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Abstract 

 

 

Machining processes, such as milling, drilling, turning and grinding, concern the removal of 

material from a workpiece using a cutting tool. These processes are sensitive to parameters 

such as cutting tool properties, workpiece materials, coolant application, machine selection, 

fixturing and cutting parameters. The focus of the work in this thesis is to devise a method 

to monitor the changing conditions of a machining process over time in order to detect faulty 

machining conditions and diagnose fault types and causes. A key aim of this thesis is to 

develop a monitoring regime that has minimal cost of implementation and upkeep in a 

production environment, therefore an unsupervised monitoring system which applies non-

intrusive sensing hardware is proposed. 
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I EXECUTIVE SUMMARY 

This thesis presents a method for machining process monitoring that uses a novel approach 

for feature selection and fault detection using unsupervised learning. A number of results 

have been published by the author that includes conference papers, journal papers and a 

patent (see section II Author Publications). These publications are also referenced in the 

following summary. 

 

The first chapter introduces the motivation, hypothesis and objectives of the study. A 

literature review follows in Chapter 2, covering a wide range of published literature including 

sensing, signal processing and system architectures and algorithms. 

 

Chapter 3 reflects on previous research and presents results of investigations into the 

monitoring system design requirements. A clear understanding of machining process faults 

and their interactions is gained by applying process failure mode and effect analysis (PFMEA) 

to a milling process. Interaction with industry experts and machine operators was required 

to obtain this understanding and to ensure the research followed a pathway to industrial 

exploitation. Previous literature has not applied PFMEA to machining monitoring system 

design problems, therefore these results have been published by the author in the journal 

paper; “Failure Mode Analysis to Define Process Monitoring Systems” [i].  

 

With the PFMEA providing a clear understanding of the industry problem, an experimental 

method is proposed in Chapter 4. Two 3-axis profile milling experiments are conducted on a 

titanium workpiece; the first conducting a tool wear trial and the second introducing variable 

radial depths of cut to represent faulty operating conditions. A new sensing platform for 

monitoring milling operations was designed and built, ensuring that the proposed solution 

was quick to load to a machine and not intrusive to a production setting. The platform was 

presented at the Factory 2050 Conference held at the Advanced Manufacturing Research 

Centre in March 2015 [vii].  

 

The first of two analysis sections are presented in Chapter 5, where several methods for 

sensor signal feature selection and assessment are investigated. Many of the techniques 

used are established in other subject areas such as structural health monitoring, however, a 

number of them have not been applied to machining applications. Polynomial model fitting 
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is used to obtain sensor signal features with high information content, and Gram-Schmidt 

orthogonalisation is applied to reduce redundancy in feature subsets. Several other feature 

selection methods are also compared. 

 

Chapter 6 develops a novelty detection system to determine when a fault has occurred using 

the feature subsets selected in Chapter 5. A principled novelty threshold is applied using the 

Mahalanobis distance as a measure of discordancy. This approach is entirely new to 

machining applications given the emphasis on supervised learning in previous research. 

Aspects of the techniques used are established in the field of structural health monitoring 

and are successfully adapted and applied to the machining problem presented. Data 

clustering methods are also applied for fault diagnosis, including Gaussian mixture modelling 

and the nearest neighbour algorithm. Several methods are validated on a second data set 

for a ball nose milling operation on stainless steel.  Some of the results from this chapter 

have been published in the Quality and Reliability Engineering International Journal [iv] and 

a further journal paper is currently being compiled. 

 

The thesis concludes with a discussion of the results and future work in Chapter 7. 

 

The area of fault prognosis has also been explored during this study and is detailed further 

in Appendix C. Two publications are of note; “Tool wear monitoring using Naïve Bayes 

classifiers” published in the International Journal for Advanced Manufacturing Technology 

entitled [ii] and a reviewed conference paper entitled “Remaining useful tool life predictions 

using Bayesian inference” [v]. 
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1 INTRODUCTION 

In recent years, there has been a drive towards automated manufacturing processes that 

give a reduction in human intervention, machining times, re-work and scrap in order to stay 

competitive. In the high value manufacturing (HVM) sector, complex part geometries must 

be formed, work piece materials are expensive and difficult to machine, machine tools and 

cutting tools are costly and skilled manual intervention is required to control processes. 

Kappmeyer [1] discussed the challenges faced in the manufacture of critical gas turbine 

components for aerospace and explains that the integration of multiple technologies, 

including process monitoring, process modelling and multi-functional machine tools play an 

important part in achieving automated processes. Though the investment in new 

technologies has brought step changes to process performance, the ability to fully automate 

and failure proof these complex machining operations has not been achieved. 

A manufacturing engineer’s role is to apply their experience and the equipment they have 

available to deliver cost effective and robust manufacturing processes. Key process variables 

can be difficult and expensive to tightly control, such as tolerances on the work piece stock 

geometry, variation in bulk material properties or inconsistent cutting tool integrity and life. 

Uncertainty in such variables leads to conservative manufacturing processes being delivered, 

with reliance on skilled operators and large amounts of manual intervention. Productivity is 

then reduced and human errors can lead to scrap and re-work.  

Typically, manual intervention is required for one of two reasons. (i) The process itself has 

been designed in such a way that intervention is mandatory and follows a schedule. This may 

be due to the tooling, fixturing or machines used or it may be a result of the method of 

manufacture initially chosen. (ii) Input variables change over time and the process requires 

adjustments to be made in response to the input variation, without which the process would 

not maintain the required product quality. 

Without the appropriate skill level and timeliness of these interventions, processes can result 

in failure. A number of solutions are available to the industry to avoid, detect or reduce the 

impact of some failure modes, such as: 
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• Monitoring systems to stop the machine if measured sensor signals move out of 

defined limits [2]-[8] 

• On-machine measurement systems to determine geometric conformance of the 

work piece [9], [10]. 

• Adaptive tool offset and tool path control systems using metrology data, [11], [12] 

• Control systems to adjust cutting parameters according to machine spindle load, [13] 

or from measured vibration frequencies [14]. 

Many failure modes are still observed in industry even with the use of these systems. Full 

automation and ‘lights-out’ machining is rarely achieved in aerospace manufacturing 

companies, and scrap and re-work costs remain to be a major issue. There is therefore a 

need for more robust, intelligent systems that can monitor a machining process, maintain it 

within defined limits, and if necessary, stop the process when the probable outcome is non-

conforming products. 

1.1 Motivation 

Published research in the area of machining process monitoring is extensive, particularly for 

tool condition monitoring (TCM) and fault detection systems; however, the HVM industry 

has adopted few monitoring and control systems to replace manual, skill-based tasks in their 

machining processes. This thesis aims to address key challenges faced when extending this 

academic research to industrial exploitation. 

Published material that describes commercial and academic monitoring systems will be 

reviewed to understand the capability and functionality of systems to date. In light of this 

knowledge, this study will go onto determine a monitoring system design; the selection of 

sensors, signal processing steps and computational techniques for fault detection and 

diagnosis. 

The design and build of a system which can monitor and control machining processes will be 

a key part of this study, ensuring that both software and hardware used does not interfere 

with production tasks. This system will be applied to a milling process for hard-to-machine 

metallic components – an application in the aerospace sector that has relatively high scrap 

and non-conformance costs.  
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Another key enabler for the industry to adopt this technology is to allow monitoring tasks to 

succeed unsupervised with minimal resource efforts to install and maintain both software 

and hardware aspects of the systems.  Practical considerations of the monitoring system 

developed in this research are therefore that; (i) sensing and data acquisition hardware is 

robust and minimally intrusive in the production environment, and (ii) monitoring software 

performs unsupervised with minimal resource to configure, train or maintain it. 

1.2 Hypothesis 

An unsupervised process monitoring system can be developed to deliver improved 

process robustness and reduced down time in machining processes. 

The impact of machining process faults being left undetected may include costly damage to 

the work piece, tooling or machine. Increasing the level of skilled manning of the process is 

an expensive solution. Costs are also incurred when training supervised monitoring systems. 

An unsupervised process monitoring system for monitoring a machining process is therefore 

proposed. 

1.3 Aims and Objectives 

The main aim of this research is to design and demonstrate a method for monitoring 

machining processes that can reliably detect and diagnose faulty operating conditions. 

Delivering this aim should therefore eliminate the cautionary manual interventions often 

seen in production today. Furthermore, this aim should reduce the time taken to diagnose 

the cause of a fault, reduce the time taken to correct a process following a fault, and finally 

reduce equipment down time by minimising the frequency and severity of faults. 

There are several objectives that work towards this overall aim, as follows: 

1. The first objective is to identify the suitable sensor signal features available for 

describing the condition of the machining process. 

 

2. The second objective is to incorporate a fault detection method into the proposed 

monitoring system. This requires a means for the system to identify fault conditions 

from sensor data, without the need for training data. 
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3. The third objective is to extend this calculation so that fault diagnosis is possible. 

With minimal training, the system should be able to distinguish between more than 

one fault type. 

 

4. The fourth objective is for the system to be designed in a way that it does not 

obstruct the production environment, thus being a practical solution for industrial 

exploitation. There will be two elements to this; commercially available sensors will 

be used so the research will not develop new sensors; the system should not require 

a machine tool to be taken offline for training of the monitoring system software. 

1.4 Brief Outline of the Thesis 

The first chapter introduces the motivation, hypothesis and objectives of the study. A 

literature review follows in Chapter 2, covering a wide range of published literature including 

sensing, signal processing and system architectures and algorithms. 

 

Chapter 3 reflects on previous research and presents results of investigations into the 

monitoring system design requirements. A clear understanding of machining process faults 

and their interactions is gained by applying process failure mode and effect analysis (PFMEA) 

to a milling process. 

 

With the PFMEA providing a clear understanding of the industry problem, an experimental 

method is proposed in Chapter 4. Two 3-axis profile milling experiments are conducted on a 

titanium workpiece; the first conducting a tool wear trial and the second introducing variable 

radial depths of cut to represent faulty operating conditions. A new sensing platform for 

monitoring milling operations was designed and built. 

 

The first of two analysis sections are presented in Chapter 5, where several methods for 

sensor signal feature selection and assessment are investigated. Polynomial model fitting is 

used to obtain sensor signal features with high information content, and Gram-Schmidt 

orthogonalisation is applied to reduce redundancy in feature subsets. Several other feature 

selection methods are also compared. 



Introduction 5 

 

 

 

Chapter 6 develops a novelty detection system to determine when a fault has occurred using 

the feature subsets selected in Chapter 5. A principled novelty threshold is applied using the 

Mahalanobis distance as a measure of discordancy. Data clustering methods are also applied 

for fault diagnosis, including Gaussian mixture modelling and the nearest neighbour 

algorithm. Several methods are validated on a second data set for a ball nose milling 

operation on stainless steel. 

 

The thesis concludes with a discussion of the results and future work in Chapter 7. 
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2 LITERATURE REVIEW 

This chapter provides a brief history in process monitoring research and highlights the 

relevance of the subject today. The author summarises the components of a monitoring 

system in section 2.1.1, before addressing each technology in detail. The range of sensors 

applied are discussed in section 2.2. Techniques for signal processing, feature extraction and 

feature selection are covered in section 2.3. Fault detection, diagnosis and prognosis are 

then discussed in section 2.4. 

2.1 A Brief History of Manufacturing Process Monitoring 

The ability to collect measured data from equipment and processes has been explored for 

several decades. Weck et al. [15] presented a ‘concept of integrated data processing in 

computer controlled manufacturing systems’ in 1980; a method to achieve flexible and 

automated manufacturing processes is presented and was demonstrated for an aerospace 

machining application at the University of Aachen. A data-driven system was developed that 

managed new part orders, automated the transport and storage of components such as 

pallets, and provided information on the system state. The challenges faced were primarily 

relating to data distribution and management, real time operating systems and interfacing 

machines and computers. Due to the revolution in computing technology, these capabilities 

are now commonly available in machine tools and computers, along with standard 

communication protocols for ease of programming. 

Goldsby et al. [16] registered a United States Patent in 1977 for condition monitoring of 

remotely located machines, such as coin operated vending machines. Switches to convert 

operating conditions to binary signals are used to transfer data to memory. Such data 

included clock pulses, load signals from drives and machine address codes. The data is 

transmitted over telephone line to a control unit. Flags are raised when machine data differs 

from that previously obtained for that machine, allowing the control unit to present 

condition monitoring data to a user for a number of machines. The user can then make a 

decision whether to take further action. Although the technique presented is relatively 

simple when compared to the monitoring literature today, the comparison of data against 
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that obtained previously is a common condition monitoring approach in industry 

applications. Limitations do exist; training data is assumed to be correct, the definition of a 

significant change is experiential, and the cause of the change in data is not discernible, 

potentially leaving the user with further analysis to identify a corrective action. 

Scott et al. [17] presented a paper on ‘condition monitoring of gas turbines’ in 1978. Oil 

samples were taken at regular intervals for ferrograph analysis. Two measurements were 

taken from the samples; area coverage of small particles and area coverage of large particles. 

Three wear sensitive features, in the form of heuristic linear equations, were derived from 

this data; total wear, severity of wear and severity of wear index. The features were found 

to correlate with flying hours for the turbines, therefore the method was proposed as a 

useful tool for machinery condition monitoring. The paper captures three key steps in 

condition monitoring from data - measurement, feature extraction and correlation. The 

measurement and feature extraction is achieved from a physical understanding of the 

process. The correlation is simplistic, and although the evidence suggests the measurements 

are useful, the robustness and risk of employing the technique is not examined. 

Clearly, the subject of intelligent monitoring systems is broad, but in all fields, systems have 

moved on dramatically since the examples above. Developments in civil, automotive, 

aerospace, maintenance and medical applications have transformed the capability of 

automatic monitoring and control systems. In the manufacturing sector, exploitation is seen 

in higher volume processes such as automotive, though high value processes are yet to adopt 

much of the technology. Broadly speaking, this can be attributed to the process complexity, 

lower part numbers, and higher component costs. Limited statistical data is available to 

ensure process robustness and process owners are risk averse, given their responsibility to 

deliver complex, high cost, safety critical components. 

A database of the tool condition monitoring literature was published by Teti [18] in 1995 

with over 500 references. Extensive research in the area continued for another 15 years and 

a keynote paper by the same author was published in 2010 [19] that discussed developments 

in the use of acoustic emission sensing, advanced signal processing, and detection of other 

response parameters such as surface finish,  chip conditions, machine tool state and chatter 

avoidance. The vast quantity of cited publications in these two reviews alone shows the 

sustained interest and importance of this research area to the manufacturing sector, 
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however, it raises questions over the impact and direction of the completed research to date 

given the limited exploitation seen in industry and the continuation of the same objectives 

in UK and European research strategy today. Leem and Dorfeld [20] explain that the lack of 

industrial uptake of these technologies is partly due to the absence of a well-accepted 

reliable methodology and the ignorance of practical issues in implementation. 

The EPSRC Manufacturing the Future strategy [21] includes Manufacturing Informatics as a 

key priority. Aspects of artificial intelligence, control engineering, statistics and probability, 

sensors and instrumentations fall within this research area, all of which are essential in the 

development of monitoring and control systems. 

The German government established a vision known as Industry 4.0 [22], a strategy which is 

built around availability of data and ‘the Internet of Things’. The “development of intelligent 

monitoring and autonomous decision-making processes” is central to the strategy. 

Higher Technology Readiness Level (TRL) funding for process monitoring remains a focus 

from European and UK funding councils. The Technology Strategy Board’s (TSB) high value 

manufacturing strategy includes themes for ‘intelligent systems and embedded electronics’ 

and ‘flexible and adaptive manufacture’. Process monitoring tools have relevance in many of 

the challenging areas described in the strategy [23], [24]. 

The European Horizon 2020 funding call also cites process monitoring as a key theme, 

highlighting several areas; “Methods for integrative control and robust optimization of 

discrete and continuous processes supporting engineers in their aim of detecting, measuring 

and monitoring the variables, events and situations which affect the performance, energy-

use and reliability of manufacturing systems”, “Fast and accurate process monitoring 

systems allowing feedback control of (laser) process parameters in highly dynamic 

manufacturing processes. Actions should cover, in particular, the development of in-line 

process monitoring sensors, measurement and non-destructive testing tools including the 

related high speed data processing and reduction” [25]. 

The UK government office for science issued the project report Foresight (2013), The Future 

of Manufacturing: A new era of opportunity and challenge for the UK [26].  This also 

emphasises the importance of these systems stating that “condition monitoring where 

machines are able to self-diagnose and predict faults before failure” is key. It highlights the 
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importance of sensors and data networks and that “manufacturers must develop their ability 

to transform this explosion of data into useful knowledge and value”. 

The UK High Value Manufacturing Future Landscape report includes themes on ‘intelligent 

systems and embedded electronics’, ‘plug and play manufacturing’ and ‘flexible and adaptive 

manufacturing’. These themes all include the requirement to sense, capture and analyse 

multiple forms of data. 

2.1.1 Monitoring System Components 

Intelligent process monitoring systems for machining have a focus on several fields of study. 

The review paper by Teti et al. [19] breaks the discussion into sections on sensors, signal 

processing, application area and decision making. The paper published by Bryne et al. [27] 

followed the same order of discussion, whereas Rehorn et al. [28] arrange the discussion of 

tool condition monitoring systems by each type of cutting process – turning, face milling, 

drilling and end milling. 

According to the review paper by Liang et al. [29], the application of machining process 

monitoring systems has been reported for several recurring application areas; (i) tool 

condition/wear/breakage, (ii) surface roughness, (iii) workpiece geometry or depth of cut, 

(iv) workpiece hardness or machinability and (v) surface integrity. The authors also list a 

number of published measurement signals; acoustic emission (AE), power, torque, force, 

temperature, vision, vibration, displacement/direct gauges, audio signals and even materials 

micro-magnetic properties. 

The overwhelming majority of publications present methods to identify tool wear state at 

any given instant in a machining process. Others aim to determine properties of the 

machined surface such as roughness [30] and surface anomalies [31]. A well-established 

community of researchers have developed chatter avoidance monitoring systems [32] that 

are now available for production use [14], though research continues to develop solutions 

such as active damping [33] and parallel machining [34]. Other publications have investigated 

opportunities to use monitoring systems for chip management [35], machine condition [36] 

and coolant performance [37]. These different monitoring scopes and systems are rarely 
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combined into a single system, with the majority of the papers reviewed in this thesis 

focusing on a single one of these variables. 

Teti et al. [19], describe a process monitoring system that consists of five important factors: 

1. Process variables 

2. Sensorial perception 

3. Data processing and feature extraction 

4. Cognitive decision making 

5. Action 

A similar view is shared by other review papers. For example, Abellan-Nebot et al. [38] depict 

a system similar to the flow chart shown in Figure 2-1.  

 

Figure 2-1: Important factors in a process monitoring system [38] 

Structural Health Monitoring (SHM) research has covered the use of sensors for detecting 

damage and classification of damaged structures extensively. Figure 2-2 depicts the data 

fusion approach to SHM presented by Worden and Manson [39]. 
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Figure 2-2: Waterfall model for SHM [39] 

The field of Machine Learning (ML) covers many computational techniques that allow one to 

build systems that can learn from data. 

The following three sections will discuss sensing, signal processing and decision making 

aspects of monitoring systems. 

2.2 Sensing 

A range of sensors are available which convert different physical quantities to electrical 

signals. In order to highlight the quantity of data available, an ambitious range of sensors 

was described for a machining scenario in 1995 [27], as depicted in Figure 2-3. The large 

quantity of measurement data available from such a sensor array requires the application of 

comprehensive and computationally intensive data acquisition, signal processing and data 

fusion. Clearly, there is a substantial amount of indirect data available in these applications. 

However, in applying these technologies one must consider complexity, cost, computation 

requirements and the value of the data. If a production application is proposed, practical 

limitations in production must also be considered.  

It should also be noted that whilst the quantity of information may be significantly increasing 

as further sensors are added, the amount of new and useful information may only be a 

relatively small and diminishing proportion. 
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Figure 2-3: Available sensors for machining applications [27] 

Although availability of sensors and sensor data remains a challenge in production 

environments today, the research area has received significant attention since the 

publication of the highly cited review paper on sensor based tool condition monitoring by 

Byrne et al. in 1995 [27]. In 2004, Liang et al. [29] reviewed the application of sensors in 

machining and provided a short list of relevant and popular sensor types; these were vision, 

force, AE, power, torque, vibration, audio, temperature, dimensional gauges and a 

micromagnetic sensor. The issues of sensor placement practicalities, costs and reliability 

issues were discussed, though not resolved, in the review. 

To ensure that industry can exploit a continuous sensing solution, the cost, convenience and 

performance of sensors must be considered, the data must be informative, and the 

installation of the equipment must not be intrusive. Cutting force measurement is the most 

common of all cutting process sensors, yet Dey and Stori [40] explain that “One important 

practical hindrance to the industrial deployment of cutting force sensors for process 

monitoring is the high cost and intrusive nature of multi-axis dynamometers in a production 

environment”.  
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In 2010, Abellan-Nebot et al. [38] noted that the vast majority of applications used the 

following sensors; dynamometers, accelerometers, AE and electrical current transducers. 

Sensors were scored based on the extent of their intrusive nature, cost and signal reliability, 

as shown in Table 2-1. Temperature measurement was not included in this ranking, given 

that it had seen little attention in multi-sensor monitoring research. 

Table 2-1: Sensor ranking provided by Abellan-Nebot et al. [38] 

 

 

In 2013, Kerrigan and O’Donnell [43] proposed a wireless method for temperature 

measurement within a rotating cutting tool, Chung [44] presented a self-powered vibration 

sensor for machining, and Stoney et al. [45] presented a dynamic wireless passive strain 

measurement device. These are a small sample from a surge of research published in recent 

years which addresses the issue of cost, reliability and intrusive nature of sensors for cutting 

process monitoring. 

The increasing trend in machining process monitoring research presents the need to address 

sensor cost, reliability and practicality. Wireless systems have become important; wireless 

data acquisition and wireless power to sensors is under investigation, though broadly these 

devices are not yet mature enough for production use. Challenges, such as limitations on 

sampling rates, battery life and the introduction of time delays to signals, are faced.  

The main sensor types of interest are described in more detail in the following sections. 
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2.2.1 Power Transducers 

Figure 2-4 shows a typical machine tool spindle. Spindle motor power can be measured using 

current and voltage data from the motor drive. The majority of industrial spindle motors are 

three-phase induction motors for which the following calculation must be performed to 

obtain power from current and voltage measurements on each of the three phases: 

 𝑃 = 𝐼 ×𝑉 × 𝑐𝑜𝑠∅ × √3 (1) 

 

Where 𝑃 is the power for each phase, 𝐼 is the current, 𝑉 is the voltage and 𝑐𝑜𝑠∅ is the phase 

shift between the current and voltage signals. Hall effect sensors are commonly used for 

current sensing, whilst voltmeters can obtain the potential difference at each phase.  

 

Figure 2-4: Machine tool spindle diagram 

Power measurement is an obvious choice for monitoring machines as it is relatively cheap to 

measure, easy to install, does not interfere with the cutting zone, and gives a signal that is 

proportional to cutting force. Power of linear and rotary axis drives have also been used for 

monitoring the machine and process. For these reasons, power monitoring is commonly seen 

in industry for uses ranging from crash detection, machine axis health monitoring, and 

cutting tool breakage or wear monitoring.  
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The measurement of power has a poor dynamic response compared to other sensor types. 

An established supplier of power transducers for condition monitoring applications (Load 

Controls Incorporated) provides sensor response times between 15 and 500msec (stated as 

the amount of time it takes the transducer to respond to a 90% of full-scale change in signal). 

It has also been reported that power measurement, as an indirect measure of torque or 

force, can suffer significant electrical and mechanical noise. The measured power signal from 

a spindle is a function of several effects from the cutting tool, cutting conditions, bearings 

and state of other mechanical components of the machine tool. This combination results in 

the data being less sensitive to small changes in the cutting process. For example, the ability 

to monitor machining conditions is diminished where power required to overcome inertia 

and friction in the spindle is large, relative to the power required for machining [54]. 

Al-Sulaiman et al. [46] used spindle power to monitor a drilling process and attempted to 

reduce the effect of measurement noise, such as that associated with friction within the 

spindle bearings, by normalising the signal based on the idle spindle power. Several drill 

diameters, spindle speeds and feed rates were tested and some correlation existed between 

both measures of spindle power and the cutting tools’ flank wear width. There was little 

evidence to show any improvement when normalising the power signal. The results would 

be more helpful if the degree of correlation and the robustness of the proposed solution 

were considered. 

Axinte et al. [47] evaluated the sensitivity of spindle power measurement for turning, milling 

and drilling processes. It was found that the ability to detect transient events, such as tool 

chipping, was particularly challenging in end milling. Continuous tool wear progression could 

be observed once wear levels were ‘distinct’ for each of the three cutting processes. The 

paper did not identify guidance on a suitable threshold level to identify tool wear or chipping, 

and lacks evidence on whether the power measurement alone was adequate for industrial 

use, stating ‘the signal might not have enough sensitivity to detect small malfunctions such 

as chipping’. The results could be improved if the sensitivity of power measurement to a 

known physical quantity, such as force or torque, was tested independently to the cutting 

process effects. 
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Kim et al. [49] developed a fuzzy logic controller that controls feed rate of a milling process 

in real time in order to maintain a constant cutting force. The system is first applied with a 

dynamometer measurement of cutting force. The controller is then applied without the 

dynamometer, by deriving the cutting force from the spindle power measurement. The 

results show that although the system performs better with the dynamometer, spikes in 

cutting forces can be reduced when using spindle power. 

Vijayaraghavan and Dornfeld [50] investigated the value of energy consumption data across 

a manufacturing system in order to consider the environmental impact of the different 

process planning levels. A framework was proposed where production planning was the 

highest level of data analysis. Daily usage of a machine could be observed from the data at 

the production planning level. Below this, feature level energy usage was used to determine 

the energy consumption associated with different attributes of a components’ manufacture. 

Tool path planning and efficiency such as % time in cut was then evident from the data, and 

finally, detection of spikes, such as tool failures, could be observed in higher sample rate 

machine power data. The paper provides an interesting and objective view of how measured 

energy data can be useful. 

2.2.2 Force Sensors 

Force measurement is widely used in machining research, given it is a key parameter in 

machining processes; it has a strong presence in the process monitoring literature covered 

such as the review papers already listed ([18], [19], [27]-[31]). It has been shown that cutting 

conditions, tool wear, material variation and many more process variables can be observed 

indirectly through force measurement; it is also useful for validation of simulation models 

that provide cutting force estimates. 

A stationary, three-component plate dynamometer is commonly used for force 

measurement in milling, as shown in Figure 2-5. 4-component dynamometers are also 

available, commonly used in drilling process monitoring, as are 3-component lathe 

dynamometers. Piezoelectric materials are favoured to strain gauges given the increased 

dynamic response of the measurement and increased stiffness of the machining setup. These 

piezoelectric sensing elements generate an electrical charge proportional to the load in the 

measurement direction. Typically, a separate sensing element is used for each direction.  
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Figure 2-5: Kistler 3-component force dynamometer [5] 

There is very little use of direct cutting force measurement in production processes, although 

there have been good examples of its use for machining experiments in laboratory 

conditions, such as that presented by Klocke et al. in  [52]. In fact, no examples of production 

use of cutting force dynamometers for monitoring machining processes could be found in 

the public domain. This is not just due to the high cost of accurate measurement equipment, 

but also the intrusive nature of the equipment in the machining vicinity. 

Yaldız et al. [53] designed and built a dynamometer for the milling process and demonstrated 

the high cost and complexity of this approach. The device used strain gauges rather than 

piezo materials, therefore the stiffness and frequency response of the sensor is likely to be 

inferior to the more common Kistler device. It can be seen that the instrumentation is 

significantly invasive to the machining volume, is not practical for large production fixturing, 

and compromises the stiffness of the workpiece setup. It is not clear how this system is an 
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improvement on products on the market, therefore a comparison in performance to a more 

common Kistler system would have been beneficial. 

Park et al. [51] ambitiously state that ‘the most effective method to monitor the states of 

machining operations and adaptively control the process is through measurements of cutting 

force signals’. The authors’ attempt to integrate force measurement within a spindle allows 

the technique to be applied in production, though the accuracy of the sensor system and 

influence on the spindles’ static and dynamic stiffness is unclear. Other less intrusive and less 

costly force measurement techniques are used in commercial solutions such as strain 

measurement on axis drives and load cells, or pressure sensors installed in fixturing, though 

these methods are indirect measurements of the cutting force and are likely to result in an 

increase in signal noise. 

Teti et al. [55] attempt to infer the chip condition from cutting force signals in a turning 

application, concluding that no single feature can reliably indicate the type of chip. More 

recently, Klocke et al [56] developed a method for observing chip evacuation from a drilling 

process using an optical sensor. 

It is a key objective of this study to produce a system that is viable for production use. Due 

to the practical limitations in using force measurement equipment in production, neither 

piezoelectric nor strain gauge force measurement have been used for the sensor system in 

this study. 

2.2.3 Microphones 

Microphones are intended to convert air pressure oscillations into corresponding voltage 

oscillations and are typically applied to measure airborne, audible range acoustic emissions. 

Figure 2-6 shows the basic components of a condenser microphone. Sound waves cause the 

diaphragm to vibrate and as a result, the capacitance between the diaphragm and the back 

plate will vary. This varying capacitance in turn generates a voltage change that can be 

amplified and passed to a data acquisition system. 
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Figure 2-6: Components of a microphone [73] 

Microphones can detect vibration frequencies from a system, provided the vibrations cause 

airborne sound waves that are able to reach the sensor. Microphones have been used 

extensively for the identification of chatter frequencies in milling and turning. They are less 

intrusive than accelerometers as they need not be in direct contact with the tool, workpiece 

or machine; however, they can be prone to signal noise as other airborne sound waves in 

the measurement vicinity will also be detected by the sensor. To reduce signal noise, 

unidirectional microphones can be used, where their sensitivity is a function of the direction 

at which the sound waves approach the sensor. This is referred to as the polar pattern. The 

specification for a Shure PG81 microphone, that includes the polar pattern and frequency 

response, is shown in Figure 2-7. 

  

Figure 2-7: Shure PG81 microphone performance data [74] 



Literature Review 20 

 

 

Many commercial solutions are now available for chatter detection using a microphone, as 

it has become an applied technique in industry [75], [76]. It has been used to a lesser extent 

for detection of other key variables as background noise levels from adjacent machines and 

workshop activity can interfere with the signal. 

Delio et al. [78] published a comprehensive study on the use of audio signals for chatter 

detection, demonstrating that a microphone can detect chatter frequencies between 100-

13,000Hz. Directional considerations and environmental sensitivity were raised as practical 

concerns, though the use of a microphone was generally found to be a convenient and 

reliable method for chatter detection. For low frequency vibrations below 100Hz, typically 

associated with structural vibrations, accelerometers were recommended. 

2.2.4 Accelerometers 

Vibration measurement using linear accelerometers is used both in commercially available 

chatter detection systems and published widely in the machining process monitoring 

literature. Most commonly, measurements are taken by attaching piezoelectric 

accelerometers to a fixture, workpiece, tool or spindle.  

The cross-section of a single-axis piezoelectric accelerometer is shown in Figure 2-8. The 

principle of the design is to convert the kinetic energy of a mass into electrical energy. As 

with the piezoelectric dynamometer, the piezo material creates electrical charge when it is 

compressed, and an opposite charge when released. The piezo material and mass are pre-

loaded so that acceleration of the mass in either direction can be measured. For tri-axial 

accelerometers, three sensors are assembled with measurement axes perpendicular to each 

another. 
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Figure 2-8: Single axis piezoelectric accelerometer [79] 

Vibration is an important physical effect in metal cutting processes and is present in the 

majority of machine and process condition monitoring practices. It has been especially 

important in extending the understanding of chatter vibrations to that known today, covered 

in detail by Altintas [58]. The effect of self-excited vibrations in a milling process is illustrated 

in Figure 2-9.  



Literature Review 22 

 

 

 

Figure 2-9: Self-excited vibration in milling [58] 

A number of methods have been described for the detection of chatter vibrations during 

machining [32]. Accelerometers have been placed on the spindle, workpiece fixturing to 

obtain vibration data. A higher dynamic range can be obtained using accelerometers 

compared to alternative sensing methods such as microphones or dynamometers. 

Accelerometers have also been used in intelligent monitoring systems to predict machined 

surface roughness.  Benardos and Vosniakos [59] conduct a review of methods for surface 

roughness prediction in machining and state that, whilst accelerometers can improve the 

accuracy of the prediction, other contributions to the roughness formation mechanism are 

generally overlooked, such as tool wear, static tool deflection and cutting temperatures. 

Abouelatta and Madl [60] attempted a surface roughness prediction for turning that used 

both cutting parameter data and tool vibration. A basic linear model was derived using 
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regression and the model fit was poor; however, the signal processing and feature extraction 

detail was minimal. The method was data driven and reliant on extensive testing data. 

An accelerometer signal is sensitive to its proximity to the source of vibration and the modal 

response of the structure; therefore it is good practice to maintain the sensor at a fixed 

distance from the cutting edge with consistent structural dynamics during use. This 

constraint presents an issue when applying to industry, particularly for large part 

manufacture. Specific signal processing and computation methods may need to be 

considered for applications where this is not possible. 

2.2.5 Acoustic Emission 

Measurement of Acoustic Emission (AE) from a cutting process has had a lot of interest in 

literature on monitoring machining processes. The term AE generally refers to 

measurements in the ultrasonic frequency range, and so further usage of this abbreviation 

will be with regard to acoustic emissions in the ultrasonic range.  

AE can be defined as the class of phenomena where transient elastic waves are generated 

by the rapid release of energy from a localised source within a material (ANSI/ASTM E 610-

77). An AE sensor is designed to convert mechanical energy of an elastic wave into an 

electrical signal. These sensors are most commonly piezoelectric transducers, such as that 

shown in Figure 2-10. 
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Figure 2-10: Basic components of an AE sensor 

To maximize the transmission of acoustic energy to the piezo element, the sensor proximity 

and any interface between the sensor and the signal source should be considered. Acoustic 

impedance matching is required to maximize the transmission; sensor suppliers recommend 

that a flat surface is used for mounting the sensor and high viscosity fluid, such as grease, or 

epoxy adhesive is applied between the sensor base and the contact surface. 

AE sensing for machining is typically considered to be the measurement of ultrasonic 

frequencies from around 20 kHz to 2MHz. 

Konig et al. [61] investigated the use of AE measurement for monitoring tool wear when 

using small drills. 1, 2 and 3mm diameter drills were used for the machining of chromium-

molybdenum steel. In all tests shown, drills were run to failure. AE signals showed a rapid 

increase in RMS magnitude towards the last 10% of a tool’s life, consistently resulting in over 

a 300% increase in RMS magnitude for the penultimate hole machined. The use of spindle 

power was shown to be insensitive to tool wear given the low forces of the drilling process. 

This fact demonstrates that, for the process under examination, onset of tool failure can be 

reliably detected using AE sensing. For the 3mm drill, four repeat experiments showed 

variation in tool life of over 600%, confirming the requirement for such a system. 

Lee et al. [62] review the use of AE sensing to monitor precision machining processes. The 

paper summarises the sources of AE and how, due to the signal-to-noise ratio, the sensor 
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type favours precision and ultra-precision machining processes. Several claims are made 

regarding the sources of AE signals, also summarised in Figure 2-11: 

- AE is typically generated in the primary, secondary and tertiary shear zone 

- Where depth of cut is 0.1mm and above, AE is mainly due to rubbing and friction in 

the tool/chip interface 

- Where depth of cut is below 0.1mm, AE is mainly due to interactions of the tool tip 

and microstructural properties within the workpiece 

 

Figure 2-11: Sources of AE signal [62] 
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Li [63] reviewed acoustic emission methods used in turning. Given that the signal is a product 

of transient, non-stationary components, a number of particular signal features are 

proposed, including ring-down count, AE event, rise time, peak amplitude, RMS, short time 

Fourier transform and wavelet transform. 

Marinescu and Axinte [64] explored the use of AE sensing to ensure damage free surfaces 

during milling. Two measured force components were combined with segmented AE signals 

to determine tool wear. Some comparisons were made between the sensor signals, the tool 

life, and the surface finish. There was no explanation, however, of how the multiple sensors 

added a benefit. Furthermore, the impracticalities of applying force dynamometer 

measurements in a production environment were not discussed. 

Araujo et al. [65] tested and analysed AE signals from a turning process to determine the 

relationships between AE signals and dislocation motions in the chip formation. Tool 

condition monitoring and chip management scopes were proposed applications, though it 

was noted that few machining monitoring systems using AE have been reliable enough for 

production use. It was proposed that the reliability issues are partially resulting from the 

sensitivity of the signal to the work piece strain, strain rate and temperature. Experimental 

results supported the hypothesis that AE energy was directly proportional to workpiece 

strain and strain rate, but inversely proportional to temperature. Similarly, it was claimed 

that AE mean frequency was directly proportional to strain rate and inversely proportional 

to temperature. 

The literature reviewed presented some merit in the use of AE, such as the insensitivity to 

low frequency noise and the ability to measure high frequency emission that other sensors 

cannot. This allows AE sensing to be particularly useful for detecting tool breakage and is 

popular for monitoring low cutting force operations such as the use of small diameter drills. 

However, the signal processing steps and degree of success of employing AE sensing does 

vary in existing literature. Furthermore, the implementation challenges for this sensor type 

are vast, given the distance and the media between the sensor and the cutting action has a 

large effect on the sensed signal. 
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2.2.6 Cutting Temperature 

The kinetic energy from a cutting process is predominantly transferred into heat energy 

during the chip forming process.  Heat is one of the most significant limiting factors in the 

cutting process.  Basti et al. [66] stated that the detrimental impacts of temperature in the 

metal cutting process include: 

- Acceleration of tool wear and the shortening of tool life.  

- Thermal deformation of the workpiece, cutting tool and machine tool which leads to 

a reduction in machining accuracy.  

- Damage to the subsurface layer through phase transformation, residual stress 

generation and other thermally induced defects.  

Given its importance, the monitoring of temperature during the cutting process is desirable 

for a process monitoring system. The paper from Karaguzel et al. [67] explained that the 

transient nature of temperature emissions in milling make them particularly challenging to 

measure accurately. The authors showed that cutting temperature in milling can be 

estimated more accurately when using a heat conduction model to improve the 

measurement result. A further example of the use of measured temperature to validate 

process models was given by Abouridouane et al. in [68]. 

There are several methods for measuring temperature. Byrne [69] divides these into 

conduction techniques, such as thermocouples and thermal paints, and radiation 

techniques, such as infrared pyrometers and thermal imaging cameras.   

O’Sullivan and Cotterell [70] used two K-type thermocouples embedded in an aluminum 

workpiece to determine cutting temperatures for a turning process. It was found that the 

measured temperature increased from approximately 65°C up to 85°C when the new tool, 

running at 165m/min, was changed to a worn tool of 0.35mm flank wear width. It was also 

shown that increasing surface speed from 165m/min to 222m/min decreased the new tool 

measured temperature to approximately 55°C, attributed to more of the thermal energy 

being dissipated in the chip.  

Lin and Liu [71] used an infrared pyrometer to measure the temperature of a silicon nitride 

cutting tool during the turning of medium carbon steel. An insert was heated in a furnace 



Literature Review 28 

 

 

and the pyrometer result was compared to a K-type thermocouple. During turning, the 

temperature was taken at 0.5mm and 1mm from the cutting edge and surface speed was 

increased from 60 to 600m/min. At 600m/min, the temperature was measured to be 

approximately 650°C at 1mm from the edge, 800°C at 0.5mm, and extrapolated to 1000°C 

to estimate the tool-chip interface temperature.  

Basti et al. [65] designed and manufactured a cutting insert with two embedded thin film 

thermocouples and tested it in when turning an aluminum alloy. The thermocouples were 

placed 0.3mm and 0.5mm from the cutting edge and surface speeds from 300m/min to 

960m/min were tested. Temperatures between 450°C to just over 600°C were measured. 

The manufacturing process used for the thermocouples is summarised in Figure 2-12. This 

method provides a promising means of measuring cutting temperature in a non-intrusive 

manner that may be viable in production processes. 

 

Figure 2-12: Manufacture of insert with embedded thin-film thermocouple [65] 

Kerrigan and O’Donnell [43] developed a wireless integrated thermocouple into a milling tool 

for composite machining applications and compared measurement results to those from 

finite element models. A K-type thermocouple of 0.2mm in diameter was positioned 0.5mm 

from the cutting edge of an 8mm diameter tool. An Actarus [72] wireless tool holder system 

was then used to convert the analog signal to digital and transmit the data wirelessly to a 

static data acquisition device. Temperatures up to 200°C were measured during milling. A 
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slow response time of the sensor was observed, though results were shown to correlate well 

with finite element models. 

Despite the value of temperature data in understanding the performance of a cutting 

process, no method was found that is viable for continuous monitoring in a production 

environment. Due to the destructive nature of embedding the thermocouples in the 

workpiece, this method is suited to a lab environment when the aim is to gather 

experimental data. Line of sight methods, including pyrometers and thermal cameras, are 

also suited only for lab measurement systems, given that it is not possible to gain continuous 

line of sight data in most production processes. Embedding thermocouples within tooling 

offers a possible solution to these issues. Provided wiring and installation of the systems can 

be non-intrusive to the process, they have potential to be used for continuous process 

monitoring systems. However, manufacturing processes to embed a sensor are currently 

bespoke, and data acquisition systems such as wireless tooling can be expensive and limit 

tooling options.  

Specialised indexable tooling for drilling and milling are commercially available where 

thermocouples are placed below the insert seat [72]. However, given the cost and additional 

complexity of embedding sensors within solid carbide end mills, as well as the practical 

limitations of line of sight methods, the measurement of temperature has not been applied 

in this study. It should be noted, however, that the advantages of an affordable temperature 

measurement solution would be significant given that the cutting temperature is an 

important indicator on the cutting conditions. The challenge for this technology is the 

development of non-intrusive and low cost sensing, whilst the opportunity is the ability to 

reliably sense the cutting conditions from this single sensor type. 

2.3 Digital Signal Processing 

This section has considered the processing steps that are applied to a set of sensor signals 

prior to decision making algorithms being applied. This includes segmentation, feature 

extraction and feature selection steps. 



Literature Review 30 

 

 

2.3.1 Segmentation 

The purpose of segmentation is to extract the relevant samples of the continuous sensor 

signal data set for further processing. Data during which there is no activity may be 

redundant; for example, when a cutting tool is not in contact with the workpiece. This step, 

described by Ghosh [77] as illustrated in Figure 2-13, will reduce the size of the data set and 

ensure that further computation is carried out solely on the useful segments of the sensor 

signals. 

 

Figure 2-13: Segmentation of sensor signal and data reduction [77] 

Segmentation has also been used to differentiate between important regions of the cutting 

path, such as the engage or retract moves of a cutting tool [80]. This allows different 

approaches to be taken in the subsequent processing steps for each of these regions. Given 

that many process failure modes such as tool breakage may occur at any period where the 

tool is in contact with the material, it is appropriate to monitor all segments of the sensor 

data. 

The segmentation is programmed by the user in commercial monitoring systems, for 

example using markers in Numerical Controller (NC) code to start and stop recording. 

Another common approach in these systems is to normalise the sensor data on a short 

segment of the signal prior to entering cut, thus accounting to some degree for any 

unwanted sensor signal drift, particularly for spindle power measurement. Researchers have 

proposed more complex segmentation requirements, such as the ability to differentiate and 

compare multiple tooth passes in milling [81]. This approach requires a degree of automatic 

segmentation and sorting to be programmed into the software. 
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Once segmentation is complete, each segment can undergo time and frequency domain 

analysis to determine discrete features of interest. This can once again significantly reduce 

the size of the data set. 

2.3.2 Feature Extraction 

In its simplest form, the problem of detecting a fault in a sensor signal is that of extracting 

the fault signal, X(t), in measurement, Y(t), in the presence of noise, N(t), where 

Y(t)=X(t)+N(t). In many cases signals X(t) are transient in nature, whilst N(t) is stationary.  

The previous literature has shown a large number of sensor signal features can be used to 

extract a fault signal from raw sensor signal data. Each common feature type found in the 

previous monitoring literature is covered as time domain and frequency domain features in 

this section. Further methods such as time-frequency and wavelet are briefly covered in 

section 2.3.3. 

Time domain features 

Time domain features generally require the least computation as the features can be directly 

extracted from the sensor waveform data. They are univariate and can be described as 

‘summary statistics’ which provide an overall picture of the time-series under investigation.  

For a sensor signal 𝑥(𝑡), that has been sampled at a sampling interval ∆𝑡, a segment of the 

signal starting at time 𝑡0 and containing 𝑁 samples can be described as: 

 𝑥𝑖 =  𝑥(𝑡0 + (𝑖 − 1)∆𝑡); 𝑖 = 1, … , 𝑁 (2) 

Popular time domain features are summarised in Table 2-2. 
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Table 2-2: Time domain features and formula   

Name Formula Comments 

Mean 𝑥̅ =
1

𝑁
∑ 𝑥𝑖

𝑁

𝑖=1

 Arithmetic mean of the signal. 

Root Mean 

Squared 
𝑥𝑟𝑚𝑠 = √

1

𝑁
∑ 𝑥𝑖

2

𝑁

𝑖=1

 
Statistical measure of the signal that 
is appropriate when data is positive 
and negative. 

Variance 𝜎𝑥
2 =

1

𝑁
∑(𝑥𝑖 − 𝑥̅)2

𝑁

𝑖=1

 
Non-negative value indicating the 
spread of the signal data. Equal to the 
standard deviation squared. 

Skewness 𝛾1 =
1

𝑁

∑ (𝑥𝑖 − 𝑥̅)3𝑁
𝑖=1

𝜎3
 

A measure of the asymmetry of the 
probability distribution of the signal. 

Kurtosis 𝛾2 =
1

𝑁

∑ (𝑥𝑖 − 𝑥̅)4𝑁
𝑖=1

𝜎4
 

A measure of the “peakedness” of the 
probability distribution of the signal. 
Higher kurtosis means more of the 
variance is the result of infrequent 
extreme deviations, as opposed to 
frequent modestly sized deviations. 

Peak 

Amplitude 
𝑥𝑝𝑒𝑎𝑘 = max (𝑥𝑖) The maximum amplitude of any value 

in the signal. 

Peak to Peak 

Amplitude 
𝑥𝑝𝑘−𝑝𝑘 = max(𝑥𝑖) − min (𝑥𝑖) 

The difference between the 
maximum amplitude and minimum 
amplitude of the signal. 

Crest Factor 𝑥𝑐𝑓 =
𝑥𝑝𝑒𝑎𝑘

𝑥𝑟𝑚𝑠
 

The use of the crest factor calculation 
is to provide a value of the peak 
amplitude relative to the signal RMS. 

Count Rate 
𝑥𝑐𝑟 =

𝐶(𝑥𝑖 > 𝑄)

𝑁
, 

where Q is the count threshold 

Sometimes called the pulse or burst 
rate, the number of times the signal 
exceeds pre-set thresholds per 
second. This feature is generally 
specific to vibration and AE signals. 
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Frequency domain features 

The frequency spectrum of a continuous time signal can be obtained using the Fourier 

transform: 

𝑋(𝑓) = ∫ 𝑥(𝑡)𝑒−2𝜋𝑖𝑓𝑡
∞

−∞

𝑑𝑡 

    (3) 

Where 𝑓 represents the frequency in Hz. 

For sampled data, this can be represented as the discrete Fourier transform (DFT): 

𝑋𝑛 = ∑ 𝑥𝑗𝑒−2𝜋𝑖𝑛𝑗/𝑁

𝑁

𝑗=1

 

    (4) 

The fast Fourier transform (FFT) is an algorithm that can compute the DFT. In most cases, it 

is assumed that the analysed data is stationary.  

For frequency domain analysis, the power spectrum has been used, which is the square of 

the FFT’s magnitude. For a power spectrum S(f), with a sample spacing of Δf, a segment of 

the spectrum from frequency f0 containing N samples can be described as: 

𝑠𝑖 =  𝑠(𝑓0 + (𝑖 − 1)∆𝑓); 𝑖 = 1, … , 𝑁 

    (5) 

Table 2-3 lists a number of common frequency domain features. 
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Table 2-3: Frequency domain features and formula 

Name Formula Comments 

Mean of Total 

Band Power 
𝑠̅ =

1

𝑁
∑ 𝑠𝑖

𝑁

𝑖=1

 
Arithmetic mean of the frequency 
power for a selected band of the 
frequency spectrum. 

Sum of Total 

Band Power 
𝑠𝑠𝑢𝑚 = ∫ 𝑠𝑖𝑑𝑓

𝑓2

𝑓1

 

The total power in a particular 
frequency range (f1-f2). The integral 
of the spectral density over the range 
of frequencies of interest. 

Variance of 

Band Power 
𝜎𝑠

2 =
1

𝑁
∑(𝑠𝑖 − 𝑠̅)2

𝑁

𝑖=1

 
Non-negative value indicating the 
spread of the frequency magnitude 
data. 

Skewness of 

Band Power 
𝛾𝑠1 =

1

𝑁

∑ (𝑠𝑖 − 𝑠̅)3𝑁
𝑖=1

𝜎𝑠
3  A measure of the asymmetry of the 

probability distribution of the spectra. 

Kurtosis of 

Band Power 
𝛾𝑠2 =

1

𝑁

∑ (𝑠𝑖 − 𝑠̅)4𝑁
𝑖=1

𝜎𝑠
4  A measure of the “peakedness” of the 

probability distribution of the spectra. 

Peak 

Amplitude 
𝑠𝑝𝑒𝑎𝑘 = max (𝑠𝑖) The maximum amplitude of any 

frequency in the spectra. 

Peak 

Frequency 
𝑓𝑝𝑘 = 𝑠𝑝𝑒𝑎𝑘(𝑓) The frequency that corresponds to 

the peak amplitude. 

Spectral Crest 

Factor 
𝑠𝑐𝑓 =

𝑠𝑝𝑒𝑎𝑘

𝑠̅
 Also termed the relative spectral 

peak. 

Harmonic 

Band Power 

𝑠𝑡𝑝𝑓 = ∑ 𝑠𝑖𝑗

𝑛+1

𝑖=1

 

Where i=1,2,…,n, 
j is the tooth pass frequency, and  
n is the number of  harmonics. 

Sum of the power for the tooth 
passing frequency and a specified 
number of its harmonics. 
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2.3.3 Advanced Signature Analysis 

There are a significant number of alternative and more advanced signal processing and 

feature extraction methods that have been investigated for condition monitoring 

applications. Some of these techniques, such as the Wavelet transform, have received 

attention in machining process monitoring literature, but there are also many techniques 

used in other condition monitoring applications that are yet to be thoroughly tested on 

machining applications. Given the breadth of the field of signal processing, not all methods 

are reviewed in this chapter. Several methods reported in the literature have been 

summarised below. 

Windowed Fourier Transform 

When the spectral content of a signal changes with time, neither the time nor frequency 

domain features alone are sufficient to describe the signal properties. 

The windowed Fourier transform method effectively divides a signal up into segments before 

Fourier analysis is applied, then giving information on how the spectral content varies with 

time. It makes the assumption that the signal is stationary in each segment. For a finite 

section of data this method is called the Short Time Fourier Transform (STFT). The limitation 

of this technique is the tradeoff between time resolution and frequency resolution; for 

smaller windows, the frequency resolution is decreased, whereas for larger windows, the 

time resolution is decreased. The STFT can be written as: 

 

 

𝑋(𝜏, 𝜔) = ∫ 𝑥(𝑡)𝑤(𝑡 − 𝜏)𝑒−𝑗𝜔𝑡
∞

−∞

𝑑𝑡 

 

(6) 

where 𝑤(𝑡) is the window function. 

Time-Frequency Analysis 

Many time-frequency analysis methods are covered extensively by Cohen [97]. Popular 

methods for time-frequency analysis for machining applications include the Gabor 

transform, the Wigner-Ville distribution and the Choi-Williams distribution. 



Literature Review 36 

 

 

These methods have been particularly popular for acoustic emission sensor signals, such as 

that presented by Marinescu and Axinte in [91]. The authors developed a monitoring system 

for the milling process which used time-frequency approaches on an AE sensor signal. The 

sensor features were shown to indicate missing or damaged cutting edges on an indexable 

end mill. It was not clear whether these techniques offered any advantage over time or 

frequency domain data alone. 

The Wavelet Transform 

The wavelet transform has also been classed as time-scale analysis. Like the Fourier 

transform, wavelets can be classed as continuous or discrete.  

Discrete wavelet transforms have been used for machining process monitoring applications, 

where the magnitude of wavelet coefficients in a specified frequency band have been used 

as signal features. 

Li et al. [92] used the discrete wavelet transform for tool breakage monitoring in the drilling 

of steel. The system successfully detected drill breakage using AE and spindle power sensor 

data. The wavelet transform features were not compared to alternative time or frequency 

domain features, so it could not be concluded whether there was an advantage to applying 

this technique. 

Cyclostationarity 

A cyclic function is one where the function itself changes with respect to time. E.g. Fn(x), 

where n is the cyclic order of the function. A periodic function is one where the function 

generates a signal which contains oscillations, e.g. 𝑓(𝑡) = 𝑓(𝑡 + 𝜏), ∀𝜏, where τ is the period. 

The use of cyclostationary signal processing techniques allows signal features to take into 

account random effects produced periodically with the rotation of the system being 

monitored. The outputs of the various methods found in the literature allow the angular 

position and frequency content of periodic transient signals to be determined. Detailed 

reviews of analysing cyclostationary signals have been published by Antoni [98], [99]. 
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Lamraoui [100] applies time domain, frequency domain and time-frequency domain (in this 

case, the STFT) analysis to accelerometer measurements from a milling process. The results 

are then compared to cyclostationary analysis techniques. Four different cyclostationary 

methods were covered; Wigner-Ville, spectral correlation, cyclic autocorrelation function 

and instantaneous autocorrelation function. Both chatter vibration and tool wear conditions 

were tested when full slotting an aluminium work piece with two and three flute solid 

carbide milling tools. Whilst the signal processing theory was comprehensive, it was not clear 

that the cyclostationary analysis provided any advantage, either in terms of computational 

cost or reliability, when compared to more familiar techniques such as time and frequency 

domain feature extraction. 

Time Synchronous Averaging 

Time Synchronous Averaging (TSA) is a signal processing technique commonly used when 

monitoring rotating machinery, such as gearboxes. The method allows periodic waveforms 

to be extracted from noisy data. The review paper by Bechhoefer and Kingsley [101] 

describes six methods of TSA and tests them on an accelerometer signal for fault detection 

in a gearbox. No application of TSA for machining process monitoring could be found. 

Spectral Kurtosis  

A method for using spectral kurtosis of vibration signals for fault detection in rotating 

machinery is presented by Antoni and Randall [102]. Both fault detection and fault 

identification methods were proposed. A faulty condition is shown to be detectable without 

the need for historical or non-faulty measurement data. The difference of the dB-spectrum 

from the vibration signal of non-faulty and faulty condition is comparable to the spectral 

kurtosis of the faulty signal on its own. The technique is reliant on the noise signal being 

Gaussian, therefore having a spectral kurtosis close to zero. 
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2.3.4 Feature Selection and Reduction 

Feature selection and reduction can be applied to extracted features from raw sensor data 

in order to reduce the data set in size and dimensionality and to contain only the information 

of interest. The number of extracted features can be significant, which can add complexity 

to subsequent data fusion, pattern processing, pattern recognition or decision making 

algorithms. Feature selection and feature reduction techniques are therefore used to reduce 

the extracted data set, retain data that contains useful information and remove data that is 

redundant or has little value. The complexity of subsequent computations is then reduced. 

Furthermore, the number of sensors required in the system may also be reduced. 

Feature Selection  

Feature selection is the method of selecting an optimal subset of the given signal features 

without further transformation of the data. The selection is made in order to optimise a 

function, such as the classification accuracy of a subsequent decision-making algorithm. 

Several techniques are available in order to determine which features contain the most 

information and which have high redundancy. There are normally two methods for feature 

selection; filter methods and wrapper methods [103]. Filter methods use general 

characteristics of the features to evaluate whether they are useful without involving any 

subsequent learning algorithm. Wrapper methods use the performance of a chosen learning 

algorithm to determine the optimum feature subset. Whilst wrapper methods can lead to an 

improved output from the learning algorithm, they can be significantly slower to run. 

Machining process monitoring literature has used relatively simple filter methods for feature 

selection, such as the correlation-based feature selection (CFS) used by Cho et al. [93], where 

possible subsets are given a ‘Merit’ which ranks their overall value. The heuristic scoring 

method is shown by Equation (7). Features with high correlation to a class (which may be 

time in cut or tool wear, for example) increase the Merit, whilst mutual correlations between 

other features in the subset reduce the Merit. The authors also concluded that the CFS 

method provided an improved feature set compared to an alternative Chi-squared statistics-

based feature selection. It is also noted that some full feature sets (such as spindle power) 

outperform the reduced set for classification accuracy, showing that the Merit ranking is not 

an optimum selection. 
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Merit =

𝑘r𝑐𝑓̅̅ ̅̅

√𝑘 + 𝑘(𝑘 − 1)r𝑓𝑓̅̅ ̅̅
 

(7) 

 

Where k is the number of features in the subset, r𝑓𝑓 is the mean feature-feature correlation 

and r𝑓𝑐 is the mean feature-class correlation 

Jemielniak [96] ranked features suitable for monitoring remaining tool life by first applying a 

low pass filter to each feature data set, then measuring how well the original feature data 

approximates the filtered data using the coefficient of determination (R-squared). Many 

assumptions have been made in selecting this approach. The filtered data has been chosen 

to represent the true model “to avoid any uncertain suppositions about the mathematical 

formula of this model”. The feature is deemed as useful when the coefficient of 

determination between the filtered data and the original sensor data is greater than an 

arbitrary value of 0.4. The author has not explained how the delay caused by using a filter 

has been dealt with. 

Whilst these two methods discussed can rank the features most suitable for tracking a 

particular variable over time, they may overlook features containing information relating to 

either transient events or other variables not correlated against. The feature selection 

method must therefore be considerate of the monitoring system objective(s), whilst still 

being practical enough that feature subsets can be selected without extensive computation. 

Once a function that defines the value of any feature or feature set is derived, a search for 

the feature subset that optimises this function is required. Given the large number of sensor 

signal features available in machining monitoring systems, searching for an optimum subset 

by testing all possible subsets is impractical due to the significant number of subset 

combinations and therefore the large computational expense. Greedy hill-climbing 

algorithms, such as that used by Cho et al. [93], provide an efficient alternative, though the 

method does not consider interactions between features.  

It is also possible to select a feature set based on theoretical or practical engineering 

knowledge. A potential difficulty in deriving feature subsets from knowledge of the physical 

system is that the underlying physical effects for issues such as tool wear and chip formation 

are complex. Furthermore, the transmission of data from the source to the sensor, 

particularly for vibration and AE, has an impact on the signal noise. Jemielniak [96] stated 
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that “it is impossible to predict which sensor signal features will be useful in any particular 

case”. Though this is rather pessimistic and arguably untrue, it emphasises that there is the 

impression that the physical mechanisms that lead to sensor signal generation are complex 

and not well understood. An understanding of the physical system has been important in 

chatter detection algorithms, such as process damping theory [94], therefore it may be worth 

pursuing for condition monitoring applications. No research was found to compare practical 

based feature selection with model based selection in this field. 

Feature Reduction 

Feature reduction is the method of reducing the dimensionality of a multi-feature 

(multivariate) data set. It is sometimes referred to as feature transformation. Possibly the 

most popular of these techniques is principal component analysis (PCA). PCA is used for 

mapping the variance of multivariate data into a reduced set of principle components, 

disregarding the dimensions in the original data set that contain the least variance. This also 

provides a valuable tool for visualising multivariate data sets in 2 or 3-dimensional space. 

Typically, a subset of features can be chosen using feature selection techniques, followed by 

reducing dimensionality further with feature reduction. 

2.4 Decision Making from Data 

Once monitoring data has been sensed and processed, it can be used for decision-making, 

typically in the form of detection, diagnosis or prognosis. These three functions have been 

discussed in the hypothesis in section 1.2. Their definitions are covered in more detail in this 

section including the discussion of the relevant literature.  

There are a significant number of approaches to machine learning that can incorporate 

regression, classification and probabilistic based computation. The following section 

summarises applications of a number of methods in reviewed literature. Previous text can 

be referred to which expand on the range of techniques available, such as Worden et al. 

[119]. 
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2.4.1 Fault Detection, Diagnosis and Prognosis 

Detection 

The detection of a fault is the first important requirement of a monitoring system. A system 

must identify whether a process is operating outside of a defined specification, regardless of 

the cause or fault type. Fault detection is essentially a two-state classification problem to 

determine whether a process state is normal or faulty.  

A suitable set of sensors, signal features and computations for fault detection may not be 

the same as those for fault diagnosis or prognosis. There may be multiple faults, some of 

which may not be understood, may be poorly described by existing data or may be unknown. 

A means of being able to detect any of these fault types, without false alarms, is required 

from a fault detection system. 

Diagnosis 

Diagnosis is more specific and insightful than detection. Not only must the fault be reliably 

detected, but the fault type or cause must also be specified. This is usually achieved by 

association, either using data-driven models trained to recognise each type of known fault, 

or by logic derived from theoretical and practical knowledge about the nature of each fault. 

According to the Institute of Diagnostic Engineers, it is the science of “determining the 

existence of a problem in a machine, plant, system or structure and/or appraising the 

cause(s) of a failure which may have taken place and/or assessing the condition or 

vulnerability of such machine, plant, system or structure either during use or while under 

development”.  

Prognosis 

Prognosis most commonly refers to the prediction of how long a process, in its current state, 

will continue before a fault occurs. ISO13381-1 [104] defines prognosis as “the estimation of 

time to failure and risk for one or more existing and future failure modes”. The only 

application of prognosis found in the machining process monitoring literature is that of 

remaining useful life prediction of a cutting tool. 
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The ability to manage faults using intelligent systems is desirable in a range of industries. 

Venkatasuubramanian et al. [105] explain that in process and chemical engineering, fault 

detection and diagnosis is central to abnormal event management (AEM). The authors define 

a fault as a departure from an acceptable range of observed variables, and that the root 

cause, malfunction or failure is the event which led to the process departing from this 

acceptable range. Several desirable characteristics of a fault management system are listed: 

1. Quick detection and diagnosis 

2. Ability to distinguish between different failures 

3. Robustness to noise and uncertainties 

4. Ability to detect whether the cause is a known malfunction or a novelty 

5. Classification error estimate / confidence 

6. Adaptable to processes changing 

7. Explanation on how a fault originated and propagated to the current state 

8. Minimal modelling, computation and storage efforts 

9. Multiple fault identification 

In SHM, the different levels of competence for fault (damage) assessment have been 

described by Rytter [82]. Cross [83] refined the descriptions to the following: 

• Level 1; Detection – automatic detection of damage to the system 

• Level 2; Localisation – automatic determination of where damage has occurred in 

the system 

• Level 3; Quantification – automatic assessment of damage type and severity 

• Level 4; Prognosis – prediction of the remaining useful life in the structure or 

component 

2.4.2 Monitoring System Framework 

The framework by which data is managed, processed and applied to improve a data fusion 

problem has been studied. A number of data fusion models are presented by Shahbazian 

[80]. One of which is the Omnibus model, originally proposed by Bedworth and O’Brien [84] 

and shown in Figure 2-14. 
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Figure 2-14: Omnibus model proposed by Bedworth and O’Brien [84]  

An established data fusion model developed by the Joint Directors of Laboratories, known as 

the JDL model, has also been widely used, particularly in military applications [85]. The model 

is still flexible to multiple data fusion applications. The model differentiates itself from 

others, such as the Omnibus model, by the fact that the various levels of data fusion are not 

necessarily sequential or hierarchical. Different levels of signal and feature processing can be 

applied in each of the levels of data processing. 

There is little reference to these models in machining process monitoring literature, though 

data fusion is a common aspect of the systems described. The waterfall model, presented 

earlier in Figure 2-2, is most appropriate for this thesis, given that the extraction of 

information from sensor signals, in a manner that provides robustness and flexibility, is 

essential to deliver the hypothesis.  

The point at which data is fused is a consideration when defining a monitoring system. 

Typically, this will be at the data level, feature level or decision level. The vast majority of 

machining research applies feature level data fusion. Figure 2-15 presents an arbitrary sensor 

fusion tree. Whilst sensors 1 and 2 are fused at the signal level, then fused with sensor 3 at 

a feature level, pattern recognition steps are applied to sensor 4 before fusion takes place. 
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Figure 2-15: Arbitrary Sensor Fusion Tree [119] 

Three different forms of learning have been described by Cherkassky and Mulier [88] as: 

• Classification - The association of a class, state or condition with a set or vector of 

measured quantities 

• Regression - The construction of a map between a group of continuous input 

variables and a continuous output variable 

• Density estimation/probabilistic - The estimation of probability density functions 

from samples of measured data 

2.4.3 Classification 

Classification methods often offer the least computationally expensive approach for health 

monitoring problems. For example, it is the obvious choice for fault detection where the 

system must determine if the process is normal or faulty. Similarly, in SHM, classification is 

typically used where the objective is to determine whether a structure is damaged or 

undamaged. Classification may be for the detection of one of two states (normal, faulty) or 

there may be multiple classes (normal A, normal B, fault A, fault B, fault C…). 
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Neural Network and Support Vector Machine Classification 

Segreto et al. [87] applied a multi sensor fusion system to tool wear assessment in finish 

turning of Inconel 718 alloy. A tri-axial accelerometer, an AE sensor with RMS signal 

conditioning and a three-component lathe dynamometer were used for the monitoring 

setup. Sampling rates were limited with 3kS/sec, 10kS/sec and 10kS/sec sampling rate 

respectively. Four signal features were selected for each sensor and three neural networks 

were configured for different sensor combinations; (i) Force and AE, (ii) Acceleration and AE, 

and (iii) Force, Acceleration and AE. It is concluded that fusing all sensors improves the 

system performance, however, the issue of dynamometer data not being available in 

production is not addressed and the performance of single sensor system is not given. The 

classification success rates are shown in Table 2-4, listed in order of their performance. 

Table 2-4: Classification Accuracy reported by Segreto et al. [87] 

Row 
Number 

Force Vibration AE % Accuracy 

1 ✓ ✓ ✓ 98.9 

2  ✓ ✓ 87.8 

3 ✓  ✓ 88.3 

4 ✓ ✓  Not reported 

5 ✓   Not reported 

6  ✓  Not reported 

7   ✓ Not reported 

Ghosh et al. [77] used a neural network approach to fuse features from multiple sensors for 

tool condition monitoring in a milling process. The authors gave a poor explanation of feature 

selection and fusion methods, and the performance of the final system was not quantifiable. 

Cho et al. [93] designed a multi-sensor based monitoring system for a milling process that 

investigated both feature-level and decision-level fusion. A combination of correlation-based 

feature selection and machine learning algorithms were used to classify tool wear state as 

shown in Figure 2-16. The system was trained using flank wear width measurements. The 

multi-sensor system was comprised of 8 sensor signals; a three-component dynamometer, a 

three-axis accelerometer, an AE sensor and a spindle power sensor. A total of 68 possible 
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features were extracted in the time domain and a further 67 in the frequency domain. The 

spindle power sensor did not include any frequency domain features. Two feature selection 

methods were employed to reduce the large feature list to below 25 features. Both feature-

level and decision-level fusions were used. A majority vote role was used for decision-level 

fusion; however, the results showed there was no advantage from combining multiple sensor 

classifications at a decision level, with single sensor force data providing the most reliable 

classification result of approximately 90% accuracy. The majority rule is a relatively basic 

classification technique and better results may be possible with probability-based decision 

fusion such as the evidential reasoning approach presented by Yaxin et al. [95]. 

 

Figure 2-16: Feature level and decision level fusion 

 for tool condition monitoring [93] 

It is also uncertain whether there was any advantage of a multi-sensor system, used by Cho 

et al., when using feature-level fusion. The results of the correlation-based feature selection 

method using a machine learning ensemble for classification, which were found to be the 

most accurate methods, are summarised in Table 2-5, listed in order of their performance. 

Clearly the force sensor is critical to the accuracy achieved, with the vibration sensor the 

second most influential. It is interesting to see that force, AE and spindle power sensors 

combined, provide the greatest accuracy (row 1), whereas the AE and spindle power sensors 

combined provide the least accuracy (row 12). The degree of accuracy improvement should 
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also be quantified; without the force sensor, rows 7, 9 and 10 have just 2% difference in 

performance which is less than the classification % errors.  

The performance of vibration, AE and spindle power single sensor classification is not 

reported, otherwise, the paper is a thorough investigation into common sensor 

combinations. The results could have been improved if the sensor signal feature types were 

also evaluated and ranked. It is not clear whether the choice of sensor signal features has 

significant effect on the system, and furthermore, whether there is a need for numerous 

features to be extracted. 

Table 2-5: Classification Accuracy reported by Cho et al. [93] 

Row 
Number 

Force Vibration AE 
Spindle 
Power 

% Accuracy % Error 

1 ✓  ✓ ✓ 97.67 1.39 

2 ✓ ✓ ✓ ✓ 97.28 1.7 

3 ✓ ✓   96.22 2.23 

4 ✓ ✓  ✓ 95.82 1.91 

5 ✓  ✓ ✓ 94.27 2.19 

6 ✓  ✓  92.81 2.7 

7  ✓ ✓ ✓ 91.58 2.53 

8 ✓    90 Not reported 

9  ✓  ✓ 89.63 2.27 

10  ✓ ✓  89.57 2.43 

11 ✓   ✓ 88.85 2.7 

12   ✓ ✓ 71.08 2.34 

13  ✓   Not reported 

14   ✓  Not reported 

15    ✓ Not reported 

 

Liu et al. [123] split tool wear into five classes depending on the wear stage, as shown in 

Figure 2-17, although this assumed that the primary wear mechanism was uniform abrasive 

wear measured by the flank wear width. A neural network was trained to recognise each 

class based on experimental training data and achieved mean classification error of 8%. 
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Figure 2-17: Wear classes; 1. initial 2. slight 3. moderate 4. severe 5. worn [123] 

Abu-Mahfouz [124], divides each wear mechanism of a drill by five classes; 1. chisel, 2. crater, 

3. flank, 4. edge and 5. corner wear. A neural network was trained from drilling data in each 

of the 5 classes to recognise the wear class. However, there was no discussion of any physical 

meaning of the sensor signal features in the paper. Given the limited number of tests (4 

different tests for training and 2 for validation), it is uncertain if the system would perform 

in a different machining setup or with different process parameters. Physical interpretation 

of the sensor data and its relationship to the wear mechanism would provide more 

confidence in the data-driven model. 

Dimla et al. [125] select six classes of wear for a milling tool; 1. nominally sharp (low flank, 

low nose), 2. high flank wear, 3. high nose wear, 4. chipped/fractured nose, 5. high flank and 

high nose, 6. high flank, high nose and fractured or chipped.  Training data was used to 

populate a neural network for a specific operating condition, though the capability of the 

network to operate on unfamiliar cutting processes was not discussed. In particular, it was 

noted that the prediction was still accurate for a different grade of cutting insert, although 

this was only the case for predicting severe wear. It is generally accepted that the detection 

of severe wear is easily measurable in such a process and is used frequently in industry. It 

was also noted that the system deteriorated significantly when changes were made to depth 

of cut and feed rates. 
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Fuzzy Classification 

A Takagi-Sugeno fuzzy model used for decision level sensor fusion was presented by 

Aliustaoglu et al. [42]. In this example three sensors are used - force, a microphone and an 

accelerometer. A first stage fuzzy model obtains a membership function for each sensor 

individually by assessing 4 sensor signal features (mean, standard deviation, RMS and 

maximum). This is a feature level data fusion step. The decision level data fusion then follows 

- the outputs of the first model are entered into a second fuzzy system combining the three 

sensors predictions from the first model. This model then classifies the tool wear state as 

sharp, workable or dull. Some issues are observed in this method, including the apparent 

normalisation of the sensor signal data to between 0 and 1; a step that will require additional 

training data and one which will be fundamental to the performance of the system. 

Uncommon classifications terms were stated as sharp, workable and dull. However, there is 

no discussion of the wear magnitude or wear mechanism. The evidence for requiring 

application of such sensor fusion techniques to machining is not clear as no comparison is 

made to alternative techniques, such as linear regression or simply setting scalar thresholds 

on feature magnitudes. 

Morgan et al. [41] implemented a fuzzy classification system in order to troubleshoot faults 

occurring in a milling process. The system allowed common issues such as chatter, material 

condition, tool run-out and machinability variation to be managed effectively with a machine 

operator’s guidance and, in some cases, autonomously. 

Other Classification Examples 

A potential issue with the multi-class approach is that each tool, process or material type 

may result in different class definitions, resulting in extensive training data requirements 

when trying to apply a common method to a range of machining processes. 

In order to improve the performance and flexibility of tool wear classification, different tool 

wear mechanisms and wear patterns and their relationship to sensor signals must be better 

understood. Consistent, well-defined classes of a tool’s wear state across the research 

community would be a great benefit, allowing comparison to be made between different 

published results. 
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A good example where attempts have been made to link specific cutting process faults to 

sensor signal effects is given by Marinescu and Axinte 2009 [91], where the authors attempt 

to detect the condition of individual flutes on an indexable end mill. The entry and exit of 

individual teeth can be identified from the AE sensor signals for a single tooth engaged at a 

time. There was some evidence that this could also be achieved for up to 3 flutes engaged at 

one time. However, the research did not manage to isolate single tooth failures from the 

sensor signals and focussed mainly on a specific small number of AE sensor signal features in 

the frequency domain. The same author then applied a real-time controller to the issue of a 

single damaged flute to allow the feed rate to be reduced during a single flute pass then 

returned to normal for the non-worn teeth [31]. An automated solution was presented for a 

two-flute indexable tool. However, a particularly slow tooth passing frequency (TPF) was 

used of almost 0.1 seconds between tooth passes, meaning the controller only requires good 

performance at low frequencies. The example does not describe the systems’ dynamic 

response; therefore this frequency limitation of the control system cannot be identified. 

Shao et al. [48] investigated the possibility of classifying a 4-flute indexable milling tool as 

new, one tooth broken and two teeth broken, using frequency domain content of the spindle 

power signal. The results presented were inconclusive. Some evidence showed that the 

difference between the two failures could be detected from the signal processing technique 

applied. However, it was concluded that this was only tested for severe tool damage and it 

is therefore arguably far from the sensitivity requirement to detect tool condition prior to 

sever failure. Furthermore, the experiment applied a particularly low TPF of less than 5Hz. 

TPFs of above 50Hz are more common, and have been found to be outside of the band width 

of power measurement. 

Siddhpura [126] discusses methods of flank wear width prediction in turning and presents all 

previous work as classification problems without mention of regression or probabilistic 

methods. The author lists the available classification methods as neural networks, fuzzy logic, 

neuro-fuzzy, hidden Markov models and support vector machines. No direct probabilistic 

methods are discussed. 

Most of the classification approaches discussed attempt to classify a tool wear state, 

assuming that the tool wear states can be defined. Due to the complex nature of tool wear, 

however, these states cannot be defined easily, and in production environments it is not 
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practical to obtain tool wear status. If class definitions are not known or training data is 

unavailable for a monitoring system, these supervised learning algorithms would be 

unsuitable. All classification methods reviewed required training data to define classes. 

2.4.4 Regression 

Regression is concerned with the prediction of continuous quantities. It is a field that has 

been applied extensively in condition monitoring and predictive maintenance; however, only 

a few publications have been found where regression is used in metal cutting monitoring 

systems. 

Jemielniak et al. [96] developed a tool condition monitoring system for turning that 

estimates the proportion of a tool’s life that has been consumed. Force, accelerometer and 

acoustic emission sensors were used and 582 features were obtained initially from 6 sensors. 

The features were down-selected based on their correlation to tools’ time in cut, resulting in 

a selection of 62 features. The model estimate of a tools consumed life was also ranked using 

correlation (root-mean-square estimate, RMSE) to the true remaining useful life. The result 

of different sensor combinations is presented in Table 2-6, listed in order of their 

performance. Clearly, the force data provides the most useful information; the performance 

is diminished when combining with the other sensors. The combination of vibration and AE 

data (row 3) improves the RMSE value by only a small amount when compared to these 

sensors individually (rows 4 and 5). Should the computation time of the RMSE be a 

constraint, a faster alternative, such as median absolute deviation, could be considered. 

Table 2-6: Classification Accuracy reported by Jemielniak et al. [96] 

Row No. Force Vibration AE RSME 

1 ✓   8.7 

2 ✓ ✓ ✓ 10.3 

3  ✓ ✓ 12.5 

4  ✓  13.4 

5   ✓ 14.4 

6 ✓ ✓  Not reported 

7 ✓  ✓ Not reported 
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Remaining Useful Life 

A common function of condition monitoring systems is the ability to estimate both the 

current state of a system and its future degradation. A useful parameter in prognostics is the 

remaining useful life (RUL) of a system. This is the estimated time for the system to go from 

its current state to its end of useful life. It is important to assess RUL for asset management 

across the engineering disciplines as this impacts the planning of maintenance, replacement 

part delivery, operational performance and use of an asset’s full useful life before 

replacement or repair takes place. 

The remaining useful life of a product is a variable which depends upon the current age, the 

operating environment, the observations over its current use and the quality and integrity of 

the product at the start of its life. 

Si et al. [107] review probabilistic data-driven approaches to RUL estimation. Two methods 

are defined; those which use recorded failure data, and those which use Condition 

Monitoring (CM) data. The latter is typically where assets cannot be run to failure or where 

this data is sparse. Where CM data is concerned, the author identifies that the choice of RUL 

model and failure threshold will be dependent on whether this data is direct or indirect 

monitoring data. It is also noted that very few studies have been carried out into combining 

physics-based models with data-driven models. The paper focuses on probabilistic methods, 

as it states that probability density functions (PDF) of the RUL of a product are essential for 

risk analysis and decision making. 

Zaidan et al. [108] developed a degradation model for civil aircraft gas turbine engines. The 

‘normalized turbine gas temperature margin’ was used as the single measure of the aircraft 

engine health over time. Previous data were combined with live data from the aircraft to 

estimate the degradation model, from which the failure time distribution and remaining 

useful life of the engine was estimated. The end of life was defined by the point at which the 

normalized turbine gas temperature margin reached a threshold value. A Bayesian 

framework was used, shown in Figure 2-18. This approach provides a rigorous framework to 

predicting remaining life of a system, however there are some limitations that would need 

to be addressed to apply this approach to the monitoring problem presented in this thesis. 

Firstly, the degradation model is linear which is not representative of many systems in 
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machining such as tool wear. Secondly, the input is a single pre-defined variable that is not 

derived within the paper. The derivation of this scalar input and the failure threshold value 

are critical constraints to the overall system performance. Multiple sensor signal features 

may be available to improve the performance of the system and the derivation of the failure 

point would ideally be derived from physical process knowledge or models. 

 

Figure 2-18: Bayesian framework proposed by Zaidan et al. [108] 

Tobon-Mekjia et al. [106] presented a diagnostic and prognostic system using dynamic 

Bayesian networks. A database of previous laboratory data on tool life is used in conjunction 

with live data to determine both the current condition of the tool and its remaining useful 

life. Both estimations are provided with confidence values. Extensive previous tool sensor 

and tool wear measurement data were required to train the data-driven system. The author 

explains that analytical models and experience data was not used due to the complexity of 

degradation phenomena. 

2.4.5 Unsupervised Learning 

Farrar and Worden [89] explain that if “training data comes from multiple classes and the 

labels for the data are known, the problem is one of supervised learning. If the training data 

do not have class labels, one can only attempt to learn intrinsic relationships within the data 

and this is called unsupervised learning”.  
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In the absence of class labels, a 2-class classifier can still be formed which can separate 

normal data with faulty data. This technique is novelty detection (it has also been referred 

to as anomaly or outlier detection). It is surprising to see such little discussion of 

unsupervised learning in machining process monitoring literature. In fact, there is only a very 

brief mention of it in the highly-sited review paper by Teti et al. [19] referencing a computer 

science text book from 1989 [110]. The review paper by Liang et al. [29] has no discussion of 

unsupervised learning at all, nor have the review papers by O’Donnell et al. [54] or Bryne et 

al. [27]. Each of these review papers, however, do highlight the issue that training data is 

expensive and presents a challenge to production application, therefore it is surely 

appropriate to investigate learning algorithms that overcome the need for much or all of this 

training data. 

Sick [109] provides a more rigorous review of both supervised and unsupervised neural 

networks for tool wear monitoring in turning. The author explains that unsupervised network 

paradigms are used for classification tasks only, as opposed the estimation of a continuous 

quantity. Tool wear measurements and cutting experiments are said to be costly and make 

unsupervised training an interesting approach. It is proposed that an unsupervised approach 

will only work if classes are easy to separate, yet with no explanation the author states that 

“it is hard to believe that unsupervised paradigms can be successfully used in a monitoring 

system which is designed for practical applicability”. 

Silva et al. [111] apply a self-organizing map (SOM) to sensor data in order to predict flank 

wear width. The results show a good correlation between the SOM prediction and the true 

FWW; however, it is unclear how this prediction can be made without some training from 

measured tool wear data. The paper concludes that for a TCM application in turning, 

unsupervised algorithms may perform significantly better than supervised ones. This is 

inconsistent with the view from pattern recognition experts such as Bishop [90], who states 

that “methods based on unsupervised techniques take no account of the target data, and 

can therefore give results which are substantially less than optimal”. It should be noted that 

Bishop also states that “in practice dimensionality reduction by unsupervised techniques can 

prove useful in many applications”.  

Burke [112] uses both supervised and unsupervised neural networks to monitoring the wear 

on a cutting tool. Tool wear data is required in order to select appropriate features from an 
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optimisation function. This required 15 new tool measurements and 15 worn tool 

measurements, therefore the system, as a whole, already demands what are considered 

expensive measurements for training, regardless of the subsequent neural network chosen. 

Furthermore, the author requires tool wear class labels in order to evaluate the results. 

Jammu et al. [113] use an unsupervised neural network as a 2-class classifier for tool 

breakage detection in turning. Only normal cutting condition data was required to train the 

network and no response data was needed, such as tool wear measurements. All tool 

breakage cases were noted to be very severe, where more than a third of the insert was lost. 

Whilst the unsupervised learning approach was interesting, tool breakage detection systems 

are commercially available and adequately detect relatively minor tool breakage events with 

basic limit setting methods. The neural network method presented is therefore not suitable 

for the experiment chosen.  

A relatively small number of unsupervised learning techniques have been applied to 

machining. A handful of further publications including Dimla et al. [114], Ko et al. [115], Li et 

al. [116] and Niu et al. [117], provide similar findings to those discussed above. 

2.5 Literature Review Summary 

The literature review has covered many aspects of machining process monitoring systems. A 

brief summary of the key outcomes from the literature review are listed below. 

The review has shown that an extensive body of previous literature has been published in 

the area of sensor based monitoring of machining processes. Several previous authors have 

identified the implementation challenges of the systems studied and highlight that the 

integration of sensing into a production machine is a challenge. Authors have also highlighted 

that there is no common approach to the design choices of a sensing system, such as the 

sensor types and specifications, the signal processing steps and the machine learning 

algorithms.  

Sensor types have been summarised and the common selection of vibration, spindle power 

and acoustic emission sensors are practical for production implementation, whilst force and 

temperature sensors are not currently feasible in most production systems. 
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Feature extraction, selection and reduction algorithms are not in themselves novel in the 

machining literature, and many common machine learning algorithms have also been 

employed. However, the limited applied research using unsupervised learning algorithms is 

noted. 

For further reading on the application of machine learning techniques, particularly to SHM 

applications, see the texts by Farrar and Worden [89] and Bishop [90]. 
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3 MONITORING SYSTEM DESIGN CONSIDERATIONS 

The previous chapter identified that there are implementation challenges preventing 

exploitation of monitoring systems research. It was highlighted that there is no common 

approach to solving monitoring system problems for machining applications. Issues such as 

training time or false alarms from current systems make the cost of implementing production 

solutions prohibitive. The production challenges and opportunities should therefore be 

reviewed. 

This chapter explores a number of design considerations when defining a monitoring system 

for application to a machining process. A Process Failure Mode Effect Analysis (PFMEA) was 

carried out to identify the functional requirements of the system. Some of the design 

hierarchies were then considered, followed by a look at a key software design choice in the 

selection of supervised or unsupervised learning algorithms. A more specific look at the 

practical requirements and limitations for tool condition monitoring is discussed at the end 

of this chapter. 

3.1 Process Failure Mode and Effect Analysis 

The first step in understanding the need for a monitoring system for a machining process is 

to consider what is missing from current processes. For this study, existing machining 

processes have been interrogated to determine the failures that have occurred, the causes 

of these failures, the effects from the occurrence and the detection methods currently in 

use. Established PFMEA methods have been used to obtain this data. 

A significant amount of recent process monitoring literature aims to identify root causes of 

process variations to allow the manufacturing process to be adaptable and autonomous and 

to allow failure events to be predictable ahead of time. An investigation into the relationships 

between key process variables, observable events and failures is therefore appropriate. 

Dey and Stori [40] state that the most notable root causes of machining process variations 

are workpiece hardness, stock size and tool wear variations, though there is no specific root 

cause analysis. The system developed in the paper measures acoustic emission and spindle 
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power sensor signals collected from sequential machining operations that include drilling 

and face milling. A Bayesian network approach attempts to differentiate between tool wear, 

workpiece stock or workpiece hardness variation. The applicability of this approach is 

limited; it does not consider the wide range of process variables and their interactions and 

therefore it may not be robust when operating under different conditions. 

A more thorough root cause analysis was completed by Alaeddini and Dogan [120], where a 

Bayesian network is used for fault diagnosis from statistical control chart data. The network 

attempts to relate 22 statistics from the process and 5 control chart patterns to one of 7 

assignable causes. 

Lewis and Ransing [121] introduced a defect / meta-cause / root cause relationship diagram, 

which formed the backbone of the Bayesian network. This directed network was constructed 

to determine the probable root causes and meta-causes from a given defect. The same 

authors applied this approach to a casting process in [122], where some 30 defects, 38 meta-

causes and 112 root causes were included in the network. 

The flexibility and accuracy of a diagnostic network such as those described will 

fundamentally depend upon the quality of data that can be measured from the process. If 

the data does not contain any information that allows one to distinguish between faults, the 

fault identification system is redundant. The task of generating the causal relationships is still 

an important prerequisite to ensure the complexity of the process is understood. 

3.1.1 PFMEA Results and Analysis 

A PFMEA was carried out as part of the problem formulation, engaging industry experts to 

identify common machining process issues.  

Machining processes are continuously being developed and improved in industry, though in 

all cases, uncertainty in the input variables can result in the occurrence of process failures. 

In a production environment, such occurrences lead to conservative operating conditions 

being selected, additional manual intervention times and in many cases the need for re-work 

or scrap. 
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The full PFMEA data is included in Appendix A. The first aspect of the PFMEA is to form the 

process steps. These are listed in Table 3-1. The single step of ‘Run Milling Process’ is 

investigated further. All other steps are available in the Appendix. 

Table 3-1: PFMEA Process Steps 

Number Description 

10 Assemble tool 

20 Load tool 

30 Assemble fixture 

40 Load Fixture 

50 Align fixture 

60 Load part 

70 Clamp part 

80 Load program 

90 Run turning program 

100 Run drilling program 

110 Run milling program 

 

From the ‘Run milling program’ step, 18 different failure modes and 25 different causes were 

identified, which resulted in 87 different failure mode and effect combinations. 

As an example of the data gathered, the potential causes of tool breakage are listed in Table 

3-2, along with current process controls and associated scores for severity of occurrence 

(SEV), frequency of occurrence (OCC), effectiveness of detection method (DET) and finally 

the risk priority number (RPN = SEV*OCC*DET). 
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Table 3-2: PFMEA for tool breakage 
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Once the data is gathered on the process, the application of it in pursuit of a robust 

monitoring and control system requires further interrogation. In order to effectively apply 

PFMEA to the machining problem presented in this thesis, the definition of failure mode and 

failure cause are examined. Standard definitions generally specify the following: 

Failure Mode: Specific way in which the process can fail 

Failure Cause: The root cause of the failure mode 

Effect of Failure: The way in which the failure mode affects the process downstream 

The definition of root cause can be subjective. Judgement is required to identify where the 

initiation of a fault should be defined for the PFMEA to be useful. The term ‘meta-cause’ has 

therefore been applied in this study in order to capture events that follow the root cause and 

precede the failure. An example is shown in Figure 3-1. This also demonstrates the multiple 

failure modes that can have a common cause, and multiple causes can reach the same failure 

mode. The failure mode has been highlighted in the figure as a worn tool condition. The root 

cause has not been selected. 

 

Figure 3-1: Failure cause and failure mode example 

For the purpose of this research, the following criteria will be applied to the standard 

definitions: 

• A failure mode must be the first measurable event that confirms the process is no 

longer achieving requirements. 

• An effect of the failure is any observable event that follows as a result of the failure 

mode. 
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• A root cause is the first observable physical change to any key process variables that 

leads to the failure. 

• A meta-cause is any intermediate effect between the root cause and the failure. 

In the case of tool breakage, this is an effect that follows a measurable worn tool condition, 

but it is a failure mode where a tool has sudden failure without the usual tool wear 

progression. There are many root causes that could lead to tool wear or breakage. The 

number of meta-causes is vast, growing in number as the desired resolution to technical 

details increases. 

The usual PFMEA approach in table form cannot present these complex relationships; 

therefore, a directed acyclic graph (DAG) has been constructed from the PFMEA data with 

consideration to the definitions above. Some of the items in the PFMEA that gave a low risk 

priority number (RPN) have been removed to rationalise the graph to those of most 

importance. The result of the study is shown in Figure 3-2. 

 

Figure 3-2: DAG relating root causes, meta-causes and failure modes 
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Each failure mode shown in Figure 3-2 can lead to common effects, including surface finish 

and surface integrity damage, increase in tooling costs, manual intervention and machine 

down time. Clearly the ideal scenario is to be able to detect the root causes and take 

corrective action early on, though there are practical limitations to this. In some cases, these 

variables are not easily measurable, such as the machinability of a material supply. It is 

particularly challenging to predict the impact of variation to these input variables, such as 

tool length accuracy, part positioning accuracy and coolant or filter replacement frequency. 

3.2 A Common Design Framework 

The complexity of machining processes leads to most publications addressing just one or two 

of the cutting process methods, key process variables, available sensors and computational 

techniques. It is impractical to test the systems on a full range of scenarios and processes 

due to the sheer number of combinations; however, the expert community has not 

established a common methodology for manufacturers to follow to apply process monitoring 

and control in production. 

Papers referenced in this thesis that present a new method in process monitoring can be 

summarised through the 8 considerations listed in Table 3-3. It has been observed that most 

papers omit at least one of the considerations and very few combine all aspects into a single 

system or test. Whilst it may be pragmatic to look at one key area in the system during early 

stage research, the absence of a holistic view of the system may be an indication to why 

there has been limited uptake by industry. 
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Table 3-3: Considerations for an intelligent monitoring system study 

1. What is the target machining process? 

Drilling, Milling, Turning, Grinding, Broaching, Water Jet. 

2. Which process variables motivate the system? 

Tool Condition, Surface Finish, Machinability, Workpiece Geometry, Dynamic Stiffness, 

Static Stiffness, Coolant Application, Cutting Tool Design or Selection, Machine Tool or 

Fixture, Chip Management/Geometry, Non-specific / Root Cause Analysis. 

3. What measurements will be taken? 

Force, Power, Torque, Vibration (≈0-20kHz), Vibration (≈20k-100kHz), Audible Acoustics 

(≈0-20kHz), Acoustic Emission (≈20k-1MHz), Cutting Temperature, 

Ambient/Workpiece/Machine Temperature, Vision Systems, Statistical Process Data. 

4. How will the signals be processed? 

Time Domain and Statistical, Frequency Domain, Time-Frequency Approach. 

5. How will the useful signal features be determined? 

Correlation, Entropy/Energy Functions, Segmentation (though process understanding), 

Follow Previous Publication. 

6. What computational methods will be used? 

Classification, Regression, Neural Network, Bayesian, Fuzzy logic, Hidden Markov Model, 

Support Vector Machine, Other. 

7. What will be computed? 

Tool Wear, Remaining Tool Life, Tool Breakage / Tool Failure, Depth of Cut, 

Machinability/Hardness, Workpiece Geometry, other Specific Process Characteristic 

8. How will the cutting process be controlled or rectified? 

Real Time Feed Rate Control, Scheduled Feed Rate Control, Real Time Spindle Speed 

Control, Scheduled Spindle Speed Control, Tool Change, Manual Intervention. 

 

It is useful to compare the SHM based framework described by Cross [83] to machine tool 

applications: 

• Level 1 (Detection) – automatic detection of fault occurrence 

• Level 2 (Classification) – automatic determination of which fault has occurred 

• Level 3 (Quantification) – automatic assessment of faults impact on the process 
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• Level 4 (Prognosis) – prediction of the remaining time until a fault will occur 

Given the significant quantity of academic research in manufacturing process monitoring, 

yet the limited exploitation, it is proposed that an important advancement that must be 

made in future is a commonly accepted methodology to monitoring system design and test. 

A design hierarchy for machining process monitoring and control systems is proposed in 

Figure 3-3. 

 

Figure 3-3: Monitoring and control system design hierarchy with context 

Fault detection is always the first step in a monitoring system and it may be appropriate to 

immediately intervene or stop the process to avoid any further costs or damage to occur. 

Should adequate information be available, fault diagnosis or prognosis may be possible. 

These steps are the principle of ‘intelligent’ monitoring, whereby the process does not simply 

stop at the occurrence of a fault, but provides further information to the operator or 

machine. In some cases, a corrective action may be identified automatically without manual 

intervention or process down time.  

The computational technique for detection, diagnosis and prognosis often differ. In fact, the 

computations may be specific for different faults. For example, where a vibration magnitude 
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threshold is exceeded and frequency domain analysis examines evidence of chatter 

vibration: 

- A faulty condition is identified due to an unacceptable vibration magnitude 

(detection) 

- The feed rate is held immediately to avoid part damage (intervention) 

- A chatter diagnosis module compares the X-axis vibration peak frequency magnitude 

to a threshold value in order to determine the presence of chatter (diagnosis) 

- A new spindle speed is selected for the process to continue (corrective action) 

Figure 3-4 presents a simplified flow for this fault and also a worn tool fault example. 

 

Figure 3-4: Example fault detection and diagnosis scenarios 

The example demonstrates that faults can have specific methods for detection, diagnosis 

and corrective action. Often, these methods will be relatively simple and derived from 

practical experience. Given this, an understanding of the individual fault types and the 

solutions to rectify the process is essential when designing a monitoring and control system. 
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3.3 Supervised or Unsupervised Learning? 

With the majority of previous literature applying supervised learning methods, class labels 

must be measured during the training of the machine learning algorithm. Class labels for 

machining processes may include tool wear, surface roughness, part geometry and multiple 

process fault types.  

The extensive range of challenges raise questions over how viable the measurement of labels 

and subsequent training of supervised learning models may be in a production environment. 

Silva et al. [111] state that unsupervised techniques would be an advantage in TCM due to 

the expense of collecting training data; however, supervised learning techniques dominate 

machining process monitoring literature. Table 3-4 lists a short selection of research papers 

that apply supervised learning. The class labels and the measurement method for these 

labels are also listed. 

Table 3-4: Supervised Learning Methods Found in Literature 

Reference (first author and title) Learning Method Class Labels 

[42] Aliustaoglu 
 "Tool wear condition monitoring 
using a sensor fusion model based on 
fuzzy inference system" 

Supervised: Sugeno 
Fuzzy Model 

Sharp, Workable, Dull 
(Manual inspection of 
the cutting tool) 

[60] Abouelatta 
"Surface roughness prediction based 
on cutting parameters and tool 
vibrations in turning operations" 

Supervised: 
Regression Model 

Surface roughness 
(Manual inspection of 
the machined surface) 

[77] Ghosh 
"Estimation of tool wear during CNC 
milling using neural network-based 
sensor fusion" 

Supervised: Neural 
Network 

Flank wear width 
(Manual inspection of 
the cutting tool) 

[87] Segreto 
"Multiple Sensor Monitoring in Nickel 
Alloy Turning for Tool Wear 
Assessment via Sensor Fusion"  

Supervised: Neural 
Network 

Flank wear width 
(Manual inspection of 
the cutting tool) 

[118] Özel 
"Predictive modeling of surface 
roughness and tool wear in hard 
turning using regression and neural 
networks" 

Supervised: Neural 
Network 

Flank wear width and 
surface roughness 
(Manual inspection of 
the cutting tool and 
machined surface) 

[123] Liu 
"Intelligent classification and 
measurement of drill wear." 

Supervised: Neural 
Network 

Flank wear width 
(Manual inspection of 
the cutting tool) 
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There are a number of challenges in collecting class labels from machining processes, for 

example: 

- The labels may be time consuming or costly to define and measure. For example, 

microscopes, surface measurement equipment and skilled users are typically 

required for tool or surface measurement. 

- The labels may require the machining process to stop for long periods that are not 

feasible alongside production flow. 

- The labels may only be possible to collect accurately under specific machining 

conditions, for example tool wear such as built up edge obscures flank wear width 

measurement and surface roughness may be difficult to measure on difficult to 

access features. 

- The labels may be redundant when any change is made to the machining process 

and therefore new training data would be required on a regular basis. 

- Where the label is the occurrence of a fault, the fault must have occurred at least 

once during the training phase. It is not desirable to run a process to failure due to 

the potential costs; therefore this data is rarely available. 

Previous application of unsupervised learning for machining process monitoring has been 

reviewed in Chapter 2, though there are still many areas to explore. Given the challenges 

associated with collecting class labels, as listed above, this thesis will focus on unsupervised 

learning methods.  

3.4 Practical Requirements for Tool Condition Monitoring 

The majority of machining process monitoring research is focused on the requirement to 

monitor tool condition during machining; therefore, this section will investigate this further. 

Firstly, the meaning of tool condition monitoring and its purpose should be discussed. 

A tool condition monitoring system should be able to provide one or both of the following 

functions: 
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(i) The ability to detect when a tool has surpassed its useful life, with a minimum 

time delay between the point at which the tool’s useful life expired and its 

removal from the process. (Detection) 

(ii) The ability to predict when a tool is going to surpass its useful life with sufficient 

notice to allow a tool change to be carried out prior to end of life. (Prognosis) 

The business need for a tool condition monitoring system for a production process can be 

captured by quantifiable measures on how the system will;  

(a) Reduce instances of tools being used beyond their useful life. 

(b) Consume more of the useful life of a tool before a tool change, without adversely 

affecting part quality or process time. 

A tool condition monitoring and control system may have additional functionality, such as: 

(1) The ability to determine tool wear mechanisms (Diagnosis), leading to; 

(2) The ability to select process parameters which extend the useful life of the tool. 

(Control) 

Given that research in this area is extensive, spanning over three decades, it is somewhat 

surprising that no common method has been followed for a tool condition monitoring system 

and research approaches have been vastly different. A standard and accepted method by 

which any tool condition monitoring system can be assessed against measurable 

performance metrics would be a great help for future research in the area. 

Tool change times are generally programmed into machining processes, allowing the tool 

change to be at a suitable frequency, based on a given tool life criteria, and at a safe point in 

the machining tool path. Tool change times are generally conservative, especially for high 

value manufacturing where there is a high impact if a tool fails during its use. A means of 

measuring the lost opportunity in a current production process is important for comparison 

purposes. Figure 3-5 shows a hypothetical normal distribution representing the possible tool 

life for a process. Note that the tool change points are necessary for the majority of 

production processes, for example, in drilling it may be a practical requirement to drill a 

complete hole and not change during this task. In this case, the opportunity to increase tool 

life will be reduced by this resolution. 
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Figure 3-5: Tool condition monitoring opportunity 

A popular method in industry is to consider the ‘spiral cut length’ (SCL) for finish turning 

tools, whereby the tool may pass over a particular distance before it is likely to be worn. Tool 

life that was previously expressed in minutes, hours or number of features, can be expressed 

independently of surface speed and feed rate using the SCL criteria. This may be a good 

indication of tool life, but given surface speed and feed rate influence wear mechanism and 

rates, it is unlikely the SCL estimate is precise for a wide range of cutting parameters. 

There are many criteria that can be used to define a tool’s end of life, such as flank wear 

width, notch wear, crater wear, volumetric difference, temperature, force, surface finish and 

surface integrity; therefore, if defining wear state classes, their transferability to other 

processes is important. For example, it may be that in a machining process for a single 

component, several tools are defined as worn from different criteria. A roughing tool may be 

considered worn when it has reached large levels of force that cause chatter, a finishing tool 

may be worn when the surface integrity is no longer within specification, and other tooling 

(such as “ripper” geometry end mills) may be considered worn based on a re-grind 

specification. 

3.5 Design Considerations Summary 

This chapter has explored several design considerations for a monitoring system for 

machining applications. From a PFMEA and further consideration of implementation 

challenges, a number of choices can be made that allow an experimental method to be 

defined. The key outcomes of this are listed as follows: 
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• The key failure modes and causes that this research should consider are summarised 

from the PFMEA in section 3.1 

• A list of 8 key design questions presented in section 3.2 will allow the monitoring 

methods to be chosen 

• Unsupervised learning methods will be used given the benefits of not defining or 

collecting class labels, as described in section 3.3 

• The business case for a tool condition monitoring system must be met as described 

in section 3.4 
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4 EXPERIMENTAL METHOD 

In light of the conclusions presented in sections 2.5 and 3.5, an experimental method was 

designed to monitor sensor signals from a machining process in order to detect faulty 

conditions and diagnose fault types. The hardware design, presented later in this chapter, 

was selected to ensure good coverage of signals emitted from the machining process whilst 

remaining minimally intrusive in a production scenario. The software was developed in both 

LabView, for the data acquisition and feature extraction, and Matlab, for all subsequent 

analysis steps. Further information on the software can be found in Appendix D. 

4.1 Selection of Fault Types for Testing  

The PFMEA in section 3.1.1 listed the potential failures and causes that a process should be 

resilient to. The investigation in this earlier section showed that there can be many failure 

modes and many interactions between causes and meta-causes. All items shown in the DAG 

in Figure 3-2 have been grouped into six types of fault class; wear, load, machining offsets, 

tool malfunction, chip formation and dynamics. These have been listed in Table 4-1. 

Direct measurement systems are appropriate for the detection of many sources of variation 

listed. This includes tool run-out, tool pull out, tool breakage, tool length error, part 

positioning error, workpiece stock, coolant flow rate and coolant integrity. These variables 

are typically measured using on-machine cutting tool and part probing systems or coolant 

management and filtration systems that can be found in production today. Fault detection 

can then be achieved using traditional statistical process control methods. 

There has been extensive research and industrial applications of dynamic stiffness testing 

and chatter detection. Milling chatter avoidance systems are now common in industry and 

so these sources of variation will be omitted from the experiment. 

The automatic measurement of cutting temperature, chip evacuation and chip geometry is 

not yet viable in production due to issues with sensing, such as line of sight requirements. 

Whilst the effects of these sources of variation may be inferred from other indirect sensors, 

these sources of variation can be difficult to control and will be omitted from the experiment. 
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Section 4.2 will present the design and build of an indirect sensing system that is sensitive to 

changes in the remaining sources of variation, highlighted in bold in the table; tool wear rate, 

tool in worn condition, material supply, material machinability, depth of cut, excess stock 

and cutting force.  
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Table 4-1: Sources of Process Variation 

Fault Class 
Source of 
Variation 

Description 

1. Wear 

Tool Wear Rate 
This meta-cause is influenced by most changes 

 that can be made to cutting conditions 

Tool in Worn 
Condition 

This failure occurs the first instant a tool  
that is classed as worn is used 

2. Load 

Material Supply 
This is a root cause that includes machinability and 

geometry variation 

Material 
Machinability 

This meta-cause, a product of the material supply, is 
influenced by hardness, grains size and Young’s modulus 

Depth of Cut 
This meta-cause can be a product of multiple causes, 

including tool length, stock material and part positioning 

Excess Stock 
Material 

This meta-cause is a result of workpiece geometry 
variation in the form of depth and uniformity of cut 

Cutting Force 
This meta-cause can be simulated and measured in the 

lab, but is difficult to measure directly in production 

3.  Machining 
Offsets 

Tool Length Error 
This root cause may be due to inaccuracy on a tool 
measurement device, or incorrect tool offset call 

Part Positioning 
Error 

This root cause may be due to part loading, machine tool 
positioning or coordinate system setting 

4. Tool 
Malfunction 

Tool Run Out 
The tool run out can impact on surface finish 
 and tool wear in certain finishing operations 

Tool Breakage 
A failure has occurred when the tool receives damage that 

is not a product of wear  

Tool Pull-Out 
A failure mode has occurred when the tool holder  

cannot maintain grip on the tool 

5. Chip 
Formation 

Cutting 
Temperature 

This meta-cause is central to machining,  
but is not possible to measure directly in production 

Coolant Integrity 
This root cause may include changes to concentration, 

chemistry and filtration 

Coolant Flow 
Rate 

This root cause has a direct impact on cooling 
 and may include coolant jet obstruction 

Swarf Collected 
This failure has occurred when the swarf has collected to 

the degree that it is obstructing the cutting edge 

Chip Evacuation 
This meta-cause leads to collection of swarf 

 and is usually feature specific 

6. Dynamics 

Chatter 
This failure has occurred once chatter  

has an impact on the machined surface 

Stiffness of Setup 
This root cause exists where components, such as tool or 

fixture, are insufficiently stiff for the operation 
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4.2 Design and Build of a Sensing System 

The selection of a measurement system is required in order to capture process data that 

indicate a fault. In order to avoid disruption and intervention, and to be consistent with the 

reviewed literature, an indirect sensing system will be used in this research. Vibration, 

acoustic emission, spindle power and microphone sensors have shown to be suitable for 

monitoring the condition of a machining process without being intrusive. 

The design and build of a robust sensing set up that would be feasible in a range of industry 

settings was important to ensure methods developed were transferable. Sensors could not 

be installed within the spindle due to access limitations in the machine tool; therefore, the 

design was to embed vibration and acoustic emission sensors in the work holding. In addition 

to this enclosure, two microphones were placed in the machine volume and a power 

transducer was used for spindle power measurement. The result was a portable multi-sensor 

platform that was minimally intrusive to a machining process, but still able to capture a range 

of signals from the cutting process. 

The sensor enclosure is shown in Figure 4-1 and the fully dimensioned drawing is shown in 

Figure 4-2. The enclosure was milled on a 3-axis milling machine from a rigid stainless steel 

plate of 450x450x46mm external dimensions once machined. The plate has 4 M12 clearance 

holes to attach to the machine bed and 18 M12 attachment holes to allow workpieces to be 

held in place. All electronics are located inside the cavity with 3 sensors making direct contact 

with the workpiece; the AE sensor, a current transducer for measuring the 

proximity/presence of the located component and a spring loaded thermocouple to take an 

approximate reading of the workpiece temperature. A tri-axial accelerometer and a single 

axis high frequency accelerometer are contained in the cavity. 
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Figure 4-1: Sensor Enclosure  
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Figure 4-2: Sensor Enclosure Dimensioned Drawing 
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A microphone unit is also placed in the machine volume using a magnetic base. This 

enclosure contains two microphones of different frequency response characteristics and is 

shown in Figure 4-3. The microphones are directed towards the workpiece at approximately 

2 metres’ distance. 

   

Figure 4-3: Microphone unit 

All sensor cables are connected to the data acquisition unit shown in Figure 4-4, where a 

National Instruments compact data acquisition module (DAq) converts the signals to digital 

form. The acoustic emission sensor requires a pre-amplifier prior to connection to the DAq.  

The machining setup with a titanium work piece loaded can be seen in Figure 4-5. A summary 

of the sensor properties is shown in Table 4-2. 

  

Figure 4-4: Data acquisition unit 
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Figure 4-5: Machining setup 

Table 4-2: Sensor Summary 

Sensor Description and 
Manufacturer 

Short 
Name 

Location Bandwidth Sensitivity 

Tri-Axial Accelerometer  
(PCB, 604B31) 

XV, YV, 
ZV 

Fixture 
(X, Y and Z) 

0.5-5000Hz 
100mV/g 

(+/- 50g scale) 

High Freq. Accelerometer 
(PCB, 352A60) 

HF 
Fixture 
(Z only) 

5-60kHz 
10mV/g 

(+/- 500g scale) 

Acoustic Emission 
(Physical Acoustics, R15/S) 

AE 
Fixture 

(mating workpiece) 
50k-400kHz 

Peak, Ref V/(m/s), 
69dB 

Microphone 1  
(PCB, 377B02) 

M1 
Machine Volume 

(free-field) 
5-10kHz (1dB) 

3.15-20kHz (2dB) 
50mV/Pa 

Microphone 2  
(PCB, 377C01) 

M2 
Machine Volume 

(free-field) 
6-12.5kHz (1dB) 

4-80kHz(2dB) 
2mV/Pa 

Thermocouple 
(Nanmac, B9-1-K) 

T 
Fixture 

(mating workpiece) 
N/A 

41μV/°C 
(max 230°C) 

Proximity Sensor 
(LORD, NC-DVRT-2.5) 

D 
Fixture 

(mating workpiece) 
Max 800Hz 0.25mm/V 

3-Phase Power Transducer 

(Load Controls, PPC-3) SP 
Electrical Cabinet 
(spindle motor) 

0-50Hz 
0.3kW/V 

(Max 3kW) 
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(Although the high frequency accelerometer is measuring in the z-direction, to avoid 

ambiguity, the accelerometer signals will be referred to as ‘x-accelerometer’ (604B31), ‘y-

accelerometer’ (604B31), ‘z-accelerometer’ (604B31) and ‘high frequency accelerometer’ 

(352A60)). 

The literature review identified that cutting processes exhibit signals from lower frequencies, 

such as structural vibrations, through to ultrasonic frequencies relating to the chip 

mechanics. Sensors have been selected to cover as wide a range of frequencies as possible. 

Figure 4-6 shows the sensor bandwidths on a logarithmic scale, where all frequencies 

between 0.5 and 400 kHz are covered by at least one sensor.  

  

Figure 4-6: Bandwidth of Selected Sensors 

4.3 Experimental Setup 

The proposed experiment enables multi-sensor data to be captured in a milling process, 

where the sensing is minimally intrusive. A 3-axis finish profile milling process for titanium 

6Al-4V was selected as this is a common application in high value manufacturing. The 

experiment included two tests; one for each of the two fault classes of wear and load.  

A final case study experiment has been obtained from previous literature. This experiment 

allows the methods proposed and tested on experiment 1 and 2 data to be validated on an 

additional data set with different machining conditions. Each experiment is described in 

more detail below. 
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4.3.1 Experiment 1: Tool Wear Test 

Tool wear is an important indicator in cutting processes and has previously been measured 

in laboratories by examining wear mechanisms and wear rates under a microscope. An 

unsupervised monitoring system will be demonstrated in this research; therefore, the 

experiment will run all cutting tests with minimal stopping of the process for the direct 

inspection of tool or workpiece. 

This experiment will carry out repeat profile mill cuts stepping across into the workpiece 

(perpendicular to the feed direction) after each cut. The test will begin with a new tool and 

continue until the tool is considered severely worn by the machine operator’s judgement. 

The experimental parameters are listed in Table 4-3. 

Table 4-3: Experimental Constants – Tool Wear Test 

Parameter Value 

Machine Tool Mori Seiki NMV8000 5-axis Mill Turn 

Work Piece Material Titanium 6AL-4V 

Tool Holder Hydraulic grip BT50 (392.369HMD-50 32 110) 

Cutting Tool 3 flute, 16mm diameter carbide end mill (1P330-1600-XA 1620) 

Tool Stick Out 55mm (tool length to gauge point 165mm) 

Tool Path  Straight cut profile milling 

Axial Depth of Cut 8mm 

Radial Depth of Cut 0.5mm 

Surface Speed 80m/min 

Rotations per Minute 1592 RPM 

Feed per Tooth 0.18mm/tooth 

Feed per Minute 859mm/min 

Tooth Passing Frequency 79.6Hz 

Coolant Coolant off 
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Coolant will not be used in this trial given that it substantially increases the life of the cutting 

tool, and therefore the cost of the experiment. Practical limitations mean that it is necessary 

to preserve material and ensure all preparation and cutting tests can be completed in the 

short time available on the machine tool. A number of microscope images will be taken 

during the experiment to confirm the wear mechanism; however more extensive tool wear 

measurements will not be available. 

A cross section of the chip (normal to the tool axis) produced from the listed cutting 

parameters is shown in Figure 4-7. Note that the time for the tooth to pass over the 2.9mm 

distance is approximately 2.2 milliseconds. When considering helix of 45 degrees and 8 mm 

axial depth of cut, a single flute pass continues for another quarter of a revolution of the 

tool. The total time for each flute pass can therefore be calculated to be just below 12 

milliseconds. 

 

Figure 4-7: 2D cross section of chip thickness 

The tool and work piece in mid cut are shown in Figure 4-8 
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Figure 4-8: Tool and workpiece during cutting trial 

 

4.3.2 Experiment 2: Depth of Cut Test 

A number of parameters are linked to cutting tool loads, including depth of cut and 

machinability. This test will introduce variation in the radial depth of cut for a new cutting 

tool. The data from this cutting condition will be used as an example fault condition. 

Changes to the tool load that are not a product of tool wear may lead to issues such as 

increased wear rate, chatter and poor surface finish. Whilst tool load can be detected using 

spindle power, small changes to tool load, that are not simply a result of the current tool 

wear state, may be more challenging to identify. 

This experiment will use the same conditions as the first, however radial depth of cut will be 

altered and an unworn tool will be used for all tests. Four cuts will be taken using a radial 

depth of cut of 0.25, 0.75, 1.0 and 1.25mm. Each of these examples will be used as fault 

conditions in the analysis section. 
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4.3.3 Experiment 3: Published Case Study Data 

The Prognostics Health Monitoring (PHM) Society made a set of milling tool wear sensor data 

available for the PHM challenge 2010. These data have been used as a case study in this 

thesis in order to demonstrate that the methods derived in the analysis are easily 

transferable to other experimental conditions. Further information is available at 

https://www.phmsociety.org/competition/phm/10S. 

The data set comprises of 6 tool life experiments where a three-flute ball nose end mill 

profile milled an angled face of a HRC52 stainless steel plate. Cutting parameters of 

10400RPM, 1555mm/min, 0.125mm radial depth and 0.2mm axial depth were used and a 

total of 315 cuts each 108mm in length were taken with each tool. The cutters flank wear 

width was provided after each cut for 3 of the 6 tools used. During machining, a three-

channel dynamometer (Fx, Fy, Fz), a three-channel accelerometer (Vx, Vy, Vz) and an RMS 

filtered signal from an AE sensor were measured at 50kS/sec. Full details on the experimental 

setup are provided at the PHM Society website and in an associated conference paper by Li 

et al. [129]. 

4.3.4 Experiments Summary 

Table 4-4 provides a brief summary of the proposed experiments and their purpose in the 

context of the aims of this research. 

  

https://www.phmsociety.org/competition/phm/10S
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Table 4-4: Summary of three experiments 

 Experiment 1 Experiment 2 Experiment 3 

Title Tool Wear Test Depth of Cut Test Tool Wear Test (Repeats)  

Process 
Type 

Finish Profile Milling Finish Profile Milling Finish Ball Nose Milling 

Summary 

Capture sensor signals 
over the course of a 

cutting tools life 

Capture sensor signals 
under variable depth of cut 

conditions 

Use published data to 
validate the results of the 

first 2 experiments 

Aim of 
Experiment 

To examine the sensor 
signals, define the signal 

segmentation and 
feature extraction steps, 
carry out feature subset 
selection and develop a 
novelty/fault detection 

method 

To use the optimum feature 
subsets that have been 

selected through 
experiment 1, demonstrate 

the novelty detection 
method works under 
varying depth of cut 

conditions. Develop a fault 
diagnosis method to 

distinguish between wear 
and depth of cut faults 

To use repeat data on the 
feature selection, novelty 

detection and fault 
diagnosis methods 

developed in experiments 
1 and 2. Evaluate how this 
performs for repeat test 

data for different 
machining conditions 
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5 FEATURE SELECTION AND ASSESSMENT 

This chapter presents the analysis of data collected from experiment 1, as described in 

Chapter 4. Section 5.1 examines the results and sensor signals from the experiment, 

evaluating the content of the data in the time and frequency domain for each sensor type. 

Section 5.2 investigates segmentation and feature types from each signal in order to provide 

a reduced data set of extracted features to go on to feature selection steps. Section 5.3 

evaluates methods of feature selection and chooses several options of reduced feature 

subsets. The following chapter then applies the feature subsets for fault detection using a 

novelty detection method.  

Figure 5-1 summarises the content of this chapter. Three main themes for driving the feature 

selection method are listed; a continuous fault signal, a transient fault signal and the ability 

to separate data into multiple classes or fault types. 

 

Figure 5-1: Summary of feature selection and assessment topics 
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5.1 Examination of Sensor Signals 

In this section, the results of the two experiments are explained and the first cut taken in 

Experiment 1 is examined.  

Both Experiment 1 and Experiment 2 began with a new tool. The shank of the tool was 

measured using a dial test indicator (step size 0.002mm) to have a run out of approximately 

0.005mm in both cases. The workpiece surface was previously machined using another new 

tool of the same type with the same cutting parameters that was replaced after every 100 

cuts. The length of each cut for both experiments was 131mm, equating to 9.2 seconds in 

cut at the given cutting feed and surface speed. 

The cutting tool was intermittently inspected using an ISM-PM200SB USB microscope, 

suitable for rapid measurement on or beside the machine tool. Preliminary trials 

demonstrated that the presence of built up edge made non-intrusive and accurate notch and 

flank wear measurement impossible, therefore the lower cost microscope that would allow 

on-machine tool measurement was deemed adequate for these experiments.  

The tool could immediately see small signs of wear after the first cut in experiment 1, with 

marks on the flank face of the tool and built up edge chips attached to the rake face. The tool 

image for the 2nd flute after one cut is shown in Figure 5-2. 

 

Figure 5-2: A single cutting flute from experiment 1 showing wear effect after 

cuts (a) 3, (b) 110 and (c) 240. 
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The time domain data for each sensor is presented in Figure 5-3 through to Figure 5-8. The 

raw signals are shown in the blue plots, the RMS of the signals (RMS calculated from raw 

signal at 100 samples per second) are shown in the green plots and the raw signal zoomed 

in to show one tool revolution is shown in the separate orange plots (also labelled in the 

figures). 

 

Figure 5-3: Signal for first cut (Tri-Axial Accelerometer) 

 

The signal from the Tri-axial accelerometer, shown in Figure 5-3, provides a significant 

change on entering and exiting cut, making it suitable for identifying where to segment 

signals. The y-axis direction shows the highest magnitude and the RMS plot emphasis the 

drop-in signal magnitude to the centre of the cut in each of the three directions. When 

zooming into a plot of a single revolution of the tools, shown in Figure 5-4, each flute pass is 

clear and it is apparent that the magnitude at each flute pass is not constant.  
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Figure 5-4: Signals for one revolution (Tri-Axial Accelerometer) 

 

Figure 5-5 shows the high frequency vibration sensor data, which is aligned to the z-direction, 

as well as the two microphone signals. It is clear that the crisp signal from the vibration 

sensors, that shows when the tool enters and exits the cut, is not the same in the microphone 

signal. The lower resolution of the microphone signal is again seen in Figure 5-6, where the 

entry and exit of each flute is unclear, though the tooth passing frequency is present in the 

form of a sine wave. This wave appears slightly out of phase with the vibration data. The high 

frequency vibration signal increases quickly in magnitude towards the end of the cut. 



Feature Selection and Assessment 90 

 

 

 

Figure 5-5: Signals for first cut (Microphones and High Freq. Accel.) 

 

Figure 5-6: Signals for one revolution (Microphones and High Freq. Accel.) 
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Figure 5-7 shows the AE and spindle power signals. The AE has a similar definition to the 

vibration signals, showing clearly when the tool enters and exits cut. There is a rise in AE 

magnitude near to the exit of the cut. The spindle power data shows a large amount of 

signal noise; however, this is largely eliminated in the RMS signal, suggesting this is a higher 

frequency noise that the RMS calculation of 100HZ. A lag is seen in the entry to cut in the 

spindle power signal, possibly a result of the lag in the electric circuit and the Hall Effect 

sensor used. Looking at the zoomed data for one revolution in Figure 5-8, the AE flute 

passes are clearly seen, whereas there is no evidence of tooth passing frequency data in 

the power signal. 

 

 

Figure 5-7: Signals for first cut (AE and Spindle Power) 

 

Figure 5-8: Signals for one revolution (AE and Spindle Power) 
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Several initial observations can be summarised from the sensor signal data in the time 

domain: 

- The sensor data for X, Y and Z vibration using the standard three axis accelerometer 

appears to give similar data. Each signal drops in magnitude during cutting, 

increasing at the entry and exit regions of the cut. These sensors all clearly show the 

tooth passes with the signal settling to almost zero between each flute pass. 

- The high frequency accelerometer, obtaining data in the z direction, provides similar 

results to the other accelerometers. The signal again settles to almost zero between 

each flute pass. 

- The microphone data shows significantly more signal noise when not in cut, making 

it less clear precisely when the tool enters cut. The data shows the tooth passing 

frequency, but does not return to zero between flute passes and is out of phase with 

the accelerometer data. The entry and exit of each flute cannot be seen. 

- The acoustic emission data shows some reduction in magnitude during the centre of 

the cut with a rise on exit. The magnified data for one revolution clearly shows each 

flute pass and returns to zero between each. 

- The spindle power data shows significant signal noise both in and out of cut, though 

this is removed when converting to RMS. There is no evidence of tooth passing data 

in this signal. 

In order to assess the content of the signals in the frequency domain, a linear spectral density 

graph was calculated for each signal for the in-cut region (from approximately 1 second to 

10 seconds as seen on the previous graphs).  

All sensors showed the clear presence of the TPF at 79.6Hz other than the spindle power 

spectrum where no distinguishing features were present in the spectral data. The following 

frequency domain plots have chosen to use the linear magnitude, rather than the log 

magnitude, in order to show the dominance of the peak frequencies in the signals. The power 

spectrum for the Z-axis accelerometer is shown in Figure 5-9. The data in the bottom graph 

has then been filtered of the TPF and its harmonics, leaving only very low magnitude data. 

The next highest frequency is 500 times lower than the TPF magnitude. This is similar with X 

and Y axis accelerometer data and both microphones. 
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Figure 5-9: Power spectrum for Z-axis vibration with (top) 

 & without (bottom) TPF filter 

The high frequency accelerometer was sensitive to frequencies up to 60kHz; however, the 

data acquisition system allowed sampling frequencies up to only 102400 samples per second 

for this sensor. The power spectrum, shown in Figure 5-10, presents the frequency content 

of this sensor up to 50kHz. It can be seen that the data contains frequency content between 

17kHz and 45kHz, with a dominant frequency of 27,013Hz. From the reviewed literature 

(refer to section 2.2.5), this frequency range is likely to be a result of dislocation mechanics 

and micro-fractures in the tool and workpiece materials when in contact. They may also 

relate to chip segmentation frequencies.  

 

Figure 5-10: Power spectrum for high frequency Z-axis accelerometer with TPF 

filter 
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The acoustic emission sensor could be sampled at 1 million samples per second. This allowed 

frequency content up to 500kHz to be observed. However, there was little frequency content 

above 170kHz or below 20kHz within the signal for this cut. Figure 5-11 shows the power 

spectrum for the sensor signal in this range, with the majority of the content around the 40-

50kHz range and a dominant frequency of 45,158Hz. These frequencies may again relate to 

the potential causes noted above.  

 

Figure 5-11: Power spectrum for AE sensor from 20k – 170kHz 

5.2 Segmentation and Feature Extraction 

It is most common to extract features once for each cut taken in a machining process. In this 

study, the segmentation of data will be once per cut as shown by the segment in Figure 5-12.  

 

Figure 5-12: Example segmented sections of sensor signal 

The most common signal features found in the literature review are listed in Table 5-1. The 

frequency domain features have been applied to three spectra; (i) the complete spectrum as 

extracted from the raw data, (ii) the filtered spectrum with all TPF harmonics removed, and 

(iii) a clipped frequency band of the spectrum after TPF harmonics have been removed.  The 

TPF harmonics are removed between 0 and 5kHz, above which there was found to be further 

harmonics. The frequency band chosen is specific to each sensor and has been chosen based 

on the sensor’s specification and the presence of activity observed in the spectra; Vibration 
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and microphone, 10-5000Hz; high frequency vibration, 17k-45kHz; spindle power, 10-100Hz; 

AE, 30k-80kHz. 

The peak frequency from each power spectrum is also calculated. This data may be useful to 

detect changes in the state of the cutting process, such as a change to RPM or the onset of 

chatter vibration. However, it does not provide a meaningful correlation with time in cut so 

is not included in the R-squared calculations. 

Table 5-1: Sensor signal feature table (and short names for reference) 

 

Time Domain 
Signal 

Original 
Power 

Spectrum 

Filtered Power 
Spectrum1 

Band of 
Power 

Spectrum2 

TD FD FDf FDb 

Mean M B A, B , C A, B A, B , C 

RMS RMS A, B , C - - - 

Variance V A, B , C A, B , C A, B A, B , C 

Kurtosis K A, B , C A, B , C A, B A, B , C 

Skew S A, B , C A, B , C A, B A, B , C 

Peak to Peak 
(Range) 

Rng A, B , C - - - 

Crest Factor CF A, B , C - - - 

Peak (absolute) P A, B, C - - - 

TPF Magnitude TPF - A - - 

Peak 

Frequency 
PF A, B, C A, B, C A, B A, B, C 

A = all accelerometer and microphone signals, B = spindle power signal, C = AE signal 

 

                                                           

1 TPF Harmonics Filtered between 0-5000Hz 
2 TPF Harmonics Filtered between 0-5000Hz (other than AE) and clipped to select frequency band. 
Vibration and microphone; 10-5000Hz, high frequency vibration; 17k-45kHz, spindle power; 10-100Hz 
and AE; 30k-80kHz. 
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5.3 Feature Selection 

In order to select a feature subset, a method is required to determine the amount of 

information contained within each feature that supports the monitoring system objective. 

Once a function is derived that defines the value of any given feature subset, a search for the 

feature subset that optimises this function is required. 

Previous studies have measured information content of sensor features, as well as 

redundant information in multi-feature subsets, which have been detailed in the literature 

review. This section of the analysis will apply several different filter based feature selection 

methods using the data set from Experiment 1.  

Features that indicate changes in the process over a tool’s life are selected using a polynomial 

curve fitting method in section 5.3.1, building on previous work by authors that include Cho 

et al. [93] and Jemielniak [96]. The proposed method will use the correlation against time in 

cut, rather than a measured tool wear value, in keeping with the practical requirement to 

use no training data as stipulated in the hypothesis. 

In section 5.3.2, features are selected based on practical knowledge, in order to ensure 

transient events are reflected in the feature subset, as well as content that may relate to 

unknown faults. Again, no training data is required for this approach; however, an expert 

judgement on the signal content is required. 

Section 5.3.3 uses a classification algorithm to score feature subsets based on their ability to 

separate multivariate data from different classes. Expert opinion is required in order to 

define classes; however, again no supervised training data is necessary. 

5.3.1 Feature Selection for a Continuous Fault Signal 

The correlation between a sensor signal feature and the time in cut will be used as a measure 

of continuous signal content that provides information about the cutting conditions. All 

features are plotted against number of cuts and polynomial models are fit to each feature 

vector. The coefficient of determination (R-squared) of the resulting polynomial models will 

indicate whether these features are well described by the model. The onset of tool wear is 

generally not linear and may pass through several tool wear states before tool failure; 
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therefore, the polynomial model order has been tested from 1st to 5th order models. Whilst 

higher orders were considered initially, the analysis of models only up to a 5th order was 

chosen as the trends observed in signals were generally low frequency and could be 

approximated by basic models. Higher order and more complex models would have led to 

further analysis time. The time domain RMS signal for the Z-axis accelerometer will be used 

by way of example. 

In Figure 5-13 and Figure 5-14, the Z-axis vibration time domain RMS is shown to increase 

with time. Two polynomial models have been used to fit the data, a 1st-order and a 5th-order 

polynomial in the two figures respectively. The strong correlation between this sensor signal 

feature and the number of cuts indicates that the feature is sensitive to the changing cutting 

conditions with low signal noise. 

 

Figure 5-13: Z-axis RMS of vibration signal against number of cuts 

 with 1st order polynomial model 
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Figure 5-14: Z-axis RMS of vibration signal against number of cuts 

 with 5th order polynomial model 

Example Using Z-Axis Vibration Time Domain Features 

Figure 5-15 shows plots of all eight time domain features for the Z-axis accelerometer. The 

mean is not applicable for vibration data, given that the sensor is fixed and so its average 

displacement is zero. This is apparent in the plot as there is no correlation to number of cuts. 

The variance, however, shows a strong correlation, particularly for 3rd, 4th and 5th-order 

polynomial models. The R-squared results for each feature for this sensor are listed in Table 

5-2. 
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Figure 5-15: All time domain features for Z-axis vibration 
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Table 5-2: R-squared values for all time domain features 

Time Domain 

 1st Order 2nd Order 3rd Order 4th Order 5th Order 

Mean 0.0001 0.0003 0.0018 0.0037 0.0044 

RMS 0.9013 0.9755 0.9804 0.9874 0.9942 

Variance 0.8494 0.9712 0.9856 0.9929 0.9960 

Kurtosis 0.0841 0.4377 0.4412 0.8463 0.8551 

Skew 0.8957 0.9069 0.9460 0.9483 0.9491 

Peak-to-
Peak 

0.4694 0.4917 0.4931 0.6956 0.7023 

Crest Factor 0.1200 0.3008 0.3009 0.4786 0.4788 

Peak 0.4224 0.4380 0.4404 0.6328 0.6374 

 

The kurtosis has a strong model fit only for 4th and 5th order models, with a clear rise in 

magnitude during cuts 100-300. Despite having low correlation for low order models, this 

may give meaningful insight into the cutting process. For example, there may be an 

intermediate tool wear state during this period. 

Example Using Z-Axis Vibration Frequency Domain Features 

The features taken from the original power spectrum are shown in Figure 5-16. Spectral 

variance and TPF magnitude features are of particular interest, given they show a sharp rise 

initiated on cut number 267. This may indicate a sudden wear state transition such as a notch 

or chipping, therefore this event will be investigated further in section 5.3.2. Figure 5-17 and 

Figure 5-18 show the features taken from the filtered power spectrum and the band of power 

spectrum respectively. 
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Figure 5-16: Original power spectrum features for Z-axis vibration 
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Figure 5-17: Filtered power spectrum features for Z-axis vibration  

 

Figure 5-18: Band of power spectrum features for Z-axis vibration 
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A total of 151 features have been extracted from the 8 sensor signals. The following analysis 

will summarise the model fit data and pick out key observations. Additional data is included 

in Appendix B.  

Figure 5-19 shows the number of features by their R-squared value for each order of 

polynomial model. Only 1 feature has an R-squared value greater than 0.9 when using a 1st 

order model. This increases to 31 and 51 features for 2nd and 5th order models respectively. 

None of the 16 power sensor feature models exceeded an R-squared of 0.9 for any model 

order tested. 

 

Figure 5-19: Number of features for all sensors by R-squared value 

The highest R-squared achieved for 2nd order and all higher order models was the mean of 

the 10-5000Hz band of the filtered power spectrum for the Z-axis vibration data. This feature 

gave an R-squared value of 0.853, 0.992, 0.994, 0.996 and 0.997 for the 1st to 5th order models 

respectively. This feature and its 2nd order polynomial model are shown in Figure 5-20. 
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Figure 5-20: Mean of band of power spectrum for the Z-axis vibration data 

Some sensor signal features showed poor correlation with low order models, but gave a 

significant increase in R-squared value for higher order. Figure 5-21 shows the Z-axis kurtosis 

as an example of this.  

 

Figure 5-21: Z-axis vibration kurtosis with 5th order polynomial fit 
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Avoiding Over Fitting of the Polynomial Model 

Increasing the order of the polynomial model will generally increase the goodness of fit; 

however, it can also lead to over fitting. The appropriate order of the polynomial model 

should be selected with consideration to over fitting to the data. 

In order to account for over fitting, the data has been separated into training data and 

validation data in a conventional approach to mitigate overfitting. One hundred of the cuts 

have been randomly selected to create the testing data set, whilst all other cuts have been 

used to generate the model. The optimum model is then determined by the fit of the testing 

data set, measured using either the R-squared coefficient of determination or the root-

mean-squared-error (RMSE) value. 

The model with the best fit (or lowest RMSE) over the polynomial order from 1 to 5, is 

selected as the optimum model. 

It was found that the result gave small differences in optimum model order selection 

depending on the selection of the training and testing data sets, although 5th order models 

were most common. The box plot in Figure 5-22 presents the result of 60 runs using a 

different split of testing and training data. One hundred testing cuts are still used in each 

case. Whilst there is some variance in the selected model orders, the majority of the 151 

features favour 5th order models. 
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Figure 5-22: Box plot of optimum polynomial order 

The optimum polynomial model order has been selected by taking the most common order 

(mode) chosen over the 60 runs. These results comprise of 131 x 5thorder, 10 x 4th order, 2 x 

3rd order, 2 x 2nd order and 6 x 1st order features. They are listed in full in Appendix B. 

Continuous Fault Signal Subset Selection 

The model fit provides an individual ranking of each feature; however, the optimum feature 

subset should retain minimal redundancy within the subset. A method of finding a suitable 

feature subset was discussed in the literature review, where Cho et al. [93] ranked subsets 

by ‘Merit’ formula. The formula was not fully described in the paper; however, its application 

gave good results. A detailed explanation of an extended formula is described below. 

The formula for the Merit of any feature subset is shown in equation (8). 

 

 

Merit =
𝑘r𝑐𝑓̅̅ ̅̅

√𝑘 + 𝑘(𝑘 − 1)r𝑓𝑓̅̅ ̅̅
 (8) 

Where 𝑘 is the number of features in the subset, r𝑐𝑓̅̅ ̅̅  is the mean correlation between each 

feature and class, and r𝑓𝑓̅̅ ̅̅  is the mean correlation between any two features, averaged over 

each possible pair of features within the subset. 
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This formula has been extended further in this thesis to use the Pearson’s correlation 

coefficient as the measure of correlation between a feature and its chosen polynomial 

model; leading to the formula for r𝑐𝑓̅̅ ̅̅  shown in equation (9), where 𝑥 is the feature data and 

𝑦 is the polynomial estimate. The mean correlation is calculated for features from 1 to 𝑘. 

Each features’ data runs from 1 to 𝑛, where 𝑛 is the number of cuts taken. 

 

 

 r𝑐𝑓̅̅ ̅̅ ̅ =
1

𝑘
∑

∑ (𝑥𝑖𝑗 − 𝑥̅𝑗)(𝑦𝑖𝑗 − 𝑦̅𝑗)𝑛
𝑖=1

√∑ (𝑥𝑖𝑗 − 𝑥̅𝑗)
2𝑛

𝑖=1 √∑ (𝑦𝑖𝑗 − 𝑦̅𝑗)2𝑛
𝑖=1

𝑘

𝑗=1

 (9) 

The Pearson’s correlation coefficient has also been used to calculate r𝑓𝑓̅̅ ̅̅  using equation (10).  

 

 

 r𝑓𝑓̅̅ ̅̅ ̅ =
1

𝐶(𝑘, 2)
∑ 𝑎𝑏𝑠 (

∑ (𝑥𝑖𝑎 − 𝑥̅𝑎)(𝑥𝑖𝑏 − 𝑥̅𝑏)𝑛
𝑖=1

√∑ (𝑥𝑖𝑎 − 𝑥̅𝑎)2𝑛
𝑖=1 √∑ (𝑥𝑖𝑏 − 𝑥̅𝑏)2𝑛

𝑖=1

)

𝑎,𝑏

 (10) 

Where 𝐶(𝑘, 2) is the number of combinations of 2 features within subset size 𝑘. Each 

combination of feature pairs is described by 𝑎 and 𝑏, where 0 > 𝑎 > 𝑏. I.e. The coefficient 

for each possible feature pair combination is without repetition and is not inclusive of the 

correlation of each feature with itself (which would bias the data towards a correlation of 

+1).  

If a feature is negatively correlating with another, this can be considered an indication of 

mutual information to the same degree as a positive correlation; therefore the absolute 

value of the correlation has been taken. 

It is not always possible to test each possible subset due to the significant computational 

expense. There are (2^151 -1) possible subsets from 151 features. A greedy algorithm has 

been chosen in order to search for the optimum subset while reducing the number of tests, 

also termed sequential feature selection. Initially, the algorithm has been used by increasing 

subset size from a set of 1 through to a full subset of 151 features. 

The greedy algorithm adds one additional feature to the subset at a time and retains the 

feature which results in the maximum Merit. The process is repeated until no further 

increase in the Merit score can be achieved. In case of local optima the process is continued 

with the highest Merit available until a full set of 151 features is reached. The algorithm has 
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been used both in forward (increasing subset size from 1 to 151) and in reverse (decreasing 

subset size from 151 to 1). 

There are some limitations of sequential feature selection as the algorithm ranks the value 

of each single feature and does not look at interactions between multiple features. 

Figure 5-23 shows the Merit result plotted against subset size for both forward and reverse 

sequential feature selection. The first order polynomial models have been used in this 

instance. The optimum feature subset was found using forward sequential feature selection. 

This gave a subset of 18 features and a Merit of 0.997. It is also apparent that forward and 

reverse sequential feature selection methods give different subsets; Figure 5-24 shows the 

percentage of common features in these two results.  

 

Figure 5-23: Sequential Feature Selection; Subset Merit for 1st Order Models 
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Figure 5-24: % of common features for 1st order model 

 forward and reverse sequential feature selection 

The features selected in the optimum subset from the 1st order model data are shown in 

Figure 5-25, grouped into subplots of similar features. For ease of comparison, each feature 

has been normalised to have zero mean and unit variance. 
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Figure 5-25: Features contained within the optimal subset for 1st order models  

Figure 5-26 presents the same data for the optimum model order, selected by using training 

and testing data sets as described earlier. In this case, the optimum feature subset was found 

using reverse sequential feature selection. This gave a subset of 14 features and a Merit of 

1.482. The features differed considerably between the forward and reverse feature 

selection, as shown in Figure 5-27. 
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Figure 5-26: Sequential feature selection; subset merit for favoured model order 

 

Figure 5-27 - % of common features for favoured model order 

 forward and reverse sequential feature selection 

The features selected in the optimum subset from the favoured model order data are shown 

in Figure 5-28, grouped into subplots of similar features. The favoured model for all of these 

features was 5th order. 
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Figure 5-28: Features contained within the optimal subset 

 for favoured model order 

The features that make up the optimum subsets for the previous two examples are listed in 

Table 5-3. There are just three common features in each subset which are highlighted in bold.  



Feature Selection and Assessment 113 

 

 

 

Table 5-3: Feature subsets selected for alternative order polynomial models 

using the Merit function 

 1st Order Models Favoured Order Models 

1 Z Vibration Time Domain RMS HF Vibration Time Domain RMS 

2 Y Vibration Frequency Domain Skew Z Vibration Time Domain Kurtosis 

3 Spindle Power Time Domain Mean HF Vibration Frequency Domain Skew 

4 Y Vibration Frequency Domain Kurtosis AE Time Domain Kurtosis 

5 
Z Vibration Frequency Domain Mean 
Band 

X Vibration Frequency Domain Skew 
Filtered 

6 X Vibration Time Domain Kurtosis HF Vibration Time Domain Variance 

7 Z Vibration Time Domain Variance 
Spindle Power Frequency Domain 
Variance Band 

8 Y Vibration Time Domain RMS HF Vibration Frequency Domain Kurtosis 

9 X Vibration Sum TPF 
Spindle Power Frequency Domain Skew 
Band 

10 Y Vibration Sum TPF Y Vibration Time Domain Skew 

11 HF Vibration Sum TPF 
HF Vibration Frequency Domain 
Variance Filtered 

12 X Vibration Frequency Domain Kurtosis 
Mic1. Frequency Domain Variance 
Filtered 

13 Z Vibration Time Domain Range 
HF Vibration Frequency Domain Skew 
Filtered 

14 HF Vibration Time Domain Kurtosis Y Vibration Frequency Domain Kurtosis 

15 Y Vibration Time Domain Variance  

16 HF Vibration Frequency Domain Skew  

17 HF Vibration Time Domain RMS  

18 Mic.1 Time Domain Kurtosis  

  



Feature Selection and Assessment 114 

 

 

5.3.2 Feature Selection for a Transient Fault Signal 

The previous section evaluated features suitable for tracking changes in the sensor signals 

over the life of the tool. A number of sensor signal features have a good fit with low order 

polynomial models. The assumption for this approach is that the extracted fault signal is 

continuous, resulting in a permanent change in the sensor signals. Figure 5-29 illustrates the 

difference between transient and continuous fault signals. 

 

Figure 5-29: Example of Transient and Continuous Fault Signal 

Suppose that the chipping of a tool occurs; the features obtained from section 5.3.1 may be 

suitable for observing a change in the signal before and after the event. This is assuming 

there is a continuous fault signal introduced as a result of the chipping. The same feature or 

feature subset may not be sensitive to the event itself as the associated signal may be of a 

different form and it will be transient in nature. 

Several features have been investigated in this section to identify which can be used to detect 

transient events. 

Transient events such as tool chipping are important indicators of the process condition, 

especially where a process may rapidly fail following such an event without providing other 

evidence of failure in the signals. Many unknown faults may also manifest themselves as 

transient events. The feature extraction method, described earlier in section 5.2, extracts 

each feature data point from 9.2 seconds in cut, yet a single flute pass occurs in less than 10 
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milliseconds. Many features will average the signal leaving little information on transient 

events that have only affected a small part of the signal. In fact, these features in particular 

have given the best fit to polynomial models, such as time domain RMS. Features that do not 

average the signal, such as time domain maximum, have a relatively poor fit to polynomial 

models in the previous section.  

Referring back to Figure 5-16, sharp increases in two features from the Z-axis vibration power 

spectrum were observed; the variance and the sum of TPF. This initiated after cut number 

267. Whilst most time domain features show a gradual increase over the tools life, the 

sudden change after this cut is only prominent in these two frequency domain features.  

Figure 5-30 shows the RMS value of the Z-axis vibration for all cuts, with cuts 250-275 

magnified on the second plot. There is little evidence here of any sudden change at cut 267. 

A similar result is observed for two frequency domain features; the variance and the sum of 

the tooth passing frequencies. The latter is shown in Figure 5-31 and it can be seen that the 

magnitude increases following cut 267. 

 

Figure 5-30: Z-axis vibration RMS for all cuts with cut 250-275 magnified 

0 50 100 150 200 250 300 350 400
0.1

0.2

0.3

0.4

No. of Cuts

m
a
g
n
it
u
d
e

 

 

TDRMS

250 255 260 265 270 275
0.1

0.2

0.3

0.4

No. of Cuts

m
a
g
n
it
u
d
e

 

 

TDRMS



Feature Selection and Assessment 116 

 

 

 

Figure 5-31: Z-axis vibration sum of tooth passing frequencies for all cuts 

 with cut 250-275 magnified 

Figure 5-32 shows three z-axis vibration time domain features which show a spike at cut 267; 

the peak, peak-to-peak (range) and crest factor features. Note that these three features all 

have relatively poor fit to the polynomial models in the previous section. The three features 

where the event cannot be detected (RMS, Skew and Variance) scored well when correlated 

against time in cut. (Kurtosis gave poor results in both cases). 
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Figure 5-32: Z-axis vibration TD peak, range and crest factor for all cuts  

with cut 267 data points circled 

It can be seen in Figure 5-32 that a number of cuts prior to cut 267 also have high magnitude. 

Cut 200, for example, has the highest magnitude for each of the features shown. The same 

feature data for other accelerometers can be seen in Appendix B and comparisons can be 

made as follows: 
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- The same three features from the x-axis vibration showed no spikes for cut 267 or 

200. 

- The y-axis vibration did not spike at cut 267 but had the highest magnitude point at 

cut 200.  

- The high frequency accelerometer (z-axis) had the highest magnitude point at cut 

267 but showed no spike at cut 200, see Figure 5-33. 

 

Figure 5-33: HF vibration (z-axis) TD peak, range and crest factor for all cuts 

with cut 267 data points circled 
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Looking closer at this event, the z-axis vibration time domain RMS and peak for each 

revolution of the tool during cut 267 has been plotted in Figure 5-34 and Figure 5-35 

respectively. Cut 265 has also been shown for comparison.  Note that the same data for HF 

vibration and for cut 200 is shown Appendix B. 

 

Figure 5-34: Z-axis vibration RMS for cut 265 and 267 vs spindle revolution 

 

Figure 5-35: Z-axis vibration TD peak for cut 265 and 267 vs spindle revolution 

0 50 100 150 200 250
0

0.1

0.2

0.3

0.4

No. of Spindle Revolutions

m
a
g
n
it
u
d
e

 

 

F1 cut 265

F2 cut 265

F3 cut 265

0 50 100 150 200 250
0

0.1

0.2

0.3

0.4

No. of Spindle Revolutions

m
a
g
n
it
u
d
e

 

 

F1 cut 267

F2 cut 267

F3 cut 267

0 50 100 150 200 250
0

1

2

3

No. of Spindle Revolutions

m
a
g
n
it
u
d
e

 

 

F1 cut 265

F2 cut 265

F3 cut 265

0 50 100 150 200 250
0

1

2

3

No. of Spindle Revolutions

m
a
g
n
it
u
d
e

 

 

F1 cut 267

F2 cut 267

F3 cut 267



Feature Selection and Assessment 120 

 

 

The event resulting in the spike in peak magnitude can be seen late in the cut. The change in 

the signal can be observed in the X-axis, Z-axis, high frequency vibration and AE sensor 

signals. Figure 5-36 and Figure 5-37 show just 10msec of the signals from each of these 

sensors, comparing the equivalent flute pass in cut 265 to that in cut 267.  

 

Figure 5-36: Flute pass from cut 265 (left) compared to notable flute pass 

 in cut 267 (right) for X and Z-axis accelerometers 

 

Figure 5-38 shows the high frequency vibration and acoustic emission signals over 0.25msec 

where the spike in the signals occurs. The event is not noticeable in the Y-axis vibration, 

microphones or the spindle power data. 
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Figure 5-37: Flute pass from cut 265 (left) compared to notable flute pass 

 in cut 267 (right) for high frequency vibration and AE sensors 

 

Figure 5-38: 0.25msec zoom of event in cut 267 for HF vibration (top)  

and AE (bottom) 
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With a sampling interval of 10μsec for the accelerometer and 1μsec for the AE sensor, only 

a small number of samples capture the occurrence. With such a limited number of samples 

to describe the transient event, advanced signal processing steps such as time-frequency 

domain analysis are unlikely to be useful. 

Transient Fault Signal Subset Selection 

Features have been selected in this section based on the evidence that they respond to 

meaningful transient events from the cutting process, such as tool chipping. A number of 

features chosen for the purpose of detecting such events are listed in Table 5-4. 

Table 5-4: List of features selected to detect transient fault signals 

1 HF Vibration Time Domain Peak 

2 HF Vibration Time Domain Range 

3 HF Vibration Time Domain Crest 

4 Z Vibration Time Domain Peak 

5 Z Vibration Time Domain Range 

6 Z Vibration Time Domain Crest 

7 X Vibration Time Domain Peak 

8 X Vibration Time Domain Range 

9 X Vibration Time Domain Crest 

 

5.3.3 Feature Selection to Distinguish Between Fault Types 

In order to classify the state of a process, it is necessary to differentiate between the sensor 

data associated with each class or fault type. Classification and data clustering methods, such 

as k-means, decision trees and support vector machines, allow multivariate data to be 

separated into and associated with multiple labelled clusters.  

The principle of developing an unsupervised learning method is based on the wish to 

eliminate the measurement of response data, such as tool wear, whilst continuing to learn 
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intrinsic relationships in the signals measured. The proposed clustering techniques require 

class labels in the data set; therefore, approximate class labels that do not need additional 

experimental measurements have been used in this section. Two or more wear state classes 

can be defined by expert judgment, for example, based on the number of cuts the tool is 

expected to complete or on trends observed in the sensor signals. There is a requirement for 

a feature subset that improves separation of these defined clusters.  

Greater separation between clusters is desirable in order to reliably identify which cluster a 

new data point should belong to. Clustering methods can therefore be measured on their 

ability to separate each cluster from another. A common method for optimising the 

performance of a clustering algorithm is to maximise the mean inter-cluster distance 

(distance between the centroids of each cluster) and minimise the mean intra-cluster 

distance (distance between points within each cluster). The Silhouette function [127] is a 

commonly accepted method for measuring the degree of separation of a point to one or 

more clusters. This has been used here to determine the optimum cluster set. 

It is also necessary to minimise redundancy in feature sub-sets, as has been described earlier 

using the Merit function. In this section, Gram-Schmidt orthogonalisation has been used to 

reduce redundancy in the feature subset, thus avoiding the optimum subset being a set of 

features that contain the same information. Gram-Schmidt is a widely used for transforming 

data sets to remove redundancy. This process has been described in detail in [128]. The 

Gram-Schmidt method generates an orthogonal set of vectors from a linearly independent 

set where the orthogonal set occupies the same vector space as the original set. When 

applied to feature selection problems, the method allows mutual information between a 

new feature and a feature subset to be removed by only retaining the orthogonal component 

of the new feature. For example, see Figure 5-39; to remove redundancy from a set of two 

features, f1 and f2, the projection of f2 normal to f1, proj(f2), should replace the f2 in the 

feature set. The normal component of f2 to f1 is then removed from the feature set. 
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Figure 5-39: Removing redundancy using Gram-Schmidt 

A feature selection method that applies the Gram-Schmidt and Silhouette functions will now 

be derived. 

Consider a feature vector of 𝑚 data points that has been normalised to have zero mean and 

unit variance: 

 𝑓 = (𝑥1, 𝑥2, 𝑥3, … 𝑥𝑚), (11) 

Each data point is assigned to one of 𝑐 classes, where 1 < 𝑐 ≤ 𝑚. 

A full set of 𝑁 feature vectors is obtained: 

 𝐹 = (𝑓1, 𝑓2, 𝑓3, … 𝑓𝑁). (12) 

A subset of 𝑛 feature vectors is selected to be: 

 𝐹̀ = (𝑓1̀, 𝑓̀2, 𝑓̀3, … 𝑓̀𝑛), (13) 

Where, for example, 𝑓1̀ denotes the first selected feature in the subset. (Note it is not 

necessarily equal to 𝑓1). 

Redundancy in the subset can be removed using the Gram-Schmidt process, resulting in the 

subset: 

 

 
𝐹∗̀ = (𝑓1̀, 𝑓2

∗̀ , 𝑓3
∗̀ , … 𝑓𝑘

∗) (14) 

Where 𝑓2
∗̀  is the component of 𝑓2̀, that is orthonormal to 𝑓1̀, 

𝑓3
∗̀  is the component of 𝑓3̀, that is orthonormal to 𝑓1̀ and 𝑓2̀, and 
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𝑓𝑘
∗ is the component of 𝑓̀𝑘 that is orthonormal to all features from 1 to 𝑘 − 1. 

The inner product between any two feature vectors 𝑓𝑢 and 𝑓𝑣 can be calculated by: 

 〈𝑓𝑢, 𝑓𝑣〉 =  ∑ 𝑓𝑢
𝑖𝑓𝑣

𝑖

𝑚

𝑖=1

 (15) 

Where 𝑓𝑖 is the 𝑖th point in the feature vector. 

𝑓2
∗̀  is calculated using the Gram-Schmidt process by the following equation: 

 𝑓2
∗̀  = 𝑓2̀ −

〈𝑓̀1, 𝑓2̀〉

〈𝑓̀1, 𝑓̀1〉
𝑓̀1 (16) 

𝑓𝑘
∗̀  is the component of 𝑓̀𝑘 that is orthonormal to all other features included the subset 𝐹̀  

 𝑓𝑘
∗̀ = 𝑓𝑘̀ −

〈𝑓̀1, 𝑓𝑘̀〉

〈𝑓̀1, 𝑓̀1〉
𝑓̀1 −

〈𝑓̀2, 𝑓𝑘̀〉

〈𝑓̀2, 𝑓̀2〉
𝑓̀2 … −

〈𝑓̀𝑘−1, 𝑓𝑘̀〉

〈𝑓̀𝑘−1, 𝑓̀𝑘−1〉
𝑓̀𝑘−1 (17) 

 

The amount of information in any feature subset will be measured by the degree of 

separation between classes. The mean Silhouette over points 1 to 𝑖 in any feature subset is 

derived by: 

 𝑆(𝐹∗̀ ) =
1

𝑚
∑

(𝑏𝑖 − 𝑎𝑖)

max (𝑎𝑖, 𝑏𝑖)

𝑚

𝑖=1

 (18) 

Where 𝑎𝑖  is the average distance from the ith point to all other points in the same class as 𝑖, 

and 𝑏𝑖 is the minimum average distance from the ith point to all points in a different class, 

minimised over the classes. 

A forward sequential feature selection method will be used to find the optimum subset. The 

first feature selected does not require the Gram-Schmidt process as it will be the feature that 

obtains the maximum Silhouette value for a subset size of 1. 

This technique has been applied as an alternative to the Merit ranking method applied in 

section 5.3.1. The Merit function was used to retain features that have a good fit to 

approximated polynomial models, whilst minimising the redundancy by including feature-
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feature correlations in the function. In this section, the Silhouette method has been used to 

retain features that show a larger separation in the data, when associated to two or more 

classes. The addition of the Gram-Schmidt transformation allows redundancy to be avoided 

in the final feature subset. The use of the Silhouette method for ranking feature subsets is 

favourable when the objective is to detect outliers from clusters. The advantage in the Merit 

function is that it can be used where points cannot be reliably associated with a class.  

Two Class Separation (without Gram-Schmidt) 

Fault detection in its most basic form is a 2-class classification problem where a process is 

either normal or faulty. The data has been divided into normal and faulty classes based on 

observation of the process. The first class, considered to be normal operating conditions, is 

all cuts taken up to and including cut 266. The second class, considered to be faulty operating 

conditions, is all cuts beyond cut 266. Subjectivity in this class separation will be considered 

later in this chapter. 

In order to ensure the feature selection is not biased towards features greater in magnitude 

or variance, all features have been scaled to have zero mean and unit variance by deducting 

the mean from each data point and dividing by the standard deviation. 

The results of forward and reverse sequential feature selection based on maximising the 

mean silhouette value are shown in Figure 5-40. Both forward and reverse methods provided 

identical results. It can be seen that the maximum silhouette is achieved using a single 

feature. 
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Figure 5-40: Sequential feature selection using 2-class cluster separation 

The optimum cluster separation is achieved using Microphone-1 Frequency Domain Variance 

and is shown in Figure 5-41 and Figure 5-42. It can be seen that there is a clear separation 

between the two classes using only this single feature. 

 

Figure 5-41: Normalised Microphone-1 Frequency Domain Variance 
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Figure 5-42: Microphone-1 Frequency Domain Variance  

Shown as a Histogram for 2 Classes 

The highest scoring features are different to those found in section 5.3.1, which are now 

predominantly made up of microphone sensor features. This method of feature selection 

does not use a measure of redundancy as was the case in the Merit ranking method used in 

section 5.3.1. As a result, it is apparent from Figure 5-43 that the highest scoring features 

contain similar information. 

 

Figure 5-43: High redundancy in features selected using 2-class cluster 

separation without Gram-Schmidt 
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Two Class Separation (with Gram-Schmidt) 

It is apparent from the previous plot that without accounting for redundancy in the feature 

set, features which behave the same are selected. The Gram-Schmidt method described 

earlier is now included so that each additional feature contains only the orthogonal 

component to the existing feature set. 

It can be seen from Figure 5-44 that the subset size of 1 provides the highest mean silhouette, 

diminishing more rapidly than without Gram-Schmidt as the subset size increases. This rapid 

decline can be expected, given that the mutual information has been removed. 

 

Figure 5-44: Mean silhouette against subset size for 2-class case 

 with Gram-Schmidt  

The first 5 features selected are shown in Figure 5-45. The orthonormal components of these 

features are also shown in Figure 5-46. Note that the first selected feature, M1 FD Variance, 

is the most influential feature, having the form of features. See Figure 5-43. This feature has 

no component removed in the second plot but has been normalised.  
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Figure 5-45: First 5 features selected for 2-class case 

 

Figure 5-46: First 5 orthonormal features selected for 2-class case 

Four Class Separation (without Gram-Schmidt) 

The cluster separation approach has also been applied to a multi-class problem. The data set 

is divided into 4 arbitrary wear classes from cuts 1-100, 101-200, 201-300 and 301-400. 
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Forward sequential feature selection provides the results shown in Figure 5-47, initially 

without using the Gram-Schmidt method. 

Note that the function optimises the mean silhouette for all classes, so the figure shows the 

contribution of the mean silhouette for each class. It can be seen that cuts 201-300 have the 

least separation from other data sets, while cuts 0-100 and 301-400 have high separation. 

 

Figure 5-47: Sequential feature selection using 4-class cluster separation 

The highest silhouette value achieved was reduced from the 2-class system from 0.96 to 

0.68, highlighting as one would expect that the 4-class problem is more difficult to classify 

correctly. This is also evident from the overlap between classes shown in Figure 5-48.  
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Figure 5-48: Z-Vibration Time Domain RMS Shown as a Histogram for 4 

Classes 

The top 10 features for classification of the 4-class tool state are found to be: 

1. Z-Vibration Time Domain RMS 

2. Z-Vibration Time Domain Variance 

3. Z-Vibration Frequency Domain Mean Band 

4. Y-Vibration Frequency Domain Kurtosis 

5. Y-Vibration Frequency Domain Mean Band  

6. HF-Vibration Frequency Domain Mean Band  

7. AE Sensor Frequency Domain Mean 

8. Y-Vibration Frequency Domain Skew 

9. HF-Vibration Time Domain RMS 

10. AE Sensor Frequency Domain Mean Band 

Less redundancy can be seen in the data, although some features containing similar 

information remain. Figure 5-49 shows similarities between the selected features. 
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Figure 5-49: First 10 normalised features selected 

using 4-class cluster separation 

Four Class Separation (with Gram-Schmidt) 

The Gram-Schmidt is now used for the 4-class case where each additional feature added 

contains only the orthogonal component to the existing feature set. The optimum subset size 

is 1 as shown in Figure 5-50. 

 

 

Figure 5-50: Mean silhouette against subset size for 4-class case  

with Gram-Schmidt 

The first 5 features selected are shown in Figure 5-51. The orthonormal components of these 

features are also shown in Figure 5-52. 
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Figure 5-51: First 5 features selected for 4-class case 

 

Figure 5-52: First 5 orthonormal features selected for 4-class case 

This section evaluated the degree of separation between data in the feature subsets for a 2 

and 4-class example. If the results shown are an accurate representation of the process, 

these conclude that the single feature contains the majority of information. 
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5.3.4 Feature Selection Summary 

Section 5.2 presented the data from Experiment 1, where a milling tool is used from a new 

condition through to a severely worn condition. The analysis of the sensor data has led to 

the selection of sensor signal features that are sensitive to the changes in the cutting process 

over the tool’s life.  

It has been shown that a number of features correlate well to the time in cut. A polynomial 

model fit method has been proposed to down select such features. A sequential feature 

selection technique has been used to determine the optimum feature subset based on a 

Merit measure of information which considers both the correlation to the model and 

correlation with each other. The Pearson product-moment correlation coefficient has been 

used here. However, it may be worth considering a rank correlation, such as Spearmen’s rank 

correlation coefficient, in future work as this can detect monotonic relationships, and does 

not assume a linear relationship as with the Pearson method. 

The features selected based on their fit to polynomial models transpire to be those which 

are insensitive to transient events during cutting. Such events may have useful meaning 

when determining the condition of a cutting process, such as those observed in the vibration 

data during cuts 200 and 267 that may be related to chipping of the tool. The detection of 

these events is important in order to allow a tool to be removed from the process prior to 

damage being caused to the surface. In the case presented, it is proposed that the point in 

time where tool chipping occurs can be observed using several features, one of which is 

found to be the peak magnitude of the Z-direction vibration signal. The time domain range 

and time domain crest factor also provide good results, as do the high frequency and X-

direction accelerometers.  

Classification methods are often used to identify the condition of a process and will be 

applied further in the next chapter. The degree of separation between data for different 

process states has been evaluated during the feature selection process. A 2-class and a 4-

class example have been used. The microphone data has shown a strong separation between 

data for the define normal (cuts 1-266) and fault (cuts267-400) states, whereas vibration 

data provides more reliable results for the 4-class problem. This feature selection method 
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has removed redundancy in the data by applying the Gram-Schmidt method, however the 

Silhouette method for determining class separation gives an optimum subset size of 1. 

This analysis has assumed that signals that are sensitive to changes in cutting conditions over 

the life of a tool provide good indications of the machining conditions. On this basis, it is 

assumed that the features selected will be suitable for the forthcoming sections of this thesis 

when covering fault detection and diagnosis. The final selection of an optimum feature 

subset is not settled by this section. The analysis does, however, provide a suitable set of 

features from each of the three sub-sections; (5.3.1) feature selection from continuous fault 

signals over the tools life, (5.3.2) feature selection from transient fault signals observed in 

the sensor signal, and (5.3.3) feature selection based on class separation.  
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Table 5-5 summarises the selected features (using the short names defined earlier in Table 

4-2 and Table 5-1). Although the class separation method selected a feature subset size of 

1, the first 10 features have been listed and are used for the feature subset in the analysis in 

later sections. Each feature subset (FS) has been given a number for reference in future 

sections of this thesis.  
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Table 5-5: Summary of feature subsets 

FS1 FS2 FS3 FS4 FS5 FS6 

Polynomial 
Model/Merit 

Transient 
Fault Signal 

2-Class 
Separation 

2-Class 
Separation 

(G-S) 

4-Class 
Separation 

4-Class 
Separation 

(G-S) 

HF.TD.RMS HF.TD.P M1.FD.V M1.FD.V ZV.TD.RMS ZV.TD.RMS 

ZV.TD.K HF.TD.Rng M2.FD.V ZV.FDb.V ZV.TD.V XV.FDf.V 

HF.FD.S HF.TD.CF M2.TPF YV.FDb.V Z.FDb.M HF.TD.RMS 

AE.TD.K ZV.TD.P M1.TPF HF.FDf.K YV.FD.K AE.FD.M 

XV.FDf.S ZV.TD.Rng M2.FD.M HF.FDb.M YV.FDb.M ZV.FDf.K 

HF.TD.V ZV.TD.CF M2.TD.V M2.FD.V HF.FDb.M YV.TD.K 

SP.FDb.V XV.TD.P ZV.TPF XV.TPF AE.FD.M XV.TD.RMS 

HF.FD.K XV.TD.Rng M1.FD.M M1.TPF YV.FD.S SP.FDb.V 

SP.FDb.S XV.TD.CF HF.TPF ZV.FD.V HF.TD.RMS M1.TPF 

YV.TD.S (optimum 
set) 

M1.TD.V 

 

HF.FD.V AE.FDb.M 

 

YV.FD.K 

HF.FDf.V  - - - - 

M1.FDf.V      

HF.FDf.S      

YV.FD.K      

(optimum set)      

 

Given the large redundancy that was found in FS3 and FS5, these subsets will not be taken 

further. Furthermore, the features chosen for FS2 may be appropriate for fault detection 

problems where the fault is transient. These will not be included in further analysis, however, 

they are recommended as additional features to add to a subset where transient faults are 

being overlooked by a fault detection algorithm.  
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6 NOVELTY DETECTION AND FAULT DIAGNOSIS 

This chapter takes the feature subsets from the previous chapter and evaluates several 

methods for novelty detection and fault diagnosis. Figure 6-1 summarises the reasearch 

areas of this chapter, separating sections into fault detection and fault diagnosis.  

 

Figure 6-1: Summary of fault detection and diagnosis topics 

Section 6.1 applies a novelty detection method to the data by using the Mahalanobis 

distance as a measure of discordancy and defining a principled novelty threshold. The ability 

to detect changes to depth of cut is presented, now including the fault data obtained through 

Experiment 2. 

Section 6.2 covers fault diagnosis, extending the method used for fault detection by using 

clustering to differentiate between different fault types.  

Finally, section 6.3 summarises the preferred monitoring methods and applies them to 

Experiment 3 - an existing data set for a repeat ball nose milling operations. 
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6.1 Fault Detection  

A fault detection system is dependent on sensor data containing adequate information to 

show the difference between a normal and a faulty process. False alarms must be avoided. 

Therefore the fault signal must be distinguishable from confounding influences, including 

signal noise and benign operational and environmental changes. The previous section has 

aimed to select the appropriate sensor feature sets that achieve this. Feature sets FS1, FS4 

and FS6 are used to demonstrate fault detection in this section. 

As has been discussed in the literature review, an unsupervised learning approach is 

appropriate to avoid the significant experimental costs associated with training a supervised 

learning algorithm. A novelty detection method will be investigated in this section. The 

recreation of many fault types may not be achievable in a production environment; therefore 

the system will define the normal condition and classify outliers from this definition as faults. 

Section 6.1.1 will investigate the use of the Mahalanobis distance to obtain a measure of 

discordancy from the normal condition data set. The data from Experiment 1 will be used 

here. Section 6.1.2 will then go on to define a principled novelty threshold that is used to 

determine when a novelty or fault has occurred. The influence of the size of the data set that 

defines the normal condition will be considered. Section 6.1.3 will test the novelty detection 

method using the data from Experiment 2, where multiple depths of cut are used as proxies 

for faults. 

6.1.1 Novelty Detection Using the Mahalanobis Distance 

Novelty detection requires a measure of how dissimilar a sample of feature data is, 

compared to other samples. This measure is often referred to as discordancy. A novelty is a 

sample which has a large discordancy in comparison to other samples in a data set. The 

magnitude of the discordancy over which a data point is considered a novelty is determined 

by a threshold value. 

When a process begins with no prior sensor data, a definition of the normal operating 

condition must be generated with the data as it is collected. A discordancy measure must 

then be calculated for subsequent data points to determine if they are an outlier. 



Novelty Detection and Fault Diagnosis 141 

 

 

The definition of normal operating conditions can be obtained by stating that cuts 1-n are 

normal. The value n may be gained from prior information about the process or operator 

feedback, for example. Cuts >n are of unknown condition; therefore the condition must be 

estimated by comparison to the defined normal state. 

To demonstrate the proposed method of fault detection, an estimate of the end of the tool’s 

life is used to define the normal condition data set in Experiment 1; all cuts through to cut 

266 (as discussed in the previous section) will define the normal condition, and all 

subsequent cuts will be considered a faulty condition. 

The Mahalanobis distance will be used as it is an established method to determine the 

degree of discordancy of a data point from the normal condition data set. The Mahalanobis 

distance is a measure of the distance between a point and a Gaussian distribution, calculated 

from the following equation: 

 𝐷(𝑥, 𝑦) = √(𝑥 − 𝜇)𝑇𝑆−1(𝑥 − 𝜇) (19) 

Where,  

- 𝐷(𝑥, 𝑦) is the Mahalanobis distance between set of observations 𝑥 from the normal 

condition defined by 𝑦 

- 𝑥 is a set of observations or sensor signal features 

- 𝜇 is the set of mean values for normal condition 𝑦 for each signal feature 

- 𝑆 is the covariance matrix for normal condition 𝑦 

A fault detection solution will be assessed using feature subsets FS1, FS4 and FS6 from Table 

5-5. There are 14 features in FS1, therefore the first two principal components, obtained 

using PCA, have been used to plot the data. For FS4 and FS6, the first two components have 

been used to plot the data, given the Gram-Schmidt method has already transformed the 

data to be orthonormal, which is adequate for visualisation. 

Figure 6-2 presents a scatter plot of FS1 using the first two principal components from PCA 

for the x and y axis. The colour bar shows the log of the Mahalanobis distance from the 

normal condition data (calculated without PCA transformation, though this would not 

change the result given that PCA is only a rotation of the data). There is a clear divide 

between the normal and faulty data sets.  
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There is also evidence of an additional incipient fault cluster consisting of the points in the 

bottom left of the normal condition cluster. If the data is in fact two separate clusters, the 

normal condition Gaussian may be poorly defined. This possibility will be discussed again in 

section 6.2.1. 

 

 

Figure 6-2: Scatter plot of Log of Mahalanobis distance for colour bar FS1 

Figure 6-3 shows the Mahalanobis distance against the number of cuts. An increase in 

magnitude is observed around cut 266. A novelty threshold will be defined in section 6.1.2. 

 

Figure 6-3: Mahalanobis distance vs number of cuts for FS1 

 (novelty threshold not yet defined) 
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Figure 6-4 presents a scatter plot for FS4, using the first two features for plotting on the x 

and y axis. The Mahalanobis distance is computed from the full set. Again, there is a clear 

divide between the normal and fault data sets. There is further evidence of an incipient fault 

cluster to the top right of the normal condition cluster.  

 

Figure 6-4: Scatter plot of Mahalanobis distance using FS4 

Figure 6-5 shows the Mahalanobis distance against the number of cuts. There is a significant 

rise in the distance, initiated at cut 266 and continuing to rise to around cut 310.  

  

Figure 6-5: Mahalanobis distance vs number of cuts for FS4  

(novelty threshold not yet defined) 

Figure 6-6 and Figure 6-7 present the same information for FS6. For this feature set, the 

distance increases more gradually, continuing to increase exponentially through to the end 
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of the data set. Note that novelty thresholds have not yet been plotted. These will be defined 

later in section 6.1.2. 

 

Figure 6-6: Scatter plot of Mahalanobis distance for FS6 

 

Figure 6-7: Mahalanobis distance vs number of cuts for FS6 (novelty threshold 

not yet defined) 

Note that the Mahalanobis distance is not affected by Gram-Schmidt orthogonalisation, 

therefore the orthonormal data has only been used for feature selection and the original 

feature data is used here. 

It can be seen that for each of the three feature subsets chosen, all give increasing 

Mahalanobis distance towards the end of the tool’s life.  
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6.1.2 Selecting a Principled Novelty Threshold 

A principled method of selecting the novelty threshold can be achieved by using the Monte 

Carlo method presented in [83] and [89]. A matrix of the same size as the data set that 

defines the normal condition is populated with elements randomly drawn from a normal 

distribution of zero mean and unit variance. (Note that each feature within the normal 

condition feature set has also been normalised to have zero mean and unit variance at this 

point). The Mahalanobis distance is calculated for each feature set in this matrix and the 

largest distance is recorded. The process is repeated a 10,000 times, until a distribution of 

the Mahalanobis distance is obtained. An appropriate percentile of this distribution (e.g. the 

90th and 99th percentile in the later example) can then be selected to define the novelty 

threshold. 

Figure 6-8 presents the first point at which the novelty threshold is reached for FS1 according 

to the number of cuts that define the normal condition. When the normal condition is 

defined using above 200 cuts, the threshold is not reached for the whole data set. However, 

if 80 cuts are used to define the normal condition, for example, the threshold is reached at 

between 200 and 250 cuts. 

 

Figure 6-8: Principled novelty threshold limits for FS1 
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The 90th percentile threshold plots for FS1, FS4 and FS6 are shown in Figure 6-9. It can be 

seen that for FS6, increasing the number of cuts to define the normal condition from around 

100 through to 250, has little effect on the point a novelty is detected. 

 

Figure 6-9: 90th Percentile novelty threshold for FS1, FS4 and FS6 

Several observations can be made from Figure 6-9, as follows: 

- The threshold obtained using FS1 and FS4 classifies a fault in less than 200 cuts when 

the normal condition data set is less than approximately 50. 

- The threshold is not passed for any cut for FS1 and FS4 if more than approximately 

200 cuts are used to define the normal condition. 

- The threshold is passed at approximately 300 cuts for FS6 where the normal 

condition data set is between approximately 100 and 250 cuts. 

Clearly, the appropriate number of cuts to define the normal condition is dependent on the 

feature set and the desired tool change point. For subsequent analysis, the first 100 cuts will 

be used to define the normal condition and the 90th percentile will be used as the novelty 

threshold. 
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6.1.3 Detection of Changes to Depth of Cut 

In order to validate the novelty detection method described, the variable depth of cut data 

obtained in Experiment 2 has been evaluated. In all cases, the data from Experiment 2 was 

classed as a novelty. Figure 6-10 shows the data for Experiment 1 and Experiment 2 for FS1 

using only the first two principle components to present the data. Note that the Mahalanobis 

distance is calculated from the full data set, while the plot only uses two dimensions to 

present the data. A data set of 100 cuts was used to define the normal condition and the 90th 

percentile defined the novelty threshold.  

 

Figure 6-10: Experiment 1 and Experiment 2 data for FS1 

For FS1, all data from Experiment 2 had a larger Mahalanobis distance from the normal data 

set than the highest distance found in Experiment 1 data. However, this was not the case for 

FS4 and FS6. Figure 6-11 shows the Mahalanobis distance for Experiment 2 for each feature 

subset. The figure also shows the novelty threshold calculated and the maximum 

Mahalanobis distance found in Experiment 1. 
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Figure 6-11: Log of Mahalanobis distance for Experiment 2 for each feature set  
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6.2 Fault Diagnosis 

Fault diagnosis is achieved by associating data with a fault type. The literature review has 

shown that in the vast majority of cases, this has been achieved using supervised learning by 

training a given system to recognise known, pre-defined faults. The high cost of obtaining 

fault data has been discussed, and in many cases, it is impractical to re-create fault conditions 

on a production process. Consequently, this section will present a method for supporting a 

machine, or operator, in making a diagnosis of a fault type or cause without extensive 

training requirements. 

An unsupervised method for fault diagnosis can be achieved by extending the novelty 

detection method in the previous section to consider multiple clusters within the data set.  

Section 6.2.1 will first show that the data set from Experiment 1 can be modelled using 

multiple Gaussians, rather than the single normal condition Gaussian shown in section 6. 

Two applications are then presented, where clustering of the data allows fault types to be 

distinguished. The first, in section 6.2.1, will evaluate the clusters that are present in the tool 

life data by using a Gaussian Mixture Model (GMM). The nature of tool wear faults will be 

considered to differentiate them from other fault types. Section 6.2.3 will then evaluate how 

new faults can be added to the data set as they are observed in production, then allowing 

repeat faults to be diagnosed by association to a small number of previous observations. 

6.2.1 Describing the Data Set with Multiple Gaussians 

A limitation of the novelty detection method described in the previous section is that it relies 

on the normal state being correctly described by a single Gaussian. In some cases, the normal 

state may not be a single Gaussian distribution and may be better represented as a number 

of separate distributions. 

The problem of misrepresenting the normal condition is illustrated by the theoretical data 

set shown in Figure 6-12, where a fault has been incorrectly associated with the normal 

condition. In Figure 6-13, however, the normal condition is represented as two Gaussians 

and the fault condition is a clear outlier. Referring back to Figure 6-2, the normal cluster may 

carry these characteristics, given the normal data on the left of the plot appears to be a 
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separate distribution. The example presented in the figures has also been seen in the 

previous data shown in section 6.1.1. 

 

Figure 6-12: Example normal condition represented as one Gaussian 

 

Figure 6-13: Example normal condition represented as two Gaussians 

One means of detecting when this issue is arising is to measure when a data set begins to 

become non-Gaussian, then to use this measure as a threshold for defining new clusters. 
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Investigation into this has not been carried out in this work, but should be considered in 

future investigations. 

This issue of over simplifying the model that describes the data also applies to fault diagnosis. 

Gaussian Mixture Models (GMM) can be used to separate the data into an optimum number 

of clusters and representing each cluster probabilistically using a Gaussian distribution. The 

different clusters can then be used to define multiple classes of both normal and faulty 

conditions. 

An example of novelty detection from multiple Gaussians is now presented using feature 

subset FS1. The same method as shown in 6.1.1 (Figure 6-2 and Figure 6-3) is used here, 

where the cuts that follow cut 266 will be classed as faulty. Data up to and including cut 266 

will be evaluated using a GMM to determine the optimum number of clusters that describe 

this data. Data after cut 266 have been omitted from the GMM given that these points would 

not be available in a production environment as the process would be halted once a fault is 

detected. 

The optimum number of clusters can be measured using the Silhouette function described 

in section 5.3.3. In the case of FS1, the optimum number of clusters is found to be 3, as shown 

by the mean Silhouette for each GMM shown in Figure 6-14.  

 

Figure 6-14: Mean Silhouette vs number of clusters for FS1 
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It can be shown that the natural separation in the data is time dependent. The three cluster 

model fits the data such that the first cluster is made up of cuts 1-39, the second from cuts 

40-159 and the third from cuts 160-266. The probability of each point belonging to a cluster 

can be extracted from the model and is shown in Figure 6-15.  

 

Figure 6-15: Probability of data point belonging to each cluster  

using the 3 normal clusters GMM for FS1  

The three clusters are plotted in Figure 6-16 using the first two principal components of FS1. 

To emphasise the separation of cluster Normal 1 and Normal 2, the third principle 

component is added and the data is plotted as a 3D scatter plot in Figure 6-17. 
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Figure 6-16: First two principle components showing 3 normal clusters for FS1 

  

Figure 6-17: First three principle components showing 3 clusters for FS1 

The novelty detection method presented in Section 6 can now be used on each cluster found 

in the data set. Figure 6-18 shows the detection of a novelty from the Normal 1 cluster (cuts 

1-39) at cut 110, Figure 6-19 shows the detection of a novelty form the Normal 2 cluster (cuts 

40-159) at cut 222, and Figure 6-20 shows the detection of a novelty from the Normal 3 

cluster at cut 398. Note that a novelty is where the data does not lie within any of the three 
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clusters, however, fault warnings could be used where the data does not lie in Normal 1, and 

again when not in Normal 1 or Normal 2. 

 

Figure 6-18: Novelty detection on Normal 1 data 

 

Figure 6-19: Novelty detection on Normal 2 data 
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Figure 6-20: Novelty detection on Normal 3 data 

The previous plots have shown that novelty detection can be applied when modelling the 

normal condition, as more than one multivariate Gaussian distribution. In the case 

presented, the definition of the normal condition provides a closer approximation to the data 

than using a single Gaussian; therefore, the potential for incorrectly classifying a faulty data 

point as normal is reduced. This affect was illustrated previously in Figure 6-12 and Figure 

6-13. Furthermore, the natural clustering in the data was found to be separated by the 

number of cuts taken. 

6.2.2 Diagnosis of Tool Wear Fault 

In comparison to other fault types, tool wear is a gradual effect where the cutting edge 

transitions from a new condition to a worn condition during its time in cut. The literature 

review has discussed that tools often pass through one or more different tool wear states 

before they are considered unusable. Furthermore, the definition of the unusable state is 

dependent on the specific process requirements. It was also noted in the literature review 

conclusions that supervised classification of tool wear states is neither practical nor flexible 

for a production solution, given the inspection and classification of tool wear states requires 

skilled and time consuming measurements that are only viable in laboratory conditions. 

Without training data, the ability to determine whether a fault condition is a result of tool 

wear can be achieved by determining if there is a pattern in the data that is symptomatic of 
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tool wear progression. The progression of tool wear has been observed in sensor data in 

many previous papers discussed in the literature review. 

Two methods that support the diagnosis of a worn tool fault are now presented; tool 

condition clustering and rate of change in cutting conditions. 

Tool Condition Clustering 

The last section demonstrated that the natural clusters present in the data in Experiment 1 

are separated by time in cut. Given the tool condition is the only variable that changes over 

time in this experiment, each cluster can then be associated with a different condition of the 

tool as it wears. Figure 6-21 shows the clusters that are found using GMM in feature subset 

FS1 over the normal condition of the tool (1-266 cuts). The number of clusters must be stated 

when calculating a GMM; therefore the model is calculated for 2 to 8 clusters. There is a 

common change in cluster for most the results at around cuts 40, 160 and 220. The data for 

3 clusters is consistent with the PCA plot in Figure 6-16. (Note that 10,000 replicates of the 

GMM fitting were computed and the best fit was chosen). 

 

Figure 6-21: Cluster vs number of cuts for 2 to 8 clusters for FS1 
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Figure 6-22 presents the same data for FS4 (left) and FS6 (right). The patterns are similar and 

again the clusters are separated by the number of cuts. For example, for FS4, there is a 

common change in cluster at around cut 60 and cut 120. 

 

Figure 6-22: Cluster vs number of cuts for 2 to 8 clusters for FS4 (left) 

 and FS6 (right) 

Once this data have been obtained on the first tool, subsequent tools can be compared 

without the need for direct tool wear measurement data. A demonstration of this will be 

provided later in section 6.3. 

Rate of Change of Cutting Conditions 

The velocity at which the data travels within the feature space provides a measure of the 

rate of change of the cutting conditions. As tool wear is generally a gradual effect, the 

measure of this velocity allows a normal tool wear fault to be distinguished from other fault 

types that typically cause a more sudden change in cutting conditions. 

If the velocity of the feature data is measured using the Euclidean distance travelled between 

each point, a gradual increase in the rate of change of cutting conditions can be observed 

over the life of the tool. The Euclidean distance has been used as this can be applied to a 

data set a small as 2, whereas the Mahalanobis distance requires you to accumulate a 

number of data points great enough to adequately define a Gaussian. 
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Figure 6-23 presents the Euclidean distance moved from one point to the next over the 

course of the tool’s life using the data from Experiment 1. Note that the first 100 cuts have 

been used to define the normal condition, and hence the data has been normalised by these 

values. 

 

Figure 6-23: Euclidean distance travelled per cut for Experiment 1 

It is clear from Figure 6-24 that the distance travelled to reach the depth of cut faults 

obtained in Experiment 2 is far greater than any movement during tool wear, as the log of 

the Euclidean distance is required to clearly view the data on the same plot. FS1 data has 

been used in the figure, though the effect is the same for FS4 and FS6. Two arbitrary 

thresholds have been proposed as an example to differentiate between the different fault 

types; a six sigma threshold on the normal condition data set and a x10 threshold, which is 

10 times the highest magnitude seen in the normal condition data set. It is perhaps not 

surprising that the depth of cut data are shown to be outliers as the test is qualitatively 

different, however it is reassuring that the method can detect this. 
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Figure 6-24: Euclidean distance traveled per cut in Experiment 1 compared to 

distance to Experiment 2 data 

A further advantage of using the velocity of the data is that after each tool change the rate 

of wear of a previous tool can be compared to that of the current tool. This data would 

further support the diagnosis of the fault conditions, indicating if a given tool is experiencing 

faster or slower tool wear than previous tool data. A demonstration of this will be provided 

later in section 6.3. 

6.2.3 Diagnosis of New Faults 

The high cost of obtaining fault data to define different fault types has already been 

discussed. When faults are observed in production, it may be possible to recognise repeat 

faults by associating them with previous data. This section will use the sensor data obtained 

from Experiments 1 and 2 to demonstrate the ability to associate new data with previous 

observations.  
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Nearest Neighbour for Fault Association 

Whilst there are many other methods for associating data with previously defined data sets, 

particularly supervised learning techniques, the fault association problem presented here 

must associate data with very low numbers of fault data sets, and in many cases just a single 

fault data point of each type. This is because fault data is very sparse in production and often 

a result of multiple different processes and causes; clearly the objective of the production 

process is to avoid faults all together.  

The principle of associating new data to previous cuts can be demonstrated using the nearest 

neighbor criteria. The nearest neighbour will be measured using the Euclidean distance in 

the feature subset space. Similar to before, the Euclidean distance has been used in place of 

the Mahalanobis distance as Euclidean distance can be calculated from a data set as small as 

2 points. 

Section 6.1.3 has already shown that data from Experiment 2 can be distinguished from the 

normal tool condition from Experiment 1. If we assume that in our production process a tool 

has been used through to the end of its life (cuts 1-266 from Experiment 1) and subsequently 

fault data for cuts of 0.25mm, 0.75mm, 1.0mm and 1.25mm DOC is observed (from 

Experiment 2)], the nearest neighbour for each fault can be used to diagnose similar cuts. 

Figure 6-25 show the Euclidean distance from the 1.0mm fault to all other data using feature 

subset FS4. The first three nearest neighbours in increasing distance are the 1.25mm fault, 

the 0.75mm fault, and cut 113 from the Experiment 1. The 0.25mm fault is the farthest. 
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Figure 6-25: Distance from 1.0mm fault for FS4 

The previous plot demonstrates that by using the nearest neighbour criteria, new faults can 

be associated closely with previous faults of a similar type. To evaluate this further, the 4 

nearest neighbours to each fault type for each feature subset are listed in Table 6-1. In all 

but one case the nearest neighbour to each fault is another depth of cut fault. Using FS6, 

however, 1.0 and 1.25mm faults are closer to the normal condition than they are to the 

0.25mm and 0.75mm faults. 

Table 6-1: Nearest Neighbours for each feature subset 

Feature 
Subset 

nth Nearest 0.25mm 0.75mm 1.0mm 1.25mm 

FS1 

1 0.75mm 1.00mm 1.25mm 1.00mm 
2 1.00mm 1.25mm 0.75mm 0.75mm 
3 1.25mm 0.25mm 0.25mm cut156 
4 cut42 cut49 cut156 cut167 

FS4 

1 0.75mm 1.25mm 1.25mm 0.75mm 
2 1.25mm 1.00mm 0.75mm 1.00mm 
3 1.00mm cut113 cut113 cut113 
4 cut113 cut104 cut104 cut104 

FS6 

1 0.75mm 1.00mm 1.25mm cut42 
2 1.00mm 1.25mm cut42 cut38 
3 1.25mm cut42 cut38 cut41 
4 cut42 cut38 cut41 cut46 
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Note that in cases where there are a sufficient number of faults observed to build a GMM, 

the method presented in section 6.2.1 can be used for fault classification. 

6.3 Case Study 

The steps taken to complete the fault detection and diagnosis system, as proposed in the 

previous sections of this thesis, are briefly summarised in Figure 6-26. 

 

Figure 6-26: Summary of steps taken to develop the proposed fault detection 

and diagnosis solution 

Many of the methods have been applied to data introduced in Section 4.3.3; Experiment 3: 

Published Case Study Data. In this final section of the thesis, the following steps have been 

carried out on this data set. 
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Step 1: Feature extraction and subset selection 

Extract 20 features from each sensor signal as described in section 5.2. Using only the first 

tool’s data set, determine a suitable feature subset using polynomial model fitting and the 

Merit function presented in section 5.3.1. 

Step 2: Define the normal condition and novelty threshold 

Define the normal operating conditions from the first 100 cuts in the first tool’s data set. 

Consider the option to add the first 100 cuts from each subsequent tool in order to increase 

the size of the normal definition data set over time. For each revised normal condition data 

set, select a principled novelty threshold using the Mahalanobis distance, as described in 

section 6.1.2. Determine the point at which a fault is detected for each of the 6 data sets. 

Step 3: Define clusters using GMM and associate future data to the model 

Define the optimum number of clusters using the first tools data set by using GMM, as 

described in section 6.2.1. Re-define the model after each tool has been used with an 

increased data set. Associate each tool with the GMM clusters defined by the previous tools 

and determine if intermediate tool wear states can be observed in the data, as described in 

section 6.2.2. 

Step 4: Identify if the velocity of data increases as the tool wears 

Calculate the velocity of the data using the Euclidean distance between each point and 

identify if the onset of tool wear is a result of gradually increasing velocity, as described in 

section 6.2.2. 

6.3.1 Feature Extraction and Subset Selection 

140 features have been extracted from the 7 channel data set. We have assumed in this case 

that the measurement of force data is a viable solution. Forward and reverse sequential 

feature selection has then been applied to the data and the results are shown in Figure 6-27. 

The optimum subset is found using reverse sequential feature selection and consists of 8 

features (FY.FDf.S, AE.TD.V, FX.TD.S, VZ.TD.S, FY.TD.K, VX.FD.K, FZ.TD.K, AE.FD.M). This 

subset is then taken forward to the next step. 
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Figure 6-27: Sequential feature selection results 

6.3.2 Define Normal Condition and Novelty Threshold 

The first 100 cuts of tool 1 data are used to define the normal condition. The data can be 

plotted using the first two principal components of the feature subset, as shown in Figure 

6-28. The colour bar presents the log of the Mahalanobis Distance.  

 

 

Figure 6-28: 2 dimension PCA plot for tool 1 
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Figure 6-29 presents the variance explained by each of the five components used to 

represent the eight features. Note that only 63% of the variance in the data set can be shown 

in two dimensions, therefore the separation in the data is not fully described by the 2D 

scatter plot.  

 

Figure 6-29: Variance explained by each principle component for Tool 1 

A 3D scatter plot including the third principle component is shown in Figure 6-30. With this 

view of the data there is once again evidence of multiple Gaussians, similar to that found in 

section 6.1.1. There is also an interesting turning point in the direction of the points once the 

tool reaches a Log Mahalanobis distance of approximately 5.5 that may be indicative in a 

change in the wear stat of the tool. 
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Figure 6-30: 3 dimension PCA plot for tool 1 

The Mahalanobis distance correlates well with the number of cuts. A principled novelty 

threshold can be derived using the Monte Carlo method described in section 6.1.2. The 90th 

percentile has been used to define this threshold. The Mahalanobis distance for each cut for 

tool 1 is shown in Figure 6-31. The 90% percentile threshold shows the tool is classed as 

faulty from cut 186 onward. 

 

Figure 6-31: Mahalanobis distance and novelty threshold for tool 1  

When comparing the first two principle components for all six tools, the common trend in 

the data can be seen in Figure 6-32. Figure 6-33 shows the first two principle components 
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for the normal condition data only. Here we can see that Tool 5 has a higher mean value of 

PC1 for the normal condition and also a greater variance. 

 

Figure 6-32: PCA plots for each tool using Tool 1 cuts 1-100 

 to define the principle components 
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Figure 6-33: 2 dimensional PCA plot of normal condition data for each tool  

If the normal condition is to be defined by the current tool in every case, the resultant 

thresholds and faulty condition points will be as per Figure 6-34. The faulty condition for 

tools 1-6 are found to be at cuts 186, 224, 161, 201, 197 and 220 respectively. Note that tool 

3 exhibits a spike that causes the limit to be reached. This may be a measurement error and 

therefore it may be practical to wait for several outliers observed in succession before 

confirming the fault. 



Novelty Detection and Fault Diagnosis 169 

 

 

 

Figure 6-34: Mahalanobis distance and novelty threshold for tools 1-6  

The normal condition can also be defined by a number of previous tool data sets in order to 

establish a broader definition of the acceptable operating conditions. This would also be 

appropriate if there is a need to validate a data set in order to accept it as a normal operating 

condition, for example if a tool began the process with partial wear, it would not be 

appropriate to use it to build the definition of normal. So, for example, when using the 3rd 

tool, the normal condition can be defined by the first and second tool data, again from cuts 

1-100. When using the 4th tool, the normal condition can be defined by the first, second and 

third tool data, and so on.  

The result of this method for tools 3-6 is shown in Figure 6-35. It can be seen that tools 3, 4 

and 6 last longer than the previous result, now reaching the faulty condition after 222 (+21), 

237 (+40) and 256 (+36) cuts respectively. Tool 5, however, is classed as faulty at cut 9, 
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indicating that there is something different in this data than that found in tools 1,2, 3 and 4, 

which have been used to define the normal condition. Note that tool 5 was not considered 

faulty until cut 197 in the previous result. This observation may be an important one, and 

therefore a skilled operator may wish to decide if the data for this tool should be added to 

the normal condition and the process continue, or if the tool is not appropriate for the 

normal condition definition.  

 

Figure 6-35: Mahalanobis distance and novelty threshold for tools 3-6 

 using prior normal condition 

6.3.3 Define Clusters 

The data can be separated into clusters using GMM, as described in section 6.2.1. Figure 6-36 

shows that the natural separation in the data for tool 1 is again a result of the number of 

cuts. For the increasing number of clusters, there is a trend for a cluster separation to appear 

at approximately cuts 20, 90, and 220. 
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Figure 6-36: Tool 1 clusters against number of cuts 

In practice, only the data that precedes the fault detection will be available in production. 

Therefore the clustering method used here will be applied only to data before the fault 

detection using the cut number where a fault is detected in Figure 6-34. The clusters are 

defined from only preceding tools used, so for tool 1 there is no clustering data provided, for 

tool 2 the clusters are defined by tool 1, for tool 3 they are defined by tools 1 and 2, and so 

on. The resultant clusters when setting the number of clusters to 7, are shown in Figure 6-37. 

In the figure, the data ends (coloured white) when the novelty is detected. As a result of poor 

repeatability from one tool to the next, there is no improvement in the cluster assignment 

as more tools are added to the data set. 
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Figure 6-37: Clustering of the normal data set 

Figure 6-38 shows all six tools using the first two principle components. Figure 6-39 shows 

the same data but only up until a novelty is detected, according to Figure 6-34. Whilst there 

is a common tail in the data towards the end of the tools life in the first figure, the different 

tools do not overlay well prior to the novelty detection. In particular, tool 5 appears to be 

offset to the other data sets. This provides an explanation to why it is difficult to describe the 

data as a common set of clusters for all tools. 

 

Figure 6-38: PCA plot for all six tools 
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Figure 6-39: PCA plot only up until first novelty is detected 

The offset in the data in tool 5 (leading to the difficulty to associate this tool with other tool 

states) may appear to be a weakness of the technique presented. However, if the change in 

tool 5 is meaningful, and is not simply down to signal noise, then the detection of this change 

becomes a useful capability. For example, should the work piece be different to those 

previously machined, the knowledge of this event may not only help determine tool life, but 

also machined surface condition that may not otherwise be detected. The observation of 

these small changes is achievable using the method presented as the data is visually 

informative. 

6.3.4 Evaluate the Velocity of the Data to Determine the Fault Type 

It is known that the fault types in this data set are only that of tool wear, therefore the data 

can only be interrogated to see if the velocity of the data, as described in section 6.2.2, is 

consistent with gradual tool wear. The distance travelled per cut for tools 1-3 and tools 4-6 

are plotted in Figure 6-40 and Figure 6-41, respectively. The 10x threshold shown earlier in 

Figure 6-24 is also plotted as dotted lines. The velocity remains relatively stable before 

shooting off over the final 10-30 cuts taken with each tool.  
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Figure 6-40: Euclidean distance travelled per cut for tools 1-3 

 

Figure 6-41: Euclidean distance travelled per cut for tools 4-6 
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7 SUMMARY AND CONCLUSIONS 

The main aim of this research was to design and demonstrate a method for monitoring 

machining processes that can reliably detect and diagnose faulty operating conditions.  Much 

of the work has focused on unsupervised techniques and non-intrusive sensing hardware in 

order to address the practical limitations that prevent exploitation. 

A process failure mode and effect analysis (PFMEA) was carried out at the start of this 

research in order to drive the functional requirements of a machining process monitoring 

system. An investigation into the software and hardware design choices followed in Chapters 

3 and 4. Most failure modes recorded in the PFMEA could be resolved with current industry 

technology, however, the detection of undesirable changes to depth of cut, tool condition 

and material properties could not. 

A sensing system has been designed, built and tested for milling applications. This system 

has allowed a number of signals to be acquired from close to the cutting process without 

interfering with the normal operation of the machine tool. Spindle power, vibration and 

acoustic emission data has been collected during milling trials and subsequently analysed to 

develop methods for fault detection and diagnosis. The hardware developed in this work 

provides a robust platform for measurement in a lab environment and may also provide a 

prototype design for future use in production processes. 

The first objective set out in Chapter 1 was to identify the suitable sensor signal features 

available for describing the condition of the machining process. The sensor signal features 

were obtained by applying multiple time and frequency domain feature extraction 

techniques. The most useful signal features for interpreting the condition of the cutting 

process have been found by first fitting polynomial models to the trajectory of each signal 

feature over the tool life, followed by applying a heuristic equation for scoring feature 

subsets. 

The selection of useful sensor signal features has also been considered by observing transient 

events in the signals. Spikes in vibration and acoustic emission sensor signals were observed 

at several intervals over the tool’s life may have been a result of tool chipping. 
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A class separation technique has been proposed where the separation in clusters created 

from the feature subset data has been used as a measure of the ability to differentiate 

between multiple tool wear states. Gram-Schmidt orthogonalisation has been evaluated to 

reduce dimensionality and redundancy in a feature subset. The methods shown for feature 

selection have been applied previously in structural health monitoring literature, but not to 

machining applications. This research has shown them to be successful alternatives to those 

used previously in machining process monitoring literature, ensuring an optimum feature 

subset with low redundancy and low computational expense. Most significantly to 

addressing the hypothesis, the methods have shown that feature selection can be carried 

out by more than one method without supervision or training data. 

The second objective was to incorporate a fault detection method into the proposed 

monitoring system. This required a means for the system to identify fault conditions from 

sensor data without the need for extensive training data or measured class labels. A novelty 

detection method has been proposed as the first step in a monitoring system hierarchy. 

There has been limited application of novelty detection methods in machining process 

monitoring literature. However, the methods presented in this research have shown 

promising alternatives to other literature, especially where supervised learning is not viable. 

The detection of any data point that is an outlier to a defined normal condition has been 

achieved using the Mahalanobis distance to measure discordancy. A principled novelty 

threshold has been selected to determine when a data point should be considered a novelty. 

The method has proven effective to detect worn tools and incorrect depths of cut and has 

performed well with several different selected feature subsets. 

The third objective was to extend this calculation so that fault diagnosis is possible. With 

minimal training, the system should be able distinguish between more than one fault type. 

A classification method has been presented for fault diagnosis. A Gaussian Mixture Model 

has been used to define multiple normal or faulty condition clusters in a data set. The 

association of a new point to the existing clusters has been done using either the 

Mahalanobis distance or using the nearest neighbour criteria. The detection of a tool wear 

fault has also been achieved by measuring the rate of change of the sensor signal features, 

defined by the Euclidean distance between two points. A tool that gradually moves from the 

normal condition to a novelty has been assumed to represent a worn tool fault type. 
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The discussed feature selection, fault detection and diagnosis methods have been tested on 

a second data set made available by the Prognostics Health Monitoring (PHM) Society and 

have given good results. It was shown that the normal condition is best defined by the 

current tool in use, given that there was reasonable drift in the sensor signal data from one 

tool to the next. Furthermore, given the apparent drift in sensor signal features between 

tools, the classification of tool wear state was not viable using the proposed Gaussian 

Mixture Model method. 

The fourth objective set out in Chapter 1 was for a system to be designed in a way that it 

does not obstruct the production environment, thus being a practical solution for industrial 

exploitation. Both the hardware selection and the emphasis on unsupervised learning 

algorithms support this aim. Whilst it is accepted that some setup time and configuration of 

these algorithms is still required, such as the definition of classes, the reliance on training 

data with class labels has been significantly reduced when compared to supervised learning 

methods. 

Based on the work carried out, a framework for fault detection and diagnosis is set out in 

Figure 7-1.  
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Figure 7-1: Framework for fault detection and diagnosis systems for machining 

The application of feature sub-set selection, fault detection and fault diagnosis methods 

presented in this thesis show a promising solution for machining process monitoring. A 

method to achieve the aim of this research; monitoring of machining processes to reliably 

detect and diagnose faulty operating conditions, has been presented. By providing a robust 

and automatic fault detection solution, cautionary process interventions can be eliminated. 

Fault diagnosis data can be provided to a machine operator for known faults, reducing the 

amount of time spent correcting the process. In some cases, the corrective action could be 

automated through NC code using an event-based control approach. By presenting data in 

an easily interpretable format, such as the PCA plots used for cluster analysis, a user can 

quickly observe whether there is an anomaly in the process. New fault types can be defined 

from new data during production, potentially allowing fault diagnosis capability to improve 

over time. 
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7.1 Further Work 

This thesis has presented a viable alternative to the commonly used supervised learning 

techniques for machining process condition monitoring. There is only a relatively small 

amount of literature that has attempted to apply unsupervised learning to this problem, 

therefore there remains many more techniques and algorithms available for further 

exploration than those presented in this thesis. In order to progress the research carried out 

here, there are a number of key future subject areas described below. 

Firstly, the definition of the normal condition for novelty detection has been based on an 

experiential estimate of the tool life. A principled number of cuts to define the normal 

condition would be required to remove this experience factor. It was found in Chapter 6 that 

there was evidence of at least two Gaussians in the defined normal condition. These multiple 

Gaussians may have a physical meaning, such as the result of an incipient fault. A method for 

self-clustering, capturing these changes in cutting conditions and reducing the need for 

experience based class definition would be a useful route for future research. 

Analysis of the trajectory of the data over time has not been fully explored in this thesis. 

Whilst a method for diagnosing tool wear has been proposed by measuring the rate of 

change of the sensor features, this may not explain the cutting conditions fully. It is proposed 

that future research explores this further, looking to compare cutting conditions, tool wear 

types, and chatter vibration issues with the signals and the path they follow over time. 

Remaining useful life predictions have been applied to a single sensor feature in Appendix C. 

The measurement of tool wear was required in order to demonstrate this; however, there 

are three proposed topics of future research in relation to this; (i) to attempt to actively learn 

the spindle power trajectory without reliance on the prior information or training data, (ii) 

to consider multiple sensor signal features into this algorithm in order to improve its accuracy 

and again predict the data trajectory, and (iii) to investigate the automatic direct 

measurement of tool wear to reduce the cost of training such systems in production and 

allow multiple tool wear mechanisms to be quantified and correlated to sensor signal 

features.  
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Appendix B Further Sensor Signal Data 
 

The following tables list the R-squared value for each sensor signal feature and their best fit 

polynomial models. Each sensor signal feature is also given a unique reference number in 

the first column entitled ‘#’. 

Table B.1 – X-axis vibration signal feature R-squared values 

# 

(604B31) X-Axis Accelerometer 

Feature Type 
R-squared for Polynomial Models 

1st Order 
2nd 

Order 
3rd Order 4th Order 5th Order 

1 

Time 
Domain 

RMS 0.6282 0.9339 0.9485 0.9635 0.9846 

2 Variance 0.6165 0.9439 0.9776 0.9816 0.9955 

3 Kurtosis 0.2795 0.4293 0.4295 0.5878 0.7042 

4 Skew 0.0045 0.7429 0.7770 0.7770 0.7871 

5 
Peak-to-

Peak 
0.4702 0.8342 0.8427 0.8438 0.8840 

6 Crest Factor 0.1899 0.1927 0.2057 0.2947 0.3051 

7 Peak 0.4508 0.8176 0.8249 0.8256 0.8655 

8 

Original 
Power 

Spectrum 

Mean 0.6223 0.9376 0.9732 0.9792 0.9953 

9 Variance 0.7120 0.9495 0.9558 0.9738 0.9842 

10 Kurtosis 0.8045 0.8093 0.8397 0.8547 0.8562 

11 Skew 0.7718 0.7767 0.8318 0.8435 0.8436 

12 Sum TPF 0.8028 0.9284 0.9298 0.9754 0.9826 

13 

Filtered 
Power 

Spectrum 

Mean 0.6051 0.9319 0.9725 0.9779 0.9952 

14 Variance 0.5675 0.9015 0.9780 0.9781 0.9876 

15 Kurtosis 0.0023 0.4313 0.4332 0.6019 0.6176 

16 Skew 0.0189 0.5127 0.5130 0.6665 0.6983 

17 

Band of 
Power 

Spectrum 

Mean 0.6246 0.9607 0.9742 0.9845 0.9885 

18 Variance 0.7060 0.8623 0.9017 0.9018 0.9029 

19 Kurtosis 0.4265 0.4409 0.4421 0.4588 0.4767 

20 Skew 0.4844 0.5478 0.5517 0.5661 0.5737 
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Table B.2 – Y-axis vibration signal feature R-squared values 

# 

(604B31) Y-Axis Accelerometer 

Feature Type 
R-squared for Polynomial Models 

1st Order 
2nd 

Order 
3rd Order 4th Order 5th Order 

21 

Time 
Domain 

RMS 0.8439 0.8536 0.8739 0.9808 0.9873 

22 Variance 0.8467 0.8488 0.8607 0.9674 0.9851 

23 Kurtosis 0.1299 0.6175 0.6189 0.8576 0.8635 

24 Skew 0.1089 0.2521 0.3270 0.7309 0.7396 

25 
Peak-to-

Peak 
0.1838 0.4357 0.4671 0.7534 0.7551 

26 Crest Factor 0.1828 0.4092 0.4101 0.5446 0.5492 

27 Peak 0.1876 0.4232 0.4528 0.7343 0.7369 

28 

Original 
Power 

Spectrum 

Mean 0.8375 0.9027 0.9127 0.9843 0.9916 

29 Variance 0.5292 0.6150 0.6218 0.8329 0.9122 

30 Kurtosis 0.8234 0.9084 0.9231 0.9831 0.9843 

31 Skew 0.8484 0.9090 0.9205 0.9803 0.9803 

32 Sum TPF 0.1936 0.5597 0.5697 0.6129 0.6354 

33 

Filtered 
Power 

Spectrum 

Mean 0.8373 0.8999 0.9101 0.9837 0.9913 

34 Variance 0.6624 0.6763 0.6901 0.8633 0.9326 

35 Kurtosis 0.0000 0.0067 0.0081 0.0081 0.0156 

36 Skew 0.0180 0.3240 0.3383 0.3727 0.4637 

37 

Band of 
Power 

Spectrum 

Mean 0.7760 0.9768 0.9894 0.9925 0.9955 

38 Variance 0.5967 0.7604 0.7839 0.7839 0.8013 

39 Kurtosis 0.0000 0.2034 0.2327 0.4646 0.4742 

40 Skew 0.0073 0.2224 0.2468 0.4560 0.4625 

 

  



Appendices 196 

 

 

Table B.3 – Z-axis vibration signal feature R-squared values 

# 

(604B31) Z-Axis Accelerometer 

Feature Type 
R-squared for Polynomial Models 

1st Order 
2nd 

Order 
3rd Order 4th Order 5th Order 

41 

Time 
Domain 

RMS 0.9013 0.9755 0.9804 0.9874 0.9942 

42 Variance 0.8494 0.9712 0.9856 0.9929 0.9960 

43 Kurtosis 0.0841 0.4377 0.4412 0.8463 0.8551 

44 Skew 0.8957 0.9069 0.9460 0.9483 0.9491 

45 
Peak-to-

Peak 
0.4694 0.4917 0.4931 0.6956 0.7023 

46 Crest Factor 0.1200 0.3008 0.3009 0.4786 0.4788 

47 Peak 0.4224 0.4380 0.4404 0.6328 0.6374 

48 

Original 
Power 

Spectrum 

Mean 0.7995 0.9764 0.9902 0.9931 0.9957 

49 Variance 0.7647 0.9428 0.9440 0.9673 0.9738 

50 Kurtosis 0.7202 0.9022 0.9075 0.9342 0.9496 

51 Skew 0.7194 0.9166 0.9241 0.9451 0.9595 

52 Sum TPF 0.8199 0.9403 0.9403 0.9707 0.9753 

53 

Filtered 
Power 

Spectrum 

Mean 0.7508 0.9421 0.9699 0.9921 0.9939 

54 Variance 0.6421 0.9146 0.9737 0.9797 0.9820 

55 Kurtosis 0.0214 0.3130 0.3169 0.3449 0.3567 

56 Skew 0.0488 0.3967 0.4069 0.4186 0.4566 

57 

Band of 
Power 

Spectrum 

Mean 0.8529 0.9918 0.9943 0.9959 0.9967 

58 Variance 0.7256 0.8907 0.9013 0.9016 0.9054 

59 Kurtosis 0.0177 0.2659 0.3210 0.4217 0.4308 

60 Skew 0.0409 0.3649 0.4052 0.5112 0.5135 
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Table B.4 – High frequency vibration signal feature R-squared values 

# 

(352A60) High Frequency Accelerometer 

Feature Type 
R-squared for Polynomial Models 

1st Order 
2nd 

Order 
3rd Order 4th Order 5th Order 

61 

Time 
Domain 

RMS 0.6484 0.6544 0.7109 0.8157 0.8586 

62 Variance 0.6334 0.6436 0.6888 0.7965 0.8578 

63 Kurtosis 0.6123 0.6618 0.7413 0.7870 0.8338 

64 Skew 0.8187 0.8674 0.9288 0.9527 0.9581 

65 
Peak-to-

Peak 
0.0764 0.0779 0.1780 0.2982 0.3905 

66 Crest Factor 0.2070 0.2070 0.2147 0.2158 0.2504 

67 Peak 0.0728 0.0733 0.1544 0.2477 0.3378 

68 

Original 
Power 

Spectrum 

Mean 0.4900 0.5750 0.5786 0.7356 0.7925 

69 Variance 0.7643 0.9425 0.9436 0.9672 0.9737 

70 Kurtosis 0.2262 0.3324 0.4133 0.5705 0.6327 

71 Skew 0.2304 0.3368 0.4184 0.5789 0.6387 

72 Sum TPF 0.8247 0.9420 0.9421 0.9709 0.9757 

73 

Filtered 
Power 

Spectrum 

Mean 0.3460 0.4087 0.4131 0.6460 0.7263 

74 Variance 0.1289 0.2540 0.2996 0.6028 0.7020 

75 Kurtosis 0.1670 0.1843 0.2008 0.3942 0.4365 

76 Skew 0.0617 0.1335 0.2040 0.4024 0.4599 

77 

Band of 
Power 

Spectrum 

Mean 0.8219 0.9819 0.9827 0.9911 0.9918 

78 Variance 0.7582 0.8959 0.8977 0.9099 0.9114 

79 Kurtosis 0.1468 0.1608 0.1864 0.2454 0.3205 

80 Skew 0.1823 0.2539 0.2680 0.3138 0.3895 
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Table B.5 – 378C01 microphone signal feature R-squared values 

# 

(378C01) Microphone 

Feature Type 
R-squared for Polynomial Models 

1st Order 
2nd 

Order 
3rd Order 4th Order 5th Order 

81 

Time 
Domain 

RMS 0.8246 0.8975 0.9236 0.9603 0.9609 

82 Variance 0.8113 0.8934 0.9172 0.9574 0.9586 

83 Kurtosis 0.8308 0.8983 0.9017 0.9326 0.9358 

84 Skew 0.7360 0.7578 0.7594 0.7624 0.7779 

85 
Peak-to-

Peak 
0.5539 0.6268 0.6661 0.7130 0.7152 

86 Crest Factor 0.4209 0.4354 0.4411 0.4437 0.4560 

87 Peak 0.4708 0.5262 0.5527 0.5922 0.5960 

88 

Original 
Power 

Spectrum 

Mean 0.8082 0.8874 0.9122 0.9525 0.9531 

89 Variance 0.7912 0.9042 0.9153 0.9556 0.9585 

90 Kurtosis 0.1887 0.2168 0.2507 0.2975 0.3027 

91 Skew 0.1616 0.2172 0.2903 0.3547 0.3569 

92 Sum TPF 0.7994 0.8899 0.9140 0.9546 0.9564 

93 

Filtered 
Power 

Spectrum 

Mean 0.2871 0.2871 0.3201 0.3644 0.3744 

94 Variance 0.0094 0.0630 0.0836 0.0915 0.1422 

95 Kurtosis 0.0012 0.0450 0.0737 0.0746 0.1401 

96 Skew 0.0005 0.0444 0.0611 0.0615 0.1214 

97 

Band of 
Power 

Spectrum 

Mean 0.2752 0.2752 0.3091 0.3535 0.3638 

98 Variance 0.0103 0.0643 0.0846 0.0924 0.1432 

99 Kurtosis 0.0014 0.0450 0.0737 0.0746 0.1400 

100 Skew 0.0003 0.0437 0.0604 0.0608 0.1205 
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Table B.6 – H378B02 microphone signal feature R-squared values 

# 

(H378B02) Microphone 

Feature Type 
R-squared for Polynomial Models 

1st Order 
2nd 

Order 
3rd Order 4th Order 5th Order 

101 

Time 
Domain 

RMS 0.8281 0.9050 0.9274 0.9618 0.9626 

102 Variance 0.8152 0.9022 0.9222 0.9597 0.9610 

103 Kurtosis 0.8073 0.8793 0.8843 0.9221 0.9248 

104 Skew 0.7808 0.8115 0.8128 0.8231 0.8333 

105 
Peak-to-

Peak 
0.5868 0.6506 0.6744 0.6945 0.6947 

106 Crest Factor 0.3780 0.3898 0.3952 0.4134 0.4141 

107 Peak 0.4806 0.5432 0.5629 0.5786 0.5812 

108 

Original 
Power 

Spectrum 

Mean 0.8132 0.8994 0.9185 0.9563 0.9572 

109 Variance 0.7906 0.9063 0.9164 0.9566 0.9598 

110 Kurtosis 0.6610 0.6648 0.7126 0.7133 0.7133 

111 Skew 0.6973 0.7122 0.7372 0.7373 0.7377 

112 Sum TPF 0.8127 0.9119 0.9283 0.9619 0.9646 

113 

Filtered 
Power 

Spectrum 

Mean 0.0463 0.0522 0.0808 0.1195 0.1359 

114 Variance 0.0317 0.0732 0.0750 0.0962 0.1334 

115 Kurtosis 0.0001 0.0327 0.0337 0.0354 0.0798 

116 Skew 0.0010 0.0279 0.0286 0.0323 0.0712 

117 

Band of 
Power 

Spectrum 

Mean 0.0459 0.0522 0.0809 0.1195 0.1362 

118 Variance 0.0323 0.0738 0.0756 0.0967 0.1338 

119 Kurtosis 0.0002 0.0327 0.0336 0.0353 0.0797 

120 Skew 0.0009 0.0276 0.0284 0.0321 0.0710 
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Table B.7 – Spindle power signal feature R-squared values 

# 

Spindle Power 

Feature Type 
R-squared for Polynomial Models 

1st Order 
2nd 

Order 
3rd Order 4th Order 5th Order 

121 

Time 
Domain 

Mean 0.8060 0.8279 0.8351 0.8791 0.8792 

122 RMS 0.8053 0.8274 0.8347 0.8788 0.8789 

123 Variance 0.0001 0.0001 0.0041 0.0047 0.0049 

124 Kurtosis 0.0063 0.0088 0.0094 0.0172 0.0172 

125 Skew 0.0014 0.0014 0.0016 0.0020 0.0029 

126 
Peak-to-

Peak 
0.0011 0.0022 0.0034 0.0036 0.0036 

127 Crest Factor 0.4213 0.4213 0.4214 0.4347 0.4353 

128 Peak 0.1774 0.1909 0.1962 0.2131 0.2134 

129 

Original 
Power 

Spectrum 

Mean 0.0027 0.0040 0.0099 0.0100 0.0115 

130 Variance 0.0131 0.0139 0.0401 0.2099 0.2449 

131 Kurtosis 0.0720 0.1301 0.2295 0.3114 0.3373 

132 Skew 0.0394 0.0892 0.1874 0.2848 0.3133 

133 

Band of 
Power 

Spectrum 

Mean 0.0030 0.0092 0.0171 0.0493 0.0585 

134 Variance 0.0550 0.0819 0.1909 0.3622 0.4362 

135 Kurtosis 0.0029 0.0390 0.1106 0.1458 0.1757 

136 Skew 0.0023 0.0431 0.1212 0.1630 0.1965 
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Table B.8 – Acoustic Emission signal feature R-squared values 

# 

Acoustic Emission 

Feature Type 
R-squared for Polynomial Models 

1st Order 
2nd 

Order 
3rd Order 4th Order 5th Order 

137  RMS 0.4408 0.8145 0.8732 0.8911 0.9150 

138 Variance 0.4306 0.8008 0.8556 0.8800 0.9022 

139 Kurtosis 0.2908 0.2932 0.4415 0.4606 0.5593 

140 Skew 0.0498 0.0721 0.0822 0.1068 0.1111 

141 
Peak-to-

Peak 
0.3030 0.3949 0.4860 0.5001 0.5118 

142 Crest Factor 0.0077 0.0457 0.0753 0.0774 0.0779 

143 Peak 0.2862 0.3700 0.4602 0.4790 0.4875 

144 

Original 
Power 

Spectrum 

Mean 0.4295 0.8669 0.8697 0.9152 0.9154 

145 Variance 0.2017 0.6795 0.6801 0.6817 0.6818 

146 Kurtosis 0.0842 0.1373 0.1375 0.3079 0.3112 

147 Skew 0.0741 0.1387 0.1399 0.3721 0.3751 

148 

Band of 
Power 

Spectrum 

Mean 0.3092 0.8465 0.8565 0.8833 0.8839 

149 Variance 0.1880 0.6506 0.6512 0.6513 0.6513 

150 Kurtosis 0.1072 0.1482 0.1497 0.2872 0.2917 

151 Skew 0.1021 0.1431 0.1431 0.3427 0.3495 

 

Table B.9 – Favored model order by avoiding overfitting for each feature, listed 

by feature 

# Ord. # Ord. # Ord. # Ord. # Ord.. # Ord. # Ord. 

1 5 23 5 45 5 67 5 89 5 111 3 133 5 

2 5 24 5 46 4 68 5 90 5 112 5 134 5 

3 5 25 5 47 5 69 5 91 5 113 5 135 5 

4 5 26 5 48 5 70 5 92 5 114 5 136 5 

5 5 27 5 49 5 71 5 93 5 115 5 137 5 

6 5 28 5 50 5 72 5 94 5 116 5 138 5 

7 5 29 5 51 5 73 5 95 5 117 5 139 5 
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8 5 30 5 52 5 74 5 96 5 118 5 140 5 

9 5 31 4 53 5 75 5 97 5 119 5 141 5 

10 5 32 5 54 5 76 5 98 5 120 5 142 3 

11 4 33 5 55 5 77 5 99 5 121 4 143 5 

12 5 34 5 56 5 78 5 100 5 122 4 144 5 

13 5 35 1 57 5 79 5 101 5 123 1 145 2 

14 5 36 5 58 5 80 5 102 5 124 1 146 5 

15 5 37 5 59 5 81 5 103 5 125 1 147 5 

16 5 38 5 60 5 82 5 104 5 126 1 148 5 

17 5 39 5 61 5 83 5 105 4 127 4 149 2 

18 5 40 5 62 5 84 5 106 4 128 4 150 5 

19 5 41 5 63 5 85 5 107 5 129 1 151 5 

20 5 42 5 64 5 86 5 108 5 130 5   

21 5 43 5 65 5 87 5 109 5 131 5   

22 5 44 5 66 5 88 5 110 4 132 5   

 

 

Figure B.1: HF Vibration peak for cut 265 and 267 vs spindle revolution 
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Figure B.2: Z-axis vibration peak for cut 199 and 200 vs spindle revolution 
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Figure B.3: X-axis vibration TD peak, range and crest factor for all cuts with cut 

267 data points circled 
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Figure B.4: Y-axis vibration TD peak, range and crest factor for all cuts with cut 

267 data points circled 
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Appendix C Prognosis; Remaining Useful Tool Life 
The main body of this thesis has based the methods on the assumption that the data is 

randomly found to be faulty or in a number of different classes. Another way of looking at 

the data is to consider it to have trajectory, therefore the extrapolation can allow the time 

to a fault to be assessed. For the following analysis, we will assume that we have the ability 

to affordably collect response data from a tool wear trial in order to understand the tool 

wear progression, and therefore the tool life. This section will present a method for 

predicting the remaining useful life (RUL) of a tool based on a single feature by using the 

measurement of flank wear width to define the tools condition. 

It has already been discussed that the life of a cutting tool varies due to the stochastic nature 

of the cutting process, therefore prognosis of the end of a tools life can be difficult to achieve. 

Uncertainty in tool life can be a result of many process variables, such as material property, 

depth of cut and coolant behaviour. Given the inherent uncertainty, a tools life is therefore 

appropriately represented as a probability distribution. 

Bayesian inference can allow us to model the uncertainty in a tools life and update this as 

new information is obtained. Let the prior distribution of an uncertain event, 𝐴, be 𝑃(𝐴). The 

likelihood of obtaining an experimental result, 𝐵, given that event 𝐴 has occurred is then 

𝑃(𝐵|𝐴). The probability of observing the experimental result, 𝐵, without knowing whether 

𝐴 has occurred is 𝑃(𝐵). Bayes rule can be used to determine the posterior belief about an 

event A, following experimental results, as shown by equation (20). 

 

 
P(𝐴|𝐵) =

𝑃(𝐴)𝑃(𝐵|𝐴)

𝑃(𝐵)
 (20) 

An important consideration when applying Bayes rule is how to form the prior distribution 

of the tools life before any experimental observation has been made. The initial prediction 

should be as accurate as possible and may be obtained from a combination of expert opinion 

and previous experimental results. Where multiple experimental observations are made, the 

posterior belief following the first observation becomes the prior belief for the second 

calculation, and so on for all observations. 



Appendices 207 

 

 

Additional tool wear tests have been conducted to assess the feasibility of using Bayes rule 

to predict the RUL of a cutting tool using only spindle power data. The experimental setup is 

similar to that presented in Chapter 4, however in this case a 4 flute, 10mm diameter end 

mill was used with a cutting speed of 115m/min, feed rate of 0.06mm/tooth, radial depth of 

2.5mm and axial depth of 2mm. Through tool coolant at 50bar pressure was used to ensure 

that the dominant tool wear mechanism was abrasive and to be consistent with most 

production processes of this type. The RMS power was sampled over a 6 second period of 

cutting for each pass. Each pass was approximately 13 seconds in cut. The tool wear was 

measured on each flute after every six passes. Three tools were worn until the tool wear in 

each case exceeded 0.3mm flank wear width. The point at which tool wear reaches 0.3mm 

will be considered to be the end of the tools life. The spindle RMS data has been normalised 

to be presented as a % of the first cut taken with each tool. This is consistent with many 

commercial spindle power monitoring systems such as ARTIS CTM [2] and removes some of 

the signal noise observed from the signal from one tool to another. 

Both flank wear width and RMS of spindle power increase over the tools life, as shown in the 

results for the first tool in Figure 9-1 and Figure 9-2 respectively. The end of the tools life is 

reached at 22 minutes where the flank wear width exceeds 0.3mm on at least one of the 

flutes. Spindle power reaches 119% at 22 minutes in cut.  

 

Figure 9-1: Flank wear width measurements for tool 1 
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Figure 9-2: RMS spindle power for tool 1 

An approximation of the spindle power curve can be made by fitting a 2nd order power curve 

to the data. The uncertainty in the spindle power growth as a function of time can then be 

represented by constructing a number of different sample paths, where each has some 

probability. These sample paths will initially represent the prior, where in the first instance 

each path has equal probability. After each observation, the probability of each sample path 

can be updated using Bayes rule. This is shown in equation (21), with the normalising 

constant 𝑃(𝐵) omitted (the product of all curves should be normalised so that the sum is 

equal to 1). 

P(𝑝𝑎𝑡ℎ = 𝑡𝑟𝑢𝑒|𝑡𝑒𝑠𝑡 𝑟𝑒𝑠𝑢𝑙𝑡) ∝ 𝑃(𝑝𝑎𝑡ℎ = 𝑡𝑟𝑢𝑒)×𝑃(𝑡𝑒𝑠𝑡 𝑟𝑒𝑠𝑢𝑙𝑡|𝑝𝑎𝑡ℎ = 𝑡𝑟𝑢𝑒) (21) 

Where 𝑃(𝑝𝑎𝑡ℎ = 𝑡𝑟𝑢𝑒) is the prior probability that a given path is the true spindle power 

growth curve, P(𝑝𝑎𝑡ℎ = 𝑡𝑟𝑢𝑒|𝑡𝑒𝑠𝑡 𝑟𝑒𝑠𝑢𝑙𝑡) is the posterior that the path is the true spindle 

power curve and 𝑃(𝑡𝑒𝑠𝑡 𝑟𝑒𝑠𝑢𝑙𝑡|𝑝𝑎𝑡ℎ = 𝑡𝑟𝑢𝑒) is referred to as the likelihood. 

To test this hypothesis, 1000 sample curves have been constructed by selecting three points 

and fitting a 2nd order power curve in each case. The three points are selected from random 

distributions as follows: 
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• The first point is selected at the start of the tools life (t=0). A normal distribution with 

a mean of 100% and a standard deviation of 3%, N(100,3), is used to determine the 

spindle power at time 0, where N denotes a normal distribution. 

• The second point will be selected at the end of the initial wear stage. In the first tool, 

the tool wear begins to increase more rapidly between 10 and 15 minutes. A uniform 

distribution between these values will be used to define the time at which the initial 

wear stage ends, denoted by U(10,15). Additionally, the spindle power value at this 

point will be N(102,3); a normal distribution with mean 102% and standard deviation 

3%. 

• The final point is selected at the end of the tools life. The tool life is assumed to have 

a mean of 22 minutes and a standard deviation of 3 minutes, based on the result 

from the first tool. The distribution is then denoted as N(22,3). Additionally, the 

spindle power value at the end of the tool life will be assumed to be equally likely to 

be between 110% and 120%, therefore the uniform distribution, U(110,120), is used 

to select this point. 

The construction of each curve from the three points can be summarised in Figure 9-3. 

 

Figure 9-3: Construction of prior from three randomly selected points 
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The first 100 curves generated are shown in Figure 9-4 and the prior cumulative distribution 

function (CDF) is shown in Figure 9-5. 

 

Figure 9-4: 100 randomly generated curves using a 2nd Order power model 

  

Figure 9-5: Prior CDF of the spindle power. The colour bar denotes the 

probability that the tool is worn.  

After each measurement, the posterior CDF is calculated by applying Equation (21) to each 

curve. The likelihood used in this study was a Gaussian distribution of the following form: 

l = 𝑒
−(𝑝−𝑝𝑚)2

2𝜎2  (22) 

Where l is the likelihood, 𝑝 is the power at a given time according to the curve in question 

and 𝑝𝑚 is the measured power at that time. A standard deviation of σ = 3% has  been used 
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for this study. A more conservative estimate of tool life can be achieved by increasing this 

value. 

The RUL of the tool can be calculated using the CDF once you have selected (i) the true 

spindle power % at the end of the tool life, Pt, and (ii) the probability of failure, Pf. Figure 9-6 

shows the prior probability that the tool is worn for Pt = 110% and Pt = 120%. The RUL is 

calculated as 16.8 minutes for Pf=0.05, and Pt=120%. It has been assumed, however, that at 

the point of tool failure it is equally likely for Pf to be between 110% and 120%. The RUL is 

therefore calculated as an average between these values. The prior estimate of the RUL is 

then calculated to be 15.2 minutes. 

 

Figure 9-6: Probability of worn tool for 110% and 120% spindle power 

Figure 9-7 shows the result of calculating the RUL after each observation for Tool1. The 

predicted life is underestimated and becomes more accurate towards the end of the tools 

life. 
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Figure 9-7: Remaining useful life with Pf=0.05 

Two further tests have been conducted to test the method with new data. Tool 2 resulted in 

17.7 minutes in cut before at least one flute showed above 0.3mm of flank wear. The spindle 

power is shown in Figure 9-8 and at 17.7 minutes it was only 108%, far lower than the 119% 

observed for tool 1. Recall that it has been assumed that the end of tool life is equally likely 

to be reached between 110% and 120% spindle power. This may explain why Figure 9-9 

presents a RUL curve that is less conservative in its estimation of tool life when compare to 

tool 1, though it is underestimating the life for most of the observations. 

 

Figure 9-8: Spindle power measurements for tool 2 
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Figure 9-9: RUL estimates for tool 2 

The spindle power and RUL data for tool 3 is presented in Figure 9-10 and Figure 9-11 

respectively. The RUL is again underestimating when using a conservative value for Pf of 0.05. 

An high magnitude outlier is seen in this data of around 125% spindle power and 10 minutes 

machining time. This data point is believed to be an anomaly due to an error in the testing 

depth of cut. The outcome of this single outlier has a minor impact on the RUL estimate, 

demonstrating the methods resilience to outliers in the data set. 

 

Figure 9-10: Spindle power measurements for tool 3 
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Figure 9-11: RUL estimates for tool 3 

The approach presented in this chapter has allowed a prior estimate of tool life and spindle 

power failure threshold to be defined from either experiential knowledge or a training 

experiment. The prediction accuracy of the RUL has shown to improve with time in cut by 

using the Bayesian updating of the degradation model. A limitation of this method is that the 

failure threshold for the spindle power is defined by experiential knowledge and is not 

updated according to the process, however the system could be developed further to 

incorporate an adaptive threshold from observed tool life. 
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Appendix D Matlab and LabView Code Extracts 
Polynomial Model Fitting, Merit Function and Sequential Feature Subset Selection 

clearvars -except e_num ii 
%% Load the complete list of extracted features, as generated by 

LabView prior to subset selection, for each of the 8 sensors: 
file_list{1}='C:\Users\me1tem\Desktop\PhD\Signal Analysis and 

LabView Dec 2014\data\Matlab\MAT Files\604B31-X Accel v2.mat'; 
Sensor{1}='XA '; 
file_list{2}='C:\Users\me1tem\Desktop\PhD\Signal Analysis and 

LabView Dec 2014\data\Matlab\MAT Files\604B31-Y Accel v2.mat'; 
Sensor{2}='YA '; 
file_list{3}='C:\Users\me1tem\Desktop\PhD\Signal Analysis and 

LabView Dec 2014\data\Matlab\MAT Files\604B31-Z Accel v2.mat'; 
Sensor{3}='ZA '; 
file_list{4}='C:\Users\me1tem\Desktop\PhD\Signal Analysis and 

LabView Dec 2014\data\Matlab\MAT Files\352A60-Z Accel v2.mat'; 
Sensor{4}='HF '; 
file_list{5}='C:\Users\me1tem\Desktop\PhD\Signal Analysis and 

LabView Dec 2014\data\Matlab\MAT Files\378C01 Mic v2.mat'; 
Sensor{5}='M1 '; 
file_list{6}='C:\Users\me1tem\Desktop\PhD\Signal Analysis and 

LabView Dec 2014\data\Matlab\MAT Files\HT378B02 Mic v2.mat'; 
Sensor{6}='M2 '; 
file_list{7}='C:\Users\me1tem\Desktop\PhD\Signal Analysis and 

LabView Dec 2014\data\Matlab\MAT Files\Spindle Power v2.mat'; 
Sensor{7}='SP '; 
file_list{8}='C:\Users\me1tem\Desktop\PhD\Signal Analysis and 

LabView Dec 2014\data\Matlab\MAT Files\AE Sensor v2.mat'; 
Sensor{8}='AE '; 
FEAT={}; 
NAMES={}; 
%% Sort the complete feature list into two arrays - feature array 

FEAT and names array NAMES. 
for k=1:8  
    load(file_list{k}) 
    TDCrest=TDPeak./TDRMS;    % Add crest factor to feature list 
    TD_feats={TDMean; TDRMS; TDVar; TDKurt; TDSkew; TDRange; 

TDCrest; TDPeak}; % Setup feature cell arrays (file by whole cut) 
    TD_feats_str={'TDMean'; 'TDRMS'; 'TDVar'; 'TDKurt'; 'TDSkew'; 

'TDRange'; 'TDCrest'; 'TDPeak'}; 
    for i=1:size(TD_feats) % replace NaN to 0 for all TD features 
        feature=TD_feats{i}; 
        feature(feature==0)=NaN; 
        TD_feats{i}=feature; 
    end  
    FD_feats={FDMean; FDVar; FDKurt; FDSkew; Sum5TPFs};% FDPeakFreq 

removed 
    FD_feats_str={'FDMean'; 'FDVar'; 'FDKurt'; 'FDSkew'; 

'Sum5TPFs'};% FDPeakFreq removed 
    for i=1:size(FD_feats)  % replace NaN to 0 for all FD features 
        feature=FD_feats{i}; 
        feature(feature==0)=NaN; 
        FD_feats{i}=feature; 
    end 
    FD_feats_filt={FDMean_filt; FDVar_filt; FDKurt_filt; 

FDSkew_filt};% FDPeakFreq_filt removed 
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    FD_feats_filt_str={'FDMean filt'; 'FDVar filt'; 'FDKurt filt'; 

'FDSkew filt'};% FDPeakFreq_filt removed 
    for i=1:size(FD_feats_filt)  % replace NaN to 0 for all FD filt 

features 
        feature=FD_feats_filt{i}; 
        feature(feature==0)=NaN; 
        FD_feats_filt{i}=feature; 
    end 
    FD_feats_band={FDMean_band_filt; FDVar_band_filt; 

FDKurt_band_filt; FDSkew_band_filt};% FDPeakFreq_band_filt removed 
    FD_feats_band_str={'FDMean band'; 'FDVar band'; 'FDKurt band'; 

'FDSkew band' };% FDPeakFreq_band_filt removed 
    for i=1:size(FD_feats_band) % replace NaN to 0 for all FD band 

features 
        feature=FD_feats_band{i}; 
        feature(feature==0)=NaN; 
        FD_feats_band{i}=feature; 
    end 
    features=[TD_feats; FD_feats; FD_feats_filt; FD_feats_band]; 
    features_str=[TD_feats_str; FD_feats_str; FD_feats_filt_str; 

FD_feats_band_str]; 
    for j=1:21 
        features_str{j}=strcat(Sensor{k},features_str{j}); 
    end 
    FEAT{k}=features; 
    NAMES{k}=features_str;  
    clearvars -except features features_str k FEAT NAMES file_list 

Sensor ii e_num 
end 
%% Convert the feature data cell array to the double array/matrix, X 
names=NAMES'; 
xx=[FEAT{1}; FEAT{2}; FEAT{3}; FEAT{4}; FEAT{5}; FEAT{6};  FEAT{7}; 

FEAT{8}]; 
NAMES=[NAMES{1}; NAMES{2}; NAMES{3}; NAMES{4}; NAMES{5}; NAMES{6}; 

NAMES{7}; NAMES{8}]; 
n=numel(xx); 
for i=1:n 
x=xx{i}; 
x=x(1:400)'; 
xx{i}=x; 
end 
X=cell2mat(xx); 
X=X'; 
clear x xx i k n features features_str file_list nn N Sensor xx FEAT 
%% Delete omitted features 
n=[164, 163, 162, 161, 160, 143, 142, 141, 140, 139]; 
N=numel(n); 
for i=1:N 
nn=n(i); 
X(:,nn)=[]; 
NAMES(nn)=[]; 
end 
clear nn n i N names 
%% Delete Vibration, Mic and AE Means 
n=[1 22 43 64 85 106 143]; 
n=fliplr(n); 
N=numel(n); 
for i=1:N 
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    nn=n(i); 
    X(:,nn)=[]; 
    NAMES(nn)=[]; 
end 
clear i n N nn 
num_feat=size(NAMES);num_feat=num_feat(1,1); 
t=linspace(1,400,400)'; 
%% Delete missing data points: 250, 302-308, 344, 394-398 
n=[250, 302, 303, 304, 305, 306, 307, 308, 344, 394, 395, 396, 397, 

398]; 
N=numel(n); 
for i=1:N 
nn=n(i)-i+1; 
X(nn,:)=[]; 
t(nn)=[]; 
end 
clear nn n i N 
%% Convert X so that each feature has zero mean and unit variance 
for i=1:num_feat 
mu=mean(X(:,i)); 
stdev=std(X(:,i)); 
X(:,i)=X(:,i)-mu; 
X(:,i)=X(:,i)/stdev; 
end 
clear mu stdev i 
%% create a random set of training cuts of length nnn 
%rng(0,'twister'); 
nnn=100; 
r = randi([1 386],1,nnn); 
u=unique(r); 
nn=nnn-numel(u); 
while nn>0 
    r = [u randi([1 386],1,nn)]; 
    u=unique(r); 
    nn=nnn-numel(u); 
end 
clear nn nnn r i N 
%% split X into a training and a testing data set for the polynomial 

model fitting that follows 
Pointer=zeros(1,386); 
Pointer=dec2bin(Pointer); 
Pointer=Pointer=='1'; 
Pointer=Pointer'; 
for i=1:386 
    TRU=u(u==i); 
    if numel(TRU)==1 
        Pointer(i)=1;     
    end 
end 
X_test=X(Pointer,:); 
t_test=t(Pointer); 
X_train=X(~Pointer,:); 
t_train=t(~Pointer); 
clear i TRU 
%% generate polynomial models from the training data and measure the 

R-sqaured with the test data 
for i=1:num_feat 
% Prepare data 
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    TEST=X_test(:,i); 
    TRAIN=X_train(:,i); 
    name=NAMES(i); 
    [xData, yData] = prepareCurveData( t_train, TRAIN ); 
    [xData2, yData2] = prepareCurveData( t_test, TEST ); 
% Set up fittype and options. 
    ft1 = fittype( 'poly1' ); 
    ft2 = fittype( 'poly2' ); 
    ft3 = fittype( 'poly3' ); 
    ft4 = fittype( 'poly4' ); 
    ft5 = fittype( 'poly5' ); 
    opts.Lower = [-Inf -Inf -Inf]; 
    opts.Robust = 'LAR'; 
    opts.Upper = [Inf Inf Inf]; 
% Poly1 
    opts = fitoptions( ft1 ); 
    [fitresult1, gof1] = fit( xData, yData, ft1, opts ); 
    COEF=coeffvalues(fitresult1); 
    for j=1:numel(TEST) 
    TEST_mod(j)=COEF(1)*t_test(j)+COEF(2); 
    end 
    poly1_er=TEST-TEST_mod'; 
    poly_error(i,1)=rms(poly1_er); 
% Poly2 
    opts = fitoptions( ft2 ); 
    [fitresult2, gof2] = fit( xData, yData, ft2, opts ); 
    COEF=coeffvalues(fitresult2); 
    for j=1:numel(TEST) 
    TEST_mod(j)=COEF(1)*t_test(j)^2+COEF(2)*t_test(j)+COEF(3); 
    end 
    poly2_er=TEST-TEST_mod'; 
    poly_error(i,2)=rms(poly2_er); 
% Poly3 
    opts = fitoptions( ft3 ); 
    [fitresult3, gof3] = fit( xData, yData, ft3, opts ); 
    COEF=coeffvalues(fitresult3); 
    for j=1:numel(TEST) 
    

TEST_mod(j)=COEF(1)*t_test(j)^3+COEF(2)*t_test(j)^2+COEF(3)*t_test(j

)+COEF(4); 
    end 
    poly3_er=TEST-TEST_mod'; 
    poly_error(i,3)=rms(poly3_er); 
% Poly4 
    opts = fitoptions( ft4 ); 
    [fitresult4, gof4] = fit( xData, yData, ft4, opts ); 
    COEF=coeffvalues(fitresult4); 
    for j=1:numel(TEST) 
    

TEST_mod(j)=COEF(1)*t_test(j)^4+COEF(2)*t_test(j)^3+COEF(3)*t_test(j

)^2+COEF(4)*t_test(j)+COEF(5); 
    end 
    poly4_er=TEST-TEST_mod'; 
    poly_error(i,4)=rms(poly4_er); 
% Poly5 
    opts = fitoptions( ft5 ); 
    [fitresult5, gof5] = fit( xData, yData, ft5, opts ); 
    COEF=coeffvalues(fitresult5); 
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    for j=1:numel(TEST) 
    

TEST_mod(j)=COEF(1)*t_test(j)^5+COEF(2)*t_test(j)^4+COEF(3)*t_test(j

)^3+COEF(4)*t_test(j)^2+COEF(5)*t_test(j)+COEF(6); 
    end 
    poly5_er=TEST-TEST_mod'; 
    poly_error(i,5)=rms(poly5_er); 
%build R2 array for each of the first 5 polynomial orders 
    R2(i,1)=gof1.rsquare; 
    R2(i,2)=gof2.rsquare; 
    R2(i,3)=gof3.rsquare; 
    R2(i,4)=gof4.rsquare; 
    R2(i,5)=gof5.rsquare; 
[min_size min_element]=min(poly_error(i,:)); 
elements(i)=min_element; 
R2_opt(i)=R2(i,min_element); %this is the optimum R squared value 

selected from the first 5 order polynomials 
end 
%% 

  
%% subset scoring 
subS=zeros(1,148); 
subS(1)=1; 
subS_temp=subS; 
load('feature_polyfit_data.mat') 
subSrfc=fifthOrd;%secondOrd; %using the 2nd order polynomial model 

data in this case 

  
    %get first merit with only 1 feature 
    k=1; 
    subS_temp=dec2bin(subS_temp); 
    subS_temp=subS_temp=='1'; 
    subS_temp=subS_temp'; 
    X_temp=X; 
    FeatsubS=X_temp(:,subS_temp); 
    subSrfc_temp=subSrfc(subS_temp,:); 
    % Calculate Mean Feature-Feature Correlation 
    FeatCorr=zeros(k,k); 
    for i=1:k 
        featA=X(:,i); 
        for j=1:k 
        featB=X(:,j); 
        FeatCorr(i,j)=corr(featA,featB); 
        end 
    end 
    % Calculate Merit.s (merit.s=(k*rfc)/sqrt((k+(k*(k-1)*rff)) 
    %k=number of features in subset 
    %rfc=mean feature-class correlation 
    %rff=mean feature-feature correlation 
    rfc=mean(subSrfc_temp); 
    rff=mean2(FeatCorr); 
    merit(1)=(k*rfc)/(k+(k*(k-1)*rff)^0.5); 

  
k=148; 
for ii=2:148 
    subS_temp(ii)=1; 
    subS_temp=dec2bin(subS_temp); 
    subS_temp=subS_temp=='1'; 
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    subS_temp=subS_temp'; 
    X_temp=X; 
    FeatsubS=X_temp(:,subS_temp); 
    subSrfc_temp=subSrfc(subS_temp,:); 
    % Calculate Mean Feature-Feature Correlation 
    FeatCorr=zeros(k,k); 
    for i=1:k 
        featA=X(:,i); 
        for j=1:k 
            featB=X(:,j); 
            FeatCorr(i,j)=corr(featA,featB); 
        end 
    end 
    % Calculate Merit.s (merit.s=(k*rfc)/sqrt((k+(k*(k-1)*rff)) 
    %k=number of features in subset 
    %rfc=mean feature-class correlation 
    %rff=mean feature-feature correlation 
    rfc=mean(subSrfc_temp); 
    rff=mean2(FeatCorr); 
    merit(ii)=(k*rfc)/(k+(k*(k-1)*rff)^0.5); 
end 
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Silhouette and Gram-Schmidt  

%% Gram Schmidt and Silhouette Feature Selection 
clear all 
%close all 
% Load the feature data file containting: 
% 'C:\Users\me1tem\Desktop\PhD\Matlab 

2015\GramSchmidt\Feat_Data_GS.mat' 
% m = the number of data points in a feature, N = the number of 

features 
% Containing C = 1 by N double of class data, F = m by N matrix of 

feature data 
% Names = N by 1 cell array of strings for the names of each of the 

features 
load('C:\Users\me1tem\Desktop\PhD\Matlab 

2015\GramSchmidt\Feat_Data_GS.mat') 
C=C4;%selected which class data set 
%% initialise a feature subset pointer, subS 
subS=zeros(1,N); 
subS=dec2bin(subS); 
subS=subS=='1'; 
subS=subS'; 

  
index=0; 
h = waitbar(0,'Initializing waitbar...'); 
for k=1:N % Loops every time a new feature is SELECTED 
    for ii=1:N % Loops every time a new feature is TESTED with the 

currently SELECTED feature set 

  
        TRU=any(index==ii);  
        if TRU==1;% Do not repeat on a feature already selected 
            Sil(k,ii)=-1;     

             
        else     
            subS_temp=subS;% Copy the current set of selected 

features 
            subS_temp(ii)=1;% Add a pointer to feature ii 
            K=sum(subS_temp(:));% K is the number of features in 

current subset 
            A=[]; 
            for iii=1:K-1%sort AA to inculde all selected features 

in order they have been selected 
                A=[A,F(:,index(iii))]; 
            end 
            A=[A,F(:,ii)]; 
            % Calculate the GRAM-SCHMIDT 
            for j=1:K%K is the number of features in the current 

subset 
                v=A(:,j); 
                for i=1:j-1 
                    R(i,j)=Q(:,i)'*A(:,j); 
                    v=v-R(i,j)*Q(:,i); 
                end 
                R(j,j)=norm(v);   %R is the square matrix that 

satisfies A=QR 
                Q(:,j)=v/R(j,j);  %Q is the new data set (F'*) 
            end 



Appendices 222 

 

 

             
            % Calculate Silhouette for Q 
            S = silhouette(Q,C); 
            Sil(k,ii)=mean(S);% Add the mean Silhouette to the 

record matrix 
        end 
        clear v A R Q S i j TRU 
        messge=strcat('%d%% k = ',num2str(k), ' of 158'); 
        perc=round(100*(ii/148)); 
        waitbar(perc/100,h,sprintf(messge,perc))    
    end 

     
    Sil_temp=Sil; 
    Sil_temp(:,subS)=-1; 
    [max_value(k), index(k)] = max(Sil_temp(k,:)); 
    Selected{k}=Names{index(k)}; 
    subS(index(k))=1; 

     
    Last_max=max_value(k); 
    FeatsubS=F(:,subS); 
    S = silhouette(FeatsubS,C); 
    S_C(k,1)=sum(S(1:100))/386; 
    S_C(k,2)=sum(S(101:200))/386; 
    S_C(k,3)=sum(S(201:266))/386; 
    S_C(k,4)=sum(S(267:end))/386; 
end 
close(h) 

 

  



Appendices 223 

 

 

Gaussian Mixture Models for Classification 

%% INITIALISE 
% close all 
clear all 
load('C:\Users\me1tem\Desktop\PhD\Matlab 2015\Feature 

Selection\Features158_data.mat') 
% load('C:\Users\me1tem\Desktop\PhD\Matlab 2015\DoC testing 

data\ALL_DoC_Data.mat') 
% load('C:\Users\me1tem\Desktop\PhD\Matlab 2015\Feature 

Selection\feature_polyfit_data.mat') 
% load('C:\Users\me1tem\Desktop\PhD\Matlab 2015\Feature 

Selection\feature_corr_data.mat') 
%% DELETE VIBRATION, MIC AND AE TD MEAN 
num_feat2=[1 22 43 64 85 106 143]; 
num_feat2=fliplr(num_feat2); 
N=numel(num_feat2); 
for i=1:N 
    nn=num_feat2(i); 
    X(:,nn)=[]; 
    NAMES(nn)=[]; 
end 
clear i n N nn 
num_feat=numel(NAMES); 
%% DEFINE CLASS 
CLASS1=ones(1,100);%100 
% CLASS2=ones(1,99);%+1;%199 
% CLASS3=ones(1,67);%+2;%266 
% CLASS4=ones(1,44)+1;%+3;%300 
% CLASS5=ones(1,76)+1;%+4;%386 
% CLASS=[ones(1,267) ones(1,133)+1];% use this for 2 class problem 

(1-267, 268-end) 
CLASS=[CLASS1 CLASS1+1 CLASS1+2 CLASS1+3];%Use this for 4 class 

problem 
clear CLASS1 
%% DELETE NaN ROWS FROM X AND CLASS(250, 302-308, 344, 394-398) 
num_feat2=[250, 302, 303, 304, 305, 306, 307, 308, 344, 394, 395, 

396, 397, 398]; 
num_feat2=fliplr(num_feat2); 
N=numel(num_feat2); 
for i=1:N 
nn=num_feat2(i); 
X(nn,:)=[]; 
CLASS(nn)=[]; 
end 
clear i nn N n 

  
%% ZERO MEAN AND UNIT VARIANCE FOR X 
for i=1:num_feat 
mu=mean(X(:,i)); 
stdev=std(X(:,i)); 
X(:,i)=X(:,i)-mu; 
X(:,i)=X(:,i)/stdev; 
end 
clear mu stdev i 
%% SELECT FEATURE SUBSET 
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subs_all{1}=[41 31 121 30 57 3 42 21 12 32 72 10 45 63 22 71 61 

83];% 1st order Poly MERIT 
subs_all{2}=[14 25 3 13 32];% 3rd order Poly MERIT 
subs_all{3}=[61 43 71 139 16 62 134 70 136 24 74 94 76];% 30] 

removed because of gm computation error;% 5th order Poly MERIT 
subs_all{4}=[5 6 7 45 46 47 65 66 67];% Transient Feature Set 
subs_all{5}=[89 109 112 92 108 102 52 88 72 82];% 2-Class Cluster 

Seperation 
subs_all{6}=[41 42 57 30 37 77 144 31 61 148];% 4-Class Cluster 

Seperation 
subs_all{7}=[41 30 77 144 61];% 4-Class Cluster Seperation - 

Duplicates Removed 
subs_all{8}=[41 30];% test 

  
%---SELECT HERE--- 
subs=subs_all{6}; 
%----------------- 
num_feat2=numel(subs); 
for i=1:num_feat2 
    n=subs(i); 
    X_2(:,i)=X(:,n); 
end 
clear i n subs_all 
%% CLASSIFICATION 
CLASS_DATA=[CLASS' X_2]; 
%% SELF CLUSTERING using GMM 
figure 
for num_c=2:8 %number of clusters 
    rng('default');  % For reproducibility %rng(1)%; 
    options = statset('MaxIter',1000);  
    try 
    

gm=fitgmdist(X_2,num_c,'Options',options,'RegularizationValue',0.001

); 
    catch exception 
    disp('There was an error fitting the Gaussian mixture model') 
    error = exception.message 
    end 

     
%   P= posterior(gm,X_2); 
    idx = cluster(gm,X_2); 
    idx_reserve=idx; 

     
    % score clustering method using silhoette and my own method 
    s(:,num_c-1)=silhouette(X_2,idx); 
    s_mean(num_c-1)=mean(s(:,num_c-1)); 

     
        idx_score=0; 
    for i=2:numel(idx) 
        if idx(i)==idx(i-1) 
        else 
            idx_score=idx_score+1; 
        end 
    end 
    idx_s(num_c-1)=idx_score-(num_c-1); 

  
    if num_c==2 
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        idx(idx==1)=[10]; 
        idx(idx==2)=[80]; 
    elseif num_c==3 
        idx(idx==1)=[80]; 
        idx(idx==2)=[60]; 
        idx(idx==3)=[10]; 
    elseif num_c==4 
        idx(idx==1)=[60]; 
        idx(idx==2)=[80]; 
        idx(idx==3)=[70]; 
        idx(idx==4)=[10]; 
    elseif num_c==5 
        idx(idx==1)=[10]; 
        idx(idx==2)=[50]; 
        idx(idx==3)=[60]; 
        idx(idx==4)=[70]; 
        idx(idx==5)=[80]; 
    elseif num_c==6 
        idx(idx==1)=[70]; 
        idx(idx==2)=[10]; 
        idx(idx==3)=[30]; 
        idx(idx==4)=[50]; 
        idx(idx==5)=[60]; 
        idx(idx==6)=[80]; 
    elseif num_c==7 
        idx(idx==1)=[50]; 
        idx(idx==2)=[80]; 
        idx(idx==3)=[20]; 
        idx(idx==4)=[70]; 
        idx(idx==5)=[30]; 
        idx(idx==6)=[10]; 
        idx(idx==7)=[60]; 
    elseif num_c==8 
        idx(idx==1)=[80]; 
        idx(idx==2)=[10]; 
        idx(idx==3)=[60]; 
        idx(idx==4)=[70]; 
        idx(idx==5)=[50]; 
        idx(idx==6)=[20]; 
        idx(idx==7)=[30]; 
        idx(idx==8)=[40]; 
    else 
        'error line 147'; 
        return     
    end 

  
    c1 = (idx == 1); 
    c2 = (idx == 2); 
    c3 = (idx == 3); 
    c4 = (idx == 4); 
    c5 = (idx == 5); 
    c6 = (idx == 6); 
    c7 = (idx == 7); 
    c8 = (idx == 8); 
    % Clusters vs Time plot 
    idx2=[idx idx]'; 
    % figurefig 
    subplot(7,1,(num_c-1)) 
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    contourf(idx2) 
end 

  

  

     
%% 
col1=[0 1 0];%green 
col2=[1 1 0];%yellow 
col3=[1 0.6 0.2];%orange 
col4=[0 1 1];%cyan 
col5=[1 0 1];%magenta 
col6=[1 0 0];%red 
col7=[0 0.4 1];%blue 
col8=[0.4 0 0.75];%purple 
colm=[col1;col2;col3;col4;col5;col6;col7;col8]; 
% colm=colm(1:num_c,:); 
colormap(colm) 

  

  
%% plot axis edits 
for i=1:7 
subplot(7,1,i) 
set(gca,'ytick',[]); 
ylabel('1 Cluster','rot',0); 
ylabh = get(gca,'YLabel'); 
label_y=[num2str(i+1),' Clust.']; 
ylabel(label_y,'rot',0,'Position',get(ylabh,'Position') - [20 .5 

0]); 
end 
xlabel('Number of Cuts'); 
for i=1:6 
subplot(7,1,i) 
set(gca,'xtick',[]) 
end 

  
%% Plot PCA 2D 
[wcoeff,score,latent,tsquared,explained] =pca(X_2); 
C=idx;%_reserve; 
x=score(:,1); 
y=score(:,2); 

  
c1=10; 
c2=20; 
c3=30; 
c4=40; 
c5=50; 
c6=60; 
c7=70; 
c8=80; 

  
figure() 
scatter(x(C==c1),y(C==c1),'o','MarkerEdgeColor','k','MarkerFaceColor

',colm(1,:)); 
hold on 
scatter(x(C==c2),y(C==c2),'o','MarkerEdgeColor','k','MarkerFaceColor

',colm(2,:)); 
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scatter(x(C==c3),y(C==c3),'o','MarkerEdgeColor','k','MarkerFaceColor

',colm(3,:)); 
scatter(x(C==c4),y(C==c4),'o','MarkerEdgeColor','k','MarkerFaceColor

',colm(4,:)); 
scatter(x(C==c5),y(C==c5),'o','MarkerEdgeColor','k','MarkerFaceColor

',colm(5,:)); 
scatter(x(C==c6),y(C==c6),'o','MarkerEdgeColor','k','MarkerFaceColor

',colm(6,:)); 
scatter(x(C==c7),y(C==c7),'o','MarkerEdgeColor','k','MarkerFaceColor

',colm(7,:)); 
scatter(x(C==c8),y(C==c8),'o','MarkerEdgeColor','k','MarkerFaceColor

',colm(8,:)); 
xlabel('1st Principal Component') 
ylabel('2nd Principal Component') 

  
%% not using pca for plot 
x=X_2(:,1); 
y=X_2(:,2); 
figure() 
scatter(x(C==c1),y(C==c1),'o','MarkerEdgeColor','k','MarkerFaceColor

',colm(1,:)); 
hold on 
scatter(x(C==c2),y(C==c2),'o','MarkerEdgeColor','k','MarkerFaceColor

',colm(2,:)); 
scatter(x(C==c3),y(C==c3),'o','MarkerEdgeColor','k','MarkerFaceColor

',colm(3,:)); 
scatter(x(C==c4),y(C==c4),'o','MarkerEdgeColor','k','MarkerFaceColor

',colm(4,:)); 
scatter(x(C==c5),y(C==c5),'o','MarkerEdgeColor','k','MarkerFaceColor

',colm(5,:)); 
scatter(x(C==c6),y(C==c6),'o','MarkerEdgeColor','k','MarkerFaceColor

',colm(6,:)); 
scatter(x(C==c7),y(C==c7),'o','MarkerEdgeColor','k','MarkerFaceColor

',colm(7,:)); 
scatter(x(C==c8),y(C==c8),'o','MarkerEdgeColor','k','MarkerFaceColor

',colm(8,:)); 
xlabel('1st Principal Component') 
ylabel('2nd Principal Component') 

  

  
%% Plot PCA 2D 
[wcoeff,score,latent,tsquared,explained] =pca(X_2); 
C=idx;%_reserve; 
x=score(:,1); 
y=score(:,2); 
z=score(:,3); 

  
c1=10; 
c2=20; 
c3=30; 
c4=40; 
c5=50; 
c6=60; 
c7=70; 
c8=80; 

  
figure() 
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scatter3(x(C==c1),y(C==c1),z(C==c1),'o','MarkerEdgeColor','k','Marke

rFaceColor',colm(1,:)); 
hold on 
scatter3(x(C==c2),y(C==c2),z(C==c2),'o','MarkerEdgeColor','k','Marke

rFaceColor',colm(2,:)); 
scatter3(x(C==c3),y(C==c3),z(C==c3),'o','MarkerEdgeColor','k','Marke

rFaceColor',colm(3,:)); 
scatter3(x(C==c4),y(C==c4),z(C==c4),'o','MarkerEdgeColor','k','Marke

rFaceColor',colm(4,:)); 
scatter3(x(C==c5),y(C==c5),z(C==c5),'o','MarkerEdgeColor','k','Marke

rFaceColor',colm(5,:)); 
scatter3(x(C==c6),y(C==c6),z(C==c6),'o','MarkerEdgeColor','k','Marke

rFaceColor',colm(6,:)); 
scatter3(x(C==c7),y(C==c7),z(C==c7),'o','MarkerEdgeColor','k','Marke

rFaceColor',colm(7,:)); 
scatter3(x(C==c8),y(C==c8),z(C==c8),'o','MarkerEdgeColor','k','Marke

rFaceColor',colm(8,:)); 
xlabel('1st Principal Component') 
ylabel('2nd Principal Component') 
zlabel('3rd Principal Component') 
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LabView Segmentation and Feature Extraction Code 
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