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Abstract
Large wind turbines are subjected to the harmful loads that arise from the spatially

uneven and temporally unsteady oncoming wind. Such loads are the known sources of

fatigue damage that reduce the turbine operational lifetime, ultimately increasing the

cost of wind energy to the end users. In recent years, a substantial amount of studies

has focused on blade pitch control and the use of real-time wind measurements, with

the aim of attenuating the structural loads on the turbine blades and rotor.

However, many of the research challenges still remain unsolved. For example, there exist

many classes of blade individual pitch control (IPC) techniques but the link between

these different but competing IPC strategies was not well investigated. In addition,

another example is that many studies employed model predictive control (MPC) for its

capability to handle the constraints of the blade pitch actuators and the measurement of

the approaching wind, but often, wind turbine control design specifications are provided

in frequency-domain that is not well taken into account by the standard MPC.

To address the missing links in various classes of the IPCs, this thesis aims to investi-

gate and understand the similarities and differences between each of their performance.

The results suggest that the choice of IPC designs rests largely with preferences and

implementation simplicity. Based on these insights, a particular class of the IPCs lends

itself readily for extracting tower motion from measurements of the blade loads. Thus,

this thesis further proposes a tower load reduction control strategy based solely upon

the blade load sensors.

To tackle the problem of MPC on wind turbines, this thesis presents an MPC layer design

upon a pre-determined robust output-feedback controller. The MPC layer handles purely

the feed-forward and constraint knowledge, whilst retaining the nominal robustness and

frequency-domain properties of the pre-determined closed-loop. Thus, from an industrial

perspective, the separate nature of the proposed control structure offers many immediate

benefits. Firstly, the MPC control can be implemented without replacing the existing

feedback controller. Furthermore, it provides a clear framework to quantify the benefits

in the use of advance real-time measurements over the nominal output-feedback strategy.
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Chapter 1

Introduction

1.1 Motivation

Wind energy is a sustainable and environmentally friendly source of energy. To tackle

the problems of climate change and global warming, there has been a rapid growth in

utilising the wind power as a source of electricity generation in many countries. Amongst

the total installed capacity, an increasing number of large wind turbines begins installing

offshore for exploiting the abundant offshore wind resources (Ahlgrimm, 2016). Nonethe-

less, reliable operation of wind turbines is the key factor for cost-effective offshore wind

energy harvesting and particularly, the maintenance and repair activities become costly

for offshore wind turbines located in a remote area. Thus, technologies that can reduce

the costly maintenance and repair activities are of significant importance. One of these

is the use of blade pitch control as a means of attenuating the harmful turbine struc-

tural loads that arise from spatially uneven and temporarily unsteady oncoming wind.

Load mitigations on the key turbine components not only improve the reliability of the

operation, but also lead to a significant reduction in the cost of the required materials.

Therefore, this research is motivated to investigate the blade-pitch control strategies for

wind turbine load reductions.

1
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Figure 1.1: A typical three-bladed variable-speed horizontal-axis wind turbine.

1.2 Overview of Blade-pitch Control

1.2.1 Blade-pitch Control

Figure 1.1 depicts a typical three-bladed horizontal axis wind turbine. The main compo-

nents of a typical wind turbine are blades, hub, nacelle and tower. In a modern megawatt

turbine, there are numerous actuators and sensors available for control and monitoring

purposes. Thus, a brief introduction of the actuators and sensors is provided. Inside the

turbine blades, pitch actuators, that are typically hydraulic or electric motors, are used

to adjust the pitch angles of the blades. In addition, blade load sensors, typically strain

gauges or optical fibres, are employed at the root of the blades in order to to obtain

measurements of the flap-wise or edge-wise blade root bending moments. Generator and

drive train are located inside the nacelle where generator and rotor speed sensors are

used in order to measure the rotational speed. To obtain the wind speed measurements,

an anemometer is employed at the top of the nacelle to monitor the hub-height wind

speed. In recent years, studies began exploiting remote wind sensing technology, such as

light and detection ranging (LIDAR) systems, to measure the real-time upcoming wind

information.

Figure 1.2 describes the working principle of a typical modern wind turbine. As the air

flow passes the surfaces of the blades, a pair of aerodynamic forces, namely lift and drag,
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Figure 1.2: A brief walk-through of the working principle of a typical horizontal-axis
wind turbine.

are generated. The lift and drag are dependent on the aerofoil of the blade and pitch

angle of the blades θ. These forces can be expressed as an in-plane force, that causes the

blade to rotate, and an out-of-plane force, that induces the nacelle and tower fore-aft

motions. As the rotor spins, the rotational energy of the rotor is then transmitted via

the drive trains to the generator, where the energy is converted into the electrical form.

Notice that the in-plane and out-of-plane forces on the blade can be manipulated by the

blade pitch angle. As a result, the rotational speed of the rotor and the motions of the

blade and tower can be controlled by changing the blade pitch angles.

Over the past few decades, blade pitch control systems have been widely used for the

purposes of regulating the rotational speed of the rotor. In a situation where the wind

speed is higher than a specified rated value, the turbine would produce a power output

that is higher than the nominal power if blade pitch control systems are not employed.

Notice that these operating conditions are known as the above-rated wind conditions.

In such conditions, any excessive amount of the aerodynamic torques on the blades will

cause the rotor to spin faster than its rated speed, resulting in damage to the mechanical

components and generator. Thus, blade pitch controllers are critical for alleviating any

excessive aerodynamic torques on the blades, where the pitch angle of each blade is

collectively adjusted by the same amount in response to the rotor speed measurement.

This control strategy is well known as the blade collective pitch control (CPC).

In recent years, an increasing amount of studies investigated the possibility of utilising

the blade pitch control system for attenuating unsteady loads on the turbine blade, rotor
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and tower structures. Such loadings arise from a number of sources, such as wind shear,

tower shadow, yaw misalignment and turbulence. For example, the wind shear causes

the blade to experience an uneven force at every blade rotation. Since the use of blade

pitching can alter the aerodynamic forces on the blades, such loadings caused by the

wind shear can be alleviated by adjusting the pitch angle of each blade independently.

This technique is known as blade individual pitch control (IPC). The IPC provides an

additional blade pitch demand to the control actions from the CPC, typically in response

to the measurements of the flap-wise blade root bending moments. Notice that the CPC

regulates the rotor at frequencies below the rotational frequency of the rotor, whilst the

IPC attenuates blade load at the harmonics of the blade rotational frequencies. Given

the frequency range of the targeted loads is different for each controller, thus, separate

loop design is prevalent in the industry and academia (E. A. Bossanyi, 2003a; T. G. van

Engelen, van der Hooft, & Schaak, 2001). Therefore, it is significantly important to en-

sure there is no coupling between the CPC and IPC loop when designing the controllers.

More details are explained in Section 2.8 in Chapter 2.

1.2.2 Preview and Model Predictive Control

In pursuit of effective load reductions or rotor speed regulations by blade pitching, the

pitch actuators are sometimes utilised to their limits. Consequently, this motivates the

use of model predictive control (MPC) for blade pitch control strategies. Typically, an

MPC control algorithm makes predictions over a finite horizon based on a mathematical

model of the plant, past information of the inputs and outputs and sometimes future

measurements. Subsequently, the algorithm optimises a future input sequence subject

to the predictions and constraint knowledge. The first calculated input is then applied

to the plant and the entire process repeats at every sample time. In a typical wind

turbines, there are physical limitations on the blade pitch actuators as well as some

operational requirements such as the maximal limit on the rotor speed.

In recent years, the development of remote sensing technologies, such as light detection

and ranging (LIDAR) systems, enables accurate measurements of the approaching wind,

which allows anticipatory blade pitch adjustments to counteract the advance disturbance

via feed-forward control design. Thus, this is another main reason for motivating the

use of MPC since the preview measurements could be incorporated into the predictive

control law systematically (e.g J. H. Laks (2013)). Based on the preview wind mea-

surements, MPC controllers can plan the control moves that compensate the upcoming
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wind disturbance within the feasible range of the blade pitch actuators, resulting in bet-

ter load reductions or rotor speed regulation for wind turbines. More details regarding

model predictive control are discussed in Section 2.6.

1.3 Challenges in Blade-pitch Control and Aims of the

Thesis

The blade collective pitch control (CPC) strategies have been studied widely in the

academic community and employed in most of the modern variable-speed wind turbines

for the purpose of rotor speed regulation. In contrast, the concepts of blade individual

pitch control (IPC), that enable load attenuations on the blades and rotor, started

attracting more attentions from the academia as well as the industry in recent years.

This is driven by the need for cost-competitive wind turbines. Given more choices of

actuators and sensors available to modern wind turbines (e.g. LIDAR systems) or the

changes in operating locations from onshore to offshore, there are still many challenges

and opportunities regarding the blade pitch control technology. Some specific research

questions addressed by this thesis are listed as follows.

1.3.1 Challenges in Blade-pitch Control

Clarifications amongst various classes of IPC strategies

One of the earliest studies in individual pitch control (IPC) dated back to 2003 by

E. A. Bossanyi (2003a). Since then, there are hundreds of published works related to

IPC strategies for alleviating unsteady loads on the blades and rotor. Of the many

IPC strategies that have been published in recent years, most can be grouped into

two distinct classes, characterised by the specific turbine loads that they are primarily

designed to attenuate. The first and most popular branch is to target turbine loads

upon fixed and non-rotating turbine structures, such as the rotor, tower, main shaft

bearing. The second branch is to attenuate loads upon the rotating turbine structures,

primarily the blades. Many types of coordinate transformations have been employed in

these two classes of IPC strategies, for example, Coleman (E. A. Bossanyi, 2003a) and

Clarke transformations (Zhang, Cheng, & Chen, 2013). Also, various control designs are

proposed based on the transformed blade models, for example, single-input-single-output
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(SISO) or multi-input-multi-output (MIMO) techniques. The main question is whether

there are any similarities between these various designs and under what conditions that

their equivalence is valid. If the performance similarities could be established, these

promises enable a simple SISO design to perform as well as a complicated MIMO design

for the IPC strategies. A thorough review of the existing IPC strategies is provided in

Section 3.2 in Chapter 3.

Potential usage of blade load sensors to estimate tower motions

Typically, the use of blade individual pitch control strategies requires installing and

commissioning of blade load sensors. The same story holds for tower damping control

that relies upon measurements from tower-top accelerometers. Nonetheless, there exist

strong interactions between the blades and turbine tower and these couplings make

estimations of the fore-aft tower-top motion possible based solely upon the measurement

of the blade sensors. However, the measurement of the blade moments are generated in

a rotating frame, whilst the tower-top motions are upon a fixed reference frame, thus,

modelling such dynamics yields a linear time-periodic system. The question is how to

construct a linear model that simplifies the blade and tower dynamics and is suitable for

a simple estimator design. Also, how reliable are the estimated tower signals for control

purposes?

Systematic design to integrate the preview and constraint knowledge into an

existing feedback controller

The upcoming disturbance information is often available for feed-forward design in some

control applications. Typically, model predictive control (MPC) is one of the favourable

candidates for its capability to handle constraints and preview information systemati-

cally. As mentioned earlier, the turbine blade loads exist mainly at the harmonics of the

blade rotational frequency, and such performance specifications are often given in the

frequency-domain, thus, it is more trivial to synthesise a robust feedback controller using

frequency-domain techniques than the standard time-domain MPC approach. There-

fore, it is beneficial if the constraint and feed-forward knowledge can be incorporated

into a pre-determined control law, that is designed by frequency-domain methods or

other methods favoured by the industry. Nonetheless, the standard MPC design based

on an existing closed-loop could introduce an extra feedback loop to the plant, where
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the optimisation couples the feedback and feed-forward information, resulting in a pos-

sible deterioration of the robustness and frequency-domain properties1 of the predeter-

mined closed-loop. As a consequence, the main challenge is to design a modular MPC

layer based on an existing feedback control law and most importantly, this MPC layer

needs to handle purely the feed-forward and constraint knowledge, without affecting the

frequency-domain properties of the pre-determined controller.

Clear case studies of utilising knowledge of the approaching wind and con-

straints in wind turbines

In recent years, the advancement in remote wind sensing technology enable the avail-

ability of cheap and reliable real-time upcoming wind measurements to wind turbines.

In addition, in pursuit of effective load attenuations with preview knowledge, the pitch

actuators might operate near their limitations. Many studies employed the standard

MPC approach for its constraint and preview measurement handling capabilities, where

the optimisation takes account of the feedback and feed-forward information, resulting

in one single integrated predictive control law that handles the feedback and preview

knowledge together. Subsequently, the performance comparison of this predictive con-

trol law is often made against a baseline feedback controller. Thus, the performance

gained by utilising preview and constraint information could not be distinguished from

the feedback control law. As a consequence, from an industrial perspective, a clear and

transparent comparison is beneficial that reveals the true benefit of uses of remote wind

sensing devices and constraint handling capabilities.

1.3.2 Aims of the Thesis

The main aims of this thesis are to investigate load reduction control strategies for wind

turbines via individual blade pitching and use of upcoming wind measurements, with a

view to providing systematic analysis and design guidelines on blade pitch and predictive

control design in wind turbines. This thesis is divided into two parts, where the first

part, in chapters 4 and 5, is regarding the individual pitch control design, whilst the

latter part, in chapters 6 and 7, focuses on feed-forward model predictive control design

of wind turbines. The main objectives of this research are outlined as follows:

1The robustness property in this thesis implies the robust stability margin, that is a generalisation
of the gain and phase margins for multi-input-multi-output systems. Details are discussed in 2.8.2.1.
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Figure 1.3: System architecture of a wind turbine employed in Chapter 4, combining
collective pitch control (CPC) and individual pitch control (IPC). The CPC regulates
rotor speed ω(t) while the IPC (shaded) attenuates perturbations in the flap-wise root
bending moments on each blade M̃1,2,3(t). Additional inputs to the turbine such as

wind loading and generator torque are accounted for in the term f(t).

• Investigation of the links between various classes of IPC designs and demonstration

of their similarities via analytical and stimulation studies. For example, derivations

of the robust stability margin of these different classes of IPCs. And illustration of

the numerical results highlighting the load attenuation performance of each IPC.

Figure 1.3 shows a typical system architecture of a wind turbine with CPC and

IPC.

• Study of the interactions between the turbine blades and tower. Development of an

estimation design, that uses measurements from blade load sensors to reconstruct

the tower vibration signals, and a control algorithm, that attenuates tower loads

based on the estimated signals. Figure 1.4 shows the proposed tower estimator

and controller.

• Analysis of the standard MPC design that shows how the optimisation couples the

feed-forward information with the feedback. Development of a novel modular MPC

algorithm based on an existing feedback controller where the MPC layer utilises
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CPC & IPC
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controller

ω(t)
M1(t)
M2(t)
M3(t)

+
θ1(t)

+
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+
θ3(t)

θ̄(t)

M̄,Mtilt,Myaw(t)

θ̄, θtilt, θyaw(t)
ˆ̇xfa(t)

Proposed estimation and control system

Figure 1.4: Schematic of the proposed tower estimator and controller. Based upon
the pitch input θ1,2,3(t) and measurements of the blade moments M1,2,3(t), the tower

motion estimator with the Coleman transform reconstructs the tower velocity ˆ̇xfa(t).
Also, the estimated signal can be used for attenuating tower loads by controlling the

collective pitch angle θ̄(t).

only the feed-forward measurements and constraint handling whilst retaining the

robustness and frequency-domain properties properties of the latter. Figure 1.5

depicts the MPC layer control architecture.

• Study of issues which arise from implementation of the MPC layer in the non-

linear simulation wind turbine, for example, the feasibility issues. Illustration of

numerical studies, that investigates the constraint handling scenarios. In addi-

tion, examination of the performance gained by utilising the information of the

upcoming wind and constraints compared to the baseline feedback controller.

The controller and estimator design in this thesis are all validated upon a widely-used

high fidelity simulation wind turbine, NREL 5MW baseline turbine (J. Jonkman & Buhl

Jr, 2005; J. Jonkman, Butterfield, Musial, & Scott, 2009).

1.4 Related Publications

The contributions in this thesis are supported by the following publications:
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Figure 1.5: Schematic of model predictive control layer on top of an existing feedback
controller. Based upon the controller input κ(y), plant output y, the layer optimises
the perturbation c that can handle constraints and act upon feed-forward information

d→. The notation f denotes the disturbance to the plant.
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1.5 Thesis Layout

This thesis consists of eight chapters, which are structured as follows:

In Chapter 2, an introduction to modern wind turbine operational modes and control

objectives are presented at the beginning. In addition, backgrounds on modelling of wind

turbines are provided. This is then followed by a brief introduction of model predictive

control. Subsequently, methods of fatigue load assessment are discussed. Finally, the

details of the simulation package and design of the baseline controller are presented.

In Chapter 3, a review of state-of-the-art individual pitch control strategies is presented.

This is then followed by a recent development of feed-forward model predictive control

designs. Lastly, recent history and development of feed-forward control in wind turbines

is discussed.

In Chapter 4, the similarities of various classes of individual pitch control methods are

investigated. The links between these IPC strategies are analysed and established, and

furthermore, the key proof of their equivalence in terms of robust stability margin is also

derived. Finally, it is then demonstrated that the performance of these IPC techniques

is fundamentally equivalent by conducting simulations on a high-fidelity turbine.

In Chapter 5, the interactions between the turbine tower and blades are investigated.

Based on these couplings, a linear time-periodic model is yielded and an observability

analysis is conducted on such a time-periodic model. Subsequently, coordinate trans-

formation is introduced that simplify the linear time-periodic model into one that is

time-invariant. Thus, a linear estimator is then proposed that can reconstruct the tower

fore-aft velocity based on the measurements of the flap-wise blade root moments, which
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are already accessible to the IPC strategies. Finally, a control algorithm that uses

the reconstructed tower signals is designed for purposes of tower load attenuations.

Simulation examples are provided to show the performance of the estimator and the

estimation-based control algorithm.

In Chapter 6, a model predictive control layer is proposed that can systematically in-

tegrate the upcoming wind information and constraint handling capability into an ex-

isting feedback controller. The first part of the chapter shows a counter-example how

the standard MPC optimisation based on a given output-feedback controller can dete-

riorate the robustness or other frequency properties of the pre-determined closed-loop.

The subsequent part presents a novel modular MPC layer design that only handles the

feed-forward and constraint information whilst retaining the nominal robustness and

frequency-domain properties of the pre-determined closed-loop.

In Chapter 7, the proposed MPC layer design is implemented on a high-fidelity simu-

lation turbine. In particular, issues such as feasibility are studied and a soft constraint

approach is adopted to address these issues. To verify the benefit gained of utilising

the upcoming wind measurements and constraint handling capabilities, three simulation

cases are investigated with constraints imposed on the rotor speed, magnitude and rate

of the pitch actuators. Furthermore, sufficiently long simulations were conducted to

demonstrate the performance of the proposed control structure.

Finally, in Chapter 8, the contributions of the thesis are summarised, and final conclu-

sions are also presented. At the end, potential avenues for future work are discussed.



Chapter 2

Background of Wind Turbine

Blade-pitch Load Reduction

Control

2.1 Chapter Overview

The aim of this chapter is to provide some background regarding to the wind turbine

operations, modelling and control. Firstly, this chapter introduces the basic operation

of a typical modern wind turbine in Section 2.2 and 2.3 and followed by the modelling

aspect of a wind turbine including aerodynamics, rotor, blades and tower in Section 2.4.

Section 2.5 presents background of the model predictive control. Subsequently, the

fatigue load assessment methods are discussed in Section 2.6. Section 2.7 presents the

details of the simulation package FAST (J. Jonkman & Buhl Jr, 2005) and simulation

turbine NREL 5MW (J. Jonkman et al., 2009). Finally, the design of the baseline CPC

and IPC controller is discussed in Section 2.8 and followed by a summary in Section 2.9.

2.2 Modes of Operations

The power available from the wind is a function of the cube of the wind speed as

follows (Pao & Johnson, 2009):

13
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Wind speed [ms−1]0 vratedvin vout

Prated

Power [W]

Figure 2.1: Relationship of the wind power and wind speed. The wind power Pwind

(dashed line) cannot be fully captured by the wind turbine. A power curve of a typical
wind turbine P is denoted as solid line.

Pwind(t) :=
1

2
ρAv3(t), (2.1)

where Pwind denotes the power available from the wind, ρ,A ∈ R represent the air density

and swept area of the rotor and v is the wind speed. Notice that in the introductory

section 2.2 and 2.3, the wind speed v is assumed to be the averaged wind speed across

the rotor. The power available from the wind Pwind cannot be fully captured by a

wind turbine, and there is a theoretical maximum aerodynamic efficiency of 0.593 on

the available wind power that can be extracted by a wind turbine, where the maximum

aerodynamic efficiency is known as the Betz limit (Betz, 1966). Therefore, the power P

captured by a wind turbine is typically defined as follows:

P (t) :=
1

2
ρACp(θ, λ)v3(t). (2.2)

This is the same as 2.1 except in 2.2, there is an additional term Cp, that is the aero-

dynamic efficiency which is a function of the pitch angle of the blades θ and tip speed

ratio λ. Notice that in the introductory section 2.2 and 2.3, the blade pitch angle θ is

assumed to be adjusted collectively or the averaged pitch angle of three blades. The

tip speed ratio is the ratio between the tangential speed of the blade tip and the actual

speed of the wind, defined as follows:

λ(t) :=
ω(t)r

v(t)
, (2.3)
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where v and ω denote the wind speed and the rotor speed, respectively, whilst r ∈ R

represents the total blade length.

A typical wind turbine operates in different modes of operation based on the available

wind speed v. Figure 2.1 depicts the power curves for the power available from the wind

Pwind and power captured by a typical modern wind turbine P . The modes of operation

can be defined in terms of the wind speeds and these wind speeds are the cut-in vin,

cut-out vout and rated wind speed vrated respectively. For the NREL 5MW simulation

turbine (J. Jonkman et al., 2009), that employed in this thesis, the values for these wind

speeds are as follows: vin = 3ms−1, vout = 25ms−1 and vrated = 11.4ms−1. As shown in

Figure 2.1, when the available wind speed is below the cut-in wind speed vin , the wind

turbine does not generate any power because it is not economical or environmentally

friendly to do so, for example, studies by Arnett, Huso, Schirmacher, and Hayes (2011)

suggested that increasing the cut-in wind speed can reduce the fatalities of wildlife such

as birds and bats. When the wind condition is above the cut-out wind speed vout, the

wind turbine also stops producing power in order to prevent any damage to mechanical

components and the generator. In below-rated wind conditions where the available wind

is between the cut-in vin and rated speed vrated , the turbine operates at variable rotor

speed in order to capture the maximum power from the wind. In contrast, in above-rated

wind conditions where the wind is between the rated vrated and cut-out speed vout, the

turbine limits its power generation at the rated power Prated to prevent overloading the

generator and other key mechanical components such as blades and main shaft bearing.

2.3 Control Objective

In a modern wind turbine, typical control systems are the yaw control, generator torque

control and blade pitch control. The purpose of yaw controllers is to ensure the rotor is

facing in the direction of the upcoming wind by rotating the turbine nacelle. Generator

torque and blade pitch control are employed to regulate the rotor or generator speed.

To understand how the generator torque and the blade pitch controller works, the power

coefficient from (2.2) needs to be examined in detail.

Figure 2.2 shows the function of the power coefficient Cp against the tip speed ratio λ and

the blade pitch angle θ. This function varies based on the turbine blade configurations

and the function in Figure 2.2 is obtained from the high-fidelity NREL 5MW simulation
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Figure 2.2: Power coefficient Cp curve of the NREL 5MW baseline wind turbine.
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Figure 2.3: Relationship of the power coefficient Cp against the tip speed ratio λ
where the blade pitch angle θ are kept at 0 degree.

turbine. Bearing in mind that the power of the wind turbine (2.2) is dependent on

Cp. In below-rated wind conditions, wind turbines need to extract as much power as

possible, thus, by inspection of Figure 2.2, it is not difficult to understand that the

optimal strategy is to keep the blade pitch at 0 degrees and the tip speed ratio around

7.8. To illustrate the ideas clearly, Figure 2.3 shows the power coefficient curve when
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θ = 0. Thus, in below-rated wind conditions, the typical generator torque controllers aim

to track the optimal tip speed ratio by changing the reaction torque from the generator,

whilst maintaining the blade pitch at constant (e.g. J. Laks, Pao, and Wright (2009b);

Pao and Johnson (2009)).
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Figure 2.4: Relationship of the power coefficient Cp against the blade pitch angle θ
under various operating wind speed v.

In above-rated wind conditions, the power output reaches its rated value and the turbine

needs to regulate its output. This is achieved by reductions in the power coefficient by

changing the blade pitch angles. Typically, the reaction torque of the generator is fixed

at its rated value and the blade pitch controller adjusts the pitch angles to alleviate the

excessive aerodynamic loadings on the blades in order to regulate the rotor speed (J. Laks

et al., 2009b; Pao & Johnson, 2009). For any specific operating wind speeds v in the

above-rated wind conditions, there is a corresponding fixed tip-speed ratio λ since the

rotor speed ω is fixed at its rated value. This can be computed from the equation (2.3).

Thus, based on the different operating point λ corresponding to different operating

wind speed v, the relationship between the Cp and blade pitch angle θ under different

wind speed can be examined in Figure 2.2. To illustrate clearly, Figure 2.4 depicts how

changes in blade pitch angle affect the power coefficient Cp under various operating wind

speeds. In addition, for any specific operating wind conditions, there is a corresponding

steady-state blade pitch angles such that the rotor speed is kept at rated. The dashed

lines illustrate the steady states of the blade pitch angle.
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Moreover, in the above-rated wind conditions, since the rotor is kept at its rated value

ω0 ∈ R, thus, based on the equation (2.2), the power output can also be expressed in

terms of aerodynamic torque τa that causes the rotor to spin as follows:

P (t) := τaω0 =
1

2
ρACp(θ, λ)v3(t), (2.4)

and the aerodynamic torque can be simplified as follows:

τa(t) :=
1

2
ρACp(θ, λ)v3(t)ω−1

0 . (2.5)

Notice that under different operating wind speed, the gradients around the operating

points vary slightly as shown in Figure 2.4, which suggests that the static gain dτa
dθ ∈ R at

each wind operating conditions changes slightly. More detail is discussed in Section 2.4.

Similar to the aerodynamic torque (2.5), the thrust on the rotor Ft is also a function of

the tip speed ratio and the blade pitch angle, defined as follows:

Ft(t) :=
1

2
ACt(θ, λ)v2(t), (2.6)

where Ct is the thrust coefficient. Figure 2.5 depicts the relationship between the turbine

thrust, tip speed ratio λ and blade pitch angle θ. In above-rated wind conditions, the

rotor is assumed to be at its rated value, thus, similar analysis can also be applied to

the thrust. Figure 2.6 illustrates how changes in the blade pitch affect the rotor thrust.

Notice that the gradients dFt
dθ ∈ R at each operating points are quite similar. These

gradients will be used in modelling in Section 2.4.

In most of the literature, the generator torque and blade pitch control loops are designed

separately (e.g. E. A. Bossanyi (2000); J. Laks et al. (2009b)), which is also favoured

by the industry for the simplicity of implementations, and a switching logic is employed

to handle the transitions between below and above-rated wind conditions. Nonetheless,

there are some studies that used model predictive control to embed the switching logic as

a part of the controller design (e.g. L. Henriksen, Hansen, and Poulsen (2012); Soliman,

Malik, and Westwick (2010)).

So far, the discussions in this section mainly focus on the generator torque control and

blade collective pitch control. As mentioned in Chapter 1, blade individual pitch control

(IPC) begins to be employed by an growing amount of studies, as the IPC offers a
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Figure 2.5: Aerodynamic thrust curve of the NREL 5MW baseline wind turbine.

0 2 4 6 8 10 12 14 16 18 20 22 24

θ [deg]

0

200

400

600

800

1000

1200

F
t(
θ
,
λ
)
[k
N
]

v = 14ms−1

v = 18ms−1

v = 22ms−1

Figure 2.6: Relationship of the rotor thrust Ft against the blade pitch angles θ under
various operating wind speed v.

means for load attenuations on the turbine blade and rotor. Typically, in above-rated

wind conditions, the pitch angle of each blade is adjusted individually in response to the

measurements of flap-wise blade root bending moments. Notice that in this section, the

pitch angle θ is defined as the collective pitch input, and the wind speed v is assumed

to be the averaged wind speed across the rotor. In the following section, the pitch angle
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Figure 2.7: A turbine blade is assumed to be divided into smaller blade elements. A
pair of in-plane and out-of-plane forces, F in

i,l and F out
i,l , is generated by the blade element

l of blade i with shaded area of Al passing through the airflow with speed of vi,l. The
blade length between three blade root to blade element is denoted as rl and r is the

total blade length.

θ and wind speed v are defined in more detail.

2.4 Modelling of Wind Turbines

This section discusses some modelling aspects of wind turbines that are typically used in

the blade-pitch control. Firstly, the aerodynamic loadings that exert torque and thrust

on the rotor blades are discussed. It is followed by the dynamics of the rotor, blades

and tower. Lastly, the models of actuator and filter dynamics are presented.

2.4.1 Aerodynamic Loadings

As mentioned in Section 1.2 in Chapter 1, the aerodynamic forces on the blades are

generated by the air flow passing the aerofoil-shaped body of the blade. As shown

in Figure 2.7, typically, the aerofoil shape and angles of attack are different along the

blade span-wisely, namely, from the blade root to blade tip. The aerofoil characteristics

of the blade are optimised based on the resultant velocity that takes into account the
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tangential speed of the blade section and the oncoming wind speed (Burton, Jenkins,

Sharpe, & Bossanyi, 2011). As a result, the aerofoil characteristics, namely the lift

and drag coefficients, vary along the blade span-wise location. Therefore, to model

the aerodynamic forces, blade element momentum (BEM) theory is widely used in wind

turbine control (e.g. Burton et al. (2011); Geyler and Caselitz (2008); Mirzaei, Henriksen,

Poulsen, Niemann, and Hansen (2012); Schlipf, Sandner, Raach, Matha, and Cheng

(2013)), where the entire blade is divided into small blade elements span-wisely with

the blade span-wise location index denoted as l ∈ {1, . . . , L} ⊂ Z. Subsequently, the

in-plane F in
i,l and out-of-pane forces F out

i,l for each blade i ∈ {1, 2, 3} at location l are

defined as follows:

F in
i,l (t) :=

1

2
ρAlCinl(θi, λ)v2

i,l(t), (2.7a)

F out
i,l (t) :=

1

2
ρAlCoutl(θi, λ)v2

i,l(t). (2.7b)

where Al denotes the area of the blade element l and vi,l represents the wind speed

experienced by the blade element l of blade i. The coefficients of in-plane and out-of-

plane forces of blade element l, Cinl and Coutl , are functions of the pitch angle θi of blade

i and tip-speed ratio λ, which is defined as λ := ωr
v where v is the operating wind speed

that is the averaged wind speed across the rotor and the rotor speed ω, which is at the

rated speed ω0 ∈ R in above-rated wind conditions.

Notice that the in-plane and out-of-plane forces are non-linear functions (2.7). In this

thesis, a linear model is employed, where these linear system models typically exhibit

properties that are much simpler than the non-linear form. The main reason is that

the non-linear function of in-plane and out-of-plane forces (2.7) can be approximated

as a linear function at an operating point, because, in the above-rated wind conditions,

the rotor operates at the rated speed. In addition, there exists a substantial amount

of literature for linear system design and analysis. Thus, this justifies the use of linear

models. The in-plane and out-of-plane forces can be linearised around the operating

conditions by the use of Taylor series expansion as follows:

F in
i,l (t) ≈

dF in
i,l

dθ

∣∣∣
θ∗,ω0,v

θi(t) +
dF in

i,l

dv

∣∣∣
θ∗,ω0,v

vi,l(t), (2.8a)

F out
i,l (t) ≈

∂F out
i,l

dθ

∣∣∣
θ∗,ω0,v

θi(t) +
dF out

i,l

dv

∣∣∣
θ∗,ω0,v

vi,l(t). (2.8b)

The linearised forces are computed under an assumption that the wind across the rotor is

spatially uniformly distributed. At each operating wind speed v, there is a corresponding
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steady-state of the blade pitch angle θ∗ that regulates the rotor at the rated speed ω0.

Small deviations of blade pitch and wind speed around their steady-states are denoted as

θi and vi,l, respectively. Notice that the variations of in-plane and out-plane with respect

to blade pitch angle,
dF in
i,l

dθ ,
dF out
i,l

dθ ∈ R, and with respect to wind speed,
dF in
i,l

dv ,
dF out
i,l

dv ∈ R,

along the blade element l can be obtained from the simulation turbine as shown in

Figure 2.8 and 2.9. These results were generated from the response of the blade forces

to a step change in the blade pitch angles or wind speed under a set of operating

conditions. Notice that the blade is divided into blade segments of L = 17 in this thesis

which is adopted from the simulation turbine (J. Jonkman & Buhl Jr, 2005).
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Figure 2.8: Variations of in-plane and out-of-plane forces to blade pitch angle along
the blade span-wise location under different operating wind conditions.
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Figure 2.9: Variations of in-plane and out-of-plane forces to wind speed along the
blade span-wise location under different operating wind conditions.

With these simplified in-plane and out-of-plane blade forces, the aerodynamic torque τa
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and thrust Ft on the rotor and flap-wise aerodynamic loadings on the blade Mflapi
1 can

be modelled as follows:

τa(t) :=

3∑
i=1

L∑
l=1

F in
i,l (t)rl, (2.9a)

Ft(t) :=
3∑
i=1

L∑
l=1

F out
i,l (t), (2.9b)

Mflapi(t) :=

L∑
l=1

F out
i,l (t)rl, (2.9c)

where rl denotes the blade length from blade root to blade span-wise location l (See

Figure 2.7). Consequently, substituting (2.8) into (2.9) yields:

τa(t) =
dτa

dθ

∣∣∣
θ∗,ω0,v

θ̄(t) + τd
a (t), (2.10a)

Ft(t) =
dFt

dθ

∣∣∣
θ∗,ω0,v

θ̄(t) + F d
t (t), (2.10b)

Mflapi(t) =
dMflap

dθ

∣∣∣
θ∗,ω0,v

θi(t) +Md
i (t), (2.10c)

where θ̄ := 1
3

∑3
i=1 θi is the collective pitch angle that is the average of the pitch angles

θi of three blades and the rest of the variables are defined as follows:

dτa

dθ

∣∣∣
θ∗,ω0,v

:=

3∑
i=1

L∑
l=1

dF in
i,l

dθ

∣∣∣
θ∗,ω0,v

rl, τd
a (t) :=

3∑
i=1

L∑
l=1

dF in
i,l

dv

∣∣∣
θ∗,ω0,v

vi,l(t)rl, (2.10d)

dFt

dθ

∣∣∣
θ∗,ω0,v

:=
3∑
i=1

L∑
l=1

dF out
i,l

dθ

∣∣∣
θ∗,ω0,v

, F d
t (t) :=

3∑
i=1

L∑
l=1

dF out
i,l

dv

∣∣∣
θ∗,ω0,v

vi,l(t), (2.10e)

dMflap

dθ

∣∣∣
θ∗,ω0,v

:=

L∑
l=1

dF out
i,l

dlθ

∣∣∣
θ∗,ω0,v

rl, Md
i (t) :=

L∑
l=1

dF out
i,l

dv

∣∣∣
θ∗,ω0,v

vi,l(t)rl, (2.10f)

where τd
a , F

d
t ,M

d
i ∈ R is denoted as the wind-induced torque disturbance, thrust distur-

bance and blade moment disturbance, respectively. Despite the variations in model pa-

rameters, these variations are not significant, hence, adaptive control or gain-scheduling

design are not considered in this thesis. Instead, this thesis ensures the feedback control

loop is robust to these parameter uncertainties by checking their robust stability margin.

In this thesis, the linear model is obtained from linearising the aerodynamic forces (2.7)

at the operating condition v = 18ms−1, chosen since this value is near the centre of

the range of wind speeds covering above-rated wind conditions. Thus, for brevity, the

1The flap-wise aerodynamic loadings is a sum of the out-of-plane forces multiplied by the correspond-
ing radial distance from the blade root.



Chapter 2. Background of Wind Turbine Blade-pitch Load Reduction Control 24

variations in (2.10), for example, dτa
dθ

∣∣∣
θ∗,ω0,v

, will be expressed in a simpler form, for

example, dτa
dθ , in the rest of this thesis. One exception is Chapter 7, where in order to

ensure better estimations of wind-induced blade disturbance for feed-forward control,

the disturbance is calculated based on the various wind conditions.

Remark 2.1. An interesting observation is that the static gain dFt
dθ = 46kNdeg−1 at

v = 18ms−1, which can be calculated based on (2.10e) with data from Figure 2.8b.

From the aerodynamic thrust curve Ft in Figure 2.6, the gradient also reveals that

dFt
dθ = 46kNdeg−1. These consistent values of the static gains, that one obtained from

simulations and anther one from the manual (J. Jonkman & Buhl Jr, 2005), validates

the modelling approach for the aerodynamic loadings, discussed in this section.

Remark 2.2. The flap-wise blade root bending moment is a term that is widely used to

describe the blade bending moment in the direction perpendicular to the rotor plane,

for example, N. Wang, Johnson, Wright, and Wright. (2012), Castaignet, Barlas, and

Buhl (2013) and Lu, Bowyer, and Jones (2015). It also sometimes is termed as the out-

of-plane blade root bending moment in other works, for example, E. A. Bossanyi (2003a)

and Dunne, Pao, Wright, Jonkman, and Kelley (2011).

2.4.2 Structural Dynamics

Three structural dynamics are considered in this thesis: dynamics of the rotor, tower

and blade. Notice that the structural dynamics are approximated as second-order, where

the dynamics at higher frequencies are neglected. The main reason is that the controller

synthesised from this low-order linear model can be made to be insensitive to the ne-

glected dynamics, justifying the use of the second-order model for feedback controller

design.

2.4.2.1 Rotor Dynamics

The rotational speed of the rotor is mainly driven by the in-plane forces or aerodynamic

torque on the rotor. Typically, the dynamics of the rotor speed ω is modelled as follows:

Jrω̇(t) + ζrω(t) = τa(t)− τe(t), (2.11a)
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where Jr, ζr ∈ R denote the moment of inertia of the rotor and aerodynamic damping

coefficient, respectively, and τe ∈ R is the reaction torque from the generator, which is

kept constant in the above-rated wind conditions. Substituting the aerodynamic torque

from (2.10), the model is simplified as follows:

Jrω̇(t) + ζrω(t) =
dτa

dθ
θ̄(t) + τd

a (t). (2.11b)

Notice that it is assumed that the drive train is rigid, hence, the dynamics of the drive

train is not considered in this thesis.

2.4.2.2 Blade Dynamics

The fatigue loadings on the blades are typically characterised by the blade flap-wise root

bending moments (E. A. Bossanyi, 2000). The dynamical response of the flap-wise blade

root bending moment Mi for blade i to the flap-wise aerodynamic loadings Mflapi can

be modelled as a second-order system:

M̈i(t) + 2πfbζbṀi(t) + (2πfb)2Mi(t) = (2πfb)2Mflapi(t), (2.12a)

where fb, ζb ∈ R denote the natural frequency of the blade’s first flap-wise mode and

damping ratio, respectively. Substituting the flap-wise aerodynamic loadings from (2.10),

the blade model (2.12a) becomes:

M̈i(t) + 2πfbζbṀi(t) + (2πfb)2Mi(t) = (2πfb)2
(dMflap

dθ
θi(t) +Md

i (t)
)
. (2.12b)

Notice that the gravitational effect and centrifugal stiffening of the rotor blades are not

considered in the blade model (2.12).

2.4.2.3 Tower Dynamics

The fore-aft motion of the tower is mainly driven by the aerodynamic thrust on the

rotor. Based on first principles, the tower dynamics is modelled as a mass-spring-damper

system, that is defined as follows (e.g. Selvam, Kanev, van Wingerden, van Engelen, and
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Verhaegen (2009)):

mtẍfa(t) + dtẋfa(t) + ktxfa(t) = Ft(t)−
3

2h
Mtilt(t), (2.13a)

where xfa denotes the fore-aft displacement of the tower-top, whilst mt, dt, kt ∈ R denote

the equivalent tower mass, damping and stiffness coefficient, respectively, and Mtilt is

the tilt moment of the rotor, that is defined in Section 3.2 in Chapter 3. Based on an

assumption that the fore-aft tower motion is approximated by the motion of a prismatic

beam, the notion between tilting rotation and fore-aft displacement of the tower-top

is 2
3h , where h ∈ R is the height of the tower (Selvam et al., 2009; T. G. van Engelen

& van der Hooft, 2005). More detail is discussed in Chapter 5. By expressing the

aerodynamic thrust in a linear form (2.10), the tower model (2.13a) becomes:

mtẍfa(t) + dtẋfa(t) + ktxfa(t) =
dFt

dθ
θ̄(t) + F d

t (t)− 3

2h
Mtilt(t). (2.13b)

2.4.2.4 Couplings between Tower, Blade and Rotor

The effect of the tower dynamics are not considered in the rotor (2.11) and blade mod-

els (2.12) because the feedback blade pitch controllers are deliberately tuned to be in-

sensitive to the couplings from the tower by shaping the open-loop frequency response

to have a low gain at the natural frequency of tower’s first fore-aft mode. Details are

discussed in Chapter 4.

However, there is one exception in Chapter 5 since the couplings need to be considered

for tower estimation and control problems. The apparent stream-wise wind speeds ex-

perienced by the turbine blades and rotor are influenced by the motion of the tower.

Typically, the apparent stream-wise wind speed vi,l experienced by blade element l of

blade i takes into account the actual stream-wise wind speed v0i,l and the upwind mo-

tion of the blade caused by tower bending, that is described by the fore-aft velocity ẋfa

and fore-aft rotational velocity ϕ̇fa of the tower-top. The stream-wise wind speed vi,l

is defined as follows (e.g. Selvam et al. (2009); T. G. van Engelen and van der Hooft

(2005)):

vi,l(t) := v0i,l(t)− ẋfa(t) + rlϕ̇fa(t) sinφi(t), (2.14a)
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where φi is the azimuth angle of blade i, that is defined as the angle of the first blade

from the horizontal yaw axis, rotating clock-wisely. As discussed above, the fore-aft

rotation of the tower-top can be expressed as displacement as ϕ̇(t) := 3
2h ẋfa(t). Hence,

the apparent stream-wise wind speed can be simplified as follows:

vi,l(t) := v0i,l(t) +
( 3

2h
rl sinφi(t)− 1

)
ẋfa(t). (2.14b)

More detail is provided in Chapter 5.

2.4.3 Actuator and Filter Dynamics

2.4.3.1 Actuator Dynamics

The types of blade pitch actuators used in wind turbines can be divided into hydraulic

or electrical servo systems. Hydraulic driving systems are commonly employed in wind

turbines (Chiang, 2011). This is because unlike electrical servos, motor and gears are

not used in hydraulic systems, thus, such properties obviate the problems of erosion and

wear of gears over time. Studies of blade pitch actuators can be found in (Chiang, 2011)

and the references therein. In this thesis, the dynamics of the actuator is modelled as a

first-order model:

τactθ̇i(t) + θi(t) = θc
i (t), (2.15)

where τact ∈ R denotes the time constant of the pitch actuator, whilst θc
i is the blade

pitch command signal.

2.4.3.2 Filter Dynamics

In practice, the measurements of the rotor speed or flap-wise blade root moments are

coupled with noise. Typically, filters are employed in wind turbines to remove any

unwanted components before being used by the feedback controllers. For example, to

decouple the rotor speed regulation loop from the tower control and IPC loop, a low-

pass filter, with a cut-off frequency below the rotational frequency of the blade, is widely

used for the measurement of the rotor speed. Similarly, a band-pass filter is employed

on measurement signals from the blade load sensor in order to remove low-frequency
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drift and high-frequency noise. These low-pass Glp ∈ R and band-pass filters Gbp ∈ R
are defined as follows:

Glp(s) :=
2πflp

s+ 2πflp
, (2.16a)

Gbp(s) :=
2πfhs

s2 + 2π(fh + fl)s+ 4π2fhfl
, (2.16b)

where flp ∈ R denotes the cut-off frequency of the low-pass filter, whilst fl, fh ∈ R

represent the upper and lower cut-off frequencies of the band-pass filter, respectively.

2.5 Model Predictive Control

As discussed in Chapter 1, one of the aims in this thesis is to investigate the use of

advance knowledge of the upcoming wind for improving the load attenuation perfor-

mance of the blade-pitch controller. Given that model predictive control (MPC) can

systematically incorporate the advance information into the optimisation process, that

also takes into account of the constraints of the pitch actuators, thus, it is favoured by

many applications and also employed in this thesis.

The working principle of a standard MPC is described briefly as follows. The control

algorithm uses a mathematical model together with past measurements of input and

output (and future information if available) to construct predictions. Based on these

predictions, a future control input sequence is computed that ensures all the system

states satisfying the constraint requirements. Subsequently, only the first control input

of the sequence is implemented to the plant. The optimisation process is repeated

for the next sample. Since the repetition process of the MPC algorithm is a form of

feedback, hence, this feedback property gives a certain degree of inherent robustness to

the uncertainties that arise from the mismatch between predictions of the mathematical

model and actual behaviours of the system plant.

2.5.1 Generalised Predictive Control

The generalised predictive control (GPC) is one of the most popular predictive control

algorithms in academia (Valencia-Palomo, 2010) and it was originated by Clarke, Mo-

htadi, and Tuffs (1987a, 1987b). A typical linear discrete-time state-space form of a
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system model is defined as follows:

ζk+1 = Aζk + Buk,

yk = Cζk, (2.17)

where ζ ∈ Rnζ , y ∈ Rny , u ∈ Rnu denote the state, output and input of the model, whilst

A ∈ Rnζ×nζ ,B ∈ Rnζ×nu , C ∈ Rny×nζ represent the state, input and output matrix,

respectively. The system (2.17) is assumed to be controllable and observable.

It is convenient for formulating the offset-free cost function if the state-space model (2.17)

is defined in terms of input increment ∆uk ∈ Rnu as follows:ζk+1

uk


︸ ︷︷ ︸
xk+1

=

A B
0 I


︸ ︷︷ ︸

A

 ζk

uk−1


︸ ︷︷ ︸

xk

+

B
I


︸︷︷︸
B

∆uk,

yk =
[
C 0

]
︸ ︷︷ ︸

C

xk. (2.18)

The prediction sequence of the state x→k
∈ Rnxn for prediction horizon n ∈ R can be

represented as follows:



x1|k

x2|k

x3|k
...

xn|k


︸ ︷︷ ︸
x→k

=



A

A2

A3

...

An


︸ ︷︷ ︸
Pxx

x0|k +



B 0 0 · · ·
AB B 0 · · ·
A2B AB B · · ·

...
...

...
...

An−1B An−2B An−3B · · ·


︸ ︷︷ ︸

Hx



∆u0|k

∆u1|k

∆u2|k
...

∆un−1|k


︸ ︷︷ ︸

∆u→k−1

, (2.19a)

where xi|k denotes the prediction of xk+i evaluated at time step k, whilst ∆u→k−1
is the

future input sequence. Notice that x0|k is xk. Similarly, the prediction sequence of the
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output y→k
∈ Rnyn is as follows:



y1|k

y2|k

y3|k
...

yn|k


︸ ︷︷ ︸
y
→k

=



CA

CA2

CA3

...

CAn


︸ ︷︷ ︸

P

x0|k +



CB 0 0 · · ·
CAB CB 0 · · ·
CA2B CAB CB · · ·

...
...

...
...

CAn−1B CAn−2B CAn−3B · · ·


︸ ︷︷ ︸

H

∆u→k−1
. (2.19b)

Typically, the cost function employed in MPC is described by a quadratic function that

penalises the deviation of the control variables and the predicted error between the

output and desired set-point, as follows:

Jk =

n∑
i=1

(
(ri|k − yi|k)TQ(ri|k − yi|k) + ∆uTi−1|kR∆ui−1|k

)
,

= ( r→k
− y
→k

)T Q̄( r→k
− y
→k

) + ∆u→
T

k−1
R̄∆u→k−1

, (2.20a)

where ri|k denotes the set-point, whilst Q ∈ Rny×ny , R ∈ Rnu×nu are the weighting ma-

trices that specify the penalties on the error and input, respectively. Notice that (2.20a)

is a offset-free cost function since in the steady-state, there is zero tracking error if the

following conditions hold:

yk = rk, ∆uk = 0. (2.20b)

By performing a minimisation of the cost function (2.20a), the unconstrained optimal

control sequence can be computed:

∆u→k−1
= arg min

∆u→k−1

Jk. (2.20c)

Given that the cost function is quadratic, there exists a unique minimum which can be

found by setting the first derivative to zero as follows:

dJk
d∆u→k−1

= 2(HT Q̄H + R̄)∆u→k−1
+ 2HT Q̄ r→k

− Px0|k], (2.20d)

dJk
d∆u→k−1

= 0⇒ ∆u→k−1
= (HT Q̄H + R̄)−1HT Q̄[ r→k

− Px0|k]. (2.20e)
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The first input of the unconstrained optimal input sequence ∆u→k−1
is implemented into

the plant:

∆uk = E∆u→k−1
= E(HT Q̄H + R̄)−1HT Q̄︸ ︷︷ ︸

Pr

r→k
− E(HT Q̄H +R)−1HT Q̄P︸ ︷︷ ︸

K

x0|k, (2.21)

where E =
[
I 0 · · · 0

]
∈ Rnu×nun and x0|k = xk.

Notice that so far the input horizon nc is assumed to be equal to prediction horizon n

in the cost function (2.20a). If nc 6= n, then the H matrix in the prediction (2.19) needs

to be replaced with the following matrix:

Hc =


B 0 · · · 0

AB B · · · 0
...

...
...

...

An−1B An−2B · · · An−ncB

 . (2.22)

For constrained MPC algorithm, the process of minimisation of the cost function (2.20a)

needs to take into account constraints, where typical constraints on the input rate, state

and output are defined as follows:

∆umin ≤ ∆ui|k ≤ ∆umax, i = 1, · · · , n, (2.23a)

xmin ≤ xi|k ≤ xmax, i = 1, · · · , n, (2.23b)

ymin ≤ yi|k ≤ ymax, i = 1, · · · , n, (2.23c)

where xmin,∆umin, ymin are the minimum values of the state, input rate and output,

whilst xmax,∆umax, ymax are the maximum values of the state, input and output, re-

spectively. Notice that the constraint on the input is implicitly embedded to the state

constraint since the input is augmented as a part of the state xk in (2.18). By substi-

tuting (2.19) into (2.23), the constraints (2.23) can be combined into one single set of



Chapter 2. Background of Wind Turbine Blade-pitch Load Reduction Control 32

linear inequalities of the following form:

I

−I
Hx

−Hx

H

−H


︸ ︷︷ ︸

Hu

∆u→k−1
≤



umax1

−umin1

xmax1− Pxxx0|k

−xmin1 + Pxxx0|k

ymax1− Px0|k

−ymin1 + Px0|k


︸ ︷︷ ︸

hu

, (2.23d)

where 1 := [1, 1, · · · , 1]T .

Consequently, the GPC algorithm can be summarised as follows:

Algorithm 2.5.1 (GPC). At every sample,

1. Perform the following optimisation:

arg min
∆u→k−1

∆u→
T

k−1
(HTQH +R)∆u→k−1

+ ∆u→
T

k−1
HT [ r→k

− Pxk],

s.t. Hu∆u→k−1
≤ hu (2.24)

2. The first sample of the future input sequence ∆u→k−1
is applied into the plant .

Notice that the optimisation problem (2.24) in Algorithm 2.5.1 is in a general quadratic

program (QP) form, which is easy to solve (e.g. using quadprog.m in Matlab R©).

Despite the GPC and its variants have been successfully and widely adopted in many in-

dustrial applications since 1970s, the issues of tunings and stability were major problems

with GPC. For example, tuning of nu and ny is not an easy task and an excellent source

that explains the effect of different horizon, nu and ny, can be found in J. A. Rossiter

(2003). Although given such tuning guidelines, only a posteriori stability checks can be

performed for GPC, where the nominal (unconstrained) control law is computed, then

the corresponding closed-loop poles were examined. In the early 1990s, the stability

issue of GPC was addressed by the concept of dual-mode MPC, that makes use of the

celebrated linear quadratic optimal control results of the 1960s (Clarke & Scattolini,

1991; Kouvaritakis, Rossiter, & Schuurmans, 2000; Mosca & Zhang, 1992; Rawlings &

Muske, 1993) .
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2.5.2 Dual-mode MPC

Compared to GPC, dual-mode MPC offers guaranteed nominal stability a priori. Before

introducing the dual-mode MPC, the background of the linear quadratic regulator (LQR)

problem is provided.

2.5.2.1 Linear Quadratic Regulator

Consider the classical LQR problem with a quadratic cost function of the form:

min
∆uk

J :=
∞∑
k=0

(
xTkQxxk + ∆uTkR∆uk

)
. (2.25)

The solution of (2.25) can be obtained by using Dynamic Programming and the recursive

Bellman equation (Bellman, 1957), defined as follows:

∆uk = −Kxk, (2.26)

where K is a stabilising feedback controller such that the eigenvalues of A−BK are inside

the unit circle if the system model (2.17) is controllable and observable, and the matrix

Qx ≥ 0 is real and non-negative definite and R > 0 is positive definite (Bellman, 1957).

Notice that the GPC cost function (2.20a) with infinite prediction horizon (n = ∞)

is equivalent to the LQR cost function (2.25) if ri|k is assumed to be zero and Qx =

CTQC. Then, the unconstrained control law of the GPC (2.21) simply becomes the

LQR controller (2.26). However, when constraints (2.23) are presented, the minimisation

of (2.25) is required at every sample with the plant current state x0|k, then the problem

becomes infinite-dimensional, which is intractable. Thus, the use of dual-mode paradigm

enables the constrained optimisation of (2.25) to be specified as a finite-dimensional

problem.

Notice that the cost function (2.25) assumed the set-point is zero ri|k = 0. If ri|k 6= 0,

in order to ensure offset-free tracking, a steady-state target calculator is needed (Pan-

nocchia & Rawlings, 2003). Consider the control law (2.26), that drives the state xk to

the steady-state xsk, is defined as follows:

∆uk = −K(xk − xsk) + ∆usk, (2.27)
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where ∆us
k is the steady-state input. To ensure offset-free tracking, a condition is needed

to be held, where if xk = xsk and ∆uk = ∆usk, then ysk = Cxsk = rk. Thus, in steady-state,

the state-space model can be defined as follows:

xsk+1 = Axsk +B∆usk,

ysk = Cxsk = rk, (2.28)

where the steady-state input ∆usk and state xsk can be computed by the steady-state

target calculator (Pannocchia & Rawlings, 2003), that is defined as follows:

 xsk

∆usk

 :=

 C 0

I −A −B

−1 rk
0

 , (2.29)

and xsk := Kxrrk and ∆usk := Kurrk. Subsequently, one can define a state-space model

in terms of deviation variables:

x̃k+1 = Ax̃k +B∆ũk,

ỹk = Cx̃k, (2.30)

where the deviation variables are defined as x̃k+1 = xk − xsk, ∆ũk = ∆uk − ∆usk and

ỹk = yk − rk. Thus, the offset-free form of the cost function of (2.25) is as follows:

min
∆ũk

J :=

∞∑
k=0

(
x̃TkQxx̃k + ∆ũTkR∆ũk

)
, (2.31)

and the solution of (2.31) is the offset-free control law (2.27).

2.5.2.2 Cost function in dual-mode MPC

Given that the LQR problem (2.31) is intractable when constraints are presented, thus,

the basic idea of the dual-mode MPC is formulate the constraint optimisation problem

of the form (2.31) in a way that can be solved simply by the quadratic programming

method.

In typical dual-mode MPC, the prediction horizon is divided into two modes: a transient

mode with degree-of-freedom (d.o.f.) and a terminal mode with convergence. For ex-

ample, in the transient mode, a sequence of inputs is optimised over the control horizon

nc with respect to the handling of constraints, whilst in terminal mode, the closed-loop
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dynamics are governed by the pre-determined control law, which typically, is an asymp-

totically stabilising state feedback controller K computed by solving an unconstrained

linear quadratic regulator (LQR) problem. Typically, the offset-free predictions of input

and state of the system (2.30) are as follows:

∆ũi|k =

∆ũi|k, ∀i < nc,

−Kx̃i|k, ∀i ≥ nc,
(2.32a)

x̃i+1|k =

Ax̃i|k +B∆ũi|k, ∀i < nc,

(A−BK)x̃i|k, ∀i ≥ nc,
(2.32b)

where Φ := A− BK. Thus, the cost function of (2.31) is parametrised into two modes

in the dual-mode MPC, that is defined as follows:

Jk =

nc−1∑
i=0

(
x̃Ti|kQxx̃i|k + ∆ũTi|kR∆ũi|k

)
︸ ︷︷ ︸

Transient mode

+

∞∑
i=nc

(
x̃Ti|kQxx̃i|k + ∆ũTi|kR∆ũi|k

)
︸ ︷︷ ︸

Terminal mode

. (2.33)

By substituting the predictions in (2.32) into (2.33), the cost function in the terminal

mode can be simplified as follows:

∞∑
i=nc

(
x̃Ti|kQxx̃i|k + ∆ũTi|kR∆ũi|k

)
, (2.34a)

=

∞∑
i=0

(
x̃Tnc|k(Φ

i)TQxΦix̃Tnc|k + x̃Tnc|k(Φ
i)TKTRKΦix̃Tnc|k

)
, (2.34b)

=x̃Tnc|k

∞∑
i=0

(
(Φi)T (Qx +KTRK)︸ ︷︷ ︸

W

Φi
)

︸ ︷︷ ︸
Σ

x̃Tnc|k, (2.34c)

where Σ is the solution of a Lyapunov equation ΦTΣΦ = Σ −W , which can be easily

solved using dlyap.m in Matlab R©. Thus, the cost (2.33) becomes:

Jk =

nc−1∑
i=0

(
x̃Ti|kQxx̃i|k + ∆ũTi|kR∆ũi|k

)
+ x̃Tnc|kΣx̃

T
nc|k, (2.35a)

= x̃→
T

k
Q̄x x̃→k

+ ∆ ũ→
T

k−1
R̄∆ ũ→k−1

, (2.35b)
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where Q̄x ∈ Rncnx×ncnx and R̄ ∈ R(ncnu−nu)×(ncnu−nu) are diagonal matrices, that are

defined as follows:

Q̄x :=


Qx

. . .

Qx

Σ

 , R̄ :=


R

. . .

R

 . (2.35c)

Notice that the dual-mode cost function (2.35b) has an equivalent form as the GPC

cost (2.20a) if the terminal weight Σ is incorporated into the GPC cost (2.20a).

2.5.2.3 Constraints in dual-mode MPC

Constraint formulation in dual-mode MPC is divided into two modes as well. In the

transient mode, it is expected the degree-of-freedom ∆u→k−1
satisfied a set of linear

equalities similar to (2.23), that is defined as follows:

∆umin1 ≤ ∆u→k−1
≤ ∆umax1, (2.36a)

xmin1 ≤ x→k
≤ xmax1, (2.36b)

ymin1 ≤ Cx→k ≤ ymax1. (2.36c)

In the terminal mode, in order to ensure constraint satisfactions, possible violations

in (2.23) must be checked over an infinite prediction horizon:

−K
K

I

−I
C

−C


Φixnc|k ≤



umax

−umin

xmax

−xmin

ymax

−ymin


, ∀i ≥ 0, (2.37)

which would appear to be computationally intractable. However, it is well known (Gilbert

& Tan, 1991) that there exists a sufficiently large horizon i = n∞ where any additional

linear equalities of (2.23) become redundant, assuming K is a stabilising feedback law

and the constraints contain the steady-state within their interior. Therefore, the con-

straints (2.37) just need to be checked up to the horizon n∞.
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Collecting the cost (2.35b) and constraint (2.36) and (2.37), the dual-mode algorithm

can be stated as follows:

Algorithm 2.5.2 (Dual-mode MPC). At every sample k,

1. Perform the optimisation

arg min
∆u→k−1

Jk := x̃→
T

k
Q̄x x̃→k

+ ∆ ũ→
T

k−1
R̄∆ ũ→k−1

, (2.38a)

s.t. x̃→k
= Pxxx̃0|k +Hx∆ ũ→k−1

, (2.38b)

(2.36), (2.38c)

(2.37), (2.38d)

where x0|k = xk is obtained from the plant at sample k.

2. Apply the first element of the control sequence ∆u→k−1
to the plant, where ∆u→k−1

is the solution of (2.38).

2.5.3 Closed-loop Paradigm

One of the useful ways to set up the dual-mode MPC is the closed-loop paradigm, that

is widely employed in the MPC and wind turbine control literature (e.g. Kumar and Stol

(2009); J. A. Rossiter, Kouvaritakis, and Rice (1998); Spencer, Stol, Unsworth, Cater,

and Norris (2013)). The beauty of the closed-loop paradigm approach is that the degrees-

of-freedom is formulated as perturbations ck ∈ Rnu around the unconstrained optimal

control law ∆ũk = −Kx̃k, thus, one can gain insights into the impact of constraints

by examining the magnitude of the perturbation ck. The predictions (2.32) under the

closed-loop paradigm become (e.g. J. A. Rossiter et al. (1998)):

∆ũi|k =

−Kx̃i|k + ci|k, ∀i < nc,

−Kx̃i|k, ∀i ≥ nc,
(2.39)

x̃i|k =

Φx̃k +Bci|k, ∀i < nc,

Φx̃i|k, ∀i ≥ nc.
(2.40)
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The cost (2.35b) function become:

Jk =

nc−1∑
i=0

(
x̃Ti|kQxx̃i|k + (−Kx̃i|k + ci|k)

TR(−Kx̃i|k + ci|k)
)

+ x̃Tnc|kΣx̃nc|k, (2.41a)

=

nc−1∑
i=0

cTi|kWcci|k = c→
T

k−1
W̄c c→k−1

, (2.41b)

where Wc := diag(BTΣB +R) ∈ Rnunc×nunc .

The derivation of the cost (2.41) is as follows:

Jk =

nc−2∑
i=0

(
x̃Ti|kQxx̃i|k + (−Kx̃i|k + ci|k)TR(−Kx̃i|k + ci|k)

)
+ (−Kx̃nc−1|k + cnc−1|k)TR(−Kx̃nc−1|k + cnc−1|k)

+ x̃Tnc−1|kQx̃nc−1|k + (Φx̃nc−1|k +Bcnc−1|k)T Σ(Φx̃nc−1|k +Bcnc−1|k), (2.42a)

=

nc−2∑
i=0

(
x̃Ti|kQxx̃i|k + (−Kx̃i|k + ci|k)TR(−Kx̃i|k + ci|k)

)
(2.42b)

+ x̃Tnc−1|k(Q+KTRK + ΦT ΣΦ)x̃Tnc−1|k

+ cTnc−1|k(BT ΣB +R)cnc−1|k + 2x̃Tnc−1|k(ΦT ΣB −KTR)cnc−1|k. (2.42c)

Notice that ΦT ΣB−KTR = 0 based on Φ = A−BK and K = (BT ΣB+R)−1(BT ΣA) is from the

discrete algebraic Riccati equation of the infinite-horizon optimal control problem (2.25). In ad-

dition, Q+KTRK+ΦT ΣΦ = Φ, which is the Lyapunov equation as shown earlier. Thus, (2.42c)

eventually leads to:

Jk =

nc−1∑
i=0

(
cTi|kWcci|k

)
+ xT0|kΣx0|k, (2.43)

where xT0|kΣx0|k is independent of the degree-of-freedoms ci|k, and thus can be omitted.

If the constraints (2.36) and (2.38) are expressed in terms of c→k−1
, then the dual-mode

MPC optimisation problem (2.38) can be formulated in terms of the perturbation, that

minimises the cost function Jk = c→
T
k−1

W̄c c→k−1
subject to constraints.

To sum up, in unconstrained situation, minimising the cost function (2.41) simply yields

c→k−1
= 0, that implies the control law is the feedback control law ∆ũk = −Kx̃k. When

constraints are active, the magnitude of c→k−1
reveals how far the input is away from the

unconstrained optimum. This offers important insight into how the dual-mode MPC

handles the feed-forward information, that is discussed in Chapter 3.
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2.6 Fatigue Load Assessment

As the blade pitch control offers a means of attenuating loads on turbine structures, it

is necessary in this section to introduce the concept of fatigue loads.

Fatigue is the cumulative structural damage that occurs when a material is subjected

to repetitive loads. The structural components of a wind turbine are often subjected

to a sequence of repetitive loadings, and such loadings mainly arise from wind-shear,

gravitation, harmonic effects of the rotor rotation, and so on (Barlas & van Kuik, 2010).

The fatigue lifetime of turbine components is an important criterion for wind turbine

design and reliable operations. Therefore, any load reductions on key components can

directly translate to an extension on the lifetime of a wind turbine and also reductions

in numbers of the costly maintenance and repair activities.

The key mechanical components of a turbine such as the blades and tower are subjected

to loads that covers a wide range of frequencies and magnitudes. These repetitive loads

can be quantified as the fatigue damage equivalent load (DEL). The DEL are typically

characterised by the rain-flow counting method, that is a widely used approach (Nies lony,

2009; Sutherland, 1999) to estimate the fatigue damage of a turbine component, by

counting the number of cycles and their corresponding amplitude on a load signal, which

is defined as follows (e.g Sutherland (1999)):

MDEL =
(∑

j

∆Mm
j nj

n

) 1
m
, (2.44)

where nj ∈ R denotes the number of cycles to the failure associated with the cycle load

magnitude ∆Mj , whilst n ∈ R represent the total number of cycles. m ∈ R is a material-

specific parameter. This material-specific parameter is typically 4 for steel, and 10 for

composite (E. A. Bossanyi, 2003b).

Notice that the DEL (2.44) is not of a quadratic form, that implies a cost function

consisting of the DEL could not be solved by the standard quadratic programming

methods. However, the DEL of a load signal is highly correlated to its variance or

standard deviation. This proves useful because minimisation of the variance of a load
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Figure 2.10: Relationship of the damage equivalent load (DEL) and standard devia-
tion. Data represents measurements of flap-wise blade root bending moment obtained

from several simulations with material-specific parameter m = 4 and m = 10.

signals has a similar effect on its DEL. And the variance itself is of a quadratic form, that

can be easily minimised by quadratic programming (Castaignet et al., 2013; E. Simley,

Dunne, Laks, & Pao, 2013). To illustrate the correlation is high between the DEL and

variance, Figure 2.10 shows the relationship between the DEL and standard deviation

of a measurement signals of the flap-wise blade root bending moments obtained from

the NREL 5-MW simulation turbine under various wind conditions. Notice that two

blade materials were examined, that they are steel (m = 4) and composite (m = 10).

The dashed lines in Figure 2.10 showed that the DEL and the standard deviation of the

loads were in a proportional relationship. Moreover, the figure also reveals that the same

load reductions in terms of the variance could translate to a higher fatigue reduction

for materials with higher specific parameter m. In other words, the choice of materials

affected the interpretation of the percentage reduction in fatigue loads. Hence, it might

be fairer if load reduction strategies are accessed in terms of the variance or standard

deviation. As a result, this thesis uses the standard deviation for assessing the load

reduction for the blade pitch strategies.
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Rating 5 MW
Rotor configuration Upwind, 3 blades
Rotor diameter 126 m
Hub height 90 m
Rated rotor speed 12.1 rpm (≈0.2 Hz)
Cut-in, rated, cut-out wind speed 3, 11.4, 25 ms−1

Table 2.1: Simulation turbine parameters.

2.7 Simulation Environment

In order to validate the performance of the controller and estimator design, this thesis

employs a non-linear wind turbine simulation model, that is the FAST (Fatigue, Aero-

dynamics, Structures, and Turbulence) simulation package developed by the National

Renewable Energy Laboratory (NREL) (J. Jonkman & Buhl Jr, 2005). The FAST code

is open-source and widely used for wind turbine simulations in the academic community.

Compared to the linear models discussed in Section 2.4, the simulation turbine in the

FAST is of much greater complexity, and with 24 degrees-of-freedom, including flap-

wise and edge-wise blade modes, tower and shaft dynamics. Nonetheless, pitch actuator

dynamics is not included in the simulation turbine. Thus, to limit the bandwidth of pitch

actuator, this thesis places the linear actuator models from (2.15) in the high-fidelity

simulation turbine. In terms of the fidelity of the wind data, the turbulent wind fields,

that are employed by closed-loop simulations, are generated from TurbSim (B. Jonkman,

2009). The TurbSim code simulates a time series of wind data at points in a two-

dimensional grid such that the sequence of grids marching towards the rotor at a constant

speed specified by the mean wind speed and under the assumption of Taylor’s frozen

turbulence hypothesis (Taylor, 1938). The Taylor’s frozen turbulence hypothesis assumes

the spatial structure of the turbulent wind remains unchanged as they travel towards the

wind turbine with the mean wind speed. The full-field three-dimensional wind data is

characterised by mean wind speeds, turbulence settings and wind shear exponent, which

are the input from the user. Subsequently, the AeroDyn (Laino & Hansen, 2002) code

inside FAST calculates how the wind inflow data from TurbSim interact with the high

degree-of-freedoms structural models. These structural models inside FAST are built

based on the blade element momentum theory including the effect of dynamic stall and

tower shadow.

The National Renewable Energy Laboratory (NREL) also published a benchmark wind
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turbine model, a 5MW reference turbine (J. Jonkman et al., 2009). This fictitious NREL

5MW turbine model was developed based on a number of commercial wind turbines, for

example, Repower 5MW. Given that the benchmark turbine model is available to the

public without any commercial restriction, the NREL 5MW reference turbine has been

widely adopted in many wind turbine control studies. Table 2.1 summarises some key

parameters of the NREL 5MW simulation turbine. Full details regarding this turbine

can be found in J. Jonkman et al. (2009).

2.8 Baseline Controller Designs

The section provides some background of the baseline robust CPC and IPC controller.

The reason why the controller design is presented in this early chapter is because these

baseline controllers are employed in most of the coming chapters.

2.8.1 Collective Pitch Controller

Most of the modern wind turbine are equipped with a collective pitch controller for

regulating the rotor speed as discussed in Section 1.2. The CPC controller provides

collective blade pitch signals in response to the rotor speed deviation in the above-rated

wind conditions. Thus, consider the rotor dynamics mapping the collective pitch angle

θ̄ to the rotor speed ω including the actuator and filter dynamics as follows:

Gcpc(s) := Ga(s)Gr(s)Glp(s), (2.45a)

where the rotor dynamics Gr ∈ R, the actuator and low-pass filter dynamics Ga, Glp ∈ R
are provided in Section 2.4 and they are defined as follows:

Gr(s) :=
dτa

dθ

1

Jrs+Dr
, (2.45b)

Ga(s) :=
1

τacts+ 1
, (2.45c)

Glp(s) :=
2πflp

s+ 2πflp
, (2.45d)

where the parameter is provided in Table 2.2.

Remark 2.3. Notice that the transfer function representation of the turbine models is

used in this section because the feedback controller is designed in the frequency-domain
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to ensure the gain of the loop-shape is only high at the targeted loads, explained as

follows.

Parameters Values Units Parameters Values Units
dτa
dθ −8.12× 106 Nmdeg−1 Jr 3.88× 107 kgm2

Dr 9.68× 106 - τact 0.11 s
Kp 6.84 - Ki 2.45 -
flp 0.15 Hz

Table 2.2: Model parameters of Gcpc(s) and Kcpc(s)

Typically, and for the reasons of implementation simplicity, the CPC and IPC are de-

signed separately and the proportional-integral (PI) controllers are widely adopted for

the CPC in the industry (Burton et al., 2011). This is because for the single-input-single-

output problem, the PI controller is a simple but effective form of control strategy. As

the name suggests, the control action of a PI controller is computed based on two gains:

the proportional gain Kp ∈ R, that is proportional to the error between the desired and

actual rotor speed and the integral gain Ki ∈ R, that is proportional to the integral of

the error and ensures the error tends to zero (Aström & Murray, 2010). A typical PI

controller is defined as follows:

Kpi(s) = Kp +
Ki

s
. (2.46)

The CPC controller is designed based on the Gcpc ∈ R from (2.45), whose parameters

are listed in Table 2.2, and which has the following transfer function:

Gcpc(s) :=
−1.789

s3 + 10.28s2 + 11.07s+ 2.13
(2.47)

Notice that as mentioned in Section 2.4, the controller needs to be robust to the model

uncertainties, since the linear model is obtained at one operating wind condition v =

18ms−1. Thus, while tuning the proportional and integral gain, one needs to ensure

the resultant closed-loop of the rotor dynamics has a good gain and phase margin. In

addition, the couplings between the CPC and IPC need to be taken into account. As

discussed in Section 1.2, the IPC typically responds to the blade loads at the harmonics

of the blade rotational frequency (e.g. 0.2Hz). Thus, based on the rotor model (2.47),

the CPC is tuned as follows:

Kcpc(s) = −10.75s+ 3.85

3.14s
, (2.48)
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Figure 2.11: Loop gain of Gcpc(s) (dashed line) and Gcpc(s)Kcpc(s) (solid line).

where the values of the proportional gain Kp and integral gain Ki are listed in Table 2.2.

The loop gain of Gr(s)Kcpc(s) is low (i.e. below 0dB at frequencies beyond 0.1Hz as

shown in Figure 2.11. The compensated system Gcpc(s)Kcpc(s) has an infinity gain

margin and 82.9deg phase margin.

The performance of the CPC is illustrated in Figure 2.12, where the simulation is con-

ducted in the NREL 5MW reference turbine (J. Jonkman et al., 2009). As shown in

Figure 2.12a, the rotor speed deviation is attenuated by the CPC controller (2.48). And

Figure 2.12b reveals the pitch activity of the CPC.

2.8.2 Individual Pitch Controller

Individual pitch control strategies are one of the promising load attenuation techniques.

Typically, most of the load fluctuations on the blade are of a periodic nature and some of

the stochastic components. As the blade rotates in a turbulent wind field, the spatially

uneven wind field across the rotor plane causes the blade to experience loads at 1p (once-

per-revolution) or higher harmonics frequencies, for example, 2p (twice-per-revolution)

frequency. The major contributors to the blade loads are the horizontal and vertical

wind shear, gravitational forces, tower shadow, turbulence and yaw misalignment (Bar-

las & van Kuik, 2010). Thus, this explains why the loads on the rotating blades are

predominately concentrated at harmonics of the blade rotational frequency. To visu-

alise, consider a wind turbine simulation with a CPC and no IPC. Figure 2.13 shows the

frequency spectrum of the typical flap-wise blade root bending moments. Given that

the blade rotational frequency, or the rotor speed, is around 12.1rpm ≈ 0.2Hz, thus, the
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(b) The pitch angle of blade 1 of the CPC controller (solid line) and the open-
loop (dashed line). Similar results are obtained for the remaining blades.

Figure 2.12: Performance of the CPC controller to a time-varying wind speed distur-
bance in the above-rated wind conditions.

majority of the blade loads exists at 0.2Hz and 0.4Hz, as demonstrated in Figure 2.13.

Notice that there exist blade loads around 0Hz and these slow-varying loads should not

be attenuated, otherwise, the IPC interferes with the CPC.

In addition, these loads on the rotating blades cause fluctuations not only on the blades,

but also on the non-rotating turbine structure such as the main bearing. For a three-

bladed turbine, in general, the rotating blade loads at integer multiples of the 1p blade

frequency are transferred into non-rotating loads at adjacent harmonics at frequency

multiples of 3p. For example, 1p blade rotating blade loads are mapped into static (0p)

loads on the tilt and yaw reference frame, whilst 3p non-rotating structural loads are

split into 2p and 4p blade rotating loads. To visualise these loads on the fixed turbine

structures, Figure 2.14 illustrates the main bearing tilt and yaw moments. It shows
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Figure 2.13: Frequency spectrum of the flap-wise blade root bending moments of
blade 1.

clearly that the loads are concentrated at the 0p and 3p frequencies on both tilt and

yaw moments of the main bearing. The idea of the frequency-shifting effect on loads

becomes clearer in Chapter 4, where Coleman transform projects loads from a rotating

coordinate frame into a non-rotating reference frame.

To ensure the IPC is decoupled from the existing CPC, a robust H∞ loop-shaping design

method is employed.

2.8.2.1 H∞ Loop-shaping Design Method

In the literature, there exists a substantial amount of mature theories on linear control

design. Nevertheless, it is crucial to choose one that is suitable to the IPC problem. As

discussed in Section 2.4, the linear turbine model neglects many of the dynamics of an

actual wind turbine. Thus, it is reasonable to employ a robust control design technique

and such a technique is able to construct controllers that are insensitive to unmodelled

dynamics. In addition, it is desirable that the load reduction performance can be spec-

ified in the frequency-domain, since the blade loads mainly occur at the harmonics of

the blade rotational frequency. These requirements naturally suggest that the use of

H∞ loop-shaping (Vinnicombe, 2000). Before discussions on the design procedure, it is

necessary to introduce the concept of the robust stability margin.
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(a) Frequency spectrum of the main bearing tilt bending moments.
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(b) Frequency spectrum of the main bearing yaw bending moments.

Figure 2.14: Illustrations of the loads on the main bearing.
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Figure 2.15: Standard feedback interconnection between plant P and controller C.
The signals u and y denote the plant input and measured output, respectively, whilst v1

and v2 represent exogenous disturbances.

2.8.2.1.1 Robust stability margin

The standard feedback interconnection [P,C] of plant P ∈ R and controller C ∈ R is

shown in Figure 2.15, from which the following closed-loop system is defined:y
u

 =

P
I

 (I − CP )−1
[
−C I

]
︸ ︷︷ ︸

H(P,C)

v1

v2

 , (2.49)
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where H(P,C) ∈ R provided [P,C] is well posed, and I is an identity matrix of compat-

ible dimension. The robust stability margin b(P,C) ∈ R of [P,C] is defined as follows:

b(P,C) :=

 ‖H(P,C)‖−1
∞ if H(P,C) ∈ RH∞

0 otherwise.
(2.50)

where || · ||∞ is the H∞ norm.

The robust stability margin is briefly a scalar quantity that generalises the gain and

phase margins of a multivariable system. And the higher values of the robust stability

margin give rise to the closed-loop system that is more robust to parametric uncertainties

and unmodelled high-frequency dynamics. The objective of H∞ loop-shaping method is

briefly to find a stabilising controller C ∈ R that maximises the robust stability margin

b(P,C). In the next section, the design procedure is demonstrated.

2.8.2.1.2 Design procedure

The design of H∞ loop-shaping controllers can be summarised into two steps as follows:

1. Considering P (s) is the plant model, design a pre-compensator W (s) to shape the

singular values of the shaped system Ps(s) := P (s)W (s). Typically, the shaped

system Ps(s) needs to have high loop gain at the targeted load frequencies and low

gain at high frequencies for good sensor noise rejection.

2. Synthesise the controller C∞(s) that achieves maximum robust stability margin

of the shaped plant Ps(s). Subsequently, the controller C∞(s) is then combined

with the pre-compensator W (s) to form the actual loop-shaping controller C(s) :=

W (s)C∞(s).

Notice that the the loop-shaping controller C(s) can be easily synthesised by software

package such as ncfsyn.m in Matlab R©. Hence, the mathematical detail how to compute

the controller C is not included in the thesis, the reader is referred to (Vinnicombe,

2000).
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Figure 2.16: System architecture of a wind turbine, combining collective pitch control
(CPC) and individual pitch control (IPC). The CPC regulates rotor speed while the
IPC (shaded) attenuates perturbations in the flap-wise root bending moments on each
blade. Additional inputs to the turbine such as wind loading and generator torque are

accounted for in the term f(t).

2.8.2.2 Design of the IPC

After the introduction of the characteristics of the blade loads and H∞ loop-shaping

method, let’s consider the design of the IPC. Figure 2.16 depicts a typical blade pitch

control system architecture for the above-rated wind conditions. The CPC regulates

the rotor speed ω(t) by adjusting the collective pitch angle θ̄(t). To isolate the actions

of the IPC from that of the CPC, it is convenient to define the pitch angles and blade

moments as follows:
θ1(t)

θ2(t)

θ3(t)

 :=


θ̄(t) + θ̃1(t)

θ̄(t) + θ̃2(t)

θ̄(t) + θ̃3(t)

 ,

M1(t)

M2(t)

M3(t)

 :=


M̄(t) + M̃1(t)

M̄(t) + M̃2(t)

M̄(t) + M̃3(t)

 , (2.51)

where θ̃1,2,3(t) represent the perturbations in the blade pitch angle demand from the

collective pitch signal, whilst M̃1,2,3(t) are the perturbations in the flap-wise blade
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bending moments, obtained by filtering out the mean moment M̄(t) from the mea-

surements M1,2,3(t). This filtering is important in order to help decouple the IPC from

the CPC. For each blade, the relationship between perturbation input θ̃i and output M̃i,

for i ∈ {1, 2, 3} can be modelled by a transfer function G ∈ R, obtaining by linearising

the turbine dynamics around the rated rotor speed ω0. A typical blade transfer function

that maps the perturbation in the blade pitch angle θ̃1,2,3 to the perturbations in the

flap-wise blade bending moments M̃1,2,3, as used by Lu et al. (2015) for example, is as

follows:

G(s) := Ga(s)Gb(s)Gbp(s), (2.52a)

where Ga, Gb ∈ R describe the dynamics of the pitch actuator and the blade, respec-

tively, whilst Gbp ∈ R is a band-pass filter that is included in order to remove the low

frequency component of the flap-wise blade root bending moment signal from strain-

gauge sensors, as well as high frequency noise. These transfer functions are obtained

from Section 2.4 and they are defined as follows:

Ga(s) :=
1

1 + τacts
, (2.52b)

Gb(s) :=
dMflap

dθ

(2πfb)2

s2 +Db2πfbs+ (2πfb)2
, (2.52c)

Gbp(s) :=
2πfhs

s2 + 2π(fh + fl)s+ 4π2fhfl
, (2.52d)

where τact ∈ R is the pitch actuator time constant,
dMflap

dθ ∈ R represents the change

in blade flap-wise bending moment with respect to pitch angle, fb ∈ R is the natural

frequency of the blade’s first flap-wise mode and Db ∈ R is its aerodynamic damping

ratio, while fh, fl ∈ R are the high and low corner frequencies of the bandpass filter,

respectively. The basic individual pitch control problem is shown in Figure 2.17 and is

based upon the following three-blade model:


M̃1(s)

M̃2(s)

M̃3(s)

 =


G(s) 0 0

0 G(s) 0

0 0 G(s)


︸ ︷︷ ︸

P (s)


θ̃1(s)

θ̃2(s)

θ̃3(s)

 . (2.53)

In the interests of simplicity, the influence of the fixed turbine structural dynamics is

not included, but if required, these could be represented as additive disturbances on the

bending moment channels.
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Figure 2.17: Basic system architecture for IPC analysis and design.

Parameters Values Units Parameters Values Units

τact 0.11 s
dMflap

dθ 1.50 ×106 Nm deg−1

fb 0.70 Hz Db 0.47
fh 0.80 Hz fl 0.014 Hz

Table 2.3: Model parameters of G(s)

The design of the IPC controller Kipc ∈ R is based upon the basic blade model G (2.52a),

whose parameters are listed in Table 2.3, and which has the following transfer function:

G(s) =
1.45× 108s

0.11s5 + 2.02s4 + 13.84s3 + 52.25s2 + 101.50s+ 8.54
. (2.54)

The IPC controller needs to attenuate blade loads specifically at the 1p, 2p and 4p

frequencies (0.2 Hz, 0.4 Hz and 0.8 Hz respectively). Thus, it is convenient to use the

robust H∞ loop-shaping method to construct the IPC. To do so, the pre-compensator

Wipc(s) ∈ R is designed, such that the shaped plant G(s)Wipc(s) has high gain at the

targeted frequencies, as follows:

Wipc(s) := αipcWhp(s)W1p(s)W2p(s)W4p(s), (2.55a)
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where αipc ∈ R is a tuning variable and Whp,W1p,W2p,W4p ∈ R are the high-pass filter,

1p, 2p and 4p inverse notch filters, which are defined as follows:

Whp(s) :=
τhfs

τhfs+ 1
, (2.55b)

W1p(s) :=
s2 + 2D1p1

ω1ps+ ω2
1p

s2 + 2D1p2
ω1ps+ ω2

1p

, (2.55c)

W2p(s) :=
s2 + 2D2p1

ω2ps+ ω2
2p

s2 + 2D2p2ω1ps+ ω2
2p

, (2.55d)

W4p(s) :=
s2 + 2D4p1

ω4ps+ ω2
4p

s2 + 2D4p2
ω4ps+ ω2

4p

. (2.55e)

The parameters of this pre-compensator Wipc(s) are listed in Table 2.4. Subsequently,

based upon the shaped plant G(s)Wipc(s), the loop-shaping controller Kipc(s) ∈ R,

that maps the perturbation in the flap-wise blade root bending moment M̃1,2,3 to the

perturbation in the pitch angle θ̃1,2,3, is synthesised as follows:

Kipc = 10−6 ×


−s9 − 5.6s8 − 49.3s7 − 174.0s6 − 639.5s5

− 1236s4 − 900s3 − 2170s2 + 1380s− 98

s9 + 9.4s8 + 87.2s7 + 353.2s6 + 1955s5

+ 3031s4 + 1.1× 104s3 + 7662s2 + 1.3× 104s+ 5663

 , (2.56)

where the robust stability margin b(GKipc, 1) is 0.58 and the gain and phase margins

of the compensated system G(s)Kipc(s) are 10.3dB and 52 deg. The gain of the com-

pensated system G(s)Kipc(s) is illustrated in Figure 2.18. Notice that the baseline

IPC (2.56) is the simplest form of the IPCs, known as single-blade control (SBC). The

other classes of IPCs involve coordinate transformations. More detail of various classes

of IPCs is provided in chapters 3 and 4.

Parameters Values Units Parameters Values Units

αipc 0.45× 10−3 - τhf 0.15 s
ω1p 1.27 rads−1 D1p1

1.5 -
D1p2

0.01 - ω2p 2.53 rads−1

D2p1
1 - D2p2

0.03 -
ω4p 5.07 rads−1 D4p1

0.3 -
D4p2

0.03 -

Table 2.4: Model parameters of Kipc(s)

To examine the performance of the IPC controller (2.56), simulations were conducted

under a time-varying wind disturbance upon the NREL 5MW turbine (J. Jonkman et al.,

2009). Comparison is made between the CPC controller, that is adopted from (2.48) as

the baseline controller, and the IPC controller (2.56) on top of the baseline. Figure 2.19a

illustrates the flap-wise blade root bending moments. The IPC controller attenuated the
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Figure 2.18: Maximum singular value plots of the wind turbine model σ̄(G(s)) (–)
and compensated system σ̄(GKipc(s)) (- -).

blade loads effectively compared to the simulation result with only the CPC controller.

This is expected because the CPC and IPC system architecture requires more pitch

activity as shown in Figure 2.19b.

2.9 Chapter Summary

This chapter presented background information regarding the wind turbine and load

reduction control. The basic operations of a typical wind turbine are explained and the

control objectives of wind turbines based on the modes of operations were discussed in

Section 2.2 and 2.3. In addition, the detail of modelling was provided in Section 2.4.

This included the linearisation of the aerodynamic forces, the dynamics of the rotor,

tower and blade, and also the models of the actuator and filters. Section 2.6 explained

why this thesis uses the standard deviation as an indicator of the fatigue damage. In

Section 2.7, the detail of the simulation environment was discussed. Finally, Section 2.8

presented the design of the baseline CPC and IPC controllers, that is employed in most

of the coming chapters.
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(a) The flap-wise blade root bending moment of the blade 1.
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(b) The pitch angles of blade 1.

Figure 2.19: Performance of the CPC (dased line) and with the IPC (solid line).
Similar results are obtained for the remaining blades.



Chapter 3

Review of the Related Work

3.1 Chapter Overview

The aim of this chapter is to present the relevant literature regarding the blade-pitch

control for wind turbine load reductions. The aim of this chapter is threefold. Firstly, the

background and recent development of individual pitch control strategies are reviewed in

Section 3.2. Secondly, in Section 3.3, an overview of the feed-forward model predictive

control is presented and particularly, the shortcomings of the feed-forward compensator

in standard MPC is highlighted. Lastly, Section 3.4 discusses the literature regarding the

feed-forward control in wind turbines and followed by a chapter summary is concluded

in Section 3.5. This chapter helps the reader to understand the recent developments

and their shortcomings in literature, and most importantly, laying the foundation for

the coming chapters.

3.2 Individual Pitch Control

As discussed in Chapter 1, a growing body of research has emerged in recent years,

seeking to establish the best way of designing individual pitch control (IPC) systems.

The key reason is the ability to actively control the pitch of each blade that offers the

potential to reduce the unsteady loads that arise form a number of sources, such as

wind-shear, tower shadow, yaw misalignment and turbulence within the atmospheric

boundary layer (Barlas & van Kuik, 2010). Of the many IPC strategies that have been

55
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M̃1(s)

Figure 3.1: Coleman Transform-based controller.

published in recent years, most can be grouped into two distinct classes, characterised

by the specific turbine loads they are primarily designed to attenuate.

The first and most popular branch of IPCs is the Coleman transform-based control, that

targets load reductions on the non-rotating turbine structures, such as the nacelle and

main bearing. The second branch of IPCs is the single-blade control and the Clarke

transform-based control, that targets load reductions upon the rotating turbine struc-

tures, primarily the blades. This section presents a thorough literature review regarding

these three IPC design techniques.

3.2.1 Coleman Transform-based Control

Coleman transform-based control is the earliest and a popular form of IPC strategy.

The Coleman transform-based IPC is depicted in Figure 3.1, that is a part of the wind

turbine architecture depicted in Figure 2.16. The Coleman Transform Tcm (φ(t)) is a time

varying matrix that projects the rotational blade loads, M̃1,2,3, onto the stationary and

orthogonal tilt and yaw axes of the turbine, according to the blade azimuth angle φ(t).

For a three-bladed turbine in which φ(t) = ω(t)t is defined as the angle of the first blade

from the horizontal yaw axis, the Coleman Transform is defined as follows:

 M̃tilt(t)

M̃yaw(t)

 :=
2

3

sinφ(t) sin

(
φ(t) +

2π

3

)
sin

(
φ(t) +

4π

3

)
cosφ(t) cos

(
φ(t) +

2π

3

)
cos

(
φ(t) +

4π

3

)


︸ ︷︷ ︸
Tcm(φ(t))


M̃1(t)

M̃2(t)

M̃3(t)

 , (3.1a)

The tilt and yaw referred flap-wise blade root bending moments, M̃tilt and M̃yaw are

mapped via the Coleman controller Ccm ∈ R2×2 to tilt and yaw referred pitch signals θ̃tilt
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and θ̃yaw, that in turn are projected back into the blade referred pitch signals via the

inverse Coleman Transform, T inv
cm (φ(t)) accordingly:


θ̃1(t)

θ̃2(t)

θ̃3(t)

 :=


sinφ(t) cosφ(t)

sin

(
φ(t) +

2π

3

)
cos

(
φ(t) +

2π

3

)
sin

(
φ(t) +

4π

3

)
cos

(
φ(t) +

4π

3

)


︸ ︷︷ ︸
T inv

cm (φ(t))

 θ̃tilt(t)

θ̃yaw(t)

 , (3.1b)

where θ̃1,2,3 are the perturbations in the blade pitch angle, as defined in Section 2.8 in

Chapter 2.

These Coleman transformations Tcm (φ(t)) and T inv
cm (φ(t)) emerged from the area of

helicopter rotor control (Coleman & Feingold, 1957) and also are widely employed in

the fields of power conversion and electrical machines under the guise of the direct-

quadrature-zero (dq0) or Park transformations (Park, 1929). Use of the Coleman trans-

form to address the IPC problem in wind turbines was adopted by Caselitz et al. (1997)

and E. A. Bossanyi (2003a).

In the literature, there are many design methods for the Coleman controller Ccm ∈ R2×2.

Unlike the blade model (2.12) employed in this thesis, many Coleman controller design

methods are relied upon different blade models. And most of these blade model can be

grouped into three classes, that are as follows:

• Blade model from linearisation tools,

• Blade model with a diagonal structure,

• Blade model including the dynamics of the Coleman transformations.

3.2.1.1 Blade model from linearisation tools

Instead of deriving the blade model from first principles like the linear differential equa-

tions (2.12) in Chapter 2, many studies use system identification techniques or linearisa-

tion codes to obtain a linear wind turbine model from a high-fidelity simulation turbine

model, for example, BLADED (E. A. Bossanyi, 2003a), TURBU (T. van Engelen &

Braam, 2004) and FAST (J. Jonkman & Buhl Jr, 2005). For linear control design, these



Chapter 3. Review of the Related Work 58

turbine models are linearised at a specific operating wind speed and a specific azimuth

location of the blades (J. Jonkman & Buhl Jr, 2005) and this type of linear blade model

is favoured by many studies because it is convenient and also the couplings between dy-

namics are modelled implicitly. For example, the earliest IPC study by E. A. Bossanyi

(2003a) employed a linear model generated from the BLADED code in order to design

a linear quadratic Gaussian (LQG) regulator. Another example is K. A. Stol, Zhao, and

Wright (2006), where a gain-scheduling linear quadratic regulator (LQR) controller was

constructed based on an azimuth-dependent blade model. Nonetheless, the linear model

generated from linearisation codes might be too complicated, so the turbine dynamics

and structural couplings behind these linear models cannot be easily understood, mak-

ing linear analysis difficult. Thus, studies started a ’bottom-up’ approach by modelling

the blade using first principles (e.g T. G. van Engelen and van der Hooft (2005)).

3.2.1.2 Blade model with a diagonal structure

Some studies (e.g Selvam (2007); Selvam et al. (2009); T. G. van Engelen and van der

Hooft (2005)) derived a linear wind turbine model including the rotor, tower and blade

dynamics from first principles. Notice that in this turbine model, the blade is assumed to

be rigid. Thus, unlike the dynamic blade model (2.12), the blade dynamics is described

by a simple static relationship, mapping the pitch angle to the blade moment. For

example, in T. G. van Engelen and van der Hooft (2005) and Selvam (2007), the linear

blade model is of the following form:

M̃i(t) =
dMflap

dθ
θ̃i(t), (3.2)

where
dMflap

dθ ∈ R are the variations of the blade moments to the pitch angle. Subse-

quently, substituting the Coleman transformations (3.1) into the rigid blade model (3.2)

yields (e.g. T. G. van Engelen and van der Hooft (2005) and Selvam (2007)):

M̃tilt(t) =
dMflap

dθ
θ̃tilt(t), M̃yaw(t) =

dMflap

dθ
θ̃yaw(t). (3.3)

Thus, the Coleman-transformed plant is of a diagonal structure as follows:M̃tilt(s)

M̃yaw(s)

 =

Gtilt(s) 0

0 Gyaw(s)

 θ̃tilt(s)

θ̃yaw(s)

 . (3.4)
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For illustration purpose, the tower and rotor dynamics are not included in (3.4). How-

ever, this does not affect the decoupled structure of the blade model. This form of

the Coleman-transformed blade model (3.4) is favoured by many studies. For exam-

ple, T. G. van Engelen and van der Hooft (2005) designed a diagonal form of the tilt

and yaw controller for attenuating the blade referred loads upon the tilt and yaw turbine

axes. The tilt and yaw controller is of the following diagonal form: θ̃tilt(s)

θ̃yaw(s)

 =

Ktilt(s) 0

0 Kyaw(s)

 M̃tilt(s)

M̃yaw(s)

 . (3.5)

where the controllers Ktilt,Kyaw ∈ R are typically a PID design. The diagonal con-

troller design (3.5) is employed by many studies. For example, E. A. Bossanyi (2005),

Jelavic, Petrovic, and Peric (2008), Lackner and van Kuik (2010) and Plumley, Leithead,

Jamieson, Bossanyi, and Graham (2014).

Nonetheless, the Coleman transformations (3.1) only projects the blade loads at 1p

(once-per-revolution) frequency into the turbine tilt and yaw axes as demonstrated

by T. G. van Engelen (2006) . If the Coleman transformations (3.1) is modulated

with multiples of the rotational frequencies, for example, replacing ω(t) in (3.1) with

2ω(t), the blade loads at higher harmonics can be also mapped as static loads on the

turbine tilt and yaw axes. Subsequently, these referred static loads upon the tilt and

yaw axes can be attenuated by the diagonal controller (3.5). Similar methods were also

adopted by C. Bottasso, Croce, Riboldi, and Nam (2013).

Furthermore, to improve the robustness to the model uncertainties, for example, cou-

plings between the tower and blade structures (Leithead, Dominguez, & Spruce, 2004),

a multi-variable H∞ design was proposed by Geyler and Caselitz (2007) and Geyler and

Caselitz (2008).

Comparing the code-generated linear blade model, the major difference is that the cou-

plings between the tilt and yaw axes are not modelled in (3.4), as shown by stud-

ies (Selvam, 2007; Selvam et al., 2009). Later, this inspired work by Lu et al. (2015),

revealing that despite the diagonal controller (3.5) based on the decoupled form of the

blade model (3.4) yielding a good gain and phase margin, but lacking the dynamic cou-

plings between the tilt and yaw loop, the diagonal controller (3.5) could perform poorly,

even resulting in closed-loop instability, upon the blade model including the dynamics of

the Coleman transformations. Thus, Lu et al. (2015) investigated the influence of the
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Coleman transformations on the system dynamics.

3.2.1.3 Blade model including the dynamics of the Coleman transforma-

tions

Many of the Coleman transform-based control studies modelled the blade model as (3.2),

where the tilt and yaw loop are decoupled. A recent study by Lu et al. (2015) demon-

strated that a decoupled tilt and yaw control design, such as (3.5), could be poor if the

couplings between the tilt and yaw loop were not considered in the modelling explicitly.

Thus, to investigate the influence of the Coleman transformations on the blade dynam-

ics, Lu et al. (2015) models the blade as a second-order system and taking into account

the actuator and filter dynamics. Consider the dynamics of the blade as follows:

M̃i(s) = G(s)θ̃i(s) (3.6)

where the transfer function G ∈ R is the same as (2.52) in Chapter 2. The Coleman

transformations (3.1) modify the plant (3.6) to yield the Coleman-transformed model as

follows:M̃tilt(s)

M̃yaw(s)

 =

 G(s+ jω0) +G(s− jω0)

2
j
G(s+ jω0)−G(s− jω0)

2

−jG(s+ jω0)−G(s− jω0)

2

G(s+ jω0) +G(s− jω0)

2


 θ̃tilt(s)

θ̃yaw(s)

 ,
(3.7)

where ω0 ∈ R is the constant rated rotor speed, and from which the coupled nature

of the tilt and yaw loops is evident. The derivation of (3.7) is similar to the proof

of Lemma 4.1 in Chapter 4, thus, the details are not included here. Lu et al. (2015)

subsequently designed a H∞ loop-shaping controller, based on (3.7), that outperformed

a comparative diagonal controller (3.5). This form of the linear Coleman-transformed

plant (3.7) was later adopted by another recent study by Vali, van Wingerden, and Kuhn

(2016) for a mixed sensitivity H∞ optimisation approach.

Remark 3.1. This thesis adopts the blade model (3.6) and Coleman-transformed plant (3.7)

by Lu et al. (2015) because these models take into account the frequency-shifting effect

of the Coleman transformations, which is particularly useful when analysing the simi-

larities between the Coleman transform-based control with other types of IPCs.

Apart from the theoretical development, the Coleman transform-based control strategies

have also been field-tested on a number of wind turbines. As reported by E. A. Bossanyi
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and Wright (2009) and E. Bossanyi et al. (2012), the IPC controllers by E. A. Bossanyi

(2003a) have been implemented on a 660 kW two-bladed wind turbine. A similar field

test was also conducted on a 600 kW three-bladed wind turbine (E. A. Bossanyi, Fleming,

& Wright, 2013). In recent years, an IPC algorithm by Jasniewicz and Geyler (2011)

was also tested upon a 5MW wind turbine (Shan & Adelt, 2013).

Single-
blade

Controller

Csbc(s)

θ̃1(s)

θ̃2(s)

θ̃3(s)

M̃1(s)

M̃2(s)

M̃3(s)

Figure 3.2: Single-blade controller.

3.2.2 Single-blade Control

One of the simplest forms of IPC strategies is the single-blade control and this con-

cept was originated by Leithead, Neilson, Dominguez, and Dutka (2009) and Leithead,

Neilson, and Dominguez (2009). As depicted in Figure 3.2, the single-blade control,

also later termed as individual blade control (Han & Leithead, 2014), equips each blade

with its own controller for attenuating the blade, where the blade controller actuates

in response to its local blade measurements. Unlike the Coleman transform-based con-

trol, the single-blade control does not involve any coordinate transformations, and this

type of IPC strategies has a decoupled structure, consisting of three SISO controllers,

as follows: 
θ̃1(s)

θ̃2(s)

θ̃3(s)

 =


K(s) 0 0

0 K(s) 0

0 0 K(s)


︸ ︷︷ ︸

Csbc(K(s))


M̃1(s)

M̃2(s)

M̃3(s)

 (3.8)

where the blade controller K ∈ R is designed to attenuate the blade loads at 1p, 2p

and 4p frequencies. This form of IPC (3.8) is investigated by many studies, for exam-

ple, Yi and Leithead (2012) and Han and Leithead (2014) examined the performance of

the single-blade controller in terms of fatigue and ultimate load reductions.

Remark 3.2. In this thesis, the baseline IPC is a form of the single-blade controller (3.8)

for its convenience as no coordination is required.
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3.2.3 Clarke Transform-based Control

A typical Clarke transform-based control is depicted in Figure 3.3. The Clarke transfor-

mations, also known as αβγ transformations, are widely used in the fields of electrical

machines (Duesterhoeft, Schulz, & Clarke, 1951). These transformations were adopted

by Zhang et al. (2013) in the IPC design for wind turbines. In the Clarke transform-based

control, the blade moment measurements M̃1,2,3 are mapped into a set of orthogonal axes

that are stationary to the rotating turbine blades via the Clarke transform Tck ∈ R2×3,

that is defined as follows:

M̃α(t)

M̃β(t)

 =

√
2

3

1 −1

2
−1

2

0

√
3

2
−
√

3

2


︸ ︷︷ ︸

Tck


M̃1(t)

M̃2(t)

M̃3(t)

 , (3.9a)

where M̃α, M̃β denote the referred blade signals upon the orthogonal axes. Similarly,

the referred pitch signals upon the orthogonal axes θ̃α(t), θ̃β(t) are projected back to the

rotating frame of reference via the inverse Clarke transform T inv
ck ∈ R3×2, that is defined

as follows:

θ̃α(t)

θ̃β(t)

 =

√
2

3


1 0

−1

2

√
3

2

−1

2
−
√

3

2


︸ ︷︷ ︸

T inv
ck


θ̃1(t)

θ̃2(t)

θ̃3(t)

 . (3.9b)

As demonstrated by Zhang et al. (2013), substituting the Clarke transformations (3.9)

into the blade model (3.6) yields:M̃α(s)

M̃β(s)

 =

G(s) 0

0 G(s)

θ̃α(s)

θ̃β(s)

 . (3.10)

Based on the blade model (3.10), which has a diagonal structure, a diagonal blade

controller Kck ∈ R2×2 can be employed, that is defined as follows:θ̃α(s)

θ̃β(s)

 =

K(s) 0

0 K(s)


︸ ︷︷ ︸

Kck(K(s))

M̃α(s)

M̃β(s)

 . (3.11)
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Figure 3.3: Clarke Transform-based controller.

and the controller K ∈ R targets the blade loads at 1p, 2p and 4p frequencies. Notice

that the use of the Clarke transformations simplifies the three single-input-single-output

(SISO) controller structure (3.8), from the single-blade control, into two SISO control

structure (3.11). Furthermore, unlike the Coleman transform-based IPC, the Clarke

transform-based control does not require a measurement of the rotor azimuth angle,

where the same benefit also holds for single-blade control.

3.2.4 Summary

This section presented background regarding the recent development of the IPC strate-

gies. The features of each IPC design method are discussed, laying the foundation for

performance similarity analysis in Chapter 4. In addition, this section also explained

the influence of the Coleman transformation on the blade model, that justifies why the

Coleman-transformed plant (3.7) is employed to represent the Coleman transform-based

control in Chapter 4.

3.3 Feed-forword Model Predictive Control

As discussed in Chapter 1, one of the objectives in this thesis is to incorporate the up-

coming wind information and constraint handling into the existing blade-pitch controller.

The aim of this section is to present the development of the feed-forward MPC that par-

ticularly handles advance information. Notice that the standard MPC performs poorly

in terms of handling the advance knowledge, and many studies suggested a separate

feed-forward design upon a feedback design for improving the tracking or disturbance

performance. Methods of incorporating feed-forward into the feedback MPC design can
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be grouped into two classes: the generalised predictive control (GPC) and dual-mode

MPC.

3.3.1 Feed-forward in Generalised predictive control

In Chapter 2, the background of generalised predictive control (GPC) was presented.

The reader may expect, in principle, the standard GPC (Clarke et al., 1987a, 1987b),

should automatically take into account the feed-forward information r→k
within the op-

timisation (2.24), resulting in an unconstrained control law (2.21):

∆uk = −Kxk + Pr r→k
. (3.12)

However, the performance of the feed-forward compensator Pr could be poor (J. A. Rossiter

& Grinnell, 1995, 1996), explained as follows.

Studies by J. A. Rossiter and Grinnell (1995, 1996) argued that in practice, the industry

tends to deploy a small control horizon nc in the concern of the computational power.

As a result, the performance of the default feed-forward compensator Pr in (3.12) is

poor. To illustrate, consider a simple step-tracking example,

xk+1 =

 0.8 0.2

−0.2 0.9


︸ ︷︷ ︸

A

xk +

0.1

0.8


︸ ︷︷ ︸
B

uk, yk =
[
1.9 −1

]
︸ ︷︷ ︸

C

xk. (3.13)
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Figure 3.4: Response of the GPC with various control horizon nc. The prediction
and preview horizon, n and na, both are set as 10. Solid and dashed lines represent the
GPC with nc = 1 and nc = 10, respectively, whilst the dotted line shows the set-point.

Figure 3.4 shows the performance of the controller law (3.12) with the control horizon

nc = 1, 10 whilst the prediction and preview horizons are fixed at n = 10, na = 10.
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The set-point changes happen at sample k = 20. For the case with the small control

horizon nc = 1, the control move uk reacted too soon before the set-point rk changes

occur, whilst for the controller with the control horizon nc = 10, the performance is

much better. Thus, it is clearly the default feed-forward compensator Pr in (3.12) is not

well designed when the GPC is tuned with small nc.

Based on the findings from J. A. Rossiter and Grinnell (1995, 1996), many studies

began investigating design methods of improving the feed-forward compensator Pr, sep-

arating from the GPC feedback design (e.g. J. A. Rossiter and Valencia-Palomo (2009);

Valencia-Palomo, Rossiter, and López-Estrada (2014); L. Wang and Rossiter (2008)).

For example, in J. A. Rossiter and Valencia-Palomo (2009), a separate two stage design

was proposed. Consider an unconstrained control law (2.21):

∆uk = −Kxk + Pr r→k
. (3.14)

In J. A. Rossiter and Valencia-Palomo (2009), the default feed-forward compensator Pr

is optimised based on the closed-loop predictions of the input and output, that can be

obtained by substituting (3.14) into the prediction model (2.19):


y1|k

y2|k
...

yn|k


︸ ︷︷ ︸
y
→k

=


CΦ

CΦ2

...

CΦn

x0|k +


CB 0 · · · 0

CΦB CB · · · 0
...

...
. . .

...

CΦn−1B CΦn−2B · · · CΦn−ncB


︸ ︷︷ ︸

Hy


r→
T

k−1

r→
T

k
...

r→
T

k+nc−2


︸ ︷︷ ︸

Sr


P1

P2

...

Pna


︸ ︷︷ ︸

Pr

, (3.15a)


∆u0|k

∆u1|k
...

∆unc−1|k


︸ ︷︷ ︸

∆u→k−1

= −


K

KΦ
...

KΦnc−2

x0|k +


I 0 · · · 0

B I · · · 0
...

...
. . .

...

Φnc−3B Φnc−4B · · · I


︸ ︷︷ ︸

Hu


r→
T

k−1

r→
T

k
...

r→
T

k+nc−2


︸ ︷︷ ︸

Sr


P1

P2

...

Pna


︸ ︷︷ ︸

Pr

,

(3.15b)

where Φ = A−BK. Assuming zero initial condition x0|k = 0, the default feed-forward

compensator Pr is optimised by minimising the cost (2.20a) with respect to the Pr,

yielding:

Pr =
(
STr H

T
y QHySr + STr H

T
u QHuSr)

−1STr H
T
y r→k−1

, (3.15c)

Finally, the new feed-forward compensator Pr in (3.15c) replaces the default compensator

in (3.14). Notice that Pr in (3.15c) is dependent on the upcoming set-point r→k−1
at
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sample k. Thus, computation of the Pr in (3.15c) requires solving a least-square problem

on-line at every sample. In Valencia-Palomo et al. (2014), the study demonstrated the

performance of this two stage design method on hardware that showed a significant

improvement of using the re-designed feed-forward compensator.

Similar studies also investigated the separate design under the GPC framework. In-

stead of improving the default feed-forward compensator Pr on an existing feedback

GPC design, Carrasco and Goodwin (2011a, 2011b); Goodwin, Carrasco, and Mayne

(2011) argued that assuming the feed-forward control law is not limited by the feedback

bandwidth, thus, the feed-forward controller should take an active role to perform the

tracking or disturbance rejection without any measurement from the plant, whilst the

feedback design is constructed for robustifying the closed-loop. To illustrate, consider

the cost function for the feed-forward control law:

arg min
∆uff
→ k−1

Jff
k =

n∑
i=1

(
(ri|k − yff

i|k)
TQ(ri|k − yff

i|k) + (∆uff
i−1|k)

TR∆uff
i−1|k

)
, (3.16a)

s.t. xff
i+1|k = Axff

i|k +B∆uff
i−1|k, ∀i = {1, 2, · · · , n}, (3.16b)

yff
i|k = Cxff

i|k, ∀i = {1, 2, · · · , n}. (3.16c)

Notice that the optimisation problem of (3.16) needs to take into account constraints

such as (2.23). It is assumed that the initial condition xff
0|k is known. Once the feed-

forward control input sequence ∆uff
→ k−1

is computed, the entire sequence is then passed

into the feedback optimisation:

arg min
∆ufb
→ k−1

J fb
k =

n∑
i=1

(
(ri|k − yi|k)TQ(ri|k − yi|k) + (∆ufb

i−1|k)
TR∆ufb

i−1|k

)
, (3.17a)

s.t. xi|k = Axi|k +B(∆ufb
i−1|k + ∆uff

i−1|k), ∀i = {1, 2, · · · , n}, (3.17b)

yi|k = Cxi|k, ∀i = {1, 2, · · · , n}, (3.17c)

and the optimisation (3.17) also is subjected to constraints like (2.23). Notice that this

design requires solving two quadratic programming (QP) problems on-line. Unlike the

two stage design in (3.15c), the approach in (3.16) and (3.17) is similar to a model

inversion-based approach and if the limitation on the bandwidth is mainly due to the

input hardware constraints, this approach has the same performance as if the feed-

forward optimisation is not included as pointed out by the authors in (Carrasco &

Goodwin, 2011a).
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3.3.2 Feed-forward in Dual-mode MPC

In dual-mode MPC, the use of an infinite-horizon cost function makes formulating the

feed-forward knowledge difficult. The standard dual-mode MPC relies upon an assump-

tion that the set-point is fixed beyond the control horizon nc (e.g. Kouvaritakis, Rossiter,

and Cannon (1998); Scokaert and Rawlings (1998)). By inspection of the dual-mode cost

in (2.38):

Jk := x̃→
T

k
Q̄x x̃→k

+ ∆ ũ→
T

k−1
R̄∆ ũ→k−1

, (3.18)

where the prediction of state x̃→k
and input ∆ ũ→k−1

both are up to the control horizon nc.

Thus, undoubtedly, the changes in the set-point beyond the control horizon nc can not

be handled properly by the cost formulation in the standard dual-mode MPC (3.18).

Nonetheless, the reader may wonder that the steady-state xsk,∆u
s
k in (2.29) takes into

account the knowledge of the set-point rk. Consider the unconstrained control law (2.27):

∆uk = −K(xk − xsk) + ∆usk, (3.19)

where xsk := Kxrrk and ∆usk := Kurrk. As argued by J. A. Rossiter and Valencia-Palomo

(2009), despite the set-point knowledge is incorporated into the steady-state xsk,∆u
s
k,

however, the set-point trajectory r→k−1
are not fully utilised. This is because the gain of

the steady-state Kxr,Kur only ensure the zero offset and any changes in the set-point

trajectory are not handled systematically.

This issue becomes clearer in the closed-loop paradigm. Consider the cost function in

the closed-loop paradigm from (2.41):

Jk = c→
T

k−1
W̄c c→k−1

. (3.20)

In absence of constraints, the control law is simply (3.19) with ck = 0 even if the set-point

trajectory is not constant. Hence, no input efforts are made for the changes happened

in the set-point trajectory r→k−1
.

To overcome this issue, the two stage design (3.15), as discussed in Section 3.3.1, can be

extended to the dual-mode paradigm (J. A. Rossiter & Valencia-Palomo, 2009; Valencia-

Palomo et al., 2014), where a feed-forward compensator Pr can be computed based on
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the closed-loop predictions, which can be obtained by (3.15). Another method pro-

posed by J. Rossiter (2015) was to embed the set-point changes r→k−1
into the cost

function (3.20). This method has many benefits in that only one on-line optimisation

is required compared to the two stage design in (3.15) and no assumptions are placed

on the initial conditions, thus, it is adopted by this thesis to incorporate the upcoming

wind information into the existing feedback controller, as discussed in Chapter 6.

Remark 3.3. In the literature, the feed-forward information is mainly considered as the

set-point trajectory, whilst in this thesis, the advance knowledge is the upcoming wind

measurement, which is an input disturbance to the turbine system. However, the feed-

forward issues, discussed in this section, also apply to controllers, that are regardless if

their control purposes are either tracking or disturbance rejection.

3.3.3 Summary

This section presented the problems of handling upcoming knowledge in the GPC and

dual-mode MPC. Many studies demonstrated methods to improve the feed-forward de-

sign based on a feedback design under the MPC framework. However, most of the

feedback design is considered as a state-feedback control law. In Chapter 6, a method is

proposed to incorporate feed-forward knowledge and constraint handling capability into

an output-feedback controller. In addition, the difficulties regarding such an approach

are also discussed in Chapter 6.

3.4 Feed-forward Control in Wind Turbines

As discussed in Chapter 1, load attenuation strategies via active blade pitching are

effective in reducing unsteady loads on the blades and rotor. In recent years, many

studies began utilising the upcoming wind measurements for preview blade pitch control

design, with a view to compensating the wind disturbance before it strikes the turbine.

This section presents some relevant works on the feed-forward control on wind turbine,

grouping into three aspects: modelling of the wind field, feed-forward design methods

and wind measurement quality.
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3.4.1 Modelling of the Wind Field

Typically, wind field information can be represented in a collection of vectors in a Carte-

sian or polar grid (Schlipf, Schuler, Grau, & Martin, 2010). For example, the TurbSim,

discussed in Section 2.8, generates a series of three dimensional wind vectors on a two-

dimensional grid, marching towards the turbine. However, the complex wind field with

multi-dimensional is not suitable for control design, because typical control design relies

upon simpler models, for example, the linear model shown in Section 2.4. Thus, many

methods were proposed to simplify the wind disturbance.

3.4.1.1 Rotor Speed Regulation

Early adoption of preview control in wind turbines for turbine speed regulation was

reported by Kodama, Matsuzaka, Tuchiya, and Arinaga (1999), in which the preview

control strategy was based on the hub-height wind measurement taken 40 meters in front

of the rotor by an anemometer on a free standing tower. In recent years, light detec-

tion and ranging (LIDAR) devices became commercially accessible and many studies

(e.g. Harris, Hand, and Wright (2005); Schlipf and Kuhn (2008)) began utilising the

LIDAR devices for improving rotor speed regulation. Notice that there are many issues

within the LIDAR devices, for example, how to improve the quality of the wind mea-

surements (E. Simley, Pao, & Frehlich, 2011) and this is discussed later in Section 3.4.3.

In this section, it is implicitly assumed that the wind information is available in a col-

lection of upcoming stream-wise wind speed on a two-dimensional grid in front of the

turbine.

Consider the measured stream-wise wind speed defined as vm(yr(n), zr(n), n, t), where

yr(n), zr(n) ∈ R denote the horizontal and vertical co-ordinates across the rotor plane

and n ∈ R is the index of the wind data. To simplify the grid of the measured wind

speed vm(yr(n), zr(n), n, t) for control design, Schlipf (2013) suggested a simplest wind

disturbance model, that is averaging all the available measurements, and defined as

follows:

veff(t) :=
1

N

N∑
n=1

vm(yr(n), zr(n), n, t), (3.21)



Chapter 3. Review of the Related Work 70

where N ∈ R is the total number of measurement point. The rotor effective wind speed

veff is then employed by the collective pitch controller for regulating the rotor speed.

Nonetheless, given that the geometry of the blade is not uniform but irregular along

the blade length, thus, the sensitivity to the wind along the blade is different. Simply

averaging the measured wind speed (3.21) might not produce a good representation of

the wind field.

Therefore, Schlipf and Kuhn (2008) and Schlipf, Fischer, and Carcangiu (2010) proposed

a new method to calculate the rotor effective wind speed, where this effective speed is

calculated based on the measured wind speeds across the rotor and the weightings of

the variations of blade in-plane forces to wind speed. Consider the variations of blade

in-plane forces to wind speed to wind speed defined as
F i,lin
dv ∈ R and the steam-wise wind

speed vi,l ∈ R on the blade element l ∈ {1, · · · , L} ⊂ Z along blade i ∈ {1, 2, 3}, the

rotor effective wind speed veff is calculated as follows:

veff(t) :=

∑3
i=1

∑L
l=1

(
F i,lin
dv vi,l(t)rl

)
∑3

i=1

∑L
l=1

F i,lin
dv rl

, (3.22)

where rl ∈ R is the blade length. Notice that in Section 2.4, the wind-induced rotor

disturbance τd
a (2.11) is similar to the rotor effective wind speed veff in (3.22) except

where the rotor effective wind speed veff is divided by the term
∑3

i=1

∑L
l=1

F i,lin
dv rl.

3.4.1.2 Blade Load Attenuations

One of the earliest adoptions of the upcoming wind measurements for the blade load

attenuation was by J. Laks, Pao, and Wright (2009a). The study assumed the advance

wind measurements are available in front of the blade tip, at 100% span of the blades.

Later, this method is adopted by Dunne, Pao, Wright, Jonkman, and Kelley (2011);

J. Laks, Pao, Wright, Kelley, and Jonkman (2011, 2010) considering the upcoming wind

measurements at 75% span of the blades. However, the drawback of this method is that

any additional wind field information across the rotor becomes redundant.

Therefore, Schlipf (2013); Schlipf, Schuler, et al. (2010) proposed a method that simplifies

the wind field across the rotor into three wind components, the averaged wind speed v̄ ∈
R, horizontal and vertical wind shear components δh, δv ∈ R, respectively. Thus, consider

the measured stream-wise wind speed vm(yr(n), zr(n), n, t), the simplified stream-wise



Chapter 3. Review of the Related Work 71

wind speed v(yr(n), zr(n), n, t) is defined as follows:

v(yr(n), zr(n), n, t) := v̄(t) + yr(n)δh(t) + zr(n)δv(t), (3.23)

where yr(n), zr(n) ∈ R denote the horizontal and vertical co-ordinates across the rotor

plane and n ∈ {1, ..., N} ⊂ Z is the index of the wind data.The averaged wind speed v̄,

horizontal and vertical wind shear components δh, δv can be computed by solving the

following equation:


1 yr(1) zr(1)

1 yr(2) zr(2)
...

...
...

1 yr(N) zr(N)



v̄(t)

δh(t)

δv(t)

 =


vm(yr(1), zr(1), 1, t)

vm(yr(2), zr(2), 2, t)
...

vm(yr(N), zr(N), N, t)

 . (3.24)

An unique solution for v̄, δh, δv can be found if N ≥ 3 by simple least square method.

Figure 3.5 demonstrates the difference between the simplified stream-wise wind speed

v and the measured wind speed vm. The simplified wind model (3.23) is popular and

employed by many studies (e.g. J. Laks, Pao, Wright, et al. (2011); Spencer et al.

(2013)), because there is a linear blade model generated by the FAST linearisation

code (J. Jonkman & Buhl Jr, 2005), where the three wind component representations

of the wind field can be used as the input. Nonetheless, a comparison study showed

that the load turbine reduction performance based on the simplified wind model (3.23)

was worse than the direct wind measurements at 75% span of the blades (J. Laks, Pao,

Wright, et al., 2011; J. Laks et al., 2010). This is because the details of the turbulence

of the wind field is averaged out by the three wind component representation (3.23).

Later, E. Simley et al. (2013); E. Simley and Pao (2013) introduced the concept of the

blade effective wind speed, which is similar to the rotor effective wind speed as discussed

in the previous section. The blade effective wind speed veffi is a weighted sum of the

wind speed along the blade, which is defined as follows:

veffi(t) :=

∑L
l=1

(
F i,lout
dv vi,l(t)rl

)
∑L

l=1
F i,lin
dv rl

, (3.25)

where vi,l is the measured stream-wise wind speed, whilst
F i,lout
dv ∈ R is the variation of the

out-of-plane force to the wind speed and rl ∈ R is the blade length. Notice that this is

similar to the wind-induced blade disturbance Md
i , discussed in Section 2.4. The benefits

of the blade effective wind speed is that the wind disturbance at higher frequencies can
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Figure 3.5: Simulated wind field across the rotor plane. The measured stream-wise
wind speed is denoted as vm, whilst v represents the simplified wind field.

be retained compared to the simplified wind model (3.23). More discussions are available

in Chapter 7.

3.4.2 Feed-forward Design Methods in Wind Turbine

In this section, the related work on wind turbine feed-forward control is presented based

on their design methods.

3.4.2.1 Model Inversion-based Control

Model inversion-based control is one of the simplest forms of the feed-forward control.

Consider a linear model as follows:

y(s) = G(s)u(s) +Gd(s)d(s), (3.26)

where y, u, d are the output, input and measured disturbance, whilst G,Gd are the

transfer functions of the plant and disturbance model. Assuming the system model G

is invertible, a simple but effective feed-forward control law is as follows:

u(s) = −G(s)−1Gd(s)d(s). (3.27)
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This model inversion-based method is popular in wind turbine control. For example,

Schlipf and Kuhn (2008) M. Wang, Yue, Bao, and Leithead (2015) and Bao, Wang, Yue,

and Leithead (2015) used the model inversion-based design addressing the rotor speed

regulation problem, whilst Schlipf, Schuler, et al. (2010) proposed a model inversion-

based feed-forward controller for alleviating the blade loads. Similarly, a gain-scheduling

model inversion-based controller was also proposed by Dunne, Pao, and Wright (2010)

and Dunne, Pao, Wright, Jonkman, and Kelley (2011) for turbine load reduction. The

drawbacks of this method are that the constraints are not taken into account and also

the plant model G is not necessarily invertible.

3.4.2.2 Non-model Based Control

In recent years, a non-model based approach was proposed by Dunne, Pao, Wright,

Jonkman, Kelley, and Simley (2011) and Dunne, Pao, Wright, Jonkman, and Kelley

(2011) for attenuating blade loads, where the feed-forward controller was formed heuris-

tically by shaping the pre-filter. Similarly, N. Wang et al. (2012) and N. Wang (2013)

extended the non-model based approach to an adaptive design where the feed-forward

control law was updated on-line based on the wind conditions.

3.4.2.3 Model-based Control

Some studies adopt optimisation-based methods to design feed-forward controllers. For

example, H2 design by Dunne and Pao (2013), Dunne and Pao (2016) and Dunne (2016)

for regulating the rotor speed, H∞ design by J. Laks et al. (2009a) for blade load

attenuation. However, as reported in J. Laks et al. (2009a), the use of the approaching

wind measurements might potentially drive the pitch actuators to operate around their

limits, especially for the IPC, thus, a model predictive control design is motivated.
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3.4.2.4 Model Predictive Control

3.4.2.4.1 MPC in Rotor Speed Regulation

One of the most popular types of optimisation-based control methods in wind turbines is

model predictive control. This is because, as demonstrated by L. Henriksen et al. (2012);

L. C. Henriksen (2007, 2010), the optimisation-based control law, that incorporates the

constraint knowledge on pitch actuator and generator torque input, easily outperformed

the proportional-integral (PI) controller with integrator anti-windup. Similarly, Soliman

et al. (2010), Kumar and Stol (2009) and Hur and Leithead (2016) adopted a gain-

scheduling linear MPC approach, where the control laws were calculated based on a

range of wind turbine models derived from both below and above-rated wind conditions.

Furthermore, some studies, for example, C. L. Bottasso, Croce, and Savini (2007) and

Dang, Wang, and Cai (2008) proposed nonlinear MPC controllers in order to overcome

the non-linearity between these operating wind conditions.

Another key reason for the popularity of MPC in wind turbines is the systematic incor-

poration of the future wind information. As demonstrated by Körber and King (2010),

the linear MPC control law, that takes into account the perfect upcoming wind informa-

tion, achieved better rotor speed regulation than a baseline PI controller. In a follow-up

study by Körber and King (2011), a nonlinear MPC approach was adopted assuming the

preview knowledge was known perfectly in advance. Later, Schlipf, Schlipf, and Kühn

(2013) extended the study of nonlinear MPC to a scenario where the measurement errors

from the LIDAR system were included.

3.4.2.4.2 MPC in Blade Load Reduction

Model predictive control approach was adopted by J. Laks, Pao, Simley, et al. (2011)

and J. H. Laks (2013), where the constraints on pitch rate and pitch magnitudes as well

as the upcoming wind measurements from the LIDAR systems were included in the on-

line optimisation. A similar study by Spencer et al. (2013), Soltani, Wisniewski, Brath,

and Boyd (2011) and Madsen, Filso, and Soltani (2012) also demonstrated that the MPC

design yielded good performance when handling the approaching wind information. To

counter the model variations in different operating conditions, Mirzaei (2012), Mirzaei

et al. (2012), Mirzaei and Soltani (2013) and Mirzaei, Soltani, Poulsen, and Niemann
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(2013) proposed a gain-scheduling MPC design and also an algorithm to correct the

preview time difference between the estimated and actual wind measurements.

3.4.2.4.3 Discussions

Despite recent development of some MPC theories, such as tube-based MPC (e.g. Can-

non, Kouvaritakis, Rakovic, and Cheng (2011); Chisci, Rossiter, and Zappa (2001); Kou-

varitakis, Cannon, Raković, and Cheng (2010); Mayne, Seron, and Rakovic (2005)) and

Laguerre function-based MPC (e.g. J. A. Rossiter and Wang (2008); Valencia-Palomo,

Rossiter, Jones, Gondhalekar, and Khan (2011); L. Wang (2004)), the application of

these advanced MPC techniques for wind turbines is still in its infancy. Körber (2014)

and Körber and King (2013) addressed the turbine speed regulation problem with perfect

advance wind knowledge by a robust MPC approach where the constraints were formu-

lated including all the possible violations based on the prior knowledge of the disturbance

model. In addition, one non-preview robust MPC approach in wind turbines was stud-

ied by Evans, Cannon, and Kouvaritakis (2015) for tower load damping. Furthermore,

Adegas, Wisniewski, and Sloth Larsen (2013) employed a Laguerre function-based MPC

in wind turbines where such parametrisations of degrees-of-freedom simplified the rotor

speed controller design which could be achieved by placement of closed-loop poles.

3.4.3 Wind Measurement Quality

So far, it is assumed that the wind field is accurately measured by the LIDAR devices

and the wind turbulence does not evolve between the measurement point and the tur-

bine, known as Taylor’s frozen turbulence hypothesis (Taylor, 1938). However, in reality,

the turbulence evolves as the wind field moves towards the wind turbine from the point

of measurements. Therefore, E. A. Bossanyi and Garrad Hassan (2012) addressed these

issues and conducted studies of preview control under more realistic LIDAR measure-

ments. Recent studies by Bao et al. (2015); M. Wang et al. (2015) proposed a feed-

forward controller based on a system inversion technique that uses simulated LIDAR

measurements including the evolving turbulence.

Nonetheless, since wind-field estimation is a non-trivial problem and the main focus

of this thesis is on preview control design, thus, details of recent developments in

the wind-field estimation techniques are not included in this thesis and some excellent
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sources can be found in Raach, Schlipf, Haizmann, and Cheng (2014), Towers and Jones

(2016) Schlipf, Schuler, et al. (2010), E. A. Bossanyi and Garrad Hassan (2012), E. Sim-

ley, Pao, Frehlich, Jonkman, and Kelley (2014), E. Simley and Pao (2012), E. Simley

and Pao (2013), E. Simley et al. (2016), E. Simley et al. (2011), E. J. Simley (2015) and

the references therein.

3.4.4 Summary

This section presented the recent development in wind field modelling. The key features

of various modelling methods were discussed. In addition, control design methods for

feed-forward wind turbine control were reviewed. In particular, the related work regard-

ing the MPC in wind turbine was discussed in Section 3.4.2.4. To sum up, this section

laid an important foundation for Chapter 7, where the upcoming wind information is

used for feed-forward control.

3.5 Chapter Summary

The backgrounds of three topics were covered in this chapter. Firstly, literature regard-

ing individual pitch control was discussed, that sets the scene for Chapter 4. Secondly,

discussions in Section 3.3 highlighted the recent development in feed-forward model pre-

dictive control. And lastly, related work regarding many aspects of the feed-forward

control in wind turbine provided an important insight to the reader for understanding

the topics in Chapter 7.

In the coming chapter, the performance similarity of different classes of the IPCs is

investigated, that is heavily based upon the related works presented in Section 3.2.



Chapter 4

Performance similarities between

individual pitch control strategies

4.1 Chapter Overview and Contribution

The use of blade individual pitch control (IPC) offers a means of reducing the harmful

turbine structural loads that arise from the uneven and unsteady forcing from the on-

coming wind. In recent years two different and competing IPC techniques have emerged

that are characterised by the specific loads that they are primarily designed to attenuate.

In the first instance, methodologies such as single-blade control and Clarke Transform-

based control have been developed to reduce the unsteady loads on the rotating blades,

whilst tilt-yaw control and its many variants instead target load reductions in the non

rotating turbine structures, such as the tower and main bearing. Given the seeming

disparities between these controllers, the aim of this chapter is to investigate and un-

derstand the fundamental performance similarities that exist between them and hence

unify research in this area. And a significant new result in this chapter shows that

single-blade controllers are equivalent to a particular class of tilt-yaw controller, which

itself is equivalent to Clarke Transform-based control. This means that three archi-

tecturally dissimilar IPC controllers exist that yield exactly the same performance in

terms of load reductions on fixed and rotating turbine structures. This chapter further

demonstrates this outcome by presenting results obtained from high-fidelity closed-loop

turbine simulations.

77
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This chapter is structured as follows: Section 4.2 presents an introduction and moti-

vation of the chapter. Section 4.3 defines the three different IPCs under comparison.

These are a Coleman Transform-based controller, a Clarke Transform-based controller,

and a single-blade controller. In Section 4.4, the equivalence between these IPCs is es-

tablished. Specifically, this chapter shows; (i) that a single-blade controller is equivalent

to a Coleman Transform-based controller with a particular structure; (ii) that this Cole-

man Transform-based controller is equivalent to a Clarke Transform-based controller;

and (iii) that all three IPCs yield identical performance, as quantified by the robust sta-

bility margin. In Section 4.5, this equivalence is demonstrated by performing separate

closed-loop simulations upon a high-fidelity wind turbine model, followed by a discussion

of the results. This chapter is concluded in Section 4.6.

Notice that part of this chapter is published in the following publication:

1. W.H. Lio, B. Ll. Jones, Q. Lu, and J.A. Rossiter, Fundamental performance simi-

larities between individual pitch control strategies for wind turbines, International

Journal of Control, 90(1), pp.37-52, 2017. DOI: 10.1080/00207179.2015.1078912.

4.2 Introduction

The ability possessed by most modern wind turbine generators to actively control the

pitch of each blade offers the potential to reduce the unsteady loads that arise form a

number of sources, such as wind-shear, tower shadow, yaw misalignment and turbulence

within the atmospheric boundary layer (Barlas & van Kuik, 2010). Such loads are a

known source of the structural fatigue damage that can reduce the operational lifetime

of a turbine, ultimately increasing the cost of wind energy to the end user. As a conse-

quence, a growing body of research has emerged in recent years, seeking to establish the

best way of designing individual pitch control (IPC) systems. Typically, and for reasons

of simplicity of implementation favoured by the industry, IPCs are designed separately

from a collective pitch control (CPC) system, whose role is to regulate the rotor speed

in above-rated wind conditions by collectively adjusting the pitch angle of each blade by

the same amount (Muljadi, 2001; Pao & Johnson, 2009). The IPC provides an additional

pitch angle demand signal, typically in response to measurements of the flap-wise blade

root bending moments, in order to attenuate the effects of unsteady spatio-temporal

rotor loads.
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Of the many IPC strategies that have been published in recent years, most can be

grouped into two distinct classes, characterised by the specific turbine loads they are

primarily designed to attenuate. The first and most popular branch of IPC targets load

reductions on the non-rotating turbine structures, such as the tower, nacelle and main

bearing. A coordinate transformation is employed to refer sensing and actuation signals

in the rotating frame of reference to a non-rotating reference frame. The most commonly

employed transformation in this respect is the Coleman Transform. As noted by Lu et al.

(2015), this transformation emerged from the area of helicopter rotor control (Coleman

& Feingold, 1957), and is widely employed in the fields of power conversion and electrical

machines under the guise of the direct-quadrature-zero (dq0) transform (Vas, 1992). Use

of the Coleman Transform to address the IPC problem was adopted by E. A. Bossanyi

(2003a) and T. G. van Engelen and van der Hooft (2005) in order to project blade loads

onto the non-rotating and orthogonal turbine tilt and yaw axes. Subsequent IPC design

then attenuates the tilt and yaw referred loads, with such designs sometimes referred

to as ‘tilt-yaw’ controllers. These produce tilt and yaw referred pitch demand signals

which are projected back to the rotating frame of reference via the inverse Coleman

Transform. The attractive feature of the Coleman Transform is that it transforms an

otherwise time periodic system into one that is time-invariant by projecting the system

inputs and outputs in the rotational frame of reference onto stationary tilt and yaw axes.

If the turbine dynamics are linear, or can be approximated as such, then conventional

tools of linear and time-invariant (LTI) control system design can further be applied

to design controllers to attenuate the unsteady loads upon the non-rotating turbine

structures. This is the main reason why the majority of IPC studies have employed

the Coleman Transform (E. A. Bossanyi, 2003a, 2005; E. A. Bossanyi & Wright, 2009;

Engels, Subhani, Zafar, & Savenije, 2014; Geyler & Caselitz, 2008; Lackner & van Kuik,

2010; Lu et al., 2015; Plumley et al., 2014; Selvam et al., 2009; K. Stol, Moll, Bir, &

Namik, 2009; T. G. van Engelen, 2006; T. G. van Engelen & van der Hooft, 2005).

The second branch of IPC targets load reductions upon the rotating turbine structures,

primarily the blades. Single-blade control (Leithead, Neilson, & Dominguez, 2009; Leit-

head, Neilson, Dominguez, & Dutka, 2009), later termed individual blade control (Han

& Leithead, 2014), equips each blade with its own controller that actuates in response

to local blade load measurements. The overall IPC controller is thus formed from three

identical single-input-single-output (SISO) controllers acting independently from one

another. Although conceptually simple, there is redundancy in the sense that three sep-

arate SISO controllers are not necessary to design an IPC controller. Recently, (Zhang

et al., 2013) showed it was possible to use just two identical SISO controllers, pre and
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post-compensated by the Clarke Transform (Vas, 1992) and its inverse to yield good

blade-load reductions. This form of blade load IPC was termed proportional-resonant

control by these authors. It is interesting to note that the Clarke Transform, also known

as the αβγ Transform, is conceptually similar to the Coleman Transform in the sense that

both transforms perform projections onto a set of orthogonal axes. However, whereas

the Coleman Transform performs a projection onto a set of axes that are rotating with

respect to the turbine blades, the Clarke Transform performs a projection onto a set

of axes that are stationary with respect to the blades. One immediate implication of

this, as noted by Zhang et al. (2013), is that the Clarke Transform-based IPC does not

require a measurement of the rotor azimuth angle, unlike IPC based upon the Coleman

Transform. The same benefit also holds for single-blade control.

Given this range of IPC techniques, it is natural to attempt to understand under what

conditions these different controllers yield similar performance, in terms of load reduc-

tions. However, this is not as straightforward as it may seem. A detailed literature

review was presented in Section 3.2 in Chapter 3. The fashion in which load reductions

about the tilt and yaw axes correspond to reductions in blade loads is somewhat com-

plicated by virtue of the frequency shifting effects of the Coleman Transform (Lu et al.,

2015). As demonstrated in Section 2.9 in Chapter 2, wind turbine loads predominantly

exist at the harmonics of the blade rotational frequency (Barlas & van Kuik, 2010). For

three-bladed turbines, the blade loads are concentrated at integer multiples of the once

per revolution (1p) blade frequency, resulting in non-rotating loads at adjacent harmon-

ics to the nearest 3p frequency (Zhang et al., 2013). For example, 1p blade loads map to

static (0p) loads in the tilt and yaw frame of reference, whilst 3p non-rotating structural

loads are split into 2p and 4p blade loads. It is this frequency shifting of loads that

makes IPC comparisons difficult, and understanding this problem forms the essence of

this chapter.

4.3 Individual Pitch Control

This section presents an overview summary of various types of IPCs. Some details in

this section may appear in the early chapters. However, It is helpful for the reader

because the notations of this chapter are properly defined in this section.

A typical wind turbine control systems architecture for above-rated conditions is shown
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Turbine

CPC

IPC

Filter

θ1(t) = θ̄(t) + θ̃1(t)

θ2(t) = θ̄(t) + θ̃2(t)

θ3(t) = θ̄(t) + θ̃3(t)

+

+
+

+
+

+

M1(t) M̃1(t)

M̃1(t)

M2(t) M̃2(t)

M̃2(t)

M3(t) M̃3(t)

M̃3(t)

θ̃1(t)

θ̃2(t)

θ̃3(t)

ω(t)θ̄(t)

f(t)

Figure 4.1: System architecture of a wind turbine, combining collective pitch control
(CPC) and individual pitch control (IPC). The CPC regulates rotor speed while the
IPC (shaded) attenuates perturbations in the flap-wise root bending moments on each
blade. Additional inputs to the turbine such as wind loading and generator torque are

accounted for in the term f(t).

in Figure 4.1. The CPC regulates the rotor speed ω(t) by adjusting the collective pitch

angle θ̄(t). To isolate the action of IPC from that of CPC, it is convenient to define the

pitch angles and blade moments as follows:


θ1(t)

θ2(t)

θ3(t)

 :=


θ̄(t) + θ̃1(t)

θ̄(t) + θ̃2(t)

θ̄(t) + θ̃3(t)

 ,

M1(t)

M2(t)

M3(t)

 :=


M̄(t) + M̃1(t)

M̄(t) + M̃2(t)

M̄(t) + M̃3(t)

 , (4.1)

where θ̃1,2,3(t) represent the perturbations in blade pitch angle demand from the col-

lective pitch signal, whilst M̃1,2,3(t) are the perturbations in flap-wise blade bend-

ing moments, obtained by filtering out the mean moment M̄(t) from the measure-

ments M1,2,3(t). This filtering is important in order to help decouple the IPC from

the CPC. For each blade, the relationship between perturbation input θ̃i and output M̃i,

for i ∈ {1, 2, 3} can be modelled by a transfer function G ∈ R, obtaining by linearising

the turbine dynamics around the rated rotor speed ω0. A typical blade transfer function,
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as used by Lu et al. (2015) for example, is as follows:

G(s) := Ga(s)Gb(s)Gbp(s), (4.2a)

where Ga, Gb ∈ R describe the dynamics of the pitch actuator and the blade, respec-

tively, whilst Gbp ∈ R is a band-pass filter that is included in order to remove the low

frequency component of the flap-wise blade root bending moment signal from strain-

gauge sensors, as well as high frequency noise. Basic models for each of these transfer

functions are as follows:

Ga(s) :=
1

1 + τs
, (4.2b)

Gb(s) :=
dMflap

dθ

(2πfb)2

s2 +Db2πfbs+ (2πfb)2
, (4.2c)

Gbp(s) :=
2πfhs

s2 + 2π(fh + fl)s+ 4π2fhfl
, (4.2d)

where τ ∈ R is the pitch actuator time constant,
dMflap

dθ ∈ R represents the change

in blade flap-wise bending moment with respect to pitch angle, fb ∈ R is the natural

frequency of the blade’s first flap-wise mode and Db ∈ R is its aerodynamic damping

ratio, while fh, fl ∈ R are the high and low corner frequencies, respectively, of the

bandpass filter. The basic individual pitch control problem is shown in Figure 4.2 and

is based upon the following three-blade model:


M̃1(s)

M̃2(s)

M̃3(s)

 =


G(s) 0 0

0 G(s) 0

0 0 G(s)


︸ ︷︷ ︸

P (s)


θ̃1(s)

θ̃2(s)

θ̃3(s)

 . (4.3)

In the interests of simplicity, the influence of the fixed turbine structural dynamics have

not been included, but if required, these could be represented as additive disturbances

on the bending moment channels. The next section introduces the three different IPCs

employed in this study. These are shown in Figure 4.3b, beginning first with the Coleman

Transform-based controller.
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θ̃3(s)

θ̃3(s)

Figure 4.2: Basic system architecture for IPC analysis and design.

4.3.1 Coleman Transform-based control

The Coleman Transform-based controller is shown in Figure 4.3a. As discussed in Sec-

tion 4.2, many IPC studies have employed this form of IPC in order to attenuate un-

steady loads upon the fixed turbine structure. The Coleman Transform Tcm (φ(t)) is

a time varying matrix that projects the rotational blade loads onto the stationary and

orthogonal tilt and yaw axes of the turbine, according to the blade azimuth angle φ(t).

For a three-bladed turbine in which φ(t) is defined as the angle of the first blade from

the horizontal yaw axis, the Coleman Transform is defined as follows:

 M̃tilt(t)

M̃yaw(t)

 :=
2

3

sinφ(t) sin

(
φ(t) +

2π

3

)
sin

(
φ(t) +

4π

3

)
cosφ(t) cos

(
φ(t) +

2π

3

)
cos

(
φ(t) +

4π

3

)


︸ ︷︷ ︸
Tcm(φ(t))


M̃1(t)

M̃2(t)

M̃3(t)

 . (4.4a)

The tilt and yaw referred flap-wise blade root bending moments, M̃tilt and M̃yaw are

mapped via the Coleman controller Ccm ∈ R2×2 to tilt and yaw referred pitch signals θ̃tilt

and θ̃yaw, that in turn are projected back into the blade referred pitch signals via the
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(a) Coleman Transform-based controller.
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(c) Clarke Transform-based controller.

Figure 4.3: Three different IPC architectures.

inverse Coleman Transform, T inv
cm (φ(t)) accordingly:


θ̃1(t)

θ̃2(t)

θ̃3(t)

 :=


sinφ(t) cosφ(t)

sin

(
φ(t) +

2π

3

)
cos

(
φ(t) +

2π

3

)
sin

(
φ(t) +

4π

3

)
cos

(
φ(t) +

4π

3

)


︸ ︷︷ ︸
T inv

cm (φ(t))

 θ̃tilt(t)

θ̃yaw(t)

 . (4.4b)

A basic Coleman controller consists of a diagonal transfer function matrix with equal

proportional-integral terms along the diagonal. Such a controller implicitly assumes that

the dynamics of the tilt and yaw axes are decoupled. However, this was shown not to

be the case in Lu et al. (2015). By modelling the dynamics of the Coleman Transform
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and its inverse, Lu et al. (2015) showed how these operators modify the basic plant

dynamics (4.3) to yield the Coleman-transformed plant Pcm ∈ R2×2:

M̃tilt(s)

M̃yaw(s)

 =

 G(s+ jω0) +G(s− jω0)

2
j
G(s+ jω0)−G(s− jω0)

2

−jG(s+ jω0)−G(s− jω0)

2

G(s+ jω0) +G(s− jω0)

2


︸ ︷︷ ︸

Pcm(s, ω0)

 θ̃tilt(s)

θ̃yaw(s)

 ,
(4.5)

where ω0 ∈ R is the constant rated rotor speed, and from which the coupled nature of

the tilt and yaw loops is evident.

4.3.2 Single-blade control

The simplest form of IPC is single-blade control, in which each blade is equipped with

its own controller K ∈ R that acts in response to the local blade load measurements.

Single-blade control is depicted in Figure 4.3b, wherein the controller Csbc ∈ R3×3 has

the following decoupled structure:


θ̃1(s)

θ̃2(s)

θ̃3(s)

 =


K(s) 0 0

0 K(s) 0

0 0 K(s)


︸ ︷︷ ︸

Csbc(K(s))


M̃1(s)

M̃2(s)

M̃3(s)

 (4.6)

The blade controller K is designed to attenuate the blade loads at 1p, 2p and 4p fre-

quencies. The benefits of this approach over those employing the Coleman Transform

are that it can be realised as three, separate SISO controllers and also does not require

a measurement of the rotor azimuth angle.

4.3.3 Clarke Transform-based control

Another IPC technique, based on blade load reductions, was recently introduced by Zhang

et al. (2013) and employed the Clarke Transform to project the blade loads onto a pair of

orthogonal axes that are stationary with respect to the turbine blades. Such a controller

is shown in Figure 4.3c, and consists of a diagonal blade controller Kck ∈ R2×2 pre and

post-compensated by the Clarke Transform Tck ∈ R3×2 and its inverse T inv
ck ∈ R2×3, as
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follows: 
θ̃1(s)

θ̃2(s)

θ̃3(s)

 := T inv
ck Kck(K(s))Tck︸ ︷︷ ︸
Cck(K(s))


M̃1(s)

M̃2(s)

M̃3(s)

 , (4.7a)

where:

T inv
ck =

√
2

3


1 0

−1

2

√
3

2

−1

2
−
√

3

2

 ,Kck(K(s)) =

K(s) 0

0 K(s)

 , Tck =

√
2

3

1 −1

2
−1

2

0

√
3

2
−
√

3

2

 .
(4.7b)

As with the single-blade controller, the blade controllers K in the Clarke controller Cck

are designed to minimise the loads at 1p, 2p and 4p frequencies, but do so upon the

orthogonally projected blade load signals M̃α(t) and M̃β(t), as opposed to M̃1,2,3(t).

Similarly to the single-blade controller, the Clarke controller does not require a mea-

surement of the blade azimuth angle and the control design amounts to the design of

a single SISO blade controller. However, the Clarke controller achieves its load reduc-

tions using only two SISO controllers, suggesting a degree of redundancy exists in the

single-blade controller (4.6).

4.4 Equivalence of Single-blade, Coleman and Clarke

Transform-based controllers

In this Section, for a given blade controller K, the equivalence between the blade

load IPCs, Csbc(K) (4.6), Cck(K) (4.7) and a particular type of Coleman Transform-

based controller Ccm is established. This leads to the main result of the chapter (Theo-

rem 4.3) that proves that the performance of all three controllers is identical.

4.4.1 Equivalence between single-blade and Coleman Transform-based

control

The equivalence between single-blade control and Coleman Transform-based control is

first established. This amounts to ascertaining the form that a single-blade controller

takes when referred to tilt and yaw coordinates via the Coleman Transforms. The

following lemma establishes this equivalence.
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Lemma 4.1. Assuming a constant rotor speed ω(t) = ω0, Coleman Transforms (4.4)

and a given blade controller K, a single-blade controller Csbc(K) (4.6) is equivalent to

the Coleman Transform-based controller Ccm(K,ω0), where:

Ccm(K(s), ω0) :=

 K(s+ jω0) +K(s− jω0)

2
j
K(s+ jω0)−K(s− jω0)

2

−jK(s+ jω0)−K(s− jω0)

2

K(s+ jω0) +K(s− jω0)

2

 (4.8)

Proof. The proof makes use of the following identities:

L [u(t) cosφ(t)] = L
[
u(t)

ejω0t + e−jω0t

2

]
=

1

2
(U(s− jω0) + U(s+ jω0)) , (4.9a)

L [u(t) sinφ(t)] = L
[
u(t)

j
(
e−jω0t − ejω0t

)
2

]
=
j

2
(U(s+ jω0)− U(s− jω0)) , (4.9b)

where u(t) is an arbitrary input signal, U(s) is its Laplace transform and φ(t) = ω0t is

assumed. Inserting (4.9) into (4.4) yields:


M̃1(s)

M̃2(s)

M̃3(s)

 = CT−

 M̃tilt(s− jω0)

M̃yaw(s− jω0)

+ CT+

 M̃tilt(s+ jω0)

M̃yaw(s+ jω0)

 , (4.10a)

 θ̃tilt(s)

θ̃yaw(s)

 =
2

3
C−


θ̃1(s− jω0)

θ̃2(s− jω0)

θ̃3(s− jω0)

+
2

3
C+


θ̃1(s+ jω0)

θ̃2(s+ jω0)

θ̃3(s+ jω0)

 , (4.10b)

where C− and C+ are defined as:

C− :=
1

2

1 −j
j 1

sin(0) sin(2π
3 ) sin(4π

3 )

cos(0) cos(2π
3 ) cos(4π

3 )

 , (4.10c)

C+ :=
1

2

 1 j

−j 1

sin(0) sin(2π
3 ) sin(4π

3 )

cos(0) cos(2π
3 ) cos(4π

3 )

 . (4.10d)

Substituting (4.10) into (4.6) yields (4.8).

It is interesting to note that the Coleman controller (4.8) possesses the same structure

as the Coleman transformed plant (4.5), in much the same way as the single-blade

controller (4.6) shares the diagonal structure of the turbine blade model (4.3). In view

of this, the controller (4.8) will henceforth be termed a structured Coleman Transform-

based controller.
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4.4.2 Equivalence between structured Coleman Transform and Clarke

Transform-based controllers

The projection from single-blade to tilt-yaw control via the Coleman Transforms yielded

the structured Coleman Transform-based controller (4.8). However, the projection

of (4.8) back to the rotating frame of reference does not yield the single-blade con-

troller (4.6). Instead, it yields a Clarke Transform-based controller (4.7), according to

the following lemma.

Lemma 4.2. Assuming a constant rotor speed ω(t) = ω0, Coleman Transforms (4.4)

and a given blade controller K, the structured Coleman Transform-based controller

Ccm(K,ω0) (4.8) is equivalent to Cck(K) (4.7).

Proof. Referring to Figure 4.3a and using the relationships (4.8) and (4.10), the deriva-

tion is as follows:
θ̃1(s)

θ̃2(s)

θ̃3(s)

 = CT−

 θ̃tilt(s− jω0)

θ̃yaw(s− jω0)

+ CT+

 θ̃tilt(s+ jω0)

θ̃yaw(s+ jω0)

 ,

= CT−Ccm(s− jω0)

 M̃tilt(s− jω0)

M̃yaw(s− jω0)

+ CT+Ccm(s+ jω0)

 M̃tilt(s+ jω0)

M̃yaw(s+ jω0)

 ,

=
2

3

CT−Ccm(s− jω0)

C−

M̃1(s− 2jω0)

M̃2(s− 2jω0)

M̃3(s− 2jω0)

+ C+


M̃1(s)

M̃2(s)

M̃3(s)


+ . . .

. . .+ CT+Ccm(s+ jω0)

C−

M̃1(s)

M̃2(s)

M̃3(s)

+ C+


M̃1(s+ 2jω0)

M̃2(s+ 2jω0)

M̃3(s+ 2jω0)



 ,

=


2
3K(s) −1

3K(s) −1
3K(s)

−1
3K(s) 2

3K(s) −1
3K(s)

−1
3K(s) −1

3K(s) 2
3K(s)



M̃1(s)

M̃2(s)

M̃3(s)

 ,

= Cck(s)


M̃1(s)

M̃2(s)

M̃3(s)

 .
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P

C

+

+
−

v2 u y

v1

Figure 4.4: Standard feedback interconnection between plant P and controller C. The
signals u and y denote the plant input and measured output, respectively, whilst v1

and v2 represent exogenous disturbances.

At this point the separate relationships have been established between a structured

Coleman Transform-based controller, and single-blade and Clarke Transform-based con-

trollers, respectively. The next section establishes the extent to which these three types

of IPC behave in a similar fashion, as quantified by the robust stability margin.

4.4.3 Performance equivalence of Csbc, Cck and Ccm

To examine performance equivalence of the IPC controllers, the concept of robust sta-

bility margin is introduced.

4.4.3.1 Robust stability margin

The standard feedback interconnection [P,C] of plant P ∈ R and controller C ∈ R is

shown in Figure 4.4, from which the following closed-loop system is defined:y
u

 =

P
I

 (I − CP )−1
[
−C I

]
︸ ︷︷ ︸

H(P,C)

v1

v2

 , (4.11)

where H(P,C) ∈ R provided [P,C] is well posed, and I is an identity matrix of compat-

ible dimension. The robust stability margin b(P,C) ∈ R of [P,C] is defined as follows:

b(P,C) :=

 ‖H(P,C)‖−1
∞ if H(P,C) ∈ RH∞

0 otherwise.
(4.12)



Chapter 4. Performance similarities between individual pitch control strategies 90

4.4.3.2 Performance equivalence

The main result of this chapter is as follows:

Theorem 4.3. For a given blade model G (4.2) assume the turbine model P (G) (4.3),

and for a given fixed rotor speed ω0 and blade controller K, form the IPC controllers

Csbc(K), Cck(K) and Ccm(K,ω0) according to (4.6), (4.7) and (4.8), respectively. Then

the robust stability margin for each IPC is the same. Specifically,

b(GK, 1) = b(PCsbc, I) = b(PCck, I) = b(PCcm, I). (4.13)

Proof. The proof is based on the derivation and comparison of the H∞-norms of the

shaped systems H(PCsbc, I), H(PCck, I) and H(PCcm, I). Proceeding with the former

we obtain:

‖H(PCsbc, I)‖∞ : =

∥∥∥∥∥∥
CsbcP

I

 (I − CsbcP )−1
[
−I I

] ∥∥∥∥∥∥
∞

=

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥



T 0 0 −T 0 0

0 T 0 0 −T 0

0 0 T 0 0 −T
S 0 0 −S 0 0

0 S 0 0 −S 0

0 0 S 0 0 −S



∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥
∞

,

where S(jω) := 1/(GK−1)(jω) and T := GK/(GK−1)(jω) denote the sensitivity and

complementary sensitivity functions, respectively. We are concerned with the spectrum

of the following operator:

H(PCsbc, I)∗H(PCsbc, I) =

X11 X12

X21 X22

 , (4.14)

where:

X11 = −X12 = −X21 = X22 =


S∗S + T ∗T 0 0

0 S∗S + T ∗T 0

0 0 S∗S + T ∗T


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Next, noting that all four sub-matrices commute, the characteristic polynomial of (4.14)

can be expressed as follows (Silvester, 2000):

det (λI −H(PCsbc, I)∗H(PCsbc, I)) = (λI −X11)(λI −X22)−X12X21

= λ3(λ− 2(S∗S + T ∗T ))3.

The H∞ norm of H(PCsbc, I) is therefore:

‖H(PCsbc, I)‖∞ = sup
ω

√
2 (S∗S + T ∗T ) = ‖H(GK, 1)‖∞ . (4.15)

Turning attention to H(PCck, I), we begin by taking the singular value decomposition

of Cck:

Cck(jω) =


−
√

2/3 0 1/
√

3

1/
√

6 −1/
√

2 1/
√

3

1/
√

6 1/
√

2 1/
√

3


︸ ︷︷ ︸

Uck


K(jω) 0 0

0 K(jω) 0

0 0 0


︸ ︷︷ ︸

C̃ck(jω)


−
√

2/3 1/
√

6 1/
√

6

0 −1/
√

2 1/
√

2

−1/
√

6 −1/
√

6 −1/
√

6


︸ ︷︷ ︸

V ∗ck

Inserting this into ‖H(PCck, I)‖∞ yields:

‖H(PCck, I)‖∞ :=

∥∥∥∥∥∥
CckP

I

 (I − CckP )−1
[
−I I

] ∥∥∥∥∥∥
∞

,

=

∥∥∥∥∥∥
 C̃ckP

U∗ckVck

 (U∗ckVck − C̃ckP )−1
[
−U∗ckVck U∗ckVck

] ∥∥∥∥∥∥
∞

,

=
∥∥∥H̃(PCck, I)

∥∥∥
∞
,

where:

H̃(PCck, I) :=



−T 0 0 −T 0 0

0 −T 0 0 −T 0

0 0 0 0 0 0

−S 0 0 −S 0 0

0 −S 0 0 −S 0

0 0 −1 0 0 −1


.

It can be shown that the characteristic polynomial of H̃(PCck, I)∗H̃(PCck, I) is given

by:

det(λI − H̃(PCck, I)∗H̃(PCck, I)) = λ3(λ− 2)(λ− 2(S∗S + T ∗T ))2.
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The relative degree of G ensures supω(S∗S + T ∗T ) ≥ 1, hence:

‖H(PCck, I)‖∞ = sup
ω

√
2 (S∗S + T ∗T ). (4.16)

With respect to H(PcmCcm, I), the singular value decomposition of Pcm is as follows:

Pcm(jω, ω0) =

 j√
2

−j√
2

1√
2

1√
2


︸ ︷︷ ︸

Ucm

G(j(ω − ω0)) 0

0 G(j(ω + ω0))


︸ ︷︷ ︸

P̃cm(jω, ω0)

−j√2
1√
2

j√
2

1√
2


︸ ︷︷ ︸

U∗cm

Similarly, Ccm = UcmC̃cmU
∗
cm, where:

C̃cm(jω, ω0) :=

K(j(ω − ω0)) 0

0 K(j(ω + ω0))


Inserting these into ‖H(PcmCcm, I)‖∞ yields:

‖H(PCcm, I)‖∞ :=

∥∥∥∥∥∥
CcmPcm

I

 (I − CcmPcm)−1
[
−I I

] ∥∥∥∥∥∥
∞

,

=

∥∥∥∥∥∥
C̃cmP̃cm

I

 (I − C̃cmP̃cm)−1
[
−I I

] ∥∥∥∥∥∥
∞

,

=
∥∥∥H̃(PCcm, I)

∥∥∥
∞
,

in which:

H̃(PCcm, I) :=


T− 0 −T− 0

0 T+ 0 −T+

S− 0 −S− 0

0 S+ 0 −S+

 ,

where S−(jω, ω0) := 1/(GK−1)(j(ω−ω0)) and S+(jω, ω0) := 1/(GK−1)(j(ω+ω0)) are

the frequency shifted sensitivity functions, and T−(jω, ω0) := GK/(GK − 1)(j(ω−ω0))

and T+(jω, ω0) := GK/(GK − 1)(j(ω + ω0)) are the shifted complimentary sensitivity

functions. It can be shown that the characteristic polynomial of H̃(PcmCcm, I)∗H̃(PcmCcm, I)

is given by:

det(λI−H̃(PcmCcm, I)∗H̃(PcmCcm, I)) = λ2(λ−2(S∗−S−+T ∗−T−))(λ−2(S∗+S++T ∗+T+)).
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The H∞ norm of H(PcmCcm, I) is thus given by:

‖H(PcmCcm, I)‖∞ = sup
ω

√
2
(
S∗−S− + T ∗−T−

)
= sup

ω

√
2
(
S∗+S+ + T ∗+T+

)
= sup

ω

√
2 (S∗S + T ∗T ). (4.17)

This suggests that the three different IPC strategies studied in this chapter behave in

exactly the same fashion. This is indeed the case, as shown in the following section.

4.5 Numerical Results and Discussion

The objective of this section is to demonstrate the performance equivalence of the various

IPCs by performing closed-loop simulations of each controller upon upon a high-fidelity

wind turbine model. The turbine model employed for this purpose is the NREL 5MW

baseline turbine (J. Jonkman et al., 2009), with the key parameters listed in Table 4.1.

Note that this model is of much greater complexity than the model employed for IPC

design (4.3), and includes flap-wise and edge-wise blade modes, in addition to tower and

shaft dynamics. The simulations were performed at an above-rated mean wind speed of

18 ms−1 and were run for sufficient duration to obtain convergence in the load spectra

of the various key rotating and non-rotating turbine components.

Rating 5 MW
Rotor Orientation Upwind
Rotor diameter 126 m
Hub height 90 m
Rated rotor speed 12.1 rpm (≈ 0.2 Hz)

Table 4.1: Turbine simulation parameters

4.5.1 Blade Controller K(s)

The three IPCs studied in this chapter, (4.6), (4.7) and (4.8) are each a function of

the underlying blade controller K. In turn, the design of K is based upon the basic

blade model G (4.2a). The resultant blade controller K is the same as the baseline
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Figure 4.5: Maximum singular value plots of the wind turbine model σ̄(G(s)) (–) and
compensated system σ̄(GK(s)) (- -).

IPC controller (2.56) in Section 2.8, where the controller (2.56) attenuates blade loads

specifically at the 1p, 2p and 4p frequencies (0.2 Hz, 0.4 Hz and 0.8 Hz), respectively,

and yielded a robust stability margin b(GK, 1) = 0.39. Based on this controller, the

IPCs (4.6), (4.7) and (4.8) were generated and tested in simulation, as shown next.

4.5.2 IPC Simulation Results upon the NREL 5MW Turbine.

Closed-loop simulations were performed upon each IPC and results were obtained to

compare the load reductions on both the blades as well as the fixed turbine structures.

Figure 4.6a shows the power spectrum of the flap-wise blade bending moment upon a

particular blade, whilst Figures 4.6b and 4.6c display the power spectra of the main bear-

ing tilt and yaw bending moments. With respect to the blade loads (Figure 4.6a), the

performance of the separate IPCs are almost identical and display clear load reductions

around the 1p and 2p frequencies, as compared to the uncontrolled turbine. In addition,

there are further slight reductions at the 4p frequency. This is to be expected given the

designed loop-shape of GK, as shown in Figure 4.5. The load reductions at these fre-

quencies translate to reductions at 0p and 3p frequencies in the fixed turbine structures

as is evident from Figures 4.6b and 4.6c, where again, the performance of the separate
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(a) Power spectrum of the flap-wise blade bending moment of blade 1.
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(b) Power spectrum of the main bearing tilt bending moment.

IPCs are almost indistinguishable. Given the performance similarities, it is no surprise

that the pitch activity from each IPC is almost identical, as shown in Figure 4.6d.

There is an important detail to note at this point. Close inspection of the results

displayed in Figure 4.6 reveals that although the performance of the three IPCs is
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(c) Power spectrum of the main bearing yaw bending moment. Similar results are observed as
in Fig 4.6b.
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(d) Time history of the blade-pitch angle of blade 1.

Figure 4.6: Simulation results upon the NREL 5MW turbine, showing the perfor-
mance similarities between the various IPCs.
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(a) Power spectrum of the flap-wise blade root bending moment of blade 1, with fixed rotor
speed.
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(b) Power spectrum of the main bearing tilt bending moment with fixed rotor speed.
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(c) Power spectrum of the main bearing yaw bending moment with fixed rotor speed.
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Figure 4.7: Simulation results upon the NREL 5MW turbine with fixed rotor speed,
showing indistinguishable performance between the various IPCs.
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almost identical, there nevertheless exist some small differences, particularly between

the structured Coleman Transform-based controller and its counterparts. This is at

odds with Theorem 4.3, which suggests that there should be no performance difference.

The reasons for this are explained next.

4.5.3 Discussion

The slight discrepancies in IPC performance arise from an assumption of the turbine

operating with a constant rotor speed. In practice, this is difficult to achieve owing to the

limitations of the CPC, in addition to the coupling between CPC and IPC through the

tower dynamics (Selvam et al., 2009). This challenge to maintaining fixed rotor speed

can clearly be seen in Figure 4.6d for the case without IPC, where changes in rotor

speed are causing the CPC to continuously adjust the blade pitch angle. The structured

Coleman Transform-based controller (4.8) is designed based upon an assumption of fixed

rotor speed, and so perturbations to the rotor speed will inevitably result in deterioration

in controller performance, although this is likely to be very small. To demonstrate this

is indeed the case, the simulations of Section 4.5.2 were repeated, but in the absence of

tower dynamics. This cancels the fore-aft motion of the turbine and thus eliminates a

major source of disturbance to the collective-pitch loop that regulates the rotor speed.

With this in mind, Figure 4.7 displays the load spectra spectra and pitch activity, from

which it is clear that the performance of the various IPCs is indistinguishable.

Given the essentially identical performance from the various IPCs, the question of ‘which

is best’ is not straightforward to answer, and may rest with issues of implementation

and load design priorities. For instance, the implementation of single-blade control

is arguably the simplest; essentially amounting to the installation of three identical

SISO control systems. On the other hand, the implementation of Coleman and Clarke

Transform-based controllers is slightly more involved, with both being MIMO and the

Coleman controller in particular requiring a measurement of the rotor azimuth angle.

However, if load reductions on the fixed turbine structure are a priority, then the natural

environment in which to design such a controller is in the tilt and yaw frame of refer-

ence, motivating the design of a structured Coleman Transform-based controller. Of

course, this could then be referred back to the rotating frame of reference for implemen-

tation as either a single-blade or Clarke Transform-based controller, via the relationships

established in Lemmas 4.1 and 4.2.
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4.6 Chapter Summary

This chapter established the links between three different IPC techniques; those based on

the Clarke and Coleman Transforms and single-blade control. The equivalence between

single-blade and a structured Coleman Transform-based controller was established, as

was the equivalence between the latter and Clarke-Transform-based control. Under

an assumption of fixed rotor speed, analytical and numerical results were presented

that showed no performance difference between these IPCs, as quantified by the ro-

bust stability margin. Choice of IPC thus largely rests with preference of design and

implementation.

The coming chapter will look to accommodate the influence of tower motion in the

design of IPCs, with a view towards removing the need for measurements of tower fore-

aft motion. It is surmised that particular IPC architectures may lend themselves more

readily to achieving this, and so may yet influence the issue of ‘best’ choice of IPC.



Chapter 5

Estimation and control design for

tower motions

5.1 Chapter Overview and Contribution

Wind turbine blade pitch adjustment can be used to alleviate excessive tower loads

caused by unsteady aerodynamic loads. At present, tower damping control strategies

assume sensory input from an additional tower-top accelerometer, leading to extra costs

associated with installation. The main result of this chapter is to show that this sensor is

redundant in the sense that tower motion can be estimated solely from existing blade load

sensors. This is possible owing to the dynamic coupling between the blades and towers,

but is challenging since the blade loads occur in a rotating frame of reference with respect

to the fixed tower, resulting in a time-varying system. However, this chapter shows how

a judicious choice of coordinate transformation simplifies the turbine structural system

description to one that is time-invariant, greatly simplifying the observability analysis

and subsequent observer design. As a further result, this chapter then shows how existing

blade-pitch control architectures can be modified to accommodate and exploit the tower

motion estimates. Closed-loop simulation results are presented that show the observer-

based tower damping controller achieving load reductions of up to 87% at the tower

resonant frequency for a modest increase of 9% in the standard deviation of the blade

pitch rates.

101
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The remainder of this chapter is structured as follows. Section 5.2 presents an introduc-

tion and motivation of the chapter. Section 5.3 provides a background of the turbine

blade and tower structure modelling. In Section 5.4, analysis of the observability of the

time-periodic modelled system is presented. In Section 5.5, the Coleman Transform is

used to derive a linear time-invariant (LTI) turbine model, whose observability is then

established. The design of a subsequent tower-top motion estimator and tower damping

controller is described in Section 5.6. In Section 5.7, the performance of the proposed

estimator and controller are demonstrated in simulation upon a high-fidelity and non-

linear wind turbine model. Finally, Section 5.8 concludes the chapter with a summary

and an overview of future work.

Notice that part of this chapter is published in the following publications:

1. W.H. Lio, B. Ll. Jones, and J.A. Rossiter, Wind Turbine Tower Damping Con-

trol Without Tower Motion Measurement, IEEE Transactions on Control Systems

Technology, under review.

2. W.H. Lio, B. Ll. Jones, and J.A. Rossiter, Analysis and design of a tower mo-

tion estimator for wind turbines. In 2016 International Conference on Renewable

Energy Research and Applications (ICRERA), Birmingham, UK, 2016.

5.2 Introduction

Large wind turbines experience uneven and intermittent aerodynamic loads from the

wind and such loads inevitably contribute to fatigue damage upon the turbine struc-

tures. In order to manage the competing demands of power capture and load mitigation,

most modern turbines employ a combination of control systems based upon blade pitch

actuation. Primary amongst these is the use of collective pitch control (CPC) (Pao &

Johnson, 2009), whereby the pitch angle of each blade is adjusted by an equal amount in

order to regulate the rotor speed in above rated conditions. In addition, individual pitch

control (IPC) and tower damping control can be used to specifically attenuate unsteady

loads that play no part in power generation. The IPC provides additional pitch demand

signals to each blade in order to balance the loads across the rotor plane, typically in

response to measurements of the flap-wise blade root bending moments (E. A. Bossanyi,

2003a; Dunne, Pao, Wright, Jonkman, & Kelley, 2011; J. Laks, Pao, Wright, et al.,
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2011; Leithead, Neilson, & Dominguez, 2009; Selvam et al., 2009), whilst tower damp-

ing control provides a further adjustment to the collective blade pitch angle in order

to reduce excessive tower vibrations, in response to the tower fore-aft velocity measure-

ments (E. A. Bossanyi, 2000, 2003b; Evans et al., 2015; Larsen & Hanson, 2007; Leithead

et al., 2004; Spruce & Turner, 2013). Typically, and for reasons of simplicity of imple-

mentation favoured by the industry, IPCs and tower damping controllers are designed

separately from the CPC, and carefully in order to avoid cross-excitation (Leithead,

Neilson, Dominguez, & Dutka, 2009; Lio, Jones, Lu, & Rossiter, 2015; Lu et al., 2015;

T. G. van Engelen, 2006).

At present, most tower damping control strategies assume a direct measurement of

tower motion, typically from a nacelle-mounted accelerometer (e.g. Burton et al. (2011);

Leithead, Neilson, and Dominguez (2009)). However, the turbine blades and tower are

dynamically coupled and from an estimator design perspective, such interactions may

provide an opportunity for the tower motion to be estimated based upon the blade load

measurements that are already available to the IPC. If so, this indicates redundancy

in the information provided by the tower motion sensor that can either be exploited

in terms of a reduction in sensor count, or for fault tolerant control purposes (Feng,

Patton, & Wang, 2014; Odgaard & Stoustrup, 2013; Sami & Patton, 2012). However,

as will be shown in this chapter, estimating tower motion from blade loads is non-

trivial, owing to the difference in respective frames of reference. Whilst the blade loads

occur in a rotating frame of reference, the tower motions are with respect a stationary

reference frame relative to the rotor. This gives rise to structural interactions that are of

a periodically time-varying nature, complicating any subsequent observability analysis

and observer design.

Such structural interactions are well known within the wind-energy community, where

coordinate transformations such as the Coleman Transform (E. A. Bossanyi, 2003a;

Markou, Buhl, Marrant, & van Engelen, 2006) are routinely employed to project quan-

tities in rotational coordinates to a fixed frame of reference, and vice-versa. As such,

the Coleman Transform is of central importance to this work in terms of simplifying the

wind-turbine model to one that is time-invariant. However, an important (and often

overlooked) subtlety of the Coleman Transform is the fact that it is time-varying, and

hence possesses dynamics. As was shown in (Lu et al., 2015), the Coleman Transform

introduces a frequency shifting effect upon rotating variables referred to a fixed frame

of reference, and hence yields turbine models whose dynamics are significantly differ-

ent to those that arise from a common misconception of the Coleman Transform being
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Figure 5.1: An out-of-plane force F out
i,l on the shaded blade element at rl is caused

by the stream-wise wind speed v0i,l
, fore-aft tower velocity ẋfa and rotational velocity

ϕ̇fa.

time-invariant.

The contributions are this chapter are thus twofold. Firstly, the observability of tower

fore-aft motion is established using only standard blade-load measurements. This anal-

ysis is based upon a model that correctly accounts for the frequency shifting effects of

the Coleman Transform and its inverse. Secondly, and with a view towards pragmatic

adoption by industry, an observer-based tower damping controller is designed and im-

plemented in a fashion that augments (rather than replaces) conventional pitch control

architectures.

5.3 Modelling of Blade and Tower Dynamics

The wind turbine aerodynamic interactions of relevance to this study are depicted in

Figure 5.1. Owing to variable blade geometry, the wind-induced forces are not uniformly

distributed on the blades and to model such forces blade element/momentum theory is

adopted (Burton et al., 2011), where the blade is discretised into small elements. Re-

ferring to Figure 5.1, the out-of-plane perturbation force F out
i,l : R × R × R → R acting

on each span-wise blade element l ∈ {1, · · · , L} ⊂ Z of blade i ∈ {1, 2, 3} can be deter-

mined around the operating conditions according to the following relationship (T. G. van
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Engelen, 2006):

F out
i,l (θi, vi,l, t) =

dF out
i,l

dθ

∣∣∣∣∣
θ∗,v∗

θi(t) +
dF out

i,l

dv

∣∣∣∣∣
θ∗,v∗

vi,l(t), (5.1)

where θi, vi,l ∈ R are the deviations of the blade pitch angle and apparent wind speed

from their steady-states θ∗, v∗ ∈ R, whilst
dF out
i,l

dθ ∈ R and
dF out
i,l

dv ∈ R are the respective

variations of out-of-plane force with respect to pitch angle and apparent wind speed.

Next, assuming the blade is rigid, the apparent stream-wise wind speed perturbation

vi,l ∈ R experienced by blade i on span-wise element l is dependent upon the actual

stream-wise wind speed perturbation v0i,l ∈ R, the fore-aft tower velocity ẋfa ∈ R and

the rotational velocity ϕ̇fa ∈ R, as follows:

vi,l(t) = v0i,l(t)− ẋfa(t) + ϕ̇fa(t)rl sin
(
φi(t)

)
, (5.2)

where rl ∈ R is the radial distance of the l-th blade element. The azimuthal angle of

each blade is defined as [φ1(t), φ2(t), φ3(t)] := [φ(t), φ(t) + 2π
3 , φ(t) + 4π

3 ], where φ(t) ∈ R

is the angle of the first blade from the horizontal yaw axis with respect to the clockwise

direction. This work implicitly assumes the tower is a prismatic beam so that the ratio

between rotation and displacement is 2
3h (Selvam et al., 2009), where h ∈ R is the height

of the tower. Thus, the fore-aft rotational velocity of the tower-top can be approximated

as ϕ̇fa(t) ≈ 2
3h ẋfa(t).

Assuming the wind-induced forces on the turbine hub are negligible in comparison to

those on the blades and the aerofoil properties of the three turbine blades are identical,

then:

dF out
i,l

dθ
=
dF out

l

dθ
,
dF out

i,l

dv
=
dF out

l

dv
, ∀i = {1, 2, 3}. (5.3)

Thus, the deviations of aerodynamic thrust Fa acting on the hub, and flap-wise blade

root loading Mai ∈ R acting on the blades, from their steady-state are computed as

follows:

Fa(t) =
3∑
i=1

L∑
l=1

F out
i,l (t), (5.4a)

Mai(t) =

L∑
l=1

F out
i,l (t)rl. (5.4b)
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By substituting (5.1), (5.2) and (5.3) into (5.4a), the aerodynamic thrust Fa(t) is sim-

plified as follows:

Fa(t) =
(
θ1(t) + θ2(t) + θ3(t)

) L∑
l=1

[dF out
l

dθ

]
+

3∑
i=1

L∑
l=1

[dF out
i,l

dv
ṽ0i,l(t)

)]
− ẋfa(t)

3∑
i=1

L∑
l=1

[dF out
i,l

dv

]
+

2

3h
ẋfa(t)

3∑
i=1

L∑
l=1

[dF out
i,l

dv
rl sin

(
φi(t)

)]
. (5.5)

Thus, the aerodynamic thrust Fa(t) ∈ R can be expressed as follows:

Fa(t) =
dFa

dθ

(
θ1(t) + θ2(t) + θ3(t)

)
+ F d

a (t)− kFxẋfa(t), (5.6a)

where F d
a (t) ∈ R denotes the wind-induced tower disturbance and the remaining vari-

ables are defined as follows:

dFa

dθ
:=

L∑
l=1

[dF out
l

dθ

]
, F d

a (t) :=
3∑
i=1

L∑
l=1

[dF out
i,l

dv
v0i,l(t)

)]
, (5.6b)

kFx :=

3∑
i=1

L∑
l=1

[dF out
i,l

dv

]
,

3∑
i=1

L∑
l=1

[dF out
i,l

dv
rl sin

(
φi(t)

)]
= 0. (5.6c)

Similarly, by substituting (5.1), (5.2) and (5.3) into (5.4b), the flap-wise blade root

loading Mai is simplified as follows:

Mai(t) = θi(t)
L∑
l=1

[dF out
i,l

dθ
rl

]
+

L∑
l=1

[dF out
i,l

dv
v0i,l(t)rl

]
− ẋfa(t)

L∑
l=1

[dF out
i,l

dv
rl

]
+

2

3h
ẋfa(t) sin

(
φi(t)

) L∑
l=1

[dF out
i,l

dv
rl

]
. (5.7)

Subsequently, the flap-wise blade root loading Mai can be expressed as follows:

Mai(t) =
dMa

dθ
θi(t) +Md

i (t)− kMxẋfa(t)

+ kMϕẋfa(t) sin
(
φi(t)

)
, (5.8a)
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where Md
i (t) ∈ R is the wind-induced blade disturbance, with the terms above defined

as:

dMa

dθ
:=

L∑
l=1

[dF out
i,l

dθ
rl

]
, kMx :=

L∑
l=1

[dF out
i,l

dv
rl

]
, (5.8b)

Md
i (t) :=

L∑
l=1

[dF out
i,l

dv
v0i,l(t)rl

]
, kMϕ :=

2

3h
kMx. (5.8c)

The wind-induced tower disturbance F d
a can be expressed in terms of the blade dis-

turbances Md
i . Considering (5.8c), the wind-induced blade disturbance Md

i can be

expressed as follows:

Md
i (t) =

L∑
l=1

[dF out
i,l

dv
v0i,l(t)rl

]
= F̄ d

i (t)
L∑
l=1

rl, (5.9a)

where F̄ d
i (t) ∈ R is the averaged wind-induced out-of-plane force on each blade element

l along blade i, defined as:

F̄ d
i (t) :=

1

L

L∑
l=1

[dF out
i,l

dv
v0i,l(t)

]
. (5.9b)

Substituting (5.9b) into wind-induced tower disturbance F d
a from (5.6b) yields:

F d
a (t) =

3∑
i=1

L∑
l=1

[dF out
i,l

dv
v0i,l(t)

]
= L

3∑
i=1

F̄ d
i (t). (5.9c)

Collecting terms from (5.9a) and (5.9c) gives the desired result:

F d
a (t) := kFM

(
Md

1 (t) +Md
2 (t) +Md

3 (t)
)
, (5.9d)

where kFM := L(
∑L

l=1 rl)
−1.

Finally, the dynamics of the blade root bending moments and fore-aft tower motion are

approximated as second-order (e.g. T. G. van Engelen (2006), Selvam et al. (2009)) and

are coupled as follows:

M̈i(t) + 2ζbωbṀi(t) + ω2
bMi(t) = ω2

bMai(t), (5.10a)

ẍfa(t) + 2ζtωtẋfa(t) + ω2
txfa(t) =

1

mt

(
Fa(t)− 2

3h
Mtilt(t)

)
, (5.10b)
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where Mi, xfa ∈ R denote the deviations of the flap-wise i-th blade root bending moment

and tower fore-aft displacement from equilibrium, respectively. The damping ratio of the

blade and tower are ζb, ζt ∈ R, respectively, mt is the mass of the tower-top and ωb, ωt ∈
R are the respective natural frequencies of the blade and tower. The tilt moment of

the rotor at the tower-top is defined as Mtilt(t) = 2
3

∑3
i=1Mi(t) sin(φi(t)) (Selvam et al.,

2009).

Inspection of (5.6), (5.8) and (5.10) indicates the coupling between the blade bend-

ing moments and the tower dynamics, which is the key property that underpins the

subsequent work in this chapter.

The state-space representation of (5.10) can be formulated as follows:

ẋ(t) = A(t)x(t) +Bu(t) +Bdd(t),

y(t) = Cx(t), (5.11a)

with

x(t) :=
[
Ṁ(t) M(t) ẋfa(t) xfa(t)

]T
∈ Rnx , (5.11b)

u(t) :=
[
θ1(t) θ2(t) θ3(t)

]T
∈ Rnu , (5.11c)

d(t) :=
[
Md

1 (t) Md
2 (t) Md

3 (t)
]T
∈ Rnd , (5.11d)

y(t) := M(t) ∈ Rny , (5.11e)

A(t) :=


−2ζbωbI −ω2

bI −kMx1 + kMϕS
(
φ(t)

)
0

I 0 0 0

0 −4
9hmt

ST
(
φ(t)

)
−2ζtωt − kFx

mt
−ω2

t

0 0 1 0

 , (5.11f)

B :=


ω2

b
dMa
dθ I

0

1
mt

dFa
dθ 1T

0

 , Bd :=


ω2

bI

0

1
mt
kFM1T

0

 , C :=


0

I

0

0

 , (5.11g)

M(t) :=


M1(t)

M2(t)

M3(t)

 ,S(φ(t)
)

:=


sin
(
φ(t)

)
sin
(
φ(t) + 2π

3

)
sin
(
φ(t) + 4π

3

)
 ,1 :=


1

1

1

 . (5.11h)

The numeric values of the model parameters employed in this work are provided in

Table 5.1. Notice that φ(t) = ω(t)t, where ω(t) is the rotor speed. Under the additional
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assumption that the rotor operates at a rated speed ω(t) = ω0 in above-rated conditions,

then φ(t) = ω0t and the system (5.11) becomes a linear time-periodic system with a

period of T = 2π
ω0

.

Table 5.1: Model Parameters

Parameters Values Units Parameters Values Units

ωt 2.01 rads−1 ωb 4.40 rads−1

ζt 1.00 - ζb 0.47 -
dFa
dθ -48.29 kN deg−1 dMa

dθ -1.50 MNm deg−1

kFx 55.72 kNsm−1 kMx 1.35 MNs
mt 34.75× 104 kg

5.4 Analysis of the Time-periodic System Observability

For estimator design, it is necessary to assess the observability of the system. This

section examines the observability properties of the linear time-periodic system (5.11).

5.4.1 Preliminaries on Observability and Linear Periodic Systems

This section recalls a few definitions and theorems pertinent to linear time-periodic

systems.

Definition 5.4.1. (Linear time-periodic system). A linear time-periodic system is de-

scribed as follows:

ẋ(t) = A(t)x(t) +Bu(t), y(t) = Cx(t), (5.12)

with state x ∈ Rnx , input u ∈ Rnu , output y ∈ Rny and A(t) ∈ Rnx×nx is periodic with

period T , namely A(t) = A(t+ T ).

According to Bittanti and Colaneri (2009), for the system (5.12), there exists a state

transition matrix Φ(t, t0) ∈ Rnx×nx such that:

x(t) = Φ(t, t0)x(t0). (5.13)

Theorem 5.1. (Brockett, 1970). The linear time-periodic system (5.12) is asymptoti-

cally stable if and only if the eigenvalues of the state transition matrix Φ(T, 0) lie within

the unit circle.



Chapter 5. Estimation and control design for tower motions 110

Definition 5.4.2. (Bittanti & Colaneri, 2009) The observability Gramian of (5.12) is:

Wo(t0, tf) =

∫ tf

t0

ΦT (t, t0)CTCΦ(t, t0)dt. (5.14)

Theorem 5.2. (D’Angelo, 1970) The system (5.12) is observable over the time interval

[t0, tf ] if and only if Wo(t0, tf) is positive definite.

5.4.2 Observability of the Time-periodic Systems

Lemma 5.3. Assume a constant rotor speed ω(t) = ω0, the linear periodic system (5.11)

is observable over the interval [t0, tf ].

Proof. To examine the observability of (5.11), from Theorem 5.2, the observability

Gramian Wo(t0, tf) of (5.11):

W0(t0, tf) =

∫ tf

t0

ΦT (t, t0)CTCTΦ(t, t0)dt, (5.15)

needs to be positive definite. However, finding the analytical expression of Φ(t, t0)

and W0(t0, tf) is not trivial for time-varying systems like (5.11). Nonetheless, there is a

theorem proposed by Chen (1984) that can examine the observability without computing

the state transition. Assume A(t) ∈ Rnx×nx and C ∈ Rny×nx are q − 1 and q times

continuously differentiable, respectively, and consider a matrix defined as follows:

N(t) = [N0(t), · · · , Nq(t)]
T , (5.16a)

where

N0(t) = C, (5.16b)

Nm+1(t) = Nm(t)A(t) + Ṅm(t), m = 0, 1, 2, · · · , q. (5.16c)
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If N(t), where t ∈ [t0, tf ], has rank nx, then W0(t0, tf) is positive definite (Chen, 1984).

Consider q = 3, N(t) becomes:

N(t) =


0 I 0 0

I 0 0 0

−2ωbζbI −ω2
bI N (3,3)(t) 0

(4ω2
bζ

2
b − ω2

b)I N (4,2)(t) N (4,3)(t) N (4,4)(t)

 , (5.17a)

where

N (3,3)(t) = kMϕS(ω0t)− kMx1, (5.17b)

N (4,2)(t) = 2ζbω
3
bI −

3

2h
S
(
φ(t)

)(
kMx1− kMϕST

(
φ(t)

))
, (5.17c)

N (4,3)(t) =
(
kFxω

2
t + 2ζtωt + 2ζbωb

)
×
(
kMx1− kMϕS

(
φ(t)

))
+ kMϕṠ

(
φ(t)

)
, (5.17d)

N (4,4)(t) = ω2
t

(
kMx1− kMϕS

(
φ(t)

))
. (5.17e)

Since N (3,3)(t) and N (4,4)(t) both are full rank for all t, thus, N(t) has rank nx over

t ∈ [t0, tf ]. Therefore, the system (5.11) is observable.

Lemma 5.3 indicates that use of observers can reconstruct the tower disturbance based

on the linear time-periodic model (5.11). However, it is non-trivial to design an observer

based on a linear time-periodic models, thus, the model (5.11) can be transformed into

a time-invariant model, as discussed in the following section.

5.5 Transformation to an LTI System and Observability

Analysis

Under the assumption of a constant rotor speed, the system model (5.11) is a linear,

time-periodic (LTP) system (D’Angelo, 1970) and for such LTP systems, there exist

techniques for observability analysis and estimator design (e.g. Montagnier, Spiteri, and

Angeles (2004)). However, the problem of establishing the observability proof and syn-

thesising an estimator for the LTP system (5.11) can be greatly simplified by reformu-

lating (5.11) as a LTI system. As will now be shown, the key to achieving this lies in

the use of a coordinate transformation based upon the Coleman Transform.
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The Coleman Transform projects the blade loads in the rotating frame of reference onto

the fixed tilt and yaw turbine axes, and play a key role in transforming (5.11) into an LTI

system. The typical Coleman transform Tcm

(
φ(t)

)
∈ R3×3 is defined as follows (e.g. Lu

et al. (2015) and references therein):


M̄(t)

Mtilt(t)

Myaw(t)

 =
2

3


1
2

1
2

1
2

sin(φ(t)) sin
(
φ(t) + 2π

3

)
sin
(
φ(t) + 4π

3

)
cos(φ(t)) cos

(
φ(t) + 2π

3

)
cos
(
φ(t) + 4π

3

)


︸ ︷︷ ︸
Tcm

(
φ(t)
)

×


M1(t)

M2(t)

M3(t)

 , (5.18a)

where M̄,Mtilt,Myaw ∈ R denote the collective, tilt and yaw referred flap-wise blade

root bending moments, respectively. The inverse Coleman transform T inv
cm

(
φ(t)

)
∈ R3×3

is as follows:
Ma1(t)

Ma2(t)

Ma3(t)

 =


1 sin(φ(t)) cos(φ(t))

1 sin
(
φ(t) + 2π

3

)
cos
(
φ(t) + 2π

3

)
1 sin

(
φ(t) + 4π

3

)
cos
(
φ(t) + 4π

3

)


︸ ︷︷ ︸
T inv

cm

(
φ(t)
)

×


M̄a(t)

Matilt
(t)

Mayaw(t)

 , (5.18b)

where M̄a,Matilt
,Mayaw ∈ R represent the collective, tilt and yaw referred aerodynamic

forces upon a non-rotating reference frame, respectively. Clearly, the Coleman Trans-

forms are time dependent, and hence their dynamics must be factored into any system

model that employs them. As shown in Lu et al. (2015) from the perspective of IPC

design, models that arise from misconceived treatment of the Coleman Transforms as

static projections give rise to erroneous dynamics, leading to poor IPC performance.

Now, the following theorem shows the main result of this chapter, which is the LTI

reformulation of (5.11) with the correct treatment of the Coleman Transforms.

Theorem 5.4 (Main result). Assuming a fixed rotor speed and Coleman transforma-

tions (5.18), the linear time-varying system (5.11) can be transformed into the following

linear time-invariant form: ξ̇(t)
ẋt(t)

 =

Aξ Bξt

Btξ At


︸ ︷︷ ︸

Alti

 ξ(t)
xt(t)

+

Bξθ
Btθ

ucm(t) +

Bξd
Btd

 dcm(t),

ycm(t) =
[
Cξ 0

]
︸ ︷︷ ︸

Clti

 ξ(t)
xt(t)

 , (5.19a)
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where ξ ∈ Rnξ is the projection of the states associated with the blade dynamics upon

a non-rotating reference frame (5.27), xt ∈ Rnxt are the states of the tower dynam-

ics (5.28), and the referred measurements of flap-wise blade moments, pitch angle signals

and wind-induced blade disturbance upon a non-rotating coordinate frame are as follows:

ycm(t) :=
[
M̄(t),Mtilt(t),Myaw(t)

]T
∈ Rny , (5.19b)

ucm(t) :=
[
θ̄(t), θtilt(t), θyaw(t)

]T
∈ Rnu , (5.19c)

dcm(t) :=
[
M̄d(t),Md

tilt(t), M
d
yaw(t)

]T
∈ Rnd . (5.19d)

Proof. The proof uses the following properties:

L[u(t) sinφ(t)] = L
[
u(t)

j(e−jω0t − ejω0t)

2

]
,

=
j

2

(
u(s+ jω0)− u(s− jω0)

)
, (5.20a)

L [u(t) cosφ(t)] = L
[
u(t)

ejω0t + e−jω0t

2

]
,

=
1

2

(
u(s− jω0) + u(s+ jω0)

)
, (5.20b)

where u(t) is an arbitrary input signal and u(s) is its Laplace transform. Substituting

identities (5.20) into Coleman transformations (5.18) yields:


M̄(s)

Mtilt(s)

Myaw(s)

 =
2

3
C−


M1(s− jω0)

M2(s− jω0)

M3(s− jω0)

+
2

3
C+


M1(s+ jω0)

M2(s+ jω0)

M3(s+ jω0)



+
1

3
C0


M1(s)

M2(s)

M3(s)

 , (5.21a)


Ma1(s)

Ma2(s)

Ma3(s)

 = CT−


M̄a(s− jω0)

Matilt
(s− jω0)

Mayaw(s− jω0)

+ CT+


M̄a(s+ jω0)

Matilt
(s+ jω0)

Mayaw(s+ jω0)



+ CT0


M̄a(s)

Matilt
(s)

Mayaw(s)

 , (5.21b)
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where C−, C+ and C0 are defined as:

C− :=
1

2


0 0 0

0 1 −j
0 j 1




0 0 0

sin(0) sin(2π
3 ) sin(4π

3 )

cos(0) cos(2π
3 ) cos(4π

3 )

 , (5.21c)

C+ : =
1

2


0 0 0

0 1 j

0 −j 1




0 0 0

sin(0) sin(2π
3 ) sin(4π

3 )

cos(0) cos(2π
3 ) cos(4π

3 )

 , (5.21d)

C0 : =


1 1 1

0 0 0

0 0 0

 . (5.21e)

Consider the blade model upon a rotating frame of reference (5.10a) and its Laplace

transform:

Mi(s) = G(s)Mai(s), (5.22)

where G(s) = Cb(sI − Ab)−1Bb, with Ab ∈ Rnb×nb , Bb ∈ Rnb , Cb ∈ R1×nb . Sub-

stituting (5.22) into (5.21) yields the following Coleman-transformed model in a fixed

reference frame: 
M̄(s)

Mtilt(s)

Myaw(s)

 =


G(s) 0 0

0 G+(s) G−(s)

0 −G−(s) G+(s)



M̄a(s)

Matilt
(s)

Mayaw(s)

 , (5.23a)

where G+, G− ∈ R are defined as:

G+(s) :=
G(s+ jω0) +G(s− jω0)

2
, (5.23b)

G−(s) := j
G(s+ jω0)−G(s− jω0)

2
, (5.23c)

and G(s+jω0) = Cb(sI−(Ab−jω0I))−1Bb and G(s−jω0) = Cb(sI−(Ab+jω0I))−1Bb.

Subsequently, the Coleman transformed model (5.23) can be expressed in a state-space

form, with state xcm ∈ C5nb , as follows:

ẋcm(t) = Acmxcm(t) +BcmMacm(t), ycm(t) = Ccmxcm(t), (5.24a)
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with Acm ∈ C5nb×5nb , Bcm ∈ C5nb×3, Ccm ∈ R3×5nb given as:

Acm :=



Ab 0 0 0 0

0 Ab − jω0I 0 0 0

0 0 Ab + jω0I 0 0

0 0 0 Ab − jω0I 0

0 0 0 0 Ab + jω0I


, (5.24b)

Bcm :=



Bb 0 0

0 Bb jBb

0 Bb −jBb

0 −jBb Bb

0 jBb Bb


, CTcm :=



Cb 0 0

0 1
2Cb 0

0 1
2Cb 0

0 0 1
2Cb

0 0 1
2Cb


, (5.24c)

and where Macm is obtained by substituting the Coleman transform (5.18) into (5.8):

Macm(t) =
dMa

dθ
ucm(t) + dcm(t) + kMxcm ẋfa(t), (5.24d)

with kMxcm :=
[
−kMx, kMϕ, 0

]T
. The LTI model (5.24) is not real-valued but the use of

a state transformation matrix T ∈ C5nb×5nb can map xcm ∈ C5nb into ξ = Txcm ∈ R5nb ,

where:

T :=


1 0 0

0 Tc 0

0 0 Tc

 , Tc :=
1

2

(1 + j) (1− j)
(1− j) (1 + j)

 . (5.25)

The equivalent model of (5.24) with the real-valued state ξ is:

ξ̇(t) = Aξξ(t) +BξMacm(t), ycm(t) = Cξξ(t), (5.26a)
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where

Aξ = TAcmT
−1 =



Ab 0 0 0 0

0 Ab −ω0I 0 0

0 ω0I Ab 0 0

0 0 0 Ab −ω0I

0 0 0 ω0I Ab


, (5.26b)

Bξ = TBcm =



Bb 0 0

0 Bb Bb

0 Bb −Bb

0 −Bb Bb

0 Bb Bb


, Cξ = CcmT

−1 = Ccm. (5.26c)

By substituting Macm from (5.24d) into (5.26), the model (5.26) becomes:

ξ̇(t) = Aξξ(t) +Bξθucm(t) +Bξddcm(t) +Bξtxt(t), (5.27a)

ycm(t) = Cξξ(t), (5.27b)

where

Bξθ := Bξ
dMa

dθ
, Bξd := Bξ, Bξt := BξkMxcm

[
1 0

]
, (5.27c)

and xt ∈ Rnxt is the state of the state-space form of the tower dynamics (5.10b), that is

defined as follows:ẍfa(t)

ẋfa(t)

 =

−2ωtζt −ω2
t

1 0


︸ ︷︷ ︸

At

ẋfa(t)

xfa(t)


︸ ︷︷ ︸

xt(t)

+

dFa
dθ E1

0


︸ ︷︷ ︸

Btθ

ucm(t)

+

kFME1

0


︸ ︷︷ ︸

Btd

dcm(t) +

 −2
3hmt

C
(2,:)
ξ

0


︸ ︷︷ ︸

Btξ

ξ(t). (5.28)

where E1 = [ 1
mt
, 0, 0] and C

(2,:)
ξ denotes the second row of Cξ. Finally, augmenting (5.26)

with the tower dynamics (5.28) yields (5.19).

Corollary 5.5.1. Assuming the model parameters listed in Table 5.1, the system (5.19)

is observable.
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Proof. The observability proof of a continuous-time LTI system can be established if

its observability matrix has full rank (R. Kalman, 1959). The observability matrix O
of (5.19) is defined as follows:

O =
[
Clit CltiAlti · · · CltiA

nξ+nxt−1
lti

]T
. (5.29)

If the system (5.19) is constructed based on the parameters listed in Table 5.1, then

the observability matrix O of (5.19) has full rank nξ + nxt . Thus, the system (5.19) is

observable.

Hence, the tower motion states are observable from measurements of the blade loads

alone. This result lays the foundation for the observer and controller designs of the next

section.

5.6 Design of the Tower Estimator and Controller

Figure 5.2 depicts the architecture of the proposed control system, where the tower

motion estimator produces an estimate ˆ̇xfa of the fore-aft velocity of the tower-top,

based on the (Coleman-transformed) blade moment measurements M̄,Mtilt,Myaw and

pitch signals θ̄, θtilt, θyaw. The tower controller subsequently employs this estimate to

provides additional collective blade pitch signals θ̄ for attenuating the tower motion.

Note that this architecture is deliberately chosen so as to augment, rather than replace

the existing CPC and IPC controllers.

5.6.1 Estimator Design

The estimator employed in this work is an unknown input disturbance observer (Johnson,

1971) that uses the modelled system (5.19) augmented with a wind-induced disturbance

model. For brevity, a constant wind-induced disturbance model is assumed (e.g. Selvam

et al. (2009)):

ḋcm(t) = 0, (5.30)



Chapter 5. Estimation and control design for tower motions 118

Wind
Turbine

CPC & IPC

Coleman
transform

Tower
motion

estimator
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M1(t)
M2(t)
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+
θ1(t)

+
θ2(t)

+
θ3(t)

θ̄(t)

M̄,Mtilt,Myaw(t)

θ̄, θtilt, θyaw(t)
ˆ̇xfa(t)

Proposed estimation and control system

Figure 5.2: Schematic of the proposed estimator and controller.

Thus, the augmented model is described as follows:


ˆ̇
ξ(t)

ˆ̇xt(t)
ˆ̇
dcm(t)

 =


Aξ Bξt Bξd

BtM At Btd

0 0 0


︸ ︷︷ ︸

Aaug


ξ̂(t)

x̂t(t)

d̂cm(t)


︸ ︷︷ ︸

ẑ(t)

+


Bξθ

Btθ

0


︸ ︷︷ ︸
Baug

ucm(t)

+ Lo

(
ycm(t)−

[
Cξ 0 0

]
︸ ︷︷ ︸

Caug

ẑ(t)
)
, (5.31)

where ẑ ∈ Rnz and the hat symbol denotes estimate, whilst Lo represents the estimator

gain. This system is also observable, and the estimator gain can be optimised by Kalman

filtering theory (R. E. Kalman, 1960).

5.6.2 Estimation-based Controller Design

Typically, a tower controller adjusts the blade pitch collectively in response to the tower

fore-aft velocity in order to attenuate the harmful tower loads, where such loads are

caused by symmetric loadings on the rotor and mainly concentrated around the resonant

frequency of the tower (0.32Hz in this work) (Burton et al., 2011). In contrast, a CPC

also utilises the collective pitch angle to regulate the rotor speed at frequencies below

the rotational frequency of the rotor (e.g. 0.2Hz), whilst an IPC targets the blade loads
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Gcpc(s)

Gcm(s)

Kcpc(s)

Kipc(s)

Γob(s)

Kt(s)

+

ω(s)
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Mtilt(s),Myaw(s)

Mtilt(s),Myaw(s)

M̄(s)

θtilt(s), θyaw(s)

θtilt(s), θyaw(s)

θtilt(s), θyaw(s)
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θ̄(s)

θ̄(s)

θ̄(s)

X̂fa(s)

X̂fa(s)

CPC loop

IPC loop

Wind Turbine

Figure 5.3: System architecture for the tower controller design.

at harmonics of the blade rotational frequency (e.g. 0.2, 0.4Hz). Thus, assuming the

architecture of Figure 5.3, the tower controller must be designed not to excite the CPC

or IPC loops.

Referring to the more detailed closed-loop system diagram of Figure 5.3, the relationship

between turbine inputs and outputs is as follows:
ω(s)

M̄(s)

Mtilt(s)

Myaw(s)

 =

[Gcpc(s) 0 0
]

Gcm(s)




θ̄(s)

θtilt(s)

θyaw(s)

 , (5.32)

where the transfer function mapping ucm = [θ̄, θtilt, θyaw]T to ycm = [M̄,Mtilt,Myaw]T is

denoted Gcm ∈ R3×3, and is obtained from (5.19). The transfer function of the rotor

dynamics relating collective pitch inputs to rotor speed output is denoted Gcpc ∈ R, that

is discussed in Section 2.8 in Chapter 2. In terms of the controller inputs and outputs,
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the relationships are as follows:


θ̄(s)

θtilt(s)

θyaw(s)

 =

Kcpc(s) 0

0 Kipc(s)




ω(s)

Mtilt(s)

Myaw(s)

 , (5.33)

where Kcpc(s) ∈ R is the CPC and Kipc(s) ∈ R2×2 is the IPC, that are adopted

from Chapter 4. Notice that in Figure 5.3, the tower controller Kt ∈ R introduces an

additional collective pitch signal:

θ̄(s) = Kcpc(s)ω(s) +Kt(s)X̂fa(s), (5.34)

where the estimate of the fore-aft tower velocity X̂fa is obtained from the estimator Γob ∈
R1×(nu+ny) according to:

X̂fa(s) = Γob(s)

ucm(s)

ycm(s)

 , (5.35a)

=
[
Γ

(1,1)
ob (s) Γ

(1,2:6)
ob (s)

]ucm(s)

ycm(s)

 . (5.35b)

Substituting (5.35) into (5.34) yields:

θ̄(s) = Kmod(s)ω(s) + F (s)
[
θtilt(s) θyaw(s) ycm(s)

]T
, (5.36a)

where Kmod ∈ R and F ∈ R1×5 are:

Kmod(s) =
Kcpc(s)

1−Kt(s)Γ
(1,1)
ob (s)

, F (s) =
Kt(s)Γ

(1,2:6)
ob (s)

1−Kt(s)Γ
(1,1)
ob (s)

. (5.36b)

Thus the observer introduces undesirable, but inevitable coupling from the tower con-

troller to the CPC. With a view towards suppressing this, the tower controller is designed

as an inverse notch filter with gain concentrated at the tower resonant frequency, which

is above the bandwidth of the CPC:

Kt(s) := Kp

(
s2 + 2D1ωts+ ω2

t

s2 + 2D2ωts+ ω2
t

)
. (5.37)

The parameters for the tower controller Kt are Kp = 0.03, D1 = 5 and D2 = 0.01, and

the magnitude bode diagram of this tower controller is shown in Figure 5.4.
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Figure 5.4: Magnitude bode plot of the tower controller Kt(s).
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Bode plot: ω(s) to θ̄(s)
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Figure 5.5: Bode plot of the original CPC loop Gcpc(s)Kcpc(s) (dashed line) and the
modified loop Gcpc(s)Kmod(s) by the additional tower controller (solid line).
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Figure 5.6: The magnitudes of the transfer function F (s) mapping
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Figure 5.7: Estimate ˆ̇xfa(t) (dashed line) and actual measurement ẋfa(t) (solid line)
of the tower-top velocity signal.

Figure 5.5 depicts the loop gain of the original CPC loopGcpc(s)Kcpc(s) and the modified

loop Gcpc(s)Kmod(s) and shows that the gain of the original loop Gcpc(s)Kcpc(s) below

the crossover frequency remains unaffected by the additional tower controller. Conse-

quently, the gain and phase margins are largely unaffected, indicating little influence of

the tower controller upon the CPC. In addition, the sensitivity plots in Figure 5.6 shows

that the additional couplings caused by the tower controller, mapping θtilt, θyaw, ycm to

θ̄ are insignificant.

5.7 Numerical Results and Discussion

This section presents simulation results to demonstrate the performance of the proposed

estimator and estimation-based controller for the tower fore-aft motion. The turbine

model employed in this work is the NREL 5MW turbine (J. Jonkman et al., 2009) and

the simulations are carried out on FAST (J. Jonkman & Buhl Jr, 2005). This turbine

model is of much greater complexity than the linear model (5.31). All degrees-of-freedom

were enabled, including flap-wise and edge-wise blade modes, in addition to the tower

and shaft dynamics. Simulations in this study were conducted under a turbulent wind

field with a mean wind speed 18 ms−1 (all model parameters were linearised around this

operating point) chosen since this value is near the centre of the range of wind speeds

covering the above-rated wind conditions. A turbulence intensity of 16% was used and

was generated from TurbSim (B. Jonkman, 2009),
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Figure 5.8: Error variance (solid line) converges to a steady-state value (dotted line).

5.7.1 Estimator Performance

The performance was compared by examining the estimated signals of the tower fore-aft

velocity and the actual measurements from the simulation turbine. The time histories

of both the estimate alongside actual signal of the tower-top fore-aft velocity are shown

in Figure 5.7. It can be seen that good agreement is achieved between the estimated and

actual signals, with a steady-state variance in the estimation error of order 10−3m2s−2,

as shown in Figure 5.8.

5.7.2 Controller Performance

To demonstrate the use of the estimated tower signals for control purposes, two con-

trollers were compared: a baseline controller consisting of the CPC and IPC, from (Lio

et al., 2015) and the proposed control architecture including the tower controller (5.37)

employing the tower motion estimate. As shown in Figure 5.9a and 5.9b, the tower

vibrations were suppressed effectively by the proposed tower controller, with a marginal

associated increase in blade pitch activity. Specifically, the standard deviation of the

tower motion was 18% less with the tower controller for a 9% increase in the standard

deviation of the blade pitch angle rates.

Of particular interest is the impact upon the fore-aft tower bottom moment Mtb, since

this is a typical indicator of tower fatigue loads (Burton et al., 2011). The time history of

this is shown in Figure 5.9c, where significant reductions are achieved by the additional

tower damping controller. Figure 5.9d displays the load spectrum of the tower bottom
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Figure 5.9: Performance of the baseline controller (- -) compared to the proposed
tower controller (–).
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moments and reveals a significant 87% load attenuation on Mtb at the tower resonant

frequency (0.32Hz), as was to be expected from the use of the inverse notch filter in the

tower controller. In addition, the loads at frequencies below the blade rotational fre-

quency (0.2Hz) remained mostly unchanged, again indicating minimal coupling between

the CPC tower controller. The results from the simulation are summarised in Table 5.2.

Table 5.2: Controller performance comparisons

Baseline Controller Proposed Controller

std(ẋfa) [ms−1] 0.087 (100%) 0.072 (82%)

std(θ̇1) [deg s−1] 2.75 (100%) 3.00 (109%)
|Mtb| at ωt [MNm] 3.60 (100%) 0.48 (13%)

Note that std denotes the standard deviation. The percentage in brackets represents
the relative difference to the baseline controller.

5.8 Chapter Summary

This chapter was concerned with the problem of attempting to estimate tower motion

from blade-load measurements alone, in order to reduce sensor count. The coupling

between states in both rotating and fixed frames of reference led to an initial system

model that was linear but time-varying, and so the key contribution of this chapter

lay in simplifying this to a LTI model. This was achieved by employing the Coleman

Transforms, and including the frequency-splitting effects of these in the resulting time-

invariant model. Having verified observability, a state estimator was synthesised that

produced good reconstructions of the tower fore-aft motion, based solely upon the blade-

load measurements. This was subsequently used in a tower damping controller which

was included in an architecture that augmented, rather than replaced the existing CPC

and IPC, and was designed in such a way as to ensure negligible coupling between these

controllers. Closed-loop simulations upon a high fidelity and nonlinear turbine model

showed the estimation-based tower controller achieve an 87% reduction in the magnitude

of the tower-base bending moment at the tower resonant frequency, for a modest 9%

increase in the standard deviation of the blade pitch rates.

So far, the topics covered by chapters 4 and 5 were mainly focused on the feedback

aspect of the IPC. In the coming chapters, the uses of upcoming wind information are

investigated and their benefits for improving load reductions are demonstrated. The

problem of formulating an MPC layer upon an existing feedback controller is examined

in the following chapter.





Chapter 6

Feed-forward model predictive

control design based upon a

feedback controller

6.1 Chapter Overview and Contribution

The potential use of upcoming measurement has motivated research on preview con-

trol to improve set-point tracking and disturbance rejection beyond that achievable via

conventional feedback control. Such preview controllers, typically based upon model pre-

dictive control (MPC) for its constraint handling properties, could potentially introduce

an additional feedback loop that therefore alters the closed-loop dynamics of the existing

feedback compensator. This can result in a deterioration of the nominal robustness prop-

erties1 and performance of the existing closed-loop. Therefore, the aim of this chapter is

to formulate a modular MPC layer on top of a given output-feedback controller, with a

view to retaining the nominal closed-loop robustness and frequency-domain properties

of the latter. And a key result is derived that proves that the proposed modular MPC

layer for handling the advance knowledge impacts upon the existing closed-loop system

if and only if constraint violations are expected. The separable nature of the proposed

control structure enables clear and transparent quantification of the benefits gained by

1The robustness property here implies the robust stability margin, that is a generalisation of the gain
and phase margins for multi-input-multi-output systems.
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using preview control and constraint handling, beyond that of the underlying feedback

compensator.

This chapter focuses on theoretical development of the MPC layer. The discussions of

the application to wind turbines are presented in Chapter 7. This chapter is setting up

some important ground work for the coming chapter.

The remainder of this chapter is structured as follows. Section 6.2 presents an introduc-

tion and motivation of the chapter. Preliminaries on modelling of the closed-loop system

are presented in Section 6.3. Section 6.4 demonstrates the formulation of the proposed

feed-forward MPC layer upon the existing output-feedback controller, which results in a

simple but systematic form. In Section 6.5, the key results of the conditions are derived

that prevent the MPC layer introducing an additional feedback loop to the closed-loop

dynamics and discussions on robust stability and tuning of the proposed MPC layer are

also presented. It is followed by numerical examples in Section 6.6 and conclusion in

Section 6.7.

Notice that part of this chapter is published in the following publications:

1. W.H. Lio, B. Ll. Jones, and J.A. Rossiter, Predictive control layer design on a

known output-feedback compensator for wind turbine blade-pitch preview control,

Wind Energy, 2017. DOI: 10.1002/we.2090.

2. W.H. Lio, B. Ll. Jones, and J.A. Rossiter, Preview model predictive control layer

design based on a known output-feedback controller, In preparation.

3. W.H. Lio, J.A. Rossiter, and B. Ll. Jones, Predictive control design on an em-

bedded robust output-feedback compensator for wind turbine blade-pitch preview

control. In 2016 European Control Conference (ECC), Aalborg, Denmark, 2016.

DOI: 10.1109/ECC.2016.7810496.

6.2 Introduction

In many control applications, preview knowledge is available for improving tracking

quality and disturbance rejection. Model predictive control (MPC) has been used by an

increasing number of applications to utilise the preview knowledge because, in principle,
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the information is incorporated in a systematic fashion. However, typically, robustness

and frequency domain properties are not well considered in a standard MPC design and

indeed the optimisation implies coupling between feedforward and feedback information.

To address this weakness, this chapter aims to decouple the feedback and feed-forward

design of the MPC problem such that the feedback control law focusses on the closed-

loop properties such as sensitivity, whilst the feed-forward input is purely based on

advance knowledge without any corrections linked to the measurements from the plant

Much research in recent years has focused on how to incorporate the full preview knowl-

edge into an MPC feedback design in a more systematic and optimal fashion. The

earlier works by J. A. Rossiter and Grinnell (1995) and J. A. Rossiter and Grinnell

(1996) demonstrated very clearly that the transient behaviour during set-point changes

can be improved much further by adopting a more systematic separate design of the

feed-forward compensator on a finite-horizon MPC design (Clarke et al., 1987b). Later,

for tracking a sinusoid trajectory, a study by L. Wang and Rossiter (2008) developed

an adaptive algorithm to optimise an MPC feed-forward compensator, solely relying

upon the advance measurements. Similarly, a study by J. A. Rossiter and Valencia-

Palomo (2009) also proposed a two stage design, where the feed-forward compensator

is optimised based on the given set-point trajectory, separating from the feedback MPC

design. Recently, in Valencia-Palomo et al. (2014), the two stage design (J. A. Rossiter &

Valencia-Palomo, 2009) was successfully implemented on hardware with low processing

power. Furthermore, studies by Carrasco and Goodwin (2011a, 2011b); Goodwin et al.

(2011) proposed a feed-forward MPC design, aiming to utilise the feed-forward control

law for tracking and disturbance rejection performance, whilst the feedback controller

mainly for robustifying the closed-loop. Notice that the nature of these works (Carrasco

& Goodwin, 2011a, 2011b; Goodwin et al., 2011) slightly differs from those seeking to

systematically incorporate the feed-forward knowledge to the feedback MPC design.

A large part of the feed-forward MPC studies assumed that the design was based on a

state-feedback controller. Nonetheless, for some applications, output-feedback controller

is often employed, which is synthesised using frequency-domain techniques for satisfying

some robustness and performance specifications given in the frequency-domain. As a

consequence, this begs the question: ‘Is there a systematic way to incorporate the merits

of the MPC such as the capability of handling constraint and preview knowledge into an

existing output-feedback controller?’. This problem may seem immediately obvious to

be addressed simply by a standard MPC formulating around the underlying closed-loop

dynamics. However, given that the constraint handling features of the feed-forward MPC
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depend upon the predictions of the closed-loop dynamics, optimising such predictions

could indeed potentially introduce an additional feedback loop to the original closed-

loop, that would deteriorate the properties of the existing controller.

This chapter proposes an MPC layer based on a known robust output-feedback con-

troller where the proposed MPC layer handles feed-forward information and constraints

whilst retaining the nominal robustness and performance of the underlying feedback

controller. A further key focus of this chapter is to investigate under what conditions

the outer control layer design is separated from impacting upon the original closed-loop

nominal stability and robustness. The separate nature of this MPC layer offers immedi-

ate benefits from an industry perspective, since the feed-forward control with constraint

handling capability can be implemented without replacing the existing feedback con-

troller. Furthermore, the separate controller structure provides a clear framework to

quantify the benefits of the use of advance knowledge over the nominal output-feedback

strategy, as well as the impact of constraint handling.

For the sake of brevity and clarity, problems regarding steady-state due to the active

constraint (see. e.g. Dughman and Rossiter (2015); Limon, Alvarado, Alamo, and Cama-

cho (2008); Rawlings, Bonné, Jørgensen, Venkat, and Jørgensen (2008); L. R. E. Shead,

Muske, and Rossiter (2010)) are not particularly considered in this chapter since the

purpose of this chapter is to present a simple feed-forward MPC formulation upon an

output-feedback controller.

6.3 Modelling

This section introduces basic definitions of the plant and the chosen robust feedback

controller.

6.3.1 Plant Model

Assume the linear model of the plant G(s) ∈ Rny×nu and the disturbance model Gd(s) ∈
Rny×nd are strictly proper functions, which can be described in discrete-time state-space
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forms as follows:

xpk+1
= Apxpk +Bpuk +Bdpdk,

yk = Cpxpk ,
(6.1)

where uk ∈ Rnu , yk ∈ Rny , dk ∈ Rnd and xpk ∈ Rnxp represent the input, output,

disturbance and state of the plant, respectively, whilst the subscript p denotes the plant.

The plant model (6.1) is assumed to be controllable and observable.

6.3.2 Feedback Controller

Let the robust nominal output-feedback controller stabilising the linear model (6.1) be

given by K(s) ∈ Rnu×ny , with its discrete-time state-space form is as follows:

xκk+1
= Aκxκk −Bκyk,

uk = Cκxκk −Dκyk,
(6.2)

where the vector xκk ∈ Rnxκ represents the state of the controller and the subscript

κ denotes controller. The controller model (6.2) is assumed to be controllable and

observable.

Remark 6.1. The purpose of this chapter is to incorporate the constraints handling

capability and advance knowledge into an existing output-feedback controller that sat-

isfies the design specifications provided in the frequency-domain. For example, load

attenuations at a specific frequency range or Nyquist stability criterion. Thus, the feed-

back controller (6.2) is assumed to be synthesised by frequency-domain design methods,

such as robust H∞ loop-shaping method, for example, the baseline IPC controller in

Section 2.8 in Chapter 2.
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6.3.3 Closed-loop Model

Consequently, by combining the linear model (6.1) and controller (6.2), the closed-loop

dynamic system model can be expressed in the following form:


xpk+1

xκk+1

uk

 =


Ap 0 Bp

−BκCp Aκ 0

0 0 I


︸ ︷︷ ︸

A


xpk

xκk

uk−1


︸ ︷︷ ︸

xk

+


Bp

0

I


︸ ︷︷ ︸
B

∆uk +


Bdp

0

0


︸ ︷︷ ︸
Bd

dk, (6.3a)

∆uk =
[
−DκCp Cκ −I

]
xk = Kxk, (6.3b)

yk =
[
Cp 0 0

]
xk = Cxk. (6.3c)

The pair {A,B} is controllable, whilst the pair {A, [C,K]T } is observable. Notice that

an incremental input form of the closed-loop model is employed for the simplicity reasons

of implementing input rate constraints in the MPC layer.

6.3.4 Steady-state Target Calculator

Assume the upcoming disturbance is available, a typical steady-state target calculator

can be used to generate the desired input trajectory with respect to the desired output

trajectory. Consider the deviation of the state x̃k = xk−xs
k, input ∆ũk = ∆uk−∆us

k and

output ỹ = yk − rk from the steady-state xs
k,∆u

s
k, r

s
k, then the closed-loop mode (6.3)

can be expressed in terms of the deviation as follows:

x̃k+1 = Ax̃k +B∆ũk, (6.4a)

∆ũk = Kx̃k, (6.4b)

ỹk = Cx̃k. (6.4c)
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Assuming the set-point rs
k is zero since this chapter considers a regulator problem,

the steady-state ∆us
k, x

s
k can be calculated from a typical steady-state target calcu-

lator (e.g. Muske and Rawlings (1993)), defined as follows:

 xs
k

∆us
k

 =

I −A −B
C 0

−1 Bb

0

 dk, (6.5a)

=

Kxd

Kud

 dk. (6.5b)

Thus, if the upcoming disturbance dk is available, the control law (6.4b) becomes of the

following form:

∆uk = Kxk + (Kud −KKxd)dk︸ ︷︷ ︸
∆uff

k

, (6.6)

Notice that the term (Kud −KKxd) is a feed-forward gain and ∆uff
k denotes the feed-

forward input to the original feedback control law (6.2).

Remark 6.2. If the controller (6.2) contains an integrator, the matrix

I −A −B
C 0


could be non-invertible. A simple workaround is to place the pole of the integrator

of (6.2) slightly off from the origin.

The feed-forward structure (6.6) only handles steady-state offset effectively. Inspection

of the control law (6.6) reveals that the feed-forward input ∆uff
k only takes into account

the upcoming disturbance at k. Thus, the entire upcoming trajectory are not fully

utilised.

6.4 Design of the MPC Layer

This section describes the design of the MPC layer to compliment the output-feedback

controller (6.2) in the previous section. The architecture combining the proposed control

layer and the separate feedback controller is shown in Figure 6.1, where u, y and f denote

the input, output and actual disturbance of the plant, respectively. Based on the control

action of the existing controller κ(y) and measured disturbance d→, the proposed MPC

layer optimises a perturbation c to handle constraints as well as act upon the feed-forward

information.
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Figure 6.1: Schematic of model predictive control layer on top of an existing feedback
controller. Based upon the controller input κ(y), plant output y, the layer optimises
the perturbation c that can handle constraints and act upon feed-forward information

d→. The notation f denotes the disturbance to the plant.

6.4.1 Augmentation of perturbation into the underlying control law

The MPC layer formulation in this chapter adopts a dual-mode closed-loop paradigm

(e.g. J. A. Rossiter (2003); J. A. Rossiter et al. (1998)), whereby the degrees-of-freedom

(d.o.f) ck ∈ Rnu within the predictions are defined around a stabilising feedback control

law such that the input can be parametrised as follows:

ũi|k =

Kx̃i|k + ci|k, ∀i = {0, · · · , nc − 1},

Kx̃i|k, ∀i ≥ nc,
(6.7)

The premise behind this approach is that the MPC perturbation ck 6= 0 if and only if

constraints are active and feed-forward knowledge is available; obviously when ck = 0

the underlying feedback controller operates unaffected. Such a feature is particularly

useful in formulating an MPC layer on top of a given feedback controller. Notice that

the predicted perturbation sequence c→k
= [c0|k, c1|k, ..., cnc−1|k]

T ∈ Rnunc is optimised

over the control horizon nc, whilst beyond nc, the closed-loop dynamics are governed

solely by the given feedback control law.
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6.4.2 Formulation of cost function

Let the predicted cost function and associated predictions employed in the MPC layer

take the following form:

Jk =

∞∑
i=0

x̃Ti|kQx̃i|k + ∆ũTi|kR∆ũi|k, (6.8a)

s.t. x̃i+1|k = Ax̃i|k +B∆ũi|k, ∀i ≥ 0, (6.8b)

ũi|k =

Kx̃i|k + ci|k, ∀i = {0, · · · , nc − 1},

Kx̃i|k, ∀i ≥ nc,
(6.8c)

di|k =

dk+i ∀i = {0, · · · , na − 1},

dk+na−1 ∀i ≥ na
(6.8d)

usi|k = Kuddi|k, x
s
i|k = Kxddi|k. (6.8e)

where Q ∈ Rnx×nx and R ∈ Rnu×nu denote the weighting matrices that specify the penal-

ties on state and input, respectively. The predictions of state, input, disturbance and

steady-state are denoted by (6.8b), (6.8c), (6.8d) and (6.8e), respectively. For brevity,

disturbance dk is assumed to be known perfectly in advance and beyond the preview

horizon na, the predicted disturbance is implicitly assumed to be constant thereafter

di|k = dk+na−1, ∀i ≥ na. If the measurements of the upcoming disturbance cannot

be obtained accurately, an observer design can be employed to estimate the unknown

disturbance (Pannocchia & Rawlings, 2003).

Remark 6.3. The predictions of the disturbance (6.8d) is essential to ensure that the full

upcoming knowledge over the preview horizon na is taken into account within the cost

function (6.8a).

The predictions of state (6.8b), input (6.8c), disturbance (6.8d) and steady-state (6.8e)

can be expressed in a more convenient and compact autonomous model form, where

its state zi|k ∈ Rnz consists of the state xi|k of the model, perturbations c→k
and future

disturbance d→k
= [d0|k, d1|k, ..., dna−1|k]

T ∈ Rndna , defined as follows:

zi+1|k = Ψzi|k, (6.9a)
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where the initial state z0|k = [x0|k, c→k
, d→k

]T and Ψ is defined as:

Ψ =


Φ BE (I − Φ)KxdE

0 Mc 0

0 0 Md

 , (6.9b)

E c→k
= c0|k, E d→k

= d0|k, (6.9c)

Mc c→
T

k
= [c1|k, . . . , cnc−1|k, 0]T , (6.9d)

Md d→
T

k
= [d1|k, . . . , dna−1|k, dna−1|k]

T . (6.9e)

where Φ = A + BK ∈ Rnx×nx is Hurwitz and the shift matrices Mc ∈ Rnunc×nunc and

Md ∈ Rndna×ndna are defined as follows:

Mc =



0 I 0 · · · 0

0 0 I · · · 0
...

...
...

. . .
...

0 0 0 · · · I

0 0 0 · · · 0


, Md =



0 I 0 · · · 0

0 0 I · · · 0
...

...
...

. . .
...

0 0 0 · · · I

0 0 0 · · · I


, (6.10a)

and E ∈ Rnx×nunc are described as follows:

E =
[
I 0 0 · · · 0

]
. (6.10b)

Subsequently, the optimisation problem of (6.8), using the autonomous form (6.9), is

described as follows:

Jk =

∞∑
i=0

zTi|k(Γ
T
xQΓx + ΓTuRΓu)zi|k, (6.11a)

s.t. zi+1|k = Ψzi|k, ∀i ≥ 0, (6.11b)

where Γx =
[
I 0 −Kxd

]
∈ Rnx×nz and Γu =

[
K E −KKxd

]
∈ Rnu×nz . The

infinite-horizon cost function (6.11a) can be compacted into a finite-horizon form, using
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the Lyapunov equation ΨTSΨ = S −W and zi|k = Ψiz0|k:

Jk = zT0|k

∞∑
i=0

ΨiT ΓTxQΓx + ΓTuRΓu︸ ︷︷ ︸
W

Ψi

︸ ︷︷ ︸
S

z0|k, (6.12a)

=


x0|k

c→k
d→k


T

S


x0|k

c→k
d→k

 =


x0|k

c→k
d→k


T 

Sx Sxc Sxd

STxc Sc Scd

STxd STcd Sd



x0|k

c→k
d→k

 , (6.12b)

= c→
T

k
Sc c→k

+ 2 c→
T

k
STxcx0|k + 2 c→

T

k
Scd d→k

+ ε, (6.12c)

where ε denotes the terms that are independent of c→ and x0|k = xk.

6.4.3 Constraint formulations in terms of perturbations

Let the system be subject to constraints of the form:

ymin ≤ yi|k ≤ ymax, ∀i ≥ 0, (6.13a)

umin ≤ ui|k ≤ umax, ∀i ≥ 0, (6.13b)

∆umin ≤ ∆ui|k ≤ ∆umax, ∀i ≥ 0, (6.13c)

Given that the state and input is captured in terms of the autonomous form (6.9), thus,

the inequalities (6.13) can be written as follows:

Hzi|k ≤ h, ∀i ≥ 0, (6.14a)

where

Hzi|k =
[
yi|k −yi|k ui|k −ui|k ∆ui|k −∆ui|k

]T
, (6.14b)

h =
[
ymax −ymin umax −umin ∆umax −∆umin

]T
. (6.14c)

It is noted that to ensure no constraint violations, possible violations in (6.14) must be

checked over an infinite prediction horizon, which would appear to be computationally

impractical. However, it is well known (Gilbert & Tan, 1991) that there exists a suffi-

ciently large horizon where any additional linear equalities of (6.14) for i ≥ n∞ become

redundant, assuming Φ is strictly Hurwitz, ci|k = 0 for i ≥ nc, di|k is bounded and the

constraints contain the steady-state within their interior. Thus, the inequalities (6.14)
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can be expressed as a maximal controlled admissible set as following:

S = {xi|k| ∃ c→ : HΨiz0|k ≤ h, ∀i = {0, · · · , n∞}}

= {xi|k| ∃ c→ : Mxk +N c→k
+ V d→k

≤ b} (6.15)

where the matrices (M,N, V and b) can be computed off-line by the admissible set

algorithms (Gilbert & Tan, 1991; Pluymers, Rossiter, Suykens, & De Moor, n.d.).

Assumption 6.4.1. The disturbance di|k is assumed to be bounded by a sensible range.

Assumption 6.4.2. The steady-state ys
i|k, u

s
i|k,∆u

s
i|k is assumed to be bounded by the

constraint (6.13).

Assumption 6.4.1 is essential for the reasons of boundedness and convergence of the

maximal controlled admissible set (6.15) and Assumption 6.4.2 indicates that the steady-

state is assumed to be reachable. Thus, the problems regarding unreachable targets

due to active constraints are not considered and nevertheless, these problems can be

addressed by an on-line steady-state target calculator (e.g. L. Shead, Muske, and Rossiter

(2008)) or soft-constraints (e.g. Zeilinger, Morari, and Jones (2014)). To sum up, the

proposed MPC layer can be summarised by Algorithm 6.4.1.

Algorithm 6.4.1 (MPC layer). At each sampling instant k:

1. Perform the optimisation

min
c→k

c→
T

k
Sc c→k

+ 2 c→
T

k
(Scd d→k

+ STxcx0|k), (6.16a)

s.t. Mx0|k +N c→k
+ V d→k ≤ b. (6.16b)

2. Apply the first block element ck = c0|k of the perturbation sequence c→k
within the

embedded control law ∆ũk = Kx̃k + ck, where the perturbation sequence c→k
is

the minimiser of the optimisation problem (6.16).

6.5 Analysis of the MPC Layer

While the previous section presents insights on formulating an MPC layer on an existing

output-feedback controller, this section demonstrates the conditions that ensures the

nominal stability and robustness properties of the original closed-loop are retained.
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6.5.1 Main Results

With the MPC layer and feed-forward input (6.6), the original input (6.3b) becomes as

follows:

∆uk = Kxk + ∆uff
k + ck (6.17)

The perturbation ck handles the constraints and preview knowledge, however, this might

not be true as illustrated in the following lemma.

Lemma 6.4. The MPC layer introduces an additional feedback loop to the existing

closed-loop system when constraints are inactive.

Proof. This can be demonstrated by an unconstrained minimisation of the cost (6.16a),

where the perturbation is:

ck = E c→k
= −ES−1

c STxc︸ ︷︷ ︸
Kcx

xk − ES−1
c Scd︸ ︷︷ ︸
Kcd

d→k
, (6.18)

Substituting (6.18) into (6.17) yields:

∆uk = (K −Kcx)xk + ∆uff
k −Kcd d→k

(6.19)

As the optimum ck depends upon the state xk, the underlying state feedback gain K is

implicitly changing to K −Kcx.

Lemma 6.4 indicates that the perturbation ck from the MPC layer could potentially

change the nominal stability and robustness properties of the underlying controller even

when constraints are not active.

Lemma 6.5. Suppose STxc = 0, the cost function of (6.16a) is of the following form:

Jk := c→
T

k
Sc c→k

+ 2 c→
T

k
Scd d→k

, (6.20)

then, c→k
does not impact on the original closed-loop dynamics except when constraint

violations are expected.
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Proof. By performing an unconstrained minimisation of (6.20), the perturbation be-

comes:

ck = −ES−1
c Scd︸ ︷︷ ︸
Kcd

d→k
. (6.21)

Now ck does not depend upon x0|k and comprises solely a feed-forward input to the

closed-loop system. Substituting (6.21) into (6.17) yields:

∆uk = Kxk + ∆uff
k −Kcd d→k

(6.22)

Consequently, the nominal stability and robustness properties of the original closed-loop

dynamics are not affected by the MPC layer.

Corollary 6.5.1. To retain the nominal closed-loop dynamics, it is required that the

perturbation ck becomes independent of the feedback measurement xk, in other words,

as shown in Lemma 6.5, the term c→
T
k
STxcx0|k in the cost function of Algorithm 6.4.1

needs to be zero.

Therefore, the main result of this chapter is as follows.

Theorem 6.6. The unconstrained input perturbation sequence c→ from the additional

MPC layer (Definition 6.4.1) has no impact on the original closed-loop dynamics if and

only if STxc = 0. For STxc = 0, the cost function (6.16a) needs to embed some knowledge

of the nominal output-feedback control law (6.2) such that the weights Q,R satisfy the

following conditions:

ΦTSxΦ− Sx +Q+KTRK = 0, (6.23a)

BTSxΦ +RK = 0. (6.23b)
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Proof. The proof is based on inspection of (6.12) and the Lyapunov equation ΨTSΨ =

S −W , which can be expressed as follows:


ΦT 0 0

ETBT MT
c 0

ETBT
d 0 MT

d



Sx Sxc Sxd

STxc Sc Scd

STxd STcd Sd




Φ BE BdE

0 Mc 0

0 0 Md

−

Sx Sxc Sxd

STxc Sc Scd

STxd STcd Sd



+


Q+KTRK KTRE −(Q+KTRK)Kxd

ETRK ETRE −ETRKKxd

−KT
xd(Q+KTRK) −KT

xdK
TRE KT

xd(Q+KTRK)Kxd

 = 0.

(6.24)

To find the conditions where STxc = 0, begin from the top-left equality of (6.24):

ΦTSxΦ− Sx +Q+KTRK = 0, (6.25)

which forms the first condition of Theorem 6.6. Note that this is the Lyapunov equation

for the pre-determined feedback control law and since xk+1 = Φxk where the closed-loop

dynamics Φ is asymptotically stable, given any Q > 0, there exist a unique Sx > 0

satisfying (6.25). Subsequently, considering the middle-left equality of (6.24):

ETBTSxΦ +MT
c S

T
xcΦ− STxc + ETRK = 0, (6.26a)

and since Sx > 0, the condition for STxc = 0 is if and only if :

ETBTSxΦ + ETRK = 0, (6.26b)

and (6.26b) can be further simplified:

BTSxΦ +RK = 0. (6.26c)

To show BTSxΦ +RK = 0 is a necessary and sufficient condition for STxc = 0, proofs of

sufficiency and necessity are provided.
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Proof of sufficiency: Suppose BTSxΦ +RK = 0 and rewrite 6.26a as follows:



BTSxΦ

0
...

0

0


+



0 0 · · · 0 0

I 0 · · · 0 0

0 I · · · 0 0
...

...
. . .

...
...

0 0 · · · I 0





STxc{1,:}Φ

STxc{2,:}Φ

.. .

STxc{nc−1,:}
Φ

STxc{nc,:}Φ


︸ ︷︷ ︸

STxcΦ

−



STxc{1,:}

STxc{2,:}
. . .

STxc{nc−1,:}

STxc{nc,:}


︸ ︷︷ ︸

STxc

+



RK

0
...

0

0


= 0, (6.27a)

where STxc ∈ Rnunc×nx is expressed in terms of STxc{i,:} ∈ Rnu×nx for i ∈ {1, · · · , nc}.
Considering the first equality of (6.27a):

BTSxΦ− STxc{1,:} +RK = 0. (6.27b)

Substituting BTSxΦ+RK = 0 into (6.27b) yields STxc{1,:} = 0. Subsequently, the second

equality of (6.27a) is as follows:

STxc{1,:}Φ = STxc{2,:} . (6.27c)

Inserting STxc{1,:} = 0 into (6.27c) yields STxc{2,:} = 0, irrespective of Φ ∈ Rnx×nx being

full rank or not. Similarly, examining the subsequent equality of (6.27a):

STxc{i,:}Φ = STxc{i+1,:}
, i ∈ {2, · · · , nc − 1}. (6.27d)

By induction, substituting STxc{i,:} = 0 into (6.27d) yields STxc{i+1,:}
= 0 for i ∈ {2, · · · , nc−

1}. Consequently, all entries of STxc are zeros which implies STxc = 0, that proves

BTSxΦ +RK = 0 is a sufficient condition.

Proof of necessity: To demonstrate BTSxΦ + RK = 0 is a necessary condition for

STxc = 0, a contradiction argument is used. Suppose BTSxΦ + RK 6= 0, based on the

equality of (6.27b), STxc{1,:} becomes as follows:

STxc{1,:} = BTSxΦ +RK 6= 0. (6.28)

If STxc{1,:} 6= 0, then STxc 6= 0. Thus, this proves BTSxΦ+RK = 0 is a necessary condition

for STxc = 0, which forms the second condition of Theorem 6.6.

Remark 6.7. Theorem 6.6 demonstrates that the extra control layer that satisfies the

conditions (6.23) will not impact on the underlying robust output-feedback control law
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unless constraints are predicted to be active. Consequently, in normal operation, the

properties of the original closed-loop dynamics are retained and the additional control

layer solely handles the upcoming information.

Remark 6.8. The reader may wonder whether an alternative form of the cost function

such as (6.20), where only the measures of c→ and d→ are considered, could void need of

the conditions (6.23). Indeed, the perturbation c from (6.20) would become independent

of xk but, however, the preview term Kcd becomes sub-optimal. This is because the cost

function (6.20) is ill-posed if the conditions are not satisfied, where there would be a

mismatch between the predictions of the state and input with the actual closed-loop

trajectories. Examples are provided in Section 6.6.2 in order to demonstrate the sub-

optimal control law if the the term Scx is simply neglected in the cost function (6.20).

6.5.2 Discussions on Stability and Feasibility

Nevertheless, when constraints are active, the robustness of the feedback closed-loop

dynamics cannot be retained as the perturbation ck then impacts the closed-loop. The

nominal stability of the proposed MPC layer can be established based on the use of

infinite horizons and invariant set. Assumes that the optimisation (6.8) is feasible at

every sample k, then, there must exist a perturbation sequence c→ that ensures the tra-

jectories of the closed-loop system always satisfy the constraints (6.13). Thus, recursive

feasibility of the optimisation (6.8) is implicitly required for the stability guarantee of

the MPC layer.

However, in presence of model uncertainties or unmodelled disturbance or ambitious

constraint requirements, there might not exist a perturbation sequence c→ that sat-

isfy the constraint set (6.15). In addition, the steady-state ∆usi|k, x
s
i|k could become

unreachable due to active constraints. Thus, such factors could cause the optimisa-

tion (6.8) infeasible. In the literature, there are many studies regarding the problems of

infeasibility in MPC, for example, the use of constraint-softening strategies (Scokaert &

Rawlings, 1999; Zeilinger et al., 2014), steady-state target calculator (Rawlings et al.,

2008; L. R. E. Shead et al., 2010). Nonetheless, the focus of this chapter is on a simple

MPC formulation on an output-feedback controller, thus, details regarding infeasibility

issues of the MPC are not discussed further in this chapter. Instead, this chapter adopts

a practical solution that whenever infeasibility occurs, the MPC layer backs off and the

input is simply falling back to the pre-determined stabilising control law ∆ũk = Kx̃k.

Under the assumption that the original closed-loop is stable when the constraints are
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active, this method also ensures stability at the sacrifice of the performance that the

available feed-forward information is not exploited.

6.5.3 Tuning of the MPC Layer

Since that the stabilising controller K is pre-determined, the weights Q,R that sat-

isfy (6.23) can be computed by solving a linear matrix inequality (LMI) problem (Boyd,

El Ghaoui, Feron, & Balakrishnan, 1994). The choice of preview horizon na can be

chosen as large as possible given that the cost function (6.8) takes into account the

full preview knowledge, whilst the control horizon nc rests largely on preference of de-

sign. Nonetheless, a longer control horizon nc can result in a larger maximal controlled

admissible set S, thus implicitly lowering the chance of infeasibility. However, more

computational power is required for a large nc.

Remark 6.9. The reader may wonder whether the corresponding Q,R need not imply

good performance. However, this is not the case as the inner loop is specially designed to

meet frequency domain criteria in preference to time-domain criteria and hence implicitly

the corresponding Q,R are appropriate.

Remark 6.10. The condition (6.23) only requires satisfaction of the weights Q,R within

the cost function (6.8), regardless of the choice of preview and control horizon na, nc.

6.6 Numerical Examples and Discussions

For the examples presented through this chapter, consider a SISO system given by:

y(s) = G(s)u(s) +Gd(s)d(s) (6.29a)

=
0.2

(s+ 0.25)(0.11s+ 1)
u(s)− 0.5

s+ 0.25
d(s), (6.29b)

and a robust stabilising controller is given as follows:

u(s) = K(s)y(s) (6.30)

= −11.40s+ 4.08

s
y(s). (6.31)
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Subsequently, with the sampling time T = 0.2s, the discrete-time closed-loop model is

as follows:


xpk+1

xκk+1

uk

 =


0.15 −0.06 0 −0.11

0.18 0.96 0 −0.07

−0.03 0.1614 1 0

0 0 0 1


︸ ︷︷ ︸

A


xpk

xκk

uk−1


︸ ︷︷ ︸

xk

+


−0.11

−0.07

0

1


︸ ︷︷ ︸

B

∆uk +


−0.02

0.24

0

0


︸ ︷︷ ︸

Bd

dk,

(6.32)

∆uk = Kxk =
[
−0.82 4.60 2.04 −1

]
xk, (6.33)

yk = Cxk =
[
0.07 −0.40 0 0

]
xk, (6.34)

where the eigenvalues of the closed-loop model A+BK are 0, 0.92 and 0.47±0.27i. Let

the prefect preview knowledge available up to na = 10 samples and the control horizon

is chosen as nc = 2 samples.

Table 6.1: Weights selection for the cost function (6.8) of the MPC layer. The
eigenvalues represents the poles of the closed-loop with the MPC layer A+B(K−Kcx).

Case i Qi Ri Satisfying (6.23) Eigenvalues

1


356.18 −57.01 −9.82 58.83
−57.01 31.76 3.82 −8.60
−9.82 3.82 9.47 −2.19
58.83 −8.60 −2.19 10

 3.34× 10−15 3

0
0.92

0.47± 0.27i

2


37.39 2.51 4.00 5.81
2.51 2.34 0.71 0.44
4.00 0.71 0.52 0.63
5.81 0.44 0.63 0.90

 2.40× 10−15 3

0
0.92

0.47± 0.27i

3


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 1 7

0.16
0.38

0.90± 0.06i

6.6.1 Analysis of the weights selection

This section will investigate the importance of weights selection for formulating the

MPC layer. Four weights, as listed in Table 6.1, are chosen for the cost function (6.8)

based on the closed-loop model (6.32). The first and second sets of weights Q1, R1

and Q2, R2 both satisfy the condition (6.23). Thus, given that STxc = 0, it is expected

that the eigenvalues of the closed-loop system with the MPC layer remain unchanged,

which are the same as those of the original closed-loop (6.32), as shown in Table 6.1.

In contrast, the third set of weights Q3, R3 are selected arbitrarily and the eigenvalues
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of the modified closed-loop reveal that the performance and robustness properties are

affected by the additional MPC layer, as expected. To further illustrate the performance

of these weights selection, simulation examples with a step disturbance are shown in the

following section.

6.6.2 Example 1: a step disturbance

As discussed in Section 6.3.4, the use of feed-forward control law (6.6) might result in

a high demanding input effort to achieve good disturbance rejection. The perturba-

tion ck = Kcd d→ that exploits the preview knowledge can be tuned for improving the

transition between the current input and the desired input trajectory. Consider a step

disturbance which is perfectly available to the MPC layer, the input rate, input and

output trajectories under a constraint-free case are shown in Figure 6.2. The MPC

layer with the weighs Q1, R1 performs similar to the feed-forward control law (6.6) in

Figure 6.2c, 6.2d and 6.2b. However, the MPC layer with Q2, R2 has a similar input

rate effort as the original feedback controller in Figure 6.2c but much better disturbance

rejection as shown in Figure 6.2b. This is because less penalties on Q1 leads to a less

aggressive input perturbation ck. The results from this section demonstrate that the

preview knowledge handling capability of the MPC layer can be tuned with preference

of design.
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(a) Time series of the disturbance trajectory.
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(b) Time series of the output trajectory.

80 80.5 81 81.5 82 82.5 83 83.5 84

0

0.5

1

1.5

2

2.5

∆
u
(t
)

Time t [s]

(c) Time series of the input rate trajectory.
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(d) Time series of the input trajectory.

Figure 6.2: Time series of the disturbance, output, input rate and input trajectories.
For (b), (c) and (d), dotted line denotes feedback controller (6.2), solid thin line rep-
resents feed-forward and feedback control law (6.6), dashed line is the MPC layer with

Q1, R1 and solid thick line is the MPC layer with Q2, R2.
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The reader may wonder the arbitrary choice of Q3, R3 that does not satisfy the condi-

tions (6.23) still gives a reasonable and stable closed-loop performance. However, the

preview control law ck = −Kcd d→ with the weights Q3, R3 might result in a sub-optimal

behaviour, where the prediction of the closed-loop state is not consistent with actual

closed-loop behaviour since that the cost function (6.8) does not embed any knowledge

of the original controller (6.2). This sub-optimality also applies to the alternative cost

function (6.20), where the Scx terms is simply neglected and the weights are chosen

arbitrarily. To illustrate the sub-optimality, consider the same setting as in Figure 6.2

but with the MPC layer with Q3, R3, Figure 6.3b demonstrates that there is mismatch

between the prediction c→ and the actual behaviour of ck. Additionally, the perturba-

tion ck does not converge to zero after sample 6, thus, the perturbation ck affected the

steady-state of the input. In contrast, Figure 6.3a illustrates the prediction of the per-

turbation sequence c→k
at sample time 1 is consistent with the actual behaviour of ck.

Thus, for the cost function (6.8) remains optimal, the corresponding weights need to

satisfy condition (6.23).
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(a) The sub-optimal response of the MPC layer
with Q3, R3.
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(b) The optimal response of the MPC layer
with Q1, R1.

Figure 6.3: Prediction of the perturbation sequence c→k
at sample time 1 (dashed line)

based on the step disturbance (dotted line) and the actual behaviour of the perturbation
ck (solid line).

6.6.3 Example 2: A time-varying disturbance and constraints

Consider a time-varying disturbance dk ∈ {−16, 16}, the bounds on input, input rate

and output can be computed by the steady-state target calculator (6.5) for formulating

the maximal controlled admissible set (6.15), defined as follows: xs
k

∆us
k

 =
[
−0.34 −0.06 0 2.50 0

]T
dk (6.35a)

ys
k = Cxs

k = 0. (6.35b)
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Thus, only the input needs to be bounded as u ∈ {−40, 40} as discussed in Assump-

tion 6.4.2.

Consider the time-varying disturbance as shown in Figure 6.4a, the response of the

closed-loop system (6.32) with the feedback controller (6.30) is illustrated in Figure 6.4b

and Figure 6.4c demonstrates the input rate operating near the input rate limits, as-

suming the input rate limit of the actuators as ∆u ∈ {−8, 8}. Based on this closed-loop

system model (6.32), a MPC layer can be constructed with the weights Q2, R2 in this

example and the input rate is tuned moderately, as shown in Figure 6.4c, which has

similar input activity as the original feedback controller. By using the similar input

effort, Figure 6.4b illustrates the superior performance on disturbance rejection of the

proposed MPC layer, assuming prefect advance knowledge and no modelling error.
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(a) Time series of the disturbance trajectories.
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(b) Time series of the output trajectories.
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(c) Time series of the input rate trajectories.
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(d) Time series of the input trajectories.

Figure 6.4: An example without the output constraint. Time series of the disturbance,
output, input rate and input trajectories. For (b), (c) and (d), solid line denotes the
feedback controller, whilst dashed line represents the proposed MPC layer structure

and dotted line is the constraint.

To clearly demonstrate the constraint handling capability, the output is assumed to be

bounded as y ∈ {−0.06, 0.06}. Figure 6.5 shows the performance of the proposed MPC

structure with and without the output constraint requirement. Figure 6.5b and 6.5c

reveal that the output-constrained MPC layer provides an effective control input for the

closed-loop system with the knowledge of the bounds on the output.

In conclusion, the MPC layer brings immediate benefits to many applications with an

existing feedback controller. For example, the perturbation from the MPC layer that

handles the preview knowledge and constraints can be tuned systematically regarding the
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capability of the input actuators. Additionally, the separate nature of the MPC layer

enables fair and transparent performance comparison between the original controller

and the additional benefits from utilising the feed-forward information and constraint

management.
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(c) Time series of the input rate trajectories.
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Figure 6.5: An example with the output constraint, Time series of the disturbance,
output, input rate and input trajectories. For (b), (c) and (d), solid line denotes the
feedback controller, whilst dashed line represents the proposed MPC layer structure

and dotted line is the constraint.

6.7 Chapter Summary

This chapter has presented an MPC layer design where the feed-forward measurements

and constraint handling capability are incorporated into a known output-feedback con-

troller, together with the conditions to ensure the former does not interfere with the

closed-loop dynamics provided by the latter. Two key benefits of the proposed MPC

layer design were discussed, namely: (i) the robustness and frequency-domain proper-

ties of the nominal output-feedback controller are retained in the unconstrained case

and such robust properties are likely to extend to the constrained case; (ii) the separate

nature of the proposed structure offers a clear and transparent framework to quantify

the benefits. Several simulation studies have been provided to illustrate the efficacy of

the MPC layer design and also the importance of weight selection to satisfy the proposed

conditions.
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In the coming chapter, the MPC layer is formulated based upon the baseline feedback

controller, which is discussed in Section 2.8. And the benefits of the uses of the upcoming

wind information are examined.



Chapter 7

Feed-forward model predictive

control layer on wind turbines

7.1 Chapter Overview and Contribution

The use of upstream wind measurements has motivated the development of blade-pitch

preview controllers to improve rotor speed tracking and structural load reduction beyond

that achievable via conventional feedback control. Such preview controllers, typically

based upon model predictive control (MPC) for its constraint handling properties, alter

the closed-loop dynamics of the existing blade-pitch feedback control system. This can

result in a deterioration of the robustness properties and performance of the existing

feedback control system. Furthermore, performance gains from utilising the upcoming

real-time measurements cannot be easily distinguished from the feedback control, making

it difficult to formulate a clear business case for the use of preview control. Therefore,

the aim of this work is to formulate a modular MPC layer on top of a given output

feedback blade-pitch controller, with a view to retaining the closed-loop robustness and

frequency-domain performance of the latter. We derive a key result that proves that

the proposed modular MPC layer handles real-time advance measurements and impacts

the existing closed-loop system if and only if constraints are violated. The separate

nature of the proposed controller structure enables clear and transparent quantification

of the benefits gained by using preview control, beyond that of the underlying feedback

controller. This is illustrated by results obtained from high-fidelity closed-loop turbine

simulations, showing the performance comparison between a nominal feedback controller

151
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and an additional MPC-based preview controller. The proposed control scheme incor-

porating knowledge of the oncoming wind and constraints achieved significant 43% and

30% reductions in the rotor speed and flap-wise blade moment standard deviations, re-

spectively. Additionally, the chance of constraint violations on the rotor speed decreased

remarkably from 2.15% to 0.01%, compared to the nominal controller.

The remainder of this chapter is structured as follows. Section 7.2 presents an introduc-

tion and motivation of this chapter. In Section 7.3, the modelling aspect of the blade

pitch control problem, including model disturbance, and the detail of the nominal out-

put feedback controller are discussed. This is followed in Section 7.4 by a formulation of

a predictive control layer. In Section 7.5, details of simulation environments and tuning

of the MPC layer will be discussed. In Section 7.6, simulation results on a high-fidelity

wind turbine under various wind cases are demonstrated, showing the benefits of de-

ploying the proposed control layer on top of the output-feedback controller. Section 7.7

concludes this chapter with a summary and an overview of future work.

Notice that part of this chapter is published in the following publications:

1. W.H. Lio, B. Ll. Jones, and J.A. Rossiter, Predictive control layer design on a

known output-feedback compensator for wind turbine blade-pitch preview control,

Wind Energy, 2017. DOI: 10.1002/we.2090.

2. W.H. Lio, B. Ll. Jones, and J.A. Rossiter, Preview model predictive control layer

design based on a known output-feedback controller, In preparation.

3. W.H. Lio, J.A. Rossiter, and B. Ll. Jones, Predictive control design on an em-

bedded robust output-feedback compensator for wind turbine blade-pitch preview

control. In 2016 European Control Conference (ECC), Aalborg, Denmark, 2016.

DOI: 10.1109/ECC.2016.7810496.

7.2 Introduction

In recent years, a growing body of research has emerged, seeking to utilise real-time

measurement of the approaching wind field from sensing devices for feed-forward design

to further improve the performance of blade pitch control systems. Early adoption of
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feed-forward control in wind turbines that focused on turbine speed regulation was re-

ported by Kodama et al. (1999), in which the feed-forward control strategy was based on

the hub-height wind measurement taken 40 metres in front of the rotor by an anemome-

ter on a free standing tower. Light detection and ranging (LIDAR) devices, employed

by Harris et al. (2005) and numerous subsequent authors (e.g. E. Bossanyi et al. (2012);

Dunne, Pao, Wright, Jonkman, Kelley, and Simley (2011); Schlipf, Fischer, and Car-

cangiu (2010)), demonstrated the impact on the performance of the CPC in regulating

rotor speed and mitigating tower load by exploiting preview information of the ap-

proaching wind field. Lately, a number of authors (e.g. Dunne, Pao, Wright, Jonkman,

and Kelley (2011); J. Laks, Pao, Wright, et al. (2011); Schlipf, Schuler, et al. (2010);

N. Wang et al. (2012)) investigated the use of upcoming wind measurements with IPC,

aiming to attenuate unbalanced loads on the rotor and blade loads. Several authors

(e.g. J. Laks, Pao, Simley, et al. (2011); Lio, Rossiter, and Jones (2014); Spencer et al.

(2013)) employed model predictive control (MPC), for its constraint handling features,

to design preview CPC and IPC controllers. The results by these authors demonstrated

the efficacy of preview MPC design for turbine speed regulation and flap-wise blade load

reduction.

The majority of preview MPC studies in wind turbines used a standard MPC approach

where their shortcomings are that the robustness and closed-loop frequency-domain

properties are usually not well considered in the time-domain design. As the loads

on turbine blades predominately exist at the harmonics of the blade rotational fre-

quency, thus, it is more intuitive to design a robust closed-loop feedback controller in

the frequency-domain to attenuate such loads. Consequently, the modular MPC layer

design proposed in Chapter 6 is adopted in this chapter and formulated based on a

known robust output-feedback blade-pitch controller where the MPC layer handles con-

straints and upcoming wind measurements whilst retaining the robustness properties

of the existing closed-loop. The separate nature of this MPC layer is important from

an industry perspective, since the feed-forward control can be implemented without re-

placing the existing feedback controller. Furthermore, it provides a clear framework

to quantify the benefits of the use of advance real-time measurements and constraint

handling capability over the nominal output-feedback strategy, which forms the essence

of this chapter.
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Figure 7.1: System architecture of a wind turbine blade-pitch control system, com-
bining collective pitch control (CPC) and individual pitch control (IPC). The CPC reg-
ulates rotor speed while the IPC attenuates perturbations in the flap-wise root bending
moments on each blade. Additional inputs to the turbine, such as wind loading and

generator torque, are accounted for in the term f(t).

7.3 Wind Turbine Modeling and Nominal Robust Feed-

back Compensator

This section gives a brief background of wind turbine modelling including model distur-

bances and details of the chosen robust feedback controllers that are later employed by

the proposed MPC layer formulation.

Remark 7.1. The wind turbine model employed in this chapter is largely based on

Section 4.3 in Chapter 4. In this chapter, the difference is that the rotor dynamics

is taken into account and the disturbance modelling is also included.

7.3.1 Wind turbine modelling

A typical wind turbine blade-pitch control system architecture for above-rated conditions

is shown in Figure 7.1. The CPC regulates the rotor speed ω(t) by adjusting the collective
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pitch angle signal, whilst the IPC attenuates loads by providing additional pitch signals

to the collective pitch angle in response to flap-wise blade root bending moment signals.

To isolate the action of the IPC from that of the CPC, it is convenient to define the

pitch angles and blade moments as follows:


θc

1(t)

θc
2(t)

θc
3(t)

 :=


θ̄c(t) + θ̃c

1(t)

θ̄c(t) + θ̃c
2(t)

θ̄c(t) + θ̃c
3(t)

 ,

M1(t)

M2(t)

M3(t)

 :=


M̄(t) + M̃1(t)

M̄(t) + M̃2(t)

M̄(t) + M̃3(t)

 , (7.1)

where θ̃c
i (t), for i = {1, 2, 3}, represent the perturbations in blade pitch demand from

collective pitch angle signal θ̄c(t). Similarly, M̃i(t), for i = {1, 2, 3}, are the perturba-

tions in flap-wise blade root bending moments, obtained by filtering out the average

moment M̄(t) from the measurements M1,2,3(t). This structure is commonly used to

separate the action of the IPC from that of the CPC (e.g. E. A. Bossanyi (2003a);

Geyler and Caselitz (2008); Lu et al. (2015); Selvam et al. (2009)). The relationship be-

tween collective pitch input θ̄c and rotor speed output ω can be modelled by a transfer

function Gωθ ∈ R obtained by linearising the turbine dynamics around the operating

conditions. In a similar fashion, the transfer function GMθ ∈ R relating each flap-wise

blade bending moment output M̃i to additional pitch inputs θ̃c
i for i = {1, 2, 3} can also

be found. For simplicity, it is assumed that there is no coupling between the CPC and

IPC loops from the tower dynamics. These transfer functions are defined as follows:

Gωθ(s) := Ga(s)Gr(s), (7.2a)

GMθ(s) := Ga(s)Gb(s)Gbp(s), (7.2b)

where Gr, Gb, Ga ∈ R describe the dynamics of rotor, blade and actuator, respectively,

whilst Gbp ∈ R is a band-pass filter that is included in order to remove the low and high

frequency contents of the blade root bending moment measurement signals, obtained

from strain-gauge sensors. These transfer functions are defined as follows:

Gr(s) :=
∂ω

∂θ

1

τrs+ 1
, (7.3a)

Gb(s) :=
∂Mflap

∂θ

(2πfb)2

s2 + 4πfbDbs+ (2πfb)2
, (7.3b)

Ga(s) :=
1

τas+ 1
, (7.3c)

Gbp(s) :=
2πfh

s2 + 2π(fh + fl)s+ 4π2fhfl
, (7.3d)

(7.3e)



Chapter 7. Feed-forward MPC layer on wind turbines 156

where ∂ω
∂θ , τr ∈ R denote the variation of aerodynamic torque to pitch angle and the

time constant of the rotor dynamics, respectively, whilst
∂Mflap

∂θ , Db, fb ∈ R represent

the variation of flap-wise blade root bending moment to pitch angle, blade damping ratio

and natural frequency of first blade mode, respectively. τa ∈ R denotes the time constant

of the pitch actuator whilst fh, fl ∈ R represent the upper and lower cut-off frequencies of

the band-pass filter, respectively. The values of those parameters are listed in Table 7.1.

The dynamics of rotor speed (7.3a) and pitch actuator (7.3c) are approximated as first-

order systems respectively whilst the blade dynamics (7.3b) and band-pass filter (7.3d)

are modelled as second-order systems. Note that the high-fidelity wind turbine employed

for simulation purposes in this study operates across above-rated wind conditions and

the parameters ∂ω
∂θ and

∂Mflap

∂θ vary based on operating wind conditions. For the linear

models (7.3), a fixed set of parameters were obtained from linearisation of the simulation

turbine model operating at 18 ms−1, chosen since this value is close to the centre of the

range of wind speeds covering above-rated wind conditions.

Parameters Values Units Parameters Values Units
∂ω
∂θ −0.84 rpm deg−1 ∂Mflap

∂θ −1.50× 106 Nm deg−1

τr 4.00 s fb 0.70 Hz
Db 0.47 - τa 0.11 s
fh 0.80 Hz fl 0.014 Hz

Table 7.1: Model parameter of G(s) and Gd(s) (7.6)

7.3.2 Disturbance modelling

The rotor and blade are subjected to a temporally varying and spatially distributed

wind field and in many studies, the feed-forward control assumes only a few points of

wind measurement across the rotor disk to estimate the effective wind speed at the

rotor and blade. Given the fact that the blade and rotor loads vary along the span of

the blades, owing to the wind conditions and blade geometry, more wind measurements

across the entire rotor plane will inevitably provide improved estimation of such loads.

A number of studies demonstrated the feasibility of estimating the wind-field from a few

point measurements taken upstream of the turbine (e.g. Raach et al. (2014); Towers and

Jones (2016)). Since this is a non-trivial problem, the issue of wind-field estimation is

not considered in this thesis. Instead, this chapter assumes the approaching stream-wise

wind speeds are known apriori perfectly, and the focus of this chapter is to design a

control algorithm that utilises such preview information.
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The disturbance trajectories of rotor speed ωd, and flap-wise blade bending moment

M̃di , for i ∈ {1, 2, 3}, caused by the approaching wind at sample time k, are defined as

follows:

ωd(k) :=
∑
l,φ

∂ω

∂v
(v̄, l)v(l, φ, k), (7.4a)

M̃di(k) :=
∑
l,φ

∂Mflap

∂v
(v̄, l)v(l, φ, k), i = 1, 2, 3, (7.4b)

where v(l, φ, k) ∈ R denote the stream-wise wind speed measurements where l, φ ∈ R

represent the radial and angular co-ordinates across the rotor disk whilst v̄ ∈ R denote

the averaged wind speed of the measurements. The variations in rotor speed and blade

bending moment with respect to the wind are denoted as ∂ωd
∂v ,

∂Md
∂v ∈ R. The rotor

speed response ω to wind-induced disturbance ωd is modelled as a first-order transfer

function Gωωd ∈ R, whilst the response of flap-wise blade root bending moment M̃i to

wind-induced disturbance M̃di , for i ∈ {1, 2, 3}, is modelled as GMMd
∈ R:

Gωωd(s) :=
1

τrs+ 1
, (7.5a)

GMMd
(s) :=

(2πfb)2

s2 + 4πfbDbs+ (2πfb)2
Gbp(s), (7.5b)

where the parameters are listed in Table 7.1. Combining (7.2) and (7.5), the overall

transfer function models G ∈ R4×4 and Gd ∈ R4×4 can be represented as follows:


ω(s)

M̃1(s)

M̃2(s)

M̃3(s)

 =


Gωθ(s) 0 0 0

0 GMθ(s) 0 0

0 0 GMθ(s) 0

0 0 0 GMθ(s)


︸ ︷︷ ︸

G(s)


θ̄c(s)

θ̃c
1(s)

θ̃c
2(s)

θ̃c
3(s)



+


Gωωd(s) 0 0 0

0 GMMd
(s) 0 0

0 0 GMMd
(s) 0

0 0 0 GMMd
(s)


︸ ︷︷ ︸

Gd(s)


ωd(s)

M̃d1(s)

M̃d2(s)

M̃d3(s)

 .
(7.6)
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Equivalently, the model can be described in a discrete-time state-space form since the

discrete-time model is more convenient in the MPC framework:

xp(k + 1) = Apxp(k) +Bpu(k) +Bdpd(k),

y(k) = Cpxp(k),
(7.7a)

where

u(k) = [θ̄c(k), θ̃c
1(k), θ̃c

2(k), θ̃c
3(k)]T , (7.7b)

y(k) = [ω(k), M̃1(k), M̃2(k), M̃3(k)]T , (7.7c)

d(k) = [ωd(k), M̃d1(k), M̃d2(k), M̃d3(k)]T , (7.7d)

and the state vector xp ∈ Rnxp of the model is a collection of variables that characterises

the dynamics of the transfer functions G and Gd that map the input vector u ∈ Rnu and

disturbance vector d ∈ Rnd into the output vector y ∈ Rny . The subscript p denotes the

plant.

7.3.3 Nominal robust feedback controller

The focus of this chapter is to design the MPC layer algorithm on top of a nominal

output-feedback controller. The chosen feedback controller K ∈ R4×4, consisting of

CPC Kθω ∈ R and IPC KθM ∈ R is defined as follows:


θ̄c(s)

θ̃c
1(s)

θ̃c
2(s)

θ̃c
3(s)

 =


Kθω(s) 0 0 0

0 KθM (s) 0 0

0 0 KθM (s) 0

0 0 0 KθM (s)


︸ ︷︷ ︸

K(s)


ω(s)

M̃1(s)

M̃2(s)

M̃3(s)

 , (7.8)

where Kθω,KθM ∈ R are chosen to be the baseline CPC and IPC controllers in Sec-

tion 2.8. Notice that these feedback controllers yield a robust stability margin b(GK, I) =

0.53.

With respect to KθM , a variety of IPC strategies exists in the literature, for exam-

ple, Coleman transform-based control (E. A. Bossanyi, 2003a; Lu et al., 2015), Clarke

transform-based control (Zhang et al., 2013) and single-blade control (Leithead, Neilson,
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& Dominguez, 2009). The transform-based IPC techniques involve coordinate mappings

on the pitch inputs which complicate the constraint formulation in MPC, where the

linear constraint inequalities needed to be updated on-line at every sample, based on

the prediction of azimuth angle. As discussed in Chapter 4, the performance differ-

ences between the various types of IPCs is negligible. Consequently, single-blade control

IPC is employed in this chapter, where each blade is equipped with its own controller

(KθM ) in response to a local blade load measurement. The diagonal structure of the

controller (7.8) mirrors that of the plant model (7.6). Implicit in this structure is an

assumption of no dynamic coupling between the fixed and rotating turbine structures.

The simulation results in Lio et al. (2015) showed that a controller of the form (7.8) could

be designed to be insensitive to such coupling by shaping the open-loop frequency re-

sponse to have low gain at the tower frequency. Similar to the plant model, the feedback

controller (7.8) has a discrete-time state-space realisation:

xκ(k + 1) = Aκxκ(k)−Bκy(k),

u(k) = Cκxκ(k)−Dκy(k),
(7.9)

where the state vector xκ ∈ Rnxκ is a collection of variables that characterises the

dynamics of the controller K. The subscript κ denotes controller.

7.4 Formulating the MPC Layer to Wind Turbines

This section presents the design of the MPC layer to compliment the output-feedback

blade-pitch controller (7.8) derived in the previous section. Notice that the MPC layer

formulation was mostly discussed in Chapter 6. This section discusses the issues which

arise from formulating the MPC layer on the wind turbine.

7.4.1 State-space representation of the closed-loop system model

The closed-loop dynamic system model employed in the proposed MPC algorithm can

be described by combining the linear wind turbine model (7.7) and controller (7.9), and
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the model is defined as follows:
xpk+1

xκk+1

uk

 =


Ap 0 Bp

−BκCp Aκ 0

0 0 I


︸ ︷︷ ︸

A


xpk

xκk

uk−1


︸ ︷︷ ︸

xk

+


Bp

0

I


︸ ︷︷ ︸
B

∆uk +

Bdp

0


︸ ︷︷ ︸
Bd

dk, (7.10a)

∆uk =
[
−DκCp Cκ −I

]
xk = Kxk, (7.10b)

yk =
[
Cp 0

]
xk = Cxk. (7.10c)

The states of the turbine model xpk ∈ Rnxp cannot be measured directly and the separate

nature of the feedback controller prohibits direct access to the states of the controller

xκk ∈ Rnxκ , thus, observers employed to estimate these states are described by the

following expressions:

x̂pk+1|k = Apx̂pk|k−1
+Bpuk +Bdpdk + Lp(yk − ŷk|k−1), ŷk|k−1 = Cpx̂pk|k−1

, (7.11a)

x̂κk+1|k = Aκx̂κk|k−1
−Bκyk + Lκ(uk − ûk|k−1), ûk|k−1 = Cκx̂κk|k−1

−Dκyk, (7.11b)

where x̂p ∈ Rnxp and x̂κ ∈ Rnxκ denote the estimates of the state of wind turbine model

and controller, respectively, and Lp ∈ Rnxp×ny and Lκ ∈ Rnxκ×nu are the observer gains.

It is noted that due to the mismatch between the wind turbine linear model and the

high-fidelity turbine model, a difference exists between y ∈ Rny and ŷ ∈ Rny , whilst in

contrast, û ∈ Rnu converges to u ∈ Rnu only if there is no noise on the inputs.

7.4.2 MPC layer formulation

With the closed-loop state-space model (7.10), the MPC layer can be formulated based

on the results from Section 6.4 in Chapter 6, where the MPC layer algorithm is as

follows:

Algorithm 7.4.1 (MPC layer). At each sampling instant k:

1. Perform the optimisation

min
c→k

c→
T

k
Sc c→k

+ 2 c→
T

k
(Scd d→k

+ STxcx0|k), (7.12a)

s.t. Mx0|k +N c→k
+ V d→k ≤ b. (7.12b)



Chapter 7. Feed-forward MPC layer on wind turbines 161

2. Apply the first block element ck = c0|k of the perturbation sequence c→k
within the

embedded control law ∆ũk = Kx̃k + ck, where the perturbation sequence c→k
is

the minimiser of the optimisation problem (7.12)

As discussed in Section 6.5.2, issues regarding feasibility with this form of the MPC

layer (7.12) were not particularly considered. In case of infeasibility, the approach in

Chapter 6 is to return to the feedback control law, ∆ũk = Kx̃k, whilst the perturbation

ck is kept at zero. To overcome the infeasibility issues, soft-constraint formulation is

introduced in the following section.

7.4.3 Soft Constraint formulation

The constraints considered in this chapter are soft constraints to overcome the feasibility

issues. Thus, constraints on the angles and rates of the blade-pitch actuators and the

rotor speed with slack variables are defined as follows:

θmin − εθi|k ≤θi|k ≤ θmax + εθi|k, ∀i ≥ 0, (7.13a)

θ̇min − εθ̇i|k ≤θ̇i|k ≤ θ̇max + εθ̇i|k, ∀i ≥ 0, (7.13b)

ωi|k ≤ ωmax + εωi|k, ∀i ≥ 0, (7.13c)

where θ = [θ1, θ2, θ3]T ∈ R3, whereas θmin, θmax, θ̇min, θ̇max ∈ R3 denote the minimum

and maximum of the angle and rate of the pitch actuators, respectively, whilst ωmax ∈ R

represents the maximum rotor speed. Since the constraints on pitch actuators and

rotor speed are state-constraints, thus, the slack variables εi|k = [εθi|k, ε
θ̇
i|k, ε

ω
i|k]

T ∈ Rnε

are employed to soften the constraints to ensure the feasibility of the optimisation if

necessary. To minimise the predictions of the slack variables ε→k
= [ε0|k, ..., εnc−1|k]

T ∈
Rnεnc , a quadratic penalty together with l1-norm penalty is added into the cost (7.12a)

in Algorithm 7.4.1, as follows:

J = c→
T

k
Sc c→k

+ 2 c→
T

k
STxcx0|k + 2 c→

T

k
Scd d→k

+ ε→
T

k
Sε ε→k

+ LTε ε→k
. (7.14)

The weights of the quadratic penalty Sε ∈ Rnεnc×nεnc , that is a diagonal matrix, pe-

nalises the peak of constraint violations, whilst the weights of the l1-norm penalty

Lε ∈ Rnεnc penalises the total sum of violations (Scokaert & Rawlings, 1999). Details

of tunings are provided in Section 7.5.3.
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Subsequently, the inequalities (7.13) can be written in terms of the autonomous form (6.9),

with zi|k = Ψiz0|k, as follows:

HΨiz0|k ≤ h+ hεi|k, ∀i ≥ 0, (7.15)

where the matrices are chosen as Hzi|k = [θi|k,−θi|k, θ̇i|k,−θ̇i|k, ωi|k]T ,h = [ θmax,−θmin,

θ̇max ,−θ̇min ,ωmax ]T and hεi|k = [εθi|k,−εθi|k, εθ̇i|k,−εθ̇i|k, εωi|k]T . Given that the slack

variables are not bounded for ensuring feasibility, a maximal controlled admissible set

like (6.15) cannot be formed in the soft-constraint formulation. Thus, for a practical

approach, this study formulates the inequalities by checking the constraints over twice

the control horizon. The inequalities can be described by a set of suitable matrices

(M,N ,V, T and b) as follows:

Mx0|k +N c→k
+ V d→k − T ε→k ≤ b, (7.16)

The matrices M,N ,V, T and b can be computed off-line and hence only the variables

x0|k, c→k
, d→k

and ε→k
need to be updated on-line.

To sum up Section 7.4, the proposed MPC layer, at each sample k, employs the states

xk = x0|k of the closed-loop system and subsequently determines the optimal perturba-

tion sequence c→k
that takes into account both upcoming measurements and constraints,

by solving a constrained minimisation of the predicted cost (7.14) subject to soft con-

straints (7.16). This is summarised in Algorithm 7.4.2.

Algorithm 7.4.2 (MPC layer with soft constraints). At each sampling instant perform

the constrained optimisation below. The first block element ck = c0|k of the perturbation

sequence is applied within the embedded control law, where uk = Kxk + ck:

min
c→k

, ε→k

c→
T

k
Sc c→k

+ 2 c→
T

k
(Scd d→k

+ STxcx0|k) + ε→
T

k
Sε ε→k

+ LTε ε→k
, (7.17a)

s.t. Mx0|k +N c→k
+ V d→k − T ε→k ≤ b. (7.17b)

7.4.4 Soft-constrained MPC layer and stability

As discussed in Section 6.5 in Chapter 6, recursive feasibility is required for guarantee of

stability of the MPC layer (7.12). The use of soft constraint solves the infeasibility issues

in (7.12). However, the set of constraints (7.16) now relies upon the slack variables and
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hence, is not a maximal controlled admissible set. Thus, recursive feasibility of (7.17a)

does not imply guarantee of stability.

The benefit of the use of soft constraints is that the slack variables become zero such that

the optimisation problem (7.17a) becomes (7.12). If the slack variables are not zero, that

implies the constraints (7.16) being relaxed. Given that the nature of the wind turbine

problem, where the stability of the plant does not rely upon the constraint satisfaction,

the relaxed constraints do not necessarily make the system become unstable. In addition,

the constraint violations caused by the wind typically are temporary and lasting over

a short period of time. Thus, as the cost (7.17a) penalises the slack variables heavily,

the slack variables converge quickly whenever it is possible and then, the optimisation

problem is back to the original form (7.12) with the slack variables being zero. In case of

a huge wind disturbance, most modern wind turbine have a separate protocol to ensure

the turbines stop operating, as discussed in Section 2.2 in Chapter 2.

7.5 Simulation Environment and Controller Tunings

In this section, the details of the turbine simulation are presented and also the estimation

methods of the upcoming disturbance trajectories of the rotor speed and blade moments

are discussed. Furthermore, it is followed by selections of the control horizon, the preview

horizon and the constraints for the MPC layer.

7.5.1 Simulation environment

The turbine model employed in this study is the NREL 5MW baseline turbine (J. Jonkman

et al., 2009) based on the FAST code (J. Jonkman & Buhl Jr, 2005). This model is of

much greater complexity than the model (7.6) employed for control design and includes

flap-wise and edge-wise blade modes, in addition to the tower and drive train dynamics.

In addition, the generator torque controller is assumed to be fixed in the above-rated

conditions (J. Jonkman et al., 2009). Closed-loop simulations were performed under a set

of representative and turbulent wind fields generated by the TurbSim code (B. Jonkman,

2009). These full-field three-dimensional wind data were characterised by mean wind

speeds, turbulence settings and wind shear exponent. The TurbSim code simulated a
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Table 7.2: List of constraints employed in the closed-loop simulation

Variables Constraints

Maximum rotor speed ωmax 12.83 rpm
Maximum pitch angle θmax 90 degrees

Maximum pitch rate θ̇max 8 degrees per second
Minimum pitch angle θmin 0 degree

Minimum pitch rate θ̇min -8 degrees per second

time series of wind data at points in a two-dimensional 17-by-17 grid such that the se-

quence of grids march towards the rotor at a constant speed specified by the mean wind

speed and under the assumption of Taylor’s frozen turbulence hypothesis.

7.5.2 Future measurements of rotor speed and blade disturbance

As discussed in Section 7.3.2, the issue of wind-field estimation is a non-trivial prob-

lem, this chapter assumes the disturbance trajectories of rotor speed and flap-wise blade

bending moments are estimated based on the prefect stream-wise wind speed measure-

ments in front of the turbine. To examine the accuracy of the estimated disturbance

trajectories generated from (7.4), comparisons were made against the actual trajectories

obtained from the non-linear turbine simulation, shown in Figure 7.2. The time series of

the disturbance trajectories of rotor speed deviation ∆ω and flap-wise bending moment

of blade 1 M̃1 are illustrated in Figure 7.2a and 7.2b and it reveals that the disturbance

trajectories obtained from the linear model and non-linear turbine are almost identical.

Figure 7.2c and 7.2d reveal the frequency spectra of the time series of both trajectories,

which confirm that both trajectories are alike, as demonstrated by the similarity in the

magnitudes at the dominant frequencies that is below 0.1 Hz for rotor speed and at 0.2

Hz for blade moment.

7.5.3 Choice of the MPC horizons and constraints

Effective constraint and feed-forward information handling relies on sensible choices of

preview horizon na and control horizon nc. The predictive controller should anticipate

the upcoming disturbance far ahead enough to allow beneficial feed-forward compen-

sation. The operating frequency of the MPC controller was 5 Hz which provided a

satisfactory compromise between performance and computational burden. A preview

horizon of na = 15 samples was found a reasonable choice in the present simulation
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Figure 7.2: Comparison between the disturbance trajectories obtained from the linear
model (dash line) and non-linear turbine (solid line). Simulation data was obtained
under a turbulent wind field characterised by the mean speed of 18 ms−1 and turbulence

intensity of 14%. Similar results were observed for the remaining blades.

setting; hence the preview horizon period was of duration three seconds. The choice of

the control horizon nc is dependent on the computational requirement and related to

feasibility issues of the MPC algorithm as discussed in Section 6.5.3. Thus, in this work,

the control horizon nc is also chosen as 15 samples.

The constraints considered in this study are the angles and rates of the blade pitch

actuators and the rotor speed, as listed in Table 7.2. The pitch angle for each blade is

bounded between 0 degree and 90 degrees, whilst the limits on pitch rate for each blade

are ±8 degrees per second. In addition, a constraint is also placed on the maximum

rotor speed to avoid excessive loads on the generator. The value for the maximum rotor

speed deviation is selected as 0.726 rpm (6%) from the rated speed,
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Figure 7.3: Soft constraint on rotor speed deviation with different quadratic and
linear weights, sε and lε, respectively, on the slack variables. Dash-dot line denotes the

maximal speed deviation of 0.725 rpm.

Tuning of the weights of the MPC layer Q and R in the cost (7.14) is intuitive, as dis-

cussed in Section 6.5.3. In addition, the weights also need to satisfy the conditions (6.23)

in Theorem 6.6.

Remark 7.2. The reader may wonder whether the corresponding Q,R need not imply

good performance. However, this is not the case as the inner loop is specially designed to

meet frequency domain criteria in preference to time-domain criteria and hence implicitly

the corresponding Q,R are appropriate.

Tuning of the weights of the quadratic penalty Sε and l1-norm penalty Lε in the

cost (7.14) is dependent on the trade-off between the duration and peak of the constraint

violations. To illustrate, Figure 7.3 shows simulation results of constraint violations on

the rotor speed deviation, where the diagonal entries of Sε are sε > 0 ∈ R and the

elements of Lε are lε > 0 ∈ R. It is clearly seen in Figure 7.3 that increasing the relative

importance of the quadratic penalty sε compared to the l1-norm penalty lε results in

prolonging the duration of the constraint violation but a reduction in the peak violation.

Given that over speeding the rotor beyond a certain threshold could potentially cause

the turbine to trigger a temporary shut down, there is a good argument that it is more

favourable to minimise the size of violation. Nonetheless, the lε need to be chosen large

enough to ensure the soft constraint to be exact, which implies the slack variables are

enforced to zero whenever a feasible solution of the optimisation is possible (Scokaert &

Rawlings, 1999).
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7.6 Numerical Results and Discussions

The aims of this section are to demonstrate the benefits gained by deploying the proposed

MPC layer on top of the nominal robust feedback controller. The separate nature of the

proposed design offers a transparent framework to distinguish the marginal improvement

by deploying various features, for example, the capability of handling upcoming distur-

bance information or constraint violations, into the nominal controller. This provides

insights for wind turbine manufacturers to evaluate the benefits against the associated

cost of each feature. The results were obtained from closed-loop simulations upon a

high-fidelity wind turbine.

In Section 7.6.1, time history samples were extracted from simulation results to inves-

tigate the performance gained by utilising upwind measurements of disturbance and

constraint handling. Three constraint violation cases are investigated as follows:

1. Constraint violations on the rotor speed,

2. Constraint violations on the magnitude of the blade pitch angles,

3. Constraint violations on the blade pitch rates.

This is then followed by analysis of full results obtained from simulations under various

wind conditions in Section 7.6.2.

7.6.1 Case studies: Benefits of utilising upcoming measurments and

constraint handling

This section examines the improvement from deploying the MPC layer in cases when

constraint violations are expected. Three controllers, detailed in Table 7.3, were com-

pared: (i) the baseline nominal feedback-only controller (7.9), denoted as FB; (ii) a

preview controller that utilises the advance measurements of rotor speed and blade dis-

turbance but no constraint handling capability, denoted as FB/FFωdMd
; and (iii) the

final controller is a preview and constraint-aware controller and its control law obtained

by solving Algorithm 7.4.2 on-line, denoted FB/MPCωdMd
. Three types of constraints

were employed in this chapter, thus, comparisons were made for three classes of con-

straint violations.
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Controllers Availability of of ωd Availability of M̃d Constraint handling

FB (baseline)
FB/FFωd X

FB/FFωdMd
X X

FB/MPCωd X X
FB/MPCωdMd

X X X

Table 7.3: Various control configurations employed in this study. With the nominal
feedback controller as the baseline, additional features such as feed-forward knowledge

and constraint handling are incrementally augmented into the feedback controller.

7.6.1.1 Constraint violations on the rotor speed

It can be clearly seen in Figure 7.4 that both controllers, FB/FFωdMd
and FB/MPCωdMd

,

outperform the baseline controller FB since they use advance measurements. Further-

more, the time history of rotor speed in Figure 7.4a indicates that the constraint-aware

controller FB/MPCωdMd
anticipated and avoided violating the maximum rotor speed

constraint. Similar blade loads and pitch activities are observed in Figure 7.4b, 7.4c

and 7.4d.

7.6.1.2 Constraint violations on the blade pitch angle

Figure 7.5 presents results where the blade pitch actuators steer near the lower limit.

Owing to advance knowledge of the disturbance, it is not surprising that the preview

controllers, FB/FFωdMd
and FB/MPCωdMd

, perform better on rotor speed tracking and

blade load reduction than the baseline controller FB as shown in 7.5a and 7.5b. In addi-

tion, Figure 7.5a and 7.5b reveal that significant reductions in the rotor speed deviation

and flap-wise blade bending moments were achieved by the controller FB/MPCωdMd

which is aware of the actuator constraints, as evident in Figure 7.5c.

7.6.1.3 Constraint violations on the blade pitch rate

The situation where the pitch actuators operate close to their maximum rate is illustrated

in Figure 7.6. As shown in Figure 7.6b, better reductions in the flap-wise blade bending

moment were yielded by the constraint-aware preview controller, FB/MPCωdMd
, that

foresees the pitch rate violations, as indicated in Figure 7.6d. In general, it is apparent

that constraint anticipations of pitch rates provide the least benefit in contrary to pitch
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(c) Time history of the pitch angle of blade 1.
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Figure 7.4: Simulation results upon the NREL 5MW turbine operating in a wind case
with the mean speed of 19 ms−1 and turbulence intensity of 14%, showing the perfor-
mance of the various controllers studied in this chapter. Similar behaviours are obtained
for the remaining blades. (i) Thin grey line: FB. (ii) Thick dash line: FB/FFωdMd

.
(iii) Thick solid line: FB/MPCωdMd

. (iv) Dash-dot line: constraints. (v) Dot line: the
performance targets.

angle and rotor speed constraints. Nevertheless, this seems plausible because pitch

actuators operate at the maximum rate for a relatively short period, typically less than

one second. Thus, the controller that foresees the rate constraint might only achieve

limited benefits given the fast blade dynamics.

7.6.2 Simulation results under various wind cases

This section presents results obtained from closed-loop simulations under numerous wind

cases. These wind cases are characterised by a mean speed between 13ms−1 and 23ms−1,

spanning a large range of above-rated wind conditions, and turbulence intensity ranging



Chapter 7. Feed-forward MPC layer on wind turbines 170

940 945 950 955 960 965 970 975
−1

−0.75

−0.5

−0.25

0

0.25

0.5

0.75

1

ω
(t
)
[r
p
m
]

Time t [s]

(a) Time history of the rotor speed deviation.

940 945 950 955 960 965 970 975

−1500

−1000

−500

0

500

1000

1500

Time t [s]

M̃
1
(t
)
[k
N
m
]

(b) Time history of the flap-wise blade root
bending moment of blade 1.

940 945 950 955 960 965 970 975

0

2

4

6

θ
1
(t
)
[d
eg
]

Time t [s]

(c) Time history of the pitch angle of blade 1.
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Figure 7.5: Simulation results upon the NREL 5MW turbine operating in a wind case
with the mean speed of 13 ms−1 and turbulence intensity of 14%, showing the perfor-
mance of the various controllers studied in this chapter. Similar behaviours are obtained
for the remaining blades. (i) Thin grey line: FB. (ii) Thick dash line: FB/FFωdMd

.
(iii) Thick solid line: FB/MPCωdMd

. (iv) Dash-dot line: constraints. (v) Dot line: the
performance targets.

from 14% to 18%. Two more preview controllers, summarised in Table 7.3, were consid-

ered: FB/FFωd and FB/MPCωd and such controllers are the same as FB/FFωdMd
and

FB/MPCωdMd
, respectively, except that the upcoming measurements of blade distur-

bance are not available. The performance box plots of the result data generated from

180 sets of 20-minute simulations are shown in Figure 7.7. Each box represents the

first and third quartiles whilst the band within the box represents the median of the

dataset. The whiskers denote 5% and 95% quantiles. The data beyond the whiskers are

considered as outliers, indicated by dots.

Figure 7.7a presents the box plot of the rotor speed performance. It can be clearly seen

that the preview controllers achieved better reductions in rotor speed deviation com-

pared to the baseline feedback-only controller, owing to the upcoming measurements of
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(c) Time history of the pitch angle of blade 1.
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Figure 7.6: Simulation results upon the NREL 5MW turbine operating in a wind case
with the mean speed of 23 ms−1 and turbulence intensity of 18%, showing the perfor-
mance of the various controllers studied in this chapter. Similar behaviours are obtained
for the remaining blades. (i) Thin grey line: FB. (ii) Thick dash line: FB/FFωdMd

.
(iii) Thick solid line: FB/MPCωdMd

. (iv) Dash-dot line: constraints. (v) Dot line: the
performance targets.

rotor speed disturbance trajectories. Moreover, the constraint-aware controllers manage

to retain the rotor speed within the limit for most of the time despite the fact that

the constraints on rotor speed were occasionally relaxed to ensure feasibility of the con-

strained optimisation of the MPC layer. These results indicate that proper management

of constraint violations can lead to significant reductions in rotor speed.

Referring to Figure 7.7b, the box plot shows the blade flap-wise root bending mo-

ment. Performance achieved by the controllers without the upcoming measurements

of blade loads Md was almost identical. In contrast, better reductions in the flap-

wise blade moments were yielded by both preview controllers with knowledge of future
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(c) Box plots of pitch angle command of blade
1.
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Figure 7.7: Simulation results upon the NREL 5MW turbine under various wind
cases with mean wind speed ranging from 13 ms−1 to 23 ms−1 and turbulence intensity
of 14% to 18%, showing the performance comparison between the various controller
configurations studied in this chapter. Similar results are obtained for the remaining
blades. Dash-dot line represents the constraints and dot lines denote the performance

targets.

blade loads. Close inspection between these two controllers reveals that the constraint-

aware controller FB/MPCωdMd
performed slightly better than the preview-only con-

troller FB/FFωdMd
, which is consistent with the previous findings in Section 7.6.1.

The pitch angle and pitch rate command of blade 1 are illustrated by box plots in

Figure 7.7c and 7.7d, respectively. Note that the pitch angle command θc1 and pitch rate

command θ̇c1 are considered instead of the pitch actuator activities because such activities

are almost identical for the five alternative control strategies and investigation of pitch

command signals reveals how constraints were handled by each controller. Results in

Figure 7.7c and 7.7d are as expected, that the MPC-based controllers were well aware of

the constraints and managed the commands to avoid operating beyond those constraints.
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(c) Probability of constraint violations over the entire simulation period.

Figure 7.8: Illustration of statistical properties of the data obtained from turbine
simulations.

Few outliers beyond the pitch angle and rate constraints can be observed in figures 7.7c

and 7.7d. This is conceivable since soft constraints are imposed on those variables.
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The statistical properties of the data obtained from turbine simulation are summarised

in figures 7.8 and Table 7.4. Figure 7.8a demonstrates the performance reductions

achieved by the proposed controllers compared to the baseline controller in terms of

standard deviations, whilst Figure 7.8b shows how the proposed controllers performed

in the maximum load cases. Finally, Figure 7.8c reveals that the chance of constraint vi-

olations was reduced significantly by incorporating controllers with constraint handling

capability. In general, the results suggest that controllers with more features perform

better than those without them. Nevertheless, the cost and technical complexity asso-

ciated with each layer are different, for example, in practice, the preview measurement

of rotor disturbance could be estimated based on an averaged wind speed of few point

measurements across the rotor disk whereas accurate estimations of the upcoming blade

disturbance are less trivial. As a whole, these results could be used as a representative

guide on the potential performance benefits achievable by additional control features.

7.7 Chapter Summary

In this chapter, the modular predictive feed-forward layer based on top of a robust

output-feedback blade-pitch compensator is presented. The separate nature of the con-

troller structure enables clear and transparent performance comparisons and this was

demonstrated by a comprehensive set of results obtained from closed-loop high fidelity

turbine simulations upon a variety of different controllers. In particular, simulation sce-

narios of the controller constraint handling capabilities on the rotor speed and the pitch

actuators were examined. The proposed control scheme incorporating the knowledge of

the upcoming wind and constraints achieved remarkable 43% and 30% reductions in the

rotor speed and flap-wise blade moment standard deviations. Additionally, the chance

of constraint violations on the rotor speed were significantly down from 2.15% to 0.01%,

compared to the baseline controller.

Nonetheless, the performances of the proposed controller were evaluated under assump-

tions of perfect knowledge of the upcoming wind. In some wind turbine designs, the

baseline controllers could be output-feedback gain-scheduling controllers given the non-

linearity of the blade-pitch control problem. This chapter only considered the predictive

control layer formulation based on one single robust output-feedback compensator. Fur-

thermore, the control design for below-rated wind conditions was not included in this

chapter. In addition, the errors and uncertainties in wind measurements, for example,
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wind evolutions, were not fully considered in this study, and remain topics of future

research.



Chapter 8

Conclusions and Future Work

This final chapter is organised as follows: Section 8.1 presents a summary of the original

contributions in this thesis. This is followed by a final conclusion including discussions

of the limitations within this thesis in Section 8.2. Finally, recommendations for future

work are discussed in Section 8.3.

8.1 Summary of Original Contributions

The original contributions of the thesis can be summarised as follows:

1. The links between various IPC designs upon the rotating and non-rotating ref-

erence frames, namely the Coleman transform-based IPC (e.g. E. A. Bossanyi

(2003a)), Single-blade IPC (e.g. Leithead, Neilson, and Dominguez (2009) and

Clarke transform-based IPC (e.g. Zhang et al. (2013)), were studied. The robust

stability margin was used to prove that these IPC design methods are fundamen-

tally equivalent. Furthermore, the load spectra of the blade loads, obtained from

simulation results upon an NREL 5MW turbine, verified that the performance of

these different IPC designs is also similar.

2. The interactions between the blades and tower upon rotating and non-rotating

co-ordinate frames were investigated and based on these insights, the observability

of the modelled system was established. Subsequently, an estimator was then

formulated to reconstruct the fore-aft velocity of the tower-top from the blade

177
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load measurements. Simulations were conducted to demonstrate the performance

of the estimator. In addition, a control law was also designed to show that the

estimated tower signals can be used for tower load attenuations.

3. The problem of formulating a feed-forward MPC design on an existing output-

feedback controller was illustrated, where the feed-forward MPC would potentially

introduce an additional feedback loop that alters the original closed-loop dynam-

ics. A modular MPC layer design was then proposed, with a view to retaining

the closed-loop robustness and frequency-domain properties of the given output-

feedback controller. Key conditions were derived to prove that the proposed MPC

layer for handling the advance knowledge impacts upon the existing closed-loop

system if and only if constraint violations are expected.

4. The proposed MPC layer design upon the existing blade pitch controller was im-

plemented to a non-linear simulation wind turbine. To overcome the infeasibility

issues under the realistic scenario, soft constraints were employed and the tunings

of the penalties on the slack variables were particularly investigated. In addi-

tion, the benefits of the proposed MPC layers were clearly demonstrated upon the

high-fidelity simulation turbine, where significant improvements on turbine struc-

tural load reductions were shown. Moreover, the separate nature of the proposed

control structure revealed clearly the performance improvement gained by utilis-

ing the measurement of the upcoming wind and constraint handling capabilities,

compared to the baseline feedback controller.

8.2 Final Conclusions

The aims of the thesis were to investigate the blade-pitch control in wind turbine load

reductions. By achieving these objectives, the contributions of this thesis have a number

of implications to the research community and industry.

Firstly, in Chapter 4, the proof of the equivalence between different IPC design methods

could imply that choice of IPC technique rests largely on the preferences and imple-

mentation. Secondly, in Chapter 5, the tower vibration estimation and control design

could offer a means to justify the cost of using some highly reliable but expensive blade

load sensors and also obviate the need for tower-top sensor redundancy. Thirdly, in

Chapter 6, a modular MPC layer design allows a systematic incorporation of future
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measurements of disturbance and constraint handling capabilities into a given output

feedback design, which can be synthesised by robust frequency-domain methods or an

existing in-house industrial design. Lastly, in Chapter 7, the separate nature of the

proposed MPC layer design enables clear and transparent quantifications of the benefits

gained from utilising measurements of the upcoming wind and constraint knowledge.

Nonetheless, there are some limitations to the analysis and design proposed within this

thesis. For example, in Chapter 4, the equivalence of the IPC design is established based

on an assumption that the rotor speed is constant. Another example is in Chapter 6

and 7, the analysis of the robustness properties of the existing closed-loop is limited to

situations where constraints were expected not to be active. Since constraint satisfac-

tions are less crucial in wind turbines where instability caused by failure of constraint

fulfilments is less likely, thus, robust constraint requirements are not particularly con-

sidered in this thesis.

As a final remark, this thesis investigated the load reduction control in wind turbines via

individual blade pitching and use of measurements of the upcoming wind. In addition,

some clarifications and systematic design guidelines were provided on these these topics.

In the near future, more new actuators and sensors will be available to wind turbines,

especially to offshore floating turbines, many innovative load reduction solutions are

anticipated to come.

8.3 Recommendations for Future work

Possible directions for the future work identified in this thesis are listed as follows:

1. Some of the loads on the turbine blades and rotor are deterministic to some degree,

for example, the tower shadow effect and wind shear. Given this repetitive nature,

iterative learning control (ILC) could be effective in rejecting such loads, where the

load signals from the previous period can be used to update the control law over the

next period. Some studies (e.g. Houtzager, van Wingerden, and Verhaegen (2013)

and Tutty, Blackwell, Rogers, and Sandberg (2014)) demonstrated the efficacy of

ILC in wind turbines, however, the performance of the ILC could be degraded by

the presence of variations of the rotational period of the rotor. Therefore, a new
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design, that takes into account the variations of rotor speed, is worthy of further

study.

2. As the turbine size increases, many actuators on the turbine rotor become avail-

able, for example trailing edge flaps (Barlas & van Kuik, 2010). These trailing

edge flaps on the blade can be adjusted independently in response to flap-wise

blade moments for attenuating unsteady loads on the turbine blades. Similar to

IPC techniques, some of the existing controller designs employ Coleman transfor-

mations. Therefore, the analysis of performance similarities of IPC designs from

Chapter 4 can possibly extend to the trailing edge flap control design.

3. Most of the IPC designs aim to attenuate unsteady blade loads in the above-

rated wind conditions, whilst in the below-rated wind conditions, the blade pitch

are kept at zero angles. Thus, there is an opportunity to utilise the blade pitch

control for attenuating loads in the below-rated wind conditions as long as the

power generation remains unaffected.

4. In this thesis, measurements of the upcoming wind are assumed to be known a

priori perfectly. The errors and uncertainties in wind measurement are not fully

considered in the current work. Nonetheless, the recent development of wind

estimation technology enables fast and accurate wind field reconstruction. This

reconstructed wind field can be employed in the feed-forward control and such

studies remain topics of the future work.

5. As mentioned in Chapter 3, the application of some recently developed MPC the-

ories to wind turbines is still in its infancy, such as tube-based robust or stochastic

MPC. In standard MPC, constraint violations might occur since there are mis-

matches between the predictions and the actual dynamical behaviour of the plant.

To lower the number of violations, constraints are often tightened based on a priori

knowledge about the uncertainties and disturbance, resulting in a slow and conser-

vative design. A fast data-driven strategy is proposed by a recent study (Carrau,

Liniger, Zhang, & Lygeros, 2016), where the constraint tightening parameter is

tuned on-line based on the discrepancy between the model and the plant. Future

work could look to implementing this on-line tuning method to the MPC layer to

improve the rate of constraint satisfactions on the rotor speed.

6. An increasing number of wind turbines begin installing in a remotely offshore site

since the wind conditions at the sea are less turbulent and it is more economical

to do so. Floating platforms, that are employed by turbines in the deep sea,
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introduce extra dynamics to the turbines, which makes blade pitch control design

more challenging. Model predictive control in floating wind turbines is worth

investigating given that the algorithm could handle the constraint requirements of

the floating platform by blade pitching.
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