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Abstract 

Pin joints are utilised in many engineering structures, where movement is required between 

two components. Typically the joint consists of a shaft rotating through a limited range of 

motion between the two components, within a bush or set of bushes. Grease lubrication is 

often incorporated to minimise and ideally prevent direct metal to metal contact. However 

very seldom is separation achieved, and therefore wear and friction occur. In an aircraft 

landing gear application, pin joints are widely utilised in the extension retraction mechanism. 

The replacement of these lubricated metallic bushes with a lightweight polymer alternative 

could not only lead to reduced maintenance and expensive overhaul of components, but also 

brings significant weight savings and hence increases in aircraft efficiency from a reduction 

in fuel burn.  

A bespoke radial load test rig has been designed and manufactured to simulate the loading 

conditions imposed upon a pin joint, located in the bracing strut of an aircraft landing gear 

extension retraction mechanism, as the aircraft manoeuvres on the ground. Four self-

lubricating polymer composite materials were tested for three aircraft lives and an 

assessment of the wear and deformation occurring as a result.  

The co-efficient of friction was evaluated for the four self-lubricating materials and also the 

current technology in both the lubricated and unlubricated states. The re-lubrication interval 

was also investigated. The effect of the articulation angle on the co-efficient of friction was 

investigated for the lubricated and self-lubricating materials.  

A load displacement model was developed to predict the displacement and contact angle of 

polymer composite materials under an applied radial load and was experimentally validated. 

The model uses only geometrical and material parameters, and was shown to be more 

accurate at higher loads than the current models used.  
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Nomenclature 

A Contact area 

b Half contact width 

bl Bush length 

bt Bush thickness 

D1 Diameter of pin 

E1 Elastic Modulus of pin 

E2 Elastic Modulus of bush 

E* Modified Elastic Modulus 

e Eccentricity 

F Applied load 

f Reciprocal frequency 

H Hersey Number 

h Height of arced portion 

lo Original length 

P Mean contact pressure 

P’ Load per unit length 

Ra Arithmetic surface roughness (2D) 

Rb Internal radius of the bush 

Rp External radius of the pin 

Rq Root mean squared surface roughness (2D)  

R’ Reduced radius 

ΔR radial clearance 

S Sliding distance 

Sa Arithmetic surface roughness (3D)  

Sq Root mean squared surface roughness (3D) 

Ssk Skewness of surface roughness (3D) 

U Sliding velocity 

V Volume of wear debris removed 

V1 Poisson’s ratio of pin 
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V2 Poisson’s ratio of bush 

K Dimensionless wear constant 

Xbm calculated contact width 

δ Shaft Displacement 

γ Half arc of contact 

Ƞ Lubricant Viscosity 

Ѡ Angular Velocity 

Θ Angle of articulation 

µ Co-efficient of friction 

Φ Angle of pin rotation 
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1.  

Introduction 

 

 

In this chapter a background to the growth of air travel is given along with some of the ways 

in which to improve aircraft efficiency. A brief introduction to aircraft landing gear and some 

of the developments made in design that have reduced weight and enabled the industry to 

continue growing are also presented. An introduction to the problem of landing gear joints 

is given, along with the projects main aims and objectives.     
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1.1 Statement of the Problem 

Air travel has rapidly become the preferred method of fast transportation (Lee et al, 2001). 

It is predicted that approximately twice the number of aircrafts will have to be manufactured 

by 2033 (Airbus, 2000; Boeing, 2014) to both replace existing aircrafts and to meet the 

growing demand. This coupled with the increasing cost of fuel (Airbus, 2008; Cranfield 

University, 2010; Dillingham, 2014) and growing environmental pressures (Lee et al., 2001) 

means that the efficiency of the aircraft must continue to increase (Airbus, 2008). Emissions 

are typically controlled by engine design, but improvements in fuel efficiency can also be 

used to reduce them (Lee et al., 2001). Reducing fuel burn and therefore increasing efficiency 

can be achieved in a variety of ways, one of which is to reduce the weight of the aircraft 

(Airbus, 2008). Landing gear typically accounts for 3 to 6% of the aircraft maximum take-off 

weight (Krüger, 2001), approximately 10 tonnes (Airbus, 2005), this can often be seen as a 

deadweight which impairs flight performance (Krauss, 1995; Raymer, 1999), therefore any 

weight reductions on the landing gear would lead to significant savings in terms of fuel burn.  

The difficulty is that although the landing gear is not utilised while the aircraft is in the air, it 

is still a safety critical component (Krüger, 2001), and cannot yet be removed. In 1903, when 

wheeled landing gear was first attached to Santos Durmont’s “No. 14 bis”, (Curry, 1988) it 

was of a much simpler form: a rigid external structure. Just under 30 years after its 

introduction retractable landing gear was developed in attempts to reduce aerodynamic 

drag (Krüger, 2001). By 1939 retractable landing gear had become common on many fighter 

aircrafts (Curry, 1988). A common design had been settled on during the fifties, with two or 

more main gears and a steerable nose gear (Curry, 1988; Krüger, 2001; Vincenti, 1994). 

Figure 1.1 shows a labelled schematic diagram of one of the typical retractable main gears 

which is fitted to many aircraft in operation today (Raymer, 1999). 

Landing gear such as this typically consists of a bogie (axel beam) which the wheels are 

connected to, an oleo (shock absorber), bracing between the airframe and the oleo to 

prevent lateral movement of the gear. An extension retraction actuator to move the gear, 

and a down lock to hold the gear in the extended position. 
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Pin joints, a shaft rotating through a limited range of motion within a set of bushes, are 

widely utilised in the extension retraction mechanism of landing gear (McCarthy, Haines, & 

Newley, 1994). This is to avoid it disrupting the structure of the airframe if fully retracted or 

affecting the aerodynamic properties if left partly exposed to the slipstream (Curry, 1988; 

Raymer, 1999). At present the joints typically consist of a chrome plated steel pin and 

aluminium bronze bushes or a stainless steel pin (17-4PH) and aluminium nickel bronze 

bushes, both types are lubricated with aircraft grease (Curry, 1988). Lubrication intervals are 

left to the discretion of the airline but are typically between 500 to 700 hours. Although it 

was reported that one airline lubricates critical joints every 24 hours (Curry, 1988).  

The replacement of these lubricated metallic bushes with a lightweight polymer alternative 

could lead to significant weight savings with approximately 80 joints on aircraft landing gear, 

which when translated into a potential saving of fuel this becomes 3.4 kilograms (Airbus, 

2008). With the price of jet fuel set to continue quadrupling every 9 years (Dillingham, 2014), 

airline operators could save in excess of $3,500 per aircraft per year on material change 

Figure 1.1: Typical multi wheel main landing gear. 
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alone. Additional savings could also be realised from a reduction in both lubricants, and 

maintenance which is the 3rd largest cost after fuel and pilot’s salaries (Lee et al., 2001).  

However the application of composites to landing gear is not an easy task, and is one that is 

breaking new ground in terms of strength and safety (McCarthy et al., 1994). The joints must 

be able to cope with a wide range of demanding conditions over the 20 year life of the 

aircraft, or at the very least until a scheduled overhaul of the landing gear. This research 

project was intended to investigate the feasibility of some aviation approved self-lubricating 

bushing materials, under realistic loading conditions. 

1.2 Aims and Objectives 

The aim of this thesis is to investigate the performance of alternative materials in the 

application of aircraft landing gear joints in both dynamic radially loaded and oscillatory 

motion: 

• Investigate the wear performance of self-lubricating bearings under fatigue style 

loading. 

• Develop a model to predict displacement and arc of contact of self-lubricating 

polymer bushes accounting for bush thickness. 

• Verify the model with experimentation to determine the displacement and contact 

size. 

• Conduct experimentation to investigate the effects of the articulation angle in both 

lubricated and self-lubricating contacts. 

• Evaluate the co-efficient of friction of commercial self-lubricating bearings and 

compare to the current technology. 
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1.3 Statement of Novelty 

The work presented here aims to address the development of a contact model for polymer 

composite bearings with significant elastic dissimilarity between the Young’s Modulus E for 

the bush material and the shaft material. The two current models commonly used for the 

contact of conformal cylinders give some consideration to the difference in elasticity 

however this is generally applicable for bush materials such as Aluminium Bronze running 

against a steel shaft, which has a small difference in elasticity compared to that of a polymer 

composite bushing against a steel shaft. Additionally the thickness of the bush material has 

often been neglected, with the normal assumption that it is infinite. 

The second body of work investigates the micro slip and wear between several commercial 

polymer composite bushes radially loaded against a steel aircraft landing gear pin in a cyclic 

load application. To the best of the author’s knowledge no work has been conducted 

focusing on the micro slip and wear between the bushing and shaft of self-lubricating 

materials, where no oscillatory motion between the bush and shaft is present, especially 

under a cyclic radial load.  

While some research and experimentation has been conducted on reciprocating oscillatory 

journal bearings some areas have been left untouched, such as the effect of the articulation 

angle on the COF for both grease lubricated journal bearings and the state of the art self-

lubricating materials. Therefore the third body of work investigates the COF in a 

reciprocating oscillatory motion for both the grease lubricated bearings and the self-

lubricating cases to investigate the feasibility of replacing grease lubricated bearings with 

self-lubricating ones in an aircraft landing gear application. 
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1.4 Layout of the Thesis 

In Chapter 2 the background information about aircraft landing gear and the application of 

pin joints within it is presented, along with the boundary and mixed lubrication regimes and 

the commonly used conformal contact models. 

Chapter 3 describes the experimental equipment used in this thesis and how it was applied 

to test self-lubricating bushes in both a dynamic radially loaded application and also a 

reciprocating oscillatory motion. Chapter 4 identifies the self-lubricating bushes to be tested 

and their geometrical and material properties, along with how they have been measured. 

Chapter 5 presents the results from a static radially loaded pin joint with elastically dissimilar 

materials. A model for conformal contact of a steel pin against a polymer bush is developed 

using only geometrical and material parameters. 

Chapter 6 investigates the dynamic testing of the joint and presents the measurement of 

wear and deformation occurring. The arc of contact is also investigated using the model 

developed, experimental results and is compared to Persson’s model.  

Chapter 7 deals with the results from testing the bushes in a reciprocating oscillatory 

manner, where the COF is determined for the current technology and also the state of the 

art bushes identified in Chapter 4. Investigations into the effect of the articulation angle for 

both grease lubricated and self-lubricating contacts along with the re-lubrication interval are 

conducted. 

Chapter 8 is a discussion addressing the performance of the materials tested in both 

methods, and the conclusions that can be drawn from the investigation. Recommendations 

for further work in the area are also presented.  
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2.  

Background 

 

 

In this chapter background information is given on aircraft landing gear and the application 

of pin joints. The boundary and mixed lubrication regimes are presented along with the 

developments made with regards to self-lubricating materials for bearing applications, and 

a review of the work regarding oscillating journal bearings. The current models for conformal 

contact of a pin joint are also discussed.       

           

      



8 
 

2.1. Landing Gear 

Aircraft Landing gear is primarily required to absorb the vertical energy of the touchdown 

(McCarthy et al. 1994; Krüger 2001), typically at a speed of 3.05 m/s (Krüger 2001), and 

provide a comfortable ride for both passengers and crew (Kirk 1973; Krüger 2001). This can 

be challenging when landing on rough runways (Krüger 2001; McCarthy et al. 1994) and even 

more so for military aircraft which are occasionally required to land on bare soil (Curry 1988). 

Much research has been conducted into changing the damping properties of the oleo, to 

provide both a smooth ride, and absorption of the vertical energy (Krüger 2001).  

The secondary requirements are to do with ground handling, which also put a very different 

but demanding set of loading conditions on the landing gear. The main gear is required to 

hold 85% to 92% of the aircrafts weight (Krüger 2001), while the nose gear is subjected to 

towing and push back operations which can cause nose gear collapse (Hinson 1993; Aarrass 

et al 2008). Additionally braking and turning forces (Krüger 2001; McCarthy et al. 1994) are 

developed.  

Runway roughness has recently received more attention, as aircraft are becoming larger and 

more flexible therefore reducing the fatigue life of the entire aircraft (Curry 1988). Detailed 

analysis of runways is not given here, but it should be noted that it has been studied by other 

authors. Fabre et al. (2004) conducted an experimental investigation comparing the effects 

of different bogies on the runway. Zhejun (1987) highlights modifications that can be made 

to the oleo for landing on rough and bomb damaged runways. Krüger (2001) presents data 

of two typically rough runways to enable improvements of passenger and pilot comfort. 

Other sources of vibrations and oscillations have been identified by numerous authors, and 

further researched to determine how to minimise them. Vibrations and oscillations in the 

cabin can be caused by, wheelbase length, gear position (Silsby 1962), gear walk (Denti & 

Fanteria 1995), nose wheel shimmy (Depei 1989), brake squeal (Biehl 1983; Krabacher 1995) 

and tyre size and pressure (Raymer 1999). While fuselage vibration control techniques such 

as semi-active front gear may make the ride more comfortable for the crew and passengers 

(Wentscher et al. 1995), landing gear components such as the side braces must still be able 

to withstand the loads imposed upon them.  

Taxiing induced vibrations caused by runway and taxiway unevenness have been to found to 

be a significant factor in the fatigue of aircrafts (Kirk 1973). Paved runways are made from 



9 
 

many individual concrete sections joined with rubber. As the runway ages the sections settle 

unevenly resulting in a rough runway (Wentscher et al. 1995).  

The tertiary requirement of the landing gear is such that it must be retractable in order for it 

not to affect aerodynamic principles and reduce aircraft efficiency. However the gear must 

fit into a small space that that has been predefined by the airframe engineers in order to 

maximise the cargo carrying capacity of the aircraft (Raymer 1999; Krauss 1995). 

The use of pin joints fulfils the requirement of the landing gear to not only meet the demands 

mentioned above, but also allows the gear to be stowed in a restricted space typically, 

through means of folding, shortening (McCarthy et al. 1994) and rotating bogies as the gear 

is retracted (Curry 1988). Braces such as the side brace are used to minimise the lateral and 

braking loads exerted on the oleo (Raymer 1999) and therefore are subjected to tensile and 

compressive loads as the gear tries to deflect laterally, and hence any joints must be able to 

support all the loads mentioned above.  

2.1.1. Pin Joints in Landing Gear 

The joint investigated in this study is located on the drag stay brace of the Nose Landing Gear 

(NLG) for a narrow bodied aircraft. The joint is one that experiences relatively low loads in 

comparison to those on the Main Landing Gear (MLG), as the NLG typically only carries 6- 

20% of the aircraft weight when on the ground (Curry 1988). The location of the joint is 

shown in Figure 2.1, (Airbus 2005). 

 

 

 

 

 

 

 

 

Drag strut assembly 

joint 

Figure 2.1: Location of the Drag Strut Assembly Joint on the Nose Landing Gear 
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The pin is of hollow chrome plated steel construction, 42 mm OD, 30 mm ID, and 175 mm 

long, and is constrained using a cross bolt to prevent lateral pin movement and rotation. The 

pin slides against Aluminium Bronze bushes to prevent the likelihood of galling (Curry 1988), 

they typically contain circumferential H grooves machined internally for the distribution of 

grease. 

The joint is part of the extension retraction mechanism, and therefore operates only through 

a limited range of motion. The speed of the extension retraction system typically occurs at 

12 deg/sec, however this varies slightly for each type of aircraft (Curry 1988). Under 

emergency conditions faster deployment may be required (Curry 1988). The location of the 

joint is highlighted in both the extended (solid circle) and retracted (dashed circle) positions 

in the schematic below (Airbus n.d.). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.2: Location of the joint in the extended and retracted positions 
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Airline operators have indicated that a higher initial cost of aircraft may be offset by a 

reduction in operating costs (Lee et al. 2001; Krüger 2001), therefore landing gear 

manufacturers are considering the use of polymer composites in designs, to the extent of 

replacing entire components (McCarthy et al. 1994). Assessments envisage the potential for 

a 30% to 40% weight saving through the use of composites (Lee et al. 2001; Curry 1988). 

Weight is of great concern in aircrafts, a reduction of 100 kg can save between $3500 and 

$6500 per year on a single aircraft (Airbus 2008). Airline operators have already realized the 

potential savings resulting from weight reductions, and as a result manufacturers have seen 

increased orders for new more fuel efficient models (Dillingham 2014). For some applications 

such as polymer composite bearings, additional benefits such as reduced maintenance can 

also be offered. If this can be provided at a reasonable acquisition cost, landing gear 

manufacturers will still be able to maintain their competitive advantage (Krüger 2001; 

McCarthy et al. 1994). This then brings with it the savings associated with removing the 

aircraft grease itself. Finally consideration should be given to the weight of the grease, 

excessive greasing would not only be a waste of grease but it would also remain on the 

aircraft, and add to the weight. Therefore the potential of self-lubricating polymer 

composites for bearing materials in aircraft landing gear is one that offers great rewards.  
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2.2. Lubrication Regimes  

For lubricated journal bearings, a Stribeck-Hersey curve is used to assess the lubrication 

performance, over a range of conditions. A typical Stribeck curve is shown in Figure 2.3 where 

the COF is plotted against the Hersey number, a non-dimensional parameter. 

 

 

 

 

 

 

 

 

The Hersey number is defined as  

 

Where P is the mean contact pressure, ω is the angular velocity of the pin, and η is the 

lubricant viscosity. The Stribeck curve, can typically be split into three regions, boundary, 

mixed and Hydrodynamic Lubrication.  

2.2.1. Boundary Lubrication 

The boundary regime of the Stribeck diagram occurs when asperity to asperity contact 

dominates, there is insufficient pressure to separate the surfaces as a result of either low 

relative sliding speeds, or high loads. In these circumstances self-lubricating or dry bearing 

materials show significant advantages up to approximately 10m/s (Lancaster 1972b) without 

damaging the metallic mating surface (Holligan 1968). Self-lubricating bearings are becoming 

increasingly popular in the engineering world, they are generally used where:  

 Oscillatory motion is present, which prevents the generation of a hydrodynamic oil 

film e.g. construction equipment (Strand 2005),  
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Figure 2.3: Stribeck-Hersey Curve 
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 Environments are hostile e.g. space (Briscoe 1990), 

 The use of lubricants is prohibited e.g. food industry (Unal & Mimaroglu 2003), 

 The provision of lubrication systems becomes too complex or inconvenient to 

provide e.g. aircrafts (Holligan 1968). 

The Engineering Sciences Data Unit (ESDU) conducted a large amount of work on dry rubbing 

bearings (ESDU 87007 2010). Included was an attempt to summarise a characteristic 

Pressure Velocity PV curve for current self-lubricating bearing technologies (Lancaster 

1972b). This is a useful parameter for comparing dry bearing performance which is the 

product of the pressure and rubbing velocity PV (Pinchbeck 1961; Holligan 1968). The 

maximum pressure is generally limited by the strength or creep resistance of the material, 

while the velocity is generally constrained by the maximum operating temperature that the 

bearing can withstand (Evans 1981). It has been well established over the years that an 

increase in PV also results in an increase in bearing temperature (Holligan 1968; Pinchbeck 

1961), so care should be taken when considering PV limits. 

PV values however are only guidelines, as bearings can be successfully operated outside of 

the quoted PV limits. Lancaster comments on some limitations of PV especially with regards 

to thermoplastic bearing materials, bearing size and temperature (Lancaster 1971). There is 

much criticism of only the PV relationship being used for design purposes (Pinchbeck 1961; 

Pratt 1973). Hooke et al. (1996) shows that the temperature rise generated by friction is of 

great significance, and should be considered along with PV. However Holligan (1968) 

highlights that certain materials have a greater effect as a result of either pressure or velocity  

and therefore that it can be unreliable for design, and full scale testing is often required.  

2.2.1.1. Tribology of Dry Sliding 

One of the two mechanisms that is widely acknowledged to contribute to the fiction force is 

the shearing of junctions formed between the two mating surfaces (Quaglini et al. 2009). 

This is of great significance in the boundary lubrication regime where significant asperity to 

asperity contact is occurring.  

The fiction and wear performance of dry bearings is governed by third bodies in the contact 

(Play & Godet 1977). For dry rubbing surfaces the less well defined form of the “third body” 

is generally formed from the compaction of wear debris (Williams 2005).  The generation of 
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the wear debris, occurs through one, or a combination of wear mechanisms such as 

adhesion, abrasion or erosion.  

Therefore in polymer bearing applications where a metallic shaft is commonly used as a 

counter-face, consideration should be given to the surface roughness. A rough and 

comparably hard counter face such as steel against a polymer is a classic example for the 

generation of wear debris through the mechanism of abrasion (Williams 2005). While the 

development of the transfer film is more prominent where ‘rough’ metallic surfaces are used 

(Kennedy et al. 1985), which may seem counterintuitive at first however, the effects on the 

wear rate must also be taken into consideration which tend to rise significantly (Gay 2013). 

A large amount of research has been conducted into the tribological behaviour of polymers, 

and it has been well documented that for polymer metal junctions, a transfer film forms on 

the metallic face and results in a decrease in friction (Quaglini et al. 2009). For many self-

lubricating dry bearings the third bodies are utilised as a sacrificial layer to generate a 

protective or lubricating layer (Bahadur 2000) dependent on the contact normal to the 

sliding direction (Play & Godet 1977).  

This reduces the adhesive and ploughing wear mechanisms taking place between the moving 

surfaces (Fusaro 1990), but only if the transfer film has adhered to the counter face material, 

otherwise the process is repeated, resulting in wear (Bahadur 2000). 

PTFE, an important engineering material is a classic example of this. It known for its low co-

efficient of friction which is achieved through the transfer of a layer of PTFE to the mating 

surface (Fusaro 1990) through the adhesion of the two materials, and the shearing of the 

polymer (Bahadur 2000). This however occurs at the expense of a high wear rate (Biswas & 

Vijayan 1992), which controls the bearing life (Play & Godet 1977). 

For PTFE under sliding with a hard counter face, the PTFE chain undergoes scission and 

chemically reacts with the counter face to provide a coherent transfer film (Biswas & Vijayan 

1992). The sliding velocity of PTFE was shown to have little significance on the wear rate, 

however an increasing load resulted in a higher wear rate but a decrease in the co-efficient 

of friction (Unal, Mimaroglu, et al. 2004). An extensive review of the friction and wear of 

PTFE was conducted by Biswas & Vijayan (1992), where it was concluded that continuous 

transfer film results in low friction, whereas a non-coherent film is a result of high friction.  

Polyoxymethylene (POM)  behaves in a similar manner to that of PTFE, generating a relatively 

thin transfer layer (Bahadur 2000), and greater wear rates than that of other unfilled 
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polymers Polyamide 6 (PA 6) and Ultra High Molecular Weight polyethylene (UHMWPE) 

(Unal & Mimaroglu 2003). Unal & Mimaroglu (2003) identified that for PA 6, UHMWPE and 

POM, all materials were more sensitive to sliding velocity than the applied load in terms of 

wear, differing from that of PTFE. Wang et al. also confirmed this for UHMWPE (Wang & Li 

1999).  

Low Density Polyethylene (LDPE), Poly-Propylene (PP) and Nylon 66 however tend to form a 

relatively thick lumpy film (Bahadur 2000). There is still some disagreement however if Poly-

Propylene forms a transfer layer at all (Briscoe & Sinha 2002). 

Gay (2013) provides a brief summary of the extensive work conducted by the Laboratoire de 

Méchanique des Contacts (Laboratory of Contact Mechanics) of the tribological properties 

of dry sliding materials. Perhaps the most significant piece of work conducted was that of 

Godet et al (1980) where it was determined that the geometry and motion of the contacting 

bodies can displace or help to retain the wear debris between the moving surfaces (Williams 

2005). This was observed by Play (1985) in the non-uniform distribution of wear debris and 

the resultant lower co-efficient of friction for an oscillating motion was attributed to it. 

2.2.1.2. Polymer Bearings  

Polymer bearings made their debut in about 1931 with the ‘bakelised’ bearing (Pinchbeck 

1961), since then there has been a growing interest in plastic bearings. There are two types 

of plastics that can be used for bearings in engineering applications, thermosetting and 

thermoplastics. Some examples are shown in Table 2.1 (Pinchbeck 1961).  

Thermoplastic Thermosetting 

Nylon (Polyamide) Epoxy 

Polycarbonate Melamine- Formaldehyde 

PTFE (Polytetrafluroethylene) Phenol- Formaldehyde 

Polypropylene Polyester 

Polyvinyl acetal Urea- Formaldehyde 

Table 2.1: Examples of some Thermoplastic and Thermosetting bearing materials 

Thermoplastics can be reheated and re-shaped after their initial moulding, whereas 

thermosetting plastics cannot. This remoulding is as a result of their chemical composition. 

Thermoplastics have weak forces between the polymer chains, which can easily be broken 

and reformed upon heating and re-cooling. Thermosetting plastics however form covalent 
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bonds between the polymer chains resulting in strong cross links (Pfestorf et al. 2000), which 

means that on the addition of heat the polymer chains themselves will be broken at the same 

time as the cross link bonds are broken (Thorp 1982). 

In order to improve the performance of polymers as bearings, they may either be reinforced 

or filled to improve their tribological properties. Pure PTFE for example has exceptional 

frictional properties and performs well under low speeds but high loads, unfortunately it has 

poor wear resistance in the unfilled state (Holligan 1968). Lancaster (1972b) presents 

numerically a comparison of Acetal and Epoxy in their natural and reinforced forms for 5 

important parameters when considering bearing applications. 

The tribological properties of polymer bearing materials such as Polytetrafluroethylene 

(PTFE), Polyamide (PA), Polyethylene (PE) in its various forms (LDPE, HDPE, UHMWPE), Poly-

propylene (PP), Polyoxymethylene (POM) and (PEEK) has been conducted by a number of 

authors over the years, (Briscoe 1981; Wang & Li 1999; Unal & Mimaroglu 2003; Unal et al. 

2004; Unal et al. 2004; Stuart 1998) under a variety of benchtop tests and therefore by no 

means is an exhaustive list given here.  

While other works regarding the application of polymers for bearings has been evaluated by 

a number of authors (Ünlü et al. 2009a; Ünlü & Atik 2007; Ünlü et al. 2009b; Ünlü 2011). 

Friction and wear of journal bearing materials can be measured under test in a variety of 

ways. A common method is to use a continuously rotating shaft, with the bearing loaded 

against it using a deadweight, and to measure the deflection or displacement for friction and 

wear measurements respectively (Ünlü & Atik 2007). 

Unfortunately there are some inherent problems with plastics that significantly affect their 

performance as bearings. It has already been briefly mentioned about the heating effects in 

self-lubricating bearings with regards to PV, however this is more of a problem for thick 

polymer based materials which struggle to conduct the heat away, in contrast to  thin liner 

materials. Movement occurs between two surfaces and the resistance due to friction 

generates heat in a self-lubricating bearing application, this heat must be dissipated through 

the housing and or shaft due to the lack of cooling provided by a lubricant (Holligan 1968). 

With polymer materials this becomes a problem due to the poor dissipation of heat as a 

result of the significantly lower thermal conductivity (one to two orders of magnitude) than 

that of their metallic counterparts (Lancaster 1972b). Pinchbeck (1961) briefly mentions an 

intensive study conducted by Keil, and the findings that if the bearing material is fitted to the 
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shaft, then the rate of heat transfer can be increased, and therefore higher loads and speeds 

can be achieved than in conventional designs. Failure to remove this frictional build-up of 

heat will result in increased molecular vibration until the molecular chains forming the 

material break, and the material melts (Pinchbeck 1961). Therefore this limits performance 

of a polymer bearing either as a result of overheating and seizure, or by the amount of wear 

(Pfestorf et al. 2000). 

Polymer bearings are difficult to constrain to a housing (Wilson n.d.), due to the increased 

tolerances that are required to prevent seizure from thermal expansion and moisture 

absorption (Pinchbeck 1961; Holligan 1968). An increase in clearance of just 200 µm resulted 

in 50% more start-up torque for PTFE specimens (Colbert et al. 2010). Pinchbeck (1961) also 

comments that machining tolerances of 0.002 in must be accepted, due to the uncertainty 

in the machining and the measurement of plastic bearings. 

A reduced wall thickness will improve the load carrying capacity of a self-lubricating bearing, 

and also the dissipation of heat generated, along with any dimensional changes as a result 

of temperature or moisture absorption. However due to their poor tensile and impact 

resistance the wall thickness of a polymer bearing will typically have to be greater than that 

of their metallic counter parts (ESDU 87007 2010).  

 

 

 

 

 

To improve this, a tape bearing such as that shown in Figure 2.4 could be used, or 

alternatively a plastic lined metallic backed bearing. Pratt (1973) investigates the latter for a 

steel backed porous bronze impregnated with PTFE and Lead.  

Figure 2.4: Loose tape bearing liner (ESDU) 
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2.2.2. Mixed Lubrication 

Mixed lubrication as the name suggests is a combination between the boundary lubricated 

regime and the hydrodynamic regime. The hydrodynamic regime is the ideal lubrication 

regime for many lubricated contacts. As one surface moves relative to the other with a 

converging geometry, a pressure is generated lifting one surface and separating the contact. 

For a rotating journal bearing the same is true. As the shaft rotates lubricant is dragged into 

the contact, generating a pressure and lifting the shaft. Figure 2.5 shows that there is also a 

slight eccentricity produced as a result. 

In the mixed regime there is a lubricating film however there is still asperity to asperity 

contact as the thickness of the film is comparable to that of the surface roughness. This 

would typically occur during the start-up of a rotating journal bearing. For metallic contact 

between the surfaces, methods such as electrical contact resistance may be used (Clarke et 

al. 2014), this however is obviously not possible for polymer bearings. 

2.2.2.1. Lubrication in a Landing Gear Application 

Given that a limited range of motion is observed and the slow velocities used, rolling element 

bearings are unsuitable unless substantially oversized (Strand 2005). At present most landing 

gear extension-retraction mechanisms, still favour the use of the greased journal bearing. 

Curry (1988) provides some recommendations for grease lubricated aircraft bearings, mainly 

that lubrication should typically be completed every 500-700 hours, but there is no fixed re-

lubrication interval and is left to the discretion of the airline operators. Using the average 

number of annual flight hours and cycles (Airbus 2008) it may be calculated following Curry’s 

recommendation that the gear should be lubricated every 250 flight cycles. The average 

plane life is 90,000 flight cycles (Khapane 2003), meaning that over the lifetime of the aircraft 

the gear would be lubricated approximately 360 times.  

Figure 2.5: Converging geometry in (left) two plates, generating a full hydrodynamic film, (right) non-
rotating journal bearing with no film, and (far right) rotating journal bearing with a fully developed 

film 
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Careful consideration must be given when selecting any lubricant for a specific application. 

In the case of aircraft landing gear, it is believed that the limited motion and the low speeds 

of 12 deg/sec do not provide adequate lubrication, as the bearing is always operating in 

either the mixed or boundary lubrication regime, and never develops a full film (Zhu et al. 

2012). Lu & Khonsari (2007b) showed that greased journal bearings perform well at slow to 

moderate rotational speeds in highly loaded contacts. Additional work further proved that 

for mixed and boundary lubrication regimes, grease lubricated journal bearings perform 

better than those lubricated with oil (Bradford et al. 1961; Horth 1968; Godfrey 1964). 

Some joints on the landing gear may be adequately lubricated with oil however this would 

require the addition of a complex and heavy oil supply system, rendering it less attractive 

with regards to the greased journal bearing which can provide the same load carrying 

capacity (Reinhoudt 1970). Mullet (1973) comments further on some of the advantages of a 

grease lubricated system. However since the grease is not continuously recycled, and filtered 

like oil lubricated systems, replenishment is required at specific intervals. The lubrication 

requirements vary for the different joints on the aircraft, therefore require different re-

lubrication intervals. Often the optimum re-lubrication interval cannot be achieved for 

economic and logistical reasons, as it is more efficient to re-lubricate all of the landing gear 

at once, rather than one at a time. Not only do the re-lubrication intervals vary, but also the 

greases used, Aeroshell 17 for example, is designed to be used for heavily loaded sliding 

surfaces such as the bogie pivot pin, while Aeroshell 22 is a multipurpose grease for items 

such as wheel bearings (Shell n.d.). It is important not to mix the different greases as in the 

example above as this could lead to inadequate lubrication of the mating surfaces and 

therefore result in seizure of main components (Careless 2008). Aviation grease spans a 

wider operating temperature range and therefore is one of the reasons that it has been 

specially developed for the aerospace industry, and hence is expensive in comparison to that 

of multipurpose general grease (Mullet 1973). 

2.2.2.2. Grease Lubrication 

Grease lubrication has been greatly studied over the years, and therefore only brief 

comments will be made here. Greases consist of a liquid lubricant gelled with a thickening 

agent, usually soaps based on Lithium, Calcium, Sodium Barium or Aluminium (Yousif 1951). 

By altering the ratio of thickener and different manufacturing techniques, the stiffness of the 

grease can be altered. The National Lubricating Grease Institute (NLGI) number is used to 

categorise greases according to their hardness on a scale of 000 to 6 where a lower number 
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represents a softer grease. Numbers 2 and 3 are the most commonly used in bearing 

applications (Mullet 1973). Cann & Lubrecht (1999) summarise the understanding of grease 

lubrication mechanisms in rolling element bearings, highlighting the two mechanisms 

proposed, over rolling and oil bleeding. 

The first is outlined by Scarlett (1996), where a thin layer of grease forms on the surface and 

the remaining grease forms a protective seal, preventing the lubricating high viscosity grease 

layer from escaping. Experimentation showed that no base oil escaped from the contact.  

The oil bleed theory has however been more widely accepted though ball on disc testing 

where it is thought that the grease releases or bleeds the base oil out of the grease which 

lubricates the contact, with the majority of the grease being pushed aside forming a reservoir 

(Cann 1999). Unfortunately however there is still little direct evidence for this, only visual 

observations during ball on glass disc testing (Cann & Lubrecht 1999). 

Cann (2007; 2001) conducts a large amount of work with regards to the performance of 

greases, thickeners, and their importance, largely in rolling element bearings, concluding 

that at slow speeds an inverse Stribeck curve is produced. Investigation of grease 

degradation in bearings using SKF R0F and R2F test rigs is then made using IR spectroscopy 

(Cann et al. 2001; Cann et al. 2007). 

Mota & Ferreira (2009) investigated the effects of base oil viscosity and percentage of soap 

in rolling contact wear. Concluding that greases with a higher value of base oil viscosity, and 

a higher percentage of soap led to reduced wear. Yousif (1983) also uses a twin disc machine 

to study the effect of frictional traction with time, to which he found that there is a continual 

increase unlike mineral oils, and comments that they are not ideal lubricants, as they can 

lead to failure through starvation at high slip.  

Lu & Khonsari (2007b) experimentally investigate load, bushing material and the type of 

grease on the co-efficient of friction in journal bearings, and develop a mixed elasto-

hydrodynamic model for line contact. They also comment on their findings of a reduction in 

the co-efficient of friction when the load is increased when operating in the hydrodynamic 

regime, and the higher value of the friction co-efficient due to the thickener, when 

comparing grease with the same base oil viscosity of that of an oil.  
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2.2.2.3. Design of Lubricated Bearings  

Many authors, have commented on the non-Newtonian behaviour and reluctance to flow 

unless the yield value is exceeded (Scarlett 1996; Cann & Lubrecht 1999). Yousif (1951) 

investigated the rheological properties of greases, concluding that at higher shear rates, the 

grease begins to flow as a Newtonian liquid, but has a higher viscosity than would be 

expected from the base oil. When distributing grease though lubrication channels, the flow 

of greases becomes of great importance. Therefore many designs of grease grooves in 

metallic bushings have been developed. Different designs have been investigated, by a 

variety of authors. Russo (2013) shows some of the more common designs (Figure 2.6). 

Brito et al. (2012) compared a single and twin axial groove distribution with particular 

attention to the flow rates and pressures used and Ahmad et al. (2013) investigated the 

effects of varying the pressure input with axially grooved bearings, concluding that the input 

location of -30O was the worst location for lubricant to be introduced. Strand (2005) 

investigated 3 different types of grease channel design; no groove, X groove (figure eight) 

and H groove (straight and circular), and their influence on wear. The H groove was found to 

perform the best, and unexpectedly the X grooved bush performed slightly worse, but similar 

to the bush with no groove.  

Schuller et al. (1968) conducted comparative stability experiments between 3 types of 

herringbone designs. Herringbone or spiral grooves as they are sometimes know, have 

attracted much attention over the last few years for their applications in consumer items 

such as computer hard disk drives (Kawabata et al. 1989), due to the attractive properties of 

reduced noise, friction and extended lives (Muijderman 1979). However the spiral or 

herringbone design is only suitable for rotation in one direction (Muijderman 1979), hence 

Kawabata et al. (1989) proposed a new reversible design using a numerical approach. 

Hirayama et al. (2009) developed a methodology for optimising herringbone groove 

dimensions to improve repeatable run out characteristics of spindles. Sep et al. (2013) also 

investigated the effect of helical groove geometry, but in a sliding journal application with 

Figure 2.6: Some common designs of lubrication channels in journal bearings 
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regards to abrasive wear, and how to move wear debris and contaminants out of the loaded 

region, and touches on the potential of surface texturing for journal bearings. 

Some work has been conducted on the effects of clearances, edge effects and surface 

texture. Applying a texture to a lubricated sliding surface was found to improve the 

tribological properties, by creating micro hydrodynamic bearings, therefore reducing friction 

(Ronen et al. 2001; Pettersson & Jacobson 2003). In the mixed lubrication regime, it was 

found that if dimpling was applied around the entire bore then COF could be improved, 

however worsened the performance if in the hydrodynamic regime (Lu & Khonsari 2007a). 

Sinanoǧlu et al. (2005) applyed a surface texture to the outer diameter of the shaft, and 

concluded that a trapezoidal profile on the shaft preforms better than a saw tooth profile. 

Colbert et al. (2010) looked at edge effects, clearances and wear, and proved that a sharp 

edge should be avoided, and best performance could be obtained from a radiused bush 

rather than chamfered one. Strand (2007) conducted a Finite Element Model (FEM) to 

optimize journal bearing housing design looking at how to distribute the pressure across the 

pin without reducing the area. Prabhu (1997) looked at the horizontal misalignment effects 

of a hydro-dynamically lubricated journal bearing, by examining the coast down time of the 

bearing with regards to the angle of misalignment. Identifying the mixed lubrication regime, 

and that increasing misalignment causes an increase in the fluid film friction and hence an 

increase in the deceleration of the bearing. 

2.3. Performance of the Pin Joint 

Research into oscillatory journal bearings has been conducted in recent years. Glaeser & 

Dufrane (1976) conducted some early work on the performance of heavily loaded oscillatory 

journal bearings, using metallic bearings and a variety of different greases. Their results were 

based upon two bearing specimens; Beryllium Copper alloy and Aluminium Bronze, running 

against M-50 tool steel, and AISI 4340 steel. Although the Beryllium copper alloy is favoured 

as a bearing material for its higher load carrying capacity and low wear rates at high bearing 

pressures it was found to carry a health risk of Chronic Beryllium disease (Darby & Fishwick 

2011). Glaeser and Dufrane (1976) highlight the sensitivity of both the Aluminium Bronze 

and Beryllium Copper alloys to the effects of grease starvation, and the potential advantages 

of plastic based materials.  

Wear of Aluminium Bronze against tool steel under boundary lubrication conditions was 

conducted to prevent seizure of aircraft fuel pumps. Experimentation was conducted using 
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pin on disc testing, and protecting wear debris were found to be Cu2O and that material was 

transferred from the Aluminium Bronze pin to the steel disc, with the transfer film being 

Aluminium rich. Transfer occurred during initial stages and then following that only at film 

breakdown (Sullivan & Wong 1985).  

Zhu et al. (2010) investigated the pressure distribution and the frictional torque in the 

articulating pin joints, concluding that friction co-efficients were in the range 0.08 to 0.11 for 

grease lubricated contact. The pressure distribution was found to be approximately 

cosinusoidal over a range of ±60O regardless of radial load. It was also shown that there was 

a difference between nominal and true friction torque on a pin joint. The true torque on a 

joint includes the components of pressure that do not support the normal load, and 

therefore gives a greater torque requirement than that normally calculated by 𝜇 = 𝑃𝐷/2. 

Zhu et al. (2012) continued onto develop a model to determine the lubricant film formation 

and the frictional torque for a landing gear application. The model was validated with 

experimental data, both numerical and experimental approaches determined that the joint 

investigated was operating in the boundary regime with little effect from hydrodynamic lift. 

However prior knowledge is required for the model regarding the dry friction co-efficient 

value.  

Strand (2005) studied grease lubricated heavily loaded oscillating bearings in construction 

machinery developing three finite element models. One to replace the pin to improve 

computational time, one to study the parameters governing the pressure distribution and a 

final one to model the wear. 

The service life of grease was found to not be fully utilised by Ugryumov & Pedrik (1982) for 

a small amplitude oscillating joint. The friction co-efficient for Bronze against a steel shaft 

was found to be 0.18 for a contact lubricated with a lithium based grease. The re-lubrication 

interval was established to be 50 hours, 4 -5 times longer than established previously. The 

temperature of the joint was not monitored, but simply allowed to cool between tests. 

Lu & McKellop (1997) considered the frictional heating effects in a hip joint simulation with 

UHMWPE after a run in period had been completed. Temperatures were found to rise to a 

steady state value between 40 and 50OC, measured 0.5 mm beneath the sliding surface. 

Rezaei et al. (2011) conducted a numerical and experimental study of large scale polymeric 

composite journal bearings, oscillating the shaft using a lever arm set up. The numeric model 
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is shown to be accurate for the quasi-static condition but for the 2D dynamic condition was 

found to be time consuming. 

Ligterink & de Gee (1996) use a circular equation approach for measuring wear in oscillating 

bearings, again based upon a displacement approach. However this displacement must be a 

measured or guessed value. 

Gawarkiewicz & Wasilczuk (2007) investigated the effect of small amplitude oscillations on 

the wear of self-lubricating bearings, monitoring the wear by surface profilometry of a 

machined groove in the specimens, concluding that the real sliding distance is lower than the 

apparent one, due to the tangential elasticity of polymer based bearing materials which 

results in an over prediction of wear rates if stick-slip behaviour occurs. 

2.4. Conformal Contact  

The contact between conformal cylinders is a complicated phenomenon, especially when 

considered with respect to journal bearings. The problems of the cylindrical conformal 

geometry, small clearances and a finite length, all combine. How the load is distributed is of 

great interest when designing a journal bearing. Of special interest is the arc of contact. 

 

 

 

 

 

 

 

The most commonly used pressure distribution model for a bearing, and often quoted by 

manufacturers is the projected area method, where the load is assumed to be distributed 

across the whole width of the bearing. This has the advantage that very few input parameters 

are required to determine the necessary bearing size. Unfortunately however consideration 

of the materials and clearance between the contacting bodies is not taken into account, 

making predictions for soft/hard material interfaces difficult. 

γo 

Arc of contact 2γ 
0o 

γo 

Bush 
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Figure 2.7: Definition of the arc of contact of a pin against a bush 
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The cosinusoidal method resolves the pressure distribution around the pin assuming 180O 

contact. It is still however limited as it does not consider the material parameters. 

Heinrich Hertz developed a theory for spherical and cylindrical elastic bodies in contact in 

1880, that has become a mainstay of Mechanical Engineering (Johnson 1982). Hertz theory 

mainly focused on external contact of bodies, and that it was a case of stress concentration 

so attention could be focused close to the point of contact (Johnson 1982). In certain 

circumstances, the theory can be extended for cylinders in conformal contact, such as 

cylindrical roller bearings, but must be applied correctly to avoid breaking one or more of 

the assumptions made by Hertz. One of the big advantages of the Hertzian contact model is 

that the material parameters are considered, through the reduced modulus term (equation 

2.2). 

1

𝐸∗
= (

1 − 𝑣1
2

𝐸1
+
1 − 𝑣2

2

𝐸2
) 

Where E* is the reduced modulus of elasticity, v1, E1, and v2, E2 are the Poisson’s ratio and 

modulus of elasticity for bodies 1 and 2 respectively. The width of contact for parallel cylinder 

in contact can be calculated using 

𝑎 = √
4𝑃′𝑅′

𝜋𝐸∗
 

Where P’ is the load per unit length and R’ is the reduced radius of the contact. Unfortunately 

however there are three main problems that can arise with the Hertzian contact (Johnson 

1982; Pereira et al. 2011): 

 Compliant elastic solids do not obey this 

 Does not account for the energy dissipation unless quasi-static  

 With conforming surfaces such as a pin and bush contact, the arc of contact can 

become large with comparison to the radius.  

In the case of journal bearings, the contact area rapidly increases with load and becomes 

comparable to the radii of curvature of the contacting bodies, breaking one of the 

assumptions made by Hertz.  

As a result, several researchers attempted to improve upon the Hertz theory with the 

addition of adhesive and separation components such as that of Bradley (1932), Johnson 

(2.2) 

(2.3) 
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Kendal Roberts (1971), Derjaguin Muller and Topolov (1975), Tabor (1977) and Maugis-

Dugdale (1992) to increase the contact region calculated by Hertz (Johnson 1997). 

Goodman & Keer (1964) removed the assumption that a small contact region is made to 

investigate the state of stress with identical materials, and identified that if the contacting 

bodies have a large difference in radii then the Hertz equation must be used. 

Steuermann (1949) solved the problem in 2D for a disc in an infinite plate, using integrals 

and finite difference methods. The solution is only given for arcs of contact less than 60O, 

and assumed that the shear stresses vanish in the plate.  

Persson (1964) developed an integro-differential equation for the pressure distribution and 

validated it with a pin loaded against an instrumented flat plate with a hole in. This solution 

however was only valid for identical contacting materials. 

Ciavarella and Decuzzi developed a closed form of Persson’s solution, for both cases of elastic 

similarity (2001a),  

𝐸1
∗∆𝑅

𝑃′
=
(𝛼 − 1)(log(𝑏2 + 1) + 2𝑏4) + 2

𝜋(1 − 𝛼)(𝑏2 + 1)𝑏2
 

 and elastic dissimilarity (2001b). 

𝐸1
∗∆𝑅

𝑃′
=
(𝛼 − 1)(log(𝑏2 + 1) + 2𝑏4) + 2

𝜋(1 − 𝛼)(𝑏2 + 1)𝑏2
−

4𝛽

𝜋(1 + 𝛼)
 

Where 𝑏 = 𝑡𝑎𝑛 (
𝛾

2
) with 𝛾 the arc of contact, 

𝐸1
∗∆𝑅

𝑃′
 is the dimensionless load parameter 

and, α and β are Dundur’s material parameters 

𝛼 =
((𝑘1+1) 𝑛1⁄ )−((𝑘2+1) 𝑛2⁄ )

((𝑘1+1) 𝑛1⁄ )+((𝑘2+1) 𝑛2⁄ )
 𝛽 =

((𝑘1−1) 𝑛1⁄ )−((𝑘2−1) 𝑛2⁄ )

((𝑘1+1) 𝑛1⁄ )+((𝑘2+1) 𝑛2⁄ )
 

 

With 𝑛𝑖 the shear modulus and 𝑘𝑖 Kolosoff’s constant. 

𝑛𝑖 =
𝐸𝑖

2(1+𝑣𝑖)
 𝑘𝑖 =

3−𝑣𝑖

1+𝑣𝑖
 (Plane stress) 

 

Ciavarella and Decuzzi (2001a; 2001b) concluded that when the angle of contact is less than 

30O the strength of the joint reduces to that predicted by Hertz. Noble & Hussain (1969) also 

obtained a solution for elastic dissimilarity but only for a zero clearance condition. 

(2.6 & 2.7) 

(2.8 & 2.9) 

(2.4) 

(2.5) 



27 
 

Chen & Marshek (1988) considered the contact of a 2D long cylinder and closely conforming 

cylindrical seat. By guessing instead of calculating a relative approach unlike Woodard, they 

were able to avoid a large scale linear system. They compared their result to Hertz and 

Persson theories and found good agreement with Persson, as the Hertzian theory 

underestimated the maximum contact pressure and overestimated the maximum angle of 

contact. At contacting angles of less than 15O they found all solutions to be in close 

agreement.  

Zhu et al. (2010) conducted ultrasonic measurements of the contact pressure and arc  of 

contact for a steel pin loaded against aluminium bronze bushes. The  findings were compared 

with the Hertz and Persson models, concluding that the Hertzian contact theory could still 

be applied to estimate the contact of a journal bearing with a steel pin in aluminium bronze 

bushes, but was more accurate at higher loads. While the Persson method predicted higher 

pressures for the contact, especially at low radial loads. 

Almost all of these methods assume elastic similarity, except for Ciavarella & Decuzzi, 

however this is a relatively heavy in terms of computational power using 21 equations to 

compute a relatively simple concept. 

Deters et al. (2003) highlight a circular equation approach developed by Wenger (1964) for 

calculating the angle of contact for very elastically dissimilar materials, based upon the 

deformation and wear; however to determine the arc of contact these two parameters must 

be know in advance. This is acceptable if the load applied is static, and the bearing has been 

run in sufficiently so that the wear has reached a steady rate. 

Ligterink & de Gee (1996) also applied the circular equation approach, however considered 

it only for the oscillating nature of the bearing, again once a known displacement had been 

recorded. 
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2.5. Material Selection for Pin Joints  

Advanced bearing solutions are most likely to involve using a composite or polymer material, 

as suggested by McCarthy et al. (1994), in order to reduce operating costs by reducing 

weight, and therefore saving fuel. However care must be taken in order to select a material 

that performs well under impact loading conditions, as Zhang (1998) found that the PTFE 

wear mechanism is mainly plastic fracture, while Nylon 6 is more susceptible to erosion.  

Both surface roughness and hardness of the mating surfaces are important tribiological 

parameters to consider when working with self-lubricating bearing materials. It can be said 

that surface roughness is of great importance when dealing with plastic bearing materials as 

it is well documented that micro cutting will occur where hard asperities plastically plough 

through a softer mating one (Lancaster 1972a; Stuart 1998), and it is known that a metal and 

plastic interface will cause this phenomenon if the relative surface finishes differ greatly 

(Pinchbeck 1961). It is therefore recommended that the mating surface finish is between 0.2 

and 0.4 microns (ESDU 87007 2010). 

The hardness of the contacting materials generally defines which material will wear at a 

higher rate. For two rough contacting materials, it is the harder material that will typically 

plough through the softer one. When dealing with filled polymers and a very hard counter 

face material (>600 VHP) the abrasive effect of the filler becomes negligible, and correction 

factors may be applied to approximate those of unfilled polymers (ESDU 87007 2010).  

The Archard wear model (Williams 2005) quickly shows the significance of the hardness of 

the mating components and its effect on the volume of debris removed, where V is the 

volume of wear debris produced, H is the hardness of the softest mating pair, FN is the normal 

force applied to the contact, s is the sliding distance and K is the dimensionless wear co-

efficient constant. Hence a harder material results in a lower volume of wear debris.  

𝑉 = 𝐾
𝐹𝑁
𝐻
𝑠 

2.5.1. Viscoelasticity 

Viscoelasticity of materials in contact is by no means a simple phenomenon, and therefore 

only brief notes will be made about it here. For self-lubricating polymer bearings 

consideration also has to be given to the nature of the materials, and the configuration of 

the loading conditions.  

(2.10) 
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For materials such as a steel pin, loaded against aluminium bronze bushes the Hertzian and 

Persson methods have been proven to be reasonably accurate (Zhu 2012), in predicting the 

nonlinear relationship between force and displacement (Johnson 1982; Johnson 1994), it can 

only be done under quasi-static conditions as there is no account for the energy dissipated. 

The aluminium bronze bush and steel pin, while elastically dissimilar are both much stiffer 

materials than self-lubricating polymer composites, and will therefore show less sensitivity 

to viscoelasticity.  

To further complicate the problem aircraft landing gear joints, such as the one selected in 

this study are subjected to a dynamic motion, as the aircraft taxies along the runway. 

Therefore the problem suddenly becomes much more complex and consideration to the 

viscoelastic nature of the polymers needs to be given, as energy will be dissipated during  the 

loading and unloading of the joint. 

The Kelvin-Voigt model is a simple viscoelastic model that has been used to predict linear 

viscoelasticity. It is more commonly recognised as the classical parallel spring-dashpot 

model, however due to its simplicity it is generally inadequate to do so with polymer 

materials (Bentham et al. 1996). 

Some of the energy dissipated can be accounted for through the addition of adhesive and 

separation components to the Hertzian models as mentioned earlier (section 2.4) (Johnson 

1997). However energy can also be dissipated through wave propagation, friction and the 

work of plastic deformation (Lim & Stronge 1999). 

Pereira et al. (2011) conduct a critical review of cylinder contact force models for the use in 

analysing the viscoelasticity, covering the Kelvin-Voigt model, and several adaptations of 

Hertzian contact (Pereira et al. 2011). The four models discussed are the Johnson Model 

(1994), Radzimovsky Model (1953)l, Goldsmith Model (1960) and Lankarani & Nikravesh 

Model (1994). 

The Johnson, Radzimovsky and Goldsmith models are all based upon the Hertzian models 

and therefore encounter mathematical limitations, due to the use of the logarithmic function 

(Pereira et al. 2011).  

The Lankarani & Nikravesh model differs in that the contact force can be expressed as an 

explicit function of indentation, and therefore reduces computational power. Given this and 

that the model also can handle the energy dissipation during the impact process, it is often 

selected by researchers for contact and impact problems. In the comparison made by Pereira 
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et al (2011) however, the term accounting for the energy dissipation is neglected in order to 

compare with the other models that are purely elastic. The solution is initially developed for 

spherical bodies, but is extended for cylindrical contact.  

The Energy dissipated during contact is covered in more depth by  Hunt & Crossley (1975) 

who further explain the limitations of the Kelvin-Voigt model. Mainly which indicates that 

there is a tensile component acting on the contacting bodies just before separation. 

Mindlin & Deresiewicz (1953) show that the magnitude of the normal and tangential loads 

along with the history of the loads influences the friction between the contacting bodies. Lim 

& Stronge (1999) use a plane strain and time dependent approach to obtain the tangential 

force and the energy dissipated by friction. Again Hertz-like contact is assumed from the use 

of steel and aluminium half-spaces.  

The contact of viscoelastic bodies brings with it the additional complication of the contact 

region varying with time and therefore requires the correct selection and application of 

boundary conditions (Lee & Radok 1960). Pereira et al. (2011) discuss in detail the validity 

domains of the contact models, including the significance of converging geometry. To 

conclude Pereira et al. (2011) identify the three main problems associated with the 

consideration of viscoelasticity in contact force models. The first problem is a numerical 

iterative technique is generally required. The second relates back to the problem of 

conformal geometries as many are derived with Hertzian analysis. Finally the third is the use 

of the logarithmic function which imposes mathematical constraints on the model. 

Therefore given the additional complexities of a significantly viscoelastic material in 

converging contact, such as self-lubricating polymer composite bearings, this work does not 

attempt to include viscoelasticity more than highlighting its importance. 

2.6. Conclusion  

Grease lubrication is a topic that has been well studied over the years, including designs of 

lubrication channels and the effects of surface texture. Grease lubricated journal bearings in 

oscillatory motion has also been studied but to a much lesser extent, while the effect of the 

articulation angle has largely been neglected. Re-lubrication of pin joints has also very briefly 

been studied, however only at fixed articulation angles and the temperature of the joint was 

not controlled. A large amount of research was conducted on self-lubricating bearings in and 

around the 1970’s, however more recent advances in materials has not been greatly 
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investigated. Self-lubricating bushes in an oscillating journal bearing application is an area 

that has recently been attracting more interest. Two models are commonly used for the 

contact of conformal cylinders, however little consideration has been given to the contact of 

significantly elastically dissimilar materials. Many of the works completed for analysing pin 

joint contact have considered the pin joint to be a hole in an infinite plate, or have neglected 

the dimension of the elastic body that is being indented. Investigation into the wear of a self-

lubricating bush under dynamic loading of a pin joint has not been conducted. 

 

 

  



32 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

[Blank Page] 



33 
 

 

 

 

 

3.  

Experimental Techniques  

 

 

In this chapter the two servo-hydraulic test rigs used are described. One test rig simulates 

the radial loads applied to the pin joint as the aircraft is manoeuvred on the ground with the 

gear down locked. The second test rig simulates the extension retraction of the gear when 

the aircraft is airborne. The instrumentation used in the measurement and control of these 

two test rigs is described, along with operating conditions and sample results. 
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3.1. Loading of a Landing Gear Pin Joint 

Joints in aircraft landing gear are typically subjected to two types of loading, one when the 

aircraft is on the ground where there is no rotation of the joint but the weight of the aircraft 

must be supported. The other is the rotation of the joint which occurs when airborne hence 

comparatively low radial loads as only the weight of the gear must be considered. Two 

bespoke test rigs were manufactured to simulate each type of loading. The pin joint radial 

load tester simulates the loading on the gear when performing ground manoeuvres, while 

the pin joint function tester simulates the rotation of the joint as the landing gear is extended 

and retracted.  

3.2. Pin Joint Radial Load Tester 

The joint selected for investigation is located on the locking stay of the Nose Landing Gear of 

a single aisle passenger aircraft. This joint does not hold the entire weight of the aircraft, but 

prevents the gear from deflecting laterally, and therefore the load requirement is relatively 

small. Some studies have already been undertaken by the aircraft manufacturer regarding 

this joint and therefore more information was available, such as the load history and 

magnitude of loads. Figure 3.1 shows a schematic of how loading on a typical pin joint 

develops from an uneven runway as the gear tries to deflect laterally. 

 

 

 

 

 

 

 

 

 

Figure 3.1: Development of loading on drag stay joint as a result from changes in runway height 

RUNWAY SECTION  
HEIGHT CHANGES 
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The joint is subjected to tensile and compressive loading developed from the runway. Not 

only must consideration be given to the strength of the struts used, but also the pin, bearings 

and the clevis itself.  

3.2.1. Loading Clevis 

Simulation of the tension and compression loading on the pin in the radial direction when an 

aircraft taxies along the runway required a new test fixture to be commissioned. The fixture 

was designed to fit onto a servo-hydraulic load frame. Geometric similarity was maintained 

by using the same critical dimensions on the clevis as the actual aircraft part. The fixture was 

reduced in height compared to the original aircraft component to enable ease of 

manufacture and to reduce the risk of deflection occurring in the clevis joint at high loads.  

 

 

 

 

 

 

 

Figure 3.2 shows the joint in an aircraft schematic and outlines how it is loaded as a result of 

the changes in runway height and how this is replicated under laboratory conditions. It 

should be noted here that the CAD model of the test rig has been rotated to help 

understanding.  

 

Figure 3.2: Design of radial load test rig to simulate tension compression loading 
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3.2.2. Single Axis Test Frame 

The servo-hydraulic test frame is fitted with both a strain gauge based shear web load cell 

for measuring force, and an internal Linear Variable Differential Transformer (LVDT) (Dally, 

Riley, & McConnell, 1993) for measuring displacement. The test frame could be controlled in 

either Force or Position mode, using the feedback from the sensors, a PID control loop and 

servo-hydraulics. During this investigation Force mode was used to simulate a sinusoidal 

loading, and the displacement recorded. Displacement was recorded using the load frame’s 

internal LVDT, as well as an external LVDT (Figure 3.3) which was located between each half 

of the clevis. The external LVDT was added to the test rig as it was observed during testing 

at higher loads that that load frame’s LVDT was not only recording the displacement of the 

specimens but also the displacement of the load cell, and the deformation in the test clevis. 

 

Figure 3.3 (right) shows a cross section of the test fixture, and how the bearing specimens 

are located and orientated. The top clevis was bolted to the load cell, whilst the bottom clevis 

was connected to the servo-hydraulic actuator. 

 

 

Figure 3.3: (left) Radial load test rig mounted on the servo-hydraulic test frame, (right) Cross section of the 
radial load test rig showing the location and orientation of the bearings under test 
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3.2.3. Instrumentation 

Control of the servo-hydraulic load frame was completed using a MOOG Smartest One 

portable test controller. This controller was also used to record the data at a rate 

approximately ten times greater than the frequency that the test was run. The data recorded 

by the controller is listed below: 

 Current Cycle 

 Force Commanded [kN] 

 Force Feedback [kN] 

 Position Feedback Internal LVDT [mm] 

 Position Feedback External LVDT [mm] 

3.2.3.1. Load Cell- Structure and Configuration 

Given the large loads that the joint was subjected to, a test frame with a 250 kN load cell was 

used. The displacements measured were comparable to those measured by the internally 

bonded strain gauges in the load cell Figure 3.4. Therefore it was important to isolate 

specimen deformation from that occurring in the load cell.  

 

 

 

 

 

Displacement of the test clevis must also be considered, which was completed using a single 

strain gauge bonded to each clevis lug at the location of the thinnest section, on the centre 

line of the bore (Figure 3.5). Neale (2013) shows an exaggerated example of how a clevis 

would deform under a compressive load, the outer lugs of the clevis spreading out, and the 

resultant pressure distribution on the pin Figure 3.6. 

 

Figure 3.4: Location of strain gauges bonded in a pancake type load cell 



38 
 

 

 

 

 

 

 

 

3.2.3.2. Instrumented Load Pin 

Tests were also conducted with an instrumented load pin which was substituted for the 

standard aircraft pin, for a selection of load displacement tests. The load pin supplied by 

Strainstall was fitted internally with 4 full bridge strain gauges located at the points of highest 

shear between the bushes in both the x and y directions, 2 at the head end, and 2 at the far 

end. Where X1 and Y2 are located at the head end of the pin, and X3 and Y4 are at the far 

end of the pin. 

The gauges were positioned to measure the pure shear force which was introduced into the 

pin through the machined grooves. The points of maximum shear force are indicated by the 

shear force diagram shown in Figure 3.8. 

 

Figure 3.5: Single strain gauge bonded to the 
weakest part of the clevis lug 

Figure 3.6: Deformation and pressure distribution in 
a loaded clevis 

Figure 3.7: Instrumented load pin with 4 internally bonded full bridge shear gauges 
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Any change in length of strain gauges will cause a small change in resistance. By connecting 

several strain gauges into a balanced Wheatstone bridge this small change in resistance can 

be measured as a function of the excitation voltage.  

 

 

 

 

 

The load pin and load cell used a full bridge arrangement, where all four resistors are active 

arms in the bridge. Whereas measurement of the clevis deformation used only a single strain 

gauge and hence a single active arm (quarter bridge) therefore the bridge was completed 

using completion resistors. Using the gauge factor of the strain gauges and the excitation 

voltage, the output from the Wheatstone bridge (mV/V) may be converted into engineering 

units such as load kN or mm. For the test frame’s load cell this conversion step was 

completed by the MOOG Smartest One controller, along with filtering and signal 

conditioning. For the strain gauges monitoring the clevis lugs, and the load pin a Vishay 

model P3 strain indicator was used. 

For both the clevis strain gauges and the load pin mV/V outputs were recorded on each of 

the 4 channels. The bridges were always balanced before load was applied. mV/V outputs 

were chosen for recording as they are the raw output of the strain gauges before any scaling 

was applied. Calibration of the load pin was conducted by Strainstall up to 200 kN, and the 

best straight line fits for each of the 4 bridges was calculated and is displayed in Table 3.1. 

Figure 3.9: (left) Wheatstone bridge connections for strain gauge connection, (right) Vishay model P3 strain 
indicator and recorder 
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Figure 3.8: Representative shear force diagram showing the regions of maximum shear 



40 
 

Bridge X1 Y2 X3 Y4 

Output mV/V 2.7504 2.6995 2.755 2.6987 

Table 3.1: Best straight line calibration values for each gauge in the load pin 

In order to investigate the angle of contact between the bushes and the calibrated load pin. 

The load pin was fitted with a plate marked at 5o intervals, and positioned in the clevis with 

the y axis located at 0O. The clevis was loaded in compression only, to negate any effects of 

clevis extension as described above. Given that the minimum load observed in service was 

15 kN, the clevis was loaded to this magnitude in a 25 kN electric test frame.  

 

 

 

 

 

Figure 3.11 is for an applied load of 15 kN rotated through an angle of 360O, it can be seen 

that the load has been split almost equally by the two lugs of the clevis, as would be 

expected. Additionally it can be seen that the Y bridge measurements are approximately 90O 

behind the X bridges, again as expected from the location of the gauges in the load pin. It 

should be noted here that the X and Y directions marked on the pin were defined by the 

manufacturer such that, when orientated in the Y direction the maximum shear force will be 

observed. The same applies for the x direction. Therefore the maximum results of the Y 

bridges in Figure 3.11 at Φ of 0O and 180O are as expected. Furthermore it can be seen that 

the bridges are symmetrical in both the positive and negative load directions, proving again 

that the magnitude of the load is the same on both halves of the clevis and also that all 

gauges are reading approximately the same in any orientation of the pin.  

 

 

Figure 3.10: Instrumented load pin with marked plate and orientation of the gauges (left), load pin 
incremented around to obtain the strain distribution (right) 

X 

Y 
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The electric test frame was less sensitive to the feedback loop than a servo-hydraulic frame, 

due to the absence of fluctuations as a result from valves and pumps. Thus making it more 

suitable for use in quasi-static loading applications. Load was applied using a leadscrew, and 

therefore care must be taken with regards to backlash.  

 

 

 

 

 

 

 

A small scale test clevis was used to investigate the arc of contact for a steel pin loaded 

against a plastic bush. 12 mm diameter silver steel was used to manufacture the pins and a 

textured surface was applied to the pin by lightly knurling. The knurling process caused a 

slight increase of the nominal diameter, even when the rough edges were removed. The 

Figure 3.12: Small scale test clevis with externally mounted LVDT (Top), knurled pin to produce an imprint on 
the bore of the bush (Bottom) 

Figure 3.11: Load profile for 0-360O incremented at 5O for a constant load 

Φ 
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texture was necessary to create an imprint of the shaft into the plastic bush. A single bush 

16 mm long and 16 mm OD was used. The internal diameter was varied to account for 

different wall thicknesses of bushes, the standard bush ID used was 12.2 mm. 

 An external LVDT was used again in order to ensure that the machine stiffness and load cell 

deflection was accounted for as described earlier. The imprint left in the bush by the knurled 

pin could then be viewed once the joint was disassembled. To easily view the imprint the 

bush was cut into two halves, and could then be inspected under a microscope. Figure 3.13 

shows a microscope image of the imprint. It should be noted here that due to the curved 

nature of the bush, the amount of the imprint in focus is as a result of the focal length of the 

microscope lens. Additionally it should be noted that the pattern appears tapered here due 

to misalignment of the test clevis.  A self-aligning plate was added to the test setup to 

eliminate misalignment effects, and several measurements for the contact width taken and 

averaged to obtain a representative value. 

 

 

 

 

 

 

 

 

In order to measure the width of contact, the imprint was located with an optical 

microscope, and photographed. The size of the contact measured and calibrated. 

  

Figure 3.13: Microscope image showing the imprint left by the knurled pin, showing the contact area 
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3.2.3.3. LVDT Structure and Configuration 

The Linear Variable Differential Transformer (LVDT) was used to measure displacements and 

operates using inductance. This is achieved using 3 coils. The primary coil is the excitation 

source, while the other two coils are positioned both sides of the primary coil and are linked 

together to form a single secondary coil. The position of the core induces a varying voltage 

in the secondary coil.  

 

 

 

 

 

The LVDT requires signal conditioning to demodulate and filter the secondary coil output to 

produce an analogue signal. The test frame’s LVDT signal was conditioned using the Smartest 

One controller, however given the issues addressed above, with regards to load cell 

deflection the external LVDT also required signal conditioning. This was completed using a 

D.C. LVDT which contained the necessary signal conditioning built into the body of the LVDT. 

Given that there was no mechanical contact in the transducer, and therefore no wear or 

friction, LVDTs are popular for wear and fatigue work. 

The test frame’s LVDT was ±50 mm to allow for general purpose testing, and therefore was 

less suited to measuring relatively small displacements. The external LVDT however has a 

higher resolution as it was only ±2.5 mm, and isolated the system under test. 

Figure 3.14: Schematic of an LVDT showing how displacement can be measured without wearing out 
the transducer 
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Figure 3.15 shows the reasoning behind the use of an external LVDT to measure the 

deflection of the pin joint. The test frame’s internal LVDT was reading nearly double the 

displacement actually occurring in the joint. The deflection of the load cell is the most 

significant contributing factor, as discussed previously. 

3.2.4. Servo valves and PID control 

Control of servo-hydraulic test frames typically use a closed loop system, using the feedback 

from either the force or position sensors fitted. The feedback signal was compared to the 

commanded signal input by the user. In order to minimise the deviation between the two, 

the PID (Proportional Integral and Derivative) control system was implemented (Parr, 2011), 

which then corrects the command signal to the Servo-Valve, controlling the fluid flow. 

(MOOG, 2014). 

Figure 3.15: External LVDT measures only deflection of the Gar-Max bush specimen up to an 
applied load of 98 kN 
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PID control was typically used for servo-hydraulic controllers as Proportional control alone 

cannot offer full control- described below. 

An increased value increased the size of the control signal, therefore improves the speed of 

reference tracking, and performance of disturbance rejection. It also decreases, but cannot 

completely remove the output offset from the desired reference value, or the offset in the 

output due to constant load disturbance. Therefore an increasing value may become too 

large leading to saturation of the controller or limiting problems of actuators (Wilkie, 

Johnson, & Katebi, 2002).  

Figure 3.17 is a good example for saturation of the control signal, as it shows a failed HDPE 

specimen which was the result of the proportional component of the PID tuning being set 

too high, resulting in instability of the system, and therefore extruding the HDPE out of the 

joint at 120 kN. 

 

 

 

 

 

 

Position/Force 
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Figure 3.16: Flow chart for PID control of a hydraulic actuator 

Figure 3.17: An example of poor PID tuning for HDPE bushes 
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Therefore it was necessary to add additional terms to the controller I and D. The addition of 

the I (integral) term was added to correct any steady and continuing offsets from the 

reference signal level (the main problems of proportional control) however it was typically 

one or the other, and more often it was the ability to maintain reference levels ensuring that 

the desired value was actually reached. This however had the disadvantage that slower 

response times were observed than with Proportional alone, and also some instability 

introduced (Wilkie et al., 2002). 

Therefore the addition of the Derivative term was used, to improve the damping of the 

system, but will have no effects on the steady state error as the derivative of a constant error 

is zero. Hence by combining all three of these terms in the correct magnitudes a responsive 

closed loop system may be produced. (Wilkie et al., 2002). 

Earlier in Figure 3.16 the basic control mechanism of a servo-hydraulic test frame was 

presented in the form of a block diagram. However it should briefly be mentioned here about 

the how the servo valve works and how its construction can affect the testing. 

A servo valve enables the high frequency, and steady control of an oil flow. To fully 

understand how the control loop works and how the test rig behaves when operating 

requires some basic knowledge of the servo valve. The servo valve was controlled by applying 

a current to the torque motor (Armature, coil and flapper assembly in Figure 3.18) (MOOG, 

2014). The amount of current applied, will determine how far the flapper will move. The 

amount that the flapper moves from the central position, will cause a restriction at the outlet 

of one of the nozzles, resulting in a pressure difference between each side of the servo valve 

spool, causing movement of the spool to equalise the pressure. There are some different 

designs of servo valves such as Jet pipe, and two stage, which have not been discussed here 

but operate in a similar manner (Parr, 2011). 
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If the values for the PID tuning were not correct, the servo valve, and therefore test frame 

could not perform to optimum conditions. For example if the Proportional value was set too 

low, on a high load high cycle application, then the maximum loads demanded were not 

achieved, as the system was operating too slow, i.e. the spool in the servo valve was not 

moving fast enough in the given time to allow enough oil flow, before returning in the 

opposite direction. As explained above if only a step or ramp input was input then eventually 

the Integral term would bring the command and feedback signals to match. 

A typical plot of the force command and the force feedback signals controlling the testing is 

shown in Figure 3.19, here the joint was oscillated between 0 and 57 kN. It can clearly be 

seen that there was a slight phase lag between the feedback and command signals, this was 

noted during testing but was known to be of little importance as the testing was based upon 

the number of cycles and the amplitude of oscillation. The amplitude of oscillation had to be 

closely monitored for different samples and loads, as the PID tuning occasionally required 

altering to ensure that the amplitude of the feedback signal was close to that of the 

command signal.  

 

 

 

 

Figure 3.18: Cross section of a servo valve which controls the flow to the actuator 
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To ensure reliable repeatable testing each load case conducted was completed using the 

programming language Ruby and the scripting function on the controller. This not only had 

the advantage of repeatability, but also allowed for more efficient post processing with no 

unnecessary data being recorded after the stop cycle had been reached and also allowed 

data files to be saved with similar file names for ease of processing in Matlab. For some of 

the testing conducted, where no user intervention was necessary, a technique called 

sequencing was used allowing several scripts to be completed back to back, minimising the 

time required for testing. 

  

Figure 3.19: Accurate control of the radial load test rig in the Force control mode, amplitude of the 
commanded signal and feedback signal matches with little error for Gar-Max bushes between 0 – 57 kN 
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3.2.5. Specimen Temperature and Humidity 

Before any testing, specimens were conditioned according to a modified ASTM standard 

(ASTM, 2013) in an oven for 24 hrs at a temperature of 70OC and then 4 hours in between 

each test, to ensure that minimum moisture absorption could take place. Once tested the 

bushes were stored in a desiccator with silicon dioxide granules to ensure that the samples 

were as dry as possible.  

 

 

 

 

 

 

 

Atmospheric temperature and humidity were also monitored during testing using a 

standalone temperature and humidity sensor. Control of the laboratory temperature and 

humidity was not possible. It was deemed unnecessary to measure the temperature of the 

bushes themselves during this testing as any modifications to the bushes for insertion of a 

thermocouple, would alter the load carrying capacity and may cause an initiation point for 

failure. Testing was conducted at room temperature and pressure conditions. In service loads 

are experienced continuously at ground level condition therefore there are no beneficial 

cooling aids from the atmosphere. 

  

Figure 3.20: Bushes stored in a desiccator while not being tested (a), 
monitoring of laboratory temperature and humidity (b) 
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3.2.6. Fitting and Removal of Bearings 

Fitting of the specimens was conducted using a custom made fitting mandrel manufactured 

from HDPE (High Density Polyethylene) to ensure that the bearings were not damaged during 

installation or removal. For both installation and removal processes, the bearings were 

pressed in or out using a threaded bar, and two nuts. If installation of the bearings seemed 

to require a large amount of force, the bushes were removed and examined. 

 

 

 

 

 

 Specimens were marked in a distinctive pattern to ensure that the order and the orientation 

of each bush could be recorded and repositioned if required. The methodology of marking 

the specimens for radial load testing, is outlined below. 

  

1 2 3 4 
Y 

X 

1 2 3 4 

Figure 3.21: Fitting mandrel to prevent damage to specimens upon fitting and removal 

Figure 3.22: Bush notation and location in the radial load test rig 
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3.2.7. Loading Conditions 

The self-lubricating polymer composite alternative bearing materials were required to be 

tested for 3 Aircraft lives, to minimise the risk of failure during service. Specimens that 

successfully complete the three aircraft lives will be tested further by the aircraft and landing 

gear manufacturers prior to fitting on aircraft for verification and validation purposes. A 

single aircraft life for a typical civil aircraft is approximately 20 years (Ruishen, 1989). Tests 

were conducted at realistic loading conditions from -144 kN to 167 kN with a specified 

number of cycles for each loading scenario. This data was intended to simulate the 

magnitude of the loads and the number of instances that occurred in that range, during the 

life of an aircraft. This data was obtained from in-flight recording and was kindly supplied by 

Airbus UK. Loading was not required to be continuous, such that 1 aircraft life must be 

completed in one test. However it was required to be conducted as an aircraft life i.e. 167 

kN, 375 times, then 105 kN, 33750 times (not 167 kN, 1125 times) to avoid premature failure 

of the specimens by inducing low cycle fatigue. 

Loads quoted below are for 1 Aircraft Life (LC), cycles are to be repeated 3 times with a 

sinusoidal load application at a frequency of 4 Hz.  

Load (kN) No Of Cycles Time (Hours) 

167 375 0.026 

105 33750 2.344 

98 3000 0.208 

76 3000 0.208 

70 33750 2.344 

66 6000 0.417 

57 3750 0.260 

53 67500 4.688 

47 35,600 2.472 

38 143250 9.948 

15 101250 7.031 

-45 30000 2.083 

-62 36750 2.552 

-70 16875 1.172 

-91 16875 1.172 

-144 375 0.026 

  36.951 

Table 3.2: Loading conditions for the radial load test rig 

A complete load cycle was from 0 to load i.e. 0 to -144 N, then back to 0. During the cyclic 

tests described in Table 3.2 the displacement from the external LVDT was continuously 
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recorded. As would be expected, this produced a sinusoidal wave as a result of the control 

system. In order to produce meaningful results from this data, it was necessary to calculate 

the maximum and minimum values of the LVDT per cycle (Figure 3.23). From there the 

displacement of the joint per cycle could be determined, by calculating the range of travel of 

the external LVDT (Figure 3.24), and any trends identified for each test case conducted. The 

mean and standard deviation were calculated for each test case to minimise the influence of 

noise. It can be seen for the example given in Figure 3.23 and Figure 3.24 using Gar-Max, 

there is a slight initial period of change in the first 400 cycles as running in wear occurs, and 

the effrects of creep from the previous test are removed. 

 

 

 

 

 

  

Figure 3.23: Maximum and minimum displacement per 
cycle 

Figure 3.24: Average range of travel per cycle 

Max 

Min 

Range 
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3.3. Pin Joint Function Tester 

Holding the weight of the aircraft when it is on the ground and enabling ground manoeuvres 

is only part of the requirement for aircraft landing gear. The other main requirement of the 

landing gear is to be able to extend and retract, so that it causes minimum disturbance to 

airflow as the aircraft is flying. Therefore the joint must be able to rotate through a limited 

motion only. Figure 3.25 shows the location of the joint being investigated, and how the joint 

must articulate, as the gear is extended and retracted. 

 

 

 

  

Figure 3.25: Development of loading on the drag stay joint from the extension and retraction of the gear 
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3.3.1. Loading Clevis 

In order to simulate the reciprocating articulating motion of aircraft landing gear joints, a 

bespoke test head was manufactured. This bespoke test head was able to accept two 

different pin geometries, one from a main landing gear side brace and the other the nose 

landing gear dray stay joint. Both grease lubricated and dry tests could be conducted. The 

test head was fitted to a Tension Torsion servo-hydraulic test frame. 

 

 

 

 

 

 

 

 

 

The outer clevis contained a pair of cylindrical roller bearings to support the pin and allow 

free rotation, and was mounted to the load cell so that when the radial load was applied, the 

torque required to rotate the pin to the position commanded could be recorded. The radial 

load was applied using an Enerpac hydraulic actuator between the outer clevis and the inner 

clevis (Figure 3.27).  

The inner clevis holds the test bushes, and has cooling channels machined in to enable 

coolant to be circulated through the clevis to maintain a constant operating temperature for 

long duration testing. The load from the hydraulic actuator creates the contact pressure 

between the pin and bush as the outer and inner forks are pushed apart. 

 

 

 

Figure 3.26: Pin joint function tester mounted to the test frame (left), the bespoke test head (right) 

Cooling Channels 

Thermocouple 
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The pin was oscillated though the use of splined drive shafts, one of which transmits the 

drive to the pin, and the other eliminates any tensile loading from taking place (not shown) 

Figure 3.27.  

3.3.2. Bi-axial Test Frame 

The Bi-axial test frame operates in a similar manner to the single axis tension compression 

test frame described above, however has the addition of a second torsional actuator, servo 

valve and control channel on the MOOG Smartest one portable test controller. This enables 

bi-axial operation of the test frame. In the simulation of the extension and retraction of the 

landing gear, only the torsional axis was required. The actuator could rotate ±40 per cycle. 

Measurement of the rotational displacement was conducted using a Rotational Variable 

Differential Transformer (RVDT), which was of similar construction to the LVDT described 

above, however the coils are in a circular arrangement. 

Similar to the load frame described above in section 3.2.2, a strain gauge based load cell was 

located at the top of the test frame, however due to the additional actuator the load cell was 

a biaxial load cell, combining a torque transducer, which was used to record the torque 

feedback.  

Rolling element 
Bearings 

Hydraulic actuator 

Bushes under test 

Outer Clevis 

Inner Clevis 

Splined shaft 
connecting to pin 

Pin 

Figure 3.27: Cross section of the bespoke test head developed for testing of oscillating bearings 
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3.3.3. Instrumentation 

This method recorded the torque required to turn the pin and the position at which that 

torque was achieved. This however measured the torque in both the test bushes, and the 

two support roller bearings. The torque in the roller bearings was measured in situ on the 

test rig by oscillating the actuator, with no radial load applied to the joint through the bush 

pin interface and was found to be within the noise range of the transducer (Zhu, 2012). A 

typical friction co-efficient for the roller bearings used was μ=0.0011 (Schaeffler Group, 

2006), which is well below the range of friction co-efficients measured in this investigation.  

The radial load was measured using a diaphragm voltage based pressure transducer, 

calibration and data acquisition was completed using the controller and the cross sectional 

area of the cylinder. A Pseudo channel was set up and configured on the MOOG controller 

to calculate COF (Co-efficient Of Friction). This was done using the live feed from pressure 

transducer and the torque feedback. There were two main advantages of this Pseudo 

channel being configured:  

 to ensure that the time stamp of the pressure transducer, and the torque cell were 

the same  

 so that COF could be calculated as the test was running, therefore saving valuable 

post processing time 

The temperature of the bush was recorded using a k type thermocouple, and a Cold Junction 

Compensator (CJC) and amplifier was used to amplify the signal to 0-10V, and was recorded 

by the MOOG. For lubricated bearing testing the temperature of the grease was recorded 

using a thermocouple, inserted into a lubrication channel. A second pressure transducer was 

fitted in the grease supply line for the other bearing. The purpose of this pressure transducer 

was to establish how easily the greases could be replenished after a test had been conducted.  

Additional LVDTs were added to the test for self-lubricating polymer bushes due to the 

possibility of extrusion and permanent deformation at much lower bearing pressures than 

Aluminium Bronze. One LVDT was set up to monitor the displacement of the clevis, as it could 

not be distinguished if a decrease in the Enerpac pressure was as a result of the bearings 

wearing or hydraulic leakage back through the valves holding the radial load.  
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A second LVDT was positioned to monitor any displacement of the bearing in the axial 

direction, along the pin. The addition of a floating ring with a flange and 90O lever arm on the 

LVDT was used to monitor any change in the displacement. Clearance between the ring and 

pin was great enough to not come into contact, hence it was able to float along the length 

of the pin. Two springs with low spring constants were attached to the floating ring and to 

the top half of the outer clevis, ensuring that the bearing and floating ring were in contact at 

all times. One LVDT of each type was located on each clevis lug, as it was believed that 

symmetrical behaviour would occur and also due to space and instrumentation constraints. 

The data recorded by the controller is listed below: 

 Current Cycle 

 Position Commanded [Deg] 

 Position Feedback RVDT [Deg] 

 Force Feedback [Nm] 

 Radial Load applied [kN] 

 COF 

 Temperature [oC] 

 Pressure of grease injected [Bar] 

 Radial displacement of the clevis [mm] 

 Axial extrusion of bushes [mm] 

Floating ring 

Retaining spring 

LVDT measuring 

radial 

displacement 

90O lever arm 

LVDT measuring 

axial displacement 

Figure 3.28: Additional LVDTs measuring movement of the clevis and bush extrusion 
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3.3.4. Sample Raw Results 

As the pin was articulated under position control the resultant torque was recorded (Figure 

3.29). The Pseudo channel on the MOOG Smartest One controller was configured to calculate 

the non-dimensional group 
𝑇

𝐹𝑅𝑝
. Where T is the required torque, F is the applied normal load 

calculated from the cross sectional area of the Enerpac and the measured pressure, and Rp 

is the Radius of the pin. The output as given by the controller is shown in Figure 3.30 (left). 

 

 

 

 

 

 

Figure 3.30: Non-dimensional group against time (left), Non-dimensional group single cycle against 
articulation angle (right) 

Figure 3.29: frictional torque required to turn the pin 
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Plotting the non-dimensional group against the articulation angle (Figure 3.30 right), enables 

the isolation of a cycle and therefore simplifies the averaging of multiple cycles. The vertical 

lines show where the joint is stationary as the direction of oscillation is reversed. The stick 

slip behaviour can be seen more easily on the horizontal lines in Figure 3.30 (right) as the 

grease is entrained into the contact with an increasing articulation angle by the steady 

decrease in the non-dimensional group. A sharp increase is then observed at the end of the 

articulation angle as a result of the decreasing velocity of the joint before reversing direction. 

The reduction in velocity causes the film to breakdown, stick behaviour to dominate and 

hence a sharp rise. This behaviour can be observed for the opposite direction, resulting in 

negative values. 

Taking an average from this single cycle to obtain a value for the COF would return a result 

of approximately 0 which is not possible, given the positive and negative values, therefore 

the absolute values are taken (Figure 3.31). The change in direction is still evident where the 

non-dimensional group tends to 0. Inclusion of these data points in the averaging would 

result in a lower COF than is actually obtained, and therefore these stationary points are 

excluded from the averaged values by calculating the average absolute COF 2 degrees less 

than the extremities. An average COF value can be calculated by using the absolute values of 

the wave, and taking a mean value of when the joint was in motion.  

 

 

 

 

 

 

 

 

  

Figure 3.31: Absolute value of the recorded COF averaged between the marked positons 

COF calculated only in this region 
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3.3.5. Loading Conditions 

The radial loads applied to the aircraft joint during articulation are low in comparison to the 

radial loads experienced during ground handling, due to the absence of the aircraft weight. 

Radial loading during articulation is due to self-weight of the landing gear and air resistance 

only. 

Test Sequence 
Bearing 

Pressure (MPa) 

Angle of 
Articulation 
(Degrees) 

Surface sliding 
Velocity (m/s) 

Lubrication 

Effect of 
Lubricant 

1.25 
5 

10 
15 

±40 

0.0373 
0.0747 
0.145 
0.299 
0.373 

Mobil 28 
Aeroshell 22 

Articulation 
angle 

10 
20 

±20 
±30 
±33 
±35 
±40 

0.02 
0.04 
0.06 
0.08 
0.10 
0.12 
0.14 
0.16 

Mobil 28 
Shell Alvania 

HDPE 

 
 

Lubricant life 
 
 

10 ±40 0.373 Mobil 28 

 
 

Lubricated vs 
Unlubricated 

 
 

10 ±40 0.373 
HDPE 

 Aeroshell 22 

Maintenance 
free 

4.5 
7.5 
15 
30 
45 

±20 
±30 
±33 
±35 
±40 

0.02 
0.04 
0.06 
0.08 
0.10 
0.12 
0.14 
0.16 

4 self- 
lubricating 
bearings 

Table 3.3: Loading conditions for the pin joint function tester 
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3.3.6. Test Specimens 

A combination of grease lubricated and self-lubricating bushes were tested. For grease 

lubricated testing the bushes, pin and clevis were cleaned with acetone when changing 

greases and grease channels were primed with the new grease, prior to fitting bushes. 

Separate grease guns were also used to minimise the risk of cross contamination. For the 

self-lubricating bushes, the pin and clevis was cleaned with acetone between each specimen 

to remove any wear debris that may have been deposited during the testing. 

3.3.7. Procedure 

Bushes were fitted and removed from the clevis in the same manner as described in section 

3.2.6. The same identification system for the bushes was used. Given that the test clevis 

contains two rolling element bearings to react the load with minimal friction, a pair of bushes 

was not used. Bushes 1&4 were substituted for bearing reducers to allow direct contact 

between the rolling element bearings and the pin. Bushes 2&3 were fitted into the clevis as 

normal, and hence for continuity the same notation has been used. Bush 2 which was located 

closest to the head end of the pin in the lower clevis, was again located closest to the head 

end of the pin in this test rig, hence bush 2 was located in the lower lug of the loading clevis. 

Again specimens were aligned in the Y direction (Figure 3.32) with a mark on the specimen 

so that wear marks were obvious and that specimens could be re inserted if required. 

 

 

 

 

 

 

 

 

 

 

 

2 

3 

Bearing Reducer 

Bearing Reducer 

Upper lug 
(bush 3) 

Lower lug 
(bush 2) 

X Y 

Figure 3.32: Bush Identification and bearing reducers (left), Bush orientation (right) 
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3.4. Conclusion 

Two bespoke test heads were manufactured for laboratory simulation of an aircraft landing 

gear pin joint. The radial load test rig simulating the tensile and compressive loads applied 

to the joint was shown to reproduce field loading accurately and displacement of the joint 

was shown to benefit from the addition of a secondary external LVDT to eliminate the 

defection of the servo-hydraulic test machines load cell. The pin joint function test rig was 

commissioned to measure the COF of dry bearings and the effects of lubricants under both 

field conditions and more severe loadings than would be observed during the extension and 

retraction of the landing gear. A clevis of reduced size and complexity was also used with a 

knurled shaft to determine the width of contact. 
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4.  

Characterisation of Specimens 

 

 

Five maintenance free bushing materials were selected for evaluation, for use in aircraft 

landing gear. Four of these materials were supplied by the manufacturers as an alternative 

solution. The fifth specimen was manufactured in house from HDPE in order to determine 

how a readily available plastic bearing performed in comparison.  
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4.1. Specimens  

Five low maintenance bushing materials were selected for evaluation, from a variety of 

bearing manufacturers. Each of the materials was of a different composition to evaluate a 

selection of on the market solutions. Materials were primarily selected for their performance 

as low maintenance bushing materials and secondly selected for their reduced weight. The 

bearings were supplied in two lengths to be a direct replacement for the lubricated 

aluminium bronze bearings currently used. 

KAron B was liner consisting of a blend of powdered PTFE and other fillers bound in epoxy, 

bonded to a stainless steel backing, offering thermal resistance of up to 232OC. Other 

substrate materials were available however the steel backing was selected to ensure the 

performance of the liner was assessed rather than the substrate (Kamatics 2010). 

Meldin 5330 was based on Polyaryetherketone (PAEK) and polyetheretherketone (PEEK) to 

provide good chemical resistance and strong mechanical properties, while also offering 

thermal resistance up to 300OC (Saint-Gobain 2014).  

Gar-Max consists of a PTFE surface liner and high strength fibres twisted together 

encapsulated with an epoxy resin enhanced with a self-lubricating additive. Temperatures 

up to 163OC are quoted (GGB 2009). 

Vespel SP 21, a polyimide produced from pyromellitic dianhydride (PMDA) and diamino 

diphenyl ether (ODA), enhanced with 15% graphite. Thermal resistance in excess of 400OC. 

is quoted (DuPont 2002).  

Many of the commercial bearing solutions contain either PTFE or graphite in the bushes due 

to the benefits offered in terms of a low COF. However given the poor wear performance of 

pure PTFE it is often blended with additional polymers for increased wear resistance and 

mechanical strength along with improved performance at extreme temperatures. 

Thermoplastic materials such as PEEK and PAEK offer the advantages of resistance to high 

temperatures and improved mechanical strength as well as chemical resistance, and are 

therefore often selected for this purpose.  

The commercial bearings supplied are already approved for aerospace applications which 

was a considerable factor when selecting materials for testing. The design of the bushes was 

completed by the manufacturers to ensure the best possible performance from the materials 

with regards to optimum clearances and fits. It should be noted here that the dimensions 
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supplied by DuPont for Vespel SP 21, were adjusted following a fitting attempt. The ID of the 

bush reduced significantly when fitted in the housing, as a result of the large interference fit 

between the OD of the bush and the housing, preventing the pin from being inserted. Flanges 

are present on all designs to constrain the bushes to the housing once the joint is assembled 

as a result of the back to back orientation of the flanges. While bush to bush contact should 

not occur in service it is one area that should be taken into consideration. For some materials 

such as Vespel 21 problems can arise as the lubricating mechanism of the bushes relies on 

contact with a hard smooth surface rather than the material itself. For materials such as 

KAron B, the liner has also been bonded to the flange of the shorter lower clevis bush in the 

case of contact.  

HDPE was selected to enable performance comparisons of a readily available cheap light 

weight plastic to the current grease lubricated technology, and the high performance 

aerospace grade greases and polymers. 

Small PVC bushes were used for the experimental validation of a contact model developed 

in section 5. The bushes are not characterised here as they were not manufactured and 

tested with the representative aircraft geometry. The design of these bushes was such that 

there was no flange, and only a single bushing was used in the joint to simplify and verify the 

loading taking place.  
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The manufacturer’s data sheets for each of the materials can be found in Appendix A. It 

should be noted here that due to the commercial sensitivity of the project only limited data 

is publicly available.  

                                                           
1 Manufacturers’ recommendation 42.39±0.02 
2 Manufacturers’ recommendation 49.30±0.02 

Table 4.1: Summary of material properties, composition and dimensions 
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4.2. Surface Roughness of Bushes  

Measurements for surface roughness were taken in the bore using a linear profilometer. Ra 

and Rq values were recorded for each of the bushes and in both the x and y directions, as 

described in section 3.7 and the values averaged. The results are displayed in Figure 4.1.  

 

In addition the skewness Sk was also measured and averaged for each of the bearing 

materials, and was found to be -0.57, -0.34, -2.55, -0.625 and -0.38 for Vespel 21, Meldin 

5330, Gar-Max, KAron B and HDPE respectively. Negative skewness values indicate that the 

surface contains many valleys, which is important for the storage of lubricant and wear 

debris within the lubrication process.  

Surface roughness measurements were also taken from the flanges of all of the specimens 

using an optical profilometer. Measurements were taken from the flange to give an overview 

of materials. Optical microscopy could not be performed on the bore of the bush without 

sectioning, and therefore destroying a specimen. Table 4.2 shows the flange surface, along 

with the profile in the x direction and y direction The arithmetic mean height (Sa), and the 

root mean squared height (Sq) of the surface was recorded along with the skewness (Ssk). 

The results are displayed in Table 4.3. 

 

 

Figure 4.1: Average surface roughness values of the flanges for each material (left Ra, Right Rq) 
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Surface roughness of both KAron B and Gar-Max were expected to display high values given 

the nature of the materials. The roughness results from the flange, also confirmed the higher 

results and the optical image quickly shows this by the greater number of asperities visible. 
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Table 4.2: Optical surface profiles and sections in X and Y directions 
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For Gar-Max a filament wound bearing the fibres can clearly be observed in the surface by 

eye. KAron B is also of a fibrous nature and therefore relies on a similar mechanism where 

material is transferred from the random fibre orientation of Teflon and other fillers in the 

liner material to the mating counterpart which generates a thin film on the mating 

counterpart and reduces the COF. 

4.2.1. Pin Characteristics 

The surface roughness of the counter face material was measured and recorded, as noted in 

section 2 the hardest and roughest surface will determine the wear characteristics of a 

system. Two designs of pin have been considered, the first was the current standard aircraft 

pin, used in service. The second pin was a bespoke load sensing pin, used for testing 

purposes. It should be noted here that no cyclic loading in the radial load test rig was 

completed, with the load sensing pin only static load testing was conducted. The load sensing 

pin was not used in the pin joint function tester. Therefore the increased surface roughness 

of the pin would have a negligible impact on the acceleration of wear of the bushes. 

 

 

 

 Sa (µm) Sq (µm) Ssk 

KAron B 5.283 7.238 -0.822 

Meldin 5330 1.026 1.37 -1.581 

Gar-Max 3.892 5.05 -1.237 

Vespel 21 0.924 1.13 0.119 

HDPE 3.985 4.728 0.062 

Table 4.3: Summary of the Surface arithmetic mean height (Sa), surface root mean squared height (Sq), 
Skewness of the surface (Ssk). 

Figure 4.2 Standard aircraft load pin left, load sensing aircraft pin right 
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The Ra values of the two pins was found to be 0.14 µm and 0.632 µm respectively and Rq 

values were found to be 0.24 µm and 0.733 µm. The rougher surface of the load sensing pin 

was attributed to the turning process. The machining marks can clearly be seen in Figure 4.3.  

Given that the wear is also governed by the hardness of the asperities as discussed in section 

2. The hardness was also measured. The standard pin was found to have a hardness value of 

48 Rockwell C, while the load sensing pin had a value of 47 Rockwell C. 

  

Figure 4.3: Surface roughness plots of standard aircraft pin (left), and load sensing pin (right) 
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4.3. Mass of Bushes 

Comparisons between the specimens in terms of mass were made. A complete set of 4 

bearings (2 for the upper clevis and 2 for the lower clevis) were weighed to compare potential 

weight savings if installed in aircraft landing gear. Figure 4.4 shows the lowest joint mass to 

be HDPE, however out of the commercial solutions Meldin 5330 and Vespel 21 are the 

lightest. KAron B unsurprisingly was the heaviest following the Aluminium Bronze, as a result 

of the stainless steel backing. Measurements were taken using a Sartorius Electronic 

Analytical Balance Basic Plus BP210D with a readability of 0.01 mg. It should be noted here 

that potential weight savings could be higher still as the mass saving from the removal of 

lubricants has not been considered here. 

 

Figure 4.4: Comparison of bush mass for all the bushes in a joint 
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4.4. Deviation from Roundness Plots 

The deviation from roundness was measured on an upgraded Taylor-Hobson Talyrond 100, 

with a LabView interface programme. LabView interfaces with the Talyrond using the existing 

Talyrond stylus for the out of roundness measurement, and a newly fitted rotary encoder 

complete with a Digital to Analogue Converter (DAC) for the rotational position. This 

generates a 0-360O linear slope for each revolution, building up a saw-tooth wave for 

multiple revolutions. 

A digital scale unit was included to measure the height of the probe. For all measurements 

taken a 6 mm diameter ball type probe was used to ensure that surface roughness was not 

significantly influencing the roundness measurements. 

Table level was measured through a ball ended LVDT, running on a machined plate. The ball 

ended LVDT was used to minimise friction between the machined plate, and the LVDT point 

of contact. A bespoke securing collar was produced to clamp the bush to the table using the 

flange.  

 

 

 

 

 

 

 

 

Figure 4.5: Talyrond clamping plate and LVDT measuring table level 
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Figure 4.6 shows a schematic of the complete Talyrond measurement system, and the signal 

conditioning required before the data is simultaneously logged. The stylus was calibrated to 

10 µm ± 5 µm. 

The bushes were measured at several heights throughout the course of the testing 

programme. The measurement heights for the two types of bush are shown in Figure 4.7 for 

the internal diameter. The external measurement heights were reduced, due to the clamping 

collar Figure 4.8. 

 

 

 

 

 

 

 

 

 

0 (datum) 
5.5 mm 
12 mm 

14.5 mm 
18.5 mm 

21 mm 

0 (datum) 
5.5 mm 
8 mm 
12 mm 
16 mm 

Figure 4.7: Bearing measurement locations for ID measurements 

0 (datum) 

13 mm 

14.5 mm 

18.5 mm 

21 mm 

0 (datum) 

13 mm 

16 mm 

Figure 4.6: Schematic of the bespoke Talyrond data acquisition 

Figure 4.8: Bearing measurement locations for OD measurements 
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For the radial load test rig (section 3.1) bushes were measured before any testing was 

conducted, and then after the first life cycle had been completed. For the second life cycle, 

bushes were measured after each load case in the life cycle (table 3.6.1 section 3.6), and 

finally after the third life cycle. For the pin joint function test rig (section 3.9) bushes were 

measured only before and after testing. To ensure that the data was reliable, 6 revolutions 

for each measurement were recorded. 

4.5. Conclusion 

Five maintenance free bearings were selected and characterised. Optical surface roughness 

measurements of the flanges, identified KAron B to be the roughest material with an Sa value 

of 5.283 µm and Vespel 21 to be the smoothest with an Sa of 0.924 µm. This trend was 

observed for both arithmetic mean height and RMS height of the surface.  

Surface roughness of the bore was measured using a linear profilometer, identifying Gar-

Max to be the roughest material with an Ra of 3.85 µm and again Vespel 21 to be the 

smoothest with an Ra 0.84 µm. Again for both Ra and Rq values.  

Surface roughness heights from both the bore and the flange showed Vespel 21 to be the 

smoothest out of all the commercially available solutions, followed by Meldin 5330, KAron B 

and Gar-Max. 

The mating surfaces of the bearings were also measured for surface roughness. The standard 

specification aircraft pin was found to have an Ra value of 0.14 µm and the bespoke load 

sensing pin was 0.632 µm. The higher value was attributed to the turning marks left from the 

manufacture of the pin. The hardness was also measured to be 48 and 47 on the Rockwell C 

scale. The hardness of the pins in comparison to all of the bearing materials shows that wear 

is more likely to occur in the bore of the bushing than the pin. 

Bearings were weighed as a complete set and compared to assess potential weight savings 

on the aircraft landing gear. Meldin 5330 was found to be the lightest material and KAron B 

was the heaviest due to the stainless steel backing that the liner material was bonded to. 

Roundness of the specimens was characterised using an upgraded Taylor Hobson Talyrond 

100. A rotary encoder, digital scale unit and an LVDT were added to the unit, and recorded 

through a custom data acquisition system. The upgraded measurement system showed good 

repeatability for 6 revolutions per measurement. 
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5.  
Static Deformation of a Radially Loaded Pin Joint 

 

In this chapter static loading of a pin joint is completed. A model to predict the displacement 

of a polymer composite bush of a finite thickness under an applied load is developed. The 

model was experimentally validated initially with small PVC specimens and later for the 

materials identified in the previous chapter. 
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5.1. Theoretical Modelling of Displacement 

It is proposed in this work, that the contact of a pin loaded against polymer composite bushes 

progresses through a number of different stages as the load is applied. Stage (i) typically 

occurs at low loads, depending on the Young’s modulus of the bearing material, and is when 

the main non-linear displacement occurs as the arc of contact and hence area increases with 

increasing load. Stage (ii) occurs when the contact is fully “saturated”, the arc of contact has 

increased to approximately 180O, and the joint stiffness remains constant, therefore all 

deformation is elastic deformation of the bearings. Stage (iii) and (iv) is the non Hookean 

behaviour of the polymers at higher loads, leading to the plastic deformation of the bearings 

through extrusion.  

 

The main focus of this research is to evaluate the non-linear contact occurring in stage (i) for 

the polymer composite bearing materials. For these materials it is expected that the largest 

wear rates will occur during this period, for a non-rotating joint such as that in an aircraft 

landing gear when down locked in position. The application and removal of load would result 

in the largest amount of counterface sliding. Depending on the number of cycles that this 

type of joint would be subjected to would be one of the main causes of failure. Stage (ii) 

would be linked to the fatigue limits of the material, as the arc of contact is not changing 

further upon the application and removal of load within this region, all deformation is due 

to the material properties. Typical S-N curves of the material would provide the relevant 

information for cyclic loading.  

The widely accepted method of evaluating non-conforming circular geometries in contact is 

the use of Hertzian contact theory as detailed earlier in section 2.4. Hertzian contact is used 

Stage (ii) Stage (i) Stage (iii) Stage (iv) 

Fo
rc

e 
(k

N
) 

Displacement (mm) 

Figure 5.1: Proposed stages of pin joint contact for polymer bushes 
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for point and line contact, where the area of contact is small with respect to the size of the 

contacting bodies. Contact between diverging and in certain circumstances conforming 

cylinders, if the outer radius is large enough, results in line contact. If the clearance between 

the two cylinders is too small, or the difference in moduli is too large then the assumption of 

the contact area being small in comparison to the size of the contacting bodies is violated. 

For the application here the contact area is large due to the significant difference in moduli 

and therefore the theory cannot be used. 

Therefore a method for calculating the displacement of a plastic journal bearing of finite 

length has been developed based upon the work conducted by Wenger (1964), using the 

circular equation approach. Ligterink & de Gee (1996) used a similar approach for the 

calculation of wear in oscillating bearings, however displacement had to be measured. This 

displacement therefore was either determined from wear testing or was a guessed value. 

Wenger’s approach assumes that the shaft is not subjected to any deformation, which is a 

reasonable assumption when dealing with metal shafts in polymer bushes, as the majority 

of deformation will occur in the bush. The model also assumes a bush with no initial wear, 

and therefore can be extended to determine the running in wear occurring as a result of the 

loading and unloading of the bushes. 

Being able to predict accurately the displacement of a bearing due to applied load before 

testing, eliminates the guess work in either having to predict the combination of wear and 

displacement, or by conducting expensive full scale testing only to discover that the bearing 

is unsuitable. 

Therefore the model has been set up to require only the inputs of Force (F), shaft radius (Rp), 

internal bush radius (Rb), bush wall thickness (bt), total bush length (bl), and the material 

properties of the contacting bodies E (modulus of elasticity) and v (Poisson’s ratio). From 

these parameters, it can be seen that the model is capable of handling 3-dimensional 

problems, rather than just the 2d case considered by Wenger (1964) and Ligterink & de Gee 

(1996).  

It should be noted here that when considering a system with multiple bushes, a simplification 

is made that lengths of the bushes in contact with the pin can be summed together to obtain 

the total length of the bush i.e. bl = L1 + L2 + L3 + L4 (Figure 5.2) 
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The contact area is directly proportional to the displacement, and therefore force applied, 

hence as the force is increased, so will the area of contact. However this will lead to a 

decreasing rate of displacement, as more of the polymer composite is resisting the applied 

load. 

The assumptions made are: 

 The bushing material has a much lower modulus of elasticity than that of the shaft 

material, hence negligible deformation of the shaft will occur (in accordance with 

Wenger) 

 No deformation of the housing occurs 

 In the centreline of loading, the equation 𝐸 = 𝜎 𝜀⁄  remains valid, where E is the 

modulus of elasticity, and σ and ɛ are the stress and strain in the bush respectively 

 No tensile components act upon the bush 

 The datum for total displacement measurement is from the centre point of the 

bushing (C) 

 Upon initial contact line contact will occur when considered in 3D, and point 

contact in 2D. 

 Loading is considered to be parallel 

 As the area of contact increases, only the width of contact increases, therefore the 

material resisting the applied load increases. 

 For simplicity the area of contact is considered to be rectangular, with the 

maximum equal to the projected area 

 Only vertical deflection of the bush is considered, axial deformation of the bush is 

not considered 

 The maximum displacement of the bush occurs in the centre line of loading. 

 The model is operating in the elastic region only 

 Both bush and shaft are perfectly round and concentric and can be represented by 

the equation for a circle at any point along the length 

L1 L2 L3 L4 

Figure 5.2: Bush lengths can be summed together 

bl 
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To develop the model it must first be assumed that the bush is loaded parallel, such that line 

contact occurs initially, and also that the radii of the outer and inner surfaces of the bush are 

great enough to be considered infinite, such that they are parallel. The distance between the 

outer and inner surfaces is bt, the thickness of the bush.  

 

Consider then an element of width (2.∂x), which is a thin slice of the bush about the 

centreline of the loading direction, sufficiently thin that the line load can be considered to 

be evenly distributed across the width of the element. 

Assume that the element is in equilibrium in the radial direction due to the equal and 

opposite loading from the remainder of the bush. Deformation of the bush in the in the axial 

direction is considered to be negligible compared to that in the vertical direction when in the 

elastic region. Then it can be seen that the application of a compressive load would then 

result in a reduction in the height of the element, developing both a stress and strain within 

the material. This change in displacement can then be denoted δ, which conventionally can 

be calculated by re-arranging the expanded form of Young’s Modulus (Equation 5.1)  

𝐸 =
𝐹𝑙𝑜

𝐴𝛿
 

Where F is the applied load, lo is the original length of a generic specimen, δ is the change in 

length, A is the cross sectional area of the specimen and E is the modulus of elasticity. 

Applying Equation 5.1 to the element considered above of height bt, the original length of a 

generic specimen can be redefined as the bush wall thickness for simplicity. The cross 

sectional area (A) can be redefined as 2.∂x multiplied by the length of the bearing in the axial 

direction bl. Therefore Equation 5.1 can be re-written as  

𝐸 =
𝐹. 𝑏𝑡

2. 𝜕𝑥. 𝑏𝑙. 𝛿
 

Given the modulus of Elasticity for the bush is known, and the cross sectional area of the 

element is the width of contact multiplied by the length of the bearing bl, the change from 

original height (or length if the typical notation of Young’s Modulus is used) δ, can be 

calculated for a given applied load. 

For the assumptions made earlier, the width of contact is infinitely small and does not change 

in size. However given the geometry of the pin joint, it is clear that the area of contact will 

increase for an applied load, additionally the contact along the axial length of the bush is 

already at the maximum, the only dimension to increase in size is the width of contact. 

(5.1) 

(5.2) 
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Therefore it can be said that for the polymer composite pin joint loaded with a steel shaft 

the width of contact and hence area of contact will be a function of δ.  

An important simplification is made here that the cross sectional area in Equation 5.1, used 

to calculate the modulus of elasticity, is the same as the assumed recatangular area of 

contact of a bearing. By making this simplifcation an increase in load applied to the 

bearing/shaft interface, will generate a larger area of contact. This larger area of contact, will 

then increasingly resist the applied load, through material properties, as explained by 

Equation 5.1. 

To obtain an expression for the change in area in terms of δ, consider only the geometry of 

a pin loaded against a bush, at an exaggerated clearance (Figure 5.3), where Rb and RP are 

the internal radii of the bush and external radii of the pin respectively. If reference is taken 

from the centre of the bush (C), then the eccentricity e is the sum of the radial clearance and 

the deformation of the bush δ.  

 

 

 

 

 

 

 

 

Therefore the circular equation approach states that circle representing the bush has the 

equation  

𝑥𝑏
2 + 𝑦𝑏

2 = 𝑅𝑏
2 

where xb and yb are the horizontal and vertical components of the bush about the centre 

point C and the circle representing the pin has the equation  

𝑥𝑝
2 + (𝑦𝑝 − 𝑒)2 = 𝑅𝑝

2 

(5.3) 

(5.4) 

Figure 5.3: Schematic of the circular equation approach, where C is the centre point of the bush, e is the 
eccentricity of the pin bush relationship, h is the height of the arced section, xb is half chord length, γ is half 

the arc of contact and δ the displacement of the pin into the bush 

e γo 

0o 

Rb 

Bush ID Pin OD 

Rp 

xb h 

δ 

C 

bt 
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Similarly with xp and yp being the horizontal and vertical components of the pin about the 

centre point C, with the addition of the term e to allow for the offset. Given that it has been 

assumed that only vertical movement of the pin occurs when loaded, the intersection of the 

circles will have the same value for the horizontal components xb and xp. Therefore where 

the equations intersect a simultaneous equation is developed by equating xb and xp.  

Using the same circular equation approach as Wenger (1964), Ligterink & de Gee (1996) and 

Deters et al. (2003), the y component can be written in terms of displacement and the radii 

of the surfaces, since xb=xp 

𝑦𝑏 =
𝑅𝑏

2 − 𝑅𝑝
2 + 𝛿2

2𝛿
 

Substituting yb (Equation 5.5) into Equation (5.3), x can be expressed entirely in terms of the 

displacement and the radii of the bodies. This would then be considered the half width of 

contact.  

𝑥𝑏 = √𝑅𝑏
2 − (

𝑅𝑏
2 − 𝑅𝑝

2 + 𝛿2

2𝛿
)

2

 

Returning to the element considered above under the application of a load, the assumption 

of line contact will no longer be valid, as the width of contact will increase, therefore ∂x will 

become xb. Re-arranging equation 5.2 to become 

𝑥𝑏 =
𝐹. 𝑏𝑡

2. 𝑏𝑙. 𝛿. 𝐸
 

Enables easy substitution of Equation 5.6 for x the half contact width in place of the half 

width of the element, which gives.  

𝐹. 𝑏𝑡

2. 𝑏𝑙. 𝛿. 𝐸
 = √𝑅𝑏

2 − (
𝑅𝑏

2 − 𝑅𝑝
2 + 𝛿2

2𝛿
)

2

 

Which is an expression with only geometrical material and displacement parameters.  

Expanding and simplifying, an expression for the displacement can be written as  

𝛿4 − 2𝛿3𝑅𝑝 −
𝐹2𝑏𝑡2

4𝐸2𝑏𝑙2
= 0 

Which is a quartic function, and can be solved using Ferrari and Cardano’s (Merzbach & 

Boyer, 2011) solution for the 3rd and 4th root, 

(5.5) 

(5.6) 

(5.7) 

(5.8) 

(5.9) 
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𝛿 = − (
𝑏

4𝑎
) + 𝑆 −

1

2
√−4𝑆2 − 2𝑝 −

𝑞

𝑆
 

 

where  

𝑝 =
(8𝑎𝑐 − 3𝑏2)

8𝑎2
 

𝑞 =
𝑏3 − 4𝑎𝑏𝑐 + 8𝑎2𝑑

8𝑎3
 

𝑆 =
1

2
√(−

2

3
𝑝) +

1

3𝑎
(

𝑄 + ∆0

𝑄
) 

And 

𝑄 =
√∆1 + √  ∆1

2 − 4∆0
3

2

3

 

with 

∆0=  𝑐2 − 3𝑏𝑑 + 12𝑎𝑒 

∆1=  2𝑐3 − 9𝑏𝑐𝑑 + 27𝑏2𝑒 + 27𝑑2𝑎 − 72𝑎𝑐𝑒 

And a, b, c, d and e are the co-efficients relating to Equation (5.8)  

𝑎 =  1,  𝑏 =  −2(𝑅𝑝),   𝑐 = 0,   𝑑 = 0,   𝑒 =
 (𝐹2(𝑏𝑡2))

𝐸2𝑏𝑙2  

Therefore the total displacement can then be calculated using Equation (5.10), for the third 

negative root. 

For all the current conformal contact models the bush wall thickness has always been 

neglected, with the contact normally evaluated as a hole in a flat plate. For the case of a 

heavily loaded polymer journal bearing this assumption is no longer valid especially if loaded 

between a steel shaft and steel housing. Hence it is important that the thickness of the 

bearing itself must be considered in the calculation of the contact area.  

 

(5.16) 

(5.15) 

(5.10) 

(5.11) 

(5.12) 

(5.13) 

(5.14) 
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Figure 5.4 shows the shape of the load displacement curve generated using the model 

(Equation 5.8). The model has been run 10 times with only the OD of the bearing changed, 

to show the effects the calculated wall thickness of the bush has on the deflection of the 

bushing material. The wall thickness has largely been neglected in previous attempts to solve 

the contact of elastically dissimilar conforming bodies. ESDU 87007 (2010) explains the 

importance of the wall thickness of the self-lubricating bearing, in terms of the load carrying 

capacity, and the heat dissipation, where a thin wall improves both. The figure generated 

here shows the higher load carrying capacity at lower wall thicknesses. Additionally it shows 

that for thicker bearings there is little difference as would be expected for a hole in an infinite 

flat plate. 

The model developed above was expanded to enable calculation of the arc of contact. The 

calculated displacement of the shaft required modification using the relationship (Equation 

5.17) given by Deters et al. (2003), to give the height of the arced portion (h) (Figure 5.3) 

from the Diameter of the bush (Db), for the calculation of the actual contact width (𝑥𝑏𝑚) 

ℎ =
𝛿𝐷𝑏

2
 (5.17) 

Figure 5.4: Predictions of force and displacement, with varying OD to show the effect of bush 
thickness increasing from 2mm to 20mm 
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𝑥𝑏𝑚 = 2√ℎ(2𝑅𝑝 − ℎ) 

The subtle difference between Equation (5.6) and Equation (5.18) for the calculation of the 

contact width is that the model has been constructed using the origin of the bush, however 

to accurately calculate the arc of contact the radius of the pin must be used. Once the 

modified value for xbm has been calculated, the arc of contact can be determined through 

trigonometry. 

As would be expected, there are some limitations of the model such as consideration is only 

given to the bush in the elastic region of the bush material. As the bush is loaded into the 

plastic region, consideration needs to be given to the fact that the equilibrium in the axial 

direction will no longer be maintained as it is the only unconstrained dimension of the bush 

when loaded against two steel components; the shaft and the housing. This will most likely 

result in extrusion of the bush if the material is homogeneous in its composition.  

The model is only valid if the materials are significantly elastically dissimilar. An Aluminium 

Bonze bush fitted into a steel housing and loaded with a steel pin, will not be accurately 

represented by this model. 

Furthermore there is no boundary condition limiting the displacement of the pin loaded 

against the bush, hence care must be taken when applying the model to ensure that δ < bt. 

Consideration to the near fit condition (zero clearance), or interference fits is not attempted 

with this model, given the negative pressures that result. Care must also be exercised when 

applying the model to bushes with a very thin wall thickness. 

The area of contact is assumed to be rectangular, based upon the chord length between the 

points of intersection of the pin and bush circles and the load transmitted in the vertical 

direction only through this region.  

  

(5.18) 
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5.2. Static deformation 

Load displacement plots were generated using the load frame and instrumentation 

described in section 3.2. A steel pin was loaded against a single PVC bush at a range of loads, 

to validate the model developed, for a plastic bush loaded against a rigid shaft. Bearing 

pressures of 26, 52, 78 and 104 MPa were used, which greatly exceeded the maximum 42 

MPa (167 kN table 3.2 section 3) pressure experienced by the aircraft joint. The hysteresis 

was more obviously observed at the higher loads, and it can be seen that the joint is entering 

stages (iii) and (iv) from 52 MPa. All loads showed a degree of hysteresis.  

 

 

 

 

 

 

 

 

 

 

 

 

For the conformal contact of a rigid shaft against a softer elastic bush, there will not only be 

the materials behaviour itself upon the application of a load, but also the growth of the 

contact area. For polymer materials, this contact area will be much greater than that of the 

aluminium bronze equivalents, and will therefore require a much lower load to achieve a 

saturated contact, where the arc of contact is at its greatest. 

 

Figure 5.5: A steel pin 11.98mm OD loaded against PVC bushes 12 mm ID for a range of loads, 
showing the non-linear behaviour of the joint 

Loading 

Unloading 
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5.3. Experimental Validation 

The displacement theory outlined above was validated using a single PVC bush nominal ID 

12 mm, loaded against a pin of OD of 11.98 mm. The test was repeated 4 times with new 

bushes for each test. The experimental force displacement plots are compared with an 

envelope of the calculated results in Figure 5.6. For the model, an envelope of results was 

calculated given that there is a range of values for the elastic modulus. The calculations were 

conducted with a minimum value of 2.4, and a maximum value of 3 GPa. It can be observed 

from Figure 5.6 that tests 1 and 2 were repeatable with respect to each other, but fall slightly 

short of the minimum displacement limit calculated and show a much sharper curve at the 

start of the test. Test 3 falls close to the higher E value envelope limit, and test 4 crosses the 

envelope limits a couple of times. 

 

The test was repeated using a larger bush ID of 13 mm (Figure 5.7), along with the same 

diameter pin in order to investigate the effects of different bush wall thicknesses and hence 

clearances. Tests were repeated 3 times. The first test was again slightly offset, but of a 

similar profile to the envelope. The second test was much more linear and shows an error of 

an increase in force with no increase in displacement. Again test 3 falls within the envelope 

well. 

Figure 5.6: Load displacement plots of PVC bush thickness 2 mm, 12 mm ID, steel pin 11.98 mm OD 
compared against simulation using maximum and minimum values of E 
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For the thinner walled bush, it can be observed for tests 2 and 3 that stages (iii & iv) described 

in section 5.1 are beginning, showing the non Hookean behaviour of the material. It can be 

seen for the two wall thicknesses tested, there is some discrepancy between the repeats. 

This is not surprising given that greater machining tolerances must be accepted for polymer 

materials, due to deformation during machining, where a reduced clearance results in a 

more linear response. In addition differences in the material properties for the different 

batches used for the manufacture of the bushes was not accounted for with a sample taken 

and experimental determination of material properties. 

It should be noted here that excessive noise was observed on the LVDT signal as a result of 

oversampling during data acquisition, therefore Savitzy-Golay filtering of the signal has been 

applied to reduce the noise on the signal, without distortion (Gander & Hrebicek, 2012).  

The experimental results for PVC at 2 different wall thicknesses (2 & 1.5 mm) were in shown 

to be in general agreement with the model developed. Consideration should be given to the 

challenges of machining polymers with a thin wall, as the centre of the raw stock is removed 

by drilling the rigidity of the bush walls decreases. This increases the likelihood that the walls 

of the ID and OD may no longer be parallel.   

Figure 5.7: Load displacement plots of PVC bush thickness 1.5 mm, 13 mm ID, steel pin 11.98 mm OD 
compared against simulation using maximum and minimum values of E 
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5.3.1. Aircraft geometry 

The aircraft joint is a real engineering joint and therefore is not as simple as the theory that 

was developed above. The aircraft joint is made up of four bushes; two in the lower clevis 

and two in the upper clevis. With the application of load all of these bushes will deform, but 

not necessarily in a uniform manner, the bushes will see oppositely applied loads in order to 

maintain equilibrium. The upper clevis bushes are of a longer design than the lower clevis 

bushes, therefore have a greater projected area and would result in lower bearing pressures. 

Given the relationship between contact area and displacement developed in the model 

above, a larger contact area would result in a smaller displacement. Hence for the two sizes 

of bushes used in the aircraft joint, un-equal amounts of displacement will occur in each half. 

Therefore by applying the theory once for the upper clevis with the longer bushes and then 

again for the lower clevis with the shorter bushes, only considering L1+L4, and L2+L3 

respectively for the contact length. The calculated displacements can be summed together 

to give the total displacement of the joint.  

The four commercially available specimens described in section 4 were loaded in the radial 

load test frame (section 3.2) with the standard aircraft pin and were varied with load. Figure 

5.8 shows the total calculated displacement and the experimental displacement of the joint 

for each of the materials. From this figure, it can be seen that the simulated displacement up 

to 98 kN is in excellent agreement for both Gar-Max and Meldin 5330.  

For Vespel 21 the simulation greatly overestimates the bush deflection. This is likely to be a 

result of anisotropy of the material introduced during the manufacturing process. The Vespel 

designers handbook (DuPont, 2002), explains that properties are different depending on the 

direction of force applied during manufacture, and that highest strength is found in the 

perpendicular direction. However exceptions to this rule are stated explicitly for some of the  

data presented in the designers handbook such as for the compressive and thermal 

properties quoted.  

Given that Gar-Max and Meldin 5330 produced similar experimental data to Vespel and are 

in the 10-20 GPa range, with the remaining input parameters being similar, it is highly likely 

that the low value for E at 3 GPa has been determined in the opposite direction to which the 

bushes were loaded, resulting in a large over prediction of the simulated data.  
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KAron B is under predicted by the simulation, however this is not a surprising result given 

the composition of the bearing, a liner bonded to a steel backing. For the simulation, the 

thickness of the bush was set to be the thickness of the liner only, hence no consideration 

was given to the steel backing. It should also be considered that the KAron B solution is a 

much stiffer joint and therefore consideration should be given to the validity of the 

assumption that there is no deflection of the pin. 

Running the model with an increasing modulus of elasticity, it can be seen from Figure 5.9 

that a value of 15-18 GPa more accurately predicts the displacement of Vespel 21 than the 

value of 3 GPa provided by the manufacturers. Therefore given the similarity between the 

experimental results in Figure 5.8, for the materials with a modulus of elasticity in the region 

of 10-19 GPa and the improved agreement of the model developed also in this range 

concludes that a larger value for the modulus of elasticity both experimentally and 

theoretically predicts the displacement more accurately. 

 

 

Figure 5.8: Validation of simulation with a real engineering joint for four potential bushings 

Experiment 

Experiment 

Experiment Experiment 

Simulation 

Simulation 

Simulation 

Simulation 
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While an increase in the modulus of elasticity to a similar size of the other polymer composite 

materials results in a stiffer joint, it can still be observed that the simulated result contains a 

non-linear region, while the experimental result displays a much more linear response. This 

is due to the difference in the fits of the bearings. Table 4.1 (section 4.1) highlights that the 

OD of Vespel 21 is approximately 0.2 mm greater than all the other materials, and the ID is 

within the same range as the other materials. Calculation of the volumetric change of the 

Vespel 21 bush between the free state and when it is fitted into the steel housing, shows 

that it becomes a neat or zero fit condition which falls outside of the capability of the model 

developed. However the neat fit condition does explain the more linear experimental 

response, as the arc of contact is “saturated” much earlier if not by the fit alone. 

The model was shown to successfully predict the bush displacement of two different wall 

thicknesses for PVC using only geometrical and material parameters. Further verification was 

provided by the successful prediction of two commercially manufactured bearing solutions, 

of different materials and geometry to the PVC. 

 

  

Figure 5.9: Simulation showing the sensitivity to the Modulus of Elasticity and Vespel 21 
Experimental result 
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5.3.1.1. Maximum static displacements 

The results of the maximum static displacement were recorded for each of the test cases 

described in section 3.2.7. The static measurements were recorded before each test case of 

the dynamic loading was conducted. The results are displayed and compared below (Figure 

5.10). It can be seen from here that the general trend as expected is an increase in bush 

deflection with an increase in load. It should be noted here that the negative loading 

conditions have been displayed as absolute for the sake of clarity. This is the convention used 

throughout. KAron B shows the highest joint stiffness, identified by the smallest amount of 

displacement out of the four materials tested, while Gar-Max shows the highest.  

5.4. Conclusion  

A load displacement model was developed, simulating the displacement of a self-lubricating 

joint under an applied force. Development of the model was based on the intersection of 

circles and considered the thickness of the bush wall. Experimentation with a single PVC bush 

was conducted to verify the model, and good agreement was found for the lower contact 

loads. Further experimentation was conducted using four commercial bearing solutions with 

a double bush arrangement. Using the model twice, once for the upper clevis and once for 

the lower clevis, again showed good agreement for Gar-Max and Meldin 5330. KAron B did 

not follow the theory due to the steel backing of the liner. Whereas Vespel 21 experimentally 

produced similar results to Gar-Max and Meldin 5330, however a much lower modulus of 

elasticity was quoted in comparison to these materials. 

Figure 5.10: Maximum static displacement for each load and each material 
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6.  
Wear of a Radially Loaded Pin Joint 

 

Representative cyclic loading of an aircraft landing gear joint was completed for four self-

lubricating bearings identified in section four, and measurements of wear and deformation 

were taken throughout.  
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6.1. Dynamic Load Testing and Wear 

Dynamic load testing was conducted on each of the four specimens for a complete aircraft 

life cycle as described in section 3.2.7. The signal from the LVDT was recorded during dynamic 

testing, this provided information for the displacement per cycle. Calculating the maximum 

and minimum values per cycle, enabled the range of the LVDT to be calculated per cycle as 

described in section 3.2.7. A mean value was taken from the range of all the cycles for each 

test case, as given the dynamic nature of testing it is difficult to accurately determine the 

true maximum and minimum values. A 95% confidence interval was applied to the data to 

minimise the influence of noise, represented by the error bars in Figure 6.1. The results are 

displayed and compared below in Figure 6.1. 

As would be expected, from Hooke’s Law and Figure 5.10 for higher loads, a higher 

displacement is observed. This however makes it difficult to separate the elastic deformation 

and permanent deformation, such as plastic deformation or wear.  

Therefore by subtracting the maximum static displacement Figure 5.10 from the dynamic 

displacement calculated in Figure 6.1, the permanent damage sustained by each test case 

can be estimated as shown in Figure 6.2. It is assumed here that any permanent deformation 

occurring upon the application of the load would be identified during the static testing 

conducted (e.g. Figure 5.10), any progressive plastic deformation would be observed during 

the cyclic loading. Only the amount of permanent damage can be determined here, without 

additional measurements no conclusion can be drawn as to the root cause of the 

deformation, as it could be a result of either creep, wear or plastic deformation. It can 

Figure 6.1: Maximum dynamic displacement for each load and material LC1 
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however be seen from Figure 6.2 that permanent change is negligible in comparison to the 

error from measurement. It can be seen that Vespel 21 returned a maximum change of -27 

µm at -45 kN, Gar-Max -127 µm at 105 kN, KAron B -62 µm at 167 kN, and Meldin 5330 -103 

µm at 105 kN. 

The joint was retested for a second aircraft life cycle, and the same procedure followed. 

There was a slight difference in the testing regime that the joint was dis-assembled after 

each loading condition to enable a roundness measurement to be taken. The joint was then 

re-assembled and the next test case completed. This inevitably introduced additional errors 

into the measurement, from removal and refitting, but enabled more in-depth analysis of 

the joint as testing progressed. The dynamic measurement of the second aircraft life is shown 

in Figure 6.3 before the subtraction of the elastic component. It can be seen that there is a 

general increase in the deflection of all materials, but little else. Gar-Max shows a small 

anomaly for the 53 kN test case, where deflection is greater than the 57 kN and 66 kN case. 

 

 

 

 

 

 

Figure 6.2: Wear+creep+plastic deformation for each load and materials after LC1 
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Figure 6.4 shows the analysis of the LVDT from the second life cycle following the subtraction 

of the elastic component. Vespel 21 returned a maximum change of 40 µm at 167 kN, Gar-

Max 111 µm at -62kN, KAron B -55 µm at 167 kN, and Meldin 5330 87 µm at 167 kN. 

The joint was then tested for a third time, in which the test procedure was conducted in the 

same manner as the first life cycle. The results are presented below in Figure 6.5 for the 

permanent change, showing that Vespel 21 had a maximum of 45 µm at 38 kN, Gar-Max had 

a maximum of -64 µm at 105 kN, KAron -40 µm at 167 kN and Meldin 5330 -61 µm at -45 kN. 

Figure 6.3: Maximum dynamic displacement for each load and material LC2 

Figure 6.4: Wear+creep+plastic deformation for each load and materials after LC2 
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For the subtraction of the elastic component the load displacement values taken before the 

first aircraft life cycle have been used throughout the analysis to ensure consistency. 

Therefore considering the lower deformation in the final life cycle it can be concluded that 

the bearings have run themselves in. It should be noted that for change in bush displacement 

some of the maximum values are in fact negative. Given that this occurs in different life 

cycles, and the magnitude of the values are similar throughout. Coupled with the fact that 

extreme care was taken to ensure the bushes were always re-fitted into the same 

orientation, the conclusion can be drawn that the permanent deformation sustained by the 

bushes during this testing is of comparable magnitude to the error in the control loop of the 

servo-hydraulic system. 

6.2. Talyrond Roundness 

Roundness measurements were taken for each set of bushes before testing commenced, 

and throughout the test programme. Measurements were taken extensively throughout the 

second life cycle. The maximum deviation from round values for Vespel 21 for each test case 

at a measurement height of 5.5 mm for each bush is given in Figure 6.6. The direction of 

loading can be observed as there is a general increase in peak deviation for the positive 

loading of Vespel 21, bush 1, 0-180O, while the negative loads decrease slightly. However this 

effect is seen reversed for the opposite side of the bush (180O-360O) where the peak 

deviation of the negative loads increases, while for the positive loads it decreases and 

becomes more constant, indicating that the opposite side of the bush has been loaded.  

Figure 6.5 Wear+creep+plastic deformation for each load and materials after LC3 



9
8

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 6.6: Peak deviation from round for the entire test programme for each half of each bush Vespel 21 at 5.5mm measurement height (left) 0-180O, (right) 180O-360O 
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Figure 6.7: Change in peak deviation from round for the entire test programme for each half of each bush Vespel 21 at 5.5mm measurement height (left) 0-180O, (right) 180O-360O 



 1
0

0
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.8: Peak deviation from round for the entire test programme for each half of each bush Gar-Max at 5.5mm measurement height (left) 0-180O, (right) 180O-360O 
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Figure 6.9: Change in peak deviation from round for the entire test programme for each half of each bush Gar-Max at 5.5mm measurement height (left) 0-180O, (right) 180O-360O 
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Figure 6.10: Peak deviation from round for the entire test programme for each half of each bush Meldin 5330 at 5.5mm measurement height (left) 0-180O, (right) 180O-360O 
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Figure 6.11: Change in peak deviation from round for the entire test programme for each half of each bush Meldin 5330 at 5.5mm measurement height (left) 0-180O, (right) 180O-360O 
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Figure 6.12: Peak deviation from round for the Before testing, after life cycle 1, life cycle 2 and after the third life cycle for each half of each bush KAron B at 5.5mm 
measurement height (left) 0-180O, (right) 180O-360O 
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Figure 6.13: Change in peak deviation from round for the Before testing, after life cycle 1, life cycle 2 and after the third life cycle for each half of each bush KAron B at 5.5mm 
measurement height (left) 0-180O, (right) 180O-360O 
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It can be seen from Figure 6.6 that the amount of permanent damage fluctuates for each 

measurement. To enable this to be compared more easily, the previous measured value is 

subtracted from the newly measured one. The change in maximum deviations is then 

displayed in Figure 6.7 for Vespel 21. From this figure it can be seen that the change in 

roundness, rarely exceeds a magnitude of 20 µm and that for some of the measurements 

taken the peak deviation is less than the test case completed before. This is due to the 

material recovering from the applied loading, highlighting that an element of creep is 

occurring in the bushes. For example 66 kN test case produces a large change, however it is 

followed by another large change in the opposite direction, returning the changes in 

magnitude to less than 20 µm. Figure 6.8 to Figure 6.13 repeat the process described above 

for the other materials tested. 

For all materials it can be seen that the measureable change from one test case to the next 

is in the region of microns, and the change from the start of testing to the end of life cycle 3 

is in the order of 20 µm. Measurements below this value would be unreliable due to the 

human error in setting up the bush to be concentric, and the error of the Talyrond.  

Gar-Max bush 3 shows an obvious anomaly in the before measurement which is a result of 

one of the fibres not correctly bonded. It can also be seen that for Meldin 5330 and Vespel 

21, an additional measurement Before LC2 was conducted. It would be expected to observe 

no change in the material, given that no testing has occurred. However given that the 

specimens were re-measured following a technical issue with the Talyrond at this point and 

also that the complete first life cycle for the other specimens was occurring, it is not 

surprising to see the time dependent phenomenon of creep occurring for materials that had 

been tested and were awaiting further testing to show a significant difference. 

Linear interpolation has been used to generate a 3D figure from each of the measurement 

heights described in section 4.4 for each of the bushes showing the initial out of round and 

the progressive damage after the first and second aircraft lives. The figures for each of the 

materials, are displayed in Table 6.1 to Table 6.4. 

It can be seen that for Vespel 21 little change has occurred from before dynamic testing was 

conducted to after the completion of the second life cycle. Bush 1 shows no measureable 

change for the three measurements, and appears to be perfectly round. Bushes 2 & 3 show 

initial out of roundness in 3 locations which was a result from the manufacturing process as 

the bush was held in a three jaw chuck. The initial out of round progressively improved after 

each life cycle as the bearing wore in as a result of the micro slip between the pin and bush 
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occurring as the joint was loaded and unloaded. Bush 4 again shows little to no change, 

however the effect of misalignment can be observed when measuring on the Talyrond. 

Gar-Max at first glance appears to show the greatest amount of damage, but again 

comparing to the initial out of round indicates that no significant change has occurred. Gar-

Max being a filament wound bearing has not been machined and therefore some initial 

deviation from round would be expected. 

Meldin 5330 shows little change again for all the bushes, given that these bushes were 

machined from raw stock like Vespel 21, it is not surprising to see faint evidence of where 

the 3 jaw chuck held bush 3. It can be seen that there is significant damage for bush 4 after 

life cycle 2, however the opposite phenomenon occurring on the opposite side of the bush 

shows that this is purely due to an error in centring the measurement. 

KAron B showed no measureable deformation for any of the bushes either from the 

manufacturing process or as a result of the testing. This is due to the increased stiffness of 

the joint as a result of the steel substrate. Therefore deformation from the 3 jaw chuck in 

the machining process is minimised, and with the liner being machinable, any deviations 

from roundness during the application of the liner can be machined back. The displacement 

during the static loading of the joint is also less, resulting in less counterface sliding.  

The 3-dimensional linear interpolation provided a more informative and representative 

image of how the bushes deformed, due to the inclusion of the roundness measurements 

taken at different heights, as described in section 4.4. Concentricity was maintained by 

moving only the probe up, without altering any other settings, which provided additional 

information to that given above, as it could be determined if the bore had become tapered 

at any point during the testing. Localised peak deformations could also be identified and 

omitted when required. 
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Table 6.1: 3D plots for all measurement heights before and after life cycle 1 & 2 Vespel 21
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Table 6.2: 3D plots for all measurement heights before and after life cycle 1 & 2 Gar-Max
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Table 6.3: 3D plots for all measurement heights before and after life cycle 1 & 2 Meldin 5330 
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Table 6.4: 3D plots for all measurement heights before and after life cycle 1 & 2 KAron B
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6.3. Visual Inspection 

KAron B showed evidence of fretting on the OD, which resulted in seizure of the steel backing 

into the test clevis. It can be seen from Figure 6.14 that there are regions where the asperities 

have locally welded together and upon removal of the bearing has resulted in scaring of the 

OD, as the welded junction ploughed through the stainless steel, until the junction separated.  

 

 

 

 

 

 

 

On the OD of Gar-Max traces of a reddish brown coating indicated that an oxide had been 

formed. This is thought to have occurred from a very thin layer of rust developing in the bore 

of the test clevis in between tests. The rust being transferred from the clevis to the test 

bushings during the micro oscillation between the clevis and test bushing, as a result of the 

cyclic loading.  

 

 

 

 

 

 

 

 

Figure 6.14: Fretting damage and localised asperity welding of the Stainless steel 
OD on KAron B to the clevis ID 

Figure 6.15: Transfer of oxidation from the test clevis to Gar-Max 
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Following the completion of life cycle 1 for four materials, the results from the visual 

inspections are displayed in Table 6.5. 
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Table 6.5: Summary of material transfer to pins after 1 aircraft life cycle 

It can be seen from Table 6.5 that for Gar-Max and Vespel 21 there was some material 

transfer occuring. For Gar-Max the PTFE has transferred from the fibers to the pin, which 

was evident through the pattern produced in the contact region for all of the bushes. An 

even distribution between the two halves of the clevis, indicates even loading. Vespel 21 

showed obvious evidence of material transfer, as the graphite has transferred to develop a 

lubricating film. It was more evenly distributed for the upper clevis than the lower, showing 

more relative motion between the pin and upper clevis bushes than the lower, which 

indicates a reduced clearance for the lower clevis. For both materials there appears to be a 

greater transfer at the head end than the far end of the pin, a result of unequal loading across 

all of the bushes. Meldin 5330 appeared to have poslished the pin rather than transferred 

any material, while faint traces of material transfer were observed for KAron B for both the 

upper and lower clevis with an even distribution across all of the bushes. Microscopic 

inspection was requied.
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Table 6.6: Microscopic inspection of Vespel 21 in each bush location for both the top and bottom of the pin 
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Gar-Max 
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Table 6.7: Microscopic inspection of Gar-Max in each bush location for both the top and bottom of the pin
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Table 6.8: Microscopic inspection of KAron B in each bush location for both the top and bottom of the pin 
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Meldin 5330 
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Table 6.9: Microscopic inspection of Meldin 5330 in each bush location for both the top and bottom of the pin  
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Microscopic inspection of the pins confirmed that Vespel 21 had transferred an even layer 

of graphite particles to the pin more prominently for the upper clevis bushes. Material 

transfer was however located in the regions of the lower clevis, but was found to be in lines 

radially around the pin with the greatest amount located at the edges of the bushes rather 

than an even transfer. It is proposed that the greater bearing pressure is resulting in a larger 

deflection of the bushes in the axial direction of the pin, slowly moving the wear debris out 

of the contact, and therefore reducing the benefit of lubrication that the particles bring to 

the contact. The size of the particles transferred to the pin was shown to be in the region of 

100 – 200 µm, typically the size of graphite particles included in bearings to improve dry 

lubrication performance. This is confirmed by the manufacturers information detailing that 

Vespel 21 includes 15% wt graphite.  

It was more easily identified on a microscopic scale for Gar-Max that material had been 

deposited from the high asperities of the bush, the re-enforcing fibres. This is evident from 

a pattern left on the pin, rather than a coherent film, with spacing between the clearly 

defined lines in the order of 500 µm, similar to the spacing between the fibres. In addition, 

the angle at which the material has been deposited on the pin at 18 – 19O (Figure 6.16a) is 

comparable to that of the winding angle of the fibres in the bush at 14-16O (Figure 6.16b) 

used during manufacture. Figure 6.16b is the inside of Bush 1 in the same orientation as the 

pin in Figure 6.16a.  

 

 

Figure 6.16: Angle of material transferred to the pin (a), Angle of fibre lay in Gar-Max resulting from the 
Manufacturing process (b) 

(a) (b) 
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The datum for the measurement of the angle for both Figure 6.16a & 6.16b is taken as the 

flange of the bush, hence a slight discrepancy is to be expected for these measurements 

given the reference of the measurement is a curved surface. The top of the bush can be 

identified in Figure 6.16b from a faint scratch along the top of the figure, which was caused 

during the fitting and removal process. It can therefore be concluded that the PTFE 

transferred to the pin from the sliding layer is used to generate a lubricating film from the 

larger asperities, as it was noted that after testing the bore of the bush was visibly smoother. 

Microscopic inspection of KAron B reveled that platelets had been transferred to the pin, to 

develop a thin even layer of PTFE for all the bushes. The resulting transfer film can be seen 

to be uniform, where platelets had merged, rather than distributed individual platelets.  The 

size of individual platelets that could be located was in the region of 200 µm, comparable to 

the size of the larger asperities identified by the optical surface profile (Table 4.2 Section 4.2). 

Therefore it can be seen that the platelets, once transferred merged to generate a uniform 

film. 

Meldin 5330 had transferred some material but did not appear to be forming a transfer film. 

The absence of wear debris and the presence of a shiny region for the macroscopic inspection 

indicate that polishing was occurring. Under microscopic inspection it was confirmed that 

little wear debris was present, and what appeared to be a reduced distance between valleys 

on the pin surface in the bush locations suggests wear of the asperities on the pin as polishing 

has occurred. Therefore both macroscopic and microscopic inspection indicate that the 

bushes were polishing the pin, rather than transferring material to build up a lubricating film. 

It should be noted here that all pins were standard aircraft landing gear pins, supplied by the 

aircraft manufacturer and therefore subject to strict MIL-SPEC and quality assurance 

standards to ensure that there is little difference between the surface roughness of the pins 

supplied. 

For the bottom of the pin bushes 1 & 2 show a more significant amount of material 

transferred. However it should be noted that for bush one this was only a single large flake 

that had been removed and therefore was the only region of interest. It can also be observed 

from the axial ridges in this flake where the pin was removed, that the flake was also 

relatively thick. 

Bush 2 appeared to show a more uniform transfer of material, however this was located in 

a line at the edge of the busing indicating that wear debris were being moved out of the 
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contact, therefore offering little tribological benefit. Scratches can be observed in the axial 

direction of the pin as a result of fitting and removal. For the bottom of the pin, Bush 3 shows 

some clear radial marks in the macroscopic image. One of the striations was investigated 

microscopically to identify if it was due to material transfer and if the wear debris were being 

out of the contact. The discolouration of the ring on a microscopic scale, indicated that it was 

not due to material transfer but due to contamination. While every effort was made to 

minimise the risk of contamination from oil or grease during the whole test programme 

through thorough cleaning of the pins with acetone prior to fitting, it must be accepted given 

the servo-hydraulic test lab that a small amount of contamination may have occurred. 

Furthermore the striations are limited to only bush 3 implying that the cause of these 

striations was limited to only the one bush, and therefore it is likely to be due to a 

contaminant. The contamination was however thought to have had little impact on the 

outcome of the test results, as any materials likely to be fitted to an aircraft landing gear 

application are subjected to strict contamination testing as contaminants such as hydraulic 

fluid, grease, de-greasing compounds, dust and dirt are all common on aircraft landing gear. 

In addition, Meldin 5330 is resistant to many chemical compounds, such as Gasoline, Motor 

and mineral oil therefore having a minimal negative impact on the material performance.  

Comparing the average size of the material transferred to the size of the high points on the 

optical surface profiles (section 4.2) showed good agreement for Vespel 21 and KAron B as 

they were of comparable size, indicating that the asperities adhered to the pin and were 

plucked from the surface of the bush. Gar-Max differed from this trend slightly due to the 

direction of fibre lay and the location in which the optical profile was taken, however it was 

clear that material had been transferred only in the regions where the fibres contacted the 

pin. 

Inspection of the pin outside of the contact zone for the bushes indicated that mild fretting 

had occurred between the pin and the retaining collar for the polymer composite materials 

(Figure 6.17). It was observed that the same phenomenon did not occur for KAron B.  

 

 

 

 

Meldin 5330 Gar-Max Vespel 21 

Figure 6.17: Evidence of fretting between the retaining collar and the pin for the 3 polymer composite 
materials 
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Therefore it was proposed that the rigidly mounted retaining collar on the upper clevis 

prevented equal amounts of deflection at the head end and far end of the pin for the 

materials with a lower joint stiffness. The unequal deflection produced motion in the axial 

direction, as the pin pivoted about the retaining bolt (Figure 6.18). 

 

 

 

 

 

 

 

 

 

Results from the instrumented load pin described in section 3.2.3.2 further confirmed this. 

Measurements were taken every 5O for 0-180O at an applied load of 15 kN. Both the retaining 

pin and collar had been removed for the test to enable the pin to be rotated. The loads 

recorded by each of the gauges for each of the materials are shown in Figure 6.19. It should 

be noted here that bridges 2 and 4 have been plotted to show the maximum loads in the 

same locations as bridges 1 and 3 due to the perpendicular position of the gauges in the load 

pin. Therefore a sharp fluctuation in load can be observed in Figure 6.19 for these bridges, 

where the data has been joined, as a result of a sight misalignment of the gauges during 

manufacture of the load pin.  

Figure 6.19 also showed that there was close correlation between the phase shifted bridges 

and the non-phase shifted. Additionally it can be said that the gauges located at the head 

end of the pin have consistently recorded a lower load than those at the far end, the only 

exception being KAron B. The lower load recorded at the head end is a result of a greater 

amount of plastic deformation or wear having taken place at this location. When each half 

of the clevis was loaded parallel to the other the far end carried a greater amount of load as 

Figure 6.18: Pivoting of the pin about the retaining bolt, inducing an unequal load distribution between the 
head and far end of the pin 
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a result of the smaller clearance. KAron B shows exception to the trend, given the higher 

joint stiffness.  

Further evidence of the greater amount of wear or deformation at the head end can be 

observed from the visual inspections performed above in Table 6.5, where there has been 

more material transfer to the pin at the head end rather than the far end.  

  

Figure 6.19: Load distributions for each bridge in the load pin for each of the materials. Clockwise from top 
left, Vespel 21, KAron B, Meldin 5330 and Gar-Max 

Far End 

Head End 

Far End 

Head End 

Far End 

Head End 

Far End 

Head End 



 
 

123 
 

6.3.1. Failure of Vespel 21 Flange 

Upon assembly of the joint in preparation of LC3 for Vespel 21, the flange on bush number 3 

fractured when the bush was pressed fully home with the mandrel fitting tool. No abnormal 

forces or methods were used, and the bush was properly seated in the housing. Therefore 

the bush was removed from the clevis and inspected to determine what had caused the 

failure. Macroscopic inspection was conducted for four regions of interest, these are 

identified in Figure 6.20. 
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Figure 6.20: Regions of interest from the failed flange 
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Region 1 located perpendicular to the axis of loading shows the ridges on the fracture face 

changing direction. This was chosen as it was considered to be a potential source of crack 

initiation that resulted in the failure. 

Region 2 was selected for further inspection due to the raised peak on the fracture face, 

indicating that fast fracture may have occurred in this location at the end of the fracture, 

resulting in the quick removal of material. 

Region 3 again approximately perpendicular to the axis of loading shows another region 

where the ridges on the fracture face change direction. This region is also of a greater area 

than that of region 1 and shows a more porous texture between the ridges.  

Region 4 is a representative image of the fracture face. The ridges can clearly be seen in this 

location to be travelling in the same direction, curving towards the high stress region of the 

flange corner, where the crack propagated.  

Comparison of the fracture face with that of a polyimide in the ASM fractography handbook 

(ASM 1987) shows an almost identical fracture face, of crack propagation. For the ASM case, 

the crack initiation was traced to a design deficiency, in the case of the polyimide bush, this 

was believed to be the fatigue. 

Given the circumstances of the failure it is difficult to determine the cause of failure however 

it is predicted that this was a fatigue induced failure which initiated in two points, region 1 

and region 3. The crack initiation was generated by the continuous growth and reduction of 

the contact area. The crack then travelled around the bush at the flange due to geometrical 

effects increasing the stress concentration until the two cracks met at region 2 the location 

of the fast fracture. 

Figure 6.21: Fracture face (left) ASM handbook (ASM 1987) polyimide x120, (right) fracture face Vespel 21 
x250 
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A replacement bush was manufactured and the testing of LC3 continued in an attempt to 

initiate another failure in bush number 2. Failure did not occur in bush 2 during LC3. 

6.4. Size of Contact 

Following the successful completion of LC2 the pins were re-examined. For the three polymer 

composite materials it was observed that the region of contact was large and as expected 

could not be likened to Hertzian contact. Using the extended model developed in section 5.1 

for calculating the arc of contact, the load at which the contact became “saturated” was 

determined. For Gar-Max the maximum load required to achieve saturation was 31 kN, while 

for Meldin 5330 it was 41 kN. The arc of contact was not calculated for Vespel 21 and KAron 

B as it was shown in section 5.3.1 that the simulation did not accurately predict the 

displacement, and therefore would not accurately predict the arc of contact. 

Large amounts of wear debris are observed along the length of the pin, outside the regions 

of contact, as a result of the removal and re fitting of the pin during the testing of LC2 

disturbing the region of contact. However it can be seen that at 90O to the loading direction 

the region of contact did not spread over the full 180O but instead left a region for wear 

debris to build up in for Vespel 21, and a region of no contact for Meldin 5330.  

  

Meldin 5330 Gar-Max Vespel 21 

Figure 6.22: Regions of non-contact observed at 90O to the loading direction 
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Therefore further investigations into the arc of contact were conducted. A range of loads 

between 1 and 5 kN were used to investigate the development of the arc of contact by 

indexing the instrumented load pin by 5O. It should be noted here that these tests were 

conducted in compression only, to avoid any component of the clevis extension influencing 

the results. 

 

 

 

 

 

 

 

The load profile indicates that the arc of contact is 180O however given that the load pin 

measures shear force in the pin at a single location, the load profile generated cannot directly 

give the arc of contact. When the gauges are not orientated either perpendicular or in line 

with the applied load, a resultant force is recorded due to the internal stresses in the pin 

itself. Hence the forces cannot simply be resolved to determine the load profile and arc of 

contact. Therefore an approach to investigate the change in angle of the load profile to 

obtain the same resultant force for a range of load profiles was adopted. The lowest load 

profile was generated using an applied load of 1 kN and was indexed around by 5O, the 

maximum point of this load profile was located. 

A line of constant load was positioned at that value, and the remaining load profiles 

completed. Nearest point intersection between the line of constant load and the remaining 

load profiles was conducted and the corresponding angular position found. The angular 

difference between these values was then calculated. Meldin 5330 showed a change in angle 

of 60O, 5O, 5O and 0O While Gar-Max showed changes of 60O, 10O, 5O and 0O.  

It can be observed from Figure 6.23 that for Gar-Max the measured load was less than the 

applied load. For example an applied load of 5 kN by the test frame resulted in a measured 

load of only 3.5 kN by the load pin, this was caused by the flanges on the bushes being in 

contact, hence carrying a proportion of the load.  

Figure 6.23: Change in the arc of contact from the load distribution plot, recorded with the load pin for 
Meldin 5330 (left) and Gar-Max (right) 
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The calculated angular difference using the simulation was found to be 2.9O, 2.4O, 2.2O and 

2.0O for Meldin 5330, and 3.5O, 3O, 2.7O and 2.5O for Gar-Max. Comparison of Vespel 21 and 

KAron B was not performed3, as it was evident that the change in angle technique was not a 

suitable method to verify the arc of contact, and it was shown in section 5.3.1 that the 

displacement model was not as accurate for these materials.  

Results from the load pin could only be used to show if the change in the arc of contact with 

increasing loads was comparable to the calculated change in angle, rather than the complete 

arc of contact. Therefore PVC bushes were loaded as described in section 5.2, however a 

lightly knurled pin Figure 3.12 was used for loading. The bushes were sectioned and 

examined under an optical microscope, and measurements taken from the hatched pattern, 

left on the bush. Once the beginning and the end of the imprinted pattern had been 

identified, a measurement between the two positions was taken across the bush to 

determine the contact width. Several measurements were taken along the length of the 

bush, and 2 repeats conducted. The contact width then averaged and trigonometry used to 

calculate the half angle of contact. Table 6.10 shows the experimental results. 

 

 

To ensure validity of the beginning and end of the contact regions described above, the 

knurled pin was loaded against a flat cylindrical surface at loads of 125 N, 250 N and 500 N. 

Hatchings of 0.3 mm, 0.5 mm and 0.7 mm respectively can still be seen at these loads (Figure 

6.24). 

                                                           
3 Experimental results are detailed in Appendix B 

Load (kN) 2 4 6 8 10 

Measured contact width (mm) 3.2 7.4 6.5 7.2 8.2 

Half arc of contact (deg) 15.3 21.4 33.0 36.7 43.0 

Table 6.10: Experimentally determined contact width and calculated half angle of contact 

Figure 6.24: Evidence that a pattern is still left on the bush at low loads of 125N, 250N and 500N (left to right) 
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Therefore if contact occurred and no imprint was produced, the load was less than 125 N 

which is 6.25% of the minimum applied load, and therefore could be neglected especially for 

the higher loads. 

The dimensionless load parameter 
𝐸1

∗∆𝑅

𝑃′
 was used to enable comparison of the experimental 

results, simulation results and the solution to Persson’s equations for elastic dissimilarity 

(Ciavarella & Decuzzi 2001b). The non-dimensional load parameter was first calculated for 

the experimental and simulation results and for Ciavarella & Decuzzi’s solution it was 

calculated using (equation 2.5). 

Values for the non-dimensional load parameter corresponding to the values calculated for 

the experimental and simulation data were found, and therefore the corresponding half arc 

of contact 𝛾. The results comparing the half arc of contact at the same non-dimensional load 

parameters are shown in Figure 6.25. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The angle of contact is shown to be more accurately predicted when calculated by Persson 

for low loads than the simulation developed here. However as the load increases the 

Figure 6.25: Comparison of the half the arc of contact for the experimental data, simulated data 
and the modified Persson solution at the same values of dimensionless load 
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opposite is true, Persson’s solution begins to plateau, while both the experimental result and 

the simulation continue to increase.  

The two calculated data sets, have a region at the top of the bars to show the influence of 

the modulus of elasticity on the calculated result. The upper limit represents the lower 

modulus of 2.4 GPa, while the lower limit represents the higher modulus of 3 GPa. The 

modulus can be seen to have a greater influence on the simulation result, than on the 

calculations of Persson. A higher modulus would result in a consistently more accurate 

prediction of the arc of contact for the simulated result for all loads, and would also improve 

the accuracy of Persson’s solution for the low load case. 

The experimental method of measuring the width of contact, and then calculating the arc of 

contact, obviously carries with it some error. Given that the lowest material stresses will 

occur at the edges of the contact and the measurement was taken based upon the 

permanent deformation that occurred as the result of the knurled pin, it is highly likely that 

there was contact occurring that didn’t result in permanent deformation. While attempts 

have been made to investigate the minimum force required to result in permanent 

deformation, through the use of the flat cylindrical surfaces, it was shown that loads as low 

as 125 N still resulted in a plastic deformation of 0.3 mm contact width. Therefore it is clear 

that there will still be significant amounts of contact in the elastic region increasing the width 

of contact and also the arc of contact, beyond what is currently being measured. The error 

introduced as a result of this increased width and arc of contact will be more significant at 

low loads, improving the agreement between the experimental results and those of the 

model developed here.  

The Persson method plateaus due to the assumption of Hertzian contact, and therefore 

breaks the assumption that there is a small region of contact. In addition the person solution 

which works for elastically dissimilar materials, does not account for significantly elastically 

dissimilar materials such as a steel shaft loaded against a polymer bush. Furthermore the 

thickness of the bush is not considered. 

There are of course some limitations of model developed in this work too, such as the 

assumption that there is no deformation of the shaft. While this may be a valid assumption 

at low loads and with materials that have a much lower modulus of elasticity than that of the 

pin. Care must be taken when applying the model to simulate high loads for materials such 

as KAron B, where the majority of the bush is steel, resulting in a much stiffer joint, and 

therefore less deformation of the bush.  
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One of the limitations mentioned in section 5.1 is that there is no limiting condition for the 

amount of displacement. If care is not taken, the displacement predicted by the model can 

exceed the bush wall thickness, resulting in a breakdown of the model as the element 

considered initially during the construction of the model ceases to exist, and the shaft would 

then contact the housing. In this situation, not only would the stiffness of the joint increase, 

the contact would be more similar to that covered by the Hertzian model. From purely a 

geometrical point of view with an increasing force in this case would result in a decreasing 

arc of contact, as the contact width would have reached the maximum value, that of the pin 

diameter, and then would begin to decrease as the chord length would be occurring on the 

opposite side of the contact, which is of course not possible with the materials and geometry 

considered here. 

Additionally there is no limitation governing the change of Stage (i) to Stage (ii) from section 

5.1, and can be seen in section 5.2 for the PVC bushes, where the non-linear contact changes 

to be linear for a constant arc of contact, and then enters the plastic deformation region. 

This plastic region is also one that has not been considered by the model developed. Further 

work focusing on the elastic plastic transition would result in a much more refined model. A 

model that can account for the transition between Stage (ii) and Stage (iii) would also include 

necessary components to represent the deformation occurring in the axial direction along 

the length of the pin, as the stresses within the bush material could no longer be neglected. 

There is also the limitation that the interference fits of the bushes are not considered, which 

of course results in a reduced clearance and in some situations can result in a neat or zero 

clearance condition. 

6.5. Conclusion 

Dynamic testing was conducted for the four commercial bearing solutions for a total of three 

aircraft lives. Cyclic displacement of the joint was recorded using an LVDT, and the static 

displacement subtracted from it to give the deformation of the joint per test case. The 

roundness of the bushes was also measured at specific intervals and the maximum deviation 

from round recorded. Comparisons between the deformation of the joint using the LVDT and 

the maximum out of round were in close agreement with each other, showing total 

permanent deformation to be in the region of 20 µm or less, a similar value to that of the 

error in the measurement. It is recommended that in order to reduce the measurement error 

that a new bespoke measurement system is developed for measuring the roundness of the 

bushes in situ. 
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The load displacement model was extended to predict the arc of contact, and therefore 

investigation into the arc of contact was made based upon the visual inspection of the pins. 

An instrumented load pin was inserted into the joint, and indexed round with a constant 

load. This was repeated for five low loads, and the change in angular position of a load 

determined from the load profile generated. These results were compared to the modified 

load displacement model, and were found to be significantly different, showing changes of 

10O and 2.4O. Experimentation was conducted using a lightly knurled pin loaded against the 

single PVC bush. Sectioning the bush following the application of a load revealed an imprint 

to be left on the bush which was measured, and the arc of contact calculated using 

trigonometry. The results from the model showed improved accuracy over that of the 

modified Persson solution at higher loads. The importance of selecting the correct value for 

the modulus of elasticity for the bush was highlighted, indicating that an increased value for 

E would result in a more accurate application of the model developed. It was therefore 

concluded that indexing the load pin, and calculating a change in the arc of contact was not 

an accurate method for verifying the arc of contact. 

It was shown that careful consideration should be given to the pin retention technique when 

using polymer composite bushes at high loads. The retention technique used in this research 

showed that unequal loading of the bushes was occurring due to the pivoting of the pin on 

the retaining collar. This not only accelerated the wear of the bushes at the head end, which 

could be observed both from the material transfer to the pin and also the lower recorded 

loads with the load pin at these locations, but also resulted in fretting between the pin and 

the retaining collar. 

Fracture of the flange occurred during fitting of Vespel 21 of the third bush prior to testing 

life cycle 3. Two initiation points were identified, located at 90O to the loading direction, on 

opposite sides of the bush. A replacement bush was manufactured for the completion of the 

test programme, with the expectation that bush 2 would fail shortly afterwards, which did 

not occur. 
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7.  

Articulation of a pin joint 

 

 

In this chapter the effect of aviation grease and general purpose grease are evaluated for use 

in an oscillating pin joint. The regime in which the joint operates was experimentally 

determined. The angle of articulation was varied to investigate the effect on the life of the 

lubricant. The suitability of self-lubricating journal bearings in an oscillating application was 

examined. 
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7.1. Lubrication performance in an oscillating journal bearing  
Inadequate lubrication between sliding surfaces will result in either seizure of a joint, or in 

unacceptable excessive amounts of wear. For aircraft landing gear the worst case scenario is 

seizure of the landing gear in the up-locked position, preventing emergency free fall of the 

gear. The oscillatory motion and the low sliding velocity of 0.07 m/s indicates that the joint 

would be operating in either the boundary or mixed lubrication regime (Zhu et al., 2012). 

Inadequate lubrication of the landing gear may occur as a result of missed service intervals, 

incorrect lubricant or thermal degradation for example.  

Specially designed aerospace greases have been developed to lubricate the joints and 

minimise these problems. These are typically two phase systems consisting of a lithium soap 

thickener, and a mineral oil or synthetic base oil. The thickener acts as a reservoir, which 

upon shearing releases a base oil for lubrication of the contact (Booser & Wilcock, 1953). The 

thickener can also have a dramatic effect on lubrication performance through two main 

mechanisms; ‘direct’ where the grease thickener augments the oil film and the ‘indirect’ 

where the thickener releases the base oil through shearing (Bushan, 2001). 

 

7.2. Dry Contact 
Initial testing was conducted using the pin joint function tester described in section 3.3 to 

determine the COF value between a set of unlubricated aluminium bronze bushing and a 

steel aircraft landing gear pin, in oscillatory motion to provide a benchmark for comparisons. 

The aluminium bronze bushes and the steel aircraft landing gear pin were supplied by the 

aircraft manufacturer as a replica of the current aircraft technology. A variety of surface 

sliding velocities were investigated around the 0.07 m/s region which is typical of where the 

joint operates. A small number of cycles were run with a fixed articulation angle of ±40O to 

determine the COF of the contact, without significant heating of the joint. Figure 7.1 shows 

the results of this testing. 
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The COF for the lowest sliding velocity was found to be significantly lower than all of the 

other tests conducted. The lower COF value has occurred, due to a lower rate of heat 

generation than the higher sliding velocities. At a low sliding velocity the system has time to 

dissipate the heat to the clevis and pin, moving it away from the contact. For the higher 

velocities however the rate of heat generation was greater than that at which it could be 

conducted away. Resulting in heating of the pin and bush, reducing the clearance between 

the two and therefore increasing the COF, hence the similarity between the higher velocities. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.1: COF dry contact 10 MPa, ±40O at a range of surface sliding velocities 

Figure 7.2: A typical cycle from each Velocity case at a bearing pressre of 10 MPa and 
an articulation angle of ±40O 
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Figure 7.2 shows a typical single cycle recorded from the articulating joint at each velocity 

tested. From this it can be seen that there was minimal stick slip behaviour from the joint for 

all velocities, as there is no significant peak in the corners. Additionally as expected there 

was no reduction in COF when the pin passes through the 0O position, the maximum speed, 

due to the absence of a hydrodynamic film. The analysis of the single cycle also confirms that 

the low velocity case is correct as the plot is uniform and evidently lower than the higher 

velocities. 

7.3. Lubricated Contact 
Testing progressed to evaluate the performance of grease. Surface sliding velocity was again 

fixed, along with the angle of articulation, and the load applied to the bearing. Two lubricants 

were injected into the contact, through the circumferential H shaped grooves, machined into 

the internal diameter of the aluminium bronze bushes. Grease was transferred from the 

grease gun to the bearing grooves through a grease point on the outside of the clevis, and 

then by a distribution channel. The two lubricants Mobil 28 and Aeroshell 22, are both 

Aerospace grade greases, typically used for lubricating landing gear. The COF for the 

lubricants was recorded and the performance compared to that of the dry case. 

 

Figure 7.3 immediately shows the frictional performance of each of these conditions. As 

would be expected, the dry case has a much higher co-efficient of friction of 0.33 than that 

of the lubricated cases, 0.19 and 0.14 for Aeroshell 22 and Mobil 28 respectively. Here it can 

Figure 7.3: Effect of two aerospace grade greases Aeroshell 22 and Mobil 28 on the COF at 10 MPa and 0.145 
m/s with an articulation angle of ±40O  

Dry 

Aeroshell 22 

Mobil 28 
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be seen that the joint has just entered the mixed lubrication regime given that both of these 

COF values are quite high, which is typical of boundary to mixed lubrication. Therefore it can 

be said that the lubricant is only just being entrained into the contact. This can be confirmed 

by inspecting Figure 7.4 showing a typical single cycle for each of the test cases. It can be 

seen that there was little evidence of stick slip behaviour and a decrease in COF for the 

maximum speed of the joint was also difficult to distinguish. There was however a slight 

reduction in COF that can be observed for Mobil 28 but not an amount significant enough to 

say that the joint is hydro-dynamically lubricated. Mobil 28 shows the lowest COF at the test 

velocity and pressure. The most likely reason for this improved performance is the use of a 

clay thickener for Mobil 28, rather than the microgel used in Aeroshell 22. Continually missed 

service intervals or joints will eventually lead to a rise in co-efficient of friction as the 

boundary lubrication regime begins to dominate.  

 

 

 

 

  

Dry 

Aeroshell 22 

Mobil 28 

Figure 7.4: An isolated cycle from each lubrication case at a 10 MPa, 0.145 m/s, with an articulation angle 
of ±40O 
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7.4. Effect of lubricants on the contact 
The two lubricants tested were subjected to a range of loads and sliding velocities, to 

determine which regime the joint was operating in. The sliding velocities used in section 7.2 

for dry contact, were again used to enable direct comparisons to be made. The bearing 

pressures were 1.25 MPa, 5 MPa, 10 MPa and 15 MPa. The resultant co-efficient of friction 

can be displayed on the Hersey-Stribeck curve, using the Hersey equation 

 

 

Where P is the mean contact pressure, ω is the angular velocity of the pin, and η is the 

lubricant viscosity. The kinematic viscosity of the base oil was 29.3 mm2/s and 30.5 mm2/s 

for Mobil 28 and Aeroshell 22 respectively. The surface velocity stated is the mean value 

calculated using the radius of the pin and the reciprocal frequency. Figures 7.5 and 7.6 show 

the generated Hersey-Stribeck curves for Mobil 28 and Aeroshell 22 respectively. 

 

Given that the joint had a bearing pressure of 5 MPa and angular velocity of 12 deg/sec, the 

Hersey number is approximately 0.5x10-12 for both greases (Mobil 28 and Aeroshell 22). This 

therefore places the joint in the boundary to mixed regime.  

 

 

p
H




Figure 7.5: Stribeck curve generated for Mobil 28 using an articulation angle of ±40O 

(7.1) 
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A typical Hersey-Stribeck plot is a continuous curve, however given the four bearing pressure 

cases tested four distinct curves for both lubricants can be seen (Figure 7.5 and Figure 7.6). 

For both lubricants tested the curves can be seen to overlap each other in terms of the 

Hersey number. From equation 7.1 it can quickly be realised that the same Hersey number 

can be achieved by adjusting either the sliding velocity or the pressure, hence at the higher 

velocities an overlap is achieved with the lower bearing pressure. The difference in the COF 

can then also be explained, as the higher velocity and the conformal geometry of the contact 

entrains more grease and results in a lower COF due to the faster generation of a 

hydrodynamic film. 

7.5. Effect of articulation angle on re-lubrication interval. 
A continuously rotating lubricated journal bearing shows little wear and a low COF when 

operating under normal conditions. During start-up however both COF and wear are high 

due to insufficient fluid separating the surfaces. As rotation continues and or the speed 

increases lubricant is pulled into the contact and the surfaces begin to separate. In the case 

of the oscillating lubricated journal bearing however the steady state of low wear and COF is 

not always achieved due to the decrease in velocity required to change the direction of 

motion, and hence the breakdown of the film. 

 

 

Figure 7.6: Stribeck curve generated for Aeroshell 22 using an articulation angle of ±40O 
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7.5.1. Aerospace grade grease 
The angle of articulation was investigated to determine if oscillating the joint by an amount 

greater than that of the arc of contact extended the life of the lubricant by entraining fresh 

grease into the contact. A range of velocities was used to obtain a Stribeck curve. Given the 

relationships 𝜔 = 2𝜋𝑓𝜃 and 𝜔 =
𝑈

𝑟
 the reciprocating frequency of the joint was adjusted to 

ensure that the same mean sliding velocity U at the pin bush interface was maintained for 

the different angles of articulation θ tested. 

  

 

 

 

 

 

The first batch of tests conducted used a contact pressure of 20 MPa and Aerospace grease 

Mobil 28. Grease was injected after each test condition was completed to ensure fresh 

grease was present for each test. The grease gun was weighed after re-lubrication to ensure 

that similar amounts of grease were inserted into the joint for each sliding velocity, angle of 

articulation and repeat. Tests were repeated 3 times to ensure reliability.  

Figure 7.7: Schematic representing the angle of articulation 

Figure 7.8: A single COF cycle for a range of articulation angles at 20MPa. COF is seen to decrease slightly for 
a longer stroke 
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Figure 7.8 shows a single COF cycle for a low velocity test condition for each of the 

articulation angles tested. From this it can be seen that increasing the angle of articulation 

reduces the COF by a small amount. This is the result of the increased sliding distance, leading 

to the entrainment of more grease into the contact, developing a thicker film between the 

surfaces, and therefore a slight reduction in the COF. However due to the oscillatory nature 

of the joint, the COF rapidly rises again as the sliding velocity begins to drop as the oscillation 

approaches the end of travel, before reversing, and the collapse of the film. 

This process was repeated for a range of velocities, and an average kinetic COF taken for 

each articulation angle and velocity tested to generate a Stribeck plot, Figure 7.9. Care should 

be taken when interpreting these results as one may mistakenly assume that the lowest 

range of Hersey numbers is the transition from the mixed lubrication regime to the 

Hydrodynamic regime. 

 

Upon closer evaluation one will notice the scale of the y axis of Figure 7.9 shown is 0.1, 

whereas on a Stribeck diagram it is typically a factor of 10 greater. For each of the 3 results4, 

the COF values typically lie between 0.18 and 0.22, which is a narrow band on the Stribeck 

diagram. Therefore indicating that the joint is still operating in the same mixed regime.  

                                                           
4 See Appendix C1 

Figure 7.9: Averaged Stribeck curve showing little change to COF with varying articulation angle, Mobil 28, 
20MPa 
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It should be highlighted here that at first there appears to be little agreement of Figure 7.9 

with Figure 7.5. Typical COF values for Figure 7.9 are in the region of 0.18 and 0.22, for a 

bearing pressure of 20 MPa with Mobil 28, whereas Figure 7.5 shows COF values of up to 1.3 

using the same lubricant at a lower bearing pressure of 15 MPa. The first comment to be 

made about this observation is that much slower reciprocating velocities were used for the 

testing conducted in Figure 7.9. In addition, as already mentioned above an increased 

bearing pressure was also used for the testing, and it can quickly be observed from Figure 

7.5 that a greater bearing pressure results in a greater rate of change of the COF with Hersey 

number. The most significant difference however is the fact that the bushes and pin were 

changed. Both bushes and pin were standard aircraft spares and therefore satisfy the 

relevant quality assurance and MIL-SPECs, however the Aluminium Bronze bushes are 

supplied oversize on the OD to minimise the cost of landing gear overhaul if the bore in the 

housing, or strut wears. In this eventuality the housing can be re-machined and the required 

bush OD can be increased to a larger diameter. For the case of the test rig, while wear of the 

housing is unlikely, there is possibility for the OD of the bush to be machined to a slightly 

different tolerance. An increased interference fit results in a reduced bearing ID, and 

therefore more favourable conditions for the generation of a lubricating film, resulting in a 

lower value for the COF.  

The additional machining process of “line boring” the bushes was also completed, where the 

OD of the bush is machined to size, the bushes all fitted and then the ID’s of all the bushes 

machined in situ in the housing. This technique reduces the likelihood of bush misalignment 

occurring. This was completed only for the aluminium bronze bushes as they were not 

subjected to the constant fitting and removal process required during testing.  

While it is highly unlikely, it must be considered that the calibration settings for the test 

frame’s load cell may have been altered during the test programme as a result of other 

operators running very different tests. It is highly unlikely that this would be a cause of the 

discrepancy as calibration was checked before and during the test programme, but a factor 

that must be considered none the less. The difference in COF values is therefore attributed 

to the change of bushes. 
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7.5.2. General purpose grease 
Tests were repeated using a general purpose grease, at the same pressures and velocities, in 

order to determine if the phenomenon of the decreasing COF with increasing angle of 

articulation at low velocities was system or grease related. Shell Alvania EP (LF) 2 is typically 

a general purpose grease, and was therefore expected to perform worse than the aviation 

grease. 

Shell Alvania showed repeatable results for all velocities and articulation angles, Figure 7.10. 

Therefore it can be confirmed that the Shell Alvania did not exhibit the same phenomenon 

as Mobil 28, but did however show a general decreasing COF with increase in velocity. 

Opposite to the general trend for that of the Mobil 28 trend, which showed a general 

increase.  

 

Shell Alvania also showed a much lower COF than that of the aerospace grease, almost 

consistently 0.1. Examining the averaged graph for Shell Alvania, there is some indication 

that for higher velocities than those tested, the angle of articulation may have a greater 

effect than what is observed here. There is an increasing divergence between the ±20O and 

±40 O cases, with ±20 O requiring slightly more torque than the ±40 O case.  

Given the order of magnitude difference of the Hersey Number and the lower COF, it can be 

determined that Shell Alvania is operating more in the mixed lubrication regime than Mobil 

28. Given that the bearing pressure, sliding velocities and angles of articulation were all 

maintained constant between the tests, the only variable in the dimensionless group is the 

viscosity. The base oil viscosities were 29 cSt and 189 cSt at 40O for the Mobil 28 and the Shell 

Figure 7.10: Averaged Stribeck curve showing little change to COF with varying articulation angle, Shell 
Alvania, 20 MPa 
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Alvaina respectively (ASTM D445). This therefore indicates that a grease with a higher 

viscosity performs better for a joint operating in the mixed regime. 

The test was repeated using half the pressure (10 MPa) to determine if a reduction in arc of 

contact would show a greater divergence between the ±20O and ±40O cases, as more of the 

lubricant would be swept out and back into the loaded zone, for a smaller arc of contact. 

 

It can be seen that there is a growing divergence between the largest and smallest angles 

tested, but at a very small rate. General trends of decreasing COF with increasing velocity are 

comparable with that of the higher pressure.  

Given the lack of the anomalous behaviour at 0.02 m/s for Shell Alvania and the continued 

separation occurring for Mobil 28 in section 7.5.1 but both lubricants showing strong general 

trends for all the other cases, surface roughness measurements (Rq) were recorded in two 

locations of each bush. One in the loaded zone and one outside of the loaded region. 

Averaged results are shown below. 

Figure 7.11: Averaged Stribeck curve showing little change to COF with varying articulation angle, Shell 
Alvania, at a reduced pressure of 10 MPa 
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The variation in surface roughness is as a result from the “running in” of the bushes. The 

bushes were new when fitted. Therefore during the testing of Mobil 28, the bushes were 

subjected to a small amount of running in. This should be negligible given the lubricated 

contact, however it is proposed that at the low velocities the film thickness was not great 

enough to adequately lubricate the contact, and separate the asperity to asperity contact. 

The bushes were not replaced during this testing as tolerances were deemed to be more of 

an influencing factor, and running in wear was assumed to be negligible given the typical 

service life of a joint. 

Figure 7.12: Reduction of surface roughness values (Rq) for the bore of the AlBr bushes in the loaded zone 
and unloaded zone 
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The pressure required to inject new grease into the contact was recorded, using a pressure 

transducer fitted in line with a grease lubrication point on the clevis. The maximum pressures 

obtained during re lubrication5 are shown below in Figure 7.13 for each lubricating grease. 

From this it can be seen that Shell Alvania consistently requires a greater pressure for the 

injection of the grease into the contact. Given the higher viscosity and also the slightly higher 

NLGI consistency number of 2, as opposed to Mobil 28 with 1.5, it can be confirmed that 

Shell Alvania is a harder grease, and therefore requires a greater pressure to insert the grease 

into the contact. Due to the greater resistance to flow Shell Alvania is less susceptible to be 

swept out of the loaded zone, and therefore stays in the contact for longer providing 

improved lubrication. Additionally a greater resistance to leakage would help to prevent the 

loss of the base oil. The improved co-efficient of friction performance of the Shell Alvania 

seen in section 7.5.2 is as a result of the higher NLGI. 

                                                           
5 See Appendix C2 
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Figure 7.13: Pressure required to re-lubricate contact using two greases at a bearing pressure of 20 MPa 
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7.5.3. Number of cycles 
Testing was conducted to evaluate the degradation of Aeroshell 22, given that it performed 

the worst in section 7.3, if it was not replenished at the recommended 250 cycle mark. A 

bearing pressure of 10 MPa was applied and the joint articulated by ±40O for 1500 cycles at 

a sliding velocity of 0.373 m/s. The test was then repeated, lubricating at 500 cycle intervals, 

until the 1500 cycle mark. An interval of 500 cycles was chosen to investigate the implications 

of an extended maintenance programme, and also to negate the influence of temperature 

rise of the joint on the COF. Temperature was seen to rise at a greater rate in the first 250 

cycles, than for the remainder of the test6. 

Figure 7.14 shows the results of the extended grease life testing. It can be seen that under 

the loading conditions imposed on the joint the performance of the grease does not rapidly 

deteriorate. A steady rise in the COF can be observed for the 0 - 1500 cycle case and is also 

mimicked for the 3, 500 cycle cases.  

Re-lubrication at 250 cycles would reduce the COF by only 0.005, and for the testing 

conducted here there is still some influence from temperature increase of the clevis. 

Therefore it can be concluded that at these test conditions the COF is more influenced by 

the temperature, than the degradation of the lubricant. Under operating conditions similar 

to the ones tested, re-lubrication intervals can be increased by at least a factor of 2, and 

depending on the COF limitations there is potential for increasing by a factor of 5. 

                                                           
6 See Appendix C3 for the corresponding grease temperatures  

Figure 7.14: Rise in COF with 1500 cycles of operation at 10 MPa, ±40O, 0.373 m/s, compared to re-
lubrication every 500 cycles. 

Re-lubrication 1 
Re-lubrication 2 

Re-lubrication 3 

Non re-lubricated 
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7.6. Self-lubricating bushes 
To determine the suitability of self-lubricating maintenance free polymer composite 

bearings, preliminary work was conducted with HDPE bearings, which were manufactured 

to be a direct replacement for the lubricated aluminium bronze bushes. The HDPE bearings 

were then tested to first asses the COF of unlubricated contact in a pin joint application. The 

bearings were loaded initially to 10 MPa, and the COF determined. Testing was again 

conducted at a range of velocities and also articulation angles to enable a direct comparison 

to the lubricated aluminium bronze case. Figure 7.15 shows a typical single cycle at a velocity 

of 0.08 m/s for each of the articulation angles tested. 

It can be observed here that the corners of each of the cycles are much more rounded, 

indicating stick slip is less prominent, than for the grease lubricated case (Figure 7.8). 

Interestingly at the maximum speed of the joint, the force resisting motion is also at its 

maximum, unlike the lubricated case, while the corners of the cycle have the lowest force 

resisting motion. Therefore for bearing applications where frequent starting and stopping 

occurs and a hence a low starting torque is required self-lubricating bushes provide the 

answer. 

 

 

Figure 7.15: A single cycle for each of the articulation angles tested with HDPE at 0.08 m/s and 
10 MPa 
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A systematic error occurred during the testing programme, resulting in the duplication of the 

0.14 m/s case instead of 0.04 m/s for the ±40O articulation angle. The results at this velocity 

have been averaged and no data point plotted for the 0.04 m/s, ±40O case for both bearing 

pressures.  

The friction co-efficient of the 10 MPa case shows little difference for the angle of 

articulation, but differs from that of grease in that the general trend is an increase with 

increasing velocity. The higher pressure 20 MPa shows much less of a consistent general 

trend. This was due to the failure of the HDPE bearing, as it extruded in the axial direction 

Figure 7.16: COF for HDPE bearings operating at 10 MPa, with a range of surface sliding 
velocities and angle of articulation 

Figure 7.17: COF for HDPE bearings operating at 20 MPa, with a range of surface sliding 
velocities and angle of articulation 
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along the pin. No visible signs of excessive heating were observed, therefore it is assumed to 

be as a result of the yield stress of HDPE being exceeded. 

Testing with UHMWPE was attempted prior to testing with commercial self-lubricating 

bearings. During this testing it was found that the interference fit between the OD of the 

UHMWPE bearing and the ID of the housing was not great enough and the bearing slowly 

unscrewed itself.  

The use of HDPE as a polymer bearing was shown to be a success, however it was highlighted 

that higher performance materials were required to survive the pressures. The UHMWPE 

highlighted the importance of the fit between the bush and the housing. 

7.6.1. Co-efficient of friction comparison  
Two long duration tests were conducted, to evaluate frictional performance of a self-

lubricating polymer bearing against a lubricated aluminium bronze bearing. The Aluminium 

bronze bearings were lubricated once at the start of the test with Aeroshell 22, while the 

HDPE bearings were fitted dry. Both sets of bearings were run against a steel counter face. 

Identical test conditions were used 10 MPa bearing pressure, 0.373 m/s sliding velocity and 

an articulation angle of ±40O for 1500 cycles.  

Figure 7.18 shows the results from the testing. It can be seen that the HDPE has a consistently 

lower COF than that of the lubricated scenario. The lubricated case shows a general increase 

in COF with cycles, while the HDPE shows a very steady constant value. There is some 

inconsistency at the start of the tests for the HDPE, however this is due to temperature 

Figure 7.18: COF of Aluminium Bronze lubricated with Aeroshell 22 compared to HDPE, 10 MPa, 0.373 m/s, 
±40O 

AlBr lubricated with Aeroshell 22 

HDPE 
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effects. These tests being of a relatively long duration were run during the night to maximise 

machine time. This however resulted in a steady rise in temperature of the test clevis over 

the course of the day from other tests conducted, hence the third repeat of HDPE was started 

while the test clevis was still warm, and therefore a drop in COF can be seen as the clevis 

cools down. The same phenomenon can be seen for the second repeat however in the 

opposite direction, the temperature rose slightly as the testing began until a steady state 

temperature was achieved. 

7.7. Commercial self-lubricating bushes  
Four self-lubricating maintenance free bearings were identified in section 4 and tested under 

a reciprocating motion, at a variety of pressures, speeds, and angles of articulation. Tests 

were conducted starting with a low contact pressure of 4.5 MPa, representative of those 

observed in service, and a range of articulation angles was explored 20O,30O,33O,35O and 40O 

the velocity was then adjusted and the test repeated, and then the load increased and the 

test repeated. No run in procedure was conducted for any of the materials tested. The 

average COF value was recorded for each sliding velocity 0.02 – 0.16 m/s and for each 

articulation angle at each of the bearing pressures 4.5 MPa, 8 MPa, 15 MPa, 30 MPa and 45 

MPa for each of the materials tested and the values plotted.  

 

The average of the sliding velocities and articulation for each bearing pressure and each 

material have been condensed to compare the four self-lubricating materials as shown in 

Figure 7.19. The data has been condensed in to a single figure as little difference in COF was 

Figure 7.19: Average COF for articulation angles ±20O, ±30O, ±33O, ±35O and ±40O and velocities 
0.02 – 0.16 m/s vs bearing pressure for 4 maintenance free bearings 
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observed for the various sliding velocities investigated here. The effects of velocity and 

articulation angle are investigated in more depth in Section 7.7.1 for a single bearing pressure 

of 30 MPa. The error bars on Figure 7.19 therefore indicate the deviation as a result of the 

sliding velocities and the articulation angle. 

KAron B typically shows a reduction in COF as the amount of teflon released into the contact 

increases, forming a transfer film. This would typically be expected with increased wear 

rather than load, however according to Archard’s law, an increase in the applied load results 

in a greater wear rate. Given that only a small number of cycles have been conducted here 

it would be fair to say that no significant wear occurs, and any that has occurred could be 

considered to be running in wear. Manufacturers published data (Kamatics, n.d.) gives COF 

values of 0.08, 0.07 and 0.06 at bearing pressures of 15 MPa, 30 MPa and 45 MPa. From 

Figure 7.19 it can be shown that the results are a close match to those given by the 

manufacturer. 

Gar-Max also shows a decrease in co-efficient with increasing bearing pressure. A sharp 

decrease is observed for the highest pressure. This sharp decrease is believed again to be a 

result of running in in which the rough asperities are worn down to release debris into the 

contact to reduce the COF. The expected COF value at 45 MPa predicted by the 

manufacturers after a 24 hour run in period of 103 MPa is approximately 0.085 (GGB, 2009). 

For the testing conducted here an average value of 0.06 was found, with no run in other than 

the previous tests displayed. Agreement with lower pressures could not be confirmed as 

manufacturer’s data was only available for bearing pressures greater than 45 MPa. However 

it is expected that data will correlate well for the run in period. 

Meldin 5330 shows a small but general increase in COF with increasing bearing pressure. No 

manufacturer’s data was available for comparison with test data obtained here. 

Vespel 21 shows much higher COF than the other materials tested here, it can also be seen 

that there is a more dramatic rise as the bearing pressure increases. This data is contradictory 

to manufacturer’s data (DuPont, 2002) which averages a COF value of approximately 0.2.  

During testing at 45 MPa, one of the bearings migrated out of the test clevis. A failsafe was 

triggered on the MOOG SmatestOne controller which was monitoring the hydraulic pressure 

applying the radial load. As the bush moved out of the housing the hydraulic pressure 

dropped and the test was stopped. A quick visual inspection of the bush was made and it 

could be observed that the bush had rotated with the pin and slowly unscrewed itself. Figure 
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7.20 shows the bush that had migrated out of the housing. It was also observed that the bush 

had extruded slightly in the axial direction, along the pin. The bush was carefully re-inserted 

and the testing restarted.  

Upon removal of Vespel 21 after testing had been completed, it was observed that a crack 

had begun to initiate along the flange on the same bush that had migrated during the testing. 

It should be noted here that the initiation point of the crack is on the same side as the loaded 

region of the bush. 

Given the large interference fit of 0.3 mm between the housing and the bearing as 

recommended by the manufacturers it was deemed unlikely that the bush had simply 

migrated out of the housing. Investigation of the bore of the bush indicated that galling had 

occurred, resulting in seizure. This seizure is thought to have occurred due to too little 

clearance between the pin and the bush. Seizure resulted in increased COF values as seen in 

Figure 7.19. The reduction in COF at 45 MPa is due to re insertion of the bush after the failsafe 

occurred. Extrusion of the bush resulted in a greater clearance between the pin and bearing, 

resulting in a lower value of COF. Extrusion of the bearing occurred as a result of the contact 

area reducing, but the applied force remaining constant as the bush worked its way out of 

the housing. It should be noted here that the design of the landing gear would resist 

migration of the bush in the axial direction, as the flange would press against the flange of 

the adjacent bearing. While this would reduce the likelihood of extrusion due to a reduction 

in area, it would lead to an increase in torque requirement and hence COF performance as 

Vespel to Vespel contact would occur, resulting in higher wear rates. 

  

Figure 7.20: Score marks on the bush OD indicate bush has walked out of the contact with oscillations (left), 
Crack initiation on the flange of the migrated bush upon completion of testing (right) 
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7.7.1. Angle of articulation  
The angle of articulation was investigated to determine if co-efficient of friction performance 

was affected by an increase or decrease in the magnitude of rotation, for any of the 

materials. Each time the angle of articulation was adjusted, the rotation frequency was also 

adjusted in order to maintain the same surface sliding velocity for each articulation angle 

under test. Figure 7.21 shows that the angle of articulation had no effect on the COF 

performance at bearing pressure of 30 MPa. Testing was also conducted for a range of 

surface siding velocities (0.02 – 0.16 m/s) also shown in Figure 7.21 for each of the materials. 

Additionally it can also be seen that the velocity of testing had little effect on the COF, with 

no correlation between sliding velocity and COF. This was observed for all the materials 

tested, for all the articulation angles at all of the bearing pressures over the range of sliding 

velocities tested, therefore the COF values were averaged across the range of sliding 

velocities, for each articulation angle and for each of the articulation angles to obtain the 

average COF value for each bearing pressure, which is plotted in Figure 7.19, and the 

deviation represented by the error bars. 
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Figure 7.21: Effect of articulation angle on the COF for the maintenance free bearings at 30 MPa tested with 
a range of sliding velocities 0.02 – 0.16 m/s 



155 
 

7.7.2. Assessment of wear and dimensional change  
The mass of the bushes was recorded before testing, following drying for 24 hours at 70OC. 

Bushes that were not being tested were stored in a desiccator as described in section 3.2.5. 

Testing was conducted under atmospheric conditions. Following testing, bushes were 

carefully removed and re-dried for 24 hours and re-weighed following the removal of wear 

debris. The change in mass of the specimens as a result of testing was less than 0.5% for all 

materials tested. The small mass loss that has occurred is as a result of the fitting and removal 

of the bearing. However for Vespel 21 and Gar-Max an increase in the mass can be observed, 

this is as a result of moisture absorption and contamination of the bushes during the 

weighing process. Therefore it can be identified that mass loss techniques have limited use 

for the determination of wear in self-lubricating bushes. 

 

 

 

 

 

Deviation from round measurements were taken both before and after testing in the pin 

joint function tester, at the heights outlined in section 4.4 for bushes 2 and 3. Vespel 21 was 

the only material that showed significant deviations, as would be expected following the 

extrusion mentioned in section 7.7. Gar-Max showed some initial deviation from round prior 

to testing and is therefore replicated for the measurements after. Given the manufacturing 

process of Gar-Max it is to be expected that there will be some deviations due the fibres. 

KAron B showed no measureable change. Meldin 5330 showed a small amount of deviation 

on bush 3 closest to the flange. 

 

 

 

 

 Bush 2 Bush 3 

 Before (g) After (g) Before (g) After (g) 

Vespel 21 18.2473 18.2605 18.2545 18.2556 

Gar-Max 21.7328 21.7331 21.8937 21.8927 

Meldin 5330 17.0315 17.0262 17.0398 17.0359 

KAron B 87.0919 87.0904 87.2673 87.2646 

Table 7.1: Bush masses before and after testing 
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Table 7.2: Vespel 21 Bush ID before and after testing 
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Table 7.3: Gar-Max Bush ID before and after testing  
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Table 7.4: KAron B Bush ID before and after testing  
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Table 7.5: Meldin 5330 Bush ID before and after testing  

 

Peak deviations from round were taken for each half of each bush at a height of 5.5 mm. The 

results are compared in Figure 7.22 for 180-360O and Figure 7.23 for 0-180O. The load was 

applied in the 180-360O half, therefore any wear or deformation would be expected to be 

observed in this region first. As would be expected, Vespel 21 has the largest change of 98 

and 65 µm, in the 180-360O half due to the migration and failure as described in section 7.7. 

Gar-Max shows a small amount of running in wear approximately 16 µm, on bush 2. KAron 

B appears to deviate less than before with a reduction of 13 µm, however closer inspection 

of the data revealed this to be an anomalous data point. Therefore it can be said that KAron 

B and Meldin 5330 show no significant change. Table 7.6 shows the difference between the 

two measured values for each bush in the 180-360O range. 
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For the 0-180O measurements again Vespel 21 showed the largest change of 65 and 67 µm, 

as a result of the bush rotating in the housing and also the deformation of the bushes on the 

opposite side. The other 3 materials were shown to be either within or comparable to the 

accuracy of the Talyrond probe at ±5 µm. Again Table 7.7 shows the difference between the 

two measured values for each bush. 

 

 

180-360O Bush 2 (µm) Bush 3 (µm) 

Vespel 21 98 65 

Gar-Max 16 1 

KAron B -13 4 

Meldin 5330 -2 -3 

Table 7.6: Difference between peak deviations 180O-360O 

Figure 7.22: Peak deviations in roundness at measurement height of 5.5 mm, for 180O -360O 
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0-180O Bush 2 (µm) Bush 3 (µm) 

Vespel 21 65 67 

Gar-Max 3 0 

KAron B 6 -2 

Meldin 5330 3 -6 

Table 7.7: Difference between peak deviations 0-180O 

Figure 7.23: Peak deviations in roundness at measurement height of 5.5 mm, for 0-180O 
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7.8. Conclusion  
The performance of dry, lubricated and self-lubricating reciprocating pin joints was studied 

using a servo-hydraulic test frame. At a bearing pressure of 10 MPa and surface sliding speed 

of 0.145 m/s, the dry joint was found to have a COF of 0.33. When lubricated it was found to 

be 0.19 and 0.14, for Aeroshell 22 and Mobil 28 grease respectively. The lower COF was 

attributed to the clay based thickener, as viscosity of the base oil was similar. For Mobil 28 

the joint was beginning to generate a hydro-dynamic film, but due to the reciprocating 

motion the velocity dropped and the film broke down. Both lubricating greases were shown 

to be operating in the boundary to mixed regime at representative aircraft loads and speeds. 

The articulation angle was investigated to determine if a larger oscillation angle could 

generate a film and result in a lower COF. Sliding velocity was maintained constant for the 

different angles of articulation tested, and a range of frequencies and pressures tested. At 

20 MPa Mobil 28 showed evidence of the aluminium bronze bushes being run in, producing 

COF values between 0.18-0.22. It was also identified that there was a significant discrepancy 

between the COF values for the initial tests conducted and those using a higher bearing 

pressure and slower sliding velocity as a result from a change in bush clearance caused by a 

new set of bushes and pin for the articulation angle testing. A general purpose grease Shell 

Alvaina was tested at the same pressure, and also did not show any effect of the articulation 

angle on the COF with values between 0.12-0.145. A lower bearing pressure of 10 MPa was 

also used to determine if a smaller arc of contact would emphasise the effect of articulation 

angle, but had little success. The lower COF of the general purpose grease compared to the 

aerospace grade was attributed to it being a thicker grease. The pressure required to inject 

the grease into the contact was found to be greater than Mobil 28, and the higher NLGI 

number confirmed this further. 

Investigation into the re-lubrication life of the grease was conducted by cycling Aeroshell 22 

for 1500 cycles, 6 times longer than the recommendation for aircrafts. Results were 

compared to a joint re-lubricated every 500 cycles, and showed little difference for COF. For 

500 cycles the COF was shown to increase by only 0.005. 

HDPE was initially selected for comparison of self-lubricating bushes with lubricated 

aluminium bronze and showed success with a COF value of 0.04 in contrast to 0.06-0.1 for 

Aeroshell 22 at 10 MPa. Further research was conducted using 4 commercially available self-

lubricating bushes over a range of bearing pressures from 5 MPa to 45 MPa. The sliding 

velocity and the angle of articulation was investigated with regards to the COF, and was 
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found to have no impact. Gar-Max was shown to have COF values between 0.15-0.06, 

decreasing with increasing load. KAron B was similar with values 0.12-0.05, again decreasing 

with load. Results were in very close agreement with manufacturers supplied data. The 

decrease in COF with increasing load for both materials was due to a transfer film developing. 

Meldin 5330 showed a slight increase in COF from 0.15-0.2 with applied load, which was 

lower than the manufacturers limited data predicted. Vespel 21 suffered catastrophic failure 

due to poor clearances and fits, resulting in migration of the bearing from the housing due 

to galling. Failure of the bearing then occurred through both extrusion and fracture. COF 

values were found to be 0.15-0.4, much higher than predicted by the manufacturers. The 

amount of deformation of the bushes was measured using a roundness tester, with 

measurements taken both before and after testing, and the change calculated. Given that 

Vespel 21 catastrophically failed values of 98 µm and 65 µm for bushes 2 & 3 respectively 

were the highest out of all the materials. Gar-Max showed some change of 16 µm for bush 

2, which was attributed to the running in and the release of wear particles into the contact, 

as part of the lubricating mechanism. Measurements for the remaining bushes were found 

to be in the region of 5 µm, the accuracy of the roundness tester. 

Temperature of the joint was seen to be a significant factor in the lubricated testing. An 

increase in joint temperature, resulted in a decrease in the diameteral clearance as the 

bushes expanded and therefore an increase in the COF. For the investigation into the re-

lubrication interval this was seen to happen most significantly in the first 200 cycles, 

following this the recirculating cooling water was able to reduce the effects of temperature 

increase on the COF. The self-lubricating bushes were less sensitive to changes in 

temperature due to the reduced thermal conductivity of the bushes, however the COF was 

still seen to vary depending on the temperature of the clevis, which caused the fluctuation 

in COF at the beginning HDPE runs when compared to the lubricated AlBr (Figure 7.18).  

Consideration was given to the calibration of the load cells on the test frame, however given 

that the calibration was checked before testing commenced and during, it is highly unlikely 

to be the cause of any inaccuracies. In addition the data for self-lubricating materials was 

acquired at a much later date, soon after a full calibration had been completed and was 

shown to be in excellent agreement with the manufacturers data, therefore there is little 

question about the validity of the data due to calibration. 
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8.  

Conclusions and Recommendations 

 

 

 

In this chapter conclusions are drawn from the wear tests conducted and the development 

and validation of the load displacement model. The COF testing is summarised for both 

lubricated aluminium bronze and the self-lubricating alternatives. Recommendations for 

further work are also given. 
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8.1. Wear performance of self-lubricating bearings 

A bespoke wear and fatigue test head was designed and manufactured for the testing of self-

lubricating bushes in an aircraft landing gear application. Representative geometry was used 

to maintain similarity with the full scale component to avoid any scaling errors. The test head 

was mounted to a servo-hydraulic test frame which was capable of applying representative 

field loading of the aircraft as it taxies along the runway, developing a shock loading on the 

bracing struts of the landing gear. The displacement of one half of the test head was 

measured relative to the other with an LVDT to isolate the test clevis from any external 

deformations such as that in the load cell. The displacement of the joint was recorded during 

the test programme, the travel per cycle was calculated and the elastic component 

subtracted to give any permanent deformation occurring. The experimental results 

produced by the LVDT showed changes in displacement of 27 µm to 127 µm which was 

deemed to be within the source of error of the servo-hydraulic system. For the roundness 

measurements taken extensively during the second aircraft life the bushes were removed 

from the test clevis which involved the removal of the LVDT. While the location of this LVDT 

was marked there was a slight margin for error in the repositioning if misaligned in the 

vertical of the two planes, a slightly larger displacement may be recorded. The application of 

the load was controlled using closed loop feedback from the load cell, therefore the control 

of the actuator to less than ±100 µm during the cyclic application of up to 167 kN over a 

prolonged period becomes a difficult task, and a potential for error. 

Roundness measurements were taken to confirm plastic deformation and were found to vary 

by 20 µm for all materials during the test program, which was within the measurement error 

of the Talyrond. For the roundness measurements recorded it was shown that the peak 

measurements for out round occasionally decreased, indicating that following an application 

of load, the bush had become more round. While this is possible in how the Talyrond is 

configured to measure, it is extremely unlikely that this will have occurred from the nature 

of the applied load. It is more likely that the bush has crept back towards its original shape. 

The Talyrond probe has been calibrated to only 10 µm, therefore any attempt to draw 

conclusions from measured data with only a few microns difference would not be feasible.  

It would be highly recommended that a bespoke roundness tester be developed, which could 

be mounted to the radial load test rig. If the roundness tester was developed in such a 

manner, only the removal of the pin would be required, and the bushes measured in situ. 

This would not only remove errors of misalignment but would also reduce measurement 
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time, and eliminate completely inaccuracies due to fitting and removal of the bushes. 

Furthermore the effects of creep would also be reduced, given the reduced measurement 

time required and also the dimensional changes due to the fits and tolerances of the bushes 

themselves.  

Mass loss measurements are a common approach to quantifying the amount of wear that 

has occurred in a system. However given the nature of the materials under test 

considerations to moisture absorption were taken into account. This coupled with their 

comparably soft nature to that of steel, it was evident that material was removed from the 

OD of some of the bushes, simply by inserting them into the test clevis. Therefore given that 

the bushes were to be removed and re-fitted numerous times, it was deemed not to be a 

representative measure of the wear. Material transfer to the pin provides evidence for wear 

of all the materials. Meldin 5330 and KAron B showed the least and Vespel 21 showed the 

most. However for all of the materials, this is to be expected, as the lubricating behaviour of 

the joint is achieved through a transfer of material. The visual inspection showed a greater 

amount of material transfer at the head end of the pin, rather than the far end, which was 

confirmed with the use of the load sensing pin. It was concluded that the retaining collar 

induced unequal loading of the bushes due to a pivoting action of the pin and mild fretting 

occurred between the pin and the retaining collar. 

Visual inspection of the OD of the bushes showed that micro oscillations took place between 

the bushes and the housing, resulting in the most severe case for KAron B with local welding 

of the asperities. The combination of the micro oscillation and the unequal loading induced 

by the retaining collar is proposed as the most likely solution to the failure of the Vespel 21 

bush prior to life cycle 3, as a fatigue load will have developed on the flange as a result of the 

axial motion. 

The wear performance of four commercially available self-lubricating bearings was 

investigated under a cyclic radial loading regime, representative of aircraft in service loading. 

The work conducted here has shown through several types of tribological analysis that very 

little wear of the bearings has resulted from 3 complete aircraft lives. The measured wear 

was found to be of comparable magnitude to that of the measurement error. Additionally it 

was identified that the wear debris produced were the formation of a lubricating film 

consisting of either PFTE or graphite. Therefore it was identified that for the preliminary 

testing conducted here of 3 aircraft lives, the self-lubricating bushes showed significant 

potential for the application in aircraft landing gear.  
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8.2. Load displacement model 

The Hertzian and Persson models (section 2.4) are the classic models used for the analysis of 

cylindrical conformal contact problems. For many conformal contacts analysed with the 

Hertzian contact theory, the assumption of the contact region being small in comparison to 

the contacting bodies is broken, but results produced often still give an acceptable answer 

(Zhu, 2012). However for the polymer composite bushes with a large amount of elastic dis-

similarity the Hertzian model was not applicable, as the calculated half width of contact 

rapidly approached the radius of the contacting bodies at low loads.  

Persson’s model was originally only given in quadrature form, but a closed form solution 

developed by Ciavarella and Deccuzi (2001a; 2001b), was given for numerical solution for 

both cases of elastic similarity and dissimilarity.  

An important parameter that is required for accurate analysis of cylindrical conformal 

contact when considering polymer composite bushing materials is the thickness of the bush 

itself. The stiffness of the joint, or its resistance to deformation under the application of an 

applied vertical load is directly related to the wall thickness of the polymer composite 

bushing.  

A load displacement model has been developed, based on the intersection of circles for 

conformal contact between a polymer bush and steel pin in order to analyse the 

displacement of the joint under an applied load. Given that for an aircraft landing gear 

application, when the gear is in the down locked position the most demanding loading 

regime is that of the applied radial load. The loading capacity of self-lubricating bushes was 

identified through the literature to be highly dependent on the wall thickness of the bush. 

Therefore the model developed considerers the influence of the bush thickness on the load 

carrying capacity of the bushing, and requires only geometrical and material properties. The 

model was extended to predict arc of contact from the displacement calculated. The model 

does not consider however plastic deformation of the bushes, as it is assumed to be 

operating only in the elastic range. Additionally the model is only valid if the contacting 

bodies are significantly elastically dissimilar, such as a steel shaft loaded against a polymer 

bush. This therefore means that care must be exercised when using the model for high 

displacements to ensure that the displacement does not exceed the thickness of the bush.  
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8.2.1. Experimental Validation  

The load displacement model developed here was experimentally validated in this work 

using the radial load test rig and also a small scale clevis with PVC bushes of varying wall 

thickness. An LVDT was used to measure the stiffness of the contact in both a static and 

dynamic application, and was shown to be in close agreement with the model developed. 

PVC bushes with wall thicknesses of 1.5 and 2 mm were initially used for the validation and 

were found to be in agreement. For the aircraft geometry, Meldin 5330 and Gar-Max were 

found to be in excellent agreement with the model. Vespel 21 unexpectedly showed a large 

discrepancy between the experimental data and the simulated data. It was proposed that 

the elastic modulus quoted for Vespel 21 is greater than stated by the manufacturer due to 

the anisotropy of the material. Therefore when loaded in this application, the elastic 

modulus being measured is perpendicular to the direction of applied force during the 

manufacture. The elastic modulus quoted for Vespel 21 is measured in the same direction of 

applied force during manufacture, which is a lower value than the perpendicular. This can be 

supported by the experimental data obtained which was similar to that of Gar-Max and 

Meldin 5330, but the modulus of elasticity for these two materials was an order of magnitude 

greater. In addition, it was observed that there was a very heavy interference fit between 

the bush wall and housing, which resulted in a reduced clearance at the bush pin interface. 

Therefore the arc of contact was much greater, resulting in a more linear response for the 

force displacement curve as the result of a constant joint stiffness. The displacement 

calculated by the simulation for KAron B was under predicted when compared to the 

experimental results. Given that the composition of the bearing is a liner bonded to a steel 

backing, the results were unsurprising. The simulation used only the liner thickness of 0.3 

mm for the bush thickness, rather than the whole bush. This approach was taken as the 

substrate material had similar properties to that of the clevis and was therefore neglected. 

In this circumstance the assumption that the arc of contact is small in comparison to the size 

of the contacting bodies may still be valid and the contact more accurately predicted by 

Hertzian analysis. 

Experimental validation of the arc of contact was conducted using two methods. Indexing of 

the load pin at a constant load and calculating the change in angular position for a force, 

proved to be unsuccessful in validation. However the use of a lightly knurled pin imprinted 

into the PVC bushes, which were sectioned and the marked width measured, showed the 

model to provide a close approximation to the arc of contact. When the model was 

compared to that of the closed form Persson solution, it was shown to be a closer 
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approximation for higher loads. This verification highlighted the importance of selecting the 

correct value of E for the bushing.  

One important parameter is still missing from the analysis of conformal contacting bodies, 

and that is the surface roughness. The assumption of smooth contacting surfaces was made 

for simplification purposes (Johnson, 1982). For the successful application of surface 

roughness to the contact, the surface roughness must be considered in both the radial and 

axial directions of the pin and bush.  

The work conducted here has shown the successful development and experimental 

verification of a model to predict the displacement, and arc of contact of self-lubricating 

polymer bushes, which includes a term for the thickness of the bush in the joint. The model 

was developed and experimentally verified to obtain a greater understanding of the load 

carrying capacity for polymer composite bearings and the effect of bush wall thickness. The 

model can be utilised in the analysis and design of new aircraft landing gear to establish how 

the lower joint stiffness of the polymer composite materials may impact the rigidity of the 

landing gear. Furthermore the model can be extended and combined with the work 

conducted earlier, investigating the wear performance of the bushes resulting from the cyclic 

radial loads developed, and how this will impact the life of the bearings in the landing gear 

by minimising the extent of initial expensive experimental testing. 

8.3. Effect of articulation angle on COF 

The effect of the articulation angle in both lubricated and self-lubricating reciprocating pin 

joints was studied using a servo-hydraulic test frame. For lubricated contact it was shown for 

a range of velocities that the angle of articulation had little effect on the COF despite a 

constant surface sliding velocity for the different angles tested. The COF was found to range 

from 0.18-0.22 for Mobil 28 at 20 MPa, and a general purpose grease Shell Alvaina was found 

to be 0.12-0.145. The lower COF was attributed to the thickness of the grease being greater, 

and therefore not as easily removed. This was confirmed by the consistently higher pressure 

required to insert the grease into the contact and the NLGI number of the grease. A lower 

contact pressure was tested to determine if a smaller arc of contact would emphasise the 

effect, but made little difference.  

The four commercially available self-lubricating bushes were extensively tested in the 

reciprocating pin joint test rig for a range of bearing pressures from 5 MPa to 45 MPa. Again 

the effect of articulation angle and sliding velocity showed no impact on the COF. The change 
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in mass of the specimens as a result of testing was less than 0.5% for all materials tested. The 

small mass loss that has occurred is as a result of the fitting and removal of the bearing.  

8.4.  COF for Reciprocating Journal Bearings 

The unlubricated aluminium bronze bushes were found to have a COF of 0.33 at a bearing 

pressure of 10 MPa, when lubricated with Aeroshell 22 and Mobil 28 aerospace greases it 

was reduced to 0.19 and 0.14 respectively. The lower COF of Mobil 28 was attributed to the 

initial generation of a hydrodynamic film which then broke down as a result of the 

reciprocating motion. For both lubricants used, the joint was experimentally determined to 

be operating in the boundary to mixed regime. 

The re-lubrication interval of the grease lubricated pin joints was investigated, using 

Aeroshell 22. The joint was cycled for 6 times longer than the recommended re-lubrication 

interval, and then a repeat conducted with the joint re-lubricated every 500 cycles, and the 

results compared. Little difference was shown. An increase in COF over 500 cycles was found 

to be 0.05. 

A HDPE bearing was selected for preliminary investigation into self-lubricating polymer 

bushes in an aircraft landing gear application. A steady COF value of 0.04 was recorded for a 

bearing pressure of 10 MPa. Compared with the lubricated aluminium bronze which 

increased steadily from 0.06-0.1 showed that there was significant potential.  

Out of the four commercially available self-lubricating bearings KAron B and Gar-Max 

performed the best in terms of COF over the range of 5 MPa to 45 MPa. A decreasing COF 

value for an increasing pressure was obtained, and experimental data was found to be in 

excellent agreement with the manufacture’s predicted values. Both materials reached low 

COF values of 0.05. Meldin 5330 maintained a reasonably constant COF value of 0.2. Vespel 

21 however showed catastrophic failure through galling induced seizure which caused the 

bearing to migrate form the housing with a peak COF value of 0.4. The bush extruded on 

migration, and the flange also fractured. 
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8.5. Metrology of self-lubricating bushes 

The surface roughness of the four maintenance free bearings was analysed with both a linear 

profilometer and an optical surface profilometer. Measurements showed that Vespel 21 was 

the smoothest and KAron B and Gar-Max were the two roughest due to their fibrous nature. 

There was a slight discrepancy between the two measurements due to the linear profile 

being taken in the bore of the bush, and the surface profile taken as a representative sample 

on the flange of the bush.  

The surface roughness of the counter face mating components was also measured. For the 

standard aircraft pin the roughness measured using a linear profilometer was found to be 

0.14 µm, while the bespoke load sensing pin was found to be 0.63 µm. The hardness of the 

pins was also measured to be 48 Rockwell C for the standard aircraft pin and 47 Rockwell C 

for the load sensing pin.  

The mass of each set of bushes was compared to establish the potential weight savings by 

replacing the aluminium bronze bush with a polymer composite material. Meldin 5330 was 

shown to be the lightest and KAron B with the stainless steel backing was found to be the 

heaviest. 

8.6. Summary of materials tested 

Even though Vespel 21 showed the lowest surface roughness and a relatively low weight, it 

is not recommended for use in this type of joint on the aircraft landing gear. Given that one 

bush in each test failed in a similar manner, with a crack initiation on the flange and then 

propagating in the high stress concentration region. 

Re-design of the joint, for the removal of the flange may prove to make the bushing more 

reliable in terms of resistance to fracture. However galling was observed between the pin 

and bushing, and was responsible for the migration. The bushes were not loaded outside of 

their normal operating loads in the radial load test programme. However it is proposed that 

Vespel 21 is loaded to failure following the result of the extrusion as the bearing was 

migrating out of the housing. This indicates that an overload may come close to or exceed 

the yield stress of the material.  

Meldin 5330 proved to be a suitable lightweight alternative bearing solution as it combined 

a low surface roughness with the lowest weight and a COF comparable to that of the current 

grease lubricated aluminium bronze bushes. An element for concern is the similar value of 
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COF to Vespel before galling and hence migration occurred, coupled with the less evident 

transfer film to the pin. It would be recommended that further testing in the pin joint 

function tester be completed to establish if a full transfer film develops, or if failure in the 

same manner as Vespel 21 occurs. 

KAron B proved to be a safe self-lubricating alternative with stiffness values comparable to 

those of aluminium bronze. The high surface roughness values measured were shown to be 

of no concern given that KAron B proved to have the lowest COF out of all the materials. 

From an aviation point of view KAron B carries a big penalty in terms of weight, however 

given that the majority of the weight is in the substrate, it is possible for the substrate 

material to be changed to further enhance the performance of the joint.  

Gar-Max offers the best all round solution. The COF is the lowest of all the polymer composite 

materials, despite the high surface roughness measured, and is in good agreement with the 

manufacture’s data. Additionally it can be seen to decrease with an increased bearing 

pressure. The joint mass is highest out of the polymer composite materials, but still 

significantly lower than KAron B and the current lubricated aluminium bronze bushes.  

The work conducted here has investigated the performance of self-lubricating bearings in an 

aircraft landing gear application, where the joints are subjected to two types of motion: 

dynamic radial loading and an oscillatory motion. The development and successful 

experimental verification of a theoretical model that predicts the displacement and arc of 

contact when under an applied radial load, while considering the bush thickness has been 

developed. Experimental investigation of the wear performance of four commercially 

available self-lubricating bushes was conducted under a fatigue style loading regime 

representative of aircraft loading and geometry. For the materials tested, they were all 

shown to be within acceptable levels of wear. The self-lubricating bushes were compared to 

the current technology, lubricated metallic journal bearings, under a reciprocating oscillatory 

motion and were found to have lower values for the COF. Furthermore for some of the self-

lubricating materials tested the COF was shown to decrease with increasing bearing 

pressure. In addition the effect of the articulation angle was investigated for both grease 

lubricated and self-lubricating bearings and was found to have no significant impact at the 

loads and speeds tested in this work. The cyclic loading, representative of 3 aircraft lives, 

radially applied to the self-lubricating polymer composite bushes was shown to cause little 

change in the bushes in terms of either wear or fatigue. The combination of the results from 
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both test programmes indicates that there is significant potential for the successful 

application of self-lubricating polymer composite bushes to aircraft landing gear. 

8.7. Future work 

This research has addressed three of the main mechanisms at work in pin jointed structures, 

the static loading and contact size, fatigue loading and wear, and the COF in an oscillatory 

nature. Based upon the work conducted some recommendations for further work are given 

below.  

One area for further work would be the extension of the load displacement model to be able 

to model polymer bushes to failure through overload. The model developed here does not 

take into account the yield stresses of the materials, and therefore failure can only be 

determined when the displacement is greater than or equal to the thickness of the bush. 

Experimental determination of the modulus of elasticity would greatly improve the accuracy 

of the model. As some materials tested stated a large range of values for the modulus. 

Experimental determination was not possible with the samples supplied due to their specific 

application.  

Fatigue testing of the aircraft landing gear joint identified the retaining collar to be inducing 

unequal loading in the clevis. This phenomenon occurred only for the polymer materials with 

a low modulus of elasticity and hence low joint stiffness. This promoted accelerated 

deformation of the bushes at the head end of the pin. Therefore for the successful 

application of polymer joints subjected to a fatigue type loading, further investigation into 

suitable pin retention mechanisms that will not wear either the bushes or the housing 

dramatically must be conducted. In an attempt to improve the accuracy of the measured 

wear data it is suggested that a bespoke roundness tester be developed that can be fitted to 

the test clevis to minimise the effects of misalignment during measuring and reduce the 

influence of creep on the results. 

The combination of the radial fatigue loading and also the oscillatory loading would provide 

a yet more representative test, as this would allow for variable radial loads to be applied to 

the contact as the joint is oscillating meaning that any wear debris generated would either 

be redistributed around the joint, or would be released from the contact, depending on the 

nature of the lubricating particles.  
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Appendix A 
Material Data Sheets 

 

The data sheets of the four commercial bearing materials are given in this appendix, as 

mentioned in Section 4.1  

 

 



 

 

 

 

DuPont
™

 Vespel
®
 SP-21 parts and shapes provide low wear and friction for bearing, thrust washers, and 

dynamic seals. SP-21 is a graphite-filled polymer. 

Some data presented below are based on limited production runs and are subject to revision as new knowledge and 

experience become available. 

Mechanical Property Temperature ASTM Units Typical Values 

Tensile Strength 
23 °C (73 °F) 

260 °C (500 °F) 

D-1708  

or E8
†
 

MPa (kpsi) 
65.5 (9.5) 

37.9 (5.5) 

Strain at Break 
23 °C (73 °F) 

260 °C (500 °F) 
D-1708  
or E8

†
 

% 
4.5  
3.0 

Flexural Strength 
23 °C (73 °F) 

260 °C (500 °F) D-790 MPa (kpsi) 
110.3 (16.0) 

62.0 (9.0) 

Flexural Modulus 
23 °C (73 °F) 

260 °C (500 °F) 
D-790 MPa (kpsi) 

3792 (550) 
2551 (370) 

Compressive Stress 
   at 1% strain 
   at 10% strain 
   at 0.1% offset 

 
23 °C (73 °F) 
23 °C (73 °F) 
23 °C (73 °F) 

D-695 MPa (kpsi) 

 
29.0 (4.2) 

133.1 (19.3) 
45.5 (6.6) 

Compressive Modulus 23 °C (73 °F) D-695 MPa (kpsi) 2895 (420) 

Axial Fatigue, Endurance Limit 
    at 10

3
 cycles 

     
    at 10

7
 cycles 

 

 

23 °C (73 °F) 
260 °C (500 °F)  

23 °C (73 °F) 
260 °C (500 °F) 

— 
 

MPa (kpsi) 

 
46.2 (6.7) 
22.8 (3.3) 
32.4 (4.7) 
16.5 (2.4) 

Flexural Fatigue, Endurance Limit 
    at 10

3
 cycles 

    at 10
7
 cycles 

 

23 °C (73 °F) 
23 °C (73 °F) 

— MPa (kpsi) 
 

65.5 (9.5) 
44.8 (6.5) 

Shear Strength 23 °C (73 °F) D-732 MPa (kpsi) 77.2 (11.2) 

Izod Notched Impact Strength 23 °C (73 °F) D-256 J/m 42.7 

Izod Unotched Impact Strength 23 °C (73 °F) D-256 J/m 320 

Poisson’s Ratio 23 °C (73 °F) — — 0.41 

Wear and Friction 

Wear Rate
††

 — — m/s x 10
-10

 6.30 

Friction Coefficient** 
    PV = 0.875 MPa·m/s 
    PV = 3.5 MPa·m/s 

— — — 
0.24 
0.12 

In Vacuum — — — — 

Static in Air — — — 0.30 
 
 

Typical ISO Properties 

DuPont
™

 Vespel
®
 SP-21 

POLYIMIDE ISOSTATIC SHAPES  



 

 

DuPont
™ 

Vespel
®
 SP-21 Typical ISO Properties (continued) 

 

 
† Machined isoststic tensile specimens made per D1708  
†† Unlubricated in air (PV 0.875 MPa·m/s).  
**  Steady state, unlubricated in air.  

 

Thermal Property Temperature ASTM Units Typical Values 

Coefficient of Linear Expansion 
23 °C (73 °F) to 
260 °C (500 °F) 

–62 to +23 (–80 to 73° F) 
D-696 

µm/m/°C 
(in/in/°F) 

49 (27) 
34 (19) 

Thermal Conductivityy 40 °C (104 °F) — W/m·°C 0.87 

Specific Heat — — J/kg/°C — 

Deformation Under 14 MPa Load 50 °C (122 °F) D-621 % 0.10 

Deflection Temperature at 2 MPa — D-648 °C ~360 

Electrical Property 

Dielectric Constant 
    at 10

2
 Hz 

    at 10
4
 Hz 

    at 10
6
 Hz 

23 °C (73 °F) D150 — 

 
13.53 
13.28 
13.41 

Dissipation Factor  
    at 10

2
 Hz 

    at 10
4
 Hz 

    at 10
6
 Hz 

23 °C (73 °F) D150 — 

 
0.0053 
0.0067 
0.0106 

Dielectric Strength, Short Time  
2 mm Thick 

23 °C (73 °F) D149 MV/m 9.84 (1.4) 

Volume Resistivity 23 °C (73 °F) D257 Ω·m 10
12

–10
13

 

Surface Resistivity 23 °C (73 °F) D257 Ω — 

Other Properties 

Water Absorption 
    24 h 
    48 h 
    Equilibrium, 50% RH 

23 °C (73 °F) 
50 °C (122 °F) 

D570 % 

 
0.19 
0.57 

0.8–1.1 

Specific Gravity — D792 — 1.51 

Oxygen Index — D2863 % 49 

Visit us at kalrez.dupont.com or vespel.dupont.com 

Contact DuPont at the following regional locations: 

North America 
800-222-8377 

Latin America 
+0800 17 17 15 

Europe, Middle East, Africa 
+41 22 717 51 11 

Greater China 
+86-400-8851-888 

ASEAN 
+65-6586-3688  

Japan 
+81-3-5521-8484 

The information provided in this data sheet corresponds to our knowledge on the subject at the date of its publication. This information may be subject 
to revision as new knowledge and experience becomes available. The data provided fall within the normal range of product properties and relate only 
to the specific material designated; these data may not be valid for such material used in combination with any other materials, additives or pigments or 
in any process, unless expressly indicated otherwise. 

The data provided should not be used to establish specification limits or used alone as the basis of design; they are not intended to substitute for any 
testing you may need to conduct to determine for yourself the suitability of a specific material for your particular purposes. Since DuPont cannot 
anticipate all variations in actual end-use and disposal conditions, DuPont does not guarantee favorable results, makes no warranties and assumes no 
liability in connection with any use of this information.  All such information is given and accepted at the buyer’s risk.  It is intended for use by persons 
having technical skill, at their own discretion and risk.  Nothing in this publication is to be considered as a license to operate under or a 
recommendation to infringe any patent.  DuPont advises you to seek independent counsel for a freedom to practice opinion on the intended 
application or end-use of our products.  

CAUTION:   Do not use DuPont materials in medical applications involving implantation in the human body or contact with internal body fluids or 
tissues unless the material has been provided from DuPont under a written contract that is consistent with DuPont policy regarding medical applications 
and expressly acknowledges the contemplated use. For further information, please contact your DuPont representative.  You may also request a copy 
of DuPont POLICY Regarding Medical Applications H-50103-4 and DuPont CAUTION Regarding Medical Applications H-50102-4. 

Copyright © 2014 DuPont. The DuPont Oval Logo, DuPont
™

, The miracles of science
™

, Kalrez
®
, and Vespel

®
 are trademarks or registered trademarks 

of E.I. du Pont de Nemours and Company or its affiliates. All rights reserved. 

(09/10)  Reference No. VPE-A10863-00-B0614 
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MELDIN® 5000

Meldin® 5000 – Technical Properties

Condition
Test 

Method Units
Meldin®  

5055
Meldin® 

5210
Meldin® 

5301
Meldin®  

5302
Meldin®  

5320
Meldin®  

5330
Meldin® 

5350
Meldin®  

5390
Meldin®  

5530
Mechanical Properties
Tensile Strength Yield RT ASTM D638 psi (MPa) 14,000 (97) 17,000 (117)

Tensile Strength Break RT ASTM D638 psi (MPa) 16,300 (112) 10,200 (70) 17,000 (117) 24,000 (166) 33,000 (228) 20,000 (138) 20,500 (141) 24,700 (170)

Tensile Strength Break 480°F (249°C) ASTM D638 psi (MPa) 1,400 (10) 3,600 (25) 5,100 (35) 4,800 (33) 5,700 (39)*** 7,100 (49)

Tensile Elongation RT ASTM D638 % 1.2 6.6 65 20 2.1 2 2.2 1.9 1.9

Tensile Modulus RT ASTM D638 psi*105 (GPa) 23 (15.9) 4.6 (3.2) 5.1 (3.5) 6.4 (4.4) 14 (9.7) 32 (22.3) 14.7 (10.1) 20.3 (14) 26 (18)

Flexural Strength RT ASTM D790 psi (MPa) 26,400 (182) 16,800 (123)* 22,600 (156) 26,400 (182) 33,500 (231) 48,000 (331) 30,600 (211) 31,000 (214) 34,800 (240)

Flexural Strength 480°F (249°C) ASTM D790 psi (MPa) 2,600 (18) 1,200 (8)* 1,000 (7) 4,100 (28) 5,100 (35) 4,800 (33) 5,800 (40)* 6,500 (45)

Flexural Modulus RT ASTM D790 psi*105 (GPa) 21.2 (14.5) 4.6 (3.2) 6 (4.1) 6.7 (4.6) 14.5 (10) 27.6 (19) 13.8 (9.5) 17.7 (12.2) 24.7 (17)

Compressive Strength RT ASTM D695 psi (MPa) 18,000 (124) 15,700 (108)** 17,200 (119) 31,200 (215) 34,800 (240) 21,700 (150) 22,900 (158)** 25,500 (176)

Compressive Strength 392°F (200°C) ASTM D695 psi (MPa) 2,300 (16)**** 9,700 (67) 4,300 (30) 3,600 (25) 3,800 (26)**** 5,100 (35)

Compressive Modulus RT ASTM D695 psi*105 (GPa) 4.5 (3.1) 4.2 (2.9) 5.1 (3.5) 10.4 (7.1)

Thermal Properties
Melting Point ASTM D3418 °F (°C) 650 (343) 650 (343) 650 (343) 707 (375) 650 (343) 650 (343) 650 (343) 651 (343) 650 (343)

Glass Transition Tg Onset ASTM D3418 °F (°C) 290 (143) 290 (143) 290 (143) 320 (160) 290 (143) 290 (143) 290 (143) 290 (143) 290 (143)

Coefficient of  
Thermal Expansion Along Flow < Tg ASTM E831 in/in/°F 

(m/m/°C) x 10-5 1.8 (3.3) 2.5 (4.5) 2.8 (5) 1 (1.8) 0.8 (1.4) 0.84 (1.5) 0.7 (1.2)

Coefficient of  
Thermal Expansion Along Flow > Tg ASTM E831 in/in/°F 

(m/m/°C) x 10-5 2.1 (3.8) 6.7 (12) 1 (1.8) 0.8 (1.4) 0.84 (1.5) 0.7 (1.2)

Coefficient of  
Thermal Expansion Average < Tg ASTM E831 in/in/°F 

(m/m/°C) x 10-5 2.3 (4.1) 3.1 (5.5) 3.4 (6) 2.5 (4.5) 2.2 (4) 2.5 (4.5) 2 (3.5)

Coefficient of  
Thermal Expansion Average > Tg ASTM E831 in/in/°F 

(m/m/°C) x 10-5 2.8 (5) 7.8 (14) 6.2 (11) 5.6 (10) 6.2 (11) 5 (9)

Heat Deflection 
Temperature ASTM D648 °F (°C) 600 (316) 305 (152) 617 (325) 626 (330) 600 (316) 626 (330)

Thermal Conductivity RT ASTM F433 BTU in/hr ft2 
(W/m°C) 5.3 (0.76) 2 (0.29) 2.1 (0.3) 6.6 (0.95) 6.1 (0.87) 9.1 (1.3)

Electrical Properties

Dielectric Strength 2.5 mm 
thickness ASTM D149 V/mil (kV/

mm) 407 (16) 510 (20)

Dielectric Constant RT, 1 kHz ASTM D150 3.1 3.2

Volume Resistivity RT ASTM D257 Ohm*cm 1016 1016 105 1010 106

General Properties
Specific Gravity RT ASTM D792 1.4 1.36 1.3 1.31 1.51 1.4 1.45 1.45 1.44

Water Absorprion RT, 24h ASTM D570 % 0.2 0.17 0.5 0.11 0.06 0.06 0.06

Data reported are typical of grades processed by injection molding

*Value reported at 5% strain if strain exceeded 5% per ASTM D790
**2% offset yield stress reported if no peak stress observed
***Data obtained at 235°C
****Data obtained at 249°C, 2% offset yield stress reported if no peak stress observed



2.0 Product Descriptions

Sliding layer - 

Continuous wound PTFE and 

high-strength fibers encapsulated 

in an internally lubricated, high 

temperature filled epoxy resin.

Backing -

Continuous wound fiberglass 

encapsulated in a high 

temperature epoxy resin.

GAR-MAX®

CHARACTERISTICS POSSIBLE APPLICATIONS AVAILABILITY

• High load capacity

• Excellent shock and 

misalignment resistance

• Excellent contamination resistance

• Very good friction and wear properties

• Good chemical resistance

• Steering linkages

• Hydraulic cylinder pivots

• King pin bearings

• Boom lifts, scissor lifts

• Cranes, hoists, lift gates

• Backhoes, trenchers

• Skid steer loaders

• Front end loaders

Standard
Plain cylindrical bushes 
Inner diameter range:
Metric:        12 - 150 mm
Standard:    1/2 - 6"
Special order
Plain cylindrical bushes 
Inner diameter range:
Metric:        10 - 500 mm
Standard:    3/8 - 20"
Customized bushing designs.
Cylindrical bushes with non-standard 
lengths and wall thickness, flanged 
bearings, hexagonal and square 
bores, liner on outer diameter.

BEARING PROPERTIES

Ultimate compressive strength 

Maximum static load p
sta,max

Maximum dynamic load p
dyn,max

Maximum sliding speed U

Maximum pU factor

Maximum temperature T
max

Minimum temperature T
min

METRIC

414 N/mm2

210 N/mm2

140 N/mm2

0.13 m/s

1.05 N/mm2  x m/s

160 °C

- 195 °C

IMPERIAL

60 000 psi

30 000 psi

20 000 psi

25 fpm

30 000 psi x fpm

320 °F

- 320 °F

GGBEARINGS.COM3

an EnPro Industries company

The Global Leader

in High Performance Bearing Solutions

σc
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KAron B Data 
Self-Lubricating Liner Material 

 
1. Characteristics: 

 
1.1. Nominal liner thickness: .010 to .015 in.(.25 to .38 mm), Max thickness .060 in.(1.52 mm) 
1.2. Operating temperature range:   -100° F to +450°F (-73 to +232°C) 
1.3. Coefficient of friction range:  .03 to .10, depending upon pressure, and velocity. 
1.4. Compatible backing substrate materials: stainless steel, carbon steel, titanium, 

aluminum bronze, aluminum, phenolic, fiberglass, inconel and others. 
1.5. Surface speeds to 3 fpm (0.9 m/min) 

 
2. Physical Properties: 

 
2.1. Specific gravity:     1.508 
2.2. Density      1.505 gm/cc 
2.3. Hardness     Rockwell M 90/100 
2.4. Approximate Compression Modulus  7 x 105 psi  (4,828 MPa) 

 
3. Typical Load Carrying Capabilities: 

 
3.1. Static Ultimate *    120,000 psi  (827 MPa) 
3.2. Static Limit **      80,000 psi  (551 MPa) 
3.3. Dynamic (max.)       50,000 psi  (344 MPa) 
3.4. Dynamic (continuous) ***     35,000 psi  (241 MPa) 

 

Notes: *  Equivalent to 1.5 times the static limit load, local liner distress may occur.  
**  Maximum load which will result in a permanent set in the liner no greater than .003 (0.08mm)    

inches after the load is applied for 3 minutes.  
***  .0045 inches (0.114 mm) maximum permitted wear after 25,000 cycles of 
oscillation at ± 25o at  10 cpm (8 rms mating surface, Rc50 min.). 
Typical liner thickness 0.012 in. (0.3 mm). 

 
4. Applicable Specifications: 

 
4.1       SAE AS-81820 – Bearings, plain, self-aligning, self-lubricating, low speed oscillation. 

(MS14101, MS14102, MS14103 & MS14104), (Kamatics KR-CNB, KR-CNGB, KR-
CWB, KR-CWGB). 

4.2       SAE AS-81934 – Bearings, sleeve, plain and flanged, self-lubricating (AS-81934/1-
plain, AS-81934/2-flanged) (Kamatics KRJ-B & KRJ-UDB). 

 
5. Typical Applications: 

 
5.1. Airframe controls, flaps, etc., industrial applications requiring high load carrying 

capability and self-lubricating features.   
5.2. The above information is to be considered as a guide only. Kamatics Corporation 

Engineering should be consulted for proposed applications.  
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Appendix B 
Radially Loaded Pin Joint 

 

Additional information is provided in this appendix, such as the two additional load 

distribution plots for Vespel 21 and KAron B. Additionally consideration is given briefly to the 

element of creep occurring in each of the materials tested over a 70 Hour period.  

  



B1. Load Profiles  

Load profiles were conducted for Vespel 21 and KAron B at the same time and in the same 

manner as described in section 6.4. The findings given in section 5.2.1. show that the 

simulation did not accurately predict the displacement for Vespel 21 and KAron B, therefore 

using the predicted displacement to calculate the arc of contact would have introduced a 

significant error. 

 

 

 

 

  

Figure B.1: Load distribution plot, recorded with the load pin for Vespel 21 (left), KAron B (right) 



B2. Creep 

Given the nature of the polymer materials, consideration must be given to creep of the 

materials. While this was not the main focus of the project investigation into how each 

material responded under an applied static load. Each material was fitted into the radial load 

test clevis, and mounted on a deadweight machine with a static load of 38 kN. A dial test 

indicator was positioned between the two halves of the clevis and time lapse camera set to 

photograph the dial test indicator every hour, for 70 hours. Figure B2 shows the results. It 

can be seen that Gar-Max, Meldin 5330 and KAron B showed no change in the 70 hour 

period. Vespel 21 however shows an initial change in the first few hours, and then another 

change at the 10 hour mark.  It is predicted that the two step behaviour of Vespel 21 is the 

change for the bushes in each half of the test head, with the different contact areas causing 

the different rates of creep. Loading of the joint was completed prior to measurements being 

taken. 

 

 

 

Figure B.2: Change in displacement for each material under an applied static load of 38 kN 
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Appendix C 
Grease Lubricated Testing 

 

Additional information is provided here detailing the results for each of the three repeats 

conducted for Mobil 28 when investigating the effect of articulation angle on the co-efficient 

of friction. Further information is given regarding the pressure required to inject fresh grease 

into the joint for both Mobil 28 and Shell Alania. Finally details are given for how the number 

of cycles oscillated effects the grease temperature. 

  



C1. Articulation angle Mobil 28 Running in 

Figures C1 to C3 show the Mobil 28 lubricated aluminium bronze bearing running in. It can 

be seen for each test that the average value is around the same magnitude of 0.155. However 

for the lower sliding velocities there is a growing divergence between the angles of 

articulation. The averaged graph is shown in Figure 7.9 section 7.5.1. 

 

 

 

 

Figure C.1: Stribeck curve Mobil 28 test 1 20MPa 

Figure C.2: Stribeck curve Mobil 28 test 2 20MPa 



The co-efficient of friction for ±20O case is higher than all the other articulation angles in the 

second and third repeats. For these two repeats, it can be seen that as the angle of 

articulation grows to ±30 O, ±33 O, ±35 O and then ±40 O the co-efficient of friction was seen 

to reduce. This effect was observed most obviously for the last repeat, where there was a 

significant difference at the lowest sliding velocity for the ±20 O and ±40 O cases. 

  

Figure C.3: Stribeck curve Mobil 28 test 3 20MPa 



C2. Grease Pressure 

Figure C.4 shows the pressure required to re-lubricate the joint with respect to time during 

section 7.5.2. It can be seen that for Mobil 28, the pressure requirement was significantly 

lower than that of Shell Alvania. Additionally the individual injections from the grease gun 

can be identified, two for Mobil 28 and three for Shell Alvaina. An extra injection was 

required for grease to escape from the bearing, and to remove the dis-coloured grease. The 

same process was followed for Mobil 28, however fresh grease was ejected from the bearing 

after only two injections. The pressure in the system once the joint had been re-lubricated 

can be seen to be higher than the initial, reducing with time, indicating that the grease was 

supporting a part of the loaded pin joint. 
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Figure C.4: Example plot of the pressure required to re-lubricate the joint with a bearing pressure of 20 MPa, for 
the two greases tested Shell Alvania and Mobil 28 



C3. Grease Temperature 

Given the significance that heating effects can have on an articulating pin joint. When 

conducting experiments on the number of cycles for the re-lubrication interval testing 

particular attention was given to the temperature of the joint, in particular the temperature 

of the grease in the joint. Figure C5 shows the increase in temperature with the duration of 

testing. It can be seen that the rate of which the temperature increases is the same for all 

the tests conducted. The offset in temperature is as a result of the laboratory room 

temperature and the length of time that the chiller unit had been running, either with or 

without a test in progress. For 0-1500 cycles, testing commenced when the chiller had been 

running, without a test running hence the low starting temperature of the test. 

 

Figure C.5: Grease temperature for the number of cycles re-lubrication test (Figure 7.14, Section 7.5.3) 

 

 


	Design Comments:
	PV Values, (Pressure x Velocity)
	Equation 7 incorporates values obtained from Table 7 to arrive at a predicted amount of liner wear after an assumed operation sequence.
	Equation 7; Wear Calculation
	1.5. Surface speeds to 3 fpm (0.9 m/min)




	2.1. Specific gravity:     1.508
	2.2. Density      1.505 gm/cc
	3.1. Static Ultimate *    120,000 psi  (827 MPa)

