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Abstract 

 

The work presented in this thesis investigates the characterization of laser produced 

plasmas and develops applications in opacity experiments using plasma emission as a 

back-lighting source.  A diagnostic is developed to analyse bremsstrahlung emission from 

hot electrons produced in the laser plasma interaction.  Combining a compensating filter 

technique with an x-ray diode array allows for the hot electron temperature to be deduced 

with good accuracy (±0.5keV).  A layered target comprising 0.8µm Al and 1.0µm Fe is 

used to investigate the opacity of iron plasma.  A laser of modest irradiance 

(~ 1015 W cm-2) is fired onto the aluminium surface, producing Al Kα emission (1.5 keV) 

which is used to measure the opacity of the conductively heated iron layer.  The 

aluminium plasma is characterized using source broadened spectroscopy and continuum 

emission analysis.  The experimental transmission data is in good agreement with 2D 

modelling using opacities from the Ionised Materials Package.  A line focus back-lighter, 

produced using a high power laser system, is characterized through imaging the time and 

spectrally integrated emission profile of the plasma using a crossed-slit camera.  The 

emission profile is used to infer a spatially dependant electron temperature profile.  

Finally, a Ti Kα back-lighter is used to investigate the temporal evolution of the Rayleigh-

Taylor instability in a laser produced plasma.  A target, seeded with an initial perturbation 

between layers of copper and plastic exhibited Rayleigh-Taylor growth within the first 

100ps of the interaction with a growth rate of 10 ± 2 ns-1. 
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1. Introduction 

 

The first maser (microwave amplification by stimulated emission of radiation) was 

observed by Townes, Zeiger and Gordon [1] at Columbia University, New York in 1954.  

Townes went on to share the 1964 Nobel Prize in physics with Basov and Prokhorov for 

their work which led to the construction of the first laser in 1960 by Maiman [2].  Many 

advances have been made since this first demonstration using a ruby rod and a xenon 

flash lamp.  The advent of the Chirped Pulse Amplification (CPA) scheme introduced a 

method of amplifying the short pulses that had arisen from improvements in active and 

passive mode locking.  The CPA scheme was first implemented by Strickland and 

Mourou at the Laboratory for Laser Energetics (LLE), Rochester and was originally 

designed to be analogous to the amplification used in radar transmission [3].   

A short light pulse produced in a laser oscillator is stretched temporally using a system of 

gratings before being introduced into the gain medium.  As a result of the increase in 

pulse length, the intensity of the pulse remains below the damage threshold of the gain 

medium, the original limiting factor in maximum output intensity.  After amplification, 

the laser pulse is passed through another series of gratings, reversing the dispersive 

stretching, reducing the pulse duration to one similar to the input pulse length.  This 

technique allows the production of high power laser pulses in the petawatt regime, and is 

now being used to explore fascinating new physics with irradiances > 1021 W cm-2.  Such 

lasers can potentially heat material to relativistic energies (electron velocities approaching 

the speed of light) and produce large volume (100µm × 100µm × 100µm) approximately 

uniform plasmas.  Similarly, other laser advances have enabled the development of cheap 

table-top lasers capable of producing interesting plasmas.  The use of a table-top laser 
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with focussed irradiances up to 1015 W cm-2 is described in this thesis alongside results 

from more intense lasers. 

High power lasers have been used to produce and probe the opacity of dense plasmas.  

There are difficulties in modelling the atomic and other physics involved in plasma 

opacity calculations, especially in the low temperature, high density (warm dense matter) 

regime [4].  Opacity describes how radiation diffuses through a medium as a function of 

temperature, density and composition of the material.  Workshops are regularly held [5] 

to compare the predictions of opacity from various computer codes under specific 

conditions, and large discrepancies are regularly seen [6].  As a result of this, 

experimental benchmarking of these codes is required to ascertain the correct methods for 

calculation.  In astrophysics, knowledge of plasma opacity is required for radiation 

diffusion modelling of stars [7], and of particular interest, is resolving the discrepancy 

between helioseismological observations and solar modelling using opacity simulations 

[8].  In addition, opacity is relevant to inertial confinement fusion (ICF) as accurate data 

is required to model radiative hydrodynamics [9] and hohlraum physics [10]. 

In order to probe plasma opacity experimentally, a back-lighter of sufficient intensity is 

usually required so as to ‘outshine’ the opaque target plasma, i.e. the transmitted intensity 

of the back-lighter must be greater than the emission of the opaque plasma.  Assuming 

black-body emission of a uniform sample plasma, the incident back-lighter intensity, I0, 

must be such that 

�� exp�−�	
� 	> 	Ω� 2ℎ������
��

1
����� − 1�� 

(1.1.1) 

where σ is the absorption cross-section (see chapter 2), L is the path length through the 

plasma, N is the number density of absorbers, Ω is the solid angle subtended by the back-

lighter, and ν is the frequency of the radiation.  An alternative method to experimentally 
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measure opacity includes recording emission from a buried layer target and invoking 

Kirchhoff’s law [11] (see section 2.3.3).  Measuring the propagation time of a radiation 

heat wave (Marshak Wave) [12] can also provide a measure of the frequency averaged 

(Rosseland) mean opacity.   

The method commonly used to investigate opacity employs x-rays emitted from a second 

laser produced plasma created by irradiating a high Z target [13-16]. Plasma based EUV 

lasers (often referred to as x-ray lasers for historical reasons) have been generated using a 

grazing incidence pumping (GRIP) scheme and used to measure longitudinal transmission 

through plasma at specific wavelengths [17].  The grazing incidence pumping scheme 

utilises a long laser pulse, normally incident onto a slab target focussed into a line to 

create a long scale length plasma, to enhance the x-ray lasing by reducing refraction.  A 

second shorter pulse is fired into the pre-pulse plasma, at a grazing incidence, producing 

the population inversion necessary to generate lasing.   

The purpose of utilising grazing incidence pumping in the production of EUV lasers is 

two-fold; firstly it establishes a travelling wave which is used to pump the x-ray laser, and 

secondly, by modifying the angle, absorption can be maximised at the optimum density 

for lasing.  The x-ray laser has been used to probe an opaque target, heated by a second 

optical laser, ensuring the beam passes through unheated and heated material 

simultaneously to allow for direct comparison on each shot.  The experiment 

demonstrated by Edwards et al. [17] utilised a Ni-like (1s22s22p63s23p63d10) silver x-ray 

laser (4d – 4p transition) at 13.9nm to probe a 50nm layer of iron, tamped in plastic, 

heated by an 80ps pulse containing 6 - 9J.  This allowed for the direct comparison 

between the obtained experimental data and simulated data produced by considering 

approximately 26 000 tabulated transitions.   
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When testing simulation results of opacity, iron is often used as a test case for a number 

of reasons.  Firstly, iron is the heaviest element produced via stellar nucleosynthesis, so is 

particularly relevant to the internal structure of stars.  This is especially seen in the case of 

our sun, as although the abundance of iron is ~30,000 times smaller than that of 

hydrogen, iron opacity contributes significantly to the radiative transfer in the solar 

interior, particularly in the region of the interface layer between the radiative and 

convective zones [18].  Secondly, iron makes for a practical case study with regards to 

simulations, due to the different methods involved in simulating opacity.  There are two 

commonly used methods in opacity calculations, the unresolved transition array (UTA) 

and detailed term accounting (DTA) [4] (see section 2.2.5).  Iron has enough complexity 

to enable the averaging methods of UTA and STA to be utilised, but is not so complex as 

to make detailed term accounting impractical. 

Improvements in the understanding and production of high order harmonics [19-21] are 

now providing a possible new avenue for investigating opacity.  High harmonic 

generation (HHG) can provide a method in which the opacity for a number of different 

wavelengths could be investigated simultaneously, as opposed to a single wavelength per 

shot.  In a small number of shots, introducing an incremental shift in the fundamental 

frequency, enough data can be collected to directly measure the Planck and Rosseland 

mean opacities (discussed in Chapter 2).   

When an intense laser pulse is focused into a low density gas, non-linear interactions 

cause the emission of radiation at integer multiples of the fundamental frequency of the 

laser.  The laser electric field gives rise to a distortion in the atomic potential which in 

turn allows an electron to tunnel ionise.  This free electron is accelerated by the lasers 

electric field, outwards and back again when the field reverses, causing the electron to 

recombine with the parent ion, emitting radiation.  However, strong ionisation inhibits 

harmonic production in the gas and as a result the intensity of the laser must be kept 
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below 1015 – 1016 Wcm-2 [22], which in turn limits the intensity of the harmonic, meaning 

the relationship denoted in equation 1.1.1 is difficult to achieve.  A more suitable option 

for utilising harmonics would be those produced in laser plasma interactions on solid 

surfaces.  It is known that a number of different mechanisms contribute to the production 

of harmonics in this interaction [22], including resonance absorption, parametric 

instabilities, ionisation fronts and relativistic nonlinearities.  Some of these processes are 

discussed in Chapter 2.  From this point onwards, when harmonic generation is discussed, 

I refer to the laser plasma interaction at a solid surface. 

The advent of x-ray free electron lasers (XFELs), such as FLASH in Hamburg and the 

LCLS at Stanford, provide further possibilities for opacity experiments.  Free electron 

lasers are created by passing a relativistic beam of electrons through a transverse, periodic 

magnetic field, causing them to follow a sinusoidal path.  The motion of the electrons 

results in the emission of synchrotron radiation, the frequency of which can be tuned by 

adjusting the energy of the electron beam or the strength of the magnetic fields.  Due to 

the lack of appropriate x-ray mirrors, the magnetic undulator cannot be placed within a 

laser cavity to amplify the beam.  It is therefore necessary for the XFEL to have a high 

enough amplification over a single pass of the electron beam.  This is achieved via self-

amplified spontaneous emission (SASE) and microbunching.  As the electron beam enters 

the magnetic undulator, spontaneous undulator radiation is produced.  This radiation then 

acts as a seed for the remaining section of the undulator.  The radiation seed initiates the 

process of microbunching.  Electrons that lose energy to the light wave travel on a 

sinusoidal path with a larger amplitude than the electrons gaining energy from the light 

wave.  This difference in amplitude causes a modulation of the longitudinal velocity, 

resulting in the bunching of the electrons close to the position of maximum energy 

transfer to the light wave.  This increase in radiation energy enhances the microbunching 

effect, causing an exponential increase in the energy of the pulse until all available 
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electrons have been optimised.  This process of microbunching produces a high gain 

XFEL without the requirement of a laser cavity. 

The tuneable nature of the free electron lasers would allow opacity to be investigated over 

a range of wavelengths readily and easily.  X-ray free electron lasers could also be used to 

heat opaque target materials to create warm dense matter, a regime of particular interest 

as stated. An experiment performed using FLASH in Hamburg by Nagler et al. [23] 

demonstrates how a sample absorbed the 13.5nm (92eV) x-rays through direct 

photoionisation from the inner L-shell.  Due to an increase in ionisation potential after the 

first electron was removed, the 92eV photons were unable to eject a second electron, 

causing the sample to become highly transmissive.  The photoionised electrons decay via 

radiative or Auger decay, the latter transferring energy to the valence electrons, heating 

the material to the warm dense matter regime (< 25eV in temperature). 

A requirement for all opacity experiments is accurate information concerning plasma 

conditions in both the back-lighter and the opaque target.  For this reason a large portion 

of this work is devoted to modelling and analysing emission from these plasmas to 

provide high quality data concerning plasma parameters.  As previous experiments have 

normally required high powered laser systems with multiple beams, an investigation has 

been carried out to examine the possibility of using a single beam, table top laser system 

to perform opacity experiments.   

The outline of this thesis is as follows, chapter 2 will cover the physics of the laser plasma 

interaction and a discussion of some of the computer modelling codes used.  Chapter 3 

will describe the development of a solid state diode array for hard x-ray detection for use 

in opacity experiments.  Chapter 4 will examine an opacity experiment which utilises a 

single beam laser system of modest parameters.  Chapter 5 will investigate the spatial 

temperature distribution of a Germanium back-lighter in an experiment that has a similar 
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set-up to the plasma based x-ray laser experiment by Edwards et al. [17].  Chapter 6 will 

present an experiment which examines the Rayleigh-Taylor instability within laser 

produced plasma through use of a Ti Kα back-lighter.  Chapter 7 will present the 

conclusions of this work. 
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2.  Plasma Physics and the Laser Plasma Interaction 

 

This chapter reviews some background physics behind the work presented in subsequent 

chapters.  Section 2.1 presents a discussion of laser plasma interactions, including 

electromagnetic wave propagation in plasmas and various processes which occur in laser 

produced plasmas, such as the generation of fast electrons.  Section 2.2 examines the 

atomic physics behind plasma opacity, and includes a discussion of the Rosseland and 

Planck mean opacities, different methods used for simulating opacity and the need for 

experimental opacity benchmarking.  Section 2.3 reviews the theory of plasma emissivity. 

Detection of plasma emission is a useful diagnostic for conditions within plasma, as is 

shown in chapters 3, 4, 5 and 6.  Section 2.4 discusses spectral line shapes and broadening 

effects that can be used to investigate plasma parameters, followed by a description of the 

models that can be used to determine population dynamics within plasma in section 2.5. 

The theoretical framework behind three simulation codes, used for the modelling of laser 

produced plasmas in this work, is discussed in section 2.6. 

 

2.1 The Laser Plasma Interaction 

A laser pulse incident onto a solid target is partially reflected and partially absorbed 

within the material causing localized heating, ablation, ionisation, and subsequently, the 

expansion of material from the absorption region of the laser.  This expansion of material 

from the target produces a density gradient of approximate scale length L ≈ cst, where cs is 

the ion acoustic speed of the plasma and t is the duration of the expansion.  The ion 

acoustic speed is a function of ionisation,	�, electron temperature, Te, and ion mass, mi, 

with		�� = !"��#$% &� �⁄  cm s-1.  A laser pulse with sufficient duration will produce a density 
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gradient before the end of the laser pulse which subsequently interacts with the expanding 

plasma. 

2.1.1 Electromagnetic Wave Propagation and Absorption in Plasma 

The linear dispersion relationship for a high frequency, planar electromagnetic wave of 

the form (�), +� = (�exp	,-�.) − /+�0 in a plasma with a uniform density is given by 

/� = /12� +	.���, where ωpe is the density dependant plasma frequency describing 

charge-density fluctuations within the plasma.  The plasma frequency defines the 

minimum frequency which a light wave must possess when propagating through the 

plasma as the wave vector k becomes imaginary if ω < ωpe.  The plasma frequency is 

given by	/12 = !4#25$#67&� �⁄ , where ne is the local electron density, and me is the mass of 

the electron.  A critical density,	89 = :;595$#6725<=5 = 1.1 × 10�� !�A$<= &� �BC� [24], can be 

defined, beyond which a light wave of wavelength λL cannot penetrate.  Positions within 

the plasma where ne < ncr are described as ‘under-dense’ and positions with ne > ncr are 

‘over-dense’.   

Laser absorption occurs by inverse bremsstrahlung (see section 2.2) within the under-

dense region and near the critical surface at typical densities ≤ 0.01 g cm-3 [2].  Beyond 

the critical surface, lies the ‘transport domain’ (with densities ranging from ~0.01 g cm-3 

to solid density) where the absorbed energy from the laser pulse is transported to the 

ablation surface.  This energy is generally transported via the diffusive process of thermal 

conduction.  However, a small component of higher energy electrons (‘hot’ electrons – 

see section 2.1.3) can propagate ahead of the thermal conduction front, pre-heating the 

target.  Plasma radiation can also pre-heat the target ahead of thermal conduction.  Due to 

conservation of momentum, ablating plasma causes a shock wave to propagate away from 

the absorption region, into the solid target, creating the ‘compression domain’ typically at 

densities up to 4 times solid.  Figure 2.1 demonstrates the different regions. 
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Figure 2.1 Different regions, and typical temperatures and densities in the laser 

plasma interaction, as simulated by the 1D hydrodynamic code EHYBRID [25] (see 

section 2.4) for a pre-pulse of 8x10
12

 Wcm
-2

 with duration 300ps and a main pulse of 

1x10
15

 Wcm
-2

 of duration 3ps incident 250ps after the peak of the pre-pulse.  The 

profiles are shown for a time corresponding to 9ps after the start of the main pulse. 

A self-similar solution [24] describing the one-dimensional expansion of a planar, 

isothermal plasma shows that the electron density profile of freely expanding plasma can 

be described by	82 = 8� exp !− D9EF&.  We see in figure 2.1 that the electron density 

profile does fall approximately exponentially, while the temperature profile is such that 

there is a steep rise from the ablation surface to an approximately constant value followed 

by a small drop at larger distances as plasma expansion becomes significant. 

A high intensity laser pulse exerts light pressure PL on the plasma [2]; 

GH = �H� �1 + I� J 3.3	LMNO P �H10�Q	R	�BC�S �1 + I� (2.1.1) 
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where R is the reflectivity of the laser.  The effect of this light pressure is to steepen the 

density gradient near the critical surface, although localised heating at the critical density 

can also cause steepening (as can be seen in figure 2.1). 

 

Figure 2.2 Airy values as a function of T.  UV�T� represents the electric field of the 

laser pulse. 

The electromagnetic propagation of a laser in a plasma density profile can be treated 

analytically by assuming a linear density profile [2] with	82 = 89 WH, where z = 0 is the 

plasma-vacuum interface and L is the scale length of the plasma such that when z = L, 

then ne = nc.  Using this linear relationship, the dielectric function of a plasma,	X = 1 −
4#4Y = 1 − WH, and substitution into the electric field wave equation gives 

Z5[�W�ZW5 + \595 !1 − WH& (�)� = 0. (2.1.2) 

By changing the variable z to the dimensionless variable ], where	] = !\595H&� �̂ �) − 	�, 
one obtains, 

��(�]��]� −](�]� = 0 
(2.1.3) 

which is known as the Stokes differential equation.  The solution to this equation is given 

by the Airy functions, Ai and Bi, such that 
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 (�]� = N_-�]� + M`-�]� (2.1.4) 

where a and b are coefficients found by examining the solution at the plasma boundaries.  

The values for Ai and Bi, as a function of ϕ are shown in figure 2.2. 

As `-�]� → ∞ as	] → ∞, b = 0 in equation 2.1.4, as the laser cannot penetrate beyond 

the critical density of the plasma at	] = 0.  Therefore the electric field variation of the 

laser within the plasma is represented by the Airy function,	_-�]�. 
2.1.2 Obliquely Incident Laser-Plasma Interaction 

The previous analysis assumes a planar electromagnetic (EM) wave normally incident 

onto a target, with the density gradient opposing the direction of propagation of the laser.  

If we consider an obliquely incident planar EM wave, with an angle θ between the 

direction of the density gradient and the direction of propagation of the incident laser 

pulse, as shown in figure 2.3, the waves are refracted before reaching the critical density 

surface. With an obliquely incident wave, the wave vector k has an additional constant 

component in the y-direction.  Reflection of the light pulse occurs when kz = 0, 

where	.W = !\9& cos f, therefore the light is reflected when 82 = 89 cos� f as shown in 

figure 2.3.   

There are two cases to consider for the polarisation of the electric field with oblique 

incidence, s- and p- polarised light.  For both s- and p-polarised light there is an 

evanescent wave (which decays approximately exponentially) that penetrates beyond the 

light reflection point and swells at the critical density to give a large electric field.  The 

swelling of the electric field is due to the resonant response of the plasma when	/12 =
/H . 
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Figure 2.3 Schematic demonstrating a laser pulse obliquely incident onto linearly 

varying density plasma with	gh = gi jk. 
For s-polarised light, the electric field is in the x direction, perpendicular to (or ‘out of’) 

the plane of incidence (y-z plane), as shown in figure 2.3.  In this case, the large electric 

field resonantly produced at the critical density is orthogonal to the density gradient.  For 

p-polarised light, the electric field of the laser pulse is parallel to (or ‘in’) the plane of 

incidence, as shown in figure 2.3.  Here there is a component of the electric field which 

drives charge density fluctuations along the direction of the density gradient, which can 

be in turn resonantly enhanced by the plasma, producing an electron plasma wave.  The 

energy of this non-linear plasma wave is then absorbed through collisional and collision-

less processes.  This is referred to as resonance absorption and can provide a source of 

‘hot’ electrons. 

2.1.3 Hot Electrons 

The term ‘hot electron’ describes an electron that has gained a high kinetic energy 

through its interaction with the electric field of the laser.  Unlike inverse bremsstrahlung, 

where the absorbed energy is used to heat the bulk of the electrons, resonance absorption 

transfers the absorbed energy to a small group of electrons, resulting in high energies.  
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The hot electrons are produced by the resonant interaction of the laser electric field with 

the plasma and therefore the electron energy has a dependence on the value of Iλ2
 of the 

laser.  This stems from the ponderomotive force induced by the high frequency field of 

the laser, and the relation can be seen simply by examining the equation of motion in the 

direction of the laser electric field for an electron with charge e and mass me we have that, 

lm = �(B2/H sin	�/H+� (2.1.5) 

where E is the linearly polarised electric field amplitude and ωL is the angular frequency 

of oscillation of the laser electric field.  The ponderomotive energy, Up, is the cycle 

averaged kinetic energy 

p1 = � 12�; \⁄
� B2lm � = ��(�4B2/H� 

(2.1.6) 

where the electric field of the laser is related to the intensity by 

� = 12 X�8�(� 
(2.1.7) 

where n is the refractive index of the medium, thus 

p1 = ���2X��8B2/H� = ���rH�8X���8B2t�	. (2.1.8) 

A number of scaling laws have been experimentally deduced [26-28], relating Iλ2 of the 

laser to the hot electron temperature.  Two commonly accepted scaling laws are [2] 

u��.�v� = 10 ! w=<=5��xyz9${5A$5&�.��±�.�} (for Iλ2 ≥1015 Wcm-2µm2) 
(2.1.9) 

 

and 

 

u��.�v� = 10 ! w=<=5��xyz9${5A$5&� �̂												(for Iλ2	≤	1015 Wcm-2µm2). 
(2.1.10) 

 

Hot electron generation in laser produced plasmas and the subsequent interaction with 

matter is currently a much debated topic due to the relevance with inertial confinement 

fusion [27].  These high energy particles propagate ahead of the laser induced shock wave 
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and pre-heat the target material, changing the compression hydrodynamics of the fusion 

capsule.  High velocity electrons could also be used to transfer energy into the high 

density fuel created through the laser ablation of the outer shell of the fusion capsule, 

igniting the fusion reaction (known as fast ignition) [29]. 

2.1.4 Generation of High Harmonics 

The process of resonance absorption discussed above is also of particular significance to 

the generation of high harmonics at the critical density.  Resonance absorption provides a 

large ponderomotive force which causes a localised oscillation around the critical density.  

If a component of the electric field lies in the direction of the density gradient, an 

electrostatic charge separation is produced and the wave is no longer entirely sinusoidal 

and as the EM wave cannot penetrate the over dense region of the plasma, a non-

propagating, localised, electrostatic oscillation is established.  As the motion of the 

electrons is along the direction of the plasma density gradient, the oscillation generated is 

non-sinusoidal and so contains high order Fourier components which generate harmonics 

of the fundamental frequency, ωL.  It is useful to note that these non-sinusoidal 

oscillations can also be produced via vacuum heating or the Lorentz force when the 

electrons move relativistically [30]. 

High harmonic generation is of particular interest in opacity experiments.  If one were 

able to achieve a high enough intensity of the harmonics to achieve the condition 

described by equation 1.1.1, then it would enable a range of frequencies to be probed in a 

single shot.  Introducing a slight shift in the fundamental frequency, would cause the 

produced harmonics to also shift, meaning enough data could be acquired to directly 

measure the Planck and Rosseland mean opacities (discussed in the next section) in a 

small number of shots [31]. 
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2.2 Plasma Opacity 

Opacity describes the interaction of radiation within a medium, i.e. the scattering and 

absorption processes, and is a frequency-dependant measure of the impenetrability of a 

medium to electromagnetic radiation.  Plasma opacity can be difficult to model 

computationally due to the sheer number of possible transitions and processes within a 

hot, dense plasma with a range of ionisation species, temperatures and densities.   

As radiation propagates through plasma, photons are absorbed resulting in a loss of 

overall radiation intensity when exiting the medium.  The reduction in intensity, described 

by the transmission, T=I/I0, where I0 is the initial intensity and I is the transmitted 

intensity, is given by 

u = exp �−� ����lD
� � = exp �−� ���lD

� � 
(2.2.1) 

 where κν is the opacity (cm2/g), ρ is the material density (g/cm3), x is the thickness of the 

medium, and αν is the absorption coefficient (cm-1).  The absorption coefficient of plasma 

can be calculated using [32] 

�� = 8���,� = ℎ�4t `��, .�8�ℒ��� (2.2.2) 

where nj is the number density of particles of type j, σjk is the cross-section for the 

scattering/absorption process being considered between energy levels j and k, ℒ(ν) is the 

absorption line profile (see section 2.4) and B(j,k) is the Einstein B coefficient.  The 

difficulty in calculating the opacity using equation 2.2.2 comes from calculating atomic 

energy level populations, degrees of ionisation and excitation, and in determining the 

cross-sections for the various processes. 

2.2.1 Free-Free Absorption 

Inverse bremsstrahlung (free-free absorption), where a photon is absorbed by an electron 

in the presence of an ion, is particularly relevant to photon energies of a couple of eV or 
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less.  The cross-section for this process is related to the ion and electron density, ni and ne, 

the ionisation,	�, and the photon frequency, ω, and is given by [33] 

��� = 32t�3√3 �
Q�ℏ���B2�� 1�2tB2��.u2�� �⁄ �8�82 1�ℏ/�� ����ℏ/� (2.2.3) 

where gff is the Gaunt factor with value approximately equal to unity [34]. 

2.2.2 Bound-Free Absorption   

Photo-ionisation processes (bound-free absorption), exhibit a series of absorption edges in 

the absorption coefficients corresponding to different ionisation stages.  Photoionisation is 

particularly relevant in optically thick plasmas (��� ≥ 1, where D is the thickness of the 

plasma) due to the mean free path of the photon being smaller than the dimensions of the 

plasma.  There are a number of different methods to calculate the cross-section for photo-

ionisation, each with a different level of accuracy.  The simplest method is to calculate the 

cross-section for K-shell electrons only, where for a photon with energy above the 

binding energy of the K-shell, the cross-section is given by [33] 

�����C��2����ℏ/� = 8t��3B2�� �:�}2} �⁄ �B2��ℏ/ �� �⁄  
(2.2.4) 

and with a photon energy below the binding energy,	�����C��2��� = 0.  In equation 2.2.4, α 

is the fine structure constant and Z is the atomic number of the plasma.  A more 

sophisticated model includes an analysis of the explicit hydrogenic wavefunction to 

calculate the cross-section for hydrogen-like ions.  The cross section for H-like ions is 

given by [33] 

�����C���2� = 64t81ℏ3� �⁄ B2� 1�� �
�("C�,4��ℏ/ �

�
 

(2.2.5) 

which considers the binding energy, ("C�,4�	, of an electron in shell np.  Work has been 

carried out to extend the theory further to consider inner shell electrons in complex ions 

[35-37].  The main difficulty in calculating the total bound-free cross section is 
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performing a weighted sum of the absorption coefficients of all ionisation stages and 

excitation levels contained within a plasma. 

2.2.3 Bound-Bound Absorption 

Line photo-absorption occurs when an incident photon has the same energy as the 

difference between two bound electron states, resulting in an electron excited from a 

lower energy level to a higher level.  In order to deduce the line photo-absorption cross-

section, one needs to determine the degeneracies nu and nl for the upper and lower levels, 

the oscillator strength, fu-l, for the transition and assign a normalised line profile, ℒ�ℏ/� 
(discussed in section 2.4).  The cross-section is then given by [33], 

��� = 2t�O�ℏ� 8�8� ��→�ℒ�ℏ/� (2.2.5) 

where	O� = �� B��⁄  is the electron electromagnetic radius. 

The final process to consider is scattering of the light by electrons (Thompson or 

Compton scattering if the electron is relativistic) which can dominate at very high plasma 

temperatures.  The Thompson scattering cross-section is independent of temperature with 

the classical cross section [33], σth, 

�F� = 8t3 O�� 
(2.2.6) 

It has been found that free electron degeneracy has an effect on the contribution of 

Thompson scattering to the total opacity [38].  This is especially relevant in high density 

plasmas such as those found in the central region of the sun.  For accurate opacity 

calculations, this must be taken into account by introducing a correction factor [39] to 

equation 2.2.6 that is dependent upon the temperature and density of the plasma. 

2.2.4 Rosseland and Planck Mean Opacities 

As the opacity of plasma is photon frequency dependant, it is useful to be able to refer to 

some average value that can be determined for a certain frequency range.  There are two 

such averages that can be considered, each valid for different plasma conditions.  The 
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Rosseland mean opacity is applicable when plasma is optically thick, (when	��� ≥ 1, 

where D is the thickness of the plasma) and radiation propagation can be treated as a 

diffusion process.  The Rosseland mean opacity is the average opacity, harmonically 

weighted by the temperature derivative of the Planck black body equation.  The 

Rosseland mean opacity, κR, can be expressed as [33] 

1�� =
� 1�� � �̀�u ��
�� �̀�u ��  

(2.2.7) 

where κν is the frequency dependant opacity as in equation 2.2.1 and Bν is the Planck 

black body function.  The Planck mean opacity, κp, is more relevant when plasma is 

optically thin, (when	��� ≪ 1) and is weighted using the Planck black body equation, 

such that [33] 

�� = ��� �̀��� �̀�� . (2.2.8) 

In both equations 2.2.7 and 2.2.8, the Planck equation and its temperature derivative is  

�̀��, u� = 2ℎ���� 1
����� − 1 

(2.2.9) 

� �̀�u = 2ℎ��:���.u�� �����
P����� − 1S� 

(2.2.10) 

It is often useful to use approximations when examining opacity.  One such 

approximation is Kramer’s law [40], which states that,	�� ∝ �uC� �	⁄ , and that the 

Rosseland mean opacity,		�� ∝ �uC� �⁄ , where ρ is the density of the material.  The 

Kramer opacity is generally applicable when free-free absorption is the dominant 

absorption process. 

2.2.5 Opacity Simulations 

Numerous computer codes have been written to simulate opacity.  There are some large 

discrepancies between the codes that need resolving, particularly when simulating warm 
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dense matter [41].  The codes available use one of 3 general methods for opacity 

simulation.  The average atom (AA) model assumes all atoms within a plasma are 

identical and have the same ionisation and excitation as the average values of the plasma 

before calculating the opacity.  This method is not particularly accurate due to the 

complex distribution of ionisation species and levels of excitation within a plasma.   

The unresolved transition array (UTA) method does not resolve each individual term or 

multiplet within the bound-bound opacity calculation, and therefore does not require a 

detailed line shape.  It instead assumes that lines associated with terms and multiplets 

overlap, and can be treated as a single line with a Gaussian line shape.  This is the case 

when the number of bound electrons increases so as to create a spectrum with a large 

number of closely spaced lines, with spacing smaller than their width, making them 

unresolvable.  Each transition array is primarily characterised by the first two moments of 

the spectral distribution, i.e. the average energy and the spectral width [42]. However, in 

some cases [43] the skewness (third moment and measure of asymmetry in the spectral 

distribution) must be considered to allow for a non-symmetrical line shape.   

The third method for opacity calculation is generally accepted as the most accurate but 

the most computationally intensive. Detailed term accounting (DTA) takes into account 

every possible process a photon could undergo when traversing a plasma.  This method 

requires detailed line shapes for all transitions which must include any line broadening 

mechanisms (discussed in section 2.4).  The UTA approach is more suitable for the 

heavier atoms with large numbers of lines present, and the DTA approach is more suitable 

for the lighter elements. 

The issue that arises from using computer codes is the lack of experimental evidence.  In 

an astronomical sense, plasma opacity is not directly observable and thus makes it 

difficult to compare theory and experiment directly.  High power laser experiments, with 
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carefully controlled conditions, allow for plasma opacity data to be collected in order to 

benchmark these codes and confirm their accuracy. 

 

2.3 Emissivity of Plasma 

Section 2.2 discussed radiation absorption processes within a plasma.  A similar analysis 

can be applied to emission radiating from a plasma, as the inverse of the opacity 

processes. 

2.3.1 Free-Free Emission   

Bremsstrahlung (free-free emission) produces a continuum of radiation where the 

logarithm of the x-ray energy spectrum is a straight line when the electron distribution is a 

Maxwellian.  Often laser produced plasmas are best represented using a bi-Maxwellian 

structure due to the presence of hot electrons (see section 2.1).  The plasma is described 

by two temperature components, a thermal (or ‘cold’) temperature, Tc, representing the 

bulk of the plasma electrons, and a suprathermal (or ‘hot’) temperature, Th, describing the 

smaller number of high energy electrons produced by the interaction of the laser electric 

field with the plasma.  A sample bremsstrahlung x-ray spectrum for aluminium is shown 

in figure 2.4, assuming a bi-Maxwellian structure, an electron density of 1x1021 cm-3, 

(critical density for a 1µm laser), a thermal temperature of 500eV and a suprathermal 

temperature of 10keV.  This spectrum shows that, for the example considered, the 

emission of photons with energy hν < 1keV is dominated by the thermal region of the 

plasma and the emission of photons with energies above 1keV is dominated by the 

suprathermal component.  The free-free emission from plasma can be calculated [33] 

using 

G���ℏ/���ℏ/� = 323 !t3&
� �̂ �:B2��� P I¡.u2S

� �̂ ��8�82 exp P− ℏ/.u2S ��ℏ/�
 

(2.3.1) 
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where Pff is the energy (eV) emitted in a 1eV spectral region around the photon energy 

ℏ/ per unit volume and time, Ry is the Rydberg energy, and the other symbols used have 

the same meanings as in equation 2.2.3.  As with free-free absorption, a multiplicative 

Gaunt factor, gff, can be introduced to account for quantum mechanical effects.  To 

account for a two-temperature electron distribution, equation 2.3.1 is calculated for both 

temperatures and the total emission is given by the summation (figure 2.4), taking into 

account the smaller number of hot electrons, nh, in comparison to the number of cold 

electrons, nc, by introducing a relative fraction, f, such that 8� = �89. 

 

Figure 2.4 Two-temperature component x-ray energy spectrum due to free-free 

emission (bremsstrahlung) for an aluminium plasma with density ne=1x10
21

 cm
-3

 

and assuming the number of hot electrons consists of 10% of the number of cold 

electrons. 
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Figure 2.5 Bound-free contribution to continuum emission showing edge structure.  

Calculated using the spectral modelling code FLYCHK [44] for aluminium with 

ne=1x10
21

cm
-3

, Tc=500eV, Th=10keV, and with the number of suprathermal electrons 

as 10% of the total number of electrons. 

2.3.2 Free-Bound Emission 

Recombination radiation (free-bound) occurs when an electron recombines with an ion, 

emitting a photon, and contributes to the continuum emission spectrum.  This type of 

emission contains an ‘edge’ structure (figure 2.5) corresponding to the binding energies of 

the various ionisation states.  For photons with energy greater than the binding 

energy,	("C�,$, of the ion after recombination, the power emitted due to a free-bound 

process is given by [33] 

G��  643 !
t
3&

� �⁄ �O���8�82 ¢P("C�,$ � Δ¤"C�.u2 S¥� �
⁄

 

? � 181�� exp P�
�/
.u2S ¦1 � G",$§ 

 

(2.3.2) 

where m indicates the quantum numbers of the state, B  �81, ¨�, ∆¤"C� is the continuum 

lowering due to an increased plasma density and Pζ,m is the population probability of the 
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final bound state.  The contribution to the total continuum emission by recombination 

radiation is shown in figure 2.5 and is calculated using the spectral modelling code 

FLYCHK [44] (discussed in section 2.6.2). 

2.3.3 Bound-Bound Emission 

Spectral line emission (bound-bound) is emitted when an electron decays from an excited 

state to a lower energy level, emitting a photon with energy equal to the difference 

between the levels.  The power of line emission can be calculated using [33] 

G��  
",$ª�/",$ª→",$_��,B« → �,B�ℒ��/� (2.3.3) 

where ζ is the ion charge, m and mʹ are the lower and upper states respectively, 

�/",$ª→",$ is the energy of the transition and thus the emitted photon energy, 
",$ª is the 

density of ions with charge and state (ζ, mʹ),  _��,B« → �,B� is the Einstein A 

coefficient for the decay from state mʹ to m and ℒ��/� is the normalised line shape. Line 

emission is characteristic of the element and the plasma conditions from which it 

originated and as such can be used to characterise the laser produced plasma.  K-alpha 

(Kα) emission is of particular interest to this work (see chapters 4 and 6) and originates 

when an electron has a transition from the L-shell of an ion to fill a vacancy in the 

innermost K-shell, emitting characteristic radiation at a specific wavelength.  In laser 

plasmas, the vacancies in the K-shell are predominantly caused by the interaction with hot 

electrons generated by the laser electric field, so Kα emission can be assumed to only 

occur during the laser interaction, giving a well defined time of emission. 

Now that absorption and emission processes within plasma have been discussed, it is 

useful to note that even though it is stated in section 2.2 that plasma opacity is not directly 

observable; Kirchhoff’s Law can be used to estimate plasma opacity.  Kirchhoff’s Law 

states that, in equilibrium, the emissivity of a plasma is related to its absorptivity by  
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2ℎ��
��

1
����� � 1  �̀��, u� (2.3.4) 

 where ην is the emission coefficient, related to the Einstein A coefficient in a relationship 

similar to that of the absorption coefficient, αν, in equation 2.2.2.  By detecting the 

radiation emitted from plasma, one can estimate its absorption and thus the opacity. 

 

2.4 Spectral Line Shapes and Line Broadening Effects. 

The profile associated with line emission can be used to diagnose conditions within 

plasma.  One such method examines broadening effects that have different dependences 

on the conditions surrounding the ion emitting the radiation.  The line profile introduced 

in sections 2.2 and 2.3 is a function normalized to unity and describes the shape of a 

spectral line such that  

��/��/  ��ℒ�/��/ (2.4.1) 

where I(ω) is the number of photons emitted within the frequency range ω to ω+dω and 

I0 is the total number of photons emitted in the spectral line.  The line profile function is 

generally described by either a Gaussian or Lorentzian distribution or a convolution of the 

two known as a Voigt function. 

2.4.1 Line Broadening 

There are a number of broadening mechanisms that can affect the shape and width of a 

spectral line.  The minimum width a spectral line can have is determined by natural line 

broadening and is due to the finite lifetime of ionic excited states and results in a 

Lorentzian profile.  This process is the smallest of the broadening mechanisms and as a 

result is generally difficult to detect due to effects from other processes.   

Doppler broadening originates from the motion of the emitting ions which results in a 

difference in frequency between the detected photon in the laboratory frame and the 
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emitted photon in the moving frame of the emitting ion.  For a Maxwellian distribution of 

velocities, the net result is the broadening of the spectral line into a Gaussian shape with a 

width dependent upon the temperature of the plasma, i.e. the higher the temperature, the 

faster the ion, the greater the line width.   

Two additional broadening mechanisms are due to the interaction of the emitting ion with 

surrounding particles within the plasma and are collectively known as pressure 

broadening.  Electron impact broadening occurs when the emitting ion undergoes a 

collision with a free electron within the plasma.  The effect of this process is to produce a 

shifted Lorentzian profile with a width which is proportional to the electron density and 

inversely proportional to the square root of the plasma temperature [33].  Quasi-static 

Stark broadening occurs when the radiating ion interacts with another slow moving ion.  

The slow moving ion generates a fluctuating static electric field on the emitting ion which 

in turn causes the energy levels to split and shift as described by the Stark effect.  The 

result of this process is to produce an almost Lorentzian line profile with a slightly 

stronger decrease in the wings of the line which is proportional to the distribution of the 

electric field strength within the plasma [33].   

One final broadening effect that is relevant to the experimental measurement of line 

width, as is shown in chapter 4, is that of source broadening.  In this case, the linear 

source size of the plasma causes photons of the same wavelength, originating from 

discrete regions of the plasma, to strike different areas on the dispersion element (see 

figure 2.6).  As the dispersion angle is the same for photons of the same energy, the line is 

broadened on the recording media (e.g. CCD) as a result.  This results in a broadening 

mechanism that acts as an ‘emission map’ of the laser produced plasma.  This effect is 

covered in more detail in chapter 4. 
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Figure 2.6 Source size line broadening (not to scale) showing the effect on two 

different wavelengths, λλλλ1 and λλλλ2, with Bragg angles θθθθB1 and θθθθB2 respectively, 

resulting in Gaussian line profiles at the detector. 

2.5 Population Dynamics 

As discussed in the previous sections, one of the issues when modelling laser produced 

plasmas is the complex distribution of ionisation stages and levels of excitation.  There 

are a number of approximations that can be used in order to establish the population 

distribution within plasma at a specific temperature. 

2.5.1 Local Thermodynamic Equilibrium (LTE) 

Thermodynamic equilibrium occurs when the rate of each process within a plasma is 

exactly equal to its inverse process, the electron and ion velocities are described by a 

Maxwell-Boltzmann distribution, and the photons have a Planck energy distribution.  

Local thermodynamic equilibrium is applicable when the size of a plasma is smaller than 

the mean free path of photons emitted from within the plasma, yet larger than the 

collision length of the electrons and ions and the population densities of quantum states 

(but not the radiation field) are in thermal equilibrium [33].  For plasma in LTE, the ratio 

between the partial ion densities of each ionisation stage, Nζ, can be deduced using the 

Saha equation, 
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Figure 2.7 Fractional ionisation plot for germanium (Z=32) at ne=1x10
21

 cm
-3

, 

assuming LTE. 

The relationships denoted by equations 2.4.2 – 2.4.4 have been incorporated into a 

computer code written in FORTRAN in order to deduce the fractional ionisation of an 
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element for a range of temperatures (figure 2.6).  The behaviour of the average ionisation 

according to the LTE approximation for germanium is shown in figure 2.7. 

Once the charge state distribution for an element has been determined, the Boltzmann 

equation can be used to deduce the distribution of excited states.  The notation, Nζ,m, is 

used to represent the density of ions with charge ζ in quantum state m (where m=0 is the 

ground state), where 
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and Mζ is the maximum number of excited states for a particular ionisation level.  The 

Boltzmann equation states  
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where gζ,m is the statistical weight of state m within an ion of charge ζ.  Combining the 

Saha and Boltzmann equations (2.5.1 and 2.5.5) enables a full description of the 

population distribution for a plasma with temperature Te to be deduced. 

2.5.2 Coronal Equilibrium 

The coronal equilibrium approximation is applicable in low density, optically thin 

plasmas.  Due to the low plasma density, collisions between particles are infrequent and 

thus the collisional excitation rate is low in comparison to the spontaneous decay rate.  As 

a result, the majority of the ions can be assumed to be in their ground state, simplifying 

the population distribution.  The process of collisional de-excitation can also be neglected 

as the rate of radiative de-excitation is much greater. The main processes occurring in 

coronal plasmas are electron impact ionisation, and radiative and dielectronic 

recombination, the rates of which are equated in order to deduce the charge state 

distribution.  Hence for coronal equilibrium, the distribution of charge states is given by 

[33] 
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where ´"C�→" is the rate of electron impact ionisation, µ"→"C��¶�  is the rate of radiative 

recombination and µ"→"C��Z�  is the rate of dielectronic recombination.  Calculation of these 

different rates can be somewhat problematic, however there are approximations that can 

be used [33].  The behaviour of the average ionisation, as calculated using the coronal 

equilibrium approximation, as a function of temperature is shown in figure 2.7 with a 

comparison to the average ionisation as calculated by the LTE approximation. 

 

Figure 2.8 Average ionisation as a function of temperature for germanium at an 

electron density of ne=5x10
20

 cm
-3

 using the LTE and coronal approximations. 

2.5.3 Collisional-radiative steady state (CRSS) 

The collisional-radiative steady state (CRSS) approximation relies on all of the rates of 

population and de-population being equal in a steady state plasma in order to determine 

the population distribution.  Due to the large number of processes involved, the 

calculations can become rather complex and as a result often the excited state distribution 

is not considered using this model and obtained elsewhere (for example from the LTE 
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model).  This reduces the number of rate coefficients to those involving ionisation and 

recombination only.  The ionisation distribution is then obtained by considering the rates 

of, electron impact ionisation	´"→"·�, radiative and dielectronic recombination (two-body 

interactions), µ"·�→"���  and 3-body recombination	µ"·�→"���  respectively.  The distribution is 

then determined by 


"·�
"  ´"→"·�
µ"·�→"��� 3 82µ"·�→"���  

(2.5.7) 

where again approximations [33] are used to estimate the various rate coefficients. 

2.6 Computer Simulation Codes 

There are a number of different computer codes available for the simulation of a wide 

range of plasma parameters.  The purpose of this section is to introduce three of these 

codes that are used in the work contained in this thesis. 

2.6.1 EHYBRID 

EHYBRID is a hydrodynamic/atomic code developed by G.J. Pert at the University of 

York, UK.  The code is used to simulate detailed atomic interactions and hydrodynamic 

expansion for high temperature laser produced plasmas.  It treats single and multi-layer 

targets by dividing the material into 98 Lagrangian cells and evolving them according to 

the hybrid model of flow [25], producing a plasma profile for each time step.  In the 

Hybrid model of flow, the Lagrangian cell matrix is orientated and evolved in the 

direction normal to the target surface, parallel to the direction of the driving laser.  The 

evolving plasma is assumed to be isothermal in the direction parallel to the target so 

expansion in the transverse direction can be treated by assuming a self-similar Gaussian 

profile.  The density and temperature information computed is used to perform detailed 

atomic calculations in order to determine the lasing on x-ray lines such as those seen in 

Ni-, Ne-, and F-like systems.  The atomic calculations use a collisional-radiative model to 

give a full time-dependant ionisation balance for each Lagrangian cell.  In addition to the 
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terms considered in equation 2.5.7, collisional excitation and de-excitation are taken into 

account in order to determine level populations for an arbitrary number of atomic levels 

within each ionisation stage.  The collisional excitation and ionisation rates are calculated 

via either a Gaunt factor approximation or an analytical fit to the collision strengths for a 

range of temperatures [45].  Three body recombination rates are deduced using the 

principle of detailed balance.  Dielectronic recombination is approximated using 

Hagelsteins model [46] for specified ionisation stages (e.g. Ne-like) and uses an average 

atom model for all other ionisation stages.  Radiative recombination is accounted for 

using Griem’s method [47] and modified by a trapping factor [48].  An example 

calculation using EHYBRID, undertaken by the author, is shown in figure 2.1. 

2.6.2 FLYCHK 

FLYCHK is a population kinetics and spectral modeling code produced by the National 

Institute of Standards and Technology (NIST) in the US [44] and is accessible through a 

web interface.  The code uses the LTE and CRSS approximations stated in section 2.5 

(user specifies) to deduce the ionization and population distributions of a specified 

element at different temperatures and densities in zero dimension.  The collisional and 

radiative rate equations are solved for steady state and time dependant cases (user 

specifies) using locally stored atomic data to provide the user with a range of 

spectroscopically observable output.  

2.6.3 LPIC ++ 

LPIC++ is an electromagnetic, relativistic 1D3V (1 spatial, 3 velocity dimension) 

particle-in-cell (PIC) simulation code [49], written in C++, for the laser-plasma 

interaction created at the Max-Planck-Institut für Quantenoptik, Germany.  The code 

solves Maxwell’s equations for particles within a plasma in order to deduce electric and 

magnetic field strengths, particle velocities, particle and current densities, etc.  The 

algorithms of Birdsall and Langdon [50], and Villasenor and Bunemann [51] are used.  A 
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relativistic Lorentz transformation is used to account for obliquely incident laser pulses 

and thus can be used to investigate hot electron and high harmonic production. 

 

2.7 Conclusion and Summary 

This chapter has outlined the theoretical principles behind the work presented in the 

subsequent chapters.  It has defined terminology and demonstrated how an 

electromagnetic wave propagates and is absorbed within a laser produced plasma.  Plasma 

opacity gives a frequency-dependant measure of the impenetrability of a medium to 

electromagnetic radiation and can be a difficult quantity to model computationally.  For 

this reason, experiments using high powered lasers must be designed and carefully 

controlled in order to benchmark the numerous codes available and aid with solving the 

discrepancies observed.  For these experiments to be successful, accurate methods of 

characterising the laser produced plasmas must be employed.  The theory of plasma 

emission is well understood and by resolving plasma emission, either spectrally, spatially, 

or temporally, one can gain an accurate insight into the inner processes within plasma.  

This further understanding of plasma opacity can then be carried forward and used in 

other areas such as radiation diffusion models of stars or in energy generation using ICF. 
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3.  Development of a Solid State Diode Array for Hard x-ray 

Detection 

3.1 Introduction 

This chapter outlines the development of a silicon inversion layer photodiode array for the 

detection of bremsstrahlung emission from a laser produced plasma.  The aim is to 

determine the temperature of the hot electron component of the laser-plasma.  Accurate 

measurement of the temperature of hot electron populations in laser-plasmas is needed as 

the hot electrons are responsible for Kα emission [24,52-54], for preheating the target 

ahead of the thermal conduction front [54-57] and for generating ion sources [57,58].  

The diagnostic development described here is designed to be used with our Nd:YAG laser 

system in operation at the University of York.  This table top, high repetition rate (5 Hz) 

laser system fires 0.5J energy in a 170ps pulse giving a focussed irradiance of ~1014–1015 

Wcm-2.   

The x-ray diagnostic consists of 4 silicon inversion layer photodiodes (XUV-100, OSI 

Optoelectronics) mounted on a plastic flange plate, using BNC feedthroughs, inside a 

vacuum chamber, directed towards the front side of targets.  The diode array housing 

prevents light leakage and employs different filtering over each diode to investigate the 

hot electron energy spectrum in order to deduce the temperature.  Electronics outside of 

the vacuum chamber amplify the diode signals and produce voltage pulses proportional to 

the amount of energy incident on each diode, which are in turn captured using an 

oscilloscope and can be read by a computer for analysis.  

This chapter will introduce the theory behind the EUV enhanced silicon inversion layer 

photodiodes and the electronics built in situ that are used in this diagnostic.  Section 3.4 

will describe the diode array housing and the considerations undertaken to ensure lowest 
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possible noise signals.  Section 3.5 will discuss the filtering used in conjunction with the 

photodiodes and the method used to determine the hot electron temperature in the laser-

plasma.  Section 3.6 presents data taken during the testing phase of the diagnostic, 

including a comparison to a single photon counting charge coupled device (CCD).  The 

chapter will conclude with proposals for future experimentation. 

 

3.2 Photodiode theory 

A p-n junction exists where there is a transition from a p-type material to an n-type 

material within a single crystal of semiconductor.  A p-type semiconductor is a material 

which is doped in such a way to have an excess of positively charged holes in its 

equilibrium state and an n-type semiconductor is doped to have an excess of free 

electrons at equilibrium.  When a p-n junction is formed, the majority carriers (holes in p-

type region, electrons in n-type region) diffuse into the opposite region due to the 

difference in Fermi levels (chemical potentials) between the two regions.  This 

recombination of electrons and holes continues until a potential (known as the built-in 

potential) is established across the junction which inhibits the diffusion currents [59].  

The built-in potential is formed by the regions either side of the junction becoming 

charged.  These charged areas extend a short distance on either side of the junction (see 

figure 3.1) and form the depletion layer of the semiconductor.  When an incident photon 

has sufficient energy to excite an electron from the valence band of the semiconductor to 

the conduction band, an electron-hole pair is created.  If this electron-hole pair is 

generated within the depletion layer of the p-n junction then the built-in potential 

separates the hole and electron generating a photocurrent proportional to the incident 

energy of the photon.  In silicon, one electron-hole pair is created for every 3.63 eV of 

incident energy for photons of energy >30eV [60]. 
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Figure 3.1 p-n junction diode cross-section operating under reverse bias. 

Photodiodes are operated in either a photovoltaic or photoconductive mode.  The 

photovoltaic mode has no bias across the diode and as incident light generates electron-

hole pairs, the voltage increases across the p-n junction. This increased voltage causes a 

dark current to flow.  The photoconductive mode utilises a reverse bias across the diode 

and is primarily used for the detection of light as the photocurrent produced is linearly 

proportional to the incident luminous flux [59].  To reverse bias a photodiode, the 

negative terminal of the voltage source (e.g. battery) is connected to the p-type side of the 

p-n junction and the positive terminal is connected to the n-type side (figure 3.1).  By 

introducing this additional voltage across the diode, the holes and electrons in the p-type 

and n-type material respectively are pulled away from the depletion layer.  This in turn 

increases the width of the depletion layer and prohibits current from flowing when light is 

not incident due to the increase in potential across the p-n junction.  Increasing the 

voltage across the diode increases the width of the depletion layer up until a critical value 

(breakdown voltage) where the depletion region breaks down and current can once again 

flow through the p-n junction [59]. 
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In order to fully utilise a p-n junction as a photodiode, careful attention must be given to 

the design of the diode itself.  For example, if light cannot reach the depletion region then 

no signal will be detected.  Figure 3.2 shows a cross section of a silicon inversion layer 

photodiode similar to those used in the diagnostic discussed in this chapter.  Electron-hole 

pairs are created as the incident radiation penetrates through to the depletion layer and 

excites electrons from the valence band to the conduction band of the semiconductor.  As 

the diagnostic discussed in this chapter examines the hard x-ray region of the spectrum, 

the depletion layer must be large enough so as a significant number of photons interact 

within the depletion region.   

As photon energy increases, silicon becomes more transmissive.  However, in some 

regions in the UV, silicon is highly effective at absorbing the radiation as can be seen by 

the transmission plot for 1µm thickness of silicon in figure 3.3.  This means UV radiation 

at these wavelengths is absorbed very close to the surface of the silicon and does not 

penetrate through to the depletion layer and subsequently is not detected.  This effect is 

counteracted through the use of an induced inversion layer which inhibits surface 

recombination [61]. Using a thermally grown silicon oxide (SiO2) on the surface of p-type 

silicon, a surface state charge is introduced, situated within the oxide [61].  At the 

interface between the SiO2 and Si, a spatially shallow junction (of nm thickness) is 

created and is sufficient to collect any photo generated carriers near the surface [61].  This 

junction is due to a thin layer of electrons forming an n-type inversion layer due to the 

charge contained within the oxide at the surface.  This technique increases the sensitivity 

of the diodes in the spectral regions where Si absorption is high.   
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Figure 3.2 Cross-section of a silicon inversion layer photodiode 

 

Figure 3.3 Transmission plot for 1µµµµm thickness of silicon highlighting the efficient 

absorption of silicon for photons of wavelength 6 - 10nm and above 60nm [62]. 
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We used an XUV-100 diode (manufactured by OSI Optoelectronics) for the diagnostic 

described in this chapter.  This diode has a depletion depth of around 5mm [60].  With 

such a large depletion region, ~ 100% of photons with energies up to 18keV are absorbed 

[62], above which photons begin to pass through the silicon layer with a fraction being 

absorbed.  This type of diode has very high stable quantum efficiencies, with one 

electron-hole pair produced for every 3.63eV of incident radiation for photon energies 

above ~30eV [60].  

 

3.3 Reverse Biasing and Charge Sensitive Pre-amplifier 

As mentioned in the previous section, photodiodes are normally operated under reverse 

bias for radiation detection and require some form of current amplification in order to 

detect low light or x-ray signals.  For these reasons, electrical circuitry has been designed 

to collect, temporally integrate, and amplify the diode charge pulse signals before 

providing output to an oscilloscope for measurement.  The circuit used for each diode is 

shown in figure 3.4 and is split up into 7 different components.  Firstly, the reverse bias, 

shown as component 1 in figure 3.4, consists of a DC battery supply (in order to ensure a 

low noise level) of 3.8V, chosen taking into account the breakdown voltage of the 

photodiode of 5V.  Component 2 is a low pass RC filter which is used to remove high 

frequency noise from the bias source.  This component is predominantly in place in case 

an AC power supply is to be used in place of the batteries.  The third component is the 

detector bias resistor and provides AC coupling of the detector to the bias supply.  This is 

opposed to DC coupling which involves connecting the detector to the bias directly, 

giving rise to an offset of the preamplifier output signal.  The detector bias resistor works 

in conjunction with the coupling capacitor (component 4).  The feedback capacitor 

(component 5), the feedback resistor (component 6) and the operational amplifier 

(component 7) form a charge sensitive pre-amplifier and all work together to amplify the 
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signal generated by the photodiode.  Radiation striking the diode produces charge pulses 

which raise the input-end potential of the charge amplifier causing a reverse polarity 

potential to generate at the output end [63].  As the operational amplifier has a very large 

open loop gain (~700,000), this reverse polarity potential works through the feedback 

loop reducing the input-end potential to zero, meaning the charges produced are 

integrated into the feedback capacitor.  The integrated charge is then output as a voltage 

pulse, VOUT, with an opposite polarity to the input voltage induced by the charge pulse 

from the diodes.  As the feedback resistor is connected in parallel to the feedback 

capacitor, the capacitor slowly discharges, meaning the output voltage pulse has a decay 

constant of	¸  ¹�I� , where Cf and Rf are the feedback capacitance and resistance 

respectively.  For the set-up demonstrated in figure 3.4, the decay constant τ = 100µs. 

 

Figure 3.4: Pre-amplifier and reverse bias circuit for a silicon inversion layer 

photodiode, numbered boxes are referred to in the text. 

The gain produced by the circuitry shown in figure 3.4 comes from using the feedback 

capacitance Cf in the circuitry to produce the output voltage pulse as opposed to the in-

built capacitance of the diode, Cd.  The voltage across a capacitor is determined by, 

V=Q/C, where Q is the charge and C is the capacitance.  The XUV-100 diodes used here 

have an internal capacitance of typically 6nF [60], and as this is being substituted by a  
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Figure 3.5 Charge sensitive pre-amplifier and reverse bias for x-ray diode array 

with BNC input/output and separate power supply for op-amps.  Batteries of size 

AA shown on the left hand side of the box illustrate the scale. 

feedback capacitance of 2pF, the circuit will give a gain of ~3000.  A useful parameter to 

consider in this case is the sensitivity, S, of the whole system, taking into account the 

charge released by the detector knowing that one electron-hole pair is produced for every 

3.63eV of incident energy.  The output voltage VOUT can be calculated by using equation 

3.3.1, 

vº»�  ¼
¹�  

(�
¹�½  ¾( 

(3.3.1) 

where E is the incident energy on the diode (in eV) and δ = 3.63eV is the amount of 

energy required to produce an electron-hole pair.  For the components used (values shown 

in figure 3.4), 

¾  vº»�(  �
¹�½  0.02Bv/.�v, 

(3.3.2) 

meaning for every keV of incident x-ray energy a 0.02mV output voltage signal is 

produced.  
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The circuitry shown in figure 3.4 has been duplicated for each of the four diodes (using a 

common bias for all channels) and placed in a metal box to minimise noise (figure 3.5).  

As is seen in figure 3.5, the charge sensitive pre-amplifier has BNC input/output to allow 

for coaxial cables to connect the box to the diodes and oscilloscope. 

 

3.4 Diode array housing and isolation 

One of the main issues arising when using a diagnostic that involves amplification of a 

low level signal is that of electrical noise.  The largest source of noise for the diode 

system was found to be voltage pulses originating from the flash lamps of the laser 

charging/discharging acting on the diodes through a ground loop.  The laser electronics 

were at first found to produce a signal in the diodes which is then amplified before 

reaching the oscilloscope as is seen in figure 3.6, dominating over any other signal 

present. This source of noise was removed by completely isolating the diode array from 

anything grounded, including the vacuum chamber.  Careful consideration had to be 

given to the design of the x-ray diode (XRD) housing.  The diodes are mounted on a 

plastic (Tufset – Rigid Polyurethane) flange with 6 BNC vacuum compatible 

feedthroughs.  By mounting the diodes on a plastic flange, not only are ground loops 

prevented, but also capacitive coupling between the coaxial cables, by ensuring the diodes 

are isolated from one another. An aluminium cylinder surrounds all diodes and an 

aluminium plate, on the front, held by a post through the centre is used to cover the diodes 

and to hold filters in place.  The housing is designed to keep a 1mm separation between 

the diodes and the front plate so as not to complete the ground loop.  Aluminium piping is 

also used to restrict the solid angle of the diodes to provide direct line of sight to the 

target only so that the diodes do not act as antennas receiving radio frequency noise.  The 

housing and diodes are shown in figure 3.7. 
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Figure 3.6 Signal (saturated) due to voltage pulses caused by the laser flash lamps, as 

seen on the oscilloscope after amplification.  The vertical axis is voltage with a scale 

of 0.2V per division and the horizontal axis is time with a scale of 80µµµµs per division.  

 

3.5 Hot Electron Temperature 

In order to deduce the temperature of the hot electron component within the plasma 

produced by a 0.5J, 170ps laser focussed to 1015 Wcm-2, the x-ray diodes (XRDs) are 

used to measure bremsstrahlung emission from the plasma with photon energies above 

5keV.  Each of the four XRDs is covered with a different filter to restrict the spectral 

region which is recorded. The measurements in different spectral regions allows for the 

slope of the Maxwellian distribution to be deduced giving the temperature as described by 

equation 2.3.1 in Chapter 2.  As the XRD are recording the emission of photons above 

5keV, there is a negligible contribution from the thermal temperature plasma to the 

readings. 
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Figure 3.7 X-ray diodes (left) mounted on plastic (Tufset) flange with BNC 

feedthroughs and the covering aluminium housing (right).  Each diode has an active 

area of 12mm. 

Photon energy dependant transmission of solid materials can easily be calculated using 

Beer’s Law, given by equation 2.2.1 in Chapter 2, with absorption coefficient data readily 

available online [62].  The four filters chosen for this diagnostic consist of different 

combinations of metal foils and plastic and have been specifically chosen to optimise the 

process of hot electron temperature determination in the temperature regime between 5 to 

15 keV.  The filters chosen are shown in table 3.1. 

Filter Number Filter Components 

Channel 1 200µm Polyimide and 15µm Ni 

Channel 2 200µm Polyimide and 30µm Sn 

Channel 3 15µm Ag and 10µm Al 

Channel 4 50µm Cu and 100µm Ti 

Table 3.1 Filter components used for XRD diagnostic, optimised for hot electron 

temperatures between 5 and 15keV 
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Figure 3.8 Transmitted emissivity due to bremsstrahlung from a laser produced 

plasma with a hot electron temperature of 10keV, assuming a plasma volume of 

8.8x10
-10

 cm
-3

 and a time of emission of 170ps.  Filters 1, 2, 3, and 4 are shown by the 

black solid line, blue dashed line, red dotted line and the green dash-dot line 

respectively.  The transmission of the 5mm depletion layer of the photodiode is taken 

into account. 

The transmission of each filter (including the transmission of the 5mm depletion depth of 

the diode) can be combined with equation 2.3.1 to give a transmitted emissivity plot as a 

function of photon energy incident on the XRDs (see figure 3.8).  Filter number 2 has 

been carefully selected to match the high energy component of filter number 1 as is seen 

in figure 3.8.  This is to allow the signal received by the diode behind filter 2 to 

compensate the diode behind filter 1 by removing the high energy component, thus giving 

a clear measurement of the emission of 5 - 8keV photons.  Using this compensation 

technique gives a measurement of the bremsstrahlung emission in three distinct spectral 

regions as is shown in figure 3.9. 
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One of the main sources of error in determining the hot electron temperature using 

absolute numbers of photons comes from the estimation of the plasma size and the plasma 

time of emission.  This can be avoided by calculating ratios between the different diode  

 

Figure 3.9 Transmitted emissivity plot showing a compensated signal for channel 1.  

There are 3 signal peaks in distinct regions of the hot electron spectrum.  Plasma 

parameters and symbols are the same as in figure 3.8.   

signals, as the plasma volume and emission time terms cancel out, assuming all emission 

originates from the same volume of plasma over the same time period for a single shot.  

The variation of the diode signal ratios as a function of hot electron temperature is shown 

in figure 3.10.  The most accurate method for doing this uses the ratios between channels 

3 and 4 (R1) and between the compensated signal from channel 1 and channel 4 (R2).  

Assuming a 10% error on the oscilloscope reading shows that the hot electron 

temperature can be measured to an accuracy of within 0.5keV.  Hot electron temperatures 

can be measured on a shot to shot basis and calculated quickly using figure 3.10. 
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Figure 3.10 Variation of diode signal ratios as a function of hot electron 

temperature.  Red dashed line is the ratio R1 = (Channel 3)/(Channel 4) and black 

solid line is the ratio R2 = (Compensated Channel 1)/(Channel 4) 

 

3.6 Diode Array Testing 

The XRD array described above has been used to measure the hot electron temperature 

produced by a 0.5J, 170ps, Nd:YAG (EKSPLA SL-312P) laser focussed with an f/4 lens 

on to solid aluminium targets.  The maximum on target intensity achievable with this 

laser is ~1x1015 Wcm-2, as we found best focussing to a spot size of 15µm diameter, 

approximately four times the diffraction limit.  The scaling law given by equation 2.1.10 

predicts a hot electron temperature of 5 – 10keV is produced by a laser with an on target 

intensity ranging from 1014 – 1015 Wcm-2. 
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3.6.1 Experimental Set-up 

The 1.064µm Nd:YAG laser is passed through a Faraday isolator before focussing by an 

f/4 positive ‘bestform’ lens (CVI Melles Griot – BFPL-25.4-100.0-UV) onto an 

aluminium disk at an angle of ~30° to the target normal (figure 3.11).  A bestform lens 

minimises coma, spherical aberration and astigmatism, allowing the laser to be focussed 

to the smallest focal spot size possible with the laser pulse.  The lens has a low-loss, high 

damage threshold anti-reflective coating.  The 2mm thick aluminium target disk is 

mounted on a rotational stage which can be triggered manually or automatically using the 

laser trigger and an arbitrary time delay.  As is shown in figure 3.11, a leakage beam is 

taken from the fourth mirror (point x) along path A and sent to a photodiode (path B), 

calibrated using a calorimeter inside the target chamber, to calculate the on target laser 

energy per shot.  Back reflected infra-red light from the target travels back along path A 

in the opposite direction to the incident laser beam, where the Faraday isolator prevents 

back scattered light from re-entering the laser oscillator and causing damage.  The 

Faraday isolator utilises the magneto-optic Faraday effect to rotate the linear polarisation 

of the laser as it propagates through the medium.  By combining this effect with an input 

and output polariser, laser light can only pass in one direction (towards the target), thus 

preventing back-scattered light from re-entering the laser oscillator.   

Before the back-scattered laser light enters the Faraday isolator, a second leakage beam is 

established and focussed onto a CCD (Basler Scout with Sony ICX 267 Sensor) as shown 

by optical path C in figure 3.11.  Lens 2 shown on optical path C is set at best focus using 

direct reflection of the laser beam by placing a mirror (M1 in figure 3.11) on the laser side 

of lens 1 and focussing the back reflection onto the CCD.  Once lens 2 is set at best focus, 

the mirror M1 is removed, giving the CCD on path C a line of sight to the target.  When 

the focussed laser is incident upon the target it is diffusely scattered over 2π steradians 

and as a result, this set-up can be thought of as a collimation system for a point source 
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situated at the focal point of lens 1.  Only rays which pass through the focal point of lens 

1 will have an image distance tending to infinity and will be collimated by lens 1 and thus 

follow approximately parallel beam paths back along path A to C.  Any rays not passing 

through the focal point will not be collimated by lens 1 and thus will propagate out of the 

path A to C and so will not be detected by the CCD.  As lens 1 approaches best focus, the 

spot size becomes smaller and moves closer to the focal position of the lens.  More of the 

diffusely reflected laser light passes through the focal point of lens 1, meaning more light 

reaches the CCD.  When lens 1 is defocused, the spot size moves away from the focal 

point and becomes larger.  As a result, less light passes through the focal point of lens 1 

and thus less light reaches the CCD.  This effect produces a spot seen on the CCD which 

varies in intensity as lens 1 is moved in and out of focus as shown in figure 3.12. 

 

Figure 3.11 Experimental laser set-up used for the XRD array testing.  The green 

components are lenses and the blue components are infra-red mirrors.  The solid red 

line represents the main laser optical path (path A), the dotted lines are leakage 

beams for energy calibration (path B) and retro-focussing (path C).  The dotted 

component M1 is a removable mirror used to set-up the retro-focussing system. 
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Figure 3.12 False colour images from retro-focussing CCD (left) showing best focus 

(middle) and a lateral movement of lens 1 of +400µµµµm and -400µµµµm (top and bottom 

respectively), a negative movement brings the lens closer to the target.  Plots of 

intensity for various lens positions (right), the black line is at best focus, red lines are 

200µµµµm movements and blue are 400µµµµm movements, dashed are negative movements 

(target closer to lens than best focus) and solid lines are positive movements (target 

further from lens than best focus). 

The x-ray diode array is positioned facing the front side of the target as shown in figure 

3.11.  Short co-axial cables are then used to connect the BNC feedthroughs to the 

circuitry described in section 3.3.  This part of the system is very sensitive to noise as any 

electronic fluctuations picked up at this stage are amplified by the circuitry along with the 

diode signal.  For this reason short co-axial cables are used and the diodes are isolated 

from one another as capacitive coupling between the co-axial cables can produce such 

fluctuations.  After amplification, the signals are sent to oscilloscopes (Tektronix TDS-

220) for capture and processing. 
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3.6.2 Comparison with Single Photon Counting 

In order to compare the effectiveness of the diode array in calculating hot electron 

temperature, a single photon counting charge coupled device (CCD) was set-up as shown 

in figure 3.11 and calibrated using a 55Fe radioactive source.  Single photon counting is a 

technique which uses moderate filtering over a charge-coupled detector in order to 

attenuate the signal to reduce the probability of two photons striking the same pixel.  As 

the charge produced within each pixel of the silicon based device is proportional to the 

incident photon energy, an energy spectrum can be produced through analysis of the 

image recorded [64-66]. 

 

Figure 3.13 Single photon counting spectrum integrated over 900 laser shots on a 

2mm thick Al disk.  Filtering covering the CCD was 56µµµµm aluminium and 100 µµµµm 

polyimide.  The disk is rotated once a second to provide a fresh surface every 5 

shots. 
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The on target laser intensity in this experiment is approximately 1015 W cm-2, which is a 

few orders of magnitude less than the experimental facilities normally used in conjunction 

with this technique.  As a result, the plasma temperatures achieved are cooler, resulting in 

less high energy photon emission.  Due to the high level of thermal emission in 

comparison to suprathermal emission, heavy filtering of 56µm Al and 100µm Polyimide 

is required to remove the lower energy photons and consequently a large number of laser 

shots needed to be integrated to achieve a signal level from which a bremsstrahlung 

spectrum could be produced and a hot electron temperature determined.  The resulting 

single photon counting spectrum in this work was integrated over 900 shots (3 minutes at 

5Hz) and predicted an average temperature over the shots of 7 ± 1 keV as shown in figure 

3.13.  The aluminium target disk was rotated once a second to provide a fresh target 

surface every 5 shots. 

 

Figure 3.14 Single photon counting spectrum showing Al emission lines at 1.5 keV, 

integrated over 5 shots on a 2mm thick Al disk.  The filtering used was 14µµµµm Al and 

2µµµµm aluminised mylar. 
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During the testing phase of the single photon counting diagnostic when much lighter 

filtering (14µm aluminium and 2µm aluminised mylar) was being used, an aluminium 

emission peak at 1.5keV was observed in the produced spectrum, integrated over 5 shots 

(figure 3.14).  This peak is due to aluminium Kα emission originating from the interaction 

of the hot electrons with the solid target.  Al He-like lines would have been present also, 

however, the energy of these transitions are above the Al K-edge and thus would have 

been heavily filtered by the 14µm of aluminium used as a filter for the CCD.  The 

resolution of the technique does not allow for absolute numbers of Kα photons to be 

determined.  Figure 3.14 demonstrates the requirement for heavy filtering as the power 

spectral density for thermal emission (hν < 5keV) is similar to that shown in figure 3.13, 

integrated over 900 shots.  This represents the highest level of exposure for the CCD 

before the analysis can no longer distinguish between individual photons. 

For comparison to the CCD single photon counting the x-ray diode array signals were 

averaged over 128 shots (25.6 seconds at 5Hz) rather than being utilised for temperature 

measurement of single shots.  Averaging over 128 shots, the average temperature of the 

plasma over a large number of shots can be more readily compared to the single photon 

counting result averaged over 900 shots.  The Tektronix TDS-2000 oscilloscope was used 

and allowed for the voltage signals to be averaged over a maximum of 128 shots.  The 

signals obtained are shown in figure 3.15 and predict an average temperature of 7.5 ± 0.5 

keV in agreement with the single photon counting diagnostic. The comparison between 

the single photon counting diagnostic and the x-ray diode array results is viable due to the 

high reproducibility of the laser system.  Figure 3.16 demonstrates the variation of on 

target laser energy, where the variation in laser energy between shots is within 10%. 
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Figure 3.15 X-ray diode signals averaged over 128 shots giving an average 

temperature of 7.5 ± 0.5 keV.  The filter combinations (table 3.1) shown are channel 

1 (black), channel 2 (red), channel 3 (green), and channel 4 (blue). 

 

Figure 3.16 Variation of on target laser energy.  The average energy on target seen is 

379mJ and the variation shot to shot is within 10%. 
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A feature of the diode signals is the MHz frequency peak that appears before the decay 

curve of the signal.  Figure 3.17 shows the diode output on a shorter timescale and shows 

the signal from two different diodes for the same laser shot.  The signal itself follows the 

same trend on both diodes with different peak voltages and is thought to be a feature of 

the response of the electronics.  As the voltage produced by the diode is read from a base 

line to the peak of the decay curve and that the integrated noise signal shown in figure 

3.17 is approximately zero, this noise signal has a negligible effect on the overall result. 

 

Figure 3.17 Noise signal from two separate diodes from the same laser shot, the 

signal has a 10 MHz frequency and the integrated signal is approximately zero. 

 

3.6.3 X-ray diode results 

The main disadvantage of using the single photon counting CCD to determine the hot 

electron temperature of plasmas produced by lasers of intensity ~ 1015 W cm-2 is the large 

number of shots required to obtain an analysable spectrum.  This method cannot be 

operated in a single shot mode for this laser intensity regime and the analysis is difficult 

to do in real time due to image processing requirements.  The x-ray diodes offer a method 
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to deduce the hot electron temperature quickly and on a shot by shot basis.  The diodes 

have been specifically designed to detect and amplify very low radiation levels in 

different regions of the spectrum and by comparing the 4 signals, a suprathermal 

temperature can be determined quickly and accurately, and can be automated using a 

program to read off the oscilloscope traces and perform real time analysis. 

 

Figure 3.18 Comparison between hot electron temperature calculations as the laser 

burns through the target.  The red points are experimental data calculated using R1 

and the black points use R2 (see figure 3.10).  The vertical dashed line represents the 

shot number at which the laser has burnt through the 2mm thick aluminium target. 

As is discussed in section 3.5, two different ratios between the channels are used to 

determine the hot electron temperature.  A comparison of the calculated temperatures 

from each ratio can be used as an additional test as to the quality of the result obtained.  

Figure 3.18 shows a series of measurements taken, where the laser was repeatedly fired 

on to the same area of the target disk, until the laser burnt through the 2mm thick 

aluminium.  Figure 3.18 shows, firstly, a good agreement between the calculated 
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temperatures from the two ratios and secondly, the temperature decreases as the laser 

burns through the target.  As the laser is not re-focussed after each shot, the on target 

intensity decreases as the focal position of the lens is progressively further away from the 

target surface due to the ablation of the target.  This lower on target intensity causes a  

Figure 3.19 Change in diode signal when the laser burns through the 2mm 

aluminium target.  The black lines are the signals on each of the four channels 

(numbered 1 to 4 as in table 3.1 reading left to right) from the first (in focus) shot 

and the red lines are the diode signals on the shot after burn through. 

reduction in the hot electron temperature.  The reduction in hot electron temperature 

observed as the laser becomes de-focussed is not as would be expected using the scaling 

laws in section 2.1.3.  One would expect to see a decrease in hot electron temperature 

until the electron energy was low enough to effectively thermalise within the thermal 

plasma making it indistinguishable from the thermal population of electrons.  This is most 

likely not observed due to the combination of the de-focussed laser pulse interacting with 

the sloped walls of the conical cavity, which has been shown to increase hot electron 
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generation [67], and thermal self-focusing of the laser within the laser produced plasma 

[68].  This combination results in a smaller reduction in hot electron temperature as the 

laser de-focuses.  This trend is only seen to continue until the point at which the laser 

burns through the target where the temperature increases to ~ 7 keV, and remains 

approximately constant and the individual diode signals rapidly increase by a factor of ~ 4 

(see figure 3.19).  This increase in signal is very sudden (figure 3.20) and occurs on the 

shot where visible emission is first seen on the rear side of the target indicating the laser 

has burnt through the target.  As the relative signals between the diodes remain the same 

(similar temperature), this rapid increase in signal is due to the diodes detecting the 

emission originating from a larger number of hot electrons than before the laser ablates 

through the target.   

 

Figure 3.20 Variation in diode signal on channel 1 demonstrating the rapid 

enhancement of hot electron generation upon target burn through. 
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The cavity the laser produces is approximately conical in shape, shown in figure 3.21, 

with a front aperture of diameter 0.55 ± 0.02 mm and a rear aperture of 0.18 ± 0.02 mm.  

As a result of this open ended conical cavity, or conical frustum, the plasma density 

profile changes dramatically and as a result changes the mechanisms behind the hot 

electron generation.   

 

Figure 3.21 Cavity produced by laser ‘burn through’ as viewed from the front 

surface (a), and the rear surface (b).  The thickness of the aluminium target is 2mm. 

The laser continues to interact with the sloped walls of the conical frustum producing hot 

electrons via resonance absorption (see section 2.1.2) as is observed before burn through 

noted by the small reduction in hot electron temperature and number as the cavity is 

forming and the laser is de-focussing.  As is shown in figure 3.22, the plasma density 

profile along the laser axis would be expected to change from an approximately 

exponential profile to a more Gaussian like profile with a sub-critical peak density.  When 

a calorimeter is placed at the rear side of the target, it is found that ~ 3% of the incident 

laser energy emerges from the hole produced by the laser burning through the target.  

This is an indication that the plasma within the cavity, along the laser axis, is sub-critical 

and can also be shown by estimating the plasma expansion from the ion sound speed, 

shown in figure 3.22. 
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Figure 3.22 Scale diagrams demonstrating the laser beam expansion within the 

conical cavity before (a) and after (b) burn through.  The plasma expansion is 

directed along the blue arrows and the plasma expansion is shown by the blue dots 

representing the scale length of the produced plasma.  The graph inserts show the 

expected density profiles schematically. 

It has been shown that the interaction of a laser pulse in this irradiance regime with a 

density profile as shown in figure 3.22(b) can cause a reduction in the irradiance threshold 

for Stimulated Raman Scattering (SRS) [69].  The result of this would be to increase the 

volume over which the hot electrons are generated, thus increasing the number of hot 

electrons as observed.  

Work has been carried out more recently investigating the effect of low density foams 

within a cone-in-shell target for laser fusion by fast ignition [70].  The purpose of the low 

density foams is to produce near-critical density plasma when they are irradiated by a 
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laser pulse [70-72].  This near-critical density plasma is seen to enhance laser coupling in 

the plasma and has been found to produce an approximately 3 fold increase in the number 

of hot electrons with little variation in hot electron temperature [70,72].  A similar effect 

is observed in this experiment using a lower irradiance (~ 1015 W cm-2) than previously 

investigated and without the low density foam to produce plasma with reduced mass 

density.  In this experiment, the sub-critical density plasma is produced through the 

interaction of an expanding laser beam with the sloped walls of an open ended conical 

cavity.  This technique could potentially be scaled to higher irradiance to produce a larger 

number of hot electrons whilst maintaining hot electron temperature, which increases 

with irradiance.  This is highly desirable for fast ignition ICF as the energy of the fast 

electrons must be carefully controlled in order to heat the ignition region within an ICF 

capsule [29,73].   

 

3.7 Future Experimentation 

As the experiment outlined is a highly reproducible source of hot electrons, it is also a 

reproducible source of Kα emission as outlined in section 2.3.3.  Hot electrons with a 

temperature of ~7 - 8keV as described here are the most efficient at producing Al Kα 

emission at 1.5keV as the cross section for the creation of a K-vacancy by electron impact 

peaks for electrons of temperature 7 - 10keV [74].  A laser produced source of hot 

electrons and Kα emission of this sort has a number of experimental applications which 

will now be discussed. 

3.7.1 Opacity Measurements 

Kα emission can be used as an x-ray back-lighter to probe the opacity of plasma at a 

specific wavelength.  This technique involves measuring the transmission of Kα photons 

through a plasma produced via a secondary heating mechanism, for example a second 
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laser, or plasma heated via thermal conduction from the front side of the laser produced 

Kα source.  A feasibility study of this type of experiment was performed at the Bhabha 

Atomic Research Centre (BARC), Mumbai and is presented in chapter 4 and in reference 

[75]. 

3.7.2 Hot Electron Interactions 

The interaction of hot electrons within a solid target is of particular importance to inertial 

confinement fusion [54].   For example, heating by hot electrons is of particular 

importance [54,73] as the concept of fast ignition relies on using an ultra-intense laser 

pulse to ignite the high densities required for high gain.  This is done by generating a 

beam of electrons (or more recently protons [76]) which propagate towards the core and 

deposit their energy, heating the fuel, causing ignition [77].  Although the electrons 

generated in this experimental set-up have a temperature of 7 - 8 keV as opposed to the 

MeV required for fast ignition [78], the electron source can be used to test theories of hot 

electron heating in the lower temperature regime.  This could be achieved by irradiating a 

thin foil of Al to produce the hot electrons and positioning a thin foil of some metal to be 

tested at the rear side and measuring the temperature change.  The temperature increase 

could be determined by absolute time gated imaging in the visible and assuming a black 

body. 

Another interesting aspect concerning the hot electron generation and interaction with 

matter is that of the divergence of the electron beam.  This could be tested using the 

experimental arrangement described with a series of targets created with buried tracer 

layers at different depths, for example silicon.  Silicon has a Kα energy of 1.74keV, and 

the electron impact K-shell ionisation cross-section is at its highest for electrons with 

7 - 10 keV energies [74].  Using an imaging spectrometer at the rear side of the target to 

image the Si Kα signal at different depths within the target would give information 

regarding the divergence of the electron beam. 
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As is described in section 3.6.3, when the laser ablated through the aluminium disk, the 

diode signals increased rapidly.  Additional work needs to be done to investigate this 

further, and is part of a subsequent project.  This includes the use of different targets with 

different conical angles and made from different materials as is seen in some recent 

experimental studies using high power laser systems [66,69-71].  The advantage of 

having a table-top laser system with this capability means a wide variety of targets can be 

tested, from which better decisions can be made regarding the construction of targets for 

experiments using the larger facilities.  Similar experimentation using large scale facilities 

will allow an investigation into the feasibility of scaling the method described to higher 

irradiances more relevant to fast ignition inertial confinement fusion. 

 

3.8 Conclusion 

The x-ray diode array described in this chapter has been used to determine the hot 

electron temperature of a laser produced plasma with a high level of accuracy.  The laser 

system used has demonstrated a high reproducibility, not only in energy on target (within 

10% variation) but also in the produced hot electron temperature which is seen to vary 

less than 4% over 5 shots on the same target area.  Due to this high reproducibility, a 

comparison of the average hot electron temperature was made between a single photon 

counting spectrum averaged over 900 shots and average diode signals obtained over 128 

shots (128 shots due to a restriction on the oscilloscope).  This comparison showed a good 

agreement in the hot electron temperature, well within experimental error.  The XRD 

array is effective, robust and can be used in a single shot mode to determine the 

temperature of the hot electron component within a laser produced plasma in real time. 

The high reproducibility of the laser system was largely due to the effectiveness of the 

retro-focussing system, allowing for best focus to be achieved easily and reproducibly 
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under vacuum.  Although the initial set-up can be complex, once completed, the system 

works well.  The simple retro system can be achieved by using a simple webcam as 

opposed to a more expensive CCD. 

Once installed and tested, the XRD array showed a rapid enhancement in hot electron 

generation when the laser burnt through the aluminium target producing a cone shaped 

cavity with an exit aperture.  Approximately 3% of the incident laser energy is seen to 

emerge from the rear side of the target, indicating sub-critical plasma.  This enhancement 

in the number of hot electrons generated within low density plasma is currently of 

particular interest to fast ignition fusion research.  Previous work involved the use of low 

density foams to produce a near critical density plasma which enhanced the number of hot 

electrons produced.  This technique produces a similar effect without the need for a foam 

target and could potentially be scaled for larger irradiances more relevant to the hot 

electron temperatures required for fast ignition. 

Possible future avenues of research have been discussed including the use of Kα emission 

as an opacity probe.  The initial feasibility experiment demonstrating this procedure is 

discussed in chapter 4.  The laser set-up and diagnostics described here were used to 

prepare for an experiment at the Central Laser Facility, Rutherford Appleton Laboratory, 

detailed in chapter 6. The experiment discussed in chapter 6 discerns between the effects 

of relativistic particle heating and the effects of thermal radiation and hydrodynamics 

within a laser produced plasma by examining the Rayleigh-Taylor instability using a Ti 

Kα back-lighter. 
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4.  Kαααα Emission as a Back Lighter to Probe Plasma Opacity of a 

Conductively Heated Target 

 

4.1 Introduction 

As discussed in Chapter 1 and 2, the experimental determinations of opacity for a range 

of plasma parameters are necessary for a wide range of applications.  Methods used 

previously [13,14] to determine plasma opacity include the use of x-rays emitted from 

laser produced plasmas as back lighters to probe heated targets.  More recently, EUV 

lasers have been utilised to probe buried layer targets heated by a laser pulse [17].  

Multiple beam, high powered lasers have usually been needed to undertake opacity 

measurements due to the requirement to heat the opacity target and the x-ray back lighter 

source separately [13,14,17].  Some single laser beam plasma opacity measurements have 

been undertaken using recorded emission from buried layer targets.  Here the plasma is 

assumed to be in LTE and Kirchoff’s law is used to infer opacity from the emissivity [11].  

The work presented in this chapter has been published in Journal of Physics B: Atomic, 

Molecular and Optical Physics [75]. 

In this work, we report plasma opacity measurements recorded using a single laser beam 

to heat the material and produce the back lighter source.  We use a single target 

comprising two layers as a heating source for the probed material, through thermal 

conduction, and for the probing x-ray emission source.  The iron plasma conditions are 

estimated using 2D fluid code simulations performed by L. M. R. Gartside at the 

University of York and are summarised in section 4.3.5.  With the technique presented 

here, it is possible to record the opacity of colder material, where emission is too weak for 

single beam opacity measurements utilising Kirchoff’s law [11]. 
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4.2 Experimental Design 

The experiment was carried out using an Nd:glass laser system situated at the Bhabha 

Atomic Research Centre (BARC).  This laser provides an output energy of 8 J per pulse 

with a duration of 500 ps.  The p-polarized laser was incident onto targets at an angle of 

45
o
 to the target normal and focused to a spot size of 120 µm using an f/5 lens, yielding 

an on target peak intensity of 1.4 x 1014 W cm-2.  The targets comprised 0.8 µm thick Al, 

coated using a thermal evaporation plant, onto a 1 µm layer of Fe foil, supported by photo 

etched copper mounts with a circular target area of diameter 1 mm.  The aluminium side 

of the targets was irradiated by the laser.  Pure aluminium foils of thickness 0.8 µm, 

mounted in a similar manner, were used as targets for comparative purposes.  

A crystal spectrometer was utilised to measure aluminium He- and Li- like lines and the 

solid Kα emission transmitted through the aluminium and iron layers.  The spectrometer 

was positioned at the rear side of the target along the axis of the laser at 45
o
 to the target 

normal.  Time integrated spectra in the wavelength range 7 – 9 Å, were recorded by 

dispersing the x-rays with a flat TAP crystal (2d = 25.75 Å) onto a P-11 phosphor screen 

followed by an image intensifier tube and a CCD camera (PixelFly QE).  Scattered visible 

light was prevented from entering the spectrometer using B10 filters (aluminised 

polycarbonate, Alexander Vacuum Research, Inc.).  The spectral resolution of the 

spectrometer was dominated by the source size with λ/∆λ ≈ 400.  Four silicon 

photodiodes (XUV-100, OSI Optoelectronics), under reverse bias, were used to measure 

the time and space integrated emissivity of the aluminium plasma.  Filters of 5 µm & 

20 µm Al, 5 µm Ni, and 12 µm Ti were used to control the spectral range recorded (see 

figure 4.2). The filtering used in this experiment differs from that described in chapter 3 

due to availability of foils at the facility.  The diode active area is 100mm2, but different 
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sized apertures were utilised to avoid detector saturation.  The diodes viewed the front 

side of the irradiated targets. 

Aluminium Kα emission, at 1.5 keV, from pure 0.8 µm thick aluminium targets was used 

to calibrate the backward directed emission without an iron layer so that the transmission 

of iron heated by thermal conduction from the aluminium plasma could be recorded when 

shots with the iron and aluminium targets were employed.  Al Kα emission occurs during 

the laser pulse as it relies on the hot electron interaction with solid Al and so is used for 

our time integrated transmission measurements because the time of emission is well 

defined.  Test measurement of transmission through unheated iron placed 7mm behind a 

pure aluminium target showed that the iron transmission, T, measured by this technique, 

is within 14% of the value (T=0.067) predicted by Henke et al. [62] (see figure 4.7). 

 

4.3 Analysis 

The relatively long laser pulse length of 500 ps allows time for sufficient plasma 

expansion during the initial rise time of the pulse to provide the large under dense plasma 

necessary for whole beam self-focussing [79].  Estimation of the ion sound speed 

(~ 8 × 104 ms-1) yields a scale length of ~ 40 µm at the peak of the laser pulse.  A two 

temperature electron distribution is observed within the Al plasma.  Source broadened 

spectroscopy provides an ‘emission map’ of the plasma and shows a central hot plasma 

surrounded by cooler material, while measurements of continuum emission show the 

presence of two temperature components. 

4.3.1 Diode Array 

Due to the differing filters used for the x-ray diodes in this experiment, both bound-free 

and free-free emission must be considered as soft x-ray emission is not as effectively 

attenuated as for the filters described in chapter 3.  Continuum emission from the Al 
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plasma is measured using filtered EUV enhanced silicon inversion layer photodiodes.  

Assuming Maxwellian electron distributions, the continuum emission from the Al plasma 

can be modelled using [80]: 

 ���� = 828��� � ��4tX��
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(4.3.1) 

where m is the electron mass, Ry is the Rydberg energy, ξ is the number of holes in the 

ground state of principal quantum number n, 	�Ë�� is the free-free Gaunt factor and is 

assumed to be 1, Gn and Gm are bound-free Gaunt factors where Gm = 0 for hν < Z
2
Ry/m

2 

and Gm = 1 (or 1.4 if T > 400eV) for hν > Z
2
Ry/m

2
, Gn = 0 for photon energies less than 

the ground state ionisation potential χi, otherwise Gn = 1.  Analysis of the continuum 

emission from the Al plasma using equation 1 and comparing the ratios between diode 

signals indicates the requirement for two temperature regions in order to reproduce the 

observed signals.  The ionisation level, Z, and number densities of electrons and ions, ne 

and ni, are determined by assuming LTE within that region.  Adapting this model to allow 

for two temperature regions of Tc and Th with relative number fraction f, and 

incorporating the energy dependant transmission [62] of the filters (Tf) allows for the ratio 

between diode channels to be determined using: 

 I = � u�����,Â�u9 , �� + ��Â�u� , ��0��É�� u�����,Â�u9 , �� + ��Â�u� , ��0É� �� 

(4.3.2) 
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and the subscripts f1, f2 refer to different filters. 

Equation 4.3.2 is numerically integrated also taking into account the effect of the 

photodiode depletion depth.  By comparing calculated ratios, R, to experimentally 

measured diode signal ratios, it is possible to deduce the parameters Tc, Th, and f.  For 

example, analysing the ratio between the two highest energy diode channels, RHigh, (5µm 

Ni and 12µm Ti) enables a hot electron temperature, Th, of 1keV to be deduced to within 

0.1keV accuracy, as there is negligible effect on this ratio due to a change in Tc or f, as 

shown in figure 4.1. 

 

Figure 4.1.  Variation of diode signal ratio for the two highest energy channels 

(5µµµµm Ni and 12µµµµm Ti) as a function of the hot electron temperature.  The solid line 

represents a cold electron temperature of Tc = 140eV and relative fraction of hot to 

cold number, f = 0.008, while the dashed line represents Tc = 240eV and f = 0.008 and 

the dotted line represents Tc = 140eV and f = 0.05 
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Figure 4.2.  Continuum emission from the laser produced aluminium plasma as 

predicted by equation 1, incorporating two temperature regions within the plasma 

(thick solid line) with a comparison of total emission as predicted by FLYCHK [44] 

(thin solid line).  Conditions used are Tc = 140eV, Th = 1000eV and f = 0.008.  The 

peak of the transmitted emissivity curves for the diode filters of 5µµµµm Al (dashed 

line), 20 µµµµm Al (dotted line), 12 µµµµm Ti (dash-dot line) and 5 µµµµm Ni (dash-dot-dot 

line) are indicated. 

To determine the remaining 2 parameters (Tc and f), a minimisation routine is performed 

using ratios from all channels to find a best fit of the model (equation 4.3.2) to the 

experimental data.  This yields a thermal temperature of Tc = 140 ± 10eV and a fraction of 

f = 0.008 ± 0.001, consistent over multiple shots.  The peak of the spectral range detected 

by the diodes for the filters and experimental parameters is illustrated in figure 4.2.  A 

comparison of equation 4.3.1, with temperature Tc = 140eV, Th = 1keV and f = 0.008, is 

also made on figure 4.2 with the total emissivity as predicted by the FLYCHK code [44].  

The model shows good agreement with continuum emission, omitting line radiation as 

expected.  When the energy dependant filter transmission is included, the integrated diode 
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signals as predicted by our model using equation 4.3.1 and FLYCHK agree to within 4%, 

so our omission of the small contribution to the diode signal from line emission is not 

significant. 

Figure 4.2 shows the photon energies where the filtering for each diode gives maximum 

recorded x-ray flux and illustrates how we can use the four diode signals to measure Th, 

Tc and f.  The spacing of these peaks allows the determination of the hot temperature, Th, 

component (from signal ratio R for the two highest energy channels), the cold 

temperature, Tc, component (from the signal ratio R of the two lowest energy channels) 

and the ratio, f, the number of hot to cold electrons (from the ratio of the two intermediate 

channels). 

4.3.2 TAP Crystal Spectrometer 

A crystal spectrometer utilises the Bragg condition,	8r = 2� sin f, where n is an integer 

representing the order number, λ is the wavelength of light, d is the inter-atomic spacing 

of the crystal and θ is the Bragg angle.  When light incident on a crystal has a wavelength 

comparable to the inter-atomic spacing of that crystal, the light is diffracted, causing 

constructive interference in accordance with the Bragg condition.  Optimisation of the 

crystal angle with respect to a laser produced plasma allows for the light to be dispersed 

producing a spectrum.  In this experiment, a flat thallium acid phthalate (TAP) crystal 

(2d = 25.75 Å) is used to disperse x-rays emitted from the laser produced plasma and is 

optimised to record the spectral region of 1440 – 1620 eV, corresponding to a number of 

aluminium spectral lines. 

The recorded time integrated aluminium spectrum (see figure 4.3 for example) 

predominantly comprises a series of lines originating from helium-like and lithium-like 

ions.  The most prominent of these lines is the He-like resonance line (w), purposefully 

instrument saturated to enable an improved resolution of the intercombination line (x, y) 
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and the Li-like satellites (abcd, jkl, op, qr), (the standard letter designation used here for 

He-like satellite lines has been tabulated by Gabriel [81]).  Line ratios between the Li-like 

and He-like lines enable the determination of plasma characteristics through comparison 

with the spectral modelling code FLYCHK [44].  Utilising the relative intensity of the 

He-like intercombination line and the Li-like satellites provides a useful diagnostic tool 

giving a measure of the electron densities and temperatures in the aluminium at the time 

and position of peak emission.  FLYCHK does not simulate the aluminium Kα emission 

which is produced by the hot electron interaction with solid aluminium. 

 

Figure 4.3. Experimental aluminium spectrum (solid line) and superimposed 

simulation (dashed line) of temperatures Tc = 140 eV and Th = 1keV using FLYCHK.  

The fraction of suprathermal to thermal electrons is f = 0.008 [44,82]. 

In order to obtain a fit to the spectra, such as figure 4.3, using FLYCHK, a parameter scan 

was performed trialling a range of temperatures (50 – 500 eV) and densities 

(1012 - 1021 cm-3).  The simulated spectra were instrument broadened with our estimated 

resolution (~ 3eV) using a post-processor [83] and the peak to peak ratios were deduced 
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and compared with the experimental spectra.  A single thermal temperature component 

could not reproduce the observed spectra.  An electron density of nc = 5x1020 cm-3 was 

found to best fit the spectra, consistent with the turning point density for a 45° obliquely 

incident 1.06µm Nd:glass laser.  As the emission is proportional to ne
2 and 

ne = 5x1020cm-3 is the highest density directly heated by the laser, we assume emission 

from this single density is a reasonable approximation to a spatial integration of emission.  

A parameter scan of the hot electron temperature, Th, (0.5 - 2keV) and hot to cold 

component fraction, f, (0.005 - 0.1) was performed and found to require Th = 1keV and 

f = 0.008 for Tc = 140eV (see e.g. figure 4.4). 

 

Figure 4.4.  Plot of the difference between the satellite ratio determined via 

FLYCHK and our experimentally measured ratio for satellite lines qr/jkl (solid 

line), xy/jkl (dashed line), and xy/qr (dotted line) as a function of thermal 

temperature.  The case shown is for Th=1keV and f=0.008 (best fit).  The ratio 

differences indicate that Tc=140eV. 
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Figure 4.5.  Expanded experimental spectrum as a function of distance on the CCD 

detector with a distance scale corresponding to the source broadening effect on the 

spectra. A double Gaussian profile for Tc=140eV and 120µµµµm width at the target 

(dotted line) and of Th=1keV and 25µµµµm width at the target (dashed line) combine to 

form the emission profile observed.  The Kα α α α peak is best represented by a single 

Gaussian (dash-dot-dot line) with a spatial width of 60µµµµm. 

4.3.3 Spectral Line Profiles 

It was found that He-like satellite spectra were best modelled using a double Gaussian 

line profile.  The spectral profiles are strongly source broadened (λ/∆λ ≈ 400), so the line 

profile represents a mapping of the spatial emission profiles of the lines, indicating two 

temperature regions.  The superposition of source broadening effects due to a 25µm 

diameter plasma region of electron temperature Th=1keV and a 120µm diameter region of 

electron temperature Tc=140eV is shown on figure 4.5 to fit the experimentally measured 

line profiles.  The relative abundance of the number of hot and cold electrons used for this 

calculation is f = 0.008, with intensity information obtained from FLYCHK.  This relative 

abundance of hot and cold electrons is approximately consistent with the spatial 
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dimensions of hot electrons (a circular region of radius r = 12µm) and cold electrons (a 

circular annulus region of radius between r =12µm and R = 60µm).  Assuming uniform 

ablation, we would expect	� = ;¶5;�5C;¶5 ≅ 0.04, but this could readily drop to f = 0.008 if 

the Th value is produced late in the irradiation history or at limited spatial distance from 

the target surface.  Assuming the plasma emission is cylindrically symmetric, the 1D 

double Gaussian plasma profile, shown in figure 4.5 can be extended to map the 2D 

temperature profile as shown in figure 4.6. 

 

Figure 4.6 Two dimensional temperature profile for the aluminium plasma with a 

double Gaussian structure of  Tc=140eV with 120µµµµm width and of Th=1keV with 

25µµµµm width. 
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4.3.4 Aluminium Kαααα Transmission Measurements 

The spectrally integrated Al Kα intensity recorded by the spectrometer after transmission 

through the iron layer was measured for different laser pulse energies and directly 

compared with the integrated Kα signal originating from a pure Al target created using the 

same laser energy.  A comparison of the transmitted and uninhibited spectra for a laser 

energy of 7.7 J is shown in figure 4.6.  Figure 4.7 demonstrates the change in 

transmission over the laser energy range investigated and shows a comparison to cold Fe 

transmission.  It is seen that an increase in laser energy of 1.3 J causes sufficient 

additional heating to the iron layer through enhanced thermal conduction to produce an 

increase in transmission by almost a factor of 3. 

 

Figure 4.6.  Experimentally observed, transmitted Al spectrum through an Fe 

plasma (solid line) and the spectrum from an aluminium target without iron (dotted 

line) for a laser energy of 7.7J. 
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Figure 4.7.  Transmission of Kαααα photons (1.5 keV) as a function of laser pulse energy 

as determined by experiment.  Experimentally measured cold Fe transmission 

(dashed line) is compared with cold Fe transmission predicted (dotted line) by 

Henke et al. [62]. The open squares show calculated transmissions from h2d 

simulation, with line of best fit (solid line). 

4.3.5 h2d Simulations 

Two dimensional fluid code simulations have been used to estimate the plasma conditions 

of the aluminium-iron target using the h2d code [84].  The h2d code uses a Lagrangian 

coordinate system in cylindrical geometry to determine the plasma density, temperature 

and ionisation as a function of distance and time.  Hydrodynamic variables are then 

calculated using the SESAME equation of state package, developed by the T-1 group at 

Los Alamos National Laboratory [85].  Opacity data from the Ionised Materials Package 

code (IMP) [86] was then used to calculate the transmission of Al Kα through the heated 

Fe layer.  Full details of the simulations summarised here are available in a published 

paper [75]. 

A laser of pulse length 500ps and a focal spot of 120µm is assumed incident onto a 

cylindrical target of aluminium and iron, 200µm in diameter, for the h2d simulations.  
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The h2d simulations predict similar conditions within the aluminium plasma to those 

predicted by the spectral profile analysis and the x-ray diode array (figure 4.8). 

 

Figure 4.8 Radial temperature profiles produced by a 500ps pulse incident onto the 

Al side of an Al and Fe target.  The simulated critical surface temperatures at the 

peak of the heating pulse are shown for the laser energies 7.3J (solid line), 8J (dotted 

line) and 8.6J (dashed line). 

The Kα emission originating from the aluminium is estimated using the conditions 

predicted by the 2D simulations, assuming a Maxwellian distribution of electrons and a 

constant cross section for Kα production for E > EKα, where E is the electron energy and 

EKα is the Al Kα photon energy. 

The transmission as predicted using IMP tabulated opacities is shown in figure 4.9 and 

demonstrates the peak of transmission is close to the peak of the heating pulse.  The 

transmission data shown in figure 4.9 is in agreement with the experimentally deduced 

transmission measurements shown in figure 4.7.  Figure 4.10 shows the axial temperature 

profiles of the Fe layer at the time of peak Al Kα transmission as predicted by h2d. 
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Figure 4.9 Relative emission of Al Ka photons through the conductively heated Fe 

layer as predicted by h2d and IMP opacities.  The transmitted flux (dashed line) is 

the product of the Al Kαααα emission (solid line) and the Fe transmission (dotted line). 

 

Figure 4.10 Axial temperature profile within the Fe layer at the time of peak Al Kαααα 

transmission.  Laser pulse energies of 7.3J (solid line), 8J (dotted line) and 8.6J 

(dashed line) are shown. 
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4.4 Discussion  

Experimental temperature and Kα transmission data agree well with simulations using 

h2d and opacities from the Ionised Material Package (IMP).  A two temperature spatially 

separate thermal distribution of electron temperatures, as observed here, has recently been 

reported by Colgan, et al [87]. 

Aluminium Kα emission has been used in this experiment as there has been a significant 

amount of previous study into the Kα spectra of aluminium, and the photon energy 

(1.49keV) results in photo-ionisation from the ground to continuum of Fe up to Fe XIX 

[88] so that there will be significant absorption of the radiation in iron plasmas up to 

electron temperatures ≈ 90eV.  Once temperatures exceed ≈ 90eV, iron becomes close to 

transparent, so our Kα transmission measurements are a good diagnostic of temperatures 

> 90eV. 

The assumption that Al Kα is emitted over a different timescale to that of other spectral 

lines, due to the hot electron interaction, has been checked by examining the transmission 

of He-like satellite lines through the iron.  These lines were found to be more strongly 

transmitted by a factor of 2, compared with Kα transmission, suggesting more emission at 

later times when the iron transmission is greater.  

The experiment has demonstrated the feasibility of performing opacity experiments using 

a table top laser system with modest parameters.  Using this technique, we have been able 

to accurately characterise the Al back lighter and perform transmission measurements 

using a laser system with a high reproducibility (±10%) on a shot to shot basis.  A number 

of issues need to be addressed to obtain high accuracy opacity information [89].  

Simulations have demonstrated using this technique results in large temperature and 

density gradients in the axial and radial direction which would have to be accurately 

measured.  Gradients in the axial direction can be reduced by introducing a plastic tamp 
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layer on the rear side of the target, inhibiting the Fe plasma expansion, reducing the 

temperature gradient and providing conditions that can be validated more readily as LTE.  

Radial temperature gradients can be addressed by using a different heating mechanism 

than thermal self-focussing.  Using a shorter pulse length laser would prevent whole beam 

self-focussing and could be optimised for resonance absorption to produce a higher 

number of hot electrons and to produce a shorter pulse back lighter.  These hot electrons 

would increase the Kα signal and propagate into the Fe layer, heating the target, 

producing plasma with higher radial uniformity.  The shorter pulse back lighter would 

provide better temporal resolution.  Diagnosing the plasma conditions within the Fe layer 

has relied on using computer codes to simulate the thermal conduction from the front side 

Al plasma.  An independent plasma diagnostic for the Fe layer is therefore required in 

order to determine the plasma conditions independently of hydrodynamic simulations.  

This could be achieved using absolute time gated imaging, probably in the visible, of the 

iron target to deduce a temperature assuming emission as a black-body. 

 

4.5 Conclusion 

A method for the characterisation of a plasma back lighter and the determination of 

plasma opacity using a single laser beam and a layered target has been investigated.  

Thermal conduction from laser produced aluminium plasma has been used as a heating 

mechanism for an iron target layer. Kα x-rays produced from the Al layer are used to 

measure transmission through the iron plasma.  Whole-beam self-focusing of the laser has 

reduced the effective spot size and increased the energy deposition into the iron.  The 

temperature increase in the iron allows for opacity measurement over a temperature range 

~ 10 – 150 eV.  Combining source broadened spectroscopy with continuum emission 

analysis has enabled a plasma back lighter produced by whole beam self-focussing to be 
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characterised.  The experimental data is in good agreement with 2D modelling using 

opacities from the Ionised Material Package code for 1.5 keV photon energy.  
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5. Characterisation of a Line Focussed EUV Back-lighter for 

Plasma Opacity Measurements 

5.1 Introduction 

As discussed in earlier chapters, opacity measurements at EUV wavelengths of high 

energy density plasmas are difficult to undertake as the probe has to overcome the high 

self-emission of the opaque plasma and it is difficult to create sufficiently uniform and 

well characterised plasma for accurate measurements.  Laser produced EUV and x-ray 

back-lighters have been used previously to perform opacity measurements [13,14], when 

the flux of x-rays generated is sufficient to ‘outshine’ the plasma self-emission.  More 

recently, much brighter plasma based EUV lasers have been employed to probe iron 

plasma [17].  In the present experiment, we set out to use a short duration (3ps) Ne-like 

Ge laser at 19.6nm to probe the opacity of laser heated iron. 

This experiment generated an extreme ultra-violet (EUV) back-lighter in a set-up similar 

to that used to create a plasma based x-ray laser, without lasing being observed.  A line 

focus back-lighter pointing at a sample can produce bright emission over a broad spectral 

range, from a small area, as the more intense spectral line intensities approach black-body 

intensities due to the high optical depth along the plasma line.  This chapter is primarily 

concerned with the characterisation of the back-lighter with the aim of improving our 

understanding of the line focus EUV back-lighter and to investigate why lasing was not 

observed.  Accurate information regarding the plasma conditions within the EUV source 

is required for high quality opacity measurements.   

This chapter firstly discusses the experimental arrangement used in the experiment in 

Target Area West (TAW) at the Central Laser Facility, including a description of the 

diagnostics used. Section 5.3 discusses in detail the characterisation method used for the 
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x-ray back-lighter.  Section 5.4 briefly discusses the images obtained from the pinhole 

camera followed by a summary of the EUV transmission analysis (Section 5.5) carried 

out in conjunction with E. Wagenaars, University of York.  Results presented in this 

chapter are available in published form [90,91].   

5.2 Experimental Set-up 

The back-lighter was created using two optical pulses from the VULCAN Nd:Glass laser 

system at the Rutherford Appleton Laboratory to irradiate a germanium target of 

thickness 500nm deposited onto a glass slab of 6mm width.  A pre-pulse of duration 

300ps and energy of 20J was focussed into a line 100µm × 6mm, using a refracting lens 

and a spherical mirror, giving an irradiance of ~ 8 × 1012 W cm-2.  A main (chirped pulse 

amplification or CPA) pulse of 3ps duration had an energy of 35J and was focused into a 

line of similar dimensions using a single f/3 off-axis parabola, giving an irradiance of 

~ 1 × 1015 W cm-2.  The line foci of both beams were over lapped on the target, with a 

delay between the pulses of ∆t = 400 ps. 

A 50nm thick iron foil, tamped with 100nm thick paralene-N (C8H8) on both sides, 

mounted in a 0.5mm wide copper mount, was heated using another CPA beam from the 

VULCAN laser and the plasma created probed with the EUV back-lighter.  The second 

CPA beam contained 25J energy in a duration of 1ps and was focused to a spot size of 

about 200µm in diameter on the opacity target.  The delay between the heating pulse and 

the main CPA pulse was varied between 5 and 20ps to allow probing at different stages of 

iron plasma evolution.  

5.2.1 Crossed slit and Pinhole Cameras 

In order to verify the homogeneity and to enable the characterisation of the line focus on a 

shot-to-shot basis, a crossed slit camera is employed.  The crossed slit camera allows for 

different levels of magnification in the horizontal and vertical directions using two 
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orthogonal slits of different slit widths at different distances from the source.  The layout 

is as shown in figure 5.1. 

 

Figure 5.1 Configuration and definition of terms for a simple crossed slit camera 

Using the terms as defined in figure 5.1, the magnification in the vertical and horizontal 

directions are calculated by 

LÍ  M 3 �N cosÎ 																												L�  �
N 3 M cos � 

(5.2.1) 

A crossed-slit camera with an Andor CCD was positioned at an angle of 22 degrees with 

respect to the plane of the target normal.  The vertical and horizontal resolution was 19µm 

and 180µm respectively.  The crossed-slit camera was filtered using 3µm aluminium and 

25µm beryllium so that emission in the range 0.5 to 5 keV was recorded.  The CCD had 

an exposure time of 500ms so we record time integrated Ge emission over the laser 

plasma lifetime.  The parameters for the experiment gave a horizontal magnification of 

1.2 and a vertical magnification of 3.6. 

The pinhole camera uses a similar premise as the crossed slit camera, by replacing the 

double slits with a single pinhole.  The pinhole produces a magnification dependent upon 

the distances defined in figure 5.2, where the magnification is given by 

L  MN 
(5.2.2) 
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Figure 5.2 Geometry of a simple pinhole camera 

5.2.2 Flat-field Spectrometer 

The flat-field spectrometer provides spectral resolution in the vertical direction and 

angular resolution in the horizontal direction.  X-rays are dispersed using an aperiodically 

ruled concave grating which is illuminated under a grazing angle by the source under 

investigation.  An aperiodically ruled grating is used in order to compensate for the 

rapidly varying focal lengths between the central wavelength and those at the limits of the 

crystal position.  The differing focal lengths lead to a curved focal plane, which reduces 

the resolving power of the spectrometer.  The specially designed grating with varied 

groove spacing corrects for the differing focal lengths and focuses the x-rays onto a plane 

normal to that of the x-ray source. 

 

5.3 Germanium Back-Lighter Characterisation 

The crossed-slit images provide an ‘emission map’ of the Ge back-lighter and have been 

characterized using simulated data from the spectral modelling code FLYCHK [44]. The 

code was used to evaluate total emission from the Ge plasma as a function of photon 

energy and temperature for the density in the region of highest gain and emission as  
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Figure 5.3 Spectrally integrated emission, transmitted through filters of 3µµµµm Al and 

25µµµµm Be as a function of temperature for Ge as determined with the FLYCHK code 

[44] and using filter transmission data from Henke et al. [62].  The electron density 

assumed is that seen in the region of highest gain as predicted by 

Ehybrid (5 × 10
21

 cm
-3

) [25]. 

 

Figure 5.4 Emission of radiation from a Ge plasma transmitted through the filter 

combination for our crossed-slit camera as a function of time calculated by the 

Ehybrid [25] code. 
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predicted by the Ehybrid code [25] (ne = 5 x 1021 cm-3). Multiplying the photon energy 

dependant transmission [62] of the filter with the total emission and integrating over 

frequency gives the total transmitted emission as seen by the crossed-slit camera per unit 

volume (see figure 5.3). For our filter combination, the relationship between the 

transmitted emission and temperature is approximately linear in the temperature range of 

150 – 500eV, with a threshold for any significant emission at ≈ 120eV.  We assume that 

the plasma emission through the crossed-slit filter combination (3µm Al, 25µm Be) is 

dominated both spatially and temporally by the hottest temperature and highest density 

(5 × 1021 cm-3) plasma.  The area of plasma viewed by each pixel on the CCD is 

calculated using the geometry of the crossed-slit camera.  A thickness of emitting plasma 

can be determined by calculating the plasma expansion from the turning point density by 

calculating the ion sound speed, νs, for each temperature and considering a characteristic 

length scale, ��Δ+ (where ∆t = 400ps, is the time between the pre-pulse and the main 

pulse).  The time of emission of the plasma (100ps) is found from simulations using the 

1D hydrodynamic code Ehybrid [25] (figure5.4). 

A calibration factor for the CCD (8eV/count) is used to deduce the absolute number of 

counts per pixel associated with the transmitted emissivity.  Figure 5.3 then enables the 

crossed-slit images of recorded emission to be converted to a spatial variation of electron 

temperature (figure 5.5 and 5.6).  This conversion of CCD counts to temperature is 

reasonably accurate (±10%) due to the rapid linear increase of emission with temperature 

and the threshold temperature for any significant emission (see figure 5.3).  The error 

estimate for the temperature measurement of ±10% does not include the error associated 

with our assumption of a spatially and temporally constant density and temperature.  The 

incident laser irradiance profile has a width of 100µm and comparing this with the 

deduced temperature profile width of 150µm, the relationship		u2 ∝ �Ï, results in 

β = 0.44 ± 0.05 in agreement with temperature scaling results [92]. 
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Simulations using Ehybrid demonstrate peak ionisation levels in agreement with the 

FLYCHK model used to determine the temperature profile of the back-lighter. The peak 

temperature of the pre-pulse only back-lighter was found to be 120eV or less.  A peak 

temperature of 155 ± 20eV is found when the two-pulse set-up is used.  These 

temperatures explain the presence of spectral lines from Ge XX to Ge XXIII [93-97] as 

seen in the spectrum shown in figure 5.7 and the significant change in emission between 

the pre-pulse and double pulse plasma.  The figure 5.7 spectrum was recorded with a flat 

field spectrometer viewing down the line focus axis (see section 5.4). 

 

Figure 5.5 Emission cross-section over the line profile and the resulting temperature 

profile deduced as discussed in the text. 

Although the experimental set-up was similar to that used to generate a plasma based x-

ray laser, no x-ray lasing was observed.  A temperature analysis of the pre-pulse only 

shots shows the temperature to be < 120eV, and according to ionisation curves simulated 

using the collisional-radiative code FLYCHK, the plasma then consists mainly of Ge19+ or 

lower ionisation stages.  This ionisation is consistent with the peak ionisation determined 

via simulations using Ehybrid.  For lasing the main pulse has to couple enough energy 

into the plasma to raise the ionisation level up to the Ne-like ionisation stage (Ge22+) and 

provide the population inversion necessary for lasing, within the 3ps pulse length. 
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Figure 5.6 2D temperature profile for the Ge back-lighter. 

 

Figure 5.7 Ge spectrum as recorded by a flat field spectrometer. The red line 

demonstrates the spectrum originating from a back-lighter created using the two-

pulse setup and the black line shows the spectrum from a back-lighter created using 

only the pre-pulse. The drop in intensity at 18nm is due to the CCD chip being 

partially covered with aluminium. The intensity drop at 17nm is the aluminium K 

edge. 

EUV Output 
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Figure 5.8 Density and small signal gain profile at the time of peak gain, t = 409 ps, 

6 ps after the end of the main CPA pulse as simulated by Ehybrid for the conditions 

of the experiment. 

Due to the short pulse duration (3ps) of the laser, the main pulse energy is largely coupled 

at higher densities, meaning any x-ray laser photons produced may be refracted out of the  

gain medium, reducing amplification.  This effect has been reported previously by Smith 

et al. [98] and so has been investigated through simulations with Ehybrid (figure 5.8).  

Ehybrid demonstrates that the experiment produces the maximum gain within the Ge 

plasma at a density of 5 × 1021 cm-3.  The region of gain as simulated by Ehybrid has 

width ∆ s ≈ 4mm (figure 5.8) and has a peak gain value of G = 200cm-1.  Refraction at 

such high densities is significant.  We can write that the refraction angle θ is related to the 

density scale length ∆x and electron density ne by [99] 

f J 	∆l 82289 (5.3.1) 

where nc is the x-ray laser critical density.  Setting the maximum refraction angle 

f  ΔÐ 	⁄ , gives that the x-ray laser propagation distance L in the gain region is such that 

	 � Ñ∆Ð∆l 28982  
(5.3.2) 
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For ∆s = 4µm, ne = 5×1021 cm-3 and density gradient as shown in figure 5.8, we obtain 

L ≤ 100mm, implying maximum gain length product GL ≤ 2 which would not be 

observable. 

 

5.4 Pinhole Camera 

A pinhole camera was used to image the focal spot of the laser incident onto the iron layer 

in order to investigate the radial uniformity of the heating.  The filtering used to cover the 

pinhole was 3µm thick Al foil, predominantly attenuating radiation with photon energies 

of < ~ 1keV.  Figure 5.9(a) shows a single image from the pinhole camera and figure 

5.9(b) shows a horizontal line out across the centre of the image.  Figure 5.9 demonstrates 

the uniformity of the heating of the second CPA pulse in the radial direction. 

 

 

Figure 5.9 Pinhole camera image of the heated iron plasma (a) and a horizontal line 

out (b) across the centre of the image. 

 

 

(a) (b) 
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5.5 Transmission Results 

The transmission of EUV light through the heated Fe foil was characterised using a flat-

field spectrometer with an Andor CCD (Andor DX-435-BN).  The flat-field spectrometer 

used a 1200 grooves/mm aberration corrected concave grating (Hitachi 001-0437) to 

spectrally disperse the EUV emission in the vertical direction on the CCD chip and 

provided spatial information in the horizontal direction.  Filtering of 500nm aluminium 

was used to prevent visible light from entering the flat-field spectrometer.  A sample 

image from the flat field spectrometer demonstrating the position of the opacity target, a 

fiducial wire and the heated target region is shown in figure 5.10. 

The iron target was heated to a temperature of ~ 55eV as simulated using the 2D 

Lagrangian hydrodynamic code h2d [84] with a flux limiter of 0.1.  Opacity data was 

generated using the IMP opacity code, and the SESAME [85] equation of state tables.  

The electron temperature and mass density radial profiles as simulated by h2d for 

different positions within target are shown in figure 5.11 (a) and 5.11 (b). These 

demonstrate a roughly uniform temperature profile in the radial direction, in agreement 

with the pinhole camera images, and densities ranging from 5 - 25% of solid density [91].   

A steep temperature gradient is seen in the longitudinal direction through the target.  

Combining the hydrodynamic data from h2d with IMP code opacities (as in Chapter 4) a 

theoretical value for the transmission is generated for comparison with the experimental 

as is shown in figure 5.12. 
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Figure 5.10 Sample image from the flat field spectrometer with spatial information 

in the horizontal direction and dispersed spectrally in the vertical direction.  The 

position of the target and fiducial wire is shown, with the wavelength range and the 

transmission region of the opacity target.  

 

Figure 5.11 Electron temperature (a) and mass density (b) radial profiles as 

simulated using h2d for the iron target using a flux limiter of 0.1 and the 

experimental parameters outlined in the text. 
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Figure 5.12 Experimental values (black circles) for the iron transmission at different 

time delays after the heating pulse at t = 0.  Coloured squares represent h2d and 

IMP simulations of transmission for three different wavelengths. 

 

5.6 Conclusion 

This experiment has demonstrated how a plasma back-lighter can be well characterized 

through imaging the time and spectrally integrated emission profile of the plasma using a 

crossed-slit camera. By applying a detailed model of emission to the back-lighter images, 

a spatially dependant electron temperature profile can be inferred and used as a useful 

diagnostic of the plasma. Further study has shown the pulse duration of the main CPA 

pulse not to be ideal for lasing. Simulations using Ehybrid demonstrate that the short 

pulse duration and other conditions of the experiment result in energy coupling at higher 

densities where the increased refraction deflects lasing photons out of the gain region 

inhibiting amplification. 

Experimental transmission results show some agreement with theoretical values 

calculated using h2d, IMP and SESAME codes.  Although this experiment utilised targets 
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tamped with plastic to inhibit plasma expansion, the target design was not optimal.  

Modelling using h2d demonstrates a steep temperature gradient in the longitudinal 

direction, decreasing the accuracy, as it is difficult to convert the measured transmission 

values into opacity measurements.  Additional hydrodynamic simulations can be 

performed before the experiment in order to optimise the target design, allowing for more 

uniform plasma to be created.   

 

  



6. Radiation Hydrodynamics Studies Using Ti K-alpha Emission 112 
 

6.  Investigation of Radiation Hydrodynamics Using Titanium 

Kαααα Emission 

 

6.1 Introduction 

An instability which occurs when a lighter fluid supporting a heavier fluid undergoes 

acceleration in the direction of the heavier fluid is known as the Rayleigh-Taylor (RT) 

instability [100].  This effect is caused by acceleration mechanisms such as the 

acceleration due to gravity in ordinary fluids or the instability seen in inertial confinement 

fusion when accelerated plasma of a lower density compresses higher density plasma 

[101].  The Rayleigh-Taylor instability in plasmas is observed in astrophysics such as 

within the outer portion of a collapsed, massive star [102] or in the Crab Nebula [103].  

The Rayleigh-Taylor instability in laser-produced plasmas has recently had to be taken 

into account in order to explain the expansion behaviour of thick (25 and 50µm) layered 

targets [104].  In the experiment of Lancaster et al [104], a plastic and copper layered 

target was found to be RT unstable as the copper layer cooled quickly via radiative 

emission and was therefore ‘pushed’ by the higher temperature, lower Z plastic, creating 

the instability. 

The aim of this experiment is to investigate the RT instability in the configuration used by 

Lancaster et al [104], by imaging titanium Kα (4.51keV) emission through a RT unstable 

target.  As in the Lancaster et al. experiment, plastic and copper layered targets were used 

to create the Rayleigh Taylor unstable plasma.  The instability is seeded by introducing an 

approximately sinusoidal variation in thickness between the copper and plastic layers.  In 

order to achieve approximately uniform heating across the target, a reduced mass target of 

dimensions 200µm × 200µm is used to encourage hot electron refluxing [105-107].  
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Myatt et al [106], demonstrated that in mass-limited targets ≥ 90% on the hot electron 

energy is converted into thermal energy within the target.  Hot electron refluxing is due to 

strong space charge fields established as a hot electron leaves the target causing a 

significant number of electrons to return [108].  Mass limited targets encourage hot 

electron refluxing due to a minimal volume of cooler material to provide a cold return 

current, which neutralises the space charge fields.  By measuring and imaging the 

transmission of Ti Kα radiation through the RT unstable target at different times, the 

evolution of the Rayleigh-Taylor instability can be investigated.  Plasma conditions 

within the copper layer of the RT unstable target are calculated using PIC simulations 

(see section 6.4) and spectral modelling of He-like lines.  This experiment demonstrates 

how knowledge of Kα back-lighters and plasma opacity can be used to investigate plasma 

phenomena. 

 

6.2 Measuring the Rayleigh-Taylor Instability 

 

6.2.1 The Rayleigh-Taylor Instability 

The Rayleigh-Taylor instability occurs when a lighter fluid is accelerating a heavier fluid, 

causing instability between two layers.  In some systems both fluids are acted upon by 

gravity where the force experienced by the heavier fluid is higher causing the heavier 

fluid to be pulled downwards, displacing the lighter fluid.  The instability begins as slight 

irregularities between the planar layers which increase in time, creating ‘finger-like’ 

columns between the immiscible fluids [102]. 

The process described above evolves in the same manner in laser produced plasmas, 

where the acceleration force is thermodynamically driven.  A sinusoidal interface, with 

wave number k, between two layers will grow with a rate proportional to	exp�Ò+� [109].  

The growth rate, γ, is a function of the acceleration, g, the wave number of the oscillation, 
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k, and the properties of the target material which enters the growth equation given in 6.2.1 

through the Atwood number, A given by equation 6.2.2 [110]. 

Ò  Ó_�. (6.2.1) 

where, 

_  �� � ���� 3 ��  (6.2.2) 

and ρh and ρl are the densities of the heavier and lighter fluids respectively. 

6.2.2 Fast Fourier Transform Analysis 

In order to detect variations in transmission across the back lit target, Fourier analysis can 

be used on the image from a 2D crystal imager (described in section 6.3.2).  Fourier 

analysis can be used to convert an image from the spatial domain into the frequency 

domain and is used to detect repetitive signals within an image (see figure 6.1).  The 

Fourier transform analysis used to examine the Rayleigh-Taylor growth of a sinusoidal 

variation of copper and plastic is introduced and tested in this section. 

 

Figure 6.1 (a) Sinusoidal oscillation over an arbitrary distance with a wavelength of 

λλλλ = 11.  (b) FFT of oscillation showing asymmetric delta peaks corresponding to the 

wave number of k = 0.09. 

Mathematically, a discrete Fourier Transform is given by: 
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Ô�.�  ° ��8�ÕC�
�²�

exp P� -2t.8
 S (6.2.3) 

where n is the index, N is the number of input data points, k is the wave number of the 

perturbation and f(n) is the signal.  The Fast Fourier Transforms in this chapter are 

calculated using Origin software 6.1 [111].  A sample signal over an arbitrary distance is 

shown in figure 6.1 (a) with its corresponding Fourier Transform shown in figure 6.1 (b).  

It is seen that the sinusoidal variation with distance produces two asymmetrical delta 

peaks at k = ±0.09 which correspond to the wavelength of oscillation λ = 11. 

 

6.3 Experimental Set-up 

The Kα back-lighter was created using a pulse from the VULCAN Nd:Glass laser system 

at the Rutherford Appleton Laboratory to irradiate a titanium target of thickness 25µm.  A 

CPA pulse of duration 2ps and energy of 100J was focussed to a spot ~ 200µm in 

diameter, using an f/3 parabolic mirror, giving an irradiance of ~ 2 × 1017 W cm-2.  A 

second (chirped pulse amplification or CPA) pulse of 3ps duration with energy of 300J 

was focused into a spot ~ 10µm in diameter (~ 1 × 1020 W cm-2) onto the RT unstable 

target described in the following section.  The delay between the heating pulse and the 

back-lighting pulse was varied between 50 and 200ps to study the evolution of the RT 

instability.  A schematic for the experimental layout showing the relative positions of the 

targets, the 2D crystal imager and the HOPG spectrometer is shown in figure 6.2. 
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Figure 6.2 Experimental schematic showing the relative positions of the diagnostics 

where αααα = 90 – θθθθB and θθθθB is the Bragg angle for Ti Kαααα. 

6.3.1 Target Design 

The RT unstable targets comprised 25µm thick plastic covered with a 2µm thick copper 

layer with a sinusoidal oscillation of thickness with amplitude 300nm and wavelength 

30µm at the interface between the two layers (see figure 6.3).  The oscillation between the 

layers varies the copper thickness by 600nm from peak to trough, thus varying the 

transmission of Kα photons through the target as shown in figure 6.4.  The sinusoidal 

oscillation between the two layers seeds the Rayleigh-Taylor instability which grows on a 

timescale longer than the heating pulse when irradiated by a laser pulse as also illustrated 

in figure 6.3.  It is expected that hot electron refluxing will approximately uniformly heat 

the target in the direction of the laser.  As the instability grows, the change in 

transmission across the target increases and by varying the time delay between the heating 

pulse and the pulse used to generate the Ti Kα back-lighter, the evolution of the instability 

can be investigated.  The expected variation in transmission across a cold target is shown 

in figure 6.4. 
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Figure 6.3 Rayleigh-Taylor unstable target design.  Copper (dark region) of 

thickness ~ 2µµµµm is coated onto plastic (light region) of thickness ~ 25µµµµm with a 

sinusoidally oscillating interface of amplitude 300nm and wavelength of 30µµµµm. Red 

arrow indicates direction of heating laser and blue arrow indicates direction of Ti 

Kαααα back-lighter. 

 

Figure 6.4 Variation in transmission across a cold RT target and the corresponding 

change in CCD signal across the target as the back-lighter passes through the 

varying thickness of copper.  The theoretical change in transmission, ∆∆∆∆T, is 

calculated to be ∆∆∆∆T = 0.065 for a cold target. 
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The targets are prepared as 200 × 200 µm squares supported on a 50 µm wire.  The 

sinusoidal oscillations run horizontally, parallel to the heating CPA pulse which is 

incident onto the front surface as shown in figure 6.3.  The laser pulse heats the two 

regions simultaneously to the same temperature by hot electron propagation and 

refluxing.  The denser copper layer cools quicker than the plastic layer due to more 

effective radiative cooling (see the Z dependence on radiation emission discussion in 

section 2.3).  The lighter and hotter plastic can then accelerate the denser, cooler copper 

layer, enhanced by the initial perturbations, creating the Rayleigh-Taylor instability. 

The Ti Kα back-lighter passes through the RT unstable target in the direction 

perpendicular to the laser axis (figure 6.3).  As the instability evolves, and the ‘finger-

like’ columns emerge, the copper thickness can be expected to increase and decrease in 

different areas of the target, changing the transmission and thus the amplitude of the 

oscillation.  By imaging the back-lighter at the RT target position at different times, the 

evolution of the instability is investigated. 

6.3.2 2D Kαααα Imager 

A spherically bent SiO2 quartz (2023) crystal with a radius of curvature of 38cm was used 

to image titanium Kα radiation generated from the back-lighter foil after passing through 

the RT unstable target onto an image plate.  The crystal operated at an angle of 1.5° from 

target normal and had a target to crystal distance of 21cm and a crystal to image plate 

distance of 297cm, giving a magnification of ≈ 14.  A spherically curved crystal disperses 

x-rays according to Bragg’s law with the curvature of the crystal acting as a lens, 

focussing a high resolution image of the back-lighter onto an image plate filtered with 

12µm aluminium foil. 
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Figure 6.5 Image (a) and a 2D intensity plot (b) of a copper mesh with 5µµµµm wires 

and 40µµµµm spacing using Ti Kαααα emission as a back-lighter and a 2D spherical Kαααα 

imaging crystal as a collecting optic. 

In order to ascertain the resolution of the Kα imaging system, a copper mesh with 5µm 

copper wires with 40µm spacing was placed at the RT target position and imaged (see 

figure 6.5).  The modulation transfer function (MTF) of an optical system is a measure of 

the ability of the system to transfer contrast from the sample to the image plane and is a 

function of spatial frequency.  The MTF as a function of spatial frequency, ϕ, is defined 

as [112], 

LuÔ�]�  L�$Ö×2�]�LØ��29F , (6.3.1) 

where M is the modulation (contrast) of the image or object, defined by [112], 

L  �$ÖD � �$�4�$ÖD 3 �$�4 , (6.3.2) 

where Imax and Imin are the image/object irradiances (see figure 6.6).  For example, a 

system of periodic strips of black and white spatial profiles, such as shown in figure 

6.6(a), would lose contrast when imaged due to the optical system being imperfect, as 

shown in figure 6.6(b).  The MTF is a measure of this loss of contrast as a function of 

spatial frequency, i.e. the spacing between the lines in figure 6.6(a). 

(a) (b) 
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Figure 6.6 (a) Object of periodic strips of black and white (above) and associated 

lineout (below) and (b) image of object (above) and associated lineout (below). 

Taking into account the transmission of 5µm of copper at 4.51keV [62], a fast Fourier 

transform (FFT) of an ideal mesh lineout similar to that shown in figure 6.6(a) is 

calculated and compared to the FFT of the experimental image of the mesh as shown in 

figure 6.7.  The MTF for this system as a function of spatial frequency is shown in figure 

6.8 and shows that the MTF for the initial perturbation wave number of 0.033 µm-1 

(λ = 30 µm) is 0.88 ± 0.02. 

 

Figure 6.7 Fast Fourier transform of an ideal mesh compared with an FFT of a 

lineout from the mesh image shown in figure 6.5. 
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Figure 6.8 Modulation transfer function for the 2D crystal Kαααα imaging system as 

determined from the FFT of the mesh image shown in figure 6.5 

6.3.3 HOPG Spectrometer 

A HOPG (highly ordered pyrolytic graphite) spectrometer was positioned above the target 

plane aligned pointing downward at the RT unstable target.  The HOPG crystal with 

2d = 6.71Å, was optimised to disperse copper Kα photons onto an image plate filtered by 

12µm aluminium foil.  The HOPG crystal is a mosaic, layered polycrystalline with a well-

defined layer spacing and high stability under a range of environmental conditions and is 

ideal for dispersing copper Kα radiation at 1.54Å.   

Using dynamical crystal theory, a rocking curve can be deduced and describes the 

diffracting properties of a crystal.  The rocking curve of a HOPG crystal is characterised 

by a Gaussian rocking curve due to the random nature of the mosaicity, of width 

W = 0.4°.  The peak reflectivity and the integrated reflectivity are P = 0.29 and R = 0.41, 

respectively [113] for Cu Kα photons at 4.51keV with a Bragg angle of θB = 13.3°.  A 

sample rocking curve is shown in figure 6.9. 
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Figure 6.9  Sample rocking curve for a HOPG crystal [113].   

6.4 LPIC++ 

The code to be used in this work is LPIC++ [49], a one spatial dimension, relativistic, 

electromagnetic PIC code, written in C++ and developed by Roland Lichters, at the Max-

Planck-Institut für Quantenoptik during his PhD thesis [114].  The one spatial dimension 

of the code means that the integration of Maxwell’s equations involves integrating the 

transverse fields Ey,z and By,z and the longitudinal field Ex [49] and uses the algorithms of 

Birdsall and Langdon [50] and Villasenor and Bunemann [51].  The code has 

considerable flexibility, largely due to the clear program structure and convenient method 

of varying the input data.  All of the input parameters are described by dimensionless 

quantities.  The user can specify up to two laser pulses incident onto the target, one front 

side and one at the rear, defined in terms of polarization, shape, rise time and duration, 

and the dimensionless field amplitude, a0.  Collisions between ions, electrons and free 

electrons are modelled assuming the Coulombic interaction. 

The field amplitude for use in PIC code simulations is defined by [114] 
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N�  �(�B2/� 
(6.4.1) 

which can be related to the intensity and wavelength of the laser by [114] 

�r�  N�� × 1.37 × 10�Ú	R	ÛB�	�BC� (6.4.2) 

where e and me are the electron charge and mass, E0 is the amplitude of the laser electric 

field and ω and λ are frequency and wavelength, respectively, of the laser.  As the PIC 

code does not consider atomic physics, which has a dependence on photon frequency, 

only a0 needs to be specified and not the laser wavelength.  The rise time and duration of 

the laser pulse incident onto the target is defined in terms of laser periods, the polarisation 

can be set to s-, p-, or circular and the temporal shape of the pulse can be described by 

linear, sine, or sine2 edges. 

In addition to specifying the parameters of the incident laser pulse(s), the target 

parameters and simulation time must be defined.  The length of the simulation time can 

be longer or shorter than the duration of the laser pulse, and is again specified by a 

number of laser periods.  The target parameters are specified by an arbitrary number of 

cells, whose size is defined by the parameter, “cells per wavelength” (laboratory frame) 

which states how many cells equals a distance of one wavelength.  The user can then go 

on to specify the total number of cells, the number of cells in the linear density ramp and 

the number of cells available as vacuum.  The density is specified by defining the 

maximum ion density over the critical density (ni/nc). 

The particle species (electrons and ions) are described by a maximum number of macro-

particles per cell and by the parameter ‘vtherm’ which represents the initial temperature of 

the plasma in terms of v/c, where v is the velocity of the particle and can be calculated by 

12BÜ�D� 3 �¡� 3 �W�Ý  32.u 
(6.4.3) 
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where vx = vy = vz = v and vtherm = v/c.  The ions have two further parameters to specify, 

one is the ionisation, z, and the second is the mass of the ion in terms of mi/me which 

defines the element under consideration. 

6.4.1 Obliquely Incident Laser Pulses 

When examining the interaction of a laser pulse with plasma, the angle of incidence is 

often an important factor, especially in the case of hot electron generation (see section 

2.1.3).  As LPIC++ operates in one spatial dimension, it would not normally lend itself to 

oblique angles of incidence.  However, a Lorentz transformation can be used to bring the 

laser pulse normal to the target surface again in a different frame (figure 6.10).  By 

introducing a frame velocity	� �⁄  sin �, in the y direction, where α is the angle of 

incidence, the laser is now firing normally into streaming plasma in frame M as opposed 

to oblique incidence in the laboratory frame.  This frame velocity is represented in the 

code by additional ion and electron currents and follows Bourdier’s method [115].  This 

means the laser wavelength and frequency are Doppler shifted in the moving frame M by 

[49], 

r  r�cos � 

/  /� cos � 

 

(6.4.4) 

where the λ0 and ω0 are the wavelength and frequency in the laboratory frame 

respectively.  

6.4.2 LPIC++ Output 

LPIC++ provides a variety of output and the user specifies what is required.  The main 

output of interest to this work is that of the electron velocity distribution.  A small 

program has been written in Fortran by the author to convert the electron velocity 

distribution file produced by LPIC++ into an electron energy spectrum (see figure 6.12), 

in order to determine the hot electron temperature.   
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Figure 6.10 Lorentz transformation to account for an oblique angle of incidence. 

 

6.5 HOPG Spectrometer Results 

The HOPG spectrometer was used to investigate the Kα and He-like spectrum of the 

copper.  Figure 6.11 shows the spectrum containing the Cu Kα line (8.05 keV), He-like 

intercombination (x,y - 8.35 keV) and resonance (w - 8.39 keV) lines and Li-like satellites 

(e,f,u) around 8.30 keV.   The standard letter designation is as defined by Gabriel [81]. 

6.5.1 Kαααα    Photon Number 

The particle-in-cell code, LPIC++, described in detail in section 6.4, was used to simulate 

the laser interaction with a copper target in order to calculate the hot electron temperature.  

The simulated hot electron energy spectrum is shown in figure 6.12 and indicates a hot 

electron temperature of Th = 65 keV and a hot electron fraction of fh = 0.28.  The 

parameters used for this simulation were a0 = 10.33, angle of incidence = 20.00°, pulse 

duration = 848 periods (corresponding to 3ps) with a rise time of 60 periods, ni/nc = 100 

and 2000 cells of plasma (500 cells per laser wavelength) with an initial steep ramp of 20 

cells.   
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Figure 6.11 Calibrated spectrum obtained from HOPG crystal spectrometer 

showing the Cu Kαααα line, He-like resonance line (w), He-like intercombination line 

(x,y) and Li-like dielectronic recombination satellites (e,f,u).  Letter designation is as 

defined by Gabriel [81].  Insert is an image of the raw HOPG spectrum. 

 

Figure 6.12 Hot electron energy spectrum simulated by LPIC++ using the laser 

parameters defined in text.  A hot electron temperature of 65keV is calculated where 

the fraction of hot electrons (fh) compared with the total number of electrons is 

fh = 0.28.  
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The values Th = 65 keV and fh = 0.28, as calculated by LPIC++ are used in a model of 

Kα photon production as described in previous work [116,117].  It is assumed that 

refluxing of hot electrons ensures that all of their energy is dumped in the target. 

Kα production in a refluxing target can be described by [116]: 


�Þ  
�8�/�� ��(��É
� �(�� ���(�[7

� P�(�ÐS
C� �( 

(6.5.1) 

where Nh is the number of hot electrons, ni is the ion density, ωK is the Kα fluorescence 

yield for copper, f(E0) is the initial normalised electron distribution, σK(E) is the K-shell 

ionisation cross-section and (dE/ds) is the electron stopping power.  For copper, 

ωK = 0.44 [118], ni = 8.4 × 1022 cm-3, and dE/ds can be approximated by dE/ds	≅	aE
-α

 

[119].   

Using electron stopping power data from NIST [120], the stopping power can be 

calculated for E0 < 100 keV by: 

�(�Ð  0.52(�C�.� (6.5.2) 

where E0 is the initial electron energy.  The total number of hot electrons is determined by 

incorporating the fractional abundance of hot electrons from the LPIC simulations into a 

deflagration model of laser ablation [121].  The deflagration model calculates the mass 

ablation rate by assuming the laser energy absorption occurs at the critical surface and is 

given by [121] 

�B�+  136�9� �̂�Ö� �̂ 
(6.5.3) 

where ρc is the mass density at the critical surface and Ia is the absorbed laser intensity.  

The fractional laser absorption at the critical surface due to the excitation of an 

electrostatic wave can be deduced by examining the resonance function, φ(τ), which 
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describes the strength of the absorption as a function of incident angle and plasma scale 

length [24].  The fractional absorption, fa, of the laser is given by [24], 

�Ö  ∅�¸��2  
(6.5.4) 

where 

∅�¸�  2.3¸ exp ��2¸�3 �	, 

¸  P/	� S
� �̂ sin f		, 

(6.5.5) 

 

(6.5.6) 

ω is the laser frequency, L is the scale length of the plasma and θ is the angle of 

incidence.  Using the parameters of this experiment and estimating the scale length of the 

plasma from the ion sound speed,	�� ≅ ��.u B�⁄ �� �̂, gives a fractional absorption of 

fa = 0.61 and thus Ia = 6.1 × 1019 W cm-2 and dm/dt = 1.26 × 107 g cm-2 s-1.  Using this 

mass ablation rate, the total mass ablated during the laser pulse is m = 1.47 × 10-11 g or 

total number of copper ions, Ni = 1.39 × 1011 (Ne = ZNi = 4.04 × 1012) which gives the 

total number of hot electrons, Nh = 1.13 × 1012. 

The K-shell ionisation cross-section is calculated using a Relativistic Binary Encounter 

Bethe (RBEB) model [122], and is given by, 

��  4tN���:
�ÎF� 3 Î�� 3 Î���2M′ â
12 ãln � ÎF�1 � ÎF�� � ÎF� � ln�2M«�å P1 �

1+�S 3 1 � 1+
� ln�+�+ 3 1	 1 3 2+′�1 3 +′ 2⁄ �� 3	 M′��1 3 +′ 2⁄ �� 	+ � 12 æ 

 

(6.5.7) 

where 

ÎF  �F �̂		, ÎF�  1 � 1�1 3 +« 2^ ��		, 
+«  u B��^ 		, 
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 Î�  �� �̂		, Î��  1 � 1�1 3 M« 2^ ��		, 

M«  ` B��^ 		, 
and 

Î�  �� �̂		, Î��  1� 1�1 3 ç« 2^ ��		, 
ç«  p B��^ 	. 

The terms used in the RBEB model are as follows; ao is the Bohr radius, α is the fine 

structure constant, N is the occupation number (N = 2 for a full K-shell), T is the kinetic 

energy of the incident electron, B is the binding energy of the K-shell electron (B = 

8.980keV for copper [122]), U is the kinetic energy of the K-shell electron (U = 11.32keV 

for copper [122]) and the v terms are the speeds of electrons with kinetic energies of T, B 

or U depending on the subscript.  Figure 6.13 shows the dependence of the K-shell 

ionisation cross-section as a function of electron energy as calculated using equation 6.5.7 

and agrees well with previously published work [122,123]. 

 

Figure 6.13 K-shell ionisation cross section as a function of electron energy as 

calculated using the RBEB model. 
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By numerically integrating � ���(� !Z[Z�&C� �([7�  and using the relationship denoted in 

equation 6.5.1, the total number of Kα photon produced is NKα = 2.15 × 1010 photons over 

4π steradians.  Using the rocking curve of the HOPG crystal to define the crystal distance 

in the spectrally dispersive direction and the width of the crystal in the spatial direction, a 

solid angle of detection of Ω = 0.00776 sr is calculated for the spectrometer.  Taking into 

account, this solid angle, the reflectivity of the HOPG crystal, and the transmission of the 

12.5µm aluminium filter, the predicted NKα detected at the image plate is 

NKα = 4.8 × 106 photons. 

The Kα line on the raw spectrum as shown on the insert in figure 6.11 is integrated to 

obtain a total number of photostimulated luminescence (PSL) counts.  Using a known 

conversion of PSL counts to photon number [124], the total number of Kα photons 

detected is calculated to be NKα(IP) = (5 ± 1) × 106 photons, in excellent agreement with 

the theoretical result.  This measurement gives confidence to the values of Th = 65keV 

and f = 0.28. 

6.5.2 FLYCHK Simulations 

The spectral modelling code FLYCHK [44], was used to simulate the He-like lines 

generated in the copper plasma.  Using the values of Th = 65 keV and f = 0.28 and varying 

the thermal temperature, Tc, and the electron density, ne, the dependence of the line ratios 

upon these parameters is shown in figure 6.14.  A heated supercritical density 

(ne > 1021 cm-3) is required to reproduce the observed line ratios, indicating significant 

heating beyond the critical surface.  The FLYCHK simulations indicate a temperature of 

between Tc = 300 – 400 eV and a density of ne = 1022 – 1023 cm-3.  The high density 

reinforces the idea of hot electron heating within the target as it is above the critical 

density of the laser.  As the recorded spectra are time averaged, the instantaneous peak in 

emission will be close at higher density. 



6. Radiation Hydrodynamics Studies Using Ti K-alpha Emission 131 
 

 

Figure 6.14 Dependence of spectral line ratios on density and thermal temperature 

(Tc) as simulated using FLYCHK with the fixed parameters of Th = 65keV and 

f = 0.28.  The line ratios shown are the Li-like satellites to the intercombination line 

(IS/II – solid lines), and the intercombination line to the resonance line (II/IR – dashed 

lines). 

6.5 2D Kαααα Imager Results 

A sample image of the Ti Kα back-lighter passing through the RT unstable target is 

shown in figure 6.15.  With the conditions discussed in section 6.3 and the target design 

in 6.3.1, it was found that the contrast between peaks and troughs in the back-lighter 

transmission was not sufficient to allow for 2D Fourier analysis.  As a result the back-

lighter signal over a section of the images was integrated along the direction of the 

grooves (see figure 6.15) so as to enhance the contrast of any perturbations present.  The 

section of image selected for the integration is behind the laser interaction region, the size 

of which is shown in figure 6.15.  A 1D Fourier transform is then performed on the 

resulting line out in order to analyse any spatial frequencies present.   
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Figure 6.15 Sample images from 2D spherical crystal imager, left shows Ti Kαααα 

back-lighter passing through the RT unstable target, right shows the same image 

with a schematic of the target overlaid indicating the perturbation orientation.  The 

delay between the heating pulse and the pulse to generate the Ti Kαααα back-lighter is 

150ps and the heating laser is incident on the left hand side of the target.  The blue 

box demonstrates the integration area (integration is parallel to the oscillation) for 

FFT analysis. 

The portion of the back-lighter in each image which does not pass through the RT target 

is used to calculate a mean PSL value for the initial back-lighter intensity which is then 

used to normalise the images with the original back-lighter intensity, I0 = 1.  The 

amplitude of the Fourier transform then represents the amplitude of the oscillation in 

terms of change in transmission, where ∆T = 2 × FFT amplitude and ∆T is defined in 

figure 6.4.  Figure 6.16 shows an example of an FFT of the theoretical transmission plot 

shown in figure 6.4.  As the sinusoidal function shown in figure 6.4 is restricted to a finite 

space (i.e. over the target length) the function must be thought of as a top hat function 

multiplied by a sine function.  The resulting FFT shown in figure 6.16 is a sinc function 

originating from the top hat component convolved with a pair of antisymmetrical delta 

functions corresponding to the frequency and amplitude of the sinusoidal oscillation.  By 

normalising the Ti Kα images taken at different time intervals, integrating over a section 
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of the target and performing a 1D FFT on the resulting line out, the evolution of the 

perturbations within the target can be investigated. 

 

 

Figure 6.16 Theoretical target cross-sections (a) showing a planar target (red) and a 

target with sinusoidal perturbation (black) and the corresponding FFT (b) showing 

a sinc function and indicating the delta function due to the perturbation frequency 

(arrows show position).  The value ∆∆∆∆T is twice the amplitude of the oscillation as 

shown in figure 6.4 and represents the change in transmission from peak to trough. 
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6.5.1 Fast Fourier Transform Results 

The delay between the RT target heating pulse and the pulse used to generate the Ti Kα 

back-lighter was varied to probe the instability at the different time intervals of 75, 100, 

150 and 200ps.  For comparison purposes, the Ti Kα back-lighter was used to back-light a 

cold RT unstable target, the results of which are shown in figure 6.17 and are found to 

agree with the theoretical modelling for a cold target.  The cold perturbation wavelength 

was calculated to be λ = (24.5 ± 6.1) µm and the change in transmission was 

∆T = (0.062 ± 0.007) in agreement with the information supplied by the target 

manufacturer (λ = 30µm with ∆T = 0.065 arising from the thickness modulation).  The 

FFTs for each of the four time delays are shown in figure 6.18, the perturbation 

wavelengths and ∆Τ values are summarised in figure 6.19. 

 

Figure 6.17 FFT of the Ti Kαααα image back-lighting a cold RT unstable target.  The 

frequency peak due to the target oscillation is shown (arrows) and corresponds to 

∆∆∆∆T = (0.062 ± 0.007) and λ λ λ λ = (24.5 ± 6.1) µµµµm. 
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Figure 6.18 FFTs of the Ti Kαααα images at different time delays between the RT 

heating beam and the Ti Kαααα back-lighter beam. 

The transmission data indicates that classical Rayleigh-Taylor growth dominates within 

the first 100ps of the interaction; an increase in ∆T means an increase in the oscillation 

between the two different layers and indicates the presence of RT ‘finger-like’ structures.  

The measured increase in ∆T corresponds to an increase in copper thickness of 

350 ± 100 nm.  This results in an instability amplitude of 650 ± 100 nm after 100ps and 

gives a Rayleigh-Taylor growth rate of γ = 10 ± 2 ns-1. 
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Figure 6.19 Summary of the ∆∆∆∆T results from the FFT analysis.  The ∆∆∆∆T values shown 

here are twice the amplitude from the FFTs and represent the total change in 

transmission from peak to trough of the target perturbation.  The dashed line 

represents the experimentally measured value of ∆∆∆∆T for the cold RT target. 

Future work for this experiment involves collaboration with a research group who has 

access to a 2D hydrodynamic code in order to model the interaction.  Further work will 

optimise the target design (or detection method) so as to improve the contrast and thus 

make a 2D Fourier transform feasible, potentially enabling spatial resolution through the 

target thickness.  A 2D Fourier transform would give more information regarding 

frequencies present along the direction of the oscillation and would help to 

experimentally investigate the processes occurring after the period of RT growth, but this 

would require an initially greater thickness variation in the copper.  Changing the 

perturbation wavelength of the RT unstable target would result in separating the delta and 

the sinc function within the Fourier transform which would be advantageous for smaller 

perturbation amplitudes. 
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6.5 Conclusion 

The experiment outlined in this Chapter has utilised a titanium Kα source as a back-lighter 

to investigate the temporal evolution of the Rayleigh-Taylor instability in a laser-

produced plasma.  A laser plasma of parameters; Tc = 300 - 400eV, Th = 65keV and 

f = nh/ne = 0.28 is produced by heating a Rayleigh-Taylor unstable target using the Vulcan 

laser system with an irradiance of 1 × 1020 W cm-2.  A target, seeded with an initial 

perturbation of amplitude 300nm between layers of copper and plastic, demonstrated 

Rayleigh-Taylor growth within the first 100ps of the interaction with a growth rate of 

10 ± 2 ns-1.  Future work will include modelling this experiment using a 2 dimensional 

hydrodynamic code and improvements in the target design and detection method. 
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7. Conclusion 

 

7.1 Summary 

The work presented in this thesis has investigated methods of characterising and utilising 

emission in laser plasma experiments involving measurements of opacity.  Three high 

power laser experiments have been undertaken and have utilised plasma based x-ray and 

EUV back-lighters to investigate plasma opacity and hydrodynamics.  Diagnostic 

development has been undertaken in order to develop a new and more accurate method 

for determining a plasma hot electron temperature by analysing bremsstrahlung emission 

using filtered x-ray diodes.   

A new method of compensating filters has been developed to investigate the 

bremsstrahlung emission spectrum from hot electrons.  The compensating filters are used 

in conjunction with an x-ray diode array which has been developed for use with the 

Nd:YAG laser system at the University of York.  The diode array and filtering has been 

optimised to calculate hot electron temperatures in the 5 – 15keV range and is found to 

agree well with single photon counting and has an accuracy of 0.5keV.  The x-ray diode 

array demonstrated a rapid enhancement in hot electron generation when the laser ablated 

through a 2mm thick aluminium target, resulting in the laser firing into a conical frustum. 

An experiment has been undertaken to exploit Kα emission as a back-lighter to probe 

plasma opacity of a heated target.  A two layer target consisting of 0.8 µm Al and 1 µm 

Fe was heated using the laser system at the Bhabha Atomic Research Centre.  The laser 

was incident onto the aluminium surface producing Kα emission and conductively heating 

the iron layer on the rear side of the target.  By combining spectroscopic techniques with 

continuum analysis, the aluminium Kα back-lighter was fully characterised and the 

plasma parameters determined were used in hydrodynamic simulations.  The 
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experimental data for the opacity of iron was found to be in good agreement with 

opacities from the Ionised Material Package code for a 1.5keV photon energy. 

A line focus EUV back-lighter created using the Vulcan laser has been well characterised 

through imaging the time and spectrally integrated emission profile using a crossed slit 

camera.  A spatially dependant electron temperature profile has been inferred by applying 

a detailed model of emission to the crossed slit camera images.  This temperature profile 

is a useful diagnostic indicating a low temperature and low ionisation, part of the reason 

why lasing was not observed.  Simulations using Ehybrid demonstrated the laser energy 

was most effectively coupled at too high density which also inhibited amplification as 

photons were refracted out of the gain region. 

The Rayleigh-Taylor (RT) instability has been investigated using a Ti Kα back-lighter to 

probe a RT unstable target, both of which are heated using two CPA pulses from the 

Vulcan laser system.  The RT unstable target consisted of a 2µm layer of copper on 50µm 

plastic with a sinusoidal perturbation at the interface of wavelength 30µm and amplitude 

300nm.  The copper layer cools quicker via radiative cooling and establishes the RT 

instability.  Rayleigh-Taylor growth is observed in the first 100 ps of the interaction with 

a growth rate of	Ò  10 ± 2	8ÐC�.   

 

7.2 Future Work 

Further experiments investigating plasma opacity will be carried out at the University of 

York, utilising the techniques outlined in Chapters 3 and 4.  Initially experimentation will 

investigate the enhanced Kα source produced on ablative burn-through of an aluminium 

target.  Using spectroscopic methods, the absolute Kα signal will be determined and 

compared to theory similar to the analysis in Chapter 6.  The directionality of the Kα 
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source will be investigated to determine if there is any angular dependence or if there is 

an even distribution over 4π steradians.  Once the Kα source has been characterised, 

opacity experiments of a similar design to that described in Chapter 4 will be undertaken.  

The irradiance regime of the laser situated at the Bhabha Atomic Research Centre is 

similar to that of the table top system at the University of York.  This means a similar 

style of experiment is possible with the added advantage of a shorter pulse length of 

170ps.  However, the issues discussed in Chapter 4, such as axial and radial temperature 

gradients, need addressing. 

The future opacity experiments using the York laser system could utilise tamped 

microdots to address the issue of temperature gradients within the produced plasma.  

Using a thin double layer target tamped both sides with plastic will help to address the 

issue of axial temperature gradients by inhibiting the expansion of the iron layer.  The 

radial temperature gradients can be addressed through the use of microdot targets held in 

plastic.  The significantly smaller target area would reduce the temperature gradient in the 

radial direction as the irradiance would be approximately constant across the area of the 

dot.  The opaque region would be detachable from the surrounding plastic due to the 

difference in transmission.  The plasma temperature of the iron layer could be deduced 

via time-gated optical imaging as discussed in Chapter 4 or by applying a detailed model 

of emission to an image integrated over a larger spectral region as described in Chapter 5.  

Provided the temperature gradients were minimised by using thin targets, the analysis 

described in Chapter 5 would be sufficiently accurate to deduce the temperature of the 

iron layer. 

Further work investigating the Rayleigh-Taylor (RT) instability as described in Chapter 6 

is planned in the near future.  Different parameters are to be investigated, such as different 

perturbation wavelengths and amplitudes in order to ascertain the effects on the RT 
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growth rate.  Modelling using a 2 dimensional hydrodynamic code is to be carried out in 

order to compare the predicted growth rate with the experimental rate observed. 
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