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Abstract 
 

Adolescents are more likely to engage in potentially harmful risk-taking 

behaviours and experience elevated anxiety levels than both children and adults. The 

simultaneous increase in risk-taking and anxiety during adolescence seems 

paradoxical given that high anxiety levels are associated with reduced risk-taking in 

adults. Despite this, many gaps remain in our current understanding of why risk-

taking behaviours and anxiety levels simultaneously increase during adolescence. This 

doctoral work was therefore designed to provide novel insights into the simultaneous 

increase of risk-taking and anxiety during adolescence. Specifically, this doctoral work 

aimed to examine how the relationship between risk-taking and anxiety changes 

across the course of adolescence (Chapter 3), and whether age-related changes in the 

electroencephalography (EEG) correlates of the approach-avoidance systems can 

account for increases in risk-taking and anxiety during adolescence (Chapters 4 and 5). 

To these ends, a large cohort of male and female preadolescents (9-12 years), mid-

adolescents (13-17 years), and late adolescents (18-23 years) participated in a series of 

behavioural and EEG studies. The first study (Chapter 3) found that the relationship 

between risk-taking and anxiety followed gender-specific developmental trajectories. 

Chapter 3 also revealed significant age- and gender-related changes in risk-taking and 

anxiety in this sample of adolescents. The second study (Chapter 4) used EEG to 

investigate whether age-related changes in reward- and threat-related anticipatory 

activity could partially account for the developmental differences in risk-taking and 

anxiety found in this sample of adolescents (Chapter 3). The findings suggested that 

adolescents have both reward- and threat-related anticipatory biases. Thus, these 

findings challenge current theories asserting that adolescents are hyporesponsive to 

threats. The final study (Chapter 5) used EEG to examine the development of 

spontaneous alpha and its relationship to risk-taking behaviours throughout 

adolescence. While alpha was not reliably associated with risk-taking, this study 

provides novel insights into the development of spontaneous alpha during 

adolescence. 
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1.1. Introduction 

Adolescents are more likely than children and adults to engage in potentially 

harmful risky behaviours (Burnett, Bault, Coricelli & Blakemore, 2010; Steinberg et al., 

2008) and experience elevated anxiety levels (Abe & Suzuki, 1986). High anxiety levels 

in adults are associated with reduced levels of risk-taking behaviours (Giorgetta et al., 

2012; Maner et al., 2007), and therefore the simultaneous increase in risk-taking 

behaviours and anxiety levels during adolescence seems paradoxical. Several 

neurobiological models have been proposed to explain the increases in risk-taking 

behaviours during adolescence (Casey et al., 2010; Ernst, Pine & Hardin, 2006; Nelson, 

Leibenluft, McClure & Pine, 2005; Steinberg, 2008). Casey’s neurobiological model 

also attempts to explain the increases in emotionality, i.e., greater levels of anxiety 

and negative affect, during adolescence (Casey et al., 2010). Despite this, many gaps 

remain in our current understanding of why risk-taking behaviours and anxiety levels 

simultaneously increase during adolescence. This doctoral work was therefore 

designed to provide novel insights into the simultaneous increase of risk-taking and 

anxiety during adolescence. Specifically, this doctoral work aimed to examine how the 

relationship between risk-taking and anxiety changes across the course of adolescence 

(Chapter 3), and whether age-related changes in the EEG correlates of the approach-

avoidance systems can account for the development of risk-taking and anxiety during 

adolescence (Chapters 4 and 5). Notably, the same cohort of adolescents took part in 

all three studies included in this doctoral work in order to explore the simultaneous 

increase in risk-taking and anxiety from multiple behavioural and EEG perspectives. 

This review first defines adolescence as a transitional period (Chapter 1.2) and 

outlines the evidence for the simultaneous increase in risk-taking and anxiety during 

adolescence (Chapter 1.3). Next, this review explores how the brain structurally 

changes during adolescence (Chapter 1.4), and critically evaluates the current 

neurobiological models of adolescence suggesting that the development of the 

approach-avoidance systems contributes to the increases in risk-taking and anxiety 

during adolescence (Chapter 1.5). The next section then discusses what is currently 

known about the approach-avoidance systems during adolescence (Chapter 1.6). In the 

penultimate section, this review discusses what is currently known about the EEG 

correlates of the approach-avoidance systems during adolescence, and how the EEG 

studies in this doctoral work extend the existing literature (Chapter 1.7). Finally, this 

review briefly summarises each of the following chapters (Chapter 1.8). 
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1.2. Adolescence: A transitional period 

Adolescence typically begins around 10 years of age (World Health 

Organization, 2003), and extends beyond the teenage years well into the third decade 

of life (Dahl, 2004; Steinberg, 2008). Importantly, adolescence is not an isolated period 

in development, but a transitional phase that bridges the gap between childhood and 

adulthood. Therefore, to understand the discrete changes that occur during 

adolescence, it is critical that the transitions into and out of adolescence are examined 

(Casey, Getz & Galvan, 2008a; Spear, 2000).  

Successful transitions between childhood and adulthood are crucial for 

individuals to become healthy and productive members of society (Arnett, 2001; Spear, 

2000). While the majority of adolescents negotiate the transition between childhood 

and adulthood successfully, studies have consistently documented that adolescents 

engage in significantly more risk-taking behaviours and experience elevated levels of 

anxiety compared to both children and adults (Abe & Suzuki, 1986; Burnett et al., 

2010; Steinberg et al., 2008). Notably, the observation that adolescents take more risks 

and experience greater levels of anxiety is not new; Hall’s (1904) seminal work 

proposed that adolescence is a period of storm and stress.  

 

1.3. The storm and stress of adolescence  

1.3.1. The storm of adolescence: Increase in risk-taking behaviours 

Hall (1904) coined the term ‘storm of adolescence’ to refer to the increase in 

risk-taking behaviours that is widely observed during adolescence. Risk-taking 

behaviours are behaviours that have high subjective desirability as well as high 

potential harm or loss (Irwin, 1990). Such behaviours include unprotected sex, illicit 

drug use, and delinquency (Arnett, 1992; Eaton et al., 20010; Irwin, 1990). A plethora 

of studies have found that risk-taking behaviours increase during the transition from 

childhood to adolescence, peak in adolescence, and subsequently decrease during the 

transition from adolescence to adulthood (Burnett et al., 2010; Donovan & Jessor, 

1985; Eaton et al., 2010; Eshel, Nelson, Blair, Pine & Ernst, 2007; Figner, Mackinlay, 

Wilkening & Weber, 2009; Gullone, Moore, Moss & Boyd, 2000; Kann et al., 1999; 

Windle et al., 2008). Studies have also reported that males are more likely than females 

to engage in risky behaviours during all developmental stages (Byrnes, Miller & 

Schafer, 1999; Gullone et al., 2000; Turner & McClure, 2003; Van Leijenhorst, 

Westenberg & Crone, 2008). 
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The developmental changes in risk-taking behaviours are thought to largely 

result from age-related changes in sensation seeking and impulsivity (Steinberg et al., 

2008). Sensation seeking refers to a high desire to seek out novel, varied, complex, and 

intense experiences and sensations, and a willingness to take risks for the sake of such 

experiences and sensations (Zuckerman, 1994). Like risk-taking behaviours, sensation 

seeking follows an inverted u-shaped developmental trajectory, whereby sensation-

seeking increases from childhood to adolescence, peaks in adolescence, and decreases 

from adolescence to adulthood (Harden & Tucker-Drob, 2011; Shulman, Harden, 

Chein & Steinberg, 2014; Shulman, Harden, Chein & Steinberg, 2015; Steinberg et al., 

2008; Zuckerman, Eysenck & Eysenck, 1978). Compared to sensation seeking and risk-

taking behaviours, impulsivity refers to a lack of self-control, rapid decision-making, 

and a tendency to act without adequate thought (Moeller, Barratt, Dougherty, Schmitz 

& Swann, 2001; Steinberg et al., 2008). Several studies have reported that impulsivity 

decreases, as impulse control increases, throughout childhood and adolescence (Casey 

et al., 1997; Harden & Tucker-Drob, 2011; Shulman et al., 2014, 2015; Smith, Xiao & 

Bechara, 2012; Steinberg et al., 2008). The combination of elevated sensation seeking 

tendencies and immature self-regulatory capacities is thought to make adolescence a 

particularly vulnerable time for engaging in risky behaviours (Casey et al., 2010; 

Steinberg et al., 2008). 

Risk-taking is a normal, even adaptive, part of adolescent development 

(Steinberg & Morris, 2001). Nevertheless, adolescent risk-taking can lead to serious 

short- and long-term negative consequences, including injuries, substance abuse, and 

sexually transmitted diseases (Casey, Jones & Hare, 2008b; Dahl, 2004; Eaton et al., 

2010). Dahl (2004) proposed that there is a health paradox during adolescence, 

whereby adolescents are at their physical prime and yet have the highest rates of 

preventable injuries and mortality of any age group; injuries are the main cause of 

adolescent death (Viner, 2011), and mortality rates increase by two hundred per cent 

during adolescence (Dahl, 2004). Adolescent boys are at the greatest risk, with three 

times as many adolescent boys dying from preventable injuries as adolescent girls 

(Miniño, 2010). The findings that males take more risks and are more likely to die from 

preventable injuries underscore the importance of examining gender differences in 

risk-taking behaviours. In addition to having potentially costly outcomes for 

individuals, adolescent risk-taking also has potentially harmful and costly 

consequences for society. For instance, approximately 1,245 adolescents visit accident 
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and emergency departments in the UK each week for alcohol-related treatments 

(Newbury-Birch et al., 2009), and the UK spends approximately £4 billion on youth 

crime and antisocial behaviour every year (Natale, 2010).  

 

1.3.2. The stress of adolescence: Increase in anxiety levels 

Hall (1904) also defined adolescence as a period of heightened stress. More 

recent work has also suggested that adolescents experience high levels of stress due to 

the sheer number of changes that they undergo (Casey et al., 2010; Spear, 2000). Such 

changes include sexual maturation, changing social demands, reduced parental 

influence, more salient peer and romantic relationships, enhanced cognitive abilities, 

and greater economic independence (Buchanan, Eccles & Becker, 1992; Spear, 2000). 

Consistent with this idea, a number of studies have reported that self-report 

anxiety symptoms reach a lifetime peak in typically developing adolescents (Abe & 

Suzuki, 1986). Adolescents are also more likely than any other age group to develop an 

anxiety disorder (Kessler et al., 2005), and many adulthood anxiety disorders manifest 

and develop during adolescence (Kessler et al., 2005; Pine, Cohen, Gurley, Brook & Ma, 

1998). Epidemiological studies report that anxiety disorders are the most prevalent 

psychiatric disorders during adolescence (Fergusson, Horwood & Lynskey, 1993; 

Merikangas et al., 2010), and that 31.9 per cent of adolescents meet the criteria for an 

anxiety disorder at any one time (Merikangas et al., 2010). Importantly, anxious 

adolescents are at an increased risk for long-term negative consequences, including 

educational underachievement, substance abuse, anxiety and mood disorders, and 

suicidal behaviour as young adults (Pine et al., 1998; Woodward & Fergusson, 2001). 

Gender differences have also been reported; females frequently experience higher 

anxiety levels and are twice as likely to be diagnosed with an anxiety disorder 

compared to males during all developmental stages (Abe & Suzuki, 1986; Lewinsohn, 

Gotlib, Lewinsohn, Seeley & Allen, 1998; Van Oort, Greaves-Lord, Verhulst, Ormel & 

Huizink, 2009).   

These findings highlight the importance of understanding why adolescence is a 

vulnerable period for experiencing elevated anxiety levels and developing an anxiety 

disorder, particularly for females. It is important to note that while adolescents are at 

increased risk for developing an anxiety disorder, the majority of adolescents do not. 

Accordingly, this doctoral work focused on anxiety levels in typically developing 

adolescents. 
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1.3.3. The paradox: The simultaneous increase in risk-taking and anxiety 

The simultaneous increase in risk-taking behaviours and anxiety levels during 

adolescence seems paradoxical since anxiety acts as a brake on risk-taking in adults 

(Broman-Fulks, Urbaniak, Bondy & Toomey, 2014; Giorgetta et al., 2012; Lorian & 

Grisham, 2010; Maner et al., 2007; Maner & Schmidt, 2006). Despite appearing 

paradoxical, it is possible that the simultaneous increase in risk-taking and anxiety 

during adolescence has an evolutionary purpose (Casey et al., 2008a, 2008b; Spear, 

2000; Spear, 2009; Steinberg, 2008). From an evolutionary perspective, sensation 

seeking tendencies and risk-taking behaviours peak during adolescence to encourage 

adolescents to leave the family home to seek out unrelated sexual partners. Since 

exploring novel environments has the potential to be dangerous, adolescents are 

thought to have elevated anxiety levels in order to be vigilant to potential threats. 

Importantly, elevated anxiety levels are not pathological when they facilitate the 

avoidance of danger (Steimer, 2002). Thus, the evolutionary interpretation of 

adolescent risk-taking and anxiety accounts for why risk-taking behaviours and 

anxiety levels simultaneously increase in typically developing adolescents. 

While the simultaneous increase in risk-taking and anxiety during adolescence 

may have evolutionary antecedents, the relationship between risk-taking and anxiety 

in adolescents remains unclear. Initial work indicates that risk-taking behaviours are 

positively associated with anxiety levels during adolescence, whereby anxious 

adolescents take more risks than non-anxious adolescents (Comeau, Stewart & Loba, 

2001; Patton et al., 1996; Reynolds et al., 2013; Richards et al., 2015). However, no 

study to date has included younger and older comparison groups, and therefore how 

the relationship between risk-taking and anxiety changes during the course of 

adolescence is currently unknown. Moreover, gender differences in the relationship 

between risk-taking and anxiety have been largely overlooked. Since differences 

between male and female adolescents in risk-taking and anxiety have been frequently 

observed (Byrnes et al., 1999; Lewinsohn et al., 1998), it is possible that exploring 

differences between males and females will reveal gender-specific relationships 

between risk-taking and anxiety. To these ends, the first study in this thesis aimed to 

examine how the relationship between risk-taking and anxiety changes across the 

course of adolescence in male and female adolescents aged 9-23 years (Chapter 3).  

Hall (1904) attributed the storm and stress of adolescence entirely to the 

biological changes of puberty. Puberty is a developmental period encompassing the 
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physical changes that are necessary for sexual maturation (Spear, 2000). While 

adolescence is thought to begin at the age of 10 years for all individuals (World Health 

Organization, 2003), the onset of puberty varies markedly between individuals; 

puberty can begin any time between the ages of 8 and 13 years for healthy females and 

between 9 and 14 years for healthy males (Sørensen et al., 2013). The age of pubertal 

onset is also thought to be highly heritable (~60%; Sørensen et al., 2013). Thus, these 

findings show that chronological age and pubertal stage are highly dissociable during 

adolescence (Marshall & Tanner, 1969, 1970).  

While Hall’s (1904) claim is clearly an oversimplification, there is converging 

evidence that puberty has significant affects on risk-taking and anxiety during 

adolescence that are independent of chronological age. Specifically, more advanced 

pubertal stage and earlier pubertal onset are linked to greater engagement in risk-

taking behaviours and higher levels of anxiety (Collado, MacPherson, Kurdziel, 

Rosenberg & Lejuez, 2014; Costello, Sung, Worthman, & Angold, 2007; Patton et al., 

2004; Reardon, Leen-Feldner & Hayward, 2009). The finding that more advanced 

pubertal stage is associated with greater levels of risk-taking and anxiety is in line with 

the evolutionary perspective on adolescent risk-taking and anxiety; it is possible that 

as the body is reaching sexual maturation, adolescents are increasingly motivated to 

leave the family home to seek out potential sexual partners. Overall, these findings 

demonstrate the need to disentangle the affects of chronological age and puberty on 

the development of risk-taking behaviours and anxiety levels during adolescence. 

Accordingly, the first study in this thesis aimed to explore the development of risk-

taking and anxiety as a function of both age and puberty, in addition to examining the 

relationships between risk-taking and anxiety during adolescence (Chapter 3). 

 

1.4. The adolescent brain 

Despite the human brain reaching ninety five per cent of its total volume by six 

years of age, the brain undergoes substantial structural changes during late childhood 

and adolescence (Giedd et al., 1999; Gogtay et al., 2004; Sowell, Trauner, Gamst & 

Jernigan, 2002). Consequently, a number of neurobiological models have been 

proposed to explain the increases in risk-taking behaviours during adolescence (Casey 

et al., 2010; Ernst et al., 2006; Nelson et al., 2005; Steinberg, 2008). Casey’s model 

(Casey et al., 2010) also accounts for the increases in emotionality, i.e., greater levels 

of anxiety and negative affect, reported during adolescence. Before the neurobiological 
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models are outlined and evaluated (Chapter 1.5), this section outlines what is 

currently known about the structural changes that occur in the brain during childhood 

and adolescence.  

Structural magnetic resonance imaging (sMRI) studies conducted over the last 

two decades have consistently reported that the human brain matures in a back-to-

front order, with posterior cortical regions maturing earlier in development than 

anterior cortical regions. More recent work has also reported that subcortical 

structures, such as the nucleus accumbens and amygdala, mature earlier in 

development than cortical prefrontal regions (Mills, Goddings, Clasen, Giedd & 

Blakemore, 2014). Thus, compared to other cortical and subcortical regions, the 

prefrontal cortex (PFC) undergoes a protracted development during childhood and 

adolescence, which extends throughout the third decade of life (Giedd et al., 1999; 

Giedd, 2004; Gotgay et al., 2004; Huttenlocher, 1979; Sowell et al., 2002). 

The structural changes that occur during childhood and adolescence involve 

both white and grey matter. White matter is largely composed of myelinated axons. 

Myelin is a fatty sheath that forms around the axon of neurons, creating an electrically 

insulating layer. The myelin sheath enables neurons to transmit electrical impulses at 

a faster rate (Morell & Quarles, 1999). Several studies have reported that white matter 

increases across all areas of the cortex throughout childhood, adolescence, and young 

adulthood (Barnea-Goraly et al., 2005; Giedd et al., 1999; Giedd, 2004). These increases 

in white matter during childhood and adolescence are thought to result from increases 

in myelination and/or axon size (Segalowitz, Santesso & Jetha, 2010). White matter 

tracts between frontal cortical and other cortical regions, as well as between frontal 

cortical and subcortical structures, also continue to develop across childhood, 

adolescence, and young adulthood (Hagmann et al., 2010; Liston et al., 2006). 

Compared to white matter, grey matter contains neural cell bodies, 

unmyelinated axons, dendrites, glia, and blood vessels. Early work investigating the 

development of grey matter reported that grey matter in most cortical areas follows a 

non-linear trajectory during childhood and adolescence, whereby cortical grey matter 

in the frontal, parietal, and temporal lobes steadily increases throughout childhood, 

peaks in early adolescence, and decreases throughout middle and late adolescence 

(Giedd et al., 1999; Giedd, 2004; Gotgay et al., 2004; Sowell et al., 2002). However, 

more recent work has failed to report an inverted u-shaped developmental trajectory 

of cortical grey matter (Mills et al., 2016). Instead, recent studies show that cortical 
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grey matter volume is greatest in childhood and decreases steadily throughout the 

second and third decade of life (Mills et al., 2016). Despite these discrepancies, cortical 

grey matter has been shown to develop first in posterior sensory regions and last in 

anterior higher-order regions (Paus, 2005). There is also evidence that grey matter in 

subcortical structures, namely the amygdala and nucleus accumbens, matures earlier 

in development than grey matter in cortical prefrontal regions (Mills et al., 2014).  

Taken together, these findings reveal that the adolescent brain undergoes 

considerable changes throughout adolescence, and demonstrate that the PFC has a 

protracted development compared to other cortical and subcortical regions. The loss 

of grey matter during adolescence is thought to reflect the removal of superfluous 

synapses and the reorganisation of remaining synapses (Crews, He & Hodge, 2007). 

Hence, the reduction of grey matter combined with the augmentation of white matter 

during adolescence is thought to underlie faster and more efficient neural processing 

(Casey et al., 2008b; Casey, Tottenham, Liston & Durston, 2005; Paus, 2005). 

Moreover, improvements in cortico-cortical and cortico-subcortical connectivity 

during adolescence are thought to enhance interregional processing and global 

efficiency (Hagmann et al., 2010; Liston et al., 2006). 

Gender differences in structural brain development have also been reported. 

Total cerebral volume is approximately 10 per cent larger in males compared to 

females, and peaks earlier in females (10.5 years) than in males (14.5 years) (Giedd et 

al., 1999; Lenroot et al. 2007). Gender-specific developmental trajectories have also 

been found for cortical grey matter; grey matter in frontal and parietal regions reaches 

maximum volume 1-2 years earlier in females compared to males (Giedd et al., 1999; 

Lenroot et al. 2007). Moreover, several studies have reported significant gender 

differences in grey matter density in subcortical structures, including the amygdala, 

hippocampus, striatum, hypothalamus, and cerebellum (Giedd et al., 1996; Tiemeier et 

al., 2010). White matter has also been reported to follow gender-specific 

developmental trajectories; Lenroot et al. (2007) found that white matter volume 

increased at a faster rate in males compared to females during childhood and 

adolescence. Such sexual dimorphisms in grey and white matter during adolescence 

suggest that the increases in gonadal hormones (testosterone, oestrogen, 

progesterone) during puberty may play an important role in structural brain 

development (Blakemore, Burnett & Dahl, 2010; Lenroot & Giedd, 2010). Despite this, 

very few studies have examined the affects of puberty on structural brain 
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development. 

Initial research suggests that puberty has significant affects on the 

development of cortical and subcortical grey matter (Bramen et al., 2011; Goddings et 

al., 2014; Neufang et al., 2009; Peper et al. 2009). However, a consistent relationship 

between puberty and grey matter development is yet to emerge. Peper et al. (2009) 

found that gonadal hormones influenced global grey matter density in male and 

female adolescents aged 10-15 years; testosterone levels were positively associated 

with global grey matter density in males whereas oestrogen levels were negatively 

associated with global grey matter density in females. In addition to having affects on 

global grey matter density, puberty has also been shown to affect specific cortical and 

subcortical regions. For example, Goddings et al. (2014) reported that pubertal stage 

significantly influenced the structural development of several subcortical structures in 

male and female adolescents aged 7-20 years; more advanced pubertal stage was 

positively associated with grey matter volume in the amygdala and hippocampus but 

negatively associated with grey matter volume in the nucleus accumbens, caudate, 

putamen, and globus pallidus. Consistently, Neufang et al. (2009) found that 

testosterone levels were positively associated with grey matter volume in the 

amygdala for males and females aged 8-15 years. Interestingly, Bramen et al. (2011) 

found a positive association between pubertal stage and grey matter volume in the 

amygdala and hippocampus for boys aged 11-14 years but not for females. In contrast 

to Goddings et al. (2014), Neufang et al. (2009) also found that testosterone levels were 

negatively associated with grey matter volume in the hippocampus for males and 

females. Furthermore, Neufang et al. (2009) reported a negative association between 

testosterone levels and grey matter volume in parietal regions for males, and a positive 

association between oestrogen levels and grey matter volume in limbic regions for 

females. While these findings are not entirely consistent, they provide clear evidence 

that puberty has significant affects on cortical and subcortical grey matter 

development during adolescence.  

A recent review has also suggested that puberty has significant affects on the 

development of white matter (Ladouceur, Peper, Crone & Dahl, 2012). For instance, 

Perrin et al. (2008) reported that the influence of testosterone on white matter volume 

was greater in boys with shorter versions of the androgen receptor gene. Collectively, 

these findings reveal that puberty has considerable affects on white and grey matter 

development during adolescence. Notably, puberty-related changes in the brain can 
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either be permanent (organisational changes) or temporary (activational changes) 

where gonadal hormones induce acute changes that are reversed once the hormones 

are removed (Blakemore et al., 2010; Sisk & Zehr, 2005). While these findings provide 

initial insights into the role of puberty in structural brain development, considerably 

more work is needed to identify the region- and gender-specific affects that puberty 

has on grey and white matter development during adolescence, as well as to establish 

whether these affects are permanent or temporary. 

 

1.5. Neurobiological models of adolescence 

Given that the brain undergoes substantial structural changes during 

adolescence, several neurobiological models have been proposed in an attempt to 

explain why risk-taking behaviours peak during adolescence (Casey et al., 2010; Ernst 

et al., 2006; Nelson et al., 2005; Steinberg, 2008). Casey’s model also aims to explain 

why adolescents experience heightened emotionality, i.e., greater levels of anxiety and 

negative affect, compared to children and adults (Casey et al., 2010). All the 

neurobiological models implicate the developmental mismatch of immature prefrontal 

cortical regions and more mature subcortical limbic regions in the heightened levels of 

risk-taking and emotionality observed during adolescence. Thus, the neurobiological 

models extend previous suggestions that elevated levels of risk-taking and 

emotionality during adolescence result solely from the protracted development of the 

PFC (Mills et al., 2014). The neurobiological models are outlined in the first four 

sections below. The final section critically evaluates the models. 

 

1.5.1. Casey’s dual systems model 

Casey’s dual systems model (Casey et al., 2008a, 2008b, 2010; Somerville, Jones 

& Casey, 2010) aims to explain the peak in risk-taking behaviours and emotionality 

during adolescence. Casey’s model focuses on the relative maturity of cortical 

prefrontal regions and subcortical limbic regions, namely the ventral striatum and 

amygdala, during development. While prefrontal regions are paramount for cognitive 

control, impulse control, rational decision-making, and emotional regulation, limbic 

regions such as the ventral striatum and amygdala are critical for motivational and 

emotional processes (Cardinal, Parkinson, Hall & Everitt, 2002; Miller & Cohen, 2001).  

Casey’s model proposes that the relative maturity of prefrontal and limbic 

regions during childhood and adulthood is balanced; both prefrontal and limbic 
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regions are structurally immature in children and structurally mature in adults. 

However, the protracted development of the PFC compared to limbic regions leads to 

an imbalance in maturity between prefrontal and limbic regions during adolescence, 

whereby limbic regions are more structurally mature than prefrontal regions (Figure 

1.1). As well as maturing earlier in development, Casey’s model proposes that limbic 

regions are more responsive to rewards and threats during adolescence compared to 

childhood and adulthood.  

Casey’s model predicts that prefrontal regions can regulate limbic activity in 

unemotional ‘cold’ contexts during adolescence. Critically however, adolescents’ 

undeveloped prefrontal regions are thought to be unable to regulate limbic activity in 

emotional ‘hot’ contexts when the limbic system has been highly activated by salient 

stimuli. Thus, the combination of an underdeveloped PFC and greater subcortical 

activity to salient stimuli is thought to underlie higher levels of risk-taking, sensation 

seeking, and emotionality during adolescence, particularly in ‘hot’ contexts.  

There is substantial evidence from sMRI studies that the PFC has a prolonged 

development compared to other cortical and subcortical structures (Giedd et al., 1999; 

Giedd, 2004; Gotgay et al., 2004; Huttenlocher, 1979; Mills et al., 2014; Sowell et al., 
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Figure 1.1 Casey’s dual systems model (Casey et al., 2008a; Casey et al., 2008b; Casey et al., 
2010; Somerville et al., 2010). This schematic model illustrates the prolonged development of 
cortical prefrontal regions relative to subcortical limbic regions (amygdala and ventral striatum). 
The imbalance in maturity between prefrontal and limbic regions is hypothesised to make 
adolescence a vulnerable period for engaging in risky behaviours and experiencing high levels of 
emotionality. Figure adapted from Somerville et al. (2010). 
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2002; see Chapter 1.4). Functional magnetic resonance imaging (fMRI) studies have 

also documented age-related changes in PFC function during childhood, adolescence, 

and adulthood; when completing cognitive tasks, children and adolescents recruit 

larger and more diffuse prefrontal regions than adults (Bunge, Dudukovic, Thomason, 

Vaidya & Gabrieli, 2002; Casey et al., 1997; Casey, Giedd & Thomas, 2000; Durston & 

Casey, 2006; Luna et al., 2001; Rubia et al., 2000; Tamm, Menon & Reiss, 2002). These 

studies have also reported that task-relevant PFC activity, i.e., activity correlated with 

task performance, becomes more focal with age and task-irrelevant PFC activity 

diminishes (e.g., Casey et al., 1997). These age-related changes in prefrontal activity 

are thought to result from the increases in white matter and decreases in grey matter 

that occur during adolescence, which together improve the speed and efficiency of 

neural processing (Blakemore & Choudhury, 2006; Hagmann et al., 2010). Thus, 

greater prefrontal activity during cognitive tasks in children and adolescents is 

thought to reflect less efficient neural processing in comparison to adults. Greater 

prefrontal activity during cognitive tasks in children and adolescents is also thought to 

reflect more effortful attention (Casey et al., 2000). 

In addition to adolescents having an underdeveloped PFC, Casey’s model 

suggests that adolescents’ limbic regions are more responsive to rewards and threats 

compared to children and adults. Consistent with this idea, fMRI studies have reported 

that subcortical limbic regions are hypersensitive to rewards during adolescence; 

adolescents have greater activity in the ventral striatum and amygdala when 

anticipating and receiving rewarding or appetitive stimuli compared to both children 

and adults (Barkley-Levenson & Galván, 2014; Braams, van Duijvenvoorde, Peper & 

Crone, 2015; Galván et al., 2006; Galván, Hare, Voss, Glover & Casey, 2007; Hare et al., 

2008; Padmanabhan, Geier, Ordaz, Teslovich & Luna, 2011; Van Leijenhorst et al., 

2010). Critically, these studies have also shown that the amount of subcortical activity 

in response to rewards is positively associated with engagement in risky behaviours 

(Barkley-Levenson & Galván, 2014; Braams et al., 2015; Galván et al., 2007). Thus, 

these studies suggest that greater subcortical activity during adolescence is one 

mechanism underlying the increase in risk-taking. While fewer studies have examined 

adolescents’ neural responses to threatening or aversive stimuli, initial work suggests 

that adolescents are also hypersensitive to threats. Specifically, fMRI studies have 

reported that adolescents have greater amygdala and ventral striatum activity when 

anticipating and encountering threatening or aversive stimuli compared to children 
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and adults (Britton et al., 2013; Galván & McGlennen, 2013; Hare et al., 2008). Notably, 

high levels of anxiety are associated with increased sensitivity and vigilance towards 

potential threats (Bouton et al., 2001; Mineka & Oehlberg, 2008). Hence, taken 

together, these studies provide compelling evidence in support of Casey’s model, and 

suggest that adolescents are hypersensitive to rewards and threats, and that this 

hypersensitivity may partially underlie greater levels of risk-taking and anxiety during 

adolescence. 

Importantly however, the central premise of Casey’s dual systems model is that 

adolescents are able to regulate their emotions and behaviour in unemotional ‘cold’ 

contexts, but not in emotional ‘hot’ contexts. Accordingly, several studies have 

compared adolescents’ prefrontal and limbic responses in neutral ‘cold’ contexts and 

emotional ‘hot’ contexts (Chein, Albert, O’Brien, Uckert & Steinberg, 2011; Hare et al., 

2008; Lau et al., 2011; Monk et al., 2003). In line with Casey’s model, Chein et al. (2011) 

found that adolescents (14-18 years) had greater ventral striatum and orbitofrontal 

cortex activity, but reduced lateral PFC activity, than young adults (24-29 years) while 

engaging in a risk-taking task. Critically, these age-dependent differences were only 

observed when adolescents’ peers were present, but not when adolescents were alone. 

Similar findings have also been observed for threatening stimuli (Hare et al., 2008; Lau 

et al., 2011; Monk et al., 2003). For instance, Hare et al. (2008) found that adolescents 

(13-18 years) had greater amygdala activity and reduced ventral PFC activity in 

response to threatening, but not calm, facial expressions compared to young adults 

(19-32 years). Thus, the evidence to date appears to support Casey’s dual systems 

model, and suggests that adolescents are hypersensitive to both rewards and threats. 

 

1.5.2. Steinberg’s dual systems model 

Steinberg (Steinberg, 2008, 2010) developed the dual systems model (DSM) to 

explain the neural mechanisms underlying the increase in risk-taking behaviours and 

sensation seeking tendencies during the transition from childhood to adolescence, and 

the subsequent decrease in risk-taking and sensation seeking during the transition 

from adolescence to adulthood. In contrast to Casey’s model, the DSM focuses 

exclusively on adolescent risk-taking, and is therefore limited in its ability to 

comprehensively explain adolescent behaviour and emotion. Despite this focus, the 

DSM provides important insights into why risk-taking behaviours and sensation 

seeking tendencies peak during adolescence. 
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The DSM is very similar to Casey’s dual systems model in that the DSM focuses 

on the relative maturity of two brain systems: a ‘cognitive-control’ system and a 

‘socioemotional’ system. The cognitive-control system comprises the lateral PFC, 

lateral parietal cortex, and anterior cingulate cortex. By contrast, the socioemotional 

system encompasses limbic and paralimbic regions, namely the amygdala, ventral 

striatum, orbitofrontal cortex, medial PFC, and superior temporal sulcus. Consistent 

with Casey’s model, the DSM asserts that the socioemotional system matures much 

earlier in development than the cognitive-control system, leading to an imbalance in 

maturity between the two systems during adolescence. The DSM also proposes that 

the socioemotional system is more active in response to affective stimuli in 

adolescents compared to children and adults. Thus, according to both Steinberg’s and 

Casey’s dual systems models, the increase in risk-taking and reward-seeking 

behaviours during the transition from childhood to adolescence results from a more 

mature and active socioemotional system combined with an underdeveloped 

cognitive-control system that is unable to regulate the socioemotional system in 

emotionally salient situations. As the cognitive-control system matures and activity in 

the socioemotional system decreases, the cognitive-control system is increasingly able 

to regulate the socioemotional system in emotionally salient situations. Accordingly, 

risk-taking behaviours decline during the transition from adolescence to young 

adulthood.  

The DSM draws from the same evidence base as Casey’s model, suggesting that 

the socioemotional system matures earlier in development than the cognitive-control 

system, and is more active in response to appetitive stimuli in adolescents compared 

to children and adults (Barkley-Levenson & Galván, 2014; Braams et al., 2015; Galván 

et al., 2007). However, the DSM also asserts that the influx of gonadal hormones 

during early adolescence is largely responsible for the elevated activity in the 

socioemotional system in response to rewards during adolescence. In support of this 

idea, fMRI studies have reported that pubertal stage and gonadal hormone levels are 

associated with subcortical activity when receiving rewards (Braams et al., 2015; De 

Macks et al., 2011). For instance, Braams et al. (2015) found that self-reported pubertal 

stage and testosterone levels were positively associated with reward-related nucleus 

accumbens activity in 8-17 year olds after controlling for chronological age. Similarly, 

De Macks et al. (2011) reported that testosterone levels were positively associated with 

reward-related dorsal and ventral striatal activity after controlling for chronological 
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age in 10-16 year olds. Together, these findings show that increases in pubertal stage 

and testosterone levels are associated with increases in reward-related subcortical 

activity. It has therefore been suggested that the changes in gonadal hormones during 

puberty influence the way adolescents respond to rewards, which subsequently drives 

adolescents to engage in greater levels of sensation seeking and risk-taking behaviours 

(De Macks et al., 2011).  

While the DSM does not address the increase in anxiety levels during 

adolescence, it is important to note that puberty has also been associated with threat-

related brain activity in adolescents (Forbes, Phillips, Silk, Ryan & Dahl, 2011; Moore 

et al., 2012). For instance, Moore et al. 2012 found that self-reported pubertal stage in 

adolescents aged 13 years was positively correlated with activity in the amygdala, 

extrastriate cortex, and thalamus in response to fearful and angry faces. Collectively, 

these preliminary studies suggest that more advanced pubertal stage is associated with 

increases in reward- and threat-related neural activity. Thus, the influences of puberty 

and age on reward- and threat-related brain activity need to be disentangled in 

adolescent research. Accordingly, the EEG study reported in Chapter 4 explored 

adolescents’ anticipatory responses to rewarding and threatening outcomes as a 

function of both age and puberty. 

Consistent with Casey’s model, the DSM also emphasises the importance of 

‘hot’ and ‘cold’ contexts in adolescent risk-taking. In particular, the DSM proposes 

that the presence of peers considerably increases adolescent risk-taking, and shifts the 

context from ‘cold’ to ‘hot’. In support of this idea, there is substantial behavioural 

evidence showing that adolescents take more risks when they are with peers compared 

to when they are alone (Chein et al., 2011; Gardner & Steinberg, 2005; Simons-

Morton, Lerner & Singer, 2005). For instance, Gardner and Steinberg (2005) found that 

mid-adolescents (13-16 years) and late adolescents (18-22 years) took significantly 

more risks on a computerised driving game when they were in the presence of peers 

compared to when they were on their own. In direct contrast, adults (24+ years) made 

the same number of risky decisions when they were on their own as when they were in 

the presence of peers. 

fMRI studies also support the idea that peers encourage risk-taking during 

adolescence. For instance, Chein et al. (2011) found that mid-adolescents (14-18 years) 

had more ventral striatum and orbitofrontal cortex activity while they were 

completing a risk-taking task in the presence of peers compared to when they were 
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alone. Crucially, greater activity in the ventral striatum and orbitofrontal cortex was 

associated with subsequent risky behaviour. Notably, these effects were not observed 

for young adults (24-29 years). Consistently, Smith, Steinberg, Strang and Chein 

(2015) found that adolescents had increased striatal activity when receiving rewards 

during peer observation compared to young adults. These findings suggest that peers 

increase adolescent risk-taking by increasing the salience of rewards (Smith et al., 

2015). In sum, these studies provide cogent evidence that the context, and the 

presence of peers in particular, can have significant affects on adolescent risk-taking.  

 

1.5.3. The Triadic Model  

Ernst et al. (2006) developed the Triadic Model to explain the increases in risk-

taking and reward-orientated behaviours during adolescence. While Casey and 

Steinberg propose dual system models, the Triadic Model asserts that behaviour is 

motivated by three distinct systems: an approach, reward-based system driven by the 

nucleus accumbens (ventral striatum); an avoidance threat-based system driven by the 

amygdala; and a regulatory system driven by the PFC. 

The Triadic Model is primarily concerned with explaining how representations 

of stimuli are translated into approach and avoidance behaviours. According to the 

Figure 1.2 The Triadic Model (Ernst et al., 2006). The Triadic Model asserts that behaviour is 
motivated by three distinct systems: an approach, reward-based system driven by the nucleus 
accumbens (ventral striatum); an avoidance threat-based system driven by the amygdala; and a 
regulatory system driven by the PFC. In adults (a), the approach and avoidance systems are 
balanced, and therefore the PFC is able to exert equal control over the approach-avoidance 
systems. However, in adolescents (b), the approach system is stronger than the avoidance 
system, and therefore the PFC is unable to exert equal control over the approach-avoidance 
systems. The arrows represent the relative control of the PFC over the ventral striatum and 
amygdala. Figure adapted from Ernst and Fudge (2009).  
 

Adultsa b
Medial / Ventral Prefrontal Cortex

Ventral Striatum Amygdala

Adolescents

Medial / Ventral Prefrontal Cortex

Ventral Striatum

Amygdala
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Triadic Model, the coding of approach and avoidance signals, by the nucleus 

accumbens and amygdala, respectively, is balanced in adults. Hence, during 

adulthood, the prefrontal regulatory system is able to exert equal control over the 

approach and avoidance systems. In contrast to adults, adolescents are thought to 

have a stronger approach system and a weaker avoidance system, and therefore the 

coding of approach and avoidance signals is imbalanced during adolescence. 

Consequently, the approach system prevails over the avoidance system in adolescence, 

and the immature prefrontal regulatory system is unable to exert equal control over 

the approach and avoidance systems. Thus, according to the Triadic Model, 

adolescents have a hyperresponsive approach system and a hyporesponsive avoidance 

system (Figure 1.2). This imbalance during adolescence is thought to result in a strong 

desire to approach rewarding stimuli, and consequently engage in higher levels of risk-

taking behaviours.  

In support of the Triadic Model, there is considerable evidence suggesting that 

adolescents are hyperresponsive to rewards and have a stronger approach system than 

both children and adults (see Chapter 1.5.1). However, research examining 

adolescents’ sensitivity to threats is limited. Consistent with the Triadic Model’s 

predictions, there is some evidence from behavioural studies indicating that 

adolescents are highly sensitive to rewards but less sensitive to threats. For example, 

in a large sample of 10-30 year olds, Cauffman et al. (2010) found that avoidance 

behaviours on the Iowa Gambling Task, i.e., avoiding playing from disadvantageous 

card decks, increased with age. In contrast, approach behaviours, i.e., playing from 

advantageous card decks, were greatest in middle and late adolescents (14-21 years). 

The authors interpreted the findings by suggesting that adolescents have a strong 

approach system paired with a weak, immature avoidance system.  

In contrast to these behavioural findings, initial fMRI evidence suggests that 

adolescents are hyperresponsive to threatening stimuli (Britton et al., 2013; Galván & 

McGlennen, 2013; Hare et al., 2008; see Chapter 1.5.1), and not hyporesponsive to 

threats as the Triadic Model predicts. Moreover, recent EEG findings suggest that 

adolescents (12-15 years) are more sensitive to potential threats than young adults 

(18-32 years) (Levita, Howsley, Jordan & Johnston, 2014). Finally, adolescents are 

more likely than any other age group to experience elevated anxiety levels and be 

diagnosed with an anxiety disorder (Abe & Suzuki, 1986; Kessler et al., 2005; 

Merikangas et al., 2010; Pine et al., 1998). Anxiety is characterised by increased 
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attention to, and excessive avoidance of, stimuli perceived to be harmful or 

threatening (Bouton, Mineka & Barlow, 2001; Mineka & Oehlberg, 2008). Hence, these 

findings collectively point towards adolescents being hypersensitive to threats. 

Despite this, adolescents’ sensitivity to threat has been scarcely studied, and thus 

considerably more behavioural, fMRI, and EEG research is needed to shed light on how 

sensitivity to threat develops across adolescence, and how sensitivity to threat 

corresponds to sensitivity to reward during different developmental stages. 

While Casey’s and Steinberg’s dual systems models focus on the maturity and 

activity of two neural systems, the Triadic Model proposes that three distinct nodes 

are critical in driving adolescent behaviour, namely the PFC, nucleus accumbens, and 

amygdala. All the neurobiological models assert that the PFC is pivotal for regulating 

behaviours and emotions, and that the nucleus accumbens and amygdala are critical 

for motivational and emotional processes. However, the Triadic Model suggests that 

the nucleus accumbens and amygdala have specific roles in processing rewarding and 

threatening stimuli, respectively. While early studies implicated the ventral striatum 

(nucleus accumbens) in reward processing (e.g., Hollerman, Tremblay & Schultz, 1998; 

Schultz, Apicella, Scarnati & Ljungberg, 1992) and the amygdala in threat processing 

(e.g., Adolphs, Tranel, Damasio & Damasio, 1995), more recent studies have shown 

that the striatum has a role in processing threatening and aversive stimuli (Jensen et 

al., 2003; Levita, Hoskin & Champi, 2012; Pohlack, Nees, Ruttorf, Schad & Flor, 2012; 

Seymour, Daw, Dayan, Singer & Dolan, 2007), and the amygdala has a role in 

processing rewarding and appetitive stimuli (Baxter & Murray, 2002; Gottfried, 

O'Doherty & Dolan, 2003). Thus, contemporary work suggests that the striatum and 

amygdala have complementary but distinct roles in value-based encoding, updating 

value representations, outcome expectancy, and reinforcement learning that extend 

beyond the reward-threat distinction (Cardinal, Parkinson, Hall & Everitt, 2002; Costa, 

Dal Monte, Lucas, Murray & Averbeck, 2016; Pohlack et al., 2012; Somerville, van den 

Bulk & Skwara, 2014). Hence, the Triadic Model is currently limited in its ability to 

accurately describe adolescents’ neurobiological responses to reward and threat. In 

order to establish a comprehensive and precise understanding of the neural circuitry 

underlying adolescent risk-taking and anxiety, it is vital that the neurobiological 

models of adolescence continue to evolve and incorporate contemporary empirical 

findings. 
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1.5.4. Social Information Processing Network  

As noted by the DSM (Chapter 1.5.2), peers become increasingly important 

during adolescence, and are thought to contribute to the high levels of risk-taking 

behaviours frequently observed in this developmental period (Chein et al., 2011; 

Gardner & Steinberg, 2005; Simons-Morton et al., 2005). Accordingly, Nelson et al. 

(2005) developed the Social Information Processing Network (SIPN) model in an 

attempt to explain why social cues and peer relationships become more salient during 

adolescence (Figure 1.3). The SIPN proposes that three distinct neural nodes are 

responsible for guiding social behaviour: the detection node; the affective node; and 

the cognitive-regulation node. The detection node is comprised of visual processing 

areas, including the inferior occipital cortex, inferior regions of the temporal cortex, 

intraparietal sulcus, fusiform face area, superior temporal sulcus, and anterior 

temporal cortex, and is responsible for identifying the social properties of a stimulus. 

By comparison, the affective node encompasses the amygdala, nucleus accumbens, 

hypothalamus, septum, the bed nucleus of the stria terminalis, and orbitofrontal 

cortex. Thus, the affective node is comparable to the subcortical limbic regions 

Figure 1.3 The Social Information Processing Network (Nelson et al., 2005). A schematic 
depiction of the regions contained within the detection node (green), affective node (red), and 
cognitive-regulation node (blue). The grey arrows represent that the nodes are highly interactive. 
Figure reprinted with permission from Nelson et al. (2005). 
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discussed in the other neurobiological models (Casey et al., 2010; Ernst et al., 2006; 

Steinberg, 2008). The affective node is important for determining the value of a social 

stimulus, and whether that stimulus should be approached or avoided. Finally, the 

cognitive-regulation node includes the dorsomedial PFC and ventral PFC, and has 

three core functions: to perceive others’ mental states; to inhibit prepotent responses; 

and to generate goal-directed behaviours towards socially rewarding stimuli and away 

from socially threatening stimuli. The three nodes are highly interconnected and 

function as an interactive neural network. 

The visual processing areas that comprise the detection node have largely 

reached structural maturity by adolescence (Gogtay et al., 2004). Therefore, the SIPN 

suggests that heightened sensitivity to social stimuli during adolescence is driven by 

changes in the affective and cognitive-regulation nodes. In particular, the SIPN 

suggests that the affective node becomes hyperresponsive to social stimuli in 

adolescents relative to children and adults. In line with the DSM, the SIPN has a strong 

emphasis on the role of puberty in the hyperresponsivity of the affective node to 

salient stimuli. Consistent with the other models (Casey et al., 2010; Ernst et al., 2006; 

Steinberg, 2008), the SIPN proposes that the immaturity of the cognitive-regulation 

node combined with a more active affective mode results in greater sensitivity to 

social stimuli during adolescence. The SIPN asserts that adolescents are increasingly 

able to regulate their responses to social information as the PFC matures.  

Notably, the SIPN is the only neurobiological model to incorporate posterior 

visual regions. This is an improvement over the other models since a number of 

studies using EEG (Levita et al., 2014; Li, Li & Luo, 2005; Pizzagalli, Greischar & 

Davidson, 2003) and fMRI (Harry, Williams, Davis & Kim, 2013; Lang et al., 1998) have 

reported that activity in visual processing regions is greater in response to affective 

stimuli compared to neutral stimuli. Moreover, the amount of threat-related activity in 

visual processing regions is thought to be modulated by participants’ anxiety levels (Li 

et al., 2005). These findings suggest that salient stimuli not only modulate activity in 

prefrontal and limbic regions, but also in posterior visual regions (Pizzagalli et al., 

2003). Hence, if adolescents are hyperresponsive to rewards and threats as the current 

fMRI literature suggests (Barkley-Levenson & Galván, 2014; Braams et al., 2015; 

Britton et al., 2013; Galván et al., 2006; Galván & McGlennen, 2013; Hare et al., 2008), 

it is possible that adolescents would also have greater levels of activity in posterior 

visual regions when anticipating and receiving rewards and threats.  
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Despite including a posterior detection node, the SIPN asserts that adolescents’ 

increased sensitivity to social stimuli results from developmental differences in the 

affective and cognitive-regulation nodes given that posterior visual areas structurally 

mature early in development (Gogtay et al., 2004). Thus, all the current 

neurobiological models overlook posterior regions when explaining the increases in 

risk-taking and emotionality during adolescence. Critically however, structural 

maturity does not imply functional maturity; a brain region with a similar structure in 

children and adults may not function in the same way (Ghetti & Bauer, 2012). 

Moreover, many behaviours result from dynamic neural networks that include both 

structurally mature and structurally immature regions in adolescents. Thus, it is 

plausible that a structurally immature node, such as the PFC, will have a cascading 

effect on the rest of a neural network. Adolescent work should therefore examine all 

brain regions that have been implicated in affective processing, even if they are 

structurally mature. 

 

1.5.5. Critical evaluation of the models 

The neurobiological models have provided testable models of adolescent 

development, and have therefore significantly enhanced our current understanding of 

why engagement in risk-taking behaviours and levels of emotionality peak during 

adolescence. Despite this, the neurobiological models have a number of limitations 

that need to be addressed.  

First, while Casey’s model and the Triadic Model focus on adolescents’ 

sensitivity to reward and threat, Steinberg’s DSM and the SIPN only focus on 

adolescents’ sensitivity to reward. Crucially, in order to understand why risk-taking 

behaviours and anxiety levels simultaneously increase during adolescence, 

adolescents’ sensitivity to both reward and threat need to be examined. Notably, 

Casey’s model asserts that adolescents are hypersensitive to both rewards and threats, 

whereas the Triadic Model suggests that adolescents are hypersensitive to rewards but 

hyposensitive to threats. Given that threat-related behaviours and neural responses 

have not been widely studied in adolescents, and the initial EEG and fMRI evidence 

suggests that adolescents are hypersensitive to threats (Britton et al., 2013; Galván & 

McGlennen, 2013; Hare et al., 2008; Levita et al., 2014), the claim that adolescents are 

hyposensitive to threats (Ernst et al., 2006) is currently unsubstantiated. Hence, 

substantially more work is needed to explore adolescents’ sensitivity to threat, and to 
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establish how the development of threat sensitivity corresponds to the development of 

reward sensitivity throughout adolescence. 

Second, despite adolescence being a transitional period between childhood and 

adulthood (Casey et al., 2008a; Spear, 2000), the Triadic Model and SIPN only account 

for changes between adolescence and adulthood. Thus, the Triadic Model and SIPN are 

unable to explain how adolescence is a distinct developmental period from childhood; 

establishing how adolescents are distinct from children is essential for understanding 

why risk-taking behaviours and anxiety levels increase during the transition from 

childhood to adolescence (Casey et al., 2008a; Spear, 2000). 

Third, most of the evidence testing the neurobiological models has resulted 

from fMRI and nonhuman animal studies. However, surprisingly little EEG work has 

examined adolescents’ sensitivity to reward or threat. EEG has a number of benefits 

over fMRI (see Chapter 1.7). Therefore, investigating the approach-avoidance systems 

using EEG should provide novel insights into the neural processes underlying the 

approach-avoidance systems during adolescence (see Chapter 1.7). 

Fourth, despite the SIPN including a posterior detection node, Nelson et al. 

(2005) assert that the increased salience of social stimuli during adolescence results 

solely from age-related changes in prefrontal and limbic regions. Hence, all the 

neurobiological models only implicate cortical prefrontal and subcortical limbic 

structures when explaining the increases in risk-taking behaviours (Casey et al., 2010; 

Ernst et al., 2006; Nelson et al., 2005; Steinberg, 2008), and increases in emotionality 

(Casey et al., 2010), during adolescence. However, as discussed in Chapter 1.5.4, 

several EEG and fMRI studies in adults have reported that rewarding and threatening 

stimuli modulate activity in posterior brain regions (Harry et al., 2013; Lang et al., 

1998; Levita et al., 2014; Li et al., 2005; Pizzagalli et al., 2003). Moreover, structural 

maturity does not necessarily imply functional maturity (Ghetti & Bauer, 2012). Thus, 

if adolescents are hyperresponsive to rewards and threats, as the current literature 

suggests, it is possible that posterior regions will also have a role in biasing 

adolescents towards rewards and threats. Therefore, more work is needed to identify 

the role of posterior brain regions in adolescent development. 

Finally, all the neurobiological models overlook potential gender differences in 

adolescent development. This is surprising since there are considerable gender 

differences in risk-taking behaviours, anxiety levels, and brain development during 

adolescence (Byrnes et al., 1999; Lenroot & Giedd, 2010; Lewinsohn et al., 1998). 
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Critically, if the neurobiological models are going to inform future interventions aimed 

at reducing adolescent risk-taking and anxiety, it is important that the neurobiological 

models aim to establish and incorporate any gender differences in brain structure and 

activity associated with gender-specific behavioural outcomes. Therefore, the gender 

differences in risk-taking, anxiety, and related brain activity warrant further 

investigation. 

This doctoral research was designed with these limitations in mind. The overall 

aim of this doctoral research was to examine the simultaneous increase in risk-taking 

behaviours and anxiety levels during adolescence. To this end, a large cohort of male 

and female preadolescents (9-12 years), mid-adolescents (13-17 years), and late 

adolescents (18-23 years) participated in a series of behavioural and EEG studies. 

Specifically, the first study aimed to examine how the relationship between risk-taking 

and anxiety changes across the course of adolescence (Chapter 3). The second two 

studies (Chapters 4 and 5) aimed to investigate whether age-related changes in the 

EEG correlates of the approach-avoidance systems could account for the development 

of risk-taking and anxiety found in this sample of adolescents. 

These three studies addressed the limitations of the neurobiological models in 

the following ways. First, this doctoral work examined the development of risk-taking 

behaviours and anxiety levels, as well as age-related changes in the EEG correlates of 

the approach and avoidance systems, during adolescence. Second, participants aged 9-

23 years took part in this research in order to examine the transitions from 

preadolescence to mid-adolescence and from mid-adolescence to late adolescence. 

Risk-taking behaviours and anxiety levels are thought to peak in mid-adolescence 

(Abe & Suzuki, 1986; Burnett et al., 2010; Steinberg et al., 2008), and thus examining 

the transitions from preadolescence to mid-adolescence and from mid-adolescence to 

late adolescence provided a way to examine the effects that are unique to mid-

adolescence. Third, the neural correlates of the approach and avoidance systems were 

examined using EEG in order to provide novel insights into the neural processes 

associated with the approach-avoidance systems during adolescence. Fourth, the role 

of posterior regions in anticipating rewarding and threatening outcomes was assessed 

using EEG in Chapter 4. Finally, each of the three studies overtly tested potential 

gender differences. Consistent with Steinberg’s DSM and the SIPN, this doctoral work 

also had a strong focus on the influence of puberty on risk-taking, anxiety, and brain 

activity given that puberty has been shown to affect adolescent risk-taking, anxiety, 
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structural brain development, and reward- and threat-related neural activity (Braams 

et al., 2015; Collado et al., 2014; Goddings et al., 2014; Ladouceur et al., 2012; Moore et 

al., 2012; Reardon et al., 2009). 

 

1.6. The approach-avoidance systems during adolescence 

The neurobiological models of adolescence are based on the premise that 

behaviour is driven by an approach reward-based system and an avoidance threat-

based system. All the neurobiological models (Casey et al., 2010; Ernst et al., 2006; 

Nelson et al., 2005; Steinberg, 2008) assert that the increase in risk-taking and reward-

orientated behaviours during adolescence is driven by a hyperresponsive approach 

system and that adolescents are hypersensitive to rewards compared to children and 

adults. Notably, the Triadic Model and Casey’s dual systems model also suggest that 

the avoidance system is pivotal in adolescent behaviour. In particular, the Triadic 

Model suggests that adolescent risk-taking is driven by a hyperresponsive approach 

system combined with a hyporesponsive avoidance system. In direct contrast, Casey’s 

dual systems suggests that adolescents have a hyperresponsive avoidance system and 

a hyperresponsive approach system, which underlie greater levels of emotionality and 

risk-taking during adolescence, respectively. 

The idea that behaviour is motivated by two antagonist systems has been 

agreed upon for decades (Davidson, 1984, 1992; Elliot, 2006; Fowles, 1987; Gray, 1975; 

Lewin, 1935; Mackintosh, 1974; Mowrer, 2006; Schneirla, 1959; Skinner, 1948), and as 

such several approach-avoidance models have been proposed (Corr & McNaughton, 

2012; Elliot, 2006; Fowles, 1987; Gray, 1975; Mackintosh, 1974; Mowrer, 1960). 

Despite the different approach-avoidance models using different terminology for the 

approach and avoidance systems (e.g., behavioural activation system versus 

behavioural inhibition system; reward versus punishment; approach versus 

withdrawal), there is consensus among the models that behaviour is driven by two 

distinct approach-avoidance systems that are primarily concerned with survival. 

The approach system is activated by appetitive or rewarding stimuli and drives 

behaviour towards desirable outcomes (Berridge & Kringelbach, 2008; Elliot, 2006). 

The approach system is therefore thought to underlie sensation seeking and risk-

taking behaviours (Cloninger, 1987; Zuckerman & Kuhlman, 2000). In contrast to the 

approach system, the avoidance system is activated by aversive or threatening stimuli 

and drives behaviour away from undesirable outcomes (Corr, 2013; Davidson, 1992; 
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Elliot, 2006). Anxiety disorders are characterised by increased attention to, and 

excessive avoidance of, stimuli perceived to be harmful or threatening (Bouton et al., 

2001; Mineka & Oehlberg, 2008); thus, the avoidance system is thought to have a 

critical role in the aetiology and maintenance of anxiety disorders (Salkovskis, 1991). 

The peak in risk-taking behaviours and anxiety levels during adolescence 

suggests that the approach and avoidance systems are hyperresponsive to rewards and 

threats, respectively, in adolescents (Casey et al., 2010). Indeed, there is substantial 

evidence to suggest that adolescents are highly motivated by rewards, and that 

adolescents have a stronger approach system compared to children and adults 

(Barkley-Levenson & Galván, 2014; Braams et al., 2015; Galván et al., 2006; Galván et 

al., 2007; Hare et al., 2008; Padmanabhan et al., 2011; Van Leijenhorst et al., 2010). 

However, the role of the avoidance system in motivating adolescent behaviour has 

received considerably less attention. This may be because examining avoidance and 

threat-related behaviours in children and adolescents is surrounded by considerable 

ethical constraints. Moreover, it may be because the neurobiological models of 

adolescence have largely focused on reward-orientated behaviours. As previously 

discussed (Chapter 1.5.1), the initial fMRI evidence suggests that subcortical 

structures, such as the amygdala and nucleus accumbens, are more responsive to 

threatening stimuli in adolescents compared to both children and adults (Britton et al., 

2013; Galván & McGlennen, 2013; Hare et al., 2008). Recent EEG findings have also 

shown that adolescents are more responsive to visual cues that predict a threatening 

outcome compared to young adults (Levita et al., 2014). Thus, in light of the current 

literature, the claim that adolescents have a weak, hyporesponsive avoidance system 

(Ernst et al., 2006; Ernst, Daniele & Frantz, 2011) is unfounded. More developmental 

work is needed to determine how sensitivity to threat and avoidance behaviours 

change from late childhood to young adulthood in order to establish whether 

adolescents have a stronger, weaker, or equivalent avoidance system compared to 

children and adults. The studies reported in Chapters 4 and 5 provide an initial step 

towards establishing how the EEG correlates of approach and avoidance systems 

change during the course of adolescence.  

 

1.7. EEG correlates of the approach-avoidance systems 

fMRI studies have been extremely useful in identifying the neural structures 

that have a role in processing approach- and avoidance-related stimuli. These studies 
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have consistently reported that subcortical limbic regions, particularly the ventral 

striatum (nucleus accumbens) and amygdala, and cortical prefrontal regions are 

pivotal in approach-avoidance processes (Adolphs et al., 1995; Knutson, Fong, Adams, 

Varner & Hommer, 2001; Levita et al., 2012; O’Doherty et al., 2004; Robinson, 

Charney, Overstreet, Vytal & Grillon, 2011). Notably, fMRI studies are limited in their 

ability to establish the precise timing of neural processes; fMRI measures neural 

activity indirectly by detecting changes in blood oxygenation, and consequently has a 

temporal resolution in the order of seconds. Critically however, neural activity occurs 

within milliseconds, and thus a millisecond-by-millisecond account of the neural 

processes associated with the approach-avoidance systems is currently missing from 

the literature. Compared to fMRI, the EEG signal directly reflects neural activity and 

therefore has excellent temporal resolution in the order of milliseconds rather than 

seconds (Davidson, Jackson, & Larson, 2000). Thus, using EEG should provide novel 

and much needed insights into the neural correlates of the approach-avoidance 

systems during adolescence. Furthermore, EEG is particularly well suited to 

developmental studies. In particular, the environment in which EEG is recorded is less 

hostile than fMRI; fMRI is noisy, and involves lying down in a confined space for a 

long period of time. Moreover, fMRI studies usually have high attrition rates in 

developmental studies (Ulmer & Jansen, 2010), and are considerably more expensive 

than EEG studies. Hence, EEG is a useful tool for examining the development of the 

approach-avoidance systems across childhood, adolescence, and adulthood. 

 There are several ways of decomposing the EEG signal to examine the EEG 

correlates of the approach-avoidance systems. Two methods were used in this doctoral 

work. First, event-related potentials (ERPs) were used to explore adolescents’ 

anticipatory neural responses to visual cues that predicted rewarding and threatening 

outcomes (Chapter 4). ERPs are neural responses that are time locked to specific 

stimuli. ERPs measure the magnitude of neural activity (amplitude, µV) as well as the 

timing of neural activity relative to the stimulus onset (latency, ms). ERPs are 

composed of several peaks and troughs, which index particular perceptual and 

cognitive processes. Crucially, many ERPs are sensitive to appetitive and aversive 

stimuli; therefore, ERPs provide a way to examine how the brain processes affective 

information. Second, resting frontal EEG activity within the alpha frequency band (8-

13 Hz) was examined in relation to adolescents’ risk-taking behaviours (Chapter 5). 

There is a long-standing biphasic motivational theory suggesting that frontal alpha 
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asymmetry reflects the lateralisation of the approach-avoidance systems (Davidson, 

1984, 1992). Based on the finding that alpha is inversely related to cortical activity 

(Haegens, Nácher, Luna, Romo & Jensen, 2011; Shagass, 1972), Davidson (1984, 1992) 

proposed that relatively greater left cortical activity compared to right cortical activity 

is associated with reward-related behaviours and the approach system, whereas 

relatively greater right cortical activity compared to left cortical activity is associated 

with threat-related behaviours and the avoidance system. There is considerable 

support for this theory in infants and adults (e.g., Davidson & Fox, 1989; Thibodeau, 

Jorgensen & Kim, 2006; Wheeler, Davidson & Tomarken, 1993). However, whether the 

same is true for adolescents is yet to be determined. The following sections briefly 

outline and discuss what is currently known about the ERPs (Chapter 1.7.1) and resting 

frontal alpha activity (Chapter 1.7.2) associated with the approach-avoidance systems 

in adolescents and adults. 

 

1.7.1. Event-related potentials 

The vast majority of studies examining the neural correlates of the approach-

avoidance systems have used fMRI. Thus, the ERP components associated with the 

approach-avoidance systems remain largely unexplored. In an attempt to address this, 

the second study in this doctoral research used an instrumental conditioning task to 

examine adolescents’ anticipatory ERP responses to rewards and threats (Chapter 4). 

Suboptimal action selection during adolescence has been proposed as a 

potential mechanism underlying elevated levels of risk-taking and anxiety in this age 

group (Casey et al., 2008b). Crucially, actions are guided by the anticipation of 

outcomes (Elsner & Hommel, 2001); thus, biases in outcome anticipation are thought 

to have knock-on effects on action selection, preparation, and implementation (Freese 

& Amaral, 2005; Hegdé & Felleman, 2007; Lamme & Roelfsema, 2000; Lang & 

Bradley, 2010; Sugase, Yamane, Ueno & Kawano, 1999; Vuilleumier, 2005). Therefore, 

biases in anticipatory neural activity to rewarding and threatening outcomes may 

underlie suboptimal action selection, and hence greater levels of risk-taking and 

anxiety, during adolescence. In line with this idea, fMRI studies have reported that 

adolescents have greater activity in subcortical limbic regions when anticipating 

rewarding and threatening outcomes, and that this activity is correlated with risk-

taking behaviours and anxiety levels (Braams et al., 2015; Galván et al., 2006; Hare et 

al., 2008). By contrast, studies examining the ERP correlates of reward and threat 
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anticipation in adolescents are scarce. 

Instrumental conditioning tasks provide a way to examine anticipatory neural 

activity associated with rewarding and threatening outcomes that are conditional on 

actions. Accordingly, an instrumental conditioning task was used to measure 

adolescents’ anticipatory neural responses to rewards and threats in the second study 

in this thesis (Chapter 4). Instrumental conditioning (Skinner, 1948) builds on 

Thorndike’s law of effect, which asserts that actions associated with rewarding or 

pleasant outcomes are likely to be repeated while actions associated with punishing or 

unpleasant outcomes are not (Thorndike, 1905). Thus, while both instrumental and 

classical conditioning are concerned with learning to associate a neutral stimulus with 

an appetitive or aversive outcome, only instrumental conditioning is concerned with 

modifying behaviour through the use of rewarding and punishing outcomes. 

Skinner (1948) proposed that each behaviour is composed of three parts: the 

discriminative stimulus (SD); the learned response; and the reinforcer or punisher. The 

SD is a cue that is associated with specific outcomes that are conditional on particular 

responses. For example, one response to an SD may result in a punishment while a 

different response to the same SD may result in the avoidance of a punishment. 

Examples of SD include pictures, lights, sounds, and odours. The learned response 

refers to a behavioural response to a SD that is modified by the associated outcomes. 

Once a response has been made, the behaviour is either reinforced or punished. 

Reinforcers increase the likelihood of a behaviour being repeated, whereas punishers 

decrease the likelihood of a behaviour being repeated. Thus, the outcome associated 

with a response determines whether the behaviour is likely to be repeated. SD can be 

associated with four potential outcomes: positive reinforcement (receiving a 

rewarding outcome); negative reinforcement (avoiding a punishing outcome); positive 

punishment (receiving a punishing outcome); and negative punishment (removing a 

rewarding outcome). Notably, reinforcers and punishers can be primary or secondary. 

Primary reinforcers and punishers elicit automatic and involuntary biological reflexes, 

and include food, sex, pain, and loud noises. By contrast, secondary reinforcers and 

punishers have been previously paired with a primary reinforcer or another 

conditioned reinforcer, and include winning and losing money or points.  

To the author’s knowledge, no study to date has explored adolescents’ 

anticipatory ERP responses to rewarding stimuli, and only one study has examined 

adolescents’ anticipatory ERP responses to threatening stimuli (Levita et al., 2014). In 
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Levita et al.’s (2014) study, adolescents (12-15 years) and young adults (18-32 years) 

completed an instrumental avoidance task in which participants responded to SD that 

predicted the onset of a loud, aversive tone. Both adolescents and young adults had 

greater N170 ERP amplitudes to SD that predicted a threatening outcome compared to 

control cues. Critically, potentiation of the N170 to avoidance cues was greater in 

adolescents than young adults. This finding is in direct contrast with the Triadic 

Model, which asserts that adolescents have a weaker avoidance system compared to 

adults (Ernst et al., 2006). The N170 is an early visual ERP component, which is 

thought to originate from the fusiform face area and superior temporal gyrus (Sadeh, 

Podlipsky, Zhdanov & Yovel, 2010). Thus, the findings from Levita et al. (2014) extend 

the current neurobiological models of adolescence to suggest that heightened 

emotionality during adolescence may result from a widely distributed neural network 

that includes occipitotemporal regions in addition to prefrontal and limbic regions. 

Our previous findings are an important first step towards understanding the 

ERP correlates of avoidance behaviours in adolescents (Levita et al., 2014). However, 

these findings need extending to assess not only how adolescents respond to SD that 

predict threatening outcomes, but also to SD that predict rewarding outcomes; 

examining adolescents’ neural responses to rewarding and threatening stimuli in the 

same task will provide a way to directly test the suggestion that adolescents’ have a 

hyperresponsive approach system combined with a hyporesponsive avoidance system 

(Ernst et al., 2006). Our previous findings also need extending to examine the ERP 

correlates of the approach-avoidance systems across the course of adolescence, rather 

than in two discrete age groups; adolescence is a developmental period representing 

the transition from childhood to adulthood, and therefore the transitions into and out 

of adolescence need to be examined in order to identify the changes that are unique to 

adolescence (Casey et al., 2008a; Spear, 2000). Finally, exploring gender differences in 

adolescents’ anticipatory neural activity to SD that predict rewards and threats may 

shed some light on why adolescent males are particularly prone to engaging in more 

risky behaviours and adolescent females are more likely to experience elevated anxiety 

levels (Byrnes et al., 1999; Lewinsohn et al., 1998). Accordingly, the second study in 

this doctoral research extended our previous ERP findings (Levita et al., 2014) by 

assessing anticipatory neural responses to SD that predicted rewarding and threatening 

outcomes in a large sample of male and female adolescents aged 9-23 years (Chapter 

4). 
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Since one of the main benefits of EEG is excellent temporal resolution, Chapter 

4 also aimed to examine both early and late ERP components in order to investigate 

the timing of anticipatory neural responses to rewards and threats. To that end, the 

late positive potential (LPP) was assessed in addition to the N170. The LPP is a slow, 

positive ERP component that emerges 300-400 ms post stimulus onset over 

centroparietal regions. Like the N170, the LPP has greater amplitudes for positively 

and negatively valenced stimuli compared to neutral stimuli (Cuthbert, Schupp, 

Bradley, Birbaumer & Lang, 2000; Schupp et al., 2000; Schupp, Junghofer, Weike & 

Hamm, 2004), and is therefore a good candidate for exploring the later stages of 

reward and threat anticipation.  

 

1.7.2. EEG frontal alpha asymmetry 

 The PFC is thought to have a critical role in the approach-avoidance systems; 

the PFC is highly connected to other cortical and subcortical regions (Fuster, 2001; 

Miller & Cohen, 2001), and is therefore able to integrate information, regulate 

emotions, and direct behaviour in accordance with current goals and task demands 

(Matsumoto, Suzuki & Tanaka, 2003; Powell & Redish, 2016; Ridderinkhof, Van Den 

Wildenberg, Segalowitz & Carter, 2004). There is considerable evidence from fMRI 

studies to suggest that the PFC is engaged when adults anticipate and receive rewards 

(Knutson et al., 2001; Knutson, Fong, Bennett, Adams & Hommer, 2003) and threats 

(Bishop, Duncan, Brett & Lawrence, 2004; Robinson et al., 2011). As discussed earlier 

(Chapter 1.4), the PFC undergoes a protracted development and is therefore relatively 

immature during adolescence. Thus, it has been suggested that the PFC has a weaker 

role in the approach-avoidance systems in adolescents compared to adults (Casey et 

al., 2010; Ernst et al., 2006; Nelson et al., 2005; Steinberg, 2008). In line with this idea, 

Lau et al. (2011) found that activity in the dorsolateral PFC was important for 

discriminating between threat and safety cues in adults but not in adolescents.  

 The role of the PFC in the approach-avoidance systems has also been 

extensively studied using EEG. There is a long-standing theory that frontal cortical 

asymmetry reflects the lateralisation of approach-avoidance processes, as indexed by 

resting EEG alpha activity (Coan & Allen, 2004; Davidson, 1992; Harmon-Jones, Gable 

& Peterson, 2010). Frontal cortical asymmetry is measured using alpha asymmetry 

scores, whereby alpha activity recorded over the right frontal cortex is subtracted from 

alpha activity recorded over the left frontal cortex. Alpha activity is thought to have an 
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inverse relationship with cortical activity; greater alpha activity reflects reduced 

cortical activity and reduced alpha activity reflects greater cortical activity (Haegens et 

al., 2011; Shagass, 1972). Based on these findings, Davidson proposed that a greater 

tendency to approach rewarding or appetitive stimuli is associated with relatively 

greater left frontal cortical activity compared to right frontal cortical activity, whereas 

a greater tendency to avoid threatening or aversive stimuli is associated with relatively 

greater right frontal cortical activity compared to left frontal cortical activity 

(Davidson, 1984, 1992; Tomarken, Davidson & Henriques, 1990; Tomarken, Davidson, 

Wheeler & Doss, 1992; Wheeler et al., 1993).   

There is considerable evidence for the approach-avoidance lateralisation of the 

PFC in infants, children, and adults. In particular, relatively greater left cortical 

activity has been associated with risk-taking behaviours and sensation seeking 

tendencies in adults (Coan & Allen, 2003; Santesso et al., 2008; Sutton & Davidson, 

1997; Wheeler et al., 1993), and relatively greater right cortical activity has been 

associated with anxiety in infants, children, and adults (Davidson & Fox, 1989; Smit, 

Posthuma, Boomsma & De Geus, 2007; Thibodeau et al., 2006). However, very few 

studies have examined frontal asymmetry in adolescents, and it therefore remains 

unclear whether frontal asymmetry is a marker of adolescent risk-taking and anxiety. 

Since risk-taking behaviours and anxiety levels are widely reported to peak during 

adolescence (Abe & Suzuki, 1986; Burnett et al., 2010; Steinberg et al., 2008), 

examining frontal alpha asymmetry in adolescents may provide new insights into the 

role of the PFC in the approach-avoidance systems during adolescence. Consequently, 

the final study in this thesis (Chapter 5) aimed to explore the relationships between 

frontal alpha asymmetry and risk-taking behaviours across the different stages of 

adolescence adolescence. 

 

1.8. Thesis outline 

This doctoral research sought to explore the simultaneous increase in risk-

taking and anxiety during adolescence (Abe & Suzuki, 1986; Burnett et al., 2010; 

Steinberg et al., 2008). To that end, a large cohort of male and female preadolescents 

(9-12 years), mid-adolescents (13-17 years), and late adolescents (18-23 years) 

participated in a series of behavioural and EEG studies examining how the relationship 

between risk-taking and anxiety changes during the course of adolescence (Chapter 3), 

and the age-related changes in the EEG correlates of the approach-avoidance systems 
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(Chapters 4 and 5). 

Chapter 2 details the participant cohort, as well as the behavioural and EEG 

methods used in this doctoral research. 

Chapter 3 presents a behavioural study that aimed to examine the gender 

differences in the relationship between risk-taking behaviours and anxiety levels 

during adolescence. Chapter 3 also aimed to investigate the age- and gender-related 

differences in risk-taking, sensation seeking, impulsivity, and anxiety in this sample of 

adolescents. Finally, Chapter 3 aimed to disentangle the effects of age and puberty on 

the development of risk-taking, sensation seeking, impulsivity, and anxiety.  

Next, Chapter 4 aimed to examine how anticipatory neural responses to reward 

and threat change during the course of adolescence. This study built on our previous 

EEG work showing that adolescents (12-15 years) have greater potentiation of the 

N170 ERP component to visual cues predicting threatening outcomes in comparison to 

young adults (18-32 years) (Levita et al., 2014). Chapter 4 extended our previous 

findings by examining two ERPs that are modulated by motivationally salient stimuli, 

the N170 and LPP, while participants completed an instrumental task in which they 

emitted or omitted a motor response to obtain rewards and avoid losses. The 

relationships between ERP amplitudes and measures of pubertal stage, risk-taking 

behaviours, and anxiety levels were also explored. 

Finally, given that relatively greater left and right frontal cortical activity is 

thought to be associated with approach- and avoidance-orientated behaviours, 

respectively (Davidson, 1984, 1992), Chapter 5 aimed to explore the development of 

frontal alpha asymmetry during adolescence and its relationship to measures of risk-

taking. Chapter 5 also aimed to investigate how the cortical sources of resting EEG 

alpha change as a function of age, gender, and puberty during adolescence. 

Chapter 6 summarises and discusses the findings from this doctoral work, and 

considers directions for future research. 
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Abstract 

This chapter details the behavioural and EEG measures used in this doctoral 

research. The same cohort of participants took part in each of the three studies. 

Participants were categorised into three age groups: preadolescents aged 9-12 years; 

mid-adolescents aged 13-17 years; and late adolescents aged 18-23 years. Risk taking 

behaviours were measured using the Balloon Analogue Risk Task (BART; Lejuez et al., 

2002) and Youth Risk Behaviour Surveillance Survey (YRBSS; Aklin, Lejuez, Zvolensky, 

Kahler & Gwadz, 2005). Sensation seeking and impulsivity were measured using the 

Brief Sensation Seeking Scale (BSSS; Hoyle, Stephenson, Palmgreen, Lorch & 

Donohew, 2002) and a Go/NoGo task, respectively. Anxiety was measured using the 

State Trait Anxiety Inventory (STAI; Spielberger, Gorsuch, Lushene, Vagg & Jacobs, 

1983), and depression was measured using the Hospital Anxiety and Depression Scale 

(HADS-D; Zigmond & Snaith, 1983). Participants aged 9-17 years also completed the 

Pubertal Development Scale (PDS; Petersen, Crockett, Richards & Boxer, 1988). Two 

EEG tasks were used to measure the EEG correlates of the approach-avoidance 

systems: an instrumental conditioning task measured anticipatory ERP responses to 

visual cues that predicted rewarding and threatening outcomes (Chapter 4), and a 

resting state EEG session measured spontaneous alpha (Chapter 5). 
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2.1. Participants 

The same cohort of participants took part in each of the three studies included 

in this doctoral research (Chapters 3, 4, and 5). Examining the development of risk-

taking behaviours, anxiety levels, and the approach-avoidance systems in the same 

cohort provided a way to explore the simultaneous increase in risk-taking and anxiety 

from multiple behavioural and EEG perspectives. 

In total, 105 participants aged 9-23 years took part in this research. 

Participants were categorised into three age groups: preadolescents aged 9-12 years; 

mid-adolescents aged 13-17 years; and late adolescents aged 18-23 years (Table 2.1). 

Similar age groups have been widely used in behavioural and fMRI studies (e.g., Chein 

et al., 2011; Hare et al., 2008; Romer et al., 2009; Van Leijenhorst et al., 2010), and were 

therefore deemed appropriate for the current research. Adolescence begins around 10 

years of age (World Health Organization, 2003), and thus preadolescence reflects the 

transitional period between childhood and adolescence. Compared to preadolescence, 

mid-adolescence reflects the teenage years, and is the developmental period where 

individuals are most likely to engage in risk-taking behaviours and experience elevated 

anxiety levels (Abe & Suzuki, 1986; Burnett et al., 2010; Steinberg et al., 2008). Finally, 

late adolescence reflects the later stages of adolescence, where individuals are 

transitioning between adolescence and young adulthood. Given that the human brain 

continues to mature across the third decade of life (Huttenlocher, 1979; Petanjek et al., 

2011; Sowell, Thompson, Holmes, Jernigan & Toga 1999; Sowell, Thompson, Tessner 

& Toga, 2001), it has been suggested that adolescence extends until at least 25 years of 

Table 2.1 
Participant demographics 

   Age (years)  Handedness  IQ 

Age Group Gender n M SD  M 95% CI  M 95% CI 

Preadolescents 
9-12 years 

Females 18 10.78 1.22  0.66 0.56, 0.75  114.39 108.85, 119.32 
Males 19 10.26 1.28  0.79 0.71, 0.87  114.68 108.37, 120.32 
All 37 10.51 1.26  0.73 0.66, 0.78  114.54 110.67, 118.41 

           
Mid-adolescents 
13-17 years 

Females 16 14.69 1.54  0.68 0.58, 0.78  106.25 101.38, 110.31 
Males 16 14.94 1.48  0.72 0.46, 0.90  107.25 103.81, 111.00 
All 32 14.81 1.49  0.70 0.57, 0.81  106.75 103.81, 109.44 

           
Late adolescents 
18-23 years 

Females 20 20.45 1.47  0.77 0.70, 0.84  111.55 106.85, 116.20 
Males 16 21.00 1.55  0.80 0.69, 0.89  114.00 110.67, 117.19 
All 36 20.69 1.51  0.78 0.73, 0.83  112.62 109.14, 115.94 

Note. Handedness = Edinburgh Handedness Inventory; IQ = FSIQ-2 WASI-II scores; 95% CI = 95% 
bootstrapped confidence intervals. 
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age (Steinberg, 2008). 

It should be noted that grouping participants into categorical age groups rather 

than using age as a continuous variable can be problematic in developmental research; 

there are considerable individual differences in the developmental trajectories of 

children and adolescents (Steinberg & Morris, 2001), and thus categorising 

participants into age groups may result in potentially interesting and important 

developmental differences being missed. Despite this, categorising participants into 

age groups provides a way to directly examine the discrete changes that occur within 

and between different developmental stages. Therefore, categorising participants into 

age groups was the preferred approach in this research. 

In order to meaningfully compare the behaviour and EEG activity of 

preadolescents, mid-adolescents, and late adolescents, all participants needed to 

complete the same measures. Consequently, the behavioural and EEG measures 

detailed in this chapter were designed for use with participants aged 9-23 years old. 

 

2.1.1. Inclusion criteria 

Participants were recruited through the University of Sheffield, UK and local 

advertising. Prior to taking part, all participants over the age of 18 years and parents of 

participants aged 9-17 years completed an extensive screening form to ensure that 

only typically developing adolescents were included in this research. The screening 

form ensured that participants had normal or corrected-to-normal vision, normal 

hearing, no current or previous neurological, psychiatric, or medical conditions, were 

not currently taking medication, and were native English speakers. Due to potential 

differences in brain lateralisation between right- and left-handers (Bourne, 2008), only 

right-handed individuals were invited to take part. Handedness was measured using 

the Edinburgh Handedness Inventory (Oldfield, 1971; Table 2.1). An Age Group 

(preadolescents, mid-adolescents, late adolescents) by Gender (females, males) 

ANOVA found no main effects of Age Group (F(2, 99) = 1.08, p = 0.343, ηp
2 = 0.02) or 

Gender (F(1, 99) = 1.87, p = 0.174, ηp
2 = 0.02), and the Age Group by Gender interaction 

was non-significant (F(2, 99) = 0.52, p = 0.594, ηp
2 = 0.01), suggesting that handedness 

was equivalent across groups. 

 

2.1.2. Sample size 

The sample size was based on similar developmental EEG studies (e.g., Batty & 
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Taylor, 2006; Levita et al., 2014; Taylor, McCarthy, Saliba & Degiovanni, 1999). 

Overall, there were at least 14 participants per group available for statistical analysis 

in each EEG study (Chapters 4 and 5). 

 

2.2. Procedure 

Participants completed two visits within a two-week period. Prior to taking part 

in the first visit, informed consent was received from all participants, as well as from a 

parent or guardian of all participants under the age of 18 years. Participants carried 

out all tasks in a private room in the presence of an experimenter. Participants 

received £5 following each visit, and were fully debriefed upon completion of the 

second visit. Notably, a number of participants only completed the first visit, and were 

therefore fully debriefed after the first session. The research took place in the 

Department of Psychology, University of Sheffield, and was approved by the 

Department of Psychology, University of Sheffield ethics committee. 

During the first visit, participants completed a battery of self-report 

questionnaires, two behavioural tasks measuring risk-taking propensity and 

impulsivity, and an IQ test. The self-report questionnaires measured participants’ 

anxiety and depression levels, recent engagement in risk-taking behaviours, and 

sensation seeking tendencies. Participants aged 9-17 years also completed a self-

report questionnaire assessing their current pubertal stage. The self-report 

questionnaires were completed using the online survey platform Qualtrics, and were 

presented in a random order to cancel out any order effects. Similarly, the order in 

which participants completed the questionnaires, behavioural tasks, and IQ test was 

counterbalanced across the different groups. The first visit lasted approximately one 

hour. During the second visit, participants had their brain activity measured using EEG 

while they completed an instrumental conditioning task (Chapter 4) and a short 

resting state session (Chapter 5). The second visit lasted approximately two hours. The 

following sections outline the behavioural (Chapter 2.3) and EEG (Chapter 2.4) 

measures in more detail. 

 

2.3. Behavioural measures 

2.3.1. Risk-taking behaviours 

Risk-taking behaviours are frequently measured using retrospective self-report 

questionnaires that ask participants to self-report their engagement in a range of risky 
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behaviours, such as alcohol use, illicit drug use, and risky sexual behaviour. Thus, 

measuring risk-taking behaviours in children and adolescents raises a number of 

ethical and practical concerns. The primary concern when measuring risk-taking 

behaviours in developmental samples is whether it is ethical to ask participants to 

report their engagement in a range of risk-taking behaviours when it may expose 

individuals to behaviours they were previously unaware of. Adolescents may also be 

reluctant to answer questions about their engagement in risk-taking behaviours 

honestly due to the fear of potential negative consequences if a parent or guardian 

found out. Alternatively, some adolescents may lack the insight to provide an accurate 

report of their own behaviour. Finally, age-dependent differences in risk-taking 

behaviours may emerge due to older individuals having more opportunities to engage 

in certain risky behaviours, such as alcohol use and illicit drug use, rather than risk-

taking propensity differing between age groups (Ladouceur et al., 2000; Lejuez et al., 

2002; Lejuez, Aklin, Zvolensky & Pedulla, 2003).  

In light of these concerns, behavioural tasks have been developed to measure 

risk-taking propensity rather than actual risk-taking behaviours. Therefore, 

behavioural tasks eliminate the ethical and practical issues associated with using self-

report questionnaires to measure risk-taking behaviours in developmental samples 

(Lejuez et al., 2002, 2003). In particular, behavioural tasks do not ask participants to 

self-report their engagement in risky behaviours. Thus, behavioural tasks do not 

expose adolescents to unknown risky behaviours, require adolescents to accurately 

report their engagement in risky behaviours, or cause adolescents to worry about the 

potential negative consequences associated with answering honestly. Moreover, 

behavioural tasks eliminate the potential confound of finding age-related changes in 

risk-taking behaviours associated with accessibility to risks. To these ends, the Balloon 

Analogue Risk Task (Lejuez et al., 2002) was used in this research to assess 

participants’ risk-taking propensity. An age-appropriate self-report questionnaire, the 

Youth Risk Behaviour Surveillance Survey (Aklin et al., 2005), was also administered to 

measure actual risk-taking behaviours. These measures are discussed further below. 

 

2.3.1.1. Balloon Analogue Risk Task (BART) 

The BART (Lejuez et al., 2002) is a widely used computerised behavioural task 

that measures risk-taking propensity in children, adolescents, and adults. The BART 

was developed to be an ecologically valid measure of risk-taking, whereby risk-taking 
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is advantageous up to a certain point, but risk-taking past this point is 

disadvantageous (Lejuez et al., 2002). Thus, the BART accounts for risk-taking 

behaviours having the potential to be both advantageous and disadvantageous.  

 Both adult (BART; Lejuez et al., 2002) and youth (BART-Y; Lejuez et al., 2007) 

versions of the BART have been developed. In the BART and BART-Y, participants 

pump up a virtual balloon to win money or points, respectively. Since money may have 

a different meaning for younger compared to older adolescents (Barkley-Levenson & 

Galván, 2014), the BART-Y was used to measure risk-taking propensity in all 

participants in this doctoral research (Figure 2.1). Notably, in the original version of 

the BART-Y, the total number of points won is rewarded with a small, medium, or 

large monetary prize. Therefore, the original version of the BART-Y was modified 

slightly so that participants’ performance on the task was not associated with a 

monetary reward. Similar modified versions of the BART-Y have been used previously 

Figure 2.1 The Balloon Analogue Risk Task (BART). Participants pump up a virtual balloon to 
win points (a). Each balloon has a unique breakpoint where the balloon overinflates and pops. 
Thus, there are two outcomes: participants stop pumping up the balloon to collect their points 
before the balloon breakpoint (b); or, participants pump up the balloon past the balloon 
breakpoint and lose their points for that trial (c). The two outcome screens (b, c) were displayed 
for 2 seconds. 
 

CONGRATULATIONS! THE BALLOON BURST!

360
TOTAL

POINTS

Press P to pump the
 balloon up. 

Press S to stop and
 collect points.

Points Per 
Pump

10

Points for 
this balloon

180
Number of

pumps

18
the

a Test phase 

c Balloon overinflates and popsb Collect points
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in adolescent samples (e.g., Vaca et al., 2013). In the modified version of the BART-Y 

used in this doctoral research, participants pumped up a virtual balloon in order to win 

points (Figure 2.1a). Participants won 10 points for each pump. Each balloon had a 

different breakpoint where the balloon would overinflate and pop. The probability that 

the first pump would pop the balloon was 1/128, while the probability the second 

pump would pop the balloon was 1/127, and so on. Thus, each pump involved greater 

risk, but also greater potential reward. The average balloon breakpoint was 64 pumps. 

Participants could stop the trial at any point and collect their points (Figure 2.1b). 

However, if participants pumped up the balloon to its breakpoint, the balloon popped 

and participants did not win any points for that trial (Figure 2.1c). One of two feedback 

screens informed participants of the outcome. As well as receiving visual feedback, 

participants heard the sound of coins when they won points and the sound of a balloon 

bursting when the balloon popped. In total, there were 30 balloons. 

The BART yields three dependent measures: the average number of adjusted 

pumps for unpopped balloons; the total number of points won on the task; and the 

total number of popped balloons. The adjusted, rather than unadjusted, pumps are 

assessed since the number of pumps per balloon is constrained by the breakpoint of 

each balloon. The adjusted number of pumps is calculated for each unpopped balloon 

by dividing the number of pumps by the balloon’s unique breakpoint, and multiplying 

by 100 ((n pumps / balloon breakpoint) * 100). A greater risk-taking propensity is 

indicated by a greater number of average adjusted pumps for unpopped balloons, total 

number of points won, or popped balloons. The modified version of the BART-Y was 

programmed and delivered using E-Prime 2.0. 

To examine whether the modified BART-Y was an appropriate measure of risk-

taking propensity in late adolescents, the BART-Y was piloted with 10 individuals aged 

18-25 years (Mage = 19.20 years, SDage = 2.10; 7 females). On average, the number of 

adjusted pumps per balloon was 54.38. Lejuez et al. (2002) reported an average of 25.00 

and 30.50 adjusted pumps per balloon on the BART across 30 balloons for females and 

males aged 18-25 years, respectively. It is possible that participants in this pilot study 

took more risks on the BART-Y because points, rather than money, were used as the 

incentive. Indeed, Bornovalova et al. (2009) reported that the incentive used on the 

BART modulates the level of risk-taking in late adolescents (18-21 years). Consistent 

with previous work (Lejuez et al., 2002), the average number of popped balloons in this 

pilot study was 9.80. Finally, the average number of points won on the BART-Y was 
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7513. Previous studies using the BART-Y have not reported the average number of 

points won and it is therefore unclear whether the number of points won on this task 

is comparable to other studies. In addition, different studies using the BART-Y 

attribute a different number of points to each pump. For example, Lejuez et al. (2007) 

awarded 1 point per pump whereas Vigil-Colet (2007) awarded 5 points per pump. 

Nonetheless, given that the number of points won is dependent on the number of 

adjusted pumps and the number of popped balloons, and the number of adjusted 

pumps and popped balloons were consistent with previous studies, it follows that the 

number of points won would also be in line with previous research. 

To assess whether risk-taking changed during the course of the BART, risk-

taking on the first, second, and final 10 balloons were compared (Table 2.2). Repeated 

measures ANOVAs were used to compare risk-taking during the first, second, and final 

10 balloons. Consistent with previous work (Lejuez et al., 2002, 2007), the average 

number of pumps (F(2, 18) = 1.06, p = 0.368, ηp
2 = 0.11), the number of points won (F(2, 

18) = 0.40, p = 0.676, ηp
2 = 0.04), and the number of popped balloons (F(2, 18) = 0.11, p 

= 0.895, ηp
2 = 0.04) did not differ across the first, second, and final 10 balloons, 

suggesting that risk-taking remained constant across the duration of the task. In light 

of this, only the total scores were analysed in this research to minimise the number of 

statistical tests. 

 

 

 

Table 2.2 
BART pilot data 

 First 10 
Balloons  Second 10 

Balloons  Final 10 
Balloons  Total 

 M 95% CI  M 95% CI  M 95% CI  M 95% CI 

BART 
Pumps 

54.33 45.47, 
63.19 

 51.89 40.24, 
63.55 

 56.91 46.44, 
67.38 

 54.38 45.01, 
63.74 

            BART 
Points 

2443 1731.59, 
3154.41 

 2398 1838.85, 
2957.15 

 2672 2258.70, 
3085.30 

 7513 6366.45, 
8659.55 

            BART 
Balloons 

3.10 1.96, 
4.24 

 3.30 1.61, 
4.99 

 3.40 2.09, 
4.71 

 9.80 6.45, 
13.15 

Note. BART Pumps = BART number of adjusted pumps; BART Points = BART total points won; BART Balloons 
= BART number of popped balloons; 95% CI = 95% bootstrapped confidence intervals. 
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2.3.1.2. Youth Risk Behaviour Surveillance Survey (YRBSS) 

The YRBSS (Center for Disease Control, 2001) is a self-report questionnaire 

that measures health-risk behaviours. The YRBSS was developed for use with children 

and adolescents, and therefore minimises the ethical concerns surrounding using self-

report questionnaires to measure risk-taking behaviours in developmental samples 

(see Chapter 2.3.1). The YRBSS was chosen over other risk-taking self-report 

questionnaire since it has been used widely in developmental research. In particular, 

the YRBSS has been extensively used in the United States to assess the epidemiology 

of health-related behaviours in adolescents (e.g., Eaton et al., 2010), and has been used 

to assess the validity of the BART in both adolescent and adult samples (Aklin et al., 

2005; Lejuez et al., 2002, 2003, 2007). A 10-item version of the YRBSS has been 

developed for use in adolescent research (Aklin et al., 2005), and therefore the 10-item 

version was administered to all participants in this research. In the 10-item version of 

the YRBSS, participants are asked to indicate whether or not they have engaged in the 

following behaviours during the previous twelve months: drunk alcohol; smoked a 

cigarette; used any illegal drug; gambled for real money; had sexual intercourse 

without a condom; stolen anything from a store; carried a weapon outside of their 

home; been in a physical fight; ridden in a car without a seatbelt; ridden a bicycle or 

motorcycle without wearing a helmet. Responses were coded 1 for yes and 0 for no, 

and summed together to compute a total score (maximum score of 10). Greater scores 

on the YRBSS reflect greater engagement in real world risk-taking behaviours during 

the previous twelve months.  

 

2.3.2. Sensation seeking 

Age-related changes in sensation seeking tendencies are thought to contribute 

to the developmental differences in risk-taking behaviours (Steinberg et al., 2008; see 

Chapter 1.3.1 and Chapter 3.1.1.1). Participants’ sensation seeking tendencies were 

therefore measured using the Brief Sensation Seeking Scale (BSSS; Hoyle et al., 2002). 

The BSSS is a shortened version of Form V of the Sensation Seeking Scale (Zuckerman 

et al., 1978), and was designed to be an age-appropriate measure of sensation seeking 

in adolescents. The BSSS has been validated in a large sample of adolescents aged 13-

17 years (Hoyle et al., 2002), and is widely used with adolescents and adults aged 9-75 

years (e.g., Eachus, 2004; MacPherson, Magidson, Reynolds, Kahler & Lejuez, 2010; 

Palmgreen, Donohew, Lorch, Hoyle & Stephenson, 2001). 



Chapter 2  General methodology 

 44 

 The BSSS asks individuals to respond to the following statements: I would like 

to explore strange places; I get restless when I spend too much time at home; I like to 

do frightening things; I like wild parties; I would like to take off on a trip with no pre-

planned routes or timetables; I prefer friends who are excitingly unpredictable; I 

would like to try bungee jumping; I would love to have new and exciting experiences, 

even if they are illegal. Responses are collected on a five-point Likert scale and 

summed together to create a total score (maximum score of 40). Greater scores 

indicate greater sensation seeking tendencies.  

 

2.3.3. Impulsivity 

Impulsivity has also been implicated in adolescent risk-taking (Steinberg et al., 

2008; see Chapter 1.3.1 and Chapter 3.1.1.1). Accordingly, impulsivity was measured 

along with sensation seeking tendencies and risk-taking behaviours. The Go/NoGo 

task is widely used in developmental work to measure impulsivity (e.g., Bezdjian, 

Baker, Lozano & Raine, 2009; Casey et al., 1997; Hare et al., 2008; Johnstone, Pleffer, 

Barry, Clarke & Smith, 2005), and was therefore selected to measure impulsivity in this 

sample of adolescents. The Go/NoGo task used in this research (Figure 2.2) was 

Figure 2.2 The Go/NoGo task. Participants were instructed to make a motor response to every 
letter except ‘X’. Each stimulus was presented for 750 ms and there was a 500 ms intertrial 
interval between each stimulus. 
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developed on the basis of previous developmental work (Casey et al., 1997; Hare et al., 

2008). In this version of the Go/NoGo task, black letters presented on a white 

background were used as the stimuli, and participants were instructed to make a motor 

response using a mouse button as quickly as possible to all letters except ‘X’. Letters 

were displayed for 750 ms and there was a 500 ms intertrial interval. Participants 

responded to 120 letters in total. Go trials occurred at a higher frequency (n = 90) than 

NoGo trials (n = 30) to bias participants towards making a motor response. 

Performance on the Go/NoGo task was assessed using Go Accuracy (the percentage of 

correct responses to Go trials), NoGo Accuracy (the percentage of correct responses to 

NoGo trials), and Reaction Time (ms) to correct Go trials. The Go/NoGo was 

programmed and delivered using E-Prime 2.0.  

The Go/NoGo task was piloted with 10 late adolescents aged 18-25 years (Mage = 

19.20 years, SDage = 2.10; 7 females). Accuracy was very high for both Go (M = 99.33%, 

95% CI [98.78, 99.78]) and NoGo trials (M = 87.33%, 95% CI [79.67, 94.24]). As 

expected, a paired t-test revealed that late adolescents made more errors for NoGo 

trials compared to Go trials (t(9) = 3.86, p = 0.004). The average reaction time to correct 

Go trials was 386 ms (95% CI [351, 421]). These findings are consistent with previous 

studies measuring impulsivity using the Go/NoGo task in 18-25 year olds (e.g., Hirose 

et al., 2012). 

 

2.3.4. Anxiety 

Anxiety was measured using the State-Trait Anxiety Inventory (STAI; 

Spielberger et al., 1983). The STAI is a 40-item questionnaire that measures state 

(STAI-S) and trait (STAI-T) anxiety levels. There are child and adult versions of the 

STAI; the child version is used to assess anxiety levels in individuals aged 9-12 years, 

while the adult version is used to assess anxiety levels in individuals aged 13+ years. 

Given that this research aimed to examine the anxiety levels of individuals aged 9-23 

years, it was investigated whether the child version of the STAI was an appropriate 

measure of anxiety in individuals aged 18-23 years to enable all participants to 

complete the same measure of anxiety. To that end, 300 individuals aged 18-41 years 

(Mage = 22.07 years, SDage = 3.77; 216 females) completed the child and adult versions of 

the STAI online using Qualtrics. Participants were recruited through the University of 

Sheffield e-mail research volunteer list. Since the maximum raw scores on the child 

and adult versions of the STAI are 60 and 80, respectively, raw scores were converted 
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to percentages to enable direct comparisons between the two scales. Paired t-tests 

revealed that STAI-S scores measured using the child version (M = 59.17%, 95% CI 

[57.95, 60.40]) were significantly higher than STAI-S scores measured using the adult 

version (M = 53.03%, 95% CI [51.27, 54.79]) (t(299) = 10.86, p < 0.001). Similarly, STAI-

T scores measured using the child version (M = 64.15%, 95% CI [62.59, 65.71]) were 

significantly higher than STAI-T scores measured using the adult version (M = 57.23%, 

95% CI [55.65, 58.81]) (t(299) = 12.09, p < 0.001). These results indicate that the child 

version of the STAI is not an appropriate tool for measuring anxiety in late adolescents 

aged 18-23 years. Therefore, in this research, participants aged 9-12 years completed 

the child version of the STAI, and participants aged 13-23 years completed the adult 

version, as recommended by the STAI manual (Spielberger et al., 1983). Higher STAI 

scores indicate greater anxiety levels. 

 

2.3.5. Depression 

Anxiety and depression are highly comorbid in adolescents (Brady & Kendall, 

1992) and young adults (Hirschfeld, 2001). Thus, participants’ depression levels were 

measured using the Hospital Anxiety and Depression Scale (HADS; Zigmond & Snaith, 

1983) to control for the influence of depression on participants’ anxiety levels. The 

HADS is a 14-item scale that measures anxiety (HADS-A) and depression (HADS-D). 

The HADS has been validated in large samples of adolescents aged 10-19 years (Chan, 

Leung, Fong, Leung & Lee, 2010; White, Leach, Sims, Atkinson & Cottrell, 1999) and 

adults (Bjelland, Dahl, Haug & Neckelmann, 2002). Since the STAI was used to 

measure anxiety, only the HADS-D was analysed. Higher HADS-D scores indicate 

greater levels of depression. 

 

2.3.6. Pubertal development 

Puberty has been shown to influence risk-taking behaviours, anxiety levels, 

structural brain development, and reward- and threat-related neural activity (Braams 

et al., 2015; Collado et al., 2014; Goddings et al., 2014; Ladouceur et al., 2012; Moore et 

al., 2012; Reardon et al., 2009). Thus, this doctoral work had a strong focus on pubertal 

development. Notably, there is considerable variability in the onset of puberty; 

puberty can begin any time between the ages of 8 and 13 years for healthy females and 

between 9 and 14 years for healthy males (Sørensen et al., 2013). Hence, chronological 

age and pubertal stage are highly dissociable during adolescence (Marshall & Tanner, 
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1969; Marshall & Tanner, 1970). Puberty lasts for approximately 4.5 years (Pinyerd & 

Zipf, 2005), and therefore by the age of 17 years puberty is largely complete for the 

majority of males and females (Braams et al., 2015; Dorn & Biro, 2011). The three 

studies in this doctoral research therefore examined the relationship between pubertal 

stage and the specific dependent variables (e.g., risk-taking behaviours, anxiety levels, 

reward- and threat-related brain activity, spontaneous alpha) in a continuous sample 

of 9-17 year olds while controlling for chronological age. 

In line with previous research (Braams et al., 2015; Steinberg et al., 2008), 

pubertal development was only assessed in preadolescents (9-12 years) and mid-

adolescents (13-17 years). The Pubertal Development Scale (PDS; Petersen et al., 1988) 

was used to measure current pubertal stage, and is a short self-report questionnaire 

that is designed for use with children and adolescents aged 9-18 years. The PDS has 

been extensively used to measure pubertal stage in both behavioural and fMRI studies 

(e.g., Braams et al., 2015; Steinberg et al., 2008). The PDS is also highly positively 

correlated with other pubertal measures, including physical examinations and 

hormone levels, and is therefore thought to be a reliable measure of current pubertal 

stage (Shirtcliff, Dahl & Pollak, 2009). For the PDS, males and females rated their 

growth in height, skin changes, and body hair growth. Males also rated changes in 

their voice and facial hair, while females indicated their menarche and breast 

development. Each item was rated on a four-point scale: 1 = not yet started; 2 = barely 

started; 3 = changes are underway; 4 = seems complete. Points for each item were 

averaged to give a PDS score. A higher PDS score indicates a more advanced pubertal 

stage. 

 

2.3.7. Cognitive ability 

There is some evidence that cognitive ability is positively associated with risk-

taking behaviours (Dohmen, Falk, Huffman & Sunde, 2010). Consequently, the 

Wechsler Abbreviated Scale of Intelligence two-subtest version (WASI-II; Wechsler, 

2011) was administered to all participants. Scores from the Vocabulary and Matrix 

Reasoning subtests were summed to yield the Full Scale IQ (FSIQ-2) score. Higher 

FSIQ-2 scores reflect greater cognitive abilities. The WASI-II can be administered to 

participants aged 6-90 years, making it an ideal measure of cognitive ability in 

developmental studies. FSIQ-2 group means are reported in Table 2.1. 
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2.4. EEG measures 

Neural activity was measured using EEG. Measuring neural activity using EEG 

has many benefits, and developmental research is particularly well suited to EEG (see 

Chapter 1.7). This section first details the EEG recording (Chapter 2.4.1), and then 

describes the two EEG tasks used in this doctoral research (Chapter 2.4.2). Finally, this 

section outlines the preprocessing stream for the two EEG studies (Chapter 2.4.3). 

 

2.4.1. EEG recording 

The EEG signals were recorded using Biosemi Active Two 64 channel + common 

mode sense (CMS) / driven right leg (DRL) electrode caps and Biosemi ‘Pin-Type’ Ag-

AgCl active electrodes. The electrode caps were fitted according to the 10/20 electrode 

system. Electrooculography (EOG) signals were also recorded using four Biosemi flat 

active electrodes placed on participants’ temples and above and below their left eye. 

EEG and EOG signals were amplified using the Biosemi ActiveTwo AD-Box. Electrode 

offsets were stable and kept below ±25 µV. EEG signals were recorded continuously 

with a sampling rate of 2048 Hz. To reduce the affects of environmental electrical 

noise, participants sat in a quiet, electrically shielded room. The room was kept cool 

using air conditioning to minimise slow drifts in the recording resulting from sweat. 

 

2.4.2. EEG tasks 

Participants completed an instrumental conditioning task (Chapter 4) and a 

resting state session (Chapter 5) while their brain activity was recorded using EEG. 

 

2.4.2.1. Instrumental conditioning task 

Chapter 4 presents an ERP study whereby participants completed an 

instrumental task in which they responded to visual cues that predicted either a 

rewarding or threatening outcome. The instrumental conditioning task used in this 

study was an extension of a validated avoidance paradigm used previously in a 

developmental EEG study (Levita et al., 2014) and adult fMRI study (Levita et al., 2012).  

The instrumental task used in Chapter 4 was composed of a reward block and 

an avoidance block (Figure 2.3). Both the reward and avoidance blocks included two SD 

and two control stimuli. The SD predicted a positive outcome (winning 10 points) in 

the reward block and a negative outcome (losing 10 points) in the avoidance block. In 

the reward block, one of SD required participants to emit an action to win 10 points 



Chapter 2  General methodology 

 49 
 

Figure 2.3 The instrumental conditioning task. The instrumental task was composed of a reward 
block (a, b, e, f) and avoidance block (c, d, e, f). Both the reward and avoidance blocks included 
two discriminative stimuli (SD) (a, b, c, d) and two control stimuli (e, f). The SD predicted a 
positive outcome (winning 10 points) in the reward block and a negative outcome (losing 10 
points) in the avoidance block. For all conditions, participants were presented with a white 
fixation cross, followed by the visual cue. Participants were required to wait until the yellow 
fixation cross appeared on the screen before emitting or withholding their motor response. For 
SD, participants saw one of two feedback screens indicating whether or not they had made the 
correct response. For control cues, participants received no feedback since control cues were 
not associated with a positive or negative outcome. 
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(RewardGo; Figure 2.3a), while the other SD required participants to omit an action to 

win 10 points (RewardNoGo; Figure 2.3b). Participants only won points if they made the 

correct motor response to the SD. In order to increase the potential threat associated 

with losing points, the reward block always occurred before the avoidance block. In the 

avoidance block, one of the SD required participants to emit an action to avoid losing 

10 points (AvoidanceGo; Figure 2.3c), while the other SD required participants to omit 

an action to avoid losing 10 points (AvoidanceNoGo; Figure 2.3d). Participants lost 10 

points for each incorrect response. Importantly, this instrumental task used a 

continuous schedule of reinforcement, whereby participants’ behaviour was always 

reinforced. 

The two control stimuli were consistent across the reward and avoidance 

blocks. Participants were required to emit an action for one of the control stimuli 

(ControlGo; Figure 2.3e) and omit an action for the other control stimulus (ControlNoGo; 

Figure 2.3f). Participants were told that the control cues were not associated with a 

rewarding or threatening outcome, but were included to ensure that they were paying 

attention throughout the task. The control stimuli provided comparison conditions to 

examine reinforcement-dependent potentiation to the SD. For both the SD and control 

stimuli, participants were told to emit or omit their motor response while the yellow 

cross was displayed on the screen. This provided a way to separate out neural activity 

associated with motor processes from anticipatory processes. For the SD only, 

participants received feedback about their response in order to reinforce the correct 

response-outcome contingency. The feedback included whether they had made the 

correct motor response and their running total points score. Each stimulus was 

presented 72 times in both the reward and avoidance blocks. The stimuli were 

presented in a pseudorandom order, with the same stimulus not being presented more 

than twice consecutively. Each block was split into four 8-minute sections to allow 

participants to take regular breaks.  

 

2.4.2.1.1. Visual stimuli and apparatus 

The visual stimuli resembled greebles, and were created by Scott Yu and 

provided by Michael J. Tarr for the Neural Basis of Cognition and Department of 

Psychology, Carnegie Mellon University (http://www.tarrlab.org). Since early visual 

ERPs, such as the N170, are sensitive to the low-level visual properties of stimuli 

(Eimer, 2011; Rossion & Caharel, 2011), the visual stimuli used in this task were 
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matched for orientation, luminosity, size, and contrast, and counterbalanced across 

participants. Matlab 2012a was used to program and deliver the instrumental task. The 

task was delivered using a Viglen Intel Pentium 4 3 GHz computer and presented on a 

Viglen Omnino III monitor with a 1024 by 768 pixel resolution and 60 Hz refresh rate. 

The visual stimuli were presented on a black background, and motor responses were 

recorded using the space bar. For the duration of the task participants were seated 

approximately 70 cm away from the computer monitor in a dimly lit room shielded by 

a Faraday cage. 

 

2.4.2.1.2. Reinforcer 

Points were used as the reinforcer of behaviour in this instrumental 

conditioning task. Notably, the current study extended previous versions of the 

instrumental task so that the rewards and threats were salient, equivalent, and age-

appropriate for individuals aged 9-23 years. Hence, the reinforcer used in this version 

of the instrumental task was changed from previous versions; Levita et al. (2014) used 

a loud aversive tone and Levita et al. (2012) used aversive pictures. In addition to 

aversive tones and aversive pictures, previous instrumental tasks in humans have used 

electric shocks (Delgado, Jou, LeDoux & Phelps, 2009), money (Bjork, Smith, Chen & 

Hommer, 2010; Forbes et al., 2010), and points (Schneider et al., 2012) as the 

reinforcers of behaviour. A primary aim of this study was to compare adolescents’ 

anticipatory neural responses to both rewards and threats, and therefore comparable 

rewarding and threatening reinforcers were essential. Pictures pose an ethical problem 

in developmental work since the pictures 18-23 year olds find rewarding and 

threatening are not age-appropriate for younger adolescents. Furthermore, money 

may have a different meaning for younger adolescents compared to older adolescents 

(Barkley-Levenson & Galván, 2014). Moreover, there are no appetitive stimuli that 

equate to electric shocks and aversive tones. In comparison, points have been used 

successfully with adolescents in behavioural studies using the BART-Y (Lejuez et al., 

2007) and in fMRI studies using instrumental tasks (Schneider et al., 2012). Therefore, 

points were judged to be the most suitable reinforcer of behaviour for this research. 

 

2.4.2.1.3. Practice trials 

Minimising behavioural differences between age groups can be advantageous 

when examining age-related differences in neural activity because age-dependent 
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differences in neural activity are more likely to reflect the motivational or affective 

content of the task, rather than developmental differences in task demands (Casey, 

2002). The ERP study reported in Chapter 4 aimed to investigate age-related 

differences in anticipatory neural activity to rewards and threats, rather than age-

related differences in task demands. To that end, potential age-related differences in 

task performance were minimised by requiring participants to learn the task 

contingencies; before the start of each block participants had to get 75% of the 

practice trials correct and verbally recall the correct response to each stimulus. 

 

2.4.2.1.4. Pilot study 

The instrumental conditioning task was piloted with 10 late adolescents. One 

participant failed to complete the task and therefore 9 participants aged 18-21 years 

(Mage = 19.33 years, SDage = 1.22; 6 females) were included in the analyses. All 

participants completed the task to a high degree of accuracy (> 88% correct). Table 2.3 

displays the means and 95% confidence intervals for accuracy and reaction time for 

each of the conditions.  

 

 

Table 2.3 
Instrumental conditioning task pilot data 

  Accuracy (%)  Reaction Time (ms) 
Block Condition M 95% CI  M 95% CI 
Reward RewardGo 96.93 94.78, 99.07  373 322, 424 

      RewardNoGo 97.52 94.15, 100.89   
      ControlGo 96.05 93.79, 98.31  362 305, 419 
      ControlGo 97.81 94.86, 100.75   

      
Avoidance AvoidanceGo 97.95 96.12, 99.78  336 276, 396 

     AvoidanceNoGo 99.27 98.73, 99.80   
      ControlGo 97.22 96.04, 98.40  335 277, 393 
     ControlNoGo 99.27 98.24, 100.29   

Note. 95% CI  = 95% bootstrapped confidence intervals. 
 

 

 

To assess whether accuracy differed between the conditions, repeated 

measures ANOVAs were conducted for the reward and avoidance blocks, with 

Condition (reward block: RewardGo, RewardNoGo, ControlGo, ControlNoGo; avoidance block: 

AvoidanceGo, AvoidanceNoGo, ControlGo, ControlNoGo) as the within-group factor. For the 
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reward block, no main effect of Condition was found (F(3, 24) = 1.01, p = 0.407, ηp
2 = 

0.11). By contrast, the main effect Condition reached significance for the avoidance 

block (F(3, 24) = 5.43, p = 0.005, ηp
2 = 0.40). Pairwise comparisons revealed very small 

but significant differences; participants made slightly more errors in the ControlGo 

condition compared to the AvoidanceNoGo (p = 0.001) and ControlNoGo (p = 0.015) 

conditions, indicating that more errors were made to conditions that required a motor 

action compared to conditions that required inhibition of a motor action. Repeated 

measures ANOVAs were also conducted to assess reaction time to Go conditions, with 

Condition (reward block: RewardGo, ControlGo; avoidance block: AvoidanceGo, ControlGo) 

as the within-group factor. Only correct trials were included in the reaction time 

analyses. No main effects of Condition were found for the reward block (F(1, 8) = 1.49, p 

= 0.257, ηp
2 = 0.16) or avoidance block (F(1, 8) = 0.09, p = 0.769, ηp

2 = 0.01), suggesting 

that reaction times were equivalent across the different conditions. Since accuracy and 

reaction times were largely comparable across conditions, and participants completed 

the task with a high degree of accuracy, this task was used to assess adolescents’ 

anticipatory neural responses to rewards and threats (Chapter 4). 

 
2.4.2.2. Resting state EEG 

Chapter 5 presents an EEG study examining the cortical sources of resting 

alpha and their relationship to pubertal stage and risk-taking behaviours during 

adolescence. On the basis of previous adolescent and adult studies (Black et al., 2014; 

Schutter, de Haan & van Honk, 2004; Wheeler et al., 1993), six one-minute intervals of 

resting state EEG data were recorded. Participants were instructed to keep their eyes 

open for three one-minute sessions and closed for three one-minute intervals in an 

alternating order (open-closed-open-closed-open-closed). There was a 10 second 

buffer between intervals to allow the experimenter to verbally instruct participants to 

open or close their eyes. The resting state EEG data were recorded in the same session 

as the instrumental conditioning task (Chapter 4). 

 

2.4.3. EEG preprocessing  

All EEG preprocessing was conducted offline. EEG data were downsampled 

from 2048 to 512 Hz using Biosemi’s decimator tool. Importantly, Biosemi’s decimator 

tool applies a fifth order sinc filter to prevent aliasing. ERPLAB 5.0 (Lopez-Calderon & 

Luck, 2014) and EEGLAB 13.5.4b (Delorme & Makeig, 2004) were used to preprocess 
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the EEG signals. Figure 2.4 depicts the preprocessing streams for the ERP (Chapter 4) 

and resting state (Chapter 5) data. The subsequent paragraphs briefly outline the 

preprocessing steams for the ERP and resting state data.  

The downsampled ERP data were imported into EEGLAB using the vertex (Cz) 

as the reference. Trials with incorrect behavioural responses were removed from the 

data to ensure that only trials with correct behavioural responses were included in the 

ERP analyses. ERPLAB was used to remove the direct current offset and band-pass 

filter the continuous EEG data between 0.1 and 30 Hz. EEGLAB was used for the 

subsequent analyses. The continuous data were epoched between -200 and 800 ms, 

and electrode channels that resulted in the rejection of more than 25% of trials were 

deleted. Next, occular artefacts were corrected (see Chapter 2.4.3.1), and deleted 

electrode channels were interpolated to ensure that all participants had 64 channels 

available for analysis. Epochs were then baseline corrected between -200 and 0 ms, 

and epochs with amplitude differences larger than ±150 µV were rejected to remove 

any additional artefacts from the data (see Chapter 2.4.3.1). All participants had a 

minimum of 25 epochs per condition following artefact rejection. The epochs for each 

condition were subsequently averaged together to create grand average ERP 

waveforms for each group. Finally, the N170 and LPP were quantified and statistically 

analysed (see Chapter 4.2.6 for details).  

Figure 2.4 Preprocessing stream for the ERP (a) and resting state (b) data. 
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The resting state data comprised both eyes-open and eyes-closed conditions. 

The eyes-open and eyes-closed conditions were analysed separately but followed an 

identical processing stream. In the same way as the ERP data, the downsampled 

resting state data were imported into EEGLAB using the vertex (Cz) as the reference. 

ERPLAB was used to remove the direct current offset and band-pass filter the 

continuous EEG data between 0.1 and 30 Hz. EEGLAB was used for the subsequent 

analyses. Electrode channels that resulted in the rejection of more than 25% of data 

were deleted and subsequently interpolated to ensure that all participants had 64 

electrode channels available for analysis. In line with similar studies (e.g., Black et al., 

2014; Harmon-Jones & Allen, 1998), the continuous resting state data were epoched 

into 367 2-second epochs that overlapped by 0.5 seconds to prevent data loss. Next, 

epochs with amplitude differences larger than ±150 µV were rejected to remove 

artefacts from the data. The cleaned, epoched data were then subjected to further 

processing to localise the cortical sources of spontaneous alpha (see Chapter 2.4.3.3 

and Chapter 5.2.5.1 for details) and to compute frontal alpha asymmetry scores (see 

Chapter 2.4.3.2 and Chapter 5.2.5.2 for details). 

The following sections discuss artefact rejection and correction (Chapter 

2.4.3.1), referencing and current source density (Chapter 2.4.3.2), and source 

localisation (Chapter 2.4.3.3) in more detail. 

 

2.4.3.1. Artefact rejection and correction 

Although EEG intends to exclusively record electrical neural activity, the 

electrodes also record electrical activity resulting from non-neural sources. Typical 

EEG artefacts include eye blinks, lateral eye movements, sweating, muscle movement 

such as jaw clenching, poor electrode impedances, and electrical noise. Artefacts 

considerably reduce the signal-to-noise ratio (SNR) of the EEG signal, and therefore 

need to be removed. Many artefacts can be minimised during recording by instructing 

participants to remain as still as possible, ensuring the electrodes are well connected, 

and keeping the room cool to minimise slow drifts resulting from sweat. However, it is 

impossible to prevent all artefacts, and thus many artefacts require removal during 

preprocessing. High-pass filters (< 1 Hz) can remove very low frequency artefacts such 

as sweating, and low-pass filters (> 30 Hz) can remove high frequency artefacts such as 

electrical noise. Moreover, noisy channels resulting from poor electrode connections 

can be removed. However, ocular and muscular artefacts need to be removed using 
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artefact rejection and/or artefact correction. Artefact rejection identifies and rejects 

epochs or periods of continuous data where the EEG signals reach a particular 

amplitude threshold. While artefact rejection aims to improve the SNR by removing 

noise from the EEG signals, artefact rejection can actually result in poor SNR because a 

considerable amount of neural activity is rejected along with the artefact. This is a 

particular issue in developmental work since children tend to move more than adults, 

and thus there tend to be a greater number of artefacts in the EEG signal. 

In an attempt to address this, artefacts can be corrected rather than rejected. 

Compared to artefact rejection, artefact correction involves isolating and correcting 

artefacts in specific channels instead of rejecting all EEG channels. Artefact correction 

therefore prevents the unnecessary loss of data, and thus improves the SNR. While 

artefact correction does not work well for irregular and unpredictable artefacts, 

artefact correction is a very reliable technique for removing large and predictable 

artefacts such as eye blinks and lateral eye movements (Jung et al., 1998; Jung et al., 

2000). Independence components analysis (ICA) is a widely used technique for 

correcting ocular artefacts. ICA works by decomposing the EEG channel data into 

maximally independent components that reflect distinct signals.  

Both artefact rejection and artefact correction were used to remove artefacts 

from the ERP data (Chapter 4). ICA was used to identify and correct occular eye 

movements and artefact rejection was used to remove other artefacts, such as muscle 

Figure 2.5 Example independent components for eye blinks (a) and lateral eye movements (b). 
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movement. Based on recent recommendations (Luck, Lopez-Calderon, Huang & Fo, 

2013), trials with eye blinks occurring within 200 ms of the stimulus onset were 

rejected prior to running the ICA to ensure that only epochs where participants had 

seen the visual stimulus were included in the analyses. After the data had been filtered 

and epoched, and noisy electrode channels had been delected, the channels were 

decomposed using ICA into independent components (the number of channels minus 

one determines the number of independent components in EEGLAB). The two 

components for participants’ eye blinks and lateral eye movements were identified and 

corrected (Figure 2.5). ICA data were then transformed back into channel data for the 

remaining analyses.  

In comparison to the ERP data, only artefact rejection was used for the resting 

state data (Chapter 5). The resting state data directly compared spontaneous alpha 

when participants’ eyes were open and closed. Since eye movements could only be 

corrected in the eyes-open condition, applying artefact correction to the resting state 

data would result in considerable differences in the preprocessing stream between the 

eyes-open and eyes-closed conditions. Accordingly, only artefact rejection (±150 µV 

threshold) was used for the resting state data.  

 

2.4.3.2. Referencing and current source density 

For most EEG systems, the EEG signal at each electrode results from three 

electrodes: active (A), ground (G), and reference (R). Specifically, the EEG signal at 

each electrode reflects the potential difference between the active electrode and 

ground electrode (A – G), as well as the potential difference between the reference 

electrode and ground electrode (R – G). Thus, the EEG signal reflects (A – G) – (R – G) 

= A – R. The ground electrode is required for amplifying the very small EEG signals, 

and does so through a ground circuit in an amplifier. However, the ground circuit 

introduces electrical noise into the EEG signal, which needs to be removed. The 

reference electrode is therefore used to measure the potential difference between the 

reference electrode and ground electrode in order to cancel out the ground signal 

entirely (Luck, 2014). 

Hence, most EEG studies are required to use a reference electrode during 

recording. In this research, the EEG signals were recorded using the BioSemi 

ActiveTwo system. Rather than a ground electrode, the BioSemi Active Two system 

uses an active CMS electrode and a passive DRL electrode. The CMS electrode is 
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similar to the ground electrode in that the potential differences between each active 

electrode and the CMS electrode are recorded. However, the DRL electrode introduces 

a very small voltage into the scalp to drive the average scalp potential down so that it 

is comparable to the potential of the amplifier ground circuit. This removes the need 

for a reference electrode during recording since the potential differences between the 

scalp and amplifier are minimised during recording. Nevertheless, EEG signals 

recorded using BioSemi need referencing offline during preprocessing in order to 

maximise the SNR. Common EEG references include the average reference, the vertex, 

linked mastoids, and linked ears. When using reference electrodes, the reference 

electrode should ideally be placed at an electrically neutral site (Rossion & Jacques, 

2012). However, there is no electrically neutral site on the scalp, and therefore the 

choice of reference significantly influences the ERP waveform (Luck, 2014). The vertex 

was selected to be the reference for the ERP data since it is not biased towards one 

hemisphere and does not introduce a lot of noise, such as muscle movement, into the 

data (Luck, 2014).  

In addition to examining ERPs, this doctoral work examined frontal alpha 

asymmetry (Chapter 5). Recent work has shown that frontal alpha asymmetry scores 

that have been transformed to current source density (CSD) estimates, rather than 

referenced to standard references such as the average reference or linked mastoids, are 

significantly less influenced by extraneous factors such as the time of year and day 

(Velo, Stewart, Hasler, Towers & Allen, 2012). The benefits of using CSD over 

reference electrodes for EEG data have also been extensively documented by several 

reviews (Hagemann, 2004; Kamarajan, Pandey, Chorlian & Porjesz, 2015; Kayser & 

Tenke, 2015a; Kayser & Tenke, 2015b). Crucially, CSD is reference-free, and 

represents a higher resolution and spatially enhanced topography of the neural 

generators that underlie the scalp-recorded signals (Burle et al., 2015; Kayser et al., 

2006; Kayser & Tenke, 2015b; Tenke & Kayser, 2005). In light of these benefits, the 

frontal alpha asymmetry data in this doctoral work were transformed to CSD 

estimates. In order to maximise the SNR, the data were imported into EEGLAB using 

the vertex (Cz) as the reference and subsequently transformed to CSD estimates.  

EEG signals are transformed to CSD estimates by computing the second spatial 

derivative of the scalp voltage distribution. The second spatial derivate is computed by 

first measuring the voltage difference between each electrode and the average voltage 

of the surrounding electrodes (first derivative), and then computing the difference of 
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each newly created difference value and the average difference values from 

surrounding electrodes (second derivative) (Luck, 2014). Thus, CSD represents the 

outward flow of current at each point on the scalp instead of the potential differences 

between each active electrode and the reference electrode. Therefore, CSD 

transformed scalp topographies amplify contributions from local sources and 

attenuate volume-conducted contributions from more distal sources (Burle et al., 

2015; Kayser et al., 2006; Kayser & Tenke, 2015b; Tenke & Kayser, 2005). Volume 

conduction refers to the transmission of current through different types of biological 

tissue, such as grey matter, cerebral spinal fluid, skin, and the skull. The different 

types of biological matter have different conductive properties, which causes the 

current to spread out through the brain as the current travels from the neural source to 

the scalp electrode. Consequently, the EEG signal at each electrode does not 

necessarily represent the activity of local brain sources, but the activity from a number 

of spatially dispersed sources. CSD therefore improves the spatial resolution of the 

scalp-recorded EEG signals by reducing the negative impact of volume conduction. 

CSD is measured in µV/cm2 and is therefore a measure of both magnitude and space. 

 

2.4.3.3. Source localisation 

Source localisation was used to examine age- and gender-related differences in 

the cortical sources of spontaneous alpha (Chapter 5). A number of source localisation 

solutions have been developed to estimate the cortical sources underlying scalp-

recorded EEG activity. One extensively used and widely validated source localisation 

Figure 2.6 Human Brodmann areas for the lateral (a) and medial (b) cortical surface. 
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solution is sLORETA (standardized low-resolution brain electromagnetic tomography; 

Pascual-Marqui, 2002). sLORETA provides a three-dimensional distributed, linear, 

minimum norm inverse solution that computes CSD estimates from scalp-recorded 

EEG activity. sLORETA partitions the cortical grey matter into 6239 voxels (5 mm 

resolution) using the electrode positions established by the Montreal Neurological 

Institute 152 template, and defines regions of interest (ROIs) using Brodmann areas 

(BA) (Figure 2.6). Critically, sLORETA has been validated by numerous combined EEG-

fMRI studies (e.g., Olbrich et al., 2009; Mobascher et al., 2009), and independent 

reviews have found sLORETA to be highly reliable (Greenblatt, Ossadtchi & Pflieger, 

2005; Grech et al., 2008; Sekihara, Sahani & Nagarajan, 2005). Consequently, sLORETA 

was used in this doctoral research to estimate how the cortical sources of spontaneous 

alpha change during the course of adolescence.  

 

2.5. Statistical approach 

IBM SPSS Statistics 22.0 was used for all statistical analyses. All statistical tests 

were two-tailed, and the significance level was set at p < 0.05. Statistical tests were 

bootstrapped where possible, and the false discovery rate was used to correct for 

multiple comparisons. 

 

2.5.1. Bootstrapping 

Behavioural and EEG outcome measures frequently have skewed distributions. 

While some statistical tests, such as analysis of variance, are robust to violations in 

normality, many are not. Transforming data and using non-parametric statistics are 

widely used solutions for skewed data. However, transforming data does not always 

normalise data distributions and non-parametric statistics are not always appropriate 

(Field, 2009). Bootstrapping is an alternative solution for dealing with skewed data 

(Efron & Tibshirani, 1993). Bootstrapping is based on the premise of statistical 

sampling, whereby a sample is used to estimate the characteristics of an entire 

population. In bootstrapping, the sample is treated as a population from which smaller 

‘bootstrap’ samples are selected. The statistical test of interest is calculated in each 

bootstrap sample. The sampling distribution of the statistic can then be estimated. 

The standard error (the standard deviation of the sampling distribution) can be used to 

determine the 95% bootstrapped confidence intervals and p values. Bootstrapping can 

therefore derive robust estimates of standard errors and confidence intervals for 
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means, t-tests, correlation coefficients, and regression coefficients. IBM SPSS 

Statistics can bootstrap the standard errors and confidence intervals for means, t-

tests, correlation coefficients, regression coefficients, and ANOVA pairwise 

comparisons with the exception of ANOVA tests that include within-group factors. 

Thus, all means, t-tests, correlation coefficients, regression coefficients, and ANOVA 

pairwise comparisons, with the exception of repeated-measures and mixed-design 

ANOVAs, in this doctoral research were bootstrapped using bias-corrected and 

accelerated 95% confidence intervals based on 1000 samples, in line with current 

recommendations (Field, 2009). Bootstrapped confidence intervals and p values are 

reported where analyses have been bootstrapped. 

 

2.5.2. False discovery rate 

Computing multiple comparisons without correcting the significance level 

considerably inflates the Type I error rate. The traditional approach to the multiple 

comparisons problem is to control the familywise error rate (FWER). The Bonferroni 

correction is the most common approach, and controls the FWER by dividing the 

significance level (usually 0.05) by the number of statistical tests. However, when 

conducting a large number of comparisons, the Bonferroni correction is very 

conservative, which inflates the Type II error rate. 

An alternative method to the Bonferroni correction is the Benjamini-Hochberg 

(B-H) correction (Benjamini & Hochberg, 1995). The B-H correction has more 

statistical power than the Bonferroni correction because the B-H correction controls 

the false discovery rate (FDR) rather than the FWER. The FDR reflects the proportion 

of significant results that are false positives. For instance, an FDR of 0.1 implies that 

10% of significant findings are false positives. The B-H correction ranks the p values 

for each ‘family’ of statistical tests from smallest to largest. The p values are then 

systematically compared against the B-H thresholds. The B-H thresholds are 

computed by dividing the rank of a particular p value by the total number of statistical 

tests to be computed, and then multiplying by the FDR. The smallest p value needs to 

reach the first and most stringent threshold before any other p value can be deemed 

significant. If the smallest p value reaches the significance threshold, the second 

smallest p value is evaluated. If the second smallest p value reaches its threshold, the 

third smallest p value is evaluated, and so on.  

When the B-H procedure is used with an FDR greater than 0.05, it is possible 
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for tests to be significant even though their p value is greater than 0.05. The FDR is 

largely dependent on the type of research being conducted; an FDR of 0.05 or smaller 

is appropriate for specific hypothesis-driven experiments, whereas an FDR of 0.1 or 0.2 

is more suitable for exploratory research since it helps to generate hypotheses for 

further investigation (McDonald, 2014). The studies presented in this doctoral 

research were designed to generate hypotheses for future research, and therefore an 

FDR of 0.1 was used. All correlations, regressions, and ANOVA pairwise comparisons 

in this research were corrected for multiple comparisons using the B-H procedure. B-H 

corrections were conducted in Microsoft Excel using the bootstrapped p values.  

 

2.6. Summary 

The same cohort of participants took part in each of the three studies. In total, 

105 participants aged 9-23 years took part in this research. Participants were 

categorised into three age groups: preadolescents aged 9-12 years; mid-adolescents 

aged 13-17 years; and late adolescents aged 18-23 years. Risk taking behaviours were 

measured using the BART (Lejuez et al., 2002) and YRBSS (Aklin et al., 2005). 

Sensation seeking and impulsivity were measured using the BSSS (Hoyle et al., 2002) 

and a Go/NoGo task, respectively. Anxiety was measured using the STAI (Spielberger et 

al., 1983), and depression was measured using the HADS-D (Zigmond & Snaith, 1983). 

Participants aged 9-17 years also completed the PDS (Petersen et al., 1988) to measure 

their current pubertal stage. Two EEG tasks were used to measure the EEG correlates 

of the approach-avoidance systems during adolescence: an instrumental conditioning 

task measured anticipatory neural responses to visual cues that predicted rewarding 

and threatening outcomes (Chapter 4), and a resting state EEG session measured 

spontaneous alpha (Chapter 5). 
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Abstract 

This study first aimed to investigate the age- and gender-related differences in 

risk-taking, sensation seeking, impulsivity, and anxiety adolescents aged 9-23 years. 

Next, this study aimed to examine gender differences in the relationship between risk-

taking and anxiety during distinct stages of adolescence in order to shed light on the 

simultaneous increase in risk-taking and anxiety during adolescence. Finally, this 

study aimed to examine the influence of puberty on the development of risk-taking, 

sensation seeking, impulsivity, and anxiety in male and female adolescents aged 9-17 

years while controlling for chronological age. To these ends, 37 preadolescents (9-12 

years; 18 females), 32 mid-adolescents (13-17 years; 16 females), and 36 late 

adolescents (18-23 years; 20 females) completed a battery of self-report 

questionnaires measuring real world risk-taking (YRBSS), sensation seeking (BSSS), 

and anxiety levels (STAI), and two behavioural tasks measuring risk-taking propensity 

(BART) and impulsivity (Go/NoGo). Participants aged 9-17 years also completed a self-

report questionnaire measuring their current pubertal stage (PDS). This study found 

that BART risk-taking increased from preadolescence to late adolescence. By contrast, 

YRBSS risk-taking increased from preadolescence to mid-adolescence for males and 

females, but from mid-adolescence to late adolescence for females only. Sensation 

seeking remained stable across adolescence, but impulsivity decreased from 

preadolescence to mid-adolescence. Anxiety levels were greater in preadolescents 

compared to mid-adolescents and late adolescents, and in females compared to males. 

Critically, the relationship between risk-taking and anxiety changed significantly 

during the course of adolescence, and followed different developmental trajectories for 

males and females. Finally, more advanced pubertal stage was associated with greater 

levels of YRBSS risk-taking for males and females aged 9-17 years. Overall, the 

findings from this study emphasise the need to tease out the effects of age, gender, 

and puberty on the development of risk-taking, sensation seeking, impulsivity, and 

anxiety during adolescence. 

  



Chapter 3  Risk-taking and anxiety 

65 

3.1. Introduction 

This study had three aims. Firstly, this study aimed to investigate the age- and 

gender-related differences in risk-taking behaviours, sensation seeking, impulsivity, 

and anxiety levels in a sample of typically developing preadolescents (9-12 years), 

mid-adolescents (13-17 years), and late adolescents (18-23 years). Secondly, this study 

aimed to examine the gender differences in the relationship between risk-taking 

behaviours and anxiety levels during preadolescence, mid-adolescence, and late 

adolescence. Finally, this study aimed to examine the influence of puberty on the 

development of risk-taking behaviours, sensation seeking, impulsivity, and anxiety 

levels in male and female adolescents aged 9-17 years while controlling for 

chronological age. 

The introduction to this study begins by outlining how risk-taking behaviours, 

sensation seeking tendencies, impulsivity, and anxiety levels change across 

adolescence (Chapter 3.1.1). This introduction then discusses what is currently known 

about the relationship between risk-taking and anxiety in adults and adolescents 

(Chapter 3.1.2), and the role of puberty in the development of risk-taking, sensation 

seeking, impulsivity, and anxiety during adolescence (Chapter 3.1.3). Finally, this 

introduction outlines the aims and hypotheses of the current study (Chapter 3.1.4).  

 

3.1.1. Development of risk-taking behaviours, sensation seeking, impulsivity, and 

anxiety levels during adolescence 

3.1.1.1. Risk-taking behaviours, sensation seeking, and impulsivity 

A number of methodologies have been used to examine how risk-taking 

behaviours change throughout development. The most widely used method is 

retrospective self-report questionnaires, where individuals are asked to report their 

recent engagement in a range of risky behaviours. There is converging evidence from 

studies using self-report questionnaires showing that engagement in risk-taking 

behaviours increases from childhood to adolescence, peaks in adolescence, and 

decreases from adolescence to adulthood. This inverted u-shaped trajectory has been 

found for a range of risky behaviours, such as substance use, unprotected sex, carrying 

a weapon, and physical fighting (Donovan & Jessor, 1985; Eaton et al., 2010; Gullone 

et al., 2000; Kann et al., 1999; Windle et al., 2008).  

While self-report questionnaires have provided important insights into the 

development of risk-taking behaviours, there are a number of ethical and practical 
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issues with using self-report questionnaires to measure risk-taking behaviours in 

developmental samples (see Chapter 2.3.1). In light of these concerns, there has been a 

shift towards developing behavioural tasks that measure risk-taking behaviours in 

laboratory settings (e.g., Burnett et al., 2010; Collado et al., 2014). Behavioural tasks 

are particularly useful for measuring risk-taking behaviours in children and 

adolescents because they are able to minimise or eliminate many of the potential 

confounds associated with using self-report questionnaires in developmental samples 

(Ladouceur et al., 2000; Lejuez et al., 2002, 2003). However, it is important to note that 

behavioural tasks measure risk-taking propensity rather than real world risk-taking 

behaviours, and may therefore tap into a different construct of risk-taking. Despite 

this concern, performance on behavioural risk-taking tasks has been shown to 

correlate with self-report questionnaires measuring recent engagement in risky 

behaviours in both adolescents and adults (Lejuez et al., 2002, 2007). Thus, using 

behavioural tasks in addition to self-report questionnaires should provide a more 

comprehensive, and less confounded, understanding of how risk-taking behaviours 

develop throughout adolescence.  

The first aim of this study was to investigate the age- and gender-related 

differences in risk-taking behaviours, sensation seeking, impulsivity, and anxiety 

levels in a sample of typically developing preadolescents (9-12 years), mid-adolescents 

(13-17 years), and late adolescents (18-23 years). In light of the previous literature, 

risk-taking behaviours in the current study were measured using an extensively used 

and well-validated behavioural task, the BART (Lejuez et al., 2002), and an age-

appropriate retrospective self-report questionnaire, the YRBSS (Aklin et al., 2005). 

The BART requires participants to pump up a virtual balloon in order to win 

money or points (see Chapter 2.3.1.1 for more details regarding the BART). The BART 

has been used to measure risk-taking behaviours in children, adolescents, and young 

adults (Aklin et al., 2005; Lejuez et al., 2002, 2003, 2007; South, Dana, White & 

Crowley, 2011), and is therefore an appropriate behavioural task for measuring risk-

taking behaviours in developmental samples. Consistent with studies using self-report 

questionnaires, studies using behavioural tasks to measure the development of risk-

taking behaviours have also reported that risk-taking follows an inverted u-shaped 

developmental trajectory, whereby risk-taking behaviours increase from childhood to 

adolescence, peak in adolescence, and decrease from adolescence to adulthood 

(Burnett et al., 2010; Eshel et al., 2007; Figner et al., 2009). However, no study to date 
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has examined BART risk-taking in a sample with an age range wide enough to assess 

how risk-taking develops across the entire course of adolescence. Therefore, using the 

BART to measure risk-taking behaviours in a normative sample of adolescents aged 9-

23 years will provide novel insights into how risk-taking behaviours, as measured by 

the BART, develop throughout adolescence. 

It has been suggested that the developmental trajectory of risk-taking 

behaviours, as measured by both self-report questionnaires and behavioural tasks, is 

largely dependent on age-related changes in sensation seeking and impulsivity during 

childhood and adolescence (Steinberg et al., 2008). While sensation seeking and 

impulsivity are frequently combined into a single construct (Zuckerman, 1996), there 

is considerable evidence to suggest that sensation seeking and impulsivity are 

conceptually and empirically distinct constructs that follow different developmental 

trajectories during adolescence (Harden & Tucker-Drob, 2011; Shulman et al., 2014, 

2015; Steinberg et al., 2008). Sensation seeking refers to a high desire to seek out 

novel, varied, complex, and intense experiences and sensations, and a willingness to 

take risks for the sake of such experiences and sensations (Zuckerman, 1994). In 

comparison, impulsivity refers to a lack of self-control, rapid decision-making, and a 

tendency to act without adequate thought (Moeller et al., 2001; Steinberg et al., 2008). 

Sensation seeking has been shown to follow the same trajectory as risk-taking 

behaviours, whereby sensation seeking increases from childhood to adolescence, peaks 

in adolescence, and decreases from adolescence to adulthood (Harden & Tucker-Drob, 

2011; Shulman et al., 2014, 2015; Steinberg et al., 2008; Zuckerman et al., 1978). By 

contrast, studies have consistently reported that impulsivity steadily decreases, as 

impulse control increases, during childhood and adolescence (Casey et al., 1997; 

Harden & Tucker-Drob, 2011; Shulman et al., 2014; Shulman et al., 2015; Smith et al., 

2012; Steinberg et al., 2008).  

Based on these findings, it has been proposed that the peak in risk-taking 

behaviours during adolescence results from an increased motivation to seek out novel 

and exciting experiences combined with immature self-regulatory abilities that are 

unable to modulate such tendencies (Casey et al., 2008b; Steinberg et al., 2008). In the 

same way, the decrease in risk-taking from adolescence to adulthood is thought to 

result from a reduction in sensation seeking tendencies combined with improvements 

in impulse control and self-regulation (Steinberg et al., 2008). Accordingly, the current 

study measured participants’ sensation seeking tendencies and impulsiveness along 
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with their risk-taking behaviours in order to assess the contributions of sensation 

seeking and impulsivity to the development of risk-taking behaviours in this sample of 

adolescents. 

Notably, gender differences in risk-taking behaviours are frequently observed 

using both self-report and behavioural measures, with males being more likely to 

engage in risk-taking behaviours than females throughout the lifespan (Byrnes et al., 

1999; Gullone et al., 2000; Turner & McClure, 2003; Van Leijenhorst et al., 2008). 

Consistently, studies have also reported that males exhibit higher levels of sensation 

seeking (Cross, Cyrenne & Brown, 2013) and impulsivity (Chapple & Johnson, 2007) 

compared to females, which may partially explain why males engage in more risk-

taking behaviours than females. 

The developmental trajectories of risk-taking, sensation seeking, and 

impulsivity are considered to be well established (Steinberg et al., 2008). However, 

only a handful of studies have measured the development of risk-taking, sensation 

seeking, and impulsivity in a cohort of adolescents with an age range wide enough to 

examine how these constructs change across the course of adolescence (Steinberg et 

al., 2008). Moreover, these studies have largely overlooked potential gender 

differences in the development of risk-taking, sensation seeking, and impulsivity. 

Consequently, examining the development of risk-taking, sensation seeking, and 

impulsivity in a sample of male and female adolescents aged 9-23 years will not only 

reveal how these constructs develop in this sample of adolescents, but will also add to 

the current evidence base of how these constructs develop across the course of 

adolescence for males and females. 

 

3.1.1.2. Anxiety levels 

Adolescence is not only a vulnerable period for engaging in potentially harmful 

risk-taking behaviours, but also for developing an anxiety disorder and experiencing 

elevated anxiety levels. Anxiety disorders are more likely to emerge in adolescence 

than any other time of life (Kessler et al., 2005), and are the most prevalent psychiatric 

disorders during adolescence (Merikangas et al., 2010). A recent epidemiological study 

conducted in the United States reported that as many as 32 per cent of adolescents 

meet the criteria for an anxiety disorder at any one time (Merikangas et al., 2010).  

As well as being at an increased risk for developing an anxiety disorder, 

adolescents are also at more likely to experience heightened anxiety levels compared 
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to children and adults; a number of studies have found that self-report anxiety 

symptoms reach a lifetime peak during adolescence (Abe & Suzuki, 1986). In contrast 

to these findings, several studies have reported that anxiety symptoms in typically 

developing samples remain relatively stable across childhood and adolescence 

(Bosquet & Egeland, 2006; Gullone, King & Ollendick, 2001). Moreover, one study has 

reported that anxiety levels initially decrease from preadolescence to early 

adolescence (10-13 years), but subsequently increase across mid-adolescence (14-17 

years) (Van Oort et al., 2009). Critically, these studies did not include participants 

older than 17 years, and are therefore unable to determine whether the children and 

adolescents in these samples had greater or equivalent anxiety levels than late 

adolescents and young adults. Nevertheless, these studies suggest that there are 

considerable individual differences in anxiety levels in typically developing children 

and adolescents. 

The current study focused exclusively on typically developing adolescents 

given that the majority of adolescents have not been diagnosed with, or meet the 

criteria for, an anxiety disorder. Notably, it has been widely reported that females are 

more likely to be diagnosed with an anxiety disorder and experience greater levels of 

anxiety compared to males throughout the lifespan (Abe & Suzuki, 1986; Lewinsohn et 

al., 1998; Van Oort et al., 2009). Therefore, the current study aimed to examine both 

the age- and gender-related differences in state and trait anxiety levels in adolescents 

aged 9-23 years. Given that anxiety is highly comorbid with depression during 

childhood, adolescence, and adulthood (Brady & Kendall, 1992; Hirschfeld, 2001), 

participants’ depression levels were also measured in the current study in order to 

control for the influence of depression on participants’ anxiety levels. 

 

3.1.2. The relationship between risk-taking and anxiety during adolescence 

The literature discussed so far provides cogent evidence that adolescence is 

associated with significant increases in both risk-taking behaviours and anxiety levels. 

In adults, high levels of anxiety are associated with reduced risk-taking behaviours, as 

measured by both self-report questionnaires and behavioural tasks (Broman-Fulks et 

al., 2014; Giorgetta et al., 2012; Lorian & Grisham, 2010; Maner et al., 2007; Maner & 

Schmidt, 2006). Thus, the simultaneous increase in risk-taking behaviours and anxiety 

levels during adolescence seems paradoxical. However, it has been suggested that the 

simultaneous increase in risk-taking and anxiety during adolescence may have an 
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evolutionary purpose (Casey et al., 2008a, 2008b; Spear, 2000, 2009; Steinberg, 2008; 

see Chapter 1.3.3). The idea that the simultaneous increase in risk-taking and anxiety 

during adolescence has evolutionary antecedents is supported by nonhuman animal 

work; many mammalian species, including mice, rats, and nonhuman primates, show 

adolescent-specific changes in risk-taking, sensation seeking, and responses to stress 

(Laviola, Macri, Morley-Fletcher & Adriani, 2003; Spear, 2000). For instance, there is 

evidence that adolescent mice are more hyperactive and exhibit greater levels of 

novelty and sensation seeking behaviours compared to younger and older mice 

(Adriani, Chiarotti & Laviola, 1998). Moreover, there is evidence that adolescent rats 

are more sensitive to stress than adult rats; Doremus-Fitzwater, Varlinskaya and Spear 

(2009) found that adolescent rats had stress-induced reductions in body weight and 

less habituation of stress-induced corticosterone after being repeatedly restrained 

compared to adult rats. 

Despite the simultaneous increase in risk-taking and anxiety seeming 

paradoxical, research assessing the relationship between risk-taking behaviours and 

anxiety levels during adolescence is limited. Initial work suggests that the relationship 

between risk-taking and anxiety is fundamentally different in adolescents compared to 

adults. Specifically, higher levels of anxiety in adolescents are associated with greater 

levels of real world risk-taking, as measured by self-report questionnaires (Comeau et 

al., 2001; Patton et al., 1996). Studies using behavioural tasks have also reported that 

higher levels of anxiety in adolescents are associated with greater levels of risk-taking, 

but only when adolescents experience acute social stress (Reynolds et al., 2013; 

Richards et al., 2015). Thus, instead of higher anxiety levels being associated with 

reduced risk-taking behaviours as reported in adults (e.g., Giorgetta et al., 2012), 

higher anxiety levels in adolescents appear to be associated with greater levels of risk-

taking. 

Previous studies examining the relationship between risk-taking and anxiety in 

adolescents provide preliminary evidence that the relationship between risk-taking 

and anxiety is different in adolescents compared to adults. However, the studies to 

date have been conducted with discrete age groups within adolescence. For example, 

Richards et al. (2015) examined the relationship between risk-taking and anxiety in a 

sample of adolescents aged 15-18 years. Critically, no study has yet examined how the 

relationship between risk-taking and anxiety changes throughout adolescence. Middle 

adolescence (13-17 years) is frequently reported to be the age group when risk-taking 
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behaviours and anxiety levels peak (e.g., Abe & Suzuki, 1986; Burnett et al., 2010). 

Therefore, examining the changes in the relationship between risk-taking and anxiety 

from preadolescence to mid-adolescence, as well as from mid-adolescence to late 

adolescence, should provide insights into why mid-adolescence is a particularly 

vulnerable period for experiencing elevated levels of risk-taking and anxiety. 

Furthermore, most studies investigating the relationship between risk-taking and 

anxiety in adolescents have not examined potential differences between males and 

females. This is surprising since there are considerable gender differences in risk-

taking behaviours and anxiety levels during adolescence; males typically take more 

risks and females frequently have higher levels of anxiety (Byrnes et al., 1999; 

Lewinsohn et al., 1998). The current literature is therefore unable to shed light on how 

the relationship between risk-taking and anxiety changes during adolescence, and 

whether there are gender differences in such relationships. Importantly, high levels of 

risk-taking and anxiety during adolescence have been associated with a range of short- 

and long-term adverse consequences (Miniño, 2010; Newbury-Birch et al., 2009; Pine 

et al., 1998; Viner, 2012; Woodward & Fergusson, 2001). In order for interventions 

aimed at reducing the high levels of risk-taking and anxiety during adolescence to be 

most effective, we need a comprehensive understanding of the specific age- and 

gender-related differences in the relationship between risk-taking and anxiety. To 

these ends, the second aim of this study was to examine the potential gender 

differences in the relationship between risk-taking and anxiety in preadolescents (9-12 

years), mid-adolescents (13-17 years), and late adolescents (18-23 years). 

 

3.1.3. The influence of puberty on risk-taking behaviours, sensation seeking, 

impulsivity, and anxiety during adolescence 

Most studies examining the development of risk-taking, sensation seeking, 

impulsivity, and anxiety have focused on how such constructs change as a function of 

age across childhood, adolescence, and young adulthood. However, there is a body of 

work suggesting that puberty has significant affects on the development of risk-taking 

behaviours, sensation seeking, and anxiety levels during adolescence (Collado et al., 

2014; Martin et al., 2002; Reardon et al., 2009). Developmental sMRI and fMRI studies 

also suggest that puberty has significant affects on adolescent brain development 

(Braams et al., 2015; Bramen et al., 2011; De Macks et al., 2011; Forbes et al., 2011; 

Goddings et al., 2014; Moore et al., 2012; Neufang et al., 2009; Peper et al., 2009; see 
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Chapter 1.4). Crucially, the onset of puberty varies markedly between individuals; 

puberty can begin any time between the ages of 8 and 13 years for healthy females and 

between 9 and 14 years for healthy males (Sørensen et al., 2013). Thus, chronological 

age and pubertal development are highly dissociable during adolescence (Marshall & 

Tanner, 1969, 1970). For instance, two adolescents of the same age may be at very 

different pubertal stages.  

Therefore, while examining the development of risk-taking, sensation seeking, 

impulsivity, and anxiety across preadolescence, mid-adolescence, and late adolescence 

will extend our current understanding of how these constructs develop throughout 

adolescence, the findings will not be able to determine whether the developmental 

trajectories are due to chronological age, puberty, or a combination of the two. 

Moreover, since there are large individual differences in the age of pubertal onset, it is 

possible that grouping adolescents into discrete age groups (i.e., preadolescence, mid-

adolescence, and late adolescence) will confound the developmental trajectories of 

risk-taking, sensation seeking, impulsivity, and anxiety. Accordingly, the final aim of 

this study was to examine whether pubertal stage was associated with risk-taking 

behaviours, sensation seeking, impulsivity, and anxiety levels in male and female 

adolescents aged 9-17 years while controlling for chronological age. The following 

sections briefly outline and evaluate what is currently known about the influence of 

puberty on risk-taking behaviours, sensation seeking, impulsivity, and anxiety levels 

during adolescence. 

The empirical work to date suggests that earlier pubertal onset and more 

advanced pubertal stage are associated with greater levels of risk-taking behaviours 

during adolescence, after controlling for chronological age (Collado et al., 2014; 

Costello et al., 2007; Faden, Ruffin, Newes-Adeyi, & Chen, 2009; Patton et al., 2004). 

The majority of studies assessing the relationship between puberty and risk-taking 

have used self-reported questionnaires to measure engagement in risky behaviours. 

However, as discussed earlier, using self-report questionnaires to measures risk-taking 

in developmental samples can be problematic (Ladouceur et al., 2000; Lejuez et al., 

2002; Lejuez et al., 2003; see Chapter 2.3.1). To date, only one study has examined the 

relationship between puberty and risk-taking using both a behavioural task (BART) 

and self-report questionnaire (YRBSS) (Collado et al., 2014). Collado et al. (2014) found 

that more advanced pubertal stage predicted greater risk-taking behaviours, as 

measured by both the BART and YRBSS, in adolescents aged 11-15 years. Notably, this 
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study did not explore potential gender differences in the relationship between puberty 

and risk-taking. Given that females usually begin puberty 1-2 years before males 

(Marshall & Tanner, 1969, 1970), and males tend to take more risks than females 

(Byrnes et al., 1999), it is possible that there will be gender-specific trajectories 

between puberty and risk-taking. Collado et al.’s (2014) study therefore needs 

extending to explore potential gender differences in the relationship between puberty 

and risk-taking. 

Consistent with risk-taking, puberty has been shown to have significant affects 

on the development of sensation seeking during adolescence, whereby more advanced 

pubertal stage is associated with higher levels of sensation seeking, after controlling 

for chronological age (Forbes & Dahl, 2010; Martin et al., 2002). Notably, puberty is 

thought to contribute more to the increases in sensation seeking during adolescence 

than chronological age (Forbes & Dahl, 2010; Martin et al., 2002; Spear, 2000; 

Steinberg, 2008). Steinberg’s DSM (Steinberg, 2008) and the SIPN (Nelson et al., 2005) 

propose that the gonadal hormones released during puberty have significant affects on 

neural activity within the socioemotional system (i.e., brain regions critical for 

affective processing). This increase in activity is thought to motivate adolescents to 

seek out rewarding and novel experiences, which in turn increases engagement in 

sensation seeking and risk-taking behaviours. Thus, it is possible that the 

relationships between puberty and measures of risk-taking and sensation seeking 

result from the influence of gonadal hormones on brain activity (Nelson et al., 2005; 

Steinberg, 2008). 

In contrast to risk-taking and sensation seeking, the relationship between 

puberty and impulsivity is largely unknown. Initial evidence suggests that puberty has 

no affect on impulsivity in male and female adolescents aged 10-16 years (Steinberg et 

al., 2008). However, in order to determine the reliability of this finding, the 

relationship between puberty and impulsivity requires further investigation.   

Finally, in line with risk-taking and sensation seeking, earlier pubertal onset 

and more advanced pubertal stage has been associated with higher levels of anxiety, 

after controlling for chronological age (Deardorff et al., 2007; Ge, Conger & Elder, 

1996; Hayward et al., 1992; Patton et al., 1996; Reardon et al., 2009). Consistently, 

more advanced pubertal stage is also associated with greater sensitivity to threat 

(Moore et al., 2012; Quevedo, Benning, Gunnar & Dahl, 2009). Crucially, the 

relationship between puberty and anxiety appears to be largely gender-specific; most 
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studies have found a relationship between puberty and anxiety for females, but not for 

males (Reardon et al., 2009).  

Collectively, these findings support the idea that there is a paradox during 

adolescence, whereby more advanced pubertal stage is associated with increases in 

risk-taking and sensation seeking behaviours in addition to increases in anxiety levels. 

Notably, previous studies examining the relationships between puberty and levels of 

risk-taking, sensation seeking, impulsivity, and anxiety have focused on linear 

relationships (e.g., Collado et al., 2014; Ge et al., 1996). However, risk-taking 

behaviours, sensation seeking, and anxiety levels have been shown to follow non-

linear developmental trajectories across adolescence, whereby risk-taking behaviours, 

sensation seeking, and anxiety levels peak in middle adolescence (e.g., Abe & Suzuki, 

1986; Burnett et al., 2010; Steinberg et al., 2008). Hence, our current understanding of 

the influence of puberty on risk-taking, sensation seeking, and anxiety may be limited 

by the exclusive use of linear relationships. Accordingly, the current study examined 

both the linear and nonlinear relationships between pubertal stage and measures of 

risk-taking, sensation seeking, impulsivity, and anxiety. 

 

3.1.4. The current study 

In the current study, 37 preadolescents aged 9-12 years (18 females, 19 males), 

32 mid-adolescents aged 13-17 years (16 females, 16 males), and 36 late adolescents 

aged 18-23 years (20 females, 16 males) completed a battery of self-report 

questionnaires measuring recent real world risk-taking behaviours, sensation seeking 

tendencies, anxiety levels, and depression levels, two behavioural tasks measuring 

risk-taking propensity and impulsivity, and an IQ test. Preadolescents and mid-

adolescents also completed a self-report questionnaire measuring their current 

pubertal stage. 

This study had three aims. Firstly, this study aimed to investigate the age- and 

gender-related differences in risk-taking behaviours, sensation seeking, impulsivity, 

and anxiety levels across preadolescence, mid-adolescence, and late adolescence. 

Based on the research discussed above, it was predicted that risk-taking behaviours 

and sensation seeking tendencies would increase from preadolescence to mid-

adolescence, peak in mid-adolescence, and subsequently decrease from mid-

adolescence to late adolescence (e.g., Burnett et al., 2010; Shulman et al., 2014; 

Steinberg et al., 2008). It was also predicted that males would take more risks and have 
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greater sensation seeking tendencies than females during preadolescence, mid-

adolescence, and late adolescence (Byrnes et al., 1999; Cross et al., 2013). Secondly, it 

was predicted that impulsivity would decrease from preadolescence to late 

adolescence for both females and males (Harden & Tucker-Drob, 2011; Steinberg et 

al., 2008). Finally, it was predicted that anxiety levels would be greater during mid-

adolescence compared to preadolescence and late adolescence (Abe & Suzuki, 1986). It 

was also predicted that females would have greater anxiety levels than males, 

irrespective of age (Lewinsohn et al., 1998).  

Secondly, this study aimed to examine the gender differences in the 

relationship between risk-taking behaviours and anxiety levels during preadolescence, 

mid-adolescence, and late adolescence. It was predicted that anxiety would have 

differential affects on risk-taking behaviours during preadolescence, mid-adolescence, 

and late adolescence. Based on the literature discussed above, the following 

predictions were made: (1) higher levels of anxiety would be associated with reduced 

levels of BART and real-world risk-taking in late adolescents (e.g., Giorgetta et al., 

2012; Maner et al., 2007); (2) higher levels of anxiety would be associated with greater 

levels of BART and real world risk-taking in mid-adolescents (e.g., Patton et al., 1996; 

Reynolds et al., 2013); (3) no directional hypothesis was made for preadolescents since 

the relationship between risk-taking and anxiety in 9-12 year olds is currently 

unknown; (4) no directional hypotheses were made for males and females since gender 

differences in the relationship between risk-taking and anxiety have been scarcely 

studied. 

Finally, this study aimed to examine the influence of puberty on the 

development of risk-taking behaviours, sensation seeking, impulsivity, and anxiety 

levels in male and female adolescents aged 9-17 years while controlling for 

chronological age. It was predicted that more advanced pubertal stage would be 

associated with greater levels of risk-taking, sensation seeking, and anxiety (Collado et 

al., 2014; Martin et al., 2002; Reardon et al., 2009). In contrast, it was predicted that 

pubertal stage would not be associated with impulsivity (Steinberg et al., 2008). Lastly, 

it was predicted that puberty would be associated with risk-taking and sensation 

seeking in males and females, but anxiety only in females (Reardon et al., 2009). 
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3.2. Method 

3.2.1. Participants 

One hundred and five participants aged 9-23 years took part in this study. 

Participants were split into three age groups: preadolescents aged 9-12 years; mid-

adolescents aged 13-17 years; and late adolescents aged 18-23 years (Table 2.1). 

Detailed participant information is reported in Chapter 2.1.  

 

3.2.2. Measures 

3.2.2.1. Risk-taking behaviours 

 Risk-taking behaviours were measured using the BART (Lejuez et al., 2002) and 

YRBSS (Aklin et al., 2005) (see Chapter 2.3.1). 

 

3.2.2.2. Sensation seeking 

Sensation seeking was measured using the BSSS (Hoyle et al., 2002; see Chapter 

2.3.2). 

 

3.2.2.3. Impulsivity 

Impulsivity was measured using a Go/NoGo task (see Chapter 2.3.3). 

  

3.2.2.4. Anxiety and depression 

Anxiety and depression were measured using the STAI (Spielberger et al., 1983) 

and HADS-D (Zigmond & Snaith, 1983), respectively (see Chapter 2.3.4 and Chapter 

2.3.5). 

 

3.2.2.5. Pubertal development 

Current pubertal stage was assessed in females and males aged 9-17 years 

using the PDS (Petersen et al., 1988; see Chapter 2.3.6). The PDS was found to be 

highly reliable for both females (α = 0.87) and males (α = 0.89). An independent t-test 

revealed that PDS scores were significantly higher for females (M = 2.72, 95% CI = 

[2.38, 3.02]) compared to males (M = 2.29, 95% CI = [2.04, 2.56]) (t(67) = 2.20, p = 

0.031). This finding is consistent with previous work (Marshall & Tanner, 1969, 1970) 

and suggests that females in this sample were at a slightly later stage in their pubertal 

development compared to males. 
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3.2.2.6. Cognitive ability 

Participants’ cognitive ability was measured using the WASI-II (Wechsler, 

2011; see Chapter 2.3.7) in order to control for potential affects of cognitive ability on 

risk-taking behaviours. The means and 95% confidence intervals for participants’ IQ 

scores are presented in Table 2.1. A two-way ANOVA (Age Group, Gender) was used to 

compare IQ scores between groups. A main effect of Age Group was found (F(2, 99) = 

5.84, p = 0.004, ηp
2 = 0.11), indicating that mid-adolescents had significantly lower IQ 

scores than preadolescents (p = 0.002) and late adolescents (p = 0.004). By contrast, IQ 

scores did not differ between preadolescents and late adolescents (p = 0.486). No main 

effect of Gender was found (F(1, 99) = 0.42, p = 0.517, ηp
2 = 0.00), and the Age Group by 

Gender interaction was non-significant (F(2, 99) = 0.11, p = 0.893, ηp
2 = 0.00).  

 

3.2.3. Procedure 

The procedure is reported in Chapter 2.2. 

 

3.3. Results 

3.3.1. Age and gender differences in risk-taking behaviours, sensation seeking, 

impulsivity, and anxiety 

The first aim of this study was to examine the age and gender differences in 

risk-taking behaviours, sensation seeking tendencies, impulsivity, and anxiety levels 

in this sample of adolescents. Age and gender differences were examined using two-

way ANOVAs (Age Group, Gender). Since IQ scores differed significantly between age 

groups, IQ scores were included as a covariate in all ANOVAs. ANOVA pairwise 

comparisons were bootstrapped and corrected for multiple comparisons using the B-H 

procedure (Benjamini & Hochberg, 1995; see Chapter 2.5). Figure 3.1 depicts the 

means and bootstrapped 95% confidence intervals for the BART, YRBSS, BSSS, 

Go/NoGo task, STAI, HADS-D, and STAI controlling for HADS-D. Supplementary Table 

3.1 (Appendix 1) reports the means and bootstrapped 95% confidence intervals for the 

BART and YRBSS, Supplementary Table 3.2 (Appendix 1) reports the means and 

bootstrapped 95% confidence intervals for the BSSS and Go/NoGo, and Supplementary 

Table 3.3 (Appendix 1) reports the means and bootstrapped 95% confidence intervals 

for the STAI, HADS-D, and STAI controlling for HADS-D. 
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Figure 3.1 Group means for risk-taking propensity (BART; a), real world risk-taking (YRBSS; b), 
sensation seeking (BSSS; c), impulsivity (Go accuracy, NoGo accuracy, Go reaction time; d), 
anxiety (STAI state anxiety, STAI trait anxiety; e), depression (HADS-D; f), and anxiety controlling 
for depression (g). Error bars represent the bootstrapped 95% confidence intervals. All means 
are adjusted for IQ. * p < 0.05, ** p < 0.01, *** p < 0.001. 
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3.3.1.1. Age and gender differences in risk-taking behaviours 

3.3.1.1.1. BART risk-taking 

 Overall, BART risk-taking was equivalent for preadolescents and mid-

adolescents, but increased from mid-adolescence to late adolescence. Unexpectedly, 

no gender effects were found for BART risk-taking.  

For BART adjusted pumps, a main effect of Age Group was found (F(2, 98) = 

4.18, p = 0.018, ηp
2 = 0.08), revealing that late adolescents pumped up each balloon 

more than preadolescents (p = 0.011) and mid-adolescents (p = 0.025). No difference 

was found between preadolescents and mid-adolescents in the number of adjusted 

pumps per balloon (p = 0.789). The main effect of Gender (F(1, 98) = 1.14, p = 0.289, ηp
2 

= 0.01), and the Age Group by Gender interaction (F(2, 98) = 0.11, p = 0.899, ηp
2 = 0.00) 

were non-significant for BART adjusted pumps. Similarly, for BART total points, a 

main effect of Age Group was found (F(2, 98) = 4.17, p = 0.018, ηp
2 = 0.08), showing that 

late adolescents won more points on the BART compared to preadolescents (p = 0.012) 

and mid-adolescents (p = 0.020). No difference was found between preadolescents and 

mid-adolescents in the total number of points won on the BART (p = 0.920). The main 

effect of Gender (F(1, 98) = 0.78, p = 0.378, ηp
2 = 0.01), and the Age Group by Gender 

interaction (F(2, 98) = 0.43, p = 0.652, ηp
2 = 0.01) were non-significant for BART total 

points. By contrast, for BART popped balloons, the main effects of Age Group (F(2, 98) 

= 2.50, p = 0.087, ηp
2 = 0.05) and Gender (F(1, 98) = 1.89, p = 0.172, ηp

2 = 0.02), as well as 

the Age Group by Gender interaction (F(2, 98) = 0.18, p = 0.834, ηp
2 = 0.00) were non-

significant. 

 

3.3.1.1.2. YRBSS risk-taking 

The YRBSS revealed significant age- and gender-related changes in this sample 

of adolescents. A significant main effect of Age Group was found for YRBSS risk-taking 

(F(2, 98) = 23.38, p < 0.001, ηp
2 = 0.32), revealing that preadolescents took significantly 

fewer real world risks compared to both mid-adolescents (p = 0.001) and late 

adolescents (p = 0.001). No significant difference was found between mid-adolescents 

and late adolescents in the number of real world risks taken (p = 0.198), suggesting 

that risk-taking increased during the transition from preadolescence to mid-

adolescence, but not from mid-adolescence to late adolescence. While no main effect 

of Gender was found (F(1, 98) = 1.19, p = 0.279, ηp
2 = 0.01), there was a significant Age 

Group by Gender interaction (F(2, 98) = 4.78, p = 0.010, ηp
2 = 0.09). To further 
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investigate this interaction, two one-way ANOVAs were conducted with Age Group as 

the between-group variable. Separate ANOVAs were conducted for females and males. 

For females, a main effect of Age Group was found (F(2, 50) = 20.16, p < 0.001, ηp
2 = 

0.45), showing that preadolescent females took significantly fewer risks in the 

previous 12 months compared to mid-adolescent females (p = 0.028) and late 

adolescent females (p = 0.001). Mid-adolescent females also took significantly fewer 

risks in the previous 12 months compared to late adolescent females (p = 0.002). 

Together, these findings indicate that, for females, engagement in real world risk-

taking increased from preadolescence to mid-adolescence, as well from mid- 

adolescence to late adolescence. For males, the main effect of Age Group was 

significant (F(2, 47) = 11.29, p < 0.001, ηp
2 = 0.33), revealing that preadolescent males 

took significantly fewer risks in the previous 12 months compared to mid-adolescent 

males (p = 0.002) and late adolescent males (p = 0.001). However, no significant 

difference was found between mid-adolescent and late adolescent males (p = 0.383), 

suggesting that, for males, engagement in real world risk-taking increased from 

preadolescence to mid-adolescence, but not from mid-adolescence to late 

adolescence. 

 The YRBSS yields a composite score reflecting engagement in a wide range of 

risk-taking behaviours, including substance use, unsafe sexual activity, aggressive and 

illegal behaviours, and road safety behaviours. Thus, chi-squared tests were used to 

assess whether specific risky behaviours were driving the overall age effects in YRBSS 

risk-taking. Chi-squared tests were computed for each item on the YRBSS. Overall age 

differences were assessed separately for females and males, and significant results 

were followed up with additional chi-squared tests to test differences between 

preadolescents and mid-adolescents, preadolescents and late adolescents, and mid-

adolescents and late adolescents. Figure 3.2 depicts the percentage of females and 

males in each age group engaging in the different risks measured by the YRBSS, and 

Table 3.1 reports the chi-squared coefficients. 

The chi-squared analyses revealed that female and male late adolescents 

engaged in significantly more alcohol use, tobacco use, illicit drug use, unsafe sex, and 

not wearing a car seatbelt compared to preadolescents. Notably, the age at which 

engagement in these behaviours increased differed between females and males. For 

females, tobacco use, illicit drug use, and unsafe sex only increased between mid- 

adolescence and late adolescence, but not from preadolescence to mid-adolescence.  
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Figure 3.2 The percentage of female (a) and male (b) preadolescents, mid-adolescents, and late 
adolescents engaging in each item on the YRBSS during the previous 12 months. * p < 0.05, ** p 
< 0.01, *** p < 0.001. 
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By contrast, alcohol use and not wearing a car seatbelt increased from preadolescence 

to mid-adolescence as well as from mid- adolescence to late adolescence for females. 

For males, alcohol use, tobacco use, illicit drug use, and not wearing a car seatbelt 

increased from preadolescence to mid-adolescence, but not from mid-adolescence to 

late adolescence. By comparison, unsafe sex increased from preadolescence to mid- 

adolescence as well as between mid-adolescence and late adolescence for males. 

Overall, these findings suggest that engagement in real world risk-taking 

predominantly increased at different ages for males and females; engagement in real 

world risk-taking largely increased during the transition from mid-adolescence to late 

adolescence for females, but during the transition from preadolescence to mid-

adolescence for males. These findings are consistent with the ANOVA results showing 

that real world risk-taking increased between preadolescence and late adolescence for 

females but only between preadolescence and mid-adolescence for males. 

 
 

Table 3.1 
Chi-squared coefficients for the YRBSS 
   Age Group Differences 

Item Gender Overall Preadolescents vs. 
Mid-adolescents 

Mid-adolescents vs.  
Late Adolescents 

Preadolescents vs.  
Late Adolescents 

Alcohol use Females 33.51*** 14.28*** 5.63* 30.71*** 
Males 17.84*** 15.54*** 0.14 13.20*** 

      Tobacco use Females 17.35*** 2.39 6.96** 13.93*** 
Males 16.17*** 16.63*** 2.00 8.60*** 

      Drug use Females 12.69** 1.16 5.40* 9.12** 
Males 8.51* 6.93** 0.14 8.60** 

      Unsafe sex Females 28.39*** 1.16 14.86*** 19.95** 
Males 9.41** 2.52 2.67 5.36** 

      Gambled Females 12.69** 1.16 5.40* 9.12** 
Males 5.63 - - - 

      Stolen Females 2.42 - - - 
Males 6.97* 3.90 3.31 0.00 

      Carried a 
weapon 

Females - a - - - 
Males 2.23 - - - 

      Physical fight Females 7.54* 3.70 4.09 0.00 
Males 2.64 - - - 

      Not worn a 
helmet 

Females 0.01 - - - 
Males 3.15 - - - 

      Not worn a 
seatbelt 

Females 7.03* 1.79 1.63 7.01** 
Males 10.51** 8.12** 0.00 8.12** 

Note. Follow up analyses were only computed if there was a significant main effect. a No females reported 
carrying a weapon and therefore the Chi-squared coefficient could not be computed. Chi-squared analyses 
were bootstrapped using 1000 samples. The B-H procedure was used to correct for multiple comparisons and 
had an FDR of 0.1. * p < 0.05, ** p < 0.01, *** p < 0.001. 
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Gambling and fighting also showed significant main effects for females. 

Consistent with tobacco use, illicit drug use, and unsafe sex, gambling increased 

significantly from mid-adolescence to late adolescence, but not from preadolescence 

to mid-adolescence. An overall main effect of fighting was also revealed for females, 

but no differences were found between age groups. Similarly, an overall main effect of 

stealing was found for males, but no differences were found between age groups. 

Finally, no main effects of carrying a weapon or wearing a helmet were found for either 

females or males.  

 

3.3.1.2. Age and gender differences in sensation seeking 

No age or gender effects were found for sensation seeking; the main effects of 

Age Group (F(2, 98) = 1.77, p = 0.176, ηp
2 = 0.04) and Gender (F(1, 98) = 3.69, p = 0.058, 

ηp
2 = 0.04), as well as the Age Group by Gender interaction (F(2, 98) = 0.94, p = 0.394, ηp

2 

= 0.02), were non-significant.  

 

3.3.1.3. Age and gender differences in impulsivity 

Overall, preadolescents were significantly slower at responding to Go trials, 

and made significantly more errors on the Go/NoGo task compared to mid-adolescents 

and late adolescents.  

For Go reaction time, a main effect of Age Group was found (F(2, 98) = 31.10, p < 

0.001, ηp
2 = 0.39), showing that preadolescents were significantly slower at responding 

to Go trials compared to mid-adolescents (p = 0.001) and late adolescents (p = 0.001). 

No significant difference in reaction time was found between mid-adolescents and late 

adolescents (p = 0.720). The main effect of Gender (F(1, 98) = 0.45, p = 0.504, ηp
2 = 0.01) 

and the Age Group by Gender interaction (F(2, 98) = 0.60, p = 0.550, ηp
2 = 0.01) for 

reaction time were non-significant.  

Go/NoGo accuracy was analysed using a mixed ANOVA in order to examine 

potential differences between the Go and NoGo conditions. Condition (Go, NoGo) was 

the within-group factor, and Age Group (preadolescents, mid-adolescents, late 

adolescents) and Gender (females, males) were the between-group factors. As with the 

other ANOVAs, IQ was included as a covariate. A main effect of Age Group was found 

(F(2, 98) = 7.77, p = 0.001, ηp
2 = 0.14), revealing that preadolescents made significantly 

more errors on the Go/NoGo task compared to mid-adolescents (p = 0.037) and late 

adolescents (p < 0.001). No significant difference in accuracy was found between mid-
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adolescents and late adolescents (p = 0.126). No main effects of Gender (F(1, 98) = 0.02, 

p = 0.094, ηp
2 = 0.00) or Condition (F(1, 98) = 1.34, p = 0.268, ηp

2 = 0.01) were found. 

Finally, the Age Group by Gender (F(2, 98) = 1.27, p = 0.287, ηp
2 = 0.03), Condition by Age 

Group (F(2, 98) = 2.29, p = 0.107, ηp
2 = 0.05), Condition by Gender (F(1, 98) = 0.22, p = 

0.637, ηp
2 = 0.00), and Condition by Age Group by Gender (F(2, 98) = 1.22, p = 0.299, ηp

2 = 

0.02) interactions were non-significant. Taken together with reaction time, these 

findings show that performance on the Go/NoGo task did not differ between males and 

females, but significantly improved between preadolescence and mid-adolescence, and 

subsequently plateaued across mid-adolescence and late adolescence.  

 

3.3.1.4. Age and gender differences in anxiety 

3.3.1.4.1. State anxiety 

For state anxiety, the main effects of Age Group (F(2, 98) = 2.10, p = 0.128, ηp
2 = 

0.04) and Gender (F(1, 98) = 3.58, p = 0.061, ηp
2 = 0.04), as well as the Age Group by 

Gender interaction (F(2, 98) = 2.42, p = 0.094, ηp
2 = 0.05), were non-significant, 

suggesting that state anxiety levels were stable across adolescence. However, when 

controlling for participants’ depression levels, the main effect of Age Group became 

significant (F(2, 97) = 3.87, p = 0.024, ηp
2 = 0.07). Pairwise comparisons revealed that 

preadolescents had greater state anxiety levels than mid-adolescents (p = 0.015) and 

late adolescents (p = 0.024). By comparison, mid-adolescents and late adolescents had 

comparable state anxiety levels (p = 0.708). A main effect of Gender was also found 

when controlling for depression (F(1, 97) = 6.31, p = 0.014, ηp
2 = 0.06), showing that 

females (M = 47.29, 95% CI [44.23, 50.72]) had greater state anxiety levels than males 

(M = 42.39, 95% CI [39.99, 44.82]). The Age Group by Gender interaction remained non-

significant when controlling for depression (F(2, 97) = 2.52, p = 0.086, ηp
2 = 0.05).  

 

3.3.1.4.2. Trait anxiety 

Trait anxiety followed the same pattern as state anxiety. Before controlling for 

depression, the main effects of Age Group (F(2, 98) = 1.09, p = 0.340, ηp
2 = 0.02) and 

Gender (F(1, 98) = 0.54, p = 0.464, ηp
2 = 0.01), as well as the Age Group by Gender 

interaction (F(2, 98) = 0.84, p = 0.436, ηp
2 = 0.02), were non-significant. However, when 

controlling for depression, the main effect of Age Group became significant (F(2, 97) = 

4.63, p = 0.012, ηp
2 = 0.09), showing that that preadolescents had greater trait anxiety 

levels than mid-adolescents (p = 0.007) and late adolescents (p = 0.016). In 
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comparison, mid-adolescents and late adolescents had equivalent trait anxiety levels 

(p = 0.603). A trend was found for the main effect of Gender (F(1, 97) = 3.53, p = 0.063, 

ηp
2 = 0.04), suggesting that females (M = 56.52, 95% CI [53.14, 59.99]) had greater trait 

anxiety levels than males (M = 52.43, 95% CI [48.94, 56.42]). The Age Group by Gender 

interaction remained non-significant when controlling for depression (F(2, 97) = 1.11, 

p = 0.333, ηp
2 = 0.02). 

 

3.3.2. Relationships between risk-taking and anxiety during adolescence 

The second aim of this study was to examine the relationship between risk-

taking behaviours and anxiety levels during preadolescence, mid-adolescence, and late 

adolescence. To examine the relationships between risk-taking and anxiety, Pearson 

correlation coefficients were computed for female and male preadolescents, mid-

adolescents, and late adolescents. Given that anxiety and depression are highly 

comorbid during adolescence (Brady & Kendall, 1992; Hirschfeld, 2001), correlations 

were subsequently recomputed with depression scores included as a covariate. Since 

IQ scores differed significantly between preadolescents, mid-adolescents, and late 

adolescents, IQ scores were included as a covariate in all correlations. Correlations 

were bootstrapped and corrected for multiple comparisons using the B-H procedure 

(Benjamini & Hochberg, 1995; see Chapter 2.5). The correlation coefficients are 

reported in Supplementary Table 3.4 (Appendix 1).  

 

3.3.2.1. Relationships between BART risk-taking and anxiety 

This section reports the relationships between BART risk-taking and anxiety. 

Overall, higher state anxiety levels were associated with lower levels of BART risk-

taking in late adolescent females. In direct contrast, higher state anxiety levels were 

associated with greater levels of BART risk-taking in preadolescent females. Finally, 

higher trait anxiety levels were associated with lower levels of BART risk-taking in 

preadolescent males. All other relationships were non-significant. 

 

3.3.2.1.1. BART risk-taking and state anxiety 

As predicted, greater levels of state anxiety were associated with reduced risk-

taking on the BART for late adolescent females. Specifically, state anxiety was 

moderately negatively correlated with the number of adjusted pumps (r = -0.50, p = 

0.031), the number of points won (r = -0.54, p = 0.018), and the number of popped 
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balloons (r = -0.50, p = 0.031). Notably, these relationships became non-significant 

after controlling for depression (adjusted pumps: r = -0.48, p = 0.042; total points: r = -

0.43, p = 0.072; popped balloons: r = -0.39, p = 0.107).  

Contrary to predictions, no correlations were found between state anxiety and 

BART risk-taking for mid-adolescent females. 

In direct contrast to late adolescent females, state anxiety was moderately 

positively correlated with the number of adjusted pumps (r = 0.61, p = 0.009), the 

number of points won (r = 0.53, p = 0.031), and the number of popped balloons (r = 

0.50, p = 0.039) for preadolescent females. These findings suggest that greater levels of 

state anxiety were associated with increased risk-taking on the BART for 

preadolescent females. The relationships between state anxiety and the number of 

adjusted pumps (r = 0.62, p = 0.011) and number of popped balloons (r = 0.55, p = 

0.029) held after controlling for depression. However, the relationship between state 

anxiety and the number of points won failed to reach significance after correction (r = 

0.53, p = 0.036).  

Compared to females, no relationships between state anxiety and BART risk-

taking were found for preadolescent, mid-adolescent, or late adolescent males.  

 

3.3.2.1.2. BART risk-taking and trait anxiety 

Trait anxiety was moderately negatively correlated with the number of adjusted 

pumps for preadolescent males (r = -0.56, p = 0.016), suggesting that greater levels of 

trait anxiety were associated with reduced risk-taking on the BART for preadolescent 

males. However, this relationship failed to reach significance after controlling for 

depression (r = -0.44, p = 0.076).  

No relationships between trait anxiety and BART risk-taking were found for 

male mid-adolescents or late adolescents. Similarly, no relationships between trait 

anxiety and BART risk-taking were found for preadolescent, mid-adolescent, or late 

adolescent females. 

 

3.3.2.2. Relationships between YRBSS risk-taking and anxiety 

This section reports the relationships between YRBSS risk-taking and anxiety. 

Overall, higher trait anxiety levels were associated with greater levels of YRBSS risk-

taking in preadolescent females. All other relationships between YRBSS risk-taking 

and trait or state anxiety levels were non-significant. 
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3.3.2.2.1. YRBSS risk-taking and state anxiety 

No relationships between state anxiety and YRBSS risk-taking were found for 

any group. 

 

3.3.2.2.2. YRBSS risk-taking and trait anxiety 

Trait anxiety was positively associated with real-world risk-taking for 

preadolescent females (r = 0.68, p = 0.003), suggesting that greater levels of trait 

anxiety were associated with increased real world risk-taking for preadolescent 

females. This relationship held after controlling for depression (r = 0.65, p = 0.006).  

No relationships between trait anxiety and YRBSS risk-taking were found for 

mid-adolescent or late adolescent females. Similarly, no relationships between trait 

anxiety and YRBSS risk-taking were found for preadolescent, mid-adolescent, or late 

adolescent males. 

 

3.3.3. The influence of puberty on risk-taking behaviours, sensation seeking, 

impulsivity, and anxiety 

The previous sections provide insights into how risk-taking, sensation seeking, 

impulsivity, and anxiety, and the relationships between risk-taking and anxiety, 

change as a function of age and gender during the course of adolescence. However, 

studies have also reported that puberty has considerable affects on the development of 

risk-taking, sensation seeking, and anxiety (Collado et al., 2014; Martin et al., 2002; 

Reardon et al., 2009). Accordingly, the final aim of this study was to examine the linear 

and quadratic relationships between pubertal stage and measures of risk-taking, 

sensation seeking, impulsivity, and anxiety while controlling for chronological age. 

Since there are large individual differences in the age of pubertal onset (Sørensen et 

al., 2013), categorising participants into age groups may confound any potential 

relationships between puberty and risk-taking, sensation seeking, impulsivity, and 

anxiety. Thus, the relationships between puberty and risk-taking, sensation seeking, 

impulsivity, and anxiety were assessed in females (n = 34, Mage = 12.62, SDage = 2.40) 

and males (n = 35, Mage = 12.40, SDage = 2.72) aged 9-17 years using age as a continuous 

variable.  

Since many developmental trajectories are non-linear, hierarchical polynomial 

regression analyses were conducted to assess the linear and quadratic relationships 

between pubertal stage, risk-taking, sensation seeking, impulsivity, and anxiety. The 
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dependent variables were BART adjusted pumps, BART total points, BART popped 

balloons, YRBSS risk-taking, BSSS sensation seeking, Go accuracy, NoGo accuracy, Go 

reaction time, STAI state anxiety, and STAI trait anxiety. Age was entered into the first 

block of the regression analyses as a control variable, and PDS scores were entered into 

the second block. Separate regression analyses were conducted to assess the linear and 

quadratic relationships; age and PDS scores were used to examine the linear 

relationships, and squared age and PDS scores were used to assess the quadratic 

relationships. To control for the affect of depression on anxiety levels, STAI regression 

analyses were recomputed with HADS-D scores included as a covariate; HADS-D 

scores were entered into the first block, age was entered into the second block, and 

PDS scores were entered into the third block. Supplementary Table 3.5 (Appendix 1) 

reports the intercorrelations, and Supplementary Table 3.6 (Appendix 1) reports the 

linear and quadratic regression coefficients for risk-taking (BART, YRBSS), sensation 

seeking (BSSS), impulsivity (Go/NoGo), anxiety (STAI), and anxiety controlling for 

depression (STAI HADS-D).  

An independent t-test revealed no significant differences in IQ scores between 

females (M = 110.56, 95% CI [106.81, 114.16]) and males (M = 111.29, 95% CI [107.72, 

114.74]) aged 9-17 years (t(67) = 0.28, p = 0.778). Thus, IQ scores were not included as 

a control variable in the regression analyses. The regression coefficients were 

bootstrapped and corrected for multiple comparisons using the B-H procedure 

(Benjamini & Hochberg, 1995; see Chapter 2.5). 

 

3.3.3.1. Risk-taking behaviours and puberty 

3.3.3.1.1. BART risk-taking and puberty 

No linear or quadratic relationships were found between puberty and BART 

risk-taking for females or males. 

 

3.3.3.1.2. YRBSS risk-taking and puberty  

In contrast to BART risk-taking, real world risk-taking was significantly 

predicted by pubertal stage. Real world risk-taking was predicted by the linear PDS 

term for both females (ΔR2 = 10.2%, F(1, 31) = 4.63, p = 0.039) and males (ΔR2 = 15.5%, 

F(1, 32) = 14.13, p = 0.001). These findings show that real world risk-taking increased 

with more advanced pubertal stage in both females and males.  

Real world risk-taking was also predicted by the quadratic PDS term for both 
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females (ΔR2 = 13.5%, F(1, 31) = 6.48, p = 0.016) and males (ΔR2 = 15.0%, F(1, 32) = 

14.41, p = 0.001). The partial regression plots (Figure 3.3) revealed gender-specific 

trajectories for males and females. For males, real world risk-taking increased from 

early to mid puberty and began to plateau towards the later stages of puberty. For 

females, real world risk-taking steadily increased with more advanced pubertal stage. 

 

3.3.3.2. Sensation seeking and puberty 

No linear or quadratic relationships were found between puberty and sensation 

seeking for females or males.  
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Figure 3.3 Partial regression plots of the residuals for the linear (a, b) and quadratic (c, d) 
relationships between puberty and YRBSS risk-taking controlling for chronological age for 
female (a, c) and male (b, d) adolescents aged 9-17 years. 
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3.3.3.3. Impulsivity and puberty 

No linear or quadratic relationships were found between puberty and 

impulsivity for females or males. 

 

3.3.3.4. Anxiety and puberty 

3.3.3.4.1. State anxiety and puberty 

No linear or quadratic relationships were found between puberty and state 

anxiety for females or males. 

 

3.3.3.4.2. Trait anxiety and puberty 

No linear or quadratic relationships were found between puberty and trait 

anxiety for females or males. 

 

3.3.4. Relationships between risk-taking, sensation seeking, and impulsivity 

Finally, the relationships between risk-taking behaviours (BART adjusted 

pumps, BART total points, BART popped balloons, YRBSS), sensation seeking (BSSS), 

and impulsivity (Go RT, Go accuracy, NoGo accuracy) were assessed to examine 

whether risk-taking, sensation seeking, and impulsivity were related or distinct 

constructs in this sample of adolescents (Supplementary Table 3.7, Appendix 1). 

Pearson correlation coefficients were conducted for male and female preadolescents, 

mid-adolescents, and late adolescents. Correlations were bootstrapped and corrected 

for multiple comparisons using the B-H procedure (Benjamini & Hochberg, 1995; see 

Chapter 2.5). 

As predicted, YRBSS risk-taking was highly positively correlated with sensation 

seeking for mid-adolescent males (r = 0.73, p = 0.002) and late adolescent females (r = 

0.78, p < 0.001), suggesting that greater sensation seeking tendencies were associated 

with increased real world risk-taking in mid-adolescent males and late adolescent 

females. The number of popped balloons on the BART was also negatively correlated 

with Go accuracy for preadolescent males (r = -0.52, p = 0.021), suggesting that greater 

accuracy to Go trials during the Go/NoGo task was associated with reduced BART risk-

taking in preadolescence males. These findings are consistent with previous findings 

(e.g., Donohew et al., 2000; Lejuez et al., 2002; Steinberg, 2008) and the study 

predictions. Critically, most groups did not show relationships between the BART, 

YRBSS, and BSSS, suggesting that the BART, YRBSS, and BSSS may have largely 
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measured distinct constructs in this sample of adolescents. 

 

3.4. Discussion 

This study had three aims. The first aim of the study was to investigate the age- 

and gender-related differences in risk-taking behaviours, sensation seeking, 

impulsivity, and anxiety levels in a sample of typically developing preadolescents (9-

12 years), mid-adolescents (13-17 years), and late adolescents (18-23 years). The 

results showed that BART risk-taking remained stable across preadolescence and mid-

adolescence, but increased from mid-adolescence to late adolescence for both males 

and females. By comparison, gender-specific trajectories were observed for the YRBSS, 

with real world risk-taking increasing from preadolescence to mid-adolescence for 

males and females, but from mid-adolescence to late adolescence for females only. 

There was also evidence that males engaged in real world risky behaviours earlier in 

development than females. Unexpectedly, sensation seeking tendencies were 

equivalent across all groups. However, as predicted, impulsivity decreased from 

preadolescence to mid-adolescence, but remained stable across mid-adolescence and 

late adolescence. Finally, females reported greater anxiety levels than males as 

expected, but unexpectedly, preadolescents had greater anxiety levels than mid-

adolescents and late adolescents. 

The second aim of this study was to examine gender differences in the 

relationship between risk-taking behaviours and anxiety levels during preadolescence, 

mid-adolescence, and late adolescence. The findings showed that higher levels of 

anxiety were associated with reduced levels of risk-taking in late adolescent females, 

but not in late adolescent males. By comparison, higher levels of anxiety were 

associated with increased levels of risk-taking in preadolescent females, and reduced 

levels of risk-taking in preadolescent males. Critically, anxiety was not associated with 

risk-taking in either mid-adolescent females or males.  

Finally, this study aimed to examine the influence of puberty on the 

development of risk-taking, sensation seeking, impulsivity, and anxiety in male and 

female adolescents aged 9-17 years while controlling for chronological age. The results 

revealed linear and quadratic relationships between pubertal stage and real world risk-

taking behaviours for both males and females, suggesting that more advanced pubertal 

stage was associated with greater levels of real world risk-taking. By contrast, pubertal 

stage was not associated with BART risk-taking, sensation seeking, impulsivity, or 
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anxiety in either males or females. This discussion is organised in accordance with the 

study aims. 

 

3.4.1. Age and gender differences in risk-taking, sensation seeking, impulsivity, and 

anxiety 

The first aim of this study was to examine the age- and gender-related 

differences in risk-taking behaviours, sensation seeking, impulsivity, and anxiety in a 

normative sample of adolescents aged 9-23 years. Notably, only a few studies have 

measured the development of risk-taking, sensation seeking, impulsivity, and anxiety 

in a cohort of adolescents with an age range wide enough to examine how these 

constructs change across the course of adolescence (Steinberg et al., 2008). Moreover, 

these studies have largely overlooked potential gender differences. Hence, the findings 

from this study provide novel insights into how these constructs develop throughout 

adolescence for males and females. 

 

3.4.1.1. Risk-taking behaviours 

To account for the potential confounds associated with self-report 

questionnaires (Ladouceur et al., 2000; Lejuez et al., 2002; Lejuez et al., 2003), 

participants completed a behavioural task that measured risk-taking propensity 

(BART) in addition to a self-report questionnaire that measured recent engagement in 

a range of risky behaviours (YRBSS). Based on recent findings (e.g., Burnett et al., 

2010; Steinberg et al., 2008), it was predicted that risk-taking behaviours, as measured 

by the BART and YRBSS, would increase from preadolescence to mid-adolescence, 

peak in mid-adolescence, and begin to decrease from mid-adolescence to late 

adolescence. 

Contrary to previous studies (Burnett et al., 2010; Eshel et al., 2007; Figner et 

al., 2009) and the study predictions, BART risk-taking remained stable across 

preadolescence and mid-adolescence, but increased from mid-adolescence to late 

adolescence. The BART was originally developed to simulate real world risk-taking, 

whereby risk-taking is advantageous up to a certain point (i.e., the balloon breakpoint) 

but risk-taking past this point is disadvantageous (Lejuez et al., 2002). The BART 

measures risk-taking propensity using three dependent variables: the average number 

of adjusted pumps for unpopped balloons; the total points won; and the total number 

of popped balloons. In the current study, greater BART risk-taking in late adolescents 
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was indexed by a greater number of adjusted pumps for unpopped balloons and total 

points won. Crucially, no age differences were found for the number of popped 

balloons. Therefore, the finding that late adolescents pumped up each balloon more 

and won more points but did not pop more balloons than preadolescents and mid-

adolescents suggests that late adolescents were using a more optimal strategy to 

maximise gain, rather than simply taking more indiscriminate risks. 

This is the first study to examine the development of risk-taking propensity 

from preadolescence to late adolescence using the BART. Notably, studies that have 

reported a peak in risk-taking propensity during adolescence using behavioural tasks 

have largely used probabilistic gambling tasks (e.g., Burnett et al., 2010; Eshel et al., 

2007; Figner et al., 2009). Thus, it is possible that only certain behavioural tasks are 

able to elicit the peak in risk-taking propensity during mid-adolescence. Future work is 

therefore needed to determine how the development of risk-taking propensity relates 

to specific task demands. 

Gender differences in BART risk-taking were also expected; it was predicted 

that males would take more risks on the BART compared to females, irrespective of 

age. In contrast to this prediction, no gender differences were observed in BART risk-

taking in the current study. While gender differences in BART risk-taking have been 

found in young adults (Lighthall, Mather & Gorlick, 2009), most adolescent and adult 

studies have either not examined gender differences or have reported small to no 

effects (Aklin et al., 2005; Cazzell, Li, Lin, Patel & Liu, 2012; Lejuez et al., 2002; Lejuez 

et al., 2003; Lejuez et al., 2007). Notably, Lighthall et al. (2009) only found gender 

differences on the BART when participants experienced acute stress; stress increased 

risk-taking in males but reduced risk-taking in females. Thus, the lack of gender 

differences in the current study could reflect that participants completed the BART in 

isolation under conditions of low arousal. 

In contrast to BART risk-taking, but in accordance with the study predictions 

and previous work (Donovan & Jessor, 1985; Eaton et al., 2010; Gullone et al., 2000; 

Kann et al., 1999; Windle et al., 2008), real world risk-taking, as measured by the 

YRBSS, increased from preadolescence to mid-adolescence for both females and 

males. Real world risk-taking also increased from mid-adolescence to late adolescence 

for females, suggesting that engagement in real world risk-taking followed gender-

specific trajectories. 

Interestingly, specific risks were found to be driving the overall changes in 



Chapter 3  Risk-taking and anxiety 

94 

YRBSS risk-taking over the adolescent period. Alcohol use, tobacco use, illicit drug 

use, unsafe sex, and not wearing a car seatbelt contributed to the age-related changes 

in real world risk-taking in both females and males. Gambling also contributed to the 

age-related changes in females. By contrast, stealing, carrying a weapon, physical 

fighting, and not wearing a helmet while riding a bicycle or motorcycle did not 

significantly change during the course of adolescence. These findings suggest that the 

specific risks underlying the increase in real world risk-taking during adolescence were 

largely comparable for male and female adolescents. Crucially however, the age at 

which engagement in these risks primarily increased differed for females and males; 

engagement in real world risk-taking increased from mid-adolescence to late 

adolescence for females but from preadolescence to mid-adolescence for males. Thus, 

these findings suggest that, in this sample of adolescents, males engaged in risk-

taking behaviours earlier in development than females. 

Based on previous work (Burnett et al., 2010; Steinberg et al., 2008), it was 

predicted that real world risk-taking behaviours would decrease from mid-adolescence 

to late adolescence for both females and males. However, in contrast to the study 

predictions, real world risk-taking continued to increase from mid-adolescence to late 

adolescence for females. In comparison to females, there was some evidence that real 

world risk-taking was beginning to decrease in males; no age-related changes were 

found between mid-adolescence and late adolescence for males. It is possible that the 

late adolescents in this sample were not old enough for a reduction in risk-taking 

behaviours to be detected; most studies that have found a reduction in risk-taking 

behaviours from adolescence to late adolescence/young adulthood have included 

participants aged 25 years and above (e.g., Burnett et al., 2010; Eshel et al., 2007; 

Figner et al., 2009). Hence, this sample of adolescents may have been too young to 

detect a decrease in risk-taking behaviours. Future work examining the developmental 

trajectory of risk-taking should therefore endeavour to include an additional age group 

aged 25 years and above. 

Together, these findings reveal that BART risk-taking and YRBSS risk-taking 

followed different developmental trajectories in this sample of adolescents. Current 

theories of adolescent risk-taking assert that adolescent decision-making cannot be 

fully understood without acknowledging the context in which a decision involving risk 

is being made (Casey et al., 2010; Miller & Brynes, 1997; Steinberg, 2008). Specifically, 

adolescents are thought to be capable of making similar judgments to adults in low 
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arousal contexts (when they experience ‘cold cognition’), but make suboptimal, risky 

decisions in high arousal contexts (when they experience ‘hot cognition’) (Figner et al., 

2009). Studies have consistently reported that the social context significantly 

influences adolescent risk-taking; adolescents take significantly more risks when they 

are in the presence of peers compared to when they are in isolation (Gardner & 

Steinberg, 2005), and most adolescent risk-taking and criminal activity occurs in 

groups (Zimring, 1981). Thus, the presence of peers is thought to shift the context 

from low arousal to high arousal (Steinberg, 2008). In light of these findings, it is 

possible to speculate that distinct developmental trajectories were observed for the 

BART and YRBSS in the current study because the BART and YRBSS measured risk-

taking behaviours originating from different social contexts (Aklin et al., 2005); the 

BART was completed in isolation under conditions of low arousal whereas risk-taking 

behaviours measured by the YRBSS are likely to have occurred in the presence of peers 

and therefore under conditions of high arousal. Finally, no relationships were observed 

between the BART and YRBSS for any group, supporting the idea that the BART and 

YRBSS were measuring distinct constructs of risk-taking in the current study. 

 

3.4.1.2. Sensation seeking and impulsivity 

The developmental trajectory of risk-taking behaviours, as measured by both 

behavioural tasks and self-report questionnaires, is thought to be largely dependent 

on age-related changes in sensation seeking and impulsivity during childhood and 

adolescence (Steinberg et al., 2008). Participants in the current study were therefore 

asked to complete measures of sensation seeking (BSSS) and impulsivity (Go/NoGo 

task). 

On the basis of previous studies (Harden & Tucker-Drob, 2011; Shulman et al., 

2014; Steinberg et al., 2008), it was predicted that sensation seeking would increase 

from preadolescence to mid-adolescence, peak in mid-adolescence, and decrease from 

mid-adolescence to late adolescence. Unexpectedly however, sensation seeking 

remained stable across preadolescence, mid-adolescence, and late adolescence. 

Notably, the BSSS had highly variable Cronbach’s alphas (0.38–0.81) in this sample 

(Supplementary Table 3.2, Appendix 1). The Cronbach’s alphas were very low in 

preadolescents, which is particularly problematic because studies have consistently 

reported that sensation seeking tendencies begin to increase during preadolescence 

for both males and females (Shulman et al., 2015). The BSSS was also not correlated 
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with the BART or YRBSS for most groups. Together, these findings point towards the 

BSSS being a poor measure of sensation seeking in this sample of adolescents. This is 

surprising since the BSSS has been used to measure sensation seeking in individuals 

aged 9-75 years (e.g., Eachus, 2004; MacPherson et al., 2010; Palmgreen et al., 2001). 

Despite this, the findings from the current study suggest that the BSSS is not an 

optimal tool for measuring sensation seeking tendencies in children and early 

adolescents. 

Impulsivity has also been implicated in adolescent risk-taking; immature 

impulse control and self-regulatory abilities are thought to be unable to modulate the 

increases in sensation seeking during adolescence (Steinberg et al., 2008). In contrast 

to risk-taking behaviours and sensation seeking, impulsivity has been shown to 

decrease across adolescence, as impulse control improves (Harden & Tucker-Drob, 

2011; Shulman et al., 2014; Shulman et al., 2015; Steinberg et al., 2008). Consistent 

with previous work and the study predictions, impulsivity decreased from 

preadolescence to mid-adolescence, but remained stable across mid-adolescence to 

late adolescence. Specifically, preadolescents took longer to respond to Go trials and 

made significantly more errors on the Go/NoGo task than both mid-adolescents and 

late adolescents. Notably, some studies have shown that impulsivity continues to 

reduce from mid-adolescence into late adolescence (Shulman et al., 2015). However, a 

reduction in impulsivity from mid-adolescence to late adolescence is thought to 

depend on the complexity and difficulty of the task (Davidson, Amso, Anderson & 

Diamond, 2006; Steinberg et al., 2008). Taken together with risk-taking, the findings 

from the current study support previous work showing that impulsivity and risk-taking 

behaviours have distinct developmental trajectories across adolescence, whereby 

impulsivity decreases and risk-taking increases during the course of adolescence 

(Steinberg et al., 2008). 

 

3.4.1.3. Anxiety levels 

As well as being a vulnerable period for engaging in risk-taking behaviours, 

there is also evidence that typically developing adolescents are at an increased risk for 

experiencing heightened levels of anxiety compared to children and adults (Abe & 

Suzuki, 1986). Studies have also consistently reported that females are at greater risk 

than males for experiencing high anxiety levels at all developmental stages (Abe & 

Suzuki, 1986; Lewinsohn et al., 1998; Van Oort et al., 2009). Consistent with previous 
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work and the study predictions, females in the current study had greater state and trait 

anxiety levels compared to males, irrespective of age. However, contrary to previous 

work and the study predictions, mid-adolescents did not have greater state or trait 

anxiety levels than either preadolescents or late adolescents; rather, preadolescents 

had greater state and trait anxiety levels than both mid-adolescents and late 

adolescents. 

The finding that preadolescents had greater state and trait anxiety levels than 

mid-adolescents and late adolescents was unexpected. Since there is not a 

questionnaire that can accurately measure anxiety symptoms in individuals aged 9-23 

years, the current study administered the child version of the STAI to preadolescents 

and the adult version of the STAI to mid-adolescents and late adolescents, in line with 

the manual recommendations (Spielberger et al., 1983). The STAI child and adult 

versions have maximum scores of 60 and 80, respectively, and thus the raw scores were 

converted to percentages in order to equate the two measures. The findings that 

preadolescents had greater anxiety levels than both mid-adolescents and late 

adolescents may therefore reflect that the child version of the STAI measured a 

different construct of anxiety to the adult version. However, there is some empirical 

evidence that preadolescents have greater anxiety levels than mid-adolescents. For 

instance, Van Oort et al. (2009) found that anxiety levels decreased from 

preadolescence to early adolescence (10-13 years). Thus, it is possible that the 

preadolescents in this sample did have greater anxiety levels than mid-adolescents 

and late adolescents. Regardless of whether the child and adult versions of the STAI 

measured different constructs of anxiety or preadolescents had greater anxiety levels, 

mid-adolescents did not have greater anxiety levels than late adolescents. Therefore, 

the findings from this study show that anxiety levels, as measured by the STAI, did not 

peak in mid-adolescence. Taken together, the findings from the current study 

demonstrate that experiencing heightened anxiety levels during middle adolescence is 

not inevitable and universal (Arnett, 1999; Dahl, 2004), as has sometimes been 

suggested (Hall, 1904). 

Notably, the age and gender differences in state and trait anxiety were only 

observed when depression levels were controlled for. This is consistent with studies 

showing that the STAI measures negative affect in addition to generalised anxiety 

(Andrade, Gorenstein, Vieira Filho, Tung & Artes, 2001; Bados, Gómez-Benito & 

Balaguer, 2010), and that anxiety and depression are highly comorbid during 
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adolescence (Brady & Kendall, 1992; Hirschfeld, 2001). These findings therefore 

emphasise the importance of controlling for depression when examining the 

development of anxiety during adolescence. 

 

3.4.2. Relationships between risk-taking and anxiety 

The findings discussed in the previous section outline the developmental 

trajectories of risk-taking behaviours and anxiety levels in this sample of adolescents. 

However, based on the existing literature, it remains unclear how anxiety levels relate 

to risk-taking behaviours during the different stages of adolescence for males and 

females. Accordingly, the second aim of this study was to examine gender differences 

in the relationship between risk-taking behaviours and anxiety levels during 

preadolescence, mid-adolescence, and late adolescence. 

Contrary to the study predictions, no relationships between risk-taking and 

anxiety were found for either female or male mid-adolescents. These findings initially 

appear inconsistent with previous studies reporting that greater anxiety levels are 

associated with greater levels of risk-taking on the BART (Reynolds et al., 2013; 

Richards et al., 2015). However, the studies assessing relationships between anxiety 

and BART risk-taking only found a relationship between risk-taking and anxiety when 

adolescents were exposed to acute social stress (Reynolds et al., 2013; Richards et al., 

2015). It is therefore possible that BART risk-taking was not associated with anxiety in 

mid-adolescents because participants completed the BART in isolation and were not 

exposed to acute stress.  

The lack of a relationship between risk-taking and anxiety in mid-adolescents 

is also inconsistent with previous studies reporting that high levels of anxiety are 

associated with greater engagement in real world risk-taking behaviours during mid-

adolescence (Comeau et al., 2001; Patton et al., 1996). These previous studies have 

proposed the self-medication hypothesis as the mechanism underlying the positive 

relationship between risk-taking and anxiety, whereby individuals engage in high 

levels of risky behaviours to alleviate symptoms of negative affect (Comeau et al., 

2001; Patton et al., 1996). Thus, it is possible that no relationships were found between 

real world risk-taking and anxiety in mid-adolescents in the current study because 

mid-adolescents’ anxiety levels were not particularly high in this sample; mid-

adolescents did not have higher anxiety levels than preadolescents or late adolescents. 

Hence, it is possible that elevated anxiety levels in mid-adolescents are needed to 
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elicit a positive relationship between risk-taking and anxiety. This idea is consistent 

with Reynolds et al. (2013) and Richards et al.’s (2015) findings, where a positive 

relationship between risk-taking and anxiety was only found when mid-adolescents 

were exposed to acute social stress. Despite this, it is unclear from the literature 

whether high levels of anxiety in mid-adolescence are needed to elicit a relationship 

between risk-taking and anxiety; the literature to date has not compared how the 

relationship between risk-taking and anxiety changes throughout adolescence, and 

how this relationship relates to participants’ levels of anxiety. 

There is substantially more research examining the relationship between risk-

taking and anxiety in undergraduate samples. These studies have reliably reported 

that higher levels of anxiety in late adolescents/young adults are associated with 

reduced levels of risk-taking (Broman-Fulks et al., 2014; Giorgetta et al., 2012; Lorian 

& Grisham, 2010; Maner et al., 2007; Maner & Schmidt, 2006). Consistent with these 

findings and the study predictions, higher state anxiety levels were associated with 

reduced BART risk-taking in late adolescent females. Given that anxiety enhances 

sensitivity to potential threats (MacLeod & Mathews, 1988; Martin, Williams & Clark, 

1991), it is possible that higher levels of anxiety in late adolescent females were 

associated with greater sensitivity to potential losses on the BART, and consequently a 

reduced desire to engage in risky behaviours. Interestingly, the late adolescent females 

did not have greater anxiety levels than the other groups in this sample. Moreover, 

late adolescents’ state and trait anxiety levels were comparable to the STAI standard 

scores (Spielberger et al., 1983). Therefore, the negative relationship between risk-

taking and anxiety in late adolescent females suggests that the relationship between 

risk-taking and anxiety changes during the transition from mid-adolescence to late 

adolescence, rather than particularly high anxiety levels being associated with a 

reduction in risk-taking.  

Notably, no relationship was found between risk-taking and anxiety for late 

adolescent males. Since males develop more slowly than females (Lenroot & Giedd, 

2010), it is possible that the late adolescent males included in this study were too 

young to detect a negative relationship between risk-taking and anxiety. Alternatively, 

it is possible that the relationship between risk-taking and anxiety in undergraduate 

samples is predominantly driven by females. Previous work has largely overlooked 

gender differences in the relationship between risk-taking and anxiety in late 

adolescents/young adults, and therefore whether this is the case remains unclear. 
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Consequently, future work is needed to compare the relationship between risk-taking 

and anxiety between late adolescents (18-24 years) and young adults (25-30 years), 

and to examine the potential gender differences in such relationships, in order to 

determine why no relationship between risk-taking and anxiety was found in this 

sample of late adolescent males. 

In comparison to the mid- and late adolescents, no directional hypotheses were 

made for preadolescents since the relationship between risk-taking and anxiety had 

not been previously studied in 9-12 year olds. While higher levels of state anxiety were 

associated with reduced BART risk-taking in late adolescent females, higher levels of 

state anxiety were associated with increased BART risk-taking in preadolescent 

females. Trait anxiety was also positively associated with real world risk-taking in 

preadolescent females. Thus, these findings reveal that the relationship between risk-

taking and anxiety followed a distinct developmental trajectory for females, whereby 

risk-taking and anxiety were positively associated in preadolescence, not associated in 

mid-adolescence, and negatively associated in late adolescence. 

In contrast to preadolescent females, greater trait anxiety levels in 

preadolescent males were associated with reduced BART risk-taking. Together, these 

findings suggest that the relationship between risk-taking and anxiety is gender-

specific in 9-12 year olds. However, given that this is the first study to explore the 

relationship between risk-taking and anxiety in preadolescents, future work is needed 

to replicate these findings. Further work is also needed to understand the potential 

mechanisms that may underlie the gender-specific relationships between risk-taking 

and anxiety in preadolescents. Understanding the relationship between risk-taking 

and anxiety in preadolescents is particularly important because interventions designed 

to prevent high levels of risk-taking and anxiety in middle adolescence need to be 

implemented during preadolescence.  

 Collectively, these findings show that the relationship between risk-taking and 

anxiety changes considerably during the course of adolescence, and follows gender-

specific developmental trajectories. Importantly, depression significantly influenced 

many of the relationships between risk-taking and anxiety in both preadolescents and 

late adolescents. As discussed earlier, the STAI is thought to measure negative affect 

in addition to generalised anxiety (Andrade et al., 2001; Bados et al., 2010), which may 

explain why many of the relationships between risk-taking and anxiety changed when 

controlling for depression. 
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3.4.3. The influence of puberty on adolescent risk-taking, sensation seeking, 

impulsivity, and anxiety 

The previous sections provide insights into how risk-taking, sensation seeking, 

impulsivity, and anxiety, and the relationships between risk-taking and anxiety, 

change as a function of age and gender during the course of adolescence. Notably, 

studies have also reported that puberty has considerable affects on the development of 

risk-taking, sensation seeking, and anxiety (Collado et al., 2014; Martin et al., 2002; 

Reardon et al., 2009). Given that the age of pubertal onset varies considerably between 

individuals (Sørensen et al., 2013), it is possible that categorising participants into age 

groups may distort the potential relationships between puberty and risk-taking, 

sensation seeking, impulsivity, and anxiety. Thus, the final aim of this study was to 

examine the linear and quadratic relationships between pubertal stage and measures 

of risk-taking, sensation seeking, impulsivity, and anxiety in male and female 

adolescents aged 9-17 years while controlling for chronological age. 

The linear and quadratic relationships between pubertal stage and real world 

risk-taking were significant for males and females. The linear relationships revealed 

that greater levels of real world risk-taking were associated with more advanced 

pubertal stage for both males and females. These findings are highly consistent with 

previous studies (Collado  et al., 2014; Faden et al., 2009). The quadratic relationships 

were also significant, and revealed gender-specific trajectories for males and females. 

For males, risk-taking increased from early to mid puberty, and subsequently 

plateaued across mid to late puberty. In contrast, risk-taking steadily increased with 

more advanced pubertal stage in females. These findings are consistent with the age-

related changes in YRBSS risk-taking, where risk-taking behaviours tailed off during 

mid-adolescence for males but continued to increase between mid- and late 

adolescence for females. Notably, pubertal development explained between 10.2 and 

15.5 per cent of the variance in real world risk-taking after controlling for 

chronological age, suggesting that puberty had a considerable influence on real world 

risk-taking during adolescence. 

In contrast to YRBSS risk-taking, BART risk-taking was not significantly 

predicted by pubertal stage. The current study does not therefore support recent 

findings showing a relationship between puberty and BART risk-taking in 11-15 year 

olds (Collado et al., 2014). This discrepancy in findings may reflect slight differences in 

task demands; participants in Collado et al.’s (2014) study received a monetary prize 
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that corresponded to their total number of points whereas participants in the current 

study did not receive a monetary prize. As discussed earlier (Chapter 3.4.1.1), the 

BART and YRBSS were not correlated for any group in this cohort, and therefore the 

inconsistency in findings between the BART and YRBSS may reflect that the BART and 

YRBSS were measuring different constructs of risk-taking. 

In contrast to previous studies that have reported a strong positive relationship 

between puberty and sensation seeking (Forbes & Dahl, 2010; Martin et al., 2002), 

puberty was not associated with sensation seeking in the current study. However, as 

discussed above (Chapter 3.4.1.2), it is possible that the lack of relationships between 

sensation seeking and puberty, as well as between sensation seeking and chronological 

age, result from the BSSS being a poor measure of sensation seeking in this sample of 

adolescents. Puberty was also not associated with impulsivity in the current study. 

This finding supports previous work suggesting that puberty and impulsivity are not 

associated (Steinberg et al., 2008) 

Consistent with the study predictions and recent findings (Reardon et al., 

2009), anxiety was not associated with puberty for males. However, contrary to 

previous work (Reardon et al., 2009) and the study predictions, anxiety was not 

associated with pubertal stage for females. Thus, the findings from the current study 

suggest that anxiety levels did not increase as a function of age or puberty during the 

course of adolescence. It is possible that puberty was not related to anxiety in this 

sample of adolescents because anxiety levels were not particularly high; all groups had 

anxiety levels that were comparable to the STAI standard scores (Spielberger et al., 

1983). However, future work is needed to determine whether high anxiety levels are 

needed to elicit a relationship between puberty and anxiety. Notably, there is also 

considerable evidence that girls who begin puberty earlier than their peers are at an 

increased risk of experiencing heightened anxiety levels (Ge et al., 1996; Reardon et al., 

2009). Therefore, it is possible that earlier pubertal onset is more robustly associated 

with anxiety than current pubertal stage. 

It is beyond the scope of this study to determine the mechanisms underlying 

the relationships between puberty and real world risk-taking in adolescent females 

and males. However, it would be too simplistic to assume that the hormonal changes 

associated with puberty are directly responsible for the relationships between puberty 

and risk-taking observed in this study. The neurobiological models of adolescence 

propose that greater levels of activity in the socioemotional system underlie the 
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increases in reward-orientated and risk-taking behaviours during adolescence (Casey 

et al., 2010; Ernst et al., 2006; Nelson et al., 2005; Steinberg, 2008). Critically, 

Steinberg’s DSM (Steinberg, 2008) and the SPIN (Nelson et al., 2005) assert that these 

increases in activity in the socioemotional system result from gonadal hormones 

released during puberty. Thus, the interactions between pubertal hormones, brain 

activity, and risk-taking behaviours may be one mechanism underlying the 

relationship between pubertal stage and real world risk-taking observed in the current 

study. However, it has also been suggested that there are social and psychological 

factors that modulate the relationships between puberty and behaviour (Brooks-Gunn 

& Graber, 1994). Further work is needed to identify the puberty-dependent and 

puberty-independent affects on adolescent development, as well as the mechanisms 

that underlie such affects.  

 

3.4.4. Study limitations 

The findings from the current study need to be considered in light of the study 

limitations. First, the PDS was selected to measure pubertal status since it is widely 

used, highly reliable, and non-invasive (Shirtcliff et al., 2009). However, the PDS 

requires participants to self-report their own pubertal development, which has the 

potential to lead to inaccurate assessments, particularly in younger adolescents.  

Second, the tools that are currently available to measure risk-taking, sensation 

seeking, and anxiety in developmental samples are not optimal. Measures in 

developmental studies need to be able to accurately measure constructs across wide 

age ranges that span multiple developmental periods. In the current study, the YRBSS 

was used to assess real world risk-taking behaviours. However, the YRBSS was a binary 

measure that assessed whether or not adolescents had engaged in a limited range of 

risky behaviours during the previous 12 months. Hence, the YRBSS is unable to 

provide a comprehensive assessment of adolescents’ engagement in risk-taking 

behaviours. For instance, the YRBSS considers an adolescent who has had one 

alcoholic drink during the previous 12 months as equal to an adolescent who drinks 

alcohol on a regular basis. Moreover, the YRBSS asks participants to report their 

engagement in 10 specific behaviours. Consequently, the YRBSS is unable to assess 

adolescents’ engagement in risky behaviours that are not included in the YRBSS. Due 

to the limitations of self-report questionnaires, the BART was used to measure risk-

taking propensity. However, as discussed earlier (Chapter 3.4.1.1), the BART may not 
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be good measure of risk-taking behaviours in developmental studies; it is possible that 

age-related differences emerge due to participants’ ability to develop an optimal 

strategy. Moreover, the BSSS had very poor Cronbach’s alphas in preadolescents and 

may therefore not be an appropriate measure of sensation seeking tendencies in 

children and young adolescents. Finally, the child and adult versions of the STAI were 

used in this study because there is no available measure that can accurately assess 

anxiety symptoms in a sample of individuals aged 9-23 years. However, using the child 

and adult versions may have led to confounds, whereby participants who used the 

child version (preadolescents) self-reported higher levels of anxiety than participants 

who used the adult version (mid-adolescents, late adolescents). Together, these 

shortcomings highlight the need for tools that can accurately measure levels of risk-

taking, sensation seeking, and anxiety throughout late childhood, early adolescence, 

middle adolescence, late adolescence, and young adulthood. 

 

3.4.5. Conclusion 

Despite the caveats, the current study provides novel insights into how risk-

taking behaviours, sensation seeking, impulsivity, and anxiety levels change as a 

function of age, gender, and puberty during adolescence. Moreover, the current study 

represents an important step towards understanding the gender-specific 

developmental trajectories for the relationship between risk-taking and anxiety during 

adolescence. Notably, the neurobiological models of adolescence posit that age-

related changes in reward and threat sensitivity underlie the changes in risk-taking, 

sensation seeking, and anxiety during adolescence (Casey et al., 2010; Ernst et al., 

2006; Nelson et al., 2005; Steinberg, 2008). Accordingly, the next study presented in 

this thesis (Chapter 4) examined adolescents’ anticipatory ERP responses to rewarding 

and threating outcomes in the same cohort of adolescents in order to investigate 

whether anticipatory neural responses to reward and threat correspond to the age- and 

gender-related changes observed in the current study. 
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Abstract 

This study examined whether age-related changes in reward- and threat-related 

anticipatory processes can partially account for the developmental differences in risk-

taking behaviours and anxiety levels found in this sample of adolescents (Chapter 3). 

This was investigated by examining reinforcement-dependent potentiation to 

discriminative stimuli (SD) that predicted rewarding or threatening outcomes. To that 

end, early (N170) and late (LPP) ERPs that are modulated by motivationally salient 

stimuli were examined in 30 preadolescents (9-12 years; 15 females), 30 mid-

adolescents (13-17 years; 15 females), and 34 late adolescents (18-23 years; 18 

females) while they completed an instrumental task in which they emitted or omitted 

a motor response to obtain rewards and avoid losses. The LPP, but not the N170, 

showed age, but not gender, differences in reinforcement-dependent potentiation; 

preadolescents, mid-adolescents, and late adolescents showed potentiation to SD that 

predicted a threat, but only preadolescents and mid-adolescents showed potentiation 

to SD that predicted a reward. Notably, LPP potentiation was not modulated by 

participants’ pubertal stage, risk-taking behaviours, or anxiety levels. Overall, these 

findings provide evidence that adolescents show anticipatory biases not just to 

reward-related cues but also to avoidance-related cues. These findings therefore 

challenge the neurobiological models asserting that adolescent behaviour is solely 

modulated by a reward bias. 
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4.1. Introduction 

This study had four aims. Firstly, this study aimed to examine age- and gender-

related changes in the reinforcement-dependent potentiation of the N170 and LPP 

ERPs to discriminative stimuli (SD) that predicted rewarding or threatening outcomes 

in adolescents aged 9-23 years. Secondly, this study aimed to examine the functional 

significance of N170 and LPP reinforcement-dependent potentiation by assessing the 

relationships between ERP potentiation to SD that predicted rewarding and 

threatening outcomes and participants’ reaction times for corresponding conditions. 

Thirdly, this study aimed to assess whether N170 and LPP potentiation to rewarding 

and threatening outcomes was associated with participants’ risk-taking behaviours 

and anxiety levels, respectively. Finally, this study aimed to examine the relationships 

between pubertal stage and ERP potentiation to SD that predicted rewarding and 

threatening outcomes in male and female adolescents aged 9-17 years while 

controlling for chronological age. 

The introduction to this study begins by outlining the premise of the current 

study (Chapter 4.1.1). This introduction then discusses what is currently known about 

the development and functional significance of the N170 (Chapter 4.1.2) and LPP 

(Chapter 4.1.3), and the benefits of using instrumental tasks to explore anticipatory 

ERP responses to rewarding and threatening outcomes (Chapter 4.1.4). Next, this 

introduction discusses the potential role of puberty in the development of the N170 

and LPP (Chapter 4.1.5), and finally, this introduction outlines the aims and 

hypotheses of the current study (Chapter 4.1.6). 

 

4.1.1. Current models of the approach-avoidance systems during adolescence 

The Triadic Model of adolescence asserts that adolescent risk-taking behaviour 

results from a hyperresponsive approach system combined with a hyporesponsive 

avoidance system (Ernst et al., 2006; Ernst et al., 2011). In contrast to this idea, we 

recently found that adolescents (12-15 years) had greater reinforcement-dependent 

potentiation of the N170 to SD that predicted a threatening outcome than young adults 

(18-32 years) (Levita et al., 2014). This finding raised three interesting questions that 

warrant further investigation. First, how does enhanced potentiation to SD that predict 

threatening outcomes fit with the neurobiological models suggesting that adolescents 

have a hyporesponsive avoidance system (Ernst et al., 2006; Ernst et al., 2011)? Second, 

do adolescents also show enhanced potentiation to SD that predict rewarding 
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outcomes, and if so, how does the relationship between reward- and threat-related 

potentiation change during the course of adolescence? Third, are there gender 

differences in potentiation to SD that predict rewarding and threatening outcomes that 

can help explain why males are more likely to engage in risk-taking behaviours and 

females are more likely to experience greater anxiety levels (Byrnes et al., 1999; 

Lewinsohn et al., 1998)?  

The current study was designed to address these questions, and examined 

reinforcement-dependent potentiation to visual cues that predicted rewarding and 

threatening outcomes in males and females during three distinct stages of 

adolescence: preadolescence (9-12 years), mid-adolescence (13-17 years), and late 

adolescence (18-23 years). In order to examine the time course of these processes, 

reinforcement-dependent potentiation was indexed by early (N170) and late (LPP) 

ERPs that have been shown to be modulated by motivationally salient stimuli (Keil et 

al., 2002; Levita et al., 2014; Rellecke, Sommer & Schacht, 2013; Sabatinelli, Lang, Keil 

& Bradley, 2007; Schupp et al., 2000). 

 

4.1.2. N170 

The N170 is a negative visual component that peaks approximately 170 ms post 

stimulus onset. N170 amplitudes are maximal in occipitotemporal regions, with source 

localisation studies reporting that the N170 component originates from the superior 

temporal sulcus and fusiform gyrus (Sadeh et al., 2010). The N170 has been shown to 

reflect early visual processing and has greater amplitudes in response to human faces 

compared to non-face stimuli (Bentin, Allison, Puce, Perez & McCarthy, 1996; Jeffreys, 

1989). Notably, greater N170 amplitudes are also elicited by conditioned and 

unconditioned emotional stimuli compared to control stimuli, including learned 

danger cues (Dolan, Heinze, Hurlemann & Hinrichs, 2006; Levita et al., 2014; 

Pizzagalli et al., 2003) and emotional facial expressions (Batty & Taylor, 2003; Blau, 

Maurer, Tottenham & McCandliss, 2007; Hinojosa, Mercado & Carretié, 2015; Rellecke 

et al., 2013; Schyns, Petro & Smith, 2007). Potentiation of early visual components, 

such as the N170, to motivationally salient stimuli is thought to result from dynamic 

re-entrant processing loops between the amygdala and visual cortex (Dolan, 2002; 

Vuilleumier, 2005). These re-entrant processing loops modulate cortical firing in the 

visual cortex to facilitate the processing of salient stimuli (Keil et al., 2009; Sabatinelli, 

Lang, Bradley, Costa & Keil, 2009). 
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Developmentally, the N170 has been identified in children as young as 4 years 

old (Batty & Taylor, 2006; Taylor et al., 2001). It has been widely reported that N170 

amplitudes reduce in size and become more negative during the transition from late 

childhood to adulthood (Hileman, Henderson, Mundy, Newell & Jaime, 2011; Levita et 

al., 2014; Taylor et al., 1999). These age-related changes in N170 amplitudes are 

thought to reflect developments in white and grey matter during childhood and 

adolescence (see Chapter 1.4). The N170 seems to have a similar function throughout 

development, with face and emotional stimuli eliciting larger N170 amplitudes than 

non-face and unemotional stimuli (Levita et al., 2014; Taylor et al., 2001). 

 

4.1.3. LPP 

In contrast to the N170, the LPP is a slow, positive component that emerges 

300-400 ms post stimulus onset and usually lasts for the duration of the stimulus 

presentation (Cuthbert et al., 2000). However, like the N170, studies have reported that 

the LPP is potentiated in response to salient stimuli; LPP amplitudes are greater for 

positive and negative visual stimuli compared to neutral visual stimuli (Cuthbert et al., 

2000; Schupp et al., 2000; Schupp, Junghofer, Weike & Hamm, 2004). It has therefore 

been suggested that the LPP reflects selective attention to motivationally salient 

stimuli (Cuthbert et al., 2000; Schupp, Flaisch, Stockburger & Junghöfer, 2006). The 

LPP has maximal amplitude around the midline over the parietal cortex. Despite this, a 

wide neural network generates the LPP, which involves concurrent activity in brain 

regions associated with visual and attentional processing, including the lateral 

occipital, parietal, and inferotemporal cortices, as well as in brain regions associated 

with emotional processing, including the orbitofrontal cortex, insula, anterior 

cingulate cortex, ventral striatum, and amygdala (Liu, Huang, McGinnis-Deweese, Keil 

& Ding, 2012; Moratti, Saugar & Strange, 2011; Sabatinelli, Keil, Frank, & Lang, 2013; 

Sabatinelli et al., 2007). It has been suggested that greater coupling between these 

regions underlies enhanced LPP amplitudes to emotional stimuli compared to neutral 

stimuli (Moratti et al., 2011). 

Like the N170, the LPP has been identified in children as young as 4 years old 

(Hua et al., 2014). Since the N170 and LPP have both been observed in young children, 

they are good candidates for examining how neural responses to salient stimuli change 

across development (Nelson & McCleery, 2008). The LPP is thought to have a similar 

function in children, adolescents, and adults, whereby positively and negatively 
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valenced visual stimuli elicit larger LPP amplitudes than neutral visual stimuli (Dennis 

& Hajcak, 2009; Hajcak & Dennis, 2009; Hua et al., 2014; Kujawa, Klein & Hajcak, 

2012; Kujawa, Klein & Proudfit, 2013; Solomon, DeCicco & Dennis, 2012). 

Developmental differences have also been observed, with LPP amplitudes decreasing 

throughout childhood and adolescence (Kujawa et al., 2012; MacNamara et al., 2016). 

In addition, the topography of the LPP changes with age; maximal LPP amplitudes 

shift from occipitoparietal regions in children and adolescents (Kujawa et al., 2012; 

Kujawa et al., 2013) to more centroparietal regions in adults (Hajcak, Weinberg, 

MacNamara & Foti, 2012). The developmental changes in the LPP are consistent with 

the changes in brain structure, function, and re-organisation during adolescence 

(Thompson et al., 2000). The human brain matures in a back-to-front fashion, with 

occipital areas maturing first and prefrontal areas maturing last (Gogtay et al., 2004); 

the PFC undergoes a protracted development across childhood and adolescence that 

extends well into the third decade of life (Gotgay et al., 2004; Huttenlocher, 1979; see 

Chapter 1.4). A broad frontal-parietal-occipital-limbic network has been shown to 

generate and modulate the LPP (Liu et al., 2012; Moratti et al., 2011). Thus, it is 

possible that changes in LPP topography are the result of the LPP becoming more 

reliant on prefrontal regions as the PFC matures. 

 

4.1.4. N170 and LPP: classical and instrumental conditioning 

This study aimed to examine the age- and gender-related changes in 

anticipatory representations to rewarding and threatening outcomes during the course 

of adolescence, as indexed by the N170 and LPP. Associative learning tasks, i.e., 

classical and instrumental conditioning, provide an ideal way of dissociating the 

neural activity associated with anticipatory processes from neural activity associated 

with consummatory processes (see Chapter 1.7.1). Aversive classical conditioning 

tasks in adults have revealed that both the N170 (Dolan et al., 2006; Pizzagalli et al., 

2003) and LPP (Franken, Huijding, Nijs & van Strien, 2011; Pastor et al., 2015; 

Pizzagalli et al., 2003) are potentiated to conditioned stimuli that predict the onset of a 

threatening unconditioned stimulus compared to control stimuli. These findings 

therefore suggest that both early sensory and late cognitive processes are modulated 

when adults anticipate threatening outcomes. Potentiation of such processes is 

thought to reflect motivated attention, where cues that signal potential threat engage 

attentional resources in order to facilitate appropriate survival behaviours (Lang, 
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Bradley, & Cuthbert, 1997). In contrast to aversive classical conditioning, the ERP 

components modulated by reward anticipation in appetitive classical conditioning 

tasks remain largely unexplored. Initial evidence in adults suggests that the P3b, a late 

positive component related to the LPP, has greater amplitudes to visual cues signalling 

a rewarding outcome compared to a neutral outcome (Franken, van Strien, Bocanegra 

& Huijding, 2011). 

Crucially, actions are guided by the anticipation of outcomes (Elsner & 

Hommel, 2001). Thus, biases in outcome anticipation are thought to have a cascading 

effect on action selection, preparation, and implementation (Hegdé & Felleman, 2007; 

Freese & Amaral, 2005; Lamme & Roelfsema, 2000; Lang & Bradley, 2010; Sugase et 

al., 1999; Vuilleumier, 2005). Indeed, biases in outcome anticipation and suboptimal 

action selection are thought to underlie high levels of risk-taking and anxiety. 

Specifically, engagement in risky behaviours and related pathologies such as gambling 

disorder and substance abuse are thought to be driven by a strong preference for 

immediate over delayed rewards, which often results in impulsive behaviour (Petry, 

2001). Moreover, anxiety disorders are characterised by avoidance behaviours, 

whereby individuals actively or passively avoid situations or stimuli they anticipate to 

be threatening or harmful (Salkovskis, 1991).  

Instrumental conditioning tasks provide a way to examine anticipatory neural 

activity to cues that signal the onset of rewarding or threatening outcomes that are 

conditional on actions (Skinner, 1948; see Chapter 1.7.1). Instrumental tasks therefore 

provide a way to examine the functional significance of reward- and threat-related 

anticipatory neural activity, and its possible role in guiding action-outcome 

behaviours. Accordingly, this study used an instrumental task to investigate 

reinforcement-dependent potentiation to SD that predicted either rewarding or 

threatening outcomes to determine whether reward- and threat-related anticipatory 

activity could account for the developmental differences in risk-taking and anxiety 

found in this sample of adolescents (Chapter 3).  

There is currently a scarcity of ERP studies examining anticipatory neural 

activity using instrumental tasks in both adolescents and adults. To the author’s 

knowledge, only one study has examined modulation of the N170 in an instrumental 

task (Levita et al., 2014), and no study to date has examined modulation of the LPP in 

an instrumental task. However, there is some evidence in adults that the P3b has 

greater amplitudes to visual cues that signal a rewarding outcome in instrumental 
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tasks (Broyd et al., 2012; Goldstein et al., 2006; Santesso et al., 2012). Thus, the current 

study provides novel insights into the role of the N170 and LPP in reward- and threat-

related anticipatory processes associated with specific response-outcome 

contingencies. 

Notably, fMRI studies have reported that mid-adolescents have greater activity 

in subcortical limbic regions when anticipating rewarding and threatening outcomes 

in instrumental tasks compared to younger and older participants (Galván & 

McGlennen, 2013; Padmanabhan et al., 2011). Studies have also reported that reward- 

and threat-related subcortical activity is associated with risk-taking behaviours and 

anxiety levels during adolescence (Barkley-Levenson & Galván, 2014; Braams et al., 

2015; Galván et al., 2007; Hare et al., 2008). Thus, examining reward- and threat-

related potentiation of the N170 and LPP in preadolescents, mid-adolescents, and late 

adolescents provided a way to assess whether N170 and LPP potentiation peaks during 

mid-adolescence compared to early and late adolescence, and whether this peak was 

associated with participants’ risk-taking behaviours and anxiety levels.  

  

4.1.5. The influence of puberty on N170 and LPP potentiation 

The onset of puberty varies markedly between individuals; puberty can begin 

any time between the ages of 8 and 13 years for healthy females and between 9 and 14 

years for healthy males (Sørensen et al., 2013). Thus, chronological age and pubertal 

development are highly dissociable during adolescence (Marshall & Tanner, 1969; 

Marshall & Tanner, 1970). Notably, there is converging evidence to suggest that more 

advanced pubertal status is linked to greater levels of reward- and threat-related 

neural activity, risk-taking behaviours, and anxiety levels (Braams et al., 2015; Collado 

et al., 2014; Moore et al., 2012; Reardon et al., 2009). Consistently, pubertal stage was 

positively associated with real world risk-taking behaviours in this sample of 

adolescents (Chapter 3). Despite this, the influence of puberty on ERPs that are 

modulated by affective stimuli has received surprisingly little attention. To date, no 

study has investigated the relationship between puberty and N170 amplitude, and only 

one study has assessed the relationship between puberty and LPP amplitude (Nelson, 

Perlman, Hajcak, Klein & Kotov, 2015). Interestingly, Nelson et al. (2015) reported no 

affect of pubertal stage on LPP amplitudes in response to affective pictures. However, 

this study was limited to females aged 13.5–15.5 years. Therefore, the influence of 

puberty on the development of the LPP and N170 during adolescence requires further 



Chapter 4  ERPs reward and threat 

113 

investigation. Consequently, the current study aimed to examine the relationships 

between pubertal stage and ERP potentiation to SD that predict rewarding and 

threatening outcomes in male and female adolescents aged 9-17 years while 

controlling for chronological age. 

 

4.1.6. The current study 

In the current study, 31 preadolescents aged 9-12 years (16 females, 15 males), 

30 mid-adolescents aged 13-17 years (15 females, 15 males), and 34 late adolescents 

aged 18-23 years (18 females, 16 males) completed an instrumental conditioning task 

while having their brain activity measured using EEG. In this task, participants learned 

to emit or omit a motor response to SD to either obtain a reward (winning points) or 

avoid a threat (losing points). Participants also had to emit or omit a motor response 

in response to two control cues that did not predict the onset of a rewarding or 

threatening outcome. The control cues provided a way to determine whether age-

related changes in the N170 and LPP resulted from differences in the potentiation of 

anticipatory responses to SD or from developmental differences in motor, motor-

preparation, or visual processes associated with an instrumental procedure. 

Participants also completed a battery of self-report questionnaires measuring risk-

taking, anxiety, and depression, and a behavioural task measuring risk-taking 

tendencies (Chapter 3). 

This study had four aims. The primary aim of this study was to examine age- 

and gender-related changes in the potentiation of N170 and LPP amplitudes to SD 

compared to control stimuli. The age- and gender-related differences in N170 and LPP 

amplitudes were also explored. Based on the research discussed above, it was predicted 

that: (1) N170 and LPP amplitudes would be potentiated to SD predicting rewarding 

and threatening outcomes compared to control cues; (2) reinforcement-dependent 

potentiation of the N170 and LPP would be greater in mid- adolescents compared to 

preadolescents and late adolescents; (3) irrespective of condition, N170 and LPP 

amplitudes would decrease from preadolescence to late adolescence (Hileman et al., 

2011; Kujawa et al., 2012; Levita et al., 2014; MacNamara et al., 2016); (4) males would 

show greater N170 and LPP reinforcement-dependent potentiation to SD predicting a 

rewarding outcome, whereas females would show greater N170 and LPP 

reinforcement-dependent potentiation to SD predicting a threatening outcome (Byrnes 

et al., 1999; Lewinsohn et al., 1998). 
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The second aim of this study was to examine the functional significance of 

N170 and LPP reinforcement-dependent potentiation by assessing the relationships 

between ERP potentiation to SD and participants’ reaction times for corresponding 

conditions. It was predicted that reaction time would be negatively associated with 

N170 and LPP potentiation for all groups. Moreover, if mid-adolescents are 

hypersensitive to rewards (Casey et al., 2010; Ernst et al., 2006; Nelson et al., 2005; 

Steinberg et al., 2008) and hypersensitive to threats (Casey et al., 2010; Levita et al., 

2014), it is possible that mid-adolescents will have stronger associations between 

reward- and threat-related ERP potentiation and reaction times (i.e., greater ERP 

potentiation associated with faster reactions times) than preadolescents and late 

adolescents.  

The third aim of this study was to assess whether N170 and LPP potentiation to 

rewarding and threatening outcomes was associated with risk-taking behaviours and 

anxiety levels, respectively. It was predicted that N170 and LPP potentiation to 

rewarding outcomes would be positively associated with risk-taking behaviours, and 

N170 and LPP potentiation to threatening outcomes would be positively associated 

with anxiety levels. It was also predicted that mid-adolescents would show stronger 

associations between ERP potentiation and measures of risk-taking and anxiety than 

preadolescents and late adolescents, and that females would be more likely to show 

relationships between threat-related activity and anxiety whereas males would be 

more likely to show relationships between reward-related activity and risk-taking. 

The fourth and final aim of this study was to examine the relationships 

between pubertal stage and ERP potentiation to SD that predict rewarding and 

threatening outcomes in male and female adolescents aged 9-17 years while 

controlling for chronological age. Since more advanced pubertal stage has been 

associated with greater levels of reward- and threat-related neural activity (Braams et 

al., 2015), it was predicted that more advanced pubertal status would be associated 

with greater levels of N170 and LPP potentiation to SD that predict rewarding and 

threatening outcomes. 

 

4.2. Method 

4.2.1. Participants 

The same cohort of participants took part in this study as in Chapter 3. In total, 

ninety-five volunteers aged 9-23 years old participated in the current study. One 
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participant (female aged 10 years) was excluded due to excessive EEG artefacts. 

Participant demographics for the final sample are displayed in Table 4.1. Participants 

were split into three age groups: preadolescents aged 9-12 years; mid-adolescents 

aged 13-17 years; and late adolescents aged 18-23 years. Detailed participant 

information is reported in Chapter 2.1. 

 

4.2.2. Procedure 

The procedure is reported in Chapter 2.2. 

 

4.2.3. Instrumental conditioning task 

The instrumental conditioning task used in this study was an extension of a 

validated avoidance paradigm used previously in a developmental EEG study (Levita et 

al., 2014) and fMRI study in adults (Levita et al., 2012). The instrumental task was 

composed of a reward block and an avoidance block. Both the reward and avoidance 

blocks included two SD and two control stimuli. The SD predicted a positive outcome 

(winning 10 points) in the reward block (RewardGo, RG; RewardNoGo, RN) and a negative 

outcome (losing 10 points) in the avoidance block (AvoidanceGo, AG; AvoidanceNoGo, 

AN). Participants were required to make the correct motor action (either emitting or 

Table 4.1 
Participant demographics 

    Risk-taking behaviours  
M [95% CI] 

 Anxiety 
M [95% CI] 

Age Group Gender n Age 
M (SD) 

BART 
Pumps 

BART 
Points 

BART 
Balloons YRBSS  STAI-T STAI-T 

HADS-D 
Preadolescents Females 15 10.80 

(1.26) 
38.24 
[31.56, 
45.18] 

5542.67 
[4513.01, 
6528.28] 

7.07 
[5.13, 
9.40] 

0.53 
[0.20, 
0.87] 

 54.89 
[50.44, 
59.34] 

58.19 
[51.87, 
65.49] 

          Males 15 10.53 
(1.30) 

40.90 
[34.49, 
46.68] 

6024.00 
[5165.89, 
6810.72] 

9.00 
[7.13, 
11.12] 

0.93 
[0.47, 
1.40] 

 58.11 
[52.58, 
64.22] 

58.88 
[54.59, 
63.47] 

           
Mid-
adolescents 

Females 15 14.67 
(1.59) 

38.29 
[32.04, 
45.01] 

5700.67 
[4694.40, 
6797.81] 

8.13 
[6.73, 
9.60] 

1.87 
[1.27, 
2.53] 

 54.67 
[48.19, 
61.48] 

55.44 
[50.81, 
60.23] 

          
Males 15 14.80 

(1.42) 
41.11 
[34.31, 
47.51] 

5949.33 
[4957.31, 
6836.17] 

8.67 
[6.73, 
10.56] 

4.00 
[2.80, 
5.13] 

 49.33 
[41.91, 
57.34] 

46.31 
[39.61, 
52.66] 

           
Late 
Adolescents 

Females 18 20.39 
(1.38) 

46.63 
[40.23, 
53.12] 

7034.44 
[6054.39, 
7936.30] 

9.28 
[7.89, 
10.67] 

4.22 
[3.50, 
4.94] 

 52.29 
[45.14, 
59.73] 

52.52 
[47.25, 
57.51] 

          
Males 16 21.00 

(1.55) 
48.96 
[42.30, 
55.39] 

6997.50 
[6308.23, 
7722.86] 

10.50 
[8.50, 
12.36] 

3.25 
[2.25, 
4.25] 

 53.52 
[46.80, 
59.84] 

51.55 
[45.06, 
59.02] 

Note. BART Pumps = BART number of adjusted pumps; BART Points = BART total points won; BART Balloons 
= BART number of burst balloons; YRBSS = Youth Risk Behaviour Surveillance Survey; STAI-T = State Trait 
Anxiety Inventory-Trait Anxiety; STAI-T HADS = State Trait Anxiety Inventory-Trait Anxiety controlling for 
Hospital Anxiety and Depression Scale-Depression Scale. 95% = bootstrapped 95% confidence intervals. 
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omitting an action) in order to win points (reward block) or avoid losing points 

(avoidance block). The two control stimuli were not associated with rewarding or 

threatening outcomes (ControlGo, CG; ControlNoGo, CN). See Chapter 2.4.2.1 for full 

details regarding the instrumental conditioning task. 

 

4.2.4. Apparatus 

The apparatus is reported in Chapter 2.4.2.1.1. 

 

4.2.5. EEG recording 

The EEG recording is reported in Chapter 2.4.1. 

 

4.2.6. EEG preprocessing 

The EEG preprocessing stream is reported in Chapter 2.4.3. Once the EEG data 

had been cleaned, epoched, and averaged, electrodes were clustered on the basis of the 

topographical maps and previous studies (e.g., Blau et al., 2007; Cuthbert et al., 2000; 

Hua et al., 2014) in order to reduce the number of statistical comparisons. The N170 

was clustered using electrodes O1, PO3, and PO7 in the left hemisphere, and O2, PO4, 

and PO8 in the right hemisphere. Selecting both right and left hemisphere electrode 

clusters for the N170 provided a way to assess laterality effects. The LPP was identified 

Figure 4.1 Electrode clusters for the N170 (a) and LPP (b). 
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at central parietal electrodes and therefore Pz, P1, P2, and POz were clustered for the 

LPP analyses. Figure 4.1 displays the electrode clusters for the N170 and LPP. Based on 

previous ERP work (Blau et al., 2007; Cuthbert et al., 2000; Kujawa et al., 2012) and the 

ERP waveforms, time windows of 150-220 ms and 400-700 ms were selected for the 

N170 and LPP, respectively. Since peak ERP amplitudes are highly influenced by noise 

(Luck, 2014; Woodman, 2010), rectified area under the curve within each time window 

was used to quantify ERP amplitudes.  

 

4.2.7. Behavioural measures 

4.2.7.1. Risk-taking behaviours 

 Risk-taking behaviours were measured using the BART (Lejuez et al., 2002) and 

YRBSS (Aklin et al., 2005) (see Chapter 2.3.1). 

 

4.2.7.2. Anxiety and depression 

Anxiety was measured using the STAI (Spielberger et al., 1983; see Chapter 

2.3.4). Only the STAI-T was used in the current study since participants completed the 

behavioural measures on a different day to the EEG session. Depression was measured 

using the HADS-D (Zigmond & Snaith, 1983; Chapter 2.3.5).  

 

4.2.7.3. Pubertal development 

Pubertal development was assessed in 9-17 year olds using the PDS (Petersen 

et al., 1988; see Chapter 2.3.6). Consistent with previous studies (Marshall & Tanner, 

1969; Marshall & Tanner, 1970), an independent t-test revealed that PDS scores were 

slightly higher for females aged 9-17 years (M = 2.73, 95% CI [2.41, 3.02]) compared to 

males aged 9-17 years (M = 2.30, 95% CI [2.03, 2.58]) (t(58) = 2.05, p = 0.045), 

indicating that females were at a slightly later stage in their pubertal development 

compared to males. 

 

4.3. Results 

4.3.1. Instrumental task performance 

Task performance was indexed by accuracy and reaction time. Accuracy scores 

reflect the percentage of correct responses for each condition. Reaction times were 

measured for conditions that required a motor response (RewardGo, AvoidanceGo, 

ControlGo), and reflect the time it took for participants to make a motor response while 
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the yellow fixation cross was displayed on the screen. Only trials with correct 

behavioural responses were included in the reaction time analyses. 

 

4.3.1.1. Accuracy  

Figure 4.2 and Supplementary Table 4.1 (Appendix 2) display the means and 

95% bootstrapped confidence intervals for task accuracy. To assess the age- and 

gender-related differences in task accuracy, two mixed-design ANOVAs were 

conducted with Condition (reward block: RewardGo, RewardNoGo, ControlGo, ControlNoGo; 

avoidance block: AvoidanceGo, AvoidanceNoGo, ControlGo, ControlNoGo) as the within-

group factor, and Gender (females, males) and Age Group (preadolescents, mid-

adolescents, late adolescents) as the between-group factors. Separate ANOVAs were 

conducted for the reward and avoidance blocks. Greenhouse-Geisser corrections are 

reported where sphericity has been violated. ANOVA pairwise comparisons were 

corrected for multiple comparisons using the B-H procedure (Benjamini & Hochberg, 

1995; see Chapter 2.5). 

Figure 4.2 Group means for task accuracy for the reward block (a) and avoidance block (b), and 
for reaction time for the reward block (c) and avoidance block (d). Error bars represent 95% 
bootstrapped confidence intervals. 
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Task accuracy was very high, with all groups responding correctly to at least 

85% of trials for all conditions. Despite this, the ANOVAs revealed small, but 

significant, differences between conditions and age groups for the reward and 

avoidance blocks. The findings show that preadolescents made significantly more 

errors in both the reward and avoidance blocks compared to mid-adolescents and late 

adolescents. Furthermore, all groups made significantly more errors in response to 

conditions that required a motor response compared to conditions that required 

inhibition of a motor response. No gender differences were observed in task accuracy. 

 

4.3.1.1.1. Reward block  

The ANOVA for the reward block revealed a main effect of Age Group (F(2, 88) = 

14.50, p < 0.001, ηp
2  = 0.25), revealing that preadolescents (M = 93.82, 95% CI [92.59, 

95.04]) made slightly more errors than both mid-adolescents (M = 97.35, 95% CI 

[96.12, 98.57]) (p < 0.001) and late adolescents (M = 98.15, 95% CI [97.00, 99.30]) (p < 

0.001). By contrast, no difference was found between mid-adolescents and late 

adolescents (p = 0.345). A main effect of Condition was also found (F(1.64, 143.91) = 

36.01, p < 0.001, ηp
2  = 0.29). The pairwise comparisons revealed that all conditions 

significantly differed from each other (RewardGo: M = 96.80, 95% CI [96.13, 97.46]; 

RewardNoGo: M = 98.14, 95% CI [97.57, 98.70]; ControlGo: M = 93.14, 95% CI [91.64, 

94.64]; ControlNoGo: M = 97.68, 95% CI [96.90, 98.45]), except RewardNoGo and 

ControlNoGo (p = 0.146). These findings reveal that, across age groups, participants 

made more errors in response to ControlGo cues compared to the other conditions 

(RewardGo, RewardNoGo, ControlNoGo). Participants also made more errors in response to 

RewardGo cues than for RewardNoGo and ControlNoGo cues. Finally, no differences were 

found between the RewardNoGo and ControlNoGo cues.  

The Condition and Age Group main effects for the reward block were qualified 

by a Condition by Age Group interaction (F(3.27, 143.91) = 7.46, p < 0.001, ηp
2  = 0.15). 

This interaction was followed-up with separate repeated measures ANOVAs for each 

of the age groups, with Condition as the within-group factor. The follow-up ANOVAs 

revealed a main effect of Condition for preadolescents (F(1.35, 39.02) = 20.03, p < 0.001, 

ηp
2  = 0.41), mid-adolescents (F(1.98, 57.47) = 12.16, p < 0.001, ηp

2  = 0.30) and late 

adolescents (F(1.62, 53.36) = 4.89, p = 0.003 , ηp
2  = 0.13). These findings show that all 

groups made significantly more errors in response to ControlGo cues compared to the 

other conditions (RewardGo, RewardNoGo, ControlNoGo). Mid-adolescents and late 
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adolescents also made more errors in response to RewardGo cues than cues requiring 

inhibition of a motor response (RewardNoGo, ControlNoGo). 

 

4.3.1.1.2. Avoidance block 

The ANOVA for the avoidance block also revealed a main effect of Age Group 

(F(2, 88) = 12.24, p < 0.001, ηp
2  = 0.22), revealing that preadolescents (M = 95.30, 95% 

CI [94.18, 96.41]) made slightly more errors than both mid-adolescents (M = 98.51, 

95% CI [97.40, 99.62]) (p < 0.001) and late adolescents (M = 98.77, 95% CI [97.72, 

99.81]) (p < 0.001). No difference was found between mid-adolescents and late 

adolescents (p = 0.739). A main effect of Condition was also found (F(1.37, 120.59) = 

31.63, p < 0.001, ηp
2  = 0.26). The pairwise comparisons revealed that all conditions 

significantly differed from each other (AvoidanceGo: M = 97.32, 95% CI [96.55, 98.09]; 

AvoidanceNoGo: M = 99.03, 95% CI [98.71, 99.36]; ControlGo: M = 94.50, 95% CI [92.89, 

96.10]; ControlNoGo: M = 99.25, 95% CI [98.90, 99.59]), except AvoidanceNoGo and 

ControlNoGo (p = 0.146). Consistent with the reward block, these findings reveal that, 

across age groups, participants made more errors in response to ControlGo cues 

compared to the other conditions (AvoidanceGo, AvoidanceNoGo, ControlNoGo). 

Participants also made more errors in response to AvoidanceGo cues than for 

AvoidanceNoGo and ControlNoGo cues. Finally, no differences were found between the 

AvoidanceNoGo and ControlNoGo cues. Taken together with the reward block, these 

findings suggest that participants made more errors in response to cues requiring a 

motor response than to cues requiring inhibition of a motor response.  

A Condition by Age Group interaction qualified the main effects of Condition 

and Age Group (F(2.74, 120.59) = 8.37, p < 0.001, ηp
2  = 0.16). The Condition by Age 

Group interaction was followed-up with separate repeated-measures ANOVAs for each 

of the age groups, with Condition as the within-group factor. The follow-up ANOVAs 

revealed a main effect of Condition for preadolescents (F(1.28, 37.05) = 15.78, p < 0.001, 

ηp
2  = 0.35), mid-adolescents (F(1.73, 50.24) = 14.64, p < 0.001, ηp

2  = 0.34) and late 

adolescents (F(2.06, 67.98) = 11.79, p < 0.001, ηp
2  = 0.26). These findings show that all 

groups made significantly more errors in response to ControlGo cues compared to the 

other conditions (AvoidanceGo, AvoidanceNoGo, ControlNoGo). All groups also made more 

errors in response to AvoidanceGo cues than to cues requiring inhibition of a motor 

response (AvoidanceNoGo, ControlNoGo). Late adolescents also made more errors in 

response to AvoidanceNoGo cues compared to ControlNoGo cues. 
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4.3.1.2. Reaction time 

Figure 4.2 and Supplementary Table 4.1 (Appendix 2) display the means and 

95% bootstrapped confidence intervals for task reaction time. Age- and gender-related 

differences in reaction time were assessed using two mixed-design ANOVAs with 

Condition (reward block: RewardGo, ControlGo; avoidance block: AvoidanceGo, ControlGo) 

as the within-group factor, and Gender (females, males) and Age Group 

(preadolescents, mid-adolescents, late adolescents) as the between-group factors. 

Separate ANOVAs were conducted for the reward and avoidance blocks. No main or 

interaction effects were found for reaction time for either the reward or avoidance 

block, indicating that reaction times were equivalent across groups. 

 

4.3.2. N170 

4.3.2.1. N170 scalp topography 

The N170 topographical maps are displayed in Figure 4.3. Consistent with the 

N170 literature (Levita et al., 2014; Rossion et al., 2000), the N170 topographical maps 

revealed maximal activity in occipitotemporal regions. Developmental patterns were 

also observed, with neural activity in occipitotemporal regions reducing in magnitude 

across adolescence. There were similar patterns of neural activity for SD and control 

stimuli, with the difference maps revealing minimal differences between conditions. 

 

4.3.2.2. N170 amplitude 

Grand average waveforms and group means for the N170 are displayed in 

Figures 4.4 and 4.5 for the reward block and Figures 4.6 and 4.7 for the avoidance 

block. Age- and gender-related differences in N170 amplitudes were assessed using 

mixed-design ANOVAs, with Condition (reward block: RewardGo, RewardNoGo, ControlGo, 

ControlNoGo; avoidance block: AvoidanceGo, AvoidanceNoGo, ControlGo, ControlNoGo) and 

Laterality (left hemisphere, right hemisphere) as the within-group factors, and Gender 

(females, males) and Age Group (preadolescents, mid-adolescents, late adolescents) as 

the between-group factors. Since the reward block always preceded the avoidance 

block, separate ANOVAs were conducted for the reward and avoidance blocks to 

account for potential time effects. Greenhouse-Geisser corrections are reported where 

sphericity has been violated. ANOVA pairwise comparisons were corrected for multiple 

comparisons using the B-H procedure (Benjamini & Hochberg, 1995; see Chapter 2.5). 
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Figure 4.3 Scalp topography of the N170 (150-220 ms) for the reward block (a) and avoidance 
block (b). Topographical maps are shown for the SD and control stimuli, as well as for the 
differences in activity between SD and their respective control condition. RG = RewardGo; RN = 
RewardNoGo; AG = AvoidanceGo; AN = AvoidanceNoGo; CG = ControlGo; CN = ControlNoGo. 
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Figure 4.4 Grand averaged ERP waveforms (a) and N170 amplitude group means (b) during the 
reward block at the left occipitotemporal electrode cluster. The N170 was identified between 
150-220 ms post stimulus onset, and is illustrated by the grey area on the ERP waveforms. 
Rectified area under the curve was used to quantify N170 amplitudes. Error bars represent 95% 
bootstrapped confidence intervals. 
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Figure 4.5 Grand averaged ERP waveforms (a) and N170 amplitude group means (b) during the 
reward block at the right occipitotemporal electrode cluster. The N170 was identified between 
150-220 ms post stimulus onset, and is illustrated by the grey area on the ERP waveforms. 
Rectified area under the curve was used to quantify N170 amplitudes. Error bars represent 95% 
bootstrapped confidence intervals. 
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Figure 4.6 Grand averaged ERP waveforms (a) and N170 amplitude group means (b) during the 
avoidance block at the left occipitotemporal electrode cluster. The N170 was identified between 
150-220 ms post stimulus onset, and is illustrated by the grey area on the ERP waveforms. 
Rectified area under the curve was used to quantify N170 amplitudes. Error bars represent 95% 
bootstrapped confidence intervals. 
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Figure 4.7 Grand averaged ERP waveforms (a) and N170 amplitude group means (b) during the 
avoidance block at the right occipitotemporal electrode cluster. The N170 was identified 
between 150-220 ms post stimulus onset, and is illustrated by the grey area on the ERP 
waveforms. Rectified area under the curve was used to quantify N170 amplitudes. Error bars 
represent 95% bootstrapped confidence intervals. 
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The main effect of Age Group was significant for the reward block (F(2, 88) = 

12.80, p < 0.001, ηp
2  = 0.23) and the avoidance block (F(2, 88) = 8.27, p < 0.001, ηp

2  = 

0.16). For the reward block, preadolescents had greater N170 amplitudes (M = 307.80, 

95% CI [265.72, 349.88]) compared to both mid-adolescents (M = 203.37, 95% CI 

[161.29, 245.45]) (p = 0.001) and late adolescents (M = 164.23, 95% CI [124.63, 203.83]) 

(p < 0.001). No difference was found between mid-adolescents and late adolescents for 

N170 amplitudes in the reward block (p = 0.182). Similarly, for the avoidance block, 

preadolescents had greater N170 amplitudes (M = 285.46, 95% CI [240.99, 329.93]) 

compared to both mid-adolescents (M = 206.45, 95% CI [161.98, 250.92]) (p = 0.014) 

and late adolescents (M = 161.44, 95% CI [119.60, 203.28]) (p < 0.001). No difference 

was found between mid-adolescents and late adolescents for N170 amplitudes in the 

avoidance block (p = 0.146). These findings show that N170 amplitudes decreased from 

preadolescence to mid-adolescence in both the reward and avoidance blocks. No main 

effects of Condition or Gender were found for either the reward and avoidance blocks. 

Moreover, no interactions were found for the reward or avoidance blocks. Overall, 

these findings indicate that the N170 was not potentiated by visual cues predicting 

either a reward or threat. 

 

4.3.3. LPP 

4.3.3.1. LPP scalp topography 

LPP topographical maps are displayed in Figure 4.8. In accordance with 

previous work (Dennis & Hajcak, 2009; Hajcak & Dennis, 2009; Kujawa et al., 2012; 

Kujawa et al., 2013; Solomon et al., 2012), the LPP scalp topographical maps revealed 

maximal activity over central centroparietal regions for all groups. Developmental 

differences were also observed, with neural activity reducing in magnitude and 

becoming more focal in centroparietal regions throughout adolescence.  

 

4.3.3.2. LPP amplitude 

Grand average waveforms and group means for the LPP are displayed in Figures 

4.9 and 4.10 for the reward and avoidance blocks, respectively. Age- and gender-

related effects in LPP amplitudes were investigated using mixed-design ANOVAs, with 

Condition (reward block: RewardGo, RewardNoGo, ControlGo, ControlNoGo; avoidance block: 

AvoidanceGo, AvoidanceNoGo, ControlGo, ControlNoGo) as the within-group factor, and 

Gender (females, males) and Age Group (preadolescents, mid-adolescents, late 
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adolescents) as the between-group factors. As with the N170, separate ANOVAs were 

conducted for the reward and avoidance blocks to account for potential time effects. 

Greenhouse-Geisser corrections are reported where sphericity has been violated. To 

reduce the number of statistical tests, comparisons were made between SD and their 

corresponding control condition to assess reinforcement-dependent potentiation 

(RewardGo-ControlGo, RewardNoGo-ControlNoGo, AvoidanceGo-ControlGo, AvoidanceNoGo-

ControlNoGo), as well as within SD and control stimuli to assess the effects of action 

selection on LPP amplitudes (RewardGo-RewardNoGo, AvoidanceGo-AvoidanceNoGo, 

ControlGo-ControlNoGo). The B-H procedure (Benjamini & Hochberg, 1995) was used to 

correct ANOVA pairwise comparisons (see Chapter 2.5). 

For the reward block, a main effect of Condition was found (F(3, 264) = 13.78, p 

< 0.001, ηp
2  = 0.14). Pairwise comparisons revealed that LPP amplitudes were 

significantly greater for RewardGo cues (M = 1004.54, 95% CI [892.36, 1116.71]) 

compared to ControlGo cues (M = 902.15, 95% CI [799.73, 1004.58]) (p = 0.006), and for 

RewardNoGo cues (M = 884.83, 95% CI [777.86, 991.80]) compared to ControlNoGo cues (M 

= 744.84, 95% CI [655.13, 834.56]) (p = 0.001). This shows that, across all groups, LPP 

amplitudes were potentiated in response to cues that predicted a rewarding outcome 

compared to control cues. Furthermore, RewardGo cues had significantly larger LPP 

amplitudes than RewardNoGo cues (p = 0.005), and ControlGo cues had significantly larger 

LPP amplitudes than ControlNoGo cues (p < 0.001), showing that cues requiring a motor 

response had significantly larger LPP amplitudes than cues requiring the inhibition of 

a motor response. A main effect of Age Group was also found for the reward block (F(2, 

88) = 18.78, p < 0.001, ηp
2  = 0.30). Pairwise comparisons revealed that, irrespective of 

condition, preadolescents had greater LPP amplitudes (M = 1248.45, 95% CI [1088.62, 

1408.27]) compared to both mid-adolescents (M = 828.26, 95% CI [668.44, 988.09]) (p < 

0.001) and late adolescents (M = 575.56, 95% CI [425.18, 725.95]) (p < 0.001). Mid-

adolescents also had greater LPP amplitudes compared to late adolescents (p = 0.025). 

These findings reveal that LPP amplitudes decreased from preadolescence to late 

adolescence in the reward block.  
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Figure 4.8 Scalp topography of the LPP (400-700 ms) for the reward block (a) and avoidance 
block (b). Topographical maps are shown for the SD and control stimuli, as well as for the 
differences in activity between SD and their respective control condition. RG = RewardGo; RN = 
RewardNoGo; AG = AvoidanceGo; AN = AvoidanceNoGo; CG = ControlGo; CN = ControlNoGo. 
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Figure 4.9 Grand averaged ERP waveforms (a) and LPP amplitude group means (b) during the 
reward block at the centroparietal electrode cluster. The LPP was identified between 400-700 
ms post stimulus onset, and is illustrated by the grey area on the ERP waveforms. Rectified area 
under the curve was used to quantify LPP amplitudes. Error bars represent 95% bootstrapped 
confidence intervals. 
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Figure 4.10 Grand averaged ERP waveforms (a) and LPP amplitude group means (b) during the 
avoidance block at the centroparietal electrode cluster. The LPP was identified between 400-700 
ms post stimulus onset, and is illustrated by the grey area on the ERP waveforms. Rectified area 
under the curve was used to quantify LPP amplitudes. Error bars represent 95% bootstrapped 
confidence intervals. 
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The Condition by Group interaction for the reward block almost reached 

significance (F(2, 88) = 2.02, p = 0.064, ηp
2  = 0.04). To further examine this interaction, 

a repeated measures ANOVA was conducted for each age group with Condition as the 

within-group factor. A main effect of Condition was found for preadolescents (F(3, 87) 

= 6.57, p < 0.001, ηp
2  = 0.19) and mid-adolescents (F(3, 87) = 6.39, p = 0.001, ηp

2  = 0.18), 

but not for late adolescents (F(2.04, 67.31) = 2.09, p = 0.131, ηp
2  = 0.01). Pairwise 

comparisons revealed that preadolescents had greater LPP amplitudes for RewardGo 

cues (M = 1453.36, 95% CI [1199.51, 1707.21]) compared to ControlGo cues (M = 

1193.10, 95% CI [949.03, 1437.17]) (p = 0.007), and for RewardNoGo cues (M = 1285.50, 

95% CI [1048.94, 1522.06]) compared to ControlNoGo cues (M = 1061.82, 95% CI [823.73, 

1299.92]) (p = 0.010). In comparison, mid-adolescents only had greater LPP amplitudes 

for RewardNoGo cues (M = 791.59, 95% CI [610.78, 972.39]) compared to ControlNoGo cues 

(M = 677.79, 95% CI [559.50, 796.07]) (p = 0.031); no difference was found between 

RewardGo (M = 932.08, 95% CI [729.32, 1134.85]) and ControlGo cues (M = 911.59, 95% 

CI [724.40, 1098.78]) for mid-adolescents (p = 0.725). All other main effects and 

interactions for the reward block were non-significant. 

For the avoidance block, a main effect of Condition was found (F(3, 264) = 48.28, 

p < 0.001, ηp
2  = 0.35). Pairwise comparisons showed that LPP amplitudes were greater 

for AvoidanceGo cues (M = 1100.36, 95% CI [967.53, 1233.19]) compared to ControlGo 

cues (M = 974.42, 95% CI [876.31, 1072.52]) (p = 0.004), and for AvoidanceNoGo cues (M = 

855.93, 95% CI [736.01, 975.85]) compared to ControlNoGo cues (M = 637.63, 95% CI 

[557.60, 717.66]) (p < 0.001). Furthermore, AvoidanceGo cues had significantly larger 

LPP amplitudes than AvoidanceNoGo (p < 0.001), and ControlGo cues had significantly 

larger LPP amplitudes than ControlNoGo cues (p < 0.001), showing that cues requiring a 

motor response had significantly larger LPP amplitudes than cues requiring the 

inhibition of a motor response. A main effect of Age Group for the avoidance block was 

also found (F(2, 88) = 12.86, p < 0.001, ηp
2  = 0.23). Pairwise comparisons revealed that 

preadolescents had greater LPP amplitudes (M = 1211.78, 95% CI [1038.40, 1385.16]) 

compared to mid-adolescents (M = 859.17, 95% CI [685.80, 1032.55]) (p = 0.005) and 

late adolescents (M = 605.30, 95% CI [442.16, 768.44]) (p < 0.001). Mid-adolescents also 

had greater LPP amplitudes compared to late adolescents (p = 0.037). These findings 

are consistent with the reward block, and show that LPP amplitudes decreased from 

preadolescence to late adolescence. 

The main effects of Condition and Age Group for the avoidance block were 
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qualified by a Condition by Age Group interaction (F(6, 264) = 5.75, p < 0.001, ηp
2  = 

0.12). To further examine this interaction, a repeated measures ANOVA was conducted 

for each age group with Condition as the within-group factor. A main effect of 

Condition was found for preadolescents (F(3, 87) = 22.28, p < 0.001, ηp
2  = 0.44), mid-

adolescents (F(3, 87) = 22.28, p < 0.001, ηp
2  = 0.44) and late adolescents (F(3, 99) = 4.95, 

p = 0.003, ηp
2  = 0.13). Pairwise comparisons revealed that preadolescents had greater 

LPP amplitudes for AvoidanceGo cues (M = 1547.61, 95% CI [1207.03, 1888.20]) 

compared to ControlGo cues (M = 1320.16, 95% CI [1089.37, 1550.94]) (p = 0.034), and 

for AvoidanceNoGo cues (M = 1153.44, 95% CI [847.23, 1459.65]) compared to ControlNoGo 

cues (M = 825.91, 95% CI [628.77, 1023.04]) (p = 0.001). By comparison, mid-

adolescents and late adolescents only had greater LPP amplitudes for AvoidanceNoGo 

cues (mid-adolescents: M = 820.41, 95% CI [651.57, 989.25]; late adolescents: M = 

599.54, 95% CI [463.94, 735.13]) compared to ControlNoGo cues (mid-adolescents: M = 

577.90, 95% CI [454.26, 701.53]; late adolescents: M = 514.57, 95% CI [409.45, 619.69]) 

(mid-adolescents: p < 0.001; late adolescents: p = 0.046). In contrast to preadolescents, 

no differences in LPP amplitude were found between AvoidanceGo (mid-adolescents: M 

= 1054.63, 95% CI [870.07, 1239.18]; late adolescents: M = 702.29, 95% CI [547.64, 

856.93]) and ControlGo cues (mid-adolescents: M = 983.76, 95% CI [808.84, 1158.68]; 

late adolescents: M = 618.69, 95% CI [509.86, 727.52]) for either mid-adolescents (p = 

0.208) or late adolescents (p = 0.137). All other main effects and interactions for the 

avoidance block were non-significant. 

In summary, no gender differences were observed for LPP amplitudes. 

However, significant age effects were found in both the reward and avoidance blocks, 

with LPP amplitudes decreasing from preadolescence to late adolescence. Main effects 

of Condition were also observed in both the reward and avoidance blocks, revealing 

that SD had significantly greater LPP amplitudes compared to their corresponding 

control stimulus (RewardGo > ControlGo, RewardNoGo > ControlNoGo, AvoidanceGo > 

ControlGo, AvoidanceNoGo > ControlNoGo). Furthermore, in both the reward and avoidance 

blocks, conditions that required a motor response had larger LPP amplitudes than 

conditions that required inhibition of a motor response (RewardGo > RewardNoGo, 

AvoidanceGo > AvoidanceNoGo, ControlGo > ControlNoGo). For the avoidance block, a 

Condition by Age Group interaction revealed that LPP amplitudes for preadolescents 

were potentiated to SD that required emitting an action to avoid losing points, as well 

as to SD that required omitting an action to avoid losing points. By comparison, LPP 
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amplitudes for mid-adolescents and late adolescents were only potentiated to the SD 

that required omitting an action to avoid losing points. For the reward block, there was 

a trend towards a Condition by Age Group interaction. This interaction indicated that 

LPP potentiation for the reward block followed the same pattern as the avoidance 

block for preadolescents and mid-adolescents. However, LPP amplitudes were not 

potentiated for late adolescents in the reward block (see Figure 4.11 for a summary). 

 

 

 

 

Figure 4.11 Summary of the Condition by Age Group interactions for the reward block (a) and 
avoidance block (b). 
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4.3.4. Relationships between LPP potentiation and behavioural measures  

The second and third aims of this study were to explore the relationships 

between ERP potentiation and behavioural measures. Since the N170 was not 

potentiated to SD that predicted rewarding or threatening outcomes, the following 

analyses were limited to the LPP. In order to isolate LPP activity that was unique to the 

SD, difference waves were computed by subtracting control conditions from their 

corresponding SD (RewardGo-ControlGo, RewardNoGo-ControlNoGo, AvoidanceGo-ControlGo, 

AvoidanceNoGo-ControlNoGo). Pearson correlation coefficients were used to explore the 

relationships between LPP difference waves and behavioural measures. To explore 

potential age- and gender-related effects, correlations were conducted separately for 

age groups and genders. Correlations were bootstrapped and corrected for multiple 

comparisons using the B-H procedure (Benjamini & Hochberg, 1995; see Chapter 2.5). 

 

4.3.4.1. Relationships between LPP potentiation and task reaction time 

The second aim of this study was to examine the functional significance of ERP 

potentiation to SD. The SD were visual cues that signalled the onset of rewarding or 

threatening outcomes that were conditional on participants making the correct motor 

responses. Given that actions are guided by the anticipation of outcomes (Elsner & 

Hommel, 2001), it is possible that the magnitude of participants’ anticipatory 

responses to SD would be associated with how quickly they responded to target stimuli. 

To examine this idea, the functional significance of the LPP was examined by 

assessing the corresponding relationships between participants’ reaction times and 

LPP potentiation for conditions that required a motor response. Specifically, LPP 

RewardGo difference waves were correlated with reaction times to RewardGo and 

ControlGo target stimuli. Similarly, LPP AvoidanceGo difference waves were correlated 

with reaction times to AvoidanceGo and ControlGo target stimuli. Contrary to 

predictions, no relationships between LPP potentiation and reaction time were found 

for the reward or avoidance blocks. The Pearson correlation coefficients are reported 

in Supplementary Table 4.2 (Appendix 2). 

 

4.3.4.2. Relationships between LPP potentiation and measures of risk-taking and 

anxiety 

The third aim of this study was to assess whether ERP potentiation to SD that 

predicted rewarding and threatening outcomes was associated with risk-taking 
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behaviours and anxiety levels, respectively. Thus, the relationships between LPP 

potentiation to SD predicting a rewarding outcome and risk-taking behaviours (BART 

Pumps, BART Points, BART Balloons, YRBSS), as well as the relationships between 

LPP potentiation to SD predicting a threatening outcome and anxiety levels (STAI-T 

and STAI-T controlling for depression), were explored. Contrary to the predictions, no 

relationships were found for any group between LPP difference waves associated with 

rewarding outcomes and risk-taking behaviours. Similarly, no relationships were 

found for any group between LPP difference waves associated with threatening 

outcomes and anxiety levels. The Pearson correlation coefficients are reported in 

Supplementary Table 4.3 (Appendix 2). 

 

4.3.5. The influence of puberty on N170 and LPP potentiation 

The analyses so far have provided insights into the development of the N170 

and LPP in response to SD and control stimuli throughout adolescence, and the 

relationships between LPP potentiation and measures of reaction time, risk-taking, 

and anxiety. Notably, puberty is thought to contribute to the age-related changes in 

reward- and threat-related activity during adolescence. Accordingly, the final aim of 

this study was to examine whether the degree of ERP potentiation was associated with 

pubertal stage. Since there are large individual differences in the age of pubertal onset 

(Marshall & Tanner, 1969; Marshall & Tanner, 1970), it is possible that categorising 

participants into age groups may have confounded the developmental trajectories of 

the N170 and LPP. Moreover, it is possible that examining the development of the 

N170 as a function of puberty rather than age will reveal developmental differences in 

N170 potentiation. To these ends, the relationships between pubertal stage and 

potentiation of the LPP and N170 were examined in a continuous sample of females (n 

= 30, Mage = 12.73, SDage = 2.42) and males (n = 30, Mage = 12.67, SDage = 2.55) aged 9-17 

years.  

The same approach was used in this study as in Chapter 3. Since several studies 

have reported that the developmental trajectories of reward- and threat-related neural 

activity are non-linear (Braams et al., 2015; Hare et al., 2008), hierarchical polynomial 

regression analyses were conducted to assess the linear and quadratic relationships 

between puberty and potentiation of the N170 and LPP. To tease out the confounding 

affects of chronological age on pubertal development, age was entered into the first 

block of the regression analyses as a control variable, and PDS scores were entered into 
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the second block. Separate regression analyses were conducted to assess the linear and 

quadratic relationships; raw age and PDS scores were used to examine the linear 

relationships, and squared age and PDS scores were used to assess the quadratic 

relationships. The regression coefficients were bootstrapped and corrected for 

multiple comparisons using the B-H procedure (Benjamini & Hochberg, 1995; see 

Chapter 2.5). 

Contrary to predictions, the regression analyses revealed that pubertal stage 

did not predict N170 or LPP potentiation in either male or female adolescents aged 9-

17 years. These findings suggest that the N170 was not modulated in this task, and 

that the developmental differences in reward- and threat-related LPP potentiation 

resulted from changes in age rather than pubertal stage. The intercorrelations for the 

N170 and LPP are reported in Supplementary Table 4.4 (Appendix 2). The regression 

coefficients for the N170 and LPP are reported in Supplementary Tables 4.5 and 4.6, 

respectively (Appendix 2).  

 

4.4. Discussion 

This study aimed to examine age- and gender-related differences in 

anticipatory representations to rewards and threats as measured by early 

occipitotemporal (N170) and late centroparietal (LPP) ERPs to SD that predicted 

rewarding or threatening outcomes. This study stemmed from our previous work 

(Levita et al., 2014), and was designed to address the following questions: (1) how does 

enhanced potentiation to SD that predict threatening outcomes fit with the 

neurobiological models suggesting that adolescents have a hyporesponsive avoidance 

system (Ernst et al., 2006; Ernst et al., 2011)?; (2) do adolescents also show enhanced 

potentiation to SD that predict rewarding outcomes, and if so, how does the 

relationship between reward- and threat-related potentiation change during the 

course of adolescence?; and (3) are there gender differences in potentiation to SD that 

predict rewarding and threatening outcomes that can help explain why males are more 

likely to engage in risk-taking behaviours and females are more likely to experience 

greater anxiety levels (Byrnes et al., 1999; Lewinsohn et al., 1998)? To these ends, 

preadolescents (9-12 years), mid-adolescents (13-17 years), and late adolescents (18-

23 years) completed an instrumental conditioning task while having their brain 

activity measured using EEG. 

Contrary to the study predictions and our previous findings (Levita et al., 2014), 
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the N170 was not potentiated to SD that predicted rewarding outcomes or to SD that 

predicted threating outcomes for any age group. In contrast, LPP amplitudes were 

potentiated to SD that predicted rewarding outcomes and to SD that predicted 

threatening outcomes relative to the control stimuli. Critically, the magnitude of LPP 

potentiation to the SD was found to change across the three stages of adolescence, and 

was different in response to stimuli that required a motor response compared to 

stimuli that required inhibition of a motor response. In contrast to the study 

predictions, LPP potentiation to SD predicting rewarding and threatening outcomes 

was not modulated by pubertal stage, task reaction time, risk-taking behaviours, or 

anxiety levels for any group. 

 

4.4.1. LPP 

An instrumental task was used to examine anticipatory neural activity to visual 

cues predicting rewarding and threatening outcomes. As predicted, and in line with 

previous aversive classical conditioning studies (Pastor et al., 2015; Pizzagalli et al., 

2003), LPP amplitudes were potentiated in centroparietal areas for SD that predicted a 

threatening outcome compared to control stimuli. Notably, LPP amplitudes were also 

potentiated in centroparietal areas for SD that predicted a rewarding outcome 

compared to control stimuli. Together, these findings support previous developmental 

and adult studies showing that LPP amplitudes are greater in response to primary 

reinforcers, such as pleasant and unpleasant pictures, compared to neutral stimuli, in 

passive picture viewing tasks (e.g., Cuthbert et al., 2000; Hajcak & Dennis, 2009). 

Critically, the reinforcement-dependent potentiation of the LPP changed 

during the course of adolescence. Specifically, preadolescents showed LPP 

potentiation to the SD in both the reward and avoidance blocks, regardless of whether 

they had to emit or omit a motor action. By comparison, mid-adolescents showed LPP 

potentiation to the SD in both the reward and avoidance blocks, but only to SD that 

required inhibition of a motor action. In contrast, late adolescents only showed LPP 

potentiation to the SD in the avoidance block, and only for SD that required inhibition 

of a motor action. Thus, in contrast to both preadolescents and mid-adolescents, late 

adolescents only showed LPP potentiation to the SD when they were faced with the 

threat of losing the points they had earned in the preceding reward block.  

Previous studies have reported that the salience of primary and secondary 

reinforcers, including appetitive and aversive tastes (Galván & McGlennen, 2013) and 
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money (Barkley-Levenson & Galván, 2014), decreases from mid-adolescence to late 

adolescence. It is therefore feasible that the salience of the reinforcer contributed to 

the age-related differences in LPP potentiation found in the current study, whereby 

the salience of the reinforcer decreased from preadolescence to late adolescence. Thus, 

the reinforcer used in the current study may have had different motivational affects on 

preadolescents, mid-adolescents and late adolescents, which may have, in turn, 

influenced the strength of instrumental conditioning, and consequently the 

magnitude of LPP amplitudes in response to the SD.   

Developmental differences in task performance may have also contributed to 

the age-related changes in LPP potentiation; preadolescents made significantly more 

errors during the reward and avoidance blocks and had significantly more LPP 

potentiation to SD associated with rewarding and threatening outcomes compared to 

mid-adolescents and late adolescents. Notably, preadolescents made the most errors 

in response to ControlGo stimuli in the reward and avoidance blocks, but their LPP 

amplitudes for the RewardGo and AvoidanceGo SD were greater than their LPP 

amplitudes for ControlGo stimuli. These findings suggest that, in preadolescents, the 

magnitude of the LPP did not directly reflect task performance. Furthermore, task 

performance was equivalent for mid-adolescents and late adolescents. However, mid-

adolescents, but not late adolescents, showed reward-related LPP potentiation. While 

age-related differences in task performance may have contributed to LPP amplitudes, 

the findings point towards LPP potentiation being predominantly modulated by the 

rewarding and threatening outcomes associated with the SD. 

It is important to note that, in contrast to the study predictions, LPP 

potentiation did not peak in middle adolescence. Previous fMRI studies that have 

reported a peak in reward- and threat-related anticipatory activity in mid-adolescents 

have either used primary reinforcers such as appetitive and aversive tastes (Galván & 

McGlennen, 2013) or secondary reinforcers such as money (Braams et al., 2015). In this 

task, points, rather than money, were used as the secondary reinforcer since money 

may have a different meaning for younger individuals compared to older individuals 

(Barkley-Levenson & Galván, 2014). Therefore, the discrepancy between this and 

previous studies could result from the current study using points as the reinforcer. It is 

possible that more ecologically valid secondary reinforcers, such as money, or primary 

reinforcers that have high evolutionary significance are needed to elicit the peak in 

neural activity during mid-adolescence. 
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While no differences in the pattern of activation were found between the 

reward and avoidance blocks for preadolescents and mid-adolescents, LPP 

potentiation in late adolescents was observed only in response to the SD that predicted 

a potential threat, but not a potential reward. Interpreted in light of the theory of loss 

aversion (Tversky & Kahneman, 1992), this finding suggests that the threat of a loss 

may have been more salient than acquiring a reward during late adolescence. 

Crucially, these findings do not support the idea that adolescent behaviour is driven by 

hyperresponsive approach system and hyporesponsive avoidance system (Ernst et al., 

2006; Ernst et al., 2011). Instead, these findings support Casey’s dual systems model 

(Casey et al., 2010), and suggest that preadolescents and mid-adolescents are 

motivated by both rewards and threats. Moreover, these findings suggest that late 

adolescents are more motivated by threats than rewards. 

Biases in anticipatory processes to rewards and threats are thought to 

contribute to high levels of risk-taking behaviours and anxiety, respectively (Petry, 

2001; Salkovskis, 1991). Thus, the relationships between LPP potentiation to SD that 

predicted rewarding outcomes and participants’ risk-taking behaviours, and the 

relationships between LPP potentiation to SD that predicted threating outcomes and 

participants’ anxiety levels, were explored in this sample of adolescents. 

Unexpectedly, no relationships were found between adolescents’ risk-taking 

behaviours and LPP potentiation to SD that predicted a rewarding outcome. Similarly, 

no relationships were found between adolescents’ anxiety levels and LPP potentiation 

to SD that predicted a threatening outcome. These findings are in contrast to fMRI 

studies showing that subcortical neural activity associated with reward and threat 

anticipation is positively correlated with risk-taking behaviours and anxiety levels, 

respectively (Barkley-Levenson & Galván, 2014; Braams et al., 2015; Galván et al., 

2007), as well as theories implicating reward anticipation in risk-taking and threat 

anticipation in anxiety (Petry, 2001; Salkovskis, 1991). As discussed earlier, it is 

possible that winning and losing points was not salient enough or of high enough 

evolutionary significance to tap into the mechanisms underlying risk-taking 

behaviours and anxiety levels during adolescence. 

In the current study, stimuli requiring a motor response evoked larger LPP 

amplitudes compared to stimuli requiring inhibition of a motor response in all groups. 

Since the LPP is thought to reflect selective attention to motivationally salient stimuli 

(Cuthbert et al., 2000; Schupp et al., 2000; Schupp et al., 2004), it is possible that 
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conditions requiring a motor response elicited greater attentional resources in 

preparation for motor action. To examine whether LPP potentiation was functionally 

implicated in preparing for action selection, the relationships between LPP amplitudes 

and reaction times for Go conditions were explored. Contrary to expectations, no 

relationships between LPP amplitudes and reaction times were found. It is possible 

that the design of the task precluded us from seeing an effect, as there was a delay 

between when the visual cues were presented and when participants were required to 

make a motor response. It has been suggested that the LPP reflects global inhibition of 

neural activity in the visual cortex, which in turn, facilitates more selective processing 

of the salient stimulus (Brown, van Steenbergen, Band, de Roover & Nieuwenhuis, 

2012). Hence, in this study, the stimuli requiring a motor response could be evoking a 

greater attentional bias compared to stimuli requiring inhibition of a motor response. 

How and whether this attentional bias can affect subsequent decision making 

mechanisms and action selection is yet to be determined. Further work is also needed 

to determine why LPP potentiation was found in response to SD requiring a motor 

response and inhibition of a motor response in preadolescents, but only to SD requiring 

inhibition of a motor response in mid- and late adolescents. 

Consistent with previous developmental studies (e.g., Kujawa et al., 2012; 

MacNamara et al., 2016), LPP amplitudes were found to decrease from preadolescence 

to late adolescence for SD and control stimuli. The scalp maps also revealed that LPP 

topography changed with age, whereby LPP activation shifted from occipitoparietal to 

centroparietal regions from preadolescence to late adolescence. In addition, the scalp 

maps showed that LPP activity became less bilateral and more focal with age. These 

age-related changes in LPP amplitude and topography are in accordance with previous 

findings (Dennis & Hajcak, 2009; Hajcak & Dennis, 2009; Kujawa et al., 2012; Kujawa 

et al., 2013; Solomon et al., 2012), and are thought to reflect brain maturation during 

adolescence. The human brain matures in a back-to-front fashion, with higher order 

prefrontal regions developing last (Gotgay et al., 2004; Mills et al., 2014). As such, 

compared to other cortical and subcortical regions, the PFC undergoes significant 

changes throughout childhood and adolescence (see Chapter 1.4). The maturation of 

the PFC during adolescence is thought to underlie considerable improvements in 

cognitive control and information processing (Luna, Garver, Urban, Lazar & Sweeney, 

2004; Yurgelun-Todd, 2007). Thus, the reduction in LPP amplitude across adolescence 

may reflect more efficient processing as the brain matures. This is consistent with the 
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behavioural findings in this study showing that preadolescents made significantly 

more errors on the task compared to mid-adolescents and late adolescents. Given that 

both top-down prefrontal areas and bottom-up occipitoparietal areas modulate the 

LPP (Moratti et al., 2011), it is possible that the changes in LPP topography observed in 

this and other studies (Hajcak & Dennis, 2009; Kujawa et al., 2012; Kujawa et al., 2013) 

are the result of the LPP becoming more reliant on prefrontal regions as the PFC 

matures.  

 

4.4.2. N170 

While the LPP was used to examine late anticipatory representations to SD that 

predicted rewarding and threating outcomes, the N170 was used to examine early 

anticipatory representations. The visual stimuli used in this instrumental task were 

greeble-like and elicited clear N170 ERPs. This is consistent with previous studies 

showing that greebles evoke the N170 component (Levita et al., 2014; Rossion, 

Gauthier, Goffaux, Tarr & Crommelinck, 2002). However, in contrast to the study 

predictions, no differences in N170 amplitude were found between SD and control 

stimuli for any age group. This finding initially appears inconsistent with previous 

studies showing early modulation within ventral visual pathways to motivationally 

salient stimuli (Dolan et al., 2006; Levita et al., 2014; Pizzagalli et al., 2003). One 

plausible explanation for the discrepancy in findings is that a secondary rather than a 

primary reinforcer was used in the current study. Previous classical and instrumental 

conditioning tasks that have shown modulation of the N170 to conditioned stimuli 

have used primary reinforcers where the threat was imminent (Dolan et al., 2006; 

Levita et al., 2014; Pizzagalli et al., 2003). In the current study, the SD predicted the 

delayed onset of a secondary reinforcer (points) that was conditional on specific motor 

responses. It is therefore possible that stimuli that have high evolutionary 

significance, i.e., primary reinforcers, are needed to engage very early attentional 

mechanisms. In order to disentangle neural activity associated with anticipatory 

processes from neural activity associated with motor responses, participants were 

required to wait for a target stimulus (yellow cross) before making their response. 

Hence, the type of reinforcer used (primary vs secondary), as well as the time between 

the stimulus and response (immediate vs delayed), may account for the discrepancies 

observed between this and previous studies (Dolan et al., 2006; Levita et al., 2014; 

Pizzagalli et al., 2003). Further work is needed to identify the task contingencies and 
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reinforcers that elicit reinforcement-dependent potentiation in early visual processing 

areas during adolescence, as well as to identify the functional significance of such 

potentiation. 

Despite not finding reinforcement-dependent potentiation of the N170, this 

study found age-related changes in N170 amplitude that were independent of 

condition. In line with previous studies (Hileman et al., 2011; Taylor et al., 1999) and 

the study predictions, the N170 decreased in amplitude from preadolescence to mid-

adolescence. Reductions in N170 amplitude during childhood and adolescence are 

thought to result from increases in white matter and decreases in grey matter (see 

Chapter 1.4). While the scalp topographical plots indicated an additional reduction in 

N170 amplitude from mid- to late adolescence, this effect was not statistically 

significant.  

 

4.4.3. The influence of puberty on N170 and LPP potentiation 

 The final aim of the current study was to explore the linear and non-linear 

relationships between puberty and ERP potentiation in male and female adolescents 

aged 9-17 years while controlling for chronological age. Contrary to predictions, 

current pubertal stage was not associated with N170 or LPP potentiation. This was 

surprising since puberty has been shown to have significant affects on reward- and 

threat-related neural activity (Braams et al., 2015; Moore et al., 2012). Despite this, the 

finding that LPP amplitudes were not related to current pubertal stage is consistent 

with previous findings (Nelson et al., 2015); Nelson et al. (2015) found no evidence for 

LPP amplitudes in response to affective pictures being modulated by pubertal stage in 

13.5-15.5 year old females. The current study therefore extends Nelson et al.’s (2015) 

findings by examining LPP amplitudes to conditioned stimuli in male and female 

adolescents aged 9-17 years. Collectively, the evidence to date suggests that pubertal 

stage is not associated with LPP or N170 amplitudes during adolescence. Nevertheless, 

future studies should continue to explore potential relationships between ERPs and 

puberty in order to establish whether there are any circumstances under which puberty 

influences reward- and threat-related ERP activity. 

 

4.4.4. Study limitations 

The current study has a number of limitations that need highlighting. First, the 

Condition by Age Group interaction effect for the reward block just failed to reach 
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significance. Moreover, the LPP waveforms and bar graphs (Figure 4.9) indicated that 

males were largely driving the overall reward-related LPP potentiation effects for the 

mid-adolescents. Despite this, no gender differences emerged from the statistical 

analyses. Together, these findings suggest that there was high variability in this 

sample of adolescents and not enough power to detect potentially interesting effects. 

Future work should therefore aim to explore the development of reward- and threat-

related potentiation in larger samples of adolescents. Second, due to time constraints, 

participants did not receive feedback for control stimuli. Consequently, this study was 

unable to explore reward- and threat-related consummatory processes, and compare 

anticipatory and consummatory responses during the different stages of adolescence. 

 

4.4.5. Conclusion 

Research has repeatedly shown that adolescents are highly motivated by 

rewards (Casey et al., 2010; Ernst et al., 2006; Nelson et al., 2005; Steinberg, 2008). 

However, research examining the extent to which adolescents are motivated by 

avoiding potential threats is limited. The findings reported here suggest that 

preadolescents and mid-adolescents are motivated by both obtaining rewards and 

avoiding loss. The current study therefore provides initial evidence that anticipatory 

biases are at least as strong for avoidance-related cues as they are for reward-related 

cues during early and middle adolescence. Hence, these findings do not support the 

suggestion that adolescents are hyposensitive to threat (Ernst et al., 2006). While 

further work is required to examine the functional significance of these findings, the 

results suggest that future studies should not only focus on sensitivity to reward 

during adolescence, but also on sensitivity to threat.  

It has been suggested that frontal cortical asymmetry, as indexed by resting 

EEG alpha activity, reflects the lateralisation of approach-avoidance processes 

(Davidson, 1984, 1992). In support of this idea, many studies have reported that 

frontal cortical asymmetry is a marker of risk-taking behaviours and anxiety levels in 

adults (Coan & Allen, 2003; Santesso et al., 2008; Sutton & Davidson, 1997; Thibodeau 

et al., 2006; Wheeler et al., 1993). However, whether the same is true for adolescents is 

yet to be determined. Given that the first study in this doctoral work found age-related 

increases in risk-taking, but not anxiety, the final study reported in this doctoral work 

(Chapter 5) examined the development of frontal asymmetry, and its relationship to 

measures of risk-taking behaviours. Chapter 5 also explored how the cortical sources 
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of resting alpha change as a function of age, gender, and puberty during the course of 

adolescence. 
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Abstract 

This study aimed to investigate how the cortical sources of spontaneous alpha 

during eyes-open and eyes-closed conditions change during the course of adolescence 

as a function of age and pubertal stage. Notably, there is a long-standing theory 

asserting that relatively greater left frontal cortical activity is associated with reward-

orientated behaviours and relatively greater right frontal neural activity is associated 

with avoidance-orientated behaviours, as indexed by spontaneous EEG alpha activity 

(Davidson, 1984, 1994). While there is considerable evidence for this theory in adults, 

research examining frontal asymmetry and its relationship to risk-taking and anxiety 

in adolescents is limited. The first study in this doctoral work found that risk-taking 

behaviours, but not anxiety levels, increased throughout adolescence in this sample 

(Chapter 3). Hence, the final aim of this study was to examine whether frontal 

asymmetry could account for the developmental differences in risk-taking behaviours 

found in this sample of adolescents. To these ends, 29 preadolescents (9-12 years; 14 

females), 29 mid-adolescents (13-17 years; 14 females), and 33 late adolescents (18-23 

years; 17 females) had their resting brain activity measured using EEG during eyes-

open and eyes-closed conditions. Overall, the findings revealed that the cortical 

sources of alpha changed considerably during the course of adolescence, and that 

more advanced pubertal development predicted reduced alpha activity in male, but not 

female, adolescents. Unexpectedly, frontal asymmetry was found to not be a reliable 

marker of risk-taking behaviours in this sample of adolescents. 
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5.1. Introduction 

 This study had three aims. Firstly, this study aimed to investigate the age- and 

gender-related changes in the cortical sources of spontaneous alpha in adolescents 

aged 9-23 years. Secondly, this study aimed to examine the relationship between 

puberty and the development of spontaneous alpha in male and female adolescents 

aged 9-17 years while controlling for chronological age. Finally, this study aimed to 

examine the functional significance of spontaneous alpha in this sample of 

adolescents. It has been suggested that frontal cortical asymmetry, i.e., relatively 

greater left or right frontal cortical activity, reflects the lateralisation of approach-

avoidance processes, as indexed by spontaneous alpha (Coan & Allen, 2004; Davidson, 

1984, 1992; Harmon-Jones et al., 2010; Tomarken et al., 1990; Tomarken et al., 1992; 

Wheeler et al., 1993). In support of this idea, many studies have reported that frontal 

cortical asymmetry is associated with risk-taking behaviours and anxiety levels in 

adults (Coan & Allen, 2003; Santesso et al., 2008; Sutton & Davidson, 1997; Tomarken 

et al., 1990; Tomarken et al., 1992; Wheeler et al., 1993). However, whether the same is 

true for adolescents is yet to be determined. Notably, the same cohort of participants 

took part in this study as in Chapters 3 and 4. Since the first study in this doctoral work 

(Chapter 3) found that risk-taking behaviours, but not anxiety levels, increased 

throughout adolescence, the current study aimed to explore whether frontal 

asymmetry could account for the developmental differences in risk-taking behaviours 

found in this sample of adolescents. 

The introduction to this study will first define the alpha rhythm (Chapter 

5.1.1), and outline the development of spontaneous alpha from infancy to adulthood 

(Chapter 5.1.2). This introduction will then discuss what is currently known about 

functional significance of spontaneous alpha (Chapter 5.1.3) and the role of 

spontaneous alpha in the approach-avoidance systems (Chapter 5.1.4). Next, this 

introduction will outline and evaluate the human and nonhuman animal work 

investigating the cortical sources of alpha (Chapter 5.1.5), and discuss why examining 

puberty in relation to the development of alpha warrants investigation (Chapter 5.1.6). 

Finally, this introduction will outline the aims and hypotheses of the current study 

(Chapter 5.1.7). 

 

5.1.1. The alpha rhythm 

Hans Berger first described the EEG alpha rhythm in 1929. Berger observed that 
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the alpha rhythm oscillated between 8-13 Hz and had maximal amplitude over 

occipital regions when individuals were awake and resting with their eyes closed. 

Amplitude indexes the magnitude of an oscillation, and refers to the vertical 

displacement between the peak of an oscillation and its rest position. Amplitude is 

measured in µV and can be squared to yield a power value (µV2). It has been reported 

that alpha amplitude (or power) is inversely related to cortical activity, whereby 

increases in alpha amplitude reflect decreases in cortical activity, and decreases in 

alpha amplitude reflect increases in cortical activity (Haegens et al., 2011; Shagass, 

1972). 

While amplitude refers to the magnitude of an oscillation, frequency refers to 

the number of oscillations per second. The alpha rhythm has a frequency range of 8-13 

Hz and a peak frequency of 10 Hz in healthy adults (Klimesch, 1999). Peak alpha 

frequency reflects the maximal power value within the alpha frequency band. 

Individual alpha peak frequency can also be measured, and reflects the centre of 

gravity, rather than the peak, within the alpha frequency band (Klimesch, 1999). The 

amplitude and frequency of the alpha rhythm can be measured either at rest 

(spontaneous alpha) or in response to specific events (event-related alpha). 

Spontaneous alpha reflects the endogenous fluctuations of cortical activity within the 

alpha frequency band, and is recorded while participants are awake and resting with 

their eyes open or closed. Compared to spontaneous alpha, event-related alpha 

responses are evoked by a sensory or cognitive event. Event-related alpha is frequently 

measured during short (~1 second) resting periods that occur before the onset of a trial 

or between the presentation of a warning stimulus and a test period (Başar, 2012; 

Klimesch, 1999). Both amplitude and frequency measures have been extensively used 

to establish how spontaneous alpha develops throughout the lifespan, as well as to 

examine the functional significance of spontaneous and event-related alpha 

(Klimesch, 1999). 

Notably, spontaneous alpha recorded from frontal scalp electrodes is thought 

to reflect the approach-avoidance systems, and has been associated with a number of 

approach- and avoidance-related behaviours and emotions, such as risk-taking and 

anxiety (Coan & Allen, 2004; Davidson, 1984, 1992; Harmon-Jones et al., 2010; 

Tomarken et al., 1990; Tomarken et al., 1992; Wheeler et al., 1993). Consequently, this 

study focused on spontaneous alpha rather than event-related alpha. Specifically, the 

current study aimed to investigate whether frontal alpha asymmetry could account for 
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the age- and gender-related changes in risk-taking behaviours found in this sample of 

adolescents (Chapter 3). 

 

5.1.2. Development of spontaneous alpha 

A number of studies have shown that the amplitude and frequency of 

spontaneous alpha develop considerably throughout childhood and adolescence 

(Dustman, Shearer & Emmerson, 1999; Katada, Ozaki, Suzuki & Suhara, 1981). A 

posterior-dominant rhythm (PDR) that resembles alpha can be observed in infants 

aged only a few months old (Stroganova, Orekhova & Posikera, 1999). The peak 

frequency of the PDR steadily increases from approximately 3 Hz in infancy to the 

adult frequency of 10 Hz in early adolescence (Lindsley, 1939; Marshall, Bar-Haim & 

Fox, 2002; Niedermeyer, 1997; Somsen, van't Klooster, van der Molen, van Leeuwen & 

Licht, 1997). The increase in alpha frequency during childhood and adolescence is 

thought to result from the augmentation of white matter (Segalowitz et al., 2010; 

Whitford et al., 2007; see Chapter 1.4). In addition to the increase in alpha frequency, 

the amplitude of the alpha rhythm decreases across all areas of the scalp during 

childhood and adolescence (Chiang, Rennie, Robinson, van Albada & Kerr, 2011; 

Dustman et al., 1999; Yordanova & Kolev, 1997). The EEG signal largely reflects the 

simultaneous firing of pyramidal neurons in cortical grey matter (Davidson et al., 

2000). Thus, the reduction in alpha amplitude is thought to result from the decrease in 

cortical grey matter during adolescence (Segalowitz et al., 2010; Whitford et al., 2007; 

see Chapter 1.4). The reduction in alpha amplitude may also partially result from the 

increase in skull thickness during childhood and adolescence (Hagemann, Hewig, 

Walter & Naumann, 2008). 

 

5.1.3. Function of spontaneous alpha 

The functional significance of spontaneous alpha has been investigated ever 

since it was first discovered. It was initially thought that alpha rhythm had little 

functional relevance and simply reflected the idling of the brain (Adrian & Matthews, 

1934; Pfurtscheller, Stancak & Neuper, 1996). However, while the functional 

significance of alpha is still being explored and debated, the empirical work to date 

unanimously suggests that alpha activity does not reflect cortical idling (Cooper, 

Croft, Dominey, Burgess & Gruzelier, 2003). Instead, the current evidence suggests 

that spontaneous alpha has an important and active role in cognitive and memory 
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processes (Klimesch, 1999; Palva & Palva, 2007). 

Preliminary support for the role of spontaneous alpha in cognitive and memory 

processes comes from studies assessing how the frequency of alpha changes across the 

lifespan (Klimesch, 1999). The frequency of spontaneous alpha increases throughout 

infancy, childhood, and adolescence (Lindsley, 1939; Niedermeyer, 1997), and is 

thought to result from the increase in white matter during childhood and adolescence. 

This, in turn, is thought to underlie more efficient and faster neural processing 

(Klimesch, 1999), and thus improvements in cognitive functioning. After peaking in 

adolescence, the frequency of alpha subsequently decreases across adulthood, from 

approximately 10 Hz in 20 year olds to 8 Hz in 70 year olds (Dustman et al., 1999; 

Obrist, 1979). This decrease in alpha frequency has been suggested to reflect age-

related reductions in memory performance and cognitive processing (Klimesch, 1999). 

Indeed, Li, Sun and Jiao (1996) found that the reduction in alpha frequency in 

individuals aged 46 to 80 years was correlated with performance on a range of 

executive tasks. In sum, the changes in alpha frequency throughout the lifespan are 

thought to correspond to age-related changes in cognitive and memory performance 

(Klimesch, 1999).  

Empirical work in atypical populations also supports the idea that spontaneous 

alpha has a functional role in cognitive and memory processes. Compared to healthy 

controls, slower alpha frequencies and reduced or absent alpha power are observed 

across a number of developmental, psychiatric, and neurodegenerative conditions, 

such as autism spectrum disorder, schizophrenia, and Alzheimer’s disease (Alfimova & 

Uvarova, 2008; Babiloni et al., 2009; Leuchter, Spar, Walter & Weiner, 1987). Overall, 

the evidence to date collectively suggests that spontaneous alpha is associated with 

cognitive and memory processes in both typical and atypical populations (Klimesch, 

1999).  

Alpha frequency and power have also been shown to reliably predict 

performance on cognitive and memory tasks in typically developing populations (e.g., 

Klimesch, Doppelmayr, Schimke & Ripper, 1997; Klimesch, Schimke & Pfurtscheller, 

1993). Peak alpha frequency is highly variable between individuals, and this variability 

is thought to underlie the individual differences in performance on a variety of 

cognitive and memory tasks (Klimesch, 1999). In particular, individuals with higher 

peak alpha frequencies have faster reaction times to target stimuli and perform better 

on memory tasks compared to individuals with lower peak alpha frequencies (Clark et 
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al., 2004; Haegens, Cousijn, Wallis, Harrison & Nobre, 2014; Klimesch, Schimke, 

Ladurner & Pfurtscheller, 1990; Klimesch et al., 1993; Surwillo, 1963; Surwillo, 1971). 

Higher peak alpha frequencies have also been associated with higher reading 

performance in children (Suldo, Olson & Evans, 2002).  

Event-related alpha studies can assess the extent to which alpha 

desynchronises (decreases) during a test period relative to a resting period. These 

studies have reported that alpha desynchronisation is greater in individuals with 

better task performance (Boiten, Sergeant & Geuze, 1992; Klimesch et al., 1997; Van 

Winsun, Sergeant & Geuze, 1984). Event-related studies have also reported that alpha 

desynchronises in cortical areas important for task performance, but synchronises 

(increases) in cortical areas that are not relevant for a particular task (Klimesch et al., 

1997). Consequently, current theories regarding the functional significance of alpha 

suggest that alpha has a functional role in active inhibition and the direction of 

attention (Foxe & Snyder, 2011; Jensen, Bonnefond & VanRullen, 2012; Klimesch, 

Sauseng & Hanslmayr, 2007), both of which are critical for optimal task performance 

(Jensen & Mazaheri, 2010). 

 

5.1.4. Frontal alpha asymmetry 

There is a biphasic motivational theory proposing that frontal cortical activity 

in the left and right hemispheres reflects lateralisation of the approach and avoidance 

systems, respectively (Davidson, 1984, 1992). Alpha amplitude (or power) is inversely 

related to cortical activity, whereby increases in alpha amplitude reflect decreases in 

cortical activity, and decreases in alpha amplitude reflect increases in cortical activity 

(Haegens et al., 2011; Shagass, 1972). Thus, spontaneous alpha activity recorded over 

the PFC is used as an index of frontal cortical activity (Davidson, 1984, 1992). Alpha 

asymmetry scores are calculated by subtracting left alpha power from right alpha 

power between symmetrical pairs of electrodes. Based on the assumption that alpha 

power is inversely related to cortical activity (Haegens et al., 2011; Shagass, 1972), 

positive alpha asymmetry scores reflect greater left cortical activity relative to right 

cortical activity. This is because positive alpha asymmetry scores result from less alpha 

activity measured at the left electrode compared to at the right electrode. In 

comparison, negative alpha asymmetry scores reflect greater right cortical activity 

relative to left cortical activity, and result from less alpha activity measured at the 

right electrode compared to at the left electrode. Finally, alpha asymmetry scores of 0 
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reflect equivalent alpha and cortical activity measured at the right and left electrode 

sites. 

In support of this theory, there is a large body of evidence suggesting that a 

greater tendency to approach rewarding or appetitive stimuli is associated with 

relatively greater left frontal cortical activity compared to right frontal cortical 

activity, whereas a greater tendency to avoid threatening or aversive stimuli is 

associated with relatively greater right frontal cortical activity compared to left frontal 

cortical activity (Coan & Allen, 2004; Davidson, 1984, 1992; Harmon-Jones et al., 2010; 

Tomarken et al., 1990; Tomarken et al., 1992; Wheeler et al., 1993). Notably, the 

lateralisation of frontal cortical activity is based on the approach-avoidance 

distinction rather than the positive-negative valence distinction. For example, 

Harmon-Jones and Allen (1998) found that anger, a negatively valenced emotion, was 

associated with greater left frontal cortical activity, indicating that left frontal activity 

was associated with the approach system rather than positively valenced emotions.  

Most of the work to date examining frontal alpha asymmetry has been 

conducted in undergraduate samples. Thus, whether frontal alpha asymmetry can 

account for the age-related changes in risk-taking and anxiety during adolescence 

remains unclear. In Chapter 3, this doctoral work examined the age- and gender-

related changes in risk-taking behaviours and anxiety levels across preadolescence, 

mid-adolescence, and late adolescence. It was predicted that risk-taking behaviours 

and anxiety levels would peak in mid-adolescence (Abe & Suzuki, 1986; Burnett et al., 

2010; Steinberg et al., 2008). As expected, real world risk-taking behaviours increased 

significantly from preadolescence to mid-adolescence for males and females. Real 

world risk-taking also increased from mid-adolescence to late adolescence for females. 

BART risk-taking also increased from mid-adolescence to late adolescence. By 

contrast, anxiety levels did not increase from preadolescence to mid-adolescence; 

instead, preadolescents had greater anxiety levels than mid-adolescents and late 

adolescents. Hence, the current study focused on whether frontal asymmetry could 

account for the developmental differences in risk-taking behaviours observed in this 

sample of adolescents.  

The neurobiological models assert that adolescent risk-taking behaviour is 

driven by a hyperresponsive approach reward-based system compared to children and 

adults (Casey et al., 2010; Ernst et al., 2006; Nelson et al., 2005; Steinberg, 2008). 

Hence, if frontal alpha asymmetry reflects the approach-avoidance systems (Davidson, 
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1984, 1992), it should be possible to test this assertion by exploring age-related 

changes in frontal alpha asymmetry. Consequently, this study examined the age- and 

gender-related differences in frontal alpha asymmetry, and the relationship between 

frontal alpha asymmetry and risk-taking behaviours in male and female adolescents 

aged 9-23 years. The following sections outline what is currently known about the 

relationship between frontal asymmetry and the approach system in adult and 

adolescent samples (Chapter 5.1.4.1), as well as methodological considerations in 

frontal alpha asymmetry research (Chapter 5.1.4.2). 

 

5.1.4.1. Left frontal cortical activity and the approach system 

There is a large body of work conducted with undergraduate and young adult 

samples suggesting that greater left frontal cortical activity is associated with 

approach sensitivity and approach-related behaviours such as risk-taking and 

sensation seeking (Coan & Allen, 2003; Santesso et al., 2008; Sutton & Davidson, 

1997; Wheeler et al., 1993). For instance, Santesso et al. (2008) found that high levels 

of sensation seeking were associated with relatively greater left cortical activity in 18-

26 year olds. Notably however, not all studies have reported that relatively greater left 

frontal cortical activity is associated with approach behaviours. For example, Schutter 

et al. (2004) found that more risky decision-making on a behavioural task was 

associated with relatively greater right frontal cortical activity in 18-26 year olds. This 

indicates that the relationships between the approach system and left frontal cortical 

activity may not be as robust as previously suggested (Davidson, 1984, 1992). 

In contrast to adult work, research assessing the relationships between frontal 

asymmetry and the approach system in adolescents is scarce. Initial evidence in mid 

and late adolescents (14-21 years) suggests that high approach sensitivity is associated 

with relatively greater left frontal cortical activity (Black et al., 2014). This finding is 

consistent with adult studies (e.g., Coan & Allen, 2003; Santesso et al., 2008; Sutton & 

Davidson, 1997; Wheeler et al., 1993). However, Black et al.’s (2014) study needs 

extending in two ways. First, Black et al. (2014) examined the relationships between 

approach sensitivity and frontal alpha asymmetry in a single group of adolescents aged 

14-21 years that spanned two developmental periods (i.e., middle and late 

adolescence). Critically, adolescence is a transitional period, and therefore the 

relationships between frontal alpha asymmetry and approach-related behaviours need 

to be examined during the distinct phases of adolescence rather than in a single age 
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group. Second, Black et al. (2014) failed to explore potential gender differences in the 

relationships between approach sensitivity and frontal asymmetry. Notably, there are 

considerable gender differences in risk-taking behaviours and brain development 

during adolescence (Byrnes et al., 1999; Lenroot & Giedd, 2010). Indeed, risk-taking 

behaviours in the current sample of adolescents followed gender-specific trajectories; 

real world risk-taking increased from preadolescence to mid-adolescence for both 

males and females, but also from mid-adolescence to late adolescence for females (see 

Chapter 3). It is therefore possible that gender-specific relationships will emerge 

between frontal asymmetry and approach-related behaviours in this sample of 

adolescents. 

To these ends, the current study aimed to examine the relationships between 

frontal asymmetry and risk-taking behaviours, as measured by the BART and YRBSS, 

in typically developing male and female adolescents aged 9-23 years. Although 

sensation seeking has also been associated with frontal asymmetry in adult samples 

(Santesso et al., 2008), sensation seeking tendencies in the current sample of 

adolescents, as measured using the BSSS, did not change as a function of age, gender, 

or puberty. Thus, the relationships between frontal asymmetry and sensation seeking 

were not explored in the current study. 

 

5.1.4.2. Methodological considerations in frontal alpha asymmetry research 

While there is a large body of evidence for the approach-avoidance 

lateralisation of frontal cortical activity, there are a number of methodologies used in 

frontal alpha asymmetry research that need considering. First, frontal asymmetry 

research has predominantly focused on two pairs of frontal scalp electrodes (F4-F3 and 

F8-F7; e.g., Black et al., 2014; Harmon-Jones et al., 2008; Santesso et al., 2008; 

Schutter et al., 2004). However, the PFC accounts for a large proportion of cortical grey 

matter that contains anatomically and functionally distinct structures, including the 

medial PFC (mPFC), dorsolateral PFC (DLPFC), and orbitofrontal cortex (OFC). 

Accordingly, it has been suggested that a more fine-grained analysis of the PFC is 

needed in frontal asymmetry research (Miller, Crocker, Spielberg, Infantolino & 

Heller, 2015). Recent advancements in EEG source localisation have provided reliable 

methods for estimating cortical activity in specific structures. Consequently, to 

explore frontal asymmetry and its relationship to risk-taking in specific frontal 

structures, the current study computed frontal asymmetry scores using source 
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localised frontal cortical activity in three ROIs: mPFC, DLPFC, and OFC. 

In order to compare the source localised frontal asymmetry scores to the 

existing literature, frontal asymmetry scores were also computed using the two most 

widely reported scalp electrode pairs in frontal asymmetry research, F4-F3 and F8-F7 

(Black et al., 2014; Harmon-Jones et al., 2008; Santesso et al., 2008; Schutter et al., 

2004). While the vast majority of previous studies have referenced frontal alpha 

activity using traditional references, such as linked mastoids, a number of recent 

papers have documented the benefits of CSD transformed data over traditional 

references for frontal alpha asymmetry research (see Chapter 2.4.3.2 for details). 

Hence, this study applied a CSD transformation to the EEG data before computing 

frontal asymmetry scores with the scalp electrodes. 

Finally, most studies examining frontal asymmetry in children, adolescents, 

and adults have correlated the average of the eyes-open and eyes-closed conditions 

with approach- and avoidance-related behaviours and emotions (e.g., Santesso et al., 

2008; Schutter et al., 2004; Wiedemann et al., 1999). Recent work in children and 

young adults shows that opening the eyes leads to an increase in skin conductance 

levels and a global reduction of alpha power, indicating that the shift from eyes-closed 

to eyes-open results in an increase in arousal (Barry, Clarke, Johnstone & Brown, 

2009; Barry, Clarke, Johnstone, Magee & Rushby, 2007). Moreover, as will be discussed 

in Chapter 5.1.5, there are considerable differences in the cortical and subcortical 

sources of spontaneous alpha during eyes-open and eyes-closed conditions (Feige et 

al., 2005; Lüchinger, Michels, Martin & Brandeis, 2011; Wu, Eichele & Calhoun, 2010). 

It is therefore surprising that eyes-open and eyes-closed conditions are often regarded 

as equivalent baseline conditions and combined in frontal asymmetry studies. Thus, 

the current study examined frontal asymmetry and its relationship to risk-taking 

behaviours separately for eyes-open and eyes-closed conditions. 

 

5.1.5. Cortical and subcortical sources of spontaneous alpha 

While the studies discussed in the previous sections provide insights into the 

functional significance of alpha, they are unable to shed light on the cortical and 

subcortical sources underlying spontaneous alpha. The underlying generators of 

spontaneous alpha have been estimated in adults using EEG source localisation 

(Cuspineda et al., 2009; Knyazev, Slobodskoj-Plusnin, Bocharov & Pylkova, 2011; 

Laufs et al., 2003), magnetoencephalography (MEG) (Hari, Salmelin, Mäkelä, Salenius 
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& Helle, 1997), combined positron emission tomography (PET)-EEG (Sadato et al., 

1998; Schreckenberger et al., 2004), and combined fMRI-EEG (De Munck et al., 2007; 

Feige et al., 2005; Goldman, Stern, Engel Jr & Cohen, 2002; Lüchinger et al., 2011; 

Moosmann et al., 2003; Wu et al., 2010). The thalamus and occipital-parietal cortices 

are most frequently reported as the generators of spontaneous alpha in adults when 

the eyes are closed. Specifically, spontaneous alpha during eyes-closed conditions is 

positively correlated with the BOLD signal in the thalamus and negatively correlated 

with the BOLD signal in occipital-parietal regions (Cuspineda et al., 2009; De Munck et 

al., 2007; Feige et al., 2005; Goldman et al., 2002; Knyazev et al., 2011; Lüchinger et al., 

2011; Moosmann et al., 2003). Negative correlations between frontal and temporal 

cortices and spontaneous alpha during eyes-closed conditions have also been reported 

in adults (Cuspineda et al., 2009; De Munck et al., 2007; Goldman et al., 2002; Wu et al., 

2010).  

Animal work has reported that the alpha rhythm can be detected slightly 

earlier in the thalamus than in the cortex (Da Silva & Van Leeuwen, 1977), suggesting 

that the thalamus generates the alpha rhythm and subsequently induces synchronised 

alpha activity in the cortex (Steriade, Gloor, Llinas, Da Silva & Mesulam, 1990). 

Moreover, the findings that the BOLD response in frontal, temporal, parietal, and 

occipital cortical regions is correlated with spontaneous alpha are consistent with the 

thalamus having strong, reciprocal connections to most cortical regions (Höhl-

Abrahão & Creutzfeldt, 1991). Together, these findings provide clear evidence that 

thalamo-cortical networks are critical in generating spontaneous alpha (Da Silva, Van 

Lierop, Schrijer & Van Leeuwen, 1973). However, there is also evidence that cortico-

cortical networks that are independent of thalamic input are also involved in 

generating spontaneous alpha; Da Silva, Vos, Mooibroek and Van Rotterdam (1980) 

found cortio-cortical alpha coherences, i.e., spectral associations between separate 

cortical regions, after eliminating cortio-cortical coherences attributable to the 

thalamus. Therefore, the converging evidence from human and nonhuman animal 

studies suggests that spontaneous alpha is generated by a combination of thalamo-

cortical and cortico-cortical networks.  

Most studies examining the sources of spontaneous alpha have exclusively 

examined the sources of alpha during eyes-closed conditions. However, a handful of 

studies have examined the differences between eyes-open and eyes-closed conditions 

in the cortical and subcortical sources of spontaneous alpha (Feige et al., 2005; 
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Lüchinger et al., 2011; Wu et al., 2010). For instance, Lüchinger et al. (2011) found that 

alpha power was positively correlated with the BOLD signal in the thalamus and 

negatively correlated with the BOLD signal in occipital and parietal regions during the 

eyes-closed condition. Alpha power was also negatively correlated with the BOLD 

signal in occipital and parietal regions during the eyes-open condition, but also in 

frontal regions. These findings suggest that a wider neural network is engaged when 

the eyes are open compared to when the eyes are closed. Other studies have reported 

that the shift from eyes-closed to eyes-open significantly reduces the haemodynamic 

response in the thalamus, as well as in frontal, temporal, parietal, and occipital 

cortical regions (Feige et al., 2005; Wu et al., 2010). Together, these findings indicate 

that there are considerable differences in the sources of alpha between eyes-open and 

eyes-closed conditions. 

In contrast to adult work, the sources of spontaneous alpha in adolescents have 

been scarcely studied. To the author’s knowledge, only one study to date has compared 

the sources of spontaneous alpha in adolescents and adults (Lüchinger et al., 2011). 

Lüchinger et al. (2011) recorded EEG and fMRI simultaneously in adolescents aged 15 

years and young adults aged 25 years. Unexpectedly, no age differences between 

adolescents and adults were found in the sources of spontaneous alpha during the 

eyes-closed condition or eyes-open condition. While Lüchinger et al.’s (2011) study 

represents a first step in understanding the sources of spontaneous alpha during 

adolescence, only adolescents aged 15 years and adults aged 25 years participated in 

the study. Consequently, the findings from this study cannot be generalised to 

adolescents of other ages, and are unable to explain whether the sources of 

spontaneous alpha change during the course of adolescence, i.e., throughout 

preadolescence, mid-adolescence, and late adolescence. Spontaneous alpha is 

disrupted in several psychiatric disorders that often emerge during adolescence, 

including anxiety, major depression, and schizophrenia (Babiloni et al., 2009; Grin-

Yatsenko, Baas, Ponomarev & Kropotov, 2009; Kessler et al., 2005; Knyazev, 

Savostyanov & Levin, 2004). Thus, understanding how the sources of spontaneous 

alpha mature in typical developmental populations is critical for understanding how 

spontaneous alpha deviates from the norm in atypical populations. Furthermore, 

Lüchinger et al. (2011) did not explore potential gender differences in the sources of 

spontaneous alpha; the adolescent and young adult age groups were composed of both 

males (n = 8) and females (n = 10). Given that the brain matures more quickly in 
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females than males during adolescence (Lenroot & Giedd, 2010; see Chapter 1.4), it is 

possible that the cortical sources of spontaneous alpha will differ between adolescent 

males and females. To these ends, this study aimed to examine the cortical sources of 

spontaneous alpha in frontal (mPFC, DLPFC, OFC) and occipital ROIs using EEG 

source localisation in a sample of male and female adolescents aged 9-23 years. 

  

5.1.6. The influence of puberty on the development of spontaneous alpha 

Examining the cortical sources of spontaneous alpha during preadolescence, 

mid-adolescence, and late adolescence will provide insights into how the cortical 

sources of spontaneous alpha change as a function of age and gender throughout 

adolescence. However, there is increasing evidence showing that puberty has specific 

affects on the structural development of cortical and subcortical grey matter in human 

adolescents that are independent of chronological age (Bramen et al., 2011; Goddings 

et al., 2014; Neufang et al., 2009; see Chapter 1.4). Since the alpha rhythm is generated 

by cortical and subcortical grey matter structures (Da Silva et al., 1980; Lüchinger et 

al., 2011; see Chapter 5.1.5), it is possible that the influence puberty has on grey 

matter development may in turn affect the development of spontaneous alpha. 

Despite this, no study to date has explored the relationships between puberty and 

spontaneous alpha. Accordingly, this study also aimed to examine the relationships 

between puberty and spontaneous alpha in the frontal (mPFC, DLPFC, OFC) and 

occipital ROIs in male and female adolescents aged 9-17 years. Since the development 

of grey matter in several cortical and subcortical brain structures is nonlinear (Gogtay 

et al., 2004; Mills et al., 2014; Mills et al., 2016), both the linear and nonlinear 

relationships between puberty and spontaneous alpha were explored. 

 

5.1.7. The current study 

The same cohort of participants took part in this study as in Chapters 3 and 4. 

In the current study, preadolescents aged 9-12 years, mid-adolescents aged 13-17 

years, and late adolescents aged 18-23 years had their resting brain activity measured 

using EEG during eyes-open and eyes-closed conditions. Participants’ resting brain 

activity was measured during the same EEG session as the instrumental conditioning 

task (Chapter 4). Participants’ risk-taking behaviours, as indexed by the BART and 

YRBSS (Chapter 3), were examined in relation to participants’ frontal alpha asymmetry 

scores. 
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The first aim of this study was to examine the cortical sources of spontaneous 

alpha in male and female preadolescents, mid-adolescents, and late adolescents. 

Firstly, it was predicted that the cortical sources of spontaneous alpha would be 

located in occipital-parietal regions during the eyes-closed condition (De Munck et al., 

2007; Lüchinger et al., 2011). By comparison, it was predicted that the cortical sources 

of alpha would be more widely distributed and located in frontal regions as well as in 

occipital-parietal regions during the eyes-open condition (Lüchinger et al., 2011). 

Secondly, it was predicted that alpha power in the occipital ROI would be greater in 

the eyes-closed condition compared to the eyes open-condition (Feige et al., 2005; Wu 

et al., 2010). Thirdly, it was predicted that alpha power would decrease in all ROIs from 

preadolescence to late adolescence in both the eyes-open and eyes-closed conditions 

(Chiang et al., 2011; Dustman et al., 1999; Yordanova & Kolev, 1997). 

The second aim of this study was to examine the linear and nonlinear 

relationships between puberty and spontaneous alpha in the frontal and occipital ROIs 

in male and female adolescents aged 9-17 years while controlling for chronological 

age. Since cortical and subcortical grey matter reduces across adolescence (Gogtay et 

al., 2004; Mills et al., 2014; Mills et al., 2016), it was predicted that more advanced 

pubertal stage would be associated with reduced levels of alpha in males and females 

in the eyes-open and eyes-closed conditions. 

The third and final aim of this study was to examine whether frontal alpha 

asymmetry could account for the developmental differences in risk-taking behaviours 

observed in this sample of adolescents aged 9-23 years (Chapter 3). Based on previous 

work (Black et al., 2014; Coan & Allen, 2003; Santesso et al., 2008; Sutton & Davidson, 

1997; Wheeler et al., 1993), it was predicted that relatively greater left frontal cortical 

activity would be associated with risk-taking behaviours, and that the relationships 

between frontal asymmetry and risk-taking behaviours would follow the 

developmental trajectory of risk-taking behaviours reported in Chapter 3. 

 

5.2. Method 

5.2.1. Participants 

The same cohort of participants took part in this study as in Chapters 3 and 4.  

In total, ninety-five volunteers aged 9-23 years participated in this study. Three 

participants were excluded from analyses due to insufficient data following artefact 

rejection (3 females aged 9, 17, and 21 years). Participants were split into three age 
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groups: preadolescents aged 9-12 years; mid-adolescents aged 13-17 years; and late 

adolescents aged 18-23 years. Descriptive statistics for the final sample are reported in 

Table 5.1. Detailed participant information is reported in Chapter 2.1.  

 

 

Table 5.1 
Participant demographics 

    
Risk-taking behaviours 

M [95% CI] 
 Anxiety levels a 

M [95% CI] 

Age Group Gender n Age 
M (SD) 

BART 
Pumps 

BART 
Points 

BART 
Balloons YRBSS  STAI-T STAI-T 

HADS-D 
Preadolescents Females 14 10.93 

(1.21) 
37.27 
[30.18, 
45.38] 

5349.29 
[4256.41, 
6502.03] 

7.14 
[5.02, 
9.62] 

0.43 
[0.21, 
0.64] 

 54.41 
[50.00, 
58.81] 

58.11 
[50.50, 
65.98] 

          
Males 15 10.53 

(1.30) 
40.90 
[35.53, 
46.51] 

6024.00 
[5254.36, 
6759.79] 

9.00 
[7.13, 
11.08] 

0.93 
[0.53, 
1.40] 

 58.11 
[50.57, 
65.22] 

58.97 
[54.47, 
63.71] 

           
Mid-
adolescents 

Females 14 14.50 
(1.51) 

38.35 
[32.15, 
43.77] 

5713.57 
[4636.31, 
6635.84] 

8.21 
[6.34, 
10.00] 

1.79 
[1.21, 
2.43] 

 54.82 
[48.53, 
61.65] 

55.82 
[50.53, 
61.15] 

          Males 15 14.80 
(1.42) 

41.11 
[34.69, 
47.73] 

5949.33 
[5076.75, 
6787.21] 

8.67 
[6.73, 
10.80] 

4.00 
[2.80, 
5.20] 

 49.33 
[42.71, 
56.21] 

46.40 
[39.65, 
53.23] 

           
Late 
Adolescents 

Females 17 20.35 
(1.41) 

46.29 
[39.28, 
53.50] 

6954.12 
[5774.75, 
7971.07] 

9.18 
[7.88, 
10.59] 

4.29 
[3.41, 
5.29] 

 52.94 
[45.00, 
60.72] 

52.67 
[46.75, 
57.87] 

          
Males 16 21.00 

(1.55) 
48.96 
[41.72, 
55.83] 

6997.50 
[6111.94, 
7875.11] 

10.05 
[8.56, 
12.72] 

3.25 
[2.19, 
4.34] 

 53.52 
[46.33, 
61.02] 

51.64 
[45.79, 
58.09] 

Note. BART Pumps = BART number of adjusted pumps; BART Points = BART total points won; BART Balloons = 
BART number of popped balloons; YRBSS = Youth Risk Behaviour Surveillance Survey; STAI-T = State Trait Anxiety 
Inventory-Trait Anxiety; STAI-T HADS = State Trait Anxiety Inventory-Trait Anxiety controlling for Hospital Anxiety and 
Depression Scale-Depression Scale; 95% CI = bootstrapped 95% confidence intervals; a = percentage scores. 
 

 

 

5.2.2. Procedure 

The procedure is reported in Chapter 2.2. 

 

5.2.3. Behavioural measures 

5.2.3.1. Risk-taking behaviours 

Risk-taking behaviours were measured using the BART (Lejuez et al., 2002) and 

YRBSS (Aklin et al., 2005) (see Chapter 2.3.1). 

 

5.2.3.2. Pubertal development 

Pubertal development was assessed in 9-17 year olds using the PDS (Petersen 

et al., 1988; see Chapter 2.3.6). Consistent with previous work (Marshall & Tanner, 
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1969; Marshall & Tanner, 1970), an independent t-test revealed that PDS scores were 

higher for females aged 9-17 years (M = 2.73, 95% CI [2.45, 3.00]) compared to males 

aged 9-17 years (M = 2.30, 95% CI [2.02, 2.55]) (t(56) = 2.05, p = 0.050), indicating that 

females were at a slightly later stage in their pubertal development compared to males. 

 

5.2.4. EEG recording 

The EEG recording is reported in Chapter 2.4.1. 

 

5.2.5. EEG preprocessing 

The EEG preprocessing stream is reported in Chapter 2.4.3. The cleaned, 

epoched resting state data for the eyes-open and eyes-closed conditions were 

subjected to further processing in order to localise the cortical sources of spontaneous 

alpha (see Chapter 5.2.5.1) and compute frontal alpha asymmetry scores (see Chapter 

5.2.5.2). 

 

5.2.5.1. sLORETA source localisation 

sLORETA (Pascual-Marqui, 2002; see Chapter 2.4.3.3 for details) was used to 

estimate the cortical sources of spontaneous alpha in the eyes-open and eyes-closed 

conditions. Artefact-free epochs were given as an input to sLORETA and used to 

compute the EEG cross-spectra for each participant. The cross-spectra were then used 

to estimate the corresponding three-dimensional CSD for the alpha frequency band (8-

Figure 5.1 Human Brodmann areas (BA) for the lateral (a) and medial (b) surface. The highlighted 
BA reflect the regions of interest used in this study. BA10 = medial prefrontal cortex (blue); BA46 
= dorsolateral prefrontal cortex (yellow); BA11 and BA47 = orbitofrontal cortex (orange); BA17, 
BA18, and BA19 = occipital cortex (green). 
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13 Hz). ROIs were used to examine alpha CSD in frontal and occipital areas. Brodmann 

areas (BA) were used to define the ROIs, and included the medial PFC (mPFC; BA10), 

dorsolateral PFC (DLPFC; BA46), orbitofrontal cortex (OFC; BA11 and BA47), and 

occipital cortex (BA17, BA18, and BA19) (Figure 5.1).  

 

5.2.5.2. Frontal alpha asymmetry  

Two methods were used to examine the relationships between frontal alpha 

asymmetry and participants’ risk-taking behaviours. First, frontal asymmetry scores 

were calculated with frontal ROIs. Asymmetry scores were calculated for each frontal 

ROI (mPFC, DLPFC, and OFC) by subtracting average alpha CSD in the left hemisphere 

from average alpha CSD in the right hemisphere. Second, frontal asymmetry scores 

were computed using scalp electrodes in order to compare the current study with the 

existing frontal asymmetry literature. Scalp asymmetry scores were computed on the 

basis of previous work (e.g., Black et al., 2014; Harmon-Jones & Allen, 1998; Schutter 

et al., 2004). First, the artefact-free epochs were transformed to reference-free CSD 

estimates (µV/cm2) using a spherical spline surface Laplacian via the CSD toolbox 

(Kayser & Tenke, 2006; Perrin, Pernier, Bertrand & Echallier, 1989; see Chapter 2.4.3.2 

for more details regarding CSD). Next, a fast Fourier Transform, using a Hamming 

window with tapered edges, was applied to each epoch to compute estimates of 

Figure 5.2 Electrode pairs F4-F3 (a) and F8-F7 (b) used for the scalp asymmetry scores. 
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spectral power (µV2). Spectral power values were then converted to power density 

(µV2/Hz) in the alpha frequency band (8-13 Hz). Power density values for the alpha 

frequency band were then averaged across all epochs and natural log transformed. 

Scalp asymmetry scores were calculated by subtracting left log average alpha power 

density scores from right log average alpha power density scores for symmetrical 

electrode pairs. The electrode pairs F4-F3 and F8-F7 (Figure 5.2) were selected to 

examine frontal alpha asymmetry since they are the most widely used electrode pairs 

in both adolescent (Black et al., 2014) and young adult (Harmon-Jones et al., 2008; 

Santesso et al., 2008; Schutter et al., 2004) frontal asymmetry research.  

Alpha power is inversely related to cortical activity (Haegens et al., 2011; 

Shagass, 1972). Thus, for both the ROIs and scalp electrodes, positive asymmetry 

scores reflect greater left cortical activity relative to right cortical activity, and 

negative asymmetry scores reflect greater right cortical activity relative to left cortical 

activity. Asymmetry scores of 0 reflect equivalent cortical activity in the left and right 

hemispheres. 

 

5.3. Results 

5.3.1. Cortical sources of spontaneous alpha during adolescence 

5.3.1.1. Scalp and sLORETA CSD maps 

The scalp (2D) and sLORETA (3D) CSD maps provided initial insights into how 

the spatial distribution of alpha changed during the course of adolescence. The scalp 

topographical maps (Figure 5.3) indicated that posterior alpha was greater in the eyes-

closed compared to eyes-open condition for all groups. The scalp maps also suggested 

that posterior alpha reduced in magnitude from preadolescence to late adolescence 

during the eyes-open and eyes-closed conditions. 

The sLORETA maps for the eyes-open (Figure 5.4) and eyes-closed (Figure 5.5) 

conditions revealed insights into the cortical sources underlying the scalp-recorded 

alpha activity during the different stages of adolescence. The sLORETA maps indicated 

that occipital-parietal regions were primarily responsible for generating alpha during 

the eyes-closed condition. By comparison, the sLORETA maps suggested that a much 

wider neural network, including occipital, parietal, temporal, and frontal regions, was 

engaged during the eyes-open condition. Consistent with the scalp maps, the 

sLORETA maps also indicated that alpha reduced in magnitude from preadolescence to 

late adolescence during the eyes-open and eyes-closed conditions. 
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5.3.1.2. Age and gender differences in the cortical sources of spontaneous alpha 

Mixed-design ANOVAs were used to examine age- and gender-related 

differences in the cortical sources of spontaneous alpha during the eyes-open and 

eyes-closed conditions. Separate ANOVAs were conducted for each ROI (mPFC, 

DLPFC, OFC, occipital cortex), with Condition (eyes-open, eyes-closed) as the within- 

group factor, and Age Group (preadolescents, mid-adolescents, late adolescents) and 

Gender (females, males) as the between-group factors. Significant interactions were 

followed up using bootstrapped t-tests. ANOVA pairwise comparisons and t-tests were 

corrected for multiple comparisons using the B-H procedure (Benjamini & Hochberg, 

1995; see Chapter 2.5). Figure 5.6 displays the group means and bootstrapped 95% 

confidence intervals for alpha CSD in the mPFC, DLPFC, OFC, and occipital cortex 

during the eyes-open and eyes-closed conditions. 

 

5.3.1.2.1. Medial PFC (mPFC) 

A main effect of Condition was found (F(1, 85) = 12.14, p = 0.001, ηp
2 = 0.13), 

revealing that mPFC alpha was greater in eyes-open (M = 0.09, 95% CI [0.07, 0.10]) 

than eyes-closed (M = 0.06, 95% CI [0.05, 0.07]). A main effect of Age Group was also 

found (F(2, 85) = 7.18, p = 0.001, ηp
2 = 0.14), showing that preadolescents (M = 0.10, 

95% CI [0.08, 0.12]) had greater mPFC alpha than both mid-adolescents (M = 0.05, 95% 

CI [0.03, 0.07]) (p = 0.001) and late adolescents (M = 0.06, 95% CI [0.04, 0.08]) (p = 

0.003). No difference in mPFC alpha was found between mid-adolescents and late 

adolescents (p = 0.632).  

The main effects of Condition and Age Group were qualified by a Condition by 

Age Group interaction (F(2, 85) = 3.52, p = 0.034, ηp
2 = 0.08). Paired t-tests revealed that 

preadolescents had equivalent mPFC alpha in eyes-open (M = 0.11, 95% CI [0.08, 0.14]) 

and eyes-closed (M = 0.09, 95% CI [0.07, 0.12]) (t(28) = 1.58, p = 0.126). Similarly, mid-

adolescents had equivalent mPFC alpha in eyes-open (M = 0.06, 95% CI [0.05, 0.07]) 

and eyes-closed (M = 0.05, 95% CI [0.04, 0.06]) (t(28) = 1.44, p = 0.161). By contrast, 

late adolescents had significantly more mPFC alpha in eyes-open (M = 0.09, 95% CI 

[0.06, 0.13]) compared to eyes-closed (M = 0.03, 95% CI [0.02, 0.03]) (t(32) = 2.93, p = 

0.006). No main effect of Gender was found (F(1, 85) = 1.08, p = 0.301, ηp
2 = 0.13), and 

all other interactions were non-significant. 
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Figure 5.3 Scalp (2D) CSD maps for the alpha frequency band (8-13 Hz) during the eyes-open 
(a) and eyes-closed (b) conditions. 
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Figure 5.4 sLORETA (3D) CSD maps for the alpha frequency band (8-13 Hz) during the eyes-
open condition. 
 



Chapter 5  Spontaneous alpha 

168 

  

Figure 5.5 sLORETA (3D) CSD maps for the alpha frequency band (8-13 Hz) during the eyes-
closed condition. 
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5.3.1.2.2. Dorsolateral PFC (DLPFC) 

A main effect of Condition was found (F(1, 85) = 10.01, p = 0.002, ηp
2 = 0.11), 

showing that DLPFC alpha was greater in eyes-open (M = 0.09, 95% CI [0.07, 0.11]) 

compared to eyes-closed (M = 0.06, 95% CI [0.05, 0.08]). A main effect of Age Group 

was also found (F(2, 85) = 9.97, p < 0.001, ηp
2 = 0.19), revealing that preadolescents (M 

= 0.11, 95% CI [0.09, 0.13]) had more DLPFC alpha compared to both mid-adolescents 

(M = 0.06, 95% CI [0.04, 0.08]) (p < 0.001) and late adolescents (M = 0.06, 95% CI [0.04, 

0.08]) (p < 0.001). No difference in DLPFC alpha was found between mid-adolescents 

and late adolescents (p = 0.927). No main effect of Gender was found (F(1, 85) = 0.70, p 

= 0.405, ηp
2 = 0.01), and all interactions were non-significant.  

 

5.3.1.2.3. Orbitofrontal cortex (OFC) 

A main effect of Age Group was found (F(2, 85) = 6.15, p = 0.003, ηp
2 = 0.13), 

revealing that preadolescents (M = 0.15, 95% CI [0.12, 0.18]) had more OFC alpha 

0.00 

0.05 

0.10 

0.15 

0.20 

0.25 

Females Males Females Males 

Eyes Open Eyes Closed 

0.00 

0.05 

0.10 

0.15 

0.20 

0.25 

Females Males Females Males 

Eyes Open Eyes Closed 

0.00 

0.05 

0.10 

0.15 

0.20 

0.25 

Females Males Females Males 

Eyes Open Eyes Closed 

0.00 

0.50 

1.00 

1.50 

2.00 

Females Males Females Males 

Eyes Open Eyes Closed 

Al
ph

a 
CS

D 
(μ

V/
cm

2 )
Al

ph
a 

CS
D 

(μ
V/

cm
2 )

a mPFC b DLPFC

c OFC d Occipital cortex

Al
ph

a 
CS

D 
(μ

V/
cm

2 )
Al

ph
a 

CS
D 

(μ
V/

cm
2 )

Preadolescents Mid-adolescents Late Adolescents 

Figure 5.6 Group means for alpha CSD in the mPFC (a), DLPFC (b), OFC (c), and occipital 
cortex (d) during the eyes-open and eyes-closed conditions. Error bars represent 95% 
bootstrapped confidence intervals. 
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compared to both mid-adolescents (M = 0.09, 95% CI [0.06, 0.12]) (p = 0.003) and late 

adolescents (M = 0.09, 95% CI [0.06, 0.12]) (p = 0.003). No difference in OFC alpha was 

found between mid-adolescents and late adolescents (p = 0.989).  

While no main effect of Condition was found (F(1, 85) = 0.25, p = 0.615, ηp
2 = 

0.00), the Condition by Age Group interaction was significant (F(2, 85) = 3.49, p = 0.035, 

ηp
2 = 0.08). The paired t-tests revealed that OFC alpha was equivalent in eyes-open (M 

= 0.14, 95% CI [0.12, 0.17]) and eyes-closed (M = 0.16, 95% CI [0.12, 0.20]) for 

preadolescents (t(28) = 7.80, p = 0.442). Similarly, OFC alpha was equivalent in eyes-

open (M = 0.08, 95% CI [0.06, 0.10]) and eyes-closed (M = 0.10, 95% CI [0.08, 0.12]) for 

mid-adolescents (t(28) = 1.47, p = 0.154). By contrast, a trend indicated that late 

adolescents had significantly more OFC alpha in eyes-open (M = 0.12, 95% CI [0.08, 

0.17]) compared to eyes-closed (M = 0.06, 95% CI [0.05, 0.08]) (t(32) = 1.89, p = 0.068). 

No main effect of Gender was found (F(1, 85) = 1.16, p = 0.285, ηp
2 = 0.13), and all other 

interactions were non-significant.  

 

5.3.1.2.4. Occipital cortex 

A main effect of Condition was found (F(1, 85) = 38.24, p < 0.001, ηp
2 = 0.31), 

revealing that occipital alpha was greater in eyes-closed (M = 0.74, 95% CI [0.54, 0.95]) 

compared to eyes-open (M = 0.16, 95% CI [0.13, 0.20]). These findings suggest that 

alpha was greater in the occipital cortex during the eyes-closed conditions compared 

to the eyes-open condition. This is in direct contrast with the findings from the mPFC, 

DLPFC, and OFC where alpha was greater in eyes-open compared to eyes-closed. A 

main effect of Age Group was also found (F(2, 85) = 7.64, p < 0.001, ηp
2 = 0.15), showing 

that preadolescents (M = 0.73, 95% CI [0.53, 0.93]) had significantly more occipital 

alpha than mid-adolescents (M = 0.42, 95% CI [0.23, 0.62]) (p = 0.032) and late 

adolescents (M = 0.20, 95% CI [0.01, 0.38]) (p < 0.001). No difference in occipital alpha 

was found between mid-adolescents and late adolescents (p = 0.101).  

The main effects of Condition and Age Group were qualified by a Condition by 

Age Group interaction (F(2, 85) = 6.21, p = 0.003, ηp
2 = 0.13). However, the paired t-tests 

revealed the same pattern of findings for each age group, whereby occipital alpha was 

greater during the eyes-closed condition compared to the eyes-open condition. In 

particular, occipital alpha was greater in eyes-closed (M = 1.22, 95% CI [0.70, 1.85]) 

than eyes-open (M = 0.24, 95% CI [0.18, 0.32]) for preadolescents (t(28) = 3.87, p = 

0.001). Similarly, occipital alpha was greater in eyes-closed (M = 0.71, 95% CI [0.44, 
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1.06]) than eyes-open (M = 0.15, 95% CI [0.10, 0.22]) for mid-adolescents (t(28) = 4.15, 

p < 0.001). Occipital alpha was also greater in eyes-closed (M = 0.30, 95% CI [0.21, 

0.40]) than eyes-open (M = 0.10, 95% CI [0.07, 0.12]) for late adolescents (t(32) = 4.29, 

p < 0.001). No main effect of Gender was found (F(1, 85) = 0.98, p = 0.326, ηp
2 = 0.011), 

and all other interactions were non-significant.  

 

5.3.2. The influence of puberty on the development of spontaneous alpha 

The findings so far suggest that frontal and occipital alpha change significantly 

during the course of adolescence. However, it is also possible that the development of 

spontaneous alpha is affected by puberty since several studies have reported that 

puberty influences the development of cortical and subcortical grey matter (Bramen et 

al., 2011; Goddings et al., 2014; Neufang et al., 2009). Accordingly, the second aim of 

this study was to explore the influence of puberty on the development of spontaneous 

alpha in male and female adolescents aged 9-17 years while controlling for 

chronological age. Given that the age of pubertal onset is highly variable between 

individuals (Sørensen et al., 2013), it is possible that categorising adolescents into age 

groups may confound any potential relationships between puberty and spontaneous 

alpha. Thus, the relationships between puberty and spontaneous alpha were examined 

in a continuous sample of females (n = 28; Mage = 12.71, SDage = 2.26) and males (n = 30; 

Mage = 12.67, SDage = 2.55) aged 9-17 years. 

The same approach was used in this study as in Chapters 3 and 4. Since many 

developmental trajectories during childhood and adolescence are non-linear, 

hierarchical polynomial regression analyses were conducted to assess the linear and 

quadratic relationships between puberty and alpha CSD. Regression analyses were 

conducted with the four ROIs as the dependent variables (mPFC, DLPFC, OFC, 

occipital cortex). Separate regression analyses were conducted for the eyes-open and 

eyes-closed conditions. To tease out the confounding affects of chronological age on 

pubertal development, age was entered into the first block of the regression analyses 

as a control variable, and PDS scores were entered into the second block. Separate 

regression analyses were conducted to assess the linear and quadratic relationships; 

raw age and PDS scores were used to examine the linear relationships, and squared age 

and PDS scores were used to assess the quadratic relationships. Regression coefficients 

were bootstrapped and corrected for multiple comparisons using the B-H procedure 

(Benjamini & Hochberg, 1995; see Chapter 2.5). The intercorrelations between the 
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variables are reported in Supplementary Table 5.1 (Appendix 3). 

 

5.3.2.1. Females  

Supplementary Table 5.2 (Appendix 3) reports the regression coefficients for 

eyes-open and eyes-closed for females. No linear or quadratic relationships were 

found between puberty and spontaneous alpha for either the eyes-open or eyes-closed 

condition.  

 

5.3.2.2. Males  

Supplementary Table 5.3 (Appendix 3) reports the regression coefficients for 

the eyes-open and eyes-closed conditions for males. Contrary to females, puberty 

significantly predicted alpha CSD in males. Frontal alpha CSD was significantly 

predicted by puberty in the eyes-closed condition, but not in the eyes-open condition. 

In particular, the linear pubertal term significantly predicted mPFC alpha (ΔR2 = 

14.7%, F(1, 27) = 5.43, p = 0.028), DLPFC alpha (ΔR2 = 17.8%, F(1, 27) = 7.09, p = 0.013), 

and OFC alpha (ΔR2 = 18.8%, F(1, 27) = 6.76, p = 0.015). The quadratic pubertal term 

also significantly predicted mPFC alpha (ΔR2 = 15.1%, F(1, 27) = 5.66, p = 0.025), 

DLPFC alpha (ΔR2 = 17.6%, F(1, 27) = 6.85, p = 0.014), and OFC alpha (ΔR2 = 19.8%, F(1, 

27) = 7.22, p = 0.012). 

Occipital alpha was also significantly predicted by the linear (ΔR2 = 17.7%, F(1, 

27) = 5.99, p = 0.021) and quadratic (ΔR2 = 16.9%, F(1, 27) = 5.67, p = 0.025) pubertal 

terms in the eyes-closed condition. In contrast to the frontal ROIs, occipital alpha was 

significantly predicted by the linear (ΔR2 = 26.8%, F(1, 27) = 10.18, p = 0.004) and 

quadratic (ΔR2 = 20.6%, F(1, 27) = 7.21, p = 0.012) pubertal terms in the eyes-open 

condition.  

Together, these findings revealed that alpha in the frontal and occipital ROIs 

decreased with advancing pubertal stage in males. These findings indicate that puberty 

has significant affects on the development of spontaneous alpha during adolescence 

that are independent of chronological age but dependent on gender. The partial 

regression plots are presented in Figure 5.7 for the frontal ROIs and in Figure 5.8 for 

the occipital ROI. 
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Figure 5.7 Partial regression plots of the residuals for the linear and quadratic relationships 
between puberty and alpha CSD in the mPFC (a, b), DLPFC (c, d), and OFC (e, f) during the 
eyes-closed condition controlling for chronological age for male adolescents aged 9-17 years.  
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5.3.3. Frontal alpha asymmetry 

 Frontal cortical asymmetry, as indexed by spontaneous alpha, is thought to 

reflect lateralisation of the approach-avoidance systems, whereby greater left frontal 

cortical activity reflects approach-related processes and greater right frontal cortical 

activity reflects avoidance-related processes. Risk-taking behaviours, as measured by 

the YRBSS and BART, increased throughout adolescence in this sample (Chapter 3). 

Therefore, the final aim of this study was to explore whether frontal asymmetry could 

account for the developmental differences in risk-taking behaviours in this sample of 

adolescents. Frontal alpha asymmetry was examined using the frontal ROIs (mPFC, 

DLPFC, OFC) and frontal scalp electrodes (F4-F3, F8-F7). This section examines the 

age- and gender-related differences in frontal asymmetry (Chapter 5.3.3.1), and 
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Figure 5.8 Partial regression plots of the residuals for the linear and quadratic relationships 
between puberty and alpha CSD in the occipital cortex during the eyes-closed condition (a, b) 
and eyes-open condition (c, d) controlling for chronological age for male adolescents aged 9-17 
years.  
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relationships between frontal asymmetry and risk-taking behaviours (Chapter 5.3.3.2).  

 

5.3.3.1. Age- and gender-related differences in frontal alpha asymmetry 

Mixed-design ANOVAs were used to examine age- and gender-related 

differences in frontal asymmetry during the eyes-open and eyes-closed conditions. 

Separate ANOVAs were conducted for each ROI (mPFC, DLPFC, OFC) and electrode 

pair (F4-F3, F8-F7) with Condition (eyes-open, eyes-closed) as the within-group factor, 

and Age Group (preadolescents, mid-adolescents, late adolescents) and Gender 

(females, males) as the between-group factors. ANOVA pairwise comparisons were 

corrected for multiple comparisons using the B-H procedure (Benjamini & Hochberg, 

1995; see Chapter 2.5). 

 

5.3.3.1.1. Frontal alpha asymmetry: ROIs 

Figure 5.9 displays the group means and bootstrapped 95% confidence intervals 

for alpha asymmetry in the mPFC, DLPFC, OFC during the eyes-open and eyes-closed 

conditions. No main or interaction effects were found for the frontal alpha asymmetry 

scores computed using the ROIs (mPFC, DLPFC, OFC). These findings therefore 

suggest that levels of asymmetry in the frontal ROIs were comparable across groups.  

 

5.3.3.1.2. Frontal alpha asymmetry: scalp electrodes 

Figure 5.10 displays the group means and bootstrapped 95% confidence 

intervals for alpha asymmetry scores for scalp electrodes F4-F3 and F8-F7 during the 

eyes-open and eyes-closed conditions. No main or interaction effects were found for 

the frontal alpha asymmetry scores computed using the scalp electrodes (F4-F3, F8-

F7). These findings are consistent with the ROI analysis (Chapter 5.3.3.1.1), and 

suggest that levels of asymmetry in the scalp electrodes were comparable across 

groups. 
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Figure 5.9 Group means for alpha CSD asymmetry and alpha CSD in the right and left 
hemispheres in the mPFC (a, b), DLPFC (c, d), and OFC (e, f) for the eyes-open and eyes-closed 
conditions. Error bars represent 95% bootstrapped confidence intervals. 
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5.3.3.2. Relationships between frontal alpha asymmetry and risk-taking behaviours 

Next, relationships between frontal alpha asymmetry and risk-taking 

behaviours were explored. Risk-taking behaviours were measured using the BART and 

YRBSS (Chapter 3). The BART yields three dependent measures: the average number 

of adjusted pumps for unpopped balloons; the total number of points won on the task; 

and the total number of popped balloons. By contrast, the YRBSS yields one dependent 

measure that reflects participants’ recent engagement in a range of risky behaviours. 

Higher BART and YRBSS scores reflect greater levels of risk-taking (see Chapter 2.3.1). 

Correlations were conducted separately for age groups and genders, and were 

bootstrapped and corrected for multiple comparisons using the B-H procedure 

(Benjamini & Hochberg, 1995; see Chapter 2.5). 

 

Figure 5.10 Group means for alpha CSD asymmetry and alpha CSD in the right and left 
hemisphere for scalp electrode pairs F4-F3 (a, b) and F8-F7 (c, d) during the eyes-open and 
eyes-closed conditions. Error bars represent 95% bootstrapped confidence intervals. 
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5.3.3.2.1. Frontal alpha asymmetry and risk-taking: ROIs 

The Pearson correlation coefficients between ROI frontal alpha asymmetry 

scores (mPFC, DLPFC, OFC) and participants’ risk-taking behaviours (BART, YRBSS) 

are presented in Supplementary Table 5.4 (Appendix 3). The group means and 

bootstrapped 95% confidence intervals for the ROI frontal asymmetry scores are 

presented in Figure 5.9. In summary, significant correlations were found between ROI 

frontal alpha asymmetry scores and risk-taking behaviours for female and male mid-

adolescents and male late adolescents. By comparison, no correlations were found 

between ROI frontal alpha asymmetry scores and risk-taking behaviours for female or 

male preadolescents or female late adolescents. 

For mid-adolescent females, DLPFC alpha asymmetry was positively correlated 

with YRBSS risk-taking during the eyes-open condition (r = 0.63, p = 0.016) and with 

the total number of points won on the BART during the eyes-closed condition (r = 

0.57, p = 0.032). Together, these findings support the study predictions and previous 

work (Black et al., 2014), and suggest that greater YRBSS and BART risk-taking was 

associated with relatively more left frontal cortical activity in the DLPFC in mid-

adolescent females. 

Consistent with mid-adolescent females, risk-taking behaviours were also 

positively associated with relatively more left frontal cortical activity for mid-

adolescent males. Specifically, OFC alpha asymmetry was positively correlated with 

the total number of points won on the BART during the eyes-open condition (r = 0.57, 

p = 0.027). This finding is consistent with the study predictions and previous work 

(Black et al., 2014), and suggests that greater BART risk-taking was associated with 

relatively more left frontal cortical activity in the OFC in mid-adolescent males. 

 In contrast to mid-adolescent females and males, for late adolescent males, 

DLPFC alpha asymmetry was negatively correlated with YRBSS risk-taking during the 

eyes-open condition (r = -0.57, p = 0.023). This finding is contrary to predictions and 

previous work (Black et al., 2014), and suggests that greater YRBSS risk-taking was 

associated with relatively more right frontal cortical activity in the DLPFC in late 

adolescent males. 

 

5.3.3.2.2. Frontal alpha asymmetry and risk-taking: scalp electrodes 

In order to compare this study to the existing literature, frontal asymmetry was 

also assessed using the most widely used scalp electrode pairs, F4-F3 and F8-F7 (Black 
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et al., 2014; Harmon-Jones et al., 2008; Santesso et al., 2008; Schutter et al., 2004). The 

Pearson correlation coefficients between scalp frontal asymmetry (F4-F3, F8-F7) and 

participants’ risk-taking behaviours (BART, YRBSS) are presented in Supplementary 

Table 5.5 (Appendix 3). The group means and bootstrapped 95% confidence intervals 

for the scalp frontal asymmetry scores are presented in Figure 5.10. Contrary to 

previous studies (e.g., Black et al., 2014; Santesso et al., 2008) and the study 

predictions, no correlations were found between the frontal asymmetry scores using 

the scalp electrodes (F4-F3, F8-F7) and risk-taking behaviours for any group. 

 

5.4. Discussion 

This study had three aims. The first aim of this study was to identify how the 

cortical sources of spontaneous alpha during eyes-open and eyes-closed conditions 

change throughout adolescence for males and females. In order to account for the 

potential affects of puberty on the development of spontaneous alpha, the second aim 

of this study was to assess the relationship between pubertal stage and spontaneous 

alpha in male and female adolescents aged 9-17 years. Finally, frontal alpha 

asymmetry is thought to reflect lateralisation of the approach-avoidance systems in 

adults (Davidson, 1984, 1992). However, whether the same is true for adolescents 

remains unclear. Since Chapter 3 revealed significant age- and gender-related 

differences in risk-taking behaviours in this sample of adolescents, the third and final 

aim of this study was to explore whether frontal alpha asymmetry could account for 

the developmental differences in risk-taking observed in this sample. To these ends, 

preadolescents aged 9-12 years, mid-adolescents aged 13-17 years, and late 

adolescents aged 18-23 years had their resting brain activity measured using EEG 

during eyes-open and eyes-closed conditions. Overall, the findings revealed that the 

cortical sources of alpha changed considerably during the course of adolescence, and 

that more advanced pubertal development was associated with reduced levels of alpha 

CSD in males aged 9-17 years. Unexpectedly however, frontal asymmetry was found to 

not be a reliable marker of risk-taking in this sample of adolescents.  

Alpha CSD was examined in four ROIs: mPFC, DLPFC, OFC and occipital 

cortex. The mPFC, DLPFC, and OFC were selected for two reasons. First, several 

studies have reported that frontal regions are involved in the generation of 

spontaneous alpha in adults (Cuspineda et al., 2009; De Munck et al., 2007; Goldman et 

al., 2002; Feige et al., 2005; Lüchinger et al., 2011; Wu et al., 2010). The human brain 
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matures in a back-to-front order, with prefrontal regions developing last. Thus, 

compared to other cortical and subcortical regions, the PFC has a protracted 

development across adolescence (Gotgay et al., 2004; Mills et al., 2014). The PFC is 

therefore a good candidate for examining potential age-related differences in the 

cortical sources of spontaneous alpha during adolescence. Second, frontal alpha 

asymmetry has been widely implicated in the approach-avoidance systems, whereby 

relatively greater left frontal cortical activity is associated with the approach system 

and relatively greater right frontal cortical activity is associated with the avoidance 

system (Coan & Allen, 2004; Davidson, 1984, 1992; Harmon-Jones et al., 2010; 

Tomarken et al., 1990; Tomarken et al., 1992; Wheeler et al., 1993). Compared to the 

frontal ROIs, the occipital cortex was selected as a ROI because it is thought to be the 

primary cortical generator of the alpha rhythm in adults (Cuspineda et al., 2009; De 

Munck et al., 2007; Feige et al., 2005; Goldman et al., 2002; Lüchinger et al., 2011; 

Moosmann et al., 2003). Hence, examining the development of occipital alpha 

provided important insights into how the primary cortical generator of spontaneous 

alpha develops across adolescence. This discussion is organised in accordance with the 

study aims. 

 

5.4.1. Cortical sources of spontaneous alpha throughout adolescence 

The first aim of this study was to examine the cortical sources of spontaneous 

alpha in frontal and occipital ROIs during eyes-open and eyes-closed conditions in 

male and female preadolescents, mid-adolescents, and late adolescents. As predicted, 

developmental reductions in alpha CSD were observed in all ROIs; preadolescents had 

more alpha CSD in the mPFC, DLPFC, OFC, and occipital cortex compared to both 

mid-adolescents and late adolescents, irrespective of condition. No differences in 

alpha CSD were found between mid-adolescents and late adolescents, suggesting that 

frontal and occipital alpha CSD decreased from preadolescence to mid-adolescence, 

but remained largely stable across middle and late adolescence. These findings support 

previous studies showing that alpha power decreases across all areas of the scalp 

during childhood and adolescence (Chiang et al., 2011; Dustman et al., 1999; 

Yordanova & Kolev, 1997). Such decreases in cortical alpha power are thought to 

reflect the reduction of cortical grey matter and augmentation of white matter during 

adolescence (Segalowitz et al., 2010; Whitford et al., 2007). 

Critically, considerable differences in the cortical sources of spontaneous alpha 
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were found between the eyes-open and eyes-closed conditions for all groups. The 

sLORETA maps revealed that the sources of alpha were primarily localised to occipital, 

parietal, and occipito-temporal regions in the eyes-closed condition (Figure 5.5). In 

comparison to the eyes-closed condition, the sLORETA maps revealed that the sources 

of alpha were more widespread in the eyes-open condition for all groups, and included 

occipital, parietal, temporal, and frontal regions (Figure 5.4). The ANOVAs for the 

ROIs also revealed significant differences between the eyes-closed and eyes-open 

conditions; there was significantly more alpha CSD in the occipital cortex during the 

eyes-closed condition, and significantly more alpha CSD in the mPFC and DLPFC 

during the eyes-open condition for all groups.  

The finding that the occipital and parietal cortices were the primary cortical 

sources of spontaneous alpha during the eyes-closed condition for all groups is highly 

consistent with previous studies (Goldman et al., 2002; Lüchinger et al., 2011; 

Moosmann et al., 2003). Substantially less work has examined the differences in the 

cortical sources of alpha between eyes-open and eyes-closed conditions. Despite this, 

the findings from this study are largely consistent with previous work; the current 

study found that alpha CSD was significantly greater in occipital cortical regions 

during the eyes-closed condition compared to the eyes-open condition (Wu et al., 

2010), and that the cortical generators of alpha were more widespread during the eyes-

open condition compared to the eyes-closed condition (Lüchinger et al., 2011). 

Interestingly, developmental differences were found in frontal alpha CSD 

during the eyes-open condition. Specifically, late adolescents had more alpha CSD in 

the mPFC and OFC during the eyes-open condition compared to the eyes-closed 

condition. By contrast, alpha CSD was equivalent across the eyes-open and eyes-

closed conditions in the mPFC and OFC for preadolescents and mid-adolescents.  

Alpha activity is inversely related to cortical activity (Haegens et al., 2011; 

Shagass, 1972), and a number of studies have reported that alpha synchronises 

(increases) in task irrelevant areas and desynchronises (decreases) in task relevant 

areas (Klimesch et al., 1997). Hence, current theories suggest that alpha has an active 

role in inhibiting irrelevant brain activity to facilitate more efficient neural processing 

(Foxe & Snyder, 2011; Jensen et al., 2012; Klimesch, 1999; Klimesch et al., 2007; Palva 

& Palva, 2007; see Chapter 5.1.3). Thus, the finding that late adolescents had greater 

levels of alpha CSD in the PFC than preadolescents and mid-adolescents when their 

eyes were open may reflect that late adolescents had greater levels of inhibition in the 
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PFC. Notably, the PFC has a protracted development across childhood and adolescence 

that extends into the third decade of life (Gotgay et al., 2004; Mills et al., 2014). The 

structural development of the PFC is thought to underlie age-related changes in PFC 

function; fMRI studies have consistently reported that PFC activity during executive 

tasks reduces and becomes more focal as the PFC structurally develops (Casey et al., 

1997; see Chapter 1.5.1). It is therefore possible to speculate that a greater level of 

alpha in the PFC during late adolescence and adulthood is one mechanism underlying 

more efficient neural processing, and may therefore contribute to the improvements in 

cognitive and memory processes observed throughout childhood and adolescence. In 

support of this idea, late adolescents performed better than preadolescents on the 

Go/NoGo task, a measure of executive function and response inhibition, (Chapter 3) 

and previous studies have reported that executive functions that are reliant on the PFC 

develop throughout adolescence and into late adolescence/young adulthood (Casey et 

al., 2010; Blakemore & Choudhury, 2006; Steinberg et al., 2008).  However, future work 

is needed to establish the role of frontal alpha activity in the development of cognitive 

and memory processes throughout childhood and adolescence. 

Compared to the mPFC and OFC, alpha CSD in the DLPFC was not significantly 

greater in the eyes-open condition compared to the eyes-closed condition for late 

adolescents. Despite this, there was some evidence that the DLPFC showed the same 

developmental trend as the mPFC and OFC (see Figure 5.6). The DLPFC is one of the 

final brain structures to mature and may not reach full maturity until the end of the 

third decade of life (Huttenlocher, 1979; Petanjek et al., 2011; Sowell et al., 1999, 

2001). Thus, it is feasible that alpha CSD in the DLPFC was not greater in late 

adolescents during the eyes-open condition compared to the eyes-closed condition 

because the DLPFC may have been relatively less mature than the mPFC and OFC due 

to its protracted development. 

For the first time, this study assessed the cortical sources of alpha during eyes-

open and eyes-closed conditions in a sample of preadolescents, mid-adolescents, and 

late adolescents. The findings from this study therefore give preliminary insights into 

how the cortical sources of alpha change throughout adolescence. The only other 

study to compare the sources of spontaneous alpha between adolescents and adults 

reported no age-related differences (Lüchinger et al., 2011). In contrast, the current 

study found significant developmental differences in the frontal sources of alpha. 

Importantly, there are two key differences between the current study and Lüchinger et 



Chapter 5  Spontaneous alpha 

183 

al.’s (2011) study that may account for the discrepancy in findings; Lüchinger et al. 

(2011) did not explore potential gender differences and only included adolescents aged 

15 years and adults aged 25 years. By comparison, the current study examined age-

related and gender-related differences in adolescents aged 9-23 years. 

Notably, while the current study reported significant age differences in the 

cortical sources of alpha, no significant gender differences were found. Despite this, 

the sLORETA maps indicated that there were differences between males and females 

in the cortical sources of alpha. In particular, for occipital alpha CSD in the eyes-

closed condition, mid-adolescent males more strongly resembled preadolescents 

whereas mid-adolescent females more strongly resembled late adolescents (see Figure 

5.6). Moreover, the age-related changes in mPFC and OFC alpha CSD in late 

adolescents appeared to be driven by females (see Figure 5.6). These findings are 

consistent with what is currently known about brain development during adolescence, 

whereby females mature slightly faster than males (Lenroot & Giedd, 2010; see 

Chapter 1.4). Finally, Figure 5.6 also suggested that there was a u-shaped 

developmental trajectory for frontal alpha CSD during the eyes open condition for 

females but not males; frontal alpha CSD appeared to reduce from preadolescence to 

mid-adolescence and subsequently increase from mid-adolescence to late adolescence. 

It is possible that the lack of statistical significance for such gender-related differences 

reflects high levels of variability in this sample. High levels of variability in resting 

state studies is thought to result from participants engaging in a range of internal 

processes, such as spontaneous thoughts, memory retrieval, future planning, or 

daydreaming (Fox, Spreng, Ellamil, Andrews-Hanna & Christoff, 2015). 

 

5.4.2. The influence of puberty on the development of spontaneous alpha 

Recent work has shown that puberty has significant affects on the development 

of cortical and subcortical grey matter during adolescence that are independent of 

chronological age (Bramen et al., 2011; Goddings et al., 2014; Neufang et al., 2009). 

Since the alpha rhythm is generated by cortical and subcortical grey matter structures 

(Da Silva et al., 1980; De Munck et al., 2007; Feige et al., 2005; Goldman et al., 2002; 

Lüchinger et al., 2011; Moosmann et al., 2003; Wu et al., 2010), it is possible that the 

influence puberty has on grey matter development also affects the development of 

spontaneous alpha. Despite this, no study to date has examined the influence of 

puberty on the development of spontaneous alpha. Accordingly, the second aim of this 
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study was to examine the relationships between pubertal stage and spontaneous alpha 

in frontal and occipital ROIs in male and female adolescents aged 9-17 years old while 

controlling for chronological age. Since the development of many behaviours and 

brain structures are nonlinear, this study examined the linear and nonlinear 

relationships between alpha and pubertal development.  

Interestingly, relationships between spontaneous alpha and pubertal stage 

were only observed for males. For males, both the linear and quadratic terms revealed 

that more advanced pubertal stage was associated with less alpha CSD in the frontal 

ROIs during the eyes-closed condition (Figure 5.7) and in the occipital ROI during the 

eyes-open and eyes-closed conditions (Figure 5.8). Puberty accounted for between 

14.7 and 26.8 per cent of the variance in alpha CSD, suggesting that pubertal stage had 

a considerable influence on the development of frontal and occipital alpha in this 

sample of adolescent males. 

Given that the relationships were found only in males, it is possible to 

speculate that the relationships between puberty and spontaneous alpha found in this 

study resulted from puberty-specific changes in testosterone levels. Several studies 

have reported that testosterone levels are associated with the development of cortical 

grey matter in adolescent males (see Chapter 1.4). Notably, Neufang et al. (2009) found 

that testosterone levels were negatively associated with grey matter volume in the 

parietal cortex in males aged 8-15 years. The parietal cortex is thought to be one of the 

primary cortical generators of spontaneous alpha during eyes-open and eyes-closed 

conditions (Cuspineda et al., 2009; De Munck et al., 2007; Feige et al., 2005; et al., 

2011; Moosmann et al., 2003). Consistently, the sLORETA maps in the current study 

showed that, for all groups, the parietal-occipital cortices were the primary cortical 

generator of alpha in the eyes-closed condition (Figure 5.5), and were one of the 

cortical generators in the eyes-open condition (Figure 5.4). While the current study 

measured pubertal stage instead of testosterone levels, studies have shown that 

testosterone levels increase with advancing pubertal stage (Biro, Lucky, Huster & 

Morrison, 1995; Shirtcliff et al., 2009). Moreover, spontaneous alpha is thought to be 

generated by cortico-cortical neural networks, in addition to cortico-thalamic 

networks (Da Silva et al., 1980). Thus, it is possible that the affect of testosterone on 

parietal grey matter (Neufang et al., 2009) may partially account for the findings 

reported in the current study, whereby more advanced pubertal stage was associated 

with less alpha in frontal and occipital cortical regions. 
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A number of studies have also reported that puberty has an affect on the 

development of subcortical grey matter in males; more advanced pubertal stage in 

males has been positively associated with grey matter volume in the amygdala and 

hippocampus (Bramen et al., 2011, Goddings et al., 2014) and negatively associated 

with grey matter volume in the nucleus accumbens, caudate, putamen, and globus 

pallidus (Goddings et al., 2014). However, it is currently unknown whether 

testosterone and pubertal stage have significant affects on the structural development 

of the thalamus. The thalamus is a subcortical structure critical for the generation of 

the alpha rhythm (Da Silva & Van Leeuwen, 1977; Steriade et al., 1990), and is 

therefore a likely candidate underlying the relationship between puberty and alpha 

activity found in the current study. Future work is therefore needed to examine the 

relationship between puberty and the structural development of the thalamus, as well 

as between puberty and the generation of spontaneous alpha originating from the 

thalamus.  

 

5.4.3. Frontal alpha asymmetry: relationships with risk-taking  

There is a highly influential biphasic motivational theory proposing that 

frontal cortical activity, as indexed by spontaneous alpha, in the left and right 

hemispheres reflects lateralisation of approach and avoidance processes, respectively 

(Davidson, 1984, 1992). While there is considerable evidence for frontal lateralisation 

in adults, very little work has been conducted in adolescents. The study reported in 

Chapter 3 revealed that risk-taking behaviours, but not anxiety levels, increased 

during the course of adolescence. Accordingly, the final aim of the current study was 

to explore the development of frontal alpha asymmetry and its relationship to risk-

taking behaviours during preadolescence, mid-adolescence, and late adolescence to 

investigate whether frontal asymmetry could account for the developmental 

differences in risk-taking found in this sample of adolescents.  

In contrast to the study predictions and previous work (Black et al., 2014; Coan 

& Allen, 2003; Santesso et al., 2008; Sutton & Davidson, 1997; Wheeler et al., 1993), 

no relationships between frontal alpha asymmetry and risk-taking behaviours were 

found for the scalp electrodes for any group. This is surprising since there has been 

considerable empirical support in 18-25 years that greater left frontal cortical activity 

is associated with approach sensitivity and approach-related behaviours, such as 

sensation seeking and risk-taking behaviours (Coan & Allen, 2003; Santesso et al., 
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2008; Sutton & Davidson, 1997; Wheeler et al., 1993).  

Compared to the scalp asymmetry scores, several relationships emerged 

between frontal alpha asymmetry and risk-taking behaviours for the frontal ROIs. 

However, while the relationships between frontal asymmetry and risk-taking were in 

the expected direction for mid-adolescent females and males, the pattern of findings 

were sparse and unsystematic. In particular, for mid-adolescent females, DLPFC alpha 

CSD was positively associated with YRBSS risk-taking in the eyes-open condition and 

BART risk-taking in the eyes-closed condition. In comparison, for mid-adolescent 

males, OFC alpha CSD was positively associated with BART risk-taking in the eyes-

open condition. In contrast to mid-adolescent females and males, the relationships for 

the late adolescent males were in the unexpected direction, whereby YRBSS risk-

taking was associated with relatively greater right DLPFC activity during the eyes-open 

condition. Moreover, no relationships between frontal asymmetry and risk-taking were 

observed for late adolescent females, or preadolescents. Overall, these findings do not 

reveal a clear pattern of relationships between frontal asymmetry and risk-taking 

behaviours. Moreover, the relationships that did emerge do not correspond to the 

development risk-taking behaviours found in this sample of adolescents; YRBSS risk-

taking increased from preadolescence to mid-adolescence for males and females, and 

from mid-adolescence to late adolescence for females. BART risk-taking also increased 

from mid-adolescence to late adolescence for both males and females (Chapter 3). 

Notably, the only study to assess relationships between frontal asymmetry and 

the approach system in adolescents recruited individuals who had higher or lower than 

average sensitivity to reward (Black et al., 2014). By contrast, participants in the 

current study were not recruited on the basis of reward sensitivity. Thus, it is feasible 

that the discrepancy between the current study and Black et al.’s (2014) study results 

from differences in adolescents’ sensitivity to reward. It is possible that exploring 

frontal asymmetry in adolescents who are highly sensitive to rewards or in adolescents 

who engage in higher than average levels of risk-taking will provide more useful 

insights into frontal asymmetry as a potential mechanism underlying risk-taking 

behaviours during adolescence. 

The neurobiological models of adolescence assert that adolescent risk-taking 

behaviour is driven by a hyperresponsive approach reward-based system (Casey et al., 

2010; Ernst et al., 2006; Nelson et al., 2005; Steinberg, 2008). Moreover, the Triadic 

Model proposes that adolescents also have a hyporesponsive avoidance threat-based 
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system (Ernst et al., 2006). Hence, if frontal alpha asymmetry reflects the approach-

avoidance systems (Davidson, 1984, 1992), it should be possible to test these 

assertions by exploring age-related changes in frontal alpha asymmetry. However, this 

study found no significant age-related changes in frontal alpha asymmetry. There was 

some evidence of greater left hemisphere activity in mid-adolescents, particularly at 

electrodes F8-F7 (Figure 5.10), but this effect did not reach statistical significance. 

Thus, the frontal asymmetry findings from the current study cannot shed light on the 

relative dominance of the approach or avoidance systems, and their relationship to 

risk-taking behaviours, during adolescence. 

The development of frontal alpha asymmetry, and its relationship to risk-

taking behaviours was assessed in the current study using CSD transformed scalp data 

and frontal ROIs (mPFC, DLPFC, OFC). CSD transformed data attenuate the impact of 

distal and widely distributed brain electrical sources, and therefore provide a more 

spatially accurate representation of the sources underlying the EEG signal. 

Furthermore, CSD transformed resting state data are less influenced by uncontrolled 

circadian and seasonal factors compared to traditional electrodes. Thus, CSD 

transformed alpha asymmetry data compared to referenced alpha asymmetry data are 

more likely to reflect neural activity than extraneous factors (Velo et al., 2012). 

Although CSD transformed scalp data provide a more accurate spatial representation 

of the sources underlying the EEG signal, the sources of EEG activity remain unknown. 

Therefore, the current study also examined frontal alpha asymmetry using source 

localised ROIs in order to provide more comprehensive investigation into the potential 

structures underlying scalp-recorded frontal alpha asymmetry. Finally, the current 

study examined frontal alpha asymmetry during eyes-open and eyes-closed conditions 

given that there are considerable differences in the sources of alpha between eyes-

open and eyes-closed conditions (Feige et al., 2005; Lüchinger et al., 2011; Wu et al., 

2010), and opening the eyes reduces global alpha power and increases skin 

conductance levels (Barry et al., 2007; Barry et al., 2009). Thus, the current study 

employed novel methods to explore the development of frontal alpha asymmetry and 

its relationship to risk-taking behaviours. For the reasons outlined above, future work 

should aim to investigate frontal alpha asymmetry using CSD transformed scalp data 

and source localised ROIs during eyes-open and eyes-closed conditions. 
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5.4.4. Study limitations 

The findings reported in this study provide novel insights into the cortical 

sources of spontaneous alpha, and their relationship to pubertal development and 

risk-taking behaviours, during adolescence. However, there are a number of 

limitations of the current study that need to be considered. Firstly, the sLORETA 

solution space is limited to cortical grey matter and is therefore unable to examine 

subcortical structures, such as the thalamus. Moreover, this study selected frontal and 

occipital cortical ROIs to examine the development of alpha during adolescence. 

However, the sLORETA maps indicated that parietal and temporal cortical regions 

might also be involved in the generation of spontaneous alpha. Thus, this study is 

limited in its capacity to examine all the potential sources of alpha throughout 

adolescence. Future work should therefore aim to examine the cortical and subcortical 

generators of alpha in adolescents using combined EEG-fMRI to provide a greater 

understanding of how both the cortical and subcortical sources of alpha develop 

during the course of adolescence.  

Secondly, participants in resting state studies are instructed to relax with their 

eyes open or closed. It is therefore plausible that the participants in this study were 

engaging in any one of a number of internal processes, including spontaneous 

thoughts, future planning, memory retrieval, or daydreaming (Fox et al., 2015). Hence, 

the cortical sources associated with resting state activity may reflect a number of 

different processes. Indeed, the high levels of variability in this study may reflect that 

preadolescents, mid-adolescents, and late adolescents were engaging in a variety of 

different internal processes. Future work should therefore aim to tease out the cortical 

and subcortical sources of alpha associated with different internal processes. One 

approach would be to measure alpha while participants engage in a series of internal 

processes, such as memory retrieval and future planning. Critically however, younger 

participants may not have the capabilities to engage in such internally directed 

thoughts, and there is no overt, reliable measure to determine which internal process 

participants engaged in. Event-related studies may therefore provide a more accurate 

way of assessing the cortical and subcortical sources of alpha involved in distinct 

internal processes. 

 

5.4.5. Conclusion 

The current findings go beyond that of previous studies by exploring the age- 
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and gender-related differences in the cortical sources of spontaneous alpha in a 

sample of typically developing adolescents, and their relation to puberty and risk-

taking behaviours. Moreover, in contrast to the vast majority of previous studies, the 

current study examined differences in alpha CSD between eyes-open and eyes-closed 

conditions. Overall, the current study demonstrates that there are considerable 

differences in the cortical sources of alpha during eyes-open and eyes-closed 

conditions, and that the cortical sources of alpha change significantly during the 

course of adolescence. The current study also revealed that there are gender-specific 

affects of puberty on the development of spontaneous alpha. Finally, the current study 

did not find frontal asymmetry to be a reliable marker of risk-taking in a sample of 

typically developing adolescents. 

The majority of previous studies examining the cortical and subcortical sources 

of spontaneous alpha, and the relationship between frontal alpha asymmetry and 

approach- and avoidance-related behaviours have largely focused on the adult brain. 

Notably, Başar (2012) has suggested that a comprehensive understanding of alpha can 

be only achieved by investigating alpha in maturing, evolving, emotional, and 

pathological brains. The current study therefore provides an important step towards 

understanding the development and function of spontaneous alpha in the typically 

developing brain. Nonetheless, a great deal more research needs to be conducted 

before we have a complete understanding of the development and function of alpha in 

the maturing brain, and the mechanisms through which alpha influences cognitive and 

memory processes. 
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6.1. Introduction 

This chapter first outlines the main findings from this doctoral research and 

discusses how this doctoral work extends the existing literature (Chapter 6.2). This 

chapter subsequently proposes directions for future research (Chapter 6.3) and draws 

final conclusions (Chapter 6.4). 

 

6.2. Summary and general discussion 

There is a large body of work suggesting that adolescents take more risks and 

experience greater levels of anxiety than children and adults (Abe & Suzuki, 1986; 

Burnett et al., 2010; Spear, 2000; Steinberg et al., 2008). Critically, high levels of risk-

taking and anxiety during adolescence are associated with numerous short- and long-

term adverse outcomes (Dahl, 2004; Pine et al., 1998; Woodward & Fergusson, 2001), 

and thus the mechanisms underlying adolescent risk-taking and anxiety warrant 

investigation. The primary aim of this thesis was therefore to investigate the 

simultaneous increase in risk-taking behaviours and anxiety levels during adolescence. 

Specifically, this doctoral work aimed to examine how the relationship between risk-

taking and anxiety changes across the course of adolescence (Chapter 3), and whether 

age-related changes in the EEG correlates of the approach-avoidance systems can 

account for the development of risk-taking and anxiety during adolescence (Chapters 

4 and 5). Notably, the same cohort of adolescents (N = 105) took part in all the studies 

in this doctoral work so that the simultaneous increase in risk-taking and anxiety 

could be examined from multiple behavioural and EEG perspectives. Participants were 

categorised into three age groups: preadolescence (9-12 years), mid-adolescence (13-

17 years), and late adolescence (18-23 years), and took part in the following studies:  

 

• Gender differences in the relationships between risk-taking and anxiety during 

preadolescence, mid-adolescence, and late adolescence (Chapter 3). 

• Anticipatory ERP responses to rewarding and threatening outcomes during 

preadolescence, mid-adolescence, and late adolescence (Chapter 4). 

• The development of spontaneous alpha and its relationship to risk-taking 

behaviours during preadolescence, mid-adolescence, and late adolescence 

(Chapter 5). 

 

A number of neurobiological models have been proposed to explain the 
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increases in risk-taking behaviours during adolescence (Casey et al., 2010; Ernst et al., 

2006; Nelson et al., 2005; Steinberg, 2008). Casey’s dual systems model (Casey et al., 

2010) also accounts for the increases in emotionality, i.e., greater levels of anxiety and 

negative affect, during adolescence. While these models have considerably improved 

our understanding of why risk-taking behaviours and anxiety levels increase during 

adolescence, the neurobiological models are limited in a number of ways. First, while 

Casey’s dual systems model (Casey et al., 2010) and the Triadic Model (Ernst et al., 

2006) focus on adolescents’ sensitivity to reward and threat, Steinberg’s dual systems 

model (DSM; Steinberg, 2008) and the Social Information Processing Network (SIPN; 

Nelson et al., 2005) only focus on sensitivity to reward. Second, despite adolescence 

being a transitional period between childhood and adulthood (Casey et al., 2008a; 

Spear, 2000), the Triadic Model and SIPN only account for changes between 

adolescence and adulthood. Third, most of the evidence testing the neurobiological 

models has resulted from fMRI and nonhuman animal studies. Fourth, the 

neurobiological models only implicate cortical prefrontal and subcortical limbic 

structures in adolescent development. Finally, all the neurobiological models overlook 

potential gender differences in adolescent development. The studies in this doctoral 

work were therefore designed to address these limitations. The following sections 

discuss how this doctoral work addressed these limitations, as well as the potential 

directions for future work. 

 

6.2.1. The approach-avoidance systems during adolescence 

The neurobiological models of adolescence are based on the premise that 

behaviour is driven by an approach reward-based system and an avoidance threat-

based system. The approach system is sensitive to rewarding or appetitive stimuli, and 

drives behaviour towards rewarding or desirable outcomes. The approach system is 

therefore thought to underlie sensation seeking and risk-taking behaviours. In 

contrast, the avoidance system is sensitive to threatening or aversive stimuli, and 

drives behaviour away from threatening or undesirable outcomes. The avoidance 

system is therefore associated with anxiety-related behaviours (Bouton et al., 2001; 

Elliot, 2006; Zuckerman & Kuhlman, 2000). All the neurobiological models (Casey et 

al., 2010; Ernst et al., 2006; Nelson et al., 2005; Steinberg, 2008) assert that the 

increase in risk-taking behaviours during adolescence is driven by a hyperresponsive 

approach system and that adolescents are hypersensitive to rewards. Notably, the 
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Triadic Model and Casey’s dual systems model also assert that the avoidance system 

has a pivotal role in adolescent behaviour. In particular, the Triadic Model suggests 

that adolescent risk-taking is driven by a hyperresponsive approach system combined 

with a hyporesponsive avoidance system. While the Triadic Model accounts for the 

increases in risk-taking, Casey’s dual systems model accounts for the increases in risk-

taking and emotionality during adolescence. Consequently, Casey’s model proposes 

that adolescents have a hyperresponsive approach system and a hyperresponsive 

avoidance system. 

While there is substantial evidence that adolescents are highly motivated by 

rewards and have a hyperresponsive approach system (e.g., Barkley-Levenson & 

Galván, 2014; Braams et al., 2015; Galván et al., 2006; Galván et al., 2007; Hare et al., 

2008; Padmanabhan et al., 2011; Van Leijenhorst et al., 2010), empirical work 

examining the development of the avoidance system and adolescents’ sensitivity to 

threat is sparse. Moreover, in order to investigate how the development of the 

approach system corresponds to the development of the avoidance system during 

adolescence, the approach and avoidance systems need to be examined using a within-

subject design. Despite this, there are only a handful of studies assessing the 

development of approach and avoidance systems using a within subject design (e.g., 

Galván & McGlennen, 2013; Hare et al., 2008), and there is currently no work 

examining the development of the approach and avoidance systems in the same 

paradigm using EEG. Hence, this doctoral work used EEG to investigate the 

development of the approach and avoidance systems throughout adolescence 

(Chapters 4 and 5). Thus, this doctoral work makes a significant contribution to the 

existing literature by providing the first insights into how the EEG correlates of the 

approach-avoidance systems change throughout the adolescent period. 

The second study in this doctoral work (Chapter 4) was designed to directly 

examine the EEG correlates of the approach-avoidance systems during three distinct 

stages of adolescence. This study built on our previous EEG findings showing that 

adolescents (12-15 years) have greater potentiation of the N170 ERP component to 

visual cues that predicted a threatening outcome compared to young adults (18-32 

years) (Levita et al., 2014). Notably, this finding contradicts the suggestion that 

adolescents have a hyporesponsive avoidance system (Ernst et al., 2006). While our 

previous study provided important insights into the EEG correlates of the avoidance 

system during adolescence and young adulthood, it was unable to assess how the 
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avoidance system changes during the course of adolescence, and how the avoidance 

system compares to the approach system throughout this period. 

Accordingly, this doctoral work used EEG to examine anticipatory responses to 

rewarding (approach system) and threatening (avoidance system) outcomes in 

preadolescents, mid-adolescents, and late adolescents (Chapter 4). Two ERPs that are 

modulated by motivationally salient stimuli, the N170 (Levita et al., 2014; Rellecke et 

al., 2013) and LPP (Keil et al., 2002; Sabatinelli et al., 2007; Schupp et al., 2000) were 

used to explore participants’ anticipatory responses to rewards and threats. In contrast 

to the study hypotheses, N170 amplitudes were not modulated by stimuli that 

predicted rewards or threats in any group. However, in contrast to the N170, LPP 

amplitudes were potentiated in response to visual cues predicting rewarding and 

threatening outcomes compared to neutral visual cues. Significantly, the LPP revealed 

that anticipatory representations of the approach and avoidance systems followed 

different developmental trajectories during adolescence. Specifically, preadolescents 

showed greater LPP potentiation to visual cues predicting rewarding and threatening 

outcomes than both mid-adolescents and late adolescents. Moreover, mid-adolescents 

showed LPP potentiation to visual cues predicting rewarding outcomes, whereas late 

adolescents did not. In contrast, mid-adolescents and late adolescents showed 

comparable LPP potentiation to visual cues predicting threatening outcomes.  

Together, these findings suggest that the adolescents in this sample were not 

hyporesponsive to threats, as predicted by Ernst’s Triadic Model. Instead, these 

findings suggest that preadolescents and mid-adolescents were more sensitive to 

potential rewards than late adolescents, but all groups were sensitive to potential 

threats. Given that adolescents were sensitive to both rewards and threats, these 

findings are most consistent with Casey’s neurobiological model. Moreover, since 

preadolescents and mid-adolescents were more sensitive to reward-related cues than 

late adolescents, this research is also largely consistent with Steinberg’s DSM, which 

posits that adolescents are more sensitive to rewards than both children and adults. 

However, in contrast to the study predictions and neurobiological models of 

adolescence (Casey et al., 2008; Ernst et al., 2011; Steinberg, 2008), reward- and 

threat-related LPP activity was not greater in mid-adolescents compared to 

preadolescents and late adolescents. Hence, this doctoral research does not support 

the idea that reward- and threat-related brain activity peaks in middle adolescence. 

These findings therefore suggest that the development of reward and threat sensitivity 
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may be more complex than simply increasing from childhood to adolescence and 

decreasing from adolescence to adulthood. 

It is possible that the developmental trajectory and responsivity of the 

approach and avoidance systems is largely dependent on the nature of the specific 

rewards and threats. It is therefore possible that this doctoral work did not find a peak 

in reward- or threat-related LPP potentiation during mid-adolescence because the 

reinforcer of behaviour in the instrumental task (winning and losing points) was not 

salient or motivating enough for mid-adolescents. fMRI studies that have reported a 

peak in reward- and threat-related activity in mid-adolescence have predominantly 

used money (e.g., Braams et al., 2015) or emotional faces (e.g., Hare et al., 2008). 

Future work investigating neural responses to a range of primary and secondary 

reinforcers in a large cohort of typically and atypically developing children, 

adolescents, and young adults would be extremely valuable for fMRI and EEG studies 

examining the developmental trajectory of reward- and threat-related neural activity 

(see Chapter 6.3.4). 

Notably, the findings from this doctoral research are not of direct relevance to 

SIPN since the studies were not conducted in a social context. However, there is now 

strong evidence to suggest that peers have a significant influence on adolescent risk-

taking behaviours and reward-related brain acitivty. Hence, future work should aim to 

examine how ERP correlates of approach and avoidance behaviours vary as a function 

of social context during the different stages of adolescence (see Chapter 6.3.3). 

The approach and avoidance systems are thought to underlie risk-taking and 

anxiety, respectively (Cloninger, 1987; Salkovskis, 1991; Zuckerman & Kuhlman, 

2000). However, the reward- and threat-related LPP potentiation in this doctoral 

research was not associated with measures of risk-taking or anxiety for any group. It is 

possible that winning and losing points was not salient enough to tap into the neural 

mechanisms underlying risk-taking and anxiety. Alternatively, it is possible that the 

measures of risk-taking and anxiety used in this doctoral research were not optimal 

(see Chapter 6.3.4). Thus, this doctoral research highlights the importance of 

considering the salience of specific rewards and threats when interpreting the 

developmental trajectories of the approach-avoidance systems, as well as the validity 

of measures currently used to assess risk taking and anxiety during different 

developmental stages. 

Importantly, the study reported in Chapter 4 did not directly compare scalp 
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distributions between the reward and avoidance blocks since the reward block always 

preceeded the avoidance block. Hence, any comparisons made between the reward and 

avoidance blocks may have been confounded by potential time and fatigue effects. 

Thus, while this study provides some important insights into how the approach and 

avoidance systems develop during the course of adolescence, future work is needed to 

identify how the development of the reward system directly compares to the 

development of the avoidance system. To this end, future studies will need to design 

tasks that are able to compute reward x threat interactions. 

The third study in this doctoral work (Chapter 5) also aimed to examine the 

EEG correlates of the approach-avoidance systems during adolescence by investigating 

frontal asymmetry. It has been suggested that PFC lateralisation reflects the approach-

avoidance distinction, whereby greater cortical activity in the left PFC relative to the 

right PFC reflects the approach system and greater cortical activity in the right PFC 

relative to the left PFC reflects the avoidance system, as indexed by spontaneous alpha 

(Davidson, 1984, 1992). Based on this premise, it should be possible to test the relative 

strength of the approach and avoidance systems throughout adolescence. Hence, the 

third study in this doctoral work examined the development of source localised and 

scalp-recorded frontal spontaneous alpha in preadolescents, mid-adolescents, and late 

adolescents. This study also examined the relationships between PFC alpha 

asymmetry and adolescents’ risk-taking behaviours. However, this study did not reveal 

clear developmental trajectories of the approach-avoidance systems during 

adolescence, or systematic relationships between frontal alpha asymmetry and risk-

taking behaviours. Thus, the final study in this doctoral work did not shed light on the 

development of the approach-avoidance systems, and the role of the approach-

avoidance systems in risk-taking behaviours, during adolescence. Future work 

examining the developmental of frontal asymmetry, and the relationships between 

frontal asymmetry and risk-taking behaviours, in atypical populations may provide 

more useful insights (see Chapter 6.3.1).  

Despite not providing insights into the approach-avoidance systems during 

adolescence, the study presented in Chapter 5 examined, for the first time, how the 

cortical sources of spontaneous alpha during eyes-open and eyes-closed conditions 

develop throughout adolescence. Notably, the findings revealed developmental 

differences in the frontal sources of alpha; late adolescents had significantly more 

alpha CSD in the mPFC and OFC during the eyes-open condition compared to the 
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eyes-closed condition. By contrast, alpha CSD was equivalent in the eyes-open and 

eyes-closed conditions in the mPFC and OFC for preadolescents and mid-adolescents. 

Moreover, preadolescents had greater levels of alpha CSD in the mPFC, DLPFC, OFC, 

and occipital cortex compared to both mid-adolescents and late adolescents, 

irrespective of condition. Critically, these findings highlight the need to treat 

adolescence as a transitional period, rather than a single snapshot in time (Casey et al., 

2008a; Spear, 2000).  

 

6.2.2. Adolescence as a transitional period 

As discussed above, adolescence is a developmental period that reflects the 

transition from childhood to adulthood. Thus, the transitions into and out of 

adolescence need to be examined in order to understand adolescent-specific changes 

that may underlie high levels of risk-taking and anxiety (Casey et al., 2008a; Spear, 

2000). Despite this, most studies assessing adolescent development only include a 

single adolescent group (e.g., 15-18 years; Richards et al., 2015), or a discrete 

adolescent group and a discrete adult group (e.g., 11-16 years and 24-40 years; 

Sebastian et al., 2011). Hence, these studies only tap into specific developmental 

periods, and are unable to assess how behaviours and neural responses change across 

the course of adolescence and how adolescents differ from children. Understanding 

how adolescents differ from children is critical for understanding why risk-taking 

behaviours and anxiety levels are widely reported to increase during the transition 

from childhood to adolescence (Casey et al., 2008a; Spear, 2000). In order to test the 

development of risk-taking behaviours, anxiety levels, and the approach-avoidance 

systems throughout adolescence, a large cohort of adolescents aged 9-23 years took 

part in this doctoral work. Critically, the transitions into and out of adolescence were 

examined by categorising participants into three age groups: preadolescence (9-12 

years), mid-adolescence (13-17 years), and late adolescence (18-23 years). As 

expected, including a younger age group (preadolescents) and an older age group (late 

adolescents) provided important insights into the development of risk-taking 

behaviours, anxiety levels, and the approach-avoidance systems across adolescence.  

The first study (Chapter 3) in this doctoral work found that preadolescents had 

greater levels of anxiety compared to both mid-adolescents and late adolescents. 

Preadolescents also took significantly fewer real world risks than both mid-

adolescents and late adolescents. By contrast, both preadolescents and mid-
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adolescents took significantly fewer risks on the BART compared to late adolescents. 

Age-related changes in impulsivity were also found; impulsivity decreased from 

preadolescence to mid-adolescence, but not from mid-adolescence to late 

adolescence. Thus, including a younger and older comparison group provided 

important insights into how anxiety, risk-taking, and impulsivity changed from 

preadolescence to mid-adolescence, and from mid-adolescence to late adolescence. 

Chapter 3 also examined, for the first time, how the relationship between risk-taking 

and anxiety changes during the course of adolescence. Crucially, this study revealed 

significant differences in the relationship between risk-taking and anxiety during the 

different stages of adolescence. Although the findings from this study are not entirely 

consistent with previous work (e.g., Abe & Suzuki, 1986; Burnett et al., 2010; Richards 

et al., 2015; Steinberg et al., 2008), the findings extend the existing literature by 

exploring the development of anxiety, risk-taking, sensation seeking, and impulsivity, 

and the relationships between risk-taking and anxiety, in a normative sample with an 

age range wide enough to determine how these constructs change during the entire 

course of adolescence.  

Including a younger comparison group in the second study in this doctoral 

work (Chapter 4) also provided vital information about the development of 

anticipatory ERP responses to visual cues predicting rewarding outcomes. LPP 

amplitudes were potentiated to visual cues predicting rewarding outcomes in mid-

adolescents but not in late adolescents. Critically however, the LPP was also 

potentiated to visual cues predicting rewarding outcomes in preadolescents. Moreover, 

there was evidence that preadolescents were more responsive to visual cues predicting 

rewarding outcomes than mid-adolescents. Thus, without a younger comparison 

group, it would not have been possible to determine whether LPP potentiation to 

reward-related cues resulted from heightened sensitivity to stimuli predicting 

potential rewards during middle adolescence, as predicted by the neurobiological 

models (Casey et al., 2010; Ernst et al., 2006; Nelson et al., 2005; Steinberg, 2008), or a 

developmental trait extending from childhood. Hence, the findings from this study 

underscore the importance of including younger comparison groups when attempting 

to establish the behaviours and neural responses that are unique to adolescence. 

Notably, the results from all three studies in this doctoral work show that 

preadolescence is a particularly distinct developmental period compared to both mid-

adolescence and late adolescence. As discussed earlier, Chapter 3 revealed that 
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preadolescents were more anxious, risk-averse, impulsive, and showed distinctive 

relationships between risk-taking and anxiety compared to mid-adolescents and late 

adolescents. Additionally, the two EEG studies showed that preadolescents were more 

responsive to rewards and threats, as indexed by the LPP (Chapter 4), and had greater 

levels of alpha CSD in frontal and occipital regions (Chapter 5) compared to mid-

adolescents and late adolescents. Together, these findings emphasise the need to tease 

out the early stages of adolescence from middle and late adolescence, and show that 

there are considerable developments in anxiety, risk-taking, and EEG activity during 

the transitional period between childhood and adolescence. 

Therefore, one of the major strengths of this doctoral work is that the 

transitions from late childhood/preadolescence to mid-adolescence in addition to the 

transitions from mid-adolescence to late adolescence/young adulthood were 

examined. Critically, the Triadic Model and SIPN account for changes in the approach-

avoidance systems between adolescence and adulthood, but not between childhood 

and adolescence. Thus, the Triadic Model and SIPN need to be updated in line with 

Casey and Steinberg’s dual systems models to account for the developmental changes 

in the approach-avoidance systems from childhood to adolescence, as well as from 

adolescence to adulthood. 

Another major strength of examining the developmental trajectories of risk-

taking, anxiety, and brain activity in a sample of 9-23 year olds is that a large amount 

of normative data has been generated. In particular, the developmental trajectories of 

risk-taking behaviours as measured by a self-report questionnaire and behavioural 

task, sensation seeking, impulsivity, anxiety, and anxiety controlling for depression 

were investigated in male and female adolescents aged 9-23 years old. No study to the 

author’s knowledge has explored the development of all these constructs in male and 

female adolescents with such a wide age range. Hence, these findings go beyond the 

existing literature by exploring how the developmental trajectories of these constructs 

develop within a single cohort of individuals during the entire course of adolescence. 

Moreover, Chapter 3 provides the first insights into how the relationship between risk-

taking and anxiety changes throughout the course of adolescence, and the gender 

differences in such relationships. Chapter 4 also provides normative data of how N170 

and LPP amplitudes in response to visual cues in an instrumental task develop across 

the course of adolescence. Finally, for the first time, Chapter 5 explored how the 

cortical sources of spontaneous alpha during eyes-open and eyes-closed conditions 
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develop throughout adolescence for males and females. 

 

6.2.3. Using EEG to measure adolescent development 

The vast majority of work assessing adolescents’ neural responses to rewards 

and threats has used fMRI. These fMRI studies have provided vital insights into the 

neural structures involved in the approach-avoidance systems during adolescence, and 

how reward- and threat-related brain activity changes during the course of 

adolescence. However, unlike fMRI, EEG directly reflects the activity of neuronal 

populations (Davidson et al., 2000), and can therefore provide a millisecond-by-

millisecond account of reward- and threat-related anticipatory and consummatory 

neural activity during the different stages of adolescence. Thus, EEG studies are able to 

provide a complementary perspective on the neural mechanisms underlying the 

approach and avoidance systems during adolescence. This doctoral work therefore 

used EEG to examine the neural correlates of the approach-avoidance systems during 

adolescence. 

In order to examine the timing of reward- and threat-related activity during 

adolescence, Chapter 4 investigated anticipatory responses to visual cues predicting 

rewarding and threatening outcomes using early (N170) and late (LPP) ERPs that are 

modulated by motivationally salient stimuli (Keil et al., 2002; Levita et al., 2014; 

Rellecke et al., 2013; Sabatinelli et al., 2007; Schupp et al., 2000). Critically, only LPP 

amplitudes were potentiated, suggesting that the instrumental task used in this study 

did not tap into early neural systems that are primarily concerned with survival. These 

findings therefore underscore the importance of using EEG to shed light on the timing 

of reward- and threat-related processes during adolescence. 

While fMRI has superior spatial resolution to EEG, CSD (see Chapter 2.4.3.2) 

and recent advances in source localisation (see Chapter 2.4.3.3) improve the spatial 

resolution of EEG and provide ways to estimate the cortical generators underlying the 

scalp-recorded EEG signals (Kayser & Tenke, 2015b; Pascual-Marqui, 2002). Compared 

to traditional referencing, CSD estimates provide sharper and more accurate 

topographies that are more likely to reflect the neural sources underlying the scalp-

recorded activity (Burle et al., 2015; Kayser et al., 2006; Kayser & Tenke, 2015b; Tenke 

& Kayser, 2005). Accordingly, the resting alpha (Chapter 5) data was transformed to 

CSD. Chapter 5 also used source localisation to identify the cortical sources of 

spontaneous alpha throughout adolescence.  
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While CSD was only applied to the resting state data in this doctoral work, an 

increasing number of studies are applying CSD transformations to ERP data (see 

Kamarajan et al., 2014). The advantages of CSD for ERP research are comparable to the 

advantages for frequency data. Critically, CSD estimates are reference-free and 

therefore provide a way to compare studies without the confound of the choice of 

reference electrode, i.e., one study using average reference and another study using 

linked mastoids. Given that the choice of reference electrode significantly influences 

the shape of the ERP waveform (Luck, 2014), using CSD estimates in ERP studies 

should eliminate potential quantitative or statistical ambiguities caused by the choice 

of reference electrodes, and allow ERP studies to more accurately compare their 

results. To these ends, future work examining the ERP correlates of approach and 

avoidance behaviours should aim to apply CSD transformations.  

Notably, EEG is particularly well suited to developmental studies. In particular, 

the environment in which EEG is recorded is less hostile than that of fMRI; fMRI is 

noisy, and involves lying down in a narrow space for a long period of time. Moreover, 

fMRI studies usually have high attrition rates in developmental studies (Ulmer & 

Jansen, 2010), and are considerably more expensive than EEG studies. Hence, 

combined with superior temporal resolution and methods that can improve the spatial 

resolution, the findings reported in this doctoral work demonstrate that EEG is a valid 

and useful tool for exploring the neural correlates of the approach-avoidance systems 

throughout adolescence. 

 

6.2.4. The role of posterior regions in adolescent development 

The neurobiological models only implicate cortical prefrontal and subcortical 

limbic structures when explaining the increases in risk-taking behaviours (Casey et al., 

2010; Ernst et al., 2006; Nelson et al., 2005; Steinberg, 2008), and increases in 

emotionality (Casey et al., 2010), during adolescence. However, as discussed in 

Chapter 1.5.4, several EEG and fMRI studies in adults have reported that rewarding 

and threatening stimuli modulate activity in posterior brain regions (Harry et al., 2013; 

Lang et al., 1998; Levita et al., 2014; Li et al., 2005; Pizzagalli et al., 2003). Thus, if 

adolescents are hyperresponsive to rewards and threats, as the current literature 

suggests, it is possible that posterior regions will also have a role in biasing 

adolescents towards rewards and threats. Our previous findings revealed that 

adolescents had greater N170 potentiation to visual cues predicting threat compared 
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to young adults (Levita et al., 2014). Since the N170 is thought to be generated by 

structures located in occipitotemporal areas, namely the fusiform face area and 

superior temporal sulcus (Sadeh et al., 2010), our previous findings support the 

suggestion that posterior regions are important in biasing adolescents’ attention 

towards potential threats. The second study in this doctoral work (Chapter 4) was 

designed to replicate and extend these findings. Unexpectedly, the N170 was not 

modulated by visual cues predicting threat, or by visual cues predicting reward, in 

mid-adolescents in this doctoral work. Thus, this doctoral work appears to not support 

the suggestion that posterior regions are important in biasing adolescents’ attention 

towards potential reward and threat. However, the N170 was not potentiated for any 

age group, suggesting that early activity in posterior visual regions was not modulated 

by the instrumental task in this study. It is possible that stimuli of high evolutionary 

significance, i.e., primary reinforcers, are required to tap into these early ventral visual 

pathways. However, future work is needed to examine whether this is the case (see 

Chapter 6.3.4). 

In contrast to the N170, the LPP was modulated by visual cues predicting 

rewarding and threatening outcomes. Several studies have reported that a wide neural 

network generates the LPP, including posterior regions that are critical for visual 

processing (Liu et al., 2012; Moratti et al., 2011; Sabatinelli et al., 2007; Sabatinelli et 

al., 2013). Hence, it is possible that the greater levels of LPP potentiation in 

preadolescents and mid-adolescents compared to late adolescents partially resulted 

from greater levels of activity in posterior regions. Thus, these findings provide some 

evidence for the idea that posterior regions are important for reward- and threat-

related activity during adolescence. 

 

6.2.5. Gender differences in adolescent development 

The role of gender in risk-taking behaviours, anxiety levels, and reward- and 

threat-related neural activity has been largely overlooked in adolescent research. 

Moreover, the neurobiological models do not provide any insights into the role of 

gender in adolescent development. This is surprising since a number of studies have 

reported significant gender differences in risk-taking behaviours, anxiety levels, and 

brain development during adolescence (Byrnes et al., 1999; Giedd et al., 1999; Lenroot 

et al. 2007; Lewinsohn et al., 1998). In an attempt to address this, each of the three 

studies included in this doctoral work overtly investigated gender differences.  
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As expected, significant gender differences were found for risk-taking 

behaviours and anxiety levels (Chapter 3). Specifically, real world risk-taking increased 

from preadolescence to mid-adolescence for both males and females, but from mid-

adolescence to late adolescence for females only. Females also self-reported higher 

levels of state and trait anxiety than males, irrespective of age. Additionally, gender-

specific trajectories were found for the relationship between risk-taking and anxiety. 

While higher levels of anxiety were associated with reduced levels of risk-taking for 

late adolescent females, no relationship between risk-taking and anxiety was found for 

late adolescent males. Hence, these findings suggest that anxiety acted as a brake on 

risk-taking for late adolescent females, but not for late adolescent males. Moreover, 

higher levels of anxiety were associated with greater levels of risk taking in 

preadolescent females, but reduced levels of risk-taking in preadolescent males. 

Overall, these findings suggest that the relationship between risk-taking and anxiety 

during preadolescence and late adolescence is gender-specific. Together, these 

findings emphasise the importance of exploring gender differences when examining 

risk-taking behaviours and anxiety levels during adolescence. 

In contrast, the EEG studies in this doctoral work did not reveal any 

statistically significant gender differences. Specifically, no significant gender 

differences emerged for the N170 or LPP (Chapter 4). Despite this, there was some 

evidence of a trend for gender differences in the LPP waveforms; the waveforms 

indicated that males largely drove the overall effect of reward-related LPP 

potentiation for the mid-adolescents. In the same way as Chapter 4, no gender 

differences emerged from the statistical analyses for spontaneous alpha (Chapter 5). 

However, the sLORETA tomography maps, particularly for the occipital cortex during 

the eyes-closed condition, strongly suggested that the development of spontaneous 

alpha was faster in females compared to males; mid-adolescent males more closely 

resembled the preadolescents, whereas mid-adolescent females more closely 

resembled the late adolescents. This observation is consistent with what is known 

about structural brain development, whereby females mature approximately 1-2 years 

faster than males (Giedd et al., 1999; Lenroot et al. 2007). It is feasible that high levels 

of variability between participants prevented gender differences from emerging in the 

statistical analyses. Critically, if the neurobiological models are going to inform future 

interventions aimed at reducing adolescent risk-taking and anxiety, it is important 

that the neurobiological models aim to establish and incorporate any potential gender 
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differences in brain structure and activity that are associated with gender-specific 

behavioural outcomes. Hence, future studies should continue to explore the potential 

gender differences in risk-taking, anxiety, and related brain activity during 

adolescence. 

 

6.2.6. The influence of puberty on adolescent development 

Consistent with Steinberg’s DSM and the SIPN, this doctoral work had a strong 

focus on examining the influence of puberty on risk-taking, anxiety, and brain activity 

given that puberty has been shown to affect adolescent risk-taking, anxiety, structural 

brain development, and reward- and threat-related neural activity (Braams et al., 2015; 

Collado et al., 2014; Goddings et al., 2014; Ladouceur et al., 2012; Moore et al., 2012; 

Reardon et al., 2009). Pubertal stage had unique affects on recent real world risk-

taking behaviours for both males and females aged 9-17 years, whereby more advanced 

pubertal stage was associated with greater engagement in recent real world risk-taking 

behaviours (Chapter 3). More advanced pubertal stage was also associated with less 

alpha CSD in frontal and occipital regions, but only for males (Chapter 5). For both 

risk-taking and spontaneous alpha, puberty accounted for between 10.2 and 26.8 per 

cent of the variance, suggesting that pubertal stage had a considerable influence on 

the development of real world risk-taking behaviours and spontaneous alpha during 

adolescence. Notably, puberty did not significantly influence sensation seeking, 

impulsivity, anxiety (Chapter 3), or reward- and threat-related anticipatory ERP 

activity (Chapter 4).  These findings indicate that puberty may not have universal 

effects on adolescent development. Future work is therefore needed to establish the 

puberty-dependent and puberty-independent effects on behaviour, brain activity, and 

brain structure during adolescence. Early pubertal onset has been associated with 

greater engagement in risky behaviours and higher levels of anxiety (Downing & 

Bellis, 2009; Reardon et al., 2009), and thus it is possible that examining the timing of 

pubertal onset will also reveal insights into the influence puberty on behaviour, brain 

activity, and brain structure. 

 

6.3. Directions for future research 

This field of research is relatively new, and therefore there is a lot of scope for 

future research. This section reviews some of the directions for future research that 

have emerged from this doctoral work. 
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6.3.1. Application to atypical populations 

Given that the majority of individuals negotiate the transition from childhood 

to adulthood successfully, this doctoral work examined the developmental trajectories 

of risk-taking behaviours, anxiety levels, the relationship between risk-taking and 

anxiety, reward- and threat-related brain activity, and spontaneous alpha in a 

normative sample of adolescents aged 9-23 years. However, there is a significant 

minority of adolescents who engage in very high levels of potentially harmful risky 

behaviours or who develop an anxiety disorder. It is possible that the developmental 

trajectories explored in this doctoral work, such as the relationship between risk-

taking and anxiety, reward- and threat-related anticipatory neural activity, and 

spontaneous alpha, would be considerably different in these atypical populations 

compared to typically developing populations. For instance, several studies have 

reported that spontaneous alpha is disrupted in a number of developmental and 

psychiatric conditions, including anxiety disorders (Knyazev et al., 2004). Importantly, 

interventions aimed at reducing high levels of risk-taking and anxiety in adolescents 

need to be informed by studies assessing adolescents who are at an increased risk for 

engaging in potentially harmful risk-taking behaviours and developing an anxiety 

disorder. Hence, exploring the typical and atypical developmental trajectories of risk-

taking, anxiety, and related brain activity is important for understanding why some 

adolescents are more likely to engage in potentially harmful behaviours and develop 

an anxiety disorder than others. Future work should therefore aim to establish how the 

developmental trajectories of risk-taking, anxiety, and related brain activity differ 

between typical and atypical populations. 

 

6.3.2. Young adult participants 

This doctoral work included participants aged 9-23 years in order to assess the 

transitions from preadolescence to mid-adolescence as well as from mid-adolescence 

to late adolescence. Thus, this doctoral work was able to examine the development of 

risk-taking, anxiety, and related brain activity across the entire course of adolescence. 

Despite this, this doctoral work would have benefited from a young adult age group, 

aged between 24-30 years. For instance, it is possible that including a young adult age 

group would have revealed a negative relationship between risk-taking and anxiety for 

males comparable to the relationship observed in late adolescent females. Moreover, it 

is possible that risk-taking behaviours would have shown an inverted u-shaped 
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trajectory, whereby risk-taking increased from preadolescence to mid-adolescence/late 

adolescence and decreased from late adolescence to young adulthood (Chapter 3). 

Future work should therefore endeavour to assess risk-taking behaviours, anxiety 

levels, and related brain activity in participants aged 9-30 years in order to assess the 

age-related changes between late adolescence and young adulthood, in addition to the 

age-related changes between late childhood and adolescence. 

 

6.3.3. The influence of peers on adolescent risk-taking 

There is now considerable evidence from both human and nonhuman animal 

studies to suggest that adolescents not only engage in more social interactions, but 

also find them more rewarding (Douglas, Varlinskaya & Spear, 2004; Larson & 

Richards, 1991). Consistently, a number of studies have reported that the presence of 

peers significantly increases adolescents’ engagement in risk-taking behaviours 

(Gardner & Steinberg, 2005) and reward-related brain activity (Chein et al., 2011; 

Smith et al., 2015). Thus, the social context, and the presence of peers in particular, 

appear to have a marked impact on adolescent risk-taking (Nelson et al., 2005; 

Steinberg, 2008). 

Notably, the studies reported in this doctoral work were conducted only in the 

presence of an experimenter. However, it is possible that replicating these studies in a 

social context, i.e., in the presence of peers, would lead to different conclusions. For 

instance, previous studies have reported that adolescents take more risks on 

behavioural risk-taking tasks when in the presence of their peers (Gardner & 

Steinberg, 2005). Thus, it is possible that the relationship between BART risk-taking 

and anxiety would differ depending on the social context. Future work should 

therefore aim to establish how the relationship between risk-taking and anxiety, and 

reward- and threat-related EEG activity, changes across the course of adolescence as a 

function of social context. 

 

6.3.4. Development of appropriate measures 

Studies assessing behavioural or brain development require measures that can 

accurately and appropriately measure constructs in samples with a wide age range that 

span a number of developmental periods (i.e., preadolescence, mid-adolescence, and 

late adolescence). However, tools that are able to accurately measure constructs across 

several developmental periods are scarce. Thus, while the measures used in this 
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doctoral work were selected to be appropriate for individuals aged 9-23 years, further 

work is needed to improve the measures that are currently available. 

First, the ERP study reported in Chapter 4 examined age-related changes in 

anticipatory responses to visual cues predicting rewarding and threatening outcomes. 

Previous work in humans assessing neural responses to rewards and threats in 

instrumental tasks have either used pictures (e.g., Levita et al., 2012), loud tones (e.g., 

Levita et al., 2014), electric shocks (e.g., Delgado et al., 2009), or money (e.g., Bjork et 

al, 2010; Forbes et al., 2010). A primary aim of this study was to compare adolescents’ 

anticipatory neural responses to rewards and threats, and therefore comparable 

rewarding and threatening reinforcers were essential. While pictures and money can 

be used to assess neural responses to both rewards (appetitive pictures, winning 

money) and threats (aversive pictures, losing money), there are a number of ethical 

and practical problems with using pictures and money in development work (see 

Chapter 2.4.2.1.2). Moreover, it is difficult to match tones on valence, and there is no 

appetitive reinforcer for electric shocks. In light of other developmental studies using 

points successfully (Lejuez et al., 2007), this study deemed that winning and losing 

points as the positive and negative reinforcers, respectively, would be age-appropriate 

and comparable. 

However, in contrast to our previous findings (Levita et al., 2014), the N170 was 

not potentiated to visual cues predicting a threatening outcome. Our previous study 

used a primary reinforcer, namely a loud aversive tone, as the reinforcer of behaviour. 

Hence, it is possible that only primary reinforcers can modulate neural activity in early 

visual processing streams. Moreover, it is possible that LPP reinforcement-dependent 

potentiation did not peak in mid-adolescence because using points as the reinforcer 

was not salient enough for that age group. In order to test these ideas, further work is 

needed to explore the developmental trajectories of anticipatory and consummatory 

neural activity in response to a range of primary and secondary reinforcers in typically 

and atypically developing children, adolescents, and young adults. 

Second, the self-report questionnaires and behavioural tasks used in this 

doctoral work were selected on the basis of age-appropriateness, use in the field, and 

validity. To that end, the YRBSS and BART were used to measure risk-taking 

behaviours, the BSSS was used to measure sensation seeking, and the STAI was used to 

measure anxiety. However, these measures were limited in a number of ways. While 

the YRBSS is widely used in adolescent research, the YRBSS only assesses a finite 
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number of risk-taking behaviours on a binary scale. Thus, the YRBSS is unable to 

provide a comprehensive overview of the risky behaviours that adolescents are 

engaging in. The development of a risk-taking scale whereby individuals do not report 

their engagement in specific risky behaviours, but instead report to what extent they 

engage in risky behaviours in comparison to their peers may provide an alternative 

way of examining the development of real world risk-taking during adolescence. 

To account for the potential confounds associated with self-report 

questionnaires, a behavioural task was used to measure risk-taking propensity. The 

BART was selected to measure risk-taking propensity because it is extensively used in 

behavioural and fMRI studies. Despite this, the expected inverted u-shaped trajectory 

of risk-taking behaviours did not emerge. Previous studies that have reported such a 

trajectory have largely used probabilistic gambling tasks (Burnett et al., 2010; Eshel et 

al., 2007; Figner et al., 2009), which could account for the discrepancy in findings. 

However, no study to date has examined the development of risk-taking propensity 

using a variety of behavioural tasks. Conducting such a study in a large cohort of 

individuals aged 9-30 years would provide useful insights into how task demands 

affect the development of risk-taking propensity, and would shed light on why some 

studies report an inverted u-shaped trajectory in risk-taking propensity and others do 

not.  

There was also evidence from this doctoral work that the BSSS was a poor 

measure of sensation seeking in this sample. It is therefore possible that some of the 

more unexpected findings in this doctoral work, i.e., no age- or gender-related 

differences in sensation seeking (Chapter 3), resulted from the BSSS being a poor 

measure of sensation seeking. Similarly, this doctoral work used the child and adult 

versions of the STAI given that there is no single measure of anxiety that can 

accurately assess anxiety in a sample of 9-23 year olds. The STAI child and adult 

versions have maximum scores of 60 and 80, respectively, and thus the raw scores were 

converted to percentages in order to equate the two measures. The finding that 

preadolescents had greater anxiety levels than both mid-adolescents and late 

adolescents may therefore reflect that the child version of the STAI measured a 

different construct of anxiety to the adult version. 

Finally, it is possible that developments in basic motor and perceptual 

functions contribute to the age-related changes in risk-taking behaviours during 

adolescence. While this doctoral work aimed to control for such differences by 
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including control stimuli in the instrumental conditioning paradigm (Chapter 4), this 

research did not examine how developmental differences in basic motor and 

perceptual functions influence enagagement in risk-taking behaviours. Thus, future 

work is needed to investigate the relationship between basic motor and perceptual 

functions and risk-taking behaviours during the different stages of adolescence. 

Critically, if studies are going to provide useful insights into the development 

of risk-taking and anxiety across adolescence, we need behavioural measures that can 

accurately assess risk-taking and anxiety in individuals with a wide age range. It is 

possible that many of the conflicting results between studies result from differences in 

task demands, such as the specific rewards and threats used, or the tools used to 

measure risk-taking and anxiety. Thus, there is a great need for future work to 

establish how responses to rewards and threats develop across adolescence, and to 

develop accurate and age-appropriate measures of risk-taking and anxiety so that 

studies can meaningfully compare their findings. 

 

6.3.5. Replication in larger cross-sectional studies 

While this doctoral research recruited a relatively large sample (N = 105), the 

sample size of each experimental group (e.g., preadolescent females) was small. In 

addition, developmental research tends to have high levels of variability since 

developmental trajectories across childhood and adolescence are highly 

individualised. Thus, this doctoral research may not have had the statistical power to 

detect small and potentially interesting effects. For instance, there was evidence for 

gender effects in the EEG studies (Chapters 4 and 5) that did not reach statistical 

significance (see Chapter 6.2.5). 

Notably, outliers were not removed in this doctoral work due to the small 

sample size of each experimental group. Hence, it is possible that outliers may have 

influenced the correlation and regression analyses. In particular, there is some 

evidence from the eyes-open partial regression plot in Chapter 5 (Figure 5.8) that there 

were outliers in the data, which may have influenced the analyses. Since behavioural 

and EEG data are often non-normally distributed and developmental studies usually 

have high levels of variability, all analyses in this doctoral research (with the exception 

of ANOVAs with within-subject factors) were bootstrapped. As discussed in Chapter 

2.5.1, bootstrapping is a non-parametric approach that provides robust estimates of 

standard errors, confidence intervals, correlation coefficients, and regression 
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coefficients without assuming a normal distribution (Field, 2009). Therefore, the 

findings reported in this doctoral research should be relatively robust to outliers. 

Nevertheless, outliers were not removed from the data and the findings should be 

interpreted with this in mind. 

Finally, this doctoral work pursued several novel lines of research and 

consequently reported a number of original findings. For example, the behavioural 

study reported in Chapter 3 was the first study to examine the relationship between 

risk-taking and anxiety in male and female preadolescents, mid-adolescents, and late 

adolescents. Interestingly, this study found gender-specific developmental trajectories 

for the relationship between risk-taking and anxiety. In light of such findings, the 

small sample sizes of each experimental group, and the potential influence of outliers, 

the findings reported this doctoral research need replicating in larger cross-sectional 

samples to assess their validity and reliability. 

 

6.3.6. Longitudinal studies 

In addition to conducting cross-sectional studies to replicate the findings, 

longitudinal studies would be extremely valuable in establishing the developmental 

trajectories of risk-taking, anxiety, and related brain activity. There are considerable 

individual differences in child and adolescent development, with individuals reaching 

developmental milestones at different ages and having unique social and family 

environments (Steinberg & Morris, 2001). Hence, cross-sectional designs may 

introduce additional variance from extraneous variables, which could confound and 

conceal potentially important developmental differences (Blakemore & Choudhury, 

2006). In order to minimise such variance and incresase statistical power, cross-

sectional studies can recruit larger cohorts, tightly control the experimental design 

and data collection, and use rigorous processing and statistical analysis techniques. 

However, longitudinal designs also provide a way to reduce the variance in 

developmental samples; longitudinal studies test the same cohort of participants 

repeatedly over a set period time, and are therefore able to minimise the variance 

attributable to extraneous variables. Longitudinal designs also provide a way to test 

whether risk-taking behaviours, anxiety levels, and related brain activity increase from 

childhood to adolescence and decrease from adolescence to young adulthood in the 

same individual, which would provide key insights into how behaviour and brain 

activity changes throughout adolescence. Despite the benefits of longitudinal studies 
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over cross-sectional studies, longitudinal studies are time-consuming, expensive, and 

have high attrition rates. Thus, future research should aim to utilise a combination of 

longitudinal studies and large cross-sectional studies in order to provide a more 

accurate and comprehensive understanding of adolescent development. 

 

6.4. Final conclusions 

This doctoral work aimed to provide a significant contribution to the literature 

by examining, for the first time, how the relationship between risk-taking and anxiety, 

and the EEG correlates of the approach-avoidance systems, change across the course 

of adolescence. Critically, this doctoral work does not support the suggestion that 

adolescents are hyporesponsive to threats (Ernst et al., 2006). Moreover, this doctoral 

work highlights the need to explore adolescents’ sensitivity to both rewards and 

threats, as well as the transitions into and out of adolescence, in order to gain a 

comprehensive understanding of how the approach-avoidance systems develop across 

adolescence. 

Importantly, there is now a large body of work to suggest that adolescence is a 

particularly vulnerable time for engaging in potentially harmful risky behaviours, 

experiencing high levels of anxiety, and developing a mental health condition (Abe & 

Suzuki, 1986; Burnett et al., 2010; Kessler et al., 2005; Steinberg et al., 2008). Critically, 

high levels of risk-taking and anxiety during adolescence have been associated with a 

number of short- and long-term adverse consequences (Dahl, 2004; Pine et al., 1998; 

Viner, 2011; Woodward & Fergusson, 2001). Research is beginning to uncover the 

factors and neurobiological mechanisms that underlie the increases in risk-taking 

behaviours and anxiety levels during adolescence. However, considerably more work is 

needed to examine the complex interactions between the brain, behaviour, puberty, 

gender, and social context in order to provide a complete and accurate understanding 

of adolescent development (Dahl, 2004). 
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