
Denotational Semantics of Mobility in
Unifying Theories of Programming (UTP)

Gerard Ekembe Ngondi

University of York

Computer Science

November 2016

Abstract
UTP promotes the unification of programming theories and has been used successfully for
giving denotational semantics to Imperative Programming, CSP process algebra, and the
Circus family of programming languages, amongst others.

In this thesis, we present an extension of UTP-CSP (the UTP semantics for CSP) with
the concept of mobility. Mobility is concerned with the movement of an entity from one
location (the source) to another (the target). We deal with two forms of mobility:

• Channel mobility, concerned with the movement of links between processes,
models networks with a dynamic topology; and

• Strong process mobility, which requires to suspend a running process first, and then
move both its code and its state upon suspension, and finally resume the process on
the target upon reception.

Concerning channel mobility:

• We model channels as concrete entities in CSP, and show that it does not affect the
underlying CSP semantics.

• A requirement is that a process may not own a channel prior to receiving it. In CSP, the
set of channels owned by a process (called its interface) is static by definition. We argue
that making the interface variable introduces a paradox. We resolve this by introducing
a new concept: the capability of a process, and show how it relates to the interface.

We then define channel mobility as the operation that changes the interface of a process,
but not its capability. We also provide a functional link between static CSP and its mobile
version.

Concerning strong mobility, we provide:

• The first extension of CSP with jump features, using the concept of continuations.

• A novel semantics for the generic interrupt (a parallel-based interrupt operator), using
the concept of Bulk Synchronous Parallelism.

We then define strong mobility as a specific interrupt operator in which the interrupt routine
migrates the suspended program.

3

Contents

Abstract 3

Contents 5

List of Figures 9

Dedicace 11

Acknowledgements 13

Author’s Declaration 15

1 Introduction 17

2 Unifying Theories of Programming (UTP) 23
2.1 Generalities . 23
2.2 Relational calculus . 25
2.3 Designs . 29
2.4 Linking theories . 32
2.5 Reactive Processes . 33

2.5.1 CSP processes semantics . 35
2.6 Continuations . 41

2.6.1 Steps and Assembly of Steps . 41
2.6.2 Compilation . 43
2.6.3 High-level language with jumps and labels 44

2.7 Final considerations . 45

3 Literature Review 47
3.1 Mobile Processes . 47

3.1.1 Code Mobility . 47
3.1.2 UTP-CSP + weak mobility . 51

3.2 Mobile Channels . 56
3.2.1 FOCUS + channel mobility . 56
3.2.2 A CSP model for occam-pi . 60

5

6 CONTENTS

3.2.3 CSP||B + channel mobility . 66
3.2.4 CSL + CSP + channel mobility . 68
3.2.5 CSP-like localised traces model for pi-calculus processes 73
3.2.6 CSP-like operational semantics . 77

3.3 Other Works . 84
3.4 Final considerations . 86
3.5 Summary and concluding remarks . 90

4 Channel Mobility 93
4.1 Introduction . 93
4.2 Dynamic (Network) Systems - Concepts and their Formalisation 95

4.2.1 Some definitions . 95
4.2.2 Formalisation . 100

4.3 The Semantics . 107
4.3.1 Healthiness conditions . 108
4.3.2 Some mobile processes . 110
4.3.3 Channel-passing . 110
4.3.4 Example: a mobile telecom. network 112
4.3.5 Parallel composition . 117
4.3.6 Dynamic Renaming . 117

4.4 Dynamic hiding . 123
4.4.1 From mobile processes to silencing processes 126
4.4.2 The semantics . 138

4.5 Links with static CSP . 142
4.5.1 From static CSP to mobile CSP . 142
4.5.2 From mobile CSP to static CSP . 143
4.5.3 MCSN-simulation processes . 147
4.5.4 From DN healthy processes to SN healthy processes 156
4.5.5 Example: a circular FIFO buffer with mobile channels 159

4.6 Discussion . 164
4.6.1 Evaluation of results . 164
4.6.2 Of the relation between the alphabetised traces model of simulation

CSP and the failures model of CSP . 166
4.6.3 Versus the pi-calculus . 167
4.6.4 Closed vs. Open world . 168

5 Strong Process Mobility 171
5.1 Introduction . 171
5.2 Continuations for Reactive Processes . 172

5.2.1 Formalisation . 172
5.2.2 Continuations semantics for programs with parallel constructs 178

CONTENTS 7

5.2.3 Reactive Process Blocks . 184
5.3 Representation of the state for Reactive Processes 192
5.4 Generic interrupt . 193

5.4.1 Preliminaries . 193
5.4.2 Formalisation . 196
5.4.3 Semantics of the generic interrupt . 203

5.5 Semantics of process strong mobility . 209
5.6 Discussion . 210
5.7 Strong process mobility vs. Channel mobility 212

6 Conclusion 215

Bibliography 219

List of Figures

3.1 A Virtual Machine for Code Mobility ([49]) 48

4.1 Channel Mobility with 3 processes. (left) Before the migration of ch1. (right)
After the migration of ch1. 101

4.2 Snapshots of two parallel processes . 151
4.3 A buffer with mobile channels . 160

5.1 Example of a CFG for reactive processes . 176
5.2 Illustration of Bulk Synchronous Paralellism (BSP) 198
5.3 Interrupt mechanism with BSP - using a single barrier 200
5.4 Interrupt mechanism with BSP - using two(2) barriers 201

9

This thesis is gratefully dedicated to my father

EKEMBE SAMUEL

and to my mother

NGONDI YAKA HERMINE JULIETTE

Acknowledgements

I wish to express my sincere thanks to Pr. Jim Woodcock for his helpful supervision and for
the great interest he has shown for my studies. The completion of this work has been aided
considerably by his many suggestions.

I would also like to thank my examiners Dr. Jeremy Jacob and Pr. Shengchao Qin for their
professional, rigorous, and helpful feedback.

I wish to express my gratitude to my colleagues for the many useful discussions we have had.
A special thanks goes to Victor for his patient listening.

Finally, I wish to thank my family whose continuous moral support and prayers have withheld
me throughout these past years of research. My thanks also to friends of old for their
encouragements, and new friends, for providing me with an environment suitable for my
studies.

13

Author’s Declaration

I declare that this thesis is a presentation of original work and I am the sole author. This
work has not previously been presented for an award at this, or any other, University. All
sources are acknowledged as References.

Some parts of this thesis have been submitted in conferences proceedings; where items were
published jointly with collaborators, the author of this thesis is responsible for the material
presented here.

• G.N. Ekembe, Unifying Theories of Mobile Channels, Refine’15, pp. 24-39, 2016.
doi:10.4204/EPTCS.209.3

• G.N. Ekembe, J. Woodcock, UTP Semantics of Reactive Processes with Continuations,
UTP’16, (submitted).

15

http://dx.doi.org/10.4204/EPTCS.209.3

Chapter 1

Introduction

This document contains results of a research started in October 2012 about the concept of
mobility in Computer Science. Two questions must enter into consideration when talking of
movement: what moves? and in which space? Computer Science is filled with mobile objects;
e.g. data, moving from one program/computer to another in a computer system; given a state
space, programs, moving from one state to another. Mobility captures the movement of a
given entity, from one location to another.

The need for a theory of mobility has been greatly motivated by the growing importance
of computer networks, notably the Internet. For industrials, it is expected that such a theory
could help them to increase network performance. For the programmer, it is a paradigm that
may help him to better understand and program aspects of a system, especially those that
can be expressed using mobility.

Three forms of mobility may be considered:

• channel mobility: (references to) channels move in a virtual space of linked processes.

• weak (process) mobility: only the ’code’ of a process moves, perhaps together with
some initialisation data.

• strong (process) mobility: here a process’s execution is suspended. The process’s code
is then migrated or moved together with its execution state to another (computational)
location where its execution is resumed from the place it had been suspended.

Tang & Woodcock [126] have defined denotational semantics for weak mobility based on UTP
[66]. We plan to extend their work with the other two forms of mobility cited above.

Objective. Define the formal semantics of both channel mobility and strong (process)
mobility, on the basis of UTP-CSP [66, Chap. 8], [35]. This objective may be broken down
into two objectives, one for channel mobility, and the other for strong mobility.

State of the art: Channel mobility. There are not many works on denotational seman-
tics for channel mobility in general and even less on the basis of CSP [65], [106], [115].

17

18 Introduction

[48], [122], and [62] are based on category theory and are not suitable for a direct reasoning
about channel mobility.

[28, 55, 56, 58, 123, 14] all contain work on extending with channel mobility FOCUS [27],
a semantics framework for data flow networks.

Some works attempt to build a traces model for a language that may be viewed as a
subset of CSP, although they do not firmly establish a relation with CSP: They are [96, 18],
and [67].

Roscoe proposes a CSP operational semantics to the pi-calculus in [108]; and in [109],
Roscoe proposes a closed-world semantics, an attempt at a denotational semantics of channel
mobility in CSP.

In [116, 132], an extension of CSP||B with channel mobility is proposed, but the seman-
tics are quite limited since the only channels that may be moved are those between a CSP
controller and a B machine, and not for example, channels between any two CSP controllers.

Finally, [138] proposes a CSP semantics for the channel mobility mechanism of the pro-
gramming language occam-pi; however, the result contains many implementation details, not
suitable for abstract reasoning hence.

General remarks concerning the aforementioned works are these: they are limited to a
traces model; the languages proposed may all be viewed as a subset of CSP.

We may classify them according to whether they use so called dynamic alphabets, or they
use name generation (as in the pi-calculus). For the latter, the resulting semantics are quite
complex and difficult to relate to their static counterpart in CSP. For the former, we may
argue that no model is well-founded, depending on how they answer the following questions:
what makes a channel new? And, what entitles a process of using a new channel?

In [56, 58], they consider that every process (or component) has by default the set of all
possible channels as their interface; then each component restricts what channel may be used
at what time. We may then ask the question: if the process already has the channel, is it not
just a matter of ensuring that only a subset of it may be used, so that there is not, stricto
sensu, channel mobility?

None of the CSP-based works cited above deals adequately with the requirement of making
channels concrete. Such a requirement is imposed by the explicit manipulation of channels.
However, whilst channels are defined to be concrete in both [18] and [67], neither discuss how
concrete channels affects their proposed semantics, knowing that channels are not concrete
entities in CSP.

An operator that makes the semantics of channel mobility more complex is hiding. None
of the CSP-based models cited above actually has the hiding operator either. [58] defines
a form of hiding in which only the channels that are in the initial interface (the interface
provided at the time of the definition) may be hidden. This reduces the scale of the systems
that such languages may model. Mobile Telecommunications Networks and the Internet are
examples of systems in which the number of channels may increase silently with the size of
the network. If one may object that such systems are too large, we may take the example of

19

a single router. Initially, its routing table is limited to a few nodes; but after some time, the
size of the routing table may grow exponentially. If each line of the routing table is modelled
as a channel linking the router to some network, we have another example of a mobile system
for which the hiding of new channels may not be modelled. In fact, the hiding operator poses
difficulty even in the context of operational semantics, as can be testified by the papers [20]
and [111].

Finally, to the best of our knowledge, no work on channel mobility (in both operational
and denotational semantics) actually defines functional links between theories of static and
mobile processes.

State of the art: Process mobility. As already stated, Tang & Woodcock have provided
a denotational semantics for weak mobility on the basis of UTP, in [125, 126]. That is the
only work on denotational semantics for weak mobility found by the author. In the realm
of operational semantics we may cite HO-pi [112], which extends the pi-calculus with weak
mobility.

There is almost no work on semantics for strong mobility, except for [131], which proposes
a denotational semantics in the context of Object orientation. The semantics are based on
the programming language Join Voyager, and not on traditional mathematical domains as
is usually the case. An advantage of the approach in [131] is the availability of already
implemented functionalities, most especially interrupt mechanisms. An inconvenient is that
the semantics are not abstract enough.

In UTP-CSP, the definition of strong process mobility requires building the features
for continuations for UTP-CSP processes. It is also necessary to define adequate inter-
rupt operators. This second requirement is partly met by existing semantics for the catas-
trophic interrupt operator 4i in [84]. However, without action prefix (a → P) —including
communication—, 4i is obsolete since an interrupt may occur only when the running process
is in a waiting state.

Another difficulty (with providing semantics for strong mobility in a CSP-based model)
is that all parallel-based semantics of interrupt are based on timed semantics. This may be
a problem since one may have to deal with three levels of abstraction simultaneously in the
same UTP theory: continuations (implementation level), (untimed) UTP-CSP, and time (but
only for the interrupt operator?). Since time is not necessary for the understanding of strong
mobility, it seems cumbersome to introduce time even if only to abstract away from it.

Finally and not the least, it is difficult to save the state of the executing process upon
interrupt. K.Wei [135] could not achieve this; and Huang et al. [69, 70] achieve this only at
the cost of violating many healthiness conditions for CSP processes, notably by saving the
state into the trace. Also, Huang et al. define interrupts for a sequential language only. We
are not aware of any other significant work on interrupt in the context of UTP.

Motivations. We are interested in extending UTP as part of a general effort for the uni-
fication of theories of programming. In the context of this thesis, we are concerned with

20 Introduction

mobility as the proposed extension. Since mobility is inherently distributed, the UTP theory
of CSP processes (or UTP-CSP) may serve as our basis. Notwithstanding the difficulties, we
are willing to use exclusively the formulation based on reactive processes (and not reactive
designs), and also untimed UTP-CSP, as we believe that it should be possible to express a
parallel version of the interrupt operator in an untimed model. Concerning channel mobility
in particular, we are interested in refusals and divergences models in addition to traces.

Contributions: Channel mobility. In general, we propose a solution to all of the prob-
lems expressed above regarding channel mobility. In detail:

• The introduction and formal characterisation of a new concept called the capability of
a process. Thus we:

– formalise the requirement that channels need to be concrete entities;

– establish the relation between concrete channels and the traditional notion of an
interface in CSP;

– argue that name generation models such [18] and [108], including even the pi-
calculus [86] must rely on a static capability and a dynamic interface in order to
be qualified of characterising channel mobility;

• A formal semantics of channel mobility in UTP-CSP applicable also to all existing
CSP-based (and CSP-like) models;

• Functional links between static UTP-CSP and UTP-CSP extended with channel mo-
bility (or simply mobile CSP);

– we suggest that a similar link may be build between CCS and the pi-calculus and
propose a way for doing so. Our hypothesis is that if we algebraically characterise
both the notions of process capability and of process interface in the algebraic
framework defined by (an algebraic framework similar to the one defined by) de
Simone [120], then the only difference between CCS and the pi-calculus would be,
for the second, an operation that changes the interface;

• A model of a buffer using mobile channels, and its transformation into a static version;

• A model for a mobile communications network, comparable to the one defined in [86];

• A new semantics for the hiding operator in which the set of silent channels may grow;

• A new semantics for the renaming operator in which names may be renamed as they
are acquired;

• A new way of interpreting the hiding operator that dissolves the distinction between
internal vs. external mobility through a subtle separation of concerns: hiding hides,
and the process communicates.

21

• On the basis of all the previous results, we argue that name generation such as developed
for the pi-calculus is unnecessary in the context of denotational semantics; we further
argue that such may be the case in the definition of the pi-calculus itself.

Contributions: Process mobility. We have solved a number of problems related to the
definition of strong mobility in (untimed) UTP-CSP. In paricular:

• Continuations semantics for UTP-CSP;

• A parallel-based semantics for the generic interrupt operator that may provide a basis
for defining a canonical form for all interrupt operators;

– untimed UTP-CSP semantics for the generic interrupt, without having to trans-
form first the timed semantics such as provided by K. Wei [135]. In particular
our definition allows saving the state of the executing process when the interrupt
occurs. The semantics are based on the concept of Bulk Synchronous Parallelism
(or parallel-by-multiple merge [66, Chap. 7]).

• Denotational semantics for strong mobility in UTP-CSP as a particular form of inter-
rupt operator (or family thereof) in which the interrupt routine sends the code of the
running process together with its interrupt state (including its next continuation) to a
remote location.

– Although not defined in this thesis, the semantics for strong mobility may serve
as the basis for defining a local version of the operator in which the interrupted
process is resumed locally instead.

This thesis is structured as follows.
Chapter 2 introduces UTP, notably UTP concepts whose knowledge is necessary for un-

derstanding most of the materials in this thesis.
Chapter 3 contains a review of the literature on denotational approaches to the semantics

of channel mobility. It also contains such works that discuss the extension of CSP with
channel mobility even when operational semantics are involved. In particular, we provide
some additions to existing works in our discussions, especially:

• in Section 3.1.2, we add a paragraph on design decisions;

• in Section 3.2.1 we discuss a simpler formulation of the model which has notably high-
lighted some unresolved questions in the original semantics;

• in Section 3.2.2 we propose a way towards simplifying existing semantics (by means of
abstraction);

• in Section 3.2.5 we propose a separation of the traces model that may make reasoning
easier;

22 Introduction

• in Section 3.2.6 we make a suggestion towards simplifying the original model. Every
work presented is followed by a discussion of its channel mobility mechanism.

• Section 3.4 contains general remarks concerning the literature; of particular interest,
we discuss the separation between hiding and communication, and argue that the dis-
tinction between internal and external mobility is not necessary; we argue that passing
names is not enough for the characterisation of channel mobility, not even in the pi-
calculus; we propose an axiomatisation of mobile calculi which answers the question of
the characterisation of channels.

In Chapter 4 we discuss the UTP model for channel mobility. Therein, we formalise the
concept of capability and show how it relates to the traditional concept of interface in CSP. We
give the semantics of channel mobility and then define some operators, in particular dynamic
hiding, and dynamic renaming. We then construct the link between static and mobile CSP.
Amongst other examples, the chapter contains an illustration of both the semantics of channel
mobility, and links to static CSP, of a buffer with mobile channels; and an application of
channel mobility to model features of a mobile communications network.

Chapter 5 is about strong mobility. We first define continuations for UTP-CSP processes
in Section 5.2. We then discuss the introduction of the state explicitly into the trace of CSP
processes. In Section 5.4 we provide the semantics of the generic interrupt based on the
concept of Bulk Synchronous Parallelism (or parallel-by-multiple merge as called in UTP).
We then give the semantics of strong mobility, in Section 5.5.

Each chapter ends with a discussion of the results. Finally, in the Conclusion we sum-
marise the thesis and the implications of our results, and also discuss future work.

Chapter 2

Unifying Theories of Programming
(UTP)

2.1 Generalities

A program may be conceived of as a device that takes some data as input and returns some
possibly different data as output. Output data results from the transformation of the input
according to a set of rules or instructions that define the transformation. The data received
as input is stored into a memory that may be accessed any time, and similarly for the output.
A program variable is the representation of the memory cell that stores the data: at different
times, it may hold different values. The value of a variable is also called its state, and the state
of a program is the Cartesian product of the states of all of its variables. Hence, a program
may be defined as a state transformer, that transforms any input state into an output state
according to given transformation rules.

The effect of a program on its variables is also called the behaviour of the program, and
may be described in a number of ways. For example, as a mathematical function, where
the function parameters would stand for the input variables, the body of the function for
the transformation rules, and the result returned by the function for the output variables.
Another possibility is to consider an observer that observes the program’s behaviour and
writes statements (predicates) about his observations. Such a predicate would notably state
the values of the program variables at a given observation time. In this case, input values
correspond to values before the program starts, and output values to those at the end of
the program. The program transformation itself may then be represented by the relation
between those two (sets of) values. It is this latter approach that is adopted in UTP.

Let X denote a program, and x, y, z denote the (program) variables of X . Let P(X)

denote a predicate describing X . Then, to each program variable x of X may be associated
a pair of logical variables (lx, lx ′) such that lx denotes input values and lx ′ output values of
X . If X is a deterministic program viz. such that every input always has the same output
on every run of X , then X may be represented by some function, say f . That is, we may
write P(X) = {(lx, lx ′) | lx ′ = f (lx)}. If X is non-deterministic viz. the same input may

23

24 Unifying Theories of Programming (UTP)

have different outputs on different runs of X , then X may be represented by a relation, say
r . Then, P(X) = {(lx, lx ′) | (lx, lx ′) ∈ r}. Note that the difference between f and r is that
f denotes a relation where every lx has a unique lx ′, whereas for r , every lx as at least one
corresponding lx ′.

In practice in UTP, the set notation is not much used, and the distinction between the
notions of program, predicate and relation is left implicit. The distinction between program
variable and predicate (or logical) variable is also obsolete, as a predicate is seen as a program
itself.

Whilst a program defines the set of rules for computing variables, the elements of a pro-
gram, if modified, may yield different programs. For example, by changing the order of
application of the rules. That is, the same set of rules may help defining many distinct pro-
grams. A programming language defines the set of rules for constructing programs. Just like
French and English languages may serve to denote the same objects, different programming
languages may serve to write the same programs. Yet, different programming languages may
also serve to define different classes of programs, or different programming models or theories.
Below, we discuss how UTP does represent all those programming concepts.

UTP is a formal semantics framework for reasoning about programs, programming the-
ories and the links between theories. The semantics of a program are given by a relation
between the initial (undecorated) and final (decorated) observations that can be made of the
variables that characterise the program behaviour. Relations are themselves represented as
alphabetised predicates, i.e. predicates of the form (αP,P). αP is called the alphabet of the
predicate P and determines what variables P may mention. αP may be partitioned into two
subsets: inαP, which represents the initial observations, and outαP, which represents the
final observations.

Programming languages and paradigms are formalised as UTP theories. A UTP theory is
simply a collection of predicates, and consists of three elements: an alphabet, containing only
those variables which the predicates of the theory may mention; a signature, which contains
the operators of the theory, and healthiness conditions which are laws constricting the set of
legal predicates to those that obey the properties expressed by the conditions (i.e. healthy
predicates are those that can be implemented).

In UTP, specifications, designs, programs, and implementations are all regarded as pred-
icates (or equivalence classes thereof). They differ only in their level of abstraction, which
may be captured formally thanks to a refinement relation.

The construction of a UTP theory is generally done as follows: starting from the more
general theory of relations, characterise those relations that are of interest, and leave out the
rest. Hence, UTP makes possible the study of new theories in isolation.

In section 2.2, we present the relational calculus, that defines all possible and imaginable
relations. The corresponding language is too large as it may serve to define also relations that
are not programs in the intended sense, though some programming constructs may already

Relational calculus 25

be defined on its basis.
The theory of designs is then constructed by applying restrictions to the theory of relations

by means of some healthiness conditions. Designs permit the definition of every programming
theory of interest, and are the subject of section 2.3.

In general, the description of a programming concept (construct, language, paradigm)
will be preceded by some informal explanation of its meaning. Because every program is a
relation, UTP promotes reuse of existing theories, by embedding existing theories into new
ones. Hence, most, if not all the constructs of sequential programming will be found across
many other theories. We present, in section 2.4, how UTP theories can be linked together.

Thanks to UTP, many paradigms and language constructs have been defined. In sec-
tion 2.5, we present the theory of Reactive Processes, for reasoning about reactive programs.
There are many computation models describing reactive programs or simply a view of it,
some formal, others informal. CSP [65] is a formal framework that permits reasoning about
reactive programs. The UTP semantics of CSP [35], [66] are presented in section 2.5.1.

Finally, the semantics for continuations (for modelling control flow) are presented in sec-
tion 2.6.

All the semantics presented below are denotational, which is the way that most UTP
theories are presented. However, it is also possible to define both operational semantics and
algebraic semantics, as illustrated in [66, Chaps. 5, 10].

2.2 Relational calculus

In this section we present the theory of alphabetised relations which serves as a basis for the
definitions of all other UTP theories. First we define what a relation is.

Some definitions. A relation R between two sets A and B is a subset of their Cartesian
product i.e. R ⊆ A×B. A binary relation is a relation over A×A. Let αP = inαP ∪ outαP
denote the alphabet of a predicate P, then P denotes an alphabetised relation over inαP ×
outαP. A relation is said to be homogeneous if inαP = outαP, and heterogeneous otherwise.

All of the theories presented here use homogeneous relations only, unless otherwise stated.
A presentation of heterogeneous relations may be found in [75].

Monotonicity, Idempotence. Let A and B denote sets of predicates. A predicate trans-
former from A to B is a function from PA to PB. A predicate transformer f is monotonic
if

P ⇒ Q then f (P)⇒ f (Q)

and it is idempotent if

f ◦ f (P) = f (P)

26 Unifying Theories of Programming (UTP)

In what follows, and in the rest of this thesis, we will use the terms relations, predicates,
alphabetised relations and alphabetised predicates interchangeably. Some programming con-
structs are defined below.

x :=A e denotes the assignment of an expression e to a variable x. The meaning of as-
signment is thus equality: that between x and e at the end of the assignment.

Definition 2.2.1 (Assignment [66, Def. 2.3.1]).

x :=A e =̂ (x ′ = e ∧ y′ = y ∧ .. ∧ z ′ = z)

α(x := e) =̂ A ∪ A′

IIA denotes the command that does nothing; it is equivalent to the assignment x := x.

Definition 2.2.2 (Skip [66, Def. 2.3.2]).

IIA =̂ (x ′ = x) where A = {x, x ′}

αIIA =̂ A

P C bBQ stands for ‘if b then P else Q’, where b is some testable condition. Formally, a
condition is defined as a predicate not containing dashed variables.

Definition 2.2.3 (Conditional [66, Def. 2.1.1]).

P C b BQ =̂ (b ∧ P) ∨ (¬ b ∧ Q) if αb ⊆ αP = αQ

α(P C b BQ) =̂ αP

P # Q denotes a program that first executes P, and when P terminates, then it executes
Q.

Definition 2.2.4 (Sequential composition [66, Def. 2.2.1]).

P(v′) # Q(v) =̂ ∃ v0 • P(v0) ∧ Q(v0) if outαP = inα′Q = {v′}

inα(P(v′) # Q(v)) =̂ inαP

outα(P(v′) # Q(v)) =̂ outαQ

var x denotes the declaration of a new program variable x, and end x its undeclaration.

Definition 2.2.5 (Variable declaration, undeclaration [66, Def. 2.9.1]). Let A be an alphabet
that includes x and x ′. Then:

var x =̂ ∃ x • IIA α(var x) =̂ A \ {x}

end x =̂ ∃ x ′ • IIA′ α(end x) =̂ A \ {x ′}

Relational calculus 27

The scope of a variable x lies between varx and endx; beyond, the variable is undefined
and cannot be observed.

Definition 2.2.6 (Alphabet extension [66, Def. 2.9.5]). Let x, x ′ 6∈ αP, then:

P+x =̂ P ∧ x ′ = x

αP+x =̂ αP ∪ {x, x ′}

P u Q denotes the program that executes either P or Q; the environment has no control
over such a choice and no means of prediction either.

Definition 2.2.7 (Nondeterminism [66, Def. 2.4.1]).

P u Q =̂ P ∨ Q if αP = αQ

α(P u Q) =̂ αP

The Complete lattice. The space of predicates used for describing programs is bounded.
It has a bottom element which corresponds to the program whose behaviour is totally uncon-
trollable: it is the weakest predicate true, denoted by ⊥, and called abort. The top element
corresponds to the program whose behaviour is totally unobservable: it is the strongest
predicate false, denoted by >, and called miracle. They are characterised by the following
laws:

L1 [P ⇒ ⊥] for all P
L2 [> ⇒ P] for all P

where [Pred] denotes the universal closure of a given predicate Pred i.e. for αPred = {x, y, x ′, y′},
[Pred] denotes ∀ x, y, x ′, y′ • Pred.

A mathematical space with an ordering that has the least upper bound (lub) and the
greatest lower bound (glb) of all subsets of its element is known as a complete lattice. The
space of relations is a complete lattice. This result is important for the definition of recursive
programs.

Recursion. A recursive program is one that makes calls to itself. To model such a program
it is necessary to define a predicate variable X . Defining X recursively is then similar to
applying a function F to X such that X satisfies the following equation:

X = F(X)

28 Unifying Theories of Programming (UTP)

Such an X is called a fixed point. The definition of recursion adopted in UTP is that of the
weakest fixed point, µF , which represents the glb of all the fixed points of F . Formally,

µF =̂ u{X | X = F(X)}

However, this definition is unsatisfactory: using it, it is possible to model a terminating pro-
gram that contains a non-terminating loop. For illustration, consider the predicate describing
a while loop, denoted by b ∗ P. A while loop defines the statement while condition b is true,
execute program P. Formally,

b ∗ P =̂ µX • ((P # X)C b B II)

A non-terminating loop may be obtained by replacing b and P by true and II respectively.

true ∗ II = µX • (X)

= true

Now, consider the program described by the predicate true # Q, where Q is a terminating
non-recursive program. The following property is expected:

true # Q = true

and in the opposite direction:

Q # true = true

However, the previous results are not valid for any predicate Q. For example, take
Q = (x := e), then:

true ∗ II # (x := e) = true # (x := e)

= true # (x ′ = e)

= true ∧ (x ′ = e)

= (x ′ = e)

In words, a non-terminating program terminates, which is a paradox. The latter will be
eliminated with the theory of Designs, presented later on.

Floyd assertion and assumption. An assertion is the statement that a condition, c say,
is expected to be true at the point at which it is written; otherwise, the program behaves
in a totally unpredictable, chaotic way, i.e. like ⊥. That is, the failure is caused by the
programmer. An assertion captures the intent of the programmer, that something is meant
to be true.

Designs 29

Definition 2.2.8 (Assertion [66, Def. 2.8.3]). c⊥ =̂ II C c B⊥

On the other hand, an assumption is the statement that a condition is true at the point
at which it is written; otherwise the program behaves in an impossible, miraculous way, i.e.
like >. That is, the failure is caused by the program. An assumption captures the confidence
of the programmer, that something is true.

Definition 2.2.9 (Assumption [66, Def. 2.8.3]). c> =̂ II C c B>

Correctness

A relation may be used for representing programming concepts at different levels of abstrac-
tion. A specification is a statement of the form if the program Q is started in a state satisfying
pre and terminates, then its final state will satisfy post. Such a specification is more readily
expressed by a Hoare triple pre{Q}post.

Definition 2.2.10 (Hoare triple [66, Def. 2.8.1]). p{Q}r =̂ [Q ⇒ (p ⇒ r ′)]

Both preconditions and postconditions are but conditions, hence, they may not mention
dashed variables.

In practice, the same specification may be satisfied by many programs. It is therefore
important of knowing if a program satisfies a given specification, in which case the program
is said to be correct (w.r.t. the specification). Since both specifications and programs are
predicates, correctness may be expressed using logical implication.

The gap between a specification and a corresponding implementation is often very big, so
that many design steps may be used in between. Each design step may itself be represented by
a predicate, each one less abstract than the previous one, until the final program is reached.
This construction procedure is called a stepwise refinement and defines an ordering between
programs, denoted by v, and called the refinement ordering.
The correctness of a program P with respect to a specification S is denoted by S v P (read
S is refined by P), and is defined as follows.

S v P iff [P ⇒ S]

2.3 Designs

Eliminating the non-termination paradox mentioned previously is achieved by restricting the
space of relations to those predicates that satisfy the zero laws:

true # P = true = P # true

That space may be further restricted by means of an ensemble of laws known as healthiness
conditions. The resulting relations are called Designs.

30 Unifying Theories of Programming (UTP)

Two variables ok and ok ′ are used to record respectively when a program has started
and when it has terminated. Designs exclude the miraculous predicate false which does not
satisfy the zero laws:

false # P = false = P # false

A design is described by a pair of predicates assumption-commitment, similar to specifica-
tions (precondition-postcondition) except that there is no restriction regarding the presence
of dashed variables.

Definition 2.3.1 (Designs [66, Def. 3.1.1]). Let P and Q be predicates not containing ok and
ok ′.

P ` Q =̂ (ok ∧ P)⇒ (ok ′ ∧ Q)

P ` Q expresses that if the program starts in a state satisfying P, it will terminate in a state
satisfying Q.

Below we give the semantics of assignment.

Definition 2.3.2 (Assignment and Skip [66, Def. 3.1.3]).

x :=A e =̂ true ` x ′ = e ∧ y′ = y ∧ .. ∧ z ′ = z

IID =̂ true ` x ′ = x ∧ y′ = y ∧ .. ∧ z ′ = z

All other operators defined so far keep the same meaning on designs.

The implication ordering of the relational calculus has an equivalent order in the calculus
of designs (or refinement calculus). That equivalence is established by the following theorem.
The following formulation corresponds to Cavalcanti and Woodcock [37, Law 68]. Hoare and
He [66, Th. 3.1.2] give an equivalent formulation without using the refinement symbol v
however.

Theorem 2.3.3. (P1 ` Q1 v P2 ` Q2) ⇔ [P1 ⇒ P2] ∧ [P1 ∧ Q2 ⇒ Q1]

Proof. cf. [37, Law 68], [66, Th. 3.1.2]

As stated earlier, taking into account the new definition of assignment, all programming
operators defined in the relational calculus remain valid in the refinement calculus. So as
relations form a complete lattice under implication ordering, designs form a complete lat-
tice under refinement ordering [66, Th. 3.1.5]. Its bottom and top elements are denoted
respectively by ⊥D and >D, and defined below.

⊥D =̂ (false ` true) = true
>D =̂ (true ` false) = ¬ ok

Designs 31

By virtue of their definitions, designs solve part of the paradox: they obey the left zero
law. This fact is captured in the following law [66, Th. 3.1.2, L1]:

L3 true # (P ` Q) = true

As defined so far predicate pairs do not yet satisfy the right zero law. In addition, further
properties are desired from designs to ensure that they are actually implementable. These
are captured in the following law, and are known as healthiness conditions.

Definition 2.3.4 (Design healthiness conditions [66, Def. 3.2.1]). A predicate R is said to
be H1, H2, H3 or H4 according to which of the following laws it satisfies:

H1 R = (ok ⇒ R)

H2 R[false/ok ′]⇒ R[true/ok ′]

H3 R = R # IID

H4 R # true = true

H1 states that no observation can be made before the program expressed by predicate
R has started. H2 states that non-termination cannot be a requirement.H3 states that the
precondition of a design is a condition. This is to avoid irreversible constraints on dashed
variables. For example, x ′ = 2 ` true does not terminate if x = 2, but terminates otherwise.
This is undesired according to the definition of designs. Effectively, if x ′ = 2 is unsatisfied,
then the state of the program should not be observable. H4 states that given any design
P ` Q, for any initial values of the undashed variables that satisfy P, there exist final values
for the dashed variables that satisfy Q. H4 eliminates the miraculous predicate >D and
is called a feasibility condition. Furthermore, if a design does not satisfy H4, there is no
program that could ever implement it.

Theorem 2.3.5.

1. A predicate is H1 and H2 iff it is a design.

2. A design P `Q is H3 iff its assumption can be expressed as a condition.

3. P ` Q satisfies H4 iff [∃ ok ′, x ′, .., z ′ • (P `Q)].

Proof. cf. [66, Th. 3.2.2], [66, Th. 3.2.4], and [66, Th. 3.2.5] respectively.

Summary. Both sections on relations and designs have served for the presentation of how
programs and specifications are represented within UTP. In the former, a program was de-
scribed by a single predicate giving the state of the observable variables of a program; more
precisely, it described the relation between the initial and final values of each variable. The
space of relations was later restricted because of the possible non-termination paradox. The
new class thus formed, called designs, are predicate pairs which should satisfy a number of

32 Unifying Theories of Programming (UTP)

healthiness conditions, namely H1, H2, H3 and H4. The operators so far defined are suit-
able for describing sequential programs only. Another UTP theory, the theory of reactive
processes, permits the modelling of concurrency and communication, and will be presented
in section 2.5. In the next section we describe how UTP theories may be linked (formally)
together.

2.4 Linking theories

A UTP theory may be more concisely represented by a triple (A,Σ,HCond) where A is
the alphabet of the theory, common to all the predicates; Σ is the union of two sets: a set
of primitive predicates, and the set of operators; HCond is a monotonic and idempotent
function.

A comment about HCond is necessary. In [66] and as indicated above, it is said that a UTP
theory is characterised by a set of healthiness conditions, and not just a single function. It
may hence turn out that the order of composition of given healthiness conditions matters,
thus yielding different HCond functions. This would mean that two theories with the same
set of distinct healthiness conditions may be considered as different if different composition
orders yield different results. Notwithstanding the apparent ambiguity, it is the point of this
section to show how any two theories may be related.

A UTP theory may be given a set theoretic characterisation of as the set

{(αP,P) | αP ⊆ A • HCond(P) = P}

of all healthy predicates with a given alphabet. Thus, linking UTP theories amounts to
building functions over them. It is common to use traditional functional notation to discuss
such linking functions. They may also be viewed as particular predicate transformers that
transform predicates of a theory into those of a distinct theory.

Let S and T denote characteristic sets of predicates of UTP theories, with S denoting
the potentially (stronger or more expressive) theory, and T the potentially (weaker or less
expressive) theory. Let L : S→ T and R : T→ S denote two linking functions.

A very common kind of link that may be built is that between a theory and any subset
of it.

Definition 2.4.1 (Subset links, weakening, strengthening [66, Def. 4.1.2]). Let T ⊆ S. Then,
R : T→ S is simply the identity function. L : S→ T is called weakening if

∀X ∈ S • L(X) v X

and strengthening otherwise i.e. if

Reactive Processes 33

∀X ∈ S • X v L(X)

The formal definition of a link is given hereafter.

Definition 2.4.2 (Link, retract [66, Def. 4.1.11]). A function that is both weakening and
idempotent is a link. A link that is monotonic is called a retract.

Another form of link is one that maps a theory to itself, and is called a bijection. Bijec-
tions are most useful when one wants to show that two theories apparently dissimilar from
the outset (e.g. they use different mathematics, hence resulting in different alphabets and
healthiness conditions) are equally expressive.

Definition 2.4.3 (Bijection [66, §4.2]). A function L is a bijection iff, R = L−1, where L−1

exists, and the following identities hold for all P

L ◦ R(P) = P ∧ R ◦ L(P) = P

For theories that have different expressiveness, the linking function is often not bijective.
Hence, links must be either strengthened or weakened accordingly. The corresponding (L,R)

pair of functions is called a Galois connection.

Definition 2.4.4 (Galois connection [66, Def. 4.2.1]). Let S and T be two lattices, and let
L : S→ T and R : T→ S. The pair (L,R) is a Galois connection iff

∀X ∈ S,Y ∈ T • R(Y) v X ⇔ Y v L(X)

A subset relation may be seen as a form of Galois connection; a bijection is a stronger
relation than a Galois connection: not every bijection is a Galois connection.

2.5 Reactive Processes

The UTP theory of Reactive Processes concerns programs that may interact with their envi-
ronment. Reactive programs are expressed as processes, i.e. predicates that allow character-
ising the intermediate states of a program, between initialisation and termination.

The interactions of a process are modelled as atomic events, i.e. actions without a duration.
A process may engage in given events only, which are thus said to be authorised. Authorised
events form a set called the actions set or events alphabet of the process, and denoted by A
(AP for a process P).

Each occurrence of an event is recorded in order. The resulting sequence is called the
trace of the process, denoted by the variable tr : A ∗. tr gives the trace at the beginning of
(i.e. prior to) the current observation, and tr ′ − tr gives the trace from start to termination.

A process or its environment may refuse to engage in an event. All the events that may
be refused constitute the refusal set of the process, denoted by the variable ref : PA. ref

34 Unifying Theories of Programming (UTP)

gives events which may be refused during the current observation and ref ′ give those that
may be refused next.

The boolean variable wait : B is used to represent waiting states. wait = true means
that the predecessor is in a waiting state, i.e. the process is waiting for its predecessor to
terminate, meanwhile it does nothing. When used in conjunction with the boolean variable
ok : B it also permits representing termination.

The variable ok determines if the process is in a stable state (i.e. not making any progress).
ok = false means that the current process has not yet started . If ok = true then the process
has started and its predecessor is stable. If ok ′ = true and wait ′ = true then the process
is stable but in an intermediate state. If ok ′ = true and wait ′ = false then the process has
terminated. If ok ′ = false then the process is in a non-stable state and the values of other
variables are meaningless: the process diverges.

The variable name o (resp. o′) is often used to denote all the variables in the set
{ok,wait, tr , ref }, also called the observational variables of a process.

In summary, the alphabet of a reactive process consists of the following:

• A, the set of authorised events ; tr , tr ′ : A ∗, the trace ; ref , ref ′ : PA, the refusal set;

• ok, ok ′ : B, stability and termination ; wait,wait ′ : B, waiting states;

• v, v′, other variables.

The above alphabet alone is not enough to characterise reactive processes. Predicates with
such an alphabet must also satisfy the following healthiness conditions.

R1 P = P ∧ tr ≤ tr ′

R2 P = u{P[s, s a (tr ′ − tr)/tr , tr ′] | s ∈ A ∗}

R3 P = (IIR C wait B P) where

IIR =̂ (ok ′ = ok ∧ wait ′ = wait ∧ tr ′ = tr ∧ ref ′ = ref ∧ v′ = v)C ok B (tr ≤ tr ′)

R1 states that the occurrence of an event cannot be undone viz. the trace can only get longer.
R2 states that the initial value of tr may not affect the current observation. R3 states that
a process behaves like IIR when its predecessor had not yet terminated.

Alternatively, the single healthiness condition R may be used for characterising reactive
processes: R = R1 ◦ R2 ◦ R3.

A particular model of reactive processes is provided by the CSP process algebra [65],
[106], whose semantics in UTP are presented subsequently.

Reactive Processes 35

2.5.1 CSP processes semantics

CSP processes are reactive processes that obey the following additional healthiness conditions:

CSP1 P = P C ok B tr ≤ tr ′

CSP2 P = P # J where

J =̂ (ok ⇒ ok ′ ∧ wait ′ = wait ∧ tr ′ = tr ∧ ref ′ = ref ∧ v′ = v)

CSP1 states that if a process has not started (ok = false) then nothing except for trace
expansion can be said about its behaviour. Otherwise the behaviour of the process is deter-
mined by its definition. CSP2 states that a process may always terminate. It characterises
the fact that divergence may never be enforced.

Alternatively, the single healthiness condition CSP may be used for characterising CSP
processes: CSP = R ◦ CSP1 ◦ CSP2.

We present the semantics of some CSP processes subsequently. Some definitions are sim-
ilar to the ones presented in section 2.2, with some changes. For example, the definitions
mention new alphabet elements, and certain healthiness conditions are applied directly, for
e.g. assignment below.

Assignment. Denoted by x := e, is the process that sets the value of the variable x to
e on termination, but does not modify the other variables. It does not interact with the
environment, always terminates and never diverges [126, Def. 4].

Definition 2.5.1. (x := e) =̂ R3 ◦ CSP1(ok ′ ∧ ¬ wait ′ ∧ tr ′ = tr ∧ x ′ = e ∧ v′ = v)

IIR, a particular kind of assignment that leaves everything unchanged, has already been
seen above.

Skip. Denoted by SKIP, is the process that refuses to engage in any event, terminates
immediately and does not diverge. It is special kind of IIR [66, e.g. 8.2.3(3)].

Definition 2.5.2 (SKIP). SKIP =̂ ∃ ref • IIR

Stop. Denoted by STOP, is the process that is unable to interact with its environment. It
is always in a waiting state [66, e.g. 8.2.3(1)].

Definition 2.5.3 (STOP). STOP =̂ R(wait := true)

Chaos. Denoted by CHAOS , is the process with the most non-deterministic behaviour viz.
the worst possible reactive process [66, e.g. 8.2.3(4)].

Definition 2.5.4 (CHAOS). CHAOS =̂ R(true)

36 Unifying Theories of Programming (UTP)

Sequential composition. Denoted by P # Q, is the process that first behaves like P, and
if P terminates, then behaves like Q [66, e.g. 8.2.3(4)].

Definition 2.5.5. Provided outαP = inα′Q = {o′, v′},

P(o′, v′) # Q(o, v) =̂ ∃o0, v0 • P(o0, v0) # Q(o0, v0)

Substitution. Denoted by P[e/x], is the behaviour of P when the variable x is replaced
the expression e. It may also be denoted by P(e). The effect of substitution is defined by
the following law:

Definition 2.5.6. (x := e # P) = P[e/x]

Conditional choice. Denoted by P C b B Q, is the process that behaves either like P if
the condition b is true or like Q otherwise.

Definition 2.5.7. P C b BQ =̂ (b ∧ P) ∨ (¬ b ∧ Q)

Iteration. Denoted by b ∗ P, is the process that behaves like P if the condition b is true,
and then again when P terminates, and so on until b is false, and then terminates.

Definition 2.5.8. b ∗ P =̂ µX • ((P # X)C b B SKIP)

Internal choice. Denoted by P u Q, is the process that behaves either like P or like Q,
where the choice cannot be controlled by the environment.

Definition 2.5.9. P u Q =̂ P ∨ Q provided αP = αQ

External choice. Denoted by P 2 Q, is the process that behaves like either P or Q, where
the choice is controlled by the environment [66, Def 8.2.7].

Definition 2.5.10. Let AP = AQ, P 2 Q =̂ CSP2((P ∧ Q)C STOP B (P ∨ Q))

External choice supposes that P and Q may offer the same set of events initially. The
definition states that if no interaction is performed and termination has not occurred i.e.
STOP = true then the observation must be agreed by both P and Q. Otherwise the behaviour
will be either that of P or Q depending on which one the environment chose to interact with.
Notice that STOP appears as a condition, and not as a process. This is simply thanks to the
definition of conditional, and the fact that STOP is also a predicate.

Prefix. Denoted by a → P, is the process that engages in action a and then behaves like
process P. First, consider the following predicate transformer [66, Th. 8.1.3], [84, Defs. 15,
16].

Reactive Processes 37

Definition 2.5.11 (Φ). Φ =̂ R ◦ andB = andB ◦ R
where andB =̂ B ∧ X, and B =̂ (tr ′ = tr ∧ wait ′) ∨ tr < tr ′, and X denotes any predicate
of a given UTP theory.

andB imposes the condition B on any predicate X : if X is waiting for an event to occur
then it may not modify the trace, otherwise the only possible observation is trace expansion.
Φ makes the predicate X into a reactive process and characterises the values of the other
variables when wait ′ = true.

The occurrence of an event a is defined as the process denoted by doA(a). It never refuses
to engage in a whilst it is waiting for a to occur. Following its occurrence, a is recorded in
the trace [66, e.g. 8.1.4)], [84, Def. 17].

Definition 2.5.12 (Do). doA(a) =̂ Φ(a 6∈ ref ′ C wait ′ B tr ′ = tr a 〈a〉)

a may be used as an abbreviation for doA(a). The process denoted by a → SKIP first
engages in a and then terminates successfully [84, Def. 19].

Definition 2.5.13 (Simple prefix). a → SKIP =̂ CSP1(ok ′ ∧ doA(a))

The process denoted by a → P first engages in event a and then behaves like some process
P [84, Def. 18)], [66, Def. 8.2.5].

Definition 2.5.14 (Prefix). a → P =̂ a → SKIP # P

Renaming. Denoted by p.P, is the process that behaves like P except that any event name
a in P has been replaced by a name p.a [66, Chap. 8], [65].

Definition 2.5.15 (Renaming).

p.P =̂ P[p.a← a]

A(p.P) =̂ {p.a | a ∈ A(P)}

The definition above applies also if both a and p.a stand for (ordered) lists of events.

Hiding. Denoted by P \ X , is the process that behaves like P but in which the events of
the set X occur silently, without the participation or even the knowledge of the environment
of P [126, Def. 18], [66, Def. 8.2.14].

Definition 2.5.16 (Hiding).

A(P \X) =̂ AP −X

P \X =̂ ∃ tra, refa •


P[tra, refa/tr ′, ref ′] ∧

tra = tr ′ � (AP −X) ∧

refa = ref ′ ∪X

 # SKIP

38 Unifying Theories of Programming (UTP)

Communication. A particular type of interaction between processes is the passing or
communication of messages. A communication is the sending or the reception of a message
via a channel (the communication medium). A communication event is represented by a pair
ch.e where ch denotes the (name of the) channel used for the communication, and e any
message that may be sent through ch. The set of all the channels that a process may use is
called its interface; (in this thesis) it will be denoted by I =̂ {ch | ∃m • ch.m ∈ A}.

The occurrence of a communication event ch.e is just the process doA(ch.e). As earlier
ch.e may be used as an abbreviation for doA(ch.e). The definitions below correspond to a
synchronous model of communication.

Definition 2.5.17 (Communication). ch.e =̂ doA(ch.e)

The input prefix ch?x → P receives a message from ch, assigns it to the variable x and
then behaves like process P.

Definition 2.5.18 (Input prefix [126, Def. 13]). ch?x → P =̂ 2e∈Msgch.e # (x := e) #P

The output prefix ch!y → P is the process that is willing to output the value of the
variable y through channel ch first, and then behaves like P.

Definition 2.5.19 (Output prefix [126, Def. 14]). ch!y → P =̂ ch.y # P

Parallel composition. Denoted by P ‖ Q, is the process that behaves like both P and
Q and terminates when both have terminated. P and Q may not share any variable other
than the observational variables (ok,wait, ...). P and Q modify separate copies of the shared
observational variables which are then merged at the end using the merge predicate M , as
defined below.

Definition 2.5.20 (Parallel composition [126, Def. 16]).

A(P ‖ Q) =̂ AP ∪ AQ

P ‖ Q =̂ P(o, 1.o′) ∧ Q(o, 2.o′) # M (1.o, 2.o,o′)

M =̂


ok ′ = (1.ok ∧ 2.ok) ∧

wait ′ = (1.wait ∨ 2.wait) ∧

ref ′ = (1.ref ∪ 2.ref) ∧

(tr ′ − tr) = ((1.tr − tr) ‖ (2.tr − tr))

 # SKIP

Upon termination the final trace is given by the trace merge function defined subsequently.
Let s and t be two traces. Let E(s) denote the set of events in s. Let a, b, c, d be (pairwise
distinct) events such that: {a, b} 6∈ E(s) ∩ E(t), {c, d} ∈ E(s) ∩ E(t). The trace merge for
parallel composition may be defined by case as follows:

s ‖ t =̂ t ‖ s 〈〉 ‖ 〈〉 =̂ {〈〉} 〈〉 ‖ 〈c〉 =̂ {} 〈〉 ‖ 〈a〉 =̂ {〈a〉}

Reactive Processes 39

〈c〉a x ‖ 〈c〉a y =̂ {〈c〉a u | u ∈ x ‖ y}

〈a〉a x ‖ 〈c〉a y =̂ {〈a〉a u | u ∈ x ‖ 〈c〉a y}

〈c〉a x ‖ 〈d〉a y =̂ {}

〈a〉a x ‖ 〈b〉a y =̂ {〈a〉a u | u ∈ x ‖ 〈b〉a y} ∪ {〈b〉a u | u ∈ x ‖ 〈a〉a y}

Pipes, Chaining. A pipe [106], [65], [125], is a type of process that inputs on one channel
usually called left, and outputs on another channel usually called right. The simplest kind of
pipes is composed of only one process.

Example 2.5.21. A simple pipe which outputs the square of any number it has input:

Sq =̂ µX • (left?x → right!(p ∗ p)→ X)

More complex pipes may be formed by connecting in a sequence a number of (simple)
pipes such that the j − th pipe feeds its inputs to the (j + 1)− th one: such a composition is
called chaining, and is defined below.

Definition 2.5.22 (Chaining [125, Def. 8]).

P � Q =̂ (P[mid← right] ‖ Q[mid← left]) \ {mid}

Notation: P 〈〈 right↔ left 〉〉Q could have been used instead of P � Q. This second notation
is more useful for denoting more than one chain.

By indexing the pipes a chaining order may be defined.

Definition 2.5.23 (Indexed-chaining [125, Def. 9]).

(�i : 1 . . n • Pi) =̂

P1 n = 1

(�i : 1 . . n − 1 • Pi)� Pn n > 1

Two pipes may be chained such as to form a ring.

Definition 2.5.24 (Circular-chaining [125, Def. 10]).

P �� Q =̂ (P
[

mid1← right,

mid2← left

]
‖ Q

[
mid1← left,

mid2← right

]
) \ {mid1,mid2}

Under the other notation, circular chaining may be denoted equivalently by P 〈〈 right↔
left, left↔ right 〉〉Q, or by P 〈〈 right, left↔ left, right 〉〉Q.

40 Unifying Theories of Programming (UTP)

Catastrophic interrupt. McEwan & Woodcock [84] have defined an interrupt operator
called the catastrophic interrupt as a kind of sequential composition P 4i Q where control
can pass from P to Q even when P is in a non-terminating (or intermediate) state, i.e.
P.wait ′ = true. This is unlike normal sequential composition and is reflected in the following
law, defined as a healthiness condition allowing interference, and denoted by I3.

Definition 2.5.25 (Interference I3 [84, Def. 26]). I3(Q) = Q C wait B IIR

In [84], two treatments of interrupt, one called unconditional and the other conditional,
are considered. We will present the unconditional interrupt only.

Definition 2.5.26 (Catastrophic interrupt [84, Defs. 27 to 34]).

P 4i Q =̂ R3 ◦ CSP2(P+i # i 4 Q)

P+i =̂ P ∧ (i 6∈ ref ′ C wait ′ B P)

i 4 Q =̂ CSP1(ok ′ ∧ force(i,Q))

force(i,Q) =̂ I3(try(i,Q))

try(i,Q) =̂ ((i 6∈ ref ′ ∧ IIR)C wait ′ B tr ′ = tr a 〈i〉) # Q

In the notation P 4i Q, P is called the interruptible process and Q is called the inter-
rupting process. The definition states that when P is in a waiting state P.wait ′ = true, the
interrupt event i might occur and when it does then Q will be executed. If, however, i does
not occur, then P will resume its execution without Q being capable of interfering until the
next waiting of P. In detail:

• P+i is the process that behaves like P when P is not in a waiting state; otherwise,
when P is waiting, it may ‘witness’ the occurrence of i. This is simply a specification
format: P+i states that i may occur when P is waiting, but does not prescribe how
that is supposed to happen.

• try(i,Q) is simply a syntactic sugar for do(i)→ Q. force(i,Q) is the process that tries
doing event i although its predecessor has not terminated, hence breaking R3. i 4 Q
simply enforces that the predecessor must, however, be stable i.e. ok ′ = true, when
trying to enforce the occurrence of i.

• P+i # i 4 Q is the process that explicitly places P in an environment in which i may
occur when P.wait ′ = true. Such a process is then made healthy.

Reactive Designs. The following theorem establishes that reactive processes may be ex-
pressed as designs.

Theorem 2.5.27 (Reactive designs). For every CSP process P:

P = R(¬ P[false/wait, false/ok ′] ` P[false/wait, true/ok ′])

Continuations 41

Proof. cf. [37, Th. 12], [66, Th. 8.2.2].

The CSP processes defined so far may be called static since their interface does not change
throughout their activation. For that reason the model for CSP processes presented so far
will be referred to as the static model. As there is no explicit representation of time, the
model may also be referred to as the untimed (static) CSP model.

We do not present timed CSP models. References to such models in UTP are [134], [118].
In the next section we present the UTP semantics for continuations.

2.6 Continuations

2.6.1 Steps and Assembly of Steps

Implementing a program consists of adding details related to the program’s execution on a
given platform: the result is called an implementation. A detail of particular importance
relates to control flow, or the order of the execution of the instructions in the program. A
device called the program counter normally computes and stores the value of the address of
the next instruction to be executed. When executing a program, the processor always refers
to the program counter.

In UTP, the program counter is represented by a variable, denoted by l, and referred to
as the control variable. The set of possible values that l can take is called continuations set
or simply continuations, and is denoted by αl (αlP, the continuations of a predicate P). The
instructions of the program are represented by steps, which are themselves predicates. An
implementation may consist of a ‘single’ step or of an assembly of such steps.

First, consider programs that may be represented as the sequential repetition of a single
step. The value of l is tested before each repetition of the step and determines if the execution
of the step starts, continues, or ends. Hence, l does also specify termination.

Definition 2.6.1 (Continuations and execution [66, Def. 6.1.1]).

P ∗ =̂ (l ∈ αlP) ∗ P

αlP denotes the set of continuations of P; l ∈ αlP denotes the control variable for its execu-
tion; and P ∗ denotes the execution of P, defined as a loop that iterates the step as long as l
remains in αlP.

For a step P, the value of l determines the start and termination of its execution. When
l is outside the continuations of P, P is not even started. Although the behaviour of P in
such case may be anything, it is safe to define that it does nothing, i.e. its behaviour is II .
This is a sound assumption, considering the execution of P in conjunction with that of other
steps.

42 Unifying Theories of Programming (UTP)

Definition 2.6.2 (Step [66, Def. 6.1.5]). A predicate P is a step if l ∈ αlP and

P = P C l ∈ αlP B II

As a consequence,

((l 6∈ αlP)⊥ # P) = (l 6∈ αlP)⊥

Definition 2.6.3 (Continuations of operators [66, Def. 6.1.6]).

α l(P op Q) =̂ α lP ∪ α lQ where op ∈ {#,u,CbB}

The following theorem gives the closure property of some operators.

Theorem 2.6.4 (Step closure). If P and Q are steps, then

1. P # Q is a step.

2. P u Q and P C b BQ are also steps whenever αlP = αlQ.

3. The set of steps is a complete lattice.

Proof. cf. [66, Th. 6.1.7].

By definition, a predicate is a step if l is in its alphabet. This means that a step may be
arbitrarily complex. In particular, it can contain familiar programming notations, although
it makes it necessary to specify the value of l.

The following theorem states that it is possible to determine the first action of the exe-
cution of a step.

Theorem 2.6.5. P ∗ = P # P ∗

Proof. cf. [66, Lemma 6.1.10].

A step is executed exactly once if its execution is guaranteed to assign to l a value outside
its continuations.

Theorem 2.6.6. P ∗ = P iff P = P # (l 6∈ αlP)⊥

Proof. cf. [66, Lemma 6.1.10].

Programs may occupy disjoint storage areas, in which case they are said to be disjoint.
This means that two steps that have disjoint continuations are disjoint. It is possible to
assemble them into a single program, by using the assembly operator defined below.

Definition 2.6.7 (Assembly [66, Def. 6.1.14]). Let P and Q be disjoint steps,
i.e. αlP ∩ αlQ = {}.

P 22 Q =̂ (P C l ∈ αlP BQ)C (l ∈ αlP ∪ αlQ)B II

αl(P 22 Q) =̂ αlP ∪ αlQ

Continuations 43

There are two known ways of implementing a program: compilation and interpretation.
In what follows we present the former only.

2.6.2 Compilation

Compilation is the transformation of a program into a target program expressed in the ma-
chine code of the machine that is to execute it. Compilation preserves the meaning of the
source program.

The semantics of the target language (or machine code) may equally be given in UTP.
Precisely, each instruction in the target language may be given a meaning as a step.

A single instruction is a step with a single continuation given by the singleton set {m}.

Definition 2.6.8 (Single instruction [66, Def. 6.2.2]). If INST is a machine code instruction
then

m : INST =̂ INST C l = m B II

is a single instruction.

Single instructions may be assembled together using the assembly operator, denoted (in
this thesis) by 22 (instead of 8 [66, Chap. 6]).

Definition 2.6.9 (Machine code block [66, Def. 6.2.3]). A machine code block is a program
expressed as an assembly of single instructions

S0 22 S1 22 ... 22 Sn

Using the preceding definition, it is possible to enter a machine code block at any of its
constituent continuation points. In practice, it is common to define a normal starting point,
denoted by s, and a normal finishing point, denoted by f . They relate respectively to the first
and last single instructions of the program. s is the value of l when control enters sequentially
into the program; any other point should be entered by a jump. f is the value of l when
control leaves sequentially through the last instruction. Respectively in each case, we will
also talk about normal start or entry and normal termination or exit.

The assumption of normal entry is expressed by the predicate (l = s)>. The obligation
to terminate normally is expressed by the assertion (l = f)⊥. Machine code blocks that have
these pre- and post-conditions are called structured.

Definition 2.6.10 (Structured block [66, Def. 6.2.4]). A structured block is a program of
the form

(l = s)> # P ∗ # (l = f)⊥

where P is a machine code block. The value of s is called its starting point and the value of
f its finishing point.

44 Unifying Theories of Programming (UTP)

Let P̂ denote the target program into which a source program P has been compiled by a
compiler. P̂ should have the same effect (or behaviour) as P, or better. l ∈ αP̂ but l 6∈ αP.

P v (var l # P̂ # end l)

Definition 2.6.11 (Target code [66, Def. 6.2.9]). A program is in target code if it is expressed
in the form

〈s,P, f 〉 =̂ var l # (l = s)> # P ∗ #(l = f)⊥ # end l

where P is a machine code block. An equivalent formulation is :

〈s,P, f 〉 =̂ var l := s # P ∗ # (l = f)⊥ # end l

According to the fundamental theorem of compilation [66, Th. 6.2.10], every program can
be expressed in target code.

Theorem 2.6.12 (Fundamental theorem of compilation). Every program can be expressed
in target code.

Proof. cf. [66, Th. 6.2.10]

It is possible to combine low-level language features such as jumps and labels with high-
level language features. Such a facility was provided by many early programming languages.

2.6.3 High-level language with jumps and labels

For the combination to be possible it is necessary to consider, in addition to s and f , other
continuation points viz. those corresponding to entry and exit by a jump. For convenience,
a special value denoted by n will denote either s or f , accordingly. αl0P will denote the set
of all entry points; αl ′P will denote the set of all exit points; none of them contains n. If l
takes its value in either of these sets, it will signify that the program has been entered or exit
by a jump respectively, by opposition to normal entry and exit through n.

Definition 2.6.13 (Blocks and proper blocks [66, Def. 6.4.2]). Let S and F be sets of labels
(continuation points), and n 6∈ S, and n 6∈ F.

(P : S ⇒ F) =̂ P = (P # (l ∈ F ∪ {n})⊥)C l ∈ S ∪ {n}B II)

A program is a block if it satisfies

P : αl0P ⇒ αl ′P

A block is called a proper block if

αl0P ∩ αl ′P = {}

Final considerations 45

The construction label s permits placing a label within the program at the point intended
to be the destination of a jump. It may be entered normally or by a jump, but it always exits
normally. The construction jump f permits jump-ing to the location indicated by the label
f . It may be entered normally or by a jump, but it always exits by a jump.

Definition 2.6.14 (Labels and jumps [66, Def. 6.4.5]).

label s =̂ (l := n)C l ∈ {s,n}B II αl0label s =̂ {s} αl ′label s =̂ {}

jump f =̂ (l := f)C l = nB II αl0jump f =̂ {} αl ′jump f =̂ {f }

The following theorem gives the permitted operators for blocks having the same alphabets
of entry and exit points.

Theorem 2.6.15 (Block closure). The set of blocks {P | P : S ⇒ F} is a complete lattice,
and closed with respect to non-deterministic choice and conditional. The same applies to
proper blocks.

Proof. cf. [66, Th. 6.4.7].

Before giving the closure for sequential composition, we first give its continuations. A
sequential composition P # Q may be entered normally through n, or by a jump. In the
second case, the entry point may belong to either P or Q. Similarly, it may be exit normally
through n, or by a jump from either P or Q.

Definition 2.6.16 (Continuations for sequential composition [66, Def. 6.4.8]).

αl0(P # Q) =̂ αl0P ∪ αl0Q

αl ′(P # Q) =̂ (αl ′P \ αl0Q) ∪ αl ′Q

Theorem 2.6.17 (Sequential composition closure). If P : S ⇒ F and Q : T ⇒ G, then:

(P # Q) : S ∪ T ⇒ ((F \ T) ∪G)

Proof. cf. [66, Th. 6.4.9]

2.7 Final considerations

Number of programming constructs and paradigms have been formalised using UTP that
have not been mentioned. Parts of the programming language Circus [140, 36, 133] have
been formalised, and formalisation of other aspects of Circus are still ongoing. In the long
run, we plan to extend Circus with the semantics presented in this thesis.

Pointers have been formalised in [37, 59]. We expect to be able to give a new encoding
for pointers in UTP based on the proposed semantics for channel mobility (Chapter 4).

46 Unifying Theories of Programming (UTP)

We have left out the presentation of UTP theories of CSP+time [118], [134]. Timed
models bear a particular interest for us due to the different interrupt operators that have
been expressed on their basis, notably in [135] and [70]. Although links between timed and
untimed models have been established, it seems to be a rather circumvented approach that
which would consist in defining timed CSP processes only to discard time later on via some
encapsulation or hiding. An interesting paper [143] discusses the relation between the external
choice operator 2 and time. The discussions therein show that much can still be said about
timed models in CSP. We discuss the case of the interrupt operators (in untimed CSP) in
greater detail in §5.4.

The interplay between time and mobility is an interesting topic but timed models are
already complex on their own, so we leave that out for future research and focus first on
defining a most simple model as we possibly can.

Finally, Reactive Designs [35], [134], which provide a distinct formulation for reactive
processes (including CSP processes), have not really been considered in this thesis. It may be
the topic of further research than to recast our results in the UTP theory of Reactive Designs
(both with and without time).

Chapter 3

Literature Review

3.1 Mobile Processes

3.1.1 Code Mobility

The description of mobility requires first the definition of what entity moves and in which
space. In [49], Fugetta et al. provide a survey of mobile systems following three axes: mobile
code technologies, used for implementation; design paradigms, which define architectural ab-
stractions (abstraction from machines and implementations); and application domains. In
particular, they present a “Virtual Machine for Code Mobility”. Code Mobility, the key con-
cept used therein for describing mobile systems, is defined as “the capability to dynamically
change the bindings between code fragments and the location where they are executed”. Sys-
tems that implement (use) code mobility are called Mobile Code Systems (MCSs). Their
architecture is captured in Figure3.1.

The figure in the blue (first, top-right) circle represents the layered architecture of MCSs,
in which the layers on top use services provided by lower layers. At the bottom is the machine
or Host in which the computation is carried. Immediately above is the Core Operating System
(COS), which provides basic services such as file system, memory management and process
support; it does not provide communication nor distribution services. These are supported
by the Network Operating System (NOS) through channels and communication protocols.
Above the NOS is the Computational Environment (CE): it provides facilities or mechanisms
for realising code mobility; e.g. Programming Languages for programming code mobility,
also called Mobile Code Languages (MCLs), could belong to this layer. At the top of the
architecture are the components hosted by the CE, which are of two kinds: Executing Units
(EUs) whose structure is shown in the red (second, lower) circle, and resources (e.g. data,
network devices). EUs represent sequential flows of computation. An EU is composed of a
code segment, an execution state and a data space.

In MCSs the following entities may move: code, data and EUs. The space in which they
move is the network of computers or more abstractly, the network of EUs. An EU is located
relatively to its CE: EUs move from one CE to another.

Two forms of mobility are considered:

47

48 Literature Review

Figure 3.1: A Virtual Machine for Code Mobility ([49])

• strong mobility: both the code and the execution state of an EU may be moved from a
CE to another CE; and

• weak mobility: only the code of an EU may be transferred. This code could be accom-
panied by some initialisation data, but the execution state cannot be communicated.

Furthermore, two mechanisms support strong mobility:

• migration: the EU suspends its execution, is transmitted to the destination CE where
it resumes its execution. The copy of the EU in the original CE is deleted. If the EU
‘autonomously’ moves, the migration is said to be proactive; if the migration is triggered
by another EU, the migration is called reactive.

• remote cloning: a copy of an EU is created at a remote CE but the original copy remains
at its current CE.

For weak mobility, a distinction is established between stand-alone code, used for creating
a new EU on the destination site; and code fragment, which needs to be linked in the context
of already running code, e.g. Remote Procedure Call (RPC). If the code is executed as soon as
it is received then this is called an immediate execution, otherwise it is a deferred execution.

A third form of mobility, not explicitly mentioned in [49] as such, is what can be called
data mobility/migration. The migration of an EU has implications on its data space (defined

Mobile Processes 49

as the set of bindings to resources accessible by the EU). Because not every resource may be
moved, e.g. a relatively big database, mobile data must be explicitly declared as such.

As an effort towards abstraction, Fugetta et al. have presented design paradigms meant
to serve as architectural abstractions for reasoning about MCSs; these design solutions may
allow the design of Distributed Mobile Code Applications (MCAs). They are:

• Code On Demand (COD): an EU running on a host can download and link-on-the-fly
(dynamic linking) the code to perform a given task from a different (remote) component
that acts as a code server. In short, the client owns the resources but lacks the code;

• Remote Evaluation (REV): here, the clients own the code while the server owns the
resources. The server offers a unique service which is the execution of client code; and

• Mobile Agent (MA): a mobile agent is basically an EU, which, while in execution on
a given CE, is able to migrate (autonomously) to a different CE where it resumes its
execution seamlessly.

Discussion. [49] provides an informal description of mobile systems (that use code migra-
tion). There have been distinguished three types of mobility: strong mobility, weak mobility,
and data mobility. Three design guides for modelling mobility have also been defined, namely:
COD, REV and MA.

Much terminology is introduced, which may cloud understanding. The distinction be-
tween immediate and delayed execution, and that between stand-alone code and code frag-
ment are not essential to the understanding of mobility: they all deal with the time when an
EU is executed on the remote machine.

Also, the distinction between weak and strong mobility leaves room to ambiguity. Indeed,
it is possible to suspend the execution of a EU and yet send only its code. Then, one may
argue as in [15] that strong mobility may be translated into weak mobility.

One way of getting around the preceding ambiguity would be to classify mobility according
to the type of entity concerned. Then, EU mobility must be distinguished from code mobility.
The ‘code’ may be understood as a piece of text, with the particularity that it is executable,
and code mobility is hence a form of data mobility. EU mobility implies code mobility, and
depends on the migration mechanism, which notably suspends the EU and performs both
code and state mobility.
EU mobility may further be partitioned according to (the precision of) the value of the
execution state. We have the following cases:

• weak mobility: the execution state is discarded, and the initial state is sent instead.
This is the weakest form of mobility.

• strong mobility: the last execution state is sent. Here, the last execution state may be
more or less precise, depending on the interrupt (or suspension) mechanism involved.
For example, most video games have checkpoints, so migration will restore the game

50 Literature Review

according to the last checkpoint, and not the last execution state proper. As another
example, most modern text editors use both a manual and an automatic checkpoint sys-
tems. Manual checkpoints are realised by the user, and are less regular than automatic
checkpoints which are hence more precise.

A second, simpler, classification may be achieved by looking at the mechanisms involved
only. Then, there is weak mobility when there is no suspension, and only code plus eventu-
ally the initialisation data may be sent: in this case, weak mobility and code mobility are
the same. And, there is strong mobility when suspension is involved, and the last execu-
tion state is sent (without care for precision — the precision will depend on the interrupt
or suspension mechanism). It is this second classification that we adopt in this thesis.

In [49], EUs are sequential programs only. The particular execution order of the instruc-
tions of a program may not affect the mobility of the program, hence such a restriction on
EUs is not essential. In this thesis, EUs will denote any program independently of
their architecture.

Another form of mobility is defined in [49], namely object mobility, according to the Object
Oriented (OO) paradigm. This thesis is not concerned with that form of mobility, or not
directly. Seeing that the OO paradigm is a model of computation, the distinction seems
unnecessary. Rather, one should talk, more generally, of mobility in the OO context. The
work in [131] discusses the semantics of strong mobility in such a context.

[49] does not consider the mobility of channels. The notion of a location for a channel
may not be easily defined therein. Since CEs are the only connected elements, it is possible to
discuss channel mobility as the movement of a channel from one CE to another. However this
is quite restrictive since programs running on the same machine may be able to communicate,
and hence, pass channels between themselves. In this thesis, we will allow EUs to
communicate and hence of changing their communications channels. This seems
to introduce a hierarchy of locations, a potential complication. We return to this in greater
detail in Chapter 4.

In summary, the framework defined by Fugetta et al. [49] provides us a good starting
point for discussing mobile systems. Whilst it has some limitations, for e.g. (i) it introduces
too many concepts, and (ii) the computation model is restrictive, it has proved to be of
great help in this thesis, notably when reading about formal semantics for mobility in the
literature. Concretely and as will be seen later, it has permitted us to clarify the existing
UTP model defined in [125, 126] by pointing out at hidden design decisions. We may also
more formally distinguish between types of process mobility in process algebras in general,
a distinction that is often neglected. Finally, it has also reinforced our initial intuition that
generally speaking, processes might be seen as the locations for mobile entities.

Mobile Processes 51

3.1.2 UTP-CSP + weak mobility

Process mobility is concerned with the passing of processes along channels, from one location
to another. After introducing within the UTP theory of CSP processes higher order process
variables, process mobility was then achieved by sending and losing the values of these HO
variables from the source CE, and subsequently receiving them in the target CE. In [125, 126],
the distinction between weak and strong mobility is not made explicit. However, the seman-
tics provided therein correspond with weak mobility.

Section 3.1.2 contains the design of elements of a mobile system, using as a basis mod-
ified Fugetta et al. ’s framework, presented in the previous section. (We recall our slight
modification: EUs represent programs in general, and not sequential programs only.) Such a
discussion is absent from the original work [125, 126], and clarifies the results therein, which
are presented in §3.1.2.

Concepts and formalisation

As already mentioned, weak mobility is about moving the code of a EU (possibly with some
initialisation data) from one CE (the source) to another (the target). We will first discuss
the representation of elements of a mobile system, namely the concepts of code, EU and CE.

Code, EU, CE. An EU is a processing unit, or program, hence it may be represented by
a UTP-CSP process. A CE is a place where computations occur, i.e. also the place where
the execution of EUs occur. There is hence a containment relation between EUs and CEs,
namely: a CE may contain many EUs; an EU belongs to only one CE (this does not omit
distributed programs). In order to gain a better understanding of what a CE is, we may
make a parallel with Operating Systems.

We may say that an Application Program belongs to an Operating System if we can
actually observe its execution on the Operating System. However, an Application Program
may not be run on an Operating System if its code is not ‘stored’ in the Operating System
(more precisely, in the Operating System’s memory). Application programs running on an
Operating System correspond with EUs executing on a CE; that an Operating System is also
a program suggests that a CE may be represented by a UTP-CSP process.

The notion of location is absent from the basic UTP-CSP model, but not the notion of
environment. We see that a CE and the UTP concept of environment are similar, except
that the first denotes also a location, whilst the second does not, not traditionally. Hence, we
will use the terminology only w.r.t. to the containment relation between two processes: both
EUs and CEs will be modelled as processes; and a process will be considered as a location
for computation (the CE) only with reference to another process (the EU).

The code of a program (EU or CE) generally refers to the text describing the computation
that the program should perform. In this context however, it is more appropriately referring
to a stored program, in the sense of an application program stored on an Operating System.

52 Literature Review

In UTP, stored programs are modelled as the values of higher-order program variables, and
are also called procedures. The difference between a procedure and a process (or a process
expression) is in their evaluation: a procedure denotes a value, whereas a process denotes the
execution of such a value.

More formally, the containment relation between process and procedure may be stated
thus: a process contains a procedure if there is a higher-order process variable in the process’s
alphabet whose value may correspond with the procedure. Hence, we will say that a CE
(process) contains a EU (process) if there exists a higher-order process variable in the alphabet
of the CE whose value is (the code of) the EU. That is, a process P will be a CE for a process
Q iff

∃ h | (h is a higher-order process variable and h ∈ αP) • h = {| Q |}

where {| Q |} denotes the code of process Q.

Resources. We now discuss an important aspect of the formalisation but easy to be ne-
glected, namely the notion of (program) resources, especially data and channels. Fugetta et
al. [49] discuss in length the binding of resources to programs and how mobility affects such
bindings.1 In UTP, initialisation data is given in the form of an initialisation predicate that
should be part of the definition of a process. Hence a process (EU) may always move
with its initialisation data. The same goes for channels, which are always part of the
definition of a process and constitute its interface. Namely, a process (EU) may always
move with the channels that belong to its interface. However, the movement of an
EU may not affect the interface of its CE process.

Indeed, consider again the case of Application Programs and an Operating System. Each
Application Program may be considered of having ‘abstract’ channels that are then mapped
onto ‘concrete’ channels provided by the Operating System environment. Whenever an Ap-
plication Program moves hence, it moves with its (abstract) channels, without affecting the
(concrete) channels of the Operating System. In formal terms, there is no distinction between
abstract and concrete channels: they are both modelled as CSP channels. The same formal-
isation of the CE-EU relation between processes may be seen to hold between concrete and
abstract channels. Indeed, a higher-order process variable does not affect the interface of the
process to which it belongs. This latter fact is, at least, the default case, and is a sensible one.

We may ask whether or not we should allow weak mobility (resp. strong mobility) to induce
channel mobility. As far as we are concerned, we are not aware of any actual application
for this feature, although we may perceive a possible utility for autonomous systems. This
allows us to state that such systems are not our concern in this thesis, hence, we shall not
reason about processes that may move themselves.

Notwithstanding, the previous question is sensible because in the vast majority of cases,
1This discussion was omitted in Section 3.1.1 above, for conciseness.

Mobile Processes 53

programs are constructed to operate in a given environment. This may even cover every
possible case (including autonomous processes), since an EU is considered as such only with
regard to a given environment. Therefore, even if one were to imagine a process Q leaving
the environment CE1 for the environment CE2 in order to extend the channels of CE2, then
it would be necessary that Q has in its interface channels not already in the interface of
CE2. It will therefore be impossible for CE2 to execute Q so that Q may in turn, as part of
its behaviour, increase the interface of CE2. If instead, the reception of Q implies also the
increase of the interface of CE2, then we can separate weak mobility from channel mobility
since we may send new channels independently from sending the code of the process that may
use them. Wherefore, there is no need for weak mobility to induce channel mobility.
This reasoning applies equally in the case of strong mobility.

Semantics

As discussed above, giving semantics to weak mobility requires first to introduce High Order
Programming into UTP-CSP, which uses mainly first-order data variables. Hoare and He
[66, ch. 9] have defined a theory of High Order Programming on the basis of the theory of
Designs. Tang and Woodcock [126] have done the same but for UTP-CSP. The presentation
below follows from [126].

First, the alphabet of UTP-CSP processes is extended with higher-order procedure vari-
ables. Procedure values have the particularity that they may be executed. Let < h > denote
the activation of (the procedure value held by) the higher-order variable h. For now, the
semantics of < h > may be understood informally, namely, it behaves like the process whose
expression corresponds with the value of h.

First-order data may be compared simply by using equality (=), whereas higher-order
procedure values are subject to implication ordering (⇒). Hence, the introduction of higher-
order variables has an impact on the refinement ordering.

Definition 3.1.1 (Variable refinement [126, Def. 2]). Let p and q be two program variables
of the same type.

p v q =̂

p = q if p, q are data variables

[<q>⇒<p>] if p, q are process variables

Procedure values (or procedures) and process expressions (or processes) may also be
compared.

Definition 3.1.2 (Procedure/process refinement [126, Def. 3]). Let αh = αQ , h, h′ 6∈ αQ.
Then

54 Literature Review

h w Q =̂ [<h>⇒ Q]

The extension of the alphabet with higher-order process variables does not affect the
(healthy) behaviour of processes, hence it preserves the existing UTP-CSP healthiness con-
ditions.

The definition of assignment must be modified to take into account the refinement ordering
between higher-order process variables.

Definition 3.1.3 (Higher-order procedure assignment [126, Def. 3]). Let αh = αP , h, h′ 6∈αP.

h := {| P |} =̂ R3 ◦ CSP1(ok ′ ∧ ¬ wait ′ ∧ tr ′ = tr ∧ h′ w P ∧ v′ w v)

where v denotes all program variables except h.

The activation of a higher-order process variable is more easily expressed by means of an
algebraic law.

Theorem 3.1.4 (Procedure activation 1). Let αh = αP , h, h′ 6∈ αP. Then

(h := {| P |}# < h >) = (h := {| P |} # P)

< h > denotes the activation of (the procedure contained in) h.

Proof. cf. [126, Law 3].

Conversely, any process stands for the execution of the higher-order process variable whose
value corresponds with the process’s expression.

Theorem 3.1.5 (procedure activation 2). Let αh = αP , h, h′ 6∈ αP. Then

P = (proc h := {| P |}# <h> # end h)

Proof. cf. [126, Law 5].

The definition of communication must also take into account the communication of pro-
cedure values viz. the refinement ordering of said values. The communication of procedure
values is denoted by c.M , instead of c.m for first order values.

Definition 3.1.6 (Higher-order communication [126, Def. 12]).

ch.E =̂ 2{do(ch.M) | M w E}

Hereafter are presented the semantics for weak mobility. One way of describing the effect
of weak mobility is so called ‘copy-then-delete’ semantics, meaning that a duplicate version of
the code is sent to the target, whilst the original version is deleted from the source; another
way is by separating its effect according to the respective viewpoints of the source and target.

Mobile Processes 55

From the target, the effect of weak mobility is simply the update of some higher-order
variable with the procedure value that was received. There is no difference with (first-order)
input prefix. From the source, the higher-order variable used for the communication loses
its value at the end. That is, the procedure value is first output, and then the higher-order
variable loses that value.

Clone assignment is the process that copies the value of a higher-order variable q into a
distinct higher-order variable p viz. the update of p with the value of q.

Definition 3.1.7 (Variable copy (or clone) assignment [126, Def. 11]).

p := q =̂ R3 ◦ CSP1(ok ′ ∧ ¬ wait ′ ∧ tr ′ = tr ∧ p′ w q ∧ v′ w v)

α(p := q) =̂ {o,o′, p, p′, v, v′}

where v is the set of program variables except p.

Mobile assignment is the process that copies the value of a higher-order variable, q, into
a distinct higher-order variable p, and then loses the value of q.

Definition 3.1.8 (Variable copy-then-delete (or mobile) assignment [126, Def. 10]).

p :=m q =̂ R3 ◦ CSP1(ok ′ ∧ ¬ wait ′ ∧ tr ′ = tr ∧ p′ w q ∧ q ′ w CHAOS ∧ v′ w v)

α(p := q) =̂ {o,o′, p, p′, q, q ′, v, v′}

where v is the set of program variables except p, q.

The mention of the clause q ′ w CHAOS above could have been omitted since it equates
to true. The clause q ′ w CHAOS means that q ′ has no useful value (cf. Def. 3.1.2).

The effect of moving out a (procedure) value, namely, sending the value to the target
process and then deleting it from the (higher-order) variable that contained it, is denoted by
c!!q.

Definition 3.1.9 (Mobile output prefix [126, Def. 15]).

c!!q → P =̂u{(do(c.M) ∨ (¬ wait ′ ∧ q ′ w CHAOS)) | M w q} # P

A consequence of mobile assignment, and of mobile output prefix also, is that any subse-
quent attempt of activating the procedure should fail, unless the variable is set anew.

Theorem 3.1.10 (Undefined activation).

(g :=m h# <h>) = CHAOS

(c!!h →<h>) = (c.h # CHAOS)

Proof. cf. [126, Law 4].

56 Literature Review

The following law states the equivalence between mobile assignment and mobile commu-
nication.

Theorem 3.1.11 (Assignment-communication equivalence).

(p :=m q) = ((ch?p → SKIP) ‖ (ch!!q → SKIP)) \ ch

Proof. cf. [126, Law 11].

Discussion: Local vs distributed mobile assignment. Considering, like
Fugetta et al. [49], that mobility is inherently distributed the previous theorem implies that
from the outside, it is not possible to distinguish between ‘local’ and ‘distributed’ copy-then-
delete assignment semantics. This raises the question of the specification of weak mobility:
can it be verified that a construct implements ‘strict’ weak mobility? The answer is trivial
when there is no hiding of corresponding communications: the presence of events of the form
c!!e in the trace can tell. However, when there is hiding, the trace model (viz. trace-based
specification) seems to be unsuitable for the task. This is not a weakness in itself because
hiding has the expected effect.

In summary, we have presented the semantics for weak mobility as defined in [126]. We
have added a paragraph on the formalisation of concepts, absent from the original work. In
particular, should one insist that weak mobility is intrinsically distributed, then this frame-
work, in the presence of the hiding operator, is unsatisfactory for distinguishing distributed
weak mobility from local copy-then-delete semantics.

3.2 Mobile Channels

3.2.1 FOCUS + channel mobility

FOCUS [27] is a semantic framework for the formal specification of programs based on in-
put/output (or I/O) relations. A sequential program may be characterised by a function
between its initial state or input and its final state or output. Inputs are received through
some input channels, and outputs are produced through some output channels. Nondeter-
ministic programs may produce different outputs from the same input; hence, a program may
be characterised instead as a relation between inputs and outputs.

The sequence of messages of a given channel is called a stream. A FOCUS component or
simply a component C characterises a relation between input streams and output streams.
Components may interact with each other to constitute larger components, appropriately
called data flow networks. Hence it is equivalent to say that FOCUS allows modelling systems
as data flow networks.

FOCUS models may be either timed or untimed. Time is modelled by introducing a global
clock that splits the time axis into equidistant time units. All the messages input during the
same time unit are then stamped with it. The communication model is asynchronous.

Mobile Channels 57

FOCUS components are normally static (i.e. their channels do not change during their
activation). A static component C is defined by a function f ∈ (I ⊆ H) → (O ⊆ H) where
H is the set of channel histories; θ ∈ (I ⊆ H) is the inputs histories, and f (θ) ∈ (O ⊆ H) the
outputs histories. A history is a sequence of messages sent over a channel in a given period.

In [55, 56, 57, 58], Grosu and Stolen extend FOCUS with channel mobility, based on a
timed model. [58] synthesises the first three; three models are provided depending on the
communication paradigm considered:

• Asynchronous many-to-many (m2m) communication: here many components may si-
multaneously use the same channel.

• Asynchronous point-to-point (p2p) with sharing: here different components may have
the same channel in their interface; but only two components may communicate over
the same channel at a time.

• Asynchronous point-to-point (p2p) without sharing: here different components have
disjoint interfaces.

In all variants, the underlying channel-passing mechanism is the same: the interface of a
component is allowed to change over time, by communication of channels as messages. Each
variant simply restricts what components may be involved in a communication at what time.
Since our main interest is the presentation of the channel mobility mechanism, we shall not
refer to any of the models in particular.

Components are modelled as guarded functions. A function is called weakly guarded if at
any time, its outputs are independent of its future inputs. A function is strongly guarded if
it is weakly guarded and its outputs at time t are also independent of its inputs at time t,
for given t. Intuitively, strongly guarded functions introduce a delay of at least one time unit
between input and output; and weakly guarded functions allow a zero-delay behaviour [58].

Definition 3.2.1 (Guarded function). A function f ∈ H → H is weakly guarded if

∀ θ ∈ H , t ∈ Nat+ : f (θ) ↓t = f (θ ↓t)

and strongly guarded if

∀ θ ∈ H , t ∈ Nat+ : f (θ) ↓t+1 = f (θ ↓t)

N.B. The previous formulation is different from [58, Def. 1].

A static component may be defined by a set (or singleton) containing functions
f ∈ I ⊆ H → O ⊆ H where both I and O are known and fixed in advance, and may
never change. By a naive analogy, a mobile component would be defined by functions of the
form g : i → o where both i and o are set-valued variables. However, such a representation

58 Literature Review

is not functional-like as it introduces an explicit manipulation of the range and domain of a
function. To solve this issue, consider functions defined over H i.e. f ∈ H → H .

The definition of static functions may be seen as the application of restrictions on both
dom f and ran f , respectively the domain and the range of any function f . Using simple
arithmetic, we have I ⊆ H ⇔ I = H ∩ I and O ⊆ H ⇔ O = H ∩ O. Any static function
fI ,O ∈ H ∩ I → H ∩O may hence be viewed as the projection of f ∈ H → H in which dom f is
restricted to I , ran f to O, and everything else is undefined. Let α ∈ H , then, the restriction
of α to a subset B of H is denoted by α |B [56]:

α |B =̂

α if α ∈ B

〈〉 otherwise

In the case of channel mobility, I and O may change over time, unlike in the static case,
hence they will respectively be denoted by i(t) and o(t) (or simply i and o) instead. Because
even static functions are defined in terms of the above restriction (or projection) operation,
it is necessary to ensure that f behaves like fI ,O i.e. although f is defined over H , it uses only
those channels specified in I and O. When such is the case, f is called privacy preserving
[56, §4], [58, Defs. 3, 11].

Definition 3.2.2 (Privacy preservation). Let f ∈ H → H | θ 7→ δ. Let dom f = I and
ran f = O, initially. Then f is said to be privacy preserving if

f (θ) = f (θ |i)

δ ∈ f (θ)⇒ δ = δ |o
δ ∈ f (θ)⇒ δ = δ � (i ∪ o)

where i and o are defined recursively as follows:

i(t0) = I o(t0) = O

i(t + 1) = θ |i(t) o(t + 1) = θ |o(t)

i =
⋃

t
i(t) o =

⋃
t

o(t)

where t0 stands for the origin of time, i.e. t = 0.

A component is static if its interface remains unchanged after t0, and is mobile otherwise
[58, Defs. 4, 12].

Definition 3.2.3 (Static vs. mobile component). A component C is called static if all of its
defining functions are static. A function f is called static if, after initialisation, its domain
and range do not change i.e.

∀ t • θ |i(t)= θ |i(t+1)= I ∧ δ |o(t)= δ |(t+1)= O

A component M is called mobile if at least one of its defining function is mobile. A function

Mobile Channels 59

is called mobile if, after initialisation, its domain and range may change i.e.

∃ t • θ |i(t) 6= θ |i(t+1) ∨ δ |o(t) 6= δ |o(t+1)

Discussion. The characterisation (of static and mobile components) that we have given
above is different (in its formulation) from what may be found in [58] and related. The
difference is that static and mobile components are characterised by their respective privacy
preservation law, whereas above, it is clearer that not the privacy preservation law itself, but
the change of interface occurring over time, is what makes the difference. Moreover,

Privacy preservation is intimately related to the notion of time. For each port p received
(passive port p sent) for the first time in time unit t , the function f may communicate
via p (respectively via p̃) from time unit t +1 onwards. Note that such a causality relation
cannot be expressed in an untimed input/output model. ([58, Def. 11. (Privacy preserving
function)])

It would seem that the previous statement is not quite correct. To see this, let us first look
at the privacy law itself. The value of i(t) is given recursively as a function of i(t − 1); it
changes only when a channel is communicated as a message. In other words, the effect of
channel mobility occurring at time t may only be visible at time t + 1.

For example, if an existing channel is output at time t, it is only at time t + 1 that the
channel will no longer be available. Hence, it is as if every channel mobility operation pushed
the clock forward by one tick. We then end up with two periods: the time before the channel
is moved, say tbef , and the time after, say taft . Each period corresponds to a given interface,
respectively, the interface before, and the interface after the mobility. Hence, i(t) clearly gives
the interface at tbef , and i(t + 1) the interface at taft , when mobility has occurred; otherwise
i(t) = i(t + 1) and no mobility has occurred.

The point is this: given that each input/output is stamped with the time of its occurrence,
and given that such a time stamp is recorded in the history as a tick event; if we record
the interface at the time of the tick event instead of the tick event itself, we may equally
characterise channel mobility without using time. In fact, the value of i =

⋃
t i(t) given above

may only be computed if each i(t) has been recorded somewhere, eventually in the history
itself (together with the associated tick event). Unfortunately, because such a recording is
but implicit in the definitions, Grosu & Stolen could not see that time is not necessary for
defining privacy preservation.

More results. Notwithstanding the above remarks, some more results may be worth men-
tioning. In [58], mobile components have an additional set of said passive channels, denoted
by pM . By opposition, the set aM of active channels contains both sets I and O already
mentioned, i.e. aM = I ∪O. At any time, both sets must be disjoint. The channels in pM are
private in the sense that they are known of the component only, and not of the environment;
hence pM always contains the two ends of a channel. Both active and passive channels may

60 Literature Review

appear as messages of output communications; but only active ones may be used for com-
munications. When a passive channel is output, one of its ends must appear in aM of the
current component, thus making it active, whilst the other will be in the corresponding set
for the receiving component. In consequence, in the p2p model, a channel may become either
active or passive, according to whether a component owns both ends of the channel or not.
Such may not be the case in the m2m model because many components may share a channel
at the same time once it has been made public. The introduction of passive channels has an
effect on the dynamics of valid channels, and is captured by the privacy preservation law as
follows: at any time, both input and output channels may belong to aM only, and none to
pM . We refer the reader to [58] for further details.

Another interesting result is that hiding is defined in the m2m model but not in the other
models, and over the initial set of active channels only. As a consequence, it is not possible
to increase silent channels dynamically.

As a final remark, because communication is asynchronous, it may not be possible to
model channel faults; also, it is not possible of modelling refusals and divergences in the
context of data flow networks ([66, chap. 8, §8.3, p. 231]).

Other, related works. In [123], Stolen uses a different approach to the problem of extend-
ing FOCUS with mobility than the one in [58], presented above. In [123], acquired channels
are recorded, and a healthiness condition imposes that only such channels may be used effec-
tively. Unlike [58], which is not concerned with step-wise refinement and formal verification,
the work in [123] explicitly addresses those concerns.

More recently, in [29], Broy discusses semantics of channel mobility in FOCUS based
on the work in [58]. Broy notably discusses issues such as causality and concepts of object
oriented programming.

3.2.2 A CSP model for occam-pi

In [138], Welch & Barnes have proposed a CSP semantics for the channel mobility mecha-
nism implemented in the occam-pi programming language [137, 11]. We present this work
subsequently.

occam-pi mobile channels. Occam-pi is a programming language that supports both the
mobility of processes and of channels, by means of their communications over channels. In
that, it extends the occam programming language [12]. Two types of communication are
possible:

• static point-to-point synchronous communication: channels are non-mobile so (their
reference or name) cannot be communicated. All communications are point-to point
and synchronous.

• dynamic multiplexed synchronous communication: it is possible of sharing channels
thus enabling 1-to-many (or many-to-1, or many-to-many) channel configuration.

Mobile Channels 61

The entities present in the language are data variables, channels and processes, all of which
can be either mobile or not. So, communication bears two semantics: a copying semantics
(the value communicated is still available at the source) and a movement semantics (the
value communicated is only available at the destination). Entities that may be moved (i.e.
are mobile) must be declared explicitly as such. Hence, it is possible to define mobile data
types. Variables of such a type lose their value after their assignment to other variables
(copy-then-delete, or movement, semantics).

There is a distinction between channel ends and channels. An occam-pi process may use
a channel only if the latter is declared in the process’s definition (similar to variables). Each
end of a channel, indicating the direction of the communication, must be declared explicitly.

In order to provide channel mobility, occam-pi introduces the notion of a bundle of chan-
nels viz. informally, a group of channels that may all participate to the communication
between two given processes, exclusively. It is implemented as a record, whose fields are ex-
clusively channels. A bundle is hence a type, a mobile data type; it is also any entity of said
bundle type. Like channels, bundles also have ends. A bundle end indicates the direction of
use of the channels recorded in its definition: the server-end, also called negative end, reverses
the direction of use of declared channel fields; the client end, or positive end, conserves their
direction. Channel mobility is thus achieved by the communication or assignment of values
of bundle type.

occam-pi mobile channels in CSP. An occam-pi program, say Oπ, consists of two CSP
processes running in parallel:

• the application (system) process AS : contains all the processes of the application, which
may possess their own static channels;

• the mobile channel kernel process MCK : responsible for the creation and management
of bundles.

Both bundles and (occam-pi) mobile channels are modelled as indexed CSP processes.
They will be referred to (respectively) as bundle process, denoted by
Bdle(bId,nbFlds), and as channel-field (component) process, denoted by ChFld(bId, chId).
When there is no ambiguity, we shall simply talk of bundle and of channel-field. bId is the
bundle unique index (or identifier), nbFlds is the number of channel fields in the bundle; chId
is the channel-field unique index within the bundle, whereas bId.chId does uniquely identify
a channel within the whole application.

Every channel-field process owns exactly three channels in the set {wr , ack, rd}, indexed
accordingly with bId.chId. These are traditional CSP channels, or more precisely, they are
channel ends, since they are always used in a single direction, respectively: for a given CSP
channel ch, ch! = wr ∧ ch? = rd, and ack is simply for synchronisation and carries otherwise
no data. A further signal, denoted by kill allows deactivating an existing channel-field; as a

62 Literature Review

consequence, corresponding channels may no longer be used [138, Chan(c, i)].

ChFld =̂

(
bId.chId wr?x → bId.chId rd?x → bId.chId ack?x →

(ChFld 2 kill → SKIP)

)
chansOf (ChFld) =̂ {bId.chId chan | chan ∈ {wr , ack, rd}}

Above, ChFld stands for ChFld(bId, chId). For ease, mention of the parameters will be
omitted for other processes also.

A bundle process has four (4) components running in parallel. The easier one is composed
of all the channel-field processes in parallel, and will be referred to as the list of fields (process),
denoted by ChList(bId,nbFlds). Indeed, this process has only a grouping purpose, and is
defined by [138, Channels(c,fields)]:

ChList =̂ ‖
1≤chId≤nbFlds ChFld(bId, chId)

chansOf (ChList) =̂
⋃

1≤chId≤nbFlds
chansOf (ChFld(bId, chId))

The three other processes have a control role, and ensure a healthy use of a bundle. The
process Refs(bId, count) counts the number of processes currently holding either end of a
bundle [138, Refs(c,n)].

Refs =̂


kill → SKIP if count = 0(
(bId enrol → Refs(bId, count + 1)) 2

bId resign → Refs(bId, count − 1)

)
otherwise

actOf (Refs) =̂ {kill} ∪ {bId act | act ∈ {enrol, resign}}

The processes {Mutex(bId, bEnd) | bEnd ∈ {pos,neg}} ensure that for a given shared bundle
end, only one communication occurs at a time [138, Mutex(c, x)].

Mutex(bId, bEnd) =̂

 (bId.bEnd claim → bId.bEnd release → Mutex(bId, bEnd)) 2

kill → SKIP


actOf (Mutex) =̂ {kill} ∪ {bId.bEnd act | act ∈ {claim, release}}

A bundle process Bdle(bId,nbFlds) is itself defined by [138, Bundle(c,fields)]:

Bdle =̂ Refs(bId, 2) ‖ Mutex(bId, pos) ‖ Mutex(bId,neg) ‖ ChList

actOf (Bdle) =̂ actOf (Refs) ∪ actOf (Mutex)

chansOf (Bdle) =̂ chansOf (ChList)

There is a special bundle process, denoted by UndefBdle, whose index is 0 and that is used

Mobile Channels 63

as a reference for undefined bundles [138, UndefinedBundle].

UndefBdle =̂ 0 resign → UndefBdle 2 nomorebdles → SKIP

actOf (Bdle) =̂ {0 resign,nomorebdles}

As stated above, the role of MCK process is the creation and management of bundles.
The process that creates new bundles on request is denoted by NewBdle(bId), defined by
[138, CMC (c)]:

NewBdle(bId) =̂

 set?nbFlds → get!bId →

((Bdle(bId,nbFlds) ||| NewBdle(bId + 1)) 2 nomorebdles → SKIP)


MCK is the process that behaves like UndefBdle when a process makes a reference to an

undefined bundle, or else runs one or more bundle processes in parallel [138,
MOBILE CHANNEL KERNEL].

MCK =̂ NewBundle(1) ‖ UndefBdle

An occam-pi program Oπ may thus be defined by the following CSP process [138,
APPLICATION SYSTEM]:

Oπ =̂ ((AS # nomorebdles → SKIP) ‖ MCK) \ kernel chans

kernel chans =̂ {enrol, resign, claim, release,wr , rd, ack, set, get,nomorebdles}

Note that the set kernel chans as given above is not defined fully (i.e. not every channel
has been defined), and is meant to represent all those communications and interactions with
the process MCK . It is given as such only for readability, since its actual value is easily
computable from the definitions of processes.

Each AS process may communicate with another through static channels, as any tra-
ditional CSP process may do, or else, may communicate through bundles provided by the
process MCK . By calling the process NewBdle, an AS process may request the creation of
a new bundle. Channel mobility is achieved by communicating bundle indexes from one AS
process to another. Unfortunately in [138] alphabets are not explicitly discussed, hence it is
not clear what entitles a process the use of a channel. Said differently, it is not clear what
the valid traces of a process are.

Discussion. We agree with [18, 132] in saying that the model above is implementation-
oriented, and further precise in what sense. Indeed, the concept of a channel as defined in
process algebras in general, and in particular in CSP is quite abstract. It may refer to the
simple cable linking two computers in a LAN, or to the more complex collection of cables
and devices that link two distant computers on the Internet. Precisely, modelling occam-pi
mobile channels as CSP processes is thus a choice of implementation. Furthermore, because

64 Literature Review

of such a choice, by channel mobility, one could be misled at first to thinking that said mobile
channel process and hence process, would be moving. Such is not the case, hence, one may
wonder if the above model actually describes channel mobility at all. Another question that
comes to mind, seeing that the model is not abstract enough (it is implementation-oriented),
is whether or not it can actually be simplified. The answer to this second question does
actually provide an answer to the first. We discuss both questions subsequently.

i. As a first move towards simplification, consider occam-pi bundles that have only one
occam-pi channel. Then, corresponding CSP bundles will have only one CSP channel-
field process. As before, each channel-field process will have three channels. Since we
are left with a single channel-field, we may drop the chId indexes.

ii. Remark that the processes Refs and Mutex implement a point-to-point communication
protocol with sharing, but at the level of bundles. CSP already assumes the same
protocol but for CSP channels, so we may question the possibility of eliminating the
redundancy. To answer this question, see that accessing a bundle is but a means for
accessing its channel-fields. In turn, accessing a channel-field process is but a means for
accessing its channels viz. {wr , ack, rd}. In CSP, a process may access a channel if the
latter is in its interface, as given by the chansOf () function used previously. Hence, we
may eliminate the processes Refs and Mutex; we may also eliminate the channel-field
process ChFld but keep only its channels {wr , ack, rd}, which will be identified with bId
only. (We may easily generalise again to having many channel-field processes; however,
we would need to keep chId in order to distinguish them.)

iii. Similarly, since MCK is but a collection of bundles whose main purpose is to grant
access to the channels which they hold, we may eliminate bundle processes and keep
only bId, for grouping purposes. (A further simplification is possible, by considering
a single bundle only. Then we would also drop bId. This means that we would have
reduced everything to a single channel. However, we would end up with a very simple
model. The discussions below are more general, since we deal with both many bundles,
and for each bundle, possibly more than one field.)

This first simplification step (i-ii-iii) leaves us with only two processes, AS , and MCK , in
which all the previous components processes have been eliminated, and only their respective
sets of channels, indexed accordingly, have remained. As a result, we have: chansOf (AS) =

chansOf (MCK) = {bId.chId chan | chan ∈ {wr , ack, rd}}. This leads us to our second
simplification step, namely, eliminating MCK , or perhaps more precisely, abstracting away
from it.

Indeed, MCK plays the role of a server of all the mobile channels of the application. Since
every application process in AS may be linked to MCK , the latter can be modelled as a set
instead: the set of all the mobile channels of the application.
Now, looking at AS processes, we see that in most cases, one such process may have only
a subset of all the possible indexes. That subset can change according to the movement of

Mobile Channels 65

the indexes. When a process releases or moves out an index, it can no longer communicate
through the corresponding (generic) channels. And when a process receives an index, it
can thereafter use the corresponding (generic) channels. However, not everything seems
right. The way the set of indexes is defined, the interface of processes is still static. Indeed,
indexesOf (P) = {(bId,nbFlds)} uniquely defines what channels may be used. Hence, even
if a process P receives an index, say newId 6∈ indexesOf (P), P may never actually use the
channels corresponding to newId. This means that the actual effect of moving indexes is
activating/deactivating existing channels. If we view indexesOf (P) as a (strict) subset of
MCK (understood as the universal set of all the possible indexes), then P will never receive
indexes outside indexesOf (P), which seems like a severe restriction to the model.

Instead, suppose that we equate indexesOf (P) with MCK , for every P in AS . This
would mean that by default, every process is connected to one another. Again, moving
indexes around will have the same activate/deactivate effect, suggesting that initially, it is
not necessary that every process has all of its mobile channels active. Hence, we may introduce
the following subtlety in the definition of MCK :

• MCK may represent movable (inactive) channels viz. that a process may acquire or
move in, at any time, but may never release or move out; whilst

• indexesOf (P) may represent usable (active) channels viz. that a process has already
acquired and hence may use for its communications, and may also release or move out.

Considering the latter definitions, we may actually discard indexes altogether and move
channels directly, as if they were objects themselves, if we remark that in the end, indexed
channel names are but channel names. At the same time, this notion of indexing paves the
way for linking, in a mathematical sense, both theories of static networks and of mobile
networks:

A mobile network may be simulated by a static network that connects all the
nodes of the mobile network to one another, and then by indexing channels so
that every channel is mapped to a set of indexes, and each index defines all of the
channels that were active during the same period. The ordering of the indexes
would hence define the consecutive changes of network topology as they have
occurred in the mobile network.

In conclusion, we have presented Welch & Barnes [138] model for capturing the channel
mobility mechanism of occam-pi using CSP. The result is not abstract enough, and we have
said why. We have proceeded further to make their model more abstract. Our analysis has
shown that the CSP processes used for modelling occam-pi channels and bundles had merely
a structuring role, and that such a structuring could be lifted into some channel naming
procedure. Those modelling processes (for bundles and channel-fields i.e. Bdle, ChFld, MCK
and related) were hence discarded, leaving us with a more abstract model than the original
one. The model in [138] was particularly useful in that it strengthened one of our main

66 Literature Review

intuition about mobility, namely, the distinction between the capability of a process, and its
interface (cf. Chapter 4).

3.2.3 CSP||B + channel mobility

CSP‖B [116] is a formal language that aims at combining CSP processes with B machines
[1]. A CSP‖B controlled component consists of a sequential CSP controller (process), say
P, in parallel with a B machine, say M . A B machine is itself modelled as a CSP process,
where a B machine operation op with given input s and output t, declared in a machine M
as t ← op(s), is modelled as a CSP event op.s.t.

Each machine instance in a CSP‖B system owns a unique machine reference, denoted by
z. Operation calls correspond to the communication z.op.s.t, and the machine reference z can
itself be communicated between controllers. As a requirement, only one sequential controller
may own a reference z at any one time, so that when z is passed from say controller P1 to
controller P2 then P1 may no longer use z.

The following elements are part of the semantics of a controller:

• the set MR of machine references: contains the links to interact with B machines;

• the set CP of control points: contains special channels, through which machine refer-
ences may be communicated;

• the set C of regular CSP channels (disjoint from CP).

The interface of a controller process is hence I = CP ∪C ∪MR. Channel mobility is achieved
by passing references around between processes, which modifies the value of MR, hence making
the interface dynamic. The valid traces are given by recursion as shown below.

Definition 3.2.4 (Valid mobile CSP||B traces [132]).

〈〉 � IP = 〈〉

(〈cp.z〉a tr) � IP =



〈cp.z〉a (tr � IP ∪ {z}) if cp ∈ inA(P) ∧ z 6∈MR

〈cp.z〉a (tr � IP \ {z}) if cp ∈ outA(P) ∧ z ∈ MR

tr � IP if cp 6∈ A(P) ∧ z 6∈MR

undefined

(〈c〉a tr) � IP =

〈c〉a (tr � IP) if c ∈ inA(P)

tr � IP if c 6∈ inA(P)

(〈z.op〉a tr) � IP =


〈z.op〉a (tr � IP ∪ {z}) if z ∈ MR

tr � IP if z 6∈MR

undefined

Mobile Channels 67

The traces above are always given through restriction because of the inherent parallelism
of CSP||B components. The second and fourth clauses, involving a machine reference z, are
especially relevant to channel mobility.

• Second clause: the first case states that (assuming that the machine reference z is ‘new’
i.e. z 6∈MR), after being input, the next valid trace must have {z} in its interface; the
second case states that (assuming that the machine reference z is ‘old’ i.e. z ∈ MR),
after its output, the next valid trace may not contain {z} in its interface. The third
case is about hiding, and the last one states that any other case is undefined.

• Fourth clause: the first case states that communication through a machine reference
does not change the interface of the next process; the second case states that if z is
invisible, it should be invisible in the next trace also. The last case states that any other
case is undefined; for e.g. if you append a trace 〈z.op〉 with an interface not containing
{z}.

A sort of healthiness condition imposes that at all times, no two controllers may hold the
same machine reference.

Definition 3.2.5 (MR disjointness condition [132]). The set MR of machine references of
each controller of a given CSP‖B component must always be disjoint.

Discussion. The channel-passing mechanism of mobile CSP‖B is thus: each component
has a set of mobile channels which increases and decreases according to the movement of the
channels therein. The fact that a mobile channel may be held by only one controller process
at a time restricts the expressiveness of the model, but this restriction may, it seems, be
lifted out with little to no difficulty. Another restriction is that mobility occurs between a
CSP controller and B machines, but not amongst CSP controllers themselves. Also, traces
semantics only are provided.

A number of assumptions are left implicit so one has to exercise care when constructing
processes. This remark concerns particularly the law defining mobile communications cp.z.
It states that following such an operation, the machine references of the next running process
must differ from that of the current one. Whilst this is reasonable (with regard to the
algebraic laws of the prefix operator), such may not be the case in the presence of recursion,
and of sequential composition.

As a general remark, operators are not discussed in [132], which is unfortunate. It is note-
worthy that sequential composition is not part of the syntax of CSP processes defined in [132].
Although hiding seems to be implied in the laws for valid traces above, the hiding operator
is also not in the syntax of CSP processes given in [132]; and the authors have themselves
ruled out internal parallelism in CSP controllers, as it is stated in [132, Conclusion].

Notwithstanding its limitations, this work may be seen to improve on the one in [138]
described previously (§3.2.2) in two aspects: actual channels are moved, which corroborates
our earlier hypothesis that channels may be moved directly instead of through indexes (§3.2.2,

68 Literature Review

Discussion); the traces are explicitly calculated, which is not the case in [138].

A result provided in [132] but not presented above is a theorem for verifying divergence-
freedom, and another for verifying deadlock freedom (of mobile CSP||B components). Since
the network of CSP controllers is static, traditional CSP techniques do apply. Hence, only B
machines need to be verified. Such a verification is realised on the data exchanged between a
CSP controller and a given B machine. Mobility itself does not play any role in the definitions
provided, so it would be interesting to know if the techniques are simply those of static systems
that have been reused in mobile CSP||B. If it turns out that the techniques are not identical,
then it could be interesting to study how static and mobility techniques relate to one another.
The more general question is in fact that of the relation between mobile CSP||B and static
CSP||B, not explored in [132].

3.2.4 CSL + CSP + channel mobility

In [67], Hoare and O’Hearn propose a traces model for channel mobility based on ideas from
both Concurrent Separation Logic (or CSL) and CSP. Their initial intuition is the similarity
between the notion of ownership used in CSL which is dynamic, and the notion of alphabet
used in CSP which is static. Indeed, the alphabet of a CSP process determines a form of
location for the channels that the process may use and hence owns. The problem is then to
make the ownership model of CSP alphabet dynamic.

The basic elements of the model are those of CSP with some particularities:

• point-to-point communication only is considered, where each channel has only one
sender and one receiver at a time, though not always the same at different times;

• channels can be passed as the contents of messages (channel passing) and be dynamically
allocated, as in the pi-calculus;

• channels are considered concrete, meaning that they are objects, much like integers;

• dynamic allocation and deallocation of channels are possible, whose effects are respec-
tively to increase and decrease the alphabet;

• alphabets do model ownership but may change over time, as a result of channel passing,
allocation, and deallocation aforementioned;

The model includes two separating conjunctions:

• parallel composition is modelled by separation in space;

• sequential composition is modelled by separation in time;

and spatial composition of alphabets ensures that only one process can own a channel end at
any time.

Mobile Channels 69

An alphabet α is a finite set of channel ends c!, c?, where c is drawn from an infinite
collection of channels. An event set E is a finite set of primitive events drawn from c!m
and c?m, where the messages m themselves have a structure consisting of a value v and a
permission ρ [67, §4.2]:

m ::= vρ v ::= c | 3 | ... ρ ::= ε |! |? |!?

ε stands for the empty permission, for messages other than channels; !? means that both !

and ? permissions are sent alongside a channel. A projection function over a message m = vρ,
res(m), returns the set of channels corresponding to m; a projection function over an event
e, pre(e), returns the set of channels necessary for the event to occur, and is called the
pre-alphabet of the event. They are defined below [67, §4.2].

res(m) =



{} if m = vε

{v!} if m = v!

{v?} if m = v?

{v!, v?} if m = v!?

pre(e) =

{c!} ∪ res(m) if e = c!m

{c?} if e = c?m

The traces model allows recording events just like in CSP. Additionally, it also records
the value of the alphabet before and after every event in a trace. Said differently, the
model allows recording alphabet changes. Hence, a trace is given by a sequence of the form
〈α1,E1, α2, ...,En , αn〉. Since not every such sequence is admissible, the following properties
characterise the set of legal traces.

Definition 3.2.6 (Concurrency, Ownership, and Synchronisation properties [67, §4.2, 4.3]).

Ccy ∀ e, e′ ∈ E • e 6= e′ ⇒ pre(e) ∩ pre(e′) = {}

Own ∀ e ∈ E • pre(e) ⊆ α

Sync {c!, c?} ⊆ α⇒ ∀m • c!m ∈ E ⇔ c?m ∈ E

Own means that an event set e ∈ E may be recorded only if the corresponding pre-
alphabet is already owned i.e. pre(e) ⊆ α. This means that if a channel is not in the current
alphabet none of its related events may appear in the trace. Ccy states that two sets of
events may interleave if they have disjoint pre-alphabets. Sync states that synchronisation
occurs when both ends of a channel are in the alphabet at the same time.

The syntax and semantics of processes defined in [67, §5] are summarised below:

70 Literature Review

Definition 3.2.7 (Traces of a process).

traces(P ‖ Q) = traces(P) ∗ traces(Q)

traces(P # Q) = traces(P) # traces(Q)

traces(P + Q) = traces(P) ∨ traces(Q)

traces(SKIP) = skip

traces(STOP) = skip ∧ ¬ notcompleted

traces(new x.P) = ∃ x • expand({}[]{x!, x?}X) # traces(P)

traces(dispose x) = expand({x!, x?}[]{}X)

traces(x!zρ) =

 traces(STOP)C x? ∈ res(zρ)B

expand(pre(x!zρ)[x!zρ]({x!} \ res(zρ))X)


traces(x?(yρ).P) =

 ∃ y • x? 6∈ res(yρ) ∧

expand({x?}[x?(yρ)]({x?}] res(yρ))X) # traces(P)



An informal presentation of the notation is given hereafter.

∗ : T × T → T is defined for traces of equal length only, and such that

〈α1,E1, ...,En , αn〉 ∗ 〈β1,F1, ...,Fn , βn〉 = 〈α1] β1,E1] F1, ...,En] Fn , αn] βn〉

: T × T → T is the traditional sequential composition of traces.

Termination is modelled by the event X; complete denotes any terminated trace; and skip
denotes any trace of either of the forms

〈α1, {}, ..., {}, αn〉 〈α1, {}, ..., {}, αn ,X〉

expand is the function that inserts empty events (or sets of events) into a given trace. Its
introduction is made necessary because of the definition of the function ∗. Intuitively, it
serves for defining all possible interleaving (and synchronisation) under parallel composition.
Technically, the definition of expand is not as trivial as it may seem to be, and we refer the
reader to [67] for more detail.

Allocation. new x.P is the process that increases the after-alphabet with the pre-alphabet
of x and then behaves like P. If ch is the channel contained in x, then the alphabet (at the
end of the operation viz. the after-alphabet) is incremented with the two ends of ch, i.e. the
set {ch?, ch!}. Existential quantification ensures that the value of x, i.e. ch, is unique up to

Mobile Channels 71

the point of new x. No event occurrence is associated with this process.

Deallocation. dispose x is the process that decreases the current alphabet with the value
of x. Like allocation, there is no corresponding event occurrence.

Channel-passing: move out. Output of an existing channel y through a different channel
x increases the trace with the event x!yρ (ρ 6= ε), and decreases from the after-alphabet the
pre-alphabet of y. In this model, it is possible for a channel to send itself as a message.
However, communications of the form x!(x?) are bad since there can be no receiver: this is
deadlock, or the process STOP. Communications of the form x!(x!) are valid.

Channel-passing: move in. Input of a new channel z through a different channel x
increases the trace with the event x?zρ (ρ 6= ε), and increases the after-alphabet with the
pre-alphabet of z.

Discussion. The model just described, in the words of its authors, should be considered to
be preliminary in nature. However, this should not prevent us from making a few remarks.
There are a few design decisions worth pointing out, as they contribute to making the model
intuitively correct. These design decisions appear most clearly in light of the work of Roscoe
[108], presented in §3.2.6.

Two decisions appear as more fundamental: (i) processes must have disjoint alphabets at
all times; and (ii) the alphabet of a process is finite. Let us consider the allocation operation.
Let P = new x.P1. In a sequential composition Q # P, existential quantification is enough to
guarantee the uniqueness of x, since αQ is finite. Then, any x ∈ N \αQ is valid. In a parallel
composition P ‖ Q, things are slightly more complicated.

First, assume that there is no allocation in Q. Because N is infinite, there is a possibility
that x ∈ N and also x ∈ αQ (before the allocation in P). This issue is resolved by the
disjointness condition over processes; the consequence is that all conflicting traces will be
eliminated, leaving only expected traces.

Now, suppose that Q = new y.Q1. In Q, any y ∈ N \ αQ is valid. In P ‖ Q, things are
slightly more complicated, but, the infinity of N actually guarantees that all clashes can be
eliminated. To see this, externalise (to the leftmost) the existential quantification as follows.
Suppose that P and Q respectively have a number of new x.skip in their definitions — this
generalises the case discussed above. Then, let −→x = (x1, ..., xn) denote the vector of new
variables in P, and let −→y = (y1, ..., yn) denote the same but for Q. The indices denote the
sequential order of evaluation of each allocation operation. Let α0 denote the value of the
alphabet before the first allocation. Then, it is possible to determine statically to which set
xi will belong upon existential quantification:

x1 ∈ (N − α0P), ..., xn ∈ (N − α0P − {xi | i ≤ n})

72 Literature Review

A similar development may be obtained for Q by replacing x and α0P above by y and α0Q,
respectively. Because alphabets are finite, the value of N will never be exhausted in each
process individually. When composed in parallel, we can have a leftmost existential compo-
sition by considering, this time, all the possible interleaving of xi and yj such that the above
development is correct. Again, because traces are finite whilst channel names are infinite, it
is impossible of running out of new names.

A question concerning the set of names N may be raised, however. Where do these names
come from? How do they relate to a given process? What do names in N characterise? Since
the language is CSP-like, what would the equivalent of N be in the context of CSP? (cf.
Chapter 4, Discussion)

Let (αbef ,P, αaft) denote the process P with before-alphabet αbef , and after-alphabet αbef .
Consider the process (P + Q) # R, with αaftP 6= αaftQ. Then, R must have two branches:
(αbef R = αaftP,R, αaft) and (αbef R = αaftQ,R, αaft). The question is thus if the latter two
processes are equivalent. Clearly, they differ only in their initial interface; but after that has
been fixed, we expect them both to behave like R.

Let R = new x.R1. If P # R, then according to our earlier analysis, x ∈ N − αaftP. If
Q #R, then x ∈ N −αaftQ. This means that the behaviour of a process depends entirely on its
alphabet. However, there are some processes for which such is not the case. Take a Mobile
Communications network, or the Internet; they grow and shrink, and yet they still behave in
a certain way. For such systems, it would certainly help being able to define a process that
takes whatever initial alphabet and yet behaves according to a certain pattern. In this sense
hence, the above model is quite deterministic. In fact, the definition of new x.P actually re-
stricts the alphabet of P, so that the alphabet calculus may not be as obvious as it seems to be.

As a final remark, whilst the language above is illustrative, its extension with the hiding
operator may raise a few issues. For example, it would be difficult of hiding allocated channels,
their value being existentially quantified means that they cannot be known in advance, by
no means. A solution would be to hide any channel not in the existing alphabet, but this is
too radical a solution. Another solution could be of renaming any new name by some name
that is guaranteed to be new. For that, it is necessary to define a set X of channels that is
obviously disjoint from N . But then, we would be facing further complications.
On the other hand, let us input a new channel y through some distinct channel ch, then hide
ch but not y, i.e.

(ch?(y).skip) \ {ch} = (new y.skip)

That is, allocation may be seen as increasing the alphabet silently or rather internally since
its effect on the alphabet is visible externally. As a consequence, the choice of increasing
an alphabet with both ends of an allocated channel appears more clearly as a direct conse-
quence of the disjointness condition over process alphabets. Indeed, if one end of the channel

Mobile Channels 73

only is generated internally, there is no reason why that end would not already be outside.
This allocation model is similar to the one used in [58] for extending FOCUS with mobility.
[108] shows how different semantics may be constructed using slightly different assumptions.
The traces model is similar to the one in [132], which does not have allocation/deallocation
operations.

3.2.5 CSP-like localised traces model for pi-calculus processes

Peschanski simple locations [96]. In this paper, Peschanski proposes two approaches to
giving denotational semantics to the pi-calculus, with the aim of providing a traces model
like that of CSP.

The first approach consists of building a traces model based on the LTS (Linear Transi-
tion System) of pi-calculus processes [86]. In order to preserve branching information into
the trace, the pi-calculus model of actions is extended so that each action now also possesses
a location that uniquely determines their position on the tree described by the LTS. Syn-
tactically, an action act becomes a localised action (loc, act) (act :: loc in [96]). The traces
of a pi-calculus process are then calculated by induction on the transitions of the process.
In particular, the traces model is built for early semantics; traces equivalence is shown to
coincide with early bisimulation equivalence. The traces model fails, however, to provide
late bisimulation. Also, traces equivalence holds only between processes that share the same
locations.

In the second approach, the traces model is built upon process terms directly, as in CSP.
The semantics of restriction ν(z)P are based on renaming: z is replaced by a new name
νz assumed to be globally unique. Hence, names are guaranteed to be fresh. Again, traces
equivalence is restricted to processes that share the same set of locations.

Bialkiewicz and Peschanski [18]. The approach here is similar to that of the second
model of Peschanski [96] in which the traces model is built directly upon process terms.
A major change is the model for locations. In the previous model, the branching structure
of processes could not be inferred from the traces. In this model, branching is explicit since
the location of an action is now relative to the process to which it belongs. Hence, instead of
inherently localised actions (loc, act) as before, there is a locator function that assigns a loca-
tion to an action based on the structure of processes. When the + operator is encountered,
it creates a node with location nl; each branch is then adjoined a location (nl, bli) where i
denotes the ith branch of the choice.

The semantics of a process is given by its localised traces. Such a trace has two compo-
nents: a traditional trace function, which builds sequences of actions out of process terms;
and a locator function, which assigns locations to each action in a trace.
Each location is unique, and may be constructed from the set

{ε, (s,node, branch), (w,node, branch)}

74 Literature Review

ε is called the empty locator ; this is the location of every action, by default. Also, ε is always
the location of the first action in a trace, or of the empty trace. node ∈ NLocs is the location
of the current node. There are only two kinds of nodes: non-branching nodes, whose location
is node = ε; and branching nodes, each identified by a unique index in NLocs ⊆ N \ {0}.
branch ∈ I ⊂ N \ {0} indicates the current branch of the action, relative to the last node:
branch = 1 if there is no branch, otherwise branch ⊆ {1, 2, ..} (branch 6= {1}).

The locator function is based on a relocation mechanism: the first action in the trace,
whose default location is ε, is not relocalised; the next action, if there is no branch, is
relocalised from ε to (nl, bl) = (ε, 1), or equivalently, to ε.1. Hence, the kth successive action
in a single line will be assigned location ε.1. .1 (with k 1s). If the next action is in a branch, say
the nth one, it will be relocalised from ε to say (nl, bl) = (−1,n), or either (nl, bl) = (−4,n),
as long as nl 6= ε is unique. The minus (−) sign is simply to avoid confusing nodes with
branches. Then, successive nodes in that branch will have locations (ε..(−1,n), bl).

Finally, the silent τ action is distinguished from other actions α 6= τ by appending to
locations a sign from the set {w, s}. w stands for a weak locator and designates τ actions,
whereas s stands for a strong locator and designates non-τ actions.

Definition 3.2.8 (Locator and traces functions). Let sw ∈ {w, s} stand for either a strong
or a weak locator, and let λ ∈ {τ, α} stand for either a τ action or any action α 6= τ .

loc(0) = ε tr(0) = 〈〉

loc(λ .0) = (sw, ε) tr(λ .0) = 〈λ〉

loc((λ .0)[ε← (−nl, bl)]) = (sw,−nl, bl) tr((λ .0)[ε← (−nl, bl)]) = tr(λ .0)

loc(λ .P) = loc(λ .0).loc(P[ε← ε.1]) tr(λ .P) = 〈λ〉a tr(P)

loc(λ .P +nl β.Q) =

 loc((λ .0)[ε← (−nl, 1)].P)+

loc((β.0)[ε← (−nl, 2)].Q)

 tr(λ .P + β.Q) = tr(λ .P) ∪ tr(β.Q)

loc(λ .P ‖ β.Q) = loc(λ .P) ‖ loc(β.Q) tr(λ .P ‖ β.Q) = tr(λ .P) ‖ tr(β.Q)

The locator function loc() may be understood as building sequences of locations, just like
the traces function builds sequences of actions. Both functions always yield sequences of the
same length when applied to the same process. The localised trace of a process is simply the
trace containing pairs (loc(α.0), α)i formed of the ith elements of each loc() and tr().

Definition 3.2.9 (Localised traces [18, Def. 22]). Ltr(P) ∈ loc(P)× tr(P)

Let absloc(αn) denote the absolute location of an observation αn , within a sequence
〈(loc(α1.0), α), ..., (loc(αn .0), α), ...〉. Then [18, Def. 5]:

absloc(αn) = loc(α1.0). . . .loc(αn .0)

Mobile Channels 75

The input, output and restriction operations are the most important wrt. channel mobility.
Their semantics are given below and complete Def. 3.2.8.

Output prefix. The output c!x of a name x has the traditional effect, when restriction is
not involved. Only names are sent, and not their location at the time of the sending.

loc(c!x.P) = loc(c!x).loc(P) ∧ tr(c!x.P) = 〈c.x〉a tr(P)

or equivalently [18, Def. 22]

Ltr(c!x.P) = 〈(loc(c!x), c.x)〉a Ltr(P)

Input prefix. The input c?y of a name y has a renaming effect: the received name y is
mapped onto a generated name ρabsloc(c.y). The generated name is unique by construction
since locations are unique. Again, only names are received, without their previous location.

loc(c?y.P) = loc(c?y).loc(P) ∧ tr(c?y.P) = 〈c.y〉a tr(P[ρabsloc(c.y)/y])

or equivalently [18, Def. 22]

Ltr(c?y.P) = 〈(loc(c?y), c.y)〉a Ltr(P[ρabsloc(c.y)/y])

Restriction. The effect of restriction ν(z)P is, basically, the replacement of the name z in
the trace by a unique, generated name νabsloc(z), within the scope defined by ν(z). Notice
the difference with the earlier model (Peschanski [96]): here, the uniqueness of names is not
assumed, but is guaranteed by construction from the uniqueness of locations absloc(z). If
there is no scope extrusion, the scope of ν(z)P is the whole of P; otherwise, its scope reaches
as far as the extrusion of z viz. c!z.0. Restriction is hence defined recursively on process
terms as follows:

ν(z)(α.P) = α.ν(z)P

ν(z)(c?z.P) = c?ρabsloc(z).ν(z)P

ν(z)(c!z.P) = c!νabsloc(z).P

Interestingly, name clashes are resolved easily thanks to the fact that any received name z is
replaced by a unique name ρl . The semantics of restriction are given by the left hand side of
the previous equations based on the earlier semantics of loc() and tr() i.e.

loc(ν(z)(λ .P)) = loc(λ .0).loc(ν(z)P) ∧ tr(ν(z)(λ .P)) = tr(λ .0)a tr(ν(z)P)

or equivalently [18, Def. 22]

Ltr(ν(z)(λ .P)) = Ltr(λ .0).Ltr(ν(z)P)

76 Literature Review

where λ ∈ {α, c?z, c!z}.

Traces are equivalent up to the renaming of locations i.e. two processes are shown to be
equivalent if there is a valid substitution of the locations of the one that yields the other: this
is called split-equivalence. The trivial form of split-equivalence is when two processes have
the same locations, and is called localised equivalence instead. It is not entirely satisfactory
however, e.g. it does not preserve the property P + P = P due to locations.

Definition 3.2.10 (Localised- and split-equivalence). Two processes P and Q are said to be
equivalent, written P =L Q if

tr(P) = tr(Q) ∧ loc(P) = loc(Q)

or equivalently [18, §4]

Ltr(P) = Ltr(Q)

They are said to be split-equivalent, written P =u,v Q if

tr(P) = tr(Q) ∧ ∃ u, v | two functions • u ◦ loc(P) = v ◦ loc(Q)

or equivalently [18, Def. 24]

u ◦ Ltr(P) = v ◦ Ltr(Q)

Proving split-equivalence from the above definition is not trivial and fails in most cases.
Hence, a normalisation proof technique has been developed to make such proofs easier. The
normalisation technique is based on ideas of rewrite systems, and is quite complex ([18]).

Discussion. In the presentation above we have insisted on the separation between the
locator and the traces functions in order to emphasize the former. Indeed, the locator function
is rather sophisticated, but implements one single specification, namely, that names be fresh.
It is as if the assumption that locations are unique in the simple location model ([96]) had
been implemented into the locator function.

The relocation mechanism bears some resemblance with the relabelling mechanism of
Roscoe [108], especially the standardised fresh names operator (SFN).
The localised traces model is significantly complex compared with the traditional CSP traces
model, even when there is no channel mobility.

The traces model is obviously targeted to capture pi-calculus processes, hence, the lan-
guage provided is restrictive. It is not evident how one could extend it with more CSP-like
operators, nor how to relate the language to CSP itself.

It is claimed that a difference with CSP, and likeness with the pi-calculus, of the above
model, is that channels are concrete (or first class citizens, from a language point of view).

Mobile Channels 77

This is similar to the model of Hoare & O’Hearn presented in the previous section. Un-
fortunately, there is no discussion (in either models) of the implications of the fact on the
semantics provided.

3.2.6 CSP-like operational semantics

CSP-like operators

In [107] Roscoe proposes a definition of what it means for an operator, with given operational
semantics, to be CSP-like viz. the operator may be defined by means of CSP operational
semantics. The definition of CSP-like operators relies on a mechanism for transforming
SOS (Structured Operational Semantics [99]) rules into linear rules, which have a particular
format. The rationale for the transformation is that operators may be seen as defining, given
a list of on and another list of off arguments, what arguments will be on and off next,
respectively. Following such a transformation, two properties characterise CSP-like operators
[107, §3]:

• There is one rule for each on argument representing the promotion of a τ without
otherwise influencing the state. No other rule has a τ as a contributing action. This
restriction corresponds to the idea that operators are not aware of the τ actions of their
operands, and cannot take any positive action on account of these.

• Each on argument can only appear at most once amongst the arguments of op(..). This
represents the idea that a process which is up and running may not be cloned and
then possibly compared against itself. This restriction is necessary in order to model
processes by descriptions of individual linear runs — into which category fall all the
types of behaviour used in the CSP modelling approach.

CCS processes are shown to be CSP-like. Some preliminary results about the pi-calculus are
presented, but a fuller treatment is postponed to another paper [108]. Before presenting the
latter, we first make a few comments on the above work.

Discussion. This work suggests a way of building denotational semantics for channel mo-
bility in CSP:

i) given some operational semantics for channel mobility, make a translation into CSP
operational semantics; and

ii) if possible, derive the denotational semantics from the CSP operational semantics.

A major problem with this work is the absence of a definition of operational semantics (for
processes) that is independent from CSP. Another problem is that the linearisation adds
much complexity without making reasoning any easier. We may contrast this work with the
work in [120].

78 Literature Review

In [120], de Simone builds an algebraic framework that allows him to compare and combine
two process calculi, MEIJE and CCS. It can be seen from the definition of a (conditional
behaviour) rule below that the SOS’ formulation gives at a glance the same information as
Roscoe’s linearisation. Also, the constraints on on and off arguments are exactly the same
as stated above such that they may not be considered to be more characteristic of CSP than
of other process calculi. Instead, based on de Simone’s framework, CSP would have been
formally defined as a process calculus according to the following definition:

Definition 3.2.11 (MEIJE-CCS Process calculus [120, Def. 1.8]). A Process Calculus is a
triple
(F ,M ,Spec), where F is an operator family, M is an action set (here we [de Simone] shall
content ourselves with the simple action/signal monoid over an alphabet; we shall not consider
typing operators with different action sets), and Spec is a function assigning a specification
to an operator. We shall deal next with what our universe of specifications is.

Definition 3.2.12 (MEIJE-CCS Specification [120, Def. 1.9]). The general form of specifi-
cation we will allow for each operator F will consist in a number of conditional behaviour
rules. A conditional behaviour rule rg is an object of the following shape:

∀ j ∈ S • pij
uj−→ p′ij ∧ Pr(u1, ..., ul , v)

F(p1, ..., pn)
v−→ T

where S = {i1, ..., il} ⊂ {1, ..., ar(F)}, Pr is an (l + 1)-ary relation on the action monoid M ,
that is, a subset of M n+1, and T is an architectural expression of the process calculus. Indeed,
due to the calculus, T may only contain linearly those of the pis that were not required acting
in the condition, and the p′is that were due to act in that same condition. Thus, it stays an
architectural expression.

According to Roscoe’s results (viz. CCS is CSP-like although the opposite does not hold)
and the previous definitions, CCS may be taken as subcalculus of CSP. More interesting
would be the characterisation of the pi-calculus. Although MEIJE-CCS does not handle
channels specifically, the set A of actions of a process may still be specified although it does
not play a fundamental role in the semantics. However, it would seem that a characterisation
of the pi-calculus would require making A more explicit and also variable (cf. §3.4 below for
more discussion).

The pi-calculus is CSP-like

In [108], Roscoe defines what it means for pi-calculus operators to be CSP-like. This is
done first by defining a new operator called generalised relabelling, which is then used as
the basis for giving semantics to the pi-calculus restriction operator, and hence, to scope
extrusion. Generalised relabelling has two features related to how it relabels existing names:
the replacement mapping may

• vary as the process progresses;

Mobile Channels 79

• forbid certain visible actions, which will then map to an empty choice of (replacement)
options.

Definition 3.2.13 (Generalised relabelling [108, §3]). Let G be a generalised relabelling
relation on A where (a, t, x) ∈ G says that an event a that occurs after some trace t (i.e.
t a 〈a〉), may be replaced by some (possibly distinct) event x. Let P〈〈G〉〉 denote the process
that can perform an x whenever P performs a. Then P〈〈G〉〉 is defined by the following rules:

P τ−→ P ′

P〈〈G〉〉 τ−→ P ′〈〈G〉〉
P a−→ P ′ (a, 〈〉, x) ∈ G
P〈〈G〉〉 x−→ P ′〈〈G/〈a〉〉〉

where G/t = {(a, s, x) | (s, t a s, x) ∈ G}.
An equivalent formulation may be obtained by running P in parallel with a process that chooses
the renaming.
Let E = {(a, (a, x)) | a ∈ A ∧ x ∈ A ∪ {τ}} be the function that renames an event a to some
event pair (a, x). The reverse renaming is denoted by C = {((a, x), a) | a ∈ A ∧ x ∈ A∪{τ}}.
Let Reg(G) be the process that selects pairs (a, x) for a given generalised relabelling relation
G, defined by

Reg(G) =̂ 2{(a, x)→ Reg(G/〈a〉) | (a, 〈〉, x) ∈ G}

Then

P〈〈G〉〉 =̂ (P[[E]] ‖ Reg(G)[[C]]) \ {τ}

where P[[E]] is the renaming operator, which yields a process that behaves like P but with
events in P renamed as specified in the relation E.

Note: The relation G defined above is considered to be finite.

In [108], Roscoe first establishes the relation between CCS and CSP, given that many
operators of CCS are shared with the pi-calculus. The pi-calculus is then considered, with
an emphasis on restriction and scope extrusion. We give a summary hereafter.

The effect of restriction ν(a)P is to bind the name a to some name x that may be guar-
anteed of being fresh. Said differently ν(a) is a name generator; however, freshness guarantee
is the root of all the problems. A name a is fresh if the process did not use it prior to its
first appearance in ν(a). This is equivalent to stating that the process did not know of the
name before said first appearance. Different models may be adopted for the formalisation of
the concept of process’ knowledge of a name.

Let Names denote the universal set of names, representing the actions that may be used
by any process. Then, according to how the set Names is distributed between a process and

80 Literature Review

its environment, two models are possible:

• the unified approach. Here, the set Names is shared by both the process and its envi-
ronment. It may be further partitioned into two disjoint subsets: K the set of names
currently known both of the process and its environment; and N the set of eventually
fresh names.

– There is an assumption that names in N are unique to the process, but nothing
prevents the contrary from occurring.

– The two sets must always be disjoint, i.e. K ∩N = {}.

– It is expected that when N decreases thanks to scope extrusion, K increases; ad-
ditionally, K increases when the process receives a name not in K ∪ N . Such a
property is enforced by specifying the successive values of both K and N recur-
sively, in the process expression. Hence, at any time, a process may only engage
in the specified values of both K and N .

• the bipartite approach. Here, the set Names is partitioned between the process and its
environment.

For conciseness we shall present the unified approach only. In the unified approach many
relabelling relations may be defined, depending on how one wants to implement freshness.
(This is equally true in the bipartite approach).

Notation: unless stated otherwise the set Names is assumed to be countably infinite with
a fixed enumeration {n0,n1, ...}. If L is a nonempty subset of names then µ(L) is the name
of least index in L. L = Names − L denotes the complement of L in Names [108].

Remark 1: the semantics of G earlier makes it look like G were defined from the outset.
However, G is in fact defined by recursion over process expressions. The renaming relations
defined subsequently show this clearly.

Remark 2 (the naming model): In CSP two models of names may be used. In the first,
names represent the objects (named) themselves, i.e. if x is the name of a channel, it also rep-
resents that channel. In the second model, names are variables, which map to other objects
themselves represented by distinct names, i.e. the name x used earlier may map to differ-
ent names, for example n1 and n2. The second model may be referred to as the (naming)
environment model: there is an evaluation function which maps every name x to its value,
say n at the time of the observation. This second naming model is the one used here. The
naming environment must not be confused with the environment of a process (or process
environment). The context may clarify which one is used, though we shall use “(naming)
environment” when we do not mean the process environment, and environment otherwise.

Mobile Channels 81

A first, naive approach consists of having a process and the environment deal with fresh
names individually. This yields a relabelling relation, denoted by OF(K ,N ,P) (read Output
First), and defined as follows [108, §5.1]:

Reg(OF(N ,K , ξ)) =̂ 2



(
{(a.b, ξ(a).ξ(b))→ Reg(OF(K ,N , ξ)) |

a, b ∈ K ∧ a ∈ {a?, a!}}

)
∪

(
{(a!b, ξ(a)!ξ(b))→ Reg(OF(K ∪ {b},N \ {b}, ξ)) |

a ∈ K , b ∈ N}

)
∪

(
{(a?b, ξ(a)?ξ(b))→ Reg(OF(K ∪ {b},N , ξ) |

a ∈ K , b 6∈K ∪N}

)
∪

(
{(a.b, ξ(a).ξ(b))→ Reg(OF(K ∪ {n},N , ξ ◦ xp(b,n)) |

a ∈ K , b ∈ N ,n = µ(K ∪N)}

)


where ξ(L) represents the (naming) environment’s view of a set of names L. In other words
ξ is the name evaluation function mentioned above (cf. Remark 2).
Pairs (a.b, ξ(a).ξ(b)) stand for pairs (a, x) used in the definition of generalised relabelling G
earlier. ξ(a) specifies what the correct mapping should be at a given time.

The first clause states that, in a communication a.b, when both names a, b are known, no
renaming occurs; the next two clauses state what happens when b is fresh (b ∈ N) viz. K
and N are updated accordingly; the last clause states what happens in case of name collision,
viz. the fresh name of b, say n, is added into K (sort of ‘un’-freshed), and b renamed to a
new fresh name. ξ ◦ xp(b,n) yields the next mapping upon name collision, i.e. from b 7→ n,
n ∈ N (before collision) to b 7→ µ(K ∪N) upon collision.

In a second approach, instead of having the process and the environment deal individually
with fresh names, a third process handles fresh names for both. The corresponding relabelling
relation, denoted by NFN (N ,Q) (read Nondeterministic Fresh Names) is defined as follows
[108, §5.2]:

NFN (N ,Q) =̂u{Q[[ξ ∪ idN]] | ξ : N → N , a bijection}

The set K has been dropped out because there is a single set of fresh names. Hence no
matter what either the process or its environment knows, restriction (ν(z)) will generate a
fresh name. idN is a collection of mappings for unknown names (viz. not specified by the
mapping ξ). Q[[ξ ∪ idN]] behaves like Q, with potential renaming defined by idN . This
second approach may hence be considered a little more abstract than the previous one.

In yet a third approach, unlike previously, names may not be chosen randomly. Indeed,
since names (in the set Names) are indexed with a subset of the natural numbers, it is enough
to generate a new number, always the smallest, every time a fresh name is requested. The
corresponding generalised relabelling relation, denoted by SFN (K ,N ,P) (read Standardised

82 Literature Review

Fresh Names) is defined as follows [108, §5.3]:

Reg(SFN (N ,K , ξ)) =̂ 2



(
{(a.b, ξ(a).ξ(b))→ Reg(SFN (K ,N , ξ)) |

a, b ∈ K ∧ a ∈ {a?, a!}}

)
∪


{(a!b, ξ(a)!ξ(b))→ Reg(SFN


K ∪ {µ(N)},

N \ {µ(N)},

ξ + [b 7→ µ(N)]

) |

a ∈ K , b ∈ ξ(K)}

 ∪
 {(a?b, ξ(a)?ξ(b))→ Reg(SFN

(
K ∪ {b},N ,

ξ + [b 7→ µ(K ∪N)]

)
) |

a ∈ K , b 6∈K}




The clauses above are similar to the ones for OF() relabelling, except for the clause about
name collision. Indeed, name collision is resolved by the way fresh names are generated: the
next fresh name to be extruded is always the smallest member of N , namely µ(N). And
when a new name is input by the process, that name is mapped unto the smallest member
of the complement of K ∪N , namely µ(K ∪N).

In what precedes, the treatment of names has been realised without any distinction be-
tween what may be termed pure names (of actions excluding communications), and commu-
nication events’ names. Without such a distinction, the models presented above are simply
too general. When channels are considered (so called channel-based CSP models), the pre-
vious analysis may be restricted to communication events only. We shall not present the
corresponding semantics here however, as it does not add to the understanding of the model.

Remarks. We have taken the liberty of changing certain definitions whenever we found
what seemed like typing errors in the original paper. For example, in the definition of
OF(K ,N , ξ), the second clause has (upon output a!b of a fresh name b) “(K∪{a},N \{a}, ξ)”
in the original paper, instead of “(K ∪ {b},N \ {b}, ξ)” above.

Discussion. The work above presents preliminary results only, and which are quite com-
plex. Most of the complexity seems to come from the fact that the names considered are too
general, first when they include every event, and also when they are restricted to communi-
cation events. The motivations for such a modelling choice are missing. Notwithstanding, we
may argue that channel mobility may not be modelled through event mobility. In effect, this is
quite counter-intuitive from a modelling point of view: events are meant to characterise what
can be recorded into the trace (of the observation of a process’s operation over a channel);
the movement of such a record, if such is conceivable, may not possibly infer that of the
corresponding channel. In other words, there is a difference of nature between channels and
events. Were we to use de Simone’s algebraic framework [120] as our basis for discussion,
clearly, the algebraic characterisation of the set of channels would be quite distinct from the

Mobile Channels 83

actions monoid M .
In [107] presented earlier, we pointed out as a limitation the absence of a definition of

a process calculus (with operational semantics) that is independent from CSP. There is a
striking difference between the approaches in [107] and [108]. In the latter, contrary to ex-
pectations, no (functional) relation is established between the (operational semantics of the)
pi-calculus, and the operational semantics of CSP. Rather, pi-calculus processes are defined
directly in terms of CSP, or said differently, a CSP model (operational semantics) for the
pi-calculus is proposed but not linked to the pi-calculus itself. Were we in an algebraic
framework like that of de Simone mentioned above, and having defined both the pi-calculus
and CSP operational semantics, it would be as if some pi-calculus operators had been defined
in CSP, but no relation was established between the original pi-calculus operators and their
supposedly CSP equivalent.

As a final remark, we may quote the following

While this may or may not be apparent to the reader, the author [Roscoe] discovered on
numerous occasions that the semantic decisions made in the design of pi-calculus were
absolutely crucial to the creation of a reasonably elegant semantics for it in CSP. A
prime example of this is the rule that no fresh name can be used as a channel until it has
been passed along another channel is necessary for ensuring that the first time a name
appears in a idN behaviour in a channel-based model is as the “data” field of an actually
communicated event. This is key to a number of things working properly in the CSP
semantics. ([108, Conclusion])

Unfortunately, since the characterisation of channels is not discussed in this work a question
has been left unanswered: what entitles a name to be considered a channel? Clearly, if it was
sufficient for names to be passed around as messages, then such may have already been done
in CSP traditional semantics; hence this is not a sufficient condition, though a necessary one.
On the other hand, if a process may ‘recognise’ a name as characterising a channel, this would
mean that such a channel was already in the knowledge of the process, for, it is difficult to
conceive otherwise how the recognition would be possible.

In relation to the above question, we see that Grosu and Stolen [58] did avoid the problem
by a subtlety, namely by assuming that all names are known in advance, but only some may
be used at any given time. Yet, this does not dissolve the difficulty altogether for, if all the
names are known in advance, then, we cannot possibly speak of an effective channel mobility.
We alluded to a similar problem in the work of Hoare and O’Hearn [67], when we asked
questions about the provenance of the names in the set of names N . This problem is in fact
common to all the works in the literature, and the six or more models defined in this work
[108] do not provide a satisfactory answer.

Closed-world mobile CSP

In ([109], §20.3), Roscoe discusses a way of adding mobility into CSP (the denotational
semantics) directly. The semantics are built for a restricted type of mobility where the set of

84 Literature Review

channels to be moved is known in advance. An example of such a system which we provide
is the Buffer with mobile channels (cf. Chap. 4, §4.5.5).

In this model, Roscoe keeps the original representation for channels found in standard
CSP, hence, channels are not represented as concrete entities (or first class citizens). The
model considers event mobility in general, with the possibility of a restriction to channel
names. Releasing an event reduces the alphabet of the sender whilst increasing that of the
receiver, and vice versa.

Discussion. The basis for a model of channel mobility in CSP are outlined, but no model is
itself defined. We have found some aspects of the work confusing, because some terminology
is left undefined. For example, the statement the set of channels to be moved is known in
advance. By whom?

• Not by every process, since an example is then given of a parallel composition in which
a process receives a channel whose name it did not know before.

• The correct answer would be the designer, because he can then use that known channel
name for specifying the correct interface for the next process (in an action prefix, and
in a sequential composition), in the same way as Vajar et al. [132], for example.

Unfortunately, even this definition of closed-world semantics already appears to be problem-
atic, from a compositional point of view. Indeed, the opposite concept of open-world seman-
tics suggests that unspecified names may be received. However, the closed-world semantics
already used processes P and Q, which may themselves be considered as open, although their
parallel composition is closed. As a consequence, it does not seem that a definition of channel
mobility should rely on the designer’s (pre)knowledge of movable or mobile channels.

3.3 Other Works

Fully Abstract semantics of the pi-calculus. In [48], [122], and [62], the authors ex-
plore the issue of giving denotational semantics for the pi-calculus on the basis of category
theory. The task is not trivial as it requires defining a category for pi-calculus processes first,
and then finding suitable morphisms for giving their semantics. Many approaches are possi-
ble, and so are the results obtained. In [48], only strong bisimulation and congruence were
defined; in [122], both early and late equivalence were defined; and in [62], testing equivalence
was defined. Category theory may itself serve as a foundation for Computer Science. In that
sense, these works have a different theoretical basis from the ones presented earlier.

In [101], Popescu proposes a coalgebraic semantics for the pi-calculus, with the aim of
formalising weak early bisimilarity of pi-calculus processes. The approach requires giving
operational semantics to pi-calculus processes within the coalgebraic framework first. Then
a traces model is built on top of such processes and shown to be fully abstract with regard to
the operational semantics. The traces model defines a denotational semantics whose domain

Other Works 85

is a coalgebra instead of a more standard mathematical domain, e.g. a set of actions (as in
CSP). An interesting concept of channel configuration plays the role of the interface between
two processes (or between a process and its environment), and may change with the mobility
of channels. There is a distinction between private links, unknown of the environment, and
public links, known of the environment. Scope extrusion makes links that were previously
private become public.

As a general remark:

The above mentioned research attempts to find mathematical models suited to describe
the behaviour of already completed systems. A formalism well-suited for describing an
already completed system is not necessarily ideal as a specification language to be used
in a process of step-wise system development, or as a notation for formal reasoning and
verification. ([123, Introduction])

Petri Nets + channel mobility. There exists a body of work for extending Petri nets
with channel mobility. The survey in [117] may be used as a starting point. By their nature,
such works are closer to operational than denotational semantics. [139] also provides a survey
containing such works. In particular, both [117] and [139] consider that no single framework
may be used to model all the aspects of dynamic reconfiguration. As a consequence, in [139],
three models are proposed, each one based on a different formalism (all providing operational
semantics).

Strong mobility. We could find a single work only on denotational semantics for strong
mobility, in [131]. The work aims at providing strong mobility in the context of Object Ori-
ented programming. The functional programming language Haskell is used as a basis for the
denotational semantics, an approach that is not standard, although that is meant as a first
step before using standard mathematical domains (not defined in [131]).

The relation between weak mobility and strong mobility is explored in [15]. It is ar-
gued that any language suitable for expressing weak mobility may be used to express strong
mobility also. Such a view is reasonable if one thinks in terms of implementation since, in
general, interrupts are implemented (i.e. provided in programming languages, as a feature
thereof) without regard for mobility, and also if we conceive that weak mobility may arise
even upon interrupt, as is the case in the literature. For such a reason, in this thesis, we use
the term weak mobility only when no interrupt occurs, and strong mobility otherwise. This
does not prevent one from further classifying strong mobility according to the precision of
the interrupt state, however.

86 Literature Review

3.4 Final considerations

A reading of the literature has not left us oblivious. The many discussions introduced above
have hinted towards our appreciation of each work individually. Here, we intend to make
general remarks concerning our intuitions about an adequate model for mobility, hinting as
necessary towards possible improvements of existing work, or how some work have benefited
us.

Let us assume a universal set of channel names shared by both a process and its environ-
ment. We may at first exclude the notion of the knowledge (of a channel) in favour of the
effect of such a knowledge on the behaviour of processes. This means that a process does not
need to care about what its environment knows, nor the environment care for what a process
knows. In particular, we see that the ‘construction’ of such a knowledge is empirical (cf.
[108]), implying that an update at a single node would of necessity trigger a similar update
at all nodes: a sort of knowledge propagation of the kind dealt with by routing protocols on
the Internet. In sum, any incorporation of such a knowledge may not be abstract enough.

The naming problem that gives rise to the pi-calculus restriction operator would also arise
in any CSP model. If hiding implies the privatisation of the hidden or silent names, then it is
possible of receiving channel names that are meant to be public, and yet equal to the existing
hidden ones. The problem becomes even more intricate if we allow a dynamic increase of
hidden names. Either way, there can be no satisfying definition of the restriction operator
that could rely on the set of hidden channels, precisely because hiding is independent of the
process’ intended behaviour : the process that hides (or expresses hiding), P \ X , is different
from the hidden process, P. We will return to this later on.

As an example of dynamic hiding, consider a mobile communication network. Certain
real-world events, e.g. for the Olympic games the number of users greatly increases thus
requiring a corresponding increase of the (core) network capacity (resources). If the way
for increasing the network’ capacity is modelled as a channel carrier (i.e. a channel that
communicates other channels as messages), say κch, and the increase of capacity as the effect
of receiving from the environment new communication channels (from κch), then we have a
case of a modification of the internal interface (of the core network) that is yet invisible to
the observer (viz. any user of the network).
On the other hand, it is not necessary that the (effect of a) change of the internal interface
be absolutely ‘invisible’. Indeed, as often happens, a lack of network resources has an effect
on the user of the network although he may not observe said resources at work. This means
that channel mobility may readily be used to model such a behaviour: a look at the interface
may tell not only that something is wrong, but also what, e.g. a channel is missing. That is,
channel mobility is adequate for modelling channel faults.

A possible way of solving the naming problem may be to regard channel mobility from
the point of view of the processes only. Hence, without regard for the environment, and
without regard for closed/open world issues, or notwithstanding, a process always knows if
it has received (resp. released) a new (resp. old) channel, or not. And whenever it performs

Final considerations 87

either action, it interacts with its environment, without regard for structure. Structuring
information may be added later, as we have suggested in the revision of Welch & Barnes [138]
semantics, into some channel naming procedure.
Therefore whether a channel may be used internally or externally is of no concern to the
process: it is enough that the process may use the channel for its communications. And this
is only right since hiding is independent from the process itself, thus reflecting the fact that
a process does not need to care about the structure or the architecture of its environment: If
a channel (mobile or not) may be used internally, then hide it, otherwise do not. All that we
need to ensure is that a process may not move in an existing (channel) name, and may not
move out a non-existing one.

Indeed, there is an underlying theory of observation in CSP, that fundamentally differs,
at least at first sight, from that of the pi-calculus. Let us elaborate on this. As Roscoe states
in [108], the pi-calculus is as much a calculus of names as it is a calculus of channel mobility.
In effect, the essential question posed by the pi-calculus is the following: when do two names,
identical syntactically, denote the same object viz. have the same semantics?, or equivalently
when do two names, identical syntactically, denote the same channel?

To illustrate this question, consider two programs P and Q written respectively by two
distinct programmers, and such that each has its own distinct resources (supposedly). The
programs are meant to be run in parallel. A third programmer that reads the two programs
and symbolically executes them in parallel may not be able to distinguish between two names
respectively used by each program. So, the third programmer needs to be told when the two
names are identical.

The pi-calculus solves the issue by defining the restriction operator. At a first glance,
it seems that the decision of using the restriction operator is imposed by the algebra (in
de Simone sense) used to construct the pi-calculus. However, we believe that the choice of
the operation for evaluating names (viz. name freshness) is guided by a choice of axioms for
defining channels, which is independent from the underlying algebraic framework itself.

In CSP, the axioms that define channels are different. Returning to our earlier remark,
we see that when defining some process P, we define its interface as well, as a way of saying
that P may use those channels for its communications. This means that P always knows
their names, at the very least. This further means that P does not need to care about scope
extrusion: P always extrudes its names. It is then the environment to decide accordingly if
the environment already knows a received name or not. In the other direction, if P already
knows a name, then P may simply signal to the environment that it already knows such a
name.

With regard to hiding, we see that P is not responsible for the hiding, i.e. it is not P
itself that decides what of its channels are hidden. Again, P does not need to care about it.
The process responsible for the hiding, P \ X , is the one responsible for what is external (or
internal). Hence, P \ X is responsible for preventing external communications through the
channels in X (viz. the ‘use’ of a channel); it has no effect on what channel may be input or

88 Literature Review

output (viz. the ‘communication’ or ‘transport’ or ‘movement’ of a channel).
On the other hand, if P receives a name corresponding to that of a hidden channel, it remains
the case that P knows of such a channel, and hence, can always tell if there is intrusion (the
name is new) or not. As for extrusion, if P gets rid of a channel, P does not need to be
concerned about that channel anymore. Either way, P \ X has no say in the matter.

Whence we draw a subtle difference with the pi-calculus’ underlying theory of observation:
the third observer needs not to resolve (channel) name equality or collision itself: it may just
ask each program individually. Hence, there is no need for a CSP process to generate fresh
names.

This latter remark seems to hold some non-negligible theoretical importance. To cut
things short, it means that the main difference, if not the only one, between our modelling
approach and the pi-calculus, is that the pi-calculus is also a calculus of names. We may
elaborate on this by using the notion of axiomatisation employed earlier. We will use the
algebraic framework of de Simone [120] as our basis for discussion. We may also profit of the
occasion to answer the following fundamental question: what entitles a process the use
of a channel? Or equivalently, what makes a channel (name) a channel?

CCS and CSP are then two process calculi that share some operators in common, and differ
in some others. Instead of discussing their difference in terms of the individual specification
of their respective operators (the function Spec : F → Specifications), we find it easier to
discuss that difference in terms of their eventual axiomatisation. Then, we see that CCS and
CSP differ mainly in this one axiom that says how to interpret silent τ actions. That is, if
we assert with de Simone [120] that three basic elements pervade all process calculi, namely:
non-determinism, concurrency, and synchronisation; then, instead of reasoning at the level
of the operators for each process calculus, we may rather reason about how each calculus
axiomatises each said basic concept. Wherefore we consider that CCS and CSP differ in their
set of axioms for synchronisation.

Whilst de Simone proposes an axiomatisation of actions and synchronisation events, he
left out that of communication events. But their inclusion poses no major difficulty, and we
may assert that CCS and CSP share exactly the same axiomatic characterisation of both
channels and communication events. Informally, it may look something like this:

Definition 3.4.1 (Static processes (incl. CCS, CSP) - Axioms for channels).

A1. Channels exist.

Corollary A1. Communication events exist.

A2. Channels may be used only as objects in communications obj.subj.

A3. Let (A, I,P) denote a process with alphabet A and interface I. Then c.m.P is well-
defined, i.e. we assume that it is always the case that c ∈ I(c.m.P).

Final considerations 89

Axiom A3 is the most interesting. It says that when evaluating an expression c.m.P,
channel c is in the interface of process c.m.P. That is, process c.m.P is entitled of using any
channel in its interface, here c, because c ∈ I . Axiom A3 assumes that I does not change.
Let us compare with similar axioms for the pi-calculus this time. We have:

Definition 3.4.2 (Mobile processes (incl. pi-calculus) - Axioms for channels).

B1. Axiom A1 holds.

B2. A channel may be used either as object or subject in communications obj.subj.

B3. The interface of a process may vary.

Corollary B3. c.m.P is well-defined if, and only if, c ∈ I(c.m.P).

Notice the difference between axioms A2 and B2. The question that may be asked here
is: why does A2 forbid channels from being subject in communications (i.e. from being sent as
messages)? If one has the pi-calculus in mind, the trivial answer would be that A2 guarantees
that the interface of a process may not change. However, it was never stated, in the cases of
CCS and CSP, that moving a channel in/out as a message increases/decreases the alphabet
of a process. In fact, A2 may seem to be needlessly strong: we may indeed communicate
(move) channels just like we do other messages, and yet not increase the interface. In the
end, the answer is in the question: there is an axiom which states that the acquisition (resp.
release) of a channel may increase (resp. decrease) the interface, accordingly. This is what
B3 does.

Axiom B3 states two things: the interface of a mobile process may vary, and hence, must
be evaluated in advance. In fact, A3 is just the same as B3, where the evaluation always
yields the same result, whereas B3 itself supposes that such an evaluation may yield different
results, depending notably on what has happened before — given that the interface is now,
so to say a variable, it may be manipulated by mobile processes, unlike for static processes.

The axioms given above are not specific to any single process calculus, and are independent
of any semantics style. Clearly hence, we can envisage an extension of de Simone’ algebraic
framework with denotational semantics. The operators defining channel mobility would obey
the same axiomatic specification. In particular, any extension of either CCS or CSP with
mobility should obey the same axioms as does the pi-calculus. In this regard, the pi-calculus
is simply one way of implementing channel mobility. More generally, we believe that instead
of generating fresh names, a more abstract view of channel mobility (than the pi-calculus’) is
possible, namely, one in which the process calculus is content with “indicating” the current
interface. Now, this does not strictly means that the pi-calculus restriction operator is doing
otherwise. Rather, it might simply be a difference of interpretation.

Indeed, in the model that we propose, since the interface is variable, it means that the
interface of a process is computable. So, the scope extrusion/inclusion may be seen as realising
such a computation in lieu of computing random names. What characterises a name of

90 Literature Review

being a channel in CSP is the presence of that name in a special set: the interface of the
process. Presumably, each name is unique, hence two identical names identify the same
channel (axiomatically speaking, every name is bound). If a process receives a known name,
it does not increase its interface: this way, the observer may also know that the received
name is not fresh (for the receiving process); if the interface increases, then the observer may
also know that the name received is fresh; and if the interface is hidden, then it is not meant
to be seen.

3.5 Summary and concluding remarks

A great deal of discussions has been consecrated to channel mobility. The literature review
itself shows that channel mobility poses a greater theoretical difficulty than process mobility.

We have presented an informal framework for reasoning about process mobility, [49], and
have shown how we intended to use it in our discussion on process mobility. In particular, it
has permitted us to justify the existing formalisation for weak mobility in UTP, [126]. Such
a justification is original to our work, and notably answers the question of the formalisation
decision for anyone who might be interested. We have also presented the only work on
semantics for strong mobility that we could find, [131].

Indeed, strong mobility does not pose great theoretical difficulties, but rather technical
difficulties. For example, Sangiorgi & Walker [112] estimate that the introduction of inter-
rupts to HOpi may significantly change its semantics. Another difficulty is that control must
be represented explicitly. Whilst there is much literature on control flow using functional
semantics, almost none exists in the relational semantics.

As hinted above, we use a slightly modified distinction between weak and strong mobility
unlike what is traditionally used in the literature: the first is equivalent to code mobility;
and the second involves of necessity the use of an interrupt mechanism.

Many works on channel mobility have been presented. Of those based on denotational
semantics, the works in [58], [132], and [67] are similar in the way that channels are passed
around, and in their treatment of dynamic interfaces.

In particular, [67] allows communications of the form x!(x!);[132] uses a closed model in
the sense of Roscoe, where the channels that may be used are all known in advance from the
outset, although each process may only hold a disjoint subset of it at a time; and [58] uses
channels in quite a specific way that consists of outputting, from a set of private names, the
output end of a channel to the environment, whilst inputting the input end to the process
itself. This operation is a little awkward at first, and is reminiscent of Roscoe’s unified model
for the pi-calculus, [108].

The work on CSP-like operators [107] has introduced, in our point of view, a superfluous
linearisation procedure; yet, it has led us to find earlier work, notably [120], and [21]. These
latter works would permit, in our opinion, recasting nicely the work initiated in [107]. They
have also provided us with some ground for discussing the notion of axiomatisation introduced
above.

Summary and concluding remarks 91

In [108], it is argued that the pi-calculus is CSP-like, and a few models are proposed,
based on a generalised relabelling operator, whose effect is either (one-to-many) relabelling
of a single name, or making some other names silent. Unfortunately, a great deal of effort
has been spent on a notion of name that is too general, and notably includes events that
do not relate to communications viz. channels. We find it harmful to move events as does
Roscoe, because then, processes may be moved as well. In effect, even if one were to object
that the semantics in [108] do not directly enforce this, we keep in mind that events are
often abstractions. Hence, suppose that they are meant to represent some function, or a
process/procedure hence, moving them around is hazardous.

The generalised relabelling mechanism defined by Roscoe, as well as the location/relocation
mechanism defined in [18] may serve to confirm our hypothesis made earlier that the main
difference between the pi-calculus and CSP-like process calculi lies in the calculus of names
itself, not forcefully in channel mobility. Our proposed simplification of the semantics in [138]
illustrates this; it further illustrates a channel-naming procedure that has all the appearances
of Roscoe’s standardised naming model, and of Bialkiewicz’s localised naming model.

Finally, the literature review has prompted us to investigate the question of the relation
between CSP and the pi-calculus, although this was not our original objective. However, it
is a haunting question given the prominent place occupied by the pi-calculus as a channel
mobility formalism.

Based on the de Simone algebraic framework [120], we have suggested that CCS and the
pi-calculus have the same axiomatic specification, to the exception of axioms A2, and B2
on one hand, and A3 and B3. The difference between A2 and B2 shows this: there is no
obligation that because a channel name appears as the subject or message of a communication,
such a name must be used as the object of communications in the receiving process. Indeed,
it is necessary that the received name be recognised as a channel. So the difference between
A2 and B2 reflects mainly that point, and is not in itself necessary, though it poses the
question of what makes such a recognition possible.

The answer to the latter question is provided by axiom B3, namely that the received
name must be added into the interface of the receiving process, since all such names make
valid communications. A3 is just a (stronger) variant of B3 because it assumes that in a
process expression, every channel belongs to the interface. In Chapter 4 of this thesis, we
discuss the implementation of axiom B3 in the context of UTP-CSP.

Whilst it was not our primary objective to use de Simone algebraic framework, we notice
the similitude between the representation of a process calculus as a triple (M ,F ,Spec) and the
UTP representation of theory as a triple (A,Σ,HC). de Simone framework defines operational
semantics as a starting point, whereas UTP uses denotational semantics instead. We refer
to Hoare and He’ remark ([66, Chap. 10, last paragraph]) that any framework based on
operational semantics is unsuitable for a unification of theories. A contrario, we may suppose
a transposition of de Simone framework in UTP. Then the remarks made earlier concerning
the axiomatisation of process calculi translates all the same to UTP. Remark also that both
operational semantics and denotational semantics are given as functions: the one in a set-

92 Literature Review

theoretical form, as a set of rules, and the second in a functional form, as a monotonic and
idempotent function. In this thesis we do not pursue the relation between operational and
denotational semantics for mobility —an interesting discussion of such a relation in context
of UTP may be found in [66]—, and leave it for future work.

Chapter 4

Channel Mobility

4.1 Introduction

Consider the following examples.

Example 4.1.1. Three students each having a laptop decide to meet in a study room for
studying. Student A happens to have in his computer some data of interest to both students
B and C. However, there is only one Ethernet cable available, hence only two computers
may be connected at a time. One end of the cable (output end) is plugged into A’s computer,
and the other end (input end) is plugged into B and C. The order in which the input end
is plugged (i.e. B’s before or after C’s computer) needs not to concern us at present. The
system composed of the pairs student-computer and the Ethernet cable constitutes a mobile
system with channel mobility. The Ethernet cable is moved from B to C, or inversely. Note
that in the present case, it is a human agent that is responsible for the mobility of the cable,
achieved (implemented) by the unplug/plug operation.

Example 4.1.2. Three students A, B, and C, meet at the occasion of some conference, yet
they do not all speak the same languages. A can speak both languages say L1 and L2, B can
speak only L1, and C can speak only L2. B and C desire to communicate with each other, so
they ask A to do the translation between them. However, A would like to quit the translator
role, so A teaches the language L2 to B instead. The system composed of pairs student-
languages constitute a mobile system with channel mobility. The language L2 is moved (or
passed) from A to B, although (and unlike (e.g.4.1.1)), A does not lose the ability of using
L2. Again, it is a human agent that is responsible for the mobility of the language, achieved
(implemented) by the teach/learn operation.

Example 4.1.3. Consider a Mobile Telecommunications Network, which is a system com-
posed of two parts: a user part and an operator part (or core network). Two users may not
communicate together directly: they have to establish a radio link with the operator part first,
as follows. The core network has two main types of components: an access station (AS),
which covers a given physical area, hence the users therein, and a control station (CS), which
manages a given number of access stations. Consider a user A who wants to communicate

93

94 Channel Mobility

with another user B. Then, A first needs to establish a radio link with an access station, say
AS1.1, that is managed by (and hence connected to) the control station CS1 (via either a cable
or a radio link). Similarly for B. We call by the common name node user, access station,
and control station; and any link between two nodes, say n1 and n2, we denote by n1 ! n2.
Then, A ! B = A ! AS1.1 ! CS1 ! CS2 ! AS2.1 ! B. During a communication,
it is possible for a user, A say, to change of coverage area, i.e. A can move from AS1.1 to
a given ASx . When a change of access station (coverage area) occurs, the control station,
here CS1, releases the radio link between the user and the current AS, here A ! AS1.1,
and establishes a link between the user and the next AS, here A ! ASx : this operation is
called the handover (or handoff) procedure. The system composed of a single user and the
core network constitutes a mobile system with channel mobility. The radio link user!core
network is moved from AS1.1 to ASx . In this case, it is an electronic device (or electronic
agent) that is responsible for the mobility of the radio link, achieved (implemented) by the
handover procedure.

Example 4.1.4. Consider the Internet, which is a system composed of, grossly, two parts:
a subscriber part and a service provider (ISP) part. We assume that subscribers may com-
municate only through the network of ISPs; two ISPs may not be connected together directly
either, but each one must be linked to a router. By analogy to (e.g.4.1.3) above, and only
with regard to (some hierarchy of) communication links, an ISP may be viewed as an access
station (AS), and a router as a control station (CS). Any computer that subscribes to an ISP
is given an IP (Internet Protocol) address that determines the IP link between the subscriber
and its ISP. At different times, the same IP link may connect a different subscriber to a given
ISP. For illustration, let A and B be potential subscribers, and ISP1 a given service provider.
Initially, A is subscribed to ISP1, with IP address (or link) say @ip1. At some point, A
unsubscribes from ISP1, and afterwards, B subscribes to ISP1 and is given @ip1 (the same of
A before). The system composed of subscribers and a single ISP constitutes a mobile system
with channel mobility. The IP address is moved from one subscriber to another, here from A
to B. It is a computer agent that is responsible for the mobility of the IP address, achieved
(implemented) by the subscribe/unsubscribe operation.

Each of the situations given above describes what we have termed a “mobile system
with channel mobility”, i.e. a system in which communication links are moved between the
components that the links permit to connect. We also use the term dynamic network system.

Milner’s informal characterisation of mobile systems [86] —links move in a virtual space of
linked processes— permits reasoning about every possible kind of system, including physical
systems and computer systems. Looking at (e.g.4.1.1) above, we may consider as a single
process the pair of agents (student, laptop). The link that moves is the Ethernet cable, and the
human agent (viz. the student) is only considered w.r.t. the role or action of moving the cable.
The medium for communicating the cable here would be the physical space, or equivalently,
the air medium. (e.g.4.1.1) is an example of a physical system. In (e.g.4.1.4), not the physical
entities matter, but rather their computation. That is why IP addresses determine the links,

Dynamic (Network) Systems - Concepts and their Formalisation 95

and neither cables nor radio links. (e.g.4.1.4) is an example of a computer system.
Any (eventual) formal characterisation of channel mobility may be discussed directly in

terms of existing formal models that describe static network systems, in which the links be-
tween components do never change.

In the next section, we discuss the formalisation of dynamic network systems in UTP
on the basis of the underlying model for UTP-CSP processes (cf. Chap. 2), which is static.
Each concept (of dynamic network systems) is first introduced informally, then we discuss
the possible ways of representing the concept formally using UTP.

In Section 4.3 we present the semantics of mobile processes. The highlight there is the
definition of the channel-passing mechanism. Dynamic hiding and dynamic renaming are also
defined there.

Section 4.5 contains a description of the links between static and mobility theory.
Section 4.5.5 contains as an example a buffer with mobile channels, and its transformation

into an equivalent buffer with static channels (and other examples).
Finally, in Section 4.6 we review our results and their implications and conclude this

chapter hence.

4.2 Dynamic (Network) Systems - Concepts and their For-
malisation

4.2.1 Some definitions

A mobile system with channel mobility, or dynamic network system, is a system in which the
links between components may change during the system’s activation. Such systems contrast
with static systems i.e. systems in which the links between components do not change once
defined.

A network defines a system of communicating components, hence we may appropriately
say that static systems define static networks, whilst mobile systems define dynamic networks.

The configuration or topology of a network defines the links that exist between the net-
work’s components, so we also say that static systems have a static topology, whilst dynamic
systems have a dynamic topology. To say that the links between components may change (or
not) is thus equivalent to saying that the (network) topology formed by these components
may change (or not).

We may conceive of a mobile system as having two parts: a static system, defining some
initial topology, and some functionality for changing said topology. Yet another conception
of a mobile system would be as an ordered set of static topologies, where the order defines
what topology may be observed at what time. Hence, any characterisation of mobile systems
must also permit a characterisation of static systems.

The basic model for UTP-CSP processes permits us to represent and reason about static
systems only: we will refer to it as static UTP-CSP or equivalently as static CSP. We will

96 Channel Mobility

discuss the UTP-characterisation of channel mobility on the basis of static UTP-CSP: the
resulting theory will be called mobile UTP-CSP or equivalently mobile CSP. Hence, in what
follows, we will formalise the statement the topology of the network/system has changed, for
any UTP-CSP process.

Topology, Network. The notion of topology is a graphical notion in the sense that it is
associated to some graphical representation of processes and their links. We are not inter-
ested in a visual formalism although we will often use some graphical representations when
necessary. References to related works on visual formalisms are [85], [74], [98], and [97].
It is also global in the sense that it supposes a view of all the processes that compose the
system/network considered.

In UTP-CSP, at first, it would seem that the topology of a system corresponds to the
interface of the process representing that system. However, such is not ‘completely’ the case.
Recall that the interface of a (UTP-CSP) process characterises its links to the environment,
whereas it would be more accurate to state that the topology of the same process characterises
internal links, not visible by the environment. This suggests a distinction between a notion
of internal interface, which would define channels not used for communications with the
environment, and a notion of external interface, which would define channels that may be
used for communications with the environment, exclusively.

The interface of UTP-CSP processes corresponds to the concept of external interface. The
view is ‘local’ in that it is the point of view of network components, and accords with the
concept of compositionality i.e. the fact of constructing systems as a composition of system
components. The topology would then correspond to what is obtained at the end of such a
composition.

From what precedes we make the following initial assumption. [Assume:mc:iface]

There are some UTP-CSP processes that have no internal interface (viz. no in-
ternal communications), and an external interface only: we call them level-0 pro-
cesses.
There are other UTP-CSP processes composed exclusively of the first kind: level-1
processes. Their internal interface is the union of the interfaces of their compo-
nent, and is disjoint from their external interface.
There is a third kind of components, which may be composed from at least two
level-1 processes. Their internal interface is calculated as before, and must be
disjoint from their external interface.

Granting the previous assumption, when discussing channel mobility, we may consider
to be hidden the internal interfaces of components, and manipulate their external interfaces
only. Formally, we are simply redoing what was already done in static UTP-CSP with the
hiding operator. This choice is a sensible one as it implies that the internal interface of
a system entirely determines what channels its components may move. Reciprocally, this
means that a system may never receive from its environment channels that are declared

Dynamic (Network) Systems - Concepts and their Formalisation 97

silent. For illustration, it would mean that for mobile systems, it is not always the case that
(P \ X) ‖ Q = (P ‖ Q) \ X when X 6∈ αQ. The choice of a better representation of the
parallel operator may make discussions a little easier, say by adopting an alphabetised version
instead (see [106]). Then, we only need to write P ‖

Y
Q to specify the external interface Y

(external for both P and Q, but internal for P ‖ Q).

Location. The preceding discussion shows that some confusion arises when the notion of
location is not clearly defined. In effect, we expect that a channel moves from one location
to the other.
Let us consider a process P. To characterise that P may use a channel ch for its communi-
cations, we say that ch is in the alphabet of P i.e. ch ∈ αP. (We also say that ch belongs to
the interface of P.) In other words, the observation that a process P ‘owns’ a channel ch or
equivalently, that a channel ch is ‘located’ in a process P, is characterised by the presence of
the channel within the alphabet/interface of the process. This may seem obvious, but it has
great implications.
It means that the presence in (resp. absence from) the alphabet characterises mobility: a
channel is moved out if it was in the alphabet, and is no more; conversely, it is moved in if it
was not in the alphabet, and now is. This gives us the characterisation of channel mobility for
level-0 processes. The latter is enough also for characterising the internal mobility of level-1
processes. See that we may drop the distinction between internal and external interface for
level-1 (and higher-level) processes altogether: we simply distribute that interface amongst
the component level-0 processes as follows.
Let X denote the partition of the interface of a level-1 process P, corresponding to its inter-
nal interface, and let Y denote the second partition corresponding to its external interface.
Let Xi and Yi the corresponding partitions for each (level-0 process) component Pi of P:
P = ‖i Pi . Then X =

⋃
i Xi and Y =

⋃
i Yi . We simply iterate this flattening procedure

for higher-level processes.

Note that we have now stated more simply what was stated earlier regarding the fact
that hiding had no effect on mobility (cf. Chap. 3, §3.4). Alphabetised parallel shows clearly
that when two processes are run in parallel, what matters is on which channel they may syn-
chronise, characterised by their so called external interface, denoted by Y above. How P and
Q have acquired said channels, if they have actually acquired them, and if they effectively
use them (either by communicating through them or by communicating/moving them) is of
no concern to the parallel operator. Similarly for hiding. If we write (P \ X) ‖

Y
Q, then

we expect that Y and X are disjoint. Again, hiding does not care about how channels are
acquired, but only about hiding any that may be used if and when it is used. We say that
those operators have no mobility effect: they do not engender channel mobility, and do not
affect it; although, channel mobility may affect them, eventually by increasing the sets Y
and X , respectively.

98 Channel Mobility

In sum, in order to characterise channel mobility, we model the location of channels by
the interface of processes. There is no need for a distinction between internal and external
interface. As a consequence, there is no need for distinguishing a closed-world semantics for
mobility, as Roscoe [109, §20.3] does. The topology of a process would be better captured
with regard to some graphical representation of process networks. In this work, however, we
will use such graphics rather informally. In terms of UTP-CSP, the topology of a process
may be inferred syntactically from the structure of the process.

Capability vs. Interface. In UTP-CSP, the interface of a process is a constant. In par-
ticular, it models the statement a process owns a channel viz. the process may actually use
that channel for its communications. Associating the interface of a process with the location
of channels implies that the interface of mobile systems must be a variable (the interface
changes with the movement of channels). Let us talk of either static interface or dynamic
interface, accordingly.

The dynamic nature of the interface of mobile systems reflects the statement a (mobile)
process can input a new channel. By ‘new’ channel is meant a channel that the process did not
‘own’ already i.e. a channel that was not in the process’s interface during the last observation
(keeping in mind that the interface is now a variable). That a process may receive a new
channel does not say where that channel comes from. This contrasts with static systems for
which all the channels that are owned are defined for once: in the interface. We find it more
convenient to define the set of channels that may be ‘moved’, instead of leaving it undefined
— we call that set the capability of a process. We justify such a choice through the following
illustration.

Consider a router, a device used in the Internet. A router may receive new IP addresses,
and delete existing ones, in a non-deterministic way. The capability of a router corresponds
to the range of every possible IP address, and its interface at a given (observation) time
corresponds to the list of IP addresses in its routing table at that time. The capability of a
router may not change for the lifetime of the router, unlike its interface. Also, a router may
never input, say radio links.

Hence, the notion of capability not only restricts in a definitive way the range of channels
that a process may move, but also their type. And as far as we can see, there is no need
for defining a ‘dynamic’ capability. In effect, consider the router once more. Then, we
may say that the router’s capability is fixed by the manufacturer once and for all, say fixed at
creation time. That is, the non-extensibility of the router’s capability is defined axiomatically.
Prosaically, we may say that it is the nature of the router. Now, even if one were to imagine
some device whose capability may be extended, then, such an extensibility would also be
axiomatic. And, if we regard the relation capability-interface as denoting the capability of
changing the interface, then by making the capability itself dynamic, we would also be stating
something like the capability of changing the capability. As if we wanted to state that the
capability of a router of moving IP addresses may be extended with the capability of moving

Dynamic (Network) Systems - Concepts and their Formalisation 99

radio links also. However, see that this simply means the capability of moving IP addresses,
until capability extension, and then the capability of moving radio links also. This capability
extension translates into interface dynamics as follows: the capability of changing the interface
by moving IP addresses only, and then, the capability of changing the interface by moving
radio links also.

In more mathematical terms, the capability of the interface determines the greatest value
possible for the interface. The capability of the capability would hence determine the maxi-
mal value of the capability of a process, and similarly for the capability of the capability of
the capability and so forth. So that in the end, it is only necessary to consider the capability
itself to be its maximal value already.

The notion of capability brings forth two further analogies. The first analogy is with the
mathematical concept of the limit of a function. It is often necessary to prove that such a
limit exists, although such a proof does not give the actual value of the limit. It is a proof of
existence, which is not necessary in this instance because the existence of the capability (the
channels therein) is given axiomatically.

The second analogy is with the concept of human knowledge. A human being, at a time
taken for the origin of time may have some initial knowledge (including the empty one). As he
acquires more knowledge in time, he comes to realise that he has the capability of acquiring
new knowledge. Similarly, he often loses some knowledge acquired previously, so he (realises
that he) has the capability of losing or forgetting already acquired knowledge. However, he
may never increase nor decrease his capability of knowing. Pragmatically, because such a
capability is not in his power: the existence of such a capability was revealed to him through
experience; he did not create it himself. Logically, because if he could lose that capability,
then he should never realise the loss (otherwise there would be a contradiction), and hence
there is no loss. On the other hand, if he can increase his capability, this would mean the
capability of knowing a new capability. However, the latter capability of knowing is already
included in the original one, so that the capability of knowledge is not only invariant or un-
changeable or constant, but is also its own maximal value.

The following definition summarises the previous discussion.

Definition 4.2.1 (Capability). The capability of a process models the statement a process
knows the existence of channels. Such a knowledge does not confer ownership, as does the
interface of a process.
Also, the capability of a process is its own maximal value, and it may not change, unlike the
interface of a process, which may change.
As a consequence, it may not be possible to define a static process in the sense of one whose
interface may never change, but rather as one whose interface is forbidden to change. For-
mally, these are equivalent notions.

100 Channel Mobility

Summary. In the discussions above we have presented some concepts of mobile systems,
and how they can be modelled in UTP-CSP. Starting with the notion of topology, we have
stated that it can be obtained from the syntactic structure of the process definitions and
their interface. We have used the interface for modelling the location of channels, such that
a change of topology is modelled by a corresponding change of interface. In particular, we
have shown that a change of topology at the network level can be captured at the level
of individual network components, by the change of each component’s interface. We have
shown that channel mobility introduces a notion of capability that is semantically different
from the notion of interface. We have described that difference mathematically by saying that
a capability is the maximal value of the interface, and that that value is constant. Informally,
the capability denotes the fact that channels may be moved, whilst the interface denotes that
channels may be used. Whilst the discussions above had a more philosophical character, the
ones that follow are more technical. Every concept that we will introduce is immediately
followed by its formal characterisation, unlike above. The mention of some concepts that
were already introduced earlier may seem redundant, but this is out of necessity.

4.2.2 Formalisation

Process networks whose configuration/topology may change throughout their activation are
called dynamic networks or mobile systems. Channel mobility is the name of the correspond-
ing paradigm. The observation of a dynamic system may be divided according to its different
topologies.

Definition 4.2.2 (Snapshot). A snapshot is a (maximal) period of static network topology
for a mobile system, and determines the behaviour of the system during that period. Hence,
any system must have at least two such snapshots to be considered mobile. The overall
behaviour of the system may be obtained by a given concatenation of all the snapshots of the
process in their order. In contrast, there is only one such snapshot for any non-mobile/static
process.

It should be pointed out here that the choice of having a snapshot to be maximal is
deliberate, and is not in itself a constraint. Such a choice is motivated here by the fact that
it makes it easier for reasoning about mobility. The notion of snapshot is unnecessary for
static network systems since their topology is fixed; it must also not be confused with similar
notions in the literature, e.g. it is not equivalent to the state of a process, and neither to the
dump of a store.

Processes are connected via links or channels through which they may communicate.
Consider a network of three processes P, Q and R connected as shown by figure4.1(left).
Another possible topology for such a network may be obtained by removing the link ch1

between P and Q and using it to connect P and R instead, as shown by figure4.1(right).
Note that it is not properly the channel that moves, but its ends. Hence it would be more
appropriate to talk of the mobility of channel ends, and this is what should be understood in

Dynamic (Network) Systems - Concepts and their Formalisation 101

Q

R

ch1

ch2

P P Q

R
ch1

ch2
ch2!ch1

Figure 4.1: Channel Mobility with 3 processes. (left) Before the migration of ch1. (right)
After the migration of ch1.

the subsequent paragraphs.

In this section we present the necessary changes to the static model of CSP (cf. Chap.
2.5.1) that enable us to give semantics to channel mobility. The mobility model has three
main characteristics:

• channels are ‘localised’ in alphabets or more precisely, in interfaces. Hence the mobility
of a channel is from one interface to another;

• channels may be communicated as messages amongst processes (hence we need a new
representation for channels);

• the interface of processes may change as a consequence of channel mobility.

Channel names. In the static model of CSP processes, channel names are just logical iden-
tifiers.1 For channel mobility channels must rather be modelled explicitly, as data elements:
they will also be represented by channel names. How this new set of names relates to the one
from the static model, i.e. the interface I = {ch | ∃ e • ch.e ∈ A}, is shown in subsequent
paragraphs.

Let Chans denote the set of channels that a process may use for its communications. The
names in the set Chans represent actual objects or entities, similar to natural numbers. All
such names must also belong to the interface of the process as defined in the static model i.e.
Chans = I, for every process.

In order to bring as little change as possible to the static model, and to keep reasoning
about static and dynamic aspects of a process’s behaviour separate, we will maintain elements
from the static model whenever possible, and add new elements specifically for mobility.

Mobile channels. For the purpose of a static-dynamic dichotomy, Chans will contain static
channels only. So we define a set of mobile channels only, denoted by MCh. The two sets
must be disjoint: Chans ∩MCh = {}. This will notably ensure that channels in Chans may
not be moved.

1‘logical’ in the sense that a channel name ch ∈ I represents/models a logical concept viz. ‘the occurrence
of a communication on the channel named ch’, and not the channel itself.

102 Channel Mobility

Channel mobility works with the assumption that a process may receive new channels,
i.e. channels that the process did not previously own. We will denote by mChans : PMCh
the variable that may contain such channels when they have been acquired.

Definition 4.2.3 (MCh, mChans). We assume a set of mobile channels, denoted by MCh.
MCh denotes the capability of a process. Then:
mChans,mChans′ : PMCh, is the variable that contains the set of channels that have been
acquired before the current observation, and are hence authorised. mChans′ contains the
channels that will be authorised next.
mChans (resp. mChans′) denotes the dynamic interface of a process.

Definition 4.2.4 (Ownership). A process owns a mobile channel mc if and only if
mc ∈ mChans at the time of the observation.

Events of mobile channels. In the static model the set Chans is not represented. The
interface of a process may be obtained only from its actions set A. With channel mobility,
on the contrary, we start with the channels since they are the ones that may be moved, and
then we obtain the corresponding set of events. Hence, we define the set MCev that contains
events related with mobile channels only, i.e. events of the form c.m where c ∈ MCh.

Definition 4.2.5 (MCev). Let MCev denote the set of events obtained from MCh.

MCev =̂ {ch.e | ch ∈ MCh}

Dynamic alphabetised traces. Let mtr denote the trace associated with ‘acquired’ mo-
bile channels viz. those in mChans. The value of mChans at a given time defines which events
may be recorded at that time; at different times, mChans may have different values: mtr
must reflect such changes.

Whilst in the static model the type of tr , A ∗, guarantees that only the actions that are
in A may be recorded, to provide the same guarantee in the context of channel mobility by
adopting the typing approach of the static model would require that the type of mtr changes
whenever mChans takes a new value. This is a problem of dynamic typing that may be solved
as follows.

First, we recall that the ‘type’ of a variable determines the values that the variable may
take. For the type to change over time simply means that the corresponding set of possible
values changes over time. Hence, dynamic typing may be modelled by employing a static
type defining all possible values (a sort of default set) and then placing restrictions on that
default set where necessary within the process’s definition.

In our case, we may define a static type for mtr , (MCev) ∗. This would mean that any
event in MCev may be recorded, which is too large. We now need to enforce the condition that
only the events associated with channels that have already been acquired (i.e. in mChans)
may be recorded. For that purpose, we need to keep the history of successive interfaces
i.e. the history of the value of mChans. We could then ensure that at a given time, any

Dynamic (Network) Systems - Concepts and their Formalisation 103

event recorded in mtr belongs to the set-value of mChans at that time. That is, at a given
observation time k, we must record both the value of mChans, say mChansk , together with
the event, say e, and ensure that e ∈ mChansk . We thus introduce the notion of dynamic
alphabetised trace.

In any snapshot, the value of mChans is fixed, and differs between any two consecutive
snapshots. If we associate the value of mChans within a single snapshot with a valid trace
for that snapshot, we obtain an alphabetised trace. And if we combine the alphabetised traces
of every snapshot into a single trace, we obtain a dynamic alphabetised trace. For simplicity
however, we rather associate the occurrence of every event with the valid dynamic interface
at the time of the observation —this permits us to disregard snapshots.

Definition 4.2.6 (DAT). A dynamic alphabetised trace or DAT is any trace of the form
〈..., (s, e), ...〉 where s is the valid dynamic interface (viz. given by mChans) at the time of the
observation, and e is the event recorded at that time.

The null event will be denoted by nil. For DATs it is more convenient than an empty
space. In particular, there may be many events of the form (s,nil). Every (non-empty) trace
must contain at least one such event.

In our construction so far, tr and mtr have been considered as non-alphabetised. In
particular, we have introduced tr only w.r.t. the static CSP model. In what follows, we
should work with the alphabetised versions only. For a mobile process, the overall trace will
be denoted by dtr .2 It should contain elements from both str and mtr , where str denotes the
(alphabetised) trace relating to static channels exclusively. Their respective relation to dtr is
obvious:3 str = dtr �A and mtr = dtr �MCev, but we shall keep using them informally for
the sake of conciseness.

Definition 4.2.7 (Trace of a mobile process). Let Σ denote the actions set for mobile pro-
cesses, then Σ =̂ {nil} ∪ A ∪MCev.
dtr , dtr ′ : (P(Chans∪MCh)×Σ) ∗, is the dynamic alphabetised trace of mobile processes.

Remark: as already stated, the set MCh (viz. MCev) models the concept of a capability in-
troduced earlier. Looking at the type of dtr , we may now see more clearly the benefits from
separating ownership from existence conferred by the concept of capability. If indeed MCh
also meant ownership as A does, the typing justification propounded earlier would not have
sufficed to establish the correctness of our semantics. Indeed, we would have been faced with
a paradox: in the absence of the concept of capability, ownership cannot be dynamic. We
discuss this paradox in greater detail in Section 4.6.

We use the following two projections to select each component of an element in a DAT
trace: π1(s, e) = s, π2(s, e) = e. We may then override them to get also the first and second

2The variable name dtr is used here mainly for readability, to keep separate static and mobile CSP theories.
The name dichotomy is not essential.

3 s �Y denotes the sequence s restricted to elements from the set Y .

104 Channel Mobility

component of all elements in a trace, respectively. Let k ∈ {1, 2}, then

πk(〈(s, e)〉) =̂ 〈πk(s, e)〉

πk(head dtr a tail dtr) =̂ πk(head dtr)a πk(tail dtr)

We now give a more formal characterisation of the notion of snapshot defined earlier. We
say that a process has a static network (or fixed network topology) when its interface is the
same whatever the elements of its DAT. Formally:4

Definition 4.2.8 (SN).

SN P = P ∧

 ∀ (s1, e1), (s2, e2) : P(Chans ∪MCh)× Σ | # mtr ′ ≥ 2 •

(s1, e1)a (s2, e2) ∈ mtr ′ ⇒ s1 = s2


A process must have at least two distinct snapshots (viz. must be the concatenation of

at least two distinct SN processes) to be considered of having a dynamic topology. In other
words, at least two consecutive elements of its trace must have separate interfaces. Formally:

Definition 4.2.9 (DN).

DN P = P ∧

 ∃ (s1, e1), (s2, e2) : P(Chans ∪MCh)× Σ •

(s1, e1)a (s2, e2) ∈ mtr ′ ⇒ s1 − s2 6= {}


The guarantee that a process may use only channels that it already owns is expressed by

the following healthiness condition:

Definition 4.2.10 (MC1).

MC1 P = P ∧ ∀ s : P(Chans ∪MCh), e : Σ • (s, e) ∈ dtr ′ ⇒ e ∈ s

Literally, MC1 states that every event e that is recorded must belong to the dynamic
interface s (the associated events alphabet) valid at the time of the recording.

DATs lead us to reconsider the healthiness condition R2. In effect, R2 is meant to hold
for the events history only, not for other types of history. The application of R2 to mobile
processes is called R2M, given below.

Definition 4.2.11 (R2M).

R2M P =

 u{P[t, (t a (dtr ′ − dtr)) / dtr , dtr ′)] | t ∈ (P(Chans ∪MCh)× Σ) ∗ ∧

π1(t) = π1(dtr)}



4 # s denotes the number of elements of the sequence s.

Dynamic (Network) Systems - Concepts and their Formalisation 105

Literally, R2M allows replacing the initial history of events without changing their related
interface. A case analysis would illustrate how the substitution works.

• The easier case is when the trace has a single element, i.e. dtr = 〈(a, b)〉. Then, any
substitute trace t = 〈(x, y)〉 must be such that x = a ∧ y ∈ Σ.

• For dtr = 〈(a, b), (a, c)〉, t = 〈(x, y), (x, z)〉 where x = a ∧ y, z ∈ Σ.

• The third case is when successive interfaces are distinct, reflecting that channel mobility
has occurred: For dtr = 〈(a1, b), (a2, c)〉, t = 〈(x1, y), (x2, z)〉 where x1 = a1 ∧ x2 =

a2 ∧ y, z ∈ Σ.

The definition of R2M clearly forbids the substitution of the initial interface history by an
arbitrary one and rather conserves the interface history. Hence, the question may be raised
of the possibility of changing the initial interface history.

Trivially, whilst the substitution itself is possible, the result of the substitution would not
yield a fixed point. Indeed, a change of interface implies that the resulting trace would be
different from the original one. Thus P and P[t, (t a (dtr ′ − dtr)) / dtr , dtr ′)] are not equal
for just any element t ∈ (P(Chans∪MCh)×Σ) ∗. The substitution does not yield fixed points
for any process that is SN healthy.

For DN healthy processes, we may conceive of a process with an arbitrary initial interface.
However, substitution and nondeterminism are certainly not the best way for specifying such
a process. We may better discuss the consequences of substituting the initial interface by an
arbitrary one in a DN healthy process by means of an illustration.
Let I1 be the initial interface of a process, and suppose that we know the interface I2 of its
next snapshot. Let J be an interface and the substitute for I1.

• For I1 = {ch1, ch2}, I2 = {ch2}, and J = I2, the substitution is clearly undesirable
since it denies the movement of ch1. If instead J = {}, then the substitution supposes
the mobility of {ch2} which would contradict the definition.

• Now let I1 = {ch1}, I2 = {ch1, ch2}, and J = I2. Again, the substitution cancels the
movement of ch1.

In sum, any substitution of the initial interface history for a distinct interface may have a
mobility effect, which is unhealthy.

In line with the previous discussion, by definition, the mobility of a single channel (or
of many together) induces a snapshot dichotomy between the topology before the movement
and the one after. So, for a trace 〈(a1, b), (a2, c)〉, where a1 6= a2, 〈(a1, b)〉 would belong
to the first snapshot and 〈(a2, c)〉 to the second. Any two consecutive snapshots may not
possibly have disjoint interfaces, except when either interface is empty.

In a single step, it is only possible to release the whole of the actual interface at once,
but not to acquire a new channel at the same time. This is true if the interface is unique

106 Channel Mobility

for every process in a parallel composition. It must remain true in the case where part of
(or the whole) interface is shared amongst parallel processes since it is inconceivable that
any process should be able to use a channel after it has been moved out, even if by another
process. Interleaving of traces in the semantics of the parallel composition operator further
implies the interleaving of interfaces. That any two consecutive interfaces may not be disjoint
(unless at least one is empty) is expressed by the following healthiness condition:

Definition 4.2.12 (MC2).

MC2 P = P ∧

 ∀ (s1, e1), (s2, e2) : P(Chans ∪MCh)× Σ | # mtr ′ ≥ 2 •

(s1, e1)a (s2, e2) ∈ mtr ′ ⇒ (s1 ⊆ s2 ∨ s2 ⊆ s1)


Example 4.2.13. The interface history

〈{ch1, ch2}, {ch2, ch3, ch4}〉

is forbidden by MC2; however,

〈{ch1, ch2}, {ch2}, {ch2, ch3, ch4}〉

is a valid interface history.

MC2 also translates the idea that the dynamic interface is always fixed (or completely
determined) before entering a new snapshot, and that it is the previous snapshot (process)
that fixes it.

Refusals. In the basic model, ref : PA contains events in which a process may refuse to
engage, although they are authorised. The type of ref , PA, guarantees that a process may
only refuse authorised events i.e. a process cannot refuse events that it does not own. We
will denote by dref the refusals set for mobile processes, and by sref and mref its static
and mobility components. With channel mobility, the type of mref would need to follow the
changes of the dynamic interface, so we would once again face a problem of dynamic typing.
As earlier, we may solve the problem by considering a static type for mref , and then impose
a restriction on the events that may be refused, by means of a healthiness condition. The
static type for mref will be PMCev. The healthiness condition expressing that only owned
events may be refused is given below.

Definition 4.2.14. MC3 P = P ∧ dref ′ ⊆ (A ∪mChans′)

Note that mChans′ is used above for economy of notation, to denote the corresponding
set of events.

Summary. We have presented in this section the fundamental concepts of channel mobility
and how they may be formalised in UTP. The formalisation has been based on static UTP-
CSP and shows quite clearly, if this was not clear enough, that channel mobility is altogether

The Semantics 107

a new paradigm. Three new healthiness conditions have been introduced, and a new traces
model has been defined which aggregates the interfaces history to the original events history.
We have chosen to pair together the elements of both histories the consequence of which is
the introduction of a null event nil. Another approach is possible where the elements from
each history are recorded separately. The latter approach is the one adopted by Grosu &

Stolen [58], and Hoare & O’Hearn [67]. In particular, this second model does not require
introducing a particular nil event. The choice of either model is likely a matter of taste.
We think that the two approaches yield equivalent traces models but this conjecture needs
further investigation.

4.3 The Semantics

In this section we present the denotational semantics of channel mobility. As every UTP
theory, it must have three elements: an alphabet, a signature and healthiness conditions.
In Section 4.2 we have introduced alphabet elements as well as some healthiness conditions.
In this section we put them together to define what a mobile process is. The operators are
defined afterwards. The highlight of this section is the semantics of the operation that may
change the interface of a process during its activation.

The following definition summarizes the previous discussions.

Definition 4.3.1 (Mobile processes). A mobile process is one that satisfies the healthiness
conditions R1, R2M, R3, CSP1, CSP2, MC1, MC2, and MC3, and has an alphabet
consisting of the following:

• A, the set of static events in which it can potentially engage; the events in this set may
not be moved.

• Chans, the set of static channels (viz. they not be moved), whose events are in A.

• MCh, the set of mobile channels that can potentially be moved in (acquired) or moved
out (released) during activation.

• MCev, the set of events whose channels are in MCh; the events in this set may be
moved, according to the movement of their corresponding channels.

• mChans,mChans′ : MCh, the dynamic interface, also the last element of the interface
history.

• dtr , dtr ′ : (P(Chans ∪MCh)× Σ) ∗, the trace, (where Σ = {nil} ∪A ∪MCev).

• dref , dref ′ : PΣ, the refusals set.

• ok, ok ′ : B.

• wait,wait ′ : B.

108 Channel Mobility

• v, v′.

For simplicity, we may introduce the following variables that can be calculated from those
above:

• mtr ,mtr ′ : (PMCh ×MCev) ∗, the partition of the trace dtr (resp. dtr ′) restricted to
mobile channels.

• mref ,mref ′ : PMCev, the subset of the refusals set dref (resp. dref ′) restricted to mobile
channels.

4.3.1 Healthiness conditions

In this section we present some important results concerning the healthiness conditions in-
troduced thus far. Notably, for each healthiness condition we study its idempotence, closure
with basic operators, and commutativity with other healthiness conditions, following the lines
of [35].

In [35], Cavalcanti & Woodcock carry out a systematic study of the aforementioned prop-
erties for every healthiness condition that they introduce. Adopting the methodology in [35]
would be fastidious, however. Some general results provided by Harwood and the previous
two authors in [59] may make such a study easier.

In [59], the notion of a conjunctive healthiness condition allows generalising a number of
important properties about healthiness conditions.

Definition 4.3.2 (Conjunctive healthiness condition [59, Def. 1]). A healthiness condition
CH is called conjunctive if

CH(P) = P ∧ ψ

for some predicate ψ.

Theorem 4.3.3 (Closure of CH healthy predicates).

1. If P and Q are CH healthy, then P ∧ Q, P ∨ Q, and P C b BQ are CH healthy.

2. If P and Q are CH healthy, where CH(P) = P ∧ ψ ∧ ψ′ (ψ is a condition on input
variables, ψ′ is the dashed counterpart of ψ), then P # Q is CH healthy.

3. If F is a monotonic function from CH healthy predicates to CH healthy predicates,
then µX • F(X) is CH-healthy.

Proof. cf. [59, Ths. 1, 2, 3], [66, Chap. 4].

The Semantics 109

In [66, Chap. 4], the following endofunction5 was defined:

andQ =̂ λX : X ∈ S • Q ∧ X

where S is the set of predicates of a (UTP) theory.

Theorem 4.3.4. andQ is idempotent.

Proof. andQ ◦ andQ = Q ∧ (Q ∧ X) = Q ∧ X = andQ

Conjunctive healthiness conditions are instances of andQ viz.

CH = andψ

They are thus idempotent. Furthermore, any two conjunctive healthiness conditions are com-
mutative since a ∧ b = b ∧ a.

MC1, MC2, and MC3 are all conjunctive, hence they are all idempotent, pairwise com-
mutative, and {∧,∨,CbB, #,µ}-closed. Furthermore, they are all pairwise commutative with
R1, R2M, R3, CSP1 and CSP2. In effect, R1 is conjunctive, so commutativity trivially
holds. Substitution in R2M, and sequential composition in CSP2 are also conjunctive.
Recall (provided outαP = inαQ):

P # Q = ∃ v0 • P(v0) ∧ Q(v0) P[e/x] =̂ x := e # P(x)

= ∃ x0 • x0 = e ∧ P(x0)

The commutativity with R3 and CSP1 comes from the closure and idempotence of conjunc-
tive healthiness conditions.

We may now define the following healthiness conditions in which the composition order
is indifferent.

Definition 4.3.5 (MC, MC123).

MC123 =̂ MC1 ◦MC2 ◦MC3

MC =̂ CSP ◦MC123

5A function whose domain and range are the same.

110 Channel Mobility

4.3.2 Some mobile processes

Assignment. The definition of assignment is similar to the static CSP version, except that
it must now be made healthy.

(x := e) =̂ MC123 ◦ R3 ◦ CSP1(ok ′ ∧ ¬ wait ′ ∧ x ′ = e ∧ dtr ′ = dtr ∧ v′ = v)

Prefix. In the basic model, the occurrence of an action a corresponds with the predicate
doA(a). For an alphabetised event (s, e) we want to record the dynamic interface s as well as
the event e. The value of s may be given by the value of variable mChans at the time of the
record. The process that is ready to engage in event a and then increments its DAT when a
has occurred, or simply records the current dynamic interface (to serve as the valid interface
for the next process) is denoted by mdoΣ(a).

Definition 4.3.6 (mdoΣ(a)).

mdoΣ(nil) =̂ dtr := dtr a 〈(mChans,nil)〉

For any event a 6= nil:

mdoΣ(a) =̂ mΦ(a 6∈ dref ′ C wait ′ B dtr ′ = dtr a 〈(mChans, a)〉)

where Φ is defined as in Def. 2.5.11, and mΦ =̂ MC123 ◦ Φ.

4.3.3 Channel-passing

Moving a channel has different effects depending on whether the channel is being moved out
(released) or moved in (acquired).

Release. Moving out/sending out a channel implies that the channel must no longer be
authorised i.e. it must be removed from mChans. Clearly, any attempt of moving out a
channel, say oldch, not already owned must fail: formally, this gives the assumption (oldch ∈
mChans)⊥. Because of MC3, the new value of mChans must be recorded into the trace i.e.
mdoΣ(nil), so that any future refusal may not contain the event that has just been removed.
This further means that all of the events related to the channel must be removed from dref
as well, if they were already in dref , to avoid chaotic behaviour. The operation for releasing
a channel will be called (channel) s-assignment and denoted by :=s.

The Semantics 111

Definition 4.3.7 (Channel s-assignment). Let oldch be the channel to be released, then:

(κch :=s oldch) =̂



(oldch ∈ mChans)⊥# κch
mChans

dref

 :=


oldch
mChans \ {oldch}(

dref \ α oldch
C (α oldch ∈ dref)B dref

)
 #

mdoΣ(nil)


To model the situation where the sending process just sends the channel but still retains its
value, normal or clone assignment (:=) may be used.

Any attempt of using a channel after it has been moved out by s-assignment leads to
undefinedness or CHAOS .

Theorem 4.3.8 (Undefined channel). (κchans :=s ch # ch.e) = CHAOS

Proof.

mdo(ch.e)

={mdo def}

mΦ(ch.e 6∈ dref ′ C wait ′ B dtr ′ = dtr a 〈(mChans, ch.e)〉)

={Cb B def, conj. health. cond. ∨ −closed}

mΦ(ch.e 6∈ dref ′ ∧ wait ′) ∨ mΦ(¬ wait ′ ∧ dtr ′ = dtr a 〈(mChans, ch.e)〉)

={mΦ def once}

mΦ(ch.e 6∈ dref ′ ∧ wait ′) ∨MC123 ◦ Φ(¬ wait ′ ∧ dtr ′ = dtr a 〈(mChans, ch.e)〉)

={(κchans :=s ch.e)⇒ (ch 6∈mChan), then MC1(dtr ′ = dtr a 〈(mChans, ch.e)) = false}

mΦ(ch.e 6∈ dref ′ ∧ wait ′) ∨MC23 ◦ Φ(¬ wait ′ ∧ false)

={Φ def, conj. health. cond.,pred. logic}

mΦ(true ∧ wait ′) ∨ false

={wait ′ = true, pred. logic}

mΦ(true)

={mΦ def,Φ -def}

MC123 ◦ andB ◦ R(true)

={CHAOS def}

CHAOS

Acquisition. Moving in /receiving a channel newch requires that the receiving process must
not own newch prior to receiving it, which corresponds to the assumption (newch 6∈mChans)⊥.

112 Channel Mobility

newch must then be added into mChans. Due to MC3, the value of mChans must be recorded
into the trace, which will notably permit to increment the value of dref with the events of
the acquired channel, subsequently. The operation for acquiring a new channel will be called
(channel) r-assignment and denoted by :=r .

Definition 4.3.9 (Channel r-assignment). Let newch be the channel to be acquired. Then:

(κch :=r newch) =̂


(newch 6∈mChans)⊥#(
κch
mChans

)
:=

(
newch
mChans ∪ {newch}

)
#

mdoΣ(nil)


To model the situation where the sending process just sends the channel but still retains its
value, normal or clone assignment (:=) may be used.

The preceding definition actually states that the behaviour of a process that receives a
channel already owned should be CHAOS . That is a quite strict definition but it is up to
the programmer to implement that behaviour however he would like to, probably though, by
throwing an exception.

To further ensure that it is r-assignment :=r and not just assignment := that is used when
receiving a channel, we define a new input prefix denoted by ch??, which behaves the same
as ch? except that normal assignment := is replaced by r-assignment :=r .

Definition 4.3.10 (Channel-passing input prefix).
(in??κch −→ P) =̂ 2newch mdoΣ(in.newch) # κch :=r newch # P

Channel mobility is characterised by s-assignment for the sending/source process, and by
r-assignment for the receiving/target process.

Notation and terminology: In the rest of this thesis, we will often use the expression channel
carrier to refer to any channel that is used for passing other channels, as the in channel
above. For convenience, we will also use the notation in??[newch] to denote the input of a
new channel newch, instead of say in??κch. Thence [newch] will denote the variable that has
the channel newch for value. Conversely, we will use the notation [κch]?msg to denote the
channel contained in the variable κch.

4.3.4 Example: a mobile telecom. network

We have introduced the components and operations (notably the handover procedure) of a
mobile telecom. network at the beginning of this Chapter, in (e.g.4.1.3). The description that
follows is partly redundant with (e.g.4.1.3) but introduces new operations.

Description of a Mobile Telecom. Network. A Mobile Telecom. Network has three
main elements: a user/client (caller or receiver); a base station or BTS and a control station

The Semantics 113

or BSC. A BTS provides users with radio links for their communications. Each BTS has a
limited number of radio links also called the capacity of the BTS. Physically, a BTS may
be conceived of as a big antenna that multiplexes/demultiplexes radio signals coming from
smaller (radio) antennas. Each radio antenna or simply antenna provides a single radio link.
When an antenna is faulty, the corresponding radio link is lost (viz. it may no longer be
available for a radio transmission).

A BSC manages a given number of BTSs. It is also a big antenna, whose number of radio
antennas is proportional to the number of BTSs it manages. Besides the passing of text
messages (and voice), a BTS may exchange signals. Hence, there is a distinction between
data channels (for the transmission of both voice and text messages or sms), and signal
channels (for the transmission of protocol information).

When a BTS has a faulty radio antenna, it sends a fault signal or an alarm to its BSC. The
alarm is then relayed from the BSC to network technicians, in charge of the maintenance of the
network. In general, the fault may be either software, in which case a simple reconfiguration
is necessary; or hardware, in which case the radio antenna must be replaced by a new one.

Very often, when a BTS is installed in an area with few people, the number of radio an-
tennas it contains is less than its maximal capacity. However, when the population increases,
new radio antennas are added until the full capacity is reached.

When the population in an area increases greatly, the number of BTS and BSC may be
increased, or, the network as a whole may be reconfigured. During the time of the reconfigura-
tion when new radio stations are being installed on part of the network, every communication
may be passed through another section of the network: this operation is called load balanc-
ing. When the new section has been configured, load balancing again permits to transfer a
number of communications through the new section.

Subsequently, the different components of the network i.e. the Client, the Base Station,
and the Control Station are all represented by processes. The operations of the network that
are modelled are: the handover, load balancing, and network maintenance operations such
as the addition and the removal of equipments.

- Client: is always waiting for the acquisition of a (new) transmission channel; then, it
engages in a conversation for some time. At the end of the conversation, it releases the chan-
nel acquired previously; during the conversation, it may receive a handover request (through
signalling channels) in which case it releases its current transmission channel and waits for
the acquisition of a new one. Note that we are interested in the hard handover in which the

114 Channel Mobility

Client may hold a single transmission line only.

Climax =̂ ‖
1≤j≤max j.Cli

Cli =̂ alloc??[talk]→ Chat

Chat =̂ [talk]!msg →

 (Chat u hangup → lose![talk]→ Cli) 2

handoff → lose![talk]→ Cli


talk is the channel received by Cli for its transmissions. The event hangup models the action
of a Client that puts an end to a transmission. Then, the Client releases its talk channel
through the channel carrier lose and again waits for another talk channel. It also releases its
talk channel when it receives a handoff event.

- Base Station (or Base Transceiver Station or BTS): is composed of many radio (or transmit-
ter/receiver or TRE) stations. Each TRE is either idle, then it is waiting for a communication
with some Client, or it is transmitting, or it is faulty. A faulty TRE behaves like the process
that has released its transmission channel but still tries using it, which results in a faulty
behaviour.

BTSmax =̂ ‖
1≤j≤max j.TRE

TRE =̂ (talk?msg → TRE) 4iev FltyTRE

FltyTRE =̂ dispose!talk → TRE

TRE receives messages from Cli (we have omitted the passing of the received message to
another client for simplicity). The occurrence of a fault is modelled by an interrupt event
iev which when it is triggered causes TRE to behave like FltyTRE . FltyTRE disposes of
the faulty channel through the dispose channel and then behaves like TRE again, which will
result in CHAOS . Hence, because of parallel composition in the definition of BTS , the pre-
vious definition is not good. A better definition would be to replace TRE by STOP in the
semantics of FltyTRE .

- Control Station (or Base Controller Station or BSC - or Network Monitor): may com-
municate with a number of assigned BTS through signalling links. For simplicity we will
represent signalling links as synchronisation events instead of communication events since we
are not interested in the data exchanged through signalling links. Two particular signals are
handover and load balancing. Additionally, the BSC is responsible for the allocation of a

The Semantics 115

transmission channel to any Client.

Monitor =̂ alloc![talk]→

(
(RetrieveTalk u loadb → HandOver) 2

HandOver

)
u LoadB

RetrieveTalk =̂ (retrieve??[talk]→ Monitor)[lose← retrieve]

HandOver =̂ handoff → RetrieveTalk

LoadB =̂ loadb → Monitor

The Monitor process defined above may be conceived of as a distributed process with its
instances associated with each TRE process. That is why we chose the name Monitor over
the name BSC for the control station.

We chose the name retrieve for the channel used by the Monitor for retrieving a transmis-
sion channel that was previously sent to a Client. RetrieveTalk is the corresponding behaviour
of Monitor . retrieve is the counterpart of the lose channel used by the Client when releasing
an acquired transmission channel.

A handover operation occurs on two instances. In the first instance, the handover is due
to a client changing of coverage area: this is modelled by the handoff event. In the second
instance, the handover is due to load balancing (the client has not itself changed of coverage
area, but its current coverage area is full - then, it is the network that triggers a handover
procedure). Load balancing is modelled by the loadb event. After either a handoff or a loadb
event, control returns to the current Monitor which is assumed to send channels associated
with a different BTS .

- User-Network Interface (or UNI): the part of a telecom. network composed principally
of the client and the BTS. This interface is concerned with the communication between the
latter two.

UNI =̂ Climax ‖ BTSmax ‖ Monitor

The semantics for the handover procedure presented above slightly differs from the one
proposed by Milner [86] regarding certain design decisions. (1) In [86], it is the BTS that is
responsible for passing a new talk channel upon the occurrence of a handoff event, received
from the Monitor . Thus, the new talk channel passes from Monitor to BTS , and then from
BTS to Cli. In our model such is not the case, Monitor communicates directly with Cli. (2)
In [86], in the occurrence of a handoff event, BTS loses its talk channel (in addition to Cli),
which is not the case in our model.

In the previous definition, the BTS had a static number of TRE which could decrease in
case of a faulty channel. In what follows we describe the case where the BTS may acquire
new TREs.

116 Channel Mobility

- The process that adds a new TRE is defined as follows:

newTRE =̂ new??[talk]→ (n + 1).TRE ′ C n ≤ max B SKIP

TRE ′ =̂ (talk?msg → TRE) 4iev FltyTRE ′

FltyTRE ′ =̂ dispose!talk → STOP

where max denotes the maximum number of TRE of a BTS, and n > 1 denotes the initial
number of TRE of a BTS.

- A complex BTS may increase its number of TRE. It may also decrease its number of
TRE, when a TRE is faulty.

ComplexBTS =̂ 2n≤k<max • BTSk

BTSn+1 =̂ expand(BTSn)

= BTSn ‖ newTRE

BTSn denotes the BTS that has n active TRE.

Note that when a channel fault occurs, say on the nth BTS,

BTSn = (‖
1≤j≤n−1

j.TRE ′) ‖ STOP = BTSn−1

- A complex user-network interface (UNI) may be defined as a UNI which has a complex
BTS.

ComplexUNI =̂ Climax ‖ ComplexBTS ‖ Monitor

Along the same line as above, we may define BSC m = ‖
1≤i≤m i.BTS , the control station

with m base stations. We may then expand and reduce the number of BTS just like we did
the number of TRE earlier. In turn, we may put a number of BSC in parallel and obtain
a mobile telecom. network with its complete hierarchy of components. The monitor process
may be decentralised by defining monitor processes hierarchically as follows: TREMonitor
would monitor a single TRE process; BTSMonitor would monitor up to max total number of
TREMonitor and would be defined such as to increase and decrease with the number of TRE ;
and BSCMonitor would monitor a number of BTSMonitor . This construction methodology
suggests that network components should be modelled as controlled components, which have
two parts: a controller part e.g. BTSMonitor , and a machine part, e.g. ComplexBTS .

A similar hierarchical construction may be applied to any hierarchical network, including
computer networks such as the Internet.

The Semantics 117

4.3.5 Parallel composition

The semantics of the parallel composition operator are similar to the static CSP definition,
except that the trace merge must take into account the new structure of the events. The aim
is to preserve the merge of events histories as defined in static CSP, and specify only that of
the associated interfaces histories.

By construction, recording the interface occurs as a by-product of the occurrence of an
event. Hence when no event occurs the trace is empty, and we have the exact same laws as
in the static case.

Channel-passing operations (r- and s-assignment) perform two actions that are somewhat
causal: the input or output of a channel, and then the record of the following interface. That
is, the operations yield events of the form (i0,mov.ch) & (i1,nil) viz. the events always go
together and in that order. Such an ordering is guaranteed by the definitions (of r- and
s-assignment), but it may be broken in the presence of interleaving. Hence, any correct
interleaving must preserve the expected ordering. For illustration, we would expect the
following:

(i0,mov.ch) & (i1,nil) ‖ (j, b) =

(
{〈(i0 ∪ j,mov.ch) & (i1 ∪ j,nil), (i1 ∪ j, b)〉} ∪

{〈(i0 ∪ j, b), (i0 ∪ j,mov.ch) & (i1 ∪ j,nil)〉}

)

Definition 4.3.11 (DAT parallel merge). Let s and t be two traces. Let E(s) denote the
set of events in s. Let a, b, c, d be (pairwise distinct) events such that: {a, b} 6∈ E(s) ∩ E(t),
{c, d} ∈ E(s) ∩ E(t). Then, we may define the (DAT) trace merge for parallel composition
by recursion as follows:

s ‖ t =̂ t ‖ s

〈(i, c)〉a x ‖ 〈(j, c)〉a y =̂ {〈(i ∪ j, c)〉a u | u ∈ x ‖ y}

〈(i, a)〉a x ‖ 〈(j, c)〉a y =̂ {〈(i ∪ j, a)〉a u | u ∈ x ‖ 〈(j, c)〉a y}

〈(i,nil)〉a x ‖ 〈(j, c)〉a y =̂ {〈(i ∪ j,nil)〉a u | u ∈ x ‖ 〈(j, c)〉a y}

〈(i, c)〉a x ‖ 〈(j, d)〉a y =̂ {}

〈(i,nil)〉a x ‖ 〈(j,nil)〉a y =̂ {〈(i ∪ j,nil)〉a u | u ∈ x ‖ y}

〈(i,nil)〉a x ‖ 〈(j, a)〉a y =̂ {〈(i ∪ j,nil)〉a u | u ∈ x ‖ 〈(j, a)〉a y}

〈(i0, a)〉a 〈(i1,nil)〉 ‖ 〈(j, b)〉a y =̂

(
{〈(i0 ∪ j, a)〉a u | u ∈ 〈(i1,nil)〉 ‖ 〈(j, b)〉a y} ∪

{〈(i0 ∪ j, b)〉a u | u ∈ 〈(i0, a)〉a 〈(i1,nil)〉 ‖ y}

)

〈(i, a)〉a x ‖ 〈(j, b)〉a y =̂

(
{〈(i ∪ j, a)〉a u | u ∈ x ‖ 〈(j, b)〉a y} ∪

{〈(i ∪ j, b)〉a u | u ∈ 〈(i, a)〉a x ‖ y}

)

4.3.6 Dynamic Renaming

Let P = a → SKIP. P[b← a] = b → SKIP is the process that engages in action b whenever
P engages in action a. Such a renaming may apply to channels as well, when we would like to

118 Channel Mobility

define the process P[ch2← ch1] that engages in a given channel say ch2, whenever P engages
in a distinct channel say ch1.

In the presence of channel mobility, however, such a renaming mechanism may not be
possible in every case. Indeed, renaming in the static model supposes that ch1 ∈ IP. Such
an assumption may be easily violated in the mobility model.

Name mismatch. A first issue that must be dealt with is that of name mismatch. If the
(channel) name that is expected to be acquired is different from the one actually received,
renaming will be vacuous, which is undesirable.

One possibility for solving this issue is by ensuring that the acquired channel is the
expected one, when names are known in advance. Hence

[RenameSpec1] P[ch2← ch1] = P[ch2← ch1] ∧ P ⇒ ch1 ∈ Amc

is a possible specification. It states that ch1 must belong to the list of channels (Amc) that
have been acquired by P at some point during its execution.

Unknown names. As stated earlier, renaming in static CSP supposes that the interface of
a process is known in advance. Let f : E → F denote a renaming function. f (P) denotes the
process that behaves like P but with channels in F . We may write instead f : I P → I f (P).
Then:

f (P) = P[I f (P)←I P]

Static processes are SN healthy, i.e. (loosely) mChans = mChans′. The (static) renaming
operation applies to known channels only, i.e.

f (P) = P[f (mChans)/mChans, su/mChans′]
where su = f (mChans) ∪ (mChans′ −mChans)

The above operation notably ensures that it is impossible to specify that a channel may
be renamed before the channel’s acquisition. Such a restriction applies also to DN healthy
processes.

The problem of unknown names occurs subtly for static renaming in the form of name
collision. Looking at the value of su above, it is possible that f (mChans) coincides with
(mChans′ − mChans). Suppose that we could compute, for every process, the set Amc of
all the names that have been acquired during the process activation. Then, the definition of
the static renaming operation in the presence of channel mobility should obey the following
property: f (mChans) ∩ Amc = {}.

One possibility of implementing the latter property is by separating f (mChans) from
(mChans′ − mChans), by using renaming. For example, we could define instead

The Semantics 119

su = 0.f (mChans) ∪ 1.(mChans′ − mChans). One problem with this solution comes from
the fact that we are reasoning from the point of view of the receiving process only. Hence,
renaming (mChans′−mChans) in the receiving process should trigger a corresponding renam-
ing of the sending process. This solution is not adequate, unless one is prepared to propagate
a local renaming to the whole environment.

The renaming of a process must be as independent of the process’s environment as pos-
sible. It should represent the statement: For all environment ε • For all channel ch ∈ ε • If
(a given process) P receives ch, then f (P) receives f (ch) (for a given renaming function f).

A simpler solution consists of regarding the given property as a healthiness condition on
static renaming. Let f be a renaming function whose domain includes both mChans, and
eventual new channels, in (MCh −mChans). We have Amc ⊆ (MCh −mChans). Let undef
denote any undefined channel. Then:

∀ unkn ∈ (MCh −mChans) • f (unkn) = undef

In particular, f ◦ f (mChans) = undef .

In fact, so long that no channel in f (mChans) is effectively acquired i.e.
f (mChans) ∩ Amc = {}, and that f behaves like the identity function over the set (MCh −
(mChans ∪ f (mChans)) (of eventual new channels), then f is a valid renaming. The assump-
tion f (mChans) ∩ Amc = {} may thus be modelled by the specification f ◦ f (mChans) =

undef .

The introduction of a special name undef hence makes the specification of static renaming
easier. The undefined name should never appear in a trace nor in a refusal. Thus MCh ∩
{undef } = {}. By definition, we have f (undef) = undef , as if f where actually defined over
{undef }.

It may be tempting to identify the whole of (MCh −mChans) with the undefined value
undef . This poses no problem in the case of static renaming where we assume that f applies
to the initial value of mChans only. When dealing with dynamic renaming, we will allow f
to apply to successive values of mChans as well.

Definition 4.3.12 (undef). Let undef denote the undefined channel.

MCh ∩ {undef } = {}

As a consequence, for any renaming function f defined over processes,

f (undef) = undef

Static renaming is characterised by the following law.

120 Channel Mobility

Definition 4.3.13 (Static renaming). Let f denote a renaming function. If

f (P)⇒ (∀ kn ∈ mChans • f (kn) 6= undef) ∧ f (MCh −mChans) = undef

then f is valid and is called a static renaming function.

Example 4.3.14. Let P = ch1!x → acq??[ch2]→ [ch2]!y → SKIP.

1. The renaming P[ch1← ch2] = ch2!x → acq??[undef] → [undef]!y → SKIP is unhealthy
since undef 6∈MCh.

2. P[ch1← ch3] = ch3!x → acq??[ch2]→ [ch2]!y → SKIP is a valid (static) renaming.

The problem of unknown names arises only when channel-passing input prefix is con-
cerned, since it is the only operation that may increase the interface. The application of
static renaming (using the function f above) to channel-passing input prefix yields the pro-
cess:

f (κ ch??newch → SKIP) = (κ ch??newch → SKIP)[f (mChans)/mChans, su/mChans′]

Hence (the channel contained in) newch will not be renamed. However, the following process
renames newch:

(κ ch??newch → SKIP)[f (mChans)/mChans, sv/mChans′]
where sv = f (mChans) ∪ h(mChans′ −mChans)

for some renaming function h 6= f . Such a renaming operation will be called dynamic renam-
ing.

Example 4.3.15. The following process prefixes every name in the initial interface with the
number 0, and then any acquired name with the number 1:

(κ ch??newch → SKIP)[0.mChans/mChans, sv/mChans′]

where sv = 0.mChans ∪ 1.(mChans′ −mChans).

Notice that in the preceding example, we purposefully chose two functions f and h such
that f 6= h. We also did not write f (κ ch??newch → SKIP), as we expect the function f to
apply to mChans only, and h to (mChans′ −mChans).

Suppose that above we had defined sv = 0.mChans ∪ 0.(mChans′ − mChans) instead.
Then, it should not be considered that f = h. The function f may eventually be defined
over unknown names, whilst h is defined over known names only. That is, there is an implicit
separation between any (unknown) channel ch ∈ E (for f : E → F), and any (known) channel
ch ∈ (mChans′ −mChans).

The Semantics 121

The construction of the dynamic renaming function is discussed hereafter.

Let f : MCh → MCh define a function over all possible names, both known and unknown.
The function f takes as a parameter a channel name and returns a substitute name. We will
denote by f (x) or equivalently fx the projection of f on a given set x. For example, if ch is a
channel, then f (ch) denotes the renaming of ch, whereas f ({ch}) denotes the projection of f
on the singleton {ch}.

In accordance with our earlier discussions, a number of restrictions must be applied to
the construction of f for the semantics of dynamic renaming to be valid.

First, for consistency, assuming that mChans′ = mChans ∪ {newch}, we expect that:

f (mChans′) = f (mChans) ∪ h(newch)

where h is a given renaming function. The function h is meant to apply to new channels only
(as they are acquired). The equality above ensures that previous renamings are preserved.

To ensure the absence of name collision e.g. between f (mChans) and newch, we expect
that:

f (mChans) ∩ (mChans′ −mChans) = {}

Although we have written h(newch) above, h needs not be defined exclusively over the
singleton {newch}. Let mChans′′ denote the final value of mChans′ at the end of the future
execution. In order to avoid name collision, we must have:

h(mChans′) ∩ (mChans′′ −mChans′) = {}

Notice the similarity between this constraint on h and the previous one on f . We return
to its implication in greater detail latter.

Ideally, we would have defined h over the set Amc of all the channels that have been
acquired from the beginning to the end of the process activation. However, defining such an
h is near impossible, as it would be equivalent to building (renaming) functions dynamically.
Rather, whilst keeping the separation between known and unknown names in mind, we first
define a function f over both kinds of names. Then, by construction, we ensure that the
function f applies to known names only, as they are the only ones to be given in parameter
to f (viz. h).

The distinction between the functions f and h is in fact purely syntactical. It allows us
to write properties such as:

f (mChans) 6= undef ∧ f (MCh −mChans) = h(MCh −mChans)

122 Channel Mobility

(Notice that unlike static renaming, we do not write f (MCh − mChans) = undef .) Since
mChans is known in advance, so is f (mChans). h may possibly be defined over f (mChans)

but that is unhealthy viz. it would cause a name collision between substitute names and
acquired names. To enforce the disjointness between f (mChans) and Amc is thus equivalent
to enforcing that h ◦ f (mChans) = undef , for every possible value of mChans i.e.

∀newch : MCh | newch 6∈mChans •f (mChans ∪ {newch}) = f (mChans) ∪ h(newch)

∧ h ◦ f (mChans) = undef

or equivalently

∀ x • f (x) ∩ (MCh − ({x} ∪ f (x))) = {}

To see this equivalence, let us generalise the equation f (mChans′) = f (mChans) ∪ h(newch).
Since we are concerned with channel-passing input prefix only, we can replace mChans′ by
x ∪ E , for a given x. Then:

∀ x,E | x ∩ E = {} • ∃ h • f (x ∪ E) = f (x) ∪ h(E)

- h ◦ f (x) = undef means that h(E) is defined over (MCh − f (x)) only;
- f (x ∪ E) = f (x) ∪ h(E) implies h(E) is defined over (MCh − (f (x) ∪ {x}));
- Finally, h ◦ f (x) = undef is equivalent to f ◦ f (x) = undef , thus f (x) is disjoint from the
domain of f , dom f . Hence f (x) ∩ (MCh − ({x} ∪ f (x))) = {}.

The following definition summarises the previous discussion.

Definition 4.3.16 (Dynamic renaming). Let f : PMCh → (PMCh → PMCh) | x 7→ fx ,
where fx is injective for all x ∈ PMCh, and

∀ x,E | x ∩ E = {} • ∃ h | h ◦ f (x) = undef • f (x ∪ E) = f (x) ∪ h(E)

A function f that obeys the property above is called a dynamic renaming function.

Example 4.3.17. Consider an environment in which every channel name is prefixed with
the number 0. Let B be a set of channels, then 0.B = {0.ch | ch ∈ B}.

1. Let f : 0.B → 1.B be a renaming function. Define h : 0.B → 1.B | y 7→ f (y), a renaming
function. Then:

i. ∀ x,E | x ∩ E = {} • f (x ∪ E) = f (x) ∪ h(E)

ii. ∀ x • h ◦ f (x) = undef

Thus, in an environment in which every channel name is prefixed with the number 0, the
function f is a valid dynamic renaming function.

Dynamic hiding 123

2. Let

f ′(x) =

f (x) if x ∈ mChans

undef otherwise

f ′ is a static renaming function.

3. Let

f ′′(x) =

f (x) if x ∈ mChans

x otherwise

f ′′ is a dynamic renaming function, since it is defined outside mChans, unlike f ′. f ′′

behaves like the identity function on eventual new channels.

Example 4.3.18. Consider an extension of the preceding 0-prefixed environment with 1-
prefixed channels. That is, for a given set B, the new environment contains channels from
the set 0.B ∪ 1.B only. The function f defined earlier allows renaming channels from the set
0.B only. We would also like to rename channels from the set 1.B.

1. Let g : 1.B → 2.B, then g is a valid dynamic renaming, for the same reason as f previously.
However, g does rename channels in the set 1.B only.

2. f ∪ g is a valid dynamic renaming operation iff ran f ∩ dom g = {} i.e. g ◦ f = undef .6

3. From (2) we can deduce that f ∪ (g − (g ◦ f)) is a valid dynamic renaming operation.
(g − (g ◦ f)) denotes the projection of g on the set (dom g − ran f).

4.4 Dynamic hiding

A process does not need to know at all whether a channel is silent (i.e. hidden from the envi-
ronment) or not. Indeed, the knowledge of a channel confers a communication functionality
(over the given channel), not an abstraction functionality. It is hiding (the operator) that
provides the abstraction functionality. Thus, we may separate communication concerns from
abstraction concerns. In other words, for a given process P, the specification of its interface
IP only signifies that P may communicate through a given channel ch ∈ IP. It does not
matter how and when and if ch was acquired. It is hiding P \ X that specifies in X what
channel is to be considered silent.

Channel mobility has two consequences on hiding. The first is name mismatch.

6dom f and ran f denote respectively the domain and range of the function f .

124 Channel Mobility

Name mismatch. Let P = conceal??κch → [κch]?x → SKIP, let X = {newch}, where we
suppose that κch = newch after the communication. Name mismatch occurs if κch 6= newch
instead. A way of detecting name mismatch may be by testing the value of κch, as shown
below:

P = conceal??κch → (newch?x → SKIP C κch = newch B error !)

A more abstract specification is possible, however. Since any acquired name that should
be silent will be specified in X , we only need to ensure that X effectively contains acquired
names. The set of all mobile channels that have been acquired, denoted by Amc (read
Acquired Mobile Channels), may be calculated from the trace by summing up all the interfaces
that have been recorded from start until termination (including both intermediate and final
states).

The following law states that silent names must belong to the set of acquired names,
independently of how often a name has been acquired and released. The law must be taken
as completing the existing definition for hiding (cf. §2.5.1).

[NoMismatchSpec]
P \ X = (P \ X) ∧ X ⊆ Amc

Amc =̂
⋃
{s | (s, e) ∈ mtr ′}

The second consequence is the possibility of unknown names.

Unknown names. In the presence of channel mobility, silent names may not be known in
advance. For example, what IP addresses a router may acquire during its lifetime is generally
unpredictable. Nonetheless, what is always known is the channel carrier through which any
mobile channel will be acquired. Therefore, specifying that a mobile channel (to be acquired
through a given channel carrier conceal) should be hidden may take the form hide any channel
that is input through channel conceal, assuming that conceal is already in the interface.

An immediate consequence of having unknown names is that X may not be defined. An-
other consequence is that mismatch cannot be tested as illustrated above since no name may
actually be provided for the test. The [NoMismatchSpec] law formulated above may hence
serve as a specification for the eventual value of X . However, [NoMismatchSpec] does not
hint towards a way for building X . We study the construction of X hereafter.

Consider again P = conceal??κch → [κch]?x → SKIP. The value of κch may only be
known at runtime, hence it may not be provided for the definition of X since (by definition)
X must be specified independently of any run of P.

However, since we know that the channel to be hidden will be input through the channel
conceal, we may substitute it (the new channel) with a given name subch, as in the following
process:

Q = (conceal??κch)[subch← (mChans′ −mChans)]→ [κch]?x → SKIP

Dynamic hiding 125

The process Q \ {subch} will then hide the acquired channel as expected. However, such
a solution introduces yet again the problem of name mismatch, in a subtle way. Let R =

conceal![newch] → SKIP be the process that sends the channel newch through the channel
conceal. Then, in P ‖ R, P will receive the channel newch, whereas in Q ‖ R, Q will receive
newch but replace it with subch. That is, when placed in the same environment, P and Q will
exhibit different behaviours: P will communicate through newch, whereas Q will communi-
cate through subch. The hiding operator \ X may be viewed as providing an environment
which hides the channels in the set X .

The previous discussion highlights the fact that when renaming is applied to a process,
it is the purpose of the programmer to place that process in an environment that already
contains the substitute channels. Such is not the case for the process Q above. Unless the
programmer may trigger a similar substitution of newch by subch in the environment when
Q receives newch, the previous approach is not safe. The renaming in Q was introduced
specifically to deal with the hiding environment, as if the hiding operator had changed the
semantics of P into Q. Ideally, a process should be able to deal with whatever channels are
being used in its current environment viz. a process must be defined as independently of its
environment as possible. This issue is related to the problem of closed world vs. open world
semantics, or equivalently, the problem of the relation between the knowledge of a process
and the knowledge of its environment (viz. knowledge of a channel) —cf. §4.6.4.

Instead of employing substitution as shown above, suppose that we had an oracle that
could see into the future. The oracle could observe an execution of P and note down what
channel P has acquired (in the future). Then, any channel name obtained thanks to the ‘fore-
sight’ of the oracle could be used for specifying X . This method requires having confidence
in the oracle, but thanks to the [NoMismatchSpec], we may verify that the oracle has given
us the right channel: if such were not the case, [NoMismatchSpec] would be violated.

Example 4.4.1 (A motivating example). A mobile telecom. network and its operations have
been described in §4.3.4. Operations such as the replacement of a faulty antenna and load
balancing are instances of the addition of network resources, specifically radio links. Whereas
the radio links Client-BTS are visible to clients, many radio links such as BTS-BTS, BTS-
BSC, and BSC-BSC are invisible to clients. Generally, when the latter kind of links are added
to the network, the addition is invisible to clients and constitutes an instance of dynamic
hiding. Certain links are added for a private use of either the network operator or some
external organisation. Such private links are called PBX (Private Branch eXchange); their
addition to the network is invisible to every other network user and constitutes an instance
of dynamic hiding.

In every instance of dynamic hiding cited above, it cannot be said that the channels that
were added into the network were known in advance. Yet, they were meant to be hidden. Some
of the operations may be more complex than others but since they happen so often, dynamic

126 Channel Mobility

hiding can be regarded as a common operation, at least at the implementation level.

A careful analysis of the previous example shows this: although certain silent names are
not known at what may be considered to be the origin of time, they may be hidden only once
they are actually known. The question that we are trying to answer is this: Can we define a
predicate (or program) that computes the set of silent channels?

Such a predicate would take P as input and compute silent channels from the execution
of P, in a first step. Then, in a second step, it would remove silent names from the trace of
P as traditional hiding does.

Let sil denote the set-valued variable that contains channels that should be hidden. sil
must be added to the alphabet of processes.

Definition 4.4.2 (sil, sil ′). sil, sil ′ : PMCh, sil denotes the set of channels that were hidden
in the previous execution; sil ′ − sil denotes the set of channels to be hidden between the start
and the end of the current observation.

Remark that every process may be written in the form of the hiding operator:

P = P \ {}

i.e.

P = P \ X where X = {}

In other words, for X 6= {}, any process of the form P or either P \ X is equivalent to the
process ∃ sil0 • P \ sil0. Thus, any process may be seen as one that assigns a value to the
variable sil.

In what follows, we discuss how to represent mobile CSP processes as processes that
contain the variable sil in their alphabet.

4.4.1 From mobile processes to silencing processes

In this section we discuss how (mobile) CSP processes compute the set of silent names, under
the traditional hiding operator \ X . In order to make that computation easier, we will try
to build processes that may be written under an expression with leftmost hiding suffix e.g.
P \ X where P does not contain a hiding suffix. Processes in that form will be said to be in
hiding normal form (or HNF). Whilst this consideration is syntactic at first, it will provide
the basis for the semantic characterisation of processes that have sil, sil ′ in their alphabet,
called silencing processes.

Notation: The following notation will be used to indicate how a given process P computes
the value of sil: P ⇒ sil ′ = X . The value of sil is given by a process or a function (not

Dynamic hiding 127

represented explicitly) that reads a process expression and returns the corresponding value
of sil. We will also write ⇒ sil := X # sil := sil ∪Y in place of say ⇒ sil ′ = X ∪Y to indicate
how the value of sil may be computed step by step.

For ease, we will consider a notion of atomic process, written P as usual. Thanks to this,
we can build the value of sil compositionally. The assumption of atomicity is reasonable.
For example, whether one writes x := 2 or equivalently x := 1 # x := x + 1 poses no problem
for the computation of the set of silent names, which here is empty. Thus for ease, we will
consider single expressions of the form x := e and doA(a) to be atomic expressions.

First, we discuss how to interpret any static process as one that computes the value of
the variable sil.

Let P denote a SN healthy process. From what precedes, we have

(P = P \ {})⇒ sil ′ = {} P \ X ⇒ sil ′ = X

However, since P \ X = P \ (X ∩ I P) (or equivalently, in the notation of mobile CSP)
P \ X = P \ (X ∩mChans), we must rather have:

P \ X ⇒ sil ′ = X ∩ I P

Since (P \ {}) \ X = P \ X , we have:

(P \ {}) \ X ⇒ sil ′ = X

⇒ sil := {} # sil := sil ∪X

More generally (P \ X) \ Y = P \ X ∪Y , we have:

(P \ X) \ Y ⇒ sil ′ = X ∪Y

⇒ sil := X # sil := sil ∪Y

Consider the case (P # Q), where P and Q are both SN healthy, and P # Q is SN healthy.
Then,

(P # Q = P \ {} # Q \ {})⇒ sil ′ = {}

⇒ sil := {} # sil := sil ∪ {}

128 Channel Mobility

Similarly,

((P # Q) \ X = P \ X # Q \ X)⇒ sil ′ = X

⇒ sil := {} # sil := sil ∪X

⇒ sil := X # sil := sil ∪X

The above equivalence means that P # Q may be viewed as atomic w.r.t. the computation of
sil. This also shows that the computation of sil is made easier by pushing the hiding suffix
\ X leftmost.

Consider P # Q \ Y . By definition, Y ∩ I P = {}, otherwise the composition would be
invalid viz. it would violate the healthiness condition R1. Indeed, if ch ∈ Y ∩ I P and
ch 6∈ (I Q −Y), then tr may contain events not in tr ′. Thus,

(P # Q \ Y = P \ {} # Q \ Y)⇒ sil ′ = Y

⇒ sil := {} # sil := sil ∪Y

Ideally, we would like to write P # Q \ Y = (P # Q) \ Y . This is correct since
I P ⊆ (I Q −Y) implies that I P ⊆ I Q.

Consider P \ X # Q. Then (I P −X) ⊆ I Q. Let Z = I Q − (I P −X).
If X ∩I Q = {} then P \ X # Q = P \ X # Q \ X . However, P \ X # Q 6= (P # Q) \ X since

I P may have more elements than I Q. For the latter equality to hold, we need to extend
the event alphabet of Q with at least the set I P − I Q. Thus sil ′ = X .

Otherwise, if X ∩ I Q 6= {}, then P \ X # Q 6= P \ X # Q \ X . This means that after
assigning X to sil in P \ X , we can no longer write sil := sil ∪{} as we have been doing thus
far. However, with the help of the renaming operator, it is possible to push \ X leftmost.

Our rationale is the following: if we separate the set X ⊆ I P from the set X ⊆ I Q, then
we can safely hide the first whilst preserving the second. Indeed, channels from the set X are
removed from P alone, and not from Q.

We may also regard the problem from the point of view of visible names. In effect, in
P \ X # Q, all the names in I Q are visible, and so are all the names in (I P − X) since
(I P − X) ⊆ I Q (by definition). Thus all that we need to do is to preserve the visibility of
the set of visible names i.e. the interface.

Let 0.X = {0.x | x ∈ X} be the substitute of X in P. Then,

P \ X = (P[0.X ←X]) \ 0.X

Simply replacing P \ X by (P[0.X ← X]) \ 0.X is not enough, since we would like to obtain
(P # Q) \ X in the end, i.e. P[0.X←X] # Q. In order for P[0.X←X] # Q to be valid, we need
to extend the alphabet of Q with 0.X .

Dynamic hiding 129

The event alphabet extension of a process Q with a set of events B is denoted by Q+B =

Q ‖ STOPB. It does not engage in any event of the set B.

We have I Q = (I P − X) ∪ Z ∪ X = (I (P[0.X ← X]) − 0.X) ∪ Z ∪ X , thus I Q+0.X =

I Q ∪ 0.X . We obtain the following equivalence:

P \ X # Q = (P[0.X ←X] # Q+0.X) \ 0.X

Thanks to having a leftmost hiding suffix, the value of sil is computed as shown earlier.

Consider P ‖ Q. Then,

(P ‖ Q = P \ {} ‖ Q \ {})⇒ sil ′ = {}

⇒ sil := {} ∪ {}

If I P ∩ I Q 6= {}, then

((P ‖ Q) \ X = P \ X ‖ Q \ X)⇒ sil ′ = X

⇒ sil := X ∪X

and

(P \ X ‖ Q \ Y = (P ‖ Q) \ X ∪Y)⇒ sil ′ = X ∪Y

⇒ sil := X ∪Y

If I P ∩I Q 6= {}, then it is possible to hide a channel in I P ∩I Q for P, but not for Q. The
situation is similar to the case P \ X # Q earlier. To obtain a leftmost \ X , all that we need
to do is to separate the hidden channels of P that are visible in Q, by using renaming.

Let S = I P ∩ I Q. Then, rename S ∩X to 01.(S ∩X), and S ∩Y to 02.(S ∩X):

P \ X ‖ Q \ Y =

(
P[01.(S ∩X)← (S ∩X)] ‖

Q[02.(S ∩Y)← (S ∩Y)]

)
\

(
01.(S ∩X) ∪ 02.(S ∩Y)∪

(X − S) ∪ (Y − S)

)

Notice that we could have more simply renamed X to 01.X , and Y to 02.Y . Then,

P \ X ‖ Q \ Y = P[01.X ←X] \ 01.X ‖ Q[02.Y ←Y] \ 02.Y

= (P[01.X ←X] ‖ Q[02.Y ←Y]) \ 01.X ∪ 02.Y

In conclusion, it is possible to reduce every (SN healthy) CSP process P to a form P ′ \ X
with a single, leftmost \ X (P ′ some process).

We will refer to the form of a CSP process with a single leftmost \ X as its hiding normal
form or HNF. From our previous formalisation two things have been achieved: the transfor-

130 Channel Mobility

mation of (static) CSP processes into their hiding normal form, and the computation of the
value of sil. In fact, the HNF entirely determines the value of sil.

Let silOf (P) denote the process that computes the set of silent channels of a process P
that is in hiding normal form. Then,

silOf (P) = P+sil # sil := sil ∪X = P ∧ sil ′ = sil ∪X

The set {silOf (P) | P is SN healthy} yields a class of processes that have sil in their alpha-
bet. However, the method for their construction requires starting from SN healthy processes
which implies that we are not able yet to characterise the class of predicates that have sil
in their alphabets, the class of interest to us. In other words, we need to determine healthi-
ness conditions for characterising processes with sil in their alphabet. We return to this latter.

Let us now consider DN healthy processes. A DN healthy process must have at least
two snapshots. Let P and Q denote distinct snapshots, where P and Q are both SN healthy.
Then P # (κ ch.[x]→ SKIP) # Q is DN healthy.

The computation of the value of sil for SN healthy processes was studied previously,
hence we only have to focus on channel-passing input and output prefixes.

We will first discuss the case (P # (κ ch.[x] → SKIP) # Q) \ X , and determine if like in
static CSP, the equivalence with P \ X # (κ ch.[x]→ SKIP) \ X # Q \ X holds.

Consider the output of a channel. Let mChans = {ch1, ch2, ch3} at the beginning of P, and
suppose that we lose the channel ch3 between P and Q viz. the process (P # (κ ch![ch3] →
SKIP) # Q) \ X . Then mChans′ = {ch1, ch2} at the end of κ ch![ch3]→ SKIP (granting ter-
mination). That is, the initial interface at the beginning of P is mChans1 = {ch1, ch2, ch3};
and the interface at the beginning of Q is mChans2 = {ch1, ch2}. Let X = {ch1, ch3, ch100}.
Then

(P # (κ ch![ch3]→ SKIP) # Q) \ X = P \ X # (κ ch![ch3]→ SKIP) \ X # Q \ X

Consider the input of a channel. Let mChans = {ch1, ch2} at the beginning of P, and suppose
that we acquire a new channel ch3 between P and Q viz. the process (P # (κ ch??[ch3] →
SKIP)#Q) \ X . Then mChans′ = {ch1, ch2, ch3} at the end of κ ch??[ch3]→ SKIP (granting
termination). That is, the initial interface at the beginning of P is mChans1 = {ch1, ch2}; and
the interface at the beginning of Q is mChans2 = {ch1, ch2, ch3}. Let X = {ch1, ch3, ch100}.

(P # (κ ch??[ch3]→ SKIP) # Q) \ X 6= P \ X # (κ ch??[ch3]→ SKIP) \ X # Q \ X

The issue lies with Q \ X . Notice that ch3 was provided manually in X , however, ch3

is actually unknown before runtime. As in static CSP, it should not be possible to hide a

Dynamic hiding 131

channel that has not been acquired yet. For a DN healthy process this means that any silent
name must belong to the initial interface whose value is given by the variable mChans (viz.
of the very first snapshot).

Thus, even in the case P \ X # (κ ch??[ch3] → SKIP) \ X # Q \ Y (Y 6= X), Y must
belong to the interface of the very first snapshot since at the time of the definition of Q,
the initial interface of Q is not entirely determined. The initial interface of Q is partially
determined only: it will eventually contain channels from the interface of P, channels that
are hence known. As a consequence we can assert that for any DN healthy process R

R \ X ⇒ sil ′ = X ∩mChans

In order the solve the issue of unknown names, we only need to separate known ch3 ∈ I Q
from unknown ch3 ∈ X . Remark that ch100 in the example above poses no problem since
ch100 is not acquired at any point.

We have used the same separation technique in the static case earlier. When dealing with
the process P \ X # Q 6= P \ X # Q \ X (where X ∩ I Q 6= {}), we separated the set X ⊆ I P
from the set X ⊆ I Q. This notably allowed us to obtain a leftmost \ X .

Similarly, by regarding the problem from the point of view of visible channels, all the
names that have been acquired at least once must be visible. We only need to preserve their
visibility.

In order to separate ch3 ∈ I Q from ch3 ∈ X , as before, we will substitute X by 0.X .
However, this is not enough. In the process

(κ ch??[ch3]→ SKIP) \ X # Q \ X

we cannot guarantee that 0.ch3 will not be the channel that is actually input. Thus, we
must also substitute ch3 ∈ I Q, hence, every acquired channel. See that ch3 ∈ I Q cor-
responds with ch3 ∈ (mChans′ − mChans). Hence, after an input prefix, we will replace
(mChans′ −mChans) by 1.(mChans′ −mChans).

Let su = mChans + 1.(mChans′ −mChans).

P \ X # (κ ch??[ch3]→ SKIP) \ X # Q \ X

=
P[0.X ←X] #

(κ ch??[ch3]→ SKIP)[0.X ←X , su/mChans′] #

Q[0.X ←X]

 \ 0.X

Notice how any acquired name x is renamed to 1.x, thus, the initial interface of Q will contain
1.x. Also note that the renaming operation P[0.X←X] applies to the initial interface mChans
only (unknown names cannot be renamed ‘manually’).

132 Channel Mobility

Similarly, we have:

P \ X # (κ ch??[ch3]→ SKIP) \ Y # Q \ Z

=
P[0.X ←X] #

(κ ch??[ch3]→ SKIP)[0.Y ←Y , su/mChans′] #

Q[0.Z ← Z]

 \ 0.X ∪ 0.Y ∪ 0.Z

In accordance with sequential composition, Y ∩(I P−X) = {} and Z ∩(I P−(X ∪Y)) =

{}. In words, the procedure for obtaining a leftmost \ X is the following: rename the initial
interface, the very first value of mChans, to 0.mChans; rename any new channel newch to
1.newch; rename any set X in a hiding suffix \ X to 0.X . Then, only names in 0.mChans∩0.X
will effectively be silent.

We have thus defined a hiding normal form (HNF) for DN healthy processes also. Note
that the HNF form defined above applies to static hiding, which as we have argued, does not
permit to hide names that will only be known at run time.

As earlier, the set {silOf (Q) | Q is DN healthy} yields a class of processes that have sil
in their alphabet.

More generally, the set {silOf (Q) | Q is a mobile process} yields all the interesting pro-
cesses that compute the set of silent channels under static hiding. In order to define the
dynamic hiding operator, we will need to extend the previous class of processes. Before dis-
cussing such an extension, it is necessary for us to characterise more decisively that class of
processes.

Recall

silOf (P) = P+sil # sil := sil ∪X = P ∧ sil ′ = sil ∪X

Certainly, by composing two processes P and Q that are in hiding normal form and then
reducing the result of the composition again to hiding normal form, we will obtain a process
that is in hiding normal form. Thus, by composing silOf (P) and silOf (Q), we should obtain
a process with sil in its alphabet, a process that yields the expected value of sil (according to
HNF).

The process sil := X0 # P+sil is also a process that has sil in its alphabet. Yet, the hiding
normal form of processes has shown that sil may not be assigned just any value. In what
follows, it is our objective to describe the rules that govern assignments to sil, and formalise
these rules as healthiness conditions.

In order to obtain the HNF form of processes of the form P \ X #Q \ Y , it was necessary to
ensure that the set-value of sil only ever grows, i.e. sil may take successively the values X , then

Dynamic hiding 133

X ∪Y . Thus, every name from any set X defined after a hiding suffix \ X may by default be
considered as silent. The renaming introduced in the definition of the HNF was there to ensure
that some of these silent names are vacuous, according to the law P \ X = P \ X ∩mChans.

Definition 4.4.3 (S1). S1 P = P ∧ sil ⊆ sil ′

In the process P # Q \ Y , the visible names of P may not be contained in sil ′. So in
P \ X # Q \ Y , I P − X may not be contained in sil ′. The hiding normal form (P[0.X/X] #
Q+0.X) \ 0.X ∪Y preserves the separation between the set of visible names I P − X , and
the set of silent names sil ′. That that separation is preserved is implemented in the equality
between P \ X #Q \ Y and its HNF. However, whilst the silOf () transformation will preserve
that separation through yielding P ∧ sil ′ = 0.X , it is nonetheless possible to build the
silencing process say P ∧ sil ′ = K for some set of channels K , instead. Whilst we may
build a set say nosil of visible names, in conjunction with sil, yet because sil and nosil are
complementary, sil should entirely determine both silent and visible names. To ensure the
preservation of visible names, we must simply ensure that sil ′ may not contain any new name
from the initial interface besides those already in sil.

Definition 4.4.4 (S2). S2 P = P ∧ sil ′ ∩ (mChans − sil) = {}

In order to avoid the possibility of manually adding unknown names for DN healthy
processes, we ensured that no acquired name may ever be passed to sil, when defining the
hiding normal form of DN healthy processes.

Definition 4.4.5 (S3). S3 P = P ∧ sil ′ ∩ (mChans′ −mChans) = {}

The law P \ X = P \ X ∩mChans could be written as the healthiness condition:
P = P ∧ sil ′ ⊆ mChans. However, such a condition is too strong because it prevents
from adding into sil even channels that may never be in the interface (presumably). Since
static hiding allows passing channels that are not in the interface to the hiding operator, we
should not enforce a stricter definition of sil. The healthiness condition S3 is sufficient since
it prevents the addition of future channels.

As already stated, the hiding normal form above was given for the static hiding operator,
hence it may properly be called static hiding normal form. The healthiness conditions S1,
S2, and S3 thus characterise mobile CSP processes that may be written in static HNF.

In order to define dynamic hiding, we must allow assignments of the form ∃newch ∈
mChans′ • sil := sil ∪ {newch}.

Let conceal(κ ch??newch) denote the process that is ready to engage in a given channel-
passing input event κ ch??newch first, and then adds the value of the variable newch into the
variable sil. Then,

conceal(κ ch??newch) =̂ κ ch??newch → sil := sil ∪ {newch}

= κ ch??newch ∧ (sil ′ = sil C wait ′ B sil ′ = sil ∪ {newch})

134 Channel Mobility

The set

{silOf (Q) | Q is a mobile process} ∪ {conceal(c.[e]) | c.[e] is a channel − passing input event}

yields all the processes that have sil in their alphabet, of interest to us. Processes from the
set {silOf (Q) | Q is a mobile process} have a static hiding normal form, hence they may be
characterised by the healthiness condition S1 ◦ S2 ◦ S3 (the composition order is irrele-
vant since the healthiness conditions are all conjunctive). However, processes from the set
{conceal(c.[e]) | c.[e] is a channel − passing input event} are not S3, since they are defined
such that ∃newch ∈ mChans′ • sil := sil ∪ {newch}.

Processes that have sil, sil ′ in their alphabet, and that are S1 ◦ S2 will be called silencing
processes.

Consider the process P \ X to be in static hiding normal form. Then P itself does not
contain in its expression the static hiding operator. The effect of the silOf () transformation
is actually to replace P \ X by a process of the form P ∧ sil ′ = X . The latter process, whilst
it contains the variable sil in its alphabet, does not perform hiding. This means that the
postfix (static) hiding operator \ X is not defined over silencing processes yet.

We will now define the operator that performs hiding over silencing processes. Let
hide(P,X) = P \ X denote the application of static hiding to a silencing process P. Then
hide(P,X) must be S1 ◦ S2 ◦ S3, as shown above. Instead of static hiding, we aim to define
the (dynamic hiding) operator hide(Q) that takes a silencing process Q as parameter and
returns Q \ sil ′. Note that Q \ sil ′ is just an abuse of notation and is meant only to illustrate
the ‘hiding’ effect of the dynamic hiding operator.

Let P be a silencing process, then P \ {•} will denote the process that hides channels
contained in the set-value of the variable sil ′.

The hiding normal form of a CSP process allowed us to write any process P in the form
P \ X . Using the silOf () transformation, processes in hiding normal form P \ X were trans-
lated into silencing processes of the form P ∧ sil ′ = X . The dynamic hiding operator P \ {•}
is meant to translate a silencing process P ∧ sil ′ = X into the silencing process P \ sil ′. It is
thus as if the suffix \ {•} were always leftmost, as in hiding normal form.

However, notice that P \ {•} # Q = P \ sil ′ # Q. This means that we obtain in result the
same effect of the static hiding operator \ X (except that sil ′ may contain acquired channels
in mChans′). As a consequence, \ {•} has a scoping effect on silencing processes: just like in
P \ X # Q the elements of X are not hidden in Q, so the value of sil at the end of P \ {•}

Dynamic hiding 135

should not be passed forward to the next process.

P \ {•} = ∃ tra, refa, sila •



P

 tra/tr ′, refa/ref ′,mChansA/mChans,

mChansB/mChans′, sila/sil ′

 ∧
tra = tr ′ � (mChans − sil ′) ∧

refa = ref ′ − sil ′ ∧

mChansA = mChans − sil ′ ∧

mChansB = mChans′ − sil ′ ∧

sila = {}


SKIP

The previous definition works for silencing processes that may be written in hiding normal
form. However, it does not work for the silencing process conceal(κ ch??newch). Indeed,
the substitution of mChans′ by mChansB = mChans′ − sil ′ above implies that the acquired
channel newch will be removed from the alphabet, in the process conceal(κ ch??newch) \ {•},
which is unhealthy. Indeed, the input of a new channel is meant to determine the interface
of the next snapshot. That is, in the process conceal(κ ch??newch) # Q, we expect newch to
belong to the interface of Q. We also expect newch to be hidden at the end of the whole
process, since the hiding operator is supposed to hide the use of a channel, not its
acquisition (viz. its movement). However, the channel carrier κ ch used for acquiring a new
channel may be hidden since it belongs to the current interface. Thus we also define:

conceal(κ ch??newch) \ {•}

=

∃ tra, refa, sila •



P

 tra/tr ′, refa/ref ′,mChansA/mChans,

mChansB/mChans′, sila/sil ′

 ∧
tra = tr ′ � (mChans − sil) ∧

refa = ref ′ − sil ∧

mChansA = mChans − sil ∧

mChansB = mChans′ − sil ∧

sila = {}


SKIP

Note that the operator \ {•} is not S1 healthy, because it ends the scope of sil ′, by resetting
the value of sil ′ to the empty set {}.

Recall that a silencing process P represents a mobile process that is in hiding normal
form, say f (P) \ X , f being a given transformation. The suffix \ X is the only one to cause
an increase of the value of sil i.e. sil ′ = sil ∪ X , when X 6= {}. Hence the silencing process
P \ {•} may be viewed as the process f (P) \ X \ {•} = f (P) \ X . Since the suffix \ X is

136 Channel Mobility

always leftmost, the value of sil ′ is always increased at the end of a process expression.
However, the silencing process conceal(κ ch??newch) causes an increase of the value of sil

i.e. sil ′ = sil ∪{newch}, but before the expression of the process for which the hiding is valid.
That is, we must write conceal(κ ch??newch) # Q \ {•} if we want to hide newch in Q.

The difference between \ X , which is leftmost, and conceal(κ ch??newch), which is right-
most, explains the semantics of \ {•}: that hiding must be leftmost, otherwise it is vacuous.
Nonetheless, the semantics provided above may be slightly unsatisfactory.

Indeed, given that silencing processes compute the set of names that must be silent,
it may be argued that using \ {•} is actually redundant with the variable sil, and that
it should not be necessary for the programmer to explicitly write \ {•} in process expres-
sions. That is, the programmer may expect that for any silencing process P, P = P \ {•}.
Thus, if conceal(κ ch??newch) is the last operation in a process expression, then hiding
newch will be vacuous; however, if conceal(κ ch??newch) precedes a given process Q, as
in conceal(κ ch??newch) # Q, then newch will be hidden in Q.

Definition 4.4.6 (S4). S4 P = P \ {•}

S4 is very suggestive of a hiding normal form, but this time for silencing processes them-
selves. Except conceal() and P \ {•}, every other silencing process has been constructed
from the hiding normal form of mobile processes. Since P \ {•} = P \ sil ′ for all P that
do not contain the hiding suffix \ {•}, we can deduce that the equivalence P = P \ {•}
holds. Recall that all processes that are in (static) hiding normal form are characterised by
the healthiness condition S1 ◦ S2 ◦ S3. However, the operator \ {•} is not S1 healthy since
it has a scope ending effect, formalised by the substitution of sil ′ by the empty set {}. The
healthiness condition S1, which requires that sil ⊆ sil ′, may be considered to be necessary
for characterising processes that are in hiding normal form, since it permits to write equiva-
lences of the form P \ X op Q \ Y = (f (P) op g(Q)) \ f (X) ∪ g(Y), (where f and g are given
transformations, op a given operator) as shown earlier. Therefore, the problem of defining
S4 healthy processes is the problem of giving a hiding normal form to silencing processes.

To solve that problem, we have to remove the scope ending effect of \ {•}, so that it
can be S1 healthy. We also have to separate sil ∈ I P from sil ∈ I Q, in any sequential
composition of the form P \ {•} # Q \ {•}, just like we did for P \ X # Q \ Y . Similarly for
parallel composition.

Every silencing process for which sil ′ ∩mChans = {} is S4. This comes from the equiv-
alence P \ {•} = P \ sil ′. For any P not mentioning \ {•}, we have P = (P ∧ sil ′ = {}) =

P \ {•} = P \ {}.

Every silencing process that has a leftmost \ {•}, e.g. P \ {•}, is S4. This comes from
the equivalence P \ {•} = (P \ {•}) \ {•}. Once the channels in sil ′ have been hidden a first
time, hiding them a second time becomes vacuous.

Dynamic hiding 137

Equivalences of the form P \ X op Q \ Y = (f (P) op g(Q)) \ f (X) ∪ g(Y) have been
built earlier. The process on the right hand side of the equality is trivially S4. Below we
define operators op that ensure that the composition of two S4 processes yield an S4 process.

The normalised hiding operator, denoted by \HNF {•} behaves like \ {•}, but it does not
replace sil ′ by {}.

P \HNF {•} = ∃ tra, refa •



P

 tra/tr ′, refa/ref ′,mChansA/mChans,

mChansB/mChans′

 ∧
tra = tr ′ � (mChans − sil ′) ∧

refa = ref ′ − sil ′ ∧

mChansA = mChans − sil ′ ∧

mChansB = mChans′ − sil ′


SKIP

conceal(κ ch??newch) \HNF {•}

=

∃ tra, refa •



P

 tra/tr ′, refa/ref ′,mChansA/mChans,

mChansB/mChans′

 ∧
tra = tr ′ � (mChans − sil) ∧

refa = ref ′ − sil ∧

mChansA = mChans − sil ∧

mChansB = mChans′ − sil


SKIP

The normalised sequential composition operator, denoted by P \HNF {•} #HNF Q \HNF {•},
pushes the hiding operator leftmost as follows:

P \HNF {•} #HNF Q \HNF {•} = (P[0.sil ′← sil ′] # Q+0.sil) \HNF {•}

The normalised parallel composition operator, denoted by P \HNF {•} ‖HNF Q \HNF {•},
pushes the hiding operator leftmost as follows:

P \HNF {•} ‖HNF Q \HNF {•} = (P[01.1.sil ′← 1.sil ′] ‖ Q[02.2.sil ′← 2.sil ′]) \HNF {•}

where sil ′ = 1.sil ∪ 2.sil

Note that 1.sil and 2.sil denote local values of sil in P and Q respectively, whereas 01.1.sil
(resp. 02.2.sil) denotes the set {01.x | x ∈ 1.sil} (resp. {02.y | y ∈ 2.sil}).

138 Channel Mobility

The process P[0.sil ′ ← sil ′] renames the channels in P that are in the set-value of sil ′.
It should not be confused with the process P[0.sil ′/sil ′], which substitutes the value of the
variable sil ′ by 0.sil ′. P[0.sil ′ ← sil ′] substitutes the channels from sil ′ by those in 0.sil ′

for every variable that ranges over channels, including tr , ref ,mChans, sil, and their dashed
counterpart.

4.4.2 The semantics

In this section we summarise all the results discussed earlier. The highlight here is the seman-
tics for the dynamic hiding operator. The links with mobile CSP processes are also discussed.

The following definition characterises silencing processes.

Definition 4.4.7 (Silencing processes). A silencing process is a (MC healthy) mobile process
whose alphabet is extended with the variables sil, sil ′, and additionally satisfies the healthiness
conditions S1 and S2.

The healthiness conditions for silencing processes are defined below.

Definition 4.4.8 (S1-3). S1-3 =̂ S1 ◦ S2 ◦ S3

S1 states that the fact that a channel was hidden previously does never change. S2 states
that a visible channel may not be hidden subsequently. S3 states that unknown channels
may not be silent.

All the previous healthiness conditions are conjunctive (cf. §4.3.1), hence they can be
composed together in any order. They are also monotonic and idempotent.

As discussed earlier, processes that obey the previous healthiness conditions define mobile
processes that have a hiding normal form under the static hiding operator.

Definition 4.4.9 (Static hiding normal form). A silencing process is in static hiding normal
form (or static HNF) if and only if it is S3.

Not all the interesting silencing processes are S3 healthy. The following process, denoted
by conceal(κ ch??newch), is ready to engage in channel-passing input prefix first, and then
increases the set of silent channels on termination.

Definition 4.4.10 (conceal(κ ch??newch)).

conceal(κ ch??newch) =̂ κ ch??newch ∧ (sil ′ = sil C wait ′ B sil ′ = sil ∪ {newch})

conceal(κ ch??newch) is not S3. That is because it allows sil ′ to contain channels that
have been acquired during the process’s activation.

A particularly interesting silencing process, denoted by P \HNF {•}, is the process that
behaves like the process P except that no channels in the set of silent names of P may be
visible.

Dynamic hiding 139

Definition 4.4.11 (Dynamic hiding). Let P = S1-3(P), then:

P \HNF {•} = ∃ tra, refa •



P

 tra/tr ′, refa/ref ′,mChansA/mChans,

mChansB/mChans′

 ∧
tra = tr ′ � (mChans − sil ′) ∧

refa = ref ′ − sil ′ ∧

mChansA = mChans − sil ′ ∧

mChansB = mChans′ − sil ′


SKIP

conceal(κ ch??newch) \HNF {•}

=

∃ tra, refa •



P

 tra/tr ′, refa/ref ′,mChansA/mChans,

mChansB/mChans′

 ∧
tra = tr ′ � (mChans − sil) ∧

refa = ref ′ − sil ∧

mChansA = mChans − sil ∧

mChansB = mChans′ − sil


SKIP

We have chosen to present the normalised semantics only, because we are interested in
processes that are S1 healthy.

Finally, the hiding normal form for silencing processes is characterised below. It allows
defining processes for which the channels in sil, sil ′ are effectively silent.

Definition 4.4.12 (Dynamic hiding normal form). A silencing process is in dynamic HNF
if and only if it is S4.2.

S4.2 P = P \HNF {•}

Every mobile process may be transformed into a silencing process. All that is needed is to
transform the mobile process into a hiding normal form and then to extract the set of silent
channels. This is the role of the transformation silOf () introduced in the previous section.
However, giving precise semantics to silOf () is complicated by the fact it is very difficult to
characterise semantically, in mobile CSP, processes that have a leftmost hiding suffix \ X .
Indeed, such a characterisation may take the following form

HNF P = ∃ f a transformation,X ⊆ I P | f (P) 6= HNF ◦ f (P) • f (P) \ f (X)

140 Channel Mobility

where f (P) 6= HNF ◦ f (P) denotes that f (P) does not itself contain a hiding suffix.
The other possibility would be to define the transformation silOf () over the syntax of

mobile processes, but that would require a substantial amount of work. Instead, silencing
processes allow us to model HNF as the healthiness condition S1-3 ◦ S4.2 under static
hiding, and S1 ◦ S2 ◦ S4.2 under dynamic hiding.

In the opposite direction, every S1-3 healthy silencing process may be transformed into
a mobile process of the form P \ sil ′. The silencing process conceal(κ ch??newch) may be
transformed into the mobile process (κ ch??newch)[subch←(mChans′−mChans)], for a given
subch. However, the definition of \ {•} shows that the substitute channel subch may not be
hidden in the process ((κ ch??newch)[subch← (mChans′ −mChans)]) \ {subch}, since subch
will be used only in the subsequent snapshot. That notably ensures that hiding does not
cancel the effect of channel-passing input. In sum, we may probably encode the dynamic
hiding operator in mobile CSP, but that would involve defining a renaming procedure that
could be rather complex (given that it must apply to all processes in any environment or
execution context).

The following theorem determines how to encode the static hiding operator \ X using the
dynamic hiding operator \HNF {•} (or \ {•} - the choice of either is a matter of preference).

Theorem 4.4.13. Let P be a mobile process viz. such that sil, sil ′ 6∈ αP. Then,

P \ X = var sil := X # (P+sil) \HNF {•} # end sil

Proof. In the semantics of \HNF {•}, simply replace sil ′ by X . The result is P \ X (after
ending the scope of sil, sil ′).

Example 4.4.14. The process that acquires five new channels consecutively but hides the
first four channels. The process also outputs on each channel that has been acquired, but only
the last output should be visible.

SelectHid =̂ n := 1 # µY •

 (conceal(move??κ x) # κ x!“ch”+n→ n := n + 1)#

(Y \ {•}C n < 5Bmove??κy → κy!“ch”+n)→ SKIP



Example 4.4.15 (PBX (Private Branch eXchange)). The part of a mobile telecom. network
that is reserved/leased for a private use either by the network operator itself or by an external
organisation is called a PBX. We may model a PBX as a BTS (or part thereof) in which
every channel is private.

- A very simple PBX is obtained simply by indicating the set of leased channels, denoted

Dynamic hiding 141

by pbx, when they are already known.

PBX(k) =̂ (Clik ‖ (BTSk ||| Monitor)) \ pbx

pbs =̂ {k.talk | k ≤ max}

- The public channels of a network are accessible to every possible client. On the other hand
leased channels are accessible to private clients only. The network that has both public and
private parts is defined below.

UNI 2 =̂ Public ‖ PBX

Public =̂ Clim ‖ (BTSm ||| Monitor)

where 1..k, k + 1..m. Hence the channels of the process PBX are disjoint from those of the
process Public.

- The creation of a new PBX may be defined as the process that acquires a number k of
new links and then hides them.

newPBX(k) =̂ (privClik ‖ (privBTSk ||| Monitor)) \ {•}

privClik =̂ ‖
1≤j≤k j.privCli

privCli =̂ conceal(alloc??[talk])→ Chat

privBTSk =̂ ‖
1≤j≤k j.privTRE

privTRE =̂ conceal(new??[talk])→ (n + 1).TRE ′ C n ≤ max B SKIP

- A complex PBX may be defined as the process that adds new leased channels to an existing
network.

ComplexPBX =̂ 2n≤i<max • PBX i

PBXn+1 =̂ expand(PBXn , k)

= PBXn ‖ newPBX(k)

- A complex user-network interface has both a complex PBX and a complex BTS for elements.

ComplexUNI 2 =̂ ComplexPublic ‖ ComplexPBX

ComplexPublic =̂ Clim ‖ (ComplexBTSm ||| Monitor)

142 Channel Mobility

4.5 Links with static CSP

The definition of mobile CSP has required the introduction of new symbols such as dtr ,
dref , MCh, and Σ. In order to define the link with static CSP, it is necessary to unify both
notations. We may use A to stand for the set of authorised actions in both theories. Hence,
we may discard Σ.

A subset of A is constituted of communication events, and is entirely determined by the
corresponding set of channels, say C. Whether some of the channels in C may be moved
or not depends on the theory considered: in static CSP, none of the channels in C may be
moved; in mobile CSP, a subset of C, denoted by MCh contains mobile channels.

The variables tr and ref may be used to denote the trace and refusal of a process in
either theories. For simplicity, we consider that in both cases, the traces are alphabetised (as
defined earlier), and that we omit mentioning the interface element for static CSP (since the
interface is a constant therein).

4.5.1 From static CSP to mobile CSP

Assuming that traces are alphabetised, we see that the healthiness condition SN entirely
characterises static processes. Recall:

SN P = P ∧

 ∀ (s1, e1), (s2, e2) : P(Chans ∪MCh)× Σ | # mtr ′ ≥ 2 •

(s1, e1)a (s2, e2) ∈ mtr ′ ⇒ s1 = s2


Literally, SN implies that by default, a static process may not be understood as one that
cannot acquire (resp. release) channels, in the sense that it does not have the capability for
doing so. Rather, a static process is one that may not, under any circumstances, realise any
channel-passing operation.

For illustration, (i) consider early desktops. They were manufactured such as to have a
single Internet port, the Ethernet port. No matter what environment they were put in, they
were never ‘capable’ of being added new ports. This illustrates a case when the limitation is
in the device, such that channel mobility is impossible even in an environment where channel
mobility is possible. In contrast, modern desktops are manufactured such that new ports
may be added to them.

(ii) Consider a modern desktop, and suppose that the desktop has currently an Ethernet
port only. Consider the NoWifi country, a country where WIFI ports may not reside (say,
they are automatically disintegrated by some mystical phenomenon). Then, if we place a
modern desktop in the NoWifi country, the desktop may never receive an additional WIFI
port. This illustrates a case when the limitation is in the environment, such that channel
mobility is impossible although the device may otherwise receive new channels.

Syntactically, a static process would not even contain a channel-passing operation in its
expression/definition. Semantically, this means that the presence of one such operation would

Links with static CSP 143

lead to undefinedness, which is signified by SN being a healthiness condition. In conclusion,
SN defines the identity function from static CSP to mobile CSP. Hence, it may not permit
the transformation of a static network SN process into a dynamic network DN process.

4.5.2 From mobile CSP to static CSP

SN infers that static processes form a subset of mobile processes. The question here is the
transformation of a DN healthy process into a SN healthy process. Recall:

DN P = P ∧

 ∃ (s1, e1), (s2, e2) : P(Chans ∪MCh)× Σ •

(s1, e1)a (s2, e2) ∈ mtr ′ ⇒ s1 − s2 6= {}


We have seen that we may divide a dynamic network into snapshots, each snapshot

defining a distinct topology (cf. §4.2). Syntactically, a snapshot is determined by the presence
of a channel-passing operation in the process expression. In other words, a dynamic topology
is an interleaving of static topologies.

Suppose then that we project each topology onto a unique static network such that: if P
did not already own a mobile channel mch in the mobile network, then P will continuously
refuse to engage in sch, the static equivalent of mch in the static network. Then, it may be
possible to simulate a mobile network by a static network.
We emit the following hypothesis:

[HypothesisDNtoSN] A DN process may be simulated by a SN process.

In order to discuss the possible transformation of a dynamic network into a static one, we
will use the case study described below. Our aim is to define first a DN process, then a SN
process that is assumed to be equivalent to the precedent, and then discuss the transformation
of the first into the second. We do this for a particular case first, and then discuss an eventual
generalisation of the transformation.

Case Study: a trivial scenario - An informal specification of the link

A very simple DN process is one that has only two snapshots and in which only one channel
has been moved between the two. Consider the network formed of three processes P, Q and
R, such that P may send an arbitrary number of messages to Q through a channel mch; until
Q passes its channel-end of mch to R; and then P sends messages to R. Such a network was
illustrated in Figure4.1 (§4.2.2); its semantics are given hereafter.

MN =̂ (P ‖ Q ‖ R) \ {κa}

P = mch!x → P

Q = mch?y → (Q 2 κa![mch]→ SKIP)

R = κa??[mch]→ µY • (mch?z → Y)

144 Channel Mobility

Notation: [mch] stands for a channel holder variable containing the channel mch.

Consider the following static network formed of three processes P ′, Q′, and R′, such that
P ′ may communicate with Q′, until Q′ is switched off (move signal) and then taken over by
R′. The semantics are given by:

SN1 =̂ (P ′ ‖ Q′ ‖ R′) \ {move}

P ′ = sch!x → P ′

Q′ = sch?y → (Q′ 2 move→ SKIP)

R′ = move→ µY (sch?z → Y)

The semantics of SN1 follow closely the definition of MN . The synchronisation action
move, has been introduced in order to achieve the same sequencing of the communications
of P ′ first with Q′, and then with R′. We have the following equivalence (on traces):

MN =T SN1[mch← sch]

There is a clear loss of expressiveness. Q′ behaves like SKIP once R′ takes over viz. Q′ will
no longer use sch. Replace SKIP by a distinct process (excluding both STOP and CHAOS)
say Q′aft , i.e. Q′ = sch?y → (Q′ 2 move→ Q′aft). How can we ensure that Q′aft will no longer
use sch?

A first idea that comes into mind for enforcing such a blocking of sch is to explicitly place
sch in the refusals after the occurrence of move. This may be achieved in two different ways:
(i) ensure that Q′aft does not engage in sch; or (ii) ensure that the environment may no longer
engage in sch.

Consider the following static process:

SN2 =̂ (P ′′ ‖ Q′′ ‖ R′′)

P ′′ = µX • (sch1!x → X 2 µZ • (sch2!x → Z))

Q′′ = sch1?y → Q′′

R′′ = sch2?z → R′′

SN2 is obtained by first relaxing the constraint that mch (cf. MN) needs to map to a
single channel sch (cf. SN1). The rationale is to provide, for each snapshot of Q in which
mch appears in the interface, a specific static channel, schi . Here, the index i is meant to
identify each snapshot, remembering that we have only two (2) in this case. sch2 is meant to
replace move.

SN2 is an instance of a definition in which the environment blocks a further use of sch1

after it has initiated the use of sch2. The use of sch2 is meant to represent that the system
has entered into a new snapshot. As a consequence, Q′′ blocks on any attempt of using sch1,

Links with static CSP 145

which materialises the previous snapshot, once the system has entered into the new one. This
also supposes that no process in the environment will ever use sch1 again: P ′′ when it behaves
like Z , and R′′ may not use sch1.

The renaming of both sch1 and sch2 into sch is meant to characterise in which snapshot
each process is allowed to use sch (viz. mch). P ′′ may use sch in both snapshots; Q′′ may use
sch in the first snapshot, but not in the second one; and R′′ may use sch in the second one only.

One thing that is left implicit in the semantics of SN2 is how the dichotomy of the
snapshots (viz. the indexing of sch) has been achieved. Indeed, this has been done manually,
rather informally, by associating the occurrence of sch2 with the entry into a new snapshot.
Instead, we could make explicit that a new snapshot has been entered, by using the action
move as follows:

SN2.1 =̂ (P ′′1 ‖ Q′′1 ‖ R′′1)

P ′′1 = µX • (sch1!x → X 2 move→ X [sch2← sch1])

Q′′1 = (sch1?y → (Q′′1 2 move→ SKIP))

R′′1 = (move→ µY (sch2?z → Y))

Let us compare SN1 and SN2.1. In the semantics of SN1, entry into a new snapshot,
materialised by the occurrence of move, is local to the processes involved, i.e. Q′ and R′; P ′

is not concerned. In fact, a snapshot does not affect the integrity of a channel itself, only
which process can use the channel. So P ′ may use sch in every snapshot, though SN1 does
not encode the change of snapshot accurately. Although we could prevent Q′ from further
using sch after the occurrence of move, this does not reflect channel mobility sufficiently
well. We go even further by saying that this does not reflect channel mobility at all.

What we seem to be focused on is moving the channel whilst forgetting that such a
movement results in a change of topology. If a topology must be understood simply as a set
of channels, and assuming that each channel also determines what processes it links together
(notwithstanding the effective use of the channel), we see that we may:

i. model each topology in isolation, as if defining distinct static processes, each one with
its own distinct channels;

ii. then interleave them through prefixing or sequential composition: this would result in
a process whose interface is the sum of all the interfaces of each snapshot;

iii. project every mobile channel onto a static channel, according to its presence into a
snapshot.

We pointed out earlier that we could block sch in Q′, in order to effect that sch may not be
used by Q′. However, the procedure described above shows that that would not be enough:
the change of snapshot must be ‘effected’ on every process at the same time. Such an effect
may be described as follows:

146 Channel Mobility

• There is an initial snapshot, common to every process. Since we are in a static system,
every channel that the system may use are authorised at once and may be mapped to
an initial snapshot identifier, say id = 1. We assume that every channel is authorised
for every process, by default. Then, in the actual definition, we put in the refusals all
those channels that we do not want to appear in the trace just yet; and we remove them
from the refusals otherwise.

• When the system enters into a new snapshot, the process that released its channel may
no longer use it, e.g. Q′′ may no longer use sch1; meanwhile, the process that received
the channel may now use it, e.g. R′′ may now use sch2. This presumes that in snapshot
id = 1, R′′ could not use any channel schi (i ≥ 1), which we may take to be in the
refusals of R′′; at the same time, Q′′ could use sch1 (but not schi , i ≥ 2).

• The entry into a new snapshot is characterised by the update of id for every process,
e.g. id := id + 1 = 2. The consequence is that every process that could already use say
sch1 (e.g. P ′′) will now use its equivalent in snapshot id = 2, i.e. sch2.

Summary: the discussion above, which constitutes an informal specification of the trans-
formation of a mobile DN process into a static SN process, suggests that it may not be
possible to encode (or simulate) the effects of channel mobility in a static network without
a mechanism for identifying snapshots. Such a mechanism must notably enforce that all the
channels that do not belong to a given snapshot (hence are not identified within the snapshot)
may not be used in that snapshot. Using refusals has been proposed as a means for realising
such a blocking effect.

Conjecture 4.5.1. A traces model (incl. refusals) alone is not expressive enough for simu-
lating the effects of channel mobility in static CSP. A mechanism for identifying snapshots
is also needed.

A final remark before formalising the transformation is that there seems to be a need for
an explicit synchronisation of all the processes running in parallel. In SN2 the synchronisation
is implicit in the occurrence of sch2; in SN2.1, synchronisation is realised through the action
move. The synchronisation affects every process in SN2.1, whereas, in SN1.1 below, it does
affect only the processes involved in the mobility of a channel.

SN1.1 =̂ P ′1 ‖ ((Q′1 ‖ R′1)[sch, sch← sch1, sch2])

P ′1 = sch!x → P ′1

Q′1 = (sch1?y → (Q′1 2 move→ SKIP))

R′1 = (move→ µY (sch2?z → Y))

The semantics of SN1.1 raise the following question: is it necessary for every process to
synchronise upon a change of snapshot at the same time? Indeed, as far as communication
is concerned, sch is the same in every snapshot, as SN1 shows. Hence, can we not increase of

Links with static CSP 147

snapshot identifier individually in the processes involved, and then determine what channel
may synchronise with which one only at the end? To illustrate the interest of this question,
consider that at a given time, only one section of a network is concerned by the change of
topology, so it is not quite necessary to affect every other process. Meanwhile, it should still
be possible to tell, globally, what channel was present in which snapshot. This suggests an
algorithm quite different from the one assumed so far. We will answer the latter question in
the following section.

4.5.3 MCSN-simulation processes

In the previous section we have seen that a mechanism for identifying snapshots is necessary
for defining a static network that may be used to simulate a dynamic network. Static SN
healthy processes that simulate DN healthy processes will be called SN-simulation processes,
or simply simulation processes. They are a ‘simulation’ in the sense that their alphabet is
static, yet they have enough information to encode channel mobility.

In order to define simulation processes, we introduce into the alphabet of static (SN
healthy) processes the new observational variable denoted by id, to identity snapshots.

Definition 4.5.2 (id, id ′). Let IDs ⊆ N \ {0} denote a set of identifiers. Then:
id, id ′ : IDs, serve to identify snapshots. id identifies the current snapshot, id ′ the following
snapshot.

It is first necessary to characterise static processes that have the variable id (viz. id ′)
in their alphabet, if we are to transform DN healthy processes into (static) simulation pro-
cesses. Let iDgen denote the transformation that computes the snapshot-identifier of a given
process. Below, we will write iDgen(P) to indicate how a given process P computes the value
of id. This first characterisation of iDgen is syntactic, but it will be useful for achieving the
semantic characterisation of simulation processes.

Notation: In what follows we will use the subscript suffix notation, e.g. sP, to denote any
SN process, i.e. SN(sP) = sP.

In order to build the function iDgen, we consider only two forms of predicates: ‘snapshot
separators’ (r- and s-assignment) and snapshots (any other predicate that is SN-healthy).

We expect iDgen to break syntactically a DN process into the successive SN processes
that compose it, and attribute each snapshot a unique identifier: iDgen increments the value
of the snapshot identifier id when encountering a snapshot separator; otherwise the value of
id is unchanged.
- A SN process does not change of interface, hence, when iDgen takes one as input, it may
not modify the value of id. Also, every mobile channel not in the interface remains in the
future refusals.

iDgen(sP) =̂ sP+id ,where id 6∈ α sP

148 Channel Mobility

- Sequential composition. Let P and Q denote either snapshots or snapshot separators, then

iDgen(P # Q) = iDgen(P) # iDgen(Q)

- Choice operators. The value of iDgen entirely depends on the result of the choice. Let
choice ∈ {C B,u,2}. Then

iDgen(P choice Q) = iDgen(P) choice iDgen(Q)

- Iteration. An iterative process may be seen as the sequential composition of all its iterative
steps, whence

iDgen(b ∗ P) = b ∗ iDgen(P)

- Recursion. A recursive process µX • F(X) may be seen as the sequential composition of
the resulting processes F(X), whence

iDgen(µX • F(X)) = µX • iDgen(F(X))

- Let N ⊆ MCev a set of channels to be acquired, then r-assignment adds channels from
N into the interface. r-assignment is a snapshot identifier, hence, when iDgen takes one as
input, it does increment the value of id whilst removing the channels in N from the future
refusals.

iDgen(ch??N) =̂ id ′ = id + 1 ∧ ref ′ = ref \N

- Let O ⊆ mChans a set of channels to be released, then s-assignment erases channels in O
from the interface. When iDgen takes one as input, it does increment the value of id whilst
adding the channels from O into the future refusals.

iDgen(ch!O) =̂ id ′ = id + 1 ∧ ref ′ = ref ∪O

- Hiding. If a mobile channel was hidden in mobile CSP, it must be hidden in simulation CSP.
iDgen simply substitutes every ch ∈ X by its static equivalent in each snapshot in which ch
is valid.

iDgen(P \ X) = iDgen(P) \ {id 7→ ch | id ∈ IDs ∧ ch ∈ X}

- Parallel composition. We first introduce the following definitions. A network process defines
a network (i.e. a parallel composition) of node processes. We consider that the eventual
internal topology of each node is hidden. The topology of the network changes whenever the
interface of one of its node changes. The interface of a node changes whenever there is a
communication of one or more channels between that node and another. Hence, a change of

Links with static CSP 149

network topology corresponds to a change of interface of at least two nodes at once. We will
say that two nodes are connected when they can exchange mobile channels between them.
The transformation of the parallel composition operator must be determined by case. Below,
we only specify the final value of id, in the merge operation.

• The simplest network is the one in which no node is connected to another. Such a
network process defines a single snapshot viz. is SN-healthy. Hence

iDgen(sP ‖ sQ) = (sP ‖ sQ)+id

M (id) =̂ id ′ = 1.id = 2.id

V id ′ = id

• Next is the network in which only two nodes are connected. e.g. Let P = P1#κx![mch]#P2

, Q = Q1 # κx?[mch] # Q2. Then (expansion law):

(P ‖ Q) = (P1 ‖ Q1) # κx.mch # (P2 ‖ Q2)

Applying iDgen to the above expansion is trivial:

iDgen(P ‖ Q) = iDgen((P1 ‖ Q1) # κx.mch # (P2 ‖ Q2))

= iDgen(P1 ‖ Q1) # iDgen(κx.mch) # iDgen(P2 ‖ Q2)

M (id) =̂ id ′ = 1.id = 2.id

V id ′ = id + 1

For a 2-process network, the two processes evolve in lock-step synchronisation viz. both
enter into the new snapshot at the same time. Hence, we may ‘safely’ increase id locally
for each process, as we are guaranteed to have the same value of id for both at the end.
For the resulting static process, this means that every process involved will enter into
the new snapshot at the same time.

• The preceding case gets more complicated if we introduce a third process R = SN(R).
R is not involved in channel-passing with either P or Q. The synchronisation between
P and Q was obtained for free, thanks to the actual synchronisation of the channel-
passing operation itself. However, since R is not involved in that operation, we would
first need to transform every channel-passing operation into an explicit synchronisation
barrier.
For simplicity, we will denote by a single event move any synchronisation that occurs
because of channel mobility. (Or we may add a subscript for readability.) We have
to rewrite the value of iDgen for snapshot separators such that each channel-passing
operation is transformed into an action move, and increases the identifier as well.

150 Channel Mobility

Loosely, the expected effect would be

iDgen(κx.mch) = do(move) ∧ id ′ = id + 1

Formally:

iDgen(ch??N) =̂ id ′ = id + 1 ∧ ref ′ = ref \N ∧ tr ′ = tr a 〈movech.N〉

iDgen(ch!O) =̂ id ′ = id + 1 ∧ ref ′ = ref ∪O ∧ tr ′ = tr a 〈movech.O〉

Or equivalently:

iDgen(ch.E) =̂ id ′ = id + 1 ∧ ref ′ = ref ∪ (MCev \mChans′)
∧ tr ′ = tr a 〈movech.E〉

Then, we would need to transform R such that R does forcibly synchronise on move
whenever P and Q do. Such a specification is almost infeasible (at least) at this level
of abstraction. To see this, consider the following expansion:

(P ‖ Q ‖ R) = ((P1 ‖ Q1) # move # (P2 ‖ Q2)) ‖ R

= (P1 ‖ Q1 ‖ Rbefmove) # move # (P2 ‖ Q2 ‖ Raftmove)

Above, we have introduced quite purposefully the predicates Rbefmove and
Raftmove such as to have R = Rbefmove # Raftmove. However, we have no way of
effecting such a transformation. If we had to deal with traces only (i.e. only the value
of tr), then any interleaving would have sufficed for specifying both Rbefmove and
Raftmove. However, since the whole state space is concerned, we cannot possibly hope
to achieve the same sort of specification. Hence, we have to abandon the model that
would rely of synchronising every process in a parallel composition on every instance
of a channel-passing operation.

In simpler terms, what the last result means is that we cannot yet transform MN into SN2.1.
However, we can transform MN into SN1.1, with the inconvenience that we can no longer
block sch1 when entering into a new snapshot. In consequence, P ′1 will keep using sch1 after
the occurrence of move, instead of sch2, as we would prefer. What is needed is a way of
increasing snapshot identifiers locally e.g. in Q′ and R′; have P ′ synchronise with each in
turn, as they happen to hold sch; and still map sch onto distinct snapshots.
This corresponds to a problem of the compositionality of snapshots: how do we define the
snapshots of the whole from the snapshots of the components to obtain the expected effect?

Let us consider the effect of parallel composition as things stand i.e. snapshot identifiers
are incremented locally by each process. This means that the value of id is given by the
count of move actions in the final trace. Since the effect of parallel composition is simply
to interleave such actions, it turns out that the final value of id is simply the sum of each
component’s own value of id, minus 1 (because the initial interface is common to every

Links with static CSP 151

P

(P || Q)

Q

(a)

(b)

(c)

Q

P

Figure 4.2: Snapshots of two parallel processes

process).

iDgen(P ‖ Q) =̂ iDgen(1.P) ‖ iDgen(2.Q)

M (id) =̂ id ′ = (1.id + 2.id)− 1

The issue of the compositionality of snapshots may be restated thus: since id identifies a
snapshot uniquely, its final value id ′ = 1.id+2.id−1 seems to increase the number of snapshots
of each component. How can we relate the local snapshot divisions of each component process
to the global snapshot division resulting from their parallel composition? We discuss this
question hereafter.

Consider Figure4.2. It represents two processes P and Q running in parallel. The exe-
cution of a process is represented by a horizontal line; the empty circle and square represent
respectively the beginning and the end of the observation. The snapshots of P and Q are
both represented by a full circle, whereas those of their parallel execution are represented by a
full arrowhead. This is shown in Figure4.2(a); Figure4.2(b) (resp. (c)) is the projection of the
snapshots of P ‖ Q onto the line of P (resp. Q), where those of the former are marked by dot-
ted vertical lines. P has four (4) snapshots, Q five(5), and P ‖ Q has eight (8 = (4+5)−(1)).

We may relabel the actions of P and Q with prefixes 1 and 2 respectively, but also their
snapshot identifiers. For P ‖ Q, we may use the label 0, for readability. We are interested in
the mapping ch 7→P IDs which maps a channel to all the snapshot identifiers in which ch has
been acquired (and not released).

Let sch ∈ αP a channel of P, and suppose that sch is fixed, then, we have the mapping
sch 7→ {1.1, 1.2, 1.3, 1.4}, when P is considered alone. This simply means that sch is present
in every snapshot of P. After projecting the snapshots of P ‖ Q onto P, we have the mapping
sch 7→ {0.1, .., 0.8}, meaning that sch is present in every snapshot of P ‖ Q. Thus, there is no
loss of information between the local and the global snapshot identification.

152 Channel Mobility

Now consider a mobile channel mch ∈ αP such that mch 7→{1.2, 1.3}. After the projection,
we have mch 7→ {0.2, .., 0.6}. Again, the original information is preserved: mch is not at the
beginning, 1.1 or 0.1, and is not at the end, 1.4 or {0.7, 0.8}. Parallelism preserves information
about channel mobility.

In general, we can map the snapshots of P ‖ Q to those of both P and Q i.e.

{0.1, .., 0.8} 7→ {1.1, .., 1.4} ∪ {2.1, .., 2.5}

The reverse mappings are more instructive.

| 1.1 7→ 0.1 | 1.2 7→ 0.2, 0.3 | 1.3 7→ 0.4, 0.5, 0.6 | 1.4 7→ 0.7, 0.8

| 2.1 7→ 0.1, 0.2 | 2.2 7→ 0.3, 0.4 | 2.3 7→ 0.5 | 2.4 7→ 0.6, 0.7 | 2.5 7→ 0.8

Recall (from SN2.1):

P ′′1 = µX • (sch1!x → X 2 move→ X [sch2← sch1])

Renaming is applied after every move action. The reverse mappings above suggest that
such a renaming may be done in two steps instead of single one: first locally, e.g. mch will
be mapped to 1.2 : mch and 1.3 : mch; and then globally, e.g. 1.2 : mch will be mapped to
0.2 : mch and 0.3 : mch, whilst 1.3 : mch will be mapped to 0.4 : mch, 0.5 : mch and 0.6 : mch.

Let us add a third process R to the equation such that mch ∈ αR, and mch 7→ {0.1, .., 0.8}.
Then, when merging the traces of P and R, we will synchronise both P and R on channel mch
in snapshots 0.2 to 0.6. Since there is no local renaming in R, it is pointless to rename mch
globally in R. Rather, what we may do is synchronise 1 : mch ∈ αR with any i : mch ∈ αP,
where i ∈ {0.2, .., 0.6}.

A last remark is that Figure4.2(a) shows but a single interleaving of the snapshots of P and
Q. Under a different interleaving, we would have a different mapping from local snapshots in
P to global snapshots in P ‖ Q. A trivial example is the interleaving P # Q. The mappings
would then be

| 1.1 7→ 0.1 | 1.2 7→ 0.2 | 1.3 7→ 0.3 | 1.4 7→ 0.4 . . 0.8

| 2.1 7→ 0.1 . . 0.4 | 2.2 7→ 0.5 | 2.3 7→ 0.6 | 2.4 7→ 0.7 | 2.5 7→ 0.8

The application of iDgen to processes will be called iDgen(process). The following theorem
summarizes the previous discussion.

Links with static CSP 153

Theorem 4.5.3 (iDgen(process)). Let sP denote any SN healthy process; P and Q denote
both SN and DN processes.

iDgen(sP) = (sP)+id

iDgen(ch.[E]) = do(movech.E) ∧

SKIP+id C wait ′B

ref ′ = ref ∪ (MCev \mChans′) ∧ id ′ = id + 1


iDgen(P ‖ Q) = iDgen(1.P) ‖ iDgen(2.Q) where id ′ = (1.id + 2.id)− 1

iDgen(P op Q) = iDgen(P) op iDgen(Q) where op ∈ {#,C B,u,2}

iDgen(b ∗ P) = b ∗ iDgen(P)

iDgen(µX • F(X)) = µX • iDgen(F(X))

iDgen(P \ X) = iDgen(P) \ {id 7→ ch | id ∈ IDs ∧ ch ∈ X}

where ch.[E] is a shorthand for both channel-passing input and output prefix.

Proof. cf. preceding discussion.

The right-hand-side of the previous equations correspond to processes that have id in
their alphabet. The latter represent mobile CSP processes as processes that compute the
value of the snapshot-identifier.

The purpose of introducing the variable id was for it to rename any mobile channel mch
into equivalent static channels id 7→mch. The definition above has left the renaming implicit,
insisting only on the value of id.

Although simulation processes are computed from mobile CSP processes above, it poses
no difficulty at all to compute them on their own. The discussion concerning the parallel
composition operator implies that the parallel composition operator has a different semantics
when applied to simulation processes than in static or either mobile CSP. Indeed, for the
equality iDgen(P ‖ Q) = iDgen(P) ‖ iDgen(Q) to hold, it is necessary for the parallel
composition operator to ignore the id part in id 7→mch and synchronise on mch only. This
is unlike ‘traditional renaming’ and emphasizes the fact that id is indeed an observation
variable.

We may build the renaming of mobile channels mch into identified static channels id 7→mch
in the traces directly as follows:

• in a DAT of the form 〈..., (s, e), ...〉, replace s by the mapping id 7→ s, where id is
determined by iDgen. Similarly, replace every channel ch ∈ s by id : ch, including both
mobile channels and static channels. Hence, we obtain DATs of the form 〈..., (id 7→
s, e), ...〉.

Notice that DATs of the form 〈..., (id 7→ s, e), ...〉 may not serve to specify channel mo-
bility. Since they are traces for static (simulation) processes, their expected form would be
〈..., (A, e), ...〉, but is not very useful for our purpose. Instead, we record the subset s ⊆ A

154 Channel Mobility

that is valid for the process in snapshot id, keeping in mind that every other channel in A− s
must be refused.

Granting the above, we may readily apply healthiness conditions MCx (x ∈ {1, 2, 3})
to the new DATs. We will denote by MCSnsx (read MC Static network simulation) the
simulation of MCx in a static network.

The translation of MC1 yields the following healthiness condition.

Definition 4.5.4 (MCSns1).

MCSns1 P = P ∧ ∀ id, s : PMCh, e : MCev • (id 7→ s, e) ∈ tr ′ ⇒ e ∈ s

MCSns1 ensures that identified channels only may be recorded.

The translation of MC2 yields the following healthiness condition.

Definition 4.5.5 (MCSns2).

MCSns2 P = P ∧


∀ (id1 7→ s1, e1), (id2 7→ s2, e2) | # tr ′ ≥ 2 •

(id1 7→ s1, e1)a (id2 7→ s2, e2) ∈ tr ′ ⇒

(id1 = id2 ⇒ s1 = s2) ∨ (id1 < id2 ⇒ s1 ⊂ s2 ∨ s2 ⊂ s1)


MCSns2 ensures that successive valid interfaces are not disjoint. For illustration, the

interface history {sch1, sch2}a{sch3, sch4} is invalid. MCSns2 also ensures the correctness
of a number of assumptions about snapshots, namely the fact that the sequence of snapshot
identifiers is ever increasing, and that the same identifier associates to the same interface,
and different identifiers to distinct interfaces.

The translation of MC3 yields the following healthiness condition:

MCSns3 P = P ∧ ref ′ ⊆ last π1(tr ′)

Since we are in static CSP, last π1(tr ′) = A = last π1(tr), hence the clause ref ′ ⊆ last π1(tr ′)
is always true. As a consequence, MCSns3 can be discarded.

Definition 4.5.6 (MCSns12). MCSns12 =̂ MCSns1 ◦MCSns2

MCSns12 is conjunctive, hence it inherits all the properties of conjunctive healthiness
conditions (cf. §4.3.1).

The following definition characterises static (SN) processes that are simulations of dy-
namic (DN) processes.

Links with static CSP 155

Definition 4.5.7 (Simulation processes). A simulation process is a static (SN healthy)
process whose alphabet contains the variables id, id ′, and is additionally MCSns12 healthy.

Def. 4.5.7 above implies that it is not possible to simulate channel mobility within a static
UTP-CSP theory that does not mention id in its alphabet. This is a sensible result. We dis-
cuss its consequences hereafter.

Recall that id allows encoding snapshots in static CSP. The encoding takes the form of
an association between channel names and id so that we can talk of a static model with
(snapshot-)identified channels. For ease of reference, we may call it the (static) CSP sim-
ulation model, or simply simulation CSP. More importantly, id is used in the renaming of
mobile channels into static ones. This renaming is at the heart of the simulation: it maps
a mobile channel mch to static channels id : mch. Hence, unless there were another way of
encoding such mappings without the use of id, which in turn is at the heart of the renaming,
it is impossible of simulating a mobile network into static CSP.

Consequence 4.5.8. Without a mechanism for identifying snapshots in static CSP, it is
impossible of simulating a dynamic network using static CSP.

The latter result calls for a discussion of the works in the Literature. In the absence of the
concept of capability, every traces model presented in Chap. 3 is insufficient for describing
channel mobility, respectively. For illustration, the traces of Hoare & O’Hearn, and Vajar
et al. may both be given the form 〈..., (s, e), ...〉, just like our DATs. However, s ∈ PA is
used for restricting what channels may be observed, so that in the absence of the concept of
capability, we may as well consider that they are still in static CSP. Indeed, let us compare
〈..., (s, e), ...〉 with the traces in simulation CSP. The latter have the form 〈..., (id 7→ s, e), ...〉,
which is identical to 〈..., (s, e), ...〉 modulo the presence of id, and yet correspond to static
CSP traces.

Consequence 4.5.9. In the absence of the concept capability, every traces model in the
literature defines a static CSP traces model.
In particular, are concerned the works of Hoare & O’Hearn [67], Vajar et al. [132], Grosu et
al. [56, 58, 123, 28, 29], Bialkiewicz & Peschanski [18], and Roscoe [108].

In the presence of the concept of capability, models that rely on name generation and
freshness a la pi-calculus, e.g. [18], [108], are not enough for characterising channel mobility.
Indeed, iDgen generates unique identifiers id, and hence unique names, in a way that is
reminiscent of both Bialkiewicz & Peschanski’ localised actions and Roscoe’ standardized
fresh names approaches. Yet, the processes resulting from iDgen, which belong to simulation
CSP, are static CSP processes.

Consequence 4.5.10. Guaranteeing name freshness a la pi-calculus in a traces model is not
sufficient for characterising channel mobility. A further mechanism for identifying snapshots
is necessary.

156 Channel Mobility

Furthermore, the characterisation of channel mobility in mobile CSP did not rely on a
mechanism for generating fresh names (cf. §4.2). Concrete channels are unique by construc-
tion, thus, it is a fair consequence that two identical names always collide. Whilst iDgen
provides a mechanism for constructing unique names, such a mechanism is neither sufficient
nor necessary for characterising channel mobility.

Consequence 4.5.11. Generating fresh names (i.e. names guaranteed to be fresh) is not
necessary for characterising channel mobility; the notion of capability is.
Generating fresh names is not sufficient for characterising channel mobility; assuming that
names are unique is.

In this section, we have characterised simulation processes, i.e. static processes which
may be used to model DN healthy processes, which have a dynamic network topology. Such
processes have the variables id, id ′ in their alphabet, and DATs of the form 〈..., (id 7→s, e), ...〉.
Their definition shows that a static network model may be used to model a dynamic topology,
granting that additional information about snapshots is added to the static model. Although
both simulation CSP and mobile CSP use DATs, simulation DATs are in fact static: the
alphabet does not change, but the identifier associated with given channels.

In the next section we will define the transformation of DN healthy processes into simu-
lation processes.

4.5.4 From DN healthy processes to SN healthy processes

In the previous section we have introduced the iDgen transformation, which notably extended
the alphabet of mobile processes with the variable id. Except for channel-passing input and
output prefixes, which both increment the value of id i.e. id ′ = id + 1, every other process
behaves like SKIP i.e. id ′ = id.

Additionally, channel-passing input and output prefixes were transformed into synchro-
nisation actions, in order to effect the cancellation of their channel-passing semantics. This
latter behaviour is not stricto sensu that of iDgen, which was originally meant to compute
the value of the identifier only. We hence introduce cp2sync, which transforms c.[ch] channel-
passing events into movec.ch synchronisation events. Notice that this is a design decision,
and we could have transformed c.[e] channel-passing events into c.e value-passing events in-
stead. In fact, we could define a particular class of simulation (CSP) events that increase
the value of id, just like channel-passing events modify the value of the interface mChans in
mobile CSP.

Definition 4.5.12 (cp2sync). Let e denote any event excluding channel-passing communi-
cations; let c.[ch] denote any channel-passing communication event.

cp2sync(e) =̂ e

cp2sync(c.[ch]) =̂ movec.ch

Links with static CSP 157

The renaming cp2sync behaves like the identity renaming on every event except channel-
passing events.

So far, the renaming of mobile channels into identified static channels has been left im-
plicit. Having computed the value of id for each process, we simply have to map id to the
process’s corresponding trace. In fact, all we need to do is to project iDgen onto traces and
compute id as discussed above.

Definition 4.5.13 (iDgen(trace)). Let e denote any event excluding communication events;
let c.m denote any communication event excluding channel-passing communications; let c.[ch]

denote any channel-passing communication event. Let a denote any sort of event.

iDgen(id, 〈(s, e)〉) =̂ 〈(id 7→ s, e)〉

iDgen(id, 〈(s, c.m)〉) =̂ 〈(id 7→ s, c.m〉

iDgen(id, 〈(s, c.[ch])〉) =̂ 〈(id 7→ s, c.[ch])〉

iDgen(id, 〈(s1, c.[ch])〉a 〈(s2, a)〉) =̂

〈(id 7→ s1, c.[ch])〉a 〈(id + 1 7→ s2, a)〉 if s1 6= s2

〈(id 7→ s1, c.[ch])〉a 〈(id 7→ s2, a)〉 otherwise

For readability, we have written (id 7→ s, c.m) (resp. c.[ch]) in place of (id 7→ s, id 7→ c.m)

(resp. c.[ch]). We have also written id 7→ s in place of id 7→ cp2sync(s), and c.[ch] in place of
cp2sync(c.[ch]) = movec.ch.

Note that cp2sync(s) renames every event c.[ch] in the set s into a synchronisation event and
leaves every other name unchanged.

The function iDgen(trace) yields a trace composed of identified channels. It is not enough
however to define a renaming of mobile channels into identified static channels, because it
applies exclusively to the trace of mobile processes.

Let E(t) denote the set of all the elements of a given trace t, e.g. E(〈..., (sj , ej), ...〉) is
composed of elements (sj , ej). The set of all the channels that have been acquired at some
point during an execution is given by

Amc =
⋃

j{sj | sj ∈ E(π1(tr ′))}

where π1(t) yields the trace composed of the first components of elements of t,
e.g. π1(〈..., (sj , ej), ...〉) = 〈..., sj , ...〉.

Similarly, we define the set of corresponding identified channels:

idAmc =
⋃

j{idj 7→ ssj | ssj ∈ E(π1 ◦ iDgen(tr ′))}

iDgen(trace) entirely determines the relation between Amc and idAmc, given below:

Amc =
⋃

j{cp2sync−1(ssj) | idj 7→ ssj ∈ idAmc}

158 Channel Mobility

Recall that every set sj ∈ Amc is transformed into an identified set cp2sync(sj) ∈ idAmc.
Reciprocally hence, every set ssj ∈ idAmc corresponds to a set cp2sync−1(ssj) ∈ Amc, where
cp2sync−1 denotes the inverse of the function cp2sync.

The map Amc 7→ idAmc entirely determines the renaming of mobile channels into iden-
tified static channels, for each execution of a mobile process with final trace tr ′.

Definition 4.5.14 (iDgen(process)). Let u ∈ {tr , ref ,mChans}. Then:

iDgen(P) =̂ P[amc2idamc(u)/u, amc2idamc(u′)/u′]

where

amc2idamc : PMCh → P(IDs ×MCh)

Amc =
⋃

j
{sj | sj ∈ E(π1(tr ′))} 7→ idAmc =

⋃
j
{idj 7→ ssj | ssj ∈ E(π1 ◦ iDgen(tr ′))}

The renaming function iDgen(process) is defined in terms of the function iDgen(trace),
which generates identified channels, and the derived function amc2idamc which does actually
substitute mobile channels for identified static channels. The function cp2sync substitutes
mobile channels with synchronisation events, thus enforcing that iDgen actually yields static
channels.

Just like the variable mChans in mobile CSP could be computed from the trace, so can
id: simulation DATs have triples (id, s, e) for elements. The projection π1 will be used to
return the first element of such triples.

The function denoted by dn2sn transforms DN healthy processes into MCSns healthy
processes.

Definition 4.5.15 (dn2sn). dn2sn(P) =̂ iDgen(P) ∧ id ′ = π1 ◦ last ◦ iDgen(tr ′)

Theorem 4.5.16. Let P be a mobile process, then

dn2sn(P) = SN ◦MCSns12 ◦ dn2sn(P)

Proof. Correct by construction of the dn2sn (viz. the iDgen) transformation.

Note: In the following examples, for ease, we will use the transformation iDgen instead of
dn2sn.

Example 4.5.17 (Trivial Scenario). Below, we apply the function iDgen to the calculation of
the static equivalent of MN and compare iDgen(MN) with the expected result, i.e. the static
process SN1.1.

iDgen(MN) = iDgen(P ‖ Q ‖ R) = iDgen(P) ‖ iDgen(Q) ‖ iDgen(R)

Links with static CSP 159

iDgen(P) = iDgen(mch!x → P)

= iDgen(mch!x)→ iDgen(P)

= id : mch!x → iDgen(P)

iDgen(Q) = iDgen(mch?y → (Q 2 κa![ch]→ SKIP)))

= iDgen(mch?y)→ iDgen(X 2 κa![ch]→ SKIP)

= id : mch?y → (iDgen(Q) 2 iDgen(κa![ch]→ SKIP))

= id : mch?y → (iDgen(Q) 2 (iDgen(κa![ch])→ iDgen(SKIP)))

= id : mch?y → (iDgen(Q) 2 move→ SKIP)

iDgen(R) = iDgen(κa??[ch]→ µY • (mch?z → Y))

= iDgen(κa??[ch])→ iDgen(µY • (mch?z → Y))

= move→ µY • (iDgen(mch?z)→ iDgen(Y))

= move→ µY • (id + 1 : mch?z → iDgen(Y))

Modulo the identifier, the expected static process, SN1.1, and the calculated one, iDgen(MN),
are equivalent.

4.5.5 Example: a circular FIFO buffer with mobile channels

This example is taken from [143]. Syntactically, the formulation of MBuff n is identical to
the one in [143]. Semantically, the latter has Reactive Designs [35], [134], as its semantic
domain, whereas the following rather has Reactive Processes as its semantic domain. The
transformation is original to this thesis.

Consider a FIFO buffer with at least two cells such that each cell may store at most
one data unit. There are two links between any two adjacent cells, so the buffer consists of
two chains. The chain leftrd↔rightrd allows passing the rd channel (for input); and the chain
leftwr ↔ rightwr allows passing the wr channel (for output). A cell may input only when it
has acquired the input channel rd, and output when it has acquired the output channel wr .

Figure4.3(a) represents such a buffer: cells are represented by empty circles; links are
represented by horizontal lines joining the cells. Figure4.3(b) represents the links between
adjacent cells in greater detail: each link is marked with a channel name. The arrow indi-
cates the flow of messages. In Figure4.3(a), black squares mark rd and wr channels; unlike
Figure4.3(c), no line springs from the squares to indicate that rd and wr channels are mobile
and hence, have eventually not been acquired yet. Figure4.3(c) shows the same buffer but in
which rd and wr channels are both static, and are both used to form a third chain.

The behaviour of a n-cell buffer (n ≥ 2) is given by:

MBuff n =̂ 〈〈leftrd↔ rightrd, leftwr ↔ rightwr 〉〉 i : 1 . . n • i.MCell

160 Channel Mobility

rd

wr

left?rd

left?wr

right!rd

right!wr

(b)

(a)

rd

wr
(c)

Figure 4.3: A buffer with mobile channels

Links with static CSP 161

MCell =̂ C (rd,wr) 2 C

C (rd,wr) =̂ [rd]?x → rightrd!rd → C (wr , x)

C (wr , x) =̂ [wr]!x → rightwr !wr → C 2 leftrd??rd → C (rd,wr , x)

C =̂ leftrd??rd → C (rd)

C (rd,wr , x) =̂ [wr]!x → rightwr !wr → C (rd)

C (rd) =̂ leftwr??wr → C (rd,wr) 2 [rd]?x → rightrd!rd → C (x)

C (x) =̂ leftwr??wr → C (wr , x)

MBuff n defines a buffer with mobile channels as a pipe of cells. Each cell is represented by
a process MCell. Process expressions with BNF C (read channel,write channel, data) denote
the different states of a cell, such that the presence (resp. the absence) of a parameter indi-
cates that the Cell possesses the corresponding element. For illustration, C (rd,wr) denotes
the behaviour of a Cell that owns both rd and wr channels.
At any time, a cell may be waiting on any of its four channel carriers. The semantics ensure
that: an empty cell may never write or output data (i.e. may not use wr); a full cell may
never read or input data (i.e may not use rd).

We want to transform the buffer MBuff n into a static one which we expect to be equivalent
to the following buffer:

Buff n =̂ 1.Cell 〈〈 rd↔ wr 〉〉 (〈〈 rd↔ wr 〉〉 i : 2 . . n − 1 • i.Cell) 〈〈 rd↔ wr 〉〉 n.Cell

Cell =̂ rd?x → wr !x → Cell

Notice how in Buff n both rd and wr channel ends are linked, which was not the case in
MBuff n (viz. the chain rd ↔ wr is not circular). This imposes a further requirement to the
transformation: the creation of the third (non-circular) chain rd ↔ wr . We return to this
latter on.

Let SBuff n =̂ iDgen(MBuff n) the transformation of MBuff n into an equivalent static pro-
cess. Then:

SBuff n = ‖i : 1 . . n • iDgen ◦ (i.MCell)

iDgen ◦ MCell = iDgen ◦ C (rd,wr) 2 iDgen ◦ C

iDgen ◦ C (rd,wr) = rd?x →move!rd→ iDgen ◦ C (wr , x)

iDgen ◦ C (wr , x) = wr !x →move!wr→ iDgen ◦ C 2 move?rd→ iDgen ◦ C (rd,wr , x)

iDgen ◦ C = move?rd→ iDgen ◦ C (rd)

iDgen ◦ C (rd,wr , x) = wr !x →move!wr→ iDgen ◦ C (rd)

iDgen ◦ C (rd) = move?wr→ iDgen ◦ C (rd,wr) 2 rd?x →move!rd→ iDgen ◦ C (x)

162 Channel Mobility

iDgen ◦ C (x) = move?wr→ iDgen ◦ C (wr , x)

The equations above are identical to the ones for the dynamic buffer, except that communi-
cations/movement of mobile channels have been replaced by move actions (e.g. move!wr),
so corresponding chains, i.e. leftrd ↔ rightrd and leftwr ↔ rightwr , have been eliminated.
For readability however, we have renamed them as if they were communication events. Also
notice that rd and wr channels have no square-brackets around them, e.g. [rd], since they are
now considered to be static. We have chosen to omit mentioning id, e.g. id : rd?x, also for
readability. We only need to keep in mind that each move!wr increases the value of id.

A consequence of the elimination of the previous chains is that cells now execute in
parallel, without passing data from one cell to the next. move actions turn out to enforce
the expected ordering of data input and output. That is, any input (resp. output) of data by
a cell is guarded by synchronisation signals from its predecessor: a cell may output only if
its predecessor has already output (move?wr signal); a cell may input only if its predecessor
has already input (move?rd signal).

In SBuff n , cells are not chained through their rd /wr channels. This is because there is
no such chain in the mobile version defined above. In order to achieve a transformation closer
to Buff n , it is easier to add the chain at the end of the iDgen transformation.

Indeed, suppose that we modify MBuff n by adding a third chain rd↔wr in its definition.
Then, the result is not a chain in the traditional sense since only two nodes may be linked at
any one time —instead of all nodes (traditionally). Such an addition would not be efficient
since it would introduce unnecessary blocking: Whence the choice of adding the third chain
at the end of the transformation.

Since the chain rd↔ wr is not circular, we need to single out the first and last cells such
that they may respectively input from, and output to the environment.
Let SCell = iDgen ◦ MCell \ {move}, then:

iDgen ◦ MCell \ {move} =

(
iDgen ◦ C (rd,wr) \ {move} 2

iDgen ◦ C \ {move}

)
iDgen ◦ C (rd,wr) \ {move} = rd?x → iDgen ◦ C (wr , x) \ {move}

iDgen ◦ C (wr , x) \ {move} =

(
wr !x → iDgen ◦ C \ {move} 2

iDgen ◦ C (rd,wr , x) \ {move}

)
iDgen ◦ C \ {move} = iDgen ◦ C (rd) \ {move}

iDgen ◦ C (rd,wr , x) \ {move} = wr !x → iDgen ◦ C (rd) \ {move}

iDgen ◦ C (rd) \ {move} =

(
iDgen ◦ C (rd,wr) \ {move} 2

rd?x → iDgen ◦ C (x) \ {move}

)
iDgen ◦ C (x) \ {move} = iDgen ◦ C (wr , x)

Links with static CSP 163

By replacing each C (...) expression by its value in each of the previous equations, we get:

iDgen ◦ C \ {move} = iDgen ◦ C (rd) \ {move}

= iDgen ◦ C (rd,wr) \ {move} 2 rd?x → iDgen ◦ C (x) \ {move}

= iDgen ◦ C (rd,wr) \ {move} 2 rd?x → iDgen ◦ C (wr , x) \ {move}

= iDgen ◦ C (rd,wr) \ {move} 2 iDgen ◦ C (rd,wr) \ {move}

= iDgen ◦ C (rd,wr) \ {move}

and:

iDgen ◦ C (rd,wr) = rd?x → iDgen ◦ C (wr , x) \ {move}

= rd?x →
(

wr !x → iDgen ◦ C \ {move} 2

iDgen ◦ C (rd,wr , x) \ {move})

)

= rd?x →
(

wr !x → iDgen ◦ C (rd) \ {move} 2

wr !x → iDgen ◦ C (rd) \ {move})

)
= rd?x → wr !x → iDgen ◦ C (rd) \ {move}

= rd?x → wr !x → iDgen ◦ C (rd,wr) \ {move}

Then:

SCell = iDgen ◦ MCell \ {move}

= iDgen ◦ C (rd,wr) \ {move} 2 iDgen ◦ C \ {move}

= iDgen ◦ C \ {move}

= iDgen ◦ C (rd,wr) \ {move}

= rd?x → wr !x → iDgen ◦ C (rd,wr) \ {move}

= rd?x → wr !x → iDgen ◦ MCell \ {move}

= rd?x → wr !x → SCell

Let newSBuff n denote the buffer obtained after introducing the rd↔wr chain in the expres-
sion of SBuff n .

newSBuff n =̂


1.SCell 〈〈 rd↔ wr〉〉

(〈〈 rd↔ wr 〉〉 i : 2 . . n − 1 • i.SCell) 〈〈 rd↔ wr〉〉

n.SCell


Modulo the identifier, the expected static process, Buff n , and the calculated one, newSBuff n ,
are equivalent.

164 Channel Mobility

4.6 Discussion

4.6.1 Evaluation of results

In what follows we discuss the results presented in this chapter and their implications.

The formalisation. The concept of a capability has been introduced to model the notion
of knowledge of existence of a channel, which confers no ownership of (viz. no right of access
to) the channel considered, unlike the traditional notion of knowledge of a channel formalised
by the interface. We have argued the necessity of the capability, in order to reason about
channel mobility.

In particular, channel mobility implies that the interface of a process may change through-
out its execution. The concept of a DAT (Dynamic Alphabetised Trace) captures changes of
interface, and similar dynamic traces have been used by Hoare & O’Hearn [67], and Vajar et
al. [132]. However, we have seen that without the concept of capability, DATs are insufficient
for characterising channel mobility. Hence, mobile processes must have a static capability
and a dynamic interface. The notion of capability is original to this thesis.

Another implication of channel mobility is that channels must be modelled as first class
citizens (from a language point of view) or as concrete entities (of the likes of integers). This
thesis shows that making channels concrete does not change the underlying model of static
CSP processes.

The links. The iDgen transformation (viz. dn2sn) shows that it is possible to simulate
channel mobility in a fixed network. For the simulation to be possible, it was necessary to
extend static processes with a snapshot-identification mechanism, yielding simulation pro-
cesses.

Simulation processes are static processes whose alphabet contains the observational vari-
able id, and which are MCSns1 and MCSns2 healthy.

iDgen associates every mobile channel with a set of snapshot identifiers (viz. the set
of static channels with corresponding identifiers). Each mobile channel is then blocked in
snapshots that are outside its associated set of identifiers. In our original hypothesis, refusals
were meant to provide the blocking mechanism. However, the blocking is provided by the
healthiness condition MCSns1. Since MCSns1 yields the valid interface at any point of the
execution, and since any channel outside the valid interface may be added into the refusals,
it comes that MCSns1 implicitly validates that hypothesis. The relation between DATs and
refusals is discussed in greater detail in §4.6.2.

The existence of iDgen is beneficial for the verification of the properties of mobile systems,
as such a verification may readily profit from existing tools for verifying static systems.

iDgen is the first transformation from mobile CSP to static CSP, and more generally, it is
the first link also from a mobility framework to a static framework. Although the semantics
provided are denotational, iDgen may readily apply to the operational semantics of CSP. The

Discussion 165

technique used to relate mobile CSP to static CSP may be used for other frameworks too. In
particular, we think that the same sort of relation exists between the pi-calculus and CCS.

Absent from this thesis is a transformation from simulation CSP back to mobile CSP, i.e.
a function that can transform a SN ◦MCSns12 healthy process into a DN healthy process.
iDgen−1 denotes the inverse of iDgen. Although we may reasonably assume that iDgen−1

can be defined, certain difficulties may arise. For example, iDgen maintains the relation
between the sender and the receiver of a mobile channel through the synchronisation of their
respective static equivalent. A design question would be that of the necessity of keeping such
a synchronisation action.

Hiding. Our treatment of hiding is quite novel since we allow the set of hidden channels,
say X , to grow ad infinitum. This is a sensible choice, because we leave out the possibility
for X to shrink. However, this is a healthy choice in the following sense. In a static network,
the actual set of silent names (i.e. names that will assuredly appear in a trace) is given by
X ∩ A. This translates naturally to mobile systems viz. in every snapshot X ∩mChans will
contain hidden channels only, hence X does not need to shrink since mChans might.

In order to define the dynamic hiding operator it was first necessary to compute the set
of silent channels. This has led us to define a new class of mobile processes, silent processes,
which have the variable sil in their alphabet, and are S1, S2, S3 and S4 healthy. Healthy
silent processes formally characterise processes that have a leftmost hiding suffix \ X , which
determines the value of sil to be used by the dynamic hiding operator \ {•}. This operator
behaves like traditional hiding.

The dynamic operator is original to this thesis. The hiding operator has been defined
in the context of channel mobility in [56], and [123]. In [56], it relates to the set of private
names, which may not even be used internally to begin with. In [123], they consider the
environment as any other component, thus they hide channels from the global interface,
as in static hiding. However, they distinguish for each process its internal interface from
its external interface, and then impose that each process should have a disjoint internal
interface. Whilst they permit the external interface to grow, the internal interface remains
static. Hence, the separation between internal and external interface only serve to avoid
name collision, such that an internal name may not appear in the trace. In comparison, we
allow the internal interface of every process to grow, and do not explicitly separate internal
and external interfaces. Nonetheless, when computing the hiding normal form of processes,
we have seen how the operators enforce such a separation.

Our treatment resolves many issues related to hiding in the context of channel mobility.
In particular, we resolve the ambiguities related to the concepts of internal and external
mobility. Hiding is meant for hiding, so it is only concerned with the set of silent names, and
not with their eventual mobility; whereas mobility is concerned with movement, without care
for visibility. If a silent name is moved out by a process, there is no need for actually hiding
the channel carrier used for the movement: observing a name as a message (viz. the subject
of a communication), and observing the same name as a channel (viz. the element of an

166 Channel Mobility

interface) are two separate things. Since channels are localised in interfaces, or equivalently
that an interface is the location for channels, channel mobility is the movement from an
interface to another. This means that if a communication ch.M is in the trace with M some
channel, if M does not appear in the interface (which is the case when M ∈ X), no observer
may effectively infer that M is indeed a channel.

In [111] the authors investigate the possible relationship between CCS and the pi-calculus.
They distinguish internal from external mobility, leading them to define a specific character-
isation of internal mobility for the pi-calculus, called πI (see also [20]). Their treatment of
external mobility yields more complex formulations than πI . It would be interesting to see
how our approach could affect their results, but that is a topic for future work.

Renaming. The renaming operator was redefined in order to prevent the renaming of
names not in the interface yet. More generally, what the dynamic renaming operator has
highlighted is the fact that, for any operator that operates on channel names (including the
hiding operator), any assumption about channel names in static CSP may potentially become
a healthiness condition in mobile CSP.

It is interesting to compare the dynamic hiding and the dynamic renaming operators. In
order to define the first, we had to build a new theory, to apply healthiness conditions to every
mobile process. For dynamic renaming, it was necessary to apply a healthiness condition on
the operator itself (viz. substitute names must not coincide with new names).

Another point of comparison is the following. Both operators may be seen as functions on
names, hence from their perspective, there is no notion of known and unknown names, only
defined and undefined names. Hiding evaluates names given by the variable sil, renaming
those given by the variable mChans. Yet, hiding applies only at the end of the execution of a
process, whereas renaming applies somewhat independently of any execution. This difference
may have some theoretical importance. In particular, one may view hiding as a kind of
renaming in which given names are replaced by a given silent name τ . τ is used in the
pi-calculus and is not ‘mobile’, seeing that it is not associated with any channel. Thus, it
would be interesting to study the correctness of this τ -renaming view of the hiding operator,
which may be used in relating CCS with CSP. For example, that view is mentioned in [107]
by Roscoe for relating CCS and CSP.

Our formulation of the dynamic renaming operator may be used as a model for Roscoe’s
generalised relabelling operator [108] (cf. Chap. 3, §3.2.6). It has the advantage of being a
function, hence it may more easily be reused.

4.6.2 Of the relation between the alphabetised traces model of simulation
CSP and the failures model of CSP

In Section 4.5.2 we have discussed the construction of iDgen, meant to transform a dynamic
trace into a static trace. Our initial idea was to put channels that must not be used in a given
snapshot in the refusals of that snapshot. Meanwhile, we gained the insight that we could

Discussion 167

translate DATs (for mobile CSP) into a new form of DATs for simulation CSP. Thus, iDgen
would now transform a dynamic trace of form 〈..., (s, e), ...〉 into a simulation trace of form
〈..., (id 7→ s, e), ...〉, instead of a static trace of form 〈..., (A, e), ...〉. Then, we have defined
the healthiness condition MCSns1 that ensures that only specified channels in id 7→ s may
effectively be used. Clearly, MCSns1 provides the guarantee that we were trying to build
with refusals.

The failure of a CSP process is given by a pair (t,X) where t is a trace of the process
and X is a set of events denoting a refusals set. The set F of all pairs (t,X) denotes the
failures of the process. Cavalcanti & Woodcock [35] have defined four healthiness conditions
for a correct failures model. The following healthiness conditions are particularly interesting:

F1 traces⊥(P) = {t | (t,X) ∈ F} is non-empty and prefix closed
F3 (t,X) ∈ F ∧ (∀ a : Y • t a 〈a〉 6∈ traces⊥(P))⇒ (t,X ∪Y) ∈ F

where traces⊥(P) denotes the set of all traces in which P can engage, including those that
lead to or arise from divergence. F1 states that the set of traces of a process must be captured
in its set of failures, and is non-empty and prefix closed. F3 states that if an event is not
possible according to the set of traces of the process, then it must be in the set of refusals.

Whilst MCSns1 does not enforce F3 explicitly, it seems to be doing that implicitly,
since elements from A − s may not possibly be recorded. We had discarded MCSns3 as
it required that ref ′ ⊆ mChans′, the future valid interface. However, if we substitute the
previous relation by (A −mChans′) ⊂ ref ′, we obtain the effect described by F3 explicitly,
expressed as the following healthiness condition:

MCSns3.2 P = P ∧ (A−mChans′) ⊂ ref ′

By definition, we have iDgen = MCSns3.2 ◦ iDgen.
Cavalcanti & Woodcock “view the definition of extra healthiness conditions on UTP pro-

cesses to ensure F1 and F3 as a challenging task” ([35, §7.3]). Although that remains to be
proven, we emit the following hypothesis:

F1 ◦ F3 ◦MCSns1 ◦MCSns2.2 = MCSns1 ◦MCSns2.2

4.6.3 Versus the pi-calculus

The approach to semantics used in this thesis (and in some related works that use CSP as
a basis) is strikingly different from the one used in the pi-calculus [86]. We have only been
able to distil some preliminary elements of comparison. Our general impression is that the
question of the relation between CSP and the pi-calculus has not been adequately expressed
so far in the Literature. Our intuition is that the definition of that relation would require an
adequate algebraic basis, which should notably formalise also the notion of process capability
introduced in this thesis. We have suggested de Simone [120] framework as the sort of

168 Channel Mobility

algebraic characterisation we have in mind.
Assuming the existence of such an algebra, we see that operational semantics and denota-

tional semantics are functions on processes. Then, the notions of capability and of interface,
which are independent from the style of semantics, should certainly be affected by the same
sort of changes whenever the function considered (either operational or denotational) defines
the same process. Popescu [101] coalgebraic framework clearly uses a notion of dynamic
interface even for characterising pi-calculus processes.

Therefore, if we add the notion of capability to our conceptual algebra, we see that
the problem of channel-passing is not simply that of name freshness, but that of dynamic
interface. Whilst the pi-calculus may use scope extrusion, it would still be necessary that
the effect of scope extrusion is a change of interface (at the algebraic level). We may well
suppose another model in which the notion of a process context characterises an interface as
well, so that the question is no longer to what value a name is bound, but rather whether a
name is in the current interface.

This means that we have moved away from the question of name binding to that of dy-
namic interface. Certainly, even in the pi-calculus, the programmer expects any channel that
appears in a process expression to be in the current interface. The departure from name
binding is we believe, the key problem posed by trying to build traces for pi-calculus pro-
cesses. Indeed, consider a pi-calculus process, and suppose that we want to build the traces
for such a process. Naively, we may simply record whatever name appears in a transition,
as may be done when building traces for CCS processes [25]. The question thereon is thus:
how can we from the previous trace deduce channel mobility?

One possible answer is to try and capture name binding in the trace. Such is the approach
employed by Bialkiewicz and Peschanski [18], and by Roscoe [108]. This approach results in
quite complex models, which nonetheless leave certain questions unanswered, e.g. what makes
a name authorised?, and make others difficult to answer, e.g. how does the traces model (for
channel mobility) relate to static CSP?

Another possibility and the one that we advocate is to use both a static capability and a
dynamic interface. Then, the effect of scope extrusion would simply be a change of interface,
notwithstanding whether one uses operational semantics or denotational semantics. Our naive
axiomatisation at the end of the Literature review, together with works such as Popescu’s
[101], and different works on traces for CCS, and operational semantics for CSP, give us
a strong intuition about the feasibility and correctness of such a model. Our proposition
does not apply only to relate mobile CSP with the pi-calculus, but also CCS and related
frameworks with the pi-calculus.

4.6.4 Closed vs. Open world

In this thesis, we have encountered two operators that deal with names that may be ei-
ther known in advance or not. The case of known names is a particular case of unknown

Discussion 169

names. Clearly, in either case, if we send to a process P a channel kn that is known,
P will receive kn. We are just making a projection here, from an unknown-world (i.e. a
world/universe/environment with unknown names) to a known-world: inasmuch as P may
not know in advance a name that it must acquire, the environment always knows in advance
what name it may send to P —channel-passing output prefix states exactly that. Therefore,
any renaming of a channel ch1 in a known-world environment applies also to P, which is in
unknown-world instead.

Let ε denote an environment (a process) such that ch1 ∈ Iε is always true. Then, ε[ch2←ch1]

denotes an environment in which ch2 ∈ Iε[ch2← ch1] is always true. Further suppose that ε
may successfully send channel ch1 to P, then ε[ch2← ch1] may successfully send channel ch2

to P. Then:

[SpecRename2] (P ‖ ε)[ch2← ch1] = P ‖ ε[ch2← ch1]

[SpecRename2] may have some theoretical importance: it suggests that we can always simu-
late unknown-world semantics by known-world semantics.

Definition 4.6.1 (Unknown-, known-world semantics). A mobile process P is said to be
in open/unknown-world (of names) semantics if P may acquire a new channel, and that
channel may not be known in advance, or equivalently, the environment may send P a name
undetermined in advance.
If, however, it is known in advance what channel P may receive, for example when the
interface of the sending process is known, P is said to be in closed/known-world semantics.
Typically, static SN-healthy processes define a known-world semantics, in which a process
may receive only those names that are already in its interface.

Theorem 4.6.2 (unknown-to-known refinement). If P is in unknown-world semantics, and
we send to P a name kn, then P will receive kn. Hence, we may always simulate an unknown-
world semantics by a known-world semantics. This is a refinement result: let ukn(P) denote
the unknown-world semantics of P, and kn(P) denote a given known-world semantics of P,
then

ukn(P) v kn(P)

In consequence, whatever theorem holds in known-world semantics does hold also in unknown-
world semantics.

Unlike what may be suggested by the names closed/open (resp. known/unknown), it
appears that the concept of open world does actually apply to a single process: it traduces
a local view of the environment; whereas the concept of closed world applies to all the inter-
acting processes in the environment/system: it traduces a global view of the environment.

Chapter 5

Strong Process Mobility

5.1 Introduction

Process mobility refers to any model or theory that describes the movement of a process from
its initial computational environment (or source) to another computational environment (or
target). Two forms of process mobility may be distinguished:

• weak mobility: here, only the code of the process is moved, possibly including initiali-
sation data.

• strong mobility: here, a process’s execution is interrupted, then its code and interrupt
state are moved to the target location where the execution is resumed from the interrupt
state.

Tang & Woodcock [126] have given the semantics for weak mobility in UTP. We extend
their results with semantics for strong mobility. The formalisation of process mobility in
UTP is quite challenging as it requires to:

1. model the program counter in order that its value may be included into the interrupt
state: This calls for the concept of continuations, hence, for an explicit representation
of control flow as a function of continuations. Whilst Hoare & He [66, Chap. 6] and
Woodcock & Hughes [141] have given semantics for programs with continuations in
UTP, we show that their models are insufficient for reasoning about nested parallel
programs and propose a new solution.

2. record the state of a process, explicitly: One possibility is to encapsulate the state into
an action representing state transformation, but this may introduce some changes to
the underlying UTP-CSP model. We propose a solution that does not rely on recording
the state in some extra variable (including the trace, and for example, explicitly saving
the state in a third process). Instead, our solution makes the interrupt state observable,
say like waiting states, thus making it available for the following process in a sequential
composition.

171

172 Strong Process Mobility

3. interrupt a process: Different semantics may be given to the interrupt operator of which
two are particularly interesting. The catastrophic interrupt was given a UTP semantics
by McEwan & Woodcock [84] as a form of sequential composition P 4i Q where the
interrupting process Q may execute before P’s termination, whenever P is in a waiting
state if the interrupt event i does occur. The nature of the catastrophic interrupt makes
it easy for Q to access the interrupt state of P. The generic interrupt was given a UTP
semantics by Kun Wei [135] as a form of parallel composition P 4 i → Q where the
execution of Q may overtake that of P whenever the interrupt event i occurs, and not
just when P is in a waiting state. However, K. Wei’s definition does not permit saving
the state of P upon interrupt. We provide a new semantics for the generic interrupt
which permits saving the interrupt state of an executing process.

We model each of these elements independently and in turn. The results constitute the
content of sections 5.2, 5.3 and 5.4. Process mobility itself is then defined as a particular
form of interrupt operator such that the interrupting process is responsible for the movement
of the interruptible process. In the circumstance we may rather use the terms moving process
and movable process. This is the content of §5.5. Finally, §5.6 presents a discussion of our
results.

5.2 Continuations for Reactive Processes

5.2.1 Formalisation

Note: for ease, we will refer to Hoare & He semantics for continuations in UTP presented in
Chap. 2 as HH98 steps or simply HH98. Similarly, we will refer to the work in [141] as WH02
steps or simply WH02.

The Continuation-Passing-Style transformation (or compiler) is inherently sequential [103],
[124]. UTP-CSP processes also permit the representation of sequential programs, which form
a subset of the class of reactive programs. This suggests that HH98 may be applied at least
to sequential UTP-CSP. All that is needed is to extend the alphabet of UTP-CSP sequen-
tial processes, and point-wise extend the definition of sequential composition to the control
variable l, as suggested in HH98.

For illustration, let us adopt a more functional-like notation. Let (αP,∅,P) (or simply
(∅,P)) denote a predicate P with no continuations, and (αP, αlP,P) (or simply (αlP,P))
denote the same but with continuations (αlP 6= {}). Then, for UTP-CSP processes,

seq(P,Q) = seq((∅,P), (∅,Q)) = P # Q

Continuations for Reactive Processes 173

and when extended with continuations,

seq(P,Q) = seq((αlP,P), (αlQ,Q))

= ((l ∈ αlP)> # P # (l ∈ αlQ)⊥) # ((l ∈ αlQ)> # Q # (l 6∈ αlQ)⊥)

The previous extension is trivially correct for sequential processes whose expression contains
neither interaction nor parallel operators. This raises the question of the possibility of such
an extension to parallel programs also.

The case of parallel composition is less trivial. Indeed at first, it may be tempting to
use the equivalence P ‖ Q = (P # Q) ∨ (Q # P). However, this is not quite right when
continuations are involved. To see this, let us again adopt a functional-like notation, and
attempt a point-wise extension of parallel composition in the same manner as sequential
composition above.

par(P,Q) = par((αlP,P), (αlQ,Q))

= seq((αlP,P), (αlQ,Q)) ∨ seq((αlQ,Q), (αlP,P))

A first theoretical difficulty arises: seq((αlP,P), (αlQ,Q)) supposes that P knows of the
continuations of Q. This contradicts parallel composition, which supposes that P and Q are
executing on distinct, possibly remote processors and hence need not be aware of each other
(except maybe through interaction). We may however do away with such a consideration by
introducing some third process, say T , in charge of facilitating the sequential transit between
P and Q. Then

par(P,Q) = par((αlP,P), (αlQ,Q))

= seq((αlP,P), (αlT1,T1), (αlQ,Q)) ∨ seq((αlQ,Q), (αlT2,T2), (αlP,P))

seq((αlP,P), (αlT1,T1), (αlQ,Q)) =


(l ∈ αlP)> # P # (l ∈ αlT1)⊥)#

((l ∈ αlT1)> # T1 # (l ∈ αlQ)⊥)#

((l ∈ αlQ)> # Q # (l 6∈ αlQ)⊥)



seq((αlQ,Q), (αlT2,T2), (αlP,P)) =


(l ∈ αlQ)> # Q # (l ∈ αlT2)⊥)#

((l ∈ αlT2)> # T2 # (l ∈ αlP)⊥)#

((l ∈ αlP)> # Q # (l 6∈ αlQ)⊥)


Using single instructions provides a simpler illustration. Let 〈s,P, f 〉 and 〈t,Q, g〉, then

par(〈s1,P, f1〉, 〈s2,Q, f2〉) =

(
seq(〈s1,P, f1〉, 〈f1,T1, s2〉, 〈s2,Q, f2〉) ∨

seq(〈s2,Q, f2〉, 〈f2,T2, s1〉, 〈s1,P, f1〉)

)

Before discussing the more complex case of basic blocks, remark that the definition above
omits alphabet constraints. This is voluntary, for readability purpose. Indeed, it would be

174 Strong Process Mobility

necessary to extend the alphabet of P with that of Q, and inversely, and also the alphabet
of T with those of both P and Q.

More importantly, the continuations of T have been chosen quite purposefully. A complete
definition of T would actually require some mechanism for relocating the final continuation
of P. The subsequent discussion will show how impractical an attempt of building such a
mechanism may be.

For basic blocks i.e. sequences of instructions P = 22Pi and Q = 22Qj , the definition is
more complex. The rationale is that each step is executed upon a non-deterministic choice
between the rest of P and the rest of Q. For readability, we may introduce yet more notation.
Let P̄i denote the rest of the computation after the execution of a given step Pi . We assume
that P̄i = SKIP if Pi is the last instruction to be executed. Then

par(P,Q) = seq(P1, par(P̄1,Q)) u seq(Q1, par(Q̄1,P))

Consider the simple case where P = seq(P1,P2) and Q = seq(Q1,Q2). Then, e.g. P̄1 = P2.
We want to compute the value of par(P,Q), and in particular, see if we obtain the expected
interleaving of the instructions of P and Q. In what follows, we use a single generic process
T to denote the transition between P and Q, as discussed previously. Then

par(P,Q) = seq(P1,T , par(P2,Q)) u seq(Q1,T , par(Q2,P))

seq(P1, par(P̄2,Q)) = P1 # T # par(P2,Q)

= P1 # T # (seq(P2,T ,Q) u seq(Q1,T , par(Q2,P2)))

= P1 # T #

 (P2 # T # Q1 # Q2) u

(Q1 # T # (seq(Q2,P2) u seq(P2,Q2))



=


(P1 # T # P2 # T # Q1 # Q2) ∨

(P1 # T # Q1 # T # seq(Q2,P2)) ∨

(P1 # T # Q1 # T # seq(P2,Q2))


Let us eliminate T in the development above, as it behaves like SKIP with regard both the
alphabets of P and Q. Then, we obtain all the expected interleaving. Also, we remark that
in sequences of the form Pi # Qj , Qj behaves like SKIP with regard to the alphabet of P, and
similarly for sequences of the form Qj # Pi , Pi behaves like SKIP with regard the alphabet of
Q. This leads to the conjecture that any given interleaving is an instance of P ∧ Q.

The latter conjecture simply means this: l is not expressive enough for reasoning about
control flow in the presence of parallelism. The problem actually lies with the design of the
control variable as single-valued. Possibly, it may be obvious at a first glance that l does not
follow the structure of programs. However, one may still attempt a definition based on l: as
far as mathematics are concerned, that does not seem to be impossible. The last conjecture
shows that such an endeavour would be pointless: since the intended effect of P ‖ Q is
essentially P ∧ Q, it would be better to compute the continuations of P and Q individually

Continuations for Reactive Processes 175

from the start. We need a mathematical model that follows more tightly the computation
model. For example, using l in the presence of an interrupt operator, it would be as if a single
program was interrupted at a time whereas we should be able to say that many programs
may be interrupted at a time.

Nature of the control variable in UTP. Beyond what has just been said, an interesting
insight may be derived from the previous discussion, concerning the semantics of l, in com-
parison with functional continuations as defined in e.g. [128], [124]: although l is a variable,
inasmuch as it determines the next instruction to be executed, it stands for the instruction
that it designates. Hence, l must be understood as a functional continuation, or in UTP
terminology as a predicate, and not just as some variable containing execution locations, as
if the locations were distinct from the predicates localised. Hence, execution locations in the
context of UTP must be confused with the predicates that the locations serve to designate;
and the fact that l is a ‘variable’ simply characterises that the instruction to be executed
next may vary or change.

The solution to the limitations of l mentioned above is to design a value of the control
variable that follows more tightly the structure of processes. This is what is done in [141].

In [141] (hereafter also WH02), Woodcock & Hughes use a set-valued control variable,
denoted ls instead, which contains the continuations of all the steps that may be executed
in parallel next. Thanks to ls, we may point-wise extend the UTP-CSP parallel composition
operator. However, a number of changes must first be considered. Unlike HH98 steps, a
WH02 step may now exit at many points at any one time, implying that a step may be
entered simultaneously at multiple entry points. This is a little counter-intuitive but poses
no great difficulties.

Definition 5.2.1 (WH02 Step [141]). A predicate P is a step if l ∈ αP and

P = P C ∃ l0 ∈ αlP • l0 ∈ ls B II

Unfortunately, ls is not quite sufficient for our purpose. To see this, consider the following
illustration. Let P = seq(〈s,P1, h〉, 〈h,P2, f 〉), and let ls = {s, h}. The value of ls is still valid
but does not reflect the structure of P. If the programmer was expecting parallel compo-
sition, sequential composition will be performed instead, which is an error and will not be
detected. Let Q = par(〈s,Q1, f 〉, 〈t,Q2, g〉), and let ls = {s}. Then Q will behave like Q1,
since Q2 behaves like II (by definition). Again, if parallel composition was expected then only
one step will be executed instead of two in parallel, which is an error and will not be detected.

Seeing that neither HH98 variable l nor WH02 variable ls are adequate, we have to design
a new value for the control variable. L will denote the new control variable, and we discuss
its formalisation in the next section.

176 Strong Process Mobility

P312P311

Pm1P4P3P2P1

P31m2

(a)

P312P3 P311

(c)

P3

(b)

P31

P

P33
P32
P31

P

Figure 5.1: Example of a CFG for reactive processes

Design of the control variable L

Parallel composition may be seen as a single block such that when entered sequentially, the
steps that compose the block are executed in parallel, and when they have all exited, then the
block is also exited. That is, entry into (resp. exit from) a block of parallel steps is identical
to entry into (resp. exit from) a sequential block. Sequential and parallel blocks would hence
differ in their respective execution order: for the first, only one step may be executed at
a single (observation) time, whilst multiple steps may be executed at a single time for the
second. In other words, parallel composition acts as an envelop w.r.t. its components. It has
its own continuations, that differ from those of its constituents. Let P = par(P1,P2), then
the block denoted by P differs from its component blocks P1 and P2: P has its own entry
and exit points that differ from those of P1 and P2. P will be called a nesting step, and P1

and P2 will be called nested steps.
A control flow graph (CFG) is a standard representation of programs with no parallel

constructs, using a graph. A CFG and related concepts are appropriate for discussing the
structure of UTP-CSP processes. Note that we are not interested in a graphical formalism,
but only to use graphs as an adequate means for discussion. In what follows, we sketch what
such a graph might look like.

Construction of a CFG for reactive processes. Figure5.1(a) shows an example of
such a graph read in a left-right, then top-down, iterative manner, thus indicating the flow of
control. Pi nodes may denote either single instructions, sequential blocks, or nested (parallel)
blocks. Both the root node (P) and initial nodes (e.g. P31, P32, P33) are indicated by
empty circles. A nesting node (e.g. P3) is indicated by a vertical line starting from the

Continuations for Reactive Processes 177

node downwards, as shown in Figure5.1(b). An empty square indicates termination for a
horizontal line, whereas it simply serves as a visual aid to indicate the end of a vertical line.
A flattened graph Figure5.1(c) shows how control goes through P3, and then again through
P312. More information could have been added for loops and jumps, and bigger graphs may
be conceived, but such are not our main interest. Rather, we may also annotate nodes with
their continuations. The annotation procedure would then show how to evaluate the control
variable.

Value of L

Let L denote the control variable whose value we will be discussing. Then αLP denotes the
continuations of a step P.

To formalise the nesting relation between a parent and its children, we may partition the
continuations set of every node into two subsets: αl, the continuations of the parent, and αls,
the continuations of its children. We make the following important remark: the parent-child
relation does not extend beyond two adjacent levels. Hence αls contains the continuations of
nodes at the lower adjacent level only, e.g. for sequential blocks, αls = {}.

In what follows, we describe in detail the procedure for attributing continuations to nodes.
That is also the procedure for computing the value of αL for a given block.

Continuations are attributed hierarchically, in a bottom-up fashion. We make no differ-
ence between nodes denoting either single instructions or sequential blocks, and we will refer
to them commonly as lv0 (read level-0) nodes. Such nodes do not introduce nesting, hence
they have no children, i.e. αls = {}.

We then put in parallel lv0 nodes, exclusively, to form lv1 nodes. Such nodes correspond
to the nesting nodes mentioned earlier. The value of αls is given by the union of continuations
αl of its constituents; e.g. αlsP3 = {αlP31, αlP32, αlP33}.

Again, putting exclusively lv1 nodes in parallel, or together with lv0 nodes, we obtain lv2

nodes. αls is the union of all the continuations of adjacent lv1 (and lv0) nodes, only. Hence,
the value of αls for a lv2 node does not contain the continuations of those lv0 nodes that are
nested to lv1 nodes; e.g. αlP312x * αlsP3, although αlP312 ⊆ αlP31 ⊂ αlsP3 & αlsP312 =

{..., αlP312x , ...}.
This illustrates what we said earlier about αls: it contains only the continuations of the

lower adjacent levels. We reiterate this construction procedure for higher-levelled nodes.
The value of αL may be obtained by iteration on the level of a node considered as the

root (of the graph), as follows:

lv0 root, no children: αlP & αlsP = {} & αLP = αlP

lv1 root or parent, lv0 children only: αlsP =
⋃

i αlPi & αLP = αlP ∪ αlsP

178 Strong Process Mobility

lv2 root or parent, at least one lv1 child: αlsP =
⋃

i αlPi & αLP = αlP ∪ (
⋃

i αLPi)

lvn root or parent, at least one lvn−1 child: αlsP =
⋃

i αlPi & αLP = αlP ∪ (
⋃

i αLPi)

Note: the introduction of a nesting step is essentially what distinguishes the value of L from
that of WH02’ control variable ls from [141]. Its effect is to delegate the instantiation of par-
allel (nested) nodes to the nesting node, which is a dummy. Thanks to this, control flows as
in sequential programs, since the dummy node hides away the parallel structure of programs.
It is also thanks to the nesting node that we solve the limitations of ls discussed earlier. For
example, using WH02 steps, it is possible to jump to a step without care for its nesting level.
The presence of the dummy step resolves this by imposing that control must enter into the
dummy step first before it can then enter into the parallel steps.

In what follows we describe the semantics of L formally.

5.2.2 Continuations semantics for programs with parallel constructs

HH98 steps (cf. §2.6) are programs that compute the control variable l. By analogy, we present
programs that compute the control variable L instead. We follow the same methodology of
Hoare and He [66, Chap. 6] that consists of starting with unstructured predicates (i.e. steps)
and then adding more structure to obtain in turn target code programs, and then program
blocks. In our case, after (re)defining steps, we shall restrict our programs to Reactive
Processes and obtain, as a result, the theory of Reactive Process Blocks (cf. §5.2.3) i.e.
reactive processes that contain the control variable L.

Steps

We now describe predicates whose alphabet include a set of continuations denoted by αL. αL
is partitioned into two subsets: αl, which contains the continuations at the current level of
execution, and αls, which contains the continuations at the adjacent lower level of execution,
w.r.t. nesting.

At first, each level of execution may be considered without regard for nesting. Then,
every step is entered horizontally, and exits horizontally. In a graph, a level corresponds to a
single horizontal line that links nodes arranged from left to right, according to their execution
order. There is a node that has no horizontal predecessor, called the root of the level. Each
node on a line is adjoined a continuation. We say that a node is entered horizontally if we
can draw a horizontal line from the root leading to it viz. the value of L corresponds to the
node’s continuation.

In the case of nesting, in a graph, there is a vertical line linking the higher level, at the
top, with its adjacent lower levels, all arranged as parallel horizontal lines. The root of the
graph has neither vertical nor horizontal predecessors (i.e. there is no vertical/horizontal line
leading to the graph-root); the root of a lower level has no horizontal predecessor and should
have at least one vertical predecessor. A lower level (or child) node may be entered only if its

Continuations for Reactive Processes 179

parent has been entered first. That is, we can draw a vertical line from the parent node to
the lower level horizontal line that contains the given child node, when traversing the graph
of the step from its root to the given node. In other words, the value of L must hold both
the parent and the child nodes continuations.

Definition 5.2.2 (Step(2)). Let P be a predicate describing a step. Let αLP denote its set
of continuations, and let L be the control variable for its execution. We may partition the set
αLP into two subsets αlP and αlsP such that:

• αlP denotes the set of all the continuations of P at a single level of execution.

• αlsP denotes the set of all the continuations of P at the adjacent lower level of execution.

Control may enter into a step horizontally with regard to its own execution level, or verti-
cally with regard to nesting. In either case, a step may only be entered when the value of L
coincides with one of the step’s entry points. Otherwise the step does nothing. Formally,

P = P C L ∈ αLP B II

Some operators induce/embed a nesting relation (cf. below, e.g. parallel assembly) whilst
others do not.

Definition 5.2.3 (Nesting relation). Let P be a step, and op an operator on steps and which
is closed.
op is said to induce nesting if, and only if, αl op(P) 6= αlP and αlP ⊂ αls op(P): then, we
say that op(P) is the parent of P, and is called a nesting step; or equivalently, we say that
P is nested into op(P), and is called a nested step.
Otherwise, i.e. if αl op(P) = αlP, then op does not induce nesting.

The value of αLP may only be given by recursion over the nesting level of P.

Definition 5.2.4 (lvk-steps, αL). Let P be a step, then

αLP =̂ αlP ∪ αlsP

where both αlP and αlsP are specified according to the level of the nested programs in the
expression of P, as described subsequently.
We say that a program P is a lv0-step, denoted by P = lv0(P), if, and only if, P has neither
parent nor children, i.e. αlsP = {}. Then

αLP =̂ αlP ∪ αlsP = αlP

Let op be a binary operator that induces nesting. Then:

• if P and Q are both lv0-steps, then we say that op(P,Q) is a lv1-step and

αl op(P,Q) =̂ {nn} αls op(P,Q) =̂ αLP ∪ αLQ = αlP ∪ αlQ

180 Strong Process Mobility

• if either P or Q is a lv1-step, or both are, then we say that op(P,Q) is a lv2-step and

αl op(P,Q) =̂ {nn} αls op(P,Q) =̂ αLP ∪ αLQ

• if either P or Q is a lvk-step, or both are, then we say that op(P,Q) is a lvk+1-step
and

αl op(P,Q) =̂ {nn} αls op(P,Q) =̂ αLP ∪ αLQ

where op(P,Q) is a nesting step and may have only one entry point, and only one exit point,
both denoted by nn for convenience.

Consequence 5.2.5.

1. lv0-steps do not induce a nesting relation.

2. lv0-steps are 22-closed (cf. Theorem 2.6.4). Hence, every operator that may be defined in
terms of 22 (such as {C bB,u, #}) does not induce a nesting relation.

The relation with HH98 steps is obvious:

Example 5.2.6. HH98 steps are lv0-steps.

Proof. by definition.

Sequential assembly (2). The sequential assembly is as defined by HH98. We simply
redefine it here to account for the changes introduced.

Definition 5.2.7 (Sequential assembly(2)).

P 22 Q =̂ (P C L ∈ αLP BQ)C L ∈ (αLP ∪ αLQ)B SKIP

αL(P 22 Q) =̂ αLP ∪ αLQ

Example 5.2.8. From Figure5.1(a).

1. P = 221≤i≤m1
Pi

2. P31 = 221≤j≤m2
P31j

Parallel Assembly. Traditionally, control enters sequentially into a single step at any one
time. However, when dealing with parallelism, control may enter sequentially into many steps
at any one time. It is therefore possible for a step, upon exit, to indicate that many steps
may be executed in parallel next (cf. WH02 [141]).

The selection of the next parallel steps may be delegated to a dummy step, or nesting step,
which is hence responsible of splitting control. This greatly simplifies not only reasoning, but
definitions as well.

Continuations for Reactive Processes 181

In particular, thanks to the nesting step, we are able to ‘guarantee by construction’ that
none of the component steps may be jumped into at random, and that all the component
steps are always entered at the same time —it is necessary to enter the nesting step first.
There is also no need for an explicit synchronisation at the exit, which is possible only when
every step has finished its execution; and only when such is the case does the empty step
terminates its own execution.

In sum, the principal effect of the parallel assembly of steps is the creation of a dummy
step that somewhat hides away control inherent to component steps. Hiding of control is not
total since we can still observe its effect on the final value of L.

We may now define the parallel composition of steps, called parallel assembly and denoted
by //. It states that the parallel assembly of two steps yields a third, nesting step.

Definition 5.2.9 (Parallel assembly). Let nn 6∈ αLP, and nn 6∈ αLQ.

P//M Q =̂ (P ‖M Q)C {nn} ∈ LB II

M (L) =̂ L′ = 1.L ∪ 2.L

αL(P//M Q) =̂ {nn} ∪ αLP ∪ αLQ

Example 5.2.10. From Figure5.1(a),(b), we have: P3 = P31 //P32 //P33

Instructions, blocks, program blocks

In this section, we principally add more structure to the steps defined in the previous section.

First, we redefine the notion of single instruction.

Definition 5.2.11 (Single instruction(2)). Let INST be a lv0-step, i.e. αlsINST = {}.

m : INST =̂ INST C L = {m}B II

is a single instruction.

We may distinguish two types of machine code blocks, according to the assembly operator
used for their composition: (purely) sequential blocks (which we also call proper blocks) are
the sequential assembly of single instructions (called machine code block in HH98 [66]); and
parallel blocks (or nesting blocks) are the parallel assembly of single instructions.

Definition 5.2.12 (Proper-, nesting- block). A proper block, say SeqB, is a program ex-
pressible as a sequential assembly of single instructions i.e.

SeqB =̂ m0 : INST0 22 m1 : INST1 22 ... 22 mn : INSTn

αl(SeqB) =̂ {mi | 0 ≤ i ≤ n}

αls(SeqB) =̂ {}

182 Strong Process Mobility

A nesting block, say ParB, is a program expressible as a parallel assembly of single instruc-
tions i.e.

ParB =̂ m0 : INST0 //m1 : INST1 // ... //mn : INSTn

αl(ParB) =̂ {nn}

αls(ParB) =̂ {mi | 0 ≤ i ≤ n}

Example 5.2.13. From Figure5.1(a).

1. Let 20:P1 and 27:P2 be single instructions, then (20:P1 22 27:P2) is a proper block.

2. Let 22 : P32 and 74 : P33 be single instructions, then (22 : P32 // 74 : P33) is a nesting
block.

We expect any instruction to always pass control via a single exit point that may lead
either to a proper instruction or to a nesting one. The definition of target code below reflects
that expectation.

Definition 5.2.14 (Proper-, nesting- target code). Let P be a step. Let S below denote the
set of entry points of all the steps that will be executed in parallel next, and let F denote the
corresponding set of exit points.
If αlsP 6= {}, then we say that any step of the form 〈(s,S),P, (F , f)〉 is in nesting target
code, and defined by

〈(s,S),P, (F , f)〉 =̂ (L ∈ {s} ∪ S)> # P # (L ∈ F ∪ {f })⊥
= varL := {s} ∪ S # P # (L ∈ F ∪ {f })⊥ # endL

However, if P is a lv0-step i.e. αlsP = {}, then S = {} = F; we say that the step is in
proper target code and we may write simply 〈s,P, f 〉.

Notice from above that the entry and exit points of the nesting step are independent
of those of the steps supposed to execute in parallel. Upon entry, L is updated with the
continuation s to ensure normal entry into the nesting step itself, and also with the set S
so that the parallel steps may be entered conjointly afterwards. Upon exit, the value of L
is first determined by a given merge function (cf. parallel assembly Def. 5.2.9) that ensures
that L′ ∈ F upon exiting the parallel assembly, and then L should be updated with the
continuation f to provide normal exit out of the nesting step itself.

In what follows, we define the nesting target code for the parallel composition operator ‖
only.

The parallel composition of two steps simply yields a third, nesting step, which has its
own distinct entry and exit points from those of the steps that are to be run in parallel. Each
component step may start only when its continuation has been provided by the nesting step.

Continuations for Reactive Processes 183

Definition 5.2.15 (Target code for parallel composition). 〈(s1,S1),P, (F1, f1)〉 ‖

〈(s2,S2),Q, (F2, f2)〉

 =̂ ∃(s, f) • 〈(s, {s1, s2}),P//Q, ({f1, f2}, f)〉

αl(P//Q) =̂ {s, f }

αls(P//Q) =̂ ({s1, f1} ∪ S1 ∪ F1) ∪ ({s2, f2} ∪ S2 ∪ F2)

We expect the possibility of jumping into nested parallel steps. However, such jumps may
not be left unguarded. The least requirement we can impose is that the continuation of the
parent must figure in the definition of the jump statement together with the continuations of
the children nodes to jump into.

Definition 5.2.16 (Vertical jump). jump(f ,F) =̂ L := {f } ∪ F C L = nB II

Example 5.2.17. From Figure5.1(a). Let li ∈ αlPi denote the last instruction executed in
the block Pi . e.g. let P4 = (63:P41 22 64:P42), then l4 ∈ {63, 64}.

1. normal jump to the block P2

jump l2 # P = P2 = jump (l2, {} # P

2. normal jump to the nesting instruction P3

jump l3 = P3

P3 will be responsible for initialising its nested parallel children.

3. vertical jump to the block P311

jump(l3, {l311}) # P = P311

4. unsuccessful vertical jump to the block P311

jump l311 # P = II

5. vertical jump to the nesting instruction P312

jump(l3, {l312}) # P = P312

Let P312 = P3121 //P3122, then P312 is responsible for giving values to l3121 and l3122.

6. vertical jump to P312’s children

jump(l3, {l312, l3121, l3122}) # P = P3121 //P3122

184 Strong Process Mobility

The values of l3121 and l3122 are defined by the jump statement, not P312. All the parents
must be listed for the jump to succeed. l3 allows a vertical jump through P3, and l312 allows
a vertical jump through P312.

Placing a label to multiple steps at the same time for the purpose of running them in
parallel may seem like an interesting feature at first, but it would only add pointless compli-
cations. It is sufficient for us to place labels in each program individually and then run the
result (of each labelling procedure) in parallel.

In sum, in this section, we have defined the semantics of programs that may contain the
control variable L, thus extending the range of programs expressible using HH98 and WH02
to nested parallel programs. We have not discussed the case of Higher-order (HO) programs
and this should be done, given that the theory of mobile processes for which we have built
the continuations above relies on HO programming. We postpone such a discussion to the
following section.

5.2.3 Reactive Process Blocks

In this section we present the construction and semantics of Reactive Process Blocks (or
RPB), based on the results obtained previously.

RPB processes are meant to extend UTP-CSP processes with continuations. Since we are
also interested in Higher-order programming, i.e. the possibility of calling a program from
within another program, we shall consider the extension of UTP-CSP with HO programming
defined by Tang & Woodcock [126] (cf. Chap. 3, §3.1.2).

RPB Alphabet

First, let us consider UTP-CSP processes as defined in [126]. The alphabet of a UTP-CSP
process P is defined by

αP = VarP ∪Obs ∪ A

where Obs = {o,o′ | o ∈ {ok,wait, tr , ref }} is the set of observational variables; A the set of
events that P may perform (including communications), and VarP the set of variables that
P may use. We may extend such an alphabet with both αLP, the continuations of P, and
L, the control variable. This yields the following alphabet for P

αP = VarP ∪ {L} ∪Obs ∪ A ∪ αLP

Such an extension poses no difficulty at all, remembering that the alphabet of a predicate
is simply a collection of symbols (otherwise meaningless on their own). We will refer to
processes with such an alphabet as reactive steps.

Continuations for Reactive Processes 185

RPB Healthiness conditions

UTP-CSP processes are characterised by a monotonic and idempotent healthiness condition
CSP = R ◦ CSP1 ◦ CSP2.

CSP trivially applies to processes whose alphabet is extended as defined above. Nonethe-
less, this is not enough for characterising reactive steps. In order to achieve such a character-
isation, it is necessary to regard the definition of steps given earlier as an additional healthi-
ness condition that applies to UTP-CSP processes with L in their alphabet. We denote that
healthiness condition by RPB1, defined below:

RPB1(P) = P C L ∈ αLP B IIR

The following law trivially holds:

RPB1 ◦ CSP(P) = CSP ◦ RPB1(P)

The control variable L and both the observational variables ok and wait allow reasoning
about termination; in addition, L permits reasoning about control, while both ok and wait
permit reasoning about intermediate stable states. We need to ensure that no contradiction
arises from the definitions of each of these variables. Thus, we define the following laws to
ensure the consistency of the definitions of L, ok and wait variables.

Definition 5.2.18 (Consistency between L, ok and wait). The variables wait and L must
agree on the behaviour of a Step prior to its execution.

A1 P ∧ wait ⇔ P ∧ L 6∈ αLP

(or equivalently) P = P ∧ (wait ⇔ L 6∈ αLP)

The variables ok and L must agree on the start of the execution.

A2 P ∧ ok ⇔ P ∧ (L ∈ αLP)

(or equiv.) P = P ∧ (ok ⇔ L ∈ αLP)

The variables ok and wait, and L must agree on valid intermediate states.

A3 P ∧ ok ′ ∧ wait ′ ⇔ P ∧ (L′ ∈ αLP)

(or equiv.) P = P ∧ (ok ′ ∧ wait ′ ⇔ L′ ∈ αLP)

The variables ok and wait, and L must agree on the termination.

A4 P ∧ ok ′ ∧ ¬ wait ′ ⇔ P ∧ L′ 6∈ αLP

(or equiv.) P = P ∧ (ok ′ ∧ ¬ wait ′ ⇔ L′ 6∈ αLP)

186 Strong Process Mobility

Definition 5.2.19. A =̂ A1 ◦ A2 ◦ A3 ◦ A4

Since A1, A2, A3, and A4 are all conjunctive, the order of their composition is irrelevant.

It turns out that reactive steps that are RPB1 ◦ CSP healthy are also A1 and A2
healthy. The proof of the latter is obtained easily if we remark that A1 and R3 ◦ RPB1
are similar, and also that A2 and CSP1 ◦ RPB1 are similar.

Theorem 5.2.20. A1 ◦ RPB1 ◦ CSP = RPB1 ◦ CSP

Proof.

A1(P)

={A1 def}

P ∧ (wait ⇔ L 6∈ αLP)

={prop calc}

P ∧ (wait ⇒ L 6∈ αLP) ∧ (L 6∈ αLP ⇒ wait)

={prop calc}

P ∧ (¬ wait ∨ L 6∈ αLP) ∧ (L ∈ αLP ∨ wait)

={prop calc}

P ∧ ((¬ wait ∧ L ∈ αLP) ∨ (wait ∧ L 6∈ αLP))

={prop calc}

(P ∧ ¬ wait ∧ L ∈ αLP) ∨ (P ∧ wait ∧ L 6∈ αLP)

R3 ◦ RPB1(P)

={R3 def}

IIR C wait BRPB1(P)

={RPB1 def}

IIR C wait B (P C L ∈ αLP B IIR)

={cond symm}

IIR C wait B (IIR C L 6∈ αLP B P)

={cond assoc, cond idemp}

IIR C wait ∨ L 6∈ αLP B P

={cond def, De Morgan’s Law}

(P ∧ ¬ wait ∧ L ∈ αLP) ∨ (IIR ∧ (wait ∨ L 6∈ αLP))

Continuations for Reactive Processes 187

A1 ◦ R3 ◦ RPB1(P)

={A1 def expanded form}

(R3 ◦ RPB1(P) ∧ (¬ wait ∧ L ∈ αLP)) ∨ (R3 ◦ RPB1(P) ∧ (wait ∧ L 6∈ αLP))

={R3 ◦ RPB1(P) def expanded form, prop calc}

(P ∧ ¬ wait ∧ L ∈ αLP) ∨ (IIR ∧ wait ∧ L 6∈ αLP)

={R3 ◦ RPB1(P) def expanded form}

R3 ◦ RPB1(P)

Theorem 5.2.21. A2 ◦ RPB1 ◦ CSP = RPB1 ◦ CSP

Proof.

A2(P)

={A1 def}

P ∧ (ok ⇔ L ∈ αLP)

={prop calc}

P ∧ (ok ⇒ L ∈ αLP) ∧ (L ∈ αLP ⇒ ok)

={prop calc}

P ∧ (¬ ok ∨ L ∈ αLP) ∧ (L 6∈ αLP ∨ ok)

={prop calc}

(P ∧ ¬ ok ∧ L 6∈ αLP) ∨ (P ∧ ok ∧ L ∈ αLP)

CSP1 ◦ RPB1(P)

={CSP1 def}

RPB1(P)C ok B tr ≤ tr ′

={RPB1 def}

(P C L ∈ αLP B IIR)C ok B tr ≤ tr ′

={cond assoc, cond idemp}

P C L ∈ αLP ∨ ok B tr ≤ tr ′

={cond def, De Morgan’s Law}

(P ∧ (ok ∨ L ∈ αLP)) ∨ (tr ≤ tr ′ ∧ ¬ ok ∧ L 6∈ αLP)

188 Strong Process Mobility

A2 ◦ CSP1 ◦ RPB1(P)

={A2 def expanded form}

(CSP1 ◦ RPB1(P) ∧ (¬ ok ∧ L 6∈ αLP)) ∨ (CSP1 ◦ RPB1(P) ∧ (ok ∧ L ∈ αLP))

={CSP1 ◦ RPB1(P) def expanded form, prop calc}

(tr ≤ tr ′ ∧ ¬ ok ∧ L 6∈ αLP) ∨ (P ∧ ok ∧ L ∈ αLP)

={CSP1 ◦ RPB1(P) def expanded form}

CSP1 ◦ RPB1(P)

Since A3 and A4 both mention the final of value of L, we may make a parallel with the
expression P # (L 6∈αLP)⊥, which allows us to specify the final value of L. That is, we expect
our predicates to verify the equation P = P # (L 6∈ αLP)⊥. We thus define a new healthiness
condition:

RPB2 P = P # (L 6∈ αLP)⊥

It turns out that RPB1 ◦ CSP healthy reactive steps that are RPB2 healthy are also A3
and A4 healthy.

Theorem 5.2.22. A3 ◦ RPB2 ◦ RPB1 ◦ CSP(P) = RPB2 ◦ RPB1 ◦ CSP(P)

Proof. If P = P ∧ L′ ∈ αLP, then ok ′ = true; otherwise, if ok ′ = false then the value of L′

is unobservable. If wait ′ = true then

RPB2(P)

={RPB2 def, seq comp, assertion def,⊥ = CHAOS , ok ′ = true,wait ′ = true}

(P(ok ′,wait ′) ∧ IIR(ok,wait) ∧ L′ 6∈ αLP) ∨ (P(ok ′,wait ′) ∧ CHAOS(ok,wait) ∧ L′ ∈ αLP)

={hypothesis P = P ∧ L′}

P(ok ′,wait ′) ∧ CHAOS(ok,wait) ∧ L′ ∈ αLP

={CHAOS def}

P(ok ′,wait ′) ∧ IIR(ok,wait) ∧ L′ ∈ αLP

={IIR def}

P(ok ′,wait ′) ∧ ok ′ ∧ wait ′ ∧ L′ ∈ αLP

={hypothesis}

P(ok ′,wait ′) ∧ ok ′ ∧ wait ′

Continuations for Reactive Processes 189

i.e.

RPB2 ◦ RPB1 ◦ CSP(P) ∧ L′ ∈ αLP ⇔ RPB2 ◦ RPB1 ◦ CSP(P) ∧ wait ′ ∧ ok ′

Theorem 5.2.23. A4 ◦ RPB2 ◦ RPB1 ◦ CSP(P) = RPB2 ◦ RPB1 ◦ CSP(P)

Proof. Similar to the previous one: if P = P ∧ L′ 6∈ αLP (6∈, not ∈), then ok ′ = true;
otherwise, if ok ′ = false then the value of L′ is unobservable. This time however, we choose
wait ′ = false.

We summarise the previous results in the following definition and theorem.

Definition 5.2.24. (RPB) RPB =̂ RPB2 ◦ RPB1 ◦ CSP

Theorem 5.2.25. Let P denote for any Step whose alphabet includes that of Reactive Pro-
cesses. Then:

A ◦ RPB(P) = RPB(P)

Proof. From Theorems 5.2.20 to 5.2.23.

We may now define reactive steps formally:

Definition 5.2.26 (Reactive step). Any predicate whose alphabet includes that for reactive
processes, and, additionally, both αL, and L, and that is RPB healthy is called a reactive
step.

Discussion. Recall Def. 2.6.13 (Chap. 2, §2.6) of blocks and proper blocks:

(P : S ⇒ F) =̂ P = (P # (l ∈ F ∪ {n})⊥)C l ∈ S ∪ {n}B II)

P : S ⇒ F defines a set of programs and not a single program as one might have expected.
The healthiness condition RPB2 ◦ RPB1 defines exactly the same set of programs when l
is used instead of L.

The difference in formulation with HH98 has some importance. In effect, we may now
reason in terms of a UTP theory instead of reasoning in terms of a particular notation.
An immediate consequence is that we can start thinking about links between theories. For
illustration, we may readily characterise sequential programs as steps that have no children
i.e.

RPBSeq P = P ∧ αlsP = {}

RPBSeq ◦ RPB defines a subset theory of that defined by RPB.

190 Strong Process Mobility

Basic RPB predicates and operators

We now give the semantics of some basic predicates and operators. Since we are building a
target language for high-level UTP-CSP processes (that do not contain L), we need to specify
our basic instructions. The definition of a target code given in the previous section makes it
possible to define arbitrarily complex predicates even as single instructions. In what follows,
we will consider a language with only two single instructions: assignment and action prefix.

The notation m : INST may be considered as a predicate transformer, a function that
takes a constant value m and a UTP-CSP process INST , and returns a reactive step with
continuations {m}.

Example 5.2.27.

1. Assignment instruction

m : (x := e) =̂ (x := e)+L C L = m B IIR

αL(m : (x := e)) =̂ {m}

2. Simple action prefix instruction

m : (a → SKIP) =̂ (a → SKIP)+L C L = m B IIR

αL(m : (a → SKIP)) =̂ {m}

For any INST a UTP-CSP process with the following BNF

INST ::= x := e | a → SKIP

it is now clearer how using the definitions for steps given in previous sections, one can build
the existing RPB operators.

We may interpret the notation 〈s,BINST , f 〉 as denoting a predicate transformer, a func-
tion that takes two constant values s and f , and a basic instruction BINST with the following
BNF

BINST ::= m : INST

and returns a reactive step (target code), with continuations {s, f }.

〈s,BINST , f 〉 =̂ varL := {s} # s : (INST+L # L := {f })

αL 〈s,BINST , f 〉 =̂ {s, f }

We may define in an analogue way first basic (sequential) blocks, basic parallel blocks,
and then proper blocks (or reactive process blocks).

Continuations for Reactive Processes 191

The following example is taken from [136]. The programming language occam-pi is used
as the semantic domain for both serial and parallel integrators in [136], whereas Reactive
Processes (and continuations) are used below.

Example 5.2.28 (An integrator). The basic interface of the integrator process is two chan-
nels, one input and one output. Given the input sequence x, y, z, the integrator will output
running sums: x, (x + y), (x + y + z) and so on.

1. The Serial integrator

SIntegrate =̂ total := 0 # µX • (in?x → total := total + x # out!total → X)

could be translated into

(SIntegrate :S⇒F) = 〈m1, Init,m2〉 # µX •

 〈m2, Input,m3〉 # 〈m3,Add,m4〉#

〈m4,Output,m2〉 # X


where

Init = m1 : total := 0

Input = m2 : in?x → SKIP

Add = m3 : total := total + x

Output = m4 :out!total → SKIP

2. The Parallel integrator

PIntegrate =̂ (Plus ‖ Delta ‖ Prefix) \ {a, b, c}

Plus =̂ (in?x → SKIP || c?y → SKIP) # a!(x + y)→ Plus

Delta =̂ a?x → (out!x → SKIP ‖ b!x → SKIP) # Delta

Prefix =̂ c!0→ µX • (b?x → c!x → X)

could be translated into

(PIntegrate :S⇒F) = (Plus :S⇒F //Delta :S⇒F //Prefix :S⇒F) \ {a, b, c}

(Plus :S⇒F) =


 〈m1, In(m1, x)[in← ch],m3〉 //

〈m2, In(m2, y)[c← ch],m3〉)

 #

〈m3,Out(m3, x + y)[a← ch],nn〉 # Plus



(Delta :S⇒F) =


〈m10, In(m10, x)[a← ch],nn〉# 〈m11,Out(m11, x)[out← ch],m10〉 //

〈m12,Out(m12, y)[b← ch],m10〉

 #

Delta



192 Strong Process Mobility

(Prefix :S⇒F) =


〈m20,Out(m20, 0)[c← ch],m21〉)#

µX •

 〈m21, In(m21, x)[b← ch],m22〉#

〈m22,Out(m22, x)[c← ch],m20〉) # X




where

In(s, z) = s :ch?z → SKIP

Out(s, z) = s :ch!z → SKIP

Assuming that every other operator is well-defined, we now turn to the case of higher-order
(HO) programming.

HO variable declaration. A HO program or procedure is one that may be assigned as
the value of a HO process variable. {| P |} denotes the procedure that, when executed,
behaves like process P. In UTP-CSP, the declaration of a HO variable h supposes that h
may contain as values only procedures that have the same actions set A. We follow this
idea for continuations too. We assume that any HO variable h may only receive for value
procedures that have the same continuations. This means that we have no need for modifying
the existing definition [126], besides adding the latter postulate about continuations.

Summary. In this section we have defined continuations for reactive processes, with an
emphasis on the semantics for the parallel composition operator. New healthiness conditions
have been defined and the result is a theory of reactive process blocks which permits charac-
terising continuations for reactive processes. In the next section we discuss the representation
of the state for reactive processes.

5.3 Representation of the state for Reactive Processes

In this section, we discuss how the state of a UTP-CSP process may be represented and
recorded into its trace. We shall not use that representation in our subsequent theory of
strong mobility, however. The reasons for not using it will be discussed in greater detail in
the next section. We may already state that the following representation may eventually not
yield reactive processes simply because the dependency between consecutive states would of
necessity be lifted into the trace. Nonetheless, the following presentation is useful for the
discussions in the next section.

The state of a process is given by mapping the variables in its alphabet with their ob-
served values. The alphabet of a process may be partitioned into two subsets: observational
variables, e.g. wait, tr , and program variables. In this section, when we talk of the state of
a process, we refer to program variables only. It is always possible to determine the state

Generic interrupt 193

of a process from an inspection of the values of its variables: below, we define the function
state : Var → Val which realises and records such mappings.

The state of a process may change during the process’s activation. The operation that
changes the state of a process may be conceived of as an action whose effect is to update
that state: we call it the update action. More precisely, we may consider that every process
embeds such an action, which has the same effect as assignment (:=). This remark permits us
to make an economy of notation by associating every assignment with a given update action.
Let us denote by U the set of all update actions of a process. Then:

UP =̂ {v := e | v ∈ αP • e is a value}

= {v 7→ e | v ∈ αP • e is a value}

The association assignment-update action may be formalised by simply modifying the
definition of assignment: now assignment also modifies the trace by introducing therein the
corresponding update action.

x := e =̂ x ′ = e ∧ tr ′ = tr a 〈x 7→ e〉 ∧ v′ = v

Each update action denotes, for a process P, the set of mappings var 7→ val where var ∈ αP
is a single variable. Equality of update actions is simply equality between their respective set
of mappings, and inequality is defined by set inclusion.

The trace of a process must be slightly modified to account for update actions i.e. the
type of tr must now be (U ∪ A) ∗.

The state function may then be defined by:

state : αP → Val

tr ′ 7→ last tr ′ � U

Summary. In this section we have discussed a way for introducing into the alphabet the
function state(), which gives the mappings between variables and their values. In the next
section we define the generic interrupt, the last element before giving the semantics of process
mobility. We will also justify why using the state function state() is actually undesirable.

5.4 Generic interrupt

5.4.1 Preliminaries

The interrupt operator is one of the most complex operators that may be defined. In fact,
there is not much literature on the interrupt operator in process algebra. In CSP in particu-
lar, existing semantics for the generic interrupt are all given in a timed model. Overall, there
are two pieces of work on the generic interrupt in UTP.

194 Strong Process Mobility

Huang et al. [68, 69, 70] have proposed a semantics for interrupt programs in a discrete
time model. An interrupt program is a pair (M , IH) composed of a main program M ,
which is sequential, together with a set IH of so called interrupt handlers, also sequential
(interruptible) programs i.e. each program P ∈ IH also has the form (P, IHp). Each interrupt
handler has its own unique interrupt event i 6∈AM so that their proper denotation is actually
ip → P. The main program M holds each interrupt event in a queue, denoted by a special
variable q. M may enable and disable interrupts triggered by the environment, and may itself
trigger interrupt requests. Programs are characterised by R1 healthy predicates (called H1
in [70]), and obey an additional healthiness condition relative to interrupt. Trace elements are
triples (t, σ,µ), where t is the time (of occurrence of an event, or either an instruction), σ (a
record of) the state of the program at the end of the execution, and µ is a program identifier:
it indicates whether the state is that of the main program (µ = 0) or of an interrupt handler
(µ = 1).

The state of a program is simply given by σ viz. P(σ) = σ′, and unlike traditional UTP-
CSP semantics, it must be inferred from the trace. The interrupt mechanism works as follows:
when interrupts are disabled, M 4 P behaves like M . When enabled, the interrupt handler
takes over and then returns control to the main program. M 4 P works like M ‖ P where the
final state is decided by the merge function. Basically, the trace of M is partitioned into the
trace before (or before-trace) and the trace after (after-trace) the interrupt (for each interrupt
handler); then, the trace of an interrupt handler P is inserted between the before-trace and
the after-trace of M , meanwhile time is moved forward in the after-trace of M such as to
coincide with the last time in the inserted trace of P.

The language of Huang &al. is quite restrictive and would demand substantial work to
be extended to the whole of reactive processes.

In [134, 135], Kun Wei defines a number of interrupt operators in a timed model of UTP-
CSP, using reactive designs [35], [134] (cf. Def. 2.5.27). Based on the definition in [84] a
reactive design for the catastrophic interrupt is defined; semantics for the generic interrupt
P 4 Q are also provided, using a similar approach than Huang et al. but without the language
limitation. An important difference with [70] is that the state of the interruptible process P
is not recorded in the trace; hence, when an interrupt occurs, the state of P is discarded and
only the state of the interrupting process Q is available at the end. The final trace, however,
is a concatenation of the trace of P before interrupt, followed by a trace of Q.

Notwithstanding the fact that Kun Wei’s semantics for the generic interrupt discard the
state of P upon interrupt, the existence of a link between UTP Timed Reactive Designs
and UTP Reactive Processes provides us with a method for defining the generic interrupt
for reactive processes. In fact, going from timed to untimed reactive designs is enough since
the latter are but untimed reactive processes. However, mixing both styles of semantics (i.e.
reactive processes and reactive designs) does not have much interest, so we would prefer to
prolong the transformation from untimed reactive designs to untimed reactive processes.

Unfortunately, this series of transformation seems not only tedious, but the result may be

Generic interrupt 195

difficult to exploit in proofs and also, mainly, for reasoning. Indeed, the transformations are
not structure-preserving (viz. they are not homomorphisms). For illustration, compare the
semantics of the catastrophic interrupt [84] with its equivalent timed reactive design [135].
Another issue is that explicitly saving the state into the trace may not be possible whilst
preserving the semantics of reactive processes.

In effect, R2 may be violated since the state component may not be arbitrary. This
constraint appears more clearly from the semantics of Huang et al. than from the use of a
specific update action for encapsulating the state (cf. §5.3). Indeed, the former shows more
clearly the dependency between the last state and the current one; hence, unless we were
to express the dependency relation between (update actions) explicitly, the traces semantics
would be too permissive. Furthermore, there is no guarantee that we can successfully char-
acterise the dependency in every case. For example, in [119] Shi et al. propose as a possible
restriction that the last state in tr equals the first state in tr ′. However such a restriction
cannot suffice. Suppose that we expect for a given state σ that σ′ = f (σ). Then, we may
change the value of σ such that the equation σ′ = f (σ) is no longer valid. The specification of
f illustrates the specification of a dependency condition between states. Without introducing
non-determinism, it is possible that f holds between certain states only, and not the whole
state space. And we may conceive of more constricting dependency conditions.

CSP1 would also be invalid since except for trace expansion tr ≤ tr ′, it should not be
possible to make any other observation about a process, when ok = false. Putting the state
in tr means that we can observe that state, which contradicts CSP1. The issue may be
restated in terms of making the state visible in the trace. Then, hiding all the update actions
might appear to be the solution, however, that would render the recording obsolete.

Finally, assuming that the above problems have been mitigated if not totally solved (i.e.
we have successfully recorded the state of P into its trace), at this stage, it is not totally
clear how we would make the state of P available to Q —given that they are running in
parallel. The latter question is studied by neither K.Wei [135] nor Huang et al. [70], and
their respective semantics do not actually answer the question.

The previous discussions suggested an approach to solving the problem of defining the
generic interrupt for (Untimed) Reactive Processes, starting from an existing, related frame-
work. Two candidate frameworks have been presented, and the infeasibility of that approach
has been discussed. A second approach may be to start directly from reactive processes.
In this case, we have two possibilities: (i) use time; (ii) not use time. In either case, the
construction of the semantics must be guided by the constraint of making available the state
of the interruptible process to the interrupting one.

The timed option may have the advantage of making analysis easier, since every existing
definition (of the generic interrupt) in the literature uses time. The major inconvenience is
that since we ultimately want a semantics for untimed reactive processes, we will have to
abstract away from time. However, this approach lacks of efficiency. Suppose that we want

196 Strong Process Mobility

to define a system with process mobility in untimed CSP where only a single process may
be moved. Then, we would have to transform that process into a timed version just so that
it can be interrupted. A further inconvenience is that we need to account for continuations.
Hence, we may end up with quite a complicated theory —with three levels of abstraction,
time, untimed CSP, and continuations .

On the other hand, the links between theories indicate that an untimed definition is
feasible, although it may not be as elegant as one based on a timed model. We thus formulate
the following hypothesis:

[HypothesisGenericNoTransform] It is possible to define the generic interrupt in
untimed CSP without having to transform a (possibly) timed equivalent first.

We will present our results starting with a description of the problem (of formalising the
generic interrupt operator) in UTP-CSP terms. From there we build an initial specification of
the generic interrupt. We then refine that initial specification progressively until we eventually
reach a satisfying definition. The refinement steps are rather informal although, in accord
with the recommended methodology for building specifications (e.g. [66, Chap. 1, §1.4]), we
freely mix both formal and informal notations and arguments as may seem suitable. Our
proposition is quite novel and relies on the expansion law for parallel composition [66, Chap.
7, §7.5]. We may emit a second hypothesis in relation with our objective:

[HypothesisNoBarrierNoShare] Using bulk synchronous parallelism as defined in
UTP (expansion law for parallel composition —[66, Chap. 7, §7.5, L9]), it is
possible to pass the state of an interruptible process P to its interrupting process
Q if a barrier synchronisation is placed on the execution line of both P and Q,
just after the occurrence of the interrupt event and before the occurrence of Q.

In the remainder of this section, unless otherwise stated, 1.tr will stand for the trace of P,
2.tr for the trace of Q, and tr for that of P ‖ Q. Recall:

A(P ‖ Q) =̂ AP ∪ AQ

P ‖ Q =̂ P(o, 1.o′) ∧ Q(o, 2.o′) # M (1.o, 2.o,o′)

M =̂


ok ′ = (1.ok ∧ 2.ok) ∧

wait ′ = (1.wait ∨ 2.wait) ∧

ref ′ = (1.ref ∪ 2.ref) ∧

(tr ′ − tr) = ((1.tr − tr) ‖ (2.tr − tr))

 # SKIP

5.4.2 Formalisation

The basic idea behind the definition of the generic interrupt is to consider it as a restricted
form of parallel composition. In effect, P 4 Q behaves like P ‖ Q with the following
restrictions on the legal behaviours:

Generic interrupt 197

• If P has not been interrupted i.e. Q has not occurred, then i 6∈ tr ′ and the behaviour of
P 4 Q is entirely determined by P.

• If P has been interrupted i.e. Q has occurred, then i ∈ tr ′ and there are two possibilities:

1. interrupt occurred before P could activate its first instruction, then i = head tr ′

and the behaviour of P 4 Q is entirely determined by Q;

2. interrupt occurred during P’s activation and before P’s termination, then i ∈
tail tr ′ ∧ i 6= last tr ′ and the behaviour of P 4 Q is determined by both the
behaviour of P before interrupt, denoted by P bef i, and the behaviour of Q.

That is:

[GenInterruptSpec1] P 4 Q =


P if i 6∈ tr ′

Q if i ∈ tr ′ ∧ i = head tr ′

P bef i # Q if i ∈ tr ′ ∧ i ∈ tail tr ′ ∧ i 6= last tr ′

At this stage, the relation between 4 and ‖ may not be quite obvious. We make this more
precise hereafter. Remark that

[4−‖−equiv] P ‖ Q =


P if Q = SKIP or Q = STOP

Q if P = SKIP or P = STOP

(P ||| Q) otherwise

Note: Interleaving ||| is used mainly for indication, and the possibilities of communication
and synchronisation between P and Q (up to the occurrence of the interrupt event) must be
retained.

Then, trace-wise, Q = SKIP or Q = STOP ⇒ 2.tr ′ = 〈〉 which means that i 6∈ tr ′.
Similarly, in the second case we have P = SKIP or P = STOP ⇒ 1.tr ′ = 〈〉, which means
that i = head tr ′.
In sum:

• if i 6∈ tr ′ then P 4 Q = P = P ‖ Q

• if i = head tr ′ then P 4 Q = Q = P ‖ Q

• the third case (i.e. i ∈ tr ′ ∧ i ∈ tail tr ′ ∧ i 6= last tr ′) requires a little more analysis. We
shall use the expansion law for || (cf. below), and suppose that P = P1#sync#...#sync#Pn .
For now, we consider that each Pi is atomic or not-interruptible.

Before discussing the third case in greater detail, we first give the general idea of what
we are trying to achieve: If we can break a process into individual steps that may not be
interrupted during their execution (but only before their execution starts), then interrupt
may be determined by recursion over process terms as follows: [GenInterruptSpec2]

198 Strong Process Mobility

P

Q

R

S

M

sync sync
Figure 5.2: Illustration of Bulk Synchronous Paralellism (BSP)

• If P is atomic i.e. not-interruptible, then

P 4 Q =

P if i 6∈ tr ′

Q if i = head tr ′

• Else If P = P1 # P2, where both P1 and P2 are atomic, then

P 4 Q = (P1 4 Q) 2 (P1 # P2 4 Q)

In what follows we discuss a way for achieving the sort of recursive definition described
above. The specification technique relies on Bulk Synchronous Parallelism (BSP), which con-
sists of placing a synchronisation barrier on the execution lines of parallel executing processes.
At the barrier, the data of each process is made available to the other accordingly, and then
every process resumes its execution. What we are trying to accomplish is to block further
execution of P when it reaches the barrier, whilst still making available the state of P to Q.

Figure5.2 illustrates the BSP mechanism. A synchronisation barrier is represented by a
bold vertical line, and annotated with the name of the corresponding synchronisation event,
sync. Processes are represented by horizontal arrows whose head indicates the direction of
the execution flow. Each horizontal line is annotated with the name of the corresponding
process. The merge predicate M is represented in the middle, whereas parallel running
processes are represented by corresponding parallel horizontal lines.

In algebraic terms, the BSP mechanism is determined by the expansion law for the par-
allel composition operator.

Generic interrupt 199

Recall - Expansion law [66, Chap. 7, §7.5, L9]:

The intended effect of synchronisation is most clearly explained by an algebraic law. Let M be
the merge operation for all the shared variables m of the system. Let P describe the behaviour
of one process up to its first sync action, and let Q denote the initial non-synchronising
behaviour of the other process. Then the sync action invokes the merge operation M to
consolidate the results of P and Q in their global store, so that results computed separately
in m by each of them are available subsequently to both of them. The synchronisation action
is retained to deal with the possibility that there might be three or more processes. This
informal account is summarized in the following expansion law:

L9 (P # sync # R) ‖M (Q # sync # S) = (P ‖ Q) # sync # (R ‖M̃ S)

Here the tilde over M is meant to indicate that M is executed not just once at the end of
parallel composition but also at all the intermediate synchronisation point.

For a start, take n = 2 viz. P = P1 # sync # P2. The behaviour of P upon interrupt (after
P1) should be given by

[GenInterruptSpec3] (P1 # sync # P2) 4 Q = (P1 # sync # P2) 2 (P1 # sync # i → Q)

[GenInterruptSpec3] simply states that, after P1, either interrupt has not occurred, in which
case we may observe P2 only, or interrupt has occurred in which case we may observe Q
instead.
Let i → sync # Q, then:

(P1 # sync # P2) ‖ (i → sync # Q) = (P1 ‖ i → SKIP) # sync # (P2 ‖ Q)

This is not satisfactory: it enforces the synchronisation of both P and Q, and yet fails to
eliminate P2.

Consider instead µY • (sync # Y) 2 (i → Q), then

(P1 # sync # P2) ‖ µY • (sync # Y) = (P1 ‖ SKIPαQ) # sync # (P2 ‖ µY • (sync # Y))

= P1 # sync # P2

and

(P1 # sync # P2) ‖ (i → Q) = (P1 # STOP) ‖ i → Q

Above, the synchronisation occurs outside i → Q. Then, we have the choice between
P1 # sync # P2 and something that we do not want i.e. (P1 # STOP) ‖ i → Q. Indeed,
although the latter is close enough to (P1 # sync # i → Q), there is no synchronisation, hence

200 Strong Process Mobility

sync

P

Q

P
P bef i P aft i

SKIP Q

SKIP
do(i)

Figure 5.3: Interrupt mechanism with BSP - using a single barrier

the state of P upon interrupt, i.e. here P1, may not be made available to Q.

Figure5.3 represents what should happen on the sync barrier. The first arrow indicates
some prior execution; the first vertical line simply indicates the start of the executions of
P and Q; it also indicates a possible initial merge. The initial labels P and Q are meant
only for indication. The actual behaviour of each process is in fact indicated after the initial
arrow. Diverging arrows emerging from a single point represent non-deterministic choice. For
example, the line labelled with process P indicates that it may not synchronise at all and
hence P may be observed; the line labelled by SKIP indicates that P may be interrupted
before actually starting; and the line labelled by P bef i indicates that P may be interrupted
in which case P synchronises on the sync barrier and then Q may be observed instead.
P aft i is merely for indication; it should be considered as unreachable.

What we expect from using a synchronisation barrier may be described thus:

• when i does not occur and P1 reaches sync first, the synchronisation is vacuous: this
is the effect obtained when sync is outside i → Q;

• on the other hand, when Q reaches sync first, the synchronisation is blocking: this is
what we expected by placing sync after i, as in i → sync # Q.

This suggests that we need two barriers instead of a single one: a skipping one, say skyp,
and a blocking one, sync as before.

Let R = ((skyp # R) 2 (sync # SKIP)). R is the process that continually offers P a vacuous
skyp synchronisation, until

• either P terminates, in which case R should STOP, and then Q should also STOP;

Generic interrupt 201

do(i)

R

P

Q

SKIP

SKIPPk+1

Q

skyp

sync

Figure 5.4: Interrupt mechanism with BSP - using two(2) barriers

• or Q synchronises with R on sync before P terminates thus leading R to termination
viz. SKIP, in which case then P should STOP.

Figure5.4 represents the interrupt mechanism when two barriers are used.

Then:

(P1 # skyp # P2) ‖ (skyp # R 2 sync # SKIP) ‖ (i → sync # Q)

= ((P1 # skyp # P2) ‖ (skyp # R) ‖ (i → sync # Q)) 2

((P1 # skyp # P2) ‖ (sync # SKIP) ‖ (i → sync # Q))


Left-hand-side (lhs) of the choice: According to our initial assumption, P1 must occur first, so
it synchronises with R on skyp barrier, and then P2 follows. So we end up with P1 #skyp#P2.
Right-hand-side (rhs) of the choice: Again P1 must occur first but no synchronisation on
skyp may occur, so P blocks after P1 i.e. P = P1 # STOP. However, Q may synchronise on
sync, hence, we do not obtain the expected interleaving. The issue is that we obtain the
expected blocking of P2 when sync occurs before skyp, whereas we would like the blocking
to occur only after skyp, but before P2. That happens because simply assuming that P1

occurs first is no longer enough: we need to implement it, by enforcing a first synchronisation

202 Strong Process Mobility

on skyp. For that, we may redefine R = skyp→ ((skyp # R) 2 (sync # SKIP)). Then:

(P1 # skyp # P2) ‖ (skyp→ (skyp # R 2 sync # SKIP)) ‖ (i → sync # Q)

=

P1 # skyp # (P2 ‖ (skyp # R 2 sync # SKIP) ‖ (i → sync # Q))

=

P1 # skyp #

 (P2 ‖ (skyp # R) ‖ (i → sync # Q)) 2

(P2 ‖ (sync # SKIP) ‖ (i → sync # Q))


Lhs of choice: R blocks as it can no longer synchronise on skyp; similarly Q blocks as it
cannot synchronise on sync. So, we obtain P1 # skyp # P2.
Rhs of choice: either P2 occurs first or i occurs first. Either way Q synchronises with R.
We obtain hence P2 ‖ (i → sync # Q), though we were expecting STOP in place of P2.
Yet, if P2 were not the last step, we could get the expected effect. To see this, let P =

P1 # skyp # P2 # skyp # P3 instead. Then, the rhs becomes

(P2 # skyp # P3) ‖ (sync # SKIP) ‖ (i → sync # Q)

Since P cannot synchronise on skyp, P3 will behave like STOP. This suggests that every
step must be guarded by a skyp synchronisation, which then acts as a lock.

See that i → sync # Q appears after every step, although Q itself is not defined recur-
sively. The reason for this comes from the expansion. Since steps are atomic, i may occur
only before the step starts executing; otherwise, the only possibility for i to occur again is
before the next step, but after the current one. Process R is there to ensure that i never
occurs during the execution of the current step by not offering sync although Q may be
ready. At this stage, it suffices to assume that sync will then be selected first on the next
step (if it did occur during the execution of the current step).

In conclusion:

(P1 # skyp # P2) ‖ (skyp→ (skyp # R 2 sync # SKIP)) ‖ (i → sync # Q)

=

(P1 # skyp # P2) 2 (P1 # skyp # (STOP ‖ i → SKIP) # sync # (SKIP ‖ Q))

=

(P1 # skyp # P2) 2 (P1 # skyp # i → sync # Q)

On the other hand, for P = P1 # skyp # P2 # skyp # P3, the lhs becomes

((P2 # skyp # P3) ‖ (skyp # R) ‖ (i → sync # Q))

Generic interrupt 203

The latter is simply our initial formulation with P2 replacing P1 and P3 replacing P2.

In sum, the case (P1 # skyp # P2) straightforward generalises to the case P bef i # P aft i
where P bef i stands for the concatenation of all those steps that have successfully synchro-
nised with the environment through skyp, and P aft i simply stands for the remainder of P
that would have been executed had the last skyp synchronisation been successful, but was
pre-empted by the occurrence of the interrupt event i.

In the next section we give the formal definitions of the concepts introduced thus far.

5.4.3 Semantics of the generic interrupt

In the previous section we gave an informal account of how the generic interrupt operator is
meant to work. We shall now precise more succinctly the same.

Let P be an atomic process; let R = (skyp→ R) 2 sync→ SKIP. Then:

(P ‖ sync→ Q) ‖ ((skyp→ R) 2 sync→ SKIP)

=

(P ‖ sync→ Q ‖ skyp→ R) 2 (P ‖ sync→ Q ‖ sync→ SKIP)

=

(P ‖ STOP ‖ STOP) 2 sync→ (P ‖ Q)

The rhs of the choice is not satisfying: we need P to behave like STOP when sync is the
first choice. For this consider skyp→ P instead, then

(skyp→ P ‖ sync→ Q) ‖ (skyp→ R 2 sync→ SKIP)

=

(skyp→ P ‖ sync→ Q ‖ skyp→ R) 2 (skyp→ P ‖ sync→ Q ‖ sync→ SKIP)

=

skyp→ (P ‖ sync→ Q ‖ R) 2 sync→ (STOP ‖ Q)

The lhs of the choice is not satisfying: we need to block R upon P’s termination. Consider
R = (skyp→ skyp→ R) 2 sync→ SKIP instead, then

(skyp→ P ‖ sync→ Q) ‖ ((skyp→ skyp→ R) 2 sync→ SKIP)

=

(skyp→ P ‖ sync→ Q ‖ skyp→ skyp→ R) 2 (skyp→ P ‖ sync→ Q ‖ sync→ SKIP)

=

skyp→ (P ‖ sync→ Q ‖ skyp→ R) 2 (skyp→ P ‖ sync→ Q ‖ sync→ SKIP)

204 Strong Process Mobility

=

skyp→ (P ‖ STOP ‖ STOP) 2 (STOP ‖ sync→ Q ‖ sync→ SKIP)

=

skyp→ P 2 sync→ Q

The latter result corresponds to what we expected.

Let P = skyp→ P1 # skyp→ P2. Then:

((skyp→ P1 # skyp→ P2) ‖ sync→ Q) ‖ ((skyp→ skyp→ R) 2 sync→ SKIP)

={2 lhs}

((skyp→ P1 # skyp→ P2) ‖ sync→ Q ‖ skyp→ skyp→ R)

=

skyp→ ((P1 # skyp→ P2) ‖ sync→ Q ‖ skyp→ R)

=

skyp→ P1 # skyp→ (P2 ‖ sync→ Q ‖ R)

Above we have left out the case when sync is the first choice, for conciseness. The other
case leads (last line) to the same problem we encountered in our first attempt earlier (atomic
case, rhs problem). Again, we would need to guard P2 so that it can be eliminated in case
sync is the first choice.

The general pattern is that we need to guard each step individually on the entry of the
skyp barrier in order to dismiss Q, and on exit, again on skyp, in order to save the last
executed step. However, the exit skyp of the last step may not coincide with the entry skyp
of the next one, in order to allow the possibility for Q to pre-empt the next step. If Q does
not, then we execute the step and then synchronise on exit, leaving the possibility for Q to
pre-empt the next one. We repeat this cycle until either P terminates, in which case R will
block on the exit skyp of P, or Q interrupts P, in which case R will terminate, hence P will
block on the entry skyp of its next step.

Let bsp(X) =̂ skyp→ SKIP # X # skyp→ SKIP. Then, if P is atomic:

(bsp(P) ‖ sync→ Q) ‖ ((skyp→ skyp→ R) 2 sync→ SKIP)

={2 lhs}

(skyp→ P # skyp→ SKIP) ‖ sync→ Q ‖ skyp→ skyp→ R)

=

skyp→ ((P # skyp→ SKIP) ‖ sync→ Q ‖ skyp→ R)

=

skyp→ P # skyp→ (SKIP ‖ sync→ Q ‖ R)

Generic interrupt 205

This means that the last step of P must not synchronise with R on termination, otherwise
Q may still be observable. Let P = bsp(P1) # skyp→ P2

((bsp(P1) # skyp→ P2) ‖ sync→ Q) ‖ ((skyp→ skyp→ R) 2 sync→ SKIP)

={2 lhs}

(bsp(P1) # skyp→ P2) ‖ sync→ Q ‖ skyp→ skyp→ R)

=

(skyp→ P1 # skyp→ SKIP # skyp→ P2) ‖ sync→ Q ‖ skyp→ skyp→ R

=

skyp→ ((P1 # skyp→ skyp→ P2) ‖ sync→ Q ‖ skyp→ R)

=

skyp→ P1 # skyp→ (skyp→ P2 ‖ sync→ Q ‖ R)

=

skyp→ P1 # skyp→ ((skyp→ P2) 2 sync→ Q)

That is what we expected.

The semantics of the generic interrupt are given subsequently.

Definition 5.4.1 (Generic interrupt). Let P =̂ (#1≤i<n • bspskyp(Pi)) # skyp→ Pn.

P 4 Q =̂

P ‖ sync→ Q ‖

µX • ((skyp→ skyp→ X) 2 sync→ SKIP)

 \ {skyp, sync}

A comment about the previous definition may be necessary, regarding the form of P. Let
us write bsp(P) instead, for ease of reference, i.e. bsp(P) =̂ (#1≤i<n • bspskyp(Pi)) # skyp→
Pn . In a few words, the form of bsp(P) infers that interruptible processes have a structure of
their own.

Indeed, a way of seeing the generic interrupt operator 4 is as embedding a predicate
transformer, notably bsp, which transforms a UTP-CSP process into one with a given form.
Then, bsp(P) would truly denote the transformation of P into an equivalent process that
allows interrupting P.

bsp(P), by introducing synchronisation events into a process P that could have first
been entirely sequential makes it possible for that process to be interruptible also under the
catastrophic interrupt operator (cf. Chap. 2, §2.5.1). Recall that the catastrophic interrupt
requires the interruptible process to be in a waiting state before interrupt can occur.

Following the preceding remark, we may question the possibility of embedding synchroni-
sation events such as sync and skyp within other interaction events, including the interrupt
event i. Then, every interaction of P with the environment that may put P in a waiting
state may be taken for skyp; and i may be taken for sync. Under the proposed embedding,

206 Strong Process Mobility

the catastrophic interrupt appears to be quite similar to the generic interrupt. However, this
similitude does not mean that both operators are equivalent.

In [134], Kun Wei shows that the generic interrupt is more expressive than the catas-
trophic interrupt, concerning their provided definitions under Reactive Designs. Unfortu-
nately we have not carried out a similar comparison between the semantics of the generic
interrupt proposed in this thesis and the semantics of the catastrophic interrupt defined by
McEwan & Woodcock [84]. Notwithstanding, the use of the parallel composition operator ‖
permits to infer that our proposed definition is more expressive than the catastrophic inter-
rupt simply from the fact it allows the possibility for P and Q to interact with each other.

More interestingly, this possibility of defining the catastrophic interrupt in terms of the
generic interrupt further suggests that the generic interrupt may serve as a basis for defining
a canonic form for any interrupt operator.

In what follows we prove certain laws for the generic interrupt defined above. These laws
were given by Hoare in [65, §5.4] and give us a criterion for validating our definition. Of
these laws, the step-law for the interrupt operator is generally considered as characteristic
for the operator. We will therefore consider that the generic interrupt operator 4 is correct
if it obeys the step-law for interrupt.

L1 (Step-law) (a → P) 4 Q = (a → (P 4 Q)) 2 Q

Proof.

(a → P) 4 Q

={4 def}

((bsp(a → P) ‖ sync→ Q) ‖ ((skyp→ skyp→ R) 2 sync→ SKIP)) \ {skyp, sync}

={‖ distrib} (bsp(a → P) ‖ sync→ Q ‖ skyp→ skyp→ R) 2

(bsp(a → P) ‖ sync→ Q ‖ sync→ SKIP)

 \ {skyp, sync}

={bsp(a → P) = skyp→ (a → SKIP) # skyp→ bsp(P)}

(a → (P ‖ sync→ Q ‖ R) 2 sync→ Q) \ {skyp, sync}

={hiding def, 4 def}

a → (bsp(P) 4 Q) 2 Q

Generic interrupt 207

L2 (P 4 Q) 4 S = P 4 (Q 4 S)

Proof. If P is a single, atomic step then P 4 Q = P 2 Q. Then

(P 4 Q) 4 S

={P is atomic}

(P 2 Q) 4 S

={4 distrib}

(P 4 S) 2 (Q 4 S)

={P is atomic}

P 2 S 2 (Q 4 S)

Reciprocally

P 4 (Q 4 S)

={P is atomic}

P 2 (Q 4 S)

={ step-law}

P 2 ((Q 4 S) 2 S)

={2 assoc}

(P 4 Q) 4 S

If P is not atomic, we would obtain the same result as above by replacing P by P bef i,
accordingly.

L3 P 4 STOP = P = STOP 4 P

Proof. From P ‖ STOP = P and (P1 # sync # P2) ‖ sync # SKIP = P1 # P2 = P

L4A P 4 (Q u S) = (P 4 Q) u (P 4 S)

L4B (Q u S) 4 P = (Q 4 P) u (S 4 P)

Proof. From P ‖ (Q u S) = (P ‖ Q) u (P ‖ S)

L5 CHAOS 4 P = CHAOS = P 4 CHAOS

Proof. From CHAOS ‖ P = CHAOS

Example 5.4.2.

1. Suspendable serial integrator. Let

bsp(SIntegrate) =̂ total := 0 # µX • (skyp→ in?x → total := total + x # out!total → X)

208 Strong Process Mobility

The process bsp(SIntegrate) 4 Q, Q a given interrupting process, describes a serial inte-
grator that may be suspended only before realising an input.

In contrast, let us use the catastrophic interrupt instead (cf. Def. 2.5.26). The process
SIntegrate 4iev Q, Q a given interrupting process, iev the associated interrupt event,
describes a serial integrator that may be suspended either when waiting for input, or when
waiting for output.

2. Suspendable parallel integrator. Let

bsp(PIntegrate) =̂ (bsp(Plus) ‖ Delta ‖ Prefix) \ {a, b, c}

bsp(Plus) =̂ skyp→ (in?x → SKIP || c?y → SKIP) # a!(x + y)→ Plus

The process bsp(PIntegrate) 4 Q, Q a given interrupting process, describes a paral-
lel integrator that may be suspended only before realising an input. The semantics of
bsp(PIntegrate) are quite convenient: blocking the process Plus triggers a blocking of both
processes Delta and Prefix. Also, neither of the latter two have an internal state, otherwise
both internal states would have been lost (according to the previous semantics). To prevent
such loss it would have been necessary to insert instances of skyp in both Delta and Prefix
also.

In contrast, the process PIntegrate 4iev Q, Q a given interrupting process, iev the asso-
ciated interrupt event, describes a parallel integrator that may be suspended either when
waiting for input (in channel), or when waiting for output (out channel). Communications
on channels a, b, c are hidden, hence internal waiting on either of them may not allow the
interrupt event iev to occur. Unlike bsp(PIntegrate) however, if either Delta or Prefix had
an internal state, it would not have been possible to specify where to save that state. Hence
Delta and Prefix would have to terminate for their internal state to be available, or else,
they would have need to engage in an interaction with the environment.

Semantics of skyp and sync

Def. 5.4.1 is incomplete, it says nothing of the semantics of skyp and sync. So far they have
been considered to be synchronisation actions i.e. in A. This notably permits them to play
the blocking/ordering role that is expected of them in the semantics of the generic interrupt
operator P 4 Q. However, being synchronisations is not enough for them to allow passing
the interrupt state of P to Q, although that is enough for characterising P’s interrupt state.

In order to pass the interrupt state of P to Q, a simple solution consists of using communi-
cations instead of pure synchronisations. Then P stores a copy of its state in the environment
on every skyp event, and Q reads that copy on a sync event.

Definition 5.4.3 (Generic interrupt (2)). Let v denote all the variables of a process, including
eventually the control variable L, and excluding observational variables, e.g. ok,wait, tr. Let

Semantics of process strong mobility 209

1.v for P, 2.v for Q. Let P =̂ (#1≤i<n • bspskyp(Pi)) # skyp!1.v → Pn.

P 4 Q =̂

P ‖ sync?1.vcopy → Q ‖

µX • ((skyp?y → skyp?y → X) 2 sync!y → SKIP)

 \ {skyp, sync}

Above, P saves its data twice, which is redundant. Since the second skyp?y is necessary
only to obtain the expected ordering of events, it may be replaced by a simple synchronisation
event.

In the rest of this chapter, we will use skyp (resp. sync) as an abbreviation for both
skyp!1.v and skyp?y (resp. sync!y and sync?1.vstore), according to the previous definition.

In the next section we present the semantics of strong mobility.

5.5 Semantics of process strong mobility

In this section, we present the semantics of process mobility as a particular interrupt operator
where the interrupting or moving process is responsible for the movement of the interruptible
or movable process.

Strong mobility requires interrupting the running process and saving its interrupt state,
including the continuation of the next instruction as given by the control variable L (cf. §5.2).
Hence, the semantics of strong mobility presented subsequently apply exclusively to movable
processes that are Reactive Blocks (cf. §5.2.3).

However, it is not necessary that the moving process be also a reactive block. Since
reactive blocks are also UTP-CSP processes, we only have to encapsulate or hide the control
variable L.

The following definition takes into account the fact that a process may be moved only
when considered as the value of a higher-order process variable.

Definition 5.5.1 (Strong mobility). Let P be a reactive process block that may be moved
during its activation. The mobility of P may be characterised by the postfix unary operators
4m.

P 4m =̂ proc h1 := {| P |} # ξ(〈h1〉) 4 moP

moP =̂ move!(h1,P.st)→ SKIP

where P.st stands for the interrupt state of P; 4 stands for any known interrupt operator;
and ξ(P) =̂ varL := n # P # endL (cf. [66, Chap. 6, §6.4, Def. 6.4.16]).
The resume operation on the target location would be:

miP =̂ move?(h2, h2.st)→ (jump h2.L) # 〈h2〉(h2.st)

210 Strong Process Mobility

Example 5.5.2.

1. Movable serial integrator. Let

bsp(SIntegrate :S⇒F) =


〈m0, skyp→ SKIP,m1〉 # 〈m1, Init,m2〉#

µX • 〈m2, Input,m3〉 # 〈m3,Add,m4〉#

〈m4,Output,m2〉 # X


The process bsp(SIntegrate : S ⇒ F) 4m describes a movable serial integrator suspended
with the generic interrupt 4.

2. The process (SIntegrate : S ⇒ F) 4iev,m describes a movable serial integrator suspended
with the catastrophic interrupt 4iev.

3. Movable parallel integrator. Let

bsp(PIntegrate :S⇒F) = (bsp(Plus :S⇒F) //Delta :S⇒F //Prefix :S⇒F) \ {a, b, c}

(Plus :S⇒F) =


〈m0, skyp→ SKIP,nn〉#

(〈m1, In(m1, x)[in← ch],m3〉 // 〈m2, In(m2, y)[c← ch],m3〉)#

〈m3,Out(m3, x + y)[a← ch],nn〉 # Plus


The process bsp(PIntegrate :S⇒F) 4m describes a movable parallel integrator suspended
with the generic interrupt 4.

4. The process (PIntegrate : S⇒F) 4iev,m describes a movable parallel integrator suspended
with the catastrophic interrupt 4iev.

5.6 Discussion

In what follows we discuss the results presented in this Chapter.

Continuations. The definition of continuations for UTP-CSP applies more generally to
parallel programs. That is the first definition of continuations for CSP processes. Using
a control variable l (resp. L) may be misleading in the case when l is conceived of as just
another variable. Rather, l must be conceived of as denoting the predicate whose label it
contains. Then, using l instead of functions concurs to the simplicity of the proposed model.
Indeed, it is very likely that trying to migrate this work to pure CSP [65], [106] may rather
require formulations closer to the ones based on functions, e.g. [46] to [41].

This work may serve as a basis for reasoning about control flow for CSP programs, and
also their compilation. Thanks to continuations, we could give a characterisation of sequential
programs that is not syntactic, using the healthiness condition RPBSeq (cf. §5.2.3). This

Discussion 211

extension of CSP with continuations finds an immediate application in the definition of strong
mobility.

In [72], Jahnig et al. define continuations semantics for a CSP-like language. They do not
actually deal with CSP itself, and the language that they consider is sequential. [3] discusses
compilation and scheduling of real-time programs on the basis of UTP.

Interrupt. The semantics for the generic interrupt that we have proposed are perhaps the
first attempt of a definition of the generic interrupt that does not rely on time, and that is
based of Bulk Synchronisation Parallelism.

An advantage of the technique used is that we may characterise the interrupt state of a
program without any further machinery. We are not aware of a similar result in the literature.

A second positive aspect of the definition is that it opens the way for the definition of
other interrupt operators. Indeed, when process migration is not involved, we may readily
define the operator that suspends a process and then returns control to that process, which
may then resume seamlessly, locally.

We have already mentioned the possibility that our formulation may provide some ground
for a canonical formulation of many, if not all other interrupt operators. This hypothesis
requires further investigation. Notwithstanding, we have seen that interruptible programs
have a structure of their own. That structure would also be worth investigating further as
its existence suggests that providing semantics to interrupts may be done at a lower level
abstraction than existing attempts.

A possible weakness of the proposed operator may be that of state explosion, for model
checking. Certainly, the question here may be more that of the scale of the applications that
the proposed definition may permit to formalise.

Another possible weakness is that the definition may rely on multiple merges, hence
making program verification difficult.

In [26], Brookes discusses the issue of fairness when dealing with the expansion law for
parallel composition, and shows notably that not every expansion is fair. Whilst fairness is not
an issue in itself since we may always assume the existence of a fairness function that makes
definitions fair, or either that a fair implementation is always possible, we may want to prove
a statement such as: if the interrupt event i occurs, then P will be interrupted. A possible
way of making such a proof possible might be by using the concept of priority in the definition
of interrupts, such that an interrupt event is always chosen over some other event (with a
lower priority) occurring at the same time. In particular, the priority mechanism would need
to be implemented for R only since it is R that may resolve the choice between synchronising
on skyp with P, or on sync with Q, whenever both synchronisation events occur at the
same time. The priority mechanism may be useful also for discriminating amongst different
interrupt events. The implementation in UTP of a scheduler with priority is discussed in [3].

Strong mobility. Strong mobility has been defined as a form of interrupt operator that
involves the migration of the interruptible process. We are not aware of any other denotational

212 Strong Process Mobility

model for strong mobility, and we do not think that any has been defined using operational
semantics either. We have already mentioned the work in [131] by Todoran, in which a
first step towards a denotational semantics in the context of Object Oriented programming is
presented. The Higher-order pi-calculus [112] (an operational semantics framework) is limited
to weak mobility.

5.7 Strong process mobility vs. Channel mobility

As stated at the beginning of this thesis, mobility requires the definition of the entity that
moves, and the space in which it moves. Trivially hence, what distinguishes process mobility
from channel mobility is that processes and channels move in each of them, respectively.
From a modelling point of view, it is interesting to determine if one can be used to encode
the other. That is the question of interest in this section.

In the literature relative to the pi-calculus [86], [112], it is common to consider channel
mobility and process mobility as dual notions. The duality comes from the following view.
Let P be a process that may communicate through channel a with another process Q. Such
a situation may be modelled by the process ({a},P) ‖ ({a},Q), where we explicitly mention
the interface of processes for the sake of the present discussion. Let R be a process that
may communicate with Q through a channel b, but may not communicate with P. Such a
situation may be modelled by the process ({a},P) ‖ ({a, b},Q) ‖ ({b},R). In the pi-calculus,
the scope of a process determines with what other process it may communicate, e.g. Q is in
the scope of P, and R is not.
Let Q pass its b channel to P. Such a situation may be modelled by the process ({a, b},P) ‖
({a},Q) ‖ ({b},R). Let us use brackets [] to represent the scope of P, then the situation just
described may be pictured as follows:

[({a},P) ‖ ({a, b},Q)] ‖ ({b},R) −→ [({a, b},P) ‖ ({a},Q) ‖ ({b},R)]

R is now in the scope of P, as if R itself had moved: it has moved into P’s scope.

In the pi-calculus, there is no explicit representation of locations, however. We may
nonetheless infer that channels move from one process (viz. its interface) to another. Channel
mobility implies process mobility, from one scope to another, whence the duality mentioned
above. That is, interfaces are locations for channels, whilst scopes are locations for processes.
Rigorously, the view that processes move because they change of scope does not correspond
to the concept of process mobility; rather, that is simply scope extrusion or expansion.

Process mobility requires the movement of an execution logic, in the form of process code,
from one process to another. In the scenario presented above, the computation realised by R
never left R, to execute on P.

Cardelli et al. [32] propose another analogy between channel mobility and process

Strong process mobility vs. Channel mobility 213

mobility, using a different concept of location.

Weak mobility, which is the movement of process code without any execution state re-
quires that the receiving process has all of the resources for executing that code. In fact,
code is just data, executable data. Thus weak mobility is but a form of data mobility, a
form of message-passing. The main difference with strong mobility is that the latter involves
an interrupt mechanism, which is local to the sending process. Granting successful suspen-
sion, what follows is just code mobility. Thus, process mobility is not equivalent to channel
mobility since data mobility is not equivalent to channel mobility.

From a network topology view, strong mobility does not trigger channel mobility either.
The assumption that the receiving environment has all the resources necessary for the moved
process to execute includes channels as well. For example, commercial software that are
meant to run on a network are installed on computers that already have the required net-
work resources, especially channels. When a commercial software is removed, the computer
resources are not removed as well. Thus if the software is communicated to another com-
puter as part of the network logic, the software movement does not trigger a corresponding
movement of the channels in its interface. Just like a software that requires 1Gb (Gigabyte)
of memory may not be run on a computer that may provide 1Ko (Kilo octet) of memory
only; just like a Web application will not run on a computer not connected to the Internet,
so to send a process in an environment that does not already have the process’s channels will
result in the process not being able to run (its interface will not coincide with that of the
higher-order variable meant to receive it.)

Finally, from a formal point of view, in UTP, both weak and strong mobility are modelled
as operators, whilst channel mobility is a UTP theory. Also, static CSP is enough for passing
processes, but may not be used for passing channels (cf. Chap. 4).

Chapter 6

Conclusion

The formal representation of the concept of mobility has been developed in UTP. Many forms
of mobility may be distinguished according to what entity moves and the space in which it
moves. Tang & Woodcock have provided a model for weak process mobility in [126]. We have
extended their work with a discussion of the formalisation of weak process mobility, based
on the informal description of code mobility of Fuggeta et al. [49] (cf. §3.1.2). The higher-
order pi-calculus HOpi [112] also allows modelling weak mobility, though using operational
semantics.

The literature on formal semantics for strong mobility is very scarce, and only Todoran
[131] makes a step towards one. Their semantic domain is provided by a programming lan-
guage however, instead of a mathematical domain.

The state of the art in formal semantics for channel mobility contrasts with that of strong
mobility. Many frameworks have been propounded for reasoning about channel mobility,
the most important one being the pi-calculus [86]. The semantics of the pi-calculus are
operational, and channels are communicated through other channels as messages. Many
variants of the pi-calculus have been developed, a comprehensive survey of which may be
found in [117].

On the side of denotational semantics, much less work may be found. Work on extending
FOCUS with mobility constitute the first attempt of extending an existing denotational
framework, FOCUS [27], with mobility; e.g. [56], [58], [123]. FOCUS is concerned with data
flow networks, hence these works may not permit to reason about refusals [66, §8.3].

There is no direct extension of CSP with mobility in the literature. Roscoe [109, §20.3]
discusses an eventual extension of (the denotational semantics) of CSP with channel mobility,
based on closed-world semantics. However, we have argued (cf. §3.2.6) that Rosoce’s definition
of closed-world is ambiguous. We have proposed a sound definition of the concepts of open-
and closed-world semantics in §4.6.4.

In [107] and [108], Roscoe discusses the expressive power of CSP (the operational se-
mantics), notably to express channel mobility. In [107], Roscoe defines so-called CSP-like
operators, but we have pointed out (cf. §3.2.6) that that definition was problematic as there

215

216 Conclusion

is no definition of operational semantics that is independent of CSP, unlike for example, the
framework of deSimone [120]. In light of [120], we have argued that the linearisation proce-
dure propounded in [107] does not play a great role if any at all, in relating CSP operational
semantics with that of other frameworks, notably the pi-calculus.

In [108], Roscoe defines some encodings of the pi-calculus on the basis of CSP. We have
remarked (cf. §3.2.6) that that work did not rely on the linearisation of [107], and also that
no relation is actually established between the operational semantics of the pi-calculus, and
its proposed CSP models. Furthermore, many sets of names have been introduced in [108]
that are difficult to relate to the traditional semantics of CSP. All these models rely on a
renaming operator viz. the generalised relabelling operator (cf. Def. 3.2.13), which makes
their semantics quite complex. As we have argued in §4.6.3, the problem of traces semantics
for expressing channel mobility is not that channels must appear within specified trace scopes
(i.e. parts/subsequences of the trace), but that they must belong to the specified interface.
The latter remark applies also to the work of Bialkiewicz & Peschanski [18].

[18] proposes a CSP-like traces semantics for the scope extrusion mechanism of the pi-
calculus. Their proposed localised traces is quite complex, however, making it difficult to
relate to CSP.

Two other works have been presented which use a CSP-like language as their basis. Vajar
et al. [132] have proposed an extension of CSP||B with channel mobility in which only the
links to B machines may be moved. This clearly restricts the expressiveness of their language.
Hoare & O’Hearn [67] have proposed a CSP-like language for channel mobility, using concepts
from separation logic [91], [89], [105]. Their traces model is alphabetised, like the one that
we have proposed. However, refusals are not studied in [67].

In general however, none of the traces models proposed in the Literature discusses the
question of the characterisation of channels. That discussion is one of the contributions of
this thesis, and has notably permitted us to introduce the concept of capability (cf. §4.2), to
separate the notion of knowledge of the existence of a channel to the notion of ownership,
modelled by the interface of a process. We have argued that without such a separation,
existing models in the Literature are not sound. Thus, dynamic network processes must have
a static capability and a dynamic interface.

Welch & Barnes [138] have proposed a CSP model for the channel mobility mechanism of
the programming language occam-pi [136]. As discussed in §3.2.2, [138] model is not abstract
enough, and we have proposed a way of simplifying it. From that simplification, a CSP model
for occam-pi may readily be built based on the semantics provided in this thesis (cf. §4.3).

Besides mechanisms for passing channels, two new operators have been defined. Dynamic
renaming (cf. §4.3.6) permits to rename eventual new names. The renaming operator is very
useful for reusing processes. Hence, for example, it is possible to send the same channel to
say three copies of the same process running in parallel, yet have each communicate with a
distinct third process. This is the first semantics for that operator in either operational or
denotational semantics.

217

Dynamic hiding (cf. §4.4) permits to hide eventual new names. This operator is useful to
model networks whose internal topology may grow silently, which is the case for many large
computer networks. The hiding operator is one of the most difficult to define in the presence
of channel mobility, and this difficulty is reflected in its semantics, especially when compared
with dynamic renaming. Indeed, we had to extend the theory of mobile processes in order for
dynamic hiding to be expressible. The resulting theory is the theory of silencing processes.
This is also the first semantics for the dynamic hiding operator in either operational or de-
notational semantics. Overall, our treatment of hiding allows disregarding issues related to
internal and external interface, closed- and open-world semantics, issues which may greatly
cloud understanding and reasoning.

Another contribution of this thesis is the definition of the link iDgen (viz. dn2sn), §4.5.2,
which permits to transform a mobile process into a static process. This is the first link
between a mobile framework and a static framework in the Literature. The technique used
for defining iDgen may be used to relate other similar frameworks as well, notably CCS and
the pi-calculus. Indeed, we may conjecture that pi-calculus processes may be modelled by
snapshot-identified CCS processes when channel-passing operations are involved; otherwise,
the pi-calculus is just CCS.

The definition of iDgen (viz. dn2sn) has required us to extend static CSP with the
snapshot-identifier variable denoted by id, thus yielding the theory of (mobile channels static
network) simulation processes. Such processes are indeed a simulation in the sense that they
do not communicate channels between themselves, hence there is no change of their respective
interfaces. The construction of simulation processes shows that any static framework may be
used to encode channel mobility, and that a snapshot-identification mechanism is necessary
to realise the encoding. The definition of iDgen implies that many, if not all the properties
of mobile CSP may be verified using static (simulation) CSP. The definition of the inverse
link iDgen−1 would be an interesting topic for Ever since the development of both CSP and
the pi-calculus, the question of their relation has been explored. We believe that this thesis
will allow that comparison to move a step forward. Many elements for that comparison have
been given throughout this thesis, notably in §4.6. Relating the two frameworks would be
an interesting topic for further work. Such a relation may be established through defining a
relation between CCS and the pi-calculus as suggested earlier.

The mechanisation of mobile CSP, and of iDgen (viz. dn2sn), and the definition of op-
erational semantics for mobile CSP are also interesting for future work about channel mobility.

Returning to strong mobility, one of the main problems was the definition of continuations
for CSP processes. Continuations permit reasoning explicitly about control flow, and notably
allows defining jump features. Continuations have been defined for parallel programs in
general (cf. §5.2.2), and then for CSP processes (cf. §5.2.3). This has led to the definition of
the control variable denoted by L, to contain the execution location (in the code of a process)
of the defining instructions of a process. CSP processes were then extended with L, thus

218 Conclusion

yielding the theory of Reactive Process Blocks.
Reactive process blocks have been used for defining strong mobility, as a particular kind

of interrupt operator (cf. §5.5). These are the first semantics for that operator in CSP,
and also in the Literature. Depending on what interrupt operator is used in the definition
(catastrophic [84], or either generic), the interrupt state is more or less precise.

Although the catastrophic interrupt may be used for defining strong mobility, it is less
expressive than the generic interrupt [135]. We have also seen a case where the catastrophic
interrupt is less flexible than the generic interrupt (cf. e.g. 5.4.2). The semantics of the
generic interrupt proposed in this thesis (cf. §5.4) is based on the Bulk Synchronous Par-
allelism mechanism, already used in UTP [66, Chap. 7]. The same principle underlies the
process mobility mechanism of the occam-pi programming language [136]. The mechanisa-
tion of the generic interrupt may be pursued in future work. It would also be interesting to
recast the semantics given in this thesis in the domain of Reactive Designs [37], which may
notably permit a comparison with Wei’s semantics [135].

Finally, applying the results provided in this thesis to more examples is an interesting
challenge. Applications for channel mobility, using the pi-calculus, in the domain of security
are currently undergoing, and many variants of the pi-calculus for that purpose have been
developed. Channel mobility could possibly be used to provide models for pointers, garbage
collection, and dynamic binding (in Object-Oriented Programming). It could also be used
for reasoning about protocols for ad hoc networks, and also in the emerging domain of
programmable networks.

Bibliography

[1] J.R. Abrial, The B Book: Assigning Programs to Meaning, CUP 1996.

[2] C.M. Angerer, T.R. Gross, Parallel Continuation-Passing Style - A Compiler Represen-
tation for Incremental Parallelization, PESPMA’10, 2010.

[3] A.E. Arenas, J.C. Bicarregui, Applying Unifying Theories of Programming to Real-Time
Programming, in Journal of Integrated Design and Process Science, vol. 10, pp. 69-88,
2006.

[4] R.J.R. Back, J. von Wright, Trace Refinement of Action Systems, CONCUR’94, LNCS
vol. 836, pp. 367-384, 1994. doi:10.1007/BFb0015020

[5] J.C.M. Baeten, A Brief History of Process Algebra, TCS-PA’05, vol. 335, pp. 131-146,
2005. doi:10.1016/j.tcs.2004.07.036

[6] M. Baldi, S. Gai, G.P. Picco, Exploiting Code Mobility in Decentralized and Flexible
Network Management, MA’97, LNCS vol. 1219, pp. 13-26, 1997. doi:10.1007/3-540-62803-
7 20

[7] M. Baldi, G.P. Picco, Evaluating the Tradeoffs of Mobile Code Design Paradigms
in Network Management Applications, ICSE’97, pp. 146-155, IEEE, 1998.
doi:10.1109/ICSE.1998.671111

[8] F.R.M. Barnes, P.H. Welch, A.T. Sampson, Barrier Synchronisation for occam-pi,
PDPTA’05, vol. 1, pp. 173-179, 2005.

[9] F.R.M. Barnes, P.H. Welch, Mobile Data Types for Communicating Processes, PDPTA’01,
vol. 1, pp. 20-26, 2001.

[10] F.R.M. Barnes, P.H. Welch, Mobile Data, Dynamic Allocation and Zero Aliasing: an
occam Experiment, CPA’01, pp. 243-265, IOS Press, 2001.

[11] F.R.M. Barnes, P.H. Welch, Prioritised Dynamic Communicating and Mobile Processes,
in Software, IEE Proc., vol. 150, pp. 121-136, 2003. doi:10.1049/ip-sen:20030182

[12] G. Barrett, occam3 Reference Manual, INOS Ltd., March 1992. Available at
http://www.wotug.org/occam/documentation/oc3refman.pdf.

219

http://dx.doi.org/10.1007/BFb0015020
http://dx.doi.org/10.1016/j.tcs.2004.07.036
http://dx.doi.org/10.1007/3-540-62803-7_20
http://dx.doi.org/10.1007/3-540-62803-7_20
http://dx.doi.org/10.1109/ICSE.1998.671111
http://dx.doi.org/10.1049/ip-sen:20030182

220 BIBLIOGRAPHY

[13] J. Baumann, F. Kohl, K. Rothermel, M. StraBer, Mole - Concepts of a Mobile Agent
System, World Wide Web, vol. 1, pp. 123-137, 1998. doi:10.1023/A:1019211714301

[14] K. Bergner, R. Grosu, A. Rausch, A. Schmidt, P. Scholz, M. Broy, Focusing
on Mobility, Proc. of the 32nd Hawaii Internat. Conf. on Sys. Sci., IEEE, 1999.
doi:10.1109/HICSS.1999.773061

[15] L. Bettini, R. de Nicola, Translating Strong Mobility into Weak Mobility, MA’01, LNCS
vol. 2240, pp. 182-197, 2001. doi:10.1007/3-540-45647-3 13

[16] K. Bharat, L. Cardelli, Migratory Applications, MOS’96, LNCS vol. 1222, pp. 131-148,
1996. doi:10.1007/3-540-62852-5 11

[17] J.-A. Bialkiewicz, F. Peschanski, Logic for Mobility: A Denotational Approach, Logic,
Agents and Mobility (LAM’09), 2009.

[18] J.-A. Bialkiewicz, F. Peschanski, A Denotational Study of Mobility, CPA’09, pp. 239-261,
2009. doi:10.3233/978-1-60750-065-0-239

[19] E. Bonnici, P.H. Welch, Mobile Processes, Mobile Channels and Complex Dynamic Sys-
tems, CEC’09, pp.232-231, IEEE, 2009. doi:10.1109/CEC.2009.4982953

[20] M. Boreale, On the Expressiveness of Internal Mobility in Name-Passing Calculi,
TCS’98, vol. 195, pp. 205-226, 1998. doi:10.1016/S0304-3975(97)00220-X

[21] G. Boudol, Notes on Algebraic Calculi of Processes, Logics and Models of Concurrent
Systems, vol. 13, pp. 261-303, NATO ASI Series, 1984. doi:10.1007/978-3-642-82453-1 9

[22] S.D. Brookes, Idealized CSP: Combining Procedures with Communicating Processes,
MFPS’97, vol. 6, pp. 60-76, 1997. doi:10.1016/S1571-0661(05)80169-0

[23] S.D. Brookes, Communicating Parallel Processes, Symposium in Celebration of the work
of C.A.R. Hoare, Oxford University, MacMillan, 2000.

[24] S.D. Brookes, A.W. Roscoe, D.J. Walker, An Operational Semantics for CSP, Submitted
for publication(1986).

[25] S.D. Brookes, On the Relationship of CCS and CSP, Automata, Languages and Pro-
gramming, LNCS vol. 154, pp. 83-96, 1983. doi:10.1007/BFb0036899

[26] S.D. Brookes, Reasoning About Recursive Processes: Expansion is not Always Fair,
ENTCS, vol. 20, pp. 182-201, 1999. doi:10.1016/S1571-0661(04)80074-4

[27] M. Broy, F. Dederichs, C. Dendorfer, M. Fuchs, T.F. Gritzner, and R. Weber, The
Design of Distributed Systems - An Introduction to FOCUS (revised), Tech. Rep., Uni. of
Munich, 1993.

http://dx.doi.org/10.1023/A:1019211714301
http://dx.doi.org/10.1109/HICSS.1999.773061
http://dx.doi.org/10.1007/3-540-45647-3_13
http://dx.doi.org/10.1007/3-540-62852-5_11
http://dx.doi.org/10.3233/978-1-60750-065-0-239
http://dx.doi.org/10.1109/CEC.2009.4982953
http://dx.doi.org/10.1016/S0304-3975(97)00220-X
http://dx.doi.org/10.1007/978-3-642-82453-1_9
http://dx.doi.org/10.1016/S1571-0661(05)80169-0
http://dx.doi.org/10.1007/BFb0036899
http://dx.doi.org/10.1016/S1571-0661(04)80074-4

BIBLIOGRAPHY 221

[28] M. Broy, Equations for Describing Dynamic Nets of Communicating Systems, Recent
Trends in Data Type Specification, pp. 170-187, Springer, 1995. doi:10.1007/BFb0014427

[29] M. Broy, A Model of Dynamic Systems, ETAPS:FPS’14, LNCS vol. 8415, pp.39-53, 2014.
doi:10.1007/978-3-642-54848-2 3

[30] C. Calcagno, P. O’Hearn, Hongseok Yang, Local Action and Abstract Separation Logic,
LICS’07, pp. 366-378, IEEE, 2007. doi:10.1109/LICS.2007.30

[31] L. Cardelli, A.D. Gordon, Mobile Ambients, TCS, vol. 240, pp. 177-213, 2000.
doi:10.1016/S0304-3975(99)00231-5

[32] L. Cardelli, Abstractions for Mobile Computation, in Secure Internet Programming,
Security Issues for Mobile and Distributed Objects, LNCS vol. 1603, pp. 51-94, 1999.
doi:10.1007/3-540-48749-2 4

[33] A. Carzaniga, G.P. Picco, G. Vigna, Designing Distributed Applications with Mobile
Code Paradigms, ICSE’97, pp. 22-32, ACM, 1997. doi:10.1145/253228.253236

[34] A. Cavalcanti, A. Sampaio, J. Woodcock, Refinement of Actions in Circus, ENTCS’02,
vol. 70, pp. 132-162, Elsevier, 2002. doi:10.1016/S1571-0661(05)80489-X

[35] A. Cavalcanti, J. Woodcock, A Tutorial Introduction to CSP in Unifying Theo-
ries of Programming, PSSE’04, LNCS vol. 3167, pp. 220-268, Springer-Verlag, 2004.
doi:10.1007/11889229 6

[36] A. Cavalcanti, A. Sampaio, J. Woodcock, Unifying Classes and Processes, Software
& Systems Modeling, vol. 4, pp. 277-296, 2005. doi:10.1007/s10270-005-0085-2

[37] A. Cavalcanti, W. Harwood, J. Woodcock, Pointers and Records in the Unifying Theories
of Programming, UTP’06, LNCS vol. 4010, pp. 200-216, 2006. doi:10.1007/11768173 12

[38] A. Cavalcanti, M.-C. Gaudel, A Note on Traces Refinement and the conf relation
in the Unifying Theories of Programming, UTP’08, LNCS vol. 5713, pp. 42-61, 2008.
doi:10.1007/978-3-642-14521-6 4

[39] K. Chanchio, X.-H. Sun, Communication State Transfer for the Mobility of Concur-
rent Heterogeneous Computing, Trans. Comp., vol. 53, pp. 1260-1273, IEEE, 2004.
doi:10.1109/TC.2004.73

[40] D. Chess, C. Harrison, A. Kershenbaum, Mobile Agents: Are They a Good Idea?, IBM
Research Report, MOS’96 , LNCS vol. 1222, pp. 25-45, 1996. doi:10.1007/3-540-62852-5 4

[41] G. Ciobanu, E. Todoran, Continuation Semantics for Concurrency, Tech. Rep., Formal
Methods Laboratory, the Institute of Comp. Sci. of the Romanian Academy, 2014.

[42] G. Cugola, C. Ghezzi, G.P. Picco, G. Vigna, Analyzing Mobile Code Languages, MOS’96,
LNCS vol. 1222, pp. 91-109, 1996. doi:10.1007/3-540-62852-5 9

http://dx.doi.org/10.1007/BFb0014427
http://dx.doi.org/10.1007/978-3-642-54848-2_3
http://dx.doi.org/10.1109/LICS.2007.30
http://dx.doi.org/10.1016/S0304-3975(99)00231-5
http://dx.doi.org/10.1007/3-540-48749-2_4
http://dx.doi.org/10.1145/253228.253236
http://dx.doi.org/10.1016/S1571-0661(05)80489-X
http://dx.doi.org/10.1007/11889229_6
http://dx.doi.org/10.1007/s10270-005-0085-2
http://dx.doi.org/10.1007/11768173_12
http://dx.doi.org/10.1007/978-3-642-14521-6_4
http://dx.doi.org/10.1109/TC.2004.73
http://dx.doi.org/10.1007/3-540-62852-5_4
http://dx.doi.org/10.1007/3-540-62852-5_9

222 BIBLIOGRAPHY

[43] O. Danvy, A. Filinski, Representing control: a Study of the CPS Transformation, Math.
Struct. in Comp. Sci., vol. 2, pp. 361-391, 1992. doi:10.1017/S0960129500001535

[44] O. Danvy, On Evaluation Contexts, Continuations, and the Rest of the Computation,
CW’04, pp. 13-23, ACM, 2004.

[45] T.I. Dix, Exceptions and Interrupts in CSP, Sci. of Comp. Progr., vol. 3, pp. 189-204,
1983. doi:10.1016/0167-6423(83)90010-2

[46] M. Felleisen, D.P. Friedman, B.F. Duba, J.Merrill, Beyond Continuations, Tech. Rep.,
Dpt. of Comp. Sci., Uni. of Indiana, 1987.

[47] M. Felleisen, M. Wand, D. Bruce, D.P. Friedman, B.F. Duba, Continuations
Semantics for Handling Full Functional Jumps, LFP’88, pp.52-62, ACM, 1988.
doi:10.1145/62678.62684

[48] M. Fiore, E. Moggi, D. Sangiorgi, A Fully-Abstract Model for the pi-calculus, LICS’96,
pp. 43-54, IEEE, 1996. doi:10.1109/LICS.1996.561302

[49] A. Fuggetta, G.P. Picco, G. Vigna, Understanding Code Mobility, TSE’98, vol. 24, pp.
342-361, IEEE, 1998. doi:10.1109/32.685258

[50] C. Ghezzi, G. Vigna, Mobile Code Paradigms and Technologies: A Case Study, MA’97,
LNCS vol. 1219, pp. 39-49, 1997. doi:10.1007/3-540-62803-7 22

[51] J.F. Giorgi, D. LeMetayer, Continuation-Based Parallel Implementations of Functional
Languages, LFP’90, pp. 209-217, ACM, 1990. doi:10.1145/91556.91648

[52] M. Gordon, H. Collavizza, Forward with Hoare, in Reflections on the Work of C.A.R.
Hoare, 2010. doi:10.1007/978-1-84882-912-1 5

[53] A.D. Gordon, Notes on Nominal Calculi for Security and Mobility, FOSAD’00, pp. 262-
330, 2000. doi:10.1007/3-540-45608-2 5

[54] R. Gray, D. Kotz, S. Nog, D. Rus, G. Cybenko, Mobile Agents for Mobile Computing,
Tech. Rep., Dpt. Of Comp. Sci., Darmouth College, Hanover, 1996.

[55] R. Grosu, K. Stolen, A Denotational Model for Mobile P2P DFNs without Channel
Sharing, Tech. Rep., Uni. of Munich, Sep. 1996.

[56] R. Grosu, K. Stolen, Specification of Dynamic Networks, Tech. Rep., Uni. of Munich,
Dec. 1996.

[57] R. Grosu, K. Stolen, M. Broy, A Denotational Model for Mobile P2P Data Flow Nets
with Channel Sharing, Tech. Rep., Uni. of Munich, May1997.

[58] R. Grosu, K. Stolen, Stream-Based Specification of Mobile Systems, FAC’01, vol. 13, pp.
1-31, Springer, 2001. doi:10.1007/PL00003937

http://dx.doi.org/10.1017/S0960129500001535
http://dx.doi.org/10.1016/0167-6423(83)90010-2
http://dx.doi.org/10.1145/62678.62684
http://dx.doi.org/10.1109/LICS.1996.561302
http://dx.doi.org/10.1109/32.685258
http://dx.doi.org/10.1007/3-540-62803-7_22
http://dx.doi.org/10.1145/91556.91648
http://dx.doi.org/10.1007/978-1-84882-912-1_5
http://dx.doi.org/10.1007/3-540-45608-2_5
http://dx.doi.org/10.1007/PL00003937

BIBLIOGRAPHY 223

[59] W. Harwood, A. Cavalcanti, J. Woodcock, A Theory of Pointers for the UTP, ICTAC’08,
vol. 5160, pp. 141-155, 2008. doi:10.1007/978-3-540-85762-4 10

[60] E. Hehner, Predicative Programming part 1, CACM’84, vol. 27, pp. 134-143, 1984.
doi:10.1145/69610.357988

[61] E. Hehner, Predicative Programming part 2, CACM’84, vol. 27, pp. 144-151, 1984.
doi:10.1145/69610.357990

[62] M. Hennessy, A Fully-Abstract Denotational Semantics for the pi-calculus, TCS’02,
vol.278, pp. 53-89, 2002. doi:10.1016/S0304-3975(00)00331-5

[63] R. Hieb, R.K. Dybvig, Subcontinuations, LISP and Symbolic Computation, vol. 7, pp.
83-110, 1994. doi:10.1007/BF01019946

[64] C.A.R. Hoare, Proof of Correctness of Data Representations, Acta Informatica, vol. 1,
pp. 271-281, 1972. doi:10.1007/BF00289507

[65] C.A.R. Hoare, Communicating Sequential Processes, Prentice-Hall, 1985.

[66] C.A.R. Hoare, J. He, Unifying Theories of Programming, Prentice-Hall, 1998.

[67] C.A.R. Hoare, P. O’Hearn, Separation Logic Semantics for Communicating Processes,
ENTCS’08, vol. 212, pp. 3-25, Elsevier, 2008. doi:10.1016/j.entcs.2008.04.050

[68] Y. Huang, H. Zhu, Y. Zhao, J. Shi, S. Qin, Investigating Time Properties of Interrupt-
Driven Programs, SBMF’12, LNCS vol. 7498, pp. 131-146, 2012. doi:10.1007/978-3-642-
33296-8 11

[69] Y. Huang, Y. Zhao, J. Shi, H. Zhu, A Denotational Model for Interrupt-Driven Programs,
ICSTW’13, pp. 15-20, IEEE, 2013. doi:10.1109/ICSTW.2013.9

[70] Y. Huang, J. He, H. Zhu, Y. Zhao, J. Shi, S. Qin, Semantic Theories of Programs
with Nested Interrupts, FCS’14, vol. 9, pp 331-345, Higher Education Press, 2014.
doi:10.1007/s11704-015-3251-x

[71] G. Hutton, J. Wright, What is the Meaning of These Constant Interruptions? (Ex-
tended Version), JFP’07, vol. 17, pp. 777-792, Cambridge University Press, 2007.
doi:10.1017/S09567968070063632007

[72] N. Jahnig, T. Gothel, S. Glesner, A Denotational Semantics for Communicating Unstruc-
tured Code, FESCA’15, EPTCS, vol.178, pp. 9-21, 2015. doi:10.4204/EPTCS.178.22015

[73] J.B. Jensen, N. Benton, A. Kennedy, High-Level Separation Logic for Low-Level Code,
POPL’13, vol. 48, pp. 301-314, ACM, 2013. doi:10.1145/2480359.2429105

[74] O. Jensen, R. Milner, Bigraphs and Mobile Processes (revised), Technical Report UCAM-
CL-TR-580, Uni. of Cambridge, UK, 2004.

http://dx.doi.org/10.1007/978-3-540-85762-4_10
http://dx.doi.org/10.1145/69610.357988
http://dx.doi.org/10.1145/69610.357990
http://dx.doi.org/10.1016/S0304-3975(00)00331-5
http://dx.doi.org/10.1007/BF01019946
http://dx.doi.org/10.1007/BF00289507
http://dx.doi.org/10.1016/j.entcs.2008.04.050
http://dx.doi.org/10.1007/978-3-642-33296-8_11
http://dx.doi.org/10.1007/978-3-642-33296-8_11
http://dx.doi.org/10.1109/ICSTW.2013.9
http://dx.doi.org/10.1007/s11704-015-3251-x
http://dx.doi.org/10.1017/S09567968070063632007
http://dx.doi.org/10.4204/EPTCS.178.22015
http://dx.doi.org/10.1145/2480359.2429105

224 BIBLIOGRAPHY

[75] W. Kahl, Refinement and Development of Programs from Relational Specifications,
ENTCS’03, vol. 44, pp. 51-92, 2003. doi:10.1016/S1571-0661(04)80932-0

[76] G. Kahn, The Semantics of a Simple Language for Parallel Programming, Information
Processing, pp. 471-475, North Holland, 1974.

[77] D. Karkinsky, S. Schneider, H. Treharne, Combining Mobility with State, IFM’07, LNCS
vol. 4591, pp. 373-392, 2007. doi:10.1007/978-3-540-73210-5 20

[78] P. Knudsen, Comparing two Distributed Computing Paradigms - A Performance Case
Study, Phd Thesis, Dpt. of Comp. Sci., Uni. of Tromso, Norway, 1995.

[79] C.P. Kunze, S. Zaplata, W. Lamersdorf, Mobile Process Description and Execution,
DAIS’06, LNCS vol. 4025, pp. 32-47, 2006. doi:10.1007/11773887 3

[80] L. Lamport, F.B. Schneider, The ”Hoare Logic” of CSP, and All That, TOPLAS’84, vol.
6, pp. 281-296, ACM, 1984. doi:10.1145/2993.357247

[81] D. May, H.L. Muller, Using Channels for Multimedia Communication, IPPS:SPDP’99,
pp. 93-98, IEEE, 1999. doi:10.1109/IPPS.1999.760441

[82] D. May, H.L. Muller, Copying, Moving and Borrowing Semantics, CPA’01, vol. 59, pp.
15-26, IOS Press, 2001.

[83] M. Mazzara, A. Bhattacharyya, On Modelling and Analysis of Dynamic Reconfiguration
of Dependable Real-Time Systems, DEPEND’10, pp. 173-181, 2010.

[84] A. McEwan, J. Woodcock, Unifying Theories of Interrupts, UTP’08, LNCS vol. 5713,
pp. 122-141, 2010. doi:10.1007/978-3-642-14521-6 8

[85] R. Milner, Pi-nets: A Graphical Form of pi-Calculus, ESOP’94, LNCS vol. 788, pp.
26-42, 1994. doi:10.1007/3-540-57880-3 2

[86] R. Milner, Communicating and Mobile Systems: the pi-calculus, Cambridge University
Press, 1999.

[87] L. Moreau, C. Queinnec, Partial Continuations as the Difference of Continuations
- A Duumvirate of Control Operators, PLILP’94, LNCS, vol.844, pp. 182-197, 1994.
doi:10.1007/3-540-58402-1 14

[88] H.L. Muller, D. May, A Simple Protocol to Communicate Channels over Channels, Euro-
Par’98, LNCS vol. 1470, pp. 591-600, 1998. doi:10.1007/BFb0057905

[89] P. O’Hearn, J.C. Reynolds, H. Yang, Local Reasoning about Programs that Alter Data
Structures, CSL’01, LNCS, vol. 2142, pp. 1-19, 2001. doi:10.1007/3-540-44802-0 1

[90] P. O’Hearn, H. Yang, J.C. Reynolds, Separation and Information Hiding, POPL’04, vol.
39, pp. 268-280, ACM, 2004. doi:10.1145/982962.964024

http://dx.doi.org/10.1016/S1571-0661(04)80932-0
http://dx.doi.org/10.1007/978-3-540-73210-5_20
http://dx.doi.org/10.1007/11773887_3
http://dx.doi.org/10.1145/2993.357247
http://dx.doi.org/10.1109/IPPS.1999.760441
http://dx.doi.org/10.1007/978-3-642-14521-6_8
http://dx.doi.org/10.1007/3-540-57880-3_2
http://dx.doi.org/10.1007/3-540-58402-1_14
http://dx.doi.org/10.1007/BFb0057905
http://dx.doi.org/10.1007/3-540-44802-0_1
http://dx.doi.org/{10.1145/982962.964024}

BIBLIOGRAPHY 225

[91] P. O’Hearn, Resources, Concurrency and Local Reasoning, TCS’07, vol. 375, pp. 271-307,
2007. doi:10.1016/j.tcs.2006.12.035

[92] P. O’Hearn, A Primer on Separation Logic (and Automatic Program Verification
and Analysis), Software Safety and Security, vol. 33, pp. 286-318, IOS Press, 2012.
doi:10.3233/978-1-61499-028-4-286

[93] E.R. Olderog, C.A.R. Hoare, Specification-Oriented Semantics for Communicating Pro-
cesses, Acta Informatica, vol. 23, pp. 9-66, 1986. doi:10.1007/BF002680751986

[94] F. Orava, J. Parrow, An Algebraic Verification of a Mobile Network, FAC’96, vol. 6, pp.
497-543, 1992. doi:10.1007/BF01211473

[95] J. Parrow, An Introduction to the Pi-calculus, In Handbook of Process Algebra, Chapter
8, pp. 479-543. Elsevier, 2001.

[96] F. Peschanski, On Linear Time and Congruence in Channel-Passing Calculi, CPA’04,
pp. 39-54, IOS Press, 2004.

[97] F. Peschanski, H. Klaudel, R. Devillers, A Decidable Characterisation of a Graphical
Pi-calculus with Iterators, in Infinity, vol. 39, pp. 47-61, 2010.

[98] A. Philips, L. Cardelli, A Graphical Representation for Biological Processes in the
Stochastic pi-Calculus, Trans. on Comput. Syst. Biol., LNBI vol. 4230, pp. 123-152, 2006.
doi10.1007/11905455 7

[99] G.D. Plotkin, A Structural Approach to Operational Semantics, JLAP’04, vol. 60, pp.
17-139, 2004.

[100] A. Popescu, Weak Bisimilarity Coalgebraically, CALCO’09, LNCS vol. 5728, pp. 157-
172, 2009. doi:10.1007/978-3-642-03741-2 12

[101] A. Popescu, A Fully-Abstract Coalgebraic Semantics for the pi-calculus under Weak
Bisimilarity, Tech. Rep., Uni. of Illinois, USA, 2009.

[102] A. Rausch, Towards a Formal Foundation for Dynamic Evolutionary Systems, in Pro-
ceedings of the Workshop on Architecture-Centric Evolution (ACE 2005), the 19th Eu-
ropean Conference on Object-Oriented Programming (ECOOP 2005), Jul 2005.

[103] J.C. Reynolds, The Discoveries Of Continuations, LISP and Symbolic Computation,
vol. 6, pp. 233-247, 1993. doi:10.1007/BF01019459

[104] J.C. Reynolds, Separation Logic: A Logic for Shared Mutable Data Structures, LICS’02,
pp. 55-74, IEEE, 2002. doi:10.1109/LICS.2002.1029817

[105] J.C. Reynolds, An Overview of Separation Logic, IFIP’05, LNCS vol. 4171, pp. 460-469,
2008. doi:10.1007/978-3-540-69149-5 49

http://dx.doi.org/10.1016/j.tcs.2006.12.035
http://dx.doi.org/10.3233/978-1-61499-028-4-286
http://dx.doi.org/10.1007/BF002680751986
http://dx.doi.org/10.1007/BF01211473
http://dx.doi.org/10.1007/978-3-642-03741-2_12
http://dx.doi.org/10.1007/BF01019459
http://dx.doi.org/10.1109/LICS.2002.1029817
http://dx.doi.org/10.1007/978-3-540-69149-5_49

226 BIBLIOGRAPHY

[106] A.W. Roscoe, The Theory and Practice of Concurrency, Prentice-Hall, 1998.

[107] A.W. Roscoe, On the Expressiveness of CSP, 2011 draft, Available at
cs.ox.ac.uk/ros11.pdf

[108] A.W. Roscoe, CSP is Expressive Enough for pi, in Reflections on the Work of C.A.R.
Hoare, History of Computing 2010, pp. 371-404, 2010. doi:10.1007/978-1-84882-912-1 16

[109] A.W. Roscoe, Understanding Concurrent Systems, Prentice-Hall, 2010.

[110] A. Sampaio, J. Woodcock, A. Cavalcanti, Refinement in Circus, FME’02, LNCS vol.
2391, pp. 451-470, 2002. doi:10.1007/3-540-45614-7 26

[111] D. Sangiorgi, π-calculus, Internal mobility and Agent-passing Calculi, TCS’96, vol. 167,
pp. 235-274, 1996. doi:10.1016/0304-3975(96)00075-8

[112] D. Sangiorgi, D. Walker, The pi-calculus: A Theory of Mobile Processes, Cambridge
University Press, 2001.

[113] T. Santos, A. Cavalcanti, A. Sampaio, Object-Orientation in the UTP, UTP’06, LNCS
vol. 4010, pp. 18-37, 2006. doi:10.1007/11768173 2

[114] M. Satyanarayanan, Fundamental Challenges in Mobile Computing, PODC’96, pp. 1-7,
ACM, 1996. doi10.1145/248052.248053

[115] S. Schneider, Concurrent and Real-Time Systems - The CSP Approach, John
Wiley & Sons, Ltd, 2000.

[116] S. Schneider, H. Treharne, B. Vajar, Introducing mobility into CSP||B, in Automated
Verification of Critical Systems (AVoCS), 2007.

[117] G. Serugendo, M. Muhugusa, C.F. Tschudin, A Survey of Theories for Mobile Agents,
World Wide Web, vol. 1, pp. 139-153, 1998. doi:10.1023/A:1019219916118

[118] A. Sherif, A Framework for Specification and Validation of Real-Time Systems using
Circus Actions, PhD thesis, Center of Informatics - Federal University of Pernambuco,
Brazil, 2006.

[119] L. Shi, Y. Zhao, Y. Liu, J. Sun, J.S. Dong, S. Qin, A UTP Semantics for Communicating
Processes with Shared Variables, ICFEM’13, pp. 215-230, 2013. doi:10.1007/978-3-642-
41202-8 15

[120] R. de Simone, Higher-Level Synchronising Devices in MEIJE-SCCS, TCS’85, vol. 37,
pp. 245-267, 1985. doi:10.1016/0304-3975(85)90093-3

[121] G. Smith, A formal framework for modelling and analysing mobile systems, ACSC 2004,
vol. 26, 2004.

http://www.cs.ox.ac.uk/files/1383/expressive.pdf
http://dx.doi.org/10.1007/978-1-84882-912-1_16
http://dx.doi.org/10.1007/3-540-45614-7_26
http://dx.doi.org/10.1016/0304-3975(96)00075-8
http://dx.doi.org/10.1007/11768173_2
http://dx.doi.org/10.1023/A:1019219916118
http://dx.doi.org/10.1007/978-3-642-41202-8_15
http://dx.doi.org/10.1007/978-3-642-41202-8_15
http://dx.doi.org/10.1016/0304-3975(85)90093-3

BIBLIOGRAPHY 227

[122] I. Stark, A Fully-Abstract Domain Model for the pi-calculus, LICS’96, pp. 36-42, IEEE,
1996. doi:10.1109/LICS.1996.561301

[123] K. Stolen, Specification of Dynamic Reconfiguration in the Context of Input/Output
Relations, FMOODS’99, pp. 259-272, Springer, 1999. doi:10.1007/978-0-387-35562-7 20

[124] C. Strachey, C.P. Wadsworth, Continuations: A Mathematical Semantics for Han-
dling Full Jumps, Higher-Order and Symbolic Computation, vol. 13, pp. 135-152, 2000.
doi:10.1023/A:1010026413531

[125] X. Tang, J. Woodcock, Travelling Processes, MPC’04, LNCS vol. 3125, pp. 381-399,
2004. doi:10.1007/978-3-540-27764-4 20

[126] X. Tang, J. Woodcock, Towards Mobile Processes in UTP, SEFM’04, pp. 44-53, IEEE,
2004. doi:10.1109/SEFM.2004.10045

[127] B. Thomsen, A Calculus of Higher Order Communicating Systems, POPL’89, pp. 143-
154, ACM, 1989. doi:10.1145/75277.75290

[128] E. Todoran, N.S. Papaspyrou, Continuations for Parallel Logic Programming,
PPDP’00, pp. 257-267, ACM, 2000. doi:10.1145/351268.351297

[129] E. Todoran, Metric Semantics for Synchronous and Asynchronous Communication:
A Continuation-based Approach, WDS’99, ENTCS’00, vol. 28, pp. 101-127, 2000.
doi:10.1016/S1571-0661(05)80632-2

[130] E. Todoran, N.S. Papaspyrou, Continuations for Prototyping Concurrent Languages,
Tech. Rep.t CSD-SWTR-1-06, National Technical Uni. of Athens, Softw. Eng. Lab., 2006.

[131] E. Todoran, Mobile Objects and Modern Communication Abstractions: De-
sign Issues and Denotational Semantics, ISPDC’11, pp. 191-198, IEEE, 2011.
doi:10.1109/ISPDC.2011.36

[132] B. Vajar, S. Schneider, H. Treharne, Mobile CSP||B, AVoCS’09, 2009.
doi:10.14279/tuj.eceasst.23.338

[133] K. Wei, J. Woodcock, A. Burns, Timed circus: Timed CSP with the miracle,
ICECCS’11, pp. 55-64, IEEE, 2011. doi:10.1109/ICECCS.2011.13

[134] K. Wei, New Circus Time, Tech. Rep., Dpt. of Comp. Sci., Uni. of York, UK, 2013.

[135] K. Wei, Reactive Designs of Interrupts in Circus Time, ICTAC’13, LNCS vol. 8049,
pp. 373-390, 2013. doi:10.1007/978-3-642-39718-9 22

[136] P.H. Welch, F.R.M. Barnes, Communicating Mobile Processes - Introducing occam-pi,
in Communicating Sequential Processes: The First 25 Years, Symposium on the Occasion
of 25 Years of CSP, pp. 175-210, 2004.

http://dx.doi.org/10.1109/LICS.1996.561301
http://dx.doi.org/10.1007/978-0-387-35562-7_20
http://dx.doi.org/10.1023/A:1010026413531
http://dx.doi.org/10.1007/978-3-540-27764-4_20
http://dx.doi.org/10.1109/SEFM.2004.10045
http://dx.doi.org/10.1145/75277.75290
http://dx.doi.org/10.1145/351268.351297
http://dx.doi.org/10.1016/S1571-0661(05)80632-2
http://dx.doi.org/10.1109/ISPDC.2011.36
http://dx.doi.org/10.14279/tuj.eceasst.23.338
http://dx.doi.org/10.1109/ICECCS.2011.13
http://dx.doi.org/10.1007/978-3-642-39718-9_22

228 BIBLIOGRAPHY

[137] P.H. Welch, F.R.M. Barnes, Mobile Barriers for occam-pi: Semantics, Implementation
and Application, CPA’05, vol. 63, pp. 289-316, IOS Press, 2005.

[138] P.H. Welch, F.R.M. Barnes, A CSP Model for Mobile Channels, CPA:CSE’08, vol. 66,
pp. 17-33, IOS Press, 2008. doi:10.3233/978-1-58603-907-3-17

[139] M.A. Wermelinger, Specification of Software Architecture Reconfiguration, PhD The-
sis, Universidade Nova de Lisboa, Faculdade de Ciencias e Tecnologia, Departamento de
Informatica, Lisboa, 1999.

[140] J. Woodcock, A. Cavalcanti, The Semantics of Circus, ZB’02, LNCS vol. 2272, pp.
184-203, 2002. doi:10.1007/3-540-45648-1 10

[141] J. Woodcock, A. Hughes, Unifying Theories of Parallel Programming, ICFEM’02,
LNCS vol. 2495, pp. 24-37, 2002. doi:10.1007/3-540-36103-0 5

[142] J. Woodcock, A. Cavalcanti, A Tutorial Introduction to Designs in Unifying Theories of
Programming, IFM’04, LNCS vol. 2999, pp. 40-66, 2004. doi:10.1007/978-3-540-24756-2 4

[143] J. Woodcock, A.J. Wellings, A. Cavalcanti, Mobile CSP, SBMF’15, LNCS vol. 9526,
pp. 39-55, 2015. doi:10.1007/978-3-319-29473-5 3

[144] H. Yang, P. O’Hearn, A Semantic Basis for Local Reasoning, FOSSACS’02, LNCS, vol.
2303, pp. 402-416, 2002. doi:10.1007/3-540-45931-6 28

http://dx.doi.org/10.3233/978-1-58603-907-3-17
http://dx.doi.org/10.1007/3-540-45648-1_10
http://dx.doi.org/10.1007/3-540-36103-0_5
http://dx.doi.org/10.1007/978-3-540-24756-2_4
http://dx.doi.org/10.1007/978-3-319-29473-5_3
http://dx.doi.org/10.1007/3-540-45931-6_28

	Abstract
	Contents
	List of Figures
	Dedicace
	Acknowledgements
	Author's Declaration
	Introduction
	Unifying Theories of Programming (UTP)
	Generalities
	Relational calculus
	Designs
	Linking theories
	Reactive Processes
	CSP processes semantics

	Continuations
	Steps and Assembly of Steps
	Compilation
	High-level language with jumps and labels

	Final considerations

	Literature Review
	Mobile Processes
	Code Mobility
	UTP-CSP + weak mobility

	Mobile Channels
	FOCUS + channel mobility
	A CSP model for occam-pi
	CSP||B + channel mobility
	CSL + CSP + channel mobility
	CSP-like localised traces model for pi-calculus processes
	CSP-like operational semantics

	Other Works
	Final considerations
	Summary and concluding remarks

	Channel Mobility
	Introduction
	Dynamic (Network) Systems - Concepts and their Formalisation
	Some definitions
	Formalisation

	The Semantics
	Healthiness conditions
	Some mobile processes
	Channel-passing
	Example: a mobile telecom. network
	Parallel composition
	Dynamic Renaming

	Dynamic hiding
	From mobile processes to silencing processes
	The semantics

	Links with static CSP
	From static CSP to mobile CSP
	From mobile CSP to static CSP
	MCSN-simulation processes
	From DN healthy processes to SN healthy processes
	Example: a circular FIFO buffer with mobile channels

	Discussion
	Evaluation of results
	Of the relation between the alphabetised traces model of simulation CSP and the failures model of CSP
	Versus the pi-calculus
	Closed vs. Open world

	Strong Process Mobility
	Introduction
	Continuations for Reactive Processes
	Formalisation
	Continuations semantics for programs with parallel constructs
	Reactive Process Blocks

	Representation of the state for Reactive Processes
	Generic interrupt
	Preliminaries
	Formalisation
	Semantics of the generic interrupt

	Semantics of process strong mobility
	Discussion
	Strong process mobility vs. Channel mobility

	Conclusion
	Bibliography

