnl,1 Chnl,2 Chnl,1 Chnl,2 Chnl,1 Chnl,2
3rd 156 160 0.4 0.7 164 174
5th 155 163 0.5 0.6 164 176
7th 158 157 0.4 0.7 166 171
9th 165 163 0.3 0.6 170 175
11th 158 158 0.4 0.7 166 172
13th 158 153 0.5 0.7 168 168

Average 158.3 159.1 0.40 0.67
STD 3.3 3.6 0.07 0.04

Mass,(ng/cm2) Drift,(ng/cm2/min) Mass(ng/cm2),20min,later
Sauerbrey:mass

QCMD does not measure properties of the adsorbed layers directly, but determines

them by modelling the acquired data. Adsorbed films can be categorised into two

main categories, rigid and viscoelastic, each of which requires different models. The

former can be modelled using a simple Sauerbrey equation, while the latter requires

complex Kelvin-Voigt or Maxwell models. It is important to choose the correct

category, because modelling a rigid layer as viscoelastic yields underestimated mass

of the film, while the reverse yields overestimated mass. Usually Sauerbrey equation

is the correct choice for modelling a film, if (i) the change in dissipation is below

10 × 10−6, while frequency changes by 10 Hz, (ii) signal of the overtones overlap, or

(iii) Sauerbrey equation gives comparable values of the film mass calculated with

the highest and lowest harmonics. Due to those criteria, Sauerbrey equation was

chosen to model the adlayer of strained cyclooctyne on SAM2.
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The calculated values of mass per area for each harmonic are presented in table

5.8. By taking into account the spread in the data and the drift in the QCMD

system, mass density (mass per area) of the film is estimated to be in the range of

117-163 ng cm−2, which is equal to 33-46 Å2 area per molecule. Assuming that area

per molecule in SAM2 is similar to that of a simple alkanethiol SAM (∼21 Å2),

QCMD data suggest that the strained cyclooctyne layer is ∼1.5-2.0 times less

densely packed, or in other word, the yield of the click reaction is in the range of

∼50-75 %. This is not surprising given that strained cyclooctyne is larger than

azide group and that it can only bind through the alkyne group. Based on the bulk

density (1.14 g cm−3) of strained cyclooctyne, the estimated thickness of the film

is in the range of 10-14 Å, which is lower than the obtained value of (17 ± 2) Å using

ellipsometry. Such discrepancy is not unexpected, because density of strained

cyclooctyne in the layer chemically bound to SAM2 is likely to be lower than

that in bulk. The comparison of the thickness values obtained from QCMD and

ellipsometry suggests that the density of strained cyclooctyne on the SAM is

∼40 % lower than in bulk.

Figure C.6 in the appendix shows that no changes are detected by QCMD upon

further rinses with the strained cyclooctyne solution, indicating that reaction is

fully completed within 40 min. The same figure also shows that chemical or physical

adsorption occurs on LCAT-OEG-4 SAM. The same outcome was observed on

LCAT-OEG-1 SAM and amine (NH2) terminated SAM.
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5.2.4 Discussion and conclusions

Ellipsometry and contact angle data (table 5.3) suggest that reagent 2 forms a

good quality SAM. This is also supported by the acquired XPS spectra, which show

mainly sulfur species corresponding to thiols bound to gold surface (figure 5.11d).

Furthermore, analysis of the XPS data yields relative ratios of chemical elements

and their species that are comparable to the expected values (tables 5.4 and 5.5)

determined from the molecular structure (figure 5.9). Although it was detected that

X-ray induces up to 60 % reduction of azide group, it was limited to 20 % reduction

by optimising acquisition parameters.

It was also shown that SAM2 can successfully facilitate catalyst-free click chem-

istry by performing cycloaddition between strained cycloalkyne and azide endgroup

of the SAM in aqueous solution under ambient conditions. Although it was not in-

vestigated in detail, it was observed that click chemistry on the surface was complete

within a rinse phase (at 100 µl s−1 rate, 240 µM solution concentration) of 40 min and

no additional changes were detected by QCMD due to repeated phases of rinsing.

Analysis of QCMD data using Sauerbrey equation suggests that area per strained

cyclooctyne molecule on SAM2 is in the range of 33-46 Å2, which suggests ∼1.5-2

times lower density than a conventional alkanethiol SAM. This suggests ∼50-75 %

yield, assuming that SAM2 has similar packing as conventional alkanethiol SAMs.

This is not surprising, because strained cyclooctyne is larger than the azide group

and can only bind through the alkyne group, which limits its packing on SAM2.

QCMD data also suggest that film thickness of the strained cyclooctyne film is

in the range of 10-14 Å, which is lower than (17 ± 2) Å measured by ellipsometry.

The discrepancy, however, is likely to originate from the fact that the density of

strained cyclooctyne is lower on SAM2 than in bulk. For completeness, adsorp-

tion of strained cyclooctyne onto LCAT-OEG-4 SAM, LCAT-OEG-1 SAM
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and amine (NH2) terminated SAM was investigated, but no significant changes were

detected.

It was also shown that the amount of reagent 2 in a SAM can be diluted with

LCAT-OEG-4 or LCAT-OEG-1. Quantitative XPS data analysis (see tables 5.7,

C.2, C.3, C.4, C.5 and C.6) of the pure and mixed SAMs suggests that fractional

molar concentration of reagent 2 in the SAMs is similar to that of the solutions

the SAMs were formed in. This is also supported by the contact angle data. Meas-

ured contact angles on the pure and mixed SAMs are in the agreement with those

predicted using Cassie equation[60] (see figure 5.13b and table 5.6).
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5.3 Alkyl and aromatic SAMs in Raman spectro-

scopy and plasmonic systems

Organic electronics is emerging to become one of the most important technologies

of the 21st century, due to the potential to produce flexible, transparent and cheap

devices.[61,62] Developments in the field include organic transistors,[63] light emitting

diodes[64,65] and solar cells.[66,67] The challenge, however, is to limit the number

of molecules to just a few that are needed for the operation of a device, because

molecular electronics offers desirable properties such as fast operation speeds, low

switching energies, ultrahigh information densities, and cheap manufacturing. On

the other hand, as the number of molecules in a group shrinks, the role of their

conformation,[68] alignment and contact with an electrode[69] becomes increasingly

more crucial, while probing the properties in small number of molecules is generally

difficult to achieve.

Surface enhanced Raman spectroscopy offers a possible solution to easily probe a

small number of molecules by combining molecular layers and plasmonic structures

(metal structures that support light-driven coherent collective electron oscillation,

also known as plasmons).[70–74] The strength of this method lies in the fact that plas-

monic structures can confine light below the diffraction limit[75] and, in turn, used for

sensing down to single molecule level.[70,71,76,77] Nanoparticle-on-mirror (NPoM) con-

figuration is of particular interest, because in addition to the possibility of probing

a small number of molecules of interest between the planar surface and a plasmonic

structure, the orientation of electric field is fixed, while the coupling of the plasmons

on a nanoparticle and its dipole image in the metal film enhances the sensitivity of

the technique.[70,71,73,74]

SAMs offer unprecedented control of conformation, packing and orientation of the

molecules in a monolayer as well as physical properties of the film, such as thickness
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and conductivity. Therefore, BPDT SAM and BPT SAM provided an excellent

platform for our collaborators to address one of the main outstanding questions of

how molecular conductivity affects a surrounding plasmonic junction.[78] A covalent

bond between thiol groups and gold atoms along with π-orbitals in phenyl rings turn

BPDT SAM into a conductive spacer between gold nanoparticle and gold thin

film,[79] in contrast to BPT SAM which covalently binds only to the gold thin film

and, in turn, acts as an insulating layer. Compared to the latter SAM, the former

yields a strong (50 nm) blue-shift of the plasmon resonance (of the coupled mode)

in scattering spectra of gold nanoparticles. Although this blue-shift is in agreement

with theoretical prediction[80–82] and the reported shift for direct quantum tunnelling

between plasmonic structures,[83,84] it is necessary to exclude the possibility that the

observed blue-shift could originate from the variation in SAM thickness of refractive

index. Thus, my contribution to the published work is presented in this section.

My contribution of the performed ellipsometry measurements to the published work

is summarised in table 5.9. Although ellipsometric BPDT SAM thickness of

(1.1 ± 0.1) nm and BPT SAM thickness of (1.3 ± 0.1) nm do agree within their

uncertainty values, the obtained averages show that the former SAM is 15 % thin-

ner. This could result from a fraction of BPDT molecules lying flat on the gold

surface due to bond formation of both thiols groups with the gold surface. The dif-

ference in thickness would account for up to 20 nm shift of the plasmon peak in the

spectra, but it would shift to the opposite direction, as smaller separation between

the plasmon structures lead to a red-shift. The presented thickness was obtained

using refractive index of n = 1.45 in Cauchy’s equation, and although there is some

variation in the refractive index between organic molecules, an unrealistic shift to

n = 1.15 would be required to account for the observed 50 nm blue-shift in the

spectra.

Thus, it is concluded that the blue-shift is due to changes in molecular conductivity.
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Furthermore, it is demonstrated that the system can be treated as a capacitor (gold

nanoparticle separated from gold thin film) short-circuited by individual resistors

(molecules in a SAM). Fitting of the model to the experimental data of the mixed

BPDT and BPT SAMs suggests that fewer than 200 molecules are probed with

an individual gold nanoparticle (60 nm in diameter). For more details, the reader is

referred to the publication.[78]

Table 5.9: Ellipsometric thickness of BPT SAM, BPDT SAM, C4 SAM,
C5 SAM, C9 SAM, C12 SAM and C18 SAM.

SAM Ellipsometric thickness (nm)
Measured

BPT SAM 1.3 ± 0.1
BPDT SAM 1.1 ± 0.1

C4 SAM 0.5 ± 0.1
C5 SAM 0.6 ± 0.1
C9 SAM 1.1 ± 0.1
C12 SAM 1.6 ± 0.1
C18 SAM 2.4 ± 0.1

Despite the substantial progress in both simulation[85–89] and chemical development

of metal nanostructures[90] in recent years, only some pursuits to develop a com-

prehensive analytical model[91,92] capable of directly validating experimental results

and producing parameters for the implementation of full electromagnetic simula-

tions have been reported. However, most of them rely on approximation of Max-

well’s equations and are limited to certain geometries, for example large separation

of plasmonic structures.[93] Another approach is to treat a nanoplasmonic system as

a high frequency circuit composed of capacitors, inductors and resistors,[94–97] which

is a promising approach because a generalised equation that incorporates various

contributions, for example geometry of the nanostructures, can be used to describe

resonant conditions.

Surprisingly such model was not present, and further work by the collaborators on

the similar systems to the one described above led to a development of an analytical
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circuit model for coupled plasmonic dimers separated by small gaps, which provides

a complete account of the optical resonance wavelength.[98] It is able to describe both

insulating and conductive spacers (gaps), as well as provide quantitative agreement

with full electromagnetic simulations.

Figure 5.17: Values of ellipsometric thickness taken from table 5.9 are plotted
against plasmon resonance wavelength. Taken from reference[98].

Comparison of the model with the experimental results has been evaluated as well.

Again, ellipsometric measurements were performed on C4 SAM, C5 SAM, C9

SAM, C12 SAM and C18 SAM prepared in an identical manner to those used

to gather scattering spectra of gold nanoparticles in NPoM configuration. This is

done to evaluate the accuracy of our collaborators’ model in determining the size

and refractive index of the spacer (gap). The data are summarised in table 5.9 and

plotted against the resonant wavelength (figure 5.17), which show a good agreement

in trend with data generated by both the analytical model and full electromagnetic

simulation. For more details, the reader is referred to the publication.[98]

Overall, it is shown that relatively simple aromatic and alkanethiol SAMs without an

intrinsic active function can be used as an optimum platform to control properties

of the spacer layer in surface enhanced Raman spectroscopy and nanoplasmonic

systems.
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Chapter 6

Conclusions and Future work

This thesis explored SAMs of various complexity with a special focus on fabrication

of surfaces that could exhibit an intrinsic active function. The complexity ranges

from:

(i) simple alkanethiol and aromatic type SAMs which were shown to yield optimum

precision over control of physical surface properties for optical spectroscopy such as

surface-enhanced Raman spectroscopy, gaining a better understanding of plasmonic

systems, and the development of a generalised circuit model for coupled plasmonic

systems (discussed in chapter 5);

(ii) SAMs of azide terminated long-chain alkanethiololigoethyleneglycol (LCAT-

OEG) type molecule that were shown to yield high quality monolayers, effective

mixing with alcohol terminated LCAT-OEG molecules and successful facilitation of

click chemistry in catalyst-free aqueous solution under ambient conditions (chapter

5);

(iii) a more complex SAM of larger molecules containing chromophore that turns it

into a light sensitive (more specifically photocleavable) surface, that was shown to

ultimately produce areas of low density instead of areas of functional groups upon
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irradiation with UV, which is attributed to be the cause of the exceptionally high

selectivity in electrochemical deposition of copper (chapter 3);

and finally to

(iv) fabrication of SAMs using bi-stable metal complexes (spin crossover compounds)

(that show potential to exhibit spin crossover (SCO) behaviour in a thin film on gold

surfaces), where SAMs of metal complexes were successfully fabricated using one of

the ligands by forming SAMs from a solution of preformed Fe(II) complexes, and

by Fe(II) coordination onto the successfully formed SAM of the ligand, but SCO

behaviour was not ‘unlocked’ (chapter 4).

The following sections will conclude the results in more detail and will present future

work.

6.1 Characterisation of Photocleavage of Acet-

ylpyrene SAM

Reagent 1 successfully forms a SAM sensitive to soft UV light, which can be photo-

patterned for the use of highly selective copper deposition. Nevertheless, patterned

SAM1 yields regions with high and low packing of molecules rather than regions

with different surface chemistry. For certain applications, it might be desirable to

obtain a chemically patterned surface consisting of predefined areas containing high

density of specific chemical groups. SAM1 has a high potential to produce regions

dense in carboxylic acid groups. This could be achieved by studying in detail and

quantifying the impact of soft UV irradiation time and concentration of HCl acid

in IPA on the rate of photo-deprotection in SAM1 and loss of molecules in ALA

SAM. Also, other acids that yield fewer side effects in carboxylic acid SAMs, for

example acetic acid,[1,2] as well as other solvents, could be investigated. Otherwise,
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a derivative of reagent 1 could be synthesised that protects a carboxylic acid with

a longer chain length, such as mercaptoundecanoic acid, to form a SAM that would

lead to a stable carboxylic acid terminated monolayer after a UV treatment. Such

SAM would also allow an easier study of the photo-deprotection of 1-acetylpyrene

group.

This thesis presented only a brief study of reagent 1 layer formation on silicon

oxide and glass surface, and photo-patterning. Mechanisms of both phenomena are

not well understood. The assumption that adsorption of the layers is driven by

the pyrene group could be tested by exposing the surfaces to pyrene derivatives,

for example 1-(Bromoacetyl)pyrene, and characterising them with UV/visible and

fluorescence spectroscopies in reflection or transmission mode, as well as with XPS.

However, in order to gain a better understanding of the mechanism behind the film

formation on the surfaces, the role of adventitious contamination should be studied,

which could also open possibilities of film formation on other surfaces. Attribution

of thickness growth of the films to cross-linking (facilitated by opening of dithiolane

ring and formation of new disulfide bonds) could be investigated by using a deriv-

ative of reagent 1 that contains a thiol head group. It would also allow for the

study of photocleavage rates and yields with and without catalysts in crystalline or

gel-like states, while comparison of the results with identical treatments of SAMs

on gold formed by such molecules would give a better understanding and quantific-

ation of gold quenching effect on the photocleavage reaction. On the other hand,

investigation of control of reagent 1 cross-linking would allow for the development

of tools for reproducible fabrication of the films with desired thickness.

Because of the ability to photo-deprotect reagent 1 layers on both sides of a glass

and turn them hydrophilic without any rinsing steps, the applicability of the layers

could be investigated for in-situ surface modification, for example, to control sur-

face chemical composition, to immobilise biological species or nanoparticles through
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binding to COOH or sulfur groups, to direct hydrophilic or hydrophobic species on

a surface, or to act as a sensor due to reported sensitivity of fluorescence of pyrene

derivatives to a local environment.[3–7]

6.2 SAMs for spin crossover (SCO) surfaces

Ligand L1 successfully forms a SAM, but it does not coordinate Fe(II) on gold sur-

faces. Furthermore, complex C1 demetallises during SAM formation. The precise

mechanism that leads to the disintegration of complex C1 is unclear, however, thio-

morpholine head group plays an important role. The instability is not intrinsic to

the structure of ligand bpp, but attributed to thiomorpholine head group, because

bpp-SH complex did show some presence of Fe iron (even though the complex was

unstable on gold surfaces due to desulfurisation in the backbone).[8] Therefore, a

new derivative of ligand bpp could be investigated, a derivative containing another

remote head group that is stable on a metal surface and exhibits a strong affinity

towards gold (e.g. thiophenol).

Both ligand L2 and complex C2 form SAMs, and the former successfully (with

∼100 % yield) coordinates Fe ions. However, it has not yet been demonstrated

whether complexes in the SAMs do exhibit SCO behaviour, as a number of issues

were encountered. Most importantly, the spectra of Fe 2p region did not indicate

expected LS state in SAM C2 [MeCN] at room temperature. This could be down

to various causes, however, it would be most promising to investigate:

• Improvement of surface coverage by using an alternative head

group (e.g. thiol) or coordination of complex C2 to (monodent-

ate) ligand-terminated SAM.
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Both SAM L2 and SAM C2 yield low surface coverage, which decreases

further upon ligand exchange or Fe coordination. Low coverage not only limits

signal strength in XPS, FTIR and other techniques, it is also a likely reason

for high excess of carbon and oxygen assigned to reversibly bound adventitious

hydrocarbons. This complicates data analysis and development of the SAMs

for a SCO surface.

As discussed in sections 4.3.1.2 and 4.4, low coverage could be assigned to a

weak head group affinity towards gold and the bulky shape of the molecules.

The former cause could be addressed by an alternative head group, for example

a remote thiol group. This would certainly improve stability of the SAMs upon

rinsing (ligand exchange) and Fe coordination, even if improvement in surface

coverage in fresh SAMs would be limited.

On the other hand, low density due to the bulky shape of the molecules could

be improved by coordinating complex C2 via the site for the SEL onto a

low density (monodentate) ligand-terminated SAM, then backfilling the SAM

with longer chain (monodentate) ligand-terminated thiols, and coordinating

complex C2 again. This would allow the density to be increased by transposing

complexes along the axis normal to the surface.

• Replacement of MeCN (and most likely MeOH) by H2O as the

SEL upon SAM C2 exposure to ambient conditions.

Such possibility is not only supported by the data acquired in this study, but

also by the report of the similar phenomena in a closely related ligand Py5.

In solution, H2O, MeOH, MeCN, pyridine (Py) and other ligands replace each

other at the SEL position in Fe(II) complex of Py5.[9] On the contrary, the

same study found that cyanide anion (CN-) could not be replaced by prolonged

exposure to excess of the other ligands, which was attributed to strong ligand

field and even stronger electrostatic interaction of CN- with the Fe ion. It is
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highly likely that H2O from moisture would not replace CN- as the SEL in

SAM C2. Furthermore, CN- should lead to LS state, which would allow a

reference spectra for Fe 2p region to be obtained. Then coordination of weaker

ligands could be studied in order to obtain SCO behaviour in the SAM.

• Dissociation of MeCN ligand from SAM C2 under vacuum.

Again, in addition to such conclusions drawn from the data, it has been repor-

ted in Fe(II) complex of Py5 (see the experimental section on metal complex

syntheses in the reference[10]). Although, XPS could not be operated under

atmospheric pressure, FTIR measurements could be obtained before and after

exposure of powder, dropcast and SAM samples to vacuum, while CN stretch

should be easily detected in the range of 2050-2250 cm−1.

• Suppression of SCO behaviour,[11–14] weakening of ligand field or

pinning complex into one of the states (i.e. HS)[11–13,15,16] in mono-

layers and sub-monolayers by direct contact with gold surface.

It has been reported that the second and further layers are usually not

affected.[13,14,16–19] Therefore, it could be investigated whether the phenomena

occur in SAM C2 by fabricating a bilayer of complex C2. This could be eas-

ily achieved by coordinating a straight bridging bidentate ligand to SAM C2,

that would allow coordination of complex C2 on top. In principle, it could be

expanded to multilayers of complex C2 by replacing bridging bidentate ligand

with specific rigid polydentate ligand.

• Side reactions due to ambient conditions. SAM formation, Fe coordina-

tion and ligand exchange could be performed under inert nitrogen atmosphere,

in order to eliminate possibility of side reactions or oxidation under ambient

conditions.
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• Coordination of different metal centres. Ions of other transition metals,

for example cobalt(II), could be used to explore how their SCO behaviour is af-

fected by their close proximity to gold surfaces, and whether unique properties

of Py5 complexes[20–22] are preserved.

• Different characterisation methods. Cyclic voltammetry (CV) could be

used to identify the oxidation state of Fe ions. Fourier Transform Infrared

(FTIR), Enhanced Raman spectroscopy (NPoM configuration), near edge X-

ray absorption fine structure (NEXAFS), X-ray magnetic circular dichroism

(XMCD) could be used as alternatives to XPS to identify the spin state and

molecular structure of complexes in the SAMs, while their packing or ordering

could be studied with scanning tunneling microscopy (STM) and atomic-force

microscopy (AFM).

6.3 Stability of COOH-terminated SAMs under

soft UV in acidic conditions

It has been shown that ALA SAM and other COOH-terminated SAMs of similar

thickness are unstable under soft UV irradiation in the acidic catalyst 100 mM HCl

in IPA. It was also shown that the severity of the instability gradually increases

with decreasing thickness, and this is the primary reason for the loss of molecules in

ALA SAM. Nevertheless, the precise mechanism for the removal of the molecules

is not known, because none of the compounds absorb strongly at 365 nm. However,

it is clear that UV light and the presence of HCl is required.

A number of different aspects of the system could be investigated in order to gain

a better understanding of the phenomenon. Firstly, different catalysts with lower

concentrations of HCl or with alternative acids could be investigated. Secondly,
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a photo-reaction study could be performed to determine a precise photo-reaction

rate and photo-sensitivity to different wavelengths investigated. Finally, catalysts

based on different solvents could be investigated. Additionally, SAMs with differ-

ent functional groups could be studied. Hydrophobic SAMs with CH3 functional

group could be investigated to understand if polar end groups or disorder in the

SAM play a more important role in the penetration of the catalyst to the gold sur-

face. If end groups do play an important role, than alternative photo-deprotectable

functional groups, such as amines, could be investigated for better SAM stability

in photo-deprotectable systems. COOH SAMs presented in this chapter were pur-

posely formed under the same conditions as SAM1, however, the stability of COOH

SAMs formed under the optimum conditions,[1,2,23–27] could be investigated.
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Appendix A

Characterisation of

Photocleavage of Acetylpyrene

SAM

This appendix provides additional information related to the study of photolysis in

SAM1 and reagent 1 layers presented in chapter 3.

A.1 Discrepancy between molecular structure of

reagent 1 and XPS data

This section explains why XPS data presented in section 3.2.3.1 is normalised cor-

rectly to study surface coverage and change in its chemical composition, but it is

not appropriate for the study of the precise molecular structure in SAM1. Chem-

ical ratios determined from appropriately normalised (based on ether (C-O) oxygen)

XPS data are presented in table A.1. There is a discrepancy between chemical ratios

given in table A.1 and the expected values based on molecular structure of reagent

231
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1 (figure 3.1a), which is associated with damaged induced by the acquisition of

XPS data, because other techniques yield expected characteristics of the SAM, as

discussed in section 3.2.4. After all, by a pure coincidence, normalised XPS data

presented in section 3.2.3.1 and table 3.5 give a more accurate representation of

non-damaged fresh SAM1, than correctly normalised data presented in this sec-

tion and table A.1. Nevertheless, discussion presented in this section highlights the

potential instability of aryl ketone under the XPS conditions, and highlights, that

depending on which aspects of a system are under investigation, XPS data analysis

and a choice of normalisation method may require a great caution.

XPS spectra in section 3.2.3.1 are normalised to Au 4f7/2 peak, while ratios of chem-

ical elements in table 3.5 are relative to S 2p region. Such normalisation methods

can result in overestimation of relative amount of chemical elements in a SAM due to

attenuation of XPS signal, which increases with the thickness and packing of a SAM.

The further away from the gold-SAM interface are the atoms, and the more densely

packed is the SAM, the higher the overestimation is of their relative amounts. This

is particularly useful in monitoring increase or decrease of SAM thickness or surface

coverage, because changes in chemical ratios (determined by XPS) are enhanced by

increase or decrease of this overestimation, in addition to increase or decrease of

SAM thickness and its packing. Therefore, this method of data normalisation was

preferred in the study of SAM1 photolysis presented in section 3.2.3.1.

However, such normalisations can lead to incorrect interpretation of other aspects

of a SAM. For example, while data in table 3.5 clearly show that chemical composi-

tion of the treated SAM1 is completely different from the expected (and measured)

values for fully (or at least partially) deprotected lipoic acid monolayer, data in

the table can lead to wrong assumptions about molecular structure of reagent 1

molecule in fresh SAM1. This can be illustrated by considering analysis of the
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chemical ratios. Table 3.5 suggests 1.3 ether (C-O) and 1.8 (C=O) carbonyl oxy-

gens, and 1.2 ether (C-O) and 1.8 (C=O) carbonyl carbons per molecule. It might

seem to be acceptable to approximate the values to 1 and 2 atoms for each type of

carbon and oxygen, and draw a conclusion that this confirms presence of one C-O

group and two carbonyl groups, which agree with the molecular structure (figure

3.1a).

Table A.1: Peak areas and relative ratios of chemical species (presented in the
brackets) in fresh SAM1, ALA SAM, MHA SAM and MOA SAM based on

XPS spectra.

Carbon Oxygen Gold Sulfur
SAM C=O C-O Total C=O C-O Total

SAM1 35
(1.4)

22
(0.9)

577
(23.0)

36
(1.4)

25
(1.0)

61
(2.5)

512
(20.4)

39
(1.5)

ALA
SAM

39
(1.3) - 285

(9.7)
36

(1.2)
29

(1.0)
66

(2.2)
644

(22.0)
62

(2.1)

MOA 43
(1.3) - 356

(10.9)
40

(1.2)
33

(1.0)
73

(2.2)
621

(19.0)
29

(0.9)

MHA 37
(1.2) - 233

(7.8)
39

(1.3)
30

(1.0)
69

(2.3)
687

(23.1)
31

(1.1)

Nevertheless, XPS data clearly show that there is only 40 % more carbonyl (C=O)

oxygen and carbon than ether (C-O) oxygen and carbon, respectively, in fresh

SAM1. That is evident in the O 1s spectra (figure 3.8a) and C 1s spectra (fig-

ure 3.7a) of fresh SAM1, which visually show that C=O peaks are not twice as

large as C-O, and as indicated by the integrated peak areas of the spectra in tables

3.3 and 3.2; such comparison of chemical species is not affected by the spectra nor-

malisation, and therefore stays the same, whether data is normalised to Au 4f, S

2p, O 1s or any other region or chemical species. It is also important to note that

such values were repeatedly obtained on multiple samples from multiple batches.

Chemical ratios determined from XPS data normalised to ether(C-O) carbon (table
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A.1) correctly represent this trend, but also yield reasonable values for other regions

in SAM1, ALA SAM, MHA SAM and MOA SAM.

If relative ratios of carbonyl to ether oxygen in fresh ALA SAM, MHA SAM

and MOA SAM are used as a baseline, which show 20-30 % stronger signal from

carbonyl oxygen, then fresh SAM1 show only ∼15 % more carbonyl then ether

oxygen per molecule.



Appendix B

SAMs for spin crossover (SCO)

surfaces

B.1 SAM L2 and SAM C2 - effects of normalising

spectra to N 1s

This section explains why XPS spectra (presented in section 4.3) were normalised

(scaled) using N 1s region, and describes the expected changes in the spectra, which

might not seem intuitive at first glance.

If XPS spectra of SAMs on gold do require intensity normalisation (scaling), it is

normal practice to use the Au 4f region. However, a strong variation in Au 4f

relative to other regions in SAM L2, SAM L2+Fe and SAM C2 suggests varying

surface coverage, and therefore normalisation to gold is not an appropriate method

to study molecular structure of those SAMs. The only element that does not change

in quantity across the SAMs is sulfur. However, due to exceptionally weak peak and

the fact that thiomorpholine-like sulfur appears as a mixture of two doublets, S 2p

region is not appropriate for intensity normalisation either.

235



Appendix B. SAMs for SCO surfaces 236

Depending on the sixth exogenous ligand (SEL), all the other elements, i.e. iron,

oxygen, carbon and nitrogen do vary upon Fe(II) coordination to ligand L2 or ligand

exchange in complex C2. The study presented in section 4.3 investigates MeCN,

MeOH and H2O as the SEL in SAM C2, therefore expected change in chemical

composition can be predicted. Nevertheless, only N 1s region is appropriate for nor-

malisation, because Fe 2p peaks are subject to a variation due to baseline correction

of the complex background, while peaks in O 1s and C 1s regions vary between some

samples and always show abnormally high excess.

Expected changes in peak areas are tabulated for (i) the perfect SAMs with no

excess in carbon and oxygen (table B.1), and (ii) when the excess detected in SAM

L2 and SAM C2 is used as a baseline (table B.2).

Table B.1: Expected relative ratios of chemical elements in SAM C2 with
different SELs (based on molecular structure), and expected change in peak areas,
if the spectra are normalised to have equal integrated areas of thiomorpholine-like

sulfur in S 2p,c or equal integrated areas in N 1s.b

SAM C2 with exogenous ligand Change in peak area

Element MeOH H2O MeCNa MeCN
scaledb

MeCNc

vs
MeOH/H2Od

MeCN
scaledb

vs
MeOH/H2Od

N 6 6 7a 6.00b 17 %c 0 %b

C 32 31 33 28.29 5 %d −10 %d

O 3 3 2 1.71 −33 % −43 %
S 1 1 1 0.86 0 % −14 %
Fe 1 1 1 0.86 0 % −14 %

a Based on molecular structure.
bSpectra are normalised to show equal integrated areas in region N 1s in SAM C2 with exo-

genous MeCN ligand and with exogenous MeOH/H2O ligand; the area is set to be equal to 6 for
convenience. Thus, when compared former with the later spectra, it appears as if there are equal
amount of N, but less S, Fe, O and C in SAM C2 with MeCN ligand.

c If spectra of SAM C2 with exogenous MeCN and MeOH/H2O ligands are normalised to
have equal peak areas of thiomorpholine-like sulfur in S 2p, then differences between the spectra
directly correspond to differences between molecular structures of the SAMs. Thus, such spectra
in the SAMs would show equal amounts of S and Fe, but increase in nitrogen and drop in oxygen
in the SAM with MeCN as the SEL. Percentage values correspond to change in spectra of SAM
C2 with MeCN as the SEL w.r.t. to MeOH/H2O as the SEL. However, in practise this method of
normalisation was not useful due to weak and complex peaks in S 2p region.
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Table B.2: Expected apparent drop in peak areas, when XPS spectra of SAM
C2 with different SELs are normalised to have equal N 1s areas (based on meas-

ured ratios).

Element MeCN-MeOHd MeCN-H2Od

N 0 %
C −12 %
O −22 %
S −14 %
Fe −14 %

dSAM C2 with MeOH and H2O ligands only differ by one carbon atom (i.e. 3 % or, if excess of
C is taken into account as a baseline, 2 %). The change is minute, given sample to sample deviation
and signal-to-noise ratio. Furthermore, out of all the spectra that are expected to change, C region
gives the smallest difference, when compared to SAM C2 with MeCN ligand. Therefore, SAM
C2 with MeOH and H2O ligands are treated as identical and referred to as MeOH/H2O, while the
change in C is averaged.
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B.2 XPS spectra with fitted components

B.2.1 SAM L2

Representative XPS spectra of SAM L2 with fitted components to supplement data

presented in section 4.3.1.1. Associated chemical species, average peak positions,

FWHM, integrated and fractional areas of fitted components are presented in tables

4.4 - 4.9.
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Figure B.1: High resolution XPS spectra with fitted components of SAM L2.
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B.2.2 SAM C2

One of the representative XPS spectra of SAM C2 with fitted components to sup-

plement data presented in section 4.3.1.1. Associated chemical species, average peak

positions, FWHM, integrated and fractional areas of fitted components are presented

in tables 4.4 - 4.9.
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Figure B.2: High resolution XPS spectra with fitted components of SAM C2.
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B.2.3 SAM L2+Fe(1m)

XPS spectra with fitted components of SAM L2+Fe(1m) exposed to ∼5 mM

Fe(ClO4)2 in MeCN to supplement data presented in section 4.3.3. A distinct

peak at 530.3 eV in O 1s region is only present in SAM L1+Fe(1m) exposed to

∼5 mM Fe(ClO4)2 in MeCN (and SAM L1 exposed to aqueous solution of ∼5 mM

Fe(ClO4)2), but not detected in SAM L1+Fe(30m), SAM L1 or SAM C2. The

peak is associated with oxygen in iron oxides.[1–3] For further details, please see

section 4.3.3.1.
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Figure B.3: High resolution XPS spectra with fitted components of SAM
L2+Fe(1m).
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B.3 Ligand exchange in SAM C2 by rinsing - ad-

ditional XPS spectra

B.3.1 Fe 2p region acquired at higher pass energies

Additional XPS spectra to supplement data and support discussions in section 4.3.2.

Figures B.4 and B.5 show XPS spectra of Fe 2p region acquired at higher values of

pass energy (PE) than spectra in figures 4.16b and 4.17b, respectively. Acquisition at

higher pass energies increases intensity of a spectrum, which can help to distinguish

some differences between the spectra of different samples or their states.
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Figure B.4: High resolution XPS spectra of Fe 2p region in SAM C2 [MeOH]
before (in black) and after (in red) rinsing with MeCN. Spectra of the same
colour in figures a) and b) were acquired in consecutive order on the same sample.
Multiple spectra of the same colour within figures a) and b) were acquired at the

same pass energy, but at different spectral resolutions (i.e. 0.1 eV and 0.2 eV).

Figure B.4 shows spectra of Fe 2p region of SAM C2 [MeOH] before and after the

rinse with MeCN, however, no change in the peak shape is evident, that would be

associated with switching between HS and LS states. The change in intensity in fig-

ures B.4a and B.4b is associated with baseline correction of the complex background,

because (i) the change in intensity is evident between the spectra in black (figure

B.4a), which correspond to two consecutive measurements on the same sample in

the same state, and (ii) no differences in intensity are evident in figure 4.16b.
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Figure B.5: High resolution XPS spectra of Fe 2p region in SAM C2 [MeCN]
before (in black) and after (in red) rinsing with MeOH. For the comparison
purposes, spectra of the first sample (SAM C2 [MeOH] before the rinse with
MeCN) and the second sample (SAM C2 [MeOH] rinsed with MeCN immedi-
ately after SAM formation) are added (in blue). Spectra within red and black
sets in figures a) and b) were acquired in consecutive order on the same sample.
Multiple spectra in red and in black within figures a) and b) were acquired at the

same pass energy, but at different spectral resolutions (i.e. 0.1 eV and 0.2 eV).

Figure B.5 shows spectra of Fe 2p region of SAM C2 [MeCN] before and after the

rinse with MeOH, but also includes spectra of the first sample (SAM C2 [MeOH]

before the rinse with MeCN) and the second sample (SAM C2 [MeOH] rinsed

with MeCN immediately after SAM formation) for comparative purposes. However,

no change in the peak shape is evident, that would be associated with switching

between HS and LS states.

As in the case of spectra in figure B.4, variation in intensity in figure B.5 is associated

with baseline correction of the complex background. A distinct feature (i.e. sharp

double peak) in Fe 2p3/2 peak in the red and black spectra in figure B.5a is attributed

to an artefact due to combination of low intensity and low signal-to-noise ratio,

because those features are not present in consecutively acquired spectra at pass

energy of 40 eV(figure B.5b).
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B.3.2 SAM C2 [MeOH] - comparison of fresh (sample 1)

and immediately rinsed with MeCN (sample 2)

Additional XPS spectra to supplement data and support discussions in section 4.3.2.

Figures B.6 and B.7 compare spectra of sample 1 (SAM C2 [MeOH] before it was

rinsed with MeCN) and sample 2 (SAM C2 [MeOH] taken out of the growth

solution, rinsed with pure MeOH, dried under stream of nitrogen and immediately

rinsed with MeCN). Regions N 1s, O 1s and S 2p yield no important differences,

while shape of peaks in Fe 2p region is the same and variation in intensity is assigned

to artefacts due to baseline correction of the complex background.
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Figure B.6: High resolution XPS spectra of sample 1 (SAM C2 [MeOH] before
the rinse with MeCN) in black and sample 2 (SAM C2 [MeOH] rinsed with
MeCN immediately after SAM formation) in red. Spectra of the same colour
in figures b), c) and d) were acquired in consecutive order on the same sample.
Multiple spectra of the same colour within figures c) and d) were acquired at the

same pass energy, but at different spectral resolutions (i.e. 0.1 eV and 0.2 eV).



Appendix B. SAMs for SCO surfaces 244

Difference in intensity in C 1s region in figure B.7b is small, and attributed to lower

levels of adventitious hydrocarbons in sample 2.

A distinct feature (i.e. double peak) in Fe 2p3/2 peak in one of the black spectra in

figure B.6c is attributed to an artefact due to combination of low intensity and low

signal-to-noise ratio, as the feature is not present in other black spectra in figure

B.6, which were acquired in consecutive order. Likewise the same cause is attributed

to a similar feature in the red spectrum in figure B.6b.

Overall, spectra in B.6 and B.7 suggest almost identical chemical composition in

both SAMs and do not indicate change of SEL and spin state in Fe ion.
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Figure B.7: High resolution XPS spectra of sample 1 (SAM C2 [MeOH] before
the rinse with MeCN) in black and sample 2 (SAM C2 [MeOH] rinsed with

MeCN immediately after SAM formation) in red.
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B.3.3 Comparison of SAM C2 [MeOH] (sample 2) rinsed

once and twice with MeCN

Additional XPS spectra to supplement data and support discussions in section 4.3.2.

Figures B.8 and B.9 compare spectra of SAM C2 [MeOH] (sample 2) rinsed once

and twice with MeCN.
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Figure B.8: High resolution XPS spectra of SAM C2 [MeOH] before (in
black) and after (in red) the second rinse with MeCN. Spectra of the same colour
in figures b), c) and d) were acquired in consecutive order on the same sample.
Multiple spectra of the same colour within figures c) and d) were acquired at the

same pass energy, but at different spectral resolutions (i.e. 0.1 eV and 0.2 eV).

Regions N 1s, Fe 2p, C 1s and O 1s yield no important differences, while a small

drop in oxidised sulfur and a tiny increase in Au 4f signal could be indicative of

removal of oxidised sulfur from the surface by the rinse or the artefacts due to the

baseline correction of noisy background.



Appendix B. SAMs for SCO surfaces 246

Again distinct features suggesting a separate sharp peak at ∼ 708 eV in Fe 2p3/2

peak in the red spectra in figures B.8b and B.8c are attributed to an artefact due

to a combination of low intensity and low signal-to-noise ratio, as such features are

not present in the red spectrum in figure B.8d, which was acquired in consecutive

order on the same sample.

Overall, further rinse of SAM C2 [MeOH] with MeCN does not affect its chemical

composition, and does not suggest replacement of SEL or change in Fe spin state.
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Figure B.9: High resolution XPS spectra of SAM C2 [MeOH] before (in
black) and after (in red) the second rinse with MeCN.
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B.4 Fe(II) coordination to SAM L2 in aqueous

solution - additional XPS spectra

B.4.1 Rinsing with MeCN after 1 min of coordination

Additional XPS spectra to supplement data and support discussions in section 4.3.3.

Figures B.10 and B.11 compare spectra of SAM L2+Fe(1m) (produced by expos-

ure to aqueous ∼5 mM Fe(ClO4)2) before and after the rinse with MeCN. Increase

in intensity of peaks in Fe 2p, O 1s, C 1s and Au 4f, is likely to be an artefact of

using N 1s region to normalise intensities of the spectra, which suggest relative drop

in integrated area of N 1s region. That could originate from an uncertainty induced

by the weak signal or loss of nitrogen atoms. However, it is clear that rinsing with

MeCN does not induce significant changes in chemical composition that could at

least remotely be comparable to SAM C2.
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Figure B.10: High resolution XPS spectra of SAM L2+Fe(1m) (produced by
exposure to aqueous ∼5 mM Fe(ClO4)2) before (in black) and after (in red) the

rinse with MeCN.
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Figure B.11: High resolution XPS spectra of SAM L2+Fe(1m) (produced by
exposure to aqueous ∼5 mM Fe(ClO4)2) before (in black) and after (in red) the

rinse with MeCN.

B.4.2 Rinsing with MeCN after 30 min of coordination

Additional XPS spectra to supplement data and support discussions in section 4.3.3.

Figure B.12 compares spectra of SAM L2+Fe(30m) (produced by exposure to

aqueous ∼5 mM Fe(ClO4)2) before and after the rinse with MeCN. A drop in Fe

2p and C 1s, but increase in Au 4f peaks suggest small loss of material from the

surface, which is also supported by the weaken intensity and signal-to-noise ratio in

S 2p region. Despite some change in chemical composition in O 1s region, the SAM

is not even remotely comparable to SAM C2.
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Figure B.12: High resolution XPS spectra of SAM L2+Fe(30m) (produced
by exposure to aqueous ∼5 mM Fe(ClO4)2) before (in black) and after (in red)

the rinse with MeCN.
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B.5 Impurities in the SAMs - Cl, F and Br

XPS spectra of Cl, F and Br traces in SAM L2, SAM C2 [MeOH] and SAM C2

[MeCN] to support discussions in sections 4.3.1.1 and 4.3.1.2
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Figure B.13: High resolution XPS spectra (normalised and referenced to N 1s
region) of SAM L2 (in red), SAM C2 [MeOH] (in black) and SAM C2

[MeCN] (in blue).
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Appendix C

Characterisation of simple

alkanethiol, aromatic, COOH-

and azide-terminated SAMs

This appendix provides additional information related to the studies of (i) COOH–

terminated SAMs stability under soft UV (365 nm) irradiation in acid, and (ii) azide

terminated SAMs presented in chapter 5.

252
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C.1 XPS spectra with fitted components of fresh

and UV treated DTBA SAM

                                       
 

 

 

 

 

 

 

 
 

 

 

 

 

 

 
                                          

 
 

 

 

  
 

 

 

 
 

                               
 

 

 

 

 

  

 

 

 

 
 

                                                
 

 

 

 

 

  

 

 

 

 

 
     

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
      0.0K

 0.2K

 0.4K

 0.6K

 0.8K

282284286288290292
Binding Energy (eV)

C
ou

nt
s 

pe
r 

se
co

nd
 (

C
P

S
)

                                     
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
                                     

 
 

 
 

   
 

 
 

 
                                     

 
 

 
   

 
 

 
 

                                                 
 

 

 

 

 
  

 

 

 
 

  
 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
     0.0K

 0.2K

 0.4K

 0.6K

 0.8K

282284286288290292
Binding Energy (eV)

C
ou

nt
s 

pe
r 

se
co

nd
 (

C
P

S
)

                              
 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 
                                   

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 
                                         

 
 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
            0.0K

 0.1K

 0.2K

 0.3K

 0.4K

528530532534536538
Binding Energy (eV)

C
ou

nt
s 

pe
r 

se
co

nd
 (

C
P

S
)

                              
 

 

 

 

 

 

 

 

  
 

 

 

 

 

 

 

 
 

                                   
 

 

 

 

 

 

 

 

 
  

 

 

 

 

 

 

 

 
 

                                       
 

 

 

 

 

 

 

 

 

 

 

 

  
 

 

 

 

 

 

 

 

 

 

 

 
 

           0.0K

 0.1K

 0.2K

 0.3K

 0.4K

528530532534536538
Binding Energy (eV)

C
ou

nt
s 

pe
r 

se
co

nd
 (

C
P

S
)

                                               
 

 

 

 

 

 

 

 

 

 

 

 

                                                        

 

 

 

 

 

 

 

 

 

 

 
                                                         

 

 

 

 
 

 

 

 

 
                                                           

 
 

 
 

 
 

 
                                                                 

 
 

 

 
  

 
 

 

 

  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
             0.00K

0.05K

0.10K

0.15K

160.0162.5165.0167.5170.0
Binding Energy (eV)

C
ou

nt
s 

pe
r 

se
co

nd
 (

C
P

S
)

                                                 

 

 

 

 
 

 

 

 

                                                           
 

 

 

  

 

 

 
                                                                   

 

 

 

  

 

 

 
                                                            

 

 

  

 

 
                                                 

 

 

 
 

 

 

 
                                                            

 
 

 
 

 

 
                                                              

 

 

 

 

 

 

 

                                                            
 

 

 

 
 

 

 
                                                                  

 

 

 

 
 

  

 

 

 

 

 

   

 

  

 

 

 

 

 

 
          

 

 

 

 

  

 

 

 
 

 

 

 

 

 

 

 

 

 
               0.00K

0.05K

0.10K

0.15K

160.0162.5165.0167.5170.0
Binding Energy (eV)

C
ou

nt
s 

pe
r 

se
co

nd
 (

C
P

S
)

Figure C.1: XPS spectra with fitted components of fresh (on the left) and UV-
treated (on the right) DTBA SAM. Spectra correspond to C 1s (top row), O 1s
(middle row) and S 2p (bottom row). UV-treated samples were exposed to soft
UV (365 nm, 4 mW cm−2) for 1.5 h in the acidic catalyst (100 mM HCl in IPA).



Appendix C. Characterisation of COOH-terminated SAMs 254

C.2 XPS spectra with fitted components of fresh

and UV treated MHA SAM
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Figure C.2: XPS spectra with fitted components of fresh (on the left) and UV-
treated (on the right) MHA SAM. Spectra correspond to C 1s (top row), O 1s
(middle row) and S 2p (bottom row). UV-treated samples were exposed to soft
UV (365 nm, 4 mW cm−2) for 1.5 h in the acidic catalyst (100 mM HCl in IPA).
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C.3 XPS spectra with fitted components of fresh

and UV treated MOA SAM
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Figure C.3: XPS spectra with fitted components of fresh (on the left) and UV-
treated (on the right) MOA SAM. Spectra correspond to C 1s (top row), O 1s
(middle row) and S 2p (bottom row). UV-treated samples were exposed to soft
UV (365 nm, 4 mW cm−2) for 1.5 h in the acidic catalyst (100 mM HCl in IPA).
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C.4 XPS spectra with fitted components of fresh

and UV treated MUA SAM
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Figure C.4: XPS spectra with fitted components of fresh (on the left) and UV-
treated (on the right) MUA SAM. Spectra correspond to C 1s (top row), O 1s
(middle row) and S 2p (bottom row). UV-treated samples were exposed to soft
UV (365 nm, 4 mW cm−2) for 1.5 h in the acidic catalyst (100 mM HCl in IPA).
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C.5 Azide-terminated SAMs - reduction of azide

group under XPS conditions

Reduction of azide group was detected due to changes in N 1s spectra (see figure

C.5) with increased exposure to to X-rays. Initially degradation of up to 60% was

observed, but 20 different spots were analysed with XPS on two samples of pure azide

SAM. Consequently, this reduction was decreased to 20% by optimising acquisition

parameters. Quantitative analysis of the XPS spectra from all of the measurements,

corresponding pass energy (PE) values, and spectral resolution values are detailed

in the tables C.2, C.3, C.4, C.5 and C.6. The best results were obtained using

the pass energies of 20 eV and 40 eV and with the spectral resolution of 0.2eV. All

other samples were characterised with XPS using the same sets of parameters (these

results are also presented in the tables mentioned above).

4 1 0 4 0 5 4 0 0 3 9 5

0

5 0 0

1 0 0 0

CP
S

B i n d i n g  e n e r g y  ( e V )

X P S  t i m e  b a s e d  s t u d y  o f  n o n - m i x e d  A z i d e   S A M s
N 1 s  p e a k s  ( b a s e l i n e d  s i g n a l )

 1 0  s c a n s
 2 5  s c a n s
 5 0  s c a n s
 ~ 5 0 0  s c a n s *

Figure C.5: XPS spectra of N1s region at different X-ray exposure times.
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C.6 Azide-terminated SAMs - XPS peak areas in-

cluding uncertainties

Table C.1: Relative ratios (with included uncertainties) of chemical elements
and their species in pure and mixed SAM2, LCAT-OEG-4 SAM and LCAT-
OEG-1 SAM based on integrated and normalised (using R.S.F.) peak areas in
XPS spectra of N 1s, O 1s, C 1s and Au 4f regions. Alkyl carbon in C 1s is set
to be equal to 10 in all of the spectra, because that is the amount of such atoms in

all of the molecules.

Carbon Oxygen Nitro-
gen Gold

SAM C=O C-O C-N Total C=O C-O Total Total Total

SAM2 1.7 ± 0.2 12.8 ± 0.5 24.6 ± 0.8 1.0 ± 0.1 5.1 ± 0.3 6.1 ± 0.3 3.5 ± 0.7 15.7 ± 0.5

Expcd* 1 12 23 1 5 6 4

SAM2OEG4
50% 2.0 ± 0.2 12.7 ± 0.3 24.9 ± 0.4 1.0 ± 0.1 5.6 ± 0.3 6.6 ± 0.3 2.3 ± 0.5 15.4 ± 0.5

Expcd* 1 11.9† 23.6† 1 5 6 2.3†

SAM2OEG4
19% 1.7 ± 0.1 12.4 ± 0.6 24.2 ± 0.7 1.0 ± 0.1 5.5 ± 0.4 6.6 ± 0.4 1.6 ± 0.2 13.8 ± 0.4

Expcd* 1 11.3† 23.0† 1 5 6 1.55†

SAM2OEG1
50% 2.2 ± 0.2 8.1 ± 0.3 20.5 ± 0.3 1.1 ± 0.1 3.8 ± 0.2 4.9 ± 0.2 2.0 ± 0.3 14.5 ± 0.3

Expcd* 1 8.5† 20.2† 1 3.5 4.5 2.4†

SAM2OEG1
19% 1.9 ± 0.2 5.8 ± 0.2 17.8 ± 0.4 1.4 ± 0.1 2.5 ± 0.2 4.0 ± 0.3 1.8 ± 0.4 12.1 ± 0.6

Expcd* 1 5.8† 17.4† 1 2.6 3.6 1.6†

LCAT-
OEG-4
SAM 1.5 ± 0.2 11.0 ± 0.6 22.6 ± 0.7 1.0 ± 0.1 5.0 ± 0.3 6.1 ± 0.4 1.1 ± 0.1 15.9 ± 0.4

Expcd* 1 10 21 1 5 6 1

LCAT-
OEG-1
SAM 1.6 ± 0.1 4.1 ± 0.2 15.7 ± 0.4 1.0 ± 0.1 1.9 ± 0.1 2.9 ± 0.2 1.2 ± 0.1 14.9 ± 0.3

Expcd* 1 4 15 1 2 3 1
* Expected values based on the corresponding molecular structures shown in figures 5.9.
† Expected value was calculated based on experimentally obtained values from pure SAM2,
LCAT-OEG-4 SAM and LCAT-OEG-1 SAM presented in tables 5.4 and 5.5.
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C.7 Azide-terminated SAMs - XPS peak areas of

all spectra

Table C.2: Relative ratios (calculated for each spectra) of chemical elements
and their species in mixed SAM2 and LCAT-OEG-4 SAM (50% and 50%,
respectively) based on integrated and normalised (using R.S.F.) peak areas in
XPS spectra of N 1s, O 1s, C 1s, S 2p and Au 4f regions. Alkyl carbon in C 1s
is set to be equal to 10 in all of the spectra, because that is the amount of such

atoms in all of the molecules.

Au#4f N#1s S#2p
Region Region Alkyl C,O.&.C,N C=O Region Region C=O C,O Region

PE=20,.0.1eV 16.4 24.1 12.5 1.7 1.4 6.1 0.9 5.2 0.7
PE=20,.0.2eV 15.9 24.3 12.3 1.8 2.2 6.3 1.0 5.3 0.6
PE=40,.0.3eV 15.9 25.3 13.2 2.0 1.7 6.6 1.0 5.6 1.1
PE=20,.0.1eV 16.4 24.4 12.2 2.0 2.5 6.0 1.0 5.0 0.6
Average 16.1 24.5 12.5 1.9 1.9 6.2 1.0 5.3 0.7

PE=20,.0.2eV
5.scans 14.7 24.7 12.7 1.8 2.9 6.6 1.0 5.6 0.8
10.scans 14.8 25.7 12.9 2.3 2.8 7.3 1.1 6.0 0.7
25.scans 15.3 25.0 12.9 1.8 2.3 6.7 1.0 5.7 0.8
50.scans 15.3 24.9 12.8 1.9 2.0 6.9 1.0 5.8 1.0
Average 15.0 25.1 12.8 2.0 2.5 6.9 1.0 5.8 0.8

PE=20,.0.3eV
5.scans 14.8 24.9 12.4 2.3 1.7 6.6 0.9 5.8 0.8
10.scans 15.2 25.0 12.9 2.1 3.1 6.9 1.0 5.8 0.8
25.scans 15.0 25.3 12.4 2.1 3.2 6.7 0.9 5.8 0.7
50.scans 15.2 25.0 12.7 2.0 2.6 6.5 0.9 5.6 0.8
Average 15.1 25.0 12.6 2.1 2.7 6.7 0.9 5.8 0.8

PE=40,.0.2eV
5.scans 15.2 25.1 12.8 2.0 2.5 6.8 0.9 5.8 0.7
10.scans 15.5 25.1 13.2 1.8 1.8 6.7 0.9 5.8 0.8
25.scans 15.1 25.1 12.9 2.0 2.3 6.9 1.0 5.8 0.7
50.scans 15.4 25.0 12.7 2.1 2.0 6.6 0.9 5.6 0.8
Average 15.3 25.1 12.9 2.0 2.1 6.7 0.9 5.8 0.7

3% 2% n/a 2% 9% 22% 5% 6% 5% 16%
0.5 0.4 n/a 0.3 0.2 0.5 0.3 0.1 0.3 0.1
15.4 24.9 10 12.7 2.0 2.3 6.6 1.0 5.6 0.8

94%* 50%*
23.6* 10.0 11.9* 1.0 2.3* 6.0 1.0 5.0 1.0

XPS#data#on#peak#areas#(normalised#to#alkyl#C#1s)##for#mixed#(#50%#:#50%#)##############################################################################################################################################################################################
reagent#2#and#LCATNOEGN4#SAMs

C#1s O1s

St..Dev.
St..Dev..(%)

Average

Re
ag
en

t##
2#
:#L
CA

TN
O
EG

N4
#=
50
%
#:#
50
%
###
###
SA

M
s

Sm
pl
.1

Sm
pl
.2

10.0

10.0

10.0

10.0

Calc.#fraction#of#reagent#2#(%)
Expected#for#50%#:#50%

* Expected value was calculated based on experimentally obtained values from pure SAM2,
LCAT-OEG-4 SAM and LCAT-OEG-1 SAM presented in tables 5.4 and 5.5.
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Table C.3: Relative ratios (calculated for each spectra) of chemical elements
and their species in mixed SAM2 and LCAT-OEG-4 SAM (19% and 81%,
respectively) based on integrated and normalised (using R.S.F.) peak areas in
XPS spectra of N 1s, O 1s, C 1s, S 2p and Au 4f regions. Alkyl carbon in C 1s
is set to be equal to 10 in all of the spectra, because that is the amount of such

atoms in all of the molecules.

Au#4f N#1s S#2p
Region Region Alkyl C,O.&.C,N C=O Region Region C=O C,O Region

PE=20,.0.1eV 14.6 23.2 11.4 1.6 1.1 6.1 1.0 5.0 0.6
PE=20,.0.2eV 14.3 22.3 10.8 1.6 1.5 5.6 0.9 4.7 0.6
PE=40,.0.3eV 13.6 23.3 11.5 1.6 1.4 6.0 0.9 5.0 0.6
PE=20,.0.1eV 14.7 23.7 11.7 1.7 1.4 6.1 1.1 5.0 0.7
Average 14.3 23.1 11.4 1.6 1.4 5.9 1.0 4.9 0.6

PE=20,.0.2eV
5.scans 13.1 24.3 12.3 1.5 1.8 6.6 1.1 5.4 0.5
10.scans 13.5 24.3 12.5 1.6 1.7 7.1 1.2 5.7 0.6
25.scans 13.6 24.6 12.7 1.6 1.6 6.7 1.1 5.6 0.6
50.scans 14.1 24.5 12.8 1.8 1.5 7.0 1.1 5.9 0.8
Average 13.6 24.4 12.6 1.6 1.7 6.8 1.1 5.6 0.6

PE=20,.0.3eV
5.scans 13.5 24.9 12.9 1.8 1.5 7.1 1.2 5.8 0.8
10.scans 13.8 24.9 12.8 1.7 1.6 7.0 1.1 5.8 0.8
25.scans 13.7 24.7 12.6 1.7 1.9 7.0 1.1 5.9 0.7
50.scans 14.1 25.3 13.2 1.8 1.5 6.8 1.3 5.6 0.8
Average 13.8 25.0 12.9 1.8 1.6 7.0 1.2 5.8 0.8

PE=40,.0.2eV
5.scans 13.5 24.3 12.7 1.5 1.7 6.8 1.1 5.7 0.6
10.scans 13.6 24.3 12.7 1.5 1.8 6.8 1.1 5.6 0.8
25.scans 13.6 24.8 12.6 1.9 1.9 6.4 1.0 5.5 0.6
50.scans 13.8 24.2 12.5 1.7 1.5 6.5 1.1 5.4 0.6
Average 13.6 24.4 12.6 1.6 1.7 6.6 1.1 5.5 0.7

3% 3% n/a 5% 7% 12% 7% 9% 6% 15%
0.4 0.7 n/a 0.6 0.1 0.2 0.4 0.1 0.4 0.1
13.8 24.2 10 12.4 1.7 1.6 6.6 1.0 5.5 0.7

75%#* 21%#*
23* 10.0 11.3* 1.0 1.55* 6.0 1.0 5.0 1.0

XPS#data#on#peak#areas#(normalised#to#alkyl#C#1s)##for#mixed#(#19%#:#81%#)##############################################################################################################################################################################################
reagent#2#and#LCATNOEGN4#SAMs

C#1s O1s

Re
ag
en

t##
2#
:#L
CA

TN
O
EG

N4
#=
19
%
#:#
81
%
###
###
SA

M
s

Sm
pl
.1

Sm
pl
.2

St..Dev..(%)

Average

10

Calc.#fraction#of#reagent#2#(%)
Expected#for#19%#:#81%

St..Dev.

10

10

10

* Expected value was calculated based on experimentally obtained values from pure SAM2,
LCAT-OEG-4 SAM and LCAT-OEG-1 SAM presented in tables 5.4 and 5.5.
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Table C.4: Relative ratios (calculated for each spectra) of chemical elements
and their species in mixed SAM2 and LCAT-OEG-1 SAM (50% and 50%,
respectively) based on integrated and normalised (using R.S.F.) peak areas in
XPS spectra of N 1s, O 1s, C 1s, S 2p and Au 4f regions. Alkyl carbon in C 1s
is set to be equal to 10 in all of the spectra, because that is the amount of such

atoms in all of the molecules.

Au#4f N#1s S#2p
Region Region Alkyl C,O.&.C,N C=O Region Region C=O C,O Region

PE=20,.0.1eV 14.9 20.4 8.3 1.9 2.0 4.7 1.1 3.6 0.7
PE=20,.0.2eV 14.7 20.1 7.9 2.1 2.0 4.6 1.0 3.5 0.6
PE=40,.0.3eV 15.0 20.8 8.4 2.1 2.1 4.6 1.0 3.6 0.5
PE=20,.0.1eV 14.7 19.7 7.8 1.9 2.2 4.6 1.0 3.5 0.7
Average 14.8 20.3 8.1 2.0 2.1 4.6 1.0 3.5 0.6

PE=20,.0.2eV
5.scans 14.2 20.2 7.6 2.5 2.5 5.2 1.1 3.9 0.8
10.scans 14.6 20.7 8.2 2.3 1.7 5.0 1.1 3.9 0.7
25.scans 14.8 21.0 8.5 2.2 1.6 5.0 1.2 3.8 1.0
50.scans 14.3 20.6 7.9 2.3 1.9 4.9 1.1 3.9 0.6
Average 14.5 20.6 8.0 2.3 1.9 5.0 1.1 3.9 0.8

PE=20,.0.3eV
5.scans 14.2 20.7 7.8 2.7 1.6 4.9 1.0 3.8 0.7
10.scans 14.5 20.2 7.6 2.5 2.7 5.2 1.1 4.2 0.8
25.scans 13.7 20.5 8.2 1.9 2.1 4.7 1.0 3.8 0.8
50.scans 14.3 20.8 8.4 2.3 2.1 5.0 1.0 3.9 0.8
Average 14.2 20.6 8.0 2.4 2.1 4.9 1.0 3.9 0.8

PE=40,.0.2eV
5.scans 13.9 20.3 8.1 2.1 2.3 4.7 1.1 3.6 0.6
10.scans 14.9 21.0 8.5 2.3 2.1 4.9 1.1 3.8 0.8
25.scans 14.5 20.6 8.3 2.1 1.9 5.0 1.1 3.8 0.6
50.scans 14.2 20.4 8.3 2.0 1.7 4.8 1.1 3.6 0.6
Average 14.4 20.6 8.3 2.1 2.0 4.8 1.1 3.7 0.7

2% 2% n/a 4% 10% 15% 4% 5% 5% 15%
0.3 0.3 n/a 0.3 0.2 0.3 0.2 0.0 0.2 0.1
14.5 20.5 10 8.1 2.2 2.0 4.9 1.1 3.8 0.7

46%* 36%* 59%
20.2* 10.0 8.5* 1.0 2.4* 4.5 1.0 3.5 1.0

St..Dev.

10.0

10.0

10.0

St..Dev..(%)

Average
Calc.#fraction#of#reagent#2#(%)

Expected#for#50%#:#50%

10.0

XPS#data#on#peak#areas#(normalised#to#alkyl#C#1s)##for#mixed#(#50%#:#50%#)##############################################################################################################################################################################################
reagent#2#and#LCATPOEGP1#SAMs

C#1s O1s

R
ea
ge
nt
##2
#:#
LC
A
TP
O
EG

P1
#=
50
%
#:#
50
%
###
###
SA

M
s

Sm
pl
.1

Sm
pl
.2

* Expected value was calculated based on experimentally obtained values from pure SAM2,
LCAT-OEG-4 SAM and LCAT-OEG-1 SAM presented in tables 5.4 and 5.5.
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Table C.5: Relative ratios (calculated for each spectra) of chemical elements
and their species in mixed SAM2 and LCAT-OEG-1 SAM (19% and 81%,
respectively) based on integrated and normalised (using R.S.F.) peak areas in
XPS spectra of N 1s, O 1s, C 1s, S 2p and Au 4f regions. Alkyl carbon in C 1s
is set to be equal to 10 in all of the spectra, because that is the amount of such

atoms in all of the molecules.

Au#4f N#1s S#2p
Region Region Alkyl C,O.&.C,N C=O Region Region C=O C,O Region

PE=20,.0.1eV 13.2 17.8 5.8 1.8 1.5 3.9 1.4 2.5 0.5
PE=20,.0.2eV 13.3 18.1 6.0 2.0 1.5 3.9 1.4 2.5 0.6
PE=40,.0.3eV 12.9 17.7 5.9 1.8 1.6 3.8 1.4 2.5 0.4
PE=20,.0.1eV 12.2 17.2 5.4 1.8 1.4 3.4 1.2 2.2 0.5
Average 12.9 17.7 5.8 1.9 1.5 3.8 1.3 2.4 0.5

PE=20,.0.2eV
5.scans 11.5 17.8 5.5 1.9 1.7 3.7 1.2 2.5 0.6
10.scans 11.3 17.8 5.9 1.6 2.3 3.9 1.5 2.4 0.5
25.scans 12.0 17.9 5.9 2.0 1.1 4.2 1.5 2.8 0.9
50.scans 12.3 18.5 6.2 2.1 1.8 4.2 1.5 2.7 0.6
Average 11.8 18.0 5.9 1.9 1.7 4.0 1.4 2.6 0.7

PE=20,.0.3eV
5.scans 11.2 17.3 5.7 1.6 2.6 3.8 1.3 2.5 0.6
10.scans 11.8 17.7 5.7 2.1 2.0 4.1 1.5 2.5 0.7
25.scans 12.5 17.6 6.1 1.7 2.6 4.7 1.6 2.9 0.7
50.scans 12.1 18.6 6.0 2.2 1.4 4.0 1.4 2.6 0.8
Average 11.9 17.8 5.9 1.9 2.2 4.1 1.5 2.6 0.7

PE=40,.0.2eV
5.scans 11.2 17.3 5.6 1.6 2.2 3.8 1.3 2.5 0.5
10.scans 11.9 17.7 5.9 1.8 1.8 3.9 1.4 2.5 0.7
25.scans 12.1 18.1 5.8 2.1 1.6 4.0 1.4 2.5 0.5
50.scans 12.3 17.9 5.8 1.9 1.4 3.9 1.3 2.5 0.6
Average 11.9 17.7 5.8 1.9 1.7 3.9 1.4 2.5 0.6

5% 2% n/a 4% 10% 25% 6% 8% 6% 18%
0.6 0.4 n/a 0.2 0.2 0.4 0.3 0.1 0.2 0.1
12.1 17.8 10 5.8 1.9 1.8 4.0 1.4 2.5 0.6

20%#* 25%#* 21%
17.4* 10.0 5.8* 1.0 1.6* 3.6 1.0 2.6 1.0

XPS#data#on#peak#areas#(normalised#to#alkyl#C#1s)##for#mixed#(#19%#:#81%#)##############################################################################################################################################################################################
reagent#2#and#LCATNOEGN1#SAMs

C#1s O1s

Re
ag
en

t##
2#
:#L
CA

TN
O
EG

N1
#=
19
%
#:#
81
%
###
###
SA

M
s

Sm
pl
.1

Sm
pl
.2

St..Dev..(%)

Average
Calc.#fraction#of#reagent#2#(%)
Expected#for#19%#:#81%

10

St..Dev.

10

10

10

* Expected value was calculated based on experimentally obtained values from pure SAM2,
LCAT-OEG-4 SAM and LCAT-OEG-1 SAM presented in tables 5.4 and 5.5.
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Table C.6: Relative ratios (calculated for each spectra) of chemical elements and
their species in pure SAM2, LCAT-OEG-4 SAM and LCAT-OEG-1 SAM
based on integrated and normalised (using R.S.F.) peak areas in XPS spectra of
N 1s, O 1s, C 1s, S 2p and Au 4f regions. Alkyl carbon in C 1s is set to be equal
to 10 in all of the spectra, because that is the amount of such atoms in all of the

molecules.

Au#4f N#1s S#2p
Region Region Alkyl C,O.&.C,N C=O Region Region C=O C,O Region

PE=20,.0.1eV 15.4 15.6 3.9 1.7 1.1 2.8 1.0 1.7 0.7

PE=20,.0.2eV 14.7 15.1 3.8 1.4 1.3 2.8 1.0 1.8 0.7

PE=40,.0.3eV 14.9 15.8 4.1 1.6 1.2 2.7 0.9 1.7 0.6

PE=20,.0.1eV 15.0 15.8 4.1 1.6 1.1 3.0 1.1 1.9 0.8

PE=20,.0.2eV 14.6 16.0 4.2 1.7 1.2 2.9 1.0 1.9 0.8

PE=20,.0.2eV 14.8 16.1 4.4 1.6 1.3 3.2 1.1 2.1 0.8
2% 2% 6% 6% 6% 7% 6% 8% 8%
0.3 0.4 0.2 0.1 0.1 0.2 0.1 0.1 0.1
14.9 15.7 10.0 4.1 1.6 1.2 2.9 1.0 1.9 0.7

15 10 4 1 1 3 1 2 1

PE=20,.0.1eV 15.3 22.9 11.2 1.5 1.1 6.5 1.1 5.3 0.7

PE=20,.0.2eV 16.0 23.0 11.2 1.8 1.2 6.1 1.0 5.0 0.7

PE=40,.0.3eV 15.8 23.5 11.8 1.6 1.1 6.4 1.0 5.4 0.7

PE=20,.0.1eV 16.5 21.6 10.2 1.4 1.3 5.5 1.0 4.4 0.8

PE=20,.0.2eV 16.0 22.4 10.8 1.6 0.9 6.0 1.0 4.9 0.8

PE=20,.0.2eV 15.8 22.2 10.7 1.4 1.0 6.0 1.0 5.0 0.7
3% 3% 5% 10% 12% 6% 4% 7% 10%
0.4 0.7 0.6 0.2 0.1 0.4 0.0 0.3 0.1
15.9 22.6 10.0 11.0 1.5 1.1 6.1 1.0 5.0 0.7

21 10 10 1 1 6 1 5 1

PE=20,.0.1eV 16.4 23.8 12.2 1.7 1.8 5.6 0.9 4.6 0.7
PE=20,.0.2eV 15.8 22.9 11.7 1.5 3.2 5.6 1.0 4.6 0.9
PE=40,.0.3eV 15.7 24.3 12.7 1.5 3.3 6.1 1.0 5.0 0.8
PE=20,.0.1eV 16.8 23.5 12.2 1.5 4.4 5.5 0.9 4.6 0.6

PE=20,.0.2eV
5.scans 15.4 24.4 12.6 1.6 4.9 6.1 0.9 5.1 0.9
10.scans 16.2 24.8 13.0 2.0 3.8 6.7 1.0 5.5 0.7
25.scans 15.1 24.6 12.7 1.5 3.2 6.0 0.9 5.0 0.5
50.scans 15.5 24.7 12.4 2.0 3.6 6.4 1.1 5.2 0.8

PE=20,.0.3eV
5.scans 15.5 25.4 13.3 1.9 3.6 6.1 1.0 5.1 0.7
10.scans 15.6 25.1 13.3 1.6 3.9 6.6 1.0 5.6 0.8
25.scans 15.3 25.7 13.4 1.6 3.6 6.2 1.1 5.2 0.6
50.scans 15.9 25.8 13.6 2.0 3.8 6.4 1.0 5.4 0.8

PE=40,.0.2eV
5.scans 15.1 25.5 13.3 1.8 3.7 6.0 0.9 5.2 0.8
10.scans 15.4 24.6 13.0 1.6 3.4 6.1 1.0 5.1 0.8
25.scans 15.3 24.8 13.1 1.6 3.7 6.2 1.0 5.2 0.8
50.scans 15.5 24.3 12.6 1.7 3.2 6.0 0.9 5.0 0.7

PE=60,.0.2eV
5.scans 15.5 24.7 13.2 1.4 3.3 6.0 0.9 5.1 0.5
10.scans 15.5 24.4 13.0 1.3 3.3 5.9 0.9 5.0 0.7
25.scans 15.3 24.6 13.3 1.3 2.7 6.0 0.9 5.1 0.7
50.scans 15.3 23.9 12.6 1.3 3.0 5.8 0.9 4.9 0.7

3% 3% 4% 11% 19% 6% 6% 6% 15%
0.5 0.8 0.5 0.2 0.7 0.3 0.1 0.3 0.1
15.7 24.6 10.0 12.8 1.7 3.5 6.1 1.0 5.1 0.7

23 10 12 1 4 6 1 5 1

XPS#data#on#peak#areas#(normalised#to#alkyl#C#1s)##for#nonEmixed#(100%)##############################################################################################################################################################################################
reagent#2,##LCATEOEGE4#and#LCATEOEGE1#SAMs

C#1s O1s
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10

10

10

10

10

10

10
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Average
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C.8 Azide-terminated SAMs - QCMD data of

prolonged measurements on SAM2 and -OH

terminated SAM

Figure C.6: A snapshot of prolonged QCMD measurements of rinsing SAM2
(top row) and LCAT-OEG-4 SAM (bottom row) with 240 µM strained cyc-
looctyne aqueous solution. Two samples (one on the left and one on the right
side) of each type of SAM were investigated. Graphs in blue correspond to the
change in frequency, while graphs in yellow, orange and red correspond to the

change in dissipation.
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